MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A.I. Memo No. 958a March 1988

Obviously Synchronizable Series Expressions:
Part I: User’s Manual for the OSS Macro Package

by
Richard C. Waters

Abstract

The benefits of programming in a functional style are well known. In par-
ticular, algorithms that are expressed as compositions of functions operating
on series/vectors/streams of data elements are much easier to understand and
modify than equivalent algorithms expressed as loops. Unfortunately, many
programmers hesitate to use series expressions, because they are typically
implemented very inefliciently.

A Common Lisp macro package (0SS) has been implemented which sup-
ports a restricted class of series expressions, obviously synchronizable series
expressions, which can be evaluated very efficiently by automatically convert-
ing them into loops. Using this macro package, programmers can obtain the
advantages of expressing computations as series expressions without incurring
any run-time overhead.

Copyright (© Massachusetts Institute of Technology, 1988

This report describes research done at the Artificial Intelligence Laboratory of the Mas-
sachusetts Institute of Technology. Support for the laboratory’s artificial intelligence research
has been provided in part by the National Science Foundation under grant IRI-8616644, in part
by the IBM Corporation, in part by the NYNEX Corporation, and in part by the Advanced Re-
search Projects Agency of the Department of Defense under Office of Naval Research contract
N00014-85-K-0124.

The views and conclusions contained in this document are those of the authors, and should
not be interpreted as representing the policies, neither expressed nor implied, of the National
Science Foundation, of the IBM Corporation, of the NYNEX Corporation, or of the Department
of Defense.

Contents

1. All You Need To Know to Get Started 1
Example 4
2. Reference Manual 8
Restrictions and Definitions of Terms. 8
General Information 12
Enumerators o e 14
On-Line Transducers 21
Cotruncation e 25
Off-Line Transducers 27
Selection and Expansion 30
Splitting 31
Reducers e e e 32
Early Reducers. 36
Series Variables 37
Coercion of Non-Series to Series 40
Implicit Mapping o oL 41
Literal Series Functions 44
Defining Series Functions 46
Multiple Values 47
Alteration of Values 48
Debugging o e 49
Side-Effects L. 51
3.Bibliography o 53
4. Warning and Error Messages 54
5.Index of Functions, 60

Acknowledgments. Both the 0SS macro package and this report have benefited
from the assistance of a number of people. In particular, C. Rich, A. Meyer, Y. Feld-
man, D. Chapman, and P. Anagnostopoulos made suggestions which led to a number of
very significant improvements in the clarity and power of obviously synchronizable series
expressions.

1. All You Need To Know to Get Started

This first section describes everything you need to know to start using the 0SS macro
package. It then presents a detailed example. Section 2 is a comprehensive reference
manual. It describes the functions supported by the 0SS macro package in detail. Sec-
tion 3 contains the bibliography. Section 4 explains the warning and error messages that
can be produced by the 0SS macro package. Section 5 is both an index into Section 2
and an abbreviated description of the 0SS functions.

A companion paper [6] gives an overview of the theory underlying the 0SS macro
package. It explains why things are designed the way they are and compares the 0ss
macro package with other systems that support operations on series. In addition, the
companion paper gives a brief description of the algorithms used to implement the 0ss
macro package. As part of this, it describes a number of subprimitive constructs which
are provided for advanced users of the 0SS macro package.

The OSS data type. A series is an ordered linear sequence of elements. Vectors,
lists, and streams are examples of series data types. The advantages (with respect to con-
ciseness, understandability, and modifiability) of expressing algorithms as compositions
of functions operating on series, rather than as loops, are well known. Unfortunately,
as typically implemented, series expressions are very ineflicient—so ineflicient, that pro-
grammers are forced to use loops whenever efficiency matters.

Obviously Synchronizable Series (0SS) is a special series data type that can be im-
plemented extremely efficiently by automatically converting 0SS expressions into loops.
This allows programmers to gain the benefit of using series expressions without paying
any price in efficiency.

The 0SS macro package adds support for the 0Ss data type to Common Lisp [4]. The
macro package was originally developed under version 7 of the Symbolics Lisp Machine
software [7]. However, it is written in standard Common Lisp and should be able to run
in any implementation of Common Lisp. (It has been tested in DEC Common Lisp and
Sun Common Lisp as well as Symbolics Common Lisp.)

The basic functionality provided by the 0Ss macro package is similar to the function-
ality provided by the Common Lisp sequence functions. However, in addition to being
much more efficient, the 0SS macro package is more powerful than the sequence func-
tions, because it includes almost all of the operations supported by APL [3] and by the
Loop macro [2]. As a result, 0SS expressions go much farther than the sequence functions
towards the goal of eliminating the need for explicit loops.

Predefined OSS functions. The heart of the 0SS macro package is a set of several
dozen functions which operate on 0SS series. These functions divide naturally into three
classes. Enumerators produce series without consuming any. Transducers compute series
from series. Reducers consume series without producing any. As a mnemonic device, the
name of each predefined 0Ss function begins with a letter code that indicates the type
of operation. These letters are intended to be pronounced as separate syllables.

Predefined enumerators include Elist which enumerates successive elements of a list,
Evector which enumerates the elements of a vector, and Eup which enumerates the inte-
gers in a range. (The notation [...] is used to represent an OSS series.)

2 All You Need To Know to Get Started

(Elist ’(a b c¢)) = [a b c]
(Evector *#(a b c)) = [a b c]
(Eup 1 :to 3) = [1 2 3]

Predefined transducers include Tpositions which returns the positions of the non-null
elements in a series and Tselect which selects the elements of its second argument which
correspond to non-null elements of its first argument.

(Tpositions [a nil b ¢ nil nil]) = [0 2 3]
(Tselect [nil T T nil] [1 2 3 4]) = [2 3]

Predefined reducers include Rlist which combines the elements of a series into a list,
Rsum which adds up the elements of a series, Rlength which computes the length of a
series, and Rfirst which returns the first element of a series.

(Rlist [a b c]) = (ab c)
(Rsum [1 2 3]) = 6
(Rlength [a b c]) = 3
(Rfirst [a b c]) = a

As simple illustrations of how 0Ss functions are used, consider the following.

(Rsum (Evector ’#(1 2 3))) = 6
(Rlist (Tpositions (Elist ’(a nil b ¢ nil)))) = (0 2 3)

Higher-Order OSS functions. The 0SS macro package provides a number of
higher-order functions which support general classes of 0SS operations. (Each of these
functions end in the suffix “F”, which is pronounced separately.)

For example, enumeration is supported by (EnumerateF init step test). This enumer-
ates an 0SS series of elements starting with init by repeatedly applying step. The Oss
series consists of the values up to, but not including, the first value for which test is true.

Reduction is supported by (ReduceF init function items) which is analogous to the
sequence function reduce. The elements of the 0SS series items are combined together
using function. The quantity init is used as an initial seed value for the accumulation.

Mapping is supported by (TmapF function items) which is analogous to the sequence
function map. A series is computed by applying function to each element of items.

(EnumerateF 3 #’1- #’minusp) = [3 2 1 0]
(ReduceF 0 #’+ [1 2 3]) = 6
(TmapF #’sqrt [4 9 16]) = [2 3 4]

Implicit mapping. The 0ss macro package contains a special mechanism that
makes mapping particularly easy. Whenever an ordinary Lisp function is applied to an
0SS series, it is automatically mapped over the elements of the 0SS series. For example,
in the expression below, the function sqrt is mapped over the 0SS series of numbers
created by Evector.

(Rsum (sqrt (Evector ’#(4 16))))
= (Rsum (TmapF #’sqrt (Evector ’#(4 16)))) = 6

3

To a considerable extent, implicit mapping is a peripheral part of the 0SS macro
package—one can always use TmapF instead. However, due to the ubiquitous nature of
mapping, implicit mapping is extremely convenient. As illustrated below, its key virtue
is that it reduces the number of literal 1ambda expressions that have to be written.

(Rsum (expt (abs (Evector ’#(2 -2 3))) 3))
= (Rsum (TmapF #’(lambda (x) (expt (abs x) 3))
(Evector '#(2 -2 3)))) = 43

Creating OSS variables. The 0SS macro package provides two forms (letS and
letS*) which are analogous to let and let*, except that they make it possible to create
variables that can hold 0Ss series. (The suffix “S”, pronounced separately, is used to
indicate primitive 0Ss forms.) As shown in the example below, 1etS can be used to bind
both ordinary variables (e.g., n) and 0SS variables (e.g., items).

(defun average (v)
(letS* ((items (Evector v))
(sum (Rsum items))
(n (Rlength items)))
(/ sum n)))

(average ’#(1 2 3)) = 2

User-defined OSS functions. New 0SS functions can be defined by using the form
defunS which is analogous to defun. Explicit declarations are required inside defunS to
indicate which arguments receive 0SS series. The following example shows the definition
of an 0ss function which computes the product of the numbers in an 0SS series.

(defunS Rproduct (numbers)
(declare (type oss numbers))
(ReduceF 1 #’* numbers))

(Rproduct [2 4 6]) = 48

Restrictions on OSS expressions. As illustrated by the examples above, 0SS
expressions are constructed in the same way as any other Lisp expression—i.e., 0SS
functions are composed together in any way desired. However, in order to guarantee that
0SS expressions can always be converted into highly efficient loops, a few restrictions
have to be followed. These restrictions are summarized in the beginning of Section 2 and
discussed in detail in [6].

Here, it is sufficient to note that the 0SS macro package is designed so that it is im-
possible to violate most of the restrictions. The remaining restrictions are checked by the
macro package and any violations are automatically fixed. However, warning messages
are issued whenever a violation is detected, because, as discussed in the beginning of
Section 2, it is often possible for the user to fix a violation in a way which is much more
efficient than the automatic fix supplied by the macro package.

The best approach for programmers to take is to simply write 0SS expressions without
worrying about the restrictions. In this regard, it should be noted that simple 0Ss expres-
sions are very unlikely to violate any of the restrictions. In particular, it is impossible for

4 All You Need To Know to Get Started

an OSS expression to violate any of the restrictions unless it contains a variable bound by
letS or defunS. When violations do occur, they can either be ignored (since they cannot
lead to incorrect results) or dealt with on an individual basis (which is advisable since
violations can lead to significant inefficiencies).

Benefits. The benefit of 0SS expressions is that they retain most of the advantages
of functional programming using series, while eliminating the costs. However, given the
restrictions alluded to above, the question naturally arises as to whether 0ss expressions
are applicable in a wide enough range of situations to be of real pragmatic benefit.

An informal study [5] was undertaken of the kinds of loops programmers actually
write. This study suggests that approximately 80% of the loops programmers write are
constructed by combining a few common kinds of looping algorithms. The 0SS macro
package is designed so that all of these algorithms can be represented as 0ss functions.
As a result, it appears that approximately 80% of loops can be trivially rewritten as 0SS
expressions. Many more can be converted to this form with only minor modification.

Moreover, the benefits of using 0SS expressions go beyond replacing individual loops.
A major shift toward using 0SS expressions would be a significant change in the way
programming is done. At the current time, most programs contain one or more loops
and most of the interesting computation in these programs occurs in these loops. This
is quite unfortunate, since loops are generally acknowledged to be one of the hardest
things to understand in any program. If 0SS expressions were used whenever possible,
most programs would not contain any loops. This would be a major step forward in
conciseness, readability, verifiability, and maintainability.

Example

The following example shows what it is like to use 0SS expressions in a realistic
programming context. The example consists of two parts: a pair of functions which
convert between sets represented as lists and sets represented as bits packed into an
integer and a graph algorithm which uses the integer representation of sets.

Bit sets. Small sets can be represented very efficiently as binary integers where each
1 bit in the integer represents an element in the set. Below, sets represented in this
fashion are referred to as bit sets.

Common Lisp provides a number of bitwise operations on integers which can be used
to manipulate bit sets. In particular, logior computes the union of two bit sets while
logand computes their intersection.

The functions in Figure 1.1 convert between sets represented as lists and bit sets. In
order to perform this conversion, a mapping has to be established between bit positions
and potential set elements. This mapping is specified by a universe. A universe is a list
of elements. If a bit set b is associated with a universe u, then the 7th element in u is in
the set represented by b iff the ¢th bit in b is 1.

For example, given the universe (a b ¢ d e), the integer #b01011 represents the set
{a,b,d}. (By Common Lisp convention, the Oth bit in an integer is the rightmost bit.)

Given a bit set and its associated universe, the function bset->1list converts the
bit set into a set represented as a list of its elements. It does this by enumerating the
elements in the universe along with their positions and constructing a list of the elements

Example 5

(defun bset->list (bset universe)
(Rlist (Tselect (logbitp (Eup 0) bset) (Elist universe))))

(defun list->bset (list universe)
(ReduceF 0 #’logior (ash 1 (bit-position (Elist list) universe))))

(defun bit-position (item universe)
(or (Rfirst (Tpositions (eq item (Elist universe))))
(1- (length (nconc universe (list item))))))

Figure 1.1: Converting between lists and bit sets.

which correspond to 1s in the integer representing the bit set. (When no :to argument
is supplied, Eup counts up forever.)

The function list->bset converts a set represented as a list of its elements into a
bit set. Its second argument is the universe which is to be associated with the bit set
created. For each element of the list, the function bit-position is called in order to
determine which bit position should be set to 1. The function ash is used to create an
integer with the correct bit set to 1. The function ReduceF is used to combine the integers
corresponding to the individual elements together into a bit set corresponding to the list.

The function bit-position takes an item and a universe and returns the bit position
corresponding to the item. The function operates in one of two ways depending on
whether or not the item is in the universe. The first line of the function contains an 0SS
expression which determines the position of the item in the universe. If the item is not in
the universe, the expression returns nil. (The function Rfirst returns nil if it is passed
a series of length zero.)

If the item is not in the universe, the second line of the function adds the item onto
the end of the universe and returns its position. The extension of the universe is done
be side-effect so that it will be permanently recorded in the universe.

Figure 1.2 shows the definition of two 0SS reducers which operate on 0SS series of
bit sets. The first function computes the union of a series of bit sets, while the second
computes their intersection.

Live variable analysis. As an illustration of the way bit sets might be used, consider
the following. Suppose that in a compiler, program code is being represented as blocks
of straight-line code connected by possibly cyclic control flow. The top part of Figure 1.3
shows the data structure which represents a block of code. Each block has several pieces
of information associated with it. Two of these pieces of information are the blocks

(defunS Rlogior (bsets)
(declare (type oss bsets))
(ReduceF 0 #’logior bsets))

(defunS Rlogand (bsets)
(declare (type oss bsets))
(ReduceF -1 #’logand bsets))

Figure 1.2: Operations on 0SS series of bit sets.

6 All You Need To Know to Get Started

that can branch to the block in question and the blocks it can branch to. A program is
represented as a list of blocks that point to each other through these fields.

In addition to control flow information, each structure contains information about
the way variables are accessed. In particular, it records the variables that are written by
the block and the variables that are used by the block (i.e., either read without being
written or read before they are written). An additional field (computed by the function
determine-live discussed below) records the variables which are live at the end of the
block. (A variable is live if it has to be saved, because it can potentially be used by a
following block.) Finally, there is a temporary data field which is used by functions (such
as determine-live) which perform computations involved with the blocks.

The remainder of Figure 1.3 shows the function determine-live which, given a pro-
gram represented as a list of blocks, determines the variables which are live in each block.
To perform this computation efficiently, the function uses bit sets. The function oper-
ates in three steps. The first step (convert-to-bsets) looks at each block and sets up
an auxiliary data structure containing bit set representations for the written variables,
the used variables, and an initial guess that there are no live variables. This auxiliary
structure is defined by the third form in Figure 1.3 and is stored in the temp field of the
block. The integer 0 represents an empty bit set.

The second step (perform-relaxation) determines which variables are live. This is
done by relaxation. The initial guess that there are no live variables in any block is
successively improved until the correct answer is obtained.

The third step (convert-from-bsets) operates in the reverse of the first step. Each
block is inspected and the bit set representation of the live variables is converted into a
list which is stored in the live field of the block.

On each cycle of the loop in perform-relaxation, a block is examined to determine
whether its live set has to be changed. To do this (see the function live-estimate),
the successors of the block are inspected. Each successor needs to have available to it
the variables it uses, plus the variables that are supposed to be live after it, minus the
variables it writes. (The function logandc2 takes the difference of two bit sets.) A new
estimate of the total set of variables needed by the successors as a group is computed by
using Rlogior.

If this new estimate is different from the current estimate of what variables are live,
then the estimate is changed. In addition, if the estimate is changed, perform-relaxation
has to make sure that all of the predecessors of the current block will be examined to
see if the new estimate for the current block requires their live estimates to be changed.
This is done by adding each predecessor onto the list to-do unless it is already there. As
soon as the estimates of liveness stop changing, the computation can stop.

Summary. The function determine-live is a particularly good example of the way
0SS expressions are intended to be used in two ways. First, 0SS expressions are used in a
number of places to express computations which would otherwise be expressed less clearly
as loops or less efficiently as sequence function expressions. Second, the main relaxation
algorithm is expressed as a loop. This is done, because neither 0SS expressions (nor
Common Lisp sequence function expressions) lend themselves to expressing the relaxation
algorithm. This highlights the fact that 0SS expressions are not intended to render loops
entirely obsolete, but rather to provide a greatly improved method for expressing the

Example

vast majority of loops.

(defstruct (block (:conc-name nil))
predecessors ;Blocks that can branch to this one.

successors ;Blocks this one can branch to.

written ;Variables written in the block.

used ;Variables read before written in the block.
live ;Variables that must be available at exit.
temp) ; Temporary storage location.

(defun determine-live (program-graph)
(let ((universe (list nil)))
(convert-to-bsets program-graph universe)
(perform-relaxation program-graph)
(convert-from-bsets program-graph universe))
program-graph)

(defstruct (temp-bsets (:conc-name bset-))
used written live)

(defun convert-to-bsets (program-graph universe)
(letS ((block (Elist program-graph)))
(setf (temp block)
. (make-temp-bsets
" tused (list->bset (used block) universe)
:written (list->bset (written block) universe)
:live 0))))

(defun perform-relaxation (program-graph)
(let ((to-do program-graph))
(loop
(when (null to-do) (return (values)))
(let* ((block (pop to-do))
(estimate (live-estimate block)))
(when (not (= estimate (bset-live (temp block))))
(setf (bset-live (temp block)) estimate)
(letS ((prev (Elist (predecessors block))))
(pushnew prev to-do)))))))

(defun live-estimate (block)
(1etS ((next (temp (Elist (successors block)))))
(Rlogior (logior (bset-used next)
(logandc2 (bset-live next)
(bset-written next))))))

(defun convert-from-bsets (program-graph universe)
(letS ((block (Elist program-graph)))
(setf (live block)
(bset->list (bset-live (temp block)) universe))
(setf (temp block) nil)))

) Figure 1.3: Live variable analysis.

8 Reference Manual

2. Reference Manual

This section is organized around descriptions of the various functions and forms sup-
ported by the 0Ss macro package. Each description begins with a header which shows
the arguments and results of the function or form being described. For ease of reference,
the headers are duplicated in Section 5. In Section 5, the headers are in alphabetical
order and show the page where the function or form is described.

In a reference manual like this one, it is advantageous to describe each construct
separately and completely. However, this inevitably leads to presentation problems,
because everything is related to everything else. Therefore, one cannot avoid referring to
things which have not been discussed. The reader is encouraged to skip around in the
document and to realize that more than one reading will probably be necessary in order
to gain a complete understanding of the 0SS macro package.

Although the following list of 0SS functions is large, it should not be taken as com-
plete. Every effort has been made to provide a wide range of useful predefined functions.
However, except for a few primitive forms, all of these functions could have been defined
by the user. It is hoped that users will write many more such functions. A key reason
for presenting a wide array of predefined functions is to inspire users with thoughts of
the wide variety of functions they can write for themselves.

Restrictions and Definitions of Terms.

As alluded to in Section 1, there are a number of restrictions which 0SS expressions
have to obey. The 0ss macro package is designed so that all but three of these restrictions
are impossible to violate with the facilities provided. As a result, the programmer need
not think about these restrictions at all.

The 0Ss macro package checks to see that the remaining three restrictions are obeyed
on an expression by expression basis and automatically fixes any violations which are
detected. However, the automatic fixes are often not very efficient. As a result, it is
advisable for the user to fix such violations explicitly.

Given that simple 0SS expressions are very unlikely to violate any of the restrictions,
and any violations which do occur are automatically fixed, it is reasonable for the reader
to skip this section when first reading this manual. However, it is useful to read this
section before trying to write complex 0SS expressions.

The discussion below starts by defining two key terms (on-line functions and early
termination) which are used to categorize the 0ss functions described in the rest of this
manual. The discussion then continues by briefly describing the three restrictions which
can be violated. (See [6] for a complete discussion of all the restrictions.)

On-line and off-line. Suppose that f is an 0Ss function which reads one or more
series inputs and writes one or more series outputs. The function f is on-line [1] if it
operates in the following fashion. First, f reads in the first element of each input series,
then it writes out the first element of each output series, then it reads in the second
element of each input series, then it writes out the second element of each output series,
and so on. In addition, f must immediately terminate as soon as any input runs out of

Restrictions and Definitions of Terms. 9

elements. If a f is not on-line, then it is off-line.

In the context of 0SS expressions, the term on-line is generalized so that it applies
to individual 0SS input and output ports in addition to whole functions. An 0SS port
is on-line iff the processing at that port always follows the rigidly synchronized pattern
described above. Otherwise, it is off-line. From this point of view, a function is on-line
iff all of its 0SS ports are on-line.

The prototypical example of an on-line 0ss function is TmapF (which maps a function
over a series). Each time it reads an input element it applies the mapped function to
it and writes an output element. In contrast, the function Tremove-duplicates (which
removes the duplicate elements from a series) is not on-line. Since some of the input
elements do not become output elements, it is not possible for Tremove-duplicates to
write an output element every time it reads an input element.

For every 0ss function, the documentation below specifies which ports are on-line
and which are off-line. In this regard, it is interesting to note that every function which
has only one 0SS port (e.g., enumerators with only one output and reducers with only
one input) are trivially on-line. The only 0SS functions which have off-line ports are
transducers.

Early termination. An important feature of 0Ss functions is the situations under
which they terminate. The definition of on-line above requires that on-line functions
must terminate as soon as any series input runs out of elements. If an 0SS function can
terminate before any of its inputs are exhausted, then it is an early terminator. The
degenerate case of functions which do not have any series inputs (i.e., enumerators) is
categorized by saying that enumerators are early terminators iff they can terminate.

As an example of an early terminator, consider the function TuntilF (which reads a
series and returns all of the elements of that series up to, but not including, the first
element which satisfies a given predicate). This function is an early terminator, because
it can terminate before the input runs out of elements.

The documentation below specifies which functions are early terminators. Besides
enumerators, their are only 7 088 functions which are early terminators.

Isolation. A data flow arc § in an 0SS expression X is isolated iff it is possible to
partition the functions in X into two parts Y and Y in such a way that: § goes from ¥’
to Y, there is no 0ss data flow from Y to Y, and there is no data flow from Y to Y.
For example, consider the 0SS expression (letS ((x (£ y))) (i (h x (g x)))) which
corresponds to the graph in Figure 2.1.

81

84
- f h
< 52 e §3

Figure 2.1: Parallel data flow paths in an expression.

Y

Y
[N
|

The data flow arc 64 is isolated. To show this, one merely has to partition the
expression so that £, g, and h are on one side and i is on the other. The question of

10 Reference Manual

whether or not the other data flow arcs are isolated is more complicated to answer. If §3
crosses a partition, then 1 must cross this partition as well. As a result, 63 is isolated
iff 81 carries a non-0ss value. (This is true no matter what kind of value passes over
83 itself.) In a related situation, 62 is isolated iff (it and therefore 61) carries a non-0Ss
value. Finally, consider the arc é1. Here there are two potential partitions to consider:
one which cuts 62 and one which cuts 3. The data flow arc 61 is isolated iff either it
(and therefore 62) or 83 carries a non-0SS value.

The concept of isolation is extended to inputs and outputs as follows. An output p in
an expression X is isolated iff X can be partitioned into two parts Y and Y such that:
every data flow originating on p goes from Y to Y, every other data flow from Y to Y is
a non-0ss data flow, and there is no data flow from Y to Y. An input ¢ in an expression
X is isolated iff X can be partitioned into two parts Y and Y such that: the data flow
terminating on ¢ goes from Y to Y, every other data flow from Y to Y is a non-0ss data
flow, and there is no data flow from Y to Y.

For example, in Figure 2.1, the outputs of £ and h are isolated as is the input of i.
The input and output of g are isolated iff £ computes a non-0Ss value. The inputs of h
are isolated iff the data flow arcs terminating on them are isolated.

Non-0SS data flows must be isolated. In order for an 0SS expression to be
reliably converted into a highly efficient loop, every non-0ss data flow in it must be
isolated. As an example of an expression where this is not true, consider the following.
In this expression, the data flow implemented by the variable total is not isolated.

(letS* ((nums (Evector ’#(3 2 8))) ;Signals warning 16

(total (ReduceF O #’+ nums)))
(Rvector (/ nums total))) => #(3/13 2/13 8/13)

(The basic problem here is that while the elements created by Evector are being used
to compute total, they all have to be saved so that they can be used again later in
order to perform the indicated divisions. Eliminating the need for such storage is the key
source of efficiency underlying 0SS expressions.)

Off-line OSS ports must be isolated. In order for an 0SS expression to be reliably
converted into a highly efficient loop, every off-line port must be isolated. As an example
of an expression which has an off-line output which is not isolated, consider the following.
In this expression, the data flow implemented by the variable positions is not isolated.

(letS* ((keys (Elist list)) ;Signals warning 17.1

(positions (Tpositions keys)))
(Rlist (list positions keys)))

(The basic problem here is that since Tpositions skips null elements of the input,
Tpositions sometimes has to read several input elements before it can produce the next
output element. This forces an unpredictable number of elements of keys to be saved so
that they can be used later when creating lists. As above, eliminating the need for such
storage is the main goal of 0SS expressions.)

Code copying. If an 0SS expression violates either of the above restrictions, the 0SS
macro packaged automatically fixes the problem by copying code until the data flow or
port in question becomes isolated. For instance, the example above of an 0SS expression
in which a non-0ss data flow is not isolated is fixed as follows.

Restrictions and Definitions of Terms. 11

(letS* ((nums (Evector ’#(3 2 8)))
(total (ReduceF O #’+ (Evector ’#(3 2 8)))))
(Rvector (/ nums total))) => #(3/13 2/13 8/13)

Even though the problem has been automatically fixed, the 0SS macro package issues a
warning message. This is done for two reasons. First, if side-effects (e.g., input or output)
are involved, the code copying that was performed may not be correctness preserving.
Second, large amounts of code sometimes have to be copied and that can introduce large
amounts of extra computation.

A major goal of 0SS expressions is ensuring that expressions which look simple to
compute actually are simple to compute. Automatically introducing large amounts of
additional computation without the programmer’s knowledge would violate this goal. At
the very least, issuing warning messages makes programmers aware of what is expensive
to compute and what is not. Looked at from a more positive perspective, it encourages
them to think of ways to compute what they want without code copying being required.

For instance, consider the example above of an 0SS expression in which an off-line
port is not isolated. It might be the case that the programmer knows that list does
not contain any null elements and that Tpositions is therefore merely being used to
enumerate what the positions of the elements are. In this situation, the expression can
be fixed as follows, which does not require any code copying. (The key insight here is
that the positions do not actually depend on the values in the list.)

(let ((1list ’(a b ¢)))
(letS* ((keys (Elist list))
(positions (Eup 0)))
(Rlist (list positions keys)))) => ((0 a) (1 b) (2 ¢))

(It is interesting to note that if an expression is a tree (as opposed to a graph as
in Figure 2.1), then every data flow arc and every port is isolated. This is why oss
expressions which do not contain variables bound by letS, lambdaS, or defunS cannot
violated either of the isolation restrictions. This is also why code copying can always fix
any violation—code copying can convert any graph into a tree.)

On-line subexpressions. The two isolation restrictions above permit a divide and
conquer approach to the processing of 0SS expressions. If an 0SS expression obeys the
isolation restrictions, then it can be repeatedly partitioned until all of the data flow in
each subexpression goes from an on-line output to an on-line input. The subexpressions
which remain after partitioning are referred to as on-line subexpressions.

Termination points. The functions in each on-line subexpression can be divided
into two classes: those which are termination points and those which are not. A function
is a termination point if it can terminate before any other function in the subexpression
terminates. There are two reasons for functions being termination points. Functions
which are early terminators are always termination points. In addition, any function
which reads an 0SS series which comes from a different on-line subexpression is a termi-
nation point.

Data flow paths between termination points and outputs. In order for an
0SS expression to be reliably converted into a highly efficient loop, it must be the case

12 Reference Manual

that within each on-line subexpression, there is a data flow path from each termination
point to each output. As an example of an 0SS expression for which this property does
not hold, consider the following. Partitioning divides this expression into two on-line
subexpressions, one containing list and one containing everything else. In the large
on-line subexpression, the two instances of Evector are termination points. The program
violates the property above, because there is no data flow path from the termination
point (Evector weight-vector) to the output of (Rvector squares).
(defun weighted-squares (value-vector weight-vector)
(letS* ((values (Evector value-vector)) ;Signals warning 18
(weights (Evector weight-vector))
(squares (* values values))

(weighted-squares (* squares weights)))
(1ist (Rvector squares) (Rvector weighted-squares))))

(weighted-squares #(1 2 3) #(2 3 4)) = (#(1 4 9) #(2 12 36))
(weighted-squares #(1 2) #(2 3 4)) = (#(1 4) #(2 12))
(weighted-squares #(1 2 3) #(2 3)) = (#(1 4 9) #(2 12))

(The basic problem here is that if the number of elements in value-vector is greater
than the number of elements in weight-vector, the computation of squares has to con-
tinue even after the computation of weighted-squares has been completed. This kind
of partial continuing evaluation in a single on-line subexpression is not supported by the
0SS macro package, because it was judged that it requires too much overhead in order
to control what gets evaluated when.)

When an 0SS expression violates the restriction above, the violation is automatically
fixed by applying code copying. It is impossible for an on-line subexpression to violate
the restriction unless it computes two different outputs. Code copying can always be used
to break the subexpression in question into two parts each of which computes one of the
outputs. Unfortunately, this can require a great deal of code to be copied. There are two
basic approaches which can be used to fix a violation much more efficiently: reducing
the number of termination points and increasing the connectivity between termination
points and outputs.

The easiest way to decrease the number of termination points is to replace early
terminators by equivalent operations which are not early terminators (for example, see
page 37). If an early terminator is not an enumerator, then this can always be done
without difficultly. (The documentation below describes a non-early variant for each
early terminating transducer and reducer.) If multiple enumerators are the problem
(as in the example above) decreasing the number of termination points is usually not
practical. However, sometimes an enumerator which terminates can be replaced by an
enumerator which never terminates.

The connectivity between termination points and outputs can be increased by using
the function Tcotruncate. As discussed on page 26, this is the preferred way to fix the
problem in the example above.

General Information

Before discussing the individual 0ss functions in detail, a few general comments are
in order. First, all of the 0ss functions and forms are defined in the package 0SS. To make

General Information 13

these names easily accessible, use the package 0SS (i.e., evaluate (use-package "0SS")).
If this is not done, the names will have to be prefixed with “oss:” when they are used.

Naming conventions. The names of the various 0Ss functions and forms follow a
strict naming convention. The first letter of an 0SS function name indicates the type of
function as shown below. The letter codes are written in upper case in this document
(case does not matter to Common Lisp) and each letter is intended to be pronounced as
a separate syllable.

E Enumerator.
T Transducer.
R Reducer.

The last letter of each 0SS special form is “S”. In general, this indicates that the form
is primitive in the sense that it could not be defined by the user. Some 0ss functions
end in the letter “F”. This is used to indicate that the function is a higher-order function
which takes functions as arguments.

The naming convention has two advantages: one trivial but vital and the other more
fundamentally useful. First, many of the 0SS functions are very similar to standard
Common Lisp sequence functions. As a result, it makes sense to give them similar names.
However, it is not possible to give them exactly the same names without redefining the
standard functions. The naming convention allows the names to be closely related in a
predictable way without making the names unreasonably long.

Second, the naming convention highlights several properties of 0SS functions which
make it easier to read and understand 0SS expressions. In particular, the prefixes high-
light the places where series are created and consumed.

The names of arguments and results of 0SS functions are also chosen following naming
conventions. First, all of the names are chosen in an attempt to indicate type restrictions
(e.g., number indicates that an argument must be a number; item indicates that there is
no type restriction). Plural names are used iff the value in question is an 0SS series (e.g.,
numbers indicates an 0SS series of numbers; items indicates an 0SS series of unrestricted
values). The name of a series input or output begins with “0” iff it is off-line.

OSS series. Two general points about 0SS series are worthy of note. First, like
Common Lisp sequences, 0SS series use zero-based indexing (i.e., the first element is the
Oth element). Second, unlike Common Lisp sequences, 0SS series can be unbounded in
length.

Tutorial mode. A prominent feature of the various descriptions is that they contain
many examples. These examples contain large numbers of 0SS series as inputs and
outputs. In the interest of brevity, the notation [...] is used to indicate a literal 0SS
series. If the last entry in a literal 0SS series is an ellipsis, this indicates that the 0ss
series is unbounded in length.

[1 2 3]
[a b (¢ d)]
[T nil T nil ...]

The notation [...] is not supported by the 0SS macro package. It would be straight-
forward to do so by using set-macro-character. Perhaps even better, one could use

14 Reference Manual

set-dispatch-macro-character to support a notation #[...] analogous to #(...). How-
ever, although literal series are very useful in the examples below, experience suggests
that literal series are seldom useful when writing actual programs. Inasmuch as this is
the case, it was decided that it was unwise to use up one of the small set of characters
which are available for user-defined reader macros or user-defined # dispatch characters.

Many of the examples show 0SS expressions returning OSS series as their values.
However, one should not take this literally. If these examples are typed to Common Lisp
as isolated expressions, they will not return any values. This is so, because the 0SS macro
package does not allow complete 0SS expressions to return 0SS series. The examples are
intended to show what would be returned if the example expressions were nested in larger
expressions.

oss-tutorial-mode &optional (T-or-nil T) => state-of-tutorial-mode

The above not withstanding, the 0SS macro package provides a special tutorial mode
in which the notation [...] is supported and 0SS expressions can return (potentially
unbounded) 0Ss values. However, these values still cannot be stored in ordinary variables.
This mode is entered by calling the function oss-tutorial-mode with an argument of T.
Calling the function with an argument of nil turns tutorial mode off.

Using tutorial mode, it is possible to directly duplicate the examples shown below.
However, tutorial mode is very inefficient. What is worse, tutorial mode introduces non-
correctness-preserving changes in 0SS expressions. (For example, in order to correctly
duplicate the examples that illustrate error messages about non-terminating expressions
and the fact that 0SS series are not actually returned by complete 0SS expressions,
tutorial mode must be turned off.) All in all, it is important that tutorial mode not be
used as anything other than an educational aid.

0SS functions are actually macros. Every 0ss function is actually a macro. As
a result, 0SS functions cannot be funcall’ed, or apply’ed. When the user defines new
0ss functions, they must be defined before the first time they are used. Also, when an
0ss function takes keyword arguments, the keywords must be literals. They cannot be
expressions which evaluate to keywords at run time.

Finally, the macro expansion processing associated with 0SS expressions is relatively
time consuming. In order to avoid this overhead during the running of a user program,
it is important that programs containing 0SS expressions be compiled rather than run
interpretively.

A minor advantage of the fact that everything in the 0SS macro package is a macro
is that once a program which uses the macro package is compiled, the compiled program
can subsequently be run without having to load the 0SS macro package.

A more important advantage of the fact that everything in the 0SS macro package is
a macro is that quoted macro names can be used as functional arguments to higher-order
0ss functions. (In contrast, quoted macro names cannot be used as functional arguments
to higher-order Common Lisp functions such as reduce.) Although this may appear to
be a minor benefit, it is actually quite useful.

Enumerators 15

Enumerators

Enumerators create 0SS outputs based on non-0S$ inputs. There are two basic kinds
of enumerators: ones that create an 0SS series based on some formula (e.g., enumerating
a sequence of integers) and ones that create an 0SS series containing the elements of an
aggregate data structure (e.g., enumerating the elements of a list). All the predefined
enumerators are on-line. In general, they are all early terminators. However, as noted
below, in some situations, some enumerators produce unbounded outputs and are not
early terminators.

Eoss &rest expr-list = items

The expr-list consists of zero or more expressions. The function Eoss creates an 0SS
series containing the values of these expressions. Every expression in expr-list is evaluated
before the first output element is returned.

(Eoss 1 ’a 'b) = [1 a b]
(Eoss) = []

To get the effect of delaying the evaluation of individual elements until they are
needed, it is necessary to define a special purpose enumerator which computes the indi-
vidual items as needed. However, due to the control overhead required, this is seldom
worthwhile.

It is possible for the expr-list to contain an instance of :R. (This must be a literal
instance of :R, not an expression which evaluates to :R.) If this is the case, then Eoss
produces an unbounded 0SS series analogous to a repeating decimal number. The output
consists of the values of the expressions preceding the :R followed by an unbounded
number of repetitions of the values following the :R, if there are any such values. (In this
situation, Eoss is not an early terminator.)

(Eoss 1 ’a :R’b ’¢c) => [Labcbcbec...]
(Eoss T :R nil) = [T nil nil nil ...]

(Eoss 1 :R) = [1]

(Eoss :R1) = [t 11...]

Eup &optional (start 0) &key (:by 1) :to :below :length = numbers

This function is analogous to the Loop macro [2] numeric iteration clause. It creates
an 0SS series of numbers starting with start and counting up by :by. The argument
start is optional and defaults to integer 0. The keyword argument :by must always be a
positive number and defaults to integer 1.

There are four kinds of end tests. If :to is specified, stepping stops at this number.
The number :to will be included in the 0SS series iff (- :to start) is a multiple of :by.
If :below is specified, things operate exactly as if :to were specified except that the
number :below is never included in the 0Ss series. If :length is specified, the 0SS series
has length :1length. It must be the case that :1ength is a non-negative integer. If :1ength
is positive, the last element of the 0SS series will be (+ start (x :by (1- :length))). If
none of the termination arguments are specified, the output has unbounded length. (In
this situation, Eup is not an early terminator.) If more than one termination argument
is specified, it is an error.

16 Reference Manual

(Eup :to 4) = [0 1 2 3 4]
(Eup :to 4 :by 3) = [0 3]
(Eup 1 :below 4) = [1 2 3]
(Eup 4 :length 3) = [4 5 6]
(Eup) = [01234...]

As shown in the following example, Eup does not assume that the numbers being
enumerated are integers.

(Eup 1.5 :by .1 :length 3) = [1.5 1.6 1.7]

Edown &optional (start 0) &key (:by 1) :to :above :length => numbers

The function Edown is analogous to Eup, except that it counts down instead of up and
uses the keyword :above instead of :below.

(Edown :to -4) => [0 -1 -2 -3 -4]

(Edown :to -4 :by 3) = [0 -3]

(Edown 1 :above -4) = [1 0 -1 -2 -3]

(Edown 4 :length 3) = [4 3 2]

(Edown) => [0 -1 -2 -3 -4 ...]

(Edown -1.5 :by .1 :length 3) = [-1.5 -1.6 -1.7]

Esublists list &optional (end-test #’endp) => sublists

This function creates an 0SS series containing the successive sublists of list. The end-
test must be a function from objects to boolean values (i.e., to null/non-null). It is used
to determine when to stop the enumeration. Successive cdrs are returned up to, but not
including, the first one for which end-test returns non-null.

(Esublists ’(a b ¢)) = [(abc) (bec) ()]
(Esublists ’(a b . c) #atom) = [(a b . c) (b . c)]

The default end-test (#’endp) will cause Esublists to blow up if list contains a non-
list cdr. More robust enumeration can be obtained by using the end-test #’atom as in the
second example above. The assumption that list will end with nil is used as the default
case, because the assumption sometimes allows programming errors to be detected closer
to their sources.

Elist list &optional (end-test #’endp) => elements

This function creates an 0SS series containing the successive elements of list. It is
closely analogous to Esublists as shown below. In particular, end-test has the same
meaning and the same caveats apply.

(Elist ’(a b c)) = [a b c]

(Elist Q) = [

(Elist ’(a b . c) #’atom) = [a b]
(Elist list) = (car (Esublists list))

The value returned by Elist can be used as a destination for altersS.

Enumerators 17

(let ((1list ’(a b ¢)))
(alterS (Elist (cdr list)) (Eup))
list) = (a 0 1)

Ealist alist &optional (test #’eql) => keys values

This function returns two OSS series containing keys and their associated values. The
first element of keys is the key in the first entry in alist, the first element of values is the
value in the first entry, and so on. The alist must be a proper list ending in nil and each
entry in alist must be a cons cell or nil. Like assoc, Ealist skips entries which are nil
and entries which have the same key as an earlier entry. The test argument is used to
determine when two keys are the same.

(Ealist ’((a . 1) () (a . 3) (b . 2))) = [a b] [1 2]
(Ealist nil) = [1 0O

Both of the series returned by Ealist can be used as destinations for alters. (In
analogy with multiple-value-bind, letS can be used to bind both values returned by
Ealist.)

(let ((alist ’((a . 1) (b . 2))))
(letS (((key val) (Ealist alist)))
(alterS key (list key))
(alterS val (1+ val)))
alist) = ’(((a) . 2) ((b) . 3))

The 0ss function Ealist is forced to perform a significant amount of computation in
order to check that no duplicate keys or null entries are being enumerated. In a situation
where it is known that no duplicate keys or null entries exist, it is much more efficient to
use Elist as shown below.

(letS* ((e (Elist ’((a . 1) (b . 2))))
(keys (car e))
(values (cdr e)))
(Rlist (list keys values))) => ((a 1) (b 2))

Eplist plist = indicators values

This function returns two OSS series containing indicators and their associated values.
The first element of indicators is the first indicator in the plist, the first element of values
is the associated value, and so on. The plist argument must be a proper list of even
length ending in nil. In analogy with the way get works, if an indicator appears more
than once in plist, it (and its value) will only be enumerated the first time it appears.
(Both of the 08s series returned by Eplist can be used as destinations for alters.)

(Eplist ’(a 1 23 b 2)) = [ab] [12]
(Eplist nil) = [1 [J

The 0ss function Eplist has to perform a significant amount of computation in order
to check that no duplicate indicators are being enumerated. In a situation where it is
known that no duplicate indicators exist, it is much more efficient to use EnumerateF as
shown below.

18 Reference Manual

(letS* ((e (EnumerateF ’(a 1 b 2) #’cddr #’null))
(indicators (car e))
(values (cadr e)))
(Rlist (list indicators values))) => ((a b) (1 2))

Etree tree &optional (leaf-test #’atom) => nodes

This function creates an 0SS series containing all of the nodes in tree. The function
assumes that tree is a tree built of lists, where each node is a list and the elements in
the list are the children of the node. The function Etree does not assume that the node
lists end in nil; however, it ignores any non-list cdrs. (This behavior increases the utility
of Etree when it is used to scan Lisp code.) The nodes in the tree are enumerated in
preorder (i.e., first the root is output, then the nodes in the tree which is the first child
of the root is enumerated in full, then the nodes in the tree which is the second child of
the root is enumerated in full, etc.).

The leaf-test is used to decide which elements of the tree are leaves as opposed to
internal nodes. Failure of the test should guarantee that the element is a list. By default,
leaf-test is #’atom. This choice of test categorizes nil as a leaf rather than as a node
with no children.

The function Etree assumes that tree is a tree as opposed to a graph. If tree is a
graph instead of a tree (i.e. some node has more than one parent), then this node (and
its descendants) will be enumerated more than once. If the tree is a cyclic graph, then
the output series will be unbounded in length.

(Etree ’d) = [d]
(Etree *((c) d)) = [((c) d) (c) c d]
(Etree ’((c) Q)
#° (lambda (e)
(or (atom e) (atom (car e))))) = [((c) &) (c) d]

Efringe tree &optional (leaf-test #’atom) => leaves

This enumerator is the same as Etree except that it only enumerates the leaves of
the tree, skipping all internal nodes. The logical relationship between Efringe and Etree
is shown in the first example below. However, Efringe is implemented more efficiently
than this example would indicate.

(Efringe tree) = (TselectF #’atom (Etree tree))
(Efringe ’d) = [d]
(Efringe ’((c) d)) = [c d]
(Efringe ’((c) d)
#’ (lambda (e)
(or (atom e) (atom (car e))))) = [(c) d]

The value returned by Efringe can be used as a destination for alterS. However, if
the entire tree is a leaf and gets altered, this will have no side-effect on the tree as a whole.
In addition, altering a leaf will have no effect on the leaves enumerated. In particular, if
a leaf is altered into a subtree, the leaves of this subtree will not get enumerated.

(let ((tree ’((3) 4)))
(letS ((leaf (Efringe tree)))
(if (evenp leaf) (alterS leaf (- leaf))))
tree) = ((3) -4)

Enumerators 19

e Evector vector &optional (indices (Eup)) => elements

This function creates an 0SS series of the elements of a one-dimensional array. If
indices assumes its default value, Evector enumerates all of the elements of vector in
order.

(Evector "BAR") => [#\B #\A #\R]
(Evector "") = []

Looked at in greater detail, Evector enumerates the elements of vector which are
indicated by the elements of the 0SS series indices. The indices must be non-negative
integers, however, they do not have to be in order. Enumeration stops when indices runs
out, or an index greater than or equal to the length of vector is encountered. One can
use Eup to create an index series which picks out a section of vector. (Since Evector takes
in an OSS series it is technically a transducer, however, it is on-line and is an enumerator
in spirit.)

(Evector ’#(b a r) (Eup 1 :to 2)) = [a r]
(Evector "BAR" [0 2 1 1 4 1]) => [#\B #\R #\4 #\4]

The value returned by Evector can be used as a destination for alterS.

(et ((v "FOOBAR"))
(alterS (Evector v (Eup 2 :to 4)) #\-) v) = "F0---R"

e Esequence sequence &optional (indices (Eup)) => elements

The function Esequence is the same as Evector except that it will work on any Com-
mon Lisp sequence. However, since it has to determine the type of sequence at run-time,
it is much less efficient than either Elist or Evector. (The value returned by Esequence
can be used as a destination for altersS.)

(Esequence (b a r)) = [b a r]
(Esequence ’#(b a r)) = [b a r]

e Ehash table = keys values

This function returns two 0SS series containing keys and their associated values. The
first element of keys is the key of the first entry, the first element of values is the value
in the first entry, and so on. (There are no guarantees as to the order in which entries
will be enumerated.)

(Ehash (let ((h (make-hash-table)))
(setf (gethash ’color h) ’brown)
(setf (gethash ’name h) ’fred)
h)) => [color name] [brown fred] ;in some order

In the pure Common Lisp version of the 0SS macro package, Ehash is rather inefficient,
because Common Lisp does not provide incremental support for scanning the elements of
a hash table. However, in the Symbolics Common Lisp version of the 0Ss macro package,
Ehash is quite efficient.

20 Reference Manual

e Esymbols &optional (package *packagex) => symbols

This function creates an 0SS series of the symbols in package (which defaults to the
current package). (There are no guarantees as to the order in which symbols will be
enumerated.)

(Esymbols) = [foo bar baz ... zot] ;in some order

In the pure Common Lisp version of the 0SS macro package, Esymbols is rather
inefficient, because Common Lisp does not provide incremental support for scanning the
symbols in a package. However, in the Symbolics Common Lisp version of the 0SS macro
package, Esymbols is quite efficient.

Efile name => items

This function creates an 0SS series of the items written in the file named name. The
function combines the functionality of with-open-file with the action of reading from
the file (using read). It is guaranteed that the file will be closed correctly, even if an
error occurs. As an example of using Efile, assume that the forms (a), (1 2), and T
have been written into the file "test.lisp".

(Efile "test.lisp") = [(a) (1 2) T]

EnumerateF init step &optional test => items

The higher-order function EnumerateF is used to create new kinds of enumerators. The
init must be a value of some type T1. The step argument must be a non-0ss function
from T1 to T1. The test argument (if present) must be a non-0ss function from T1 to
boolean.

Suppose that the series returned by EnumerateF is S. The first output element Sy has
the value Sy = init. For subsequent elements, S; = step(S;_1).

If the test is present, the output consists of elements up to, but not including, the
first element for which test(.S;) is true. In addition, it is guaranteed that step will not be
applied to the element for which test is true. If there is no test, then the output series
will be of unbounded length. (In this situation, EnumerateF is not an early terminator.)

(EnumerateF ’(a b ¢ d) #’cddr #’°null) = [(a b c d) (c d)]
(EnumerateF ’(a b ¢ d) #’cddr) = [(a b ¢ d) (¢ d) nil nil ...]
(EnumerateF list #’cdr #’'null) = (Esublists list)

If there is no test, then each time an element is output, the function step is applied to
it. Therefore, it is important that other factors in an expression cause termination before
EnumerateF computes an element which step cannot be applied to. In this regard, it is
interesting that the following equivalence is almost, but not quite true. The difference is
that including the test argument in the call on EnumerateF guarantees that step will not
be applied to the element which fails test, while the expression using TuntilF guarantees
that it will.

(TuntilF test (EnumerateF init step)) Z (EnumerateF init step test)

On-Line Transducers 21

e Enumerate-inclusiveF init step test => items

The higher-order function Enumerate-inclusiveF is the same as EnumerateF except
that the first element for which test is true is included in the output. As with EnumerateF,
it is guaranteed that step will not be applied to the element for which test is true.

(Enumerate-inclusiveF ’(a b) #’cddr #’null) = [(a b) ()]

On-Line Transducers

Transducers compute 0SS series from 0SS series and form the heart of most 0ss
expressions. This section and the next one present the predefined transducers that are
on-line (i.e., all of their inputs and outputs are on-line). These transducers are singled
out because they can be used more flexibly than the transducers which are off-line. In
particular, it is impossible to violate the off-line port isolation restriction without using
an off-line transducer.

e Tprevious items &optional (default nil) (amount 1) => shifted-items

This function creates a series which is shifted right amount elements. The input
amount must be a positive integer. The shifting is done by inserting amount copies of
default before items and discarding amount elements from the end of items. The output
is always the same length as the input.

(Tprevious [a b c]) = [nil a b]
(Tprevious [a b ¢] 'z) => [z a D]
(Tprevious [a b c] ’z 2) = [z z a]
(Tprevious [1) = []

The word previous is used as the root for the name of this function, because the
function is typically used to access previous values of a series. An example of Tprevious
used in this way is shown in conjunction with Tuntil below.

To insert some amount of stuff in front of a series without losing any of the elements
off the end, use Tconcatenate as shown below.

(Tconcatenate [z z] [abc]) = [z z a b c]

¢ Tlatch items &key :after :before :pre :post => masked-items

This function acts like a latch electronic circuit component. Each input element
causes the creation of a corresponding output element. After a specified number of non-
null input elements have been encountered, the latch is triggered and the output mode
is permanently changed.

The :after and :before arguments specify the latch point. The latch point is just
after the :after-th non-null element in items or just before the :before-th non-null
element. If neither :after nor :before is specified, an :after of 1 is assumed. If both
are specified, it is an error.

If a :pre is specified, every element prior to the latch point is replaced by this value.
If a :post is specified, this value is used to replace every element after the latch point.
If neither is specified, a :post of nil is assumed.

22 Reference Manual

(Tlatch [nil ¢ nil 4 e]) = [nil ¢ nil nil nil]
(Tlatch [nil ¢ nil d e] :before 2 :post T) => [nil ¢ nil T T]
(Tlatch [nil ¢ nil d e] :before 2 :pre ’z) => [z z z d €]

As a more realistic example of using Tlatch, suppose that a programmer wants to
write a program get-codes which takes in a list and returns a list of all of the numbers
which appear in the list after the second number in the list.

(defun get-codes (list)
(lets ((elements (Elist 1list)))
(Rlist (Tselect (Tlatch (numberp elements) :after 2 :pre nil)
elements))))

(get-codes (ab34cdb5e6 f)) = (56)

Tuntil bools items => initial-items

This function truncates an 0SS series of elements based on an 0SS series of boolean
values. The output consists of all of the elements of items up to, but not including, the
first element which corresponds to a non-null element of bools. That is to say, if the
first non-null value in bools is the mth, the output will consist of all of the elements of
items up to, but not including, the mth. (The effect of including the mth element in
the output can be obtained by using Tprevious as shown in the last example below.) In
addition, the output terminates as soon as either input runs out of elements even if a
non-null element of bools has not been encountered.

(Tuntil [nil nil Tnil T] [1 2 -3 4 -8]) = [1 2]
(Tuntil [nil nil T nil T [1]) = [1]
(Tuntil (Eoss :R nil) (Eup)) = [0 1 2 ...]
(Tuntil [nil nil T nil T] (Eup)) = [0 1]
(letS ((x [1 2 -3 4 -5]))

(Tuntil (minusp x) x)) = [1 2]
(letS ((x [1 2 -3 4 -51))

(Tuntil (Tprevious (minusp x)) x)) = [1 2 -3]

If the items input of Tuntil is such that it can be used as a destination for alters,
then the output of Tuntil can be used as a destination for alters.

(letS* ((list ’(a b 10 ¢))
(x (Elist 1list))
(y (Tuntil (numberp x) x)))
(alterS y (list y))
list) = ((a) (b) 10 ¢)

TuntilF pred items => initial-items

This function is the same as Tuntil except that it takes a functional argument instead
of an 0SS series of boolean values. The non-0Ss function pred is mapped over items in
order to obtain a series of boolean values. (Like Tuntil, TuntilF is can be used as a
destination of alters if items can.) The basic relationship between TuntilF and Tuntil
is shown in the last example below.

On-Line Transducers 23

(TuntilF #’minusp [1 2 -3 4 -5]) = [1 2]
(TuntilF #’minusp [1]) = [1]
(TuntilF #’minusp (Eup)) = [0 1 2 ...]
(TuntilF pred items)
= (lets ((var items)) (Tuntil (TmapF pred var) var))

The functions Tuntil and TuntilF are both early terminators. This can sometimes
lead to conflicts with the restriction that within each on-line subexpression, there must
be a data flow path from each termination point to each output. To get the same effect
without using an early terminator use Tselect of Tlatch as shown below.

(Tuntil bools items)
= (Tselect (not (Tlatch bools :post T)) items)

(TuntilF #’pred items)
= (Tselect (not (Tlatch (pred items) :post T)) items)

TmapF function &rest items-list => items

The higher-order function TmapF is used to create simple kinds of on-line transducers.
Its arguments are a single function and zero or more 0SS series. The function argument
must be a non-08S function which is compatible with the number of input series and the
types of their elements.

A single 0ss series is returned. Each element of this series is the result of applying
function to the corresponding elements of the input series. (That is to say, if TmapF re-
ceives a single input series R it will return a single output S such that S; = function(R;).)
The length of the output is the same as the length of the shortest input. If there are
no bounded series inputs (e.g., if there are no series inputs), then TmapF will generate an
unbounded 0SS series.

(TmapF #°+ [1 2 3] [4 5]1) = [5 7]
(TmapF #’sqrt [1) = []
(TmapF #’gensym) => [#:G003 #:G004 #:G005 ...]

TscanF {init} function items => results

The higher-order function TscanF is used to create complex kinds of on-line transduc-
ers. (The name is borrowed from APL.) The init argument (if present) must be a non-0ss
value of some type T1. The function argument must be a binary non-0s$ function from
T1 and some type T2 to T1. The items argument must be an 0SS series whose elements
are of type T2. If the init argument is not present than T1 must equal T2.

The function argument is used to compute a series of accumulator values of type T1
which is returned as the output of TscanF. The output is the same length as the series
input and consists of the successive accumulator values.

Suppose that the series input to TscanF is R and the output is S. The basic rela-
tionship between the output and the input is that S; = function(S;_1, R;). If the init
argument is specified, it is used as an initial value of the accumulator and the first output
element Sy has the value Sy = function(init, Ry). Typically, but not necessarily, init is
chosen so that it is a left identity of function. If that is the case, then Sy = Ro. It is
important to remember that the elements of items are used as the second argument of
function. The order of arguments is chosen to highlight this fact.

24 Reference Manual

(TscanF O #’+ [1 2 3]) = [1 3 6]

(TscanF 10 #’+ [1 2 3]) = [11 13 16]

(TscanF nil #’cons [a b]) => [(nil . a) ((nil . a) . b)]

(TscanF nil #’(lambda (state x) (cons x state)) [a b]) = [(a) (b a)]

If the init argument is not specified, then the first element of the output is computed
differently from the succeeding elements and So = Ro. (If function is cheap to evaluate,
TscanF runs more efficiently if it is provided with an init argument.) One situation where
one typically has to leave out the init argument is when function does not have a left
identity element as in the last example below.

(TscanF #°+ [1 2 3]) = [1 3 6]
(TscanF #’max [1 3 2]) = [1 3 3]

An interesting example of a scanning process is the operation of proration. In this
process, a total is divided up and allocated between a number of categories. The alloca-
tion is done based on percentages which are associated with the categories. (For example,
some number of packages might be divided up between a number of people.) One might
think that this could be done straightforwardly by multiplying the total by each of the
percentages. Unfortunately, this mapping approach does not work.

The proration problem is more complex than it first appears. Typically, there is a
limit to the divisibility of the total (e.g., when a group of packages is divided up, the
individual packages cannot be subdivided). This means that rounding must be performed
each time the total is multiplied by a percentage. In addition, it is usually important
that the total be allocated exactly—i.e., that the sum of the allocations be exactly equal
to the total, rather than being one more or one less. Scanning is required in order to
make sure that things come out exactly right.

As a concrete example of proration, suppose that 99 packages need to be allocated
among three people based on the percentages 35%, 45%, and 20%. Assuming that the
percentages and the number of packages are all represented as integers, simple mapping
would lead to the incorrect result below in which the allocations add up to 100 instead
of 99.

(prognS (round (/ (* 99 [35 45 20]) 100))) => [35 45 20]

The transducer Tprorate below solves the proration problem by using TscanF. It takes
in a total and an 0SS series of percentages and returns an 0SS series of allocations. The
basic action of the program is to multiply each percentage by the total. However, it
also keeps track of how much of the total has been allocated. When the last percentage
is encountered, the allocation is set to be everything which remains to be allocated.
(This can cause a significant distortion in the final allocation, but it guarantees that the
allocations will always add up to the total no matter what has happened with rounding
along the way.) In order to determine when the last percentage is being encountered, the
program keeps track of how much percentage has been accounted for and assumes that
the percentages always add up to 100.

Cotruncation 25

(defun prorate-step (state percent)
(let* ((total (second state))
(unallocated (third state))
(unused-percent (fourth state))
(allocation (if (= percent unused-percent) unallocated
(round (/ (* total percent) 100)))))
(setf (first state) allocation)
(setf (third state) (- unallocated allocation))
(setf (fourth state) (- unused-percent percent))
state))

(defunS Tprorate (total percents)
(declare (type oss percents))
(car (TscanF (list O total total 100) #’prorate-step percents)))

(Tprorate 99 [35 45 20]) => [35 45 19]

An interesting aspect of the function Tprorate is that the state manipulated by the
scanned function prorate-step has four parts: an allocation, the total, the unallocated
portion of the total, and the remaining percentage not yet allocated. This illustrates the
fact that TscanF can be used with complex state objects. (The same is true of EnumerateF
and ReduceF.) However, it also illustrates that accessing the various parts of a complex
state is awkward and inefficient.

Fortunately, it is often possible to get around the need for a complex state object by
using a compound OSS expression. For the example of proration, this can be done as
shown below. Simple mapping is combined with two scans which keep track of cumulative
values. An implicitly mapped test is used to make sure that things come out right on
the last step. (The function Tprevious is used to access the previous value of the series
unallocated.)

(defunS Tprorate-multi-state (total percents)
(declare (type oss percents))

(lets* ((allocation (round (/ (* percents total) 100)))
(unallocated (TscanF total #’- allocation))
(unused-percent (TscanF 100 #’- percents)))

(if (zerop unused-percent)
(Tprevious unallocated total)
allocation)))

Cotruncation

A key feature of every on-line transducer is that it terminates as soon as any input
runs out of elements. Put another way, the output is never longer than the shortest
input. (If the transducer is also an early terminator, then the output can be shorter than
the shortest input, otherwise it must be the same length as the shortest input.) This
effect is referred to as cotruncation, because it acts as if each input had been truncated
to the length of the shortest input. If several enumerators and on-line transducers are
combined together into an 0SS expression, cotruncation will typically cause all of the
series produced by the enumerators to be truncated to the same length. For example, in
the expression below, all of the series (including the unbounded series produced by Eup)
are truncated to a length of two.

26 Reference Manual

(Rlist (* (+ (Eup) [4 51) [1 2 3])) = (4 12)

Tcotruncate items &rest more-items => initial-items &rest more-initial-items

It is occasionally important to specify cotruncation explicitly. This can be done with
the function Tcotruncate whose only action is to force all of the outputs to be of the
same length. (If any of the inputs of Tcotruncate are such that they can be used as
destinations of alterS, then the corresponding outputs of Tcotruncate can be used as
destinations of altersS.)

(Tcotruncate [1 2 -3 4 -5] [10]) = [1] [10]
(Tcotruncate (Eup) [a b]) => [0 1] [a b]
(Tcotruncate [a b] [1) = [[

An important feature of Tcotruncate is that it has a powerful interaction with the
requirement that within each on-line subexpression, there must be a data flow path from
each termination point to each output. Consider the function weighted-squares below.
This program is intended to take a vector of values and a vector of weights and return a
list of two vectors: the squares of the values and the squares multiplied by the weights.
The program violates the requirement above, because there is no data flow path from
(Evector weight-vector) to (Rvector squares).

(defun weighted-squares (value-vector weight-vector)
(1etS* ((values (Evector value-vector)) ;Signals warning 18
(weights (Evector weight-vector))
(squares (* values values))
(weighted-squares (* squares weights)))
(1ist (Rvector squares) (Rvector weighted-squares))))

(weighted-squares #(1 2 3) #(2 3 4)) = (#(1 4 9) #(2 12 36))
(weighted-squares #(1 2) #(2 3 4)) = (#(1 4) #(2 12))
(weighted-squares #(1 2 3) #(2 3)) = (#(1 4 9) #(2 12))

It might be the case that the programmer knows that value-vector and weight-vector
always have the same length. (Or it might be the case that he wants both output values
to be no longer than the shortest input.) In either case, the function can be written
as shown below which is much more efficient than the program above since there is no
longer a restriction violation which triggers code copying. The key difference is that the
use of Tcotruncate makes both outputs depend on both inputs. If the inputs are known
to be the same length, the use of Tcotruncate can be thought of as a declaration.

(defun weighted-squares* (value-vector weight-vector)
(lets* (((values weights)
(Tcotruncate (Evector value-vector)
(Evector weight-vector)))
(squares (* values values))
(weighted-squares (* squares weights)))
(list (Rvector squares) (Rvector weighted-squares))))

(weighted-squares* #(1 2 3) #(2 3 4)) = (#(1 4 9) #(2 12 36))

(weighted-squares* #(1 2) #(2 3 4)) = (#(1 4) #(2 12))
(weighted-squares* #(1 2 3) #(2 3)) = (#(1 4) #(2 12))

Off-Line Transducers 27
Off-Line Transducers

This section and the next two describe transducers that are not on-line. Most of these
functions have some inputs or outputs which are on-line. The ports which are on-line
can be used freely. However, the off-line ports have to be isolated when they are used.
(For ease of reference, the off-line ports all begin with the letter code “0”.)

Tremove-duplicates Oitems &optional (comparator #’eql) => items

This function is analogous to remove-duplicates. It creates an 0SS series that has the
same elements as the off-line input Oitems with all duplicates removed. The comparator
is used to determine whether or not two items are duplicates. If two items are the same,
then the item which is later in the series is discarded. (As in remove-duplicates the
algorithm employed is not particularly efficient, being O(n?).) (If the Oitems input of
Tremove-duplicates is such that it can be used as a destination for alterS, then the
output of Tremove-duplicates can be used as a destination for altersS.)

(Tremove-duplicates [1 2 1 (a) (a)]) = [1 2 (a) (a)]
(Tremove-duplicates [1 2 1 (a) (a)] #’equal) = [1 2 (a)]

Tchunk amount Oitems => lists

This function creates an 0SS series of lists of length amount of successive subseries of
the off-line input Oitems. If the length of Oitems is not a multiple of amount, then the
last (mod (Rlength Oitems) amount) elements of Oitems will not appear in any output
chunk.

(Tchunk 2 [a b c d e]) = [(a b) (c d)]
(Tchunk 6 [a b c d]) = []

Twindow amount Oitems => lists

This function creates an 0SS series of lists of length amount of subseries of the off-
line input Oitems starting at each element position. If the length of Oitems is less than
amount, the output will not contain any windows. The last example below shows Twindow
being used to compute a moving average.

(Twindow 2 [a b c d]) = [(a b) (b c) (c A)]

(Twindow 4 [a b c d]) = [(a b c d)]

(Twindow 6 [a b ¢ d]) = []

(prognS (/ (apply #’+ (Twindow 2 [2 4 6 8])) 2)) = [3 5 7]

Tconcatenate QOitemsl Oitems2 &rest more-Qitems = items

This function creates an 0SS series by concatenating together two or more off-line
input 0SS series. The length of the output is the sum of the lengths of the inputs. (The
elements of the individual input series are not computed until they need to be.)

(Tconcatenate [b c] [] [d]) = [b c d]
(Tconcatenate [] [1) = []

28 Reference Manual

e TconcatenateF FEnumerator Oitems = items

The Enumerator must be a quoted 0ss function that is an enumerator. The function
TconcatenateF applies Enumerator to each element of the off-line input Oitems and
returns the series obtained by concatenating all of the results together. If Enumerator
returns multiple values, then TconcatenateF will as well.

(TconcatenateF #’Elist [(a b) () (¢ d)]) = [a b ¢ d]
(TconcatenateF #’Elist [() O1) = [
(TconcatenateF #’Eplist [(a 1) (b 2 ¢ 3)]) = [a b c] [1 2 3]

e Tsubseries Oitems start &optional below => items

This function creates an OSS series containing a subseries of the elements of the off-
line input Oitems from start up to, but not including, below. If below is greater than the
length of Oitems, output nevertheless stops as soon as the input runs out of elements. If
below is not specified, the output continues all the way to the end of Oitems. Both of
the arguments start and below must be non-negative integers.

(Tsubseries [a b c d] 1) = [b ¢ d]
(Tsubseries [a b c d] 1 3) = [b c]
(Rlist (Tsubseries (Elist list) 1 2)) = (subseq list 1 2)

If the Oitems input of Tsubseries is such that it can be used as a destination for
alterS, then the output of Tsubseries can be used as a destination for alterS.

(let ((list ’(a b c d e)))
(alterS (Tsubseries (Elist list) 1 3) (Eup))
list) = (a 01 d e)

The function Tsubseries terminates as soon as it has written the last output element.
As a result, it is an early terminator. This can sometimes lead to conflicts with the
restriction that within each on-line subexpression, there must be a data flow path from
each termination point to each output. To select a subseries without using an early
terminator, use Tselect, Tmask, and Eup as shown below.

(Tsubseries Oitems from below)
= (Tselect (Tmask (Eup from :below below)) Oitems)

¢ Tpositions Obools = indices

This function takes in an 0SS series and returns an 0SS series of the indexes of the
non-null elements in the off-line input series.

(Tpositions [T nil T 44]) = [0 2 3]
(Tpositions [nil nil nill]) => []

e Tmask Omonotonic-indices => bools

This function is a quasi-inverse of Tpositions. The input Omonotonic-indices must
be a strictly increasing OSS series of non-negative integers. The output, which is al-
ways unbounded, contains T in the positions specified by Omonotonic-indices and nil
everywhere else.

Off-Line Transducers 29

(Tmask [0 2 3]) = [T nil T T nil nil ...]
(Tmask []) = [nil nil ...]
(Tmask (Tpositions x)) = (Tconcatenate (not (null x)) (Eoss :R nil))

Tmerge Oitemsl Oitems2 comparator = items

This function is analogous to merge. The output series contains the elements of the
two off-line input series. The elements of Oitemsl appear in the same order that they
are read in. Similarly, the elements of Oitems2 appear in the same order that they are
read in. However the elements from the two inputs are intermixed under the control of
the comparator. At each step, the comparator is used to compare the current elements
in the two series. If the comparator returns non-null, the current element is removed
from Oitemsl] and transferred to the output. Otherwise, the next output comes from
Oitems2. (If, as in the first example below, the elements of the individual input series
are ordered with respect to comparator, then the result will also be ordered with respect
to comparator. If, as in the second example below, either input is not ordered, the result
will not be ordered.)

(Tmerge [1 3 7 9] [4 5 8] #°<)
(Tmerge [1 7 3 9] [4 5 8] #°<)
(Tmerge x y #’(lambda (x y) T))

8 9
8 9
(Tconcatenate x y)

A
™m
(SR
o»H W

Tlastp Oitems => bools items

This function takes in a series and returns a series of boolean values having the same
length such that the last value is T and all of the other values are nil. If the input series
is unbounded, then the output series will also be unbounded and every element of the
output will be nil.

It turns out that this output cannot be computed by an on-line 0ss function. There-
fore, if Tlastp returned only the boolean values described above, the isolation restrictions
would make it impossible to use the input series and the output values together in the
same computation. In order to get around this problem, Tlastp returns a second out-
put which is identical to the input. This output can be used in lieu of the input in
combination with the boolean values.

(Tlastp [a b ¢ d]) = [nil nil nil T] [a b ¢ d]
(Tlastp [a]l) = [T] [a]

(Tlastp [1) = [0 []

(Tlastp (Eup)) => [nil nil nil ...J [0 12 ...]

As an example of using Tlastp, it is interesting to return to the example of proration
discussed in conjunction with the function TscanF. Both of the proration functions pre-
sented earlier assume that the percentages always add up to 100. If this turns out not
to be the case, then an exact allocation of the total is not guaranteed. The following
program ensures that exact allocation will occur no matter what the percentages add up
to. It does this by using Tlastp to detect which percentage is the last one.

30 Reference Manual

(defunS Tprorate-robust (total Opercents)
(declare (type oss Opercents))

(letS* (((is-last percents) (Tlastp Opercents))
(allocation (round (/ (* percents total) 100)))
(unallocated (TscanF total #’- allocation)))

(if is-last (Tprevious unallocated total) allocation)))

(Tprorate-robust 99 [35 45 20]) = [35 45 19]
(Tprorate-robust 99 [35 45 21]) => [35 45 19]
(Tprorate 99 [35 45 21]) => [35 45 21]

Selection and Expansion

Selection and its inverse are particularly important kinds of off-line transducers.

e Tselect bools &optional items = Oitems

This function selects elements from a series based on a boolean series. The off-line
output consists of the elements of items which correspond to non-null elements of bools.
That is to say, the nth element of items is in the output iff the nth element of bools is
non-null. The order of the elements in Oitems is the same as the order of the elements
in items. The output terminates as soon as either input runs out of elements. If no
items input is specified, then the non-null elements of bools are themselves returned as
the output of Tselect. (If the items input of Tselect is such that it can be used as
a destination for alterS, then the output of Tselect can be used as a destination for

Vo alterS.)

3

(Tselect [T nil T nil] [a b c d]) = [a c]
(Tselect [a nil b nill]) = [a b]
(Tselect [nil nil] [a bl) = []

An interesting aspect of Tselect is that the output series is off-line rather than having
the two input series be off-line. This is done in recognition of the fact that the two input
series are always in synchrony with each other. Having only one port which is off-line
allows more flexibility then having two ports which are off-line.

One might want to select elements out of a series based on their positions in the series
rather than on boolean values. This can be done straightforwardly using Tmask as shown
below.

(Tselect (Tmask [0 2]) [a b ¢ d]) = [a c]
(Tselect (not (Tmask [0 2])) (Eup 10)) => [11 13 14 15 ...]

A final feature of Tselect in particular, and off-line ports in general, is illustrated by
the program below. In this program, the Tselect causes the first Elist to get out of
phase with the second Elist. As a result, it is important to think of 0SS expressions as
passing around series objects rather than as merely being abbreviations for loops where
things are always happening in lock step. The latter point of view might lead to the idea
that the output of the program below would be ((a 1) (c 2) (d 4)).

~

Splitting 31

(lets ((tag (Elist ’(a b c d e)))
(x (Elist *(1 -2 2 4 -5))))
(Rlist (list tag (Tselect (plusp x) x)))) = ((a 1) (b 2) (c 4))

TselectF pred Oitems = items

This function is the same as Tselect, except that it maps the non-0ss function pred
over Oitems to obtain a series of boolean values with which to control the selection. In
addition, TselectF has an off-line input rather than an off-line output (this is fractionally
more efficient). The logical relationship between Tselect and TselectF is shown in the
last example below.

(TselectF #’identity [a nil nil b nil]) => [a b]
(TselectF #’plusp [-1 2 -3 4]1) = [2 4]
(TselectF pred items)

= (letS ((var items)) (Tselect (TmapF pred var) var))

Texpand bools Oitems &optional (default nil) => items

This function is a quasi-inverse of Tselect. (The name is borrowed from APL.) The
output contains the elements of Oitems spread out into the positions specified by the
non-null elements in bools—i.e., the nth element of Oitems is in the position occupied
by the nth non-null element in bools. The other positions in the output are occupied by
default. The output stops as soon as bools runs out of elements, or a non-null element
in bools is encountered for which there is no corresponding element in Oitems.

(Texpand [nil T nil T T] [a b ¢]) = [nil a nil b c]
(Texpand [nil T nil T T] [2]) => [nil a nil]
(Texpand [nil T] [a b c] ’z) = [z a]

(Texpand [nil T nil T T] [1) = [nill

Splitting

An operation which is closely related to selection, is splitting. In selection, specified
elements are selected out of a series. It is not possible to apply further operations to the
elements which are not selected, because they have been discarded. In contrast, splitting
divides up a series into two or more parts which can be individually used. Both Tsplit
and TsplitF have on-line inputs and off-line outputs. The outputs have to be off-line,
because they are inherently non-synchronized with each other.

Tsplit items bools &rest more-bools = Oitemsl QOitems2 &rest more-Qitems

This function takes in a series of elements and partitions them between two or more
outputs. If there are n boolean inputs then there are n+1 outputs. Each input element
is placed in exactly one output series. Suppose that the nth element of bools is non-null.
In this case, the nth element of items will be placed in Oitemsl. On the other hand, if
the nth element of bools is nil, the second boolean input (if any) is consulted in order to
see whether the input element should be placed in the second output or in a later output.
(As in a cond, each time a boolean element is nil, the next boolean series is consulted.)
If the nth element of every boolean series is nil, then the nth element of items is placed
in the last output.

32 Reference Manual

(Tsplit [-1 -2 3 4] [T T nil nil]) = [-1 -2] [3 4]
(Tsplit [-1 -2 3 4] [T T nil nil] [nil T nil T1) = [-1 -2] [4] [3]
(Tsplit [-1 -2 3 4] [TTTT]) = [-1-234]]

If the items input of Tsplit is such that it can be used as a destination for alters,
then all of the outputs of Tsplit can be used as destinations for alterS.

(lets* ((list ’(-1 2 -3))
(x (Elist list))
((x+ x-) (Tsplit x (plusp x))))
(alterS x+ (+ x+ 10))
(alterS x- (- x- 10))
list) = (-11 12 -13)

TsplitF items pred &rest more-pred = Oitemsl Oitems2 &rest more-Oitems

This function is the same as Tsplit, except that it takes predicates as arguments
rather than boolean series. The predicates must be non-0ss functions and are applied to
items in order to create boolean values. The relationship between TsplitF and Tsplit is
almost but not exactly as shown below.

(TsplitF items predl pred2)
Z (letS ((var items))
(Tsplit var (TmapF predl var) (TmapF pred2 var)))

The reason that the equivalence above does not quite hold is that, as in a cond, the
predicates are not applied to individual elements of items unless the resulting value is
needed in order to determine which output series the element should be placed in (e.g.,
if the first predicate returns non-null when given the nth element of items, the second
predicate will not be called). This promotes efficiency and allows earlier predicates to
act as guards for later predicates.

(TsplitF [-1 -2 3 4] #’minusp) = [-1 -2] [3 4]
(TsplitF [-1 -2 3 4] #’minusp #’evenp) => [-1 -2] [4] [3]

Reducers

Reducers produce non-0SS outputs based on 0SS inputs. There are two basic kinds
of reducers: ones that combine the elements of 0Ss series together into aggregate data
structures (e.g., into a list) and ones that compute some summary value from these
elements (e.g., the sum). All the predefined reducers are on-line. A few reducers are also
early terminators. These reducers are described in the next section.

e Rlist items => list

This function creates a list of the elements in items in order.

(Rlist [a b c]) = (a b ¢)

(Rlist [1) = O

(Rlist (fn (Elist x) (Elist y))) = (mapcar #’fn x y)

(Rlist (fn (Esublists x) (Esublists y))) = (maplist #’fn x y)

Reducers 33

¢ Rbag items => list

This function creates a list of the elements in items with no guarantees as to the order
of the elements. The function Rbag is more efficient than Rlist.

(Rbag [a b c]) = (c a b) ;in some order
(Rbag [1) = O

e Rappend lists = list
This function creates a list by appending the elements of lists together in order.

(Rappend [(a b) nil (c d)]) = (a b c d)
(Rappend [1) = O

® Rnconc lists = list

This function creates a list by nconcing the elements of lists together in order. The
function Rnconc is faster than Rappend, but modifies the lists in the 0SS series lists.

(Rnconc [(a b) nil (c 4)]) = (a b c d)

(Rncone [1) = O

(let ((x ’(a b))) (Rnconc (Eoss x x))) = (ababab...)
(Rnconc (fn (Elist x) (Elist y))) = (mapcan #’fn x y)

(Rnconc (fn (Esublists x) (Esublists y))) = (mapcon #’fn x y)

e Ralist keys values => alist

This function creates an alist containing keys and values. It terminates as soon as
either of the inputs runs out of elements. If there are duplicate keys, they will be put on
the alist, but order is preserved.

(Ralist [a b] [1 2]) = ((a . 1) (b . 2))
(Ralist [a b] [1) = O
(Ralist keys values) = (Rlist (cons keys values))

e Rplist indicators values => plist

This function creates a plist containing keys and values. It terminates as soon as
either of the inputs runs out of elements. If there are duplicate indicators, they will be
put on the plist, but order is preserved.

(Rplist [aba] [1 23]) = (al1b2a3i)
(Rplist [a b] [1) = O
(Rplist keys values) = (Rnconc (list keys values))

¢ Rhash keys values &rest option-plist => table
This function creates a hash table containing keys and values. It terminates as soon
as either of the inputs runs out of elements. The option-plist can contain any options
acceptable to make-hash-table. The option-plist cannot refer to variables bound by lets.

(Rhash [color name] [brown fred]) => #<hash-table 23764432>
; shash table containing color->brown, name->fred

(Rhash [color name] []) => #<hash-table 23764464>
; ;empty hash table

34 Reference Manual

® Rvector items &key :size &rest option-plist = vector

£ This function creates a vector containing the elements of items in order. The option-
plist can contain any options acceptable to make-array. The option-plist cannot refer to
variables bound by lets.

The function Rvector operates in one of two ways. If the :size argument is supplied,
then Rvector assumes that items will contain exactly :size elements. A vector is created
of length :size with the options specified in option-plist and the elements of items are
stored in it. (If items has fewer than :size elements, some of the slots in the vector will
be left in their initial state. If items has more than :size elements, an error will ensue.)
In this mode, Rvector is very efficient, but rather inflexible.

(Rvector [1 2 3] :size 3) = #(1 2 3)
(Rvector [#\B #\A #\R] :size 3 :element-type ’string-char) => "BAR"
(Rvector [1] :size 4 :initial-element 0) => #(1 0 0 0)

If the :size argument is not supplied, then Rvector allows for the creation of an
arbitrarily large vector. It does this by using vector-push-extend. In order for this to
work, it forces :adjustable to be T and :fill-pointer to be 0 no matter what is specified
in the options-list. In this mode, an arbitrary number of input elements can be handled,
however, things are much less efficient, since the vector created is not a simple vector.

(Rvector [1 2 3]) = #(1 2 3)
(Rvector [1) = #(Q)
(Rvector [#\B #\A #\R] :element-type ’string-char) => "BAR"

(’ ™, . . . g
o To store a series in a preexisting vector, use alterS of Evector.

(let ({v ’#(a b c)))
(alterS (Evector v) (Eoss 1 2))
v) = #(1 2 ¢)

e Rfile name items &rest option-plist = T

This function creates a file named name and writes the elements of items into it
using print. The option-plist can contain any of the options accepted by open except
:direction which is forced to be :output. All of the ordinary printer control variables
are obeyed during the printout. The value T is always returned. The option-plist cannot
refer to variables bound by letS.

(Rfile "test.lisp" [’(a) °(1 2) T] :if-exists :append) => T
; ;The output "

35 (a)

;31 2)

;3T " is printed into the file "test.lisp".

® Rlast items &optional (default nil) => item

This function returns the last element of items. If items is of zero length, default is
returned.

(Rlast [a b c]) = ¢
£ (Rlast [] ’z) = z

Reducers 35

e Rlength items => number
This function returns the number of elements in items.

(Rlength [a b c]) = 3
(Rlength [1) = ©

¢ Rsum numbers = number

This function computes the sum of the elements in numbers. These elements must
be numbers, but they need not be integers.

(Rsum [1 2 3]) = 6
(Rsum []) = 0
(Rsum [1.1 1.2 1.3]) = 3.6

e Rmax numbers = number

This function computes the maximum of the elements in numbers. These elements
must be non-complex numbers, but they need not be integers. The value nil is returned
if numbers has length zero.

(Rmax [2 1 43]) = 4

(Rmax []) = nil
(Rmax [1.2 1.1 1.4 1.3]) = 1.4

e Rmin numbers => number

This function computes the minimum of the elements in numbers. These elements
must be non-complex numbers, but they need not be integers. The value nil is returned
if numbers has length zero.

(Rmin [2 1 4 3]) = 1
(Rmin []) = nil
(Rmin [1.2 1.1 1.4 1.3]) = 1.1

® ReduceF init function items => result

This function is analogous to reduce. In addition, it is similar to TscanF except that
init is not optional and the final value of the accumulator is the only value returned as
shown in the last example below. If items is of length zero, init is returned. As with
TscanF, function must be a non-0ss function and the value of init is typically chosen to
be a left identity of function. It is important to remember that the elements of items are
used as the second argument of function. The order of arguments is chosen to highlight
this fact.

(ReduceF 0 #’+ [1 2 3]) = 6
(ReduceF 0 #’+ []) = 0
(ReduceF 0 #’+ x) = (Rsum x)
(ReduceF init function items)
= (letS ((var init))
(Rlast (TscanF var function items) var))

In order to do reduction without an initial seed value, use Rlast of TscanF. Note that
although a seed value does not have to be specified, a value to be returned if there are
no elements in items still has to be specified.

(Rlast (TscanF #’max x) nil) = (Rmax x)

~

36 Reference Manual

Early Reducers

The following four reducers are early terminators. Each of these functions has a non-
early variant denoted by the suffix “~1late”. The early variants are more efficient, because
they terminate as soon as they have determined a result. This may be long before any
of the input series run out of elements. However, as discussed at the end of this section,
one has to be somewhat careful when using an early reducer in an 0SS expression.

e Rfirst items &optional (default nil) => item
e Rfirst-late items &optional (default nil) => item

Both of these functions return the first element of items. If items is of zero length,
default is returned. The only difference between the functions is that Rfirst stops im-
mediately after reading the first element of items, while Rfirst-late does not terminate
until items runs out of elements.

(Rfirst [a b c]) = a
(Rfirst [] ’2z) = =z

¢ Rnth n items &optional (default nil) => item
¢ Rnth-late n items &optional (default nil) => item

Both of these functions return the nth element of items. If n is greater than or equal
to the length of items, default is returned. The only difference between the functions
is that Rnth stops immediately after reading the nth element of items, while Rnth-late
does not terminate until items runs out of elements.

(Rnth 1 [abc]) = b
(Rnth 1 [] ’2) = =z

Rand bools => bool
Rand-late bools => bool

Both of these functions compute the and of the elements in bools. As with the function
and, nil is returned if any element of bools is nil. Otherwise the last element of bools is
returned. The value T is returned if bools has length zero. The only difference between
the functions is that Rand terminates as soon as a nil is encountered in the input, while
Rand-late does not terminate until bools runs out of elements.

(Rand [a b c]) = ¢

(Rand [a nil ¢]) = nil

(Rand [1) = T

(Rand (pred (Esequence x) (Esequence y))) = (every #’pred x y)

e Ror bools = bool
e Ror-late bools = bool

Both of these functions compute the or of the elements in bools. As with the function
or, nil is returned if every element of bools is nil. Otherwise the first non-null element of
bools is returned. The value nil is returned if bools has length zero. The only difference
between the functions is that Ror terminates as soon as a non-null value is encountered
in the input, while Ror-late does not terminate until bools runs out of elements.

Series Variables 37

(Ror [a b c]) = a

(Ror [a nil ¢]) = a

(Ror [1) = nil

(Ror (pred (Esequence x) (Esequence y))) = (some #’pred x y)

Care must be taken when using early reducers. As discussed in the section
on restrictions, OSS expressions are required to obey the restriction that within each on-
line subexpression, there must be a data flow path from each termination point to each
output. Early reducers interact with this restriction since early reducers are termination
points. As a result, there must be a data flow path from each early reducer to each
output of the containing on-line subexpression.

Since reducers compute non-0SS values, they directly compute outputs of on-line
subexpressions. As a result, it is impossible for there to be a data flow path from a
reducer to any output other than the output the reducer itself computes. Therefore, the
use of an early reducer will trigger code copying unless that reducer computes the only
output of the on-line subexpression.

For example, consider the following four expressions. The first two expressions return
the same result. However, the first is more efficient. This is a prototypical example of a
situation where it is better to use an early reducer. In contrast, although the last two
expressions also return the same results, the second of the expressions is more efficient.
The problem is that in the first of these expressions, there is no data flow path from the
use of Rfirst to the second output. In order to fix this problem the 0Ss macro package
duplicates the list enumeration. It is more efficient to use a non-early reducer as in the
last example.

(lets ((x (Elist *(1 2 -3 4 5 -6 -7 8))))
(Rfirst (TselectF #’minusp x))) = -3

(letS ((x (Elist ’(1 2 -3 4 5 -6 -7 8))))
(Rfirst-late (TselectF #’minusp x))) = -3

(lets ((x (Elist °(1 2 -3 4 5 -6 -7 8)))) ;Signals warning 18
(vals (Rfirst (TselectF #’minusp x))
(Rsum x))) = -3 4

(letS ((x (Elist (1 2 -3 4 5 -6 -7 8))))
(valS (Rfirst-late (TselectF #’minusp x))
(Rsum x))) = -3 4

Series Variables

The principal way to create 0SS variables is to use the form letS. (These variables
are also created by the forms lambdaS and defunS.)

o letS var-value-pair-list {decl}* &body expr-list = result

The form lets is syntactically analogous to let. Just as in a let, the first subform
is a list of variable-value pairs. The 1letS form defines the scope of these variables and
gives them the indicated values. As in a let, one or more declarations can follow the
variable-value pairs. These can be used to specify the types of the variables.

38 Reference Manual

The variables created by letS can be 0SS variables or non-08s variables. Which are
which is determined by the type of the value that is bound to the variable. As in let,
the variables are bound in parallel. In the example below, y is an 0SS variable while x
and z are non-0OSS variables.

(letS ((x ’(1 2 3))
(y (Elist (1 2 3)))
(z (Rsum (Elist *(1 2 3)))))
(list x (Rmax y) z)) = ((1 2 3) 3 6)

Unlike 1et, 1etS does not support degenerate variable-value pairs which consist solely
of a variable. (Since letS variables cannot be assigned to, see below, degenerate pairs
would be of little value.)

(lets (x) ...) ;Signals error 9

The following example illustrates the use of a declaration in a 1letS. Declarations are
handled in the same way that they are handled in a 1let.

(lets ((x (Elist ’(1 2 3))))
(declare (type integer x))
(Rsum x)) = 6

The form letS goes beyond let to include the functionality of multiple-value-bind.
A variable in a variable-value pair can be a list of variables instead of a single variable.
When this is the case, the variables pick up the first, second, etc. results returned by the
value expression. (If there is only one variable, it gets the first value. If nil is used in
lieu of a variable, the corresponding value is ignored.) If there are fewer variables than
values, the extra values are ignored. Unlikemultiple-value-bind, letS signals an error if
there are more variables than values. (Note that there is no form multiple-value-bindS
and that the form multiple-value-bind cannot be used inside of an 0SS expression to
bind the results of an 0SS function.)

(letS (((key value) (Ealist ’((a . 1) (b . 2)))))
(Rlist (list key value))) = ((a 1) (b 2))

(letS ((key (Ealist ’((a . 1) (b . 2)))))
(Rlist key)) = (a b)

(letS (((nil value) (Ealist ’((a . 1) (b . 2)M)))
(Rlist value)) = (1 2)

(letS (((key value x) (Ealist ’((a . 1) (b . 2)))))
(Rlist (list key value x))) ;Signals error 8

The expr-list of a 1etS has the effect of grouping several 0SS expressions together.
The value of the last form in the expr-list is returned as the value of the 1etS. This value
may be an 0SS value or a non-0SS value.

In addition to placing all of the expressions in the same letS binding scope, the
grouping imposed by the expr-list causes the entire body to become an 0Ss expression.
This can alter the way implicit mapping is applied by including non-0ss functions in the
0SS expression.

Series Variables 39

The restricted nature of OSS variables. There are a number of ways in which
the variables bound by letS (or lambdaS and defunS) are more restricted than the ones
bound by let. For the most part, these restrictions stem from the fact that when the 0ss
macro package transforms an 0SS expression into a loop, it rearranges the expressions
extensively. This forces 1etS variable scopes to be supported by variable renaming rather
than binding. One result of this is that it is not possible to declare (or proclaim) a
letS variable to be special. (Standard Common Lisp does not provide any method for
determining whether or not a variable has been proclaimed special. As a result, the
0SS macro package is unable to issue an error message when a special 1etS variable is
encountered. The Symbolics Common Lisp version of the 0SS macro package does issue
an error message.)

(proclaim ’(special 2))
(lets ((z (Elist (1 2 3)))) (Rsum z)) ;erroneous expression

Another limitation is that programmers are not allowed to assign values to letS
variables in the body of a letS. (This restriction applies whether or not the variables
contain 0SS values.) The only time 1etS variables can be given a value is the moment they
are bound. (Although assignment could be supported easily enough, the rearrangements
introduced by the 0ss macro package would make it very confusing for a programmer
to figure out exactly what would happen in a given situation. In particular, naively
applying implicit mapping to setq would lead to peculiar results. In addition, outlawing
assignments enhances the functional nature of the 0SS macro package.) An error message
is issued whenever such an assignment is attempted.

(lets ((x (Elist °(1 2 3))))
(setq x (1+ x)) ;Signals error 12
(Rlist x))

Another aspect of 1etS variables is that their scope is somewhat limited. In partic-
ular, letS variables can be referenced in a letS or mapS which is inside the letS which
binds them. However, they cannot be referenced in lambda or lambdaS. (As above, this
limitation is imposed in order to avoid confusions due to rearrangements. Further, it is
not obvious what it would mean to refer to an 0SS variable in a lambda. Should some
sort of implicit mapping be applied?) No attempt is made to issue error messages in this
situation. Rather, the variable reference in question is merely treated as a free variable.

(Qlet ((x 4))
(letS ((x (Elist ’(1 2 3))))
(Rlist (TmapF #’(lambda (y) (+ x y)) x)))) = (5 6 7)

letSx var-value-pair-list {decl}* &body expr-list = result

The form letS* is exactly the same as letS except that the variables are bound
sequentially instead of in parallel.

(lets* ((x ’(1 2 3))
(y (Elist x))
(z (Rsum y)))
(1ist x (Rmax y) 2z)) = ((1 2 3) 3 6)

40 Reference Manual

¢ prognS &body expr-list = result

As shown below, progns is identical to 1etS except that it cannot contain any variable-
value pairs or declarations. It is a degenerate form whose only function is to delineate an
0ss expression. This can alter the way implicit mapping is applied by including non-0ss
functions in the 0SS expression.

(prognS . expr-list) = (letS () . expr-list)

Complete OSS expressions do not return OSS values. A key point relevant
to the discussion above is that syntactically complete 0SS expressions are not allowed
to return 0SS values. This is relevant, because letS and prognS are often used in such
a way that an 0SS series gratuitously ends up as the return value. For example, the
main intent of the expression below is to print out the elements of the list. However, as
written, the expression appears to return an 0SS series of the values produced by prini.
Because expressions like the one below are relatively common, it was decided not to issue
an error message in this situation. Rather, the 0SS value is simply discarded and no
value is returned.

(progns (prini (Elist °(1 2)))) =
; ;The output "12" is printed.

It might be the case that the programmer actually desires to have a physical series
returned in the example above. This can be done by using a reducer such as Rlist or
Rvector as shown below.

(prognS (Rlist (prini (Elist (1 2))))) = (1 2)
; ;The output "12" is printed.

Preventing complete 0SS expressions from returning 0SS values does not limit what
can be written, because programmers can always return a non-0Ss series. This can be
a bit cumbersome at times, but it is highly preferable to the large inefficiencies which
would be introduced by automatically constructing physical representations for 0SS series
in situations where the returned values are not used in further computation.

Coercion of Non-Series to Series

If an 0SS input of an 0SS function is applied to a non-series value, the type conflict is
resolved by converting the non-0SS value into a series by inserting Eoss. That is to say,
a non-0SS value acts the same as an unbounded 0ss series of the value.

(Ralist (Elist ’(a b)) (x 2 3))
= (Ralist (Elist ’(a b)) (Eoss :R (*x 2 3))) = ((a . 6) (b . 8))

Using Eoss to coerce a non-0Ss value to an 0SS series has the effect of only evaluating
the expression which computes the value once. This has many advantages with regard to
efficiency, but may not always be what is desired. Multiple evaluation can be specified
by using TmapF or mapS.

(Ralist (Elist ’(a b)) (gensym)) => ((a . #:G004) (b . #:G004))
(Ralist (Elist ’(a b)) (TmapF #’gensym)) => ((a . #:G004) (b . #:G005))

Implicit Mapping 41

Implicit Mapping

Mapping operations can be created by using TmapF. However, in the interest of conve-
nience, two other ways of creating mapping operations are supported. The most promi-
nent of these is implicit mapping. If a non-0ss function appears in an 0SS expression and
is applied to one or more arguments which are 0Ss series, the type conflict is resolved by
automatically mapping the function over these series.

(Rsum (car (Elist ’((1) ()M
= (Rsum (TmapF #’car (Elist ’((1) (2))))) = 3

(Rsum (* 2 (Elist (1 2))))
= (Rsum (TmapF #’(lambda (x) (* 2 x)) (Elist ’(1 2)))) = 6

As shown in the second example, implicit mapping actually applies to entire non-
0SS subexpressions rather than merely to individual functions. This promotes efficiency
and makes sure that related groups of functions are mapped together. However, it is
not always what is desired. For instance, in the first example below, the call on gensym
gets mapped in conjunction with the call on 1ist. This causes each list to contain a
separate gensym variable. It might be the case that the programmer wants to have the
same gensym variable in each list. This can be achieved by inserting an Eoss as shown in
the second example. (Inserting a Eoss here and there can promote efliciency by avoiding
unnecessary recomputation.)

(Rlist (1list (Elist ’(a b)) (gensym)))
= (Rlist (TmapF #’(lambda (x) (list x (gensym)))
(Elist ’(a b)))) = ((a #:G002) (b #:G003))

(Rlist (list (Elist ’(a b)) (Eoss :R (gensym))))
= (Rlist (TmapF #’list
(Elist ’(a b))
(Eoss :R (gensym)))) = ((a #:G002) (b #:G002))

In order to be implicitly mapped, a non-0ss function must appear inside of an 0SS
expression. For example, the instance of prin1 in the first example below does not get
implicitly mapped, because it is not in an 0SS expression. Implicit mapping of the prini
can be forced by using prognS as shown in the second example above.

(print (Elist ’(1 2))) = nil
; ;The output "NIL" is printed.

(prognS (prini (Elist ’(1 2)))) =
; s The output "12" is printed.

(The result of the first example above is that NIL gets printed. This happens because
(Elist ’(1 2 3)) is a syntactically complete 0SS expression and is therefore not allowed
to return a series. It returns no values instead. The function prini demands a value
anyway, and gets nil.)

Another aspect of implicit mapping is that a non-0ss function will not be mapped
unless it is applied to a series. This is usually, but not always, what is desired. Consider
the first expression below. The instance of prini is mapped over x. However, the instance

42 Reference Manual

of princ is not applied to a series and is therefore not mapped. If the programmer intends
to print a dash after each number, he has to do something in order to get the princ to
be mapped. This could be done using TmapF or mapS. However, the best thing to do is
to group the two printing statements into a single subexpression as shown in either of
the last two examples below. This grouping shows the relationship between the printing
operations and causes them to be mapped together.
(lets ((x (Elist (1 2 3))))
(prini x)
(princ n_n)) = (L]
; ;The output "123-" is printed.

(letS ((x (Elist (1 2 3))))

(progn (prini x) (princ "-"))) =
; ;The output "1-2-3-" is printed.
(letS ((x (Elist ’(1 2 3))))

(format T ""A-" x)) =>
; ;The output "1-2-3-" is printed

Ugly details. Implicit mapping is easy to understand when applied in simple situa-
tions such as the ones above. However, it can be applied to any Lisp form. Things become
somewhat more complicated when control constructs (e.g., if) and binding constructs
(e.g., let) are encountered. The example below shows the implicit mapping of an if.
This creates a lambda expression containing a conditional which is mapped over a series.
A key thing to notice in this example is that implicit mapping of if is very different from
a use of Tselect. In particular, the mapped if returns a value corresponding to every
input, while the Tselect does not.

(Rlist (if (plusp (Elist ’(10 -11 12))) (Eup)))
= (Rlist (TmapF #’(lambda (x y) (if (plusp x) y))
(Elist ’ (10 -11 12)) (Eup))) = (0 nil 2)

(Rlist (Tselect (plusp (Elist ’(10 -11 12))) (Eup))) = (0 2)

Another aspect of the way conditionals are handled inside of an 0SS expression is
illustrated below. When an 0SS expression is being processed in order to determine what
should be implicitly mapped, the expression is broken up into 0SS pieces and non-0SS
pieces. If the argument of a conditional is an 0SS expression, this argument will end up
in a separate piece from the conditional itself. One result of this is that the argument will
always be evaluated and the conditional will therefore lose its power to control when the
argument should be evaluated. This effect will happen even if, as in the example below,
the conditional does not have to be mapped. The three examples below all produce the
same value, but the first two always evaluate (Rlist (abs (Elist x))) while the last
may not.

(prognS (if (Ror (minusp (Elist x)))
(Rlist (abs (Elist x)))
x))
= (prognS (funcall #’(lambda (y z) (if y z x))
(Ror (minusp (Elist x)))
(Rlist (abs (Elist x)))))
Z (if (Ror (minusp (Elist x)))
(Rlist (abs (Elist x)))
x)

£

Implicit Mapping 43

The following example shows the implicit mapping of a let. (Among other things,
this illustrates that such expressions are far from clear. In general it is better to use letS
as in the second example.)

(Rlist (let ((double (* 2 (Elist ’(1 2))))) (* double double)))
= (Rlist (TmapF #’(lambda (x)
(let ((double (* 2 x))) (* double double)))
(Elist ’(1 2)))) = (4 16)

(letS ((double (x 2 (Elist (1 2)))))
(Rlist (* double double))) => (4 16)

A problem with the implicit mapping of a let (or other binding forms) is that the
implicit mapping transformation potentially moves subexpressions out of the scope of the
binding form in question. This can change the meaning of the expression if any of these
subexpressions contain an instance of a variable bound by the binding form. For instance,
in the example above, the transformation moves the subexpression (Elist (1 2)) out
of the scope of the 1let. This would cause a problem if this subexpression referred to the
variable double.

In recognition of this problem, a warning message is issued whenever implicit map-
ping of a binding form causes a variable reference to move out of a form that binds it.
Whenever it occurs, this problem can be alleviated by using 1etS as shown above.

A final complexity involves forms like return, return-from, throw, etc. These forms
are implicitly mapped like any other non-0ss form. When they get evaluated, they will
cause an exit. However, the loop produced by the 0SS macro does not contain a boundary
which is recognized by any of these forms (e.g., it does not create a prog or catch). As a
result, such a boundary must be defined which will serve as the reference point. Needless
to say, the final results of the 0SS expression will not be computed if the expression is
exited in this way.

Nested loops. Implicit mapping is applied when non-0Ss functions receive 0SS
values. However, implicit mapping is not applied when 0SS functions receive 0SS values,
even if these values are passed to non-0SS inputs. As illustrated below, whenever this
situation occurs, an error message is issued.

(Elist (Elist °((1 2) (3 4)))) ;Signals error 14

There are situations corresponding to nested loops where it would be reasonable to
implicitly map subexpressions containing 0SS functions. For example, one might write
the following expression in order to copy a list of lists.

(Rlist (Rlist (Elist (Elist *((1 2) (3 4)))))) ;Signals error 14
(Rlist (TmapF #’(lambda (x) (Rlist (Elist x)))
(Elist *((1 2) (3 4))))) = ((1 2) (3 4))

Nevertheless, expressions like the first one above are forbidden. This is done for
two reasons. First, in more complex situations 0SS expressions corresponding to nested
loops become so confusing that such expressions are very hard to understand. As a
result, they are not very useful. Second, experience suggests that a large proportion of

44 Reference Manual

situations where mapping of 0ss functions might be done arise from programming errors
rather than an intention to have a nested loop. Outlawing these expressions makes it
possible to find these errors more quickly.

(The following example shows that there is no problem with having one loop com-
putation following another. There are no type conflicts in this situation and no implicit
mapping is required.)

(Rsum (Evector (Rvector (Elist ’(1 2))))) = 3

Needless to say, it would be unreasonable if there were no way to write 0SS expressions
corresponding to nested loops. First of all, this can always be done using TmapF as shown
above. However, this can be rather cumbersome. To alleviate this difficulty, an additional
form (maps) is introduced which facilitates the expression of nested computations.

mapS &body expr-list = items

The expr-list consists of one or more expressions. These expressions are treated as the
body of a function and mapped over any free 0ss variables which appear in them. That
is to say, the first element of the output is computed by evaluating the expressions in an
environment where each 0SS variable is bound to the first element of the corresponding
series. The second element of the output is computed by evaluating the expressions in an
environment where each 0SS variable is bound to the second element of the corresponding
series, etc. The way mapS could be used to copy a list-of-lists is shown below. A 1letS has
to be used, because mapS requires that the series being mapped over must be held in a
variable.

(letS ((z (Elist ’((1 2) (3 XN
(Rlist (mapS (Rlist (Elist z)))))
= (1etS ((z (Elist *((1 2) (3 4NN
(Rlist (TmapF #’(lambda (x)
(Rlist (Elist x))) z))) = ((1 2) (3 4))

(Rlist
(mapS
(Rlist (Elist (Elist ’((1 2) (3 4))))))) ;Signals error 14

Implicit mapping is very valuable. From the above, it can be seen that although
implicit mapping is simple in simple situations, there are a number of situations where it
becomes quite complex. There is no question that these complexities dilute the value of
implicit mapping. Nevertheless, experience suggests that implicit mapping is so valuable
that, warts and all, it is perhaps the most useful single feature of 0SS expressions.

Literal Series Functions

Just as it is very convenient to be able to specify a literal non-0Ss function using
lambda, it is sometimes convenient to be able to specify a literal 0ss function.

¢ lambdaS var-list {decl}* &body expr-list

The form lambdas$ is analogous to lambda except that some of the arguments can have
0SS series passed to them and the return value can be an 0SS series. The var-list is

Literal Series Functions 45

simpler than the lambda lists which are supported by lambda. In particular, the var-1ist
must consist solely of variable names. It cannot contain any of the lambda list keywords
such as &optional and &rest. Asin a letS, the variables in the var-list cannot be assigned
to in the expr-list or referenced inside of a nested lambda or lambdas.

As in a lambda, the body can begin with one or more declarations. All of the argu-
ments which are to receive 0SS values have to be declared inside the 1ambdaS using the
declaration type oss (see below). All of the other arguments are assumed to correspond
to non-0OSs values. Just as in a letS, the declarations may contain other kinds of decla-
rations besides type oss declarations. However, the variables in the var-1ist cannot be
declared (or proclaimed) to be special.

The expr-1ist is a list of expressions which are grouped together into an 0SS expres-
sion as in a letS or prognS. The value of the function specified by a 1ambdas is the value
of the last form in the expr-list. This value may or may not be an 0SS series.

In many ways, lambdaS bears the same relationship to letS that lambda bears to let.
However, there is one key difference. The expr-list in a lambdaS cannot refer to any
free variables which are bound by a letS, defunS, or another lambdaS. Each lambda$ is
processed in complete isolation from the 0SS expression which surrounds it. The only
values which can enter or leave a lambdaS are specified by the var-list and non-0Ss
variables which are bound outside of the entire containing 0SS expression. ‘

Another key feature of 1ambdas is that the only place where it can validly appear is as
the quoted first argument of funcalls (see below), or as an argument to a macro which
will eventually expand in such a way that the lambdaS will end up as the quoted first
argument of a funcalls.

The following example illustrates the use of lambdaS. It shows an anonymous 0SS
function identical to Rsum.

(funcallS #’(lambdaS (x)
(declare (type oss x))
(ReduceF 0 #°+ x))
(Elist ’(1 2 3))) = 6

type oss &rest variable-list

This type declaration can only be used inside of a declare inside of a lambdaS or a
defunS. It specifies that the variables carry 0SS values.

funcallS function &rest expr-list = result

This is analogous to funcall except that function can be an 0SS function. In partic-
ular, it can be the quoted name of a series function, a quoted lambdaS, or a macro call
which expands into either of the above. It is also possible for function to be a non-0ss
function, in which case funcalls is identical to TmapF. If function is an expression which
evaluates to a function (as opposed to a literal function), then it is assumed to be a
non-0SS function.

(funcallS #’Elist ’(1 2)) = (Elist (1 2)) = [1 2]

(funcallS #’(lambdaS (y) (declare (type oss y)) (x 2 y))
(Elist ’(1 2))) = [2 4]

(funcallS #’car [(1) (2)]) = [1 2]

(funcallS #’car ’(1 2)) = [1 111 ...]

46 Reference Manual

The number of expressions in expr-list must be exactly the same as the number of
arguments expected by function. If not, an error message is issued. In addition, the
types of values (either OSS series or not) returned by the expressions should be the same
as the types which are expected by function. If not, coercion of non-series to series will
be applied if possible in order to resolve the conflict.

Defining Series Functions

An important aspect of the 0SS macro package is that it makes it easy for program-
mers to define new 0SS functions. Straightforward 0SS functions can be defined using
the facilities outlined below. More complex 0Ss functions can be defined using the sub-
primitive facilities described in [6].

defunS name lambda-list {doc} {decl}* &body expr-list

This is analogous to defun, but for 0Ss functions. At a simple level, defunS is just
syntactic sugar which defines a macro that creates a funcalls of a 1ambdaS. The lambda-
list, declarations, and expression list are restricted in exactly the same way as in a
lambdaS except that the standard lambda list keywords &optional and &key are allowed
in the lambda-list.

(defunS Rlast (items &optional (default nil))
"Returns the last element of an 0SS series"
(declare (type oss items))
(ReduceF default #’(lambda (state x) x) items))
= (defmacro Rlast (items &optional (default ’nil))
"Returns the last element of an 0SS series"
‘(funcallS #’ (lambdaS (items default)
(declare (type oss items))
(ReduceF default #’(lambda (state x) x) items))
,items ,default))

However, at a deeper level, there is a key additional aspect to defunS. Preprocessing
and checking of the resulting lambdaS is performed when the defunS is evaluated (or
compiled), rather than when the resulting 0ss function is used. This saves time when
the function is used. More importantly, it leads to better error messages because error
messages can be issued when the defunS is initially encountered, rather than when the
0ss function defined is used.

Although the lambda list keywords &optional and &key are supported by defunS, it
should be realized that they are supported in the way they are supported by macros, not
the way they are supported by functions. In particular, when keywords are used in a call
on the 0SS function being defined, they have to be literal keywords rather than computed
by an expression. In addition, initialization forms cannot refer to the run-time values of
other arguments, because these are not available at macro-expansion-time. They are also
not allowed to refer to the macro-expansion-time values of the other arguments. They
must stand by themselves when computing a value. A quote is inserted so that this value
will be computed at run-time rather than at macro-expansion-time. (In the example
above, (default nil) becomes (default ’nil).)

Multiple Values 47

It may seem unduly restrictive that defunS does not support all of the standard
keywords in lambda-list. However, this is not that much of a problem because defmacro
can be used directly in situations where these capabilities are desired. For example,
Tconcatenate is defined in terms of a more primitive 0SS function Tconcatenate2 as
follows.

(defmacro Tconcatenate (Oitemsi Oitems2 &rest more-Oitems)
(if (null more-Oitems)
‘(Tconcatenate2 ,0itemsl ,0items2)
‘(Tconcatenate2 ,0itemsi1 (Tconcatenate ,0items2 .,more-Oitems))))

Using defmacro directly also makes it possible to define new higher-order 0ss func-
tions. For example, an 0SS function analogous to substitute-if could be defined as
follows. (The Eoss ensures that newitem will only be evaluated once.)

(defmacro Osubstitute-if (newitem test items)
(let ((var (gensym)))
‘(letS ((,var ,items))
(if (funcall ,test ,var) (Eoss :R ,newitem) ,var))))

(Osubstitute-if 3 #’minusp [1 -1 2 -3]1) = [1 3 2 3]

Multiple Values

The 0SS macro package supports multiple values in a number of contexts. As dis-
cussed above, letS can be used to bind variables to multiple values returned by an 0ss
function. Faculties are also provided for defining 0SS functions which return multiple
values. The support for multiple values is complicated by the fact that the 0SS macro
package implements all communication of values by using variables. As a result, it is not
possible to support the standard Common Lisp feature that multiple values can coexist
with single values without the programmer having to pay much attention to what is going
on. When using 0SS expressions, the programmer has to be explicit about how many
values are being passed around.

valS &rest expr-list = &rest multiple-value-result

This is analogous to values except that it can operate on 0SS values. It takes in
the values returned by n different expressions and returns them as n multiple values. It
enforces the restriction that the values must either all be 0SS values or all be non-0ss
values. The following example shows how a simple version of Eplist could be defined.

(defunS simple-Eplist (place)
(lets ((plist (EnumerateF place #’cddr #’null)))
(vals (car plist) (cadr plist))))

It is possible to use values in an 0SS expression. However, the results will be very
different from the results obtained from using valS. The values will be implicitly mapped

like any other non-08s form. The value ultimately returned will be the single value
returned by TmapF.

48 Reference Manual

(prognS (valS (Elist °>(1 2)) (Elist ’(3 4)))) = [1 2] [3 4]

o (prognS (values (Elist ’(1 2)) (Elist ’(3 4))))
= (prognS (TmapF #’(lambda (x y) (values x y))
(Elist (1 2)) (Elist ’(3 4)))) = [1 2]

¢ pass-valS n expr => &rest multiple-value-result

This function is used essentially as a declaration. It tells the 0SS macro package that
the form expr returns n multiple values which the programmer wishes to have preserved
in the context of the 0Ss expression. (This is needed, because Common Lisp does not
provide any compile-time way to determine the number of arguments that a function will
return.) The first example below enumerates a list of symbols and returns a list of the
internal symbols, if any, which correspond to them. The second example defines a two
valued 0sS function which locates symbols.

(letS* ((names (Elist ’(zots Elist zorch)))
((symbols statuses) (pass-valS 2 (find-symbol (string names))))
(internal-symbols (Tselect (eq statuses :internal) symbols)))
(Rlist internal-symbols)) => (zots zorch)

(defunS find-symbols (names)
(declare (type oss names))
(pass-valS 2 (find-symbol (string names))))

(find-symbols [zots Elist zorchl])
=> [zots Elist zorch] [:internal :inherited :internall

Ve The form pass-valS never has to be used in conjunction with an 0SS function, because

- the 0SS macro package knows how many values every 0SS function returns. Similarly,
pass-valS never has to be used when multiple values are being bound by 1etS, because the
syntax of the letS indicates how many values are returned. (As a result, the pass-vals
in the first example above is not necessary.) However, in situations such as the second
example above, pass-valS must be used.

Alteration of Values

The transformations introduced by the 0Ss macro package are inherently antagonistic
to the transformations introduced by the macro setf. In particular, 0SS function calls
cannot be used as the destination of a setf. In order to get around this problem, the 0ss
macro package supports a separate construct which is in fact more powerful than setf.

e alterS destinations items => items

This form takes in a series of destinations and a series of items and stores the items
in the destinations. It returns the series of items. Like setf, alterS cannot be applied
to a destination unless there is an associated definition for what should be done (see the
discussion of alterables in [6]). The outputs of the predefined functions Elist, Ealist,
Eplist, Efringe, Evector, and Esequence are alterable. The effects of this alteration
are illustrated in conjunction with the descriptions of these functions. For example, the
following sets all of the elements in a list to nil.

Debugging 49

(let ((1ist ’((a . 1) (b . 2) (c . 3))))
(alterS (Elist list) nil)
list) = (nil nil nil)

As a related example, consider the following. Although setf cannot be applied to
an 0SS function, it can be applied to a non-0SS function in an 0SS expression. In the
example below, setf is used to set the cdr of each element of a list to nil.

(let ((list *((a . 1) (b . 2) (c . 3NN
(prognS (setf (cdr (Elist list)) nil))
list) = ((a) (b) ()

A key feature of alterS is that (in contrast to setf) a structure can be altered by
applying alterS to a variable which contains enumerated elements of the structure. This
is useful because the old value in a structure can be used to decide what new value
should be put in the structure. (When alterS is applied to such a variable it modifies
the structure being enumerated but does not change the value of the variable.)

(letS* ((v ’#(1 2 3))
(x (Evector v)))
(alterS x (* x x))
(vals (Rlist x) v)) = (1 2 3) #(1 4 9)

Another interesting aspect of alterS is that it can be applied to the outputs of a
number of transducers. This is possible whenever a transducer passes through unchanged
a series of values taken from an input which is itself alterable. This can happen with the
transducers Tuntil, TuntilF, Tcotruncate, Tremove-duplicates, Tsubseries, Tselect,
TselectF, Tsplit, and TsplitF. For example, the following takes the absolute value of
the elements of a vector.

(lets* ((v *#(1 -2 3))
(x (TselectF #’minusp (Evector v))))
(alterS x (- x))
v) = #(1 2 3)

Debugging

The 0Ss macro package supports a number of features which are intended to facilitate
debugging. One example of this is the fact that the macro package tries to use the variable
names which are bound by a 1letS in the code produced. Since the macro package is forced
to use variable renaming in order to implement variable scoping, it cannot guarantee that
these variable names will be used. However, there is a high probability that they will.
If a break occurs in the middle of an 0SS expression, these variables can be inspected
in order to determine what is going on. If a letS variable holds an 0SS series, then the
variable will contain the current element of the series. For example, the 0SS expression
below is transformed into the loop shown. (For a discussion of how this transformation
is performed see [6].)

50 Reference Manual

(letS* ((v (get-vector user))
(x (Evector v)))
(Rsum x))

(let (#:index-9 #:last-8 #:sum-2 x v)

(setq v (get-vector user))

(tagbody (setq #:index-9 -1)
(setq #:last-8 (length v))
(setq #:sum-2 0)

#:L-1 (incf #:index-9)

(if (not (< #:index-9 #:last-8)) (go oss:END))
(setq x (aref v #:index-9))
(setq #:sum-2 (+ #:sum-2 x))
(go #:L-1)

oss:END)

#:sum-2)

e showS thing &optional (format "~%~S") (stream *standard-output*) => thing

This function is convenient for printing out debugging information while an 0ss ex-
pression is being evaluated. It can be wrapped around any expression no matter whether
it produces an 0SS value or a non-08S value without disturbing the containing expression.
The function prints out the value and then returns it. If the value is a non-0ss thing,
it will be printed out once at the time it is created. If it is an 0SS series thing, it will
be printed out an element at a time. The format can be used to print a tag in order to
identify the value being shown.

(showS format stream)
= (let ((x thing)) (format stream format x) x)

(letS ((x (Elist (1 2 3))))
(Rsum (showS x “"Item: "4, "))) => 6
; ;The output "Item: 1, Item: 2, Item: 3, " is printed.

® *xpermit-non-terminating-oss-expressionsx*

On the theory that non-terminating loops are seldom desired, the 0SS macro package
checks each loop constructed to see if it can terminate. If this control variable is nil
(which is the default), then a warning message is issued for each loop which the 0ss
macro package thinks has no possibility of terminating. This is useful in the first example
below, but not in the second. The form compiler-let can be used to bind this control
variable to T around such an expression.

(Rlist 4) ;Signals warning 15

(block bar ;Signals warning 15
(letS ((x (Eup :by 10)))
(if (> x 15) (return-from bar x)))) = 20

(compiler-let ((*permit-non-terminating-oss-expressions* T))
(block bar
(lets ((x (Eup :by 10)))
(if (> x 158) (return-from bar x))))) => 20

Side-Effects 51

® xlast-oss-loop*

This variable contains the loop most recently produced by the 0Ss macro package.
After evaluating (or macro-expanding) an 0SS expression, this variable can be inspected
in order to see the code which was produced.

*last-oss-errork

This variable contains the most recently printed warning or error message produced
by the 0ss macro package. The information in this variable can be useful for tracking
down errors.

Side-Effects

The 0Ss macro package works by converting each 0SS expression into a loop. This
allows the expressions to be evaluated very efficiently, but radically changes the order
in which computations are performed. In addition, off-line ports are supported by code
motion. Given all of these changes, it is not surprising that 0SS expressions are primarily
intended to be used in situations where there are no side-effects. Due to the change in
computation order, it can be hard to figure out what the result of a side-effect will be.

Nevertheless, since side-effects (particularly in the form of input and output) are an
inevitable part of programming, several steps are taken in order to make the behavior of
0SS expressions containing side-effect operations as easy to understand as possible. First,
when implicit mapping is applied, it is applied to as large a subexpression as possible.
This makes it straightforward to understand the interaction of the side-effects within a
single mapped subexpression. Several examples of this are given in the section above
which discusses implicit mapping.

Second, wherever possible, the 0SS macro package leaves the order of evaluation of
the 0SS functions in an expression unchanged. Each function is evaluated incrementally
an element at a time, but on each cycle, the processing follows the syntactic ordering of
the functions in the expression.

The one place where order changes are required is when handling off-line ports. How-
ever, things are simplified here by ensuring that the evaluation order implied by the order
of the inputs of an off-line function is preserved.

Third, when determining whether or not each termination point is connected to every
output in each on-line subexpression, functions whose outputs are not used for anything
are considered to be outputs of the subexpression. The reasoning behind this is that if
the outputs are not used for anything, then the function must be being used for side-effect
and probably matters that the function get evaluated the full number of times it should
be. For example, consider the expressions below. The first expression prints out the
numbers in a list and returns the first negative number. The second expression signals a
warning and the enumeration of the list is duplicated so that the princ will be applied
to all of the elements of the list.

52

(lets* ((x (Elist *(1 2 3 -4 5))))
(princ x)

Reference Manual

(Rfirst-passive (TselectF #’minusp x))) => -4

; ;The output "123-45" printed.

(letS* ((x (Elist ’(1 2 3 -4 5))))
(princ x)
(Rfirst (TselectF #’minusp x))) => -4
i ;The output '"123-45" printed.

;Signals warning 18

53

3. Bibliography

[1] A. Aho, J. Hopcraft, and J. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading MA, 1974.

[2] G. Burke and D. Moon, Loop Iteration Macro, MIT/LCS/TM-169, July 1980.

[3] R. Polivka and S. Pakin, APL: The Language and Its Usage, Prentice-Hall,
Englewood Cliffs NJ, 1975.

[4] G. Steele Jr., Common Lisp: the Language, Digital Press, Maynard MA, 1984.

[5] R. Waters, “A Method for Analyzing Loop Programs”, IEEE Trans. on Software
Engineering, 5(3):237-247, May 1979.

[6] R. Waters, Synchronizable Series Expressions: Part II: Overview of the Theory and
Implementation, MIT /AIM-959, November 1987

[7] Lisp Machine Documentation for Genera 7.0, Symbolics, Cambridge MA, 1986.

54 Warning and Error Messages

4. Warning and Error Messages

In order to facilitate the debugging of 0SS expressions, this section discusses the
various warning and error messages which can be issued by the 0SS macro package while
processing the functions described in this document. Error messages describe problems
in 0SS expressions which make it impossible to process the expression correctly. Warning
messages identify less serious situations which are worthy of programmer scrutiny, but
which do not prevent the expression from being processed in a way which is, at least
probably, correct.

Warning and error messages are both printed out in the following format. Error
messages (as opposed to warnings) can be identified by the fact that the word “Error”
precedes the message number. (The format is shown as it appears on the Symbolics Lisp
machine and may differ in minor ways in other systems.)

Warning: {Error} message-number in 0SS expression:
containing OSS expression
detailed message

For example, the following error message might be printed.

Warning: Error 1.1 in 0SS expression:
(LETS ((X (ELIST NUMBER-LIST))
(Y (EUP (CAR HEADER) :TO 4 :LENGTH 5)))
(RLIST (LIST Y X)))
Too many keywords specified in a call on Eup:
(EUP (CAR HEADER) :TO 4 :LENGTH 5)

The first line of each message specifies the number of the warning or error. This
number is useful for looking up further information in the documentation below. The
next part of the message shows the complete 0SS expression which contains the problem.
This makes it easier to locate the problem in a program. The remainder of the message
describes the particular problem in detail. (The variable *last-oss-error* contains a
list of the information which was used to print out the most recent warning or error
message.)

The 0SS macro package reports problems using warn so that processing of other parts
of a program can continue, potentially finding other problems. However, each time an
0ss error (as opposed to a warning) is detected, the 0SS macro package skips over the rest
of the 0SS expression without performing any additional checks. Therefore, even if there
are several OSS errors in an 0SS expression, only one 0SS error will be reported. When an
0ss error is found, a dummy value is inserted in place of the erroneous 0SS expression.
As a result, it is virtually impossible for the containing program to run correctly.

The documentation below describes each of the messages which the 0Ss macro package
can produce. Each description begins with a header line containing a schematic rendition
of the message. Italics is used to indicate pieces of specific information which are inserted
in the message. The number of the warning or error is shown in the left margin at the
beginning of the header. For ease of reference, the messages are described in numerical
order.

%)

Local errors concerning single OSS functions. The following error messages
report errors which are local in that they stem purely from the improper use of a single
0ss function. These errors cover only a few special situations. Many (if not most) local
errors are reported directly by the standard Common Lisp processor rather than by the
0SS macro package. For example, if an 0SS function is used with the wrong number of
arguments, an error message is issued by the standard macro expander.

1.1 Error: Too many keywords specified in call on Eup: call
1.2 Error: Too many keywords specified in call on Edown: call
1.3 Error: Too many keywords specified in call on Tlatch: call

Each of these errors specifies that incompatible keywords have been provided for the
indicated function. The entire function call is printed out as shown above.

2 Error: Invalid enumerator arg to TconcatenateF: enumerator

This error is issued if the enumerator argument to TconcatenateF fails to be an
enumerator—i.e., fails to be an 0SS function that has no 0SS inputs, at least one 0ss
output, and which can terminate.

3 Error: Unsupported &-keyword keyword in defunS arglist.

This error is issued if an &-keyword other than &optional or &key appears in the
argument list of defunS. Other keywords have to be supported by using defmacro directly.
(See the discussion of defunS.)

4 Error: AlterS applied to an unalterable form: call

This error is issued if alterS is applied to a value which is not alterable. Values are
alterable only if they come directly from an enumerator which has an alterable value,
or come indirectly from such an enumerator via one or more transducers which allow
alterability to pass through.

5 Error: Malformed lambdaS argument arg.

This error message is issued if an argument of a lambdas fails to be a valid variable.
In particular, it is issued if the argument, is not a symbol, is T or nil, is a symbol in
the keyword package, or is an &-keyword. (It is also erroneous for such a variable to be
declared special. However, this error is only reported on the Symbolics Lisp Machine.)

6 Error: LambdaS used in inappropriate context: call

This error message is issued if a lambdaS ends up (after macro expansion of the
surrounding code) being used in any context other than as the quoted first argument of
a funcalls.

7 Error: Wrong number of args to funcallS: call

This error message is issued if a use of funcallS does not contain a number of argu-
ments which is compatible with the number of arguments expected by the 0SS functional
argument.

56 Warning and Error Messages

8 Error: Only n return values present where m expected: call

> This error message is issued if an 0SS function is used in a situation where it is
expected to return more values than it actually does—for example, if a 1etS tries to bind
two values from an 0SS function which only returns one, or pass-vals tries to obtain two
values from an 0SS function which only returns one. (Non-0Ss functions return extra
values of nil if they are requested to produce more values than they actually do.)

Warnings and errors concerning OSS variables. The following warnings and
errors concern the creation and use of 1etS and lambdaS variables. Like the errors above,
they are quite local in nature and relatively easy to fix.

9 Error: Malformed letS{*} binding pair pair.

This error message is issued if a 1etS or 1letS* binding pair fails to be either a list of
a valid variable and a value, or a list of a list of valid variables and a value. The criterion
for what makes a variable valid is the same as the one used in Error 5, except that a
binding pair can contain nil instead of a variable.

10 Warning: The variable(s) vars declared TYPE 0SS in a letS{x}.

This warning message is issued if one or more variables in a 1etS are explicitly declared
to be of type oss. The explicit declarations are ignored.

11 Warning: The letS{*} variable variable is unused in: call

This warning message is issued if a variable in a letS is never referenced in the body
of the 1etS. Note that these variables cannot be referenced inside a nested lambda or
lambdasS.

‘N

12 Error: The letS{*} variable var setqed.

This error message is issued if a 1etS variable (either 0SS or non-0Ss) is assigned to
in the body of a letS. It is also issued if any of the variables bound by a lambda$S or
defunS are assigned to.

Non-local warnings and errors concerning complete OSS expressions. The
following warnings and errors concern non-local problems in 0SS expressions. The first
two are discussed in further detail in the section on implicit mapping.

13 Warning: Decomposition moves: code out of a binding scope: surround

This warning is issued if the processing preparatory to implicit mapping causes a
subexpression to be moved out of the binding scope for one of the variables in it. The
problem can be fixed by using letS to create the binding scope, or by moving the binding
form so that it surrounds the entire 0SS expression. (The testing for this problem is
somewhat approximate in nature. It can miss some erroneous situations and can complain
in some situations where there is no problem. Due to this latter difficulty, the 0SS macro
package merely issues a warning message rather than issuing an error message.)

o

a7

14 Error: 0SS value carried to non-0SS input by data flow from: call to: call

As illustrated below, this error is issued whenever data flow connects an 0Ss output
to a non-0Ss input of an 0SS function as in the example below. (If the expression in
question is intended to contain a nested loop, the error can be fixed by wrapping the
nested portion in a mapS.)

Warning: Error 14 in 0SS expression:

(Rlist (Rlist (Elist (Elist ’((1 2) (3 4))))))

0SS value carried to non-0SS input by data flow from:
(Elist *((1 2) (3 4

to:

(Elist (Elist *((1 2) (3 4))))

The error message prints out two pieces of code in order to indicate the source and
destination of the data flow in question. The outermost part of the first piece of code
shows the function which creates the value in question. The outermost function in the
second piece of code shows the function which receives the value. (Entire subexpressions
are printed in order to make it easier to locate the functions in question within the 0ss
expression as a whole.) If nesting of expressions is used to implement the data flow, then
the first piece of code will be nested in the second one.

15 Warning: Non-terminating 0SS expression: expr

This warning message is issued whenever a complete 0SS expression appears incapable
of terminating. The expression in question is printed. It may well be only a subexpression
of the 0SS expression being processed. A warning message is issued instead of an error
message, because the expression may in fact be capable of terminating or the expression
might not be intended to terminate. (This warning message can be turned off by using
the variable *permit-non-terminating-oss-expressionsx.)

Warnings concerning the violation of restrictions. The following warnings are
issued when an 0SS expression violates one of the isolation restrictions or the require-
ment that within each on-line subexpression, there must be a data flow path from each
termination point to each output. In each case, the violation is automatically fixed by
the macro package. However, in order to achieve high efficiency, the user should fix the
violation explicitly rather than relying on the automatic fix.

16 Warning: Non-isolated non-oss data flow from: call to: call

This warning is issued if an 0SS expression violates the non-0ss data flow isolation
restriction. As shown below, the message prints out two pieces of code which indicate
the data flow in question.

Warning: 16 in 0SS expression:
(LETS* ((NUMS (EVECTOR ’#(3 2 8)))
(TOTAL (REDUCEF O #’+ NUMS)))

(RVECTOR (/ NUMS TOTAL)))

Non-isolated non-0SS data flow from:

(REDUCEF O #’+ NUMS)

to:

(/ NUMS TOTAL)

58 Warning and Error Messages

As discussed on page 10, the 0SS macro package automatically fixes the isolation
restriction violation by duplicating subexpressions until the data flow in question becomes
isolated. (In the example above, the vector enumeration gets copied.) However, the
macro package is not guaranteed to minimize the amount of code copied. In addition, it
is sometimes possible for a programmer to fix an expression much more efficiently without
using any code copying. As a result, it is advisable for programmers to fix these violations
explicitly, rather than relying on the automatic fixes provided by the 0ss macro package.

17.1 Warning: Non-isolated oss input at the end of the data flow from: call to: call
17.2 Warning: Non-isolated oss output at the start of the data flow from: call to: call

One of these warnings is issued if an 0SS expression violates the off-line port isolation
restriction. The warning message prints out two pieces of code which indicate a data flow
which ends (or starts) on the port in question. Code copying is automatically applied in
order to fix the violation. As discussed on page 10, it is worthwhile to try and think of a
more efficient way to fix the violation. As with Warning 16, even if code copying is the
only thing which can be done, it is better for the programmer to do this explicitly.

18 Warning: No data flow path from the termination point: call to the output: call

This warning is issued if a termination point in an on-line subexpression of an 0ss
expression is not connected by data flow to one of the outputs. Code copying is auto-
matically applied in order to fix the violation. (However, the 0SS macro package has
a tendency to copy a good deal more code than necessary.) As discussed on page 12,
the violation can often be fixed much more efficiently by using non-early-terminating
08s functions instead of early-terminating functions or by using Tcotruncate to indicate
relationships between inputs.

Errors concerning implementation limitations. These errors reflect limitations
of the way the 0SS macro package is implemented rather than anything fundamental
about 0SS expressions.

19 Error: LambdaS body too complex to merge into a single unit: forms

In general, the 0ss macro package is capable of combining together any kind of per-
missible 0SS expression. In particular, there is never a problem as long as the expression
as a whole does not have any 0SS inputs or 0SS outputs. However, in the body of a
lambdaS, it is possible to write 0SS expressions which have both 0SS inputs and 0SS
outputs. If such an expression has a data flow path from an 0SS input to an 0Ss output
which contains a non-0ss data flow arc, then this error message is issued. For example,
the error would be issued in the situation below.

(funcallS #’(lambdaS (items) ;Signals error 19
(declare (type oss items))
(Elist (Rlist items)))
e

An error message is issued in the situation above, because the situation is unlikely
to occur and there is no way to support the situation without resorting to very peculiar

39

code. In particular, the input items in the example above would have to be converted
into an off-line input.

20 Error: The form function not allowed in 0SS expressions.

In general, the 0SS macro package has a sufficient understanding of special forms to
handle them correctly when they appear in an 0SS expression. However, it does not
handle the forms compiler-let, flet, labels, or macrolet. The forms compiler-let and
macrolet would not be that hard to handle, however it does not seem worth the effort.
The forms flet and labels would be hard to handle, because the 0SS macro package
does not preserve binding scopes and therefore does not have any obvious place to put
them in the code it produces. All four forms can be used by simply wrapping them
around entire 0SS expressions rather than putting them in the expressions.

21-27 Documentation for these errors appears in [6].

60 Index of Functions

5. Index of Functions

This section is an index and concise summary of the functions, variables, and special
forms described in this document. Each entry shows the inputs and outputs of the
function, the page where documentation can be found, and a one line description.

The names of 0SS functions often start with one of the following prefix letters.

E Enumerator.
T Transducer.
R Reducer.

Occasionally, a name will end with one of the following suffix letters.

S Special form.
F Function that takes functional arguments.

In addition, the argument and result names indicate data type restrictions (e.g.,
number indicates that an argument must be a number, item indicates that there is no
type restriction). Plural names are used iff the value in question is an 0SS series (e.g.,
numbers indicates an 0SS series of numbers; items indicates an 0SS series of unrestricted
values). The name of a series input or output begins with “0” iff it is off-line.

alterS destinations items => items

p. 48 Alters the values in destinations to be items.
defunS name lambda-list {doc} {decl}* &body expr-list

p. 46 Defines an 08s function, see lambdas.
Ealist alist &optional (test #’eql) => Keys values

p- 17 Creates two series containing the keys and values in an alist.
Edown &optional (start 0) &key (:by 1) :to :above :length => numbers

p. 16 Creates a series of numbers by counting down from start by :by.
Efile name => items

p- 20 Creates a series of the forms in the file named name.
Efringe tree &optional (leaf-test #’atom) => leaves

p. 18 Creates a series of the leaves of a tree.
Ehash table = keys values

p. 19 Creates two series containing the keys and values in a hash table.
Elist list &optional (end-test #’endp) => elements

p- 16 Creates a series of the elements in a list.
EnumerateF init step &optional test => items

p. 20 Creates a series by applying step to init until test returns non-null.
Enumerate-inclusiveF init step test = items

p. 21 Creates a series containing one more element than EnumerateF.
Eoss &rest expr-list = items

p. 15 Creates a series of the results of the expressions.
Eplist plist = indicators values

p. 17 Creates two series containing the indicators and values in a plist.

61

Esequence sequence &optional (indices (Eup)) => elements

p. 19 Creates a series of the elements in a sequence.
Esublists list optional (end-test #’endp) => sublists

p. 16 Creates a series of the sublists in a list.
Esymbols &optional (package *package*) => symbols

p. 20 Creates a series of the symbols in package.
Etree tree &optional (leaf-test #’atom) => nodes

p. 18 Creates a series of the nodes in a tree.
Eup &optional (start 0) &key (:by 1) :to :below :length => numbers

p. 15 Creates a series of numbers by counting up from start by :by.
Evector vector &optional (indices (Eup)) => elements

p- 19 Creates a series of the elements in a vector.
funcallS function &rest expr-list = result

p. 45 Applies an 0ss function to the results of the expressions.
lambdaS var-list {decl}* &body expr-list

p. 44 Form for specifying literal 0ss functions.
*last-oss-errork

p. 51 Variable containing a description of the last 0Ss warning or error.
last-oss-loopx

p. 51 Variable containing the loop the last 0SS expression was converted into.
letS var-value-pair-list {decl}* &body expr-list => result

p. 37 Binds 0Ss variables in parallel.
letS* var-value-pair-list {decl}* &body expr-list => result

p- 39 Binds 0ss variables sequentially.
mapS &body expr-list = items

p. 44 Causes expr-list to be mapped over the 0SS variables in it.
oss-tutorial-mode &optional (T-or-nil T) => state-of-tutorial-mode

p. 14 If called with an argument of T, turns tutorial mode on.
pass-valS n expr => &rest multiple-value-result

p. 48 Used to pass multiple values from a non-0ss function into an 0SS expression.
permit-non-terminating-oss-expressionsx

p. 50 When non-null, inhibits error messages about non-terminating 0SS expressions.
prognS &body expr-list => result

p. 40 Delineates an 0SS expression.
Ralist keys values = alist

p. 33 Combines a series of keys and a series of values together into an alist.
Rand bools = bool

p. 36 Computes the and of the elements of bools, terminating early.
Rand-late bools => bool

p. 36 Computes the and of the elements of bools.
Rappend lists => list

p. 33 Appends the elements of lists together into a single list.
Rbag items => list

p. 33 Combines the elements of items together into an unordered list.

62 Index of Functions

ReduceF init function items => result
p. 35 Computes a cumulative value by applying function to the elements of items.
Rfile name items &rest option-plist = T
p. 34 Prints the elements of items into a file.
Rfirst items &optional (default nil) => item
p. 36 Returns the first element of items, terminating early.
Rfirst-late items &optional (default nil) => item
p- 36 Returns the first element of items.
Rhash keys values &rest option-plist => table
p. 33 Combines a series of keys and a series of values together into a hash table.
Rlast items &optional (default nil) = item
p- 34 Returns the last element of items.
Rlength items = number
p. 35 Returns the number of elements in items.
Rlist items => list
p. 32 Combines the elements of items together into a list.
Rmax numbers => number
p.- 35 Returns the maximum element of numbers.
Rmin numbers => number
p. 35 Returns the minimum element of numbers.
Rnconc lists => list
p. 33 Destructively appends the elements of lists together into a single list.
Rnth n items &optional (default nil) => item
p. 36 Returns the nth element of items, terminating early.
Rnth-late n items &optional (default nil) => item
p. 36 Returns the nth element of items.
Ror bools = bool
p. 36 Computes the or of the elements of bools, terminating early.
Ror-late bools => bool
p. 36 Computes the or of the elements of bools.
Rplist indicators values = plist
p. 33 Combines a series of indicators and a series of values together into a plist.
Rsum numbers => number
p.- 35 Computes the sum of the elements in numbers.
Rvector items &key (:size 32) &rest option-plist = vector
p. 34 Combines the elements of items together into a vector.
showS thing &optional (format "~%~S") (stream *standard-output*) => thing
p. 50 Displays thing for debugging purposes.
Tchunk amount Oitems => lists
p. 27 Creates a series of lists of length amount of non-overlapping subseries of Oitems.
Tconcatenate Oitemsl Oitems2 &rest more-Oitems => items
p. 27 Concatenates two or more series end to end.
TconcatenateF FEnumerator Oitems => items
p. 28 Concatenates the results of applying Enumerator to the elements of Qitems.

63

Tcotruncate items &rest more-items => initial-items &rest more-initial-items

p. 26 Truncates all the inputs to the length of the shortest input.
Texpand bools Oitems &optional (default nil) => items

p. 31 Spreads the elements of items out into the indicated positions.
Tlastp QOitems => bools items

p. 29 Determines which element of the input is the last.
Tlatch items &key :after :before :pre :post => masked-items

p. 21 Modifies a series before or after a latch point.
TmapF function &rest items-list = items

p. 23 Maps function over the input series.
Tmask Omonotonic-indices = bools

p. 28 Creates a series continuing T in the indicated positions.
Tmerge Oitemsl Oitems2 comparator = items

p. 29 Merges two series into one.
Tpositions Obools => indices

p. 28 Returns a series of the positions of non-null elements in Obools.
Tprevious items &optional (default nil) (amount 1) => shifted-items

p. 21 Shifts items to the right by amount inserting default.
Tremove-duplicates Oitems &optional (comparator #’eql) => items

p. 27 Removes the duplicate elements from a series.
TscanF {init} function items => results

p. 23 Computes cumulative values by applying function to the elements of items.
Tselect bools &optional items => Oitems

p. 30 Selects the elements of items corresponding to non-null elements of bools.
TselectF pred Oitems = items

p. 31 Selects the elements of Oitems for which pred is non-null.
Tsplit items bools &rest more-bools = Oitems] Oitems2 &rest more-Oitems

p. 31 Divides a series into multiple outputs based on bools.
TsplitF items pred &rest more-pred = Oitemsl Oitems2 &rest more-Oitems

p. 32 Divides a series into multiple outputs based on pred.
Tsubseries Oitems start &optional below => items

p. 28 Returns the elements of Oitems from start up to, but not including, below.
Tuntil bools items => initial-items

p. 22 Returns items up to, but not including, the first non-null element of bools.
TuntilF pred items => initial-items

p. 22 Returns items up to, but not including, the first element which satisfies pred.
Twindow amount Oitems = lists

p. 27 Creates a series of lists of length amount of successive overlapping subseries.
type oss &rest variable-list

p. 45 Declaration used to specify that variables are 0sS variables.
valS &rest expr-list = &rest multiple-value-result

p. 47 Returns multiple series values.

