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Abstract:

We are interested in Voronoi diagrams as a tool in robot path planning, where the
search for a path in an r dimensional space may be simplified to a search on an r — 1
dimensional Voronoi diagram. We define a Voronoi diagram V based on a measure of
distance which is not a true metric. This formulation has lower algebraic complexity than
the usual definition, which is a considerable advantage in motion planning problems with
many degrees of freedom. In its simplest form, the measure of distance between a point and
a polytope is the maximum of the distances of the point from the half-spaces which pass
through faces of the polytope. More generally, the measure is defined in configuration spaces
which represent rotation. The Voronoi diagram defined using this distance measure is no
longer a strong deformation retract of free space, but it has the following useful property:
any path through free space which starts and ends on the diagram can be continuously
deformed so that it lies entirely on the diagram. Thus it is still complete for motion
planning, but it has lower algebraic complexity than a diagram based on the euclidean
metric.
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1 Introduction

The Voronoi diagram has proved to be a useful tool in a variety of contexts in computational
geometry. Our interest here is in using the diagram to simplify the planning of collision-free
paths for a robot among obstacles, the so-called generalized movers’ problem. The Voronoi
diagram, as usually defined, is a strong deformation retract of free space so that free space
can be continuously deformed onto the diagram. This means that the diagram is complete
for path planning, i.e. Searching the original space for paths can be reduced to a search on
the diagram. Reducing the dimension of the set to be searched usually reduces the time
complexity of the search. Secondly, the diagram leads to robust paths, i.e. paths that are
maximally clear of obstacles.

The Voronoi diagram generated by a set of points in a Euclidean space partitions the
space into convex regions which have a single nearest point under some (usually L,) metric.
A generalized Voronoi diagram can be defined for points and line segments in the plane
(Lee and Drysdale, 1981) which partitions the plane into (generally non-convex) regions.
In both cases the diagram is defined to be the set of points equidistant from two or more
generators under the appropriate metric. This construction has proved to be useful for
motion planning among a set of obstacles in configuration space (see O’Dtnlaing and Yap
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(1982), O’Dunlaing, Sharir, and Yap (1984), Yap (1984), and the textbook of Schwartz
and Yap (1986) for an introduction and review of the use of Voronoi diagrams in motion
planning). Its virtue for motion planning is that the diagram is a strong deformation retract
of free space, i.e. the space outside the obstacles can be continuously deformed onto the
diagram. To find a path between two points in free space, it suffices to find a path for
each point onto the diagram, and to join these points with a path that lies wholly on the
diagram.

The simplified diagram has lower algebraic complexity than the L, diagram. For ex-
ample, in R3, the L, diagram about polyhedral obstacles consists of quadric sheets; the
simplified diagram is piecewise linear. In R2, the simplified diagram for polygonal obsta-
cles is a graph of straight lines, see fig. 1. In general, the simplified diagram has the same
degree as the algebraic obstacle constraints. However, it may not have linear size in the
worst case.

One useful aspect of the simplified Voronoi diagram is that it is naturally defined for
the six dimensional configuration space of an arbitrary 3D polyhedron moving amidst 3D
polyhedral obstacles. In general, it has been considered difficult to define such a Voronoi-
type diagram in this case. Our definition elaborates a suggestion of Donald (1984) and
Canny (1985), who describe certain Voronoi-like properties of the algebraic set Uizir ker(Ci—
Cy) for a set of algebraic constraints { C; }.

2 Object-Obstacle Constraints

We briefly derive conditions for overlap of two polyhedral objects A and B. A more
complete derivation of an equivalent condition is given in Canny (86). The form we derive



here is different from (Canny 86) in that it uses a local test for non-overlap, rather than
overlap. We assume first that A and B are convex, and then generalize to the non-convex
case by taking the conjunction of pairwise non-overlap predicates between convex pieces.

The overlap predicates in Canny (86) generate a shallow (depth 2) AND-OR predicate
tree, whose root is a disjunction. It will be advantageous to make the predicate tree as
deep as possible and it is also desirable for the root to be a conjunction. So instead we use
the following test based on conditions for non-overlap.

Definition.

For any face f of a convex polyhedron A, the affine hull f of f is the plane which
contains f.

The affine hull of a face f defines two closed half-spaces, one of which contains A. We
call this half-space the interior half-space, and denote it f .

Finally, we define the wedge of an edge e of A as the intersection of the two interior
half-spaces of the faces which cobound e. The wedge of e is denoted ¢, and it contains A.

Lemma. Two convex polyhedra A and B are non-overlapping iff all edges of A (or B)
are outside some wedge of an edge of B (resp. A).

Proof. This condition is clearly sufficient for non-overlap, by convexity of A and
B. Conversely, if A and B are disjoint, then there is a (not necessarily unique) non-zero
shortest vector between them. Let ps and pp be the end-points of this vector in A and B
respectively. If one of these points lies in the interior of a face f, then the test succeeds for
any wedge of an edge in the boundary of f. If one of the points lies in the interior of an
edge e, then the test succeeds for é

The only case remaining is where p, and pp are both vertices. Let f be a face adjacent
to pa, and such that pp lies outside the interior half-space f , (there must be at least one
such f, or pg would be contained in A). Then if B is also outside this half-space, the test
succeeds for the wedge of any edge that cobounds f.

Otherwise, let W, be the intersection of the wedges of all edges that cobound pg. Let
S be the plane passing through pg and normal to the vector (pgp—p4). S defines two closed
half-spaces, one (54) containing A and the other (Sg) containing both B and W, i.e. S
separates A and B. Then the intersection (W,; N f) lies in (Sp N f). Let po be the closest

point in (W,, N f) to (SNf). Then po is in the boundary of some wedge é of an edge e that
cobounds pg. Now (6N f) C (SpN f) and so by projection from pg, (ENF ) C (SzNT ).
But AC (S4Nf ),s0(éNA) =0, and the test succeeds for &. 0O

Thus we can define the following predicate for non-overlap F4 g of A and B from the above
test:

e;€ &€ €€ €;€
edges(B) edges(A} edges(A) edges(B)



where Fy, .. = ((éiNe;) = 0). The corresponding condition for overlap is in the form of a
conjunction of disjunctions, as desired, and this is the form we will use in our development.
If the object consists of several convex pieces A;, as do the obstacles B;, then the non-
overlap predicate is the conjunction of pairwise predicates

F=A A Fas, (2)

We must now decompose the non-overlap predicate for a wedge é4 of A and a edge
ep of B into simple geometric predicates that can be computed directly. These geometric
predicates are Ay, CF . and C7 . . Ay, indicates non-overlap of a vertex p of B and

the interior half-space of a face f of A and is given by

Ajp=(ng-p—c; >0) (3)
where n; is the outward normal of f, and ¢; is its distance from the origin. For C}
and C_, . we need the following definitions: Let d4 and dp be the vector directions of e 4

and ep respectively, and let p4 be any point on e4. Let and H and T be the head and tail
vertex respectively of eg, then we have

C;t\,eB =(H—pA)-(dAXdB)>0 (4)
Cepes = (H—pa)-(daxdp) <0

Now we can define F;, ., in terms of the above predicates, and L and R which are the
left and right faces respectively, which cobound epg, (left and right are determined here by
viewing ep from outside ég with dg upward).

Ferer = (ALuA(ALrV (AT ACE,..)))

€A€B

V (Arm A(ArrV (ALr ACL,.,)))) (5)

The predicate F;, ., can be written in the equivalent form:

Fipen = (ALuVAru)AN(AL7TV ART) (6)
A (AL,HVAR,TVC"' ) A (AR,HVAL,TVC_ )

€A,eB €A€B

There is a similar form for the predicate F,, :,. From (1), (2) and (6) we see that the
overall form of the non-overlap predicate can be written as

F=AVAV(Ciju > 0) (7)

¢t g k1



3 The Voronoi Diagram

For motion planning, the configuration of object A is variable. For a polyhedron in three
dimensional space, the configuration contains a position x € R* and an orientation q €
S0(3) component, where SO(3) is the group of three-dimensional rotations. Thus the
face normals, vertex locations, and edge directions of A are all functions of x and q. The
predicate (7) is now also a function of the configuration (x, q), i.e.

F(x,q) = AV AV(Ciju(x,q) > 0) (8)
i ok

The forms of the functions Cjjx(x,q) are given explicitly in Canny (1986), and they
are algebraic if, say, a quaternion representation of rotation is used. The set of overlap
configurations is called the configuration obstacle and is denoted CO = {(x,q)|-F(x,q)}.
It may be thought of as a physical obstacle in configuration space to be avoided by a path
planner. We now observe that by letting positive real values represent logical one, and
non-positive values represent logical zero, that the min function implements logical AND,
and the max function implements logical OR. Thus an equivalent form to (8) is

F(x,q) = ( (min(max(min(max Cou(x, @))))) > 0) Q

which suggests that the quantity

p(x, q) = min(max(min(max Ciju(x, q)))) (10)

can be used as a measure of distance from the configuration obstacle, because it varies
continuously through configuration space, is positive at configurations outside C'O, and
non-positive at configurations inside CO. Thus the configuration obstacle can be rewritten
as CO = {p | p(p) <0}, and its complement, the set of points in free space can be written
F={p|p(p) > 0}.

In order to define the Voronoi diagram under the distance measure p, we need a notion
of closest feature. The closest features to a configuration (x,q) are those C;;i which are
critical in determining the value of p(x, q), that is, small changes in the value of C;;;; cause
indentical changes in the value of p.

Definition.

A constraint Cj jorote € {Ciju} is critical at a configuration (x,q) if the value of
Cisiokolo(X, q) equals the maximum (or minimum) value of every max (resp. min) ancestor
of Ciyjokolo in the min-max tree in (10). i.e.

Cisjokoto (X, @) = max Ciy kot (X, q) = min(max Cigjor (%, q)) = - .- (11)

Now we have



Definition.
The simplified Voronoi diagram V is the set of configurations in free space F' at which
at least two distinct constraints are critical.

It should be clear from the definition of criticality that V' is semi-algebraic if the con-
straints C;j are algebraic. V is closed as a subset of free space, although it is not closed in
configuration space. Notice that V has no interior, since it is contained inside a finite set
of bisectors, each of which has no interior. A bisector is the zero set of (C;yjokoto — Ciy jukats)
for some pair of distinct constraints. It will prove useful to subdivide the Voronoi diagram
into two parts:

Definition.

The concave part of the Voronoi diagram V' denoted conc(V) is the set of configurations
in F where two distinct constraints are critical, and the lowest common ancestor of these
constraints in the min-max tree of (10) is a min-node.

The conver part of the Voronoi diagram V' denoted conv(V) is the set of configurations
in F' where two distinct constraints are critical, and the lowest common ancestor of these
constraints is a max-node.

Notice that these two definitions are not mutually exclusive, because there may be
points where more than two constraints are critical, and which satisfy both definitions.
Thus conv(V) and conc(V') may overlap.

4 Completeness for Motion Planning

Our key result is that any path in F' with endpoints in V can be deformed (in F) to a path
with the same endpoints lying entirely in V. We start with a path p: I — 3 x SO(3)
lying in free space, p(I) C F, where I = [0,1] is the unit interval.

First we assume wlog that p intersects V at a finite number of points. We can do this
because, as defined in the previous section, V' is a semi-algebraic set, and by Whitney’s
(1957) result, it can be split into a finite number of manifolds, or strata. Since V has no
interior, all these manifolds have codimension at least one. For any path p there is a path
p’ arbitrarily close to p, which is an embedding of I, and so p’(I) is a 1-manifold. Almost
every perturbation of p’ intersects all of the strata transversally, and therefore at a finite
number of points. We can choose such a perturbation to be arbitrarily small, in particular,
smaller than the minimum distance from p’(I) to CO. Such a perturbation gives a new
path p” which is path homotopic to p, and which has finite intersection with V.

So we assume that p has m intersections with V| and that these occur at points p(z;)
with 2,,...2,, € I, and z; = 0 and z,, = 1. We then break each interval [z;, ;;,] in half,
giving us two intervals sharing an endpoint. Thus we now have 2m—2 intervals each of which
intersects V' at only one endpoint. Below we give homotopies for each of these intervals
which continuously deform the image of the interval onto V. Since all these homotopies
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agree at their endpoints, they can be pasted together to give us a global homotopy which
deforms p onto V. For simplicity, we assume the path segment is parametrized in the range
I =[0,1] and that p(0) € V.

The motion constraints Cj; are either A or C predicates, (3) and (4), and all can be
written in the general form below, called the parametrized plane equations by Lozano-Perez
(1983).

Cijri(%,q) = Nijm(q) - x + cija(q) (12)

Where N;jxi(q) € R° and c¢;;x(q) € R are both continuous functions of q. We assume
that the Cjj are normalized so that |N;;(q)| = 1 for all q. Our objective is to continuously
deform the path p onto the diagram, and we use the Nyj; as ‘normals’ to push a point on
the path p(I) away from the critical Cjy. We assume that the set of positions is bounded
by some set of constraint ‘walls’ of the same form as (1), so that a point can be displaced
only a finite distance in free space. We also assume that the workspace has unit diameter.

General position assumptions. The construction requires the following general
position assumptions. First, suppose Cji is type C predicate (4). Then Nyki(q) = da(q) x
dp. To normalize N;j;;, we must divide by its magnitude, which must remain non-zero.
Hence the set of configurations

{alda(q) xdp =0} C SO(3) (13)

must not intersect the image of p. However, (13) is clearly of codimension 2 in SO(3), and
hence by Sard’s lemma there is always an arbitrarily small perturbation of p which avoids
(13).

Similarly, the set

{(x,q) | (Nijr(q) = Nijur(q)) A (Cijia(%,9) = Cojon(%,9)) } (14)

is also of codimension > 2 in R% x SO(3), and we assume that p avoids it as well.

We must define two different homotopies depending on whether p(0) € conc(V'), which
is the simplest case, or p(0) € conv(V).

Notice that since p(0) is the only point on the path which is in V, there is exactly one
constraint which is critical at all configurations in p(0,1] (since constraints change value
continuously along the path and for another constraint to become critical, it must first
equal the first constraint, which can only occur at points on the diagram). Let the critical
constraint be Cjjx. We define a homotopy Jo : I x I — R x SO(3) as

Jo(t,u) = p(t) + uNiju(mo(p(t))) (15)
where 7,(p(t)) is the orientation component of p(t) and the addition symbol means we add

the vector quantity ulNyjxi(74(p(t)) to the position component of p(¢). The deformation
above pushes points beyond the diagram, so we define a second homotopy J; : I x I — F.
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J1(t,u) = Jo(t, min(u, us(t))) (16)

where wu.(t) =inf{s| Jo(t,s) € conc(V)}

Recall from the definition of homotopy, that J; is a homotopy of p and a path p’ if J; is
continuous and J1(¢,0) = p(¢) and Ji(¢,1) = p'(t). The homotopy J; suffices to map paths
with one endpoint in conc(V) onto V:

Lemma 4.1 Let p: I — 3 x SO(3) be a path having p(0) € V and no other points
in V. Then J, is a homotopy of p and a path p’ such that p/(I) C conc(V). Furthermore
p'(0) = p(0) if p(0) € conc(V).

Proof. From the definition of J; we have Jy(¢,0) = p(¢) and Jy(¢,1) € conc(V). Also if
p(0) € conc(V') then u.(0) = 0 so p'(0) = p(0). It remains to show that J; is continuous.
First we notice that Jo is continuous. Continuity of J; follows if we can show that u.(¢) is
continuous. Now Jo(t, u.(t)) is contained in the zero sets of all bisectors {(Ci i — Cijri) }-
Let u/(t) be a deformation onto a particular bisector:

u () = inf{u | Jo(t,u) € ker(Cyjpnr — Cijut)} (17)
then u is continuous because by definition

(Cijrr — Cargrenr)(Jo(t,ug (1)) = 0 (18)

and differentiating

£ (Cijat — Cirgar)(Jo(t, u)) + (%) 22 (Cigpt — Cogr) (Jol(t,ul)) = 0 (19)
rearranging we obtain

_ 20
ot %(Cijkl_Ci'j'k’l')(']o(t’ué)) “

and therefore 2u/(t) is finite, because the denominator above is non-zero by our general
position assumption. Now we observe that u.(t) can be constructed by pasting together
segments of ul(t) for various bisectors € conc(V'), and we must show that they agree at

their endpoints. The proof is by contradiction. Suppose we had

_ [ul(t) for t € (to, tu);
ue(t) = {u;'(t) for ¢ € (11, t2);
with ug(t1) # uf(t)

for u’ and u” derived from distinct bisectors. Then since u. is the minimum of all such v,
we must have ul(t;) < ul(¢)

(21)



But this means that as u increases, Jo(t1,u) crosses two bisectors in conc(V) between
Cijki and other constraints. This is impossible because all constraints C' have [N(q)| = 1,
and it follows that

d

a_uci'j'k’l'(t]o(tl, u)) <1 (22)
15}

a_dcijkl(JO(tl’ u)) =1

That is, all constraints increase no faster than Cjx; with the deformation parameter u. By
our general position assumption if C;j # Cyjpr, then the inequality in (22) is strict, and
so if the clause Cy iy becomes critical at ul, it shares a min node lowest ancestor with
Cijri- Since all constraints in the tree increase more slowly than Cjjx;, the value of this min
node will be less than the value of Cyjr for u > ul(t1). Therefore C;jx cannot be critical
for any u > u/(?,), contradicting the assumption that u”(¢;) is distinct from u’(¢;). So all
bisectors in conc(V') between Cj; and other constraints agree at their endpoints, and u,(t)
is continuous by pasting. This shows that J; is continuous. 0O

If p(0) € conv(V) the situation is more complicated, because the deformation J; pushes
p(0,1] away from p(0). To correct this, we first compress the first half of p to a point:

Lemma 4.2 Let p: I — F be a path in free space. Then p is homotopic to a path p’
such that

(i) p([(0, 31) = p(0)

(ii) p'(1) = p(1)

(iii) p'(1) = p(I)

Proof. The required homotopy is

2(0) ift< %u;
J(t,u) = {p (2;_':) otherwise; (23)

so J(2,0) = p(t), and J(¢,1) = p'(t). O

We apply the homotopy of lemma 4.2 to p to give us a path p’. Applying the homotopy
J1 to the path segment p’ I[% 1) continuously deforms this path segment onto conc(V'). Then
we define a new homotopy which slowly “unravels” p’ I[o, 1 from p(0). All the points in this
homotopy have the same orientation, and for each value of the deformation parameter u,
the path consists of a finite number of straight line segments.

The construction is inductive and we start with a homotopy that gives us two straight
line segments. If the orientation at the configuration p(0) is qq,, every point on the joining



path will also have orientation q,. We define two vectors in position space Ny and Mg
which will be used to define the joining path segment.

Let Cijri and Cyjippr be the two constraints that are critical at p(0), then Np lies in the
plane of the bisector of Cjx; and Cjyjigrr. No is normalized so that No- Nyjxi(qo) = 1 and it
follows that No-Nyjie(qe) = 1. A second vector My is chosen so that Mo+N;;i(q,) = No,
and so:

No = Nijrt + Nojw
0=
1+ Nijkl . Ni'j'k'l’
Ni/j/klll — (Nijkl . Ni’j’k’l')Nijkl
1 + Nyjrr + Ny jipor

(24)

M, = (25)

where Nyji; (shorthand for Niyjxi(qe)) is the normal vector to the critical constraint Cjjy
at orientation qq, and Ny iy = Nyjip(qg) is the vector normal to the critical constraint
C;iljlklll.

We can now define the joining homotopy J; : I x I — 3 x SO(3) which deforms the
path segment p'[;, 4 (with p’ reparametrized so that its domain is I):

p(0) + 2tNy, if t € [0, Jul;
J2(t,u) = < p(0) + ulNo, ifte [%u, 1-— %u], (26)
p(0) + (2 — 2t)Mop + uNyu(qp), ifte€ [l — fu,lj;

Now Np lies in the plane of the bisector of the two constraints that are critical at p(0),
but it is possible that as u increases, J3(5, u) leaves the convex part of the diagram before
reaching the concave part. That is, there may be bends in the convex part of the diagram
which must be tracked. We must therefore stop the deformation at this point by defining

u, = sup{u | Ciju is critical throughout Ju(3, [0, u]) (27)

and once again we define a homotopy which stops points when they reach the diagram:

J3(t,u) = Jo(t, min(u, u,, u.(t))) (28)

where u.(t) =inf{u| Jo(t,u) € conc(V)}.

and then we have:

Lemma 4.3 Let p: I —» ®° x SO(3) be a path having p(I) = p(0) € conv(V). Then Js
is a homotopy of p and a path p’ such that

(i) '(0) = p(0)

(ii) p'([O,l - %uv]) - COIIV(V)

(i) p'((1 - 3uy, 1]) NV C conc(V)



Proof.

Parts (1) and (ii) follow immediately from the definition of J; and J;. Part (iii) states
that points in the interval (1 — uu, 1] that are mapped into the diagram by p’ are mapped
into the concave part of the dlagram For this we notice that

0J2(t,u

—25(-1;—1 = Nijui(qo) (29)
for ¢ > 1 — Ju, while Jy(¢,u) € conv(V) if t < u. Therefore for ¢ > 1 — u the following is
true:

OCi jr (Jo(t, u))
du

OCim(Jo(t,u))
Ou -

So as u increases, all constraints increase no faster than Cijr. So another constraint
can only become critical if its lowest common ancestor with C;jy; is a min node, and such
a configuration must be in conc(V).

For continuity of J3, first we notice that J; is continuous, and J3; will be continuous if
u.(t) defined in (28) is continuous. For this we notice that the use of u, in the min function
in (28) guarantees that C;jx is critical at configuration Ja(¢,u) for all ¢t and uw. The rest of
the proof of continuity is identical to the proof of continuity of u.(¢) in lemma 4.1, using
the rate of change condition in (30). 0O

(30)

Lemma 4.4 If p: I — F is a path having p([0,1]) = {p(0)} C conv(V) then p is
homotopic to a path p’: I — V such that p'(0) = p(0).

Proof. The proof is inductive. We define a sequence of partial homotopies, that is,
maps J" : I x [u™!,u"] - F such that J*(t,u™) = J"t'(¢,u™). Then we show that the
number m of partial homotopies required is finite.

Inductive hypothesis.  The input to our construction is a path p”, a value of u™ € I,
and points t§ and ¢} in I such that

(i) p*(t) € conv(V) for t < ¢

(i) 2([t2, &) = {p"(t2)} C conv(V)

(iii) Cyj is critical on p™(1).

From Cijx we use lemma 4.1 to define a homotopy J; for the path segment p ™ |ien 1)
(reparametrized to I). Similarly, let Cyjpr be a constraint which is critical at p*(2)
and whose lowest common ancestor with C;;i; is a max node. For these two constraints,
we use Lemma 4.3 to define an unravelling homotopy Js of the path segment p™ | e
(reparametrized to I). This gives us a value of u, as in (27), and we define u™! = u” -+ u,,.
Now J™*! can be defined on the range u € [u™, u"t!] as:
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p"(t) for t € [0,13];
gl — ) J3 (t,, t,,,u —u ) for ¢ € [t3, t7]; (31)
Ji (1 U — u“) for t € [t7,1];

then J**! is a homotopy because J3 and J; agree on their intersection, and J3(0,u) = p"(12).
We can define a new path p™*!(¢) = J**!(¢,u™*!) and points

5! = 15+ =X
and it is readily verified that these satisfy the inductive hypothesis
For the base case, weset p° = p, u® =0 and t3 =0, ¢ = -, which clearly satisfies the

inductive hypothesis.

" — ") and =0 — %(t;‘ — 1) (32)

Finiteness. For termination, we must show that after a finite number of steps m,
p™(t§") € conc(V). Suppose p™(tg) ¢ conc(V), and let Cyjep be the constraint (along
with Cij) which is critical at p™([t§~, £3]), i.e. these are the constraints used to define the
homotopy Js for J™. A third constraint Cyujmemn is also critical at p™(t3), by (27). This
constraint has a max node lowest common ancestor with Cy g, which implies that

0 0
-a-JCiljlkll'(Js(%, u)) < a—uCinjuann(J:g(%, u)) (33)
and from (24) it follows that
(Nijkl + Niljlklll) . Niijlklll < (Nijkl + N,iljlklll) . Ni"j"k”l" (34)
which implies
Ni]kl . Ni’jlkl,l < N“jkl * Ni"j"kl/l” (35)

but the condition (35) defines a total ordering on the constraints distinct from Cijri. That
is, as u increases and p"(1}) is deformed according to some J,, a new constraint Ciu jugnm
can only become critical if it satisfies condition (35). Once Cynjumn has become critical,
Cyjyxr can never again become critical. Thus we need define homotopies J” at most once
for each constraint, and so their number m is bounded by the number of constraints.

We then construct J; for the path segment P™|1em 1) reparameterized to I. The final
homotopy is defined for the range u € [u™, 1] as:

- pm(t) for t € [0,t]"];
J (t ) {Jl(l tm’u m) fOI‘ 1 € [t;n, 1]; (36)
then the homotopy
Ja(t,u) = J*(t,u) with ve [u" " u"] for n=1,...m+1 (37)
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is continuous, and defines a homotopy between p(t) = J4(¢,0) and a path p'(¢) = Ju4(¢,1)
such that p'(I) c V. 0O

Theorem 4.1 Let p: I — F be a path with endpoints in V. Then p is path homotopic
in F' to a path p’ with the same endpoints which lies entirely in V.

Proof. We first apply the homotopy of lemma 4.2 to all path segments p|[,.¢,,,] with
an endpoint in conv(V). This does not displace endpoints in V. Then we construct a
global homotopy J by pasting together homotopies J; for path segments with an endpoint
in conc(V'), and homotopies J, for the remaining path segments. The resulting homotopy
is continuous if these homotopies agree at their endpoints. Firstly, both J; and J; to not
displace endpoints in V. Therefore they agree at endpoints in V. At free endpoints both
satisfy the free endpoint condition: Assume that after reparametrization, p(1) is a free
endpoint. Then

Ji(1,u) = p(1) + min(u, u. )N for =14 (38)

with  wu. = inf{u| p(1) + uNx € conc(V)}

thus J is continuous, and we define p'(t) = J(¢,1). Since Ji(I,1) C V and J4(I,1) C V,
we have p'(I) Cc V. 0O

Finally, suppose that in a motion planning problem we are given a start configuration
(x,q) which is not on V. Then exactly one constraint Ciji is critical there. We apply
the homotopy J; to the constant path at (x,q) to attain the diagram; that is, we plan a
straight-line path in direction N;;1i/(q) to reach V from the start.

The completeness condition for motion planning has the following simple algebraic
formulation. Let ¢ : V < F be the inclusion map. Then if V is a euclidean Voronoi
diagram, then it is a strong deformation retract of F', and hence i induces an isomorphism
of fundamental groups. In our case we have the weaker completeness condition that i
induces an epimorphism:

Corollary. (Algebraic formulation of the completness condition for motion planning).
Let i : V < F be the inclusion map of the simplified Voronoi diagram in free space, with
Yo € V, and let 7, (X, z) denote the fundamental group of X with base point z. Then the
induced homomorphism i, : 71(V, yo) — 71 (F,yo) is surjective.

Hence the fundamental group of F is isomorphic to the quotient group m,(V, y)/ kert,.
This quotient measures the structural difference between F and V.
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5 Complexity bounds

We have given a definition of the simplified Voronoi diagram V in the configuration space
of a polyhedron in 3-space. This definition does not constitute an algorithm, so our bounds
depend on the algorithm used with the diagram. We assume that the diagram will be used
as input to a version of the roadmap algorithm of Canny (1986a). This algorithm computes
one-dimensional skeletons of semi-algebraic sets in time (do(”z)nr logn) for a semi algebraic
set defined by n polynomials of degree d in r variables. In our case the number of variables
and the degree of the equations are constants.

A naive bound on the complexity of computing a skeleton of V would be O(n!?logn)
if we are given n constraints, because the diagram is a subset of the zero sets of all O(n?)
bisectors of constraints. This bound can be reduced to O(n”logn) by noticing that the
diagram has a simple stratification (decomposition into a union of disjoint manifolds). The
diagram is a subset of the set of all m-sectors, where an m-sector is the set of points where
m constraints have the same value. If the constraints are in general position, each m-sector
is a manifold of codimension m — 1. There are O(n™) m-sectors, and by the codimension
condition, m must be less than or equal to 7. The complexity of computing the skeleton
of this stratification is O(n7 logn).

While its worst case bounds are poor, the actual performance of the algorithm is ex-
pected to be much better, because V approximates the euclidean Voronoi diagram, as
shown in figures 1 and 2. The evidence for this is that the complexity of the euclidean
Voronoi diagram for a set of n points in r dimensions is O(nlg#lj), and the euclidean
Voronoi diagram for disjoint line segments in the plane has linear size.

This conjecture is supported by some experimental evidence. We have implemented an
algorithm for constructing the simplified Voronoi diagram for the following configuration
spaces: R?, the case of an arbitrary polygon translating in the plane amidst polygonal
obstacles, and 2 x S, which allows the moving polygon to rotate as well as translate. In
many cases the size of V has been observed to remain roughly linear, as in fig. 1, which
our implementation produced.
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