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Abstract

There has been a long-standing desire in computer science for a way of collecting
and using libraries of standard software components. Unfortunately, there has been
only limited success in actually doing this. The lack of success stems not from any
resistance to the idea, nor from any lack of trying, but rather from the difficulty of
choosing an appropriate formalism for representing components.

For a formalism to be maximally useful, it must satisfy five key desiderata: ex-
pressiveness, convenient combinability, semantic soundness, machine manipulability,
and programming language independence. The Plan Calculus formalism developed as
part of the Programmer’s Apprentice project satisfies each of these desiderata quite
well. It does this by combining the ideas from flowchart schemas, data abstraction,
logical formalisms, and program transformations.

The efficacy of the Plan Calculus has been demonstrated in part by a prototype
program editor called the Knowledge-based Editor in Emacs. This editor makes it
possible for a programmer to construct a program rapidly and reliably by combining
components represented as plans.
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The Wide Variety of Components

The biggest problem one faces when developing a formalization for components is that
there are many different kinds of things which it would be beneficial to express as compo-
nents. Essentially any kind of knowledge which is shared between distinct programs is a
candidate to become a reusable component. As an illustration of the diversity of potential
components, consider the following six examples. In each case, it is important to consider
not only what information is contained in the component, but also the kinds of information
which are not properly part of the component.

Matrix add - the algorithm for adding together two matrices. This algorithm is
independent of the data representation for the matrices and the type of matrix
elements.

Stack - the stack data structure and its associated operations PUSH and POP. Both the
representation and the operations are independent of the type of stack element.

Filter positive — the idea of selecting the positive elements of a temporal sequence of
quantities available in a loop. For example, in the following fragmentary loop,
the if statement implements a filter positive.

do ...

X=...;

if X>0 then ... X ...;
end;

This idea 1s independent of the type of sequence element and the sequence cre-
ation method. In particular, the idea is applicable to both loops and recursive
programs.

Master file system — the idea of having a cluster of programs (reports, updates, au-
dits, etc.) that operate on a single master file which is the sole repository for
information about some topic. This idea is essentially a set of constraints on the
programs and how they interact with the file. It is independent of the kind of
data to be stored in the file and the details of the computation to be performed
by the programs.

Deadlock free — the idea that a set of asynchronously interacting programs have the
property that they are guaranteed not to reach a state where each program is
blocked waiting for some other program to act. This idea places restrictions on
the ways in which the programs can interact. However, it is independent of the
details of computations to be performed by the programs.

Move invariant — the idea that the computation of an expression can be moved from
inside of a scope of repetitive execution to outside of the repetitive scope as long
as 1t has no side-effects and all of the values it references are constants within
the repetitive scope. This idea is independent of the specific computation being
performed by the expression and by the rest of the repetitive scope. In addition,
the 1dea is applicable to both loops and recursive programs.

The example components above differ from each other along many dimensions. Matrix
add is primarily a computational component which specifies a particular combination of op-
erations, while stack is a data component which primarily specifies a particular combination
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of data objects. Matrix add and stack also differ in that matrix add is a concrete algorithm
while stack is much more of an abstract concept. Another dimension of difference between
components is that while matrix add can be used in a program as a simple subunit, filter
positive is fragmentary and must be combined together with fragments that generate and
use temporal sequences before it can perform a useful computation.

The first three components are all low-level, localized units. In contrast, master file
system and deadlock free are high-level, diffuse concepts which correspond more closely
to sets of constraints than to computational units. These two components in turn differ
in that master file system is a relatively straightforward set of constraints which can be
satisfied individually, while deadlock free is a property of an entire system of programs
which critically depends on each detail of the interaction between the programs.

Move invariant differs from all of the other components in that it is an optimization
which is achieved by a standardized transformation on programs rather than a standardized
computation performed by programs.

Desiderata For a Formalization

Many properties are required of a formalization in order for it to be an effective rep-
resentation for reusable components. The following five desiderata stand out as being of
particular importance.

Expressiveness — The formalism must be capable of expressing as many different
kinds of components as possible.

Convenient combinability - The methods of combining components must be easy
to implement and the properties of combinations should be evident from the
properties of the parts.

Semantic soundness — The formalism must be based on a mathematical foundation
which allows correctness conditions to be stated for the library of components.

Machine manipulability — It must be possible to manipulate the formalism effectively
using computer tools.

Programming language independence — The formalism should not be dependent on
the syntax of any particular programming language.

Given the wide range of components which it would be useful to represent, the expres-
siveness of a formalization 1s paramount. An important, though hard to assess, aspect of
this is convenience. It is not sufficient that a formalism merely be capable of representing
a given component. To be truly useful, the formalization must be able to conveniently rep-
resent the component in a straightforward way which supports the other desiderata rather
than representing it via a circumlocution which impedes the other desiderata.

Convenient combination properties are also essential, since they are the way in which
components are in fact reused. An important part of this is the desire for fine granularity
in the representation. The goal is to have each component embody only a single idea or
design decision so that users have the maximum possible freedom to combine them as they
choose.

A firm semantic basis is needed for a good formalization so that it is possible to be
certain of what is being represented by a given component and that the combination process
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preserves the key properties of components. The semantic basis does not necessarily need
to make totally automatic verification possible. Although less convenient, machine-aided
(or even manual) verification of library components is sufficient in many situations.

Machine manipulability of a formalization is a key issue. There are thousands of pro-
gramming ideas which it would be useful to express as components. In order to be able to
effectively deal with such a large library, tools need to be developed to support the automatic
creation, modification, selection, and combination of components.

A major problem with previous formalisms has been the focus on existing programming
languages as the basis for defining reusable components, when there are in fact important
differences between the original goals of these programming languages and the goals of work
on reusable components. Existing programming languages are designed primarily to express
complete programs in a form which is easily readable by the programmer and which can be
effectively executed by a machine. In contrast, the challenge in reusability is to express the
fragmentary and abstract components out of which complete programs are built.

The most obvious benefit of a language independent formalism is that it makes it possible
to represent components in such a way that they can be reused in many different language
environments. However, there is an equally important reason for desiring language inde-
pendence. In general, a language dependent formalism forces components to be represented
in terms of specific control flow and data flow constructs. However, these constructs are
typically not an essential part of the component and may limit the way in which it can be
combined with other components. For example, if you specifying the PUSH operation for a
stack in a language dependent way, you typically have to specify particular variable names
to be used and whether the operation should be coded in-line or out-of-line when it is used.
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Approaches To Formalization

The following sections discuss a number of approaches to the formalization of compo-
nents. The relative strengths and weaknesses of the approaches are evaluated in the light
of the five desiderata. The central theme which ties the sections together is the search for
formalisms that are capable of expressing the wide range of components desired without
sacrificing the other desiderata. Figure 1 summarizes graphically the major flow of ideas
between the approaches discussed.

SUBROUTINES
|
MACROS
FLOWCHARTS SCHEMAS
FLOWCHART SCH( LOGICAL FORMALISMS

/
/

TRANSFORMATIONS DATA ABSTRACTION

.

PLAN CALCULUS

Figure 1: Approaches to Formalization.

As a point of comparison for other formalisms, one must consider free-form English
text. Much of the knowledge which needs to be formalized is already captured informally
in the vocabulary of programmers and in text books on programming (e.g., [1,14]). The
great strength of English text is expressiveness. It is capable of representing any kind of
component. Moreover, it is programming language independent. Unfortunately, English
text does not satisfy any of the other desiderata. There is no theory of how to combine
textual fragments together; there is no semantic basis that makes it possible to determine
whether or not a piece of English text means what you think it means; and free-form English
text is not machine manipulable in any significant way.

Subroutines

Subroutines have many advantages as a representation for components. They can be
easily combined by writing programs which call them. They are machine manipulable n
that high-level language compilers and linkage editors directly support their combination.
Further, they have a firm semantic basis via the semantics of the programming language



Reusable Components 5

they are written in.

Unfortunately, subroutines are limited in their expressiveness. They are really only con-
venient for expressing localized computational algorithms such as matrix add. They cannot
represent data components such as stack, fragmentary components such as filter positive,
diffuse high-level components such as master file system, or transformational components
such as move invariant. In addition, they lack fineness of granularity. It is difficult to write
a subroutine without gratuitously specifying numerous details that are not properly part
of the component. For example, in most languages, there is no convenient way to write
a subroutine representing matrix add without specifying the data representation for the
matrices and the numbers in them.

Macros

A subroutine specifies a fixed piece of program text corresponding to a component. The
only variability allowed is in the arguments which are passed to the subroutine. In contrast,
a macro specifies an arbitrary computation which is used to create a piece of program text
corresponding to a use of a component. Due to the provision for arbitrary computation,
macros are a considerable improvement over subroutines in expressiveness. They can be
used to represent data components and fragmentary components. In addition, they can
represent components at a much finer granularity. For example, it is straightforward to
write a macro which represents matrix add independent of the data structures it operates
on. Note however, that macros are still not suited to representing diffuse components or
transformational ones.

Like subroutines, macros are machine manipulable in that macro processors directly
support the evaluation of macro calls and the integration of the resulting program text into
the program as a whole. Unfortunately, macros are less satisfactory than subroutines in
other respects. Though macro calls are combined syntactically in essentially the same way
as subroutine calls, their combination properties are not as simple. For example, since a
macro can perform arbitrary computation utilizing its calling form in order to create the
resulting program text, there is no guarantee that nested macro calls will operate as they
are intended. The macro writer must take extreme care in order to insure that flexible
combination is possible. This unfortunately militates against the increased expressiveness
which is the primary advantage of macros.

The paramount problem with macros is that they lack any firm semantic basis. Because
they allow arbitrary computation, it is very difficult to verify that a macro accurately
represents a given component. It is even more difficult to show that a pair of macros can
be combined without destructive interaction.

Program Schemas

There has been a considerable amount of theoretical investigation into the benefits of
program schemas as a vehicle for representing components[4,9,28]. Program schemas are
essentially templates with holes in them which can be filled in with user supplied program
text. As such, they can be viewed as a compromise between subroutines and macros. The
main improvement of program schemas over macros is that, like subroutines, they have a
firm semantic foundation in the semantics of the programming language they are written in
and their combination properties are relatively straightforward.
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There has not been very much activity directed towards creating an actual programming
environment incorporating a library of program schemas. However, there is no reason to
believe that program schemas are not at least as machine manipulable as macros. For
example, one could create a programming environment supporting program schemas by
taking a standard macro processor and limiting the macros that could be written to ones
which were essentially program schemas.

Unfortunately, though program schemas are an improvement in expressiveness over sub-
routines, they are significantly less expressive than macros. Like macros, program schemas
are of some use in representing data components such as stack and can represent compo-
nents at a finer granularity than subroutines. In addition, they could be used to represent
matrix add independent of the representation for the matrices it operates on. However,
unlike macros, program schemas cannot in general be used to represent fragmentary com-
ponents such as filter positive. Going beyond this, they are no more useful than macros at
representing diffuse or transformational components.

Flowcharts and Flowchart Schemas

A limitation shared by subroutines, macros, and program schemas is programming lan-
guage dependence. One way to alleviate this problem would be to write components in
a programming language independent representation such as a flowchart. Flowcharts use
boxes and control flow arrows in order to specify control flow independent of any particu-
lar control flow construct. Similarly, data flow arrows can be used to represent data flow
independent of any particular data flow construct[8].

A flowchart using data and control flow arrows is basically equivalent to a subroutine and
has the same level of expressiveness. In analogy to program schemas one can gain additional
expressiveness by using flowchart schemas|[13,17]—flowchart templates with holes in them
where other flowcharts can be inserted. Just as a programming language can be given
a rigorous semantic foundation, a flowchart language can be given a semantic foundation
which can serve as a semantic basis for components. In addition, flowcharts and flowchart
schemas can be combined together in the same semantically clean way that subroutines and
program schemas can be.

To date, flowcharts with data and control flow arrows have primarily been used as a
documentation and design aid and have not been given much machine support. However,
there is no reason why they cannot be represented in a machine manipulable form and used
as part of a programming environment. All that is needed are modules which can translate
back and forth between flowcharts and various programming languages.

Flowcharts and flowchart schemas are a significant improvement over subroutines and
program schemas in that they are programming language independent. However, with
regard to the other desiderata, they are basically identical to subroutines and program
schemas. In particular, they are no more expressive. As a result, they are still not fully
satisfactory as a representation for reusable components.

Logical Formalisms

With the exception of some macros, the formalisms discussed above are all algorithmic
1 that they represent a component by giving an example (or template) of it in a program-
ming (or flowchart) language. In addition, the only way to use a component is to place it



Reusable Components 7

somewhere in a program. This fundamentally limits the expressiveness of these formalisms.
They can only represent localized algorithmic components because the languages being used
are only capable of representing algorithms and the way the components are used requires
them to be localized.

The extensive work on specifying the semantics of programming languages suggests a
completely different approach to the problem of specifying components: using logical for-
malisms (e.g., the predicate calculus) to represent components. A key advantage of logical
formalisms is semantic soundness. (In the role of providing a semantic basis for program-
ming languages, logical formalisms are the ultimate semantic basis for all the formalisms
discussed above.) An implicit part of this is that logical specifications must be provided for
components so that they can be verified (by hand if necessary).

Another important advantage of logical formalisms is in the area of expressiveness. In
contrast to the algorithmic formalisms, logical formalisms have no trouble representing
diffuse, high-level components such as master file system and deadlock free. The usefulness
of such components is enhanced by the fact that logical formalisms also have very convenient
combination properties. Specifically, the theory generated by the union of two axiom systems
is always either the union of the theories of the two component systems or a contradiction,
but never some third, unanticipated theory. An additional advantage of logical formalisms
is that they are inherently programming language independent.

However, logical formalisms are quite cumbersome when it comes to representing an
algorithmic component such as matrix add (as opposed to representing the specification
for an algorithmic component). Given a component such as stack, which combines some
non-algorithmic aspects with some algorithmic aspects, logical formalisms are convenient
for the former, but not the latter. The above suggests that logical formalisms are best used
as an adjunct to, rather than a replacement for, algorithmic formalisms.

The greatest weakness of logical formalisms is in the area of machine manipulability. It
is not hard to represent logical formulas in a machine manipulable way. However, at the
current state of the art, practical automatic theorem provers are only capable of relatively
simple logical deductions. As a result, it is hard to do anything useful with logical formulas.
For example, if a programming system were to be based on the combination of components
represented as logical formulas, the system would need to have a module which could produce
program text corresponding to sets of logical formulas. Unfortunately, although this kind
of automatic programming has been demonstrated on small examples [18] it has not yet
progressed to the point where it is at all practical.

This problem again suggests that it might be fruitful to combine logical and algorithmic
formalisms in order to reduce the amount of deduction which must be performed. Unfor-
tunately, it is not clear how helpful this can be with regard to components such as master
file system and deadlock free which have little or no algorithmic aspects. Assumedly, if one
includes deadlock free as one of the components describing a set of programs one would like
the programming system to be of some assistance in producing programs which are safe
from deadlock, or at the very least, be able to detect when deadlock is possible. However,
it is not clear that even the latter goal is achievable given the current state of the art of
automatic theorem proving.
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Data Abstraction

An interesting area of inquiry which has combined logical and algorithmic formalisms
is data abstraction. The contribution of data abstractions is that they extend the expres-
siveness of algorithmic formalizations into the realm of components with data structure
aspects. For example, data abstraction can be used to represent stack in full generality
and to represent matrix add without specifying the data representation to be used for the
matrices.

A considerable amount of research has been done on how to state the specifications for
a data structure and its associated access functions[10,12,16]. This provides a semantic
basis for data abstractions and for methods of combining them. In addition, languages such
as Alphard[29], CLU[15], and Ada[30] have been developed which have constructs which
directly support data abstraction. This demonstrates the ease with which data abstractions
can be represented in a machine manipulable (though language dependent) form.

Program Transformations

Neither algorithmic nor logical formalisms are particularly well suited to representing
components like move invariant. These components (and many other kinds as well) can
be represented as program transformations[2,5,26]. A transformation matches against some
section of program text (or more usually its parse tree) and replaces it by a new section of
program text (or parse tree). A typical transformation has three parts. It has a pattern
which matches against the program in order to determine where to apply the transformation.
It has a set of logical applicability conditions which further restrict the places where the
transformation can be applied. Finally, it has a (usually procedural) action which creates
the new program section based on the old section. Note that when applied to small localized
sections of a program, program transformations are very much the same as macros.

An important aspect of program transformations is the idea of a wide spectrum language.
In contrast to ordinary high-level languages, wide spectrum languages contain syntactic and
semantic extensions which are not directly executable. In some cases these higher level
constructs have a semantics independent of the transformation system, but often they are
defined only in terms of the transformations which convert them into executable constructs.

The most interesting contribution of transformations is that they view program con-
struction as a process. Rather than viewing a program solely as a static artifact which may
be decomposed into components the way a house is made up of a floor, roof and walls,
transformations view a program as evolving through a series of construction steps which
utilize components which may not be visible in the final program, just as the construction
of a house requires the use of scaffolding and other temporary structures. This point of view
enables transformations to express components such as move invariant which are common
steps in the construction of a program rather than common steps in the execution of a
program.

Another important aspect of transformations is that they can be combined in a way
which is quite different from the other formalisms. As mentioned above, many simple
transformations are basically just macros which specify how to implement particular high-
level constructs in a wide spectrum language. These transformations are only triggered when
instances of their associated high-level constructs appear; thus they only operate where they
are explicitly requested and combine in much the same way as macros.
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However, other transformations are much less localized in the way the operate. For
example, a transformation representing move invariant would have applicability conditions
(e.g., that the expression is invariant) which must look at large parts of the program. In
addition, such transformations are not intended to be applied only when explicitly requested
by the user. Rather, they are intended to be used whenever they become applicable for any
reason. This makes powerful synergistic interaction between transformations possible.

Unfortunately, if transformations are allowed to contain arbitrary computation in their
actions, they have the same difficulty with regard to semantic soundness and convenient
combinability that macros have. The transformation writer has to take great care in order
to insure that the interaction between transformations will in fact be synergistic rather
than antagonistic. In order to have a semantic basis, transformations must include a logical
description of what the transformation is doing. One important way that this has been
done is to focus on transformations which are correctness preserving—ones which, from a
logical perspective, do nothing,.

A number of experimental systems have been developed which demonstrate that trans-
formations are machine manipulable(3,6,7]. All of these systems support the automatic
application of transformations. Some of them go beyond this to attack the harder problem
of automatically selecting the transformations to apply.

A difficulty with transformations is that, as generally supported, they are very much
programming language dependent. This not only limits the portability of components rep-
resented as transformations, it also limits the way transformations can be stated by requiring
that every intermediate state of a program being transformed has to fit into the syntax of
the programming language. One way to alleviate these problems would be to apply trans-
formations to a programming language independent representation such as flowcharts.
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The Plan Calculus

As part of the Programmer’s Apprentice project, a formalism has been developed which
seeks to satisfy all of the desiderata by combining several of the techniques discussed above.
In this formalism (called the Plan Calculus[21]) components are represented as plans. Plans
contain three kinds of information: plan diagrams, logical annotation, and overlays.

A plan diagram contains information about the algorithmic aspects of a plan. In order
to achieve language independence, plan diagrams are represented as hierarchical, data flow
schemas. In a plan diagram, computations are represented as boxes with input and output
ports while control flow and data flow are both represented using arcs between ports. In
addition, plan diagrams are hierarchical—a box in a diagram can contain an entire sub-
diagram. Further, the diagrams are schematic—they can contain empty boxes (called roles)
which are to be filled in later.

As an example of a plan diagram, Figure 2 shows the algorithmic part of a plan for
computing the absolute value of a number. In the figure, data flow arcs are drawn as solid
lines and control flow arcs as hatched lines. The diagram is composed of an operation box
(action) whose output is the negation of its input, a test box (if) which splits control based
on whether or not its input is negative, and a “join” box (end) which rejoins the control
split by the test. The output of the join is determined by the control flow path which is
used to enter it.

The non-algorithmic aspects of a plan are represented using predicate calculus assertions.
These assertions are attached as annotations on the plan diagram. Each box in a plan
diagram is annotated with a set of preconditions and postconditions. In addition, logical
constraints between roles are used to limit the way in which the roles can to be filled in.
Finally, dependency links record a summary of a proof that the specifications of the plan
as a whole follow from the specifications of the inner boxes and the way these boxes are
connected. Components such as master file system and deadlock free which have little or
no algorithmic aspect are represented by plans which consist almost entirely of predicate
calculus assertions with little or no diagrammatic information.

In order to unify the concept of a plan for an algorithm with the concept of a plan for a
data structure, the basic flowchart-like ideas behind plan diagrams are extended so that plan
diagrams can contain parts which correspond to data objects as well as sub-computations.
Data parts can be left unspecified as data roles and data parts can be annotated with
specifications, constraints, and dependencies. Given these extensions, plans are capable of
representing the same kinds of information as data abstraction mechanisms. For example,
the plan for stack consists of a number of logically interrelated plan diagrams, one of which
represents the stack data object and the rest of which represent the operations on a stack.

The transformational aspects of a plan are represented as overlays. An overlay is a
mapping between two plans. It specifies a set of correspondences between the roles of
the plans. Overlays are similar to transformations in which both the left and right hand
side are plans. However, overlays differ from program transformations in two ways: they
are bidirectional and their actions are declarative as opposed to procedural. The fact that
overlays are bidirectional means that, like grammar rules, they can be used for both analysis
and synthesis. The fact that overlays are totally declarativc gives them a firm semantic basis
and makes it easier to reason about them as opposed to merely using them.

Figure 3 shows an example of an overlay which specifies how to transform a tail recursive
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Figure 2: An Example Plan.

program which accumulates a value “on the way down” into a recursive program which
accumulates the same result “on the way up” and vice versa. This overlay captures the
commonality between the programs SUM_UP and SUM_DOWN shown below.

SUM_DOWN(L) = SUM_DOWN2(L,0);
SUM_DOWN2(L,S) = if EMPTY(L) then S else SUM_DOWN2(TAIL(L),S+HEAD(L));

SUM_UP(L) = if EMPTY(L) then O else SUM_UP(TAIL(L))+HEAD(L);
The plan diagrams in Figure 3 are drawn in the same way as in Figure 2. However, three

new features are shown. Dashed boxes are used to group diagrams hierarchically. looping
lines are used to indicated that a dashed box in a diagram is identical to the dashed box
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Figure 3: An Example Overlay.

containing it. (The right and left diagrams in the figure are both infinite.) Finally, hooked
lines are used to indicate the overlay relationship between the two diagrams.

The plan on the left side of Figure 3 represents accumulation of a result “on the way up”
while the plan on the right hand side of the figure represents tail recursive accumulation.
The four hooked lines specify correspondences. Unlabeled correspondences are equalities.
The initialization (init), accumulation (add), and output values in the two plans correspond
directly. The correspondence which is labeled with reverse is more complex. It specifies
that the order of the input elements on the right hand side is the reverse of the order of the
input elements on the left hand side. (The storage of elements on the function invocation
stack performs the reversal.) A logical assertion (not shown in the figure) indicates that the
final output in the two plans is not equal unless the add operation is associative.

In order to give plan diagrams a precise definition, each aspect of plan diagrams is defined
in terms of a version of the situational calculus[11]. Manna and Waldinger have used the
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situational calculus in a similar way in order to specify certain problematic features of
programming languages[19].

Since the situational calculus is essentially just predicate calculus with some conventions
applied, a plan diagram can be viewed as the abbreviation for a set of predicate calculus
assertions. Given that the logical annotation in a plan consists directly of predicate calculus
assertions and overlays are just mappings between plans, this implies that everything in a
plan can be reduced to a set of logical assertions.

In summary, the Plan Calculus combines the expressiveness of hierarchical data flow
schemas, logical formalisms, and transformations. Given that each of these mechanisms is
programming language independent, the Plan Calculus is language independent as well. The
fact that plans can, in principle, be translated into predicate calculus gives the Plan Calculus
the same kind of rigorous semantic foundation that any logical formalism has. In addition,
the combination of two plans amounts semantically to the union of axioms and is therefore
convenient from a theoretical viewpoint. Finally, since any plan can be represented as a
set of assertions, the Plan Calculus is, in principle, machine manipulable by an automatic
reasoning system. The only question which remains unanswered is whether or not the Plan
Calculus is machine manipulable in practice as opposed to merely in principle.

A Hybrid Reasoning System For Plans

The weakness of current automatic reasoning systems implies that general-purpose de-
duction cannot be used by itself to manipulate a complex representation such as the Plan
Calculus. Experimentation has shown that a hybrid system which combines special-purpose
techniques with general-purpose logical reasoning is required.

Special-purpose representations and algorithms are essential in order to avoid the combi-
natorial explosions that typically occur in general-purpose reasoning systems. On the other
hand, logic-based reasoning is very valuable when used, under strict control, as the “glue”
between inferences made in different special-purpose representations.

A hybrid reasoning system, called CAKE[22], is being implemented, which is tailored
specifically for reasoning about plans. Figure 4 shows the architecture of CAKE. The
bottom layers of CAKE support general-purpose logical reasoning while the top two layers
support special-purpose reasoning about plans.

Overlays
Plan Diagrams
Frames
Algebraic Reasoning
Propositional Logic

Figure 4: The layers of CAKE.

Although the information in a plan which is represented by means of plan diagrams and
overlays could be converted into logical assertions, it is for the most part not converted.
Rather, this information is represented in terms of graphical data structures which can be
manipulated by means of special-purpose procedures. For example, the combination of plan
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diagrams can be performed by substituting one diagram into the other. General-purpose
reasoning is necessary only for the much simpler task of checking whether the relevant
preconditions and constraints permit the substitution to take place.

At the current time, the three lowest layers of CAKE have been completed. Figure 5 is a
short transcript illustrating some of the facilities provided. (Line numbers in the following
discussion refer to Figure 5.)

The propositional layer of CAKE provides three principal facilities. First, it automatically
performs simple “one-step” deductions (lines 1-3). Second, it acts as a recording medium for
dependencies, and thus supports explanation (line 3) and retraction (lines 4-5). Third, this
layer detects contradictions (lines 6-7). Contradictions are represented explicitly in such a
way that reasoning can continue with other information not involved in the contradiction.
This is important for allowing a user to postpone dealing with problems.

The algebraic layer of CAKE is composed of special-purpose decision procedures for
congruence closure, common algebraic properties of operators (i.e., commutativity, associa-
tivity, and transitivity), and the algebra of sets. The congruence closure algorithm in this
layer determines whether or not terms are equal by substitution of equal subterms (lines 8-
9). The decision procedure for transitivity (lines 10-12) determines when elements of a
binary relation follow by transitivity from other elements. The algebra of sets (lines 13-
15) involves the theory of membership, subset, union, intersection and complements. (The
propositional layer and the congruence closure algorithm of the algebraic layer are derived
from McAllester’s Reasoning Utility Package[20].)

The frames layer, which is built using facilities from the layers below, supports the
conventional frame notions of inheritance (:Specializes in line 16), slots (:Roles in lines 17—
19), and instances (line 20). A notable feature of CAKE’s frame system is that constraints
are implemented in a general way. For example, the definition of an Interface (line 19) has
constraints between the roles of the frames filling its roles. When an instance of this frame
is created (line 20) and a particular value (777777) is put into one of its roles (line 21), the
same value can be retrieved from the other constrained role (line 22). This propagation is
not achieved by ad hoc procedures, but by the operation of the underlying logical reasoning
system, including dependencies (line 23).

It should be realized that CAKE’s general-purpose reasoning capabilities are relatively
weak. Therefore, the practicality of CAKE as a tool for manipulating the Plan Calculus
depends on the fact that most of the information in a plan is represented diagrammatically
as opposed to logically. As a result, it is unlikely that CAKE will be able to deal effectively
with components such as deadlock free which have little or no algorithmic aspect and which
require complex reasoning. However, it should be able to effectively manipulate all of the
other kinds of components sited as examples above.
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11>
12>

13>
14>
15>

16>
17>
18>
19>

20>
21>
22>

23>

(Assertq P)
(Assertq (Implies P Q))
(Whyq Q)
Q is TRUE by Modus Ponens from:
1. (IMPLIES P Q) is TRUE as a premise.
2. P is TRUE as a premise.
(Retractq P)
(Whyq Q)
I don’t know whether or not Q is true.
(Assertq (And P (Not Q)))
>>Contradiction: There is a conflict between the premises:
1. (AND P (NOT Q)) is TRUE.
2. (IMPLIES P Q) is TRUE.
s-A, Resume: Ignore this contradiction.
s-B: Retract one of the premises.
s-B Retract one of the premises.
Premise to retract: 1
Retracting (AND P (NOT Q)) being TRUE...
#<Node (AND P (NOT Q)): False>
(Assertq (= I J))
(Whyq (= (F I) (F D))
(= (F I) (F J)) is TRUE by Equality from:
1. (= 1 J) is TRUE as a premise.
(Assertq (Transitive R))
(Assertq (R W X)) (Assertq (R X Y)) (Assertq (RY Z))
(Whyq (R W 2))
(R W Z) is TRUE by Transitivity from:
1. (R W X) is TRUE as a premise.
2. (R X Y) is TRUE as a premise.
3. (RY Z) is TRUE as a premise.
4. (TRANSITIVE R) is TRUE as a premise.
(Assertq (Subset A B))
(Assertq (Member X A))
(Whyq (Member X B))
(MEMBER X B) is TRUE by Subsumption from:
1. (SUBSET A B) is TRUE as a premise.
2. (MEMBER X A) is TRUE as a premise.
(Deftype Address (:Specializes Number))
(Deframe Interrupt (:Roles (Location Address) Program))
(Deframe Device (:Roles (Transmit Address) (Receive Address)))
(Deframe Interface
(:Roles (Target Device) (From Interrupt) (To Interrupt))
(:Constraints (= (Location ?From) (Receive ?7Target))
(= (Location ?To) (Transmit ?Target))))
(FInstantiate ’Interface :Name ’K7)
(FPut (>> ’K7 ’Target ’Receive) 777777)
(FGet (>> ’K7 ’From ’Location))
Tt
(Why ...)
(= 777777 (LOCATION (FROM K7))) is TRUE by Equality from:
1. (= (LOCATION (FROM K7))
(RECEIVE (TARGET K7))) is TRUE.

2. (= (RECEIVE (TARGET K7)) 777777) is TRUE as a premise.

Figure 5: A transcript showing CAKE in action.
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The Knowledge-Based Editor in Emacs

The Knowledge-Based Editor in Emacs (KBEmacs) is the current demonstration system
implemented as part of the Programmer’s Apprentice project. KBEmacs [27] is a program
editor which makes it possible to construct programs rapidly and reliably by combining
algorithmic components represented as plans. From the point of view of the current dis-
cussion, the key feature of KBEmacs is that it demonstrates the machine manipulability of
plan diagrams.

KBEmacs is implemented on the Symbolics Lisp Machine [31]. Figure 6 shows the ar-
chitecture of the system. KBEmacs maintains two representations for the program being
worked on: program text and a plan.

PROGRAM TEXT

ANALYZER

COMPONENT
LIBRARY

PROGRAM :
EDITOR INTERFACE

Figure 6: The architecture of KBEmacs.

KNOWLEDGE-
BASED EDITOR

KBEmacs is based on a simple, early plan representation. (While KBEmacs was under
construction, this simple plan representation evolved into the Plan Calculus.) The sim-
ple representation corresponds to the plan diagram portion of the Plan Calculus with the
addition of support for procedural constraints.

At any moment, the programmer can either modify the program text or the plan. In
order to modify the program text, the programmer can use the standard Emacs-style Lisp
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Machine editor. This editor supports both text-based and syntax-based program editing.

In order to modify the plan, the programmer can use the knowledge-based editor mod-
ule. This module supports several commands for instantiating and combining components.
Each command is supported by a special-purpose procedure which operates directly on
the plan representation. The knowledge-based editor also provides support for maintain-
ing the consistency of procedurally represented constraints. However, it does not have any
general-purpose reasoning abilities.

The components themselves are represented as plans and stored in the component Ii-
brary. New components can be defined by the user by using a programming-language-like
representation.

An interface unifies ordinary program editing and knowledge-based editing so that
they can both be conveniently accessed through the standard Lisp Machine editor. The
knowledge-based commands are supported as an extension of the standard editor command
set and the results of these commands are communicated to the programmer by altering
the program text in the editor buffer. The effect is the same as if a human assistant were
sitting at the editor modifying the text under the direction of the programmer.

Whenever the plan is modified, the coder module is used to create new program text. The
coder operates in three steps. First, it examines the plan in order to determine how the con-
trol flow should be implemented—i.e., determining where conditional and looping constructs
should be used. Second, it determines how the data flow should be implemented—i.e., when
variables should be used and what names should be used for them. Third, it constructs
program text based on the decisions above and then applies various transformations in order
to improve the readability of the result. The complexity of the coder stems not from the
need to create correct code (this is relatively easy) but from the need to create aesthetic
code.

Whenever the program text is modified, the analyzer module is used to create a new
plan. The analyzer is similar to the front end of an optimizing compiler. It operates on a
program in four stages. First, the program is parsed. Second, macro expansion is used to
express the various constructs of the language in terms of primitive operations. For example,
all control constructs are expanded into gotos. Third, the resulting intermediate form is
processed to determine the basic functions called by the program, the roles in the program,
and the data flow and control flow between them. This results in the construction of a
simple plan. Fourth, the plan is analyzed in order to determine the hierarchical structure
of the program.

Scenario

In order to give a feeling for the capabilities of KBEmacs, this section presents a condensed
summary of the scenario in [27]. In that scenario, a programmer uses KBEmacs to construct
an Ada program in the domain of business data processing. It is assumed that there is a
data base which contains information about various machines (referred to as units) sold by
a company and about the repairs performed on each of these units. In the scenario, the
programmer constructs a program called UNIT_REPAIR_REPORT which prints out a report of
all of the repairs performed on a given unit. The directions in I'igure 7 might be given to a
human assistant who was asked to write this program.

A key feature of these directions is that they refer to a significant amount of knowledge
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Define a simple report program UNIT_REPAIR_REPORT. Enumerate the
chain of repairs associated with a unit record, printing each one.
Query the user for the key (UNIT_KEY) of the unit record to start
from. Print the title ("Report of Repairs on Unit " & UNIT_KEY).
Do not print a summary.

Figure 7: Hypothetical directions for a human assistant.

that the assistant is assumed to possess. First, they refer to a number of standard program-
ming algorithms— 1.e., “simple report”, “enumerating the records in a chain”, “querying
the user for a key”. Second, they assume that the assistant understands the structure of
the data base of units and repairs. Another feature of the directions is that, given that the
assistant has a precise understanding of the algorithms to be used and of the data base,
little is left to the assistant’s imagination. Essentially every detail of the algorithm is spelled
out, including the exact Ada code to use when printing the title.

Using KBEmacs, the commands shown in Figure 8 can be used to construct the program
UNIT_REPAIR_REPORT. The Ada program which results from these commands is shown in
Figure 9.

Define a simple_report procedure UNIT_REPAIR_REPORT.

Fill the enumerator with a chain_enumeration of UNITS and REPAIRS.
Fill the main_file_key with a query_user_for_key of UNITS.

Fill the title with ("Report of Repairs on Unit " & UNIT_KEY).
Remove the summary.

Figure 8: KBEmacs commands.

A key feature of the commands in Figure 8 is that they refer to a number of compo-
nents known to KBEmacs—i.e., simple-report, chain-enumeration, and query-user-for-key.
In addition, they assume an understanding of the structure of the data base. (KBEmacs un-
derstands the data base because it can understand the Ada package which defines the data
base.) The “Fill” commands specify how to fill in the roles of the plan for simple-report.

Without discussing either the commands or the program produced in any detail, two
important observations can be made. First, the commands used are very similar to the
hypothetical directions for a human assistant. Second, a set of 5 commands produces a 55
line program. (The program would be even longer if it did not make extensive use of data
declarations and functions defined in the packages FUNCTIONS and MAINTENANCE_FILES.)

The KBEmacs commands and the hypothetical directions differ in grammatical form,
but not in semantic content. This is not surprising in light of the fact that the hypothesized
commands were in actuality created by restating the knowledge-based commands in more
free flowing English.

The purpose of this translation was to demonstrate that although the KBEmacs com-
mands may be syntactically awkward, they are not semantically awkward. The commands
are neither redundant nor overly detailed. They specify only the basic design decisions
which underly the program. There is no reason to believe that any automatic system (or
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with CALENDAR, FUNCTIONS, MAINTENANCE_FILES, TEXT_IO;
use CALENDAR, FUNCTIONS, MAINTENANCE_FILES, TEXT_IO;
procedure UNIT_REPAIR_REPORT is
use DEFECT_IO, REPAIR_I0, UNIT.IO, INT_IO;
CURRENT_DATE: constant STRING := FORMAT_DATE(CLOCK);
DEFECT: DEFECT_TYPE;
REPAIR: REPAIR_TYPE;
REPAIR_INDEX: REPAIR_INDEX_TYPE;
REPORT: TEXT.IO.FILE_TYPE;
TITLE: STRING(1..33);
UNIT: UNIT_TYPE;
UNIT_KEY: UNIT_KEY_TYPE;
procedure CLEAN_UP is
begin
SET_OUTPUT(STANDARD_OUTPUT) ;
CLOSE(DEFECTS) ; CLOSE(REPAIRS); CLOSE(UNITS); CLOSE(REPORT);
exception
when STATUS_ERROR => return;
end CLEAN_UP;
begin
OPEN(DEFECTS, IN_FILE, DEFECTS_NAME); OPEN(REPAIRS, IN_FILE, REPAIRS_NAME);
OPEN(UNITS, IN_FILE, UNITS_NAME); CREATE(REPORT, OUT_FILE, "report.txt");

loop
begin
NEW_LINE; PUT("Enter UNIT Key: "); GET(UNIT_KEY);
READ(UNITS, UNIT, UNIT_KEY);
exit;
exception
when END_ERROR => PUT("Invalid UNIT Key"); NEW_LINE;
end;
end loop;
TITLE := "Report of Repairs on Unit " & UNIT_KEY;

SET_OUTPUT(REPORT) ;
NEW_LINE(4); SET_COL(20); PUT(CURRENT_DATE);
NEW_LINE(2); SET_COL(13); PUT(TITLE); NEW_LINE(60);
READ(UNITS, UNIT, UNIT_KEY); REPAIR_INDEX := UNIT.REPAIR;
while not NULL_INDEX(REPAIR_INDEX) loop
READ(REPAIRS, REPAIR, REPAIR_INDEX);
if LINE > 64 then
NEW_PAGE; NEW_LINE; PUT("Page: "); PUT(INTEGER(PAGE-1), 3);
SET.COL(13); PUT(TITLE); SET_COL(61); PUT(CURRENT_DATE); NEW_LINE(2);
PUT(" Date Defect Description/Comment"); NEW_LINE(2);
end if;
READ(DEFECTS, DEFECT, REPAIR.DEFECT);
PUT(FORMAT_DATE(REPAIR.DATE)); SET_COL(13); PUT(REPAIR.DEFECT);
SET_COL(20); PUT(DEFECT.NAME); NEW_LINE;
SET_COL(22); PUT(REPAIR.COMMENT); NEW_LINE;
REPAIR_INDEX := REPAIR.NEXT;
end loop;
CLEAN_UP;
exception
when DEVICE_ERROR | END_ERROR | NAME_ERROR | STATUS_ERROR =>
CLEAN_UP; PUT("Data Base Inconsistent");
when others => CLEAN_UP; raise;
end UNIT_REPAIR_REPORT;

Figure 9: The Ada program UNIT_REPAIR_REPORT.
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for that matter a person) could be told how to construct the program UNIT_REPAIR_REPORT
without being told at least most of the information in the commands shown.

The leverage that KBEmacs applies to the program construction task is illustrated by
the order of magnitude difference between the size of the set of commands and the size of
the program. A given programmer seems to be able to produce more or less a constant
number of lines of code per day independent of the programming language being used. As
a result, there is reason to believe that the order of magnitude size reduction provided by
the KBEmacs commands would translate into an order of magnitude reduction in the time
required to construct the program. It should be noted that since program construction is
only a small part (around 10%) of the programming life cycle, this does not translate into
an order of magnitude savings in the life cycle as a whole.

Another important advantage of KBEmacs is that using standard components (such as
simple-report and chain-enumeration) enhances the reliability of the programs produced.
Since the components known to KBEmacs are intended to be used many times, it is eco-
nomically justifiable to lavish a great deal of time on them in order to ensure that they are
general-purpose and bug free. This reliability is inherited by the programs which use the
standard algorithms.

When using an ordinary program editor, programmers typically make two kinds of er-
rors: picking the wrong algorithms to use and incorrectly instantiating these algorithms
(i.e., combining the algorithms together and rendering them as appropriate program code).
KBEmacs eliminates the second kind of error.

Combining Components

As an illustration of the way KBEmacs supports the combination of components rep-
resented as plans, Figures 10 and 11 show two steps in the creation of the program in
Figure 9.

Figure 10 shows the program text which is produced by KBEmacs after the first command
in Figure 8. This code comes almost entirely from the component simple-report. This
component specifies the high-level structure of a simple reporting program. The component
has several roles which are are represented using the notation {...}.

The title role is printed on a title page and, along with the page number, at the top
of cach succeeding page of the report. The enumerator enumerates the elements of some
aggregate data structure. The print-item is used to print out information about each of the
enumerated elements. The column-headings are printed at the top of each page of the report
in order to explain the output of the print-item. The summary prints out some summary
information at the end of the report. The print-item, column-headings, and summary are all
computations which side-effect the report file (which is used as the value of STANDARD_OUTPUT)
by sending output to it.

The enumerator is different from the other roles in that it is compound—consisting
of four sub-roles distributed through the program. Compound roles are used when the
syntactic limitations of a programming language prevent a logical unit from be expressed as
a syntactic unit. In order to facilitate component combination, the enumerator is represented
as a single box in the plan for simple-report.

The input structure of the enumerator corresponds to the aggregate structure to be enu-
merated. The empty-test determines whether all of the elements in the aggregate structure
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with CALENDAR, FUNCTIONS, TEXT.IO;
use CALENDAR, FUNCTIONS, TEXT.IO;
procedure UNIT_REPAIR_REPORT is
use INT_I0;
CURRENT_DATE: constant STRING := FORMAT_DATE(CLOCK);
DATA: {};
REPORT: TEXT_IO.FILE_TYPE;
TITLE: STRING(1..{});
procedure CLEAN_UP is
begin
SET_OUTPUT(STANDARD_OUTPUT) ;
CLOSE(REPORT) ;
exception
when STATUS_ERROR => return;
end CLEAN_UP;
begin
CREATE(REPORT, OUT_FILE, “report.txt");
TITLE := {the title};
SET_OUTPUT(REPORT) ;
NEW_LINE(4); SET_COL(20); PUT(CURRENT_DATE); NEW_LINE(2);
SET_COL(13); PUT(TITLE); NEW_LINE(60);
DATA := {the input structure of the enumerator};
while not {the empty_test of the enumerator}(DATA) loop
if LINE > 64 then
NEW_PAGE; NEW_LINE; PUT("Page: "); PUT(INTEGER(PAGE-1), 3);
SET_COL(13); PUT(TITLE); SET.COL(61); PUT(CURRENT_DATE); NEW_LINE(2);
{the column_headings}({CURRENT_OUTPUT, modified});
end if;
{the print_item}({CURRENT_OUTPUT, modified},
{the element_accessor of the enumerator}(DATA));
DATA := {the step of the enumerator}(DATA);
end loop;
{the summary}({CURRENT_OUTPUT, modified});
CLEAN_UP;
exception
when DEVICE_ERROR | END_ERROR | NAME_ERROR | STATUS_ERROR =>
CLEAN_UP; PUT("Data Base Inconsistent");
when others => CLEAN_UP; raise;
end UNIT_REPAIR_REPORT;

Figure 10: Results of “Define a simple_report program UNIT.REPAIR_REPORT’.

have been enumerated and therefore whether the enumeration should be terminated. The
element-accessor accesses the current element in the aggregate. The step steps from one
element of the aggregate structure to the next.

There is an additional role of the component simple-report which is of particular impor-
tance. This role is called the line-limit and is used to determine when a page break should
be inserted in the report. The presence of this role is not obvious in Figure 10 because it has
already been filled in with the default value 64. This value was generated by a constraint.

The most interesting feature of the component simple-report is the fact that it contains
the constraints shown below.
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constraints
DERIVED(the line_limit,
66-SIZE_IN_LINES(the print_item)
-SIZE_IN_LINES(the summary));
DEFAULT(the print_item,
CORRESPONDING_PRINTING(the enumerator));
DEFAULT(the column_headings,
CORRESPONDING_HEADINGS (the print_item));
end constraints;

The first constraint specifies that the line-limit is constrained to be 66 minus the number
of lines printed by the print-item and the number of lines printed by the summary. Under
the assumption that there is room for 66 lines on a page of output, the constraint guarantees
that, whenever the line number is less than or equal to the line-limit, there will be room
for both the print-item and the summary to be printed on the current page. Because the
line-limit role is derived by this constraint the programmer never has to fill it in explicitly,
and the role will be automatically updated whenever either the print-item or the summary
is changed.

The other two constraints specify default values for the print-item and column-headings
roles. The function CORRESPONDING_PRINTING determines what should be used to fill in
the print-item role based on the type of object which is being enumerated. The function
CORRESPONDING_HEADINGS determines what headings should be used based on the way the
print-item is filled in.

The functions CORRESPONDING_PRINTING and CORRESPONDING_HEADINGS operate in one of
two modes. In general, components will have been defined which specify how to print
out a given type of object in a report, and how to print the corresponding headings. If
this is the case, then the functions CORRESPONDING_PRINTING and CORRESPONDING_HEADINGS
merely retrieve the appropriate components. However, if there are no such components, then
the functions CORRESPONDING_PRINTING and CORRESPONDING_HEADINGS use a simple program
generator in order to construct appropriate code based on the definition of the type of object
in question.

Figure 11 shows the program code produced by KBEmacs after the second command
in Figure 8. Change indicators in the left margin of the figure indicate the lines where
something has changed in comparison with Figure 10. These changes, which result from
combining the components simple-report and chain-enumeration, are spread throughout the
program.

The lines marked with 1 indicate changes which come directly from the component
chain-enumeration. This includes code for each of the sub-roles of the enumerator.

Once the enumerator has been specified, the constraints (described above) in the compo-
nent simple-report fill in most of the rest of the program UNIT_REPAIR_REPORT. It is assumed
that two components (print-repair and print-repair-headings) exist which specify how to
print a repair record and the associated column headings. (The lines marked with 2 and 3
come from these two components respectively.)

When the print-item is filled in, the line-limit is changed from 64 to 63 since the code
used to fill the print-item generates two lines of output, whereas the default assumption used
by the constraint function SIZE_IN_LINES is that only one line of output will be produced.
(This change is marked with a 4.)

The automatic updating of the line-limit role is a good xample of the way KBEmacs can
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with CALENDAR, FUNCTIONS, MAINTENANCE_FILES, TEXT_IO;
use CALENDAR, FUNCTIONS, MAINTENANCE_FILES, TEXT_IO;
procedure UNIT_REPAIR_REPORT is
use DEFECT_I0, REPAIR_IO, UNIT_IO, INT_IO;
CURRENT_DATE: constant STRING := FORMAT_DATE(CLOCK);
DEFECT: DEFECT_TYPE;
REPAIR: REPAIR_TYPE;
REPAIR_INDEX: REPAIR_INDEX_TYPE;
REPORT: TEXT_IO.FILE_TYPE;
TITLE: STRING(1..{});
UNIT: UNIT_TYPE;
procedure CLEAN_UP is
begin
SET_OUTPUT(STANDARD_QUTPUT) ;
CLOSE(DEFECTS); CLOSE(REPAIRS); CLOSE(UNITS); CLOSE(REPORT);
exception
when STATUS_ERROR => return;
end CLEAN_UP;
begin
OPEN(DEFECTS, IN_FILE, DEFECTS_NAME);
OPEN(REPAIRS, IN_FILE, REPAIRS_NAME); OPEN(UNITS, IN_FILE, UNITS_NAME);
CREATE(REPORT, OUT_FILE, '"report.txt");
TITLE := {the title};
SET_OUTPUT (REPORT) ;
NEW_LINE(4); SET_COL(20); PUT(CURRENT_DATE); NEW_LINE(2);
SET_COL(13); PUT(TITLE); NEW_LINE(60);
READ(UNITS, UNIT, {the main_file_key});
REPAIR_INDEX := UNIT.REPAIR;
while not NULL_INDEX(REPAIR_INDEX) loop
READ(REPAIRS, REPAIR, REPAIR_INDEX);
if LINE > 63 then
NEW_PAGE; NEW_LINE; PUT("Page: "); PUT(INTEGER(PAGE-1), 3);
SET_COL(13); PUT(TITLE); SET_COL(61); PUT(CURRENT_DATE); NEW_LINE(2);
PUT(" Date Defect Description/Comment"); NEW_LINE(2);
end if;
READ(DEFECTS, DEFECT, REPAIR.DEFECT);
PUT(FORMAT_DATE(REPAIR.DATE)); SET_COL(13); PUT(REPAIR.DEFECT);
SET_COL(20); PUT(DEFECT.NAME); NEW_LINE;
SET_COL(22); PUT(REPAIR.COMMENT); NEW_LINE;
REPAIR_INDEX := REPAIR.PREVIOUS;
end loop;
{the summary}({CURRENT_OUTPUT, modified});
CLEAN_UP;
exception
when DEVICE_ERROR | END_ERROR | NAME_ERROR | STATUS_ERROR =>
CLEAN_UP; PUT("Data Base Inconsistent");
when others => CLEAN_UP; raise;
end UNIT_REPAIR_REPORT;

Figure 11: Results of “Fill the enumerator with a chain_enumeration of ...”.
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enhance program reliability. The main leverage KBEmacs applies to the reliability problem
is that each component is internally consistent. The use of constraints can help maintain
this consistency.

If KBEmacs had not updated the line-limit role, the programmer might not have realized
that it needed to be updated. The bug which would result, though minor, would have the
pernicious quality of being rather hard to detect during program testing since the bug only
manifests itself when the program attempts to print the summary as the very bottom of a
page.

A final thing to note about the code in Figure 11 is that a number of variable declarations
and the like have been added to the program (the lines marked with 5). This is an example of
the fact that KBEmacs can automatically take care of several kinds of programming details.
It is interesting to note that the data types in these declarations are not specified as part of
the components used. Rather, KBEmacs computes what data types should be used based on
the definitions of the relevant files and the specifications for the procedures which operate
on the variables.

After specifying the enumerator in Figure 11 the only roles which are left unfilled are
the title, the main-file-key, and the summary. These roles are dealt with by the last three
commands in Figure 8.

Automatically Generated Documentation

As a final example of the capabilities of KBEmacs, Figure 12 shows an automatically
generated comment for the program UNIT_REPAIR_REPORT. The comment is in the form of
an outline. The first line specifies the top level component in the program. The subsequent
lines describe how the major roles in this component have been filled in. The comment is
constructed based on the components that were used to create the program.

-~ The procedure UNIT_REPAIR_REPORT is a simple_report:

-- The file_name is "report.txt".

==  The title is ("Report of Repairs on Unit " & UNIT_KEY).
--  The enumerator is a chain_enumeration.

-~ It enumerates the chain records in REPAIRS starting from the
-- the header record indexed by UNIT_KEY.

-- The column_headings are a print_repair_headings.

-- It prints headings for printing repair records.

-- The print_item is a print_repair.

-- It prints out the fields of REPAIR.

--  There is no summary.

Figure 12: Automatically generated comment for UNIT_REPAIR_REPORT.

The comment generation capability currently supported by KBEmacs is only intended
as an illustration of the kind of comment that could be produced. There are many other
kinds of comments containing either more or less information that could just as well have
been produced. For example, KBEmacs could easily include a description of the inputs and
outputs of the program in the comment. The form of comment shown was chosen because it
contains a significant amount of high-level information which is not explicit in the program
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code. As a result, it should be of genuine assistance to a person who is trying to understand
the program.

A key feature of the comment in Figure 12 is that, since it is generated from the knowl-
edge underlying the program, it is guaranteed to be complete and correct. In contrast,
much of the program documentation one typically encounters has been rendered obsolete
by subsequent program modifications. Although it is not currently supported, it would be
easy for KBEmacs to generate a new program comment every time a program was modified.

The fact that KBEmacs can generate the comment shown highlights the fact that KBEmacs
always maintains a plan for the program being edited and that this plan contains complete
information about what components were used to construct it. Although this is not illus-
trated above, this gives the approach taken by KBEmacs significant leverage on program
maintenance as well as program construction.

Future Directions of the Programmer’s Apprentice Project

The work described above is being extended in several directions. To start with, work
is progressing rapidly toward the implementation of the topmost layers of CAKE. When
CAKE is completed it will be used as the basis for a new demonstration system called the
Synthesis Apprentice [24].

The Synthesis Apprentice will incorporate all of the capabilities of KBEmacs. In addi-
tion, since it will contain a general-purpose reasoning module (CAKE), it will be able to
assist in a greater portion of the programming process. With the assistance of the program-
mer, the Synthesis Apprentice will be able to create programs based on detailed low-level
specifications similar to the comment in Figure 12 As part of this, the Synthesis Apprentice
will be able to deduce implicit design decisions which follow from explicit decisions made by
the user. The Synthesis Apprentice will also be able to detect many kinds of specification
€errors.

Work has also begun on a separate system call the Requirements Apprentice[25]. The
Requirements Apprentice will assist an analyst in the creation and modification of software
requirements. Productivity will be enhanced by allowing an analyst to rapidly build up a
requirement by combining standard requirements fragments. Reliability will be enhanced
through the use of general-purpose reasoning to detect contradictions and ambiguities in the
evolving requirement. Like the Synthesis Apprentice, the Requirements Apprentice will be
based on CAKE. However, significant extensions will have to be made in the Plan Calculus
so that it can represent reusable requirements components as well as reusable program
components.

The long term goal is for the Requirements Apprentice to link up with the Synthesis
Apprentice providing support for the entire programming process. However, as currently
envisioned, there is a significant gap between the capabilities of these two systems. This
gap corresponds to high-level system design. Work on the Synthesis Apprentice will assume
that a high-level design has already been obtained and focus on the problem of detailed
design.
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