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Abstract

This paper describes several parallel algorithms that solve geometric problems. The
algorithms are based on a vector model of computation — the scan-model. The purpose
of this paper is both to show how the model can be used and to show a set of interesting
algorithms.

We describe a k-D tree algorithm that, for n points, requires O(lgn) calls to the prim-
itives, a closest-pair algorithm that requires O(lgn) calls to the primitives, a line-drawing
algorithm that requires O(1) calls to the primitives, a line-of-sight algorithm that requires
O(1) calls to the primitives, and finally three different convex-hull algorithms. All these
algorithms should be noted for their simplicity rather than complexity; many of them are
parallel versions of known serial algorithms.

Most of the algorithms discussed in this paper have been implemented on the Connection

Machine, a highly parallel single instruction multiple data (SIMD) computer.
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1 Introduction

The purpose of this paper is twofold. Firstly, it describes a set of elegant, practical algo-
rithms for solving a diverse set of problems in computational geometry and graphics. Sec-
ondly, it helps demonstrate that the scan-modelis a viable model of computation. These two
purposes complement each other: the model allows a simple description of the algorithms,
and the algorithms demonstrate the power of the model.

Researchers have suggested several synchronous parallel models of computation. The
most popular of these models are the parallel random access machine (P-RAM) models [13].
A P-RAM consists of a set of conventional processors attached to a single shared memory.
Processors communicate through the shared memory: one processor can write a value into
the memory and another processor can read this value. Researchers have suggested several
variations of the P-RAM models. These variations mostly differ in whether or not they
permit concurrent reads from, or concurrent writes to, a unique memory location. By
assuming that memory references take unit-time, the P-RAM models have been used to
determine the asymptotic running time of many parallel algorithms.

We suggest another class of synchronous parallel models of computation defined in terms
of a set of primitive operations that work on arbitrarily long vectors of simple values. We
call these models, vector models. The models differ from P-RAM models both in that
they are single instruction multiple data (SIMD) models, and in that there is no concept
of a memory shared among many processors. Elements in a vector communicate through a
permutation primitive rather than a shared memory. As with the P-RAM models, vector
models can be used to analyze the asymptotic running time of algorithms, by assuming
that a set of primitives take unit-time.

Since vector models are SIMD, they can be efficiently mapped onto a wider range
of architectures than P-RAM models can. As well as being implementable on standard
serial computers and on multiple instruction parallel computers, they can be efficiently
implemented on vector processors, such as the vector processor of the CRAY systems [24],
or single instruction parallel computers, such as the Connection Machine [16]. On the other
hand, since P-RAM models are multiple instruction multiple data (MIMD) models, they
are more powerful than vector models. As should become evident in this paper, and as
shown elsewhere [10], this additional power is not necessary for a broad range of practical
algorithms. We also believe that vector models tend to lead to simpler and more concrete
algorithm descriptions than do P-RAM models.

The scan-model is a particular vector model in which three classes of vector opera-

tions are considered unit-time primitives: elementwise arithmetic and logical operations;



permutation operations; and scan operations, a type of prefix computation. By unit-time
primitives we mean that they require approximately an equivalent duration of time when
executed on equal length vectors.

In this paper we describe several algorithms based on the scan-model. The first is an
algorithm that constructs a k-D tree. A k-D tree is a technique for splitting n points in a k
dimensional space into n regions each with a single point. The k-D tree technique is used
as a substep in a large number of applications ranging from rendering images to machine
learning [20]. For n points, the algorithm we describe takes O(klgn) calls to the primitives
using vectors of length O(n). This algorithm is optimal in the sense that even if simulated
on a serial machine, it will run in the same asymptotic running time as the best serial
algorithm.

Based on the k-D tree algorithm, we describe a two dimensional closest-pair algorithm.
In the two dimensional closest pair problem we want to find the pair of points in a plane
that are closest to each other (Euclidean distance). This algorithm is a parallel version
of an algorithm of Bentley and Shamos {9]. For n points in a two dimensional space, our
algorithm requires O(lgn) calls to the primitives using vectors of length O(n).

The third algorithm is a line drawing routine. Line drawing is the problem of: given
a pair of points on a two dimensional grid (the two endpoints of a line), determine what
pixels in a finite resolution grid lie on a line between the endpoints. This routine requires
O(1) calls to the primitives using vectors no longer than the number of points in the line.
The routine has been extended to render solid objects [25].

The fourth algorithm is a line of sight algorithm. Given a grid of altitudes and an
observation point on the grid, the algorithm returns the points visible from the observation
point. A line of sight algorithm can be applied to help determine where to locate potential
eyesores. For example, when designing a building, a highway or a city dump, it is often
informative to know from where the “eyesore” will be visible.

We finally describe three planar convex-hull algorithms. Given n points in the plane, the
planar convex hull problem finds which of these points lie on the perimeter of the smallest
convex region that contains all points. Two of the convex-hull algorithms we describe are
simple and are likely to perform very well in practice, but they are not provably optimal
— certain sets of carefully selected points will perform badly. The third algorithm is more
complicated and probably less practical, but is theoretically optimal. This algorithm is
based on a parallel algorithm designed for the concurrent read exclusive write (CREW)
P-RAM model [1,4].

Most of the algorithms we describe in this paper have been implemented on the Con-



nection Machine. The code we show in the text with some syntactic changes is actual code
used to execute the algorithms.

The remainder of this paper is organized as follows:

o We define the scan-model in terms of the primitive operations it supports.

o We introduce some powerful techniques based on the scan-model. These techniques

are used extensively in the description of algorithms.

¢ We describe the algorithms.

2 The Scan-Model

The scan-model is defined in terms of a set of primitive operations that operate on arbitrarily
long vectors of atomic values. By a vector we mean a one dimensional array (an ordered
set). By atomic values we mean values that can be represented in O(lgn) bits — in this
paper we only use integers, floating point numbers and boolean values. We assume that all
primitives require approximately an equivalent duration of time when operating on equal
length vectors. We call this time “unit time”. To determine the actual running time of
an algorithm on a particular machine, we need to know both the number of calls to the
primitives and the length of the vectors used®.

The scan-model has three classes of unit-time primitives: elementwise arithmetic and
logical operations, permutation operations, and scan operations, a type of parallel prefix
computation.

Elementwise Primitives

Each elementwise primitive operates on equal length vectors, producing a result vector of
equal length. The element ¢ of the result is an elementary arithmetic or logical primitive
— such as 4+, —,%, or and not — applied to element ¢ of each of the input vectors. For
example:

1The vector length is important even on parallel machines since for sufficiently long vectors, multiple
elements must be allocated to each processor and each processor must loop over these elements when

executing an operation.



A = 5 1 3 4 3 9 2 6
B = 2 5 3 8 1 3 6 2
A+B = [7 6 6 12 4 12 8 8§
AxB = [10 5 9 24 3 27 12 12]

In addition to the standard elementary operations, we include an operator select that
takes one boolean argument and two other arguments. Based on the boolean argument,

the select function will return either the first or second of the other two arguments.

A = 5 1 3 4 3 9 2 6
B = 2 5 3 8 1 3 6 2
F = [T FFF T T F T
select(F,A,B) = [5 5 3 8 3 9 6 6

Permutation Primitives

The permutation primitive takes two vector arguments — a data vector and an index vector
— and permutes each element in the data vector to the location specified in the index

vector. For example:

Vector Index = [0 1 2 3 4 5 6 7]
A (datavector) = o t e m e r g vy
I(index vector) = [2 5 4 3 1 6 0 7]
permute(A, I) = [g e o m e t r 1y

It is an error for more than one element to have the same index — the permutation
must be one-to-one. This restriction is similar to the restriction made in the exclusive read
exclusive write (EREW) P-RAM model, in which it is an error to write more than one
value to a particular memory location at a time.

To allow communication between vectors of different sizes, we include a version of
the permute primitive that returns a vector of different length than the source vectors.
This version takes two extra arguments: a default vector, which specifies the length of the
destination vector and puts default values in positions that do not receive any value; and
a selection vector, which masks out certain elements so that they do not permute. For

example:



Vector Index = [0 1 2 3 4 5 6 7]

A (data vector) = o t e m e r y g
D (default vector) = [f r e ¢

S (selection vector) = [T F F T F F F]
I (index vector) = ]2 4 3 1 7 0]

permute(A, I, S, D)

il
=
=
o
B,

Scan Primitives

The scan primitives execute a scan operation, sometimes called a prefix computation,
on a vector. The scan operation takes a binary associative operator ¢, and a vector
lag, @1, ..., an_1] of n elements, and returns the vector [ag, (ag® a1), ..., (ao® a1 D ... D an—1)).
In this paper we will only use plus, maximum, minimum, or and and as operators for the
scan primitives. We will henceforth call these scan operations +-scan, max-scan, min-scan,

or-scan and and-scan. Some examples:

A - 5 13 4 3 9 2 6
+-scan(A) = [ 6 9 13 16 25 27 33]
max-scan(A) = [ 5 5 5 5 9 9 9]

Some readers might be skeptical about considering the scan operations as “unit-time”
primitives. Our justification is straightforward. On a serial machine, it is clear that the
scan operations using simple operators such as + will be just as fast as the other primitives:
all the primitives will take O(n) time on vectors of length n. On a parallel machine it is
not hard to show, both in theory and in practice, that a circuit that executes the scan
operations can be built with less hardware and will run just as fast, or faster, than a circuit
that executes a read or write into a shared memory (such a read or write can be used to
implement the permutation primitive). This is argued in more detail in [11]. Admittedly,
both the scan and a shared memory reference take at least lgn real time, but we are only
arguing here that the primitives take approximately the same amount of time on equal
length vectors.

In the description of algorithms we will often loosely refer to vectors in which each
element contain more than one atomic value. For example, we will use vectors of points in

a two dimensional space; each point has two values, an z and y coordinate, so the vector

[(3,6) (4,5) (9,7)]



represents the three points (3, 6), (4, 5) and (9, 7). At the primitive such a structure
vector would be implemented with two vectors but a higher level language could support

record-like vectors in which each element has some constant number of values.

2.1 Segments

This section describes a method that allows a programmer to take a vector routine? defined
to work on a single set of data and then apply it to many sets in parallel. For example, if
we had a vector routine that sorted a set of values, we could apply it to sort many sets of
data in parallel. Or, if we had a vector routine that, given endpoints, determines the pixels
on a line, we could apply it to draw many lines in parallel.

The technique involves dividing a vector into segments and placing one set of data in
each segment. To keep track of how a data vector is segmented, we associate with the
data vector a segment-descriptor. A segment-descriptor is itself a vector which has as many
elements as segments of the data vector; each of these elements contains an integer which

specifies the length of the segment®. For example:

Al = [5 1 3 4 3 9 2 6
segment-descriptor = [2 4 2]
A = [5 1 [3 4 3 9 [2 6

Henceforth, the notation
A = [5 1] 3 4 3 9] [2 6]

is shorthand for a pair of vectors: the data vector along with its segment-descriptor.

For each primitive of the scan-model we define a segmented version that works inde-
pendently within each segment. Figure 1 shows examples of segmented versions of the
primitives. The segmented version of the permutation primitive bases its indices relative
to the beginning of each segment so values permute within a segment — it is an error for
an index to reference outside of the segment. The segmented version of the scans primi-
tives restart at the beginning of each segment®. The segmented version of the elementwise
operations are unchanged.

%A vector routine is a routine defined in terms of the vector primitives we discussed.
®There are several otlier ways of representing segments [10] but we find this representation the most
convenient.

“A similar operation was suggested by Schwartz [26].



A =[5 1] 3 4 3 9 [2 6
B -1 o 2 0 3 1 [0 1]
+-scan(4) = [5 6] [3 7 10 19] [2 8§
max-scan(A) 5 5 B3 4 4 9] [2 6]
permute(4,B) = [1L 5 [4 9 3 3 [2 6]

Figure 1: Examples of the segmented versions of the primitive operations.

All the segmented versions can be simulated with a small constant number of calls to the
unsegmented versions [10], but they are so useful that in practice they might be implemented
directly. We will henceforth assume that the segmented versions of the primitives are
themselves primitives.

We now return to the initial claim of this section:

The Segment Lemma: With a segmented version of all the primitives of the scan-
model, we can apply any routine defined in terms of those primitives to work on a single
set of data, to multiple sets of data independently and in parallel.

We won’t prove this lemma in this paper, but it should be intuitive; a proof is given
in [10]. This lemma allows great simplification of the code needed to describe parallel

algorithms.

3 Some Simple Operations

In this section we describe several useful, simple operations that can be implemented with
a small constant number of calls to the primitive operations [11]. As with the segmented
versions of the primitives, these operations are useful enough that they might themselves

be considered primitives and be implemented directly.

distribute values lengths

The distribute operation takes a vector of values and a vector of lengths and distributes
each value into a segment of length specified by lengths. For example:

A = 7 3 8§
L = 2 4 2
distribute(A,L) = [7 7] [3 3 3 3] [8 8]



A similar operation was first suggested by Batcher [6] — he called it an irregular spread-
ing.
index lengths
The index operation takes a vector of lengths, creates a segment for each length, and
returns the index of each element within each segment. For example:
L = 2 4 2
index(L) = [0 1] [0 1 2 3 [0 1]

element values indices

The element operation takes a segmented vector values, and a vector of indices with one
element per segment. Each index i is used to extract the i** element from the corresponding

segment in values. For example:
A = [5 1] [3 4 3 9] [2 ¢]
I = [0 2 1]

5 3 6]

element(A, 1)

BD-reduce values

The reduce operations takes a segmented vector of values and combines all the elements
in each segment using one of five binary operators: 4, maximum, minimum, or or and. It
returns a vector with as many elements as segments.

Some Examples:

A =[5 1] [3 4 3 9 [2 6
+-reduce(A) = [6 19 §]
max-reduce(A) = [5 9 6]

append values! values?

The append operation takes two segmented vectors of values with the same number of

segments. And appends the two vectors segmentwise. For example:

A = [ago @o1 Go2] [a10) [az0 @21]
B = [boo] [b10 b11] [b20 b21]

append(A, B) = [aoo @01 @02 boo) [e10 bio b11] [a20 @21 bao b21]

9



pack values flags

The pack operation takes a segmented vector of values and a segmented boolean vector
of flags, and packs all the elements with a T in their flag into consecutive elements, deleting

elements with an F in their flag. For example:

A = 5 1 [3 4 3 9] [2 6
F = [T Fp [T F F T [T T
pack(A,F) = [5] [3 9] [2 6]

A similar operation was first suggested by Batcher — he called it an irregular compres-

sion.

split values flags

The split operation takes a segmented vector of values and a segmented boolean vector
of flags, and packs all the elements with an F in their flag to the bottom of each segment
and elements with a T in their flag to the top of each segment. It also splits each segment

in two at the boundary between the T and F elements. For example:

A = [5 1 [3 4 3 9 [2 6]
F = [T F [T F F T] [T T
slit(A, F) = (1] [5] [4 3] [3 9 [ [2 ¢
We also define a delete-split operation which is the same as split but deletes any empty
segment.
A = [5 1] [ 4 3 9] [2 6]
¥ = [T F [T F F T] [T T]

delete-split(A, F) 1] [6] [4 3] [3 9 [2 6]
rank-split ranks flags

The rank-split operation is similar to the split operation except that the ranks argument
must be a valid set of indices for the permutation primitive. As well as splitting these
indices, the rank-split operation renumbers them so they are valid within the new segments

but maintain the same order. For example:

A = 1 0 [2 1 3 0 [0 1]
F = [T F [T F F T] [T T]
rank-split(A, F) = [0] [0] [0 1] [t 0] [] [0 1]

10



Key = 4 7 2 1 5 3 7 2

Pivot = 5

Key>Pivot = [F T F F T F T F
delete-split = [4 2 3 2] [ 5 17
Pivot Value = 3 7

Key > Pivot m F F T F [T F T]

delete-split = [2 1 21 [4 3 [5 [ 7]
Pivot Value = 2 4 5 7

Key>Pivot = [T F T [T F [T [T T
delete-split = [1]1 [2 2] [3] [4 [B] [ 7]

Figure 2: An example of parallel Quicksort. Each pivot is picked at random from within a

segment.

In this example, the F part of the second segment starts with the indices 1 and 3; these
are renumbered to 0 and 1 so that they represent a valid index set for the new segments
and maintain the same order. The rank-split operation is used to update pointers when

performing a split operation.

3.1 Recursive Splitting

The segment abstraction and the primitives we described allow simple definitions of
recursive routines that start with some set of values, split this set into subsets and recur-
sively solve the problem on each subset. We will call this technique recursive splitting. As
an example of such a technique, consider the following parallel version of Quicksort. As
with the serial algorithm, the algorithm picks one of the keys as a pivot value, splits the
keys into two sets, one with greater valued keys and one with lesser valued keys, and then
recurses on each set,

Figure 2 shows an example of the parallel version. The routine picks a random element
from each segment as a pivot value using the element operation®. The algorithm distributes
this pivot value over each segment using a distribute operation, and splits the keys based

on whether a key is greater or less than the pivot using the delete-split operation®. The

°I assume that there is a primitive elementwise random operation which in each element takes an integer
and returns a pseudo-random number less than that integer.
®We use the delete-split operations instead of the split operation so that we never have more segments

11



algorithm is now applied recursively to the result. When the numbers within all segment are
in non decreasing order, we return and merge the split sets. As with the serial algorithm,
this algorithm is expected to complete in O(lgn) steps’. In the scan-model, each step
requires a small constant number of operations.

The code needed to implement quicksort in the scan-model is as follows:

define quicksort(keys){
if-any (shift-left(keys) < keys)
then pivots — element(keys, random(length(keys)))
quicksort(delete-split(keys, (distribute(pivots, length(keys)) < keys)));
else keys}

This general recursive splitting technique can be used in most divide and conquer algo-
rithms. In this paper we will use it in the k-D tree algorithm discussed in Section 4, the
quickhull algorithm discussed in Section 8.1, and the binary tree search method discussed
in Section 9.

3.2 Allocation

Another useful technique is allocation. Many problems require the allocation of a set of
elements that can then be operated on in parallel. For example consider a line drawing
algorithm that takes as input two endpoints, calculates the length in pixels of the line,
and then allocates an element for each pixel so that it can calculate the pixel positions
in parallel (this is an outline of the algorithm we discuss in Section 6). Also assume that
several lines need to be drawn in parallel.

Such allocation is trivial with the operations we defined in Section 3. If we have an
integer vector, in which each element specifies how many new positions it needs, we can
use this vector directly in the distribute and index operations to distribute the elements to
appropriately sized segments. Such allocation is used in the line drawing routine described

in Section 6 and in the line of sight algorithm described in Section 7.

than elements.
"This is actually only true if either the keys are unique, or we split into three groups at each step
(<,=,>), or we switch between < and > on alternating steps.

12



4 Building a £-D Tree

A k-D tree is technique for splitting n points in a k¥ dimensional space into n regions each
with a single point [8]. It starts by splitting the space in two along one of the dimensions
using a k — 1 dimensional plane. It then recursively splits each of the subspaces in two.
Figure 3 shows an example of a 2-D tree. At each step the algorithm must select which
dimension to split within each subspace; the criterion for selection depends on how the
tree will be used. A common criterion is to select the dimension along which the spread of

points is greatest.

The k-D tree is often used as a step in other algorithms. 3-D trees are used in ray
tracing algorithms for rendering solid objects. In such algorithms, objects need only be
stored in the regions they penetrate and rays need only examine regions they cross. This
can greatly reduce the number of objects each ray needs to examine. k-D trees are also
used in many proximity algorithms such as the all closest pairs problem [15] or the closest
pair problem, discussed in next section. k-D trees have also been suggested for use in some
machine learning algorithms [20].

The algorithm we describe here is a parallel version of a standard serial algorithm [22].
For n points, our algorithm takes O(klgn) calls to the primitives on vectors of length =.
This algorithm is optimal in the sense that even if simulated on a serial machine, it will
run in the same asymptotic running time as the best serial algorithm.

In many k-D tree algorithis, when splitting a space, one point is selected as the split
point, and this point in placed in neither side — it is used to divide the two sides. In our
algorithm, when splitting a space, we place all points in one of the two sides — we assume
the split line lies half way between the points on either side of the split. For this reason,
the algorithm might be more appropriately called a k-D splitting rather than a k-D tree.

Our algorithm consists of one step per split. Each step requires O(k) calls to the
primitives. Before executing any steps, the algorithm sorts the set of points according
to each of the k dimensions. The sorting can be executed with the Quicksort algorithm
discussed earlier, an enumerate-pack sorting algorithm discussed in [11], or a version of
Cole’s sorting algorithm [12]. Instead of keeping the actual values in sorted order for each
dimension, we keep the rank of each point along each dimension. The rank of a point is
the position the point would be located at if the vector were sorted. We call the vectors
that hold these ranks, rank-vectors — there is one rank-vector for each dimension. Figure 3
shows an example for a 2-D tree, the initial rank-vectors, and the result of the first step.

At each step of the algorithm the rank-vectors will contain a segment for each subspace,

13
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Figure 3: An example of a 2-D tree. The top diagram shows the final splitting. The vectors

below are generated during the first step — when splitting along the line L.
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and the ranks within each segment will be the correct ranks for that subspace. It suffices
to demonstrate that we can execute a split along any dimension and generate new ranks
within the two subspaces. The algorithm is then correct by induction.

To split along a given dimension the algorithm distributes the cut line and determines
for each point whether it is above or below the line®. The algorithm now uses the rank-split
operation defined in Section 3 to split each rank-vector based on whether a point is below or
above the split line. The rank-split operation as defined correctly generates the rank within
each subspace. Each step therefore requires O(k) calls to the primitives: some operations
to determine whether each point is below or above the split, and k rank-split operations.
Since there are O(lgn) steps, the whole algorithm requires O(klgn) calls to the primitives.

In the closest-pair algorithm discussed next it is useful to keep the rank-vectors for all

the steps. This will require that we store klgn vectors of length n.

5 Closest Pair

In a two dimensional closest pair problem we want to find the pair of points in a plane that
are closest to each other (Euclidean distance). The algorithm we describe is a parallel ver-
sion of an algorithm described by Bentley and Shamos in [9]. For n points, it requires O(lgn)
calls to the primitives using vectors of length O(n). This algorithm requires O(nlgn) mem-
ory (O(lgn) vectors of length O(n)) but can be modified to run with O(lgnlglgn) calls
to the primitives using O(n) memory. Atallah and Goodrich have shown an O(lgnlglgn)
time O(n) processor algorithm to solve the closest pair problem in the concurrent read
exclusive write (CREW) P-RAM model.

Our algorithm consists of building the 2-D tree as defined in the previous section®, and
then merging rectangles back to the original region. Given two adjacent rectangles and
their closest pairs, a merge step can determine the closest pair of the merged rectangle with
a constant number of calls to the primitives. Because of segments, we can merge many
pairs of rectangles in parallel.

Since we have already defined how to build the 2-D splitting, we will only describe the
merging phase. The merging works on the same principle as described in [9]. We will first
review the principle and then show how it is implemented on the scan-model. We will

denote the separation of the closest pair in a rectangle R by ég.

8 As stated earlier, the method for choosing a cut line will depend on the particular use of the k-D tree.
°In this algorithm it does not matter in what order we pick the dimensions — in fact, we could always

split on the same dimension.
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Figure 4: Merging two rectangles to determine closest pair. Only 12 points can fit in the

26,min X 26min dashed box such that no two points in either A or B are closer than ,,i,.

At each merging step, we know the closest pair within each of a pair of merging rectan-
gles A and B and want to find the closest pair in the rectangle AU B. The closest pair will
either be the pair in A, the pair in B, or a pair with one point in 4 and the other in B. In
the last case, the two end points must each lie within §,,:,= min(é4,6B) of the boundary

between the two rectangles. We will call this region AB’(see Figure 4).

If welook at a point p in AB’, no more than 11 other points in AB’ can be less than 8,
away from p. Figure 4 shows the tightest possible packing. If we have the points in AB’
sorted along the merge line, each point can determine the minimum distance to another
point in AB’ by looking at a fixed number of neighbors in the sorted order (at most 11).
Once all points in AB’ have found their closest neighbor in AB’, we take the minimum of
these distances to find § 45 and then calculate the desired result: §4p= min(min,045’)-

We now show how this technique is applied in the scan-model. The merge consists of
the following steps (each requires a constant number of calls to the primitives):

1. Derive the vector of points in A U B sorted along the direction of the split line. To
get this vector, we need only keep the appropriate rank-vector when we construct the

k-D tree — remember that when building a k-D tree we had the sorted order for all

16



dimensions for all rectangles.

2. Determine §,,;, by taking the minimum of 4 and ég. Distribute §,,;, to all points
in the sorted vector of AU B.

3. Pack elements which are within §,,;, of the merge line using the pack operation into

a new sorted vector AB’.

4. Shift this vector to the right and calculate the distance from each point to its neighbor.

Repeat this six times to get the six neighbors on each side.

5. Determine 6 45 by taking the minimum distance found in the previous step using a

min-reduce. Take the minimum of §,,;, and § 45 to get d45.

The algorithm will run in O(lgn) time because the k-D splitting runs in O(lgn) time
and there are O(lgn) merge steps which, as shown, each step requires constant time.

If the O(klg m) space required to store the rank-vectors during the 2-D tree is a problem,
we can derive the sorted vector for AU B on the fly by merging the sorted vectors of A and
B. This merge requires O(Ilglgn) time [10] and will therefore increase the running time
of the whole algorithm to O(lgnlglgn). In the conclusion we mention that it might be
reasonable to consider the merge operation as a unit-time primitive of a vector model. If
we include a merge primitive, the algorithm will run in O(lgn) calls to the primitives with

O(n) space.

6 Line Drawing

Two dimensional line drawing is the problem of: given a pair of points on a two dimensional
grid (the two endpoints of a line), determine what pixels in a finite resolution grid lie on
a line between the endpoints. Line drawing is used extensively in practice in generating
computer images, especially in computer aided design. In this section we describe a very
simple line drawing routine. It generates the same set of pixels as does the simple digital
differential analyzer (DDA) serial technique [19]. The routine takes a small constant number
of calls to the primitives on vectors at most as long as the number of pixels in the output.
Because of the segment lemma (Section 2.1), the routine can be used to draw many
lines in parallel. The routine we describe has been extended by Salem [25] to render solid

objects.

The basic idea of the routine is to calculate the number of pixels in a line and allocate

a set of vectors of that length with the line information distributed across the vectors.
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Then based on the line information and a unique index for each element, the elements can
calculate their final position on the grid. Figure 5 illustrates an example.
The code needed to draw a line is:

define line-length(py, pz){maximum((pz.x - p1.x), (p2.y - P1.¥))}

define increment(p;, p2, length){
X « (pg.x — p1.x) / length;
Y < (p2-y = p1.y) / length}

define final-position(p;, A, index){
X « p1.x + round(index x A.x);
y < p1.y + round(index x A.y)}

define line-draw(py, p2){
length « line-length(p1, p2);
A « increment(py, po, length);
pixels «— length + 1;
final-position(distribute(p;, pixels), distribute(A, pixels), index(pixels))}

The line-length routine calculates the length of the line. The increment routine calculates
the x and y increments between adjacent pixels in the line. The final-position routine
calculates the pixel position of a point given one endpoint of the line, the x and y increments
of the line, and the position (index) along the line.

The line-draw routine uses the distribute operation to distribute p; and the increment
(A) over (line-length + 1) elements, and uses the index operation to generate a set of
consecutive integers for each elements. We need (line-length + 1) elements because we
want to include both endpoints.

7 Line of Sight

Given an v/n by v/n grid of altitudes and an observation point on or above the surface,
a line of sight algorithm finds all points on the grid visible from the observation point.
Figure 6 shows an example. A line of sight algorithm can be applied to help determine
where to locate potential eyesores. For example, when designing a building, a highway or

a city dump, it is often informative to know from where the “eyesore” will be visible.
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Figure 6: An example of a line of sight problem. The X marks the observation point. The
numbers represent the altitude of each contour line. The elements visible from the observation

point are shaded.

Figure 7: Example of some rays propagating from the observation point.
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The algorithm we describe in this section requires O(1) calls to the primitives using
vectors of length O(n). The basic idea is to allocate a segment in a vector for every ray
that propagates in the plane from the observation point, henceforth referred to as X, to a
boundary position (see Figure 7). Based on some calculations on the points in each ray, we
can determine if the point is visible.

The algorithm consists of three basic steps.

1. Each point p in the grid calculates the vertical angle between the horizontal plane
that passes through X (the observation point) and the line from p to X. This is
executed by distributing the location of X over all points and calculating the arctan

of the horizontal difference over the vertical difference.

2. The algorithms allocates a set of rays — one for each boundary grid point — and
distributes the angles from each point p in the grid to all the rays it belongs to. Each

ray is a segment in a vector we will call the ray structure.

3. Following a ray from X to the boundary, a point p is visible if its angle is greater
than all the angles that precede it in the ray. This can be determined for all points

in all rays with a single segmented max-scan, and a comparison.

4. Visibility information is returned back to the grid points. Since a grid point can have

a position in many rays, the visibility flags are combined using or.

Since steps 1 and 3 should be clear, and step 4 is basically the reverse of step 2, we
only describe step 2. To allocate the ray structure the algorithm draws a line from the
observation point to each boundary element using the routine discussed in Section 6. Each
grid point might belong to several of these rays (points near X will belong to more rays
than points near the edges). To distribute the angle from a grid point to all the rays it
belongs to, the algorithm creates another segmented vector structure — the copy structure.
In the copy structure the algorithm allocates a segment for each grid point p. The size
of the segment for a point p is equal to the number of rays p belongs to — this can be
determined from the relative positions of p, X and the boundary. Each point p distributes
its angle to its segment in the copy structure using the distribute operation.

There is now a 1-to-1 mapping between positions in the copy structure and positions in
the ray structure. The algorithm can calculate the permutation indices needed to execute
this mapping based on the location of X. Once the angles have been permuted to the
ray structure, the algorithm executes step 3. To return the information back to the grid

structure after step 3, the algorithm uses the same copy structure but instead of distributing,
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it reduces using an or-reduce. At completion, all points visible from any ray are marked
and returned.

The longest vectors required by the algorithm will be the vectors of the copy and ray
structures. It is not hard to show that for a 4/n by +/n grid, independent of the location of
X, these vectors will have length 2n.

8 Convex Hull

The planar convex hull problem is: given n points in the plane, find which of these points
lie on the perimeter of the smallest convex region that contains all points. The planar
convex hull problem is probably the most studied problem in computational geometry,
both because it is a simple problem, making it easy to study, and because it has many
applications — applications range from computer graphics [14] to statistics [17].

In this section we describe three scan-model based algorithms for determining the convex
hull of a set of points. The first two, a parallel Quickhull [22] algorithm and a parallel
Jarvis march algorithm [18,2], are very simple and likely to perform well in practice but
are not provably optimal. The third algorithms is more complicated and impractical but
is theoretically optimal. The algorithm is based on a parallel algorithm designed for the
concurrent read exclusive write (CREW) P-RAM model [1,4].

8.1 QuickHull

This is a parallel version of the QuickHull algorithm [22]. The QuickHull algorithm was
given its name because of its similarity with the quicksort algorithm. Like quicksort, the
quickhull algorithm picks a pivot element, a point; splits the data based on the pivot; and
is then recursively applied to each of the split sets. Also like quicksort, the pivot element is
not guaranteed to split the data into sets with any particular ratio of sizes, so that in the
worst case, the algorithm can require n steps.

Figure 8 shows an example of the quickhull algorithm. The algorithm first splits the
points into two sets with a line that passes between the two z extrema — lets call these
points I and 7. In the scan-model this is executed with a few reduce and distribute opera-
tions, some elementwise arithmetic calculations, and a split operation.

The algorithm now recursively splits each of the two subspaces into two using the
following steps. It determines for each point p in the subspace the perpendicular distance
from the point to the line /7. This can be calculated with a cross product of the lines Ir and

Ip. The algorithm selects the farthest point from the line Ir and distributes it to all other
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Figure 8: An example of the QuickHull algorithm. Each vector shows one step of the algorithm.
Since A and P are the two z extrema, the line AP is the original split line. J and N are the
farthest points in each subspace from AP and are therefore used for the next level of splits.

The values outside the brackets are hull points that have already been found.
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elements in the subspace — lets call this point ¢. It should be clear that ¢ lies on the convex
hull. Points within the triangle ltr cannot be on the convex hull and are eliminated with
a pack operation. The point ¢ is now used to further split each segment based on which of
the two sides of the triangle, It or rt, they fall. The algorithm is now applied to the new
segments recursively. The algorithm is completed when all segments are empty.

Each step requires a small constant number of calls to the primitives. As with the serial
QuickHull, for m hull points, the algorithm runs in O(lgm) steps for well distributed hull

points, and has a worst case running time of O(m) steps.

8.2 Jarvis March

This is a parallel version of the Jarvis march algorithm. As with the serial version, it will
work well when there are only a few points on the hull, such as when the convex hull is a
simple polygon. The algorithm starts at an extremun point e and finds the point n that
makes the maximum polar angle with e — n is the next point on the hull. The algorithm
then finds the maximum polar angle to this point. The step repeats around the hull until
we return to the original point. To find each hull point we need a few arithmetic operations
and a single max-reduce.

For m hull points, this algorithm requires O(m) steps, but each step is so simple that

in some cases the algorithm is faster than the other algorithms mentioned.

8.3 +/n Merge Hull

This algorithm is a variation of a parallel algorithm suggested in [1] and independently
in [4]. Their algorithm is based on the concurrent read, exclusive write (CREW) P-RAM
model. We cannot use their algorithm directly because the scan-model does not permit
concurrent access to a single value, a necessary part of their algorithm. The variation we
describes keeps all elements that require the same data in a contiguous segment so the
data can be distributed using a distribute operation. The contribution of our version is
showing how the concurrent read operation can be replaced by the distribute operation and
involves a tree search method discussed in the next section. Like the original algorithm,
the variation we describe runs with O(lgn) calls to the primitives. We begin by reviewing
the CREW algorithm.

The algorithm sorts the points according to their # coordinate. It slices this ordering

into /7 equal sized sets of points and recursively solves the convex hull for each set. It then
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Figure 9: An example of the \/n merge hull algorithm. The horizontal dashed lines show the
division of the points into 4/n groups of \/n elements each. The subhulls within each group are
marked with solid lines. The upper chain is the chain AB J O P.

merges the /7 subhulls (see Figure 9). The sort and the merge both take O(lgn) time!®.
The running time of the algorithm thus has the recurrence relation T'(n) = T(v/n) + klgn
which yields O(lgn) time.

Since the elements can be sorted using existing algorithms we will concentrate on the
merging step. The merge is executed in two parts: one finds the upper chain of the convex
hull and another finds the lower chain. The upper chain is the section of the convex hull
that runs across the top between the two z maxima. In the CREW algorithm the merge
of each chain works as follows.

The algorithm assigns an element (a processor) for each pair of subhulls. Since there
are v/n subhulls, O(n) elements are sufficient. Each of these pairs independently finds the
upper tangent line-segment!! between its two subhulls using a serial method of Overmars
[21]. This method executes a binary search alternating between the two subhulls, and
requires O(lgn) time. At the k** step of the binary search, an element will either go down
the left branch, the right branch or will stay still.

Once the upper tangent lines have been found, the algorithm determines the bridges

10The algorithm of Cole [12] can be used for sorting in the CREW model.
' An upper tangent line-segment of two sets of points is the line that passes through at least one point
from each set so that all other points in the two sets are below the line.
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among the v/n subhulls. The bridges are the upper tangent line-segments that belong to
the upper chain. To find which of the upper tangent lines are bridges, each subhull finds
the highest sloped line in both directions (to a point on the right and to a point on the
left). If the joint formed by these lines is convex, then both lines are bridges. If the joint
formed by the lines is concave, neither are bridges. All edges on a subhull that lie between
bridges of that subhull also belong to the convex hull.

This algorithm cannot be implemented directly on the scan-model since each pair of
subhulls independently finds the upper tangent-line segments using the algorithm of Over-
mars, and will therefore require concurrent reads: several pairs, while executing the binary
search, will require access to the same elements. To avoid the concurrent read, we place
each of the sets of /n points that belong to the same subhull in its own segment. We then
use a general binary search method described in the next section to execute the binary
search. This search will require O(lgn) time.

Our variation of the CREW algorithm runs with the same number of calls to the prim-
itives as the original since, as with the original, the sort runs in O(lgn) time, and, as
shown above, the merge also runs in O(lgn) time. In a sense, this variation trades the the

concurrent read capability for the scan capability.

9 Binary Search

In this section we consider the problem of n elements of a set A each executing a binary
search on a binary tree T with m vertices. We assume that the tree T is organized in
a vector using the standard heap ordering: the root value is stored at T[1] and the two
children of a vertex stored at Ti] are stored at T[2i] and T[2i + 1]. With a concurrent-
read primitive, a binary search is simple: each element of A starts by reading the root of
T, decides which way to go, and follows a path down to the leaves based on a test and
some simple arithmetic at each vertex. Such a search requires concurrent access by many
elements of A to a single element of T'.

To execute the binary search using the scan primitives instead of a concurrent read
primitive we can use a method based on recursive splitting. We start with all the elements
of A in a single segment and then split that segment based on whether an element is going
to the right or to the left child of the root of T. We then recursively split within each of
these segments, based on data from the next level of the tree. Since all the elements of A
that are accessing the same vertex of 7' will be in a contiguous segment, we can use the

distribute operation to distribute the value from each vertex of the tree to the elements that
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need it.

We now consider a generalization on the simple binary search. At each step, as well as
allowing an element of A to go to the left or right child of the vertex of T it is currently at,
we allow it to remain at the same vertex of 7. This means that there might be elements of
A at all levels of the tree instead of at a single level. We also allow new elements to enter
the search tree at each step. Figure 10 illustrates how we store the elements of A and an
example of a step of the generalized binary search.

To execute a step of the binary search, we must somehow append the elements at a
vertex v that remain, with the elements being passed down from the parent of v. To
append the elements, we can use the append operation discussed in Section 3. The basic
idea is first to separate the elements that remain from those that go to a child into two

separate vectors using two pack operations. For the example of Figure 10 this would return:

remain = [ao] [] [ad [] [as @e] [} [a7]
not-remain = [a1] [az] [as] [ [] [ ]

We then split the ones going to a child based on whether they are going to the left or

right child using a split operation. This would return:

splitnot-remain =[] [a] [eo] ] [ [} 01 0O 00 0 0 0 0 [

We now shift the segments of the split vector right by one and insert the new elements
in the left. Because of the heap order of T', this will cause each segment to go to its child
segment. We also truncate the segments that correspond to children of the leaf vertices.
These calculations would return:

children = f[ag ao] [ [a1] [a2] [ [es] ]

We now append the shifted vector (children) to the vector of elements that remained
(remain) using the append operation.

The following routine can be used to execute a step of the binary search. The remain?
flag specifies elements that stay at the current vertex, and the right? flag specifies elements

that go to the right branch. Bare the new elements to be inserted at root.

define search-step(A, T', B, remain?, right?){
remain «— pack(A, remain?);
not-remain «— pack(A, not(remain?));
children « shift-segments-right(B, split(not-remain, right?));

append(remain, children)}
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T = [to t ta ts ty t5 tg]

A (before) = [ag ai1] [a2] [as a4] [] [as ae] [} [a7]
F (x =] [ [ x] [] [x x] {J] [¥]

1

B = [as ag]

A (after) = [as a9 ao] [] [a1 a4] [a2] [as a6] [as] [ar]

Figure 10: An example of a step of the general binary search technique. We keep a segment
in A for each vertex of the tree T such that segment i corresponds to vertex i. Each segment
contains all elements at the corresponding vertex. The vector F indicates an example of where
each element wants to go during a step of the search (r for right, | for left, and x for remain).

The vector B contains new elements entering at the root of the search at that step.
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This search step can be used to execute the binary search needed by the v/n merge
hull algorithm discussed in Section 8.3. For the merge hull, no elements get inserted into
the tree, but some elements do remain at their current vertex during a step of the binary
search.

Binary search illustrates an important difference between the general programming style
used for concurrent read P-RAM models and for vector models. In the P-RAM model, the
problem is best thought of as n independent processes each executing its own search on
the tree T'. In the scan model, we must think of the n elements as a set and break that set
into subsets according to which vertex of T each element is accessing. This might just be

a philosophical point, but we believe it is important.

10 Conclusions

This paper introduces the idea of a vector model of computation; defines a particular vector
model, the scan-model; and describes several algorithms implemented on the scan-model.
Since many of the algorithms discussed in this paper are variants of known algorithms,
we believe that much of the contribution of this paper is to methodology rather than to
algorithms. The code we show in this paper with only slight syntactic changes has been
used to implement the algorithms described on the Connection Machine.

We believe that the algorithms we describe are very practical for implementation on a
wide range of architectures, both serial and parallel, and should in most cases be almost as
fast on a particular architecture as algorithm designed specifically for that architecture!2.
This generality is one of the main advantages of the scan-model over the P-RAM models.
The advantage arises both because the scan-model is a vector model, allowing efficient im-
plementations on vector processors and single instruction parallel processors, and because it
treats the scan operation as taking no more time than a permutation, a realistic assumption
for almost all architectures.

In more recent work we have been considering the effect of including other operations
as unit-time primitives. The operation we have found most promising is a variation of
the merge operation'. This operation can be implemented efficiently on a wide range of
architectures and is useful for many algorithms. To implement the merge operation on serial

architectures we can use the standard merge operation, and on parallel architectures we can

'2This is not true for architectures with low connectivity such as grid architectures or tree architectures.
13Given two vectors A and B of numbers, it returns a vector C of length A with indices into the vector

B. These indices point to where in B an element in A should merge.
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use a variation of Batcher’s bitonic merge [7]. Algorithms to construct and manipulate the
plane-sweep tree data structure [3,1,5,23] can be greatly simplified with a unit-time merge
operation. We have also found the merge primitive useful for manipulating sets. We have
also considered sorting as a primitive, but we find it hard to argue that sorting should be
assumed to require the same time as a permutation.

We hope that the paper will help spur further interest in designing algorithms for vector

models of computation.
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