MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A.l. Memo No. 959a March 1988

Obviously Synchronizable Series Expressions:

Part II: Overview of the Theory and Implementation
by

Richard C. Waters

Abstract

The benefits of programming in a functional style are well known. In par-
ticular, algorithms that are expressed as compositions of functions operating
on series/vectors/streams of data elements are much easier to understand
and modify than equivalent algorithms expressed as loops. Unfortunately,
many programmers hesitate to use series expressions, because they are typ-
ically implemented very inefliciently—the prime source of inefficiency being
the creation of intermediate series objects.

A restricted class of series expressions, obviously synchronizable series ex-
pressions, is defined which can be evaluated very efficiently. At the cost of
introducing restrictions which place modest limits on the series expressions
which can be written, the restrictions guarantee that the creation of interme-
diate series objects is never necessary. This makes it possible to automatically
convert obviously synchronizable series expressions into highly efficient loops
using straightforward algorithms.

Copyright © Massachusetts Institute of Technology, 1988

This report describes research done at the Artificial Intelligence Laboratory of the Mas-
sachusetts Institute of Technology. Support for the laboratory’s artificial intelligence research
has been provided in part by the National Science Foundation under grant IRI-8616644, in part
by the IBM Corporation, in part by the NYNEX Corporation, and in part by the Advanced Re-
search Projects Agency of the Department of Defense under Office of Naval Research contract
N00014-85-K-0124.

The views and conclusions contained in this document are those of the authors, and should
not be interpreted as representing the policies, neither expressed nor implied, of the National
Science Foundation, of the IBM Corporation, of the NYNEX Corporation, or of the Department
of Defense.

Contents

1. Theoretical Overview 1
Obviously Synchronizable Series Expressions 6
Language Issues 18

2.Comparisons i e e e e e 21
Sequence Functions 21
The LoopMacro. 27
APL . . . e e 33

3. Algorithms L 35
Subprimitives 38

4. Bibliography o o 45

5. Error Messages Concerning Subprimitives 47

6. Index of Subprimitives 0L 48

Acknowledgments. Both concept of synchronizable series expressions and this re-
port have benefited from the assistance of a number of people. In particular, C. Rich,
A. Meyer, Y. Feldman, D. Chapman, and P. Anagnostopoulos made suggestions which
led to a number of very significant improvements in the clarity and power of obviously
synchronizable series expressions.

1. Theoretical Overview

The advantages (with respect to conciseness, readability, verifiability, and maintain-
ability) of programs written in a functional style are well known. An example of the
clarity of the functional style is provided by the Common Lisp [18] function sum-sqrts
shown below. This function computes the sum of the square roots of the positive elements
of a vector.

(defun sum-sqrts (v)
(reduce #’+ (map ’vector #’sqrt (remove-if-not #’plusp v))))

(sum-sqrts ’#(4 -4 -16 9)) = &

The key conceptual feature of sum-sqrts is that it makes use of intermediate aggregate
data structures to represent the positive elements of the vector and their squares. The use
of intermediate aggregates makes it possible to use functional composition to express a
wide variety of computations which are usually represented as loops. In various languages,
such intermediate quantities can be represented in many different ways—e.g., as lists [18],
vectors [15, 16, 18], sequences [3, 18], streams [8, 13, 31], and flows [17]. At a suitably
abstract level, all of these data structures are the same—each of them represents an
ordered, linear series of elements. To avoid confusion between the general concept and
its various implementations, the term series is used here to refer to any data structure
having these properties.

Series functions (i.e., functions that operate on series) divide naturally into three
classes. Enumerators produce series without consuming any. Reducers consume series
without producing any. Transducers compute series from series. In the example above,
reduce is a general purpose reducer which repetitively applies a function in order to
combine the elements of a series together in an accumulator; map is a general purpose
transducer which produces a new series by applying a function to every element of the
input (the indicator ’vector specifies the type of the output series); and remove-if-not
is a general purpose transducer which produces a restricted series containing the elements
of the input which satisfy a predicate.

Most programming languages support series of one form or another. However, with
the notable exception of APL [15], series expressions are not used nearly as often as they
could be. An important reason for the lack of use of series expressions is that, as typically
implemented, they are extremely ineflicient. Since alternate algorithms (e.g., using loops)
can often compute the same result much more efficiently, the overhead engendered by
using series expressions is quite properly regarded as unacceptable in many situations.

The automatic elimination of intermediate series. The primary source of inef-
ficiency when evaluating series expressions is the creation of intermediate series objects.
This requires a significant amount of space overhead per element (to store them) and time
overhead per element (to access them). The key to evaluating series expressions efficiently
is the realization that it is often possible to transform a series expression into a form where
the creation of intermediate series is eliminated. For example, the series expression in
sum-sqrts can be transformed into the expression in the function sum-sqrts-one-step.

2 Theoretical Overview

In the latter function, the desired value is computed directly from the input vector with-
out creating any intermediate series. (The keyword parameter :initial-value specifies
an initial accumulator value to be used by reduce. The need to use this parameter
in sum-sqrts-one-step but not in sum-sqrts is an idiosyncrasy of reduce which is not
important in the current context.)

(defun sum-sqrts-one-step (v)
(reduce #’(lambda (result x)
(if (plusp x) (+ result (sqrt x)) result))
v :initial-value 0))

In sum-sqrts-one-step, the three operations to be performed (selecting positive el-
ements, computing square roots, and computing the sum) are performed incrementally
in parallel rather then serially. For example, instead of taking a vector of numbers and
creating a new vector of square roots, the roots are computed individually as needed.
Although the individual elements of the intermediate series are computed, these elements
are used as soon as they are created and do not have to be stored in an aggregate data
structure. This saves both storage space and accessing time.

After the creation of intermediate series has been eliminated, a further increase in
efficiency can be obtained by open coding the resulting expression as a loop. The kind
of code which results is illustrated by the program sum-sqrts-loop below.

(defun sum-sqrts-loop (v)
(prog (element last index sum)
(setq index 0)
(setq last (length v))
(setq sum 0)
L (if (not (< index last)) (return sum))
(setq element (aref v index))
(if (plusp element) (setq sum (+ (sqrt element) sum)))
(incf index)

(go L))

The pragmatic importance of the transformations above is illustrated by the following
timing comparisons. Using the Symbolics Lisp Machine, each of the programs above
was compiled and then run given the input vector #(4 -4 -16 9). The table shows a
significant reduction in running time. In addition, the transformed programs do not
use up any non-stack memory space. Looked at from a broader perspective, sum-sqrts
requires even more running time than shown in the table, because time is eventually
required in order to collect the garbage it creates.

Program Running Time Garbage Created
sum-sqrts 3.0 milliseconds 8 words
sum-sqrts-one-step .4 milliseconds 0 words
sum-sqrts-loop .3 milliseconds 0 words

(In truth, it should be stated that the example above was chosen so that the running
time comparison would be dramatic. If processing were done in terms of lists instead of
vectors, the overhead would be less and the total speed up would be reduced to a factor

3

of 3. If processing were done on a long list instead of a short one, the percentage of
time devoted to useful computation would be greater and the speed up would be reduced
further to a factor of 2. However, using a long input would make the memory allocation
comparison even more dramatic. In any event, although a factor of 2 is less dramatic
than a factor of 10, it is still significant.)

Many researchers have investigated the automatic elimination of intermediate series
(with and without the additional step of transforming series expressions into loops).
Some APL compilers [6, 7, 12] can significantly reduce the number of intermediate arrays
required. Wadler’s Listless Transformer [19, 20] can reduce the number of intermediate
lists required during the evaluation of expressions in a Lisp-like language. Bellegarde’s
transformation system [4, 5] can simplify FP [3] expressions reducing the number of
intermediate sequences required. The algorithms described by Goldberg and Paige [11]
can be used to reduce the number of intermediate data streams required when evaluating
data base queries.

Some intermediate series cannot be eliminated. Unfortunately, there is a
fundamental problem with the automatic elimination of intermediate series—it is not
possible to eliminate every intermediate series. There are two kinds of problems which
can block the elimination of an intermediate series. The first problem revolves around
individual functions. In order for an intermediate series to be eliminated, it must be
possible to create the elements of the series one at a time and use them one at a time
in the order they are created. This requirement fundamentally conflicts with the way
some functions operate. For example, consider the function sort. This function has to
have all of the elements of its input simultaneously available before it can start producing
its output. As a result, an intermediate series which is passed to sort cannot ever be
eliminated.

The second kind of problem which can block the elimination of an intermediate series
concerns the way functions are connected by data flow. As an example of this, consider
the function normalize below. This function normalizes a vector by removing all of the
non-positive elements and dividing each element by the largest element. The intermedi-
ate series w cannot be eliminated, because the division process cannot begin until after
the value biggest has been determined and this value cannot be determined until after
all of the elements of w are known. The elements in w have to be saved in some aggre-
gate structure when computing biggest so that they can be used a second time when
computing the output vector.

(defun normalize (v)
(let* ((w (remove-if-not #’plusp v))
(biggest (reduce #’max w)))
(map ’vector #’(lambda (x) (/ x biggest)) w)))

(normalize #(2 -2 4)) = #(1/2 1)

(It is often possible to eliminate a recalcitrant intermediate series by changing the
algorithm being employed. For example, in the function normalize, biggest could be
computed directly from v instead of from w which would enable w to be eliminated.
However, such algorithmic changes are beyond the scope of the current discussion. As in
the other work cited above, it is assumed that the choice of algorithm should be left to the

4 Theoretical Overview

programmer and should not be altered by an automatic intermediate series elimination
process.)

Since the languages they operate on all allow functions like sort and expressions
like the one in normalize, each of the compilers and transformation systems above only
supports the partial elimination of intermediate series. A key task faced by each of these
systems is deciding which intermediate series to eliminate. This task is difficult, because
deciding to eliminate one intermediate series can make it impossible to eliminate other
intermediate series. Goldberg and Paige have shown (see [11]) that, even given a number
of simplifying restrictions on the form of a series expression, making an optimal choice
of which intermediate series to eliminate is NP-hard.

Although the difficulty of deciding which series to eliminate is a significant problem
associated with the systems above, it is not the most serious problem. A greater problem
is that the operation of these systems is inscrutable enough that there is no easy way for
a programmer to look at a given series expression and determine whether or not all of the
intermediate series in it will be eliminated. As a result, programmers are still reluctant to
use series expressions, because they cannot depend on these expressions being evaluated
efficiently. (The actual creation of just one intermediate series when evaluating a series
expression typically leads to unacceptable inefficiency.)

Restrictions guaranteeing the elimination of intermediate series. A solution
to the problems engendered by intermediate series which cannot be eliminated is to
restrict the kinds of series expressions which are allowed so that the elimination of every
intermediate series is guaranteed. This allows programmers to write series expressions
without worrying about inefficiency.

The use of restrictions is illustrated by the high level business data processing lan-
guages Hibol [17] and Model [16]. The key idea behind of each of these languages is
that programs can be written very clearly and compactly if series expressions are used
in lieu of loops. Each language supports a restricted class of series expressions which
outlaws functions like sort. Although this does not rule out the problem exemplified
by the function normalize, it greatly facilitates the compilation of these languages into
efficient code.

However, the use of restrictions has a price—it reduces the range of algorithms which
can be conveniently expressed as series expressions. If the restrictions are too severe,
much of the value of using series expressions can be lost. For example, as discussed
in [24], the restrictions imposed by Hibol and Model are so severe that relatively little
of the expressiveness of series expressions remains and the languages are usable only in
the context of business data processing. (The design of these languages was motivated
by business data processing concerns and no particular attempt was made to support a
wide class of series expressions.)

Lazy evaluation and coroutines. A different perspective on the problem of evalu-
ating series expressions efficiently can be obtained by looking at lazy evaluation [10]. The
main focus of lazy evaluation is not on eliminating intermediate series but rather on a
separate issue. When evaluated serially, series expressions often call for the computation
of large numbers of series elements which are not used by the rest of the expression. The
demand-driven nature of lazy evaluation insures that an intermediate series element will

5

not be computed unless it (or some element computed after it) is actually required by a
later computational step. This can be extremely beneficial.

However, in straightforward situations such as sum-sqrts where every intermediate
series element is used, general purpose lazy evaluation is less efficient than ordinary se-
rial evaluation. The problem is that lazy evaluation introduces a new kind of overhead,
scheduling overhead, without eliminating intermediate series unless they are totally un-
necessary.

Scheduling overhead is required in order to determine what to evaluate when. The
scheduling enhances the likelihood that an element which is computed can be used im-
mediately in further computation. However, by itself, it does nothing to insure that the
element will not be required again at some later time (as in normalize). Therefore, just
as in serial evaluation, the elements which are computed have to be buffered in aggregate
data structures.

The above problems notwithstanding, lazy evaluation embodies two important ideas
which are crucial for the efficient evaluation of series expressions. The first idea is the
concept of simulated parallel evaluation. This approach changes the details of the way
an expression is evaluated without changing the basic algorithm being employed. The
second idea is using demand driven processing in order to avoid the computation of
unnecessary series elements.

The transformation of sum-sqrts into sum-sqrts-one-step can be viewed as a compile-
time application of lazy evaluation. However, the key to the efliciency of the result is
that two special conditions are satisfied. First, each use of each intermediate element
occurs immediately after the element is initially computed. Second, very little run-time
scheduling overhead is required. It is possible to determine at compile time more or less
exactly what must be computed when.

Yet another perspective on the problem of evaluating series expressions efficiently
can be obtained by looking at coroutines. Using coroutines, series expressions can be
expressed as networks of communicating parallel processes [13]. If parallel hardware is
used to support these networks, very high efficiency can be obtained. However, when
simulated on a serial machine, coroutines have the same fundamental limitations as lazy
evaluation. In particular, additional scheduling overhead is introduced, and if no restric-
tions are placed on the coroutine networks which are allowed, aggregate data structures
have to be used to buffer series elements which are transferred across the links in the
network.

The above notwithstanding, coroutines embody a third idea which is crucial for the
efficient evaluation of series expressions. Coroutines typically communicate via streams
(as opposed to other kinds of series data structures) and coroutines are typically required
to be preorder functions. (A series function is preorder iff it can be evaluated incremen-
tally in such a way that elements of the series output (if any) and each series input are
accessed one at a time in ascending order starting with the first element.) This rules out
problematical functions like sort.

Tree-based restrictions. While the issue of restrictions is implicit in much of
the work described above, restrictions have received relatively little direct attention. For
example, rather than being explicitly stated, the restrictions imposed by Hibol and Model
are merely implicit in the fact that only a small number of specific series functions are

6 Theoretical Overview

permitted. Similarly, although restrictions (in the form of a compendium of special cases)
can be inferred from the situations in which the various compilers and transformation
systems above can successfully eliminate intermediate series, these restrictions are in no
way explicit.

Essentially the only research to date which directly addresses the question of restric-
tions is the work of Wadler [21]. His work can be rephrased in terms of the following
tree-based restrictions. If every series expression is a tree (i.e., each intermediate value
is used in only one place) and every series function is preorder, then every intermediate
series can always be eliminated.

Unfortunately, the practical value of the tree-based restrictions is limited, because
they are much more restrictive than necessary. In particular, it is often possible to
eliminate all of the intermediate series from an expression even if some of the intermediate
values are used in several places. As a result, from the point of view of readability and
efficiency, it is unreasonable to require that an intermediate value which is used in n
places must always be computed n times.

Obviously Synchronizable Series Expressions

To be of significant practical benefit, a set of restrictions must satisfy three conflicting
goals: efficiency, permissiveness, and obviousness. It is not good enough for the restric-
tions to merely guarantee efficient evaluation. They must also permit a usefully large set
of series expressions. Further, it must be relatively easy for programmers (and compilers)
to check whether or not the restrictions are being obeyed.

It is not possible to completely satisfy these three goals simultaneously. Nor, in all
probability, is it possible to develop a set of restrictions which is a provably optimal
compromise between the goals. However, satisfying the goals can be approached as an
engineering problem which requires one trade-off to be balanced against another.

The primary contribution of the work presented here is a set of restrictions which
is a particularly tasteful compromise between the goals. The remainder of this section
presents these restrictions and an abbreviated account of the theory underlying them. A
longer document is in preparation which gives formal definitions for the terms used and
proves many aspects of the necessity and sufficiency of the restrictions.

Synchronizability. The paramount goal is efficiency. The intention is that the series
expressions permitted by the restrictions should be so efficient that efficiency considera-
tions will not enter into the decision of whether or not to use series expressions in a given
situation.

As discussed above, the key source of inefficiency is the creation of intermediate series
data objects. In order to match the efficiency of loops, it is important that permissible
series expressions be evaluated in such a way that every intermediate series is eliminated.
(An intermediate series b is eliminated by an evaluation method iff each individual element
of b is transferred directly from the function which computes it to the functions which
use it without the need for any intermediate storage.)

The requirement that intermediate series should be eliminated is the single most im-
portant driving force behind the restrictions. At first glance, it might seem inappropriate
to place so much emphasis on a goal which, on the face of it, only addresses one aspect

Obviously Synchronizable Series Expressions ' 7

of efficiency. However, in the case of series expressions, eliminating the creation of inter-
mediate series promotes time efficiency as well as space efficiency. This is in fortuitous
contrast to the more typical situation where storage efficiency can only be gained at the
expense of time efficiency.

Every intermediate series in a series expression can be eliminated only if the expression
is synchronizable. (A series expression is synchronizable iff the series functions in it can
be evaluated incrementally using simulated parallel evaluation in such a way that, for
each function f which computes an intermediate series b, the following condition holds.
For each element b; in b, every use of b; occurs before f resumes execution after computing
b;.)

In order for an expression to be synchronizable, it must be the case that series ele-
ments are always created and consumed one at a time. In addition, elements must be
consumed in the same order they are created—i.e., the processing order at the source
and destination of each data flow arc must be the same. If one wanted to be maxi-
mally permissive, one could allow different data flow arcs to be associated with different
processing orders. However, this would make it relatively hard to check whether or not
an expression was synchronizable. It would also lead to significant complications when
attempting to evaluate synchronizable series expressions.

Preorder functions. It turns out that a good compromise between permissiveness
and obviousness can be obtained by requiring that every series function be preorder. This
restriction is easy to check because it does not require global analysis of an expression.
In addition, although the restriction rules out large numbers of series expressions which
would otherwise be permitted, most of the expressions which are ruled out are of relatively
little pragmatic value. This is true because most commonly used series functions can be
straightforwardly and efficiently implemented as preorder functions.

The basic trade-off applied above underlies several of the restrictions presented here.
Restrictions are chosen so that, given a series expression, it will be obvious whether or
not the restrictions are satisfied. At the same time, every attempt is made to insure that
as many pragmatically useful series expressions as possible are permitted.

The effect of the preorder restriction is more complex than it might appear. Given any
series function, it is always possible to define a function computing the same results which
operates in a preorder fashion. (At the least, one can merely read the input elements
in preorder into a buffer, compute the output elements storing them in another buffer
(while this is being done, reading and writing of elements can occur in whatever order
is convenient), and then write the output elements in preorder.) Unfortunately, using
buffering in this way defeats the whole purpose of trying to eliminate intermediate series.

Fortunately, essentially every enumerator, every reducer, and almost every transducer
can be implemented as a preorder function without introducing internal buffering. The
only Common Lisp sequence functions which cannot be efficiently supported are sort

and reverse. As a result, the limits implied by the preorder restriction are really quite
mild.

Problems caused by parallel data flow paths. If outputs are allowed to be used
in more than one place, then it is possible to create parallel data flow paths. (Two data
flow paths are parallel if they both originate on the same function and both terminate

8 Theoretical Overview

on the same function.) Figure 1.1 shows a prototypical example of parallel data flow
paths. The data flow path consisting solely of the data flow arc §1 from the output of f
to the upper input of h is parallel to the data flow path consisting of the data flow arcs
62 and 63.

61

15 K ho-
§2 g §3

Figure 1.1: Parallel data flow paths in an expression.

If a series expression contains parallel data flow paths, then the expression as a whole
cannot be synchronized unless the processing on these paths can be synchronized. There
are three prototypical situations in which this is not possible. Each of these situations
can be illustrated using an expression analogous to Figure 1.1.

The first situation arises if one of two parallel data flow paths contains a non-series
data flow arc while the other does not. For example, suppose that f computes a series
value while g does not, as in the function normalize used as an illustration above and
shown again below. (In normalize, f is remove-if-not, ¢ is reduce, and h is the map
operation.) The fact that reduce cannot produce a value until after it has read all
of the elements of its input forces the processing on the two data flow paths out of
synchronization. As a result, the intermediate series w must be saved between the first
and second times it is used and therefore cannot be eliminated.

(defun normalize (v)
(let* ((w (remove-if-not #’plusp v))
(biggest (reduce #’max w)))
(map ’vector #’(lambda (x) (/ x biggest)) w)))

The second situation arises when one of two parallel data flow paths passes through
a transducer where the processing of the relevant input is not synchronized with the
processing of the output. Consider the function moving-average which computes a vector
of moving averages by removing the elements which are not positive and averaging each
remaining element with the following element. (In moving-average, f is remove-if-not, g
is subseq, and h is the map operation.) The function subseq is inherently unsynchronized
in the way it computes its output from its input. In particular, as used here, the first
element of the output cannot be determined until after the second element of the input
is available. This means that elements of w have to be buffered up on the way from
remove-if-not to map. At any given moment, two elements of w always have to be stored
(the two elements which are being averaged). As a result, w cannot be totally eliminated.

(defun moving-average (v)
(let ((w (remove-if-not #’plusp v)))
(map ’vector #’(lambda (x y) (/ (+ x y) 2)) w (subseq w 1))))

(moving-average #(2 -4 6 4 8)) => #(4 5 6)

Obviously Synchronizable Series Expressions 9

The third situation arises when two parallel data flow paths terminate on a function
where the processing of the two relevant inputs is not synchronized. Consider the function
double which takes a vector, selects the positive elements in it, and creates an output
vector by concatenating two copies of the selected elements end to end. (In double,
f is remove-if-not, ¢ is the identity function, and A is concatenate.) The function
concatenate is inherently unsynchronized in the way it uses its inputs. It uses all of the
elements of the first input (creating the first part of the output) before using any of the
elements of the second input. As a result, the entire intermediate series w has to be stored
after it is used the first time so that it can be used the second time.

(defun double (v)
(let ((w (remove-if-not #’plusp v)))
(concatenate ’vector w w)))

(double ’#(2 -2 3)) = #(2 3 2 3)

The tree-based restrictions avoid the problems above by forbidding parallel data flow
paths. However, it is important to realize that many useful series expressions are syn-
chronizable even though they contain parallel data flow paths. For example, the function
average-square below has three parallel paths between remove-if-not and / involving
both series and non-series data flow and yet every intermediate series can be eliminated
as shown in the program average-square-loop.

(defun average-square (v)
(let ((w (remove-if-not #’plusp v)))
(/ (reduce #’+ (map ’vector ’* w w)) (length w))))

(average-square '#(2 -2 4)) = 10

(defun average-square-loop (v)
(prog (element last index sum-squares count)
(setq index 0)
(setq last (length v))
(setq sum-squares 0)
(setq count 0)
L (if (not (< index last)) (return (/ sum-squares count)))
(setq element (aref v index))
(when (plusp element)
(incf count)
(setq sum-squares (+ sum-squares (* element element))))
(incf index)

(go L))

The fundamental thing which differentiates average-square from the other examples
above is that the processing on each pair of parallel paths is synchronizable. It is possible
to insure that this will always be the case by essentially forbidding the three problem
situations above.

Isolation of non-series data flow. The first problem situation can be ruled out by
requiring that every non-series data flow be isolated. (A data flow arc § in an expression
X is isolated iff it is possible to partition the functions in X into two parts ¥ and YV
in such a way that: § goes from Y to Y, there is no series data flow from Y to Y, and

10 Theoretical Overview

there is no data flow from Y to Y.) If every non-series data flow arc in an expression is
isolated, then if a data flow path contains a non-series data flow arc, every parallel data
flow path must also contain a non-series data flow arc.

For example, in the program normalize, there is no way to partition the program
graph so that the output of reduce crosses the boundary without the boundary also
being crossed by the output of remove-if-not. In contrast, it is easy to partition the
program average-square so that the output of reduce is that every data flow which
crosses the boundary carries a non-series value. The boundary is placed to that / is on
one side and everything else is on the other.

The isolation restriction above can be used as the basis for a divide and conquer
approach to the synchronous evaluation of series expressions. If a permissible series
expression contains a non-series data flow arc, then it is always possible to divide the
expression into two parts so that all of the data flow arcs between the parts are non-series
arcs. As a result, the expression as a whole can be evaluated synchronously, by evaluating
the first part synchronously and then evaluating the second part synchronously using the
non-series values computed by the first part. This reduces the problem of synchronously
evaluating series expressions to the problem of synchronously evaluating series expressions
where every data flow is a series data flow.

The non-series isolation restriction places limits on what series expressions can be
written in an interesting way. In theory, the restriction does not rule out any compu-
tations, because any series expression can be converted into an expression which obeys
the restriction by duplicating subexpressions in order to eliminate problematical parallel
data flow paths. (From this perspective, the restriction can be looked at as requiring pro-
grammers to state explicitly where they wish code copying to occur rather than having
the intermediate series elimination process automatically introduce code copying.)

However, in practice, the restriction places relatively strong limits on the way non-
series values can be used. In particular, it leans toward expressions where non-series
values are the end result of the computation rather than intermediate values. This is a
very common situation, but as can be seen in the function normalize, it is not the only
situation.

An indirect consequence of the isolation restriction is that it limits the functions
which it is useful to use. For example, in most of the places where one would typically
use reduce, a final value is being computed. Therefore, as a pragmatic matter, the non-
series isolation restriction does not significantly inhibit the use of reduce. In contrast,
consider the function elt which is used to extract an individual element from a series.
This function is typically used in the midst of an expression rather than to compute a
final value. Inasmuch as this is the case, the restriction effectively prohibits the use of
elt. Put another way, the restrictions are intended to apply to series expressions where
series are computed and consumed as complete units, rather than to expressions which
process individual series elements in complex orders.

Synchronous ports. In order to rule out the other two problem situations, one has
to develop a vocabulary for talking about the extent to which the processing at a pair of
ports is synchronized. In this regard, it is important to note that many common series
functions are inherently synchronized in the way they operate. In particular, consider
the function map.

Obviously Synchronizable Series Expressions 11

A key feature of map is that the ith output element is computed solely form the 7th
input elements. As a result, it is easy to evaluate map so that the inputs and outputs are
processed in lock step. To do this, processing proceeds by reading the first element of
each input, writing the first element of the output, reading the second element of each
input, writing the second element of the output, and so on.

For map, evaluation in lock step is not just possible, it is mandatory if high efficiency
is desired. The problem is that any other evaluation pattern requires the use of extra
internal storage space within map. (The ith output cannot be written before the ith
inputs are read and if later inputs are read before the ith output is written, these inputs
have to be stored until they are used later.)

It turns out that map is by far the most commonly used series function. In addition,
there are several other common series functions which inherently require the same kind of
processing. As a result, it is not unreasonable (and essentially mandatory) to promulgate
restrictions which militate in favor of the kind of lock step processing described above.
To formalize the notion of lock step processing, the following definitions are introduced.

Each preorder series function is assumed to have a canonical processing pattern as-
sociated with it. This pattern divides the function’s evaluation up into a sequence of
intervals. It is expected that the processing pattern will be data dependent in that it is
different for different sets of input values.

A series port of a preorder function is synchronous iff the ith element of the series read
(or written) through the port is always accessed only in the ¢th interval of the canonical
processing pattern for the function. (Synchronous processing is defined for individual
ports rather than entire functions in order to allow for functions where only some of the
ports are synchronous.)

It is easy to select canonical processing patterns for map such that every port is
synchronous. In contrast, it is not possible for the input and output of remove-if-not to
both be synchronous. The problem is that as soon as an input element is omitted from
the output, the output processing falls permanently out of step with the input processing.

The importance of synchronous processing can be summarized as follows. If an input
and output of a preorder function are both synchronous, then the processing at these
ports is tightly synchronized and cannot lead to the second problem situation discussed
above. Similarly, if two inputs of a preorder function are both synchronous, then they
cannot lead to the third problem situation above.

Isolation of non-synchronous ports. A port which is non-synchronous is unlikely
to be synchronized with any other port. Such a port should not be allowed to appear in
the middle or at the end of a pair of parallel data flow paths. Non-synchronous ports can
be kept out of parallel data flow paths by requiring that they be isolated. (An output
p in an expression X is isolated iff X can be partitioned into two parts Y and Y such
that: every data flow originating on p goes from Y to Y, every other data flow from Y
to Y is a non-series data flow, and there is no data flow from ¥ to Y. An input ¢ in an
expression X is isolated iff X can be partitioned into two parts Y and Y such that: the
data flow terminating on ¢ goes from Y to Y, every other data flow from Y to Y is a
non-series data flow, and there is no data flow from Y to Y.)

Like the preorder restriction, the non-synchronous isolation restriction is a compro-
mise between permissiveness and obviousness. The restriction is stronger than it needs

12 Theoretical Overview

to be. In particular, it is possible for a non-synchronous port to be in the middle of a
parallel data flow path if the other parallel data flow path contains one or more non-
synchronous ports which together have the same net desynchronization. However, this
is of relatively little value and would be difficult for programmers to check and difficult
to support efficiently when using simulated parallel evaluation.

The non-synchronous isolation restriction continues the divide and conquer approach
of the non-series data flow isolation restriction. Once partitioning based on non-series
data flow has been applied, one is left with subexpressions where every data flow carries
a series value. If such a subexpression of a permissible series expression contains a non-
synchronous port, then it is always possible to divide the subexpression into two parts
so that all of the data flow between the parts originates (or terminates) on the port
in question. As a result, the expression as a whole can be evaluated synchronously by
evaluating the two parts synchronously in isolation from each other and using a simplified
form of lazy evaluation in order to decide which subexpression to evaluate when. The
lazy evaluation is simplified because the scheduling method is very simple. The first part
needs to be evaluated when (and only when) the second part needs to read a new value
computed by it.

Together, the two isolation restrictions make it possible to reduce the problem of
synchronously evaluating series expressions to the problem of synchronously evaluating
series expressions where every data flow is a series data flow connecting synchronous ports.
When this is the case, every function in the expression is analogous to map. No matter
what the pattern of data flow is, global synchronization can be achieved by evaluating
everything in lock step.

It is interesting to consider the exact way in which the non-synchronous isolation
restriction places limits on what series expressions can be written. As with the non-
series isolation restriction, any expression can be modified so as to satisfy the restriction
by duplicating subexpressions. Nevertheless, the restriction definitely encourages the use
of functions that have synchronous ports. As a result, it is important to realize that
most common series functions are inherently synchronous. To start with, essentially
every enumerator and reducer can easily be implemented so that all of its ports are
synchronous. This is also true of approximately half of all common transducers. The
exceptions include the function remove-if-not. One must take care in the way they are
used in an expression.

On-line ports. An important subsidiary benefit of the restrictions outlined above is
that they make it possible to keep most kinds of run-time scheduling overhead to a very
low level. However, there is one kind of scheduling overhead which remains—dealing with
the fact that the whole expression might not terminate at the same time. In the program
sum-sqrts-loop, there is no problem in this regard. There is only one termination test
and the whole program stops as soon as the termination test succeeds. To understand
why things work out this way, it is necessary to look more closely at the function map.

In addition to being inherently synchronous in the way it operates, map has a key
additional property. As soon as any input runs out of elements, map immediately stops
writing output elements. This property is formalized by saying that every series input of
map is a passive terminator. (A series input port ¢ of a preorder function f is a passive
terminator iff f satisfies the following property. Consider the canonical processing pattern

Obviously Synchronizable Series Expressions 13

for f and suppose that f tries to use the sth element of the series being read through ¢
during the jth interval of the processing pattern. If this element is beyond the end of
the series, then it must be the case that f immediately terminates without producing
any output elements during the jth processing interval.) This definition is phrased in
terms of individual ports in order to allow for functions where some inputs are passive
terminators while others are not. If all of the series inputs of a function are passive
terminators, then the function as a whole is said to be a passive terminator.

Far from being an unusual situation, passive termination is very common. A wide
variety of functions other than map have series inputs which are passive terminators. For
instance, even though the input of remove-if-not is not synchronous, it is a passive
terminator.

The term on-line is used to refer to inputs which are both synchronous and passive
terminators. (As a matter of convenience, synchronous outputs are referred to as on-line
as well. Ports which are either not synchronous or not passive terminators are referred to
as off-line.) Preorder functions all of whose ports are on-line are themselves traditionally
referred to as on-line [1].

As an example of an input which is synchronous and yet not a passive terminator,
consider the function concatenate. When the first input of concatenate runs out of
elements, the function does not terminate, but rather continues on, reading elements
from the second input. As a result, the first input fails to be a passive terminator.
Nevertheless, the first input of concatenate is synchronous, since the ¢th input element
maps directly into the ith output element.

Isolation of off-line ports. Returning to the function sum-sqrts, the fact that every
series function used in sum-sqrts is a passive terminator gives sum-sqrts the following
very convenient, all or nothing termination property.

(defun sum-sqrts (v)
(reduce #’+ (map ’vector #’sqrt (remove-if-not #’plusp v))))

Suppose that lazy evaluation is being used to compute the result of sum-sqrts and
consider what happens at the moment when remove-if-not first tries to access an element
which is beyond the end of v. At this moment, it must be the case that remove-if-not
is being run to produce an element map is waiting to use so that it can produce a value
reduce is waiting to use. Since v has just run out of elements, remove-if-not cannot
produce any more elements which means that map cannot read any more elements which
means that map cannot produce any more elements which means that reduce cannot read
any more elements which means that the current value in the accumulator being used
by reduce is the final value which should be returned by reduce. Put another way, as
soon as v runs out of elements all of the computation can immediately stop. There is no
need to consult the functions in the expression individually and no possibility that some
functions will have to continue running after others have stopped.

As an example of the complexity which can be introduced by a port which is not a
passive terminator, consider the function split below. This function takes a vector and
returns a vector where all of the positive elements are in the front.

14 Theoretical Overview

(defun split (v)
(concatenate ’vector (remove-if-not #’plusp v)
(remove-if #’plusp v)))

(split ’#(1 -2 3 -4)) = #(1 3 -2 -4)

Suppose that lazy evaluation is being used to compute the result of split and consider
what happens at the moment when remove-if-not first tries to access an element which
is beyond the end of v. At this moment, concatenate will have finished creating the
first part of its output, but will not have begun using the elements of its second input
in order to construct the latter part of its output. As a result, when remove-if-not
terminates, the computation involving remove-if and concatenate must continue. Only
after remove-if terminates can concatenate terminate.

The fact that the series expression in split does not stop all at once, but rather
only one part at a time, introduces a certain amount of run-time scheduling overhead.
However, this overhead is relatively small as long as any non-passive inputs are isolated
(as in split). Following the divide and conquer approach discussed above, the control
over partial termination can be provided as part of the simplified lazy evaluation which
decides which subexpression should be evaluated when.

In order to insure that things will always be this straightforward, the non-synchronous
isolation restriction is strengthened to require that every off-line port must be isolated.
Pragmatically speaking, this is a mild restriction, because it is not clear that there are
any useful 0SS functions other than concatenate which have inputs that are non-passive
and yet synchronous.

On-line subexpressions. If an 0SS expression obeys the revised isolation restric-
tions above, then it can be repeatedly partitioned until all of the data flow in each subex-
pression goes from an on-line output to an on-line input. The subexpressions which
remain after partitioning are referred to as on-line subexpressions.

Data flow paths between termination points and outputs. In actuality, the
all or nothing termination property of sum-sqrts does not stem solely from the fact that
all the functions in the expression are passive terminators. To see this, consider the
function weighted-squares below. This function takes in a vector of values and a vector
of weights. It returns a list of two vectors: the squares of the values and the squares
multiplied by the weights. Even though all of the functions in weighted-squares are
passive terminators, the expression as a whole is not guaranteed to terminate in an all
or none way.

(defun weighted-squares (values weights)
(let* ((squares (map ’vector #’* values values))
(weighted-squares (map ’vector #’* squares weights)))
(list squares weighted-squares)))

(weighted-squares *#(1 2 3) ’#(10 20)) => (#(1 4 9) #(10 80))

If weighted-squares is called with two vectors where weights is shorter than values,
squares will be the same length as values, and weighted-squares will be the same length
as weights. This is problematical, because when weights runs out of elements, the

Obviously Synchronizable Series Expressions 15

evaluation of squares must continue even though the computation of weighted-squares
must stop. This partial termination introduces significant run-time scheduling overhead.

The key difference between sum-sqrts and weighted-squares is the relation of the ter-
mination points to the outputs. (The concept of a termination point is defined relative
to the on-line subexpressions which result from partitioning based on the isolation re-
strictions above. A termination point is a function within an on-line subexpression which
can, by itself, cause termination. The primary reason for a function being a termination
point is that it reads a series which is computed by a different on-line subexpression. The
length of the series read controls the termination of the function.)

Given the way the partitioning is performed, every function in an on-line subexpres-
sion which is not a termination point must be a passive terminator which receives all of
its series inputs from other functions in the same on-line subexpression. Each of these
functions must terminate as soon as any function feeding an 0SS value to them termi-
nates. As a result, if within an on-line subexpression, there is a data flow path from each
termination point to each output, every function computing an output of the subexpres-
sion must immediate terminate as soon as any of the termination points terminates. (The
problem in weighted-squares is that there is no data flow path from weights to squares
which is why squares can be longer than weights.)

Early termination. A final wrinkle revolves around the notion of early termination.
This term is introduced in order to refer to inputs which cause termination strictly more
easily than required by the definition of a passive terminator. If any of the inputs of
a function is an early terminator, then the function as a whole is said to be an early
terminator. In addition, a function that does not have any series inputs is an early
terminator iff it is capable of terminating. That is to say, enumerators which produce
bounded outputs are early terminators.

As an example of early termination, consider a function which reads in a series and
returns all of the elements of that series up to but not including the first element which is
zero. The input of this function is an early terminator because the function can terminate
before the input runs out of elements. However, the input is also a passive terminator,
because the function will immediately terminate if the input does run out of elements.

In an on-line subexpression, early terminators are also considered to be termination
points. Enumerators act like series inputs. Other early terminators are capable of pre-
maturely stopping the computation in an expression.

Given this extended definition, all of the functions in an on-line subexpression which
are not termination points must be purely passive terminators. This means that none of
them can terminate until after some other function in the subexpression has terminated.

As a result, if within an on-line subexpression, there is a data flow path from each ter-
mination point to each output, every function computing an output of the subexpression
must immediate terminate as soon as any function in the subexpression terminates. This
implies that the on-line subexpression has the same all or nothing termination property
as sum-sqrts.

Requiring all or nothing termination. It turns out that there actually are not
very many situations where one would want to write a series expression like the one in
weighted-squares. As a result, it is of significant pragmatic benefit for the restrictions

16 Theoretical Overview

to outlaw this kind of expression altogether by requiring that within each on-line subex-
pression of a permissible series expression there must be a data flow path from each
termination point to each output. Most common series expressions trivially obey this re-
striction, because they only compute a single value and the entire expression contributes
to the computation of this value.

Together with the isolation restrictions, the restriction above insures that when the
divide and conquer approach outlined above is applied, the indivisible subexpressions
which remain will all have the all or nothing termination property possessed by sum-sqrts.
The only place where partial termination has to be supported is when isolated expressions
communicate through non-passive inputs. This introduces only a very small amount of
run-time scheduling overhead.

(Returning for a moment to a consideration of weighted-squares, the programmer
might well have intended that v and weights should always have the same length. If this
is the case, then the termination problems discussed above will not arise. Using the 0SS
function Tcotruncate (see [27]), it is easy to write weighted-squares in a way that makes
this intention clear and that does not violate any of the restrictions proposed above.)

Straight-line computation. An issue which is implicit in the discussion above is
exactly what is meant by the term “expression”. In the interest of efficient simulated
parallel evaluation, it turns out to be important to restrict series expressions to being
straight-line computations. (A computation is straight-line if it does not contain any
control constructs such as loops or conditionals.)

From the point of view of programming languages such as Lisp, outlawing condi-
tionals in series expressions may seem overly restrictive. However, many (if not most)
conditionals one might want to include in a series expression are either embedded in a
non-series function which is mapped over series elements or can easily be replaced by
selection operations such as remove-if-not.

Defining a new series data type. Any reasonable set of restrictions is forced to
prohibit some useful series expressions which are traditionally permitted. Although there
are important reasons for prohibiting these expressions, it would not be reasonable to ban
these from a programming language altogether. As a result, it would not be reasonable
to apply the restrictions to a preexisting series data type. Rather, a new type should
be defined. This allows programmers to benefit from the restrictions when they choose
to follow them, without being prevented from using vectors, sequences, and streams in
standard ways.

Defining a new data type has the added virtue of making it possible to pursue the
elimination of series to its logical extreme. If instances of this new data type are prohib-
ited from being used as components of data structures, then it is possible to guarantee
that no storage will ever be required for any instance of this new data type.

In addition to saving space, the restriction that instances of the new series data type
cannot be contained in other data structures promotes obviousness and simplicity in
general. (The languages Hibol and Model show that this restriction can be relaxed by
allowing series to contain series. However, they also show that this can only be done at
the cost of significant user-visible complexity and that, as a practical matter, there is
relatively little to be gained.)

Obviously Synchronizable Series Expressions 17

Static identifiability. Much of the discussion above revolves around the question of
how one can guarantee that it will be possible to transform permissible series expressions
so that every intermediate series is eliminated. However, it leaves open the question of
exactly how this transformation will be performed. In the interest of overall efficiency, it is
critical that this transformation be applied at compile-time rather than run-time. In order
for this to be the case, every series function and variable must be statically identifiable.
(A series variable is statically identifiable if it is possible to tell, before evaluation begins,
whether or not the variable holds a series. A series function is statically identifiable if
it is possible to tell, before evaluation begins, for each input (and the output) whether
or not a series will be read (or written). In addition, it must be possible to tell exactly
what computation will be performed.)

With regard to series variables the restriction above is a weakened form of strong
typing. However, with regard to series functions, the restriction is more stringent than
strong typing. Rather than merely requiring that the type of every series function be
identified at compile time, it requires that the exact computation to be performed be
known. This rules out the possibility of using series functions which are passed as pa-
rameters or otherwise computed at run-time.

The restrictions. The discussion above can be summarized in the form of the
following set of restrictions. Let obviously synchronizable series be a new series data
type (hereinafter referred to as 0SS series). A function is an 0SS function iff it either
takes in an 0SS series or produces one. A variable is an 0ss variable iff it holds an 0SS
series. An expression X is an 0SS expression iff (1) X is a syntactic unit in the language
(e.g., an expression or a statement); (2) the outermost part of X is an 0SS operation
(e.g., an 0SS function or a form that binds an 0SS variable); and (3) X does not take in or
produce 0SS series. (i.e., X is complete in the sense that is is not merely a subexpression
of some larger 0SS expression.)

The definitions above define the term 0SS expression syntactically without placing
any limits on what can be written. The following seven restrictions guarantee that every
0SS expression can be evaluated efficiently.

1) 0ss series must not be contained in data structures.

2) 0ss functions and variables must be statically identifiable.
3) 0ss functions must be preorder.

4) 08s expressions must be straight-line programs.

5) Non-0ss data flows must be isolated.

6) Off-line 0SS ports must be isolated.

7) Within each on-line subexpression of an 0SS expression,
there must be a data flow path from each termination point to each output.

White lies and other simplifications. In the interest of clarity and conciseness,
the presentation above relies on a number of simplifications. For example, functions are
assumed to have only one output. (The restrictions are worded so that they cover the
case of multiple outputs.) This issue and a number of other issues (which it is hoped

18 Theoretical Overview

have passed by without troubling the reader) will be discussed in detail in a subsequent
document.

Language Issues

The concept of 0SS expressions can be used as the basis for a programming language
preprocessor which takes expressions like the one in the function sum-sqrts and auto-
matically transforms them into loops like the one in sum-sqrts-loop. As described at
length in [27], the 0SS macro package adds this support to Common Lisp. However, the
concept of 0SS expressions is not limited in any way to Lisp. Similar support could be
added to essentially any programming language.

Supporting OSS expressions in harmony with a language. In order to add
support for 0SS expressions to a programming language, one has to do three things. First,
an 0SS series data type and a set of predefined 0Ss functions have to be added into the
language. Second, provisions have to be made for seeing that the restrictions are obeyed.
Third, a preprocessor has to be implemented which converts 0SS expressions into a form
where they can be efficiently executed.

The key user-visible part of introducing support for 0SS expressions is the introduc-
tion of the 0Ss data type and predefined 0ss functions. For this extension to fit in
harmoniously, it needs to be done in a way which is consistent with the syntax of the
language. In general, if a language allows the definition of new data types and functions
with functional arguments, then 0SS expressions can be supported without making any
syntactic extensions to the language itself. (Otherwise, some apparent syntactic exten-
sions will be necessary. However, since 0SS expressions are supported by a preprocessor,
actual syntactic extensions are never required.)

The 0ss data type can be defined in analogy with vectors. When defining this new
data type, one should be sure to avoid making the mistake of specifying the length of
an 0SS series as part of its type. (Since 0SS series do not require any physical storage
this would limit the ability of 0SS functions to operate on 0SS series of arbitrary length
without having any counterbalancing benefits.)

Once an 0ss series data type has been defined, 0SS variables, functions and expres-
sions can be written using exactly the same syntax as ordinary variables, functions and
expressions.

Predefined functions. Just as a set of basic functions and operations must be
provided for any other data type, a set of basic 0SS functions must be provided. To be
most useful, these functions should include a number of specific higher-order functions.
The list of predefined functions in [27] is a useful guide to the kinds of functions which
can and should be provided when supporting 0SS expressions.

As discussed in Section 2, the predefined functions provided by the 0SS macro package
combine almost all of the functionality of the Common Lisp sequence functions [18], the
Loop macro [9], and the vector operations of APL [15]. They also include most of the
functionality of Barstow’s stream operations [8]. In addition, the macro package supports
a few complex higher-order functions which are not supported by any preexisting system.

One way to look at 0SS expressions in general is that they make it possible to introduce
90% of the expressive power of the vector operations of APL into a standard programming

Language Issues 19

language without introducing an inscrutable syntax or incurring run-time overhead.

Another way to view 0SS expressions is that they are a logical continuation of the
trend in programming language design toward supporting the reuse of loop fragments.
(This is, in fact, the perspective from which they were originally developed.) From this
point of view, the concept of an enumerator extends the approach taken by iterators in
CLU [14] and generators in Alphard [29].

Implicit mapping. As supported by the 0SS macro package, 0SS expression include
one feature which is essentially orthogonal to the restrictions discussed above. Whenever
an ordinary Lisp function is applied to an 0SS series, it is automatically mapped over
the elements of the 0SS series. For example, in the expression below, the function sqrt
is mapped over the 0SS series of numbers created by Evector.

(Rsum (sqrt (Evector ’#(4 16))))
= (Rsum (TmapF #’sqrt (Evector ’#(4 16)))) = 6

This concept is borrowed from APL, and due to the ubiquitous nature of mapping
is extremely useful in OSS expressions just as it is in APL. However, implicit mapping
runs somewhat counter to many programming languages. The problem is that implicit
mapping allows programmers to write programs which appear to violate strong typing.
This is only an apparent violation since the preprocessor produces output which does
obey strong typing. Nevertheless, introducing implicit mapping goes beyond the simple
idea of merely adding a new data type and a few functions.

Enforcing the restrictions. It turns out that enforcing the 0SS restrictions is a
straightforward matter. To start with, it is relatively easy to arrange things so that it
is impossible for a programmer to construct an 0SS expression which violates any of the
first four restrictions. Consider the 0SS macro package as a specific example. The 0SS
macro package does not provide any functions which can cause an 0SS series to become
part of a data structure. The requirement that 0SS variables and functions must be
statically identifiable is supported by two special forms letS and defunS. (This would
require no additional support in a language that had strong typing.) Finally, there is no
way to create an 0SS function which is not preorder or an 0SS expression which is not a
straight-line program.

Implicit mapping plays an important role in the enforcement of the first and fourth
restrictions, by providing an alternate interpretation for expressions which might appear
to violate one of these restrictions. For example, one might think that the function
below would return a cons cell containing a series. However, this is not the case. Implicit
mapping causes the cons operation to be applied to the individual elements of the series
rather than to the series as a whole. As a result, the function returns an 0SS series of
conses rather than a cons of an 0SS series.

(defunS map-cons (n)
(cons (Eup 1 :to n) nil))

(map-cons 3) = [(1) (2) (3)]

The isolation restrictions and the requirement that within each on-line subexpression,
there must be a data flow path from each termination point to each output are the

20 Theoretical Overview

only restrictions that a programmer is capable of violating. However, it is easy for
the 0SS macro package to check and see that these restrictions are satisfied by every
0sS expression. The best approach for programmers to take is to simply write 0SS
expressions without worrying about these restrictions and then fix the expressions in the
unlikely event that the restrictions are violated. In particular, note that an expression
which does not contain any letS variables cannot violate any of these restrictions.

Benefits. The benefit of 0SS expressions is that they retain most of the advantages
of functional programming using series, while eliminating the costs. However, given the
restrictions described above, the question naturally arises as to whether 0SS expressions
are applicable in a wide enough range of situations to be of real pragmatic benefit.

An informal study [22] was undertaken of the kinds of loops programmers actually
write. This study suggests that approximately 80% of the loops programmers write are
constructed by combining a few common kinds of looping algorithms. The 0SS macro
package is designed so that all of these algorithms can be represented as 0SS functions.
As a result, it appears that approximately 80% of loops can be trivially rewritten as 0SS
expressions. Many more can be converted to this form with only minor modification.

Moreover, the benefits of using 0SS expressions go beyond replacing individual loops.
A major shift toward using 0SS expressions would be a significant change in the way
programming is done. At the current time, most programs contain one or more loops
and most of the interesting computation in these programs occurs in these loops. This
is quite unfortunate, since loops are generally acknowledged to be one of the hardest
things to understand in any program. If 0SS expressions were used whenever possible,
most programs would not contain any loops. This would be a major step forward in
conciseness, readability, verifiability, and maintainability.

21

2. Comparisons

The following sections compare and contrast the functionality supported by 0ss ex-
pressions in general, and the 0SS macro package (see [27]) in particular, with the func-
tionality supported by the Common Lisp sequence functions, the Loop macro, and APL.
In each case, detailed examples are given illustrating the way each individual aspect is
supported. (It is assumed throughout that the reader has read [27].)

There are two ways in which these sections can be used. On the one hand, they are
useful for showing how 0SS expressions measure up to the standards offered by other
things. On the other hand, for people who happen to have a good understanding of
either sequence functions, the Loop macro, or APL, the comparisons are a useful way to
increase their understanding of 0SS expressions.

Sequence Functions

This section shows how the predefined 0SS functions capture the functionality of the
Common Lisp sequence functions. Although not strictly necessary, a good understanding
of the sequence functions as described in Chapter 14 of [18] will contribute significantly
to an understanding of the discussion below which follows the outline of that chapter.

The 0ss functions support essentially all of operations of the sequence functions
except reverse, nreverse, sort, and stable-sort. These functions are ruled out because
there is no way to implement them efficiently as preorder functions (see Section 1). (In
a similar vein, the keyword :from-end is in general not supported.) To apply these
operations to an 0SS series, reduce the series to a list or vector, apply the function in
question, and then enumerate the result.

An additional group of sequence functions are not relevant to 0SS series. Since 0SS
series do not have a physical existence, it is not possible to side-effect them. As a result,
there is no need to have side-effect variants of 0SS functions. This eliminates the need for
0ss functions analogous to delete, delete-duplicates, £ill, and nsubstitute. Further,
setf cannot be applied to 0ss functions. The lack of side-effects also eliminates the need
for an 0SS function analogous to copy-seq. Since side-effects are not possible, there is
no need to copy an 0SS series to protect it from modification.

Increased orthogonality. Many of the sequence functions exist as entire families
of related versions. Some of these versions are indicated by the suffixes -if and -if-not.
Other versions are indicated by the use of a variety of keyword parameters. The corre-
sponding 0SS functions need only have two versions: one which does not take a functional
argument and one (ending in “F”) which does. In order to understand why 0ss functions
do not need to have so many versions, one has to understand why the sequence functions
need to have so many versions.

The need for multiple versions of sequence functions stems from efficiency considera-
tions. For example, many sequence functions support the keywords :from and :end which
can be used to specify a subsequence of the input the function in question operates on.
As illustrated below, these keywords are totally redundant in meaning with the sequence
function subseq. However, the keyword form is more efficient, because it eliminates the

22 Comparisons

creation of an intermediate series.

(reduce #’+ °(0 1 2 3 4) :start 2 :end 4)
= (reduce #’+ (subseq (0123 4) 24)) =5

Since the 0SS macro package eliminates every intermediate series, there is no need
to complicate ReduceF by including the functionality of subseq. This functionality is
supported by the separate 0SS function Tsubseries. Keeping the two functionalities
separate allows them to be used with maximal clarity and generality.

A second reason why multiple versions of sequence functions is desirable stems from
the fact that literal 1ambda expressions are cumbersome to specify. The -if-not sequence
function versions, the :test-not keyword, and the :key keyword are helpful, because they
reduce the number of 1ambda expressions which have to be written. As illustrated below,
they do this by increasing the number of situations where preexisting functions can be
used as functional arguments.

(count-if-not #’plusp ’((1) (-2) (3)) :key #’car)
= (count-if #’(lambda (x) (not (plusp (car x))))
(1) (-2) 3))) = 1

When using 0SS functions, implicit mapping makes it possible to avoid lambda ex-
pressions almost entirely in any case. One simply maps the desired test and key over
the 0SS series in question. As above, the use of separate operations would lead to ineffi-
ciency when using sequence functions, but does not cause any problem when using 0SS
functions.

(Rlength (Tselect (not (plusp (car [(1) (-2) (AINN)) =1

Function by function comparison. The operation performed by elt is provided
by Rnth. However, setf cannot be used with Rnth. Also, as discussed in Section 1, the
non-0ss data flow isolation restriction makes Rnth less useful than elt. (The notation
U 2

=" is used rather loosely here in that the left hand form is applied to a sequence while
the right hand form is applied to an 0SS series.)

(elt ’(abc) 1) = b = (Rnth 1 [ab<cl]) =D

The operation performed by subseq is provided by Tsubseries. However, setf cannot
be used with Tsubseries or Tselect.

(subseq *(abcd) 13) = (bc)
= (Tsubseries [abcd] 1 3) = [bc]

As discussed above, the operation performed by copy-seq is not supported by an 0ss
function, because it is not useful in the context of 0SS expressions.
The operation performed by length is provided by Rlength.

(length ’(a b c)) = 3 = (Rlength [a b c]) = 3

Sequence Functions 23

The operations performed by reverse and nreverse cannot be supported, because
they are not preorder.

The operation performed by make-sequence is provided by Tsubseries and Eoss except
that no type argument is required.

(make-sequence ’list 4 :initial-element T) = (T T T T)
= (Tsubseries (Eoss :RT) 04) = [TTTT]

The operation performed by concatenate is provided by Tconcatenate. The only
difference is that no result-type parameter is necessary, and at least two series inputs
are required. Given that copying and type conversion of 0SS series is never necessary,
allowing only a single input would not be useful.

(concatenate ’list *(a b) ’(c)) = (a b ¢)
= (Tconcatenate [a b] [c]) = [a b c]

The operation performed by map is provided by the function TmapF and, if the mapped
function is quoted, by implicit mapping. The only difference is that no result-type pa-
rameter is necessary, there need not be any input series, and macros can be mapped.
Since infinite 0SS series are supported, it is not necessary to require that there must
always be a series input. Also since 0SS series are never physically produced, there is
never any need to specify that one should not be produced. As with map, it is guaranteed
that the function being mapped will be applied to the series elements in order.

'list #’+ (1 2) ’(3 4 5)) = (4 6)
(TmapF #°+ [1 2] [3 4 5]) = [4 6]
(prognS (+ [1 2] [3 4 51)) = [4 6]

’list (symbol-function ’+) ’(1 2) (3 4 5)) = (4 6)
(TmapF (symbol-function ’+) [1 2] [3 4 5]) = [4 6]

(ma

o

e

(m

s

The operations performed by some, every, notany, and notevery are provided by
implicit mapping and the functions Ror and Rand.

(some #’plusp (1 -2 3)) = (Ror (plusp [1 -2 3])) = T
(every #’plusp ’(1 -2 3)) = (Rand (plusp [1 -2 3])) => nil
(notany #’plusp (1 -2 3)) =

(notevery #’plusp ’(1 -2 3))

(not (Ror (plusp [1 -2 3]))) = nil
= (not (Rand (plusp [1 -2 3]))) = T

The operation performed by reduce is provided by ReduceF and Tsubseries. However,
there are two differences. First, the :from-end keyword is not supported, since it calls
for non-preorder processing. Second, the :initial-value input is mandatory. This can
be partially avoided by using Rlast and TscanF. However, there is no way to obtain
the behavior whereby reduce calls the reduction function with zero arguments when the
input is of zero length. This was judged to be more confusing than useful.

The operation performed by £ill is a destructive operation and therefore is not
provided by an 0ss function. However, a non-destructive version of this operation can
be obtained using if and Tmask. In addition, alterS in conjunction with Elist, Evector,
and Esequence can be used to fill lists and vectors.

24 Comparisons

(£111 (0 1 2 3) ’x :start 1 :end 3) = (0 x x 3)
= (prognS (if (Tmask (Eup 1 :below 3))
(Eoss :R ’x)
[0123])) = [0xx 3]
(£fi11 (0 1 2 3) ’x :start 1 :end 3) = (0 x x 3)
= (let ((1 (012 3)))
(alterS (Tsubseries (Elist 1) 1 3) (Eoss :R ’x))
1) = (0 x x 3)

The operation performed by replace is a destructive operation and therefore is not
provided by an 0ss function. However, alterS in conjunction with Elist, Evector, or
Esequence can be used to replace elements in a list or vector.

(replace ’#(0 1 2 3) ’(a b ¢)
:startl 1 :endl 3 :start2 O :end2 2) => #(0 a b 3)
= (let ((v ’#(0 1 2 3)))
(alterS (Evector v (Eup 1 :below 3)) (Tsubseries [a b c] 0 2))
v) = #(0 a b 3)

The operations performed by remove, remove-if, and remove-if-not are provided by
Tselect or TselectF, Tsubseries or Tmask, and Tlatch. The only fundamental difference
is that the :from-end keyword is not supported, because it calls for non-preorder pro-
cessing. In the general case, things are complicated. However, in simple situations they
are simple. The operations performed by delete, delete-if, and delete-if-not are not
provided by 0SS functions since they are destructive.

(remove -2 ’(1 -2 3 -2)) = (1 3)
= (lets ((x [1 -2 3 -2]))
(Tselect (not (eql -2 x)) x)) = [1 3]
(remove-if #’minusp (1 -2 3 -2)) = (1 3)
= (lets ((x [1 -2 3 =210
(Tselect (not (minusp x)) x)) = [1 3]
(remove-if-not #’minusp ’(1 -2 3 -2)) = (-2 -2)
= (Qets ((x [1 -2 3 -2])
(Tselect (minusp x) x)) = [-2 -2]
(remove-if #’minusp ’((-1) (-2) (3) (-2) (1) (-4 (-3) (2))
:start 1 :end 6
:count 2 :key #’car) = ’((-1) (3) (1) (-4) (-3) (2))
= (letS ((e (Tsubseries [(-1) (-2) (3) (-2) (1) (-4) (-3) (2)] 1 6)))
(Tselect (not (Tlatch (minusp (car e)) :after 2))))
= [(-1) 3) (1) (-4) (-3) ()]

The operation performed by remove-duplicates is provided by Tremove-duplicates.
However, Tremove-duplicates always operates in the way remove-duplicates operates
when the :from-end keyword is specified. Operating in any other way calls for non-
preorder processing. In addition, there is no easy way to obtain the effect of the :start
and :end keywords. The operation performed by delete-duplicates is not provided since
it is destructive.

Sequence Functions 25

(remove-duplicates ’(a b a d) :from-end T) = (a b d)
ran = (Tremove-duplicates [a b a d]) = [a b d]

(remove-duplicates ’((a 0) (a 1) (b 3) (a 2) (a 3))
ttest #’eql :key #’car
:from-end T) = ’((a 0) (b 3))
= (Tremove-duplicates [(a 0) (a 1) (b 3) (a 2) (a 3)]
#’ (lambda (x y)
(eql (car x) (car y)))) = [(a 0) (b 3)]

The operations performed by substitute, substitute-if, and substitute-if-not are
provided by if, Tmask, and Tlatch. The only fundamental difference is that the : from-end
keyword is not supported, because it calls for non-preorder processing. The operations
performed by nsubstitute, nsubstitute-if, and nsubstitute-if-not are not provided
by 0SS functions since they are destructive.

(substitute 0 -2 (1 =2 3 -2)) = (1 0 3 0)
= (lets ((x [1 -2 3 -21))
(if (eql -2 x) 0 x)) = [1 0 3 0]

(substitute-if O #’minusp (1 -2 3 -2)) => (1 0 3 0)
= (lets ((x [1 -2 3 -21))
(if (minusp x) 0 x)) = [1 0 3 0]

(substitute-if-not O #’minusp (1 -2 3 -2)) = (0 -2 0 -2)
= (lets ((x [1 -2 3 -21))
(if (not (minusp x)) 0 x)) = [0 -2 0 -2]

(substitute-if O #’minusp ’((-1) (-2) (3) (-2))
:start 1 :end 3
Y :count 2 :key #’car) = ((-1) 0 (3) (-2))
= (lets ((x [(-1) (-2) (3) (-2)1IN
(if (Tlatch (and (Tmask (Eup 1 :below 3))
(minusp (car x)))
:after 2)
0
x)) = [(-1) 0 (3) (-2)]

The operations performed by find, find-if, and find-if-not are provided by Tselect
or TselectF, Tsubseries or Tmask, and Rfirst or Rlast. Unlike most of the functions
above, the :from-end keyword is supported, because it can be supported tolerably effi-

ciently in a preorder way.

(find ’b ’((a 1) (b 3) (a 3) (b 4)) :key #’car) = (b 3)
= (Qets ((x [{(2a 1) (b 3) (a2 3) (b DI
(Rfirst (Tselect (eql ’b (car x)) x))) = (b 3)

(find-if #’minusp ’(1 -2 3 -3)) = -2
= (lets ((x [1 -2 3 -2]))
(Rfirst (Tselect (minusp x) x))) = -2

(find-if-not #’minusp ’(1 -2 3 -2) :from-end T) = 3
= (lets ((x [1 -2 3 -21))
(Rlast (Tselect (not (minusp x)) x))) = 3

(find-if #’minusp ’((-1) (-2) (3) (-5) (1))
:start 1 :end 4 :key #’car) = (-2)
= (letS ((x (Tsubseries [(-1) (-2) (3) (-5) (1] 1 4)))
£ (Rfirst (Tselect (minusp (car x)) x))) = (-2)

26 Comparisons

The operations performed by position, position-if, and position-if-not are pro-
/™ vided by Tpositions, Tsubseries or Tmask, and Rfirst or Rlast. As with the find
functions, the :from-end keyword is supported. As illustrated below, things are much
the same as with the find functions except that Tpositions is used instead of Tselect.
In addition, if a subseries is specified, then Tmask (or a numerical adjustment) has to be
used in order to get the position relative to the correct origin.
(position ’b ’((a 1) (b 3) (a 3)) :key #’car) = 1
= (Rfirst (Tpositions (eql ’b (car [(a 1) (b 3) (a 3)IN)) = 1
(position-if #’minusp ’(1 -2 3 -3)) = 1
= (Rfirst (Tpositions (minusp [1 -2 3 -2]))) = 1
(position-if-not #’minusp (1 -2 3 -2) :from-end T) = 2
= (Rlast (Tpositions (not (minusp [1 -2 3 -2])))) = 2
(position-if #’minusp ’((-1) (-2) (3))
:start 1 :end 3 :key #’car) => 1
= (Rfirst (Tpositions (and (Tmask (Eup 1 :below 3))

(minusp (car [(-1) (-2) (3)1))))) = 1
= (+ 1 (Rfirst
(Tpositions
(minusp (car (Tsubseries [(-1) (-2) (3)] 1 3)N))) = 1

The operations performed by count, count-if, and count-if-not are provided by
Rlength and Tsubseries or Tmask. As illustrated below, things are much the same as
with the £ind functions except that Rlength is used instead of Rfirst.

(count °b *((a 1) (b 3) (b 4)) :key #’car) = 2
= (Rlength (Tselect (eql ’b (car [(a 1) (b 3) (b 4)1)))) = 2
£ (count-if #’minusp ’(1 -2 3 -3)) = 2
= (Rlength (Tselect (minusp [1 -2 3 -2]))) = -2
(count-if-not #’minusp ’(1 -2 3 -2)) = 2
= (Rlength (Tselect (not (minusp [1 -2 3 -2])))) = 2
(count-if #’minusp ’((-1) (-2) (3) (-5) (1))
:start 1 :end 4 :key #’car) = 2
= (Rlength
(Tselect
(minusp
(car (Tsubseries [(-1) (-2) (3) (-8) (D] 1 4)))) = 2

The operations performed by mismatch and search could be provided as off-line 0ss
functions. However, they seem to be too specialized to be of general use. To perform these
operations, construct a physical series and use the standard functions. As mentioned
above, the functions sort and stable-sort cannot be supported since the are inherently
non-preorder.

The operation performed by merge is provided by Tmerge, except that Tmerge is not
destructive and no result type argument is required.

(merge ’list ’(1 3 8) ’(2 6) #’<) = (1 23 5 6)
= (Tmerge [1 3 5] [2 6] #’<) = [1 2 3 5 6]

(merge ’list *((1) (3) (5)) ’((2) (8))
#’< :key #’car) = ((1) (2) (3) (5) (&)
= (Tmerge [(1) (3) (5)] [(2) (8)]
#’(lambda (x y)

f\ (< (car x) (car y)))) = [(1) (2) (3) (5) (6)]

The Loop Macro 27

As can be seen above, most of the sequence operations are supported by 0ss func-
tions. In addition, the 0SS functions support a number of additional operations. For
one thing, the whole concept of an enumerator is more or less absent from the sequence
functions and the sequence functions support very few specific reducers. (In Common
Lisp the equivalent of enumerators exist in the guise of forms like dotimes and dosymbols.
However, is no practical way to apply sequence functions to the values enumerated by
these forms.) In contrast, the 0SS functions contain a wide range of specific enumerators
and reducers.

The 08s functions also support a number of complex higher-order functions such as
TscanF and TsplitF which are not supported by the sequence functions. In addition,
the concepts of implicit mapping and alterability go beyond the scope of the sequence
functions.

The 0ss functions are also stylistically quite different. In particular, composition
of functions is used wherever possible in lieu of keyword arguments. This allows the
individual functions to be simpler and makes things more functional in appearance. In
addition, it allows maximal freedom for programmers to do exactly what they want to
do exactly when they want to do it.

Taken individually, 0ss functions are no more efficient than sequence functions. How-
ever, when combined with each other in expressions they are significantly more efficient.

There are two key places where sequence functions are more powerful than 0ss func-
tions. First, there is no limit to the sequence functions which can be defined. In par-
ticular, it is possible to define a function which takes in a sequence and operates on its
elements in any arbitrary order. In contrast, 0SS functions must be preorder. However,
as shown by the examples above, most of the predefined sequence functions are preorder.
This suggests that the preorder restriction is not unduly limiting. Nevertheless, it is a
significant limitation. Second, there is no limit to the way sequence functions can be
combined together. In contrast, the isolation restrictions limit the way 0SS functions can
be combined.

The Loop Macro

This section shows how the predefined 0ss functions capture the functionality of the
Loop macro. Although not strictly necessary, a good understanding of the Loop macro [9]
as described on pages 537-563 in Volume 2A of [31] will contribute significantly to an
understanding of the discussion below which follows the outline of the description cited
above.

Uses of the Loop macro have the following basic form where the iteration-clauses
are analogous to 0Ss functions and the body is mapped over the values enumerator-like
clauses produce. The most obvious difference between Loop and 0SS expressions is that
loop iteration clauses are rendered in stylized English while 0Ss expressions use standard
functional notation. As discussed below, the functionality of every Loop iteration clause
is supported by an 0SS function. However, a few of the complex ways in which the clauses
can be combined are not supported.

(1oop iteration-clauses
do body)

28 Comparisons

Using for (or as), iteration clauses can bind values to variables either sequentially or
in parallel via the keyword and. This functionality is supported by 1letS and letS*. The
effect of data type specifications in a clause are provided by declarations in a letS. (Note
that using the Loop macro, it is not possible to use the value of an enumerator without
binding it to a variable. In contrast, 0SS expressions make it possible to simply put an
enumerator where it is used.)

(loop for x integer from 1 to 4 collect x)
= (letsx ((x (Eup 1 :to 4)))
(declare (type integer x))
(Rlist x)) = (1 23 4)

However, the distinction between sequential and parallel binding in Loop is different
from the distinction between letS* and letS. This is so, because Loop variables are not
thought of as containing series, but rather as containing individual values as in a do. As
a result, “in parallel” really means “using values from the previous iteration”. This effect
can be obtained in an 0SS expression by using Tprevious as shown below.

(loop for x from 1 to 4 and for y = O then (1- x)
collect (list x y))
= (letSx ((x (Eup 1 :to 4))
(y (Tprevious (1- x) 0)))
(Rlist (list x y))) = ((1 0) (2 0) (3 1) (4 2))

The operation performed by repeat is provided by Eup and Tcotruncate. All that
has to be done is to cotruncate the series being operated on with a series of the required
length.

(loop repeat 4 for x from 1 to 10 collect x)
= (Rlist (Tcotruncate (Eup 1 :to 10) (Eup :length 4))) = (1 2 3 4)

The operations performed by from, to, by, downto, below, above, downfrom, and upfrom
are provided by Eup and Edown.

(loop for x from 1 to 7 by 2 collect x)
= (Rlist (Eup 1 :to 7 :by 2)) = (L1 3 5 7)

(loop for x from 1 downto -7 by 2 collect x)
= (Rlist (Edown 1 :to -7 :by 2)) = (1 -1 -3 -5 -7)

(loop for x upfrom 1 by 2 and for y from 1 to 3 collect (list x y))
= (Rlist (list (Eup 1 :by 2) (Eup 1 :to 3))) = ((1 1) (3 2) (5 3))

The simple forms of the operations performed by in and on are provided by Elist
and Esublists. The complex forms of these operations are provided by EnumerateF.

(loop for x on ’(a b c) collect x)
= (Rlist (Esublists ’(a b c))) = ((abc) (bc) (c))

(loop for x in ’(a b c) collect x)
= (Rlist (Elist ’(a b c))) = (a b c)

(loop for x in ’(a b c¢) by #’cddr collect x)
= (Rlist (car (EnumerateF ’(a b c) #’cddr #’endp))) = (a c)

The Loop Macro 29

The operation performed by = is provided by TmapF, mapS, or usually more conveniently
by implicit mapping. If the then keyword is added, things are more complex. Often the
only free variable in the expression after the then is the same variable which is bound
to the result of the clause. When this is the case, EnumerateF can be used. Alternately,
if an and keyword also appears, then Tprevious can be used as shown above. If the
expression is complex and there is no and, then there is no simple way to get the all-but-
the-first-iteration effect. In addition, there is nothing in 0SS expressions corresponding
to the difference between = ... then and first ... then. These difficulties stem from
the different points of view held by the Loop macro and the 0ss macro package about
what a variable is.

(loop for x from 1 to 3 for y = (1+ x) collect (list x y))
= (letS ((x (Eup 1 :to 3)))
(Rlist (list x (1+ x)))) = ((1 2) (2 3) (3 4))

(loop for x from 1 to 3 for y = 1 then (* 2 y)
collect (list x y))
= (Rlist (list (Eup 1 :to 3)
(EnumerateF 1
#’(lambda (y) (x 2 y))))) = ((1 1) (2 2) (3 4))

The kind of variables created by with can be created as non-0SS variables in a letSx.
However, these variables cannot be assigned to, so you have to think about things from
a different, more functional, perspective.

(loop for x from 0 to 4
with (one four)
with three = '"three"
do (setq four x) (setq one "one")
finally (return (values one three four)))
= (letS* ((x (Eup :to 4))
(one "one")
(three "three")
(four (Rlast x)))
(valS one three four)) = '"one" "three" 4

The effect .of initially and finally can be obtained in several ways. When defining
a new 0SS function prologS and epilogS can be used in a defun-primitiveS. This repre-
sents exactly the same functionality. In an expression, a funcallS of a lambda-primitiveS
can be used in order to get the exact effect. However, things can often be arranged so
that things happen initially and finally in a natural way. The natural elimination of a
need for finally is shown in the last example. (It is never necessary to use return in an
0sS expression.) The elimination of an initially by using Eoss (or better by just putting
the operation in question in front of the 0SS expression) is shown below. It should be
realized that due to the different points of view taken by the Loop macro and the 0ss
macro package, there is little reason to think of the concepts of initially and finally when
writing an OSS expression.

(loop for x from 1 to 4

initially (princ "lets count... ")

do (princ x))
= (prognS (Eoss :R (princ "lets count... ")) (princ (Eup 1 :to 4)))
= (princ "lets count... ") (prognS (princ (Eup 1 :to 4)))

; 3 The output "lets count... 1234" is produced

~

30 Comparisons

The various accumulating clauses are provided by reducers. The effect of the into
keyword can be obtained by binding the result of a reducer to an 0SS variable. A feature
of the Loop macro which is emphatically not supported by any 0ss function is the
concept of combining several different accumulators into the same result. Using an 0ss
expression, it is necessary to define a special reducer or merge the series or something of
that order.

(loop for x in ’(1 2 3 6)

count t into count-var

sum X into sum-var

finally (return (/ sum-var count-var)))

= (letSx ((x (Elist *(1 2 3 6)))
(count-var (Rlength x))
(sum-var (Rsum x)))
(/ sum-var count-var)) => 3

(loop for x in ’(a b) for y in ’((1 2) (3 4))
collect x
append y)
= (Rappend (list* (Elist ’(a b))
(Elist *((1 2) (3 4))))) = (a1 2b 3 4)

The operations performed by collect, nconc, and append are provided by Rlist,
Rnconc, and Rappend respectively. The operations performed by sum, maximize, and
minimize are provided by Rsum, Rmax and Rmin respectively.

(loop for x in ’((1 2) (3 4)) nconc x)
= (Rnconc (Elist ’((1 2) (3 4)))) = (123 4

(loop for x in ’(1 3 2) sum x)
= (Rsum (Elist ’(1 2 3))) = 6

(loop for x in ’(1 3 2) maximize x)
= (Rmax (Elist °(1 2 3))) = 3

The operation performed by count is more interesting. In general, it is provided by
Rlength of Tselect. However, things have to be arranged so that the expression being
counted contains a reference to the series of elements being counted. (Observe the way
count is handled in the averaging example above.) In the Loop macro, this is not always
necessary, because count is controlled by the implicit control environment it appears in.
In 0SS expressions, there is no notion of control environments—everything depends on
data flow.

(loop for x in ’(1 -3 2) count (plusp x))
= (Rlength (Tselect (plusp (Elist ’(1 -3 2))))) = 2

The effect of until and while can typically be obtained by using EnumerateF. The
primitive operation performed by loop-finish is provided by terminateS.

(loop for x = ’(a b ¢) then (cdr x) until (null x) collect (car x))
= (Rlist (car (EnumerateF ’(a b c) #’cdr #’null))) = (a b c)

The operations performed by always, never, and thereis are provided by Rand, not
of Ror, and Rfirst of Tselect respectively.

The Loop Macro 31

(loop for x in ’(1 -3 2) always (plusp x))
= (Rand (plusp (Elist ’(1 -3 2)})) = nil

(loop for x in ’(nil (nil ¢) (a b)) thereis (car x))
= (Rfirst (Tselect (car (Elist ’(nil (nil ¢) (a b)))))) = a

Conditionalization of operations is handled in 0SS expressions in a completely different
way than in the Loop macro. Instead of directly effecting the control flow, series are
restricted using Tselect or Tsplit. Given the very different approaches, it is hard to
make simple comparisons. The following examples illustrate the two approaches.

(loop for i from 1 to 10
when (zerop (mod i 3)) collect i)
= (letsx ((i (Eup 1 :to 10))
(i-divisible-by-3 (Tselect (zerop (mod i 3)) i)))
(Rlist i-divisible-by-3)) => (3 6 9)

(loop for i from 1 to 10
when (zerop (mod i 3))
do (prini i)
and when (zerop (mod i 2))
collect i)
= (QetS* ((i (Eup 1 :to 10))
(i-divisible-by-3 (Tselect (zerop (mod i 3)) i)))
(prinil i-divisible-by-3)
(Rlist (Tselect (zerop (mod i-divisible-by-3 2))
i-divisible-by-3))) => (6)
; 3 The output "369" printed.
(loop for i from 1 to 9
if (oddp i)
collect i into odd-numbers
else collect i into even-numbers
finally (return odd-numbers even-numbers))
= (letS* ((i (Eup 1 :to 9))
((odd-i even-i) (TsplitF i #’oddp))
(odd-numbers (Rlist odd-i))
(even-numbers (Rlist even-i)))
(valS odd-numbers even-numbers)) => (1 3 57 9) (2 4 6 8)

The functionality of the return and named keywords is not directly supported. How-
ever, this effect can be obtained by wrapping a (named) block around an 0SS expression
and returning from the block. No support is provided for destructuring, since destructur-
ing is not a standard part of Common Lisp. Synonyms for 0ss functions can be defined
using defunS.

For the most part, the operations performed by predefined Loop iteration paths are
provided by predefined 0SS enumerators. In particular, being the hash-elements is
supported by Ehash, being the array-elements is supported by Evector, and being the
local-interned-symbols is supported by Esymbols.

(loop for x being the array-elements of ’#(a b c) collect x)
= (Rlist (Evector ’#(a b c))) = (a b c)

32 Comparisons

However, heap iteration is not supported since heaps are not supported by Common
Lisp. Further, there is no support for the iteration performed by interned-symbols,
although it could be supported easily enough. In addition, the functionality of using is
emphatically not supported by 0SS expressions. Rather, 0sS functions go to considerable
lengths to hide their internal states so that other functions cannot disturb their operation.

The functionality of define-loop-sequence-path can be obtained straightforwardly
using defunS, Tuntil, and a nested syntax where complex indexing can be specified by
Eup or any other 0SS function which produces a series of indices.

(define-loop-sequence-path (array-element array-elements)
aref length)
= (defunS Earray (v &optional (i (Eup)))
(declare (type oss i))
(aref v (Tuntil (not (< i (length v))) 1i)))

The functionality of define-loop-path is provided in a quite different way by defuns.
The major difference is that the Loop macro requires the user to explicitly deal with the
details of the way loops are constructed, while 0SS expressions do not. The following
shows how the iteration path used as an example on page 561 of Volume 2A of [31] could
be rendered using defunS. In [31] the example requires 31 lines of code not counting
the comments. (The subprimitive form defun-primitiveS, see Section 3, defines 0SS
functions in a way which is much more closely analogous to define-loop-path. However,
it is still much simpler.)

(defunS Estring-chars (s)
(aref s (Eup 0 :to (1- (length s)))))

As can be seen above, most of the operations supported by the Loop macro are sup-
ported by 0ss functions. In addition, the 0SS functions support a number of additional
operations. For one thing, the whole concept of non-mapping transducers is more or
less absent from the Loop macro. In contrast, the 0SS functions contain a wide range
of powerful transducers. In addition, when using Loop, it is not possible to define new
transducers or reducers.

The code produced by 0SS expressions is no more efficient than the code produced
by the Loop macro. However, 0SS expressions are more concise. In particular, they are
functional rather than based on a pseudo-English syntax. A particular advantage of 0SS
expressions is that it is much easier to define new 0SS functions than it is to define new
Loop clauses.

In contrast to the sequence functions, the Loop macro is not fundamentally more
powerful than 0SS expressions. The user is effectively limited to preorder operations when
creating new Loop operations and there are, in effect, significant limitations analogous
to the isolation restrictions placed on the way Loop operations can be combined. This
is not surprising in light of the fact that the two systems end up producing quite similar
code in quite similar ways (see Section 3).

APL 33
APL

This section shows how the predefined 0SS functions capture the functionality of the
APL vector operators. Although not strictly necessary, a good understanding of APL
(see for example [15]) will contribute significantly to an understanding of the discussion
below.

Since 0SS series correspond solely to arrays of rank one, no support is given for any
operator which either must take in or must produce an array of rank greater than one
(i.e., ravel, outer product, matrix inverse, matrix divide, lamination). Also, no support
is given for non-preorder operations (i.e., reshape, indexing, index-of, grade up, grade
down, transpose, reversal, rotation).

The APL concept of the extension of scalar functions to vectors corresponds exactly to
implicit mapping. It is as ubiquitous and useful in 0SS expressions as in APL expressions.

The index generator (count) operation is provided more generally by Eup. When
restricted to vectors, the shape operation is provided by Rlength. The catenate operation
is performed by Tconcatenate.

14 =>1234= (Eup 1 :tod) = [123 4]
p7 8 9 => 3 = (Rlength [7 8 9]) = 3
123,45=>12345 = (Tconcatenate [1 2 3] [4 5]) = [1 2 3 4 5]

The membership operation is provided by Ror and the implicit mapping of an equality
test as shown below. (In APL, boolean values are represented as integers with 1 for true

and 0 for false.)

261 23 =>1=(Ror (=2[123])) =T

The take and drop operations (without the introduction of padding) are both provided
by Tsubseries. However, they are only supported for positive numbers (i.e., taking from
the front and dropping from the front). (Efficient support for taking and dropping from
the end is incompatible with preorder processing.)

271 23 45 = 1 2 = (Tsubseries [1 23 4 5] 02) = [12]
2]1 2345 = 345 = (Tsubseries [1 23 4 5] 2) = [3 4 5]

The APL concept of reduction is supported in a more general way by ReduceF. In APL,
reduction can only be applied to the primitive dyadic scalar functions and cannot be
applied to user defined functions. As a result, in APL, reduction only corresponds to a
specific set of reducers rather than to a true combinator. In contrast, ReduceF can be
used with any binary function. An advantage of the APL approach is that users do not
have to specify initial values to use in reductions, because APL has built-in knowledge of
what initializations are appropriate. In 0SS expressions, this advantage can be obtained
by using predefined reducers (e.g., Rsum, Rmax, Rmin) rather than ReduceF.

+/1 23 = 6 = (ReduceF 0 #’+ [1 2 3]) = (Rsum [1 2 3]) = 6
[/1 23 = 3 = (Rmax [1 2 3]) = 3
[/1 23 = 1 = (BRmin [1 2 3]) = 1

34 Comparisons

The APL concept of scanning is supported by TscanF. As is the case with ReduceF,
TscanF is fundamentally more general. However, there are no predefined 0SS functions
corresponding to the APL operations which can be scanned.

+\1 23 =136 = (TscanF 0 #’+ [1 2 3]) = [1 3 6]

The inner product operation is straightforwardly supported by ReduceF and implicit
mapping. However, in 0SS expressions this concept is impoverished since all of the
arguments must be one dimensional.

1 2 3+.%3 4 5 = 26 = (ReduceF 0 #’+ (* [1 2 3] [3 4 5])) = 26

The operations of compression and expansion are provided by Tselect and Texpand.
(In APL, compression and expansion make use of the binary forms of the same operator
symbols which are used to indicate reduction and scanning.)

1010/1234=13
= (Tselect [T nil T nil] [1 2 3 4]) = [1 3]

1010\MM3=1030
= (Texpand [T nil T nil] [1 3] 0) = [1 0 3 0]

The operations of encoding and decoding numbers into mixed radix notations are
an interesting case. As defined in APL, they require postorder processing and therefore
cannot be supported by 0SS functions. However, if they were redefined so that the least
significant digit was stored first, then they could easily be supported. This is a good
example of the kind of change which sometimes has to be made to facilitate the use of
0SS expressions.

When compared solely with the built-in vector operations in APL, OSS expressions
can be seen to be more powerful. However, the comparison with APL points up several
of the limitations of 0SS expressions. To start with, APL is like the sequence functions
in that there is no limit to the new vector functions which a user can define and there
is no limit to the way these functions can be combined. In addition, unlike the sequence
functions or the Loop macro, APL shows the power which can be obtained by operating
on multidimensional data. An interesting aspect of this is that while relatively few useful,
non-preorder functions spring to mind when thinking about one dimensional data, it is
much easier to think of such functions when operating on multi-dimensional data.

As with the sequence functions, individual 0ss functions are no more efficient than
individual APL operations. However, 0SS expressions are a great deal more efficient than
APL expressions. Further, it almost goes without saying that the most striking difference
between 0SS expressions and APL is that 0SS expressions use standard functional notation
while APL uses a host of concise, but cryptic operators.

35
3. Algorithms

Once 0Ss expressions have been syntactically hosted in a language, the only thing
which remains to be done is to implement a preprocessor which supports their efficient
evaluation. The restrictions underlying 0SS expressions guarantee that such a prepro-
cessor can be implemented in three parts: a parser which locates 0SS expressions, an
implicit mapper which determines what subexpressions should be mapped, and a trans-
former which converts the 0SS expressions into highly efficient loops. Below, the 0ss
macro package [27] is used as a concrete vehicle for describing the algorithms required.

Parsing. The characteristics of Lisp make the parser component in the 0SS macro
package particularly easy to implement. In fact, the standard Common Lisp macro
facilities can be used to locate 0SS expressions. Supporting implicit mapping requires
explicit parsing code to be written. However, this task is simplified by the fact that Lisp
programs are represented internally in a parse-tree-like form. The only real complexity
stems from the fact that the 0SS macro package must have an understanding of the
special forms supported by Common Lisp. This is a problem which is faced by many
complex macro packages.

In a language other than Lisp, the parsing task would be inherently more complex.
However, the same basic approach of extending the standard parser for the language
could be used.

Implicit mapping. The implicit mapper takes a parsed 0Ss expression and turns it
into a data flow graph which shows the way the various functions are connected. Both
nesting of subexpressions and the variables bound by letS lead to links in this graph.
Based on an inspection of the graph, implicit mapping is introduced whenever a non-0ss
function receives an 0SS input.

Transformation. The operation of the transformer component is illustrated in Fig-
ure 3.1. The 0SS expression in the function oss-sum-sqrts is transformed into the loop
shown in the function oss-sum-sqrts-loop. The readability of the transformed code is
reduced by the fact that it contains a number of internally generated variables. However,
although the code is a bit unusual in some ways, it is quite efficient. As a result, assum-
ing that both functions are compiled, oss-sum-sqrts is just as efficient as the function
sum-sqrts-loop used as an example at the beginning of Section 1. (If oss-sum-sqrts is
evaluated interpretively, it is quite slow since the 0SS macro package has to be called in
order to transform the loop as shown.)

The only significant problem with the code produced by the 0ss macro package is
that it often uses more variables than strictly necessary (e.g., #:out-4). However, this
problem need not lead to inefliciency during execution as long as a compiler capable of
simple optimizations is available.

The transformation process operates in several steps. In the first step, the data flow
graph produced by the implicit mapping step is broken into on-line subexpressions using
the divide and conquer strategy discussed in conjunction with the non-series isolation
restriction and the off-line isolation restriction (see Section 1). As part of this process,
the transformer checks that the expression obeys the isolation restrictions and the re-

36

(defun oss-sum-sqrts (v)

(Rsum (sqrt (TselectF #’plusp (Evector v)))))

(defun oss-sum-sqrts-loop (v)

(let (#:element-7 #:index-9 #:last-8 #:out-4 #:sum-2)
(declare (type integer #:index-9 #:last-8)

(type number #:out-4 #:sum-2))

Algorithms

(if (not (< #:index-9 #:last-8)) (go oss:END))
(setq #:element-7 (aref v #:index-9))

(if (not (plusp #:element-7)) (go #:L-1))

(setq #:0out-4 (sqrt #:element-7))
(setq #:sum-2 (+ #:sum-2 #:out-4))

2
3,5
2 (tagbody (setq #:index-9 -1)
1,2 (setq #:1last-8 (length v))
5 (setq #:sum-2 0)
2 #:L-1 (incf #:index-9)
2
1,2
3
4
5
(go #:L-1)
oss:END)
5 #:sum-2))
(1) -- non-oss evaluation of v
outputs: (out)
auxes: (out)

prolog: ((setq out v))
(2) -- Evector

inputs:
outputs:
auxes:

decls:
alterable:

prolog:

body:

inputs:
outputs:

- - > = . - - - e - - - - - - -

(vector)
(element)
(last index)

((type integer last index) (type vector vector))

((element (aref vector index)))

((setq index -1) (setq last (length vector)))

((incf index)

(if (not (< index last)) (terminateS))
(setq element (aref vector index)))

(3) -- TselectF of #’plusp

(numbers)
(numbers)

- - - - - - - - - - - .. -

body: (L (next-inS numbers) (if (not (plusp numbers)) (go L)))

(4) -- implicit mapping of sqrt
inputs: (i
outputs:
body:

() == RSUM ===-=-==-==-m—omee oo
inputs:

outputs:
auxes:
decls:
prolog:
body:

(in)
(out)

((setq out (sqrt in)))

(numbers)
(sum)
(sum)

((type number numbers sum))

((setq sum 0))

((setq sum (+ sum numbers)))

Figure 3.1: Transforming 0SS expressions into loops.

37

quirement that within each on-line subexpression, there must be a data flow path from
each termination point to each output.

Once partitioning is complete, the functions in each on-line subexpression are com-
bined together into a single operation. These operations are then combined together
based on the data flow between the on-line subexpressions.

To support the combination process, each 0SS function is represented as a fragment
consisting of several parts including:

inputs: A list of input variables.
outputs: A list of output variables.
auxes: A list of auxiliary variables.
decls: A list of declarations.
alterable: A list of specifications as to which outputs are alterable.
prolog: A list of statements which are executed before the computation starts.
body: A list of statements which are repetitively executed.
epilog: A list of epilog statements which are executed after the loop terminates.

(As discussed in the next section, these pieces of information can be specified directly
by using lambda-primitiveS.) The bottom part of Figure 3.1 shows the fragments which
represent the five parts of the 0SS expression in oss-sum-sqrts. (Fragments typically have
several parts which are empty lists. In the interest of brevity, these parts are omitted in
the figure.)

The loop in oss-sum-sqrts-loop is created by combining the five fragments shown
in Figure 3.1. The numbers in the left hand margin of oss-sum-sqrts-loop indicate
which fragment each line of the loop comes from. Three different combination algorithms
are used: one corresponding to data flow between on-line ports (i.e., within on-line
subexpressions), one corresponding to data flow touching off-line ports (i.e., between
on-line subexpressions), and one corresponding to non-0ss data flow.

The algorithm for on-line data flow is illustrated by the combination of the implicit
mapping of sqrt with Rsum. When two functions are connected by an 0ss data flow
between on-line ports, the functions are combined by simply concatenating the eight
parts of the corresponding fragments. In addition, all of the variables and top level
labels in the two fragments are renamed using new internally generated names so that
there will be no possibility of name conflicts. The data flow between the functions is
implemented by renaming the input variable of the destination so that it is the same as
the output variable of the source. The on-line combination algorithm is essentially an
application of the standard compiler optimization technique of loop fusion [2].

The algorithm for off-line data flow is illustrated by the combination of Evector with
TselectF of plusp. When two functions are connected by an 0SS series data flow termi-
nating on an off-line input, the fragment representing the destination function contains
an instance of next-inS specifying when elements of the input should be computed. The
two fragments are combined exactly as in the on-line combination algorithm except that
the body of the source fragment is substituted in place of the call on next-inS (described
in the next section), rather than being concatenated with the body of the destination
fragment.

38 Algorithms

The algorithm for non-0ss data flow is illustrated by the combination of Evector with
its input v. Non-OSS expressions such as v are converted into fragments which have a
prolog, but no body or epilog. Given this, the algorithm for non-0ss data flow is identical
to the algorithm for on-line data flow. In addition, whenever a fragment (such as the one
corresponding to v) consists merely of assigning one variable to another, simplifications
are applied to the combined result in order to eliminate unnecessary variables.

Once all of the fragments representing the functions in an 0SS expression have been
combined into a single fragment, this fragment is converted into a loop as shown below.
(let (auxes)
(declare decls)

(tagbody prolog
#:L body
(go #:L)
oss:END epilog)
(values outputs))

Six of the parts of the fragment appear directly in the loop. The other three are
handled as follows. The combination process eliminates all of the inputs. The informa-
tion about alterability is discarded. In addition to the above, instances of terminateS
(described in the next section) are converted into branches to the label oss:END. The net
result of all this is returned as the macro expansion of the 0SS expression as a whole.

As can be seen from the description above, the transformer is based on very simple
algorithms. In the 0SS macro package, the transformer is implemented using approxi-
mately 10 pages of Common Lisp code. Further, in contrast to the parser, the transformer
is essentially programming language independent. Therefore, there is no reason why the
transformer would not be just as simple in any language environment.

The 0SS macro package as a whole (and the transformer component in particular)
is descended from an earlier macro package called LetS [23, 24]. LetS is similar to the
0SS macro package in many ways, however, it is less powerful and less clear in its focus,
because it is based on an unnecessarily strict set of ad hoc restrictions. (A system
intermediate between LetS and the 0Ss macro package as presented in this report is
described in [26].) LetS (and its transformer component) are in turn descended from
ideas developed in the context of the Programmer’s Apprentice project [22, 25].

The same basic approach to representing and combining series functions was inde-
pendently developed by Wile [28]. However, he does not explicitly address the question
of restrictions and his approach does not guarantee that every intermediate series can be
eliminated.

A quite similar approach is also used internally by the Loop macro [9]. However,
Loop is externally very different from the 0SS macro package. In particular, it uses an
idiosyncratic Algol-like syntax rather than representing computations as compositions
of functions operating on series. In addition, it does not support as wide a range of
operations and does not make it easy for users to define new series operations.

Subprimitives

The 0Ss macro package provides a special primitive form lambda-primitiveS which
can be used to specify off-line 0ss functions and other complex kinds of 08s functions.

Subprimitives 39

This form has a very restricted syntax, but makes it possible to define a very wide variety
of 0SS functions. It is oriented toward power rather than foolproof ease of use and is
intended for the advanced user.

lambda-primitiveS input-list output-list aux-list {decl}* &body expr-list

The first three parts of a lambda-primitiveS are lists of variables. The input-Iist
specifies the names of the inputs of the 0Ss function being specified. The output-Iist
specifies the outputs of the function being specified. The aux-list specifies internal state
variables which are used by the computation in the 0ss function. Each of these lists must
be a list of variable names. Each of the names on the output-list must also be on the
input-list or the aux-list. The outputs of the 0ss function are the values of the output
variables, rather than being the value of the last expression in the body.

There may be zero or more declarations just as in a lambdaS. Every input and output
variable which is to carry an 0SS value must be declared using type oss. It must either
be the case that all of the output variables are 0SS variables, or none of them is. An aux
variable cannot carry an 0SS value unless it is also an output. None of the input, aux,
or output variables can be declared special. The input variables cannot be assigned to.
The aux variables and output variables must be assigned to.

The expr-list specifies the computation to be performed. The key aspect of these
expressions is that they are not 0Ss expressions. Rather, they are non-0ss expressions
which define one cycle of operation of the 0ss function as follows. The non-0Ss inputs
are available before any computation begins. Each time a new element is available in the
0SS inputs, the expressions in the body of the lambda-primitiveS are run once. While
this is going on, the 0SS input variables have these elements as their values. After the
running is completed, the current values of the 0SS output variables are written out as the
next element of the 0ss outputs. If there are non-0SS outputs then they are not written
out until after the 0ss function terminates after processing all of the elements in the
inputs. As a trivial example, the following shows an 0SS function equivalent to mapping
the function car. (This is intended merely as an illustration of lambda-primitiveS; the
operation could be defined more easily using TmapF.)

(funcallS #’(lambda-primitiveS (x) (y) (y)
(declare (type oss x y))
(setq y (car x)))
[(@) (b)]) = [a b]

The key aspect of the expr-list is that it can contain instances of the special forms
described below. In addition, the expr-list can contain labels. These labels are local
to the lambda-primitiveS and can be branched to from other places in the expr-list.
However, the only way these labels can be used is in a go. Further, the 0SS macro
package assumes that if L is a label in the expr-list, every instance of (go L) anywhere
in the expr-list refers to this label.

® prologS &rest expr-list

This form specifies a number of expressions which should only be evaluated once
before the containing lambda-primitiveS begins evaluation. (The form can only appear

40 Algorithms

at top level in the expr-list of a lambda-primitiveS.) The following shows how prologs
could be used to specify an 0SS function analogous to Rsum. (This is intended merely as
an illustration of lambda-primitiveS; the operation could be defined more easily using
ReduceF.)

(funcallS #’(lambda-primitiveS (numbers) (number) (number)
(declare (type oss numbers))
(prologS (setq number 0))
(setq number (+ number numbers)))
[123]) =6

A feature of lambda-primitiveS which is not highlighted in the discussion above is
that the auxiliary variables make it possible for lambda-primitiveS to support the notion
of having one or more internal state variables. (Using the predefined 0ss functions, the
capability is only available indirectly by using EnumerateF, ReduceF, or TscanF.) The fol-
lowing shows how lambda-primitiveS could be used to define an 0ss function GenerateF
which is the same as EnumerateF except that it does not take a test argument. (This is
an essential example of using lambda-primitives.)

(defun-primitiveS GenerateF (init fn) (items) (state items)
(declare (type oss items))
(prologS (setq state init))
(setq items state)
(setq state (funcall fn state)))

(generateF ’(a b) #’cdr) = [(a b) (a) O ...]

In general, new higher-order 0Ss functions can be defined by using funcall nested
in a lambda-primitiveS as shown above. The 0SS macro package takes special steps to
insure that efficient loop code will be produced corresponding to such a funcall and that
quoted macro names can be used as a value for an input like £n.

epilogS &rest expr-list

This form specifies a number of expressions which should only be evaluated once after
the containing lambda-primitiveS finishes evaluation. (The form can only appear at top
level in the expr-list of a lambda-primitiveS.) The following shows how epilogS could
be used to specify an 0SS function analogous to Rlist. (This is intended merely as an
illustration of lambda-primitiveS; the operation could be defined more easily by applying
nreverse to the output of a ReduceF.)

(funcallS #’(lambda-primitiveS (items) (list) (list)
(declare (type oss items))
(prologS (setq list nil))
(setq 1list (cons items list))
(epilogS (setq list (nreverse list))))
[abcl) = (abc)

terminateS

This form specifies that the containing lambda-primitiveS should terminate its eval-
uation. (The form can only appear in the expr-list of a lambda-primitiveS. However, it

Subprimitives 41

need not be at top level.) The use of terminateS in a lambda-primitiveS implies that the
0ss function being specified is an early terminator. The following shows how terminateS
could be used to specify an 0ss function analogous to Elist. The aux variable state is
needed, because it is not possible to assign to an input variable. (This is intended merely
as an illustration of lambda-primitiveS; the operation could be defined more easily using
EnumerateF.)

(funcallS #’(lambda-primitiveS (1list) (items) (state items)
(declare (type oss items))
(prologS (setq state list))
(if (null state) (terminateS))
(setq items (car state))
(setq state (cdr state)))
"(abc)) = [abc]

next-inS var &rest expr-list

This form specifies that var is an off-line input of the containing lambda-primitives.
(The form can only appear at top level in the expr-list of a lambda-primitiveS.) The var
must be on the input-list and must be declared to be an 0SS variable. If a given input
variable appears in a next-inS, it can only appear in a single next-inS. If it does not
appear in a next-inS, it is an on-line input.

If an input variable appears in a next-inS, then the position of the next-inS indicates
the point at which the elements of the corresponding series become available. All other
uses of the variable must be after this point. Each time the next-inS is executed, a new
series element is read from the input. The expr-list specifies what should be done if the
0SS series in the variable runs out of elements. (It is the programmer’s responsibility to
insure that the next-inS is never again executed after the series has run out of values.
If this happens, arbitrarily bad errors can occur.) If no expr-list is specified, then the
0ss function being defined will terminate when the series runs out. If an expr-list is
specified which does not cause termination, then the 0Ss function will not be a passive
terminator. The following shows how next-inS could be used to specify an 0ss function
analogous to a two argument version of Tconcatenate. (This is an essential example of
lambda-primitivesS.)

(funcallS #°’(lambda-primitiveS (Nitemsi Nitems2) (items) (items done)
(declare (type oss Nitemsi Nitems2 items))

(prologS (setq done nil))
(if done (go D))
(next-inS Nitems1 (setq done T) (go D))
(setq items Nitems1)
(go F)

D (next-inS Nitems2)
(setq items Nitems2)

F)

[abc]l [de]) = [abcde]

® next-outS var

This form specifies that varis an off-line output of the containing 1ambda-primitives.
(The form can only appear at top level in the expr-list of a lambda-primitiveS.) The var

42 Algorithms

must be on the output-list and must be declared to be an 0SS variable. If a given 0ss
output variable appears in a next-outS, it can only appear in a single next-outS. If it
does not appear in a next-outS, it is an on-line output.

If an output variable appears in a next-outS, then the position of the next-outs
indicates the point at which the elements of the corresponding series become available
for output. A value must be assigned to the variable before this point. Each time the
next-inS is executed, a new series element is written into the output. The following shows
how next-outS could be used to specify an 0Ss function analogous to a two argument
version of TsplitF. (This is an essential example of lambda-primitives.)

(funcallS #’(lambda-primitiveS (items pred)
(Nitemsl Nitems2) (Nitems1 Nitems2)
(declare (type oss items Nitemsi Nitems2))

(if (not (funcall pred items)) (go D))
(setq Nitemsl items)
(next-outS Nitemsi)
(go F)

D (setq Nitems2 items)
(next-outS Nitems2)

F)

[1 -2 3 -4] #’minusp) = [-2 -4] [1 3]

wrapS function

This form specifies a function which places a wrapper around the loop corresponding
to the entire 0SS expression containing the 0Ss function begin defined. (The form can
only appear at top level in the expr-list of a 1ambda-primitiveS.) The argument function
must be a quoted non-0ss function which is prepared to take in a Lisp expression and
return a Lisp expression.

A complex situation arises if the wrapping form binds any variables. The 0ss function
being defined can refer to these variables by just using their names free in the function.
However, the 0SS macro package will know nothing about these variables. In particular,
it will do nothing to avoid name clashes if the same wrapping form is used twice or if
a name clashes with some other variable in the expression. Therefore, gensym variables
should be used for any bound variables. Also, no guarantees are made about the nesting
order of wrapping forms, so one form cannot refer to the variables bound by another. The
following shows how wrapsS could be used when specifying a simplified form of Rfile. In
this function, the wrap$ is used to surround the loop corresponding to the containing 0SS
expression with a with-open-file. (This is an essential example of lambda-primitiveS.)

(defmacro Rfile (name items)
(let ((file (gensym)))
‘(funcallS #’(lambda-primitiveS (items) (result) (result)
(declare (type oss items))
(wrapS #’(lambda (body)
(list ’with-open-file
’(,file ,name :direction :output)
body)))
(print items ,file)
(epilogS (setq result T)))
,items)))

Subprimitives 43

e alterableS var form

This form specifies that the output var can be altered by using alterS. (The form
can only appear at top level in the expr-list of a lambda-primitiveS.) The var must be
on the output list. The form can refer to variables on the aux and output lists. However,
due to the way the 0SS macro package is implemented, it cannot refer to variables on the
input list. The form must be such that evaluating (setf form new-value) will change the
underlying value copied to var to new-value without changing the value of var itself.

The following shows how alterableS could be used to specify the alterability of
the output of an 0SS function analogous to Elist. (This is an essential example of
lambda-primitiveS.) Note that evaluating (setf (car parent) new) changes an element
in 1ist without changing the value stored in items.

(let ((1 ’(a b))
(altersS
(funcallS #’(lambda-primitiveS (list) (items) (state parent items)
(declare (type oss items))
(prologS (setq state list))
(if (null state) (terminateS))
(setq parent state)
(setq items (car state))
(setq state (cdr state))
(alterableS items (car parent)))
D)
nil)
1) = (nil nil)

Another aspect of the interaction between lambda-primitiveS and alterability is il-
lustrated by the following definition. This definition shows how to define an 0ss function
analogous to TselectF of #’plusp. A key aspect of this definition is the fact that the
output variable is on the input list. Whenever this is the case, alterability of the output
is inherited from alterability of the input. This inheritability applies to the transducers
Tuntil, TuntilF, Tcotruncate, Tsubseries, Tremove-duplicates, Tselect, and TselectF,
because they are all defined with output variables which come directly from input vari-
ables.

(et ((1 °(1 -2 3)))

(alterS (funcallS #’(lambda-primitiveS (Nnumbers) (Nnumbers) ()

(declare (type oss Nnumbers))
L (next-inS Nnumbers)
(if (not (plusp Nnumbers)) (go L)))
(Elist 1))
nil)
1) = (nil -2 nil)

The forms prologS, epilogS, wrapS, and alterableS can appear in any order in the
expr-list of a lambda-primitiveS. However, the order has relatively little to do with when
they will be executed. The times at which they will be executed are defined for each
construct. The relative order of the different constructs makes no difference. For example,
if a lambda-primitiveS contains two prologS forms, they will be evaluated in the order

44 Algorithms

they appear. In contrast, if a lambda-primitiveS contains a prologS and an epilogs, it
does not matter what relative order they appear in.

¢ defun-primitiveS name input-list output-list aux-list {doc} {decl}* &body expr-list
The form defun-primitiveS bears the same relationship to lambda-primitiveS that

defunS bears to lambdaS. It can be used to define named 0SS functions using the facilities
of lambda-primitivesS.

(defun-primitiveS Tplusp (Nnumbers) (Nnumbers) ()
"Selects the positive elements of an 0SS series of numbers"
(declare (type oss Nnumbers))
L (next-inS Nnumbers)
(if (not (plusp Nnumbers)) (go L)))

(Tplusp [1 -2 3]) = [1 3]

45

4. Bibliography

[1] A. Aho, J. Hopcraft, and J. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading MA, 1974.

[2] F. Allen and J. Cocke, “A Catalogue of Optimizing Transformations” in Design
and Optimization of Compilers, R. Rustin (ed.), Prentice Hall, 1971.

[3] J. Backus, “Can Programming be Liberated from the Von Neuman Style? A
Functional Style and Its Algebra of Programs”, Comm. of the ACM, 21(8), Aug.
1978.

[4] F. Bellegarde, “Rewriting Systems on FP Expressions That Reduce the Number of
Sequences They Yield”, Proc. ACM Symp. on Lisp and Functional Programming,
Aug. 1984.

[5] F. Bellegarde, “Convergent Term Rewriting Systems Can Be Used for Program
Transformation”, Proc. Workshop on Programs as Data Objects, Springer-Verlag
LNCS 217, H. Ganziger and N.D. Jones (eds), 1985

[6] T. Budd, An APL Compiler, Univ. of Arizona, TR 81-17, Oct. 1981.

[7] T. Budd, “An APL Compiler for a Vector Processor”, ACM Trans. on
Programming Languages and Systems, 6(3), July 1984.

[8] D. Barstow, “Automatic Programming for Streams”, Proc. of the 9th Int. Joint
Conf. on Artificial Intelligence, Aug. 1985.

[9] G. Burke and D. Moon, Loop Iteration Macro, MIT/LCS/TM-169, July 1980.

[10] D. Friedman and D. Wise, CONS Should Not Evaluate Its Arguments, Indiana
Tech. Rep. 44, Nov. 1975.

[11] A. Goldberg and R. Paige, Stream Processing, Rutgers report LCSR-TR-46, Aug.
1983.

[12] L. Guibas and D. Wyatt, “Compilation and Delayed Evaluation in APL”, Proc.
1978 ACM Conf. on the Principles of Programming Languages, Sept. 1978.

(13] G. Kahn and D. MacQueen, “Coroutines and Networks of Parallel Processes”,
Proc. 1977 IFIP congress, North-Holland, Amsterdam, 1977.

[14] B. Liskov, et. al., CLU Reference Manual, Lecture Notes in Computer Science, 114,
G. Goos and J. Hartmanis eds., Springer-Verlag, New York, 1981.

[15] R. Polivka and S. Pakin, APL: The Language and Its Usage, Prentice-Hall,
Englewood Cliffs NJ, 1975.

46 Bibliography

[16] N. Prywes, A. Pnueli, and S. Shastry, “Use of a Non-Procedural Specification
Language and Associated Program Generator in Software Development”, ACM
Trans. on Programming Languages and Systems, 1(2), Oct. 1979.

[17] G. Ruth, S. Alter, and W. Martin, A Very High Level Language for Business Data
Processing, MIT /LCS/TR-254, 1981.

[18] G. Steele Jr., Common Lisp: the Language, Digital Press, Maynard MA, 1984.

[19] P. Wadler, “Applicative Languages, Program Transformation, and List Operators”,
Proc. ACM Conf. on Functional Programming Languages and Computer
Architecture, Oct. 1981.

[20] P. Wadler, “Listlessness is Better than Laziness; Lazy Evaluation and Garbage
Collection at Compile-Time”, Proc. ACM Symp. on Lisp and Functional
Programming, Aug. 1984.

[21] P. Wadler, “Listlessness is Better than Laziness II: Composing Listless Functions”,
Proc. workshop on Programs as Data Objects, Springer-Verlag LNCS 217, H.
Ganziger and N. Jones (eds), 1985

[22] R. Waters, “A Method for Analyzing Loop Programs”, IEEE Trans. on Software
Engineering, 5(3):237-247, May 1979.

[23] R. Waters, LetS: an Expressional Loop Notation, MIT/AIM-680a, Oct. 1982.

[24] R. Waters, “Expressional Loops”, Proc. 1984 ACM Conf. on the Principles of
Programming Languages, Jan. 1984.

[25] R. Waters, “The Programmer’s Apprentice: A Session With KBEmacs”, IEEE
Trans. on Software Engineering, 11(11), Nov. 1985.

[26] R. Waters, “Efficient Interpretation of Synchronizable Series Expressions” Proc.
ACM SIGPLAN ’87 Symposium on Interpreters and Interpretive Techniques, ACM
SIGPLAN Notices, 22(7):74-85, July 1987.

[27] R. Waters, Synchronizable Series Expressions: Part I: Reference Manual for the
OSS Macro Package, MIT/AIM-958, November 1987

[28] D. Wile, Generator Expressions, USC Information Sciences Institute Technical
Report ISI/RR-83-116, 1983.

[29] W. Wulf, R. London, and M. Shaw, “An Introduction to the Construction and
Verification of Alphard Programs”, IEEE Trans. on Software Eng., 2(4):253-265,
December 1976.

[30] Military Standard Ada Programming Language, ANSI/MIL-STD-1815A-1983,
U.S. Government Printing Office, February 1983.

[31] Lisp Machine Documentation for Genera 7.0, Symbolics, Cambridge MA, 1986.

47

5. Error Messages Concerning Subprimitives

To facilitate the debugging of 0SS expressions, this section discusses the various error
messages which can be issued by the 0SS macro package when processing the subprimitive
functions described in Section 3. This section assumes that the reader is familiar with
the basic format of the error messages produced by the 0SS macro package (see Section 4
of [27] which documents the errors numbered 1-20).

2] Lambda-primitiveS used in inappropriate context: call

This error message is issued if a lambda-primitiveS ends up (after macro expansion of
the surrounding code) being used in any context other than as the quoted first argument
of a funcalls.

22.1 PrologS used in inappropriate context: call
22.2 EpilogS used in inappropriate context: call
22.3 Next-inS used in inappropriate context: call
22.4 Next-outS used in inappropriate context: call
22.5 WrapS used in inappropriate context: call

22.6 AlterableS used in inappropriate context: call

These errors are issued whenever one of the specified forms appears anywhere other
than at the top level in a lambda-primitiveS or defun-primitiveS.

23.1 Bad lambda-primitiveS input variable: var.
23.2 Bad lambda-primitiveS output variable: var.
23.3 Bad lambda-primitiveS aux variable: var.

These errors are issued when a lambda-primitiveS input, output, or auxiliary variable
is malformed. In particular, they are issued if the variable, is not a symbol, is T or nil,
is a symbol in the keyword package, or is an &-keyword. In addition, it is an error if
an auxiliary variable is on the input list, or if an output variable is not on the input or
auxiliary list.

24 Malformed next-inS call: call

This error is issued if the arguments to a next-inS are anything other than an 0ss
variable from the input list followed by zero or more expressions. It is also issued if there
is more than one next-inS for the same input variable.

25 Malformed next-outS call: call

This error is issued if the arguments to a next-outS are anything other than single
08s variable from the output list. It is also issued if there is more than one next-outS
for the same output variable.

26 Malformed wrapS call: call

This error is issued if the argument of wraps is anything other than a quoted function.

s

48 _ Index of Subprimitives

27 Malformed alterableS call: call

This error is issued if the arguments of an alterableS are anything other than a
variable in the output list followed by an expression which does not contain any of the
variables on the input list. It is also issued if there is more than one alterable$S for the
same output variable.

6. Index of Subprimitives

This section is an index and concise summary of the subprimitive forms described
in this document. Each entry shows the inputs of the form, the page where a detailed
description can be found, and a one line description.

alterableS var form
p- 43 Specifies how to alter the lambda-primitiveS output var.
defun-primitiveS name input-list output-list aux-list {doc} {decl}* &body expr-list
p. 44 Subprimitive that defines an 0ss function.
epilogS &rest expr-list
p. 40 Subprimitive for defining computations that occur after an 0ss function stops.
lambda-primitiveS input-list output-list aux-list {decI}* &body expr-list
p. 39 Subprimitive for specifying literal 0ss functions.
next-inS var &rest expr-list
p. 41 Subprimitive for defining off-line inputs.
next-outS var
p. 41 Subprimitive for defining off-line outputs.
prologS &rest expr-list
p- 39 Subprimitive for defining computations that occur before an 0Ss function starts.
terminateS
p. 40 Subprimitive that causes the containing 0SS function to terminate.
wrapS function
p. 42 Subprimitive for defining wrapping functions.

