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Abstract

Essentially all program translators (both source-to-source translators and com-
pilers) operate via transliteration and refinement. The source program is first
transliterated into the target language on a statement by statement basis. Various
refinements are then applied in order to improve the quality of the output. Al-
though acceptable in many situations, this approach is fundamentally limited in
the quality of the output it can produce. In particular, it tends to be insufficiently
sensitive to global features of the source program and too sensitive to irrelevant
local details.

This paper presents an alternate translation paradigm—abstraction and reim-
plementation. Using this paradigm, the source program is first analyzed in order to
obtain a programming language independent, abstract understanding of the com-
putation performed by the program as a whole. The program is then reimplemented
in the target language based on this understanding. The key to this approach is the
abstract understanding obtained. It allows the translator to see the forest for the
trees—benefiting from an appreciation of the global features of the source program
without being distracted by irrelevant details.

Translation via abstraction and reimplementation is one of the goals of the Pro-
grammer’s Apprentice project. A translator has been constructed which translates
Cobol programs into Hibol (a very high level, business data processing language). A
compiler has been designed which generates extremely efficient PDP-11 object code
for Pascal programs. Currently, work is proceeding toward the implementation of
a general purpose, knowledge-based translator.

Copyright © Massachusetts Institute of Technology, 1986

(To appear in IEEE Transactions on Software Engineering.)

This report describes research done at the Artificial Intelligence Laboratory of the Massachusetts
Institute of Technology. Support for the laboratory’s artificial intelligence research has been provided in
part by the IBM Corporation, in part by the Sperry Corporation, in part by National Science Foundation
grant MCS-7912179, and in part by the Advanced Research Projects Agency of the Department of
Defense under Office of Naval Research contract N00014-85-K-0124.

The views and conclusions contained in this document are those of the author, and should not be
interpreted as representing the policies, either expressed or implied, of the IBM Corporation, of the
Sperry Corporation, of the National Science Foundation, or of the Department of Defense.



| - Introduction

"The goal of this paper is to present the idea of translation via abstraction and reimplementation and compare it
with the standard approach of translation via transliteration and refinement. In the main, this is done through a
discussion of the basic idcas behind the two approaches and a discussion of the designs for two translators based
on abstraction and reimplementation. In addition, the paper presents a detailed description of an implemented
prototype translator which demonstrates the cfficacy of the abstraction and reimplementation approach.

The process of program translation takes a program written in some source language and creates an cquivalent
program in some target language. The primary goal of translation is to create a syntactically correct program in
the target language which computes the same thing as the source program in more or less the same way. For a
widec varicty of source and target languages, satisfying this goal is relatively straightforward.

In addition to the primary goal of correctness, translation typically has one or more subsidiary goals such as
efficiency or readability of the target program. In general, the most difficult aspect of translation is not producing
correct output, but rather attempting to satisfy these subsidiary goals. The main problem is that typically the
subsidiary goals of translation are at best orthogonal to, and at worst in conflict with, the goals of the original
author of the source program.

Translations vary widely in quality. An optimal translation would produce the program which the original
authors would have produced had they been writing in the target language in the first place and had they had the
desired subsidiary goals in mind.

The most common example of program translation is compilation — the translation of a program written in a
high level language into machine language. In compilation, the key subsidiary goal is achieving efficiency in the
target program. The work on compilers has demonstrated that acceptable efficiency can be obtained. However,
there is still 4 long way to go. Even the best optimizing compilers fall short of the efficiency which programmers
can achieve writing directly in machine language.

Another important application of program translation is source-to-source program translation. In this
situation, a program is translated from a language which may be in some way obsolete into another language
where it can be more casily maintained. In source-to-source translation, the key subsidiary goal is achieving
readability (and hence maintainability) of the target program. The use of automatic translation during
maintenance has been severely limited by the fact that readability of the target program is very difficult to achieve.

Most current program translators operate by a process which could be called translation via transliteration and
refinement. In this process, the source program is first transliterated into the target language on a line by line basis
by translating cach linc in isolation. Various refincments are then applicd in order to improve the target program
produced. As discussed in Section 11, this process has a number of advantages. However, it is inherently limited
in the extent to which it can satisfy the subsidiary goals of translation. In particular, translation via transliteration
and refinement tends to be insufficiently sensitive to global features of the source program and too sensitive to
irrcleviant local details of the source program,

Scetion L presents an alternative approach to program wranslation — transtation via abstraction and



reimplementation. In this process, the source program is first analyzed in order to obtain an abstract description of
the computation being performed. The program is then reimplemented in the target language based on the
abstract description. "The central feature of this approach is the abstraction step. It allows the translator to benefit
from a global understanding of what the source program docs. In addition, the abstraction step deliberately
discards information about dctails of the source program which arc not rclevant to the translation process.
Although inherently more complex than translation via transliteration and refinement, translation via abstraction
and rcimplementation is capable of producing very high quality results.

Scctions IV & V present examples of program translators which operate via abstraction and reimplementation.
The first cxample translator (Satch [10]) is a prototype system which translates Cobol programs into Hibol. (Hibol
is a very high level, non-procedural, business data processing language.) Satch is notable because it produces
extremely readable output. The second example (Cobbler [9)) is a proposed compiler which translates Pascal
programs into PDP-11 assembler language. Cobbler is notable becausc it produces extremely cfficient output.

Scction VI describes efforts within the Programmer’s Apprentice project [28] toward the construction of a
general purpose. knowledge-based translation system operating via abstraction and reimplementation. In order to
support very high quality translation, this system will have extensive knowledge of how algorithms can be
expressed in the source and target languages. In order to make the system general purpose, this knowledge will be
represented declaratively in a library of algorithm schemas. Each schema will specify how a class of algorithms
can be rendered in the source or target language.

Scction VIT discusses other work which is relevant to the idea of translation via abstraction and
reimplementation. In particular, research on natural language translation has shown that obtaining a global

understanding of the source text is essential for producing high quality translations.

11 - Translation via Transliteration and Refinement

As shown in Fig. 1, translation via transliteration and refinement operates in two steps. The transliteration step
translates the source program on an element by element basis. (The word transliteration (as opposed to
translation) is used to connotc the idea of literal translation where each element is translated in isolation without
regard for context.) The output of the transliteration step is expressed either dircctly in the target language or in

an intermediate language which is semantically similar to it.

source _program

\TRANSLITERAT ION
REFINEMENT

target-l1ike intermediate -==————emesmes——> target program

Fig. 1. Translation via transliteration and refinement.

The refinement step takes the output of the transliteration step and applics various correctness-preserving

transformations in order 1 improve its quality, For examnple, compilers appiyv optimizatiens in order to improve



the efficiency of the code produced. If the intermediate language is not identical to the target language, then the

refinement step also performs the (typically trivial) translation from intermediate to final form.

Ixample of Transliteration and Refinement

As an example of translation via translitcration and refinement, consider how this approach could be used to
translate Fortran [34] programs into Ada[37] programs. Fig. 2 shows a Fortran program BOUND which is taken
from the 1BM Fortran Scientific Subroutine Package [35). Fig. 3 shows the result of the transliteration step of the
translation process. Fig. 4 shows the final result after the refinement step of the translation process.

The program BOUND has six input parameters and four output paramcters. The parameter A is a matrix which
contains a sct of observations of a number of variables presumably determined in some experiment. The integer
parameters NO and NV specify the number of observations and the number of variables respectively. (As is
gencrally the casc in the programs in the Scientific Subroutine Package, although A is logically a matrix, it is
declared 1o be a vector and all of the index computations are explicit in the program.)

The parameter S is a vector of length NO. The vector S sclects the observations which should be considered by
the program BOUND. An obscrvation J is considered only if S(J) is non-zero.

The parameters BLO and BHI are vectors of length NV. For cach variable, these vectors specify lower and upper
bounds respectively for the observation values. The integer parameter IER is used to return an error code. If
BLO(I)>BHI(I) for any I then IER is sct to one and computation is aborted; otherwise it is sct to zero.

The parameters UNDER, BETW, and OVER are afso vectors of length Nv. For cach variable I, the program BOUND
counts how many of the selected observations are under BLO(I), how many are between BLO(I) and BHI(I)
inclusive, and how many arc over BHI(I). These counts are stored in the variables UNDER, BETW, and OVER

respectively which are the principal outputs of the program BOUND.



SUBROUTINE BOUND(A,S,BLO,BHI,UNDER,BETW,OVER,NO,NV,IER)
DIMENSION A(1),S(1),BLO(1),BHI(1) ,UNDER(1),BETW(1),0VER(1)
IER = 0
DO 10 I = 1, NV
IfF (BLO(I)-BHI(I)) 10,10,11

11 IER = 1
GO T0 12

10 CONTINUE
DO 1 K = 1, NV
UNDER(K) = 0.0
BETW(K) =

1 OVER(K) =
DO 8
1J =
IF

1J
IF (A(IJ)-BLO(I))

3 IF (A(1J)-BHI(I))

4 BETW(I) = BETW(I)
GO TO 7

5 UNDER(I) = UNDER(I)+1.0

GO TO 7

OVER(I) = OVER(I)+1.0

CONTINUE

CONTINUE

RETURN

END

IJ+NO
5,3,3
4,4,6
+1.0

Fig. 2. The Fortran program BOUND.

The transliteration process is illustrated by Fig. 3. Each part of the program is translated locally. The Fortran
parameters are all turned into "in out” parameters of appropriate types in the Ada program. They are given the
mode "in out" because every Fortran parameter can potentially be both an input value and an output valuc. The
Fortran assignment statements are converted into equivalent Ada assignments. This requires very little change
because Fortran is essentially a subset of Ada when it comes to arithmetic expressions and assignment statements.
Fortran arithmetic IFs are expanded into equivalent Ada "if then else” statements branching to the
appropriate labels. Arithmetic IFs where two of the labels are the same are treated as special cases in order to
avoid the need for temporary variables. Each Fortran DO is expanded into an equivalent Ada "1o0p”. The Ada
"for" construct cannot be used because Ada "for" tests for termination at the top of the loop while Fortran DO
tests for termination at the bottom of the loop. Fortran CONTINUE, RETURN and GO TO are turned into Ada
"nul1"”, "return”, and "goto” respectively. The only aspect of the transliteration which is not totally local is that
the Fortran program has to be scanned in order to determine what variables are used in the program so that

appropriate variable declarations can be inserted at the beginning of the Ada program.



type VECTOR is array (INTEGER range <>) of REAL;

procedure BOUND{A,S,BLO,BHI UNDER,BETW,0VER: in out VECTOR;
NO,NV,IER: in out INTEGER) is
I,1J,J,K: INTEGER;
begin
IER :=
I := 1;
loop;
if BLO(I)-BHI(I)<=0.0 then goto L10;
else goto L11;
end if;
<KL11>> IER := 1;
goto L12;
<<L10>> npull;
I := I+1;
exit when IDNV;
end loop;
K := 1;
loop
UNDER(K) := 0.0;
BETW(K) :
<<L1>> OVER(K)
K := K+1;
exit when KD>NV;
end loop;
Jd = 1;
Toop
IJ := J-NO;
if §(J2)=0.0 then goto L8;
else goto L2;
end if;
KL2>> 1 := 1;
loop
1J := 1J+NO;
if A(IJ)-BLO(I)<0.0 then goto L5;
else goto L3; :
end if;
<KL3>> if A(IJ)-BHI(I)<=0.0 then goto L4;
else goto L6;
end if;
<<L4>> BETW(I)
goto L7;
<<L5>> UNDER(I) := UNDER(I)+1.0;
goto L7;
<<L6>> OVER(I)
<KLKL7>> null;
I := I+1;
exit when I>NV;
end loop;
<<L8>> null;
J 1= J+1;
exit when J>NO;
end loop;
<<L12>> return;
end BOUND;

0;

0.0;
0.0;

BETW(I)+1.0;

OVER(I)+1.0;

Fig. 3. A transliteration of Fig 2 into Ada.



As is typically the case with translitcration, the program in Fig. 3, although correct, does not do a good job of

satisfying the subsidiary goals of translation (in this case rcadability). Fig. 4 shows the final result after the

refinement step of the translation process.

type VECTOR is array (INTEGER range <>) of REAL;

procedure BOUND(A,S,BLO,BHI: VECTOR;
UNDER,BETW,OVER: in out VECTOR;
NO,NV: INTEGER; IER: out INTEGER) is
I,IJ,J,K: INTEGER;
begin
IER :=
I :=1;
Toop
if BLO(I)-BHI(I)<=0.0 then goto L10; end if;
IER := 1;
return;
KL10>> 1 := I+1;
exit when IDNV;
end loop;
K := 1;
loo0p;
UNDER(K) := 0.0;
BETW(K) :
OVER(K) :
K := K+1;
exit when KD>NV;
end loop;
J := 1
loop;
IJ := J-NO;
if S(J)=0.0 then goto L8; end if;
I :=1;
Toop;
IJ := IJ+NO;
it A(IJ)-BLO(I)<0.0 then goto L5; end if;
if A(IJ)-BHI(I)>0.0 then goto L6; end if;
BETW(I) := BETW(I)+1.0;
goto L7;
<<L5>> UNDER(I) := UNDER(I)+1.0;
goto L7;
<<L6>> OVER(I) := OVER(I)+1.0;
KLKL7>> 1 := I+1;
exit when IDNV;
end loop;
KL8>> J = J+1;
exit when J>NO;
end loop;
end BOUND;

0:

uon
oo

.0
.0

Fig. 4. A refined transliteration of Fig 2 into Ada.

Fig. 4 is derived from Fig. 3 by applying a number of correctness-preserving transformations. Complex
"if then else” statements which have clauses which branch to the next statement are simplified to remove these

clauses. The branch to a "return” statement is replaced by a "return” statement. Unnecessary "nuli”

statements, "return” statements, and fabels are removed.  Instead of giving all the parameters the mode

"in out”, some of the parameters are given just the mode "out™ or "in" (the default in Ada). This is done in a



purcly syntactic way by noting that parameters which arc never assigned to cannot be “out™ and parameters
which are never read cannot be "in™,

There are a number of transformations which could in principle have been applied to the program which have
not been. For example, the computation involving UNDER, BETW, and OVER could be rearrange into onc large
"if then else”. However, in keeping with the kinds of refincments typically supported by source-to-source
translators (sec Scction VII), two criteria were used in order to decide which refinements to perform. First, no
support was provided for transformations which require cither control flow or data flow analysis of the program.
This rules out transformations like the one suggested above.

Sccond, the main emphasis was placed on transformations which only look at an adjacent pair of statcments.
The only transformation which is more complicated than this is the one which refines the mode of the parameters.
This transformation has to scan the program in order to determine which parameters are rcad and assigned.
However, it does not do an actual data flow analysis. If it did, it would rcalize that UNDER, BETW, and OVER are
actually "out"™ paramcters and not "in out” paramcters since they cannot be read until after they have becn
assigned.

Fig. 4 is rcadable, but still not as good as onc would like. In particular, it falls far short of the goal of
producing the program the programmers would have produced had they been writing in Ada — it is a
Fortran-style Ada program instcad of an Ada-style Ada program. As will be discussed in Section HI, better
translations of Fig. 2 can be achicved by means of translation via abstraction and reimplementation.

Figs. 3 & 4 are not the output of any particular translator. Rather, they are hypothetical examples intended to
illustrate the process of transliteration and refinement. However, it is not clear that any existing source-to-source

translator produccs output which is significantly better than Fig. 4 (see Section VII).

* Advantages of Transliteration and Refinement

Translation via transliteration and refinement has several advantages. Most importantly, it uses a divide and
conquer strategy in order to satisfy the goals of transiation. The basic goal of obtaining a correct translation is
achieved by the transliteration step. The refinement step need only guarantee that it preserves this correctness.
The subsidiary goals of the translation (e.g., efficiency or readability) are achicved by the refincment step. The
transliteration step is greatly simplified by not having to worry about the subsidiary goals.

Another advantage is that the localized nature of the transliteration step makes it casy to encode the basic
knowledge needed for translation. This knowledge is economically represented by stating how each of the
constructs in the source language should be converted into equivalent constructs in the target language. The
transliteration step need not have any knowledge about how special combinations of source constructs can be
represented as special combinations of target constructs. (This latter kind of knowledge is the province of the
refinement step which presumably knows how to fine tune cumbersome combinations of target constructs.)

A final advantage of translation via transliteration and refinement is that it makes it casy to construct familics

of tunskators whiich either share the same transliteration step or share the same relinement step. IFor example, one



might construct a family of compilers which compile various high level languages into the same machine language

and which share the same refinement step.

Transliteration Is Not Always Practical

Although it works satisfactorily in many situations; translation via transliteration and refinement has some
fundamental disadvantages. To begin with, it assumes that translitcration is practical. This in turn depends on the
assumption that each of the source language constructs can be individually translated into target language
constructs in a practical way. Unfortunately, this is not always the case.

The main way in which transliteration can be blocked is that the source language may support a primitive
construct which is not supported by the target language. For example, consider translating from a language which
supports GOTOs into a language which does not, or from a language which supports multiple assignments to a
variable into a functional language which docs not. In the case of Fortran and Ada, consider the fact that Ada has
nothing which is cquivalent to the Fortran EQUIVALENCE statement.

The primary source of incompletencss in current translators is primitive constructs which cannot be
transliterated. Current translators typically just ignore non-transliteratable constructs, cither refusing to process
source programs which contain them or copying them unchanged from the source to the target. Human
intervention is required cither to remove them from the source or to fix them up in the target.

A second way in which transliteration can be blocked is that the source and target languages may have
constructs which, although they correspond closely, differ in significant semantic details. Most of the time these
details may not matter for translation. However, when they matter they are liable to matter a lot. For example,
consider translating into a language which forces complex data structures to be copied when they arc assigned to a
variable from a language which does not, or between languages which differ in their variable scoping rules. In the
case of Fortran and Ada, consider the fact that vector arguments to Fortran subroutines are passed by reference
while Ada specifies that it is undefined whether or not vector arguments will be copied or passed by reference.

The primary source of incorrectness in current translators is constructs which can be transliterated
straightforwardly most of the time but only with great difficultly (or not at all) in certain hard-to-detect situations.
Current translators typically just use the straightforward transliteration all of the time without giving any
indication that there might be a problem. (For example, the transliteration in Fig. 3 blindly assumes that it does
not matter how the vector parameters get passed.) Human intervention is required in order to correct any

problems which arisc in the target program produced.

Transliteration Complicates Refinement

A sccond fundamental disadvantage of translation via translitcration and refinement is an unintended
byproduct of its greatest advantage. The principal virtue of the transliteration and refinement approach is that it
simplifics the problem of satisfying the primary goal of translation (i.c., correctness) by factoring out the problem

of satisfving the subsidiary goals of transtation.  Unfortunately, this factoring typically complicates the task of



satisfying the subsidiary goals. This is particularly unfortunate since the subsidiary goals are usually harder to
satisly than the primary goal.

The basic rcason why translation via transliteration and refinement complicates the task of satisfying the
subsidiary goals of translation is that typically the process of transliteration docs not merely ignore the subsidiary
goals, it works against them. Simply put, whether or not the original source program is good from the point of
view of the subsidiary goals of the translation, the output of the translitcration step is almost always guaranteed to
be bad from this point of view,

The most obvious way in which transliteration makes things difficult for later refinement is that, more often
than not, the transliteration of a given construct in the source language requires the use of a circumlocution in the
target language. The only time when this can be completely avoided is when the target language possess a
semantically identical construct. Examples of both of these cases can be seen in Fig. 3. The DO loops in the
Fortran program arc converted into cumbersome "1oop” statements in the Ada program. In contrast, the
assignment statcments remain cssentially unchanged.

A more subtle way in which transliteration makes things difficult for later refinement is that it tends to obscure
the key features of the algorithm implemented by the program being translated. Transliteration does this through
both camouflage and the creation of decoys. The mass of circumlocutions produced by transliteration act as
camouflage hiding the key features. ecoys (features which are prominent but actually unimportant) arc created
because the code produced is sensitive to unimportant details of the source. For example, Fig. 3 would have
looked quite different if the Fortran programmer had used logical IFs instead of arithmetic IFs. A kind of
indirect camouflage is produced due to the fact that the transliteration step is insensitive to global considerations.
Transliteration typically renders a given construct in exactly the same way even if the context would suggest that it
should be translated differently. For example, all of the parameters are given the mode "in out” in Fig.3
whether or not this is actually necessary given the way they are used.

A final way in which transliteration makes things difficult for later refinement is that useful information about
the source program can get lost. As an example of this, consider translating from a language (such as Ada) where
the order of cvaluation of the arguments of a function call is undefined to a language where the order is defined.
In this situation, straightforward transliteration will define an evaluation order and thereby discard the
information that many cvaluation orders are cqually acceptable. This loss of information makes it hard for the
refinement step to apply transformations which are not applicable to the chosen evaluation order but which are

applicable to one of the evaluation orders which was not chosen.

Applicability of Transliteration and Refinement

The primary requirement for the applicability of translation via transliteration and refinement is that
transliteration must be practical. For this to be the case, the target language must support all of the primitive
constructs supported by the source language. In gencral, this implies that the target language must be at a lower

level than the source kanguage — L., have aowider variety of primitive construets. This is why the arrow in Fig. 1
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between the source and the intermediate language is drawn pointing downward.

‘Translation via transliteration and refinement is perhaps most applicable to compilation because any primitive
construct can be expressed in machine language. In contrast, source-to-source translators typically have to restrict
the input language and/or admit possibly incorrect translations in order to make transliteration practical.

A second limitation on the applicability of translation via transliteration and refinement is that refinement is an
inherently difficult task which transliteration makes more difficult. As a result, the transliteration and refinement
approach is most applicable in situations where the subsidiary goals of translation are not too stringent.

Translitcration and refinement works well in a straightforward compiler where rcadability of the output is not
an issue and only moderate efficiency is required in the output code. In order to achicve significantly higher

levels of efficiency in the output code, optimizing compilers expend an enormous amount of effort on refincment.

HI - Translation via Abstraction and Reimplementation

As shown in Fig. 5, translation via abstraction and rcimplementation operates in two steps. The abstraction
step performs a global analysis of the source program. ‘The goal of this analysis is to obtain an understanding of
the algorithms being used by the program. The abstract description highlights the essential features of these

algorithms while deliberately throwing away information about unimportant features of the program.

ahstract description
ABSTRACTION/\ REIMPLEMENTATION

source program target program

Fig. 5. Translation via abstraction and reimplementation.

The rcimplementation step takes the abstract description produced by the abstraction step and creates a
program in the target language which implements this description. In order to simplify this task, the abstract
description is designed so that it contains exactly the right kind of information needed in order to guide the
reimplementation process.

The basic difference between translation via transliteration and refinement and translation via abstraction and
reimplementation can be scen by comparing the shapes of Figs.1& 5. The transliteration and refinement
approach translates directly to the target language. In contrast, the abstraction and reimpiementation approach
first translates the source program up to a very high level description and then translates this description down to
the target language.

Like translation via transliteration and refinement, translation via abstraction and reimplementation uses a
divide and conquer strategy to attack the translation task. However, it divides the translation task differently. The
translitcration and refinement approach scparates the problem of satisfying the primary goal of translation from
the problem of satisfying the subsidiary goals of translation. In contrast, the abstraction and rcimplementation

approach scparaes knowledge of the source language from knowledge of the target language.
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I2xample of Abstraction and Reimplementation

As an example of translation via abstraction and reimplementation, consider how this approach could be used
to translate the Fortran program in Fig. 2 into Ada. 'The first siep is to obtain an abstract description of the
computation in Fig. 2. Fig. 6 shows the kcy clements of such an abstract description.

Fig. 6 is divided into three parts. The first part lists the parameters of the program BOUND and their types as
specified in the original Fortran program. (By convention, the Scientific Subroutine Package uses the dimension
specification V(1) to specify a vector of unknown length rather than a vector of length one.) A complete data
flow analysis of the program is used in order to determine which parameters are "in" and which are "out". This
analysis reveals that UNDER, BETW, and OVER are never read before they are written and are therefore "out”
parameters.

The second part of Fig. 6 lists a number of constraints which must be satisfied in order for the program BOUND
to produce reasonable results. The first scven constraints state that the ranges of the various vector parameters
must be large cnough to prevent referencing memory locations outside of the vectors. These constraints are
determined by looking at the largest values which the various index variables in the program can reach.

The last two constraints specify that the parameters NO and NV must be positive and thercfore that the vector
parameters must have positive extent. These are particularly interesting constraints becausc they imply that Ada
"for" loops can be uscd when translating the program. The constraints follow from the observation that a
Fortran DO loop which enumerates the elements of an array does not operate correctly when given an array of zero
extent. The problem is that the body of a Fortran DO loop is always executed at least once, even if the limits
placed on the DO variable suggest that zero exccutions would be more appropriate. (This feature of DO is
occasionally used in a constructive way by Fortran DO loops which do not enumecratc the elements of arrays.)

The third part of Fig. 6 describes the computation performed by the program. The first two lines specify that
the program checks to see that every clement of BLO is less than or equal to the corresponding element of BHI. If
this is true then IER is set to zero. Otherwise, IER is sct to one and the program is terminated.

The remainder of Fig. 6 describes the main computation performed by the program BOUND in terms of
recurrence equations. The main body of the program is a doubly nested loop iterating over the index variables J
and I. The various evaluations of the body of the inner loop can be referred to in terms of the corresponding
values of the index variables. The notation S is used to refer to the value of the variable X at the end of the
evaluation of the inner loop body during which the outer loop index has the value m and the inner loop index has
the value n. The recurrence equations specify how variable values corresponding to a given evaluation of the
inner loop body arc computed from valucs corresponding to earlier cvaluations. The recurrence cquations are
derived by inspecting the data flow in the loops. As part of this process, the middle loop in the Fortran code is
revealed to be part of the initialization for the main loop in the program.

The fact that Fig. 6 is shown in a textual form is not intended to imply that the abstract description would
actually be represented textually. For example, it might take the form of logical expressions annotating a data

flow graph representing the program.,
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PARAMETERS:
in A,S,BLO,BHI: vector of real

out UNDER,BETW,OVER: vector of real
in NO,NV: integer

out IER: integer

CONSTRAINTS:
A'RANGED1..NV+NO, S'RANGED1..NO,
BLO'RANGED1..NV, BHI'RANGED1..NV,
UNDER 'RANGED1..NV, BETW'RANGED1..NV, OVER'RANGED1..NV,
NO>1, NV>1

COMPUTATION:
if (v I€1..NV BLO(I)<BHI(I)) then IER=0
else IER=1 A computation is aborted
The main computation is a doubly nested loop
The outer index (first subscript) counts from 1 to NO
The dinner index (second subscript) counts from 1 to NV
The variables assigned within the loops have the following values:
v j€1..NO, i€1..NV, KE€1. NV
IJJ.OT"]"NO
IJj‘i=IJj’i.1+N0
UNDER(K)g §=0.0
if K=i A S(j)#0.0 A A(13;;)<BLO(i)
then UNDER(K);;=1.0+UNDER(K)j.q j
else UNDER(KMJ=UNDER(KM_Li
BETW(K)g j=0.0 '
if K=i A S(j)#0.0 A BLO(i) <A(1J;;) <BHI(i)
then BETW(K)j;=1.0+BETW(K)j-1
else BETW(K)j,i=BETW(K)j_1’i
OVER(K) g j=0.0
if K=i A S(j)#0.0 A BHI(i)<A(1J;;)
then OVER(K);;=1.0+OVER(K)j-q
else OVER(K);i=OVER(K)j-q j

Fig. 6. An abstract description of Fig. 2.

Based on the abstract description in Fig. 6, it is a straightforward matter to create a quality translation of the
m%mmWWDMOMM%mwnmﬁglTmmmmm$mmm®pmmwmmﬂwm®wﬂﬂmw&ﬁ@
types. The recurrence equations map directly into a triply nested loop. Transformations similar to those used by
an optimizing compiler can be used to get rid of the unnecessary innermost loop over K and to move the test
$(J)7=0.0 out to the outermost loop since it is an invariant in the inner loop.

A comparison of Fig. 7 with Fig. 4 shows that the translation in Fig. 7 is superior in several respects. Most
notably, the paramecters have all been given the correct modes; labels and "goto” statements have been
eliminated in favor of complex "if then else" statcments; and "for" loops have been used.

Some of the improvements which are seen in Fig. 7 could have been achieved in Fig. 4 if local refinement had
been applied more aggressively. For example, local transformations probably could have been used to combine

the simple "if then else” statements in Fig. 4 with the statements following them in order to create the
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"if then else" statements shown in Fig. 7.
However, improvements such as determining the proper modes for the parameters and utilizing "for" loops
depend critically on an understanding of the program as a whole. These changes cannot be made until afier a

global analysis of the program has determined that the changes are valid.

type VECTOR is array (INTEGER range <>) of REAL;

procedure BOUND(A,S,BLO,BHI: VECTOR;
UNDER,BETW,0OVER: out VECTOR;
NO,NV: INTEGER; IER: out INTEGER) is
1,1J,J3,K: INTEGER;
begin
IER := 0;
for I in 1..NV loop
if BLO(I)>BHI(I) then IER := 1; return; end if;
end loop;
for K in 1..NV loop
UNDER(K) := 0.0;
BETW(K) ;
OVER(K) :
end loop:
for J in 1..NO loop
if S(J)/=0.0 then
IJ := J-NO;
for I in 1..NV loop
IJ := IJ+NO;
if A(IJ)<BLO(I) then UNDER(I) := UNDER(I)+1.0;
elsif BHI(I)<A(IJ) then OVER(I) := OVER(I)+1.0:
else BETW(I) := BETW(I)+1.0;
end if;
end loop;
end if;
end loop;
end BOUND;

0.0;
0.0;

Fig. 7. A translation of Fig 2 into Ada based on Fig. 6.

While Fig.7 is a good translation of Fig. 2 into Ada, it is still far from optimal. Appropriate Ada-style
constructs have been used, however, the result is still essentially a Fortran-style program. In particular, the fact
that A is really a matrix, but is declarced to be a vector and the fact that the various vector parameters may have
ranges which are larger than the ranges indicated by the parameters NO and NV is in the style of the Fortran
Scientific Subroutine Package, but, it is not in the style of Ada.

Fig. 7 is shown as it is because it is just about the best translation which can be achieved if the parameters and
their types are required to remain the same as in the Fortran program. In addition, it illustrates the kind of

translation which can be achicved by using an abstract representation which is only moderately abstract.

Example of Increased Abstraction

Figs. 8 & 9 show a translation of the program BOUND into Ada which is better than the one shown in Fig. 7 and
the abstract description on which it is based. There are two fundamental ways in which the translation shown in

thicse iiguies is ditferent fronn e one shown in Figs. 0 & 7. Finst Figs. 8 & 9 assumie that the program BOUND and
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the programs which call it arc being translated together, ‘This opens up two new avenues of attack on the
translation problem. The programs which call BOUND can be inspected in order to obtain additional information
about BOUND. ‘The interface to the program BOUND can be altered in order to render the program more
acsthetically in Ada.

In Fig. 8 it is assumed that an analysis of the programs which call BOUND shows that BOUND is only called with
vectors which have the exact sizes indicated by the parameters NO and NV. 'This makes it possible to tighten up the
constraints in the description and to climinate all mention of the variables NO and NV in favor of using the Ada
array attribute "' RANGE " applied to the parameters.

The sccond fundamental difference between Figs. 8 & 9 and Figs. 6 & 7 is that Fig. 8 is significantly more
abstract than Fig. 6. The computations being performed are described in terms of their net effects.  The
computations involving UNDER, BETW, and OVER arc described as computing a count of elements of A which have
certain propertics. The variable S is described as a vector of flags which are tested. A is described directly as a
matrix, and no mention is made of the variable IJ. The computation involving IER is summarized by stating that

the computation is aborted and an crror signalled if the first constraint is violated. No mention is made of how

this might be done.

LOGICAL INPUTS:
A matrix of real
S vector of flag
BLO,BHI vector of real

LOGICAL OUTPUTS:
UNDER,BETW,OVER vector of count
error signaled (and computation aborted) if constraint (1) is violated

CONSTRAINTS:
(1) v I€BLO'RANGE BLO(I)<BHI(I)
(2) A'RANGE(1)=BLO'RANGE=BHI'RANGE=UNDER'RANGE=BETW'RANGE=0VER'RANGE

(3) A'RANGE(2)=S'RANGE

COMPUTATION:
v IEUNDER'RANGE
UNDER(I) = count-of {JES'RANGE | S(J) A A(I,J)<BLO(I)}
v I€BETW'RANGE
BETW(I) = count-of {JES'RANGE | S(J) A BLO(I)<A(I,J)<BHI(I)}
vV I€OVER'RANGE
OVER(I) = count-of {JES'RANGE | S(J) A BHI(I)<A(I,J)}

Fig. 8. A more abstract description of Fig. 2.

The key to the increase in abstraction in Fig. 8 is the ability to recognize the net effects of a computation. This
in turn depends on the abstraction component having a significant amount of knowledge about what kinds of
computations can be performed. For example, it can presumably recognize that the recurrence equations in Fig. 6
compute counts and that the computation involving the variable 1J converts matrix indices to vector indices.
Similarly, it can recognize that the computation involving the variable IER reflects the standard way that error
conditions are signalled in the Fortran Scientific Subroutine Library.

Based on Fig. 8, the reimplementation step can produce a much better program (sce Fig. 9) than the one
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shown in Fig. 7 because it has fewer restrictions placed on it. It can choose better parameters and better types
because the abstract description does not require that the parameters and types be the same as in the Fortran
program. Itis frce to implement the crror signalling using standard Ada mcthods — i.c., by raising an exception
instecad of returning an crror value which has to be explicitly checked by the caller. Due to the stronger
constraints on the length of the vectors, array literals can be used to initialize the vectors UNDER, BETW, and OVER
instead of a loop.

In some situations, the added freedom docs not cause any change in the translation. For cxample, the
reimplementation step could have computed the counts in several different ways. However, none of these
methods would have been any better than the one shown in Fig, 7, so the same method was used in Fig. 9.

There is a price which has to be payed in order to get the improved translation shown in Fig. 9. Analysis is
made more complicated by the nced to recognize the net effects of the computation being performed. In
addition, reimplementation is made more complicated because there are more implementation decisions which

have to be made.

type VECTOR is array (INTEGER range <>) of REAL;

type BOOLS is array (INTEGER range <>) of BOOLEAN;

type VECT 1is array (INTEGER range <>) of INTEGER;

type MATRIX is array (INTEGER range <>, INTEGER range <>) of REAL;

procedure BOUND(A: MATRIX; S: BOOLS; BLO,BHI: VECTOR;
UNDER,BETW,OVER: out VECT) is
1,J;: INTEGER;
begin
for I in BLO'RANGE loop
if BLG(I)>BHI(I) then raise CONSTRAINT_ERROR; end if;
end loop;
UNDER := (UNDER'RANGE => 0);
BETW := (BETW'RANGE => 0);
OVER := (OVER'RANGE => 0);
for J in A'RANGE(2) 1loop
if S(J) then
for T in A'RANGE(1) loop
if A(I,J)<BLO(I) then UNDER(I) := UNDER(I)+1;
elsif BHI(I)<A(I,J) then OVER(I) := OVER(I)+1;
else BETW(I) := BETW(I)+1;
end if;
end loop;
end if;
end Toop;
end BOUND;

LI

Fig. 9. A translation of Fig 2 into Ada based on Fig. 8.

Figs. 6-9 are not produced by any particular translator. Rather, they are hypothetical examples intended to
illustrate the process of abstraction and recimplementation. In particular, they demonstrate that increased
abstraction leads to improved translation. In the limit, it is possible to create a translation which compares

favorably with the program the programmers would have written had they been writing in the target language.



16

Advantages of Abstraction and Reimplementation

The most important advantage of translation via abstraction and reimplementation is that, while translation via
translitcration and refinement is, in essence, designed to facilitate achieving the primary goal of wanslation (i.c.,
correctness), translation via abstraction and reimplementation is specifically designed to facilitate achicving the
subsidiary goals of translation. As discussed in Scction II, transliteration creates many problems for later
refinement. In contrast, the sole purpose of abstraction is to simplify later reimplementation. Sections IV & V
give extended cxamples of the way in which abstraction and reimplementation can cooperate in order to produce
high quality translation.

A second important advantage of translation via abstraction and reimplementation is that it is not limited by
the practicality of transliteration. As discussed in Scction H, the local nature of transliteration can causc it to be
blocked cven though overall translation is possible. In contrast, there is no a priori reason for abstraction to ever
be blocked since the result of abstraction is not constrained by the target language. Further, reimplementation
nced not be blocked as long as overall translation is possible.

A final virtue of translation via abstraction and reimplementation is that it lends itself to the construction of
familics of translators which share components at least as well as translation via transliteration and refinement if
not better. In this regard, note that designing an abstract representation which is compatible with a diverse set of

target languages is easier then designing a target-like intermediate language which is compatible with them.

Disadvantages of Abstraction and Reimplementation

Like translation via transliteration and refinement, translation via abstraction and reimplementation has a
fundamental problem of incompleteness. Unlike transliteration, abstraction and reimplementation arc always
possible as long as translation is possible. However, it would not be reasonable to assumec that these processes will
always be practical. When they are not, a translator will have to fall back on some other method of translation.
For cxample, it might usc transliteration (or ask for human assistance) in order to translate those parts of a
program which could not be usefully abstracted and/or reimplemented.

A key issue then is what percentage of a typical source program can be practically abstracted and
reimplemented. This question can only be answered in the context of a particular application. However, two
general statements can be made. First, any particular deficiency in abstraction or rcimplementation can be
rectified by adding more knowledge into the abstraction and reimplementation modules. Second, the limits of
abstraction and reimplementation are essentially orthogonal to the limits of transliteration. Therefore, a translator
which uscs abstraction and rcimplementation and which falls back on transliteration should always be more
complete than one which uscs transliteration alone.

Another disadvantage of the abstraction and reimplementation approach is that it is more complicated than
transliteration and refinement. All in all, in situations where transliteration is practical and littic refinement is
neeessary, translation via transliteration and refinement is probably the approach of choice.  However, in

sttuations where transhiteradion is not practical or where transtation is subject 0 suingent subsidiary goals,
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translation via abstraction and reimplementation can succeed in producing high quality output where translation

via transliteration and refinement would fail,

IV - Satch — Translating from Cobol to Hibol

Faust’s Satch system [10] uses abstraction and rcimplementation in order to attack a problem which is
particularly difficult for translation by transliteration and refinement — translation from a low level programming
language to a high level programming language. There are two key problems with this kind of translation. First,
transliteration is usually not practical. Sccond, the subsidiary goal of such a translation is readability which is an
excepiionally difficult goal to satisfy well.

In the casc of Satch, the source language is Cobol [36] and the target language is Hibol [20]. The motivation
behind the translation performed by Satch is the desire to convert pre-cxisting Cobol programs into a form where
they can be more casily maintained. The benefits of the translation arc illustrated by the fact that the resulting
Hibol program can be as much as an order of magnitude shorter than the original Cobol program.

Hibol is a special purpose business data processing language. It is a very high level, non-procedural, single
assignment language which is based on the concept of a flow. A flow is a multidimensional aggregate of data
values which are indexed by one or more keys. Each Hibol statement specifies how a flow is computed from other
flows. This is done by specifying how a typical element of the output flow is computed from typical clements of
the input flows. An important advantage of Hibol is that both file 170 and iteration over the elements of flows is
implicit in a Hibol program and therefore does not have to be explicitly specified by the programmer. Fig. 11
(which will be discussed below) shows an example of a Hibol program.

A key aspect of the non-procedural nature of Hibol is that there is no explicit control flow in a Hibol program.
The statements in a Hibol program are unordered and there are no flow of control constructs such as conditionals
or loops. As a result of this, direct transliteration from a programming language such as Cobol which has flow of

control constructs to Hibol is not practical.

Example of Satch’s Translation

Figs. 10 & 11 (adapted from [10]) show an example of a translation performed by Satch. Fig. 10 shows a Cobol
program named PAYROLL. This program reads in a file of records which specify the wage rate for each member of
a group of employecs. The program computes the gross pay for each employee based on a 40 hour weck along

with a count of the employees and the total gross pay for all the employees.



ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT HOURLY-WAGE-IN ASSIGN TO DA-2301-S-HWI.
SELECT GROSS-PAY-QUT ASSIGN TO DA-2301-S-GPO.
SELECT EMPLOYEE-COUNT-OUT ASSIGN TO DA-2301-S-ECO.
SELECT TOTAL-GROSS-PAY-QUT ASSIGN TO DA-2301-S-TGPO.
DATA DIVISION.
FILE SECTION.
FD hourly-wage-in
LABEL RECORD IS OMITTED
DATA RECORD IS hourly-wage-rec.
01 hourly-wage-rec.
02 employee-number PICTURE IS 9(9).
02 hourly-wage PICTURE IS 999Vv99.
FD gross-pay-out
LABEL RECORD IS OMITTED
DATA RECORD IS gross-pay-rec.
01 gross-pay-rec. ’
02 employee-number PICTURE IS 9(9).
02 gross-pay . PICTURE IS 999Vv99.
FD employee-count-out
LABEL RECORD IS OMITTED
DATA RECORD IS employee-count-rec.
01 employee-count-rec.
02 employee-count PICTURE IS 9(6).
FD total-gross-pay-out
LABEL RECORD IS OMITTED
DATA RECORD IS total-gross-pay-rec.
01 total-gross~-pay-rec.
02 total-gross-pay PICTURE IS 9(7)v99.
PROCEDURE DIVISION.
initialization SECTION.
MOVE ZERO TO total-gross-pay.
MOVE ZERO TO employee-count.
OPEN INPUT hourly-wage-in.
OPEN QUTPUT gross-pay-out.
mainline SECTION.
READ hourly-wage-in AT END GO TO end-of-job.
MOVE employee-number OF hourly-wage-rec
TO empioyee-number OF gross-pay-rec.
MULTIPLY hourly-wage BY 40 GIVING gross-pay.
ADD 1 TO employee-count.
ADD gross-pay TO total-gross-pay.
WRITE gross-pay-rec.
GO TO mainline.
end-of-job SECTION,
CLOSE hourly-wage-in.
CLOSE gross-pay-out.
OPEN OUTPUT employee-count-out.
WRITE employee-count-rec.
CLOSE employee-count-out.
OPEN OUTPUT total-gross-pay-out.
WRITE total-gross-pay-rec.
CLOSE totai-gross-pay-out.
STOP RUN.

Fig. 10. The Cobol program PAYROLL.
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Fig. 11 shows the Hibol transtation which is produced by Satch. Like any Hibol program, this program is
divided into two parts which are closely analogous to the parts of a Cobol program. ‘The data division of the Hibol
program specifics the data types of the flows (introduced by the keyword FILE) used in the program and how
these flows arc indexed. The computation division specifics how the output flows are computed from the input
flows. The first linc of the computation division spccifics that the elements of the flow GROSS-PAY are computed
by multiplying the clements of the flow HOURLY-WAGE by 40. The sccond line of the computation division
specifies how to compute the single clement flow TOTAL-GROSS-PAY. The operator SUM collapses a dimension of
a flow by adding all of the elements in that dimension together. In an analogous way, the third line of the

computation division specifies how to count the number of employecs.

DATA DIVISION
KEY SECTION
KEY EMPLOYEE-NUMBER FIELD TYPE IS NUMBER FIELD LENGTH IS 9

INPUT SECTION
FILE HOURLY-WAGE KEY IS EMPLOYEE-NUMBER

OUTPUT SECTION
FILE GROSS-PAY KEY IS EMPLOYEE-NUMBER
FILE EMPLOYEE-COUNT
FILE TOTAL-GROSS-PAY
COMPUTATION DIVISION
GROSS-PAY IS (HOURLY-WAGE » 40.)
TOTAL-GROSS-PAY IS (SUM OF. (HOURLY-WAGE * 40.))
EMPLOYEE-COUNT IS (COUNT OF HOURLY-WAGE)

Fig. 11. Satch’s translation of Fig. 10 into Hibol.

Without discussing Figs. 10 & 11 in any more detail, it can be seen that Satch is capable of creating quite good
Hibol translations of Cobol programs. (More complex examples are given in [10].) However, the translations
produced by Satch are still not optimal. For example, it would be better if Satch were capable of realizing that the

flow TOTAL-GROSS-PAY in Fig. 11 could be computed using the more compact expression (SUM OF GROSS-PAY).

Implementation of Satch

Like the architecture of any translation system based on abstraction and reimplementation, Satch’s architecture
is divided into two basic parts (see Fig. 12). The five modules on the Icft side of the figure operate together to
create an abstract description of the Cobol program supplicd to Satch. The Hibol reimplementation module
creates a Hibol program based on the abstract description. Most of the burden of the translation is carried by the
abstraction modules. This asymmetry is due to the fact that the very high level nature of Hibol allows the abstract

description to be similar to the target language.
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abstract description

ALGORITHM HIBOL
IDENTIFICATION REIMPLEMENTATION
grouped plan Hibol program

GROUPING/}ﬁ KEY
DETERMINATION

surface plan

PLAN CREATION/;ﬂ

seudo-Li r r

PARSING/

Cobol program
Fig. 12. 'T'he architecture of Satch.

The parsing module (implemented by G. Burke) parses the Cobol program and transliterates it into
pscudo-Lisp. (Lisp [24] was chosen as the output of this module in order to facilitate the use of a pre-existing plan
creation module.) The parsing module is implemented in essentially the same way that the transliteration
component of a Cobol to Lisp translator operating via transliteration and refinement would be implemented.

For each file in the Cobol program, the key determination module determines which of the ficlds of the file act
as keys. Various heuristics could be used to determine this information by looking at the Cobol program.
However, Satch currently asks the user to specify which fields are key ficlds. In ordinary use this would not lead
to an excessive amount of user interaction because key determination only has to be done once for each file even
if a large number of programs which operate on the files are being translated.

The plan creation module converts the pseudo-Lisp output of the parsing module into a programming
language independent internal representation called a surface plan. Fig. 13 (adapted from [10]) shows a simplified
version of the surface plan which Satch creates when operating on the Cobol program PAYROLL shown in Fig. 10.

A plan is similar to a data flow diagram. Computations are represented by boxes (called segments). The
segments are connected by solid arrows indicating data flow and dashed arrows indicating control flow. In the
figure, many of the data flow arrows have annotations indicating the variables they correspond to. The names of
the segments represent the opcerations they perform. PLUS adds two numbers. CREAD rcads a record from a file.
EOFP determines whether the end of a file has been reached. PIF splits control flow based on whether or not its
input is TRUE.

In the interest of brevity, the plan in Fig. 13 has been simplified in scveral ways. The computation of
EMPLOYEE-COUNT has been omitted. The file open and close functions have been removed. Except for the file
HOURLY-WAGE, the data flow corresponding to the various file objects has been omitted. The data flow for the file

HOURLY-WAGE was retained in order to make the EOF P test understandable
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Plan creation is performed using global data flow and control flow analysis which is similar to the kind of

analysis which is performed by an optimizing compiler.
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Fig. 13. A simplificd surface plan for PAYROLL.

The grouping module takes the surface plan generated by the plan creation module and converts it into a

grouped plan, A grouped plan ditfers from a surface plan in two ways. irst, the segiments in the plan are grouped
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into a hicrarchy of scgments within segments in order to highlight the logica! structure of the plan. Sccond, the
loops in the plan are identified and broken down into their component parts.

Fig. 14 shows a simplificd grouped plan for the program PAYROLL. Like Fig. 13 the grouped plan omits the
file open and close functions and some of the other file operations. The figure is also simplificd in that it docs not
show the computation which occurs within the various segments.  Unlike Fig. 13 the grouped plan shows the
computation of EMPLOYEE-COUNT.

The key difference between Figs. 13 & 14 is the way the loop in the program PAYROLL is represented. In
Fig. 14, the various parts of the loop arc broken apart into segments which are connect by data flow rather than
control flow. This is done through a process called temporal abstraction [27].

‘Temporal abstraction treats series of values in the loop (c.g., the successive values of HOURLY-WAGE) as if they
were single data objects. These temporal series are represented by bold data flow arrows in Fig. 14. Temporal
abstraction analyzcs a loop as a sct of generators and consumers which are sources and sinks for temporal series.
For example, in Fig. 14, thc gencrator CREAD creates a temporal scries of HOURLY-WAGE values which are
consumed by the segment TIMES{40). This segment in turn creates a temporal scrics of GROSS-PAY values which

arc summed up by the scgment PLUS{SUM),

HWF TEMPORAL COMPOSITION GPF

GENERATOR [EN I ’ CONSUMER p

CREAD HW j TIMES(40) e

CONSUMER
CWRITE

GPF |

HW
i CONSUMER
HWF PLUS
TERMINATION CONSUMER | (Sum)
EOFP NUMMY & PLUS
’I(couur)
TGP
i EC
/ N/

Fig. 14. A simplificd grouped plan for PAYROLL.

As discussed in detail in [27], the process of temporal abstraction is based on the data flow in a loop.

Generators and consumers are located by identifving tishtly interconnected subscctions of the loop which can be
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understood in isolation.

Satch was implemented in the context of the Programmer’s Apprentice project and it shares 'many ideas with
the rest of the project. In particular, the plan representation, the plan creation module, and the grouping module
arc borrowed directly from KBEmacs [28] which is the current demonstration system developed as part of the
Programmer’s Apprentice project.

The algorithm identification module inspects the grouped plan and determines the net cffect of the
computation being performed. In combination with the results of key determination, the results of algorithm
identification form an abstract description of the program. Fig. 15 (adapted from [10]) shows the abstract
description which is created for the program PAYROLL. The first part of Fig. 15 comes directly from the data
division of the Cobol program annotated by the key determination module. The second part of Fig. 15 comes
from algorithm identification.

Algorithm identification operates in two stages. The first stage identifics what kinds of looping computations
arc present in the program. This is done by special purpose procedures which scan the grouped plan and
recognize standard kinds of computation. In Fig. 14, these recognition procedurcs identify that the segments
CREAD and EOFP enumecrate the records in a file while the segment CWRITE accumulates a series of records into a
file. They also identify that the segment PLUS(SUM) computes a sum while the segment PLUS(COUNT) computes
a count. (The names of these scgments in Fig. 14 reflect the fact that this recognition has been performed.) The
recognition stage of the algorithm identification module makes it possible to usc the terms "enumerate”, "sum",
and "count" in the abstract description to describe the computation in the loop instead of recurrence equations.

The second stage of algorithm identification computes summary descriptions of the computation performed by
the program. This is done by means of a symbolic evaluator which traverses the plan and accumulates algebraic
equations which describe the computation. For cxample, the symbolic evaluator determines that the field
GROSS-PAY has the value “"CREAD-VALUE (HOURLY-WAGE-IN, HOURLY-WAGE)*40." — i.e., forty times the value
of the HOURLY-WAGE field read from the file HOURLY-WAGE-IN. Similarly, it determines that the field
TOTAL-GROSS-PAY accumulates the sum of the GROSS-PAY values. An algebraic simplifier is used in order to

render the equations in as compact a form as possible.
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FILES:

HOURLY-WAGE - IN

key-field EMPLOYEE-NUMBER-IN 9(9)

data-field HOURLY-WAGE 999v99
GROSS-PAY-0QUT

key-field EMPLOYEE-NUMBER-OUT 9(9)

data-field GROSS-PAY 999va9
EMPLOYEE~-COUNT-QUT

data-field EMPLOYEE-COUNT 9(6)
TOTAL-GROSS-PAY-0UT

data-field TOTAL-GROSS-PAY 9(7)Vv99

COMPUTATION:

The main loop in the program enumerates the records in the file
HOURLY-WAGE-IN. It terminates when EOFP(HOURLY-WAGE-IN).

fields written on each cycle of the main loop:
EMPLOYEE~NUMBER-OUT = CREAD-VALUE(HOURLY-WAGE-IN, EMPLOYEE-NUMBER-IN)
GROSS-PAY = CREAD-VALUE(HOURLY-WAGE-IN, HOURLY-WAGE)=*40.

fields written after the main loop:
EMPLOYEE-COUNT = count(NOT(EOFP(HOURLY-WAGE-IN)))
TOTAL-GROSS-PAY = sum(CREAD-VALUE(HOURLY-WAGE-IN, HOURLY-WAGE)»40.)

Fig. 15. An abstract description of PAYROLL.

The reimplementation module of Satch produces a Hibol program based on the abstract description of the
Cobol program. This is done by converting these equations into Hibol syntax. The only rcal complexity in this is
checking that the program is expressible in Hibol. In particular, the reimplementation module has to check that
each input file is processed in full and that the input keys map to the output keys in a way which is compatible

with the implicit file reading and writing performed by Hibol.

Limits of Satch

Although it illustrates the efficacy of translation based on abstraction and reimplementation, there are several
ways in which Satch is limited. First of all, Satch is only a demonstration system. It has only been tested on a few
examples and therefore has not been fully debugged. In addition, it is quite slow.

A more fundamental problem with Satch is that it is only applicable to a narrow class of Cobol programs. Part
of this is due to the fact that, since Hibol is a relatively spccial purpose language, many Cobol programs cannot be
rcasonably translated into Hibol by any mecans. However, there are many Cobol programs which could in
principle be translated into Hibol in a reasonable way which cannot be translated by Satch. ‘The basic difficulty is
that Satch does not have a generalized recognition facility. Rather, special purpose procedures have to be written
in order for Satch to be able to identify what kinds of looping computations are present in a program,

Overcoming this difficulty is a primary goal of the knowledge-based translation system discussed in Scction VI
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V - Cobbler -— Translating from Pascal to Assembler Langtiage

Duffey's proposed Cobbler system [9] uses translation via abstraction and reimplementation in order to
compile Pascal [13] programs into PDP-11 assembler language [33]. Cobbler’s goal is the creation of extremely
cfficient object code — codce which is comparable in cfficiency to the code which could be produced by an cxpert
assembly language programmer. This is a level of efficiency which is beyond any existing compiler and is
arguably beyond the abilitics of any translator based on transliteration and refinement,

At first glance, it may seem surprising that Cobbler and Satch use the same approach to translation. After all,
the problems associated with compiling Pascal do not scem to be very similar to the problems associated with
translating Cobol to Hibol. In particular, the goal of the former is efficiency of low level output while the goal of
the latter is readability of high level output.

However, the two kinds of translation actually have a great deal in common. Stated gencerally, the key problem
both systems face is that the quality criteria which govern the source arc very different from the quality criteria
which govern the target. In order to have the freedom to do a good job of satisfying the target criteria, the source

must be analyzed and restated in an abstract way which frees it from the constraints of the source criteria.

Example of Cobbler’s Compilation

Figs. 16 & 17 (adapted from [9]) show an example of how Cobbler is intended to operate. Fig. 16 shows a
Pascal program which initializes a 4x4 array A of bytes to the identity matrix. The program docs this a column at a
time by setting each columnn clement to zero and then changing the diagonal element to one. Fig. 17 shows the

PDP-11 assembler code which would be produced by Cobbler.

var I: 1..4; J: 1..4;
A: array[1..4, 1..4] of 0..255;
begin
for J := 1 to 4 do
begin
for I := 1 to 4 do A[I,3] := 0;
ALJ, 3] := 1
end
end

Fig. 16. The Pascal program INITIALIZE.

MOV  #A,R3

MOV  #3,R0
L1: MOVB #1,(R3)+

CLRB (R3)+

CLRB (R3)+

CLRB (R3)+

CLRB (R3)+

DEC RO

BGT L1

MOVB #1, (R3)

Iig. 17. Cobbler’s compilation of Fig. 16.
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The code in Fig. 17 is much more efficient than a simple literal translation of Fig. 16 into PDP-11 assembler.
‘The optimizations introduced can be divided into two catcgorics: algorithm independent optimizations and
changes to the algorithin,

The algorithm independent optimizations arc improvements which any good optimizing compiler might make.
'The inner loop is unrolled in order to climinate the overhead engendered by having a loop. “The matrix A is
operated on as a onc dimensional vector in order to simplify address calculations. The outer loop is controlled by
an auxiliary counter (R0) which counts down instead of up. This allows the code to take advantage of the fact that,
on the PDP-11, comparison with zcro is more ecfficient than comparison with other numbers. (After cach
arithmetic operation, condition codes are automatically sct which specify whether the result is greater than, equal
to, or less than zero.)

For the most part, the optimizations above are straightforward. The first simply involves duplicating the inner
loop body, and the sccond is essentially a strength reduction. However, introducing an auxiliary loop counter is
somewhat more complex. [f a loop counts from # up to m by s. Then a new loop counter can be introduced
which counts from m-n/s down to zcro by one. Computation of the old counter is retained so that it can be used
within the loop while the new counter is used to control the loop. (In Fig. 17 no trace of this computation remains
because the simplification of the addressing calculations has rendered it unnccessary.) The correctness of this
transformation is supported by the fact that Pascal prohibits the body of a "for" loop from modifying the
iteration variable or the bounds of the iteration.

In order to highlight the algorithmic changes introduced by Cobbler, Fig. 18 shows a decompilation of Fig. 17
which undoes the effects of the algorithm independent optimizations discussed above while leaving the
algorithmic changes in place. It should be noted that the figure is merely intended as a presentational device.
There are a number of reasons why Fig. 18 is not a valid Pascal program. (Most notably, the matrix A is declared

to have different bounds from thosc which are presumably associated with other uses of the matrix.)

var I: 1..3; J3: 2..5;
A: array[1..3, 1..5] of 0..255;
begin
for I := 1 to 3 do
begin
AlI,1] := 0;
for J := 2 to 5 do A[I,J] := 0
end;
Af4,1] := 1
end

Fig. 18. A decompilation of Fig. 17 into pscudo-Pascal.

Comparison of Fig, 16 with Fig. 18 shows that the computation performed by the target code produced by
Cobbicr is startlingly different from the computation performed by the source code. In fact, it is probably not
appropriate to say that the two picees of code are using the same algorithm.

Three algorithmic changes have been introduced. The target code avoids redundantly sctting the diagonal
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clements to zero before setting them to one. The target operates on A in row major order rather than column
major order. ‘The target treats A logically as a rectangular 3x5 matrix plus one additional element instcad of as a
squarc 4x4 matrix.

Perhaps the most important difference is the switch to row major order. For whatever reason, the programmer
chose to use column major order in Fig. 16. This choice clashes with the fact that Pascal stores arrays in row major
order. Switching to row major order changes the program so that it references the elements of A in memory
storage order. This in turn makes it possible to use auto-increment mode PDP-11 instructions to support the
address calculations required.

Undoubtedly the most surprising change is the switch to operating on A as a 3x5 matrix. This makes it much
casicr to set the appropriate clements of A to onc since all these elements are now in the same column.

As will be discussed in the next subscction, Cobbler is able to make the algorithmic changes outlined above
because it creates an abstract description of the program which is not constrained by the order of iteration in the
loops, or even by the fact that A is declared to be a 4x4 matrix. These changes are arguably beyond the scope of
any current optimizing compiler because they require an understanding of what is being computed by the source
program as a whole.

If the programmer had written the program as shown in Fig. 18 then any good optimizing compiler could have
produced the code in Fig. 17. However, it is implausible that the programmer would have written the program in
a form anything like Fig. 18. This is of course paitly due to the fact that it is not technically possible to write the
program shown in Fig. 18 in Pascal. However, much more importantly, it is not desirable to write programs like
Fig. 18. The programmer should not have to worry about dctailed efficiency in thc source code. Rather,
readability should be the primary concern. The scurce program in Fig. 16 is preferable 10 the onc in Fig. 18

“because it is more readable and therefore easier to test, verify, and maintain. (One might argue that Fig. 16 would
be even more readable if it operated in row major order. However, the fact that it operates on A as a 4x4 matrix

clearly makes the program easier to understand than Fig. 18.)

Design of Cobbler

As shown in Fig. 19, the architecture of Cobbler is similar to the architecture of Satch (see Fig. 12). In
particular, the first three stages of abstraction — parsing, plan creation, and grouping — are identical, and are
intended to make use of the same modules of KBEmacs. The difference between the lengths of the right hand
sides of Figs. 12 & 19 is intended to indicate that creating an efficient PDP-11 implementation of an abstract

description is much harder than creating a Hibol implementation.
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abstract description

ALGORITHM
ABSTRACTION

grouped plan

GROUPING/;r
KNOWLEDGE-BASED

surface plan REIMPLEMENTATION

PLAN CREATION/;’

parse tree
PARSING

Pascal program PDP-11 program

Fig. 19. The architecture of Cobbler.

The final stagc of abstraction used by Cobbler (algorithm abstraction) goes beyond the algorithm identification
used by Satch. The goal of algorithm abstraction is to identify the various design decisions which were used when
writing the Pascal program and then undo them. This leads to a hierarchy of abstract descriptions for the program
which are constrained by fewer and fewer dcsign decisions.

When analyzing the program in Fig. 16, the algorithm abstraction module first withdraws the decision to use
loops when operating on A. This implicitly withdraws the decision to iterate in column major order as opposed to
row major order. It then withdraws the decision to set the diagonal clements to zero before setting them to one.
Finally it withdraws the deccision to implement A as a Pascal array as opposed to a non-contiguous group of
variables. All of these steps could be performed by recognizing standard algorithms in a grouped plan for Fig. 16.

The left side of Fig. 20 summarizes the last step of algorithm abstraction. The 4x4 description represents the
net effect of the program in Fig. 16 on the Pascal array A. The abstract description represents the net effect of the
program operating directly on the individual matrix elements. The significance of the abstract description is that

it gives Cobbler the freedom to consider ways of accessing A other than as a 4x4 array.

(abstract description)
10000120000100001=>Aqq ... Agq

/ \
/ \
/ \

(4x4 description) (3x5 description)
1000 10000
0100-=>A 10000 =>A
0010 10000
0001 1

Fig. 20. Some descriptions of Fig. 16 used by Cobbler.

The knowledge-based reimplementation module creates an etficient PDP-11 inplamcntation corresponding to
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the abstract description.  As onc of the first parts of the reimplementation process, Cobbler looks for patterns in
the abstract description in order to decide how to usc loops in the output program. The recurring pattern
"10000" is discovered. ‘This causcs Cobbler to reorganize its understanding of the program into the 3x5
description shown on the right hand side of Fig. 20.

Once the 3x5 description has been created, reimplementation proceeds by investigating a varicty of
implementation options and then choosing a consistent and efficient sct of these options. Following standard
Pascal practice, the array A is implemented as a row major order scquence of consccutive bytes in memory. (This
decision has to take the other uses of the matrix A into consideration.) Elements of A arc addressed by stepping a
pointer through memory. Since the inner loop which zeros the non-diagonal clements of A is very small and only
iterates four times it is unrolled into a sequence of four separate instructions. Clear-byte instructions are used to
zcro clements of A,

The key difficulty in making the above design decisions (and the other decisions which are required) is
controlling the scarch process which investigates the various options. Flexibly and efficiently controlling scarch
was the major focus of Duffey’s rescarch. He proposed the following approach to the problem,

A data base is used to represent Cobbler’s evolving understanding of the implementation. Design decisions
are represented in terms of transformations. FEach transformation consists of a pattern and a procedural body.
Transformations are triggered (causing their bodies to be exccuted) when their patterns match portions of the data
base. The effect of a transformation is to modify the information in the data base, or add new information to the
data base.

The key component of the knowledge-based reimplementation module is a conflict resolution monitor which
controls the triggering of transformations. It exercises control principally by deactivating and activating groups of
transformations. Associated with each group of transformations is a function which can create cstimates of the
costs in time and space associated with the design decision suggested by the group of transformations. (For a
discussion of one way in which such estimates can be computed sce [14].) The conflict resolution monitor decides
which groups of transformations to activate by comparing efficiency estimates.

An important feature of Cobbler is that it does not assume that it will always be able to make an informed
choice between the design decisions it is faced with. In order to deal with this problem, Cobbler kecps a record of
the design decisions which were used in the source program. In situations where Cobbler is not able to make an
informed choice, it uses the relevant source program decision. For example, if no pattern had been found in the
abstract description, Cobbler would have uscd the 4x4 structure suggested by the source program.

It would also be possible for Cobbler to take advice on how to compile a program because Cobbler’s
processing is based on design decisions which are comprehensible to a programmer.

The discussion above shows how Cobbler is intended to operate. However, Cobbler is not a running system.
With the cxception of parts of the reimplementation component, no attempt has been made to implement

Cobbler.
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VI - The Knowledge-Based Translator

Waork is currently underway in the Programmer’s Apprentice project on the components of a general purposc,
knowledge-based translator operating via abstraction and reimplementation. An important virtue of this system is
that much of its knowledge of translation will be represented as data rather than procedures. As a result, it will be
possible to readily extend the system to cover a wide range of source and target languages.

In order to understand how the knowledge-based translator will operate, it is first necessary to discuss two of
the key ideas which underly the Programmer’s Apprentice (sce [28]). The first idca is the concept of a cliche.
Programs are not constructed out of arbitrary combinations of primitive programming constructs. Rather,
programs arc built up by combining standard computational fragments and data structure fragments. These
standard fragments are referred to as cliches and form the heart of the Programmer’s Apprentice’s understanding
of programming, just as they form the heart of any person’s understanding of programming.

As an example of cliches, consider the Cobol program PAYROLL in Fig. 10. This program contains a number of
cliches which can be named and described as follows. The data cliche keyed-sequential-Cobol-file specifics how a
series of records with keys can be combined into a file. The computational cliche enumerate-keyed-sequential-
Cobol-file enumerates all of the records in a file taking care of opening and closing the file. The computational
cliche accumulate-keyed-sequential-Cobol-file writes out a series of records into a file taking care of opening and
closing the file. The computational cliche Cobol-sum computes the sum cf a sequence of numbers.

A crucial feature of cliches is that they can be arranged in a multi-level specialization hierarchy as shown in
Fig. 21. The descendants of a cliche in this hierarchy are more specialized cliches which specify how the cliche
should be adapted in various spccific situations. For example, there is an abstract cliche enumerate which has a set
of descendants which specify how to enumerate various kinds of data structures (e.g., enumerate-file and
enumerate-vector). Similarly, the middle level cliche enumerate-file has a sct of descendants which specify how to
enumerate different types of files (e.g., enumerate-indexed-file and enumerate-keyed-sequential-file). Going one
step further, each of these specific file enumeration cliches has a set of descendants which specify exactly what
functions are used to open, close, and read files in various different programming language environments (e.g.,

enumerate-indexed- Ada-file and enumerate-keyed-sequential-Cobol-file).

enumerate
/|
/ I
/ I
enumerate-file enumerate-vector
/ I
/ I
/
enumerate-indexed-file enumerate-keyed-sequential-file
I |
... |
I |

enumerate-indexed-Ada-file enumerate-keyed-sequential-Cobol-file

Iig. 21. Lixamples of specialization relationships between cliches.
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A sccond key idea which underlies the Programmer’s Apprentice is the plan representation which was
discussed bricfly in Scction IV, The most important feature of a plan is that it is an abstract representation of a
program which captures the key features of the computation while ignoring the syntactic details of particular
programming languages. For example, data flow is represented by simple arcs in the plan for a program no matter
how it is implemented in the program (c.g., via variables or parameter passing or nesting of expressions).

Both Satch and Cobbler make usc of the version of the plan representation which is used by KBEmacs. Since
the design of those systems, Rich [17], [18] has developed an extended plan representation called the plan calculus
which is capable of representing much more information about a program. In particular, the plan calculus is
capablc of representing data cliches and the specialization relationships between cliches. In contrast, the plan
representation used by KBEmacs is only capable of representing computational cliches and only in isolation from

cach other.

Design of the Knowledge- Based Translator

Fig. 22 shows the way in which plans and cliches can be used as the basis for a knowledge-based translator
operating via abstraction and reimplementation. The modules on the left side of the diagram support abstraction.
The modules on the right side of the diagram support rcimplementation. The key component of the system is a
library of cliches like the ones described above. Specialization rclationships are used as the basis for the

organization of the library.

/er o CLICHE LIBRARY

abstract cliche plan

CLICHE CLICHE
ABSTRACTION SPECIALIZATION

source cliche plan target cliche plan

RECOGNITION
plan
PLAN CREATION//” CODING
parse tree
PARSING/\
source program target program

Fig. 22. 'T'ranslation bascd on cliches and plans.

The first two steps of abstraction (parsing and plan creation) are cxactly the same as in Satch and Cobbler. The
last two steps of abstraction (recognition and cliche abstraction) are similar to Cobbler’s algorithm abstraction
module. A key feature of these modules is that they are data driven — operating based on the cliches stored in the

cliche library.
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The recognition module scans the grouped plan and determines what source language cliches were used to
construct the source program. (This recognition is performed directly on the surface plan and therefore subsumes
the grouping performed by Satch and Cobbler.) When applied to the Cobol program in Fig. 10, recognition
would reveal that the program was composced of cliches such as keyed-sequential-Cobol-file, cnumerate-
keyed-sequential-Cobol-file, accumulate-keyed-sequential-Cobol-file, Cobol-count, and Cobol-sum.

'The cliche abstraction module creates an abstract plan by replacing specialized plans with the more abstract
plans they are specializations of. In the cxample above, this would yield a plan involving the abstract cliches
keyed-sequence, cnumerate, accumulate, count, and sum.

The abstract plan attempts not to force any design decisions. It simply states that there are certain sequences of
values containing certain data values and keys and that various operations are performed on these valucs. The
paramount feature of the abstract plan is that it is completely ncutral between the Cobol program which
implements the sequences as files and a Hibol program which implements them as flows or, for that matter, a Lisp
program which implements them as lists.

The reimplementation process in Fig. 22 operates in the reverse of the way in which abstraction operates.
Cliche specialization selects cliches which specialize the cliches in the abstract plan in a way which is appropriate
for the target language. Cliche specialization (which can be looked at as library driven synthesis) is the inverse of
cliche abstraction. However, it is more difficult than cliche abstraction because it is harder to make design
decisions than to discard them.

Coding creates program text corresponding to the specialized cliches which are sclected by cliche
specialization. Coding is the inverse of parsing, plan creation, and recognition. Inverting recognition and parsing
is wrivial. However, inverting plan creation is difficult, because information corresponding to the information
thrown away by plan creation must be generated. For example, the coding module has to decide how to render

data flow aesthetically in the target language using variables and nesting of expressions.

Implementing the Knowledge- Based Translator

Progress has been made toward implementing most of the components in Fig. 22. However, none of these
components has vet been completed. Rich and Feldman are currently in the process of implementing the plan
calculus together with a general purpose automatic deduction system [19] to support reasoning in it. Extensive
work has already been done on designing the library [17].

Given a particular source language, it is not difficult to implement a parsing module. As mentioned above, the
plan creation module alrcady exists as part of KBEmacs. This module has to be rewritten so that it operates in the
domain of the plan calculus. However, there should be no particular difficulty in doing this.

KBEmacs also contains a coding module analogous to the one nceded by the knowledge-based translator.
Although there are many improvements which need to be madc in this module, it should not be difficult to
implement an adequate coding module which operates in the context of the plan calculus.

No attempt has vet been made to implement the cliche abstraction module. However, its implementation
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should be straightforward. Cliche abstraction is driven by the specialization links in the cliche library. Cliche
abstraction is particularly casy because it follows these links in the many-to-onc direction.

There has also been no attempt to implement the cliche specialization module. Like cliche abstraction, cliche
specialization is driven by the specialization links in the cliche library. However, cliche specialization is harder
than cliche abstraction because numerous design decisions have to be made when choosing a path through the
specialization links in the one to many direction. It is expected that, like Cobbler, the cliche specialization module
will use a varicty of estimates and heuristics in order to make design decisions. Also like Cobbler, design decisions
detected during cliche abstraction will be used to guide cliche specialization in situations where these heuristics
fail to be applicable.

In many ways, the central module in Fig. 22 is the recognition module. Work on this module has been
underway for several years. Recognition can be viewed as a parsing task. From this viewpoint, the cliche library
is a grammar which can be used to derive plans for programs. In order to determine which cliches were used to
construct a given plan one¢ needs to parse the plan, This would be a straightforward task if it were not for the fact
that the plan for a program is a graph rather than a string, and cliche instances correspond to subgraphs in the
plan rather than substrings.

As a first step toward solving the recognition problem, Brotsky [6] implemented a parser which is able to
efficiently parse flow graphs (a restricted form of acyclic directed graph) given a flow graph grammar. Currently,
Zelinka [29] is implementing an experimental recogrition module which utilizes this graph parser. Further
research is required in order to develop effective methods whereby the knowledge-based translator can deal with
incomplete recognition.

Once the implementation of the components described above has been completed, it will be possible to use
them to construct a general purpose, knowledge-based translator. As mentioned above, a key feature of this
system is that it will be data driven with most of its knowledge embedded in the cliche library. Additional
research will have to be performed in order to discover how best to represent the heuristics which are an essential

part of the specialization component and to a lesser extent of the coder component.

VII - Related Work

There are several areas where active work is in progress on translators. However, essentially all current
translators operate via transliteration and refinement. Some translators (c.g., optimizing compilers) do a
significant amount of global analysis of the source program. However, it is not clear that any program translator
takes the step of attempting to obtain an abstract understanding of the computation being performed by the

program as a whole.

Compilers

Compilers arc the most common cxample of translators. They have been well developed over the years and

work quite well.  As described in text books on compiling (c.g., [1]D, the prototypical compiler operates by
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transliteration and refinement. The source language is transliterated (via parsing and syntax directed translation)
into an intermediate language which is analogous to a machine language. Refinements (optimizations) are then
applied to this intermediate representation.  Finally, the intermediate language is transliterated into the actual
target language. The current developments in compiler rescarch [30] indicate that the basic approach to
compilation outlined above is still adhered to.

However, over the years, two trends in compiler research have been moving in the direction of abstraction and
recimplementation. One trend is the development of intcrmediate representations which look more like data flow
diagrams and less like particular machine languages. These more abstract representations facilitate the
construction of familics of compilers which produce output for a varicty of target machines. They also facilitate
the manipulation of the program when optimizations are being applied. In particular, they makes it easier to keep
track of the data flow in a program.

Another trend is toward more powerful optimizations which require a greater understanding of what is going
on in a program. Classic peephole optimizations such as locating patterns of instructions for which a special target
instruction is available operate in a very local way without any understanding of context. More powerful
optimizations such as removing an invariant expression from a loop require a gencral understanding of the
surrounding data flow and control flow. Optimizations such as strength reduction additionally require an
understanding of the mathematical properties of the basic operators (c.g., "+" and "s").

The kind of analysis which underlies complex optimizations is a step toward creating an abstract summary of
the program being compiled. However, it is only a small step in this direction because the information obtained
by analysis is not very abstract. The conly abstraction is away from particular data flow and control flow constructs.
In addition, the analysis is narrow in scope, aiming only to gather enough information to answer a few specific
questions about the program. No attempt is made to obtain a general understanding of the computation

performed by the program.

Compiling for Parallel Machines

The problem of compiling a conventional programming language so that it runs efficiently on a parallel
machine highlights the strengths and wecaknesses of current approaches to optimization. Consider compiling the
Fortran program fragment in Fig. 23 for a vector machine. The fragment is a triply nested loop which computes

the product of two NxN matrices.

DO 100 J = 1, N
DO 100 I = 1,

DO 100 K = N
C(I,J) = C(I,3)+A(I,K)*B(K,J)

N
1|

100 CONTINUE

Fig. 23. Loops performing matrix multiplication.

The toops in 1ig. 23 can be cfficiently exccuted on a scalar machine. Unfortunately, they cannot be efficiently
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exceuted on the typical vector machine. ‘The problem is that cach cycle (after the first) of the inncrmost loop uscs
the value computed on the prior cycle Icaving little room for vectorization.  However, if the loops are
interchanged so that the K loop is outermost, then they can be cfficiently exccuted on a vector machine.

'The discussion in [2} shows how a compiler for a vector machine can automatically interchange loops in order
to improve the cfficiency of the code produced. Interchanging two loops changes the order in which
computations are performed. Many subcomputations which were performed in the order S1 82 before the
interchange will be performed in the order S2 $1 after the interchange. An interchange is correctness preserving
as long as nothing in the original program cither requires that S2 follow $1 or prohibits S2 from preceding S1.

A global analysis of the loops in question is a key part of the loop interchange optimization. The compiler
must obtain an understanding of the data dependencies between array clements in the loops. This requires an
understanding of the data flow involving the arrays (i.c., A, B, and C). It also requires at lcast a partial
understanding of the interaction between the loop iteration variables and the index expressions which sclect array
clements.

In Fig. 23, the index expressions are very casy to understand. However, the index expressions in a loop can be
arbitrarily complex. For example, they may be functions of the input data. The analysis of index expressions
used by the loop interchange optimization described in [2] is limited to situations where the index expressions are
lincar functions of the loop iteration variables.

An interesting aspect of loop interchange in particular, and compiler optimizations in general, is that they are
deliberately designed to be narrow in scope and independent of whatever computation is being performed. This
has the advantage that the various optimizations can be applied in a wide variety of contexts without the need for
any special knowledge about the particular algorithms being used. However, it has the disadvantage that the
optimizations cannot utilize special knowledge about the particular algorithms being used.

Given the algorithm independent nature of optimizations in general, the level of object code efficiency which
can be achicved is very impressive. However, there are definite limits to the efficiency which can be achieved.
For example, consider compiling Fig. 23 for a highly parallel machine which has many independent processors.
For this kind of machine, optimizations such as loop interchange are not sufficient to produce efficient code. The
problem is that for a multiple processor machine, the standard matrix multiplication algorithm is simply the
wrong algorithm to use. Special algorithms for matrix multiplication have been developed which are much more
efficient when run on a multiple processor machine.

In order to create really good code for a multiple processor machine a compiler would have to recognize that
matrix multiplication was being performed in Fig. 23 and then replace the standard algorithm with one of its
multiple processor counterparts. The lack of compilers which can make this kind of transformation significantly
limits the usability of multiple processor machines. In order to make full use of these machines, programmers

have to rewrite their programs in special languages using new algorithms,
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Very High 1evel Language Compilers

A third category of compilers is compilers for general purpose very high level languages. A number of such
languages have been designed (e.g., SETL[22), Gist[3], and V[12]). 'These languages differ from high level
languages in that they are more abstract. A good example of this difference is the treatment of data structures.
High level languages provide facilitics so that the programmer can specify the exact details of how data structures
should be implemented. In contrast, very high level languages typically support only a few universal data
structures such as sets and mappings. All decisions about how to implement a given sct or mapping cfficiently are
left up to the very high level language compiler, This simplifies what the programmer has to do by removing large
parts of the programming task from consideration.

Unfortunately, constructing a compiler for a general purpose very high level language which produces efficient
object codc has proved very difficult. While these compilers are the subject of active research, it is not clear that
such a compiler can be said to cxist even in a research setting.

The SETIL. compiler [11] is implemented more or less along traditional lines with the addition of a special
component which selects data structure implementations. However, the key technique which is being pursued as
a basis for very high level language compilers is refinement through transformation[3],{12). In this approach a
very high level language source program is progressively refined into an cfficient target program by applying a
sequence of correctness-prescrving transformations. The net effect of the transformations is to replace all of the
abstract concepts (e.g., set) in the source with concrete concepts (e.g., record or array) in the target. The key
problem (which has so far resisted solution) is that there are a vast number of ways in which a source program can
be transformed and it is very hard to decide which ones will lead to acceptably efticient results.

Refinement through transformation is basically an example of the transliteration and refinement approach; or
rather just refinement. Using transformations has several advantages. In particular, each transformation typically
embodies a single implementation decision and is straightforward to understand in isolation. Further, since each
transformation is correctness-preserving it is clear that the result produced will be correct.

What is lacking in the transformational approach is a gencral strategy for making overall design decisions. Itis
not clear that it is possible to make these decisions on a local basis as individual transformations are applied. One
alternate approach would be to pursue all of the major choices, compiling a given program many different ways
and then pick the implementation which is best [14]. However, it is not clear that this approach can be practically
applied to complex programs where large numbers of choices have to be made.

Another approach which has not yet been tricd would be to use abstraction and reimplementation as the basis
for choice. The goal would be to recognize patterns of computation in the source program which suggest that
particular design choices should be used. A strategy would still be required for selecting between conflicting

suggestions. However, this strategy could benefit from having a high level description of the conflict.
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Source-t0-Source Translation

A number of source-to-source program translators exist. However, as a group, they are not as well developed
as compilers and relatively lfitle has appcared in the literature about them. It scems that all current
source-to-source translators operate via transliteration and refinement doing relatively little refinement.

Unfortunately, source-to-source translators tend to be incomplete and incorrect. Most of them handle only
part (around 90%) of the source language. Further, relatively few source-to-source translators correctly handle the
sub-language they are applicable to.

As discussed in Scction I1, both of these problems stem from difficulties in transliteration. Source language
constructs which cannot be rcasonably transliterated are not supported. Further, transliteration methods which
work most of the time, but not all of the time, are used as if they worked all of the time.

In addition to the problems above, when measured by the criteria of readability, the output of most translators
is not particularly good. Although scrviceable, the output produced seldom comes anywhere near the goal of
being what the programmers would have written had they been writing in the target language.

Due to the difficultics above, it is not accurate to refer to typical source-to-source translation systems as
automatic systems. It is more accurate to describe them as Auman-assisted translation systems. In order to obtain
correct (let alone aesthetic) output, human intervention is usually required. The user has to cdit the source
program (to remove untranslatable constructs) and/or the target program (to correct errors and improve the
translation).

As a straightforward example of a translator, consider the Lisp 1.6 to Interlisp translator implemented by
Samet [21]. This translator operates purely by transliteration. It does no refinement. Although reasonably
efficient output is produced, the translator makes no attempt to create aesthetic output. In particular, there is no
attempt to create Interlisp-style output. Rather, a set of functions is defined in Interlisp which, as much as
possible, allows Interlisp to simulate Lisp 1.6. For example, instead of translating the source program into
Interlisp syntax, the Interlisp reader is modified so that it can read in a program in Lisp 1.6 syntax. In [21], Samet
identifies a number of features of Lisp 1.6 which his translator cannot handle. The user is required to edit the
source program in order to eliminate these features. Samet also describes several features of Lisp 1.6 which are
translated in ways which are often, but not always, correct. The translation produced has to be carefully tested in
order to check that these over-simple transliterations have not led to any problems.

At first glance, it might appear that translation between two dialects of Lisp should be easy. However, this is
not the case. In fact, Lisp supports a number of features which are spectacularly difficult to translate. For
example, a Lisp program can construct a new Lisp program and then execute this new program. Consider a
Lisp 1.6 program which constructs a Lisp 1.6 program and then calls it as a subroutine. The program would have
to be translated into an Interlisp program which constructs an Interlisp program. It is very unlikely that this kind
of translation could be performed without using abstraction and reimplementation of the most powerful kind.

Another straightforward transtator is the Fortran to Lisp translator implemented by Pitman [16]. 1ike Samet's

translator, this tanslator operates purely by tansliteiations, doing no refinement. ‘The wanslator produces
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rcadable output. However, it deliberately attempts to create Fortran-style output as opposed to Lisp-style output.
'The translation is supported by a sct of functions which allow Lisp to simulate the Fortran runtime environment.
"This approach introduces a significant overhcad which causes a translated program to run scveral times slower
than the Fortran source program. Pitman’s translator is far superior to Samet’s translator in that, except for one or
two very obscure features, all of the features of Fortran are translated correctly all of the time.

A third translator in this vein is the Fortran to Jovial translator implemented by Boxer [4]. Like the translators
above, it operates purely by transliteration. The output of the translator is not intended for human consumption
and no attempt is made to make it particularly readable or to render it in Jovial-style. (I'he examples in [4]
indicate that the output is similar in style to the Ada shown in Fig.3.) The translator only handles a subsct of
Fortran. It succceds in translating from 90% to 100% of the typical input module. User intervention is required to
complete the translation.

The Lisp to Fortran translator developed by Boyle [S] is intcresting because it is based on the transformational
approach discussed in the last subscction, The translator handles an applicative subsct of Lisp which does not
include such hard to translate features as the ability to create and execute new Lisp code. Readability is not a goal
of the translation. Rather, readability of the output is abandoned in favor of producing reasonably efficient
Fortran code. As discussed in [S], this translator is perhaps best thought of as a compiler of Lisp into Fortran
rather than a source-to-source translator.

Boyle’s translator operates by translitcrating the Lisp source into an cxtension of Fortran and then
transforming this extended Fortran into ordinary- Fortran. The transformation process is controlled by dividing it
into a number of phases. Each phase applies transformations sclected from a small set. The transformations
within cach set are chosen so that conflicts between transformations will not arise.

Boyle's translator is successful not because it has solved the problems faced by very high level language
compilers, but rather because it succeeds in avoiding them. First, compared to SETL., Gist, and V, Lisp is not very
abstract. Therefore there are fewer complex design decisions which have to be made. Seccond, the design
decisions are small enough in number that it is possible to find a fixed set of choices which works reasonably well
for all of the Lisp programs being translated. These fixed choices are embedded in the translator through the
choice of phases and transformations. L.ists arc always implemented the same way. Recursion is always simulated
in the same way. This leads to the production of Fortran programs which are reasonably efficient, but typically

far from optimally efficient.

Commercially Available Source-to-Source Translators

In addition to the in-house translation systcms described above, a number of translators are commercially
available. One arca where several translators are available is translating between assembler languages for various
microprocessors. The discussion in [25] compares three commercial available translators between 8080 assembler
and 8086 assembler. An in-house attempt at a translator between 780 assembler and MC6809 assembler is

described in [23]0 All four translators operate primarily by tansliteration on an instruction by instruction basis
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and do little or no refinement. They all operate on only a subsct of the source language and use simplistic
transliterations which are not correct in all contexts. Human intervention is often requived in order to obtain
correct output. ‘The translations produced are also quite incfficient, consisting of from 3 to 6 times as many
instructions as the source. Onc of the 8080 to 8086 translators (XL'I'86 from Digital Rescarch Inc.) uses global
data and control flow analysis in order to guide the choice of transliteration for instructions. It produces output
which is significantly more efficient and more often correct than the other translators.

Another arca where a number of translators are available is translating between various languages used for
business data processing (c.g., Cobol, RPGIL, and PL/1). Numerous translators exist (for cxample, sce [31], [32]).
Substantive information about the internal operation of these translators is hard to obtain, however several things
arc clear from their external descriptions. ‘They do not handle the whole source language. In gencral, they only
succeed in translating 90% to 95% of typical source programs. They do not always produce correct output.
(In [32], the user is specifically instructed to test and debug the translations produced.) Examples suggest that the

output is not particularly readable, and that the output was probably created primarily through transliteration.

Code Restructuring

An interesting subcategory of source-to-source translators is systems which translate a program from a
language back into the same language. T he goal of these systems is to create output which is more readable than
the input. In particular, these systems typically seck to render unstructured source programs in a structured form.
Given that the source and target languages are the same, it is a relatively straightforward matter to make sure that
the entire source language is handled correctly. However, it is far from straightforward to produce output which
really is significantly more readable than the input. Many of these systems are little more than pretty printers and
are of marginal use. However, at least one system (Recoder [7]) is a true translator and creates highly structured
output.

Recoder operates on Cobol programs in three stages. The first stage creates a flow chart-like graph
representing the source program. The key feature of the graph representation is that all control flow is
represented by explicit arcs which are independent of the Cobol constructs which were originally used to
implement the control flow. The second stage applies correctness-preserving transformations to the graph in
order to rearrange the graph into a structured form. The third stage creates a new Cobol program based on the
rearranged graph.

Recoder represents a step toward the abstraction and reimplementation approach because the abstraction
which it uses is clearly the driving force behind the translation. However, the step is strictly limited by a number
of factors. The graph representation used is not very abstract. The only abstraction is away from particular
control flow constructs. No attempt is made to recognize the algorithms being used in the source program or to

abstract away from them.
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Natural Language Translation

An interesting arca which is closely related to program translation is natural language translation. Work on
natural language translation started by using transliteration and, in a quest for high quality output, is now moving
in the direction of translation via abstraction and rcimplementation.

Almost all of the natural language translation systems which are in actual regular usc today operate via
translitcration and refinement (sec [26]). In general, these systems produce output which is very rough, but which
is recadable to a person who is familiar with the subject arca. A good cxample of such a system is the Paho
system [26] which translates from Spanish to English.

Paho operates by transliterating the source text on a sentence by sentence basis. This transliteration is carried
out for the most part on a word by word basis with a small amount of inter-word analysis to take care of issues
such as providing correct translations for idioms, and rearranging the adjectives in a noun phrase. (Adjectives
follow nouns in Spanish whereas they precede nouns in English). The practicality of this kind of transliteration
depends heavily on a number of convenient correspondences between the basic structure of Spanish and English
(c.g., the near identicality of word order, and the fact that Spanish pronouns are more heavily marked for gender
than English pronouns).

Paho is not capable of refining the English it produces. Manual post-editing is required in order to generate an
acceptable translation. The biggest weaknesses of Paho is that it knows very little about syntax and nothing about
the meaning of the sentences being translated. Further, it has no knowledge of interactions between sentences.

In the quest for higher quality translations than the ones generated by systems like Paho, translators are now
being developed which operate more in the vein of abstraction and reimplementation. A good example of such a
translator is the Eurotra system [15] which is currently being developed to translate between the major western
European languages. Eurotra uses semantically annotated syntactic parse trees as an abstract representation for
the sentences being translated. Analysis (abstraction) and synthesis (reimplementation) components convert
source languages into parse trees and parse trees into target languages respectively.

Eurotra is not a truc abstraction and reimplementation system because the annotated parse trees are not
independent of the source and target languages. Procedural transfer components are required in order to convert a
source language specific parse tree into a target language parse tree.

It is expected that Eurotra will produce significantly better output than Paho. However, it is expected that
Eurotra will still fall short of high quality translation. In particular, although Eurotra has much more syntactic
understanding than Paho, its semantic and intcr-sentential understanding is still quite weak.

In order to achicve high quality translation, natural language translation systems have to be able to obtain an
in-depth understanding of the text being translated. One approach to this is the recent work on knowledge-based
machine translation (sce[8]). This work has succceded in demonstrating natural language translation via
abstraction and reimplementation. The abstract description used by this approach is a language independent
representation of the conceptual dependencies in the text. Knowledge-based machine translation is intended to

operate by first analyzing the entire source wxt in order to determine its meaning and then reexpressing this
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meaning in the target language using the syntactic structure of the source as a guide for what to say when.
Although knowledge-based machine translation holds the promise of gencrating very high quality output,
more work has to be done before a translator following this approach will be practical. In particular, as with
translation via abstraction and reimplementation in gencral, there is a significant problem with incompleteness.
Considerable further research has to be done before it will be possible to achicve anywhere ncar a complete
understanding of arbitrary passages of source text. However, perfection is not required. Human translators are

unable to translate technical texts unless they understand the technical arca being discussed.
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