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Abstract

The Phase Space is a powerful tool for representing and reasoning about the qual-
itative behavior of nonlinear dynamical systems. Significant physical phenomena of
the dynamical system — periodicity, recurrence, stability and the like - are reflected
by outstanding geometric features of the trajectories in the phase space. Success-
ful use of numerical computations to completely explore the dynamics of the phase
space depends on the ability to. (1) interpret the numerical results, and (2) control
the numerical experiments. This paper presents an approach for the automatic re-
construction of the full dynamical behavior from the numerical results. The approach
exploits knowledge of Dynamical Systems Theory which, for certain classes of dynam-
ical systems, gives a complete classification of all the possible types of trajectories,
and a list of bifurcation rules which govern the way trajectories can fit together in
the phase space. These bifurcation rules are analogous to Waltz’s consistency rules
used in labeling of line drawings. The approach is applied to an important class of
dynamical system: the area-preserving maps, which often arise from the study of
Hamiltonian systems. Finally, the paper describes an implemented program which
solves the interpretation problem by using techniques from computational geometry
and computer vision.
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EVERYTHING SHOULD BE MADE AS SIMPLE AS POSSIBLE,
BUT NOT SIMPLER.
- A. Einstein

1 INTRODUCTION

Qualitative Physics is a young field. Progress is made when researchers formalize
and implement their understanding of how certain qualitative reasoning tasks, such
as prediction of future behavior, and explanation of how the behavior comes about,
are being performed in particular problem domains. Two domains, among others,
have received much attention: circuit analysis and design in the engineering domain,
and simple boilers and fluid flow in commonsense physics. Early works in Qualitative
Physics primarily dealt with incremental deviation from equilibrium states where time
evolution is not explicitly considered [4]. More recent works attempt to extend DeK-
leer’s qualitative algebra and incremental analysis to handle time-varying behavior
[5,15,14,11].

A common characteristic of the examples examined so far is this: the physical
dynamic systems studied in these disciplines can often be divided into different op-
erating regions each of which can be modeled to a first approximation by simple low
order linear differential equations, or by first order nonlinear differential equations.
The behavior of linear systems is particularly simple: the complete input-output be-
havior can be summarized in a single system transfer function. Consequently, if the
response to one type of input is known, no more information is needed to determine
responses for other input signals.

The situation in a nonlinear system is completely different: essential changes in
the qualitative behavior of the system may occur as the amplitude of the input signal
changes, or as the starting conditions are varied. More importantly, nonlinear systems
have a far richer spectrum of dynamical behavior. Simple equilibrium points, periodic
and quasiperiodic motion, limit cycles, chaotic motion as unpredictable as a sequence
of coin tosses - these are some of the behavior found in a typical nonlinear system.

Unfortunately, these nonlinear characteristics do not show up in first order non-
linear differential equations. This is because the continuity and (local) uniqueness of
flow severely constrain the kind of behavior possible on the real line: the flow either
tends towards an equilibrium, or goes off to infinity.



In this research, I therefore propose to look at dynamical systems — those typically
encountered in Physics — to provide a new source of examples for investigation into
the fundamental issues of descriptive language, style of reasoning, and representation
techniques in qualitative reasoning about nonlinear dynamical systems. Specifically, I
will consider two-dimensional discrete dynamical systems defined by area-preserving
maps containing a single control parameter. The study of area-preserving maps —
transformations of the plane which preserves area — began with the venerable prob-
lem of the stability of the solar system. I choose to investigate this simplest non-trivial
type of conservative system because many important problems in physics — the re-
stricted 3-body problem, orbits of particles in accelerators, and two coupled nonlinear
oscillators, just to mention a few — can be reduced to the study of area-preserving
maps.

To illustrate the vocabularies that a physicist uses to describe the qualitative
behavior of nonlinear systems, we can examine the following description of one of the
phase portraits obtained from the results of numerical experiments with the quadratic
map (see next section): '

Figure la represents a number of trajectories (sequences of points ) for cosx =
0.4 ... a regular structure in a neighborhood of the elliptic fixed point at the
origin, and farther away a chaotic zone. In many places the plotted points are
so dense that they give the illusion of a continuous curve. Near the origin,
the “curves” are almost circular. As we move outward, the curves become
distorted. Just inside the outermost regular curve lies a chain of six closed
curves, or “chain of islands”. Successive points of a trajectory jump from one
island to another by application of the mapping. Finally, as the curves become
more distorted, there is a sudden break-up and the set of points no longer lies
on a curve, but seems rather to fill a two-dimensional region.

The description is an edited form of a passage from [8, pages 99-100]. What is
striking in this description is that the language is entirely geometric: it contains terms
like fized point, continuous curve, chain of islands, two-dimensional region etc. The
phase portrait is completely characterized by the spatial relationships among these
geometric objects.

A goal of this research is to develop a clear understanding of the geometric lan-
guage displayed in the above description. In particular, I want to understand how
representation and reasoning techniques based on the geometric language can be used



as a basis for a program to perform automatic numerical experiment control and in-
terpretation.

The paper is organized as follows. Section two defines the task. Section three
reviews the knowledge — qualitative dynamics and bifurcations — required for the
task. Section four describes my approach to the experiment control problem. This
part has not been implemented. Section five, the main result of this paper, shows the
major pieces of an implemented program which solves the interpretation problem.

2 THE TASK

Given an one-parameter area-preserving map defining a discrete dynamical system,
I am interested in describing the qualitative long-term, or asymptotic, behavior of
the system over its entire operating range. Specifically, if U is an open subset of the
phase space X C ® x R, and J C R an interval over which the control parameter
varies, I want my program to automatically generate (1) a family of phase portraits
describing the main dynamical properties of the map for all initial conditions in U
and parameter values in J, and (2) a summary graph which shows a cross-section of
the map along certain axis of symmetry as a function of the parameter.

To explore the complete dynamics of a nonlinear system over a large region of the
phase space and parameter space is a fairly typical problem in the physics literature.
A good illustration of this task is provided by Henon’s well-known paper, “Numerical
Study of Quadratic Area-Preserving Mappings” [9]. The goal of Henon’s paper is to
provide a description of the main properties of the quadratic map:

Tnpr = Tpcosa— (y, — z2)sina

Ynt1 = ZTpsina+ (y, —22)cosa (1)

where x and y are the state variables, and « is the control parameter. The main
results of Henon’s paper are shown in Figures 1(a)-(f), which display the output of
many numerical simulations, and Figure 2 which summarizes the dynamics of the
map in a two-dimensional plot. Dots on the plot indicate regions of invariant curve,
circles indicate islands, and blanks indicate chaotic zones.

The simplest approach to this problem is the brute force method: it divides the
phase space and parameter space into small grids and tries every possible combi-
nations of initial conditions and parameter values. A simple calculation will show
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Figure 1: A partial list of phase portraits from numerical experiments. (a) a = 1.16
(b) @ =1.33 (c) =1.58 (d) @ = 2.0 (e) @ = 2.04 (f) a = 2.21. Dashed line: axis of
symmetry.

that this involves an enormous amount of computation. For instance, if we choose
a uniform grid size of 0.01, we have to compute approximately 300 x 300 x 600 =
54 million orbits. Assuming, on the average, 0.02 second is needed to compute a
trajectory of 500 points, it will take over 300 hours of computation time to compute
all the trajectories.

The brute force method suffers from two serious problems. First, it is grossly
inefficient because most of the phase portraits computed will be qualitatively the
same. Second, it is not reliable because there is always the danger of missing some
important qualitative features when the change occurs at a resolution finer than the

grid size.
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Figure 2: Summary picture for all values of a, and initial points on the axis of
symmetry. Dots: regions of invariant curve. Circles: islands. Blanks: chaotic zones.
Dashed curves: unstable invariant points.

A physicist often does much better than this. Figure 3 represents a flow-chart of
what an expert physicist does during the numerical experiment. The flow-chart has
two nested loops. The outer loop involves deciding when to stop the experiment; the
inner loop, when to move on to next parameter value. Controlling what experiment
to do next, and interpreting the results of the simulation — these are the two most
important decisions the experimenter has to make.

The task of behavior prediction can now be summarized as this: to develop a
picture of all possible solutions to the dynamical system from a limited amount of
numerical experiments at a limited number of initial conditions and parameter values.
The key observation is that knowledge of qualitative dynamics and their geometric
manifestations in the phase space provides a strong constraint on the type of behavior
possible. As we will see in the next section, this constraint translates into a dramatic
reduction of the amount of search required to find those combinations of states and
parameter values that lead to “interesting” phase portraits.

3 WHAT IS THE KNOWLEDGE?

3.1 Terminology

The purpose of this section is to introduce some concepts and definitions from Dy-
namical Systems Theory [10]. A dynamical system consists of two parts: (1) the
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Figure 3: Flow-chart which describes the process of experimenting with a dynamical
system.

system state, and (2) the evolution law. The system state at any time ¢, is a mini-
mum set of values of variables {z,,...,z,} which, along with the input to the system
for t > 1y, is sufficient to determine the behavior of the system for all time ¢ > t,. The
variables which define the system state are called state variables. The conceptual
n-dimensional space with the n state variables as basis vectors is called the phase
space. A state vector is a set of state variables considered as a vector in the phase
space. As the system evolves with time, the state vector traces out a path in the
phase space; the path is called an orbit or a trajectory. Finally, a phase portrait
is a partition of the phase space into orbits.

The evolution law determines how the state vector evolves with time. In a finite
dimensional discrete time system, the evolution law is given by difference equations.
The difference equation is specified by a function f : X — X where X is the phase
space of the discrete system. The function f which defines a discrete dynamical system
is called a mapping, or a map, for short. The multipliers of the map f are the
eigenvalues of the Jacobian of f. An area-preserving map is a map whose Jacobian
has a unit determinant.



The set of iterates of f - z, f(z), f3(z), f3(=), ..., f*(z) - as n becomes large is
called the orbit of x relative to f; it captures the history of x as f is iterated.

Two types of point have the simplest histories — fixed point, and periodic point.
The point x is a fixed point of f if f(x) = x. A fixed point x is called stable, or
elliptic, if all the multipliers of f at x lie on the unit circle; it is called unstable, or
hyperbolic, otherwise. The point x is a periodic point of period n if f*(z) = z.
The least positive n for which f*(z) = z is called the period of x. The set of all
iterates of a periodic point forms a periodic orbit.

3.2 Analytical Techniques

The first step in analyzing any dynamical system is to find its equilibria and their
stability. For a second order discrete system, this amounts to solving a pair of non-
linear algebraic equations. To take an example, the fixed points of quadratic map are
the solutions to the following pair of algebraic equations:

= zcosa—(y—z*)sina

y = zsina+(y—z%)cosa (2)
There are two solutions: ¢ =y =0 and z = 2tan(%),y = 2 tan?(%).

Once the fixed points are found, the trace of the Jacobian of the map at each fixed
point is computed to determine its linear stability. The stability condition is that the
absolute value of the trace of the Jacobian is less than or equal to two [7]. For the
quadratic map, the Jacobian is given by:

cosa + 2rsina —sina
sina — 2x cos o cosa

At (0,0), the trace of the Jacobian is 2cosa. Since | 2cosa | < 2, (0,0) is always
stable. Similar stability analysis shows the other fixed point is always unstable.

3.3 Qualitative Dynamics and their Geometry
3.3.1 Types of Orbit

In this section, I give a brief outline of the most important types of orbits in area-
preserving maps. One important physical situation that gives rise to area-preserving
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map is conservative systems of two degrees of freedom. Restricted to constant en-
ergy surface, the 4-dimensional phase space becomes 3-dimensional. By the Liouville
Theorem on integrable systems [1, Chapter 10], this 3-dimensional subspace is dif-
feomorphic to a family of concentric 2-dimensional tori lying inside one another (see
figure 4). A torus is called invariant if an orbit starting at a point on the surface of
the torus stays on it forever.

Figure 4: 3-dimensional phase space filled with 2-dimensional concentric tori. A
cross-section ¥ is drawn.

Qualitatively, three special types of motion are important: (1) periodic motion
lying on an invariant torus, (2) quasiperiodic motion that densely covers an in-
variant torus, and (3) chaotic motion that wanders in a 3-dimensional volume of
the phase space.

We construct an area-preserving map by taking a 2-dimensional cross-section ¥ of
the family of tori. An orbit beginning in ¥ returns to it after making a circuit around
the torus. The successive intersections of the orbit with % defines a map from ¥ onto
itself. The map is area-preserving because the 3-dimensional flow is conservative 2,
Appendix 31].

Now, how do the periodic and quasiperiodic orbits appear on £? When the motion
is periodic, the orbit closes after a finite number of intersections with Y, resulting in
a finite number of points on ¥. If the motion is quasiperiodic, it will intersect ¥
an infinite number of times, covering a closed curve densely. F inally, if the motion
is chaotic, the orbit will intersect & erratically at many different places, eventually
covering a finite area.

Including the case of unbounded motion for the sake of completeness, we have the
following correspondence between special types of orbit in the 3-dimensional phase
space and their geometric manifestations on the corresponding 2-dimensional phase
space of the map:
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3.3.2 Bifurcations: Qualitative changes in the phase portrait

Two phase portraits are qualitatively equivalent if there exists a homeomorphism -
between them which preserves fixed points, periodic points, invariant curves, and
their stability. Bifurcation is said to occur when the dynamical system goes through
a qualitative change in its phase portrait as the control parameter is varied. I will
focus on one important type of bifurcation: appearance and disappearance of periodic
orbits.

I begin with [12] which gives a complete classification of the generic bifurcations of
periodic points for one-parameter area-preserving maps. Only bifurcations which are
generic are classified because the pathological cases arise rarely, and are much harder
to deal with. Let A and ; be the multipliers of a periodic point of an area-preserving
map. Meyer has shown that generic bifurcations occur when A = n® root of unity
where n = 1, 2, 3, 4, and > 5. Let us consider each of these cases (see figure 5):

Case 1. A = 1 FEztremal Bifurcation

The (discrete) flow line forms a cusp at the bifurcation point and as the multiplier
passes through +1, there is a sudden birth of a pair of elliptic and hyperbolic closed
orbits. Thus, a pair of fixed points are created for the map. This is also known as
creation, saddle-node bifurcation, or tangent bifurcation.

Case 2. A = —1 Transitional Bifurcation

As the multiplier passes through -1, the stable elliptic periodic point loses its
stability, i.e., turns hyperbolic, and a stable cycle of twice the period appears. Other
names for this phenomenon are: period doubling, flip bifurcation, subtle division.

Case 3. A = e5" Phantom 9-kiss



The region of stability of the elliptic fixed point shrinks to zero as the hyperbolic
points of an unstable period-3 cycle “kiss” at the origin. After the “kiss”, the fixed
point turns elliptic again, and a new unstable period-3 cycle is emitted. Note the
change in orientation of the triangular region around the elliptic point. The phantom
3-kiss is often preceded by extremal bifurcations in a region a bit further away from
the original elliptic fixed point, resulting in the formation of a pair of elliptic and
hyperbolic period-3 points.

Case 4. A = e% Phantom 4-kiss

When the multiplier A is a 4-th root of unity, it can undergo two types of bifurca-
tion. The first case, phantom 4-kiss, is similar to that of case 3 except that we now
have hyperbolic points of a period-4 orbit “kissing”. Tangent bifurcation also occurs
at a distance from the center elliptic fixed point, resulting in a an unstable period-4
cycle. The second case belongs to the fifth type to be described next.

Case 5. A = e’5" where p > 5 Emission

As the multiplier passes through a p-th root of unity where p > 5, there is an
emission of elliptic and hyperbolic sub-harmonics of of the orbital frequency of the
original elliptic orbit (shown in the figure for the case p = 5). The elliptic points of
the stable period-p cycle alternate with the hyperbolic points of the unstable one near
the vertices of a regular p-gon with center at origin. Thus, emission is responsible for
the creation of “island chains” in the phase portraits of Figure 1. Meyer called this
type of bifurcation the generic p-bifurcation.

4 APPROACH TO THE CONTROL PROBLEM

4.1 How to start the numerical experiment?

Elliptic fixed points are good places to start. We expect that the orbits near an
elliptic fixed point, where the linear terms of the map dominate, will be mostly
invariant curves. We then search radially outward until we encounter island chains,
and eventually chaotic regions.
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Figure 5: Five Generic types of Bifurcation Geometry. A periodic point bifurcates
whenever its multipliers pass through an n-th root of unity. The bifurcation diagram
shows the loci of fixed points as the parameter € is varied.

4.2 How to decide what experiment to try next?

Knowing the generic bifurcation patterns is valuable for controlling numerical exper-
iments. To begin with, it is difficult to locate the value of the control parameter
at which bifurcation occurs: it is of probability almost zero that a randomly chosen
point in the (z, y, a) space will be the bifurcation point. But the pattern of flow near
a periodic point just before and after the bifurcation occurs in a finite range of the
control parameter; hence the pattern is easier to detect during the experiments.

Once a given flow pattern is found to match some parts in our library of bifurcation
geometries, it will give us strong evidence that the corresponding bifurcation exists,
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and we should be able to locate the rest of the flow patterns as given by the generic
bifurcation. The pre-stored knowledge about these bifurcations gives us the complete
information about what geometric objects, and approximately where in the control
parameter space to look for.

To take an example, consider the phantom 3-kiss seen in figure 1d. The local flow
pattern around the fixed point matches that in figure 5. According to the bifurcation
pattern, the regular region around the stable fixed point will shrink in size, becoming
an unstable fixed point; eventually, a new stable fixed point is born. So, we should
expect to see figure 1f at some « slightly greater than two.

4.3 How to decide when to terminate the experiments?

Besides imposing a strong constraint on what can be expected to happen in the phase
portrait, the generic bifurcations also provide an answer to the problem of termina-
tion: a simulation experiment is incomplete unless all the major qualitative features
in the phase portrait can be explained by this finite list of local generic bifurcations.
An example is the change of stability of a fixed point. Suppose we have numerically
located the 3-island chain and the center elliptic point at some a = «p as in figure
1d. We know that the family of phase portraits is yet incomplete because we expect
a phantom 3-kiss bifurcation to occur. In particular, we need to try at least two more
experiments to obtain two phase portraits: first, at @ = o; when the triangular region
is flipped, and second, at a; € (o, ;) when the region becomes vanishingly small,
indicating instability of the fixed point.

5 SOLVING THE INTERPRETATION PROBLEM

The Interpretation Problem consists of the following sub-problems:

1. Orbit Type. How can one recognize the orbit type — a 0-dimensional finite point
set whose elements are encountered repeatedly, a 1-dimensional smooth curve,
or a 2-dimensional region - of a set of iterates?

2. Clustering. How can one determine the number of islands in an island chain?
This number gives the period of the enclosed periodic point.
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3. Area and Centroid. How can one estimate the centroid and area enclosed by
the curve? The centroid is a good approximation of the location of the enclosed
periodic point. The area gives a measure of saliency of the island chain.

4. Shape. How can one recognize the shape of a curve? For example, is it a 3-sided
figure resembling a triangle?

In the following, I will show how these four problems can be solved by applying
techniques from computational geometry and computer vision.

5.1 Euclidean Minimal Spanning Tree

Given n points in the Euclidean plane, a Euclidean minimal spanning tree (EMST) is
a tree that interconnects all the points with minimal total edge length. It turns out
that EMST provides us with the fundamental data structure to solve the first three
sub-problems.

Figure 6 shows the steps of processing. First, the program computes a EMST from
the input point set. The current implementation uses the Prim-Dijkstra algorithm
which has a run time complexity of O(n?) where n is the number of points [3]. It takes
about 100 seconds on the Symbolics to compute a EMST for a set of 512 points. A
faster algorithm due to Shamos [13] which makes use of the Voronoi diagram is being
implemented. The new algorithm can achieve the optimal lower bound of O(n log n)
time. Figure 7 shows the EMSTs constructed for three sample point sets.

Second, the program detects clusters in the EMST by looking for edges in the tree
that are significantly longer than nearby edges. Such edges are called inconsistent
[17]. The following criterion suggested by Zahn is used to determine if an edge is
inconsistent. An edge is inconsistent if (1) its length is more than two times the
average of nearby edges, and (2) its length is more than two standard deviations
larger than the average of the lengths of nearby edges (where the statistics are taken
from the set of all nearby edges). A point P is nearby point Q if P is connected to
Q in the EMST containing two or fewer edges. Inconsistent edges are then deleted.
This breaks up the EMST into connected sub-components which are collected by a
depth-first tree walk. Figure 8 shows the result of the clustering procedure on the
input point set of figure 7b. The procedure finds three inconsistent edges. For the
other two point sets, no inconsistent edge is detected. The output of the clustering
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Figure 6: Main processing steps for solving the interpretation problem

procedure is a collection of connected sub-components each of which represents a
sub-tree of the original EMST.

Third, for each sub-tree of the EMST, the program examines the degree of each
of its nodes, where the degree of a node is the number of nodes connected to it in
the sub-tree. For a smooth curve, the EMST consists of two terminal nodes of degree
one; the rest, degree two. For a point set that fills an area, its corresponding EMST
consists of many nodes having degree three or higher.

Finally, to compute the area and centroid of the region bounded by a curve,
the program generates an ordered sequence of points from the EMST, and spline-
interpolates the sequence to obtain a smooth curve. The smooth curve is encoded
using chain coding [6]. Straightforward algorithms are then applied to compute the
area and centroid.
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Figure 7: Minimal Spanning Tree for three sample point sets.

v " (clustor 4-s1ded)

odge (((0.100007008 -0.22186219) (0.2200801% -0.055880088)) . 0.20850008)
of veight 0.20836008 1s inconsistens

edge (((-0.22083179 0.104248404) (-0.08614590 0.22717811)) . 0.208288438)
of weight 0.20628543 1o iacensistent

edge (((0.1000000 0.23318303) (0.33301482 0.11230013)) . ©.17370002)
of veight 0.17376002 1s inccnsistens

Nenbor of clusters found © 4
(((9.3321420 -0.0508398432) (0.33008000 -0.00000000) (0.2308887¢ -9.0000e0000) ...

Figure 8: Result of clustering. Three inconsistent edges are detected in the point set
of figure 7(b).

5.2 Scale Space Image

The shape of a curve, as we have seen in section 4, is an important clue to determine
what type of bifurcation is occurring. The number of sides, the locations and types
of extremal curvature - these are two of the most important geometric properties to
recognize.

The recognition algorithm is based on the method of scale space tmage introduced

15



by Witkin [16]. First, a curve is parameterized by C(s) = (z(s),y(s)) where s is
the arc length along the curve. The two functions x(s) and y(s) are periodic for a
closed curve, and they can be computed from the chain code representation. Second,
x(s) and y(s) are smoothed by the Gaussian and its first two derivatives at multiple
spatial scales. The scales are separated by one octave: 4, 5, 7, 11, 15, and 22, which
are results of successively multiplying 4 by v/2 and rounding. Third, the curvature

function «(s) is computed by the formula:
& — g3
@+ i)

Finally, the zero-crossings of x(s), and the signs of k(s) are computed to determine
the locations and type of the extrema.

ez ex? ex=1s

,4 ﬁ:ﬁ' ey 7 L
<L S L <7 <

e=xs e=1 [ X}

Figure 9: Type and locations of extrema of curvature. Spazial scales: 4, 5, 7, 11, 15,
and 22. e = maximum curvature; X = minimum curvature.

An example of the operation of the recognition algorithm is shown in Figure 9.
The input is an orbit segment of 256 points which seems to fill a 3-sided curve. The
positions of the extrema of curvature found at various smoothing scales are marked:
e for maximum curvature; x for minimum curvature.
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6 SUMMARY

In this paper, I have studied the task of qualitative analysis of nonlinear area-
preserving map by numerical experiments. I have also described how to approach
the two major problems in automating the experimenting process: (1) experiment
control, and (2) result interpretation. The basic idea is that knowledge of qualitative
dynamics and bifurcations provides a strong constraint on the type of behavior pos-
sible. Finally, I have described a program which solves the interpretation problem by
using techniques from computational geometry and computer vision.
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