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Abstract

Comparative analysis is the problem of predicting how a system will react
to perturbations in its parameters, and why. For example, comparative analysis
could be asked to explain why the period of an oscillating spring/block system
would increase if the mass of the block were larger. This paper formalizes the
problem of comparative analysis and presents a technique, differential qualita-
tive (DQ) analysis, which solves the task, providing explanations suitable for
use by design systems, automated diagnosis, intelligent tutoring systems, and
explanation based generalization.

DQ analysis uses inference rules to deduce qualitative information about the
relative change of system parameters. Multiple perspectives are used to repre-
sent relative change values over intervals of time. Differential analysis has been
implemented, tested on a dozen examples, and proven sound. Unfortunately,
the technique is incomplete; it always terminates, but does not always return
an answer.
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1 Introduction

The problem of symbolic analysis of real-world systems is central to many prob-
lems in artificial intelligence. In order to cope with a changing world one must
be able to understand its behavior. Recently, considerable emphasis has been
put on a specific kind of analysis: qualitative simulation[2,7,26,15,21]. Qual-
itative simulation seeks to produce a description of the behavior of a system
over time, often in the form of a tree of histories of the system’s qualitatively
interesting changes over time [23].

This paper discusses the problem of comparative analysis, iIn many ways
the complement of qualitative simulation, and describes an implemented, sound
solution technique called differential qualitative (DQ) analysis. Whereas qual-
itative simulation takes a structural description of a system and predicts its
behavior, comparative analysis takes as input this behavior and a perturbation
and outputs a description of how and why the behavior would change as a result
of the pertubation.

For example, given the structural description of a horizontal, frictionless
spring/block system (e.g., Hooke’s law), a qualitative simulator would say that
the block would first move one direction, then stop, then reverse, etc. A de-
scription of oscillation would result. Comparative analysis, on the other hand,
takes this description of oscillation and evaluates the effects of perturbations.
For example, it would deduce that the period would lengthen if the mass of
the block were increased, and explain why. Just as qualitative simulation works
without explicit equations for the value of each parameter as a function of time,
comparative analysis does not need a formula for the period of oscillation.

The importance of the qualitative approach to comparative analysis is the
resulting explanation of why the behavior changes. If it weren’t for the explana-
tion, one might simply solve a differential equation model using using symbolic
or numeric techniques. Many artificial intelligence problems, for example de-
sign, diagnosis, and intelligent tutoring systems, have comparative analysis as
an important component; the explanation is used in many different ways.

e One way method of automated design is the principled modification of
previous designs [25]. For example, suppose a library design for a VLSI
pullup circuit has too long a rise time. If the problem solver considers
increasing the width of some wire to decrease the rise time, it would like
to know the ramifications of this modification relative to the initial be-
havior. Will the delay decrease? What happens to power dissipation?
Comparative analysis answers these questions, in qualitative terms, as is
appropriate for initial design evaluation. By analyzing an explanation
for why the changes happen, the problem solver could focus on further
changes to counteract undesired effects.

¢ Many of the programs which perform diagnosis from first principles use
similar generate and test paradigms [9]. Comparative analysis can simplify



diagnosis of continuous systems (such as analog electronics) in two ways.
Comparative analysis provides a direct test for certain hypothesized faults;
if one suspects a resistor of a low value, comparative analysis can predict
the resulting behavior. If this prediction does not match the observed
behavior, the generator might use the explanation to suggest or rule out
additional candidate faults.

In addition, the specific type of comparative analysis discussed in this
paper, DQ analysis, can be used backwards to generate candidate faults.
If an output voltage measures too low, reversing the inference rules of
section 3 might lead to the hypothesis that some capacitor has too high a
value.

o A key subproblem of intelligent tutoring systems (ITS) is the automatic
explanation of the behavior of complex systems. Most Al work in this di-
rection has focused on the role of qualitative simulation when explaining
the mechanism through which devices achieve functionality [19,8]. Qual-
itative simulation is a critical component of explanation generation, but
understanding how systems respond to changes is also important. One
doesn’t really understand the workings of a refrigerator, if one can’t ex-
plain the effect of a stronger compressor on efficiency and minimum tem-
perature.

The rest of this paper shows how DQ analysis can solve comparative analysis
problems and produce clear explanations as well. The trick to DQ analysis
is the use of multiple ‘perspectives’ to define relative change. Inference rules
manipulate these relative change values to generate causal arguments that solve
comparative analysis questions.

The rest of the introduction explains how differential qualitative analysis
solves comparative analysis problems. Section 1.1 presents more detail about
the spring/block example! to illustrate the important notion of ‘perspective’.
Section 1.2 introduces a heat exchanger example to emphasize the importance
of considering multiple behavioral topologies. Together these two sections show
the range of questions that the differential approach to comparative analysis
can answer. Section 1.3 suggests a different approach to comparative analysis:
a novel technique called exaggeration. Finally, section 1.4 gives an overview of
the remainder of the paper.

1.1 Perspectives

Perspectives are the most important concept in DQ analysis; they are best
introduced with an example. Consider an ideal spring attached to a block on a
frictionless table (figure 1).

1 All the examples in this paper, and a dozen more, have been implemented and tested.
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Figure 1: Ideal Spring Attached to Block on Frictionless Table
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The system can be defined in Kuipers’ QSIM [15] notation in terms of six
parameters, each a function of time: spring constant —K, mass M, position
X, velocity V, acceleration A, and force F related by Newton’s second law
(F = MA) and Hooke’s law (FF = —KX). Mass and spring constant are
independent parameters that remain at constant values over time. The initial
conditions are specified as follows: M(0) > 0, —K(0) < 0, V(0) = 0, and
X(0)=z9<0.

This description may now be simulated, but because of ambiguities inher-
ent in qualitative values [14], QSIM produces several possible behaviors for this
system, including ones corresponding to increasing, decreasing, and stable oscil-
lation. Although comparative analysis could be done on all of these behaviors,
for this example, I assume the interpretation of stable oscillation (figure 2).

Now we are ready to pose a comparative analysis problem.

Example 1 What happens to the period of oscillation if the mass of the block
is tncreased?

The answer is that the length of the period increases:

Since force is inversely proportional to position, the force on the
block will remain the same when the mass is increased. But if the
block is heavier, then it won’t accelerate as fast. And if it doesn’t
accelerate as fast, then it will always be going slower and so will
take longer to complete a full period (assuming it travels the same
distance).

What kind of information is needed to produce this explanation? Take the
first step: “The force on the block will remain the same.” Figure 3 shows a real-
valued plot of force versus time. The graph of force in the perturbed system is
drawn with a dotted line; in the text I will distinguish the two parameters by
calling the perturbed force F.

_ Clearly, F # F as a function of time. The corresponding values of F' and
F are different for almost every possible time. The real meaning of “The force
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Figure 2: QSIM Behavior for Stable Spring Oscillation

on the block will remain the same” is that F and F are the same for all values
of X. Although this reparametrization was not mentioned explicitly in the
explanation, it i8 essential to the soundness of the argument.

In order to allow programs to generate and evaluate explanations like the
one for the spring and block, it is necessary to take this implicit concept and
make it explicit. I do this with the use of ‘perspectives’. Thus the first line of
the argument could be rewritten “If the mass is increased, force does not change
from the perspective of position.” Making perspectives explicit is the crucial
step in performing DQ analysis to solve a comparative analysis problem. Once
the notion of perspective is explicit, one can address questions like “Which per-
spective best suits a problem” and “What inferences are sound?” The answers
are not as obvious as they might appear.

For example, consider the ‘obvious’ inference “Since it is going slower it will



Figure 3: Actual Plot of Force versus Time

take longer to go the same distance.” But what does it mean for the block to be
going slower? From what perspective is velocity lower? If velocity were lower
from the perspective of time, then the conclusion would indeed be obvious. But
just as with the parameter force (figure 3), there are times when the perturbed
velocity is not lower than it was in the original system. Once again, position
is the correct perspective. In fact, as shown in section 3, the explanation is
correct, but it would not necessarily be so if the perspective was some other
parameter.

Reasoning about perspectives explicitly, and using sound rules of DQ analy-
sis (section 3), the CA program has correctly generated the correct solution and
an explanation like that shown above. Here is another example which it solves
by using perspectives in a different way.



Example 2 What happens to the mazimum velocity if the initial displacement
ts increased?

CA generates the justification which can be turned into English as follows:

Since K and M haven’t changed, the force on the block is the
same for any position that the block used to pass through. So the
acceleration is the same for any position. But since the initial dis-
placement has been increased, the block will already be moving when
it reaches the old initial position, where previously the block was
stopped. Since the accelerations are the same from here on, and the
block is already moving faster, it will keep on moving faster and will
have a higher maximum velocity.

The rules which compose this reasoning are explained in section 3.

1.2 Changes in Behavioral Topology

The previous section showed how the explicit use of perspectives could determine
the relative change of parameter values and time durations given an initial
perturbation. However, sometimes the perturbation results in change of a more
fundamental nature. Consider the heat exchanger shown in 4. Hot oil flows
through the pipe losing heat to the cold water bath as it goes. Figure 5 shows
a possible QSIM behavior that corresponds to the case when the hot oil reaches
thermal equilibrium just as it exits from the pipe. (Remember that since this
is a qualitative plot, the apparent slope does not imply that these functions are
linear.) Let’s pose a comparative analysis problem.

Coolant

Hot Ol —>

Figure 4: Hot Oil Flows Through Heat Exchanger
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Figure 5: Initial Behavior of Heat Exchanger

Example 3 What happens to the behavior of the heat exchanger if the thermal
conductivity is increased?

The answer is that the oil will more more quickly than before. And since
the oil is flowing through the exchanger at the same rate, it must reach ther-
mal equilibrium before leaving the pipe (figure 6). Thus, uniike the previous
examples where the perturbation resulted only in continuous changes in various
parameters, the perturbation of example 3 caused a discontinuous change: the
previously cotemporaneous ‘events’ of thermal equilibrium and disgorgement
from the pipe now happen at different times.

I call the switch from figure 5 to 6 a change in behavioral topology. Example
3 is a simple case of topological change: the initial behavior was inconsistent and
a single new behavior was indicated. However, the situation isn’t always so easy.
Section 4 describes how perturbations can lead to multiple consistent behaviors
and presents heuristics for determining the most likely resulting behavior.

1.3 Exaggeration

While most of this paper deals with the DQ solution technique to comparative
analysis problems, it is worth noting that other qualitative techniques can solve
sinilar problems. One such technique, called exaggeration [20], produces expla-
nations that are completely different from those of the differential technique.
Consider the question of example 1: “What happens to the period of oscillation
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Figure 6: Perturbed Behavior of Heat Exchanger

if the mass of the block is increased?” Compare the exaggerated explanation
with the one generated by DQ analysis.

If the mass were infinite, then the block would hardly move at
all. So the period would be infinite. Thus if the mass was increased
a bit, the period would increase as well.

Exaggeration is a kind of asymptotic analysis—the perturbation is taken to
the limit to make the effect more easily visible. Exaggeration is common in
intuitive descriptions of physical behavior and appears quite powerful. As the
example shows it often results in a concise explanation.

But exaggeration is subtle. It works only when the system responds mono-
tonically to perturbations. Furthermore, it requires non-standard analysis to
reason about infinity. It’s quite easy to concoct a plausible exaggerated argu-
ment which is faulty, and a careful formalization of the technique is beyond the
scope of this paper. See [20,22] for details.

1.4 Overview

The next section is foundational—it shows how perspectives are essential to a
meaningful definition of relative change. Section 3 explains how the differential
approach to comparative analysis can be implemented by a number of inference
rules. The rules are proved sound, and their adequacy is discussed. Section
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2 Preliminaries

As my formalism is based on that used by Kuipers for QSIM [15], I start out
by summarizing his definitions.

Definition 1 A PARAMETER s a reasonable function of time.

See [15] for the actual definition of reasonable function; the intuition is that
of continuity, continuous differentiability, and a finite number of critical points
(places where its derivative is zero). Parameters are denoted by capital letters.
Thus the velocity of a projectile might be described by the parameter, V', which
is a function that maps time to velocity.

Definition 2 FEach parameter has an associated set of LANDMARK VALUES which
is a subset of the range of the parameter. The landmark values always include
(but aren’t restricted to) zero, the values of the parameter at the beginning and
ending times, and the values of the parameter at each of its critical points. A
time, t, is ¢ DISTINGUISHED TIME POINT of a parameter P if it is a boundary
element of the set of times that P(t) = p; for some landmark value p;.

Landmark values are those values considered to be interesting to the human
observer, and the times when these values are reached are of interest too. When
a parameter becomes constant for an interval of time, then it will take on a
landmark value for infinite number of time points. This is why the definition
only considers the boundary times distinguished.

Definition 3 A SYSTEM s a set of parameters that are related with a STRUC-
TURAL DESCRIPTION that consists of a finile set of qualitative differential equa-
tions defined using the following: time differentiation, addition, multiplication,
and relation by monotonic functions.

Kuipers’ program, QSIM, takes a system and a set of initial values for each
of the parameters and produces a set of possible behaviors for the system; the
definitions below describe this behavioral output:

2.1 Qualitative Behavior

Definition 4 Let py < ... < pi be the landmark values of a parameter P. For
any time t define the value of P at t as:

={ Pi if P(t) = landmark p;
QVALR = { (pj,pi+1) if P(t) € (pj, Pi+1)

Define the direction of P at t as:

10



inc if £ P(t) >0
QDIR(P,t)={ std  if £P(t)=0
dec if £ P(t) <0

Define, QS(P,t), the state of P at t, as the pair: <QVAL(P,t), QDIR(P,t)>

The qualitative state over the interval between two adjacent distinguished
time points is defined similarly.

Definition 5 For any parameter P, the BEHAVIOR of P is a sequence of states
of P:

QS(P) tO); QS(P, tO,tl)vQS(P)tl)y .. -:QS(Pstn-l,tn)yQS(Pytn)

alternating between states at distinguished time-points, and states on intervals
between distinguished time-points.

Recall that a system contains a set of parameters each with its own land-
marks and distinguished time points.

Definition 6 The DISTINGUISHED TIME-POINTS of a system are the union of
the distinguished time-points of the parameters. Thus the state of a system
changes whenever the stale of any parameter changes. The BEHAVIOR of a sys-
tem is thus a sequence of system-states alternating between distinguished time-
poinis and intervals.

To perform comparative analysis it is necessary to abstract away from spe-
cific times, since two different systems may have analogous behaviors, but change
states at different times. This is where my formal treatment diverges from that
of Kuipers.

Definition 7 A parameteris said to reach a TRANSITION when its QVAL changes
to or from a landmark value. A system is said to reach a TRANSITION when any
parameter transitions. Transitions only occur at distinguished time-points, and
every distinguished time point marks a transition. It will prove useful to be
able to refer to these transitions independent of the time at which they occur,
thus the sequence of transitions for a behavior will be denoted by the set {v;}.
FEvery behavior also has a TIME FUNCTION, T, which takes transitions 1o the
distinguished time-poinis when they occur.

The intuition is that each ¥ marks an event which changes the state of the
system. When comparing two behaviors, I match them up event by event and
use the time functions to tell whether one system is changing faster or slower
than the other.

11



2.2 Comparing Two Behaviors

To compare two behaviors, they must be distinguishable; I use the hat accent
to denote the second behavior. Thus 7 denotes the time function of the second
system, and F(7 (1)) denotes the second system’s value of F' at the time of the
first transition. To simplify the problem of of comparative analysis, I start by
only comparing systems with identical structural descriptions whose behaviors
are topologically equal, as defined below.

Definition 8 The behaviors of two systems, S and S, are TOPOLOGICALLY
EQUAL if they have the same sequence of transitions, ¥o,..., 7, and forall i
such that0 < i<k,

as(S, T(1)) = @s(5, T(n))
and forall i such that 0 < i< k,
@s(5, T(1), T(7i41)) = @8(5, T (1), T (3:41))

The assumption of topological equality rules out possibilities like the block
failing to make a complete oscillation if its mass was increased too much, but
it does allow a certain pliability. If two behaviors are topologically equal, their
respective sets of landmarks share the same ordinal relationships, but the un-
derlying real values for the landmarks can be different.

Section 4 explains how this assumption can be relaxed, but even with it, the
problem is nontrivial. Consider two oscillating spring-block systems. Even if the
blocks have different mass and the spring constants differ, the two systems have
topologically equal behavior. Yet the relative values of parameters such as period
of oscillation may be different. These are the first changes that comparative
analysis must determine.

Before I can explain the techniques for performing comparative analysis, I
need to present a notation for describing the desired output. It’s easy to compare
the values of parameters at transition points:

Definition 9 Given a parameter, F, and a transition v;, define the RELATIVE
cHANGE (RC) of F at v; as follows:

Ftty if|lFT(w)| > [F(T(%:))|
Fll; i |FT (%) = 1F(T(x:))]
FUY; i [FT )| < |F(T (7))l

For example, if the two spring-block systems were both started with negative
displacement and zero velocity (i.e., X < 0 and V = 0), their first transition
would occur when X reached zero. This notation allows one to express that the
second block is moving slower at the point of transition: V{};. It is important
to distinguish the relative change notation from statements about values and

12



derivatives. Even though V{},, QVAL(V, T (7)) is positive, and QDIR(V, T (1))
is std.

The curious reader may wonder at the use of absolute values in this defini-
tion. Relative change could also be defined by comparing signed values. I call
the approach of definitions 9 and 11 MAGNITUDE SEMANTICS and the alternate
approach SIGNED SEMANTICS. The two approaches are theoretically equivalent.
However, since magnitude semantics appears somewhat more natural and sim-
plifies various proofs, it is the default for the rest of the paper. In the places
where signed semantics proves advantageous, it will be mentioned explicitly.

2.3 Comparing Two Behaviors over Intervals

It turns out to be somewhat more complicated to compare two behaviors over
the intervals between transitions. What does it mean to says that one curve is
lower than another over an interval? To do pointwise comparison, some notion
of corresponding points is necessary.

The intuition for the requisite comparison is displayed in the explanation of
spring behavior that was presented in section 1.1.

If the mass of the block increases, the force on the block is the
same....

Yet this doesn’t mean force is invariant as a function of time—that isn’t
true. Consider the time when the small block is at its rest position; the spring
applies no force. But since the large block is moving more slowly, it won’t have
reached the rest position and so there will be a force applied.

What the statement means is that force is invariant as a function of position.
For every position that the block occupies, force is equal in the two systems,
even though the two blocks occupy the positions at different times. Although
parameters are defined as functions of time, they often need to be compared
from the perspective of other parameters. Here it proved advantageous to con-
sider force as a function of position. Although people understand arguments
that leave these changes of variable implicit, the notion must be made precise
and explicit if computers are to perform comparative analysis. The notion of
perspective is foundational.

Definition 10 A parameter, X, is called a COVERING PERSPECTIVE over a
transition interval (i, vi41) when the following three conditions hold:

L. @QDIR(X,T(%:), T(vi41)) # std
2. X|;

3. X”i+l

When just the first condition holds, X is called @ PARTIAL PERSPECTIVE.

13



When a parameter, X, is a partial perspective, it is strictly monotonic so its
inverse X! exists. This means that it is possible to reparameterize any other
parameter, F', by composing it with the inverse:

Fx(z)= F(X"l(:c))

When X is a covering perspective, then Fx and F/‘} have the same domain.
Covering perspectives will prove especially important in the inference rules of
section 3.

Definition 11 Given a parameter F, a partial perspective X, and a iransition
wnterval (i, Yi+1), let Fx denote F as a function of X. LetU be the intersection

of the domains of Fx and F"}
= (X(T(1)), X(T(1:41))) 0 (X (T (1)), X (T (i41)))

Define the RELATIVE CHANGE (RC) of F over (v, ¥i41) from the PERSPECTIVE
of X as follows:

Py Ve €U |Fx(2)] > [Fx(2)]
FliGipy V2 €U |Fx(2)| = |Fx(2)|
FU’(. i+1) ifVzeU |FX(z)| < |Fx(z)|

In other words, force is || from the perspective of position, if for all positions
that are assumed in both simulations (Vz € U) the corresponding forces are
equal. The definition of partial perspective says when is it possible to use a
parameter as a perspective; section 3 addresses the question when is it useful
to do so.

2.4 Time as a Perspective

Although comparisons of parameters that have been reparameterized by per-
spectives are more common, sometimes is is useful to compare via corresponding
times. To keep notation consistent, I will call this ‘using time as a perspective.’

The goal is to come up with a meaningful definition for Pfrg— i+1) and the other
RC values.

One problem is that the duration of the two time intervals might be different.

If so time acts as a partial perspective—one quantifies only over time in the

shortest interval. Another problem is that the two transition intervals might

start at different times; in fact one interval might end before the other starts,

e.g., ’T('y,) > T(Yig1)- The solution is to align the intervals before quantifying.

14






3 Differential Qualitative Analysis

This section presents a number of rules for computing and manipulating RC
values, describes how the rules were incorporated into a computer program,
and evaluates the program’s performance.

¢ The duration rule formalizes “distance equals rate times time.”

¢ The interval derivative rule expresses the relationship between one deriva-
tive and another, e.g., “more acceleration leads to higher velocity.”

e The transition derivative rule predicts the final value of a derivative like
velocity.

o The self reference rule says that every parameter appears unchanged from
its own perspective.

o The perspective flipping rule allows a reasoner to change perspectives.

o The transition and interval constant rules show the relationship between
constants and RC values.

o The end of time rule says that other things being equal a parameter
changes more, the longer it is changing.

¢ The one’s own derivative rule predicts what happens when a parameter is
defined in terms of itself.

o The multiplication rule demonstrates that the familiar rules of qualitative
arithmetic apply to RC values as well as derivatives.

Each of the rules are presented as theorems since they are proven sound. For
simplicity, however, only the interesting and difficult proofs have been included
in this paper. The rules have been implemented as part of CA, a ZETALISP
program which solves comparative analysis problems using DQ analysis. CA
uses a constraint propagator to derive implications of these rules. The resulting
dependency structure can be translated into an English explanation or used
by an explanation based generalizer. Although CA is incomplete (there are
some problems it for which it terminates without solving), it does answer and
intuitively explain a large class of problems. Because the rules have been proven
correct, CA is guaranteed to reach only sound conclusions.

3.1 Duration Rule

This rule is the basis for the very powerful inference: distance equals rate times
duration. If the rate is slower in the second simulation, then it will take longer
to go the same distance. Although this may seem obvious, perspectives are
required to make precise the notion of ‘rate is slower’; this makes it subtle.
Before I can state the theorem, the notion of distance must be made clear.

16



Definition 13 Let X be a parameler which is increasing and positive (or de-
creasing and negative ? over the transition interval (vi,vi+1). Define DISTANCE-
BY X over (vi,¥i+1) as the relative change of the distance traveled over X over
the interval as shown in the following table:

Starting RC Value

L "
Ending | 2 % 1
RC || ¢ || 1

Value 4y 4 2

Note that the parameter X has a double purpose in this theorem: it has V
as its time derivative, and it is also the perspective from which V is seen to .
In the following, it may be helpful to think of V as velocity, and X as position.

Proposition 1 Duration Rule
Let V and X be parameters such that X is a partial perspective over (vi, ¥it1)-

GivenV = £ X, VU§,5+1), and ~DISTANCE-BY XU; ;11 then T (yig1)-T (%) >
T(Yi+1) — T(7:), i.e. the duration of (i, Yi+1) will increase.

Proof: Note that the proof is not obvious: Vx # %’ti. I prove the case in
which DISTANCE-BYX ||('.,i +1)- This is equivalent to requiring X to be a covering

perspective. Let a = X (7 (7)) and b = X(7(%i41)). Since X is a covering
perspective, X has an inverse function taking position to time:

X7 (a,8) = (T (%), T(7i41))
The function 5/(\: ~1 also exists, has the same domain, and a possibly different
range: (7(7:), 7 (vi+1)). By definition VU(),{,,-_,_I) means:

V(X @) < V(X' ()] V= € (a,b)

Consider the case® where V > 0; this implies that all values of V are greater
than zero because otherwise the two systems would have different transitions,
violating the topological equality assumption. This means that:
0 < V(X Y=)) < V(X~Y(z)) Vz € (a,b)
So:
1 S 1
V(X-1(z)) =~ V(X~(z))

>0 Ve e(a,b)

2A similar definition is made for the cases of increasing/negative and decreasing/positive.
This definition would be simpler to express in signed semantics.

3The case where V < 0 is similar; there is no case where V = 0 because then X would not
reach a transition.

17



So:

b1 b1
/,, PR / VX1 7

But by the chain rule, the time derivative of X1 at z is m’lw So:
X)) - X"Ya)> X"1(b)— X~ '(a) > 0

Thus: ’7’(7,41) - 'j\'(%’) > T(¥i41) — T(¥i). In other words, the duration of the
interval increases. O

It would be nice if one could show that the duration rule was sound if the
premise was weakened to have VU{;; +1) for some arbitrary covering perspective
P. However, the following proposition shows that this is false; just because
P||é:i +1) for a perspective X doesn’t mean that there doesn’t exist some other

perspective Z such that Pﬂ(Zi,Hl)-

Proposition 2 Non-Uniqueness

Given a system with parameters P, X,Y, and Z such that X,Y and Z are cov-

ering perspectives over (i, Yi4+1), then it is possible that Pﬂ()‘;’,‘_,_l) and P||?:’,-+l)
zZ

and PU("”'_*_I).

The example shown in figure 7 illustrates the proof by construction. The thin
lines indicate the values of the first system while the dotted lines indicate the
value of the second system. The first row shows that from the time perspective
the behavior of P doesn’t change. The second row shows the relative change of
the perspectives. The third row depicts Px, Py and Pz.

Although this aspect of RC values may seem strange, it is actually inevitable.
After all, everything is relative to one’s perspective. Imagine a machine which
hourly logs the linearly increasing concentration of alcohol in a fermentation
tank. It produces the following sequence of measurements: 0.02, 0.04, 0.06, 0.08,
etc. But in the identical tank nearby, the logging machine has a defective motor
which runs too slowly and delays the measurements. Although the fermentation
is proceeding at the same pace in both tanks, the second log will read: 0.03,
0.06, 0.09, 0.12, etc. Thus the plant inspector, who only sees the alcohol-time
curve from the perspective of the logging device, might think that second tank
was fermenting more quickly even though the only real change was a slowdown
in the speed of the timing motor.

3.2 Derivative Rules

These rules connect parameters that are time derivatives. The first works over
intervals and the second predicts RC values at interval endpoints. The intuition
behind the first is: if a parameter is || at the start of an interval, but its derivative
is |} over the interval, then the parameter must be |} over the interval. As always,
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Figure 7: Pfr{é,l) yetPH(};ll) andPU(Zo'l)

the ubiquity of perspectives complicates the matter. Note the special role of X
both as perspective and second integrand of A.

Proposition 3 Interval Derivative Rule
Let A, V, and X be parameters such that A = .TV V = TX and X is a
covering perspective over (¥, Yit1)- Furthermone let A and V be positive over

the interval (i, yiy1). If =V, Al;, and A.LL(, i+1)- Then VU(, i+1)-

Proof: The chain rule makes this rule considerably harder to prove than the
duration rule. It suffices to show that there exists some position such that
lVl < V for all positions up to and including this position. Once it is known
that V' goes down, the same argument can be used to show that it continues to
go down. Thus it will stay down until 7,4, is reached.

Let

. 1
)= = VX-1(2))

Let

#z) =

A can be expressed as a function of X
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ACX1(2)) = (—‘—(—}))—)3

Since AY; and AU{E’,- +1)) it is the case that for all z in the half open interval

[a, )

#(z) 7(2)
Gy Fer @
Because =V1f}; and since V is positive,
7(a) 2 #(a) 2 0 2
Substituting (2) in the denominator of (1) gives
Ha) | #a)  _#a)
Fay = F@P * Fa)
So
#a) > #a) 3)

And by continuity, equation (3) holds over a half open interval which may be
written as [a, c) for some ¢. This implies that the equation holds over the closed
interval [a, d] where d = a + £52. But by the definition of 7, for any z € [a, d]

Hao) = Ha) + / * i(z) de
So for all z € (a,d)]
#(z) > 7(z)
So for all z € (a,d]
_—<
(z) T(*)
Thus by the definition of 7, for all z € (a, d]
V(X @) < V(X (@)

So VU iy O

Above I pointed out the special role of X both as perspective and second
integrand of A. It is natural to ask if the interval derivative rule is true for
arbitrary perspectives. Unfortunately, it is not. Appendix A provides a counter-
example which makes this point.

The interval derivative rule has an important corollary which predicts the
value of the middle derivative, V, at the transition ending the interval. The
intuition is threefold:
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o If the object is accelerating slower, then its terminal velocity will be
smaller.

o Ifthe object is accelerating at the same rate but starts with a slower initial
velocity, its terminal velocity will be smaller.

o If the object accelerates for a shorter distance, then it will finish going
slower.

Proposition 4 Transition Derivative Rules
Let A, V, and X be parameters such that A = %V, V= :—tX, X s a partial
perspective over (¥;,Yi+1), and both A and V are positive over the interval. If
one of the following conditions is true,

o VU; and A||f;,,) and DISTANCE-BYX|| ; ;. )

o (AY; A AYY ;1)) and VU; and DISTANCE-BYX||(; ;4 1y

® DISTANCE-BY X ;1) and V|, and A||ff,,.+l)

then V.

The rule is quite a mouthful, but that is simply because it is very general.

3.3 Perspective Rules

These rules deal with establishing RC values for perspectives and switching
between them. The first is very simple, but turns out to be quite important.
The intuition is that if the plant manager was foolish enough to try and use the
logging devices to log their own speed, he wouldn’t get a useful result. Both
the normal and slow machines would record that they turned one full revolution
during each revolution of the timing motor.

Proposition 5 Self Reference Rule
For any parameter P, if P is a covering perspective over (¥;, ¥i+1) then PHS"._H).

The perspective flipping rules switches between perspectives. The intuition
is that flipping perspectives (i.e., X* to PX) flips {} to | if both parameters are
positive and increasing over the interval.

Proposition 6 Perspective Flipping Rule
If the parameters X and P are valid perspectives over (v;,Yi+1), the sign of X
equals the sign of P over the interval, and Xﬂg’ﬂ_l), then:

Pﬂ}fs“) if QDIR(X, T (%), T(Vi+1)) # QDIR(P, T (%), T(¥i41))
PYGiv1) i QDIR(X, T (i), T(vi+1)) = QDIR(P, T (%), T(¥i41))

If the sign of X is the opposite of the sign of P then the RC values are reversed.
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Proof: I will prove the case where both X and P are increasing; the other cases
are almost identical. Let a = X (7(¥)), and b = X (T (7i4+1)). For an arbitrary
z € (a,b) 3p such that X(P~1(p)) = z because P is a covering perspective, and
thus onto. Let ¢; = P~1(p), and let

g=X(t) = X(P\(p)

By the definition of Xﬂg’,}l) it follows that T > z. Let ¢ = )?‘1(1:). Since
X is increasing to < t;. Again because P is onto, 3p such that ﬁ“l(ﬁ) = 1y so
X(P~Y(p)) = z. Now, p < p because

PY(p)=to <ty = P7(p)
and P is increasing. But this means that
B(X7}(x)) < P(X7}(2))

and since x was arbitrary, it follows that PU({,» + 0O

3.4 Constants

Frequently a system will contain a few constant parameters whose values never
change. The following rules are a simple way to express relationships between
constants in the notation of comparative analysis. The intuition is that since
perspectives just scale time, and constants don’t change over time, all perspec-
tives agree on the behavior of constants. If there was no fermentation happening
in either vat (i.e. the alcohol concentration was constant in both vats), and the
concentration of alcohol was higher in vat two, then both logging devices would
agree on this even though their timing motors differed.

Proposition 7 Transition Constant Rule
If a parameter K is a constant over (i, Yis1), and K1ti then Kfi;,.

Proposition 8 Interval Constant Rule
If a parameter K is a constant over (i, %i41), and K{t; then for all parameters
P, if P is a covering perspective over the interval (v;,Yit1), then Kﬂﬁ,e+1)-

3.5 Rules with Time as a Perspective

It is very common for one parameter to be the derivative of another with respect
to time. When it is possible to reason about these relations from the perspective
of time, greater power is achieved because the chain rule doesn’t interfere as it
does in the derivative rule. The only drawback is the fact that these rules are
less frequently applicable.

The first rule says that if the a parameter is ||[from the perspective of time,
and the duration of the interval is increasing, then the parameter will have
changed more by the end of the interval.
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Proposition 9 The End of Time Rule

Let X be a parameter such that X||; and X]|Z.:,-+1). Let s be the sign of X
over the transition interval (y;, ¥iy1) and d be the sign of X’s derivative. If the
duration of (vi,Yig1) 15 11, then

X||; ifd=0, otherwise
Xﬂi lfs = d
X|; ifs#d

The proof of this lemma is trivial and thus omitted, but it should be noted
that it is easier to express using signed semantics. The second rule is used
for determining a parameter RC value from the perspective of time. It applies
whenever the time derivative of a parameter is a linear function of the parameter.

Proposition 10 One’s Own Derivative Rule
Let X, V, and K be parameiers such that V = ;—tX, V = MuLT(X, K), and K

is a negative constant. If V(T (v:)) # 0 and ||; and Kﬁg,,-ﬂ) then XUZ:,-H).

3.6 Rules from Qualitative Arithmetic

Research in qualitative simulation [2,7,26,15] has developed constraints on deriva-
tive values for parameters in ADD, MULT, and monotonic function constraints.
For example, if X x Y = Z and the derivatives of X and Y are positive, then Z
must have positive derivative as well. These rules can be generalized to include
RC values at transition points and over intervals. Here, I present just the rule
for a MULT constraint at a transition point.

Proposition 11 Multiplication Rule

IfX,Y, and Z are parameters which are related by the constraint, Z = MmuLT(X,Y),
then the following table displays the possible RC values for Z at a transition
point:

Y
LR
115 s M 7
Xl ml W
U T

The rule for the ADD constraint is similar, but complex to write using mag-
nitude semantics.
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3.7 Implementation

To test the theory of DQ analysis, a program called CA has been written on a
Symbolics lisp machine. When a user selects an example, CA runs QSIM [15]
on the example to produce a set of qualitative behaviors for the example. The
user selects a behavior and also a set of initial RC perturbations. CA translates
the QSIM behavior and perturbations into ARK* assertions. At this point ARK
forward chains using the propositions described earlier in this section.

Each of these propositions is implemented as an ARK rule or more than
one if the proposition used disjunction or negation. For example, the duration
rule (proposition 1) is encoded as the three ARK rules of figure 8. The various
definitions and propositions require about sixty ARK rules.

(= (anND (D/DT ?x 7V) ; 7v is the derivative of 7x
(DISTANCE-BY 7x (7start ?end) deq) ; ?x travels the same distance
(rc ?v (?start ?end) ?c (P- ?x)) ; the RC of 7v is ?c from
(oPPOSITE-RC ?¢ 7oc)) ; the partial persp. of 7x
(DURATION (?start Tend) ?oc) ;if7cist, Tocis |

duration-rulel)

(= (anD (D/DT ?x ?7V)
(DISTANCE-BY ?x (?start Tend) ?oc) ; if 7x travels Toc distance

(rc ?v (?start ?end) ¢ (P- 7x)) ; and V’s RC agrees
(OPPOSITE-RC ?¢ ?oc))
(DURATION (7start ?end) 7oc) ; then the duration is ?oc

duration-rule2)

(= (anD (D/DT ?x ?v)
(DISTANGCE-BY ?x (?start 7end) 7oc) ; if ?x travels ‘less’ distance
(Rc ?v (?start 7end) deq (P- ?x))) ; and V doesn’t change
(DURATION (7start ?end) ?oc) ; then the duration is ‘less’
duration-rule3)

Figure 8: Propositions Are Encoded Directly Into ARK Rules

The simplicity of the transformation from proposition to ARK code provides
confidence in the soundness of the implementation. And the fact that most rules
get used in each explanation, establishes their utility.

Since it is an initial prototype, CA makes no use of control rules. All possible
forward chaining inferences are made using every possible perspective. Despite
this, computation rarely exceeds a minute on any of the problems tested. If

*ARK is a descendant of AMORD [3] implemented by Howie Shrobe and others.
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larger problems were to be attempted, some form of control would be desirable.
Backward chaining from a goal pattern might increase efficiency. There appears
to be no reason why the schemes of {4,24] could not be applied. Possible heuris-
tics include preferential investigation of certain perspectives and avoidance of
certain computationally explosive rules like the perspective-flip rule.

Another technique to speed up reasoning is explanation based generalization
[16,5]. Following the approach of [13}], I implemented a postprocessing learning
routine that takes CA explanations and produces new ARK rules which may be
added to the ones presented above. While these new rules are independent of
any particular domain (i.e., springs), they are optimized to solve a specific class
of comparative analysis problems. Less general than the rules presented above,
the new rules are considerably more general than the specific explanation from
which they are derived. Although I have completed the EBG implementation,
the empirical evaluation of EBG’s ability to increase DQ processing efficiency
remains as an area for future research.

3.8 Differential Analysis Suffices for Most Examples

Since ARK maintains justifications for all its assertions, it is possible to generate
explanations for CA’s conclusions. Consider the spring/block example. The
question here is: “What happens to the period of spring oscillation if the mass
of the block is increased?” The system is defined in terms of six parameters:
spring constant —K, mass M, position X, velocity V, acceleration A, and force
F obeying the following equations:

A= :—tV
V=4X

F = MUuLT(M, A)
F =wmurT(-K, X)
£M=std

ft- — K =std

The initial conditions are specified as follows: M(0) > 0, —K(0) < 0, V(0) =
0, and X(0) = 2o < 0. Since energy conservation is not made explicit in the
equations, QSIM produces several possible behaviors for this system. Although
comparative analysis could be done on any of the behaviors, I assume in this
example that the user selects the interpretation corresponding to stable oscilla-
tion.

Now the user selects the perturbation. Because some parameters depend on
one another, not all parameters may be perturbed. The situation is analogous
to the problem of specifying a unique solution to a differential equation where
values must be given for the independent parameters and a set of boundary
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conditions provided. In this example, M and —K are independent, while values
for X and V are needed as boundary conditions. Thus to specify a comparartive
analysis problem, these four parameters need to be given initial RC values.’
For this example, the perturbation consists of the following initial RC values:
My, —Kllos Vllp, and X[,

Given this input, CA correctly deduces that the block will take longer to
reach the rest position (X = 0) from its original negative stretched position.
Figure 9 shows the explanation that CA generates; this is created by throwing
away all perspective information once computation is finished. I have annotated
the explanation with the names of rules used in each step.

Assuming M is increased:

X doesn’t change and (self-reference rule)

K doesn’t change and (interval constant rule)
F equals -K times X

So F doesn’t change. (multiplication rule)

and

M increases and (interval constant rule)
F equals M times A

So A decreases. (multiplication rule)

So V decreases. (derivative rule)

So the time duration increases. (duration rule)

Figure 9: CA Generated Explanation for Spring with Heavier Block

At present CA has been tested for multiple perturbations on over a dozen
examples including the RC circuit shown in figure 10. While it always terminates
and never produces an incorrect answer, CA doesn’t necessarily deduce RC
values for every parameter.

3.9 Differential Analysis is Incomplete

As is explained in the sections below, different types of ambiguity are the cause
for the incompleteness of DQ analysis. Yet DQ analysis handles ambiguity dif-
ferently from other forms of qualitative reasoning. For example, when QSIM is
faced with ambiguity about a parameter’s value, it branches, spawning perhaps
three new behaviors: one with the parameter equal to a landmark value, one

5The choice of these four parameters is somewhat arbitrary. Mathematically, it would be
equally reasonable to choose A instead of X, but this does not make physical sense; it seems
intuitively impossible to directly affect acceleration. Since there is no way to deduce this
from the differential equation model, it is esential for the person who constructs the model to
annotate the structural description with the list of ‘causally primitive’ parameters — in this
case, the four listed above.

26



R1 R2

V(in) | /

Cc2 R3

Figure 10: An RC Circuit Based on the Wheatstone Bridge

greater and one less. QSIM can do this because the nature of inequality guar-
antees that either A < B, A = B, or A > B. While this is true for RC values
at transition points, it is not true for RC values over intervals.

Proposition 12 Non-Exhaustivity
Given two paramelers, V and P, such that P is a covering perspective over an
interval (¥i,vi+1), #t is not necessarily the case that one ofVﬂ(}:,,-_'_l), V”(}:,.-H):

or VU(; iy1) holds.

Proof: Appendix A provides an example which proves this statement O

Thus unlike qualitative simulators, DQ analysis can not branch when faced
with uncertainty, it simply acts mute. The following sections explain the three
factors that can cause DQ analysis to fail to predict all of the relative changes in
a perturbed system: ambiguous questions, ambiguity resulting from the quali-
tative arithmetic, and the lack of a useful perspective.

3.9.1 Ambiguous Questions

Some questions simply don’t contain enough information. For example: “What
would happen to the period of oscillation, if the mass of the block was heavier
and the spring was more stiff?” There is no answer to this question because
it is inherently ambiguous. The increased mass tends to increase the period,
but the increased spring constant tends to decrease it. Thus the duration might
increase, decrease or remain unchanged.
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3.9.2 Ambiguity Introduced by Qualitative Arithmetic

Since DQ analysis uses the same qualitative arithmetic utilized by other forms
of qualitative reasoning, it should not be surprising that ambiguity causes a
problem here as well. The problem is rooted in the fact that qualitative values
(of which RC values are an instance) do not form a group over addition [18].
As a result, unique inverses do not always exists and it is frequently impossible
to determine the qualitative value of a parameter.

For example, consider the spring/block system of the last section. DQ analy-
sis correctly predicts that the block will take longer to reach the first transition,
the block’s rest position. But the period of oscillation requires four transitions:
starting from a negative initial position, X moves to zero, then to a positive
maximum, then to zero, and finally to its original position. Because of ambigu-
ity in the extreme positions of X, DQ analysis can make no prediction about
duration of these last three transition intervals. Why is this? Because of the
qualitative arithmetic, it is impossible to show that X||,, i.e., that X sweeps out
the same distance when the mass is increased. Because of this, X is not known
to be a covering perspective so the derivative and duration theorems can not be
used. Thus there is no way to determine the RC value for the whole period.

This problem is directly analogous to QSIM’s prediction of spurious behav-
iors [15]. Given a Hooke’s law description of the spring/block, QSIM produces
many possible behaviors in addition to the correct description of stable oscil-
lation. Furthermore, the DQ problem can be alleviated in the same way that
Kuipers caused QSIM to disregard behaviors other than stable oscillation—by
augmenting the structural description with equations describing conservation
of energy. Now CA can deduce that since potential energy is equal to force
times distance, increasing the block’s mass leaves total energy unchanged. This
allows it to recognize X as a covering perspective and deduce that the duration
increases for each of the period’s four transition intervals.

3.9.3 No Useful Perspective

Other questions are even more difficult to answer: “What would happen to the
period of oscillation if the initial displacement is increased?” Since people have
trouble with this question, it should not be surprising that DQ analysis cannot
answer the question either. In fact, the answer is “period does not change”, but
the only way to show this is to solve the differential equation for an equation for
period and notice that it is independent of amplitude. The difficulty is rooted
in the fact that no useful perspective ezists to provide a handle on the problem.
There is no system parameter P such that V”gm)- Clearly X won’t work as a
perspective, since it doesn’t sweep out the same range in the two cases. In fact,
it is easy to prove that no artificial perspective could satisfy the equation.
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Proposition 13 Given the definition of V as specified above for the spring/block
example with Xy, let ¢4 = T(y1) and i = T(y11). There are no continuous,
real valued, functions P, P such that
P(0)= P(0) =po A
P(t))=P(ti)=p A
V(P~Y(p)) = V(P-1(p)) Yp € (9o, 11)

Proof: Since X1y, initial potential energy is higher in the perturbed system,
so kinetic energy is greater at 4;. This means that V1, ie.,

V(t:) = 'l?l >V = V(tl)
Because V and V are continuous

lim V(¢) =

t—ty
and
tl_l’ntml V(i) =n
Similarly,
lim P-1(p) = fi
=
and
lim P! =
Jm P70 =
Thus
liny (V(P=1(p)) = V(P™}(p))) = i — v1 #£0
pP—p1

So there exists some ¢ € (pg, p1) such that

V(P~1(g)) = V(P-1(2))

a

Thus there is no function, P, that can act as a perspective such that Vllg),l).
This really shouldn’t be very surprising. After all, the block really does move
faster. The only reason that the period is unchanged is that the increased
velocity is exactly counterbalanced by the increased distance the block must
travel. It would be foolish to try and claim the velocity doesn’t increase when
it does. Instead, an intuitive explanation should account for the balance of the
change in velocity and distance. This type of explanation is outside the realm
of DQ analysis, and probably beyond the abilities of qualitative physics as well.
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3.10 Extensions for Diagnosis

A natural application for comparative analysis is the automated diagnosis of
continuous devices such as analog electronic circuits. Generate and test is a
standard paradigm for hardware diagnosis [9]: candidate faults are proposed
then evaluated to see if they account for the faulty measurements. Like all
forms of comparative analysis, DQ analysis can be used to test any candidate
faults that can be described as perturbations of continuous parameters in the
device. In addition, however, DQ analysis has the potential to generate classes
of candidate faults. The key is to run the DQ inference rules in reverse. For
example, the duration rule says:
Proposition 1 Duration Rule
Let V and X be parameters such that X is a partial perspective over (i, ¥i+1)-
Given V = a‘it-X, VUZX;,-H), and —-DISTANCE-BYX.U(,.,HI) then the duration of
(¥, vi+1) will increase.

A natural question is “Can the duration rule be reversed? Is the converse
sound?”

Conjecture 14 Converse Duration Rule
Let V and X be parameters. Given V = %X and —DISTANCE-BYXY; ;11y. If

the duration of (v;, ¥is1) T, then VU&{’;H).

Unfortunately, the converse is false, as are the converses for other important
rules such as the various derivative rules. The problem results from an implicit
closed world assumption used in reversing the rule—that one of the three RC
values, ft, {, or ||, always applies. Proposition 12 showed that this was false.

Of course every transition interval could be broken into pieces such that a
single RC value applies over each piece, but this misses the fundamental issue.
The decomposition of time into transition intervals is forced by behavior of the
system. Thus transition intervals have genuine qualitative importance. While
sometimes useful, decomposing transition intervals into smaller pieces runs the
risk of introducing irrelevant distinctions.

Although the converse of the duration rule is not sound, its converse might
still be profitably used as a heuristic candidate generator. By reversing the DQ
inference rules, it may be possible to provide focus to the search for probably
faults in misbehaving analog circuitry.
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4 Changes in Behavioral Topology

Recall that the inference rules of section 3 relied on the assumption that the
perturbed behavior was topologically equal (definition 8) to the initial behavior.
In other words, it was assumed that while the perturbation might change the
relative values of parameters and stretch or shrink the length of time intervals,
the underlying sequence of transitions would not change. Yet perturbations
often will change the order or nature of transitions. This section explains how
to recognize the changes and predict the resulting behavior.

To illustrate these computations, I use the simple example of the heat ex-
changer (figure 4) from section 1.2. This system is described in terms of five
parameters, each a function of time: heat @, heat flow F', thermal conductivity
— K, velocity of the liquid through the pipe V, and position of a unit volume of
oil® X. The following equations are obeyed:”

V=$£X
F=4Q
F =Murr(@,—K) (49

In addition V and —K are considered independent and assumed constant
over time. The initial conditions specify the value for the independent parame-
ters: V(0) > 0 and —K(0) < 0, and also the boundary conditions: X(0) = zo <
0 and Q(0) = ¢go > 0. From this information the initial value of the dependent
parameter, F, can be determined; denote F(0) = fs. An invariant specifying
that X must always be less than or equal to zero ends the simulation when the
liquid individual leaves the pipe.

Given this description, QSIM (and other qualitative simulators [6]) produces
the tree of qualitative states (STATE TREE) shown in figure 11. Since each path
through the tree is a topologically distinct behavior, this tree represents three
possible behaviors for the heat exchanger. The topmost path (QS1, QS2, QS3)
corresponds to the behavior of figure 12 in which the system reaches thermal
equilibrium just as the oil leaves the exchanger.

Because of its qualitative representations, QSIM cannot choose between the
different behaviors for the heat exchanger; as far as QSIM is concerned, they are
all plausible. Since DQ analysis works relative to a single behavior, one path
through the tree must be chosen before running the rules of section 3. This
selection of a behavior is a modeling decision; I assume that it is done by a
human. The selection consists of a series of choices at each branch in the tree.
By ruling out possible behaviors, each choice implicitly constrains the model of
the system, restricting the possible real values associated with the qualitative
values of each parameter. Thus the selection of behavior (QS1, QS2, QS3)

$For simplicity, the simplistic liquid-individual’ model of fluids is used here; see [10] for a
discussion of the problems with this model.
"For simplicity, this model does not distinguish between temperature and heat.
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X: [0, inc]
Q: [0, std]
F: (0, std]

Qs3

X: [x*, inc]
Q: [q*, dec]
F: [f*, inc]

Qs1

X: {(x*,0), inc]
Q: [(0,9%), dec]
F: |(f*,0), inc}

QSs2

X: (0, inc}
Q: [{0,q%), dec}
F: ((£*,0), inc]

QS4

Jo

(Fa, H)

X: [(x*,0), inc|
Q: [0, std]
F: [0, std)

QS5

X: [(x*,0), inc}
Q: [0, std]
F: [0, std]

Qsé

X: {0, inc]
Q: [0, std)
F: [0, std]

Qs7

R2

(71, 72)

b2

Figure 11: QSIM State Tree Generates Possible Behaviors

makes implicit assumptions about the relative values of fluid velocity, V', and
thermal conductivity, — K.

These implicit constraints are equivalent to the unambiguous selection of the
initial behavior. However, the comparative analysis perturbation can weaken
the balance of constraint in two ways:

e The initial behavior can be rendered inconsistent. Section 4.1 explains
how the conflict is recognized and a new, consistent path is found.

e Alternate behaviors may become consistent. Section 4.2 explains how to
locate other consistent paths through the state tree.

4.1 Initial Behavior Inconsistent

Suppose someone selected the path (QS1, QS2, QS3) as the heat exchanger’s
initial behavior (figure 12) and chose the perturbation —K{}. The state QS3
dictates the two transitions, Q reaching zero and X reaching zero, in the same
time instant. Since the perturbation causes heat to be lost more rapidly, QS3
can’t be part of the final behavior. If one assumes that it is, the duration rule
(section 3.1) deduces a contradiction, as follows.

When - K1}, it follows that Fﬂg,’l).s Thus the duration until the first tran-
sition is {}. However, being a constant V' is unchanged by the perturbation, so

8By the interval constant rule, the self reference rule and the multiplication rule.

32



-
-
-
-
-
x0 —=
Minf L X
Inf | Q
q0 b
S~
S—
S~
S

Minf _| F

Figure 12: Initial Behavior Corresponding to Path (QS1, QS2, QS3)

V||gg’1); the duration rule uses this fact to conclude that the duration ||. Hence
the conflict. The perturbation causes heat to reach its transition quicker, but
position is unaffected and will transition at the same time.

Behavioral inconsistencies are located by stepping through the transition in-
tervals from earliest on, and checking the RC values for the interval’s duration.
Section 4.1.1 explains how to find all behaviors that avoid this single contradic-
tion while obeying the initial constraints. Section 4.1.2 provides heuristics for
eliminating inferior paths. Finally, section 4.1.3 shows how to check if the new
behavior is globally consistent, not just a fix to the first contradiction. Note that
all of these techniques depend on the DQ inference rules which are incomplete.
As a result, while most inconsistencies are detected, it is not guaranteed that
all inconsistencies can be found.

4.1.1 Finding Consistent Alternatives

A simple observation about the inference rules of section 3 forms the foundation
for the contradiction resolution method: only the duration rule can generate an
RC value for a time duration. Therefore, the contradiction must be caused
by two (or more) firings of the duration rule for the same interval. What dis-
tinguishes these firings are the different perspective parameters used in each
application of the rule.

In the heat exchanger example, the two perspective parameters are Q and
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X. In the initial behavior, they reached transitions in the same state, QS3. But
to achieve consistency with the perturbation, we must find a behavior where
they reach transitions independently. This means finding a path which starts
with QS1 and QS2, and passes through a sibling of QS3. The answer, of course,
is the path (QS1, QS2, QS5, QS6, QS7) as shown in figure 13. This path
illustrates the general case. A node representing the qualitative state at a time
point (QS3) is replaced by three states: two at time points (QS5, QS7) and one
for the interval connecting them (QS6). For the purpose of discussion, I shall
call QS3 the FRAGMENTING POINT and the two time-point states which define
our objective, the PREPOINT and POSTPOINT respectively.®

0 ' — T
-
-

-
x0 4=~

minf L X

Inf —— Q
q0 I~

n ¥
Minf _] F

Figure 13: The Behavior Corresponding to Path (QS1, QS2, QS5, QS6, QS7)

The problem, then, is to search the state tree among the siblings of the
fragmenting point to find the pre- and postpoint states. We know that @ and
X must reach transitions in different states, but which should reach its transition
first? Consider the two duration RC values which cause the contradiction. Since
|l specifies earlier termination than ||, Q, the perspective parameter for the firing
which produced the |} value, will reach its transition first. This means that the

9 Actually, this discussion assumes a simplified version of the general problem. I assume
that the contradiction is caused by only two firings of the duration rule, and I assume that at
the contradiction can be resolved by the addition of a single new transition. The general case
is a straightforward extension. If the QS2 interval had three conflicting duration RC values,
U, (], and 4}, then QS3 could split into five states: three for time points and two connecting
intervals. If multiple rule firings are allowed for each RC value, then correspondingly more
paths are possible.
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prepoint will have ¢ = 0 and not X = 0. Since QS5 is the only state to meet
this requirement, so QS5 is the prepoint. For the heat exchanger example, this
state uniquely defines the new behavior, because only one path includes QS5;
hence QS7 must be the postpoint. In a more complex example, however, there
could be several candidates for prepoint and multiple behaviors passing through
each one. The following conditions further restrict the possibilities.

e All parameters that reach transitions in the prepoint, must have reached
transitions in the fragmenting point.

¢ All parameters that reach transitions in the postpoint, must have reached
transitions in the fragmenting point.

o All parameters that reached transitions in the fragmenting point must
reach transitions in either the prepoint or the postpoint, but not both.

While these conditions are loyal to the implicit constraints resulting from the
initial selection of behavior, they are unfortunately not sufficient to guarantee
a unique alternate behavior. The next section explains a heuristic that will
guarantee a unique behavior but not necessarily one that obeys all implicit
constraints.

4.1.2 A Heuristic For Eliminating Behaviors

The conditions listed above produce a unique behavior except in cases where
additional parameters besides @ and X reach transitions in the fragmenting
point. When extra parameters reach transitions in the fragmenting point, one
must choose where they should transition—in the prepoint or the postpoint.
The following cases result:

e The parameter could be causally connected to either Q or X. In fact,
this is the case with the heat exchanger: F transitions to zero in QS3.
How did we know that F should reach its transition in the prepoint rather
than the postpoint? We didn’t even need to consider the question. By
constructing the state tree, QSIM already handled the problem for use.
It recognized that F' must transition whenever @ transitioned; thus the
state tree contains only this possibility. Since the topological consistency
code searches the state tree, it automatically benefits from QSIM’s work.

o There could be additional RC information about the parameter. For sim-
plicity, this case was not discussed above, but suppose that the duration
rule had fired three times with @, X, and S as perspectives. If S and X
both caused the duration rule to deduce an RC value of ||, then both X
and S should reach iransitions in the postpoint. Unfortunately, other RC
values complicate the analysis. If three different RC values result from
the three firings, then the fragmenting point will split into five states.
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The details are messy, but the concepts for resolution are similar to those
described above.

e The parameter could be independent of the perturbation without the in-
ference rules deducing this. As with the previous case (where the inde-
pendence, duration ||, was deduced) the parameter should transition in
whichever state has duration ||.

e The perturbation could change the parameter’s transition time without
the inference rules deducing this. The correct behavior is not predictable
since the change in duration is not known.

Since there is no way to correctly handle the last case, a reasonable heuristic
is to assume that it never happens. This corresponds to Occam’s Razor. Assume
that unless the duration rule says otherwise, the perturbation does not change
the transition time of any parameters. Thus if the heat exchanger example
had an extra parameter, S, which reached a transition in QS3, then we should
assume that S transitions with X in QS7.

4.1.3 Ensuring Global Consistency

Using the heuristics, the algorithm described above is guaranteed to find a
unique postpoint. But there may be several state tree paths that pass through
this post point. To locate a single new behavior, the program must step through
the original behavior from the fragmenting point onwards. Every time a branch
in the tree is taken, the corresponding descendant of the postpoint should be
selected as well. When the original behavior reaches a leaf, a unique new be-
havior will result. Unfortunately, there are two reasons why processing must
continue.

o Many RC values must be recomputed. Because the RC values refer to
transition points and intervals, all values from the fragmenting interval
onward will be incorrect. This isn’t very surprising; after all, we started
with conflicting duration RC values in the first place. Given the new
behavior, the inference rules of section 3 must be rerun to generate a
consistent set of RC values.

o What if these rules generate a new contradiction? There is no guarantee
that the new behavior is topologically sound. However, if conflicting dura-
tion RC values are generated for an interval, that interval must occur after
any interval which caused a previous conflict. Thus each cycle of inference
rules and topology resolution guarantees that the time of first inconsis-
tency increases. Since all behaviors are finite, the cycle must eventually
terminate.
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It is possible that a more sophisticated algorithm could eliminate this cyclic
approach by a detailed analysis of the initial behavior. Since all parameters are
continuous functions of time, no (small) perturbation can invalidate the initial
behavior unless the behavior has a state in which two parameters transition.
Perhaps all such states could be checked at once.

4.2 Finding Other Consistent Behaviors

Sometimes a perturbation will be consistent with the initial behavior, i.e. not
violate the implicit constraints, but will weaken them instead. In other words,
there may be several behaviors which are consistent with the perturbed initial
behavior. Since the QSIM state tree records the results of past transition anal-
ysis, a simple search technique suffices to find the behaviors that are consistent
with both the perturbation and the implicit constraints. Four cases need to be
checked: compacting, stalling, kick-starting, and splitting,.

¢ COMPACTING

When the duration of an interval is decreasing, perhaps the states on
either side will merge into a single transition. Suppose the initial behavior
is the path (QS1, QS2, QS5, QS6, QS7) as shown in 13, and suppose the
perturbation is —K{}. Although the initial behavior is consistent with this
perturbation, it is possible that thermal equilibrium will be delayed until
the precise moment that the oil leaves the pipe. This would correspond
to the behavior (QS1, QS2, QS3) as shown in figure 12. Whenever the
duration of an interval (e.g., QS6) is getting shorter, CA looks for an uncle
state which has the same transitions (i.e. the same parameters reaching
the same landmarks) as the union of the parent and child of the interval
state. @ and F reach transitions in QS5, the parent of QS6, and X
transitions in the child of QS6. So the search produces the uncle, QS3,
and constructs the corresponding path through it.

¢ STALLING

If the duration of an interval is {, then maybe the parameters will not
transition in finite time. CA suggests a behavior consisting of the path
which ends at the interval state.

¢ KICK-STARTING

Kick starting is the inverse of stalling. If the initial behavior ended with a
terminal interval, and the perturbation is causing the interval’s duration
to |}, then maybe some parameter will transition in finite time. CA returns
all paths that pass through the interval state.

37



¢ SPLITTING

Splitting happens when the duration rule!® deduces a single RC value
of ft or || from two different perspectives. For example, consider the heat
exchange with an initial behavior of (QS1, QS2, QS3) and the perturbation
of —K{t and V1. Since thermal conductivity is higher, equilibrium will
occur sooner, but since the oil is moving faster, it will get out quicker. Both
parameters lead the duration rule to conclude QS3 will occur quicker; thus
the initial behavior is consistent. But so is every behavior. If the thermal
conductivity is much higher and velocity is only a little higher, then the
behavior (QS1, QS2, QS5, QS6, QS7) will result. If V was increased
more than —K then the path (QS1, QS2, QS4) would result. Because
the perturbation was specified in qualitative terms, there isn’t enough
information to resolve the ambiguity and CA must return all possible
splits of the two parameters Q) and X.

Like the techniques of section 4.1, my methods for finding other consistent
behaviors are dependent on the DQ inference rules. As a result they are neither
complete nor sound. For example, suppose the duration of an interval was {,
but the duration rule had not deduced this fact. Then compaction would not
be considered and a possibly consistent behavior would not be considered. Sim-
ilarly, one of the techniques could suggest a behavior which appears consistent
only because the DQ rules were inadequate to expose a contradiction.

10gplitting is the only case that analyzes justifications and depends on the fact that the
duration rule is the only way to generate a duration RC value. Compacting, stalling, and
kick-starting only require the RC value and access to the state tree.
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5 Related Work

Although comparative analysis questions have long been important topics in the
fields of engineering and mathematics, little work has been done on comparative
analysis in the artificial intelligence community.

5.1 Sensitivity Analysis

Sensitivity analysis is a common engineering technique for calculating the effect
on system performance due to variations in system parameters. In other words,
comparative analysis is a qualitative version of sensitivity analysis. The sensi-
tivity of a quantity T, to perturbations in a parameter X, is defined [1] as the
product:

oT X

dXT
Because of its important application to design, considerable work has been done
on efficient methods for calculating sensitivities. Approaches include numeri-
cal and symbolic differentiation, construction of an incremental network, and
analysis of an adjoint network [1].

Compared to DQ analysis, these methods have a major advantage—they
generate a quantitative value for sensitivity. But sensitivity analysis has two
limitations: it does not generate explanations, and it requires an explicit equa-
tion for the desired quantity T. Thus sensitivity analysis could not solve the
spring/block problem until the human modeler provided a formula for period.

The technique of comparative statics [17,12], long used in economics to com-
pare two different equilibrium behaviors, suffers from the same limitation. It
requires explicit formulas for the partial derivatives in question.

5.2 Partial Derivatives

Since the RC notation expresses how a parameter changes given an initial per-
turbation, it is natural to ask about its relationship to the standard mathemat-
ical tools for expressing relative change: partial derivatives. In the following
proposition it is handy to think of parameter C as the cause, and E as an effect.

Proposition 15 If Cfiy, and all other independent and boundary condition pa-
rameters have an RC value of ||, and Elq then

oOF
%<0

at time zero.

This statement can be extended to any transition, v;, by normalizing with
respect to time. While the relationship between RC values and partial derivative
is straightforward for values at transition points, the connection is more subtle
for interval RC values because of the presence of perspectives.
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5.3 QP Theory

In his treatise on Qualitative Process theory, Forbus discussed differential quali-
tative analysis [7, pages 159-161], but attempted no implementation. He defined
quantities ¢; greater than g, over an interval, 7, if for all instants in the interval,
¢1 > g2 measured at that instant. Unfortunately, this definition has several
problems. Since the quantification is over a single interval of time, it is impos-
sible to make comparisons of systems whose time behavior changes as a result
of a perturbation. Thus his attempt to formalize “distance equals rate times
duration” in predicate calculus is severely limited. Rates can only be compared
if the duration of an interval is unchanged!

But even if the quantification was correct, time-wise comparison is almost
never a useful one to make. In the spring/block case, for example, it simply isn’t
the case that the heavy-block is always moving slower than the small-block; the
periods get out of phase. The key to solving these problems is in the use of
perspectives, discussed in this paper. The comparison on velocity (necessary to
predict that the period lengthens) is valid only from the perspective of position.

5.4 Temporal Representation

QSIM [15] is an efficient, easy to use simulator that has significantly sped the
development of both my comparative analysis theory and the CA implementa-
tion. However, QSIM has defects; its weak temporal representation is a major
problem.

As explained by Hayes in [11], systems which represent behaviors as a se-
quence of states force a total ordering on events. Because qualitative reasoning
is often unable to unambiguously determine an order, the behavior must branch
to consider multiple possibilities. If events interact, then the various branches
often have interesting qualitative differences. But frequently, the alternate be-
haviors are equivalent and just complicate reasoning and consume processing
resources.

To combat this problem, Williams introduced the notion of concise episodes
[23], and has devised an efficient simulator (called a Temporal Constraint Prop-
agator) to manipulate them. Just as qualitative simulators using Williams’ tem-
poral representation would improve on QSIM, comparative analysis programs
would have several advantages over CA. Williams is building such a system for
use in automated design [25).

o The propositions of section 3 would still be true, and could be encoded
more easily. CA requires explicit rules for composing durations over inter-
vals (e.g., if DURATIONTfl,1) and DURATION{l; ;) then DURATIONfYq z)).
These computationally expensive rules would be subsumed by the tempo-
ral constraint propagator.
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6 Future Directions

This paper discussed the problem of comparative analysis, the task of explaining
how a system will react to perturbations, and why. Multiple perspectives, which
can be used to reparameterize system parameters, lead to a powerful definition of
relative change. DQ analysis solves comparative analysis problems by applying
inference rules to the initial perturbation of a system. A trace of the rules used
in solving a problem can be easily translated into an intuitive explanation of
the answer. Since the rules have been proven sound, DQ analysis is guaranteed
to produce only correct explanations. A computer programs, CA, implements
the theory of DQ analysis and correctly solves over twenty comparative analysis
problems including those that change the order of transitions in the behavior.
Despite the success of DQ analysis, several areas for future research beckon.

e DQ analysis is incomplete. Although CA is guaranteed to terminate, it
doesn’t always deduce an RC value. Fortunately, there are other tech-
niques for solving comparative analysis problems. Exaggeration, for ex-
ample, saves many problems with a completely different style of reasoning
[20]. Although it is believed that exaggeration is also incomplete, initial
results suggest that exaggeration can solve several problems which DQ
analysis cannot [22].

o Certain comparative analysis questions have no answer. For example,
“What happens to the period of oscillation of a spring/block if both the
mass and spring constant are increased?” It would be nice if CA could
recognize that there was no answer to this question instead of simply
saying that it can’t find an answer.

e Any analytic technique is only as good as the model on which it works.
Currently, humans construct models and computers are only used in ana-
lyzing them. This imparts fragility to the process. For example, consider
the structural description of the oscillating spring/block example (section
3.8). Suppose that the initial situation had X = 0, V set to some max-
imum value and the perturbation was V1. Although the DQ inference
rules can deduce facts like “the maximum displacement will increase,” the

topological analyzer is unable to recognize the possibility that the spring
will break,

The cause is a simplistic model. Hooke’s law precludes the possibility of
a broken spring. To achieve greater robustness in qualitative analysis in
general and comparative analysis in specific, modeling must be treated ex-
plicitly. By incorporating ontological assumptions into process definitions,
QP theory [7] has made progress here, but further research is necessary to
address the questions of reasoning with multiple models, dynamic model
creation, and the evaluation of a model in the context of a specific problem.
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A A Useful Example

This section constructs an example which serves both as a counter-example for a
generalized version of the derivative rule and as the proof of the non-exhaustive
proposition. Suppose that A, V, and X are parameters such that A = j‘; v,
V= %X , and X is a covering perspective over (v;,¥i+1)- The derivative rule
(proposition 3) showed that if A and V are positive over the interval (¥, ¥i41)
and if ~Vt;, and AU ;4 1), then VI i1y

Unfortunately, the derivative rule is not true for arbitrary perspectives. The
following abberation should convince you of this. I show three parameters, V, A,
and P such that A = f? V and P is a covering perspective over (4o, 71)- Yet al-

though A||(};’1) the parameter V has no consistent behavior from the perspective

of P. During part of the interval V¥ and during part V.
Here are the details. Over the absolute time interval (0,1) define:

V(t) = %tz

Aty=4V(@E)=t A Ya)=a
P(t)= A(t) =t Pl p)=p
V(t) = 4

Aty = £V(t)=® A Ya)=a}
Pt)= A(t)y=1*  P-l(p)=p?

Note that P(0) = P(0) = 0 and P(1) = P(1) = 1 and P is strictly monotonic,
so P is a valid perspective over this interval. Since P = A and P = 4 the self
reference theorem shows that A||g),1). So what does V' do from the perspective
of P? Consider p = }:

- 1 1 ~ s 1 1
V(PT(p) = 5p° = 5y and V(P Y(p) = é.p% =5
Now let p = g:
1 32 ~ 1 16\/5 392
VP_l :—2=—— -1 :_iz_ —
(P7H(p) = 5p° = 57> and V(PT'(p)) = 3p¥ = 7= < 57

So for a small value of p the corresponding v is larger than v, but for larger p
the situation is reversed. Thus it is neither the case that Vﬁg,’l) nor V||g) 1) Dor

VU{S,l) even though A”f;’l).
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