MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A.l. Memo No. 962 May 1987

Using Program Transformations
to Improve Program Translation

by
Thomas R. Kennedy, I11

Abstract

Direct, construct by construct, translation from one high level language to
another often produces convoluted, unnatural, and unreadable results, par-
ticularly when the source and target languages support different models of
programming. A more readable and natural translation can be obtained by
augmenting the translator with a program transformation system.

Copyright (© Massachusetts Institute of Technology, 1987

This report describes research done at ROLM Corporation and at the Artificial Intelligence Labo-
ratory of the Masachusetts Institute of Technology. Support for the Artificial Intelligence laboratory’s
artificial intelligence research has been provided in part by the IBM Corporation, in part by the Sperry
Corporation, in part by the National Science Foundation grant IRI-1811644, and in part by the Ad-
vanced Research Projects Agency of the Department of Defense under Office of Naval Research contract
N00014-85-K-0124.

The views and conclusions contained in this document are those of the author and should not be
interpreted as representing the policies, either expressed or implied of, of the ROLM Corporation, of the
IBM Corporation, of the Sperry Corporation, of the National Science Foundation, or of the Department
of Defense. ~

Chapter One

High Quality Translation

1.1 Introduction

In many cases translating programs to more structured, better supported, and/or
more strongly typed languages can provide significant savings in maintenance and

support.

However, in order to maximize the benefits of translating an existing program into a
new language, not only must the translation be correct, it must also be of high
quality. A better way to characterize this objective is to say that the output of the
translator should. be as close as possible to what a human programmer would have
written if he/she had originally written the program in the target language. That is,
the new code should make use of any data and control constructs available in the
target language which were not available in the source language. Similarly, those
constructs of the source language which do not have direct analogs in the target

language should be expressed in a way natural to the target language.

Unfortunately, direct automatic translation from one high-level language to ancther
is difficuit. The easiest solution is to mimic the data and control structures of the
source language, often times circumventing the type-checking mechanisms and/or
neglecting the control abstractions provided in the target language. The result is
code which exhibits all the drawbacks of the source language and few of the

advantages of the target.

ROIM Corporation has implemented a transiator for translating from RPL (a

language similar to C) to PL.8 (a derivative of PL/1). The translation is performed

by first parsing the RPL source and building appropriate symbol tables. Then, each
construct in the source is replaced by an equivalent construct (or set of constructs) in
the target language in a manner akin to macro-expansion. The final pass outputs

PL..8 code.

[
]
N

Output

Parse F-> MacroExpand

Figure 1-1:The ROLM Translator

Although more or less effective, this approach unfortunately produces PL.8 code

which is unnatural, and occasionally incorrect.

The goal of the research reported here is to show that the addition of a program

transformation module (PTM) to the translator can provide a markedly improved

output.

Parser > PTM |-->| MacroExpand l—-) Output

Figure 1-2:Adding the PTM

Program transformations can be used to remove source constructs which cannot be
expressed naturally in the target language, and to combine primitive constructs into
more elegant expressions availsble in the target language. Output can be obtained
which is both more natural and more correct than that produced via macro-

expansion alone.

This approach can yield significant improvement in the quality of a translation
compared to macro-expansion alone. However, the technique still suffers from the

lack of an abstract understanding of what a program does.

1.2 Translation by Macro-Expansion

RPL is a language similar to C, developed and used internally at ROLM. PL8 isa
derivative of PL/I developed for internal use at IBM.

The overall structure of the two languages is very similar, Procedures comprise the
main unit of control abstraction in both languages. Rules for invocation and
definition of procedures are the same in both languages. The rules of scope for the

two languages are the same (see Section 2-1).

The task of translation is simplified greatly by the structural similarities between the
two languages. As a result, translation can concentrate on the local constructs of the
languages, mapping each individual construct into an equivalent one in the target

language.

However, there are certain local constructs in RPL which do not have direct analogs
in PL.8. Similarly, PL.8 offers some abstract constructs which do not exist in RPL.
Consider as an example the procedure in Figure 1-3. Designed to serve as a
compact example, the procedure executes the body of the loop eleven timecs,
initializing the array elements V[0] through V[10] with the values 1 through 11. At
the bottom of the loop a test is performed and the variable J is set to 1 when the

input parameter C has been decremented to 4.

The code contains increment and decrement expressions. These are very common
constructs in RPL. However, PL.8 does not support increment or decrement

operators (nor does it allow assignments within expressions, another common RPL

feature).

PL.8 does, however, offer several loop constructs in addition to the simple loop and

test construct which RPL. offers.

('S]

PROC TEST (INT C);
INT I, J, V[10];

I =20;
LOOP;
WHILE I <= 10;
V[I++] = I;
IF 4 == --C THEN
J = 1I;
ENDIF;
REPEAT;

ENDPROC;

Figure 1-3:Example input to translator.

Still, a translation can be obtained by using simple macro-expansion techniques.
The increment and decrement expressions can be replaced with calls to
appropriately pre-defined procedures (i.e. post-increment is replaced with a
procedure which takes an argument by reference, increments that argument, and
returns the original value of the argument). The RPL loop construct can be imitated

by using the PL.8 loop construct which matches it.
Using such techniques, Rolm’s translator produced the output in Figure 1-4.

The output is a legal PL.8 procedure. Given the appropriate definitions of
@AINCI6 (after, increment, 16 bit object) and @BDECI6 (hefore, decrement, 16
bit object) (see Section 2-2) the program will compile and plausibly performs the

same function as the original RPL code.

While this translation appears to satisfy the primary concern of producing

TEST: PROC (C) EXPOSED;
DCL C INTEGER HALF VALUE ;
DCL I INTEGER HALF ,

J INTEGER HALF |,

V(10) INTEGER HALF ;

I = 0;
DO WHILE (I <= 10);
V(GAINC16(I)) = I;
IF 4 = GBDEC16(C) THEN
J = 1I;
END DO;

RETURN;
END TEST;

Figure 1-4:A literal translation of figure 1-3.

equivalent PL.8 code, it is not a high quality translation. This is 1ot the code that a
human programmer would have written had he/she originally written this

procedure in PL.8.

For example, the procedures @AINC16 and @BDEC16 are not natural PL.8
constructs. A PL.8 programmer would have written separate assighment statements

rather than introduce procedure calls at those points.

A PL.8 programmer also would have represented the loop differently, using:
DO I = 0 7O 10 BY 1; ... END DO;

instead of:
I = 0; DO WHILE (I <= 10);...@AINC(I)...END DO;

The former choice makes the function of the loop explicit, while the later obscures

its purpose.

Even though this oupat is far from optimal, it might be acceptable as long as the

translated version always performed the same function as the original program.
However, due to a subtle difference between RPL and PL.8 this is not always the
case. The macro-expansion considers assignment in RPL to be equivalent to

assignment in PL.8. It is not.

The order of evaluation in an assignment differs between RPL and PL.8. In RPL
the value (right-hand side) is evaluated before the target. In PL.8 the target (left-
hand side) is evaluated before the value. Usually, this discrepancy does not cause a
problem since the target is often a fixed memory location. However, in certain

statements, the order of evaluation is crucial; consider
V[I++] = I; vs. V(@AINC16(I)) = I;

If I is 0 then evaluating the RPL statement results in setting V0] to 0 and setting I to
1. Evaluating the "equivalent” PL.8 statement results in setting V(0) to L and 1 to 1.
So in the procedure above, the RPL version initializes the elements of the array to 0
through 10, while the PL.8 version initializes the elements of the array to 1 through

11.

The only way to translate assighment statements via macro-expansion and ensure
proper evaluation would be to introduce temporary variables to force proper

evaluation, i.e..
@Temp01 = I;
V[@AINC(I)] = @TempO1;

However, expanding each assignment into two assignments is not a very pretty
solution. Rather than allow a proliferation of temporary variables, the designers of
the ROLM translator chose to accept an occasional incorrect result. This sort of

trade-off is not uncommon in systeras relying solely on macro-expansion.

1.3 Adding Program Transformations

The quality of the translation can be improved by adding a program transformation
module. Transformations can be used to identify and remove cdnstructs of the
source language which are not naturally expressed in the target tanguage. Similarly,
they can be used to identify patterns in the source language which can be mapped

into more elegant constructs in the target language.

The transformation module can be placed either before the macro-expansion
(transforming the RPL code to remove those constructs that do not translate well),
or it can be placed after the macro-expansion (transforming the PL.8 code to

produce better output).

The later choice might seem the most obvious. However, often the macro-
expansion obscures significant details that were readily apparent in the original
code. For instance, turning side-effect operators into procedure calls changes an
explicit operator into a construct whose function is only implied by the name of the
called procedure. These problems are avoided by placing the program

transformation module (PTM) before the macro-expansion.

In order to demonstrate the effacacy of this approach, a program transformation
modulc was implemented and added to ROLM’s translator as shown in Figure 1-2.
In addition a set of transformations was constructed which remove side-effect
operators from within expressions, and to recognize specialized loop forms. The
PTM augmented translator is able to the original RPL procedure in Figure 1-3 into

the PL.8 code in Figure 1-5.

A number of scparate transformations are required to achicve this result (See
Section 3-3). First, side-cffect operations (such as increment, decrement or

assignment) which appear within an expression, are moved into separate assignment

TEST: PROC (C) EXPOSED;
DCL C INTEGER HALF VALUE ;
DCL I INTEGER HALF ,

J INTEGER HALF ,

V(10) INTEGER HALF ;

F 4 = C THEN
J I +1;
END DO;

RETURN;
END TEST;

Figure 1-5:A better translation of the procedure in
figure 1-3.

statements. This is relatively straightforward in many cases. However, when the
side-effect is deeply embedded in an expression, the problem becomes difficult to

automate without introducing temporary variables.

The degree of difficulty depends on the meaning of the side-effect expression itself,
as well as the meaning of the expressions which surround it. It is essential to know

what is and is not affected by the movement of certain operators.

Consider the statement:
J = V[I]++ - V[C];

The obvious solution:
J = V[I] - V[C];
V[Ij = V[I] + 1;

is not necessarily correct. What if [and C are equal? [f so, in the first statement, J is
assigned -1 and in the second, J is assigned 0. The transformations take this into

account and arrive at the solution:

V[I] = V[I] + 1;
J ="V[I] - 1 - V[C];

In this case, there was a solution. However, when procedure calls or pointer
dereferences are involved, it becomes less likely that a reaonable transformation can
be achieved. The problem is that there is not enough information about the
procedure or object to know how it is affected. In such cases, there is no
transformation which can legally be applied, so the side-effect operator is left to be

translated via macro-expansion.

Loop transformations are performed when the RPL loop matches a known pattern.

- In this case the pattern below:

LOOP;
WHILE <var> relationali_op <expl> ;
<loop body>;
<var> = <var> + <exp2>;

REPEAT;

where: <expl> is not modified by <loop body>
<exp2> is not modified by <loop body>

A number of transformations are performed on the original loop in order to match
this pattern. First, V[I+ +] = 1 is split into two statements, and then 1 =1 + 1 is
moved to the end of the loop (resulting in the appearance of J =1+ 1 in the if

statement).

When the RPL loop matches the pattern above, it is transformed into a complex
PL.8 loop as shown in Figure 1-5. The initial and final values of the loop are
derived from <var, <exp1>, and the relational operation used in the test. In this
case the initial value is | and the final value is 10, since the test is <=. Had it been ¥,
the initial value would have been 1 and the final value would have been 9. The
initialization of I to 0 before the loop is combined with the PL.8 loop by a separate

transformation.

1.4 Results

The translator and PTM describe above are not just laboratory prototypes. They

have been tested on existing code drawn from a real time system written in RPL.

Currently, using a set of 150 transformations, the PTM is able to remove 98% of the
side-effects within expressions. In most of the remaining side-effect expressions, no
legal transformations could be made without introducing temporary variables to
insure correct evaluation (e.g. the side-effect appears in an expression between two
procedure calls). Close 1o 80% of the loops in the test code were recognized as

specific cases of the specialized PL.8 loop constructs and transformed accordingly.

The addition of the PTM had a minimal impact on the run-time performance of the
translator. For 80% of the files tested, the increase in run-time was less than 10%.
(Much of the run-time was spent in the 170 bound operations of parsing and
output.) In the remaining 20% the increase ranged from 10 to 50%, except in one

file for which the increase was 100%.

The PTM approach is by no meuns a panacea. One can contrive examples on which
the system will perform no uscful work. However, such examples do not often
appear in actual RPL code, typically because they involve expressions which are too

complex to readily decipher and are therefore avoided by RPL programmers.

The PTM has been incorporated as a standard part of the translator, and plans are
being discussed for adding transformations to implement additional features in the

translation.

10

1.5 Alternative Approaches

The use of program transformations is not new. However, in the past, they have

been used primarily for optimization or program synthesis, not for code translation.

Using a program transformation module to make local alterations of a parse tree is
not the ultimate solution to the problem of code translation. The approach is
limited to making semi-local incremental improvements. Desirable transformations
are often limited by a lack of global information. The approach is very similar to a
programmer sitting down and looking at a small piece of code and asking how he
can perform the same steps in the target language. A real "expert” programmer
would sit down and ask what the code does, and how he can perform the same
function in the target language. The ultimate solution lies in looking at the bigger
picture, determining the functionality of a system and implementing the

functionality using the constructs available in the new language [13].

1

Chapter Two

Translating from RPL to PL.8

The success of the PTM aLngmented RPL to PL..8 translator relies heavily on the fact
that the two languages match closely in several important areas. There are a
substantial number of constructs in RPL which can be mapped directly into
constructs available in PL.8. This allows the PTM to concentrate on those few
constructs which are not naturally expressed in the target language, without having

to worry about achieving a complete solution.

2.1 Similarities

2.1.1 Procedures and Scoping

The overall structure of the two languages is very much the same. The rules of
scope for each language are similar. Most significantly, both languages allow for
static scoping of procedure definitions. That is, they permit the definition of nested
procedures such that a nested procedure has access to the local variables of it’s
parent procedure, and the nested procedure is only known within the scope of the
parent procedure. This was a major factor in selecting PL.8 as a target language,

rather than C (which does not permit nested procedures).

The basic unit of scope in both languages is the procedure. Neither language
introduces a new scope for a block of code. That is, "begin ... end” docs not define a
new scope in which identifiers may be defined, nor is a new scope introduced for the
body of a loop (this implies thai the iteration variable within a loop can be

initialized prior to the loop and is accessible after the loop terminates).

12

Both languages offer procedures as the main unit of control abstraction. In both
languages a procedure may take zero or more arguments and can return zero or one
scalar values. In RPL all parameters to a procedure are passed by value. In PL.8

parameters may be passed either by value or reference.

2.1.2 Scalar Data Types

There is also a significant match between the data types manipulated by the two
languages. Both languages support 1 bit, 8 bit, 16 bit and 32 bit data objects (bit,
byte, int, and int32 (or pointer) in RPL, bit(1), char, integer half, and integer (or
offset) in PL.8). If the basic size of these data objects differed, the translator would
need to consider how an object was used when deciding what to map different
objects into. Since the sizes match, objects can be automatically mapped intc
objects of the same size without considering how the size might affect the

information it represents.

2.1.3 Arrays and Structures

Both languages support aggregate data types in the form of arrays (homogeneous,
accessed by integer indexes) and structures (heterogeneous, accessed by named
components). The syntax of struciures differs between the two languages, but the

semantics is the same.

The rules for disambiguating partiaily qualified references differ in the two
languages. This is dealt with by determining the correct reference using the RPL
ruies and then expanding it so that it is fully qualified and unambiguous in the PL.8

output.

Also, the specification of initial values for static structures differs in the two

languages. In RPL initial values can be given separately for each clement of a

13

structure, or they may be listed consecutively at the end of the data definition. A
structure type may also be defined with default initial values. In PL.8 all initial
values are declared with the elements of the structure (not grouped at the end), and
no default initialization of types is available. Translation from RPL to PL.8 is
simply a matter of determining the initial values of a static object (from the type
defaults and the trailing initial values) and putting those values on the appropriate
structure elements. The actual initialization of static data is the same, and

initialization of non-static data is not allowed in either language.

2.1.4 Pointers

RPL allows pointers to memory. The pointers are simply 32 bit integers which can
be manipuiated as any other integer. These pointers can be de-referenced to obtain
the object pointed to (its type is determined by the type declaration of the pointer,
or explicitly through a pointer operator). RPL supplies an address-of operator for

obtaining the address of any variable, procedure, or label in the current scope.

PL.8 supports references via offsets into data areas. Usually the data area is a
specific portion of memory. However, an offset can be based in "$Memory”
making it equivalent to a pointer. Offsets can be manipulated as integers. Offsets
do not have base types associated with them, de-referencing requires a pointer
operator witich explicitly states the type of the object being referenced. The address

of an object may be obtain through the PL.8 built in function MLOC.

2.2 Differences

14

2.2.1 Primitive Constructs

A major point of failure in source-to-source translators involves primitive constructs
which are permitted in the source language but which do not exist in the target.

There are two primitive features of RPL which are not available in PL.8.

The first of these RPL features allows the programmer to declare register variables.
These are scalar quantities which are maintained in a CPU register. The
programmer declares a register variable when he/she wants to make sure that access
to a variable is fast (such as the loop counter in an inner loop). Use of register
variables usually stems from a lack of faith in the register allocation scheme of the
RPL code generator. Semantically, they are equivalent to other scalar variables, so

they can be represented in PL.8 as regular variables.

The second "feature” of RPL has no PL.8 equivalent. Static data declared and
initialized inside an RPL procedure is placed in exactly the position it appears, and
no jump instruction is generated around that data. Thus, static data declared in the
middle of a list of statements will be interpreted as machine instructions and
executed. This, along with the register variable facility allows the programmer to
insert machine instructions inline whenever he/she is worried about the efficiency
of the code generator. There is no way to duplicate this feature in PL.8, and it is not
clear that one would want to. Where it does appear, the translator can only flag it as
an untranslatable. That portion of the code must then be re-written and/or
translated by hand. Fortunately, most RPL programmers have been wise enough o

avoid such constructs.

2.2.2 Inter-module interfaces
There arc other differences between the two languages which, while they complicate

the process, are not insurmountable.

The type checking constraints of RPL are much looser than those of PL.8, in
particular, when it comes to procedural interfaces. In RPL, when a procedure call is
made, neither the number of arguments, nor their types are checked against the
procedure declaration for correctness. Presumably any errors are detected as bugs at
run-time. In PL.8 the arguments must match the expected types of the parameters.
As a result, in RPL, external procedures merely are declared by name and return
type. Neither the number of parameters to the procedure, nor their types is
included. In PL.8, an externa! procedure declaration requires a specification of the

parameter list in addition to the procedure name and return type.

In order to obtain the necessary information for external declarations an cntire
system of files to be translated is run through a portion of the translator to build up
a global data-base of procedures, identifiers, and types for the given system. A
series of analysis programs are then run on this global data to identify any problems
that might arise. Once identified these problems usually require human

intervention.

2.2.3 Increment, Decrement, and Assigninent

The two languages also differ in a number of local constructs.

As indicated in the previous chapter, RPL provides increment and decrement
operators, as well as permitting assignments within expressions. PL.8 does not offer

any direct equivalent of these constructs.

These operations can be duplicated by appropriately defined procedures. In order
to duplicate the five constructs (pre-increment, pre-decrement, post-increment,
post-decrement, and assignment) at least fifteen procedures must be defined -- one
for cach size data. For example, @AINCI16 is defined as a procedure which

increments a 16 bit object after returning its value. (The @ sign is not valid in RPL,

16

so it is used in the PL.8 procedurc names to avoid conflicts with RPL identifiers.)
@BDEC32 is a procedure which decrements a 32 bit object before returning its new
value. @ASSIGNS assigns the § bit value of its second argument to its 8 bit first
argument, and returns that value. Actually, the RPL increment and decrement
functions are a little bit more sophisticated than that. Most objects are incremented
or decremented by 1. However, if the object is a pointer, then it is incremented by
the size of the object to which it points. This requires two additional procedures,

@AADD32 and @BADD?32. Thus if PS is a pointer to a structure XYZ then;
++PS

becomes:
@BADD32 (PS, SIZEOF (XYZ))

This solution to translating the side-effect operators, though not pretty, might be
acceptable if not for one additional discrepancy between RPL and PL.8. The order
of evaluation in assignment differs between the two languages. As shown in the
previous chapter a different order of evaluation in the presence of side-effects can
be particularly troublesome. One way to correctly translate RPL assignment into
PL.8 assignment, would be to split each assignment into two assignments using a
temporary variable, thus guaranteeing correct evaluation. However, since in most
cases substituting PL.8 assignment for RPL assignment is correct, the prettier

solution was preferred even at the risk of an occasional incorrect result.

2.2.4 Loops

Most effort in translation is concentrated on those areas of the source language
which cannot be easily translated into some form in the target. An area that is
general neglected, but important for high quality translation, is the constructs of the
source language which can easily be mapped into a general form in the target, but

might be better expressed in a different form.

17

For example the RPL loop construct:
LOOP;

WHILE <expression>;
REPEAT;
in its most general form, maps directly into PL.8 as:
DO WHILE (TRUE);
IF NOT (<expression>) THEN LEAVE;
END DO;
Or, if the test in the RPL loop appears either at the beginning or end of the loop, it
can be more elegantly expressed as a while or until clause:
DO WHILE (<expression>); ... END DO;

DO UNTIL (NOT (<expression>)); ... END DO;

However, this mapping neglects two other PL.8 lcop types. The “for" loop:
DO <var> = <exp> TO <exp> BY <exp>;

in which a variable is incremented by a constant amount each time through the loop

until a bound is reached, and the repeat loop:
DO <var> = <exp> REPEAT <exp>;

in which a variable takes on a new value each time through the loop (usually based
on its current value). A high quality translation would make use of these additional

loop types where appropriate, rather than relying solely on the general form.

18

Chapter Three

The Program Transformation Module

3.1 General Scheme

In order to improve the quality of translation a program transformation module was
added to the translator. All transformation systems have a set of transformations
which they can apply. They differ however in the manner in which particular

transformations are selected and applied.

There are a number of ways these transformations can be specified, stored, selected,
and applied. The approach used by the PTM was derived by observing how a
human might atﬁempt to remove side-effect expressions or replace primitive loop
constructs. A human would look through the code, until an "interesting” construct
was encountered. Upon encountering an interesting construct, one would then try
to replace it with a more appropriate form. For instance, if a loop is encountered,
one would attempt to replace it with a PL.8 loop type. If a side-effect is found in an
expression, one would attempt to replace the statement it appears in with a series of
statements not containing side-effect expressions. FEssentially a specific goal is
established only after a certain pattern is encountered. That goal is then satistied in

a backward chaining manner.

Within the PTM there is a smal set of forward chaining transformations. The PTM
walks through the parse tree attempting to apply these transformations to eack node
in the tree. When a forward transformation matches a node, its consequent is
exccuted. Typically, this means a goal is asserted. When a goal is asserted, an
attempt is made to satisfy it by a large set of transformations in a goal directed
(backward chaining) manner. By establishing an appropriate specific goal for a

situation the work can be directed toward more promising avenues.
19

Goal directed application does not appear to be common among transformation
systems. Forward chaining is more common. One approach is to divide the
transformations into small sets. FEach set is then applied to the parse-tree in
exhaustive post-order manner. That is, for each node, the transformations are
applied first to the children of the node, and then to the node (post-order). Each
time a transformation is triggered the set is reapplied to the result until no further
transformations can be made (exhaustive). This scheme has been used to
transformation pure applicative Lisp into equivalent Fortran [3,4]. By carefully
ordering the sets of transformations, the transformation proceeds in logical steps

toward the goal.

A primarily backward chaining mechanism was selected over forward application
for several reasons. First, it was felt that the conditions of applicability for certain
transformations might be arbitrarily complex. In pure forward chaining
environment, these applicability clauses would either need to have been calculated
in advance (by an earlier set of iransformations) or determined on the fly by special
purpose code. Given that there may be a large number of conditions, only a few of
which might be interesting for any particular construct, the former choice wastes a
significant amount of computation. Given that the conditions could be fairly
complex, the latter choice is aiso undesirable. It is better to express the complex
ideas using transformations, rather than burying the complexity in a piece of code.
At a minimum, there should be some backward chaining facility that can be evoked

for the satisfaction of applicability clauses.

Asserting a goal for a particular construct and then satisfying (or failing to satisfy)
that goal concentrates the entire effort on a local area. Concentrating on one area at

a time, instcad of one set of constructs, offers two advantages.

First, it is helpful in debugging the transformations. If a particular construct is

20

transformed in an unexpected manner, one can examine the entire series of
transformations attempted on the construct, without worrying about extraneous

applications to other constructs.

Second, in this particular case, the structure of the parse tree was already defined.
The parse tree definition was not well suited for program transformations. In order
to simplify the handling of nodes, interesting nodes were copied into a more
uniform representation in a separate space. By concentrating efforts on one area at a
time all transformations can be performed in the preferred representation and the
result can be translated back, without maintaining a separate representation of the

entire tree.

3.2 Transformation Language

The ROLM translator was implemented in PL.8. The parse tree manipulated by the
translator is a PL.8 data structure. As a resuit, the program transformation module
was also implemented in PL.8. The structure of the parse tree had a major influence

on the representation of transformations, and their specification.

Each node in the parse tree contains a wealth of informaticn. First, a node contains
a type indicator. (Typical node types are if, loop, assign, plus, declare, identificr,
constant, dereference, etc.) Each node also has up to four child nodes, designhated
left, middle, right, and list. These can be null or point to additional nodes. The
meaning of each child is dependent upon the parent’'s node type and its position.
For instance the operands of a binary operator, such as plus or times, typically
appeared as the left and right children of the node. In an "if" node the conditional
expression appears as the left child, the "then” clause is the middle child, the "else”

clause is the right child, and the statement following the "if” is its list child.

21

In addition, a node may contain a pointer to a symbol table entry (for identifier
nodes), a value (for constant and string nodes), pointers to surrounding comments
(the comments are preserved so they can be included in the translated code),

information about where the node appeared in the source file, and numerous flags.

The transformation language was defined in order to describe specific patterns in
this parse tree. A transformation consists of a predicate and a consequent. The
primary component of the predicate is a pattern which essentially a piece of a parse
tree. Each node in the predicate pattern specifies the node type, and four child

nodes.

The node type can be specified as one of the specific types which occur in the tree,
or it may be specified as a class of types. A hierarchical classification of node types
is defined to permit writing a single general transformation to cover a class of
patterns, where a set of rules, otie for each node type in the class might otherwise be
required. This classification system is also used to select and order the

transformations for application.

The children of a node pattern can be specified by additional node patterns, by
"any" (anything will match), or by "nil" (the child must be null).

Using this scheme, one can specify the general structure of a pattern, but not specific
details such as the type of a variable, or the value of a constant. In order to allow the
specification of such details, the pattern language was extended to permit the
addition of an arbitrary list of additional constrainis on each node in a pattern. Each
constraint takes the form of a name-value pair. The name is an arbitrary string
denoting some attribute of the node, and the value may be a constant (integer or
string) ot a variable which might have additional constraints on it. These attribute

names can be defined with associated PL.8 code for retrieving the value of thai

22

attribute from a given node. For instance, the attribute "const—value" has code
associated with it for retrieving the value of a given constant node. Or, if an
attribute does not have code asscciated with it, the constraint can be satisfied by

another transformation which asserts an attribute-value pair.

The consequent of a transformation can do one of several things. If it is a forward-
chaining transformation, the consequeni might assert a goai. Otherwise, a
transformation may either specify a replacement pattern for the pattern in the

predicate, or it may assert an attribute-value pair on the top node in: the predicate.

Replacement of a pattern with another is required to transform the parse tree.
Assertion of arbitrary name-value pairs by transformations, permits the use of

transformations to define the meaning of new attributes.

Internally, the transformations are represented as a pair of tree structures. A
number of PL.8 procedures were defined to permit easy specification and
construction of the transformations. The example below is the sequence of PL.8

instructions used to specify a simple transformation:
#1IF;
#NODE (A is nd_pre_decr, nil, nil, B, C);
#NODE (B 1is nd_variable_ref);
#HAS (Attr_Var_Type, "integer");
#THEN;
#REPLACE (A, F);
#NODE (F 1is nd_Assign, B, nil, G, C);
#NODE (G 1is nd_Arith_Add, B, nil, H);
#NODE (H is nd_Constant);
#HAS (Atty_Const_Value, 1);
#END;

Rather than burden the reader with the particular idosyncracies of the definition of
parse tree nodes, such transformations wili, whenever possible, be expressed in a

more familiar fashion;
?B++; ?7C... ==> ?B = ?B + 1; ?C...
Where: 7B 1is a variable of type integer;

23

While such paraphrasing may not be precise it is intended to convey the meaning of

the transformations involved.

3.3 Transformation Selection and Application

Given a specific goal there are often several transformations which might satisfy that
goal. The performance of a transformation system depends on which
transformation is chosen in such situations. Haphazard selection of rules can lead to

undesirable results or long run-times.

The strategy used for selection in the PTM was that of sclecting the transformation
most specific to the current goal first, and then trying more general transformations

later.

Generality is measured against the class hierarchy. For example if the current goal
is to transform an addition into a subtraction, the transformations which deal
specifically with addition will be chosen before the transformations which deals with

binary operators.

This strategy was adopted based on the reasoning that if both a specific
transformation and a more general case of that transformation exist, one should
select the specific case when it applies (otherwise, why have the more specific

transformation at all?).

In those cases where there are two or more transformations which are equally
specific, selection is performed on the basis of the order in which they were
originally defined. This permits/requires some hand ordering of rules to produce

efficient or desirable results.

The transformation sclection strategy is not optimal and occasionally requires back-

24

tracking. As a simple implementation, partial chronological backtracking occurs

when a choice fails to satisfy the goal.

While dependency directed backtracking would be a more efficient implementation,
the performance of the chronological backtracking system turned out to be
adequaie. By using a small number of forward chaining transformations to assert
specific goals on certain nodes, the scope of operation is limited significantly. With
that reduced scope, the inefficiencies of the rule selection and application scheme do

not have as great an impact.

3.4 Selected Transformations

A selected set of transformations appears in Figure 3-1. To see how they are

applied, consider the statement:
A= I++ + I;

When the PTM encounters the post-decrement expression, the forward
transformation Al is triggered. This establishes the goal of replacing the single

assignment with a list of statemcats. Triggering the backward-chaining mechanism.

The only transformation (in the sample set) which transforms an assignment into a
list of statements is Bl. This transformation expects the right-hand side of the
assignment to be a generalized-side-efiect expression. A generalized-side-cf{fect
(gse) expression is a triple consisting of a list of pre-statements, an expression, and a

list of post-statements. For instance, the generalized-side-cffect expression for
-=J + I++

would be
gse({d =J-1), (J+1I), (I =1+ 13))

Transformation B4 will turn & binary arithmetic expression into a gse. However, it

requires that the operands of the binary operator be gse expressions themselves.

25

Figure 3-1:Selected Transformations

A: A Forward transformation, triggered by the presence of an increment or
decrement operator within a statement:
Al1: IF: ?A is a side-effect-class-op
within-statement 7B

THEN:
ASSERT_GOAL: 7B ==> 1list of statements;

B: Transformations dealing with the removal of side-effects. These transformations
introduce a new construct, the generalized-side-effect (gse). It is basically a triple.
The first element is a list of statements to be executed before evaluation of the
second element. The second element is an expression which is the "value” of the
gse. The third element is a list of statements to executed following the evaluation of
the second element.
B1: ?A = gse (7B, ?C, ?D) ==> 7B; 7A = ?C; 7D;
where: 7D doesn’t-modify ?A

B2: ?A++ ==> gse ((), A, (?7A = ?A + 7B))
where: 7A has-increment 7B

B3: ?A ==> gse ((), ?A, ())

B4: {(gse (?A, 7B, 7C)) arith-op (gse (?D, ?E, ?7F))
gse ({(?A; ?D), (7B arith-op 7G), (7C; ?F))
where: ?D does-not-moaify 7B
?G is ?7E with ?C propagated-thru

26

Figure 3-1, continued.

C: Transformations which determine when one construct modifies another. A
crucial concept in the correct movement of side-effects.
C1: () does-not-modify ?A

C2: (?A = 7B; ?7C) does-not-modify 7D
where: ?7A is-distinct-from 7D

?B does-not-modify 7D

?C does-not-modify 7D

C3: (?A bin_op ?B) does-not-modify 7C
where: ?7A does-not-modify 7C
?B does-not-modify 7C

C4: ?A does-not-modify 7C
where: 7A is-simple-expr
(i.e. constant or variable)

D: Transformations which determine when one expression is guaranteed to be
distinct from another (i.e. one cannot alias the other).
D1: 7?A dis-distinct-from 7B
where: 7A is-simple-expr
?B dis-simple-expr
?A is-not-equal 7B

D2: ?A[?B] is-distinct-from 7C
where: 7C is-simple-expr
?A is-distinct-from ?7C

D3: ?A[7B] is-distinct-from 7C[?D]
where: ?A is-distinct-from ?C

27

Figure 3-1, concluded

E: Transformations which propagate the effects of moving statements past
expressions, or other statements.
El1: ?C is 7C with ?A propagated-thru
where: 7A does-not-modify 7C
7C does-not-modify 7?7A

E2: 7B is ?A with {?A = 7B) propagated-thru
where: 7B does-not-modify ?7A

E3: (?D bin-op ?E) is (7B bin-op 7C)
with 7A propagated-thru
where: ?D is 7B with ?A propagated-thru
?E is ?C with ?A propagated-thru

E4: ?D is 7C with (?A; 7B) propagated-thru
where: 7t is ?C with 7B propagated-thru
?D is 7E with ?A propagated-thru

F: Transformations which determine the size of the increment or decrement caused
by an RPL operator. This is dependent on the type of the operand.
F1: ?A has-increment 1

where: 7A has-data-type 7B
?B is-not "pointer to *"

F2: ?A has-increment 2
where: ?A has-data-type "pointer to integer"”

F3: ?A has-increment 4
where: 7A has-data-type "pointer to pointer"”

F4: ?A has-increment SIZEOF (?C)
where: 7A has-data-type 7B
?B is-pointer-to 7C

?C is-structure

28

This can be achieved by the application of transformations B2 and B3 (the

transformations most specific to the two operands).

At this point the situation is:
A =gse ((), I, (I =1+ 1)) +gse ((). I, ());

In order to execute transformation B4, it must first be determined that:

() does-not-modify I
and 7?G is I with (I = I + 1) propagated-thru

The first clause is satisfied by C1 (nil doesn’t modify anything). E2 will satisfv the
sccond clause provided that (I + 1) does-not-modify 1. 1t doesn’t (C3 plus C4 and
C4). So ?G is bound to (I + 1) and we have:

A =gse ((), (I +(I+1)), (I =1H1));
Now B1, the original transformation can be applied, as long as (I = | + 1) doesn’t
modify A. It doesn't (it takes C1-C4 to prove it). Finally, executing Bl, the original
goal is satisficd:

A =1
I =1

+ I + 1;
+ 1
Suppose that the original statement had been:

A = I++ + *J;
where the second operand is an arbitrary reference to memory. The series of
transformations, outlined above, would have failed in trying to satisfy:

?7G is *J with (I = I + 1) propagated-thru
Since | doces not match *J nor is it distinct-from *J (they might reference the same
location). The PTM would then have backtracked and, in the actual systei,
applied:

?A++ ==> gse ((?A = 7A + 7?B), (?A - 7B), ())

where: ?A has-increment 7B

Eventually satisfying the initial goal with:

I I + 1;

A=1-1+ *J;

[T the original statemcent had been:

29

I = *J + I++ + *J:

then no series of transformations would have been successful and the PTM would

make no changes. The statement would then fall through to be translated by macro-

expansion using @AINCIS6.

The transformation of loops is handled in a similar manner. When an RPL loop is

encountered a goal of changing that loop into a PL.8 loop type is established.

The main transformation which turns RPL loops into PL.8 loops is:

?A ==> DO 7B

where: 7A
7A
7A
7A
7A
7A
?7F
7F

= ?C TO 7D BY ?E; 7F; END DO;
is a loop

has loop-variable 7B

has loop-init-val 7C

has Toop-bound 7D

has Toop-increment 7E

has 1oop-body 7?7F
doesnt-modify ?7C

doesnt-modify ?7E

In turn there are a number of ways to identify a loop variable, increment, or bound.

These are all expressed by additional transformations.

30

Chapter Four

Related Work

4.1 Other Transformation Systems

A significant amount of work has been done concerning code transformation.
Typical transformation systems opcrate on a parse tree representation of the code in
question. Transformations are carricd out by pattern matching the code against a

stored set of patterns.

One approach is to use a large set of very specific patterns [12, 8]. By making cach
transform very specific, interaction between transforms is minimized. This reduces
the problem of ordering the application of transforms, but limits the performance of

the system to transforming only those patterns which are precisely described.

A more common approach s to usc a set of small general transtorms which are
repeatedly applied [1, 9], The power of such systems comes from the interaction of
the trapsforms. Particular aticntion must be payed to the order in whicli the

transforms are applied if desiradle resulis are achieved.

The simplest approach to transform selection is through a priori ordering. Small
scts of transforms can be applied in a pre-determined order to successively

transform a program from one form into ancther [3].

Transformation systems can cperate interactively, asking the user to guide the
selection of transforms [8, 1,9]. This is a useful feature for synthesis systems,
insuring that the user’s intentions are accurately captured, and allowing him/her to

influence implementation decisions.

31

Systems whiclh do not require user intervention rely primarily on a built in bias in
uni-directional transformation rulcs to achicve the desired result [S]. Systems can
also rely on meta-patterns, scoping, and explicit ordering to guide the
transformation process [4]. Perhaps the most sophisticated scheme is to generate
several alternatives and seicct between them based on some specific measure {e.z.,

of efficiency) [14, 2, 7].

Transfoims provide a convenient formalism for expressing desirable changes.
Transforms alone, however, exhibit a number of short comings. They do not
inherently capture the underlying propertics of the parse tree nodes. There are
classes of nodes which cxhibit certain properties. Certain operators exhibit
commutativity, or assoctativity. There are symmetries, asymmetrics, and hierarchies

which are inherent in the underlying language.

There are many ways on¢ might try to capture such fundamental relationships. One
systcm uses @ pauern maiching algorithm with implicit commutativity and
associativity [S]. Another system divided its rule base into several sections,
separating transformations from rules expressing fundamental propertics [1]. Both

systems assumed the absence of side effects within expressions.

Primarily, the use of transformation systems has concentrated on program synthesis,
and optimization. Producing implementations from high Icvel specifications, or
producing efficient code from inefficient. Up to this point, little work (if any) has
been done on the use of program transformation for improving the quality of

translations.

32

4.2 Other Approaches to Translation

Although better than a pure macro-expansion approach, the transformational
approach suffers from its rclatively local view of the program under consideration.
It lacks any understanding of the global function of a program, or the abstraction
concepls represented. A represeniation which made sense in onc language, might
not be the best choice in a.noth:er language. While transformation systems can
improve the quality of translation they cannot achicve the goal of producing the
code that a good human programmer, programming in the target language, would

produce.

Program transformation is not the only approach to high quality translation. The
programmer’s apprentice project at MIT is approaching the problem of translation
through abstraction and reimplementation [13]. The key step in this process is
obtaining an abstract description of the program to be translated. Based on thatt
abstract descripticn, the program can be re-implemented in the terget language. If
the level of abstraction obtained is high enotgh, the wanslation is freed of the
idiosyncracies of the source implementation. For instance, if the original
implementation used an array to implement a qucue,ﬁthe abstract description should
recognize that a queue is being used. This would allow the new implementation to

use a linked list instead.

The feasibility of such an approach has been demonstrated in the translation of a
subset of Cobol into Hibol (a high level business oriented language) [6] and by the
impiementation of a general purpose program recognition module which can

perform the required abstraction [15].

33

References

1. Arsac, Jacques J. "Syntactic Source to Source Transfoimations and Program
Manipulations”. Communications of the ACM 22,1 (Jan. 1979).

2. Barstow, David R. An Experiment in Knowledge-Based Automatic
Programming. In Readings in Artificial Intelligence and Sofiware Engineering,
Morgan Kaufmann Publishers, Inc., 1986.

3. Boyle, J.M., and M.N. Muralidharan. "Program Reusabilbity through Program
Transformation". [EEE Transactions on Software Engineering 10, 5 {Sept. 1984).

4. Cheatham, Thomas E, Jr., Glenn H. Holloway, and Judy A. Townley. Program
Refinement by Transformation. TR-10-80, Center for Research in Computing
Technology, Aiken Computation Laboratory, Harvard University, June, 1980.

S. Darlington, J. Program Transformation and Synthesis: Present Capabilities.
77/43, Imperial College of Science and Technology, Computing and Control
Department, Sept, 1977.

6. Faust, G.G. SemiAutomatic Translation of Cobol into Hibol. Master Th.,
Massachusetts Institute of Technology,1981.

7. Kant, Elaine. On the Efficicnt Synthesis of Efficient Programs. In Readings in
Artificial Intelligence and Sofiware FEngineering,
Morgan Kaufmann Publishers, Inc., 1986.

8. Kibler, D.F., J.M. Neighbors, and T.A. Standish. Program Manipulation Via an
Efficient Production System. Proceedings of the Symposivm on Al Programming
Languages, Aug., 1977.

9. Kott, Laurent. Unfold/Fold Program Transformations. Rappotts de Recherche
173, Institut Mational de Recherche en Informatique et en Automatique, June, 1982,

10. Ng, David M. RPI. User's Manual, ROLM Corporation, 1982,

1. PL.S Language Reference Manual. International Business Machines, 1985.
Internal Document.

34

12. Standish, T.A., D.C. Harriman, D.F. Kibler, and J.M. Neighbors. The Irvine
Program Transformation Catalogue. Department of Information and Computer
Science, University of California at Irvine, Jan., 1976.

13. Richard C. Waters. Program Translation via Abstraction and
Reimplementation. A.l. Memo 949, Massachusetts Institute of Technology, Dec,,
1986.

14, Wegbreit, Ben. Goal-Directed Program Transformation. CSL-78-8, Xerox Palo
Alto Research Center, Sept, 1975.

15. Linda M. Wills. Automated Program Recognition. AI-TR-904, Massachusetts
Institute of Technology, Feb., 1987. (MS Thesis).

35

CS-TR Scanning Project | . ,
Document Control Form Date: > /€ ;15

Report# A [/M-F60

Each of the following should be identified by a checkmark:
Originating Department:

)Z(Artificial Intellegence Laboratory (Al)
O Laboratory for Computer Science (LCS)

Document Type:

[0 Technical Report (TR)]23(Technical Memo (TM)
O other:

Document Information Number of pages: S8 fo-{mwess/
- Mbmmbm.mmdcmaw”w.

Originals are: ‘ Intended to be printed as :
)&:Single-sided or O Single-sided or
O Double-sided JX Double-sided
Print type:
O Typewriter [Offeet Press Ku«m
[inketPrinter [] Unknown [0 Other:

Check each if included with document:

O DOD Form O Funding Agent Form O coverPage
O spine O Printers Notes O Photo negatives
O other:
Page Data:
Blank PagesSeypege numbes:

Photographs/Tonal Material pypeos rumbes:

Qther (o deeciptonpege rumben:
Description : Page Number:
[mace ma® (1) UnHlen THTLE PAGK
(8-36) PaGEs H'E0 |- 35
(32) Scamwcodirol.
(38-40) TRGYS (7)

Scanning Agent Signoff:
Date Received: J /36 /95 Date Scanned: 6 / / /15 Date Retumed: 61819

Scanning Agent Signature: Q’\AA,Q/MQ\ Il/\/ o Qﬂ’é Rev ¥94 DSALCS Document Control Form carform.ved

Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.L.T
Libraries. Technical support for this project was
also provided by the M.L.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. /94

