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other visual cues and to help discover discontinuitjes emerges as a general
and powerful principle.
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1 Introduction

One of the keys to the reliability, flexibility and robustness of biological visual
systems is their ability to integrate several different visual cues. Early vision
processes such as stereo, motion, texture, shading and color give separate
cues to the distance of three-dimensional surfaces from the viewer and to
their material properties. Integration of the evidence provided separately by
these cues can provide a more reliable map of the surfaces and their properties
than any single cue alone.

Thus visual integration is likely to be a key to understanding biological vi-
sual systems and to developing robust vision machines. Existing methods do
not seem capable of providing a general solution. Standard regularization[2]
provides a common framework for many early vision problems and leads to
the minimization of quadratic energy functionals. If standard regularization
is used to integrate information from different processes, the energy func-
tional consists of the sum of quadratic parts, each associated with a separate
process. This implies that the result is a linear combination of the different
cues (possibly with space-varying coefficients). Linear combination — say of
depth from stereo and from shading — does not seem, however, a flexible
enough integration method. Even more important, no instances of standard
regularization can handle discontinuities, because the solution space is re-
stricted to generalized splines[21,2]. As we will explain later, we believe that
detecting and representing discontinuities (for instance depth discontinuities)
is a key part of the integration step[21].

To overcome these difficulties we have developed an extension of regular-
ization that promises to deal simultaneously with discontinuities and with the
integration of vision modules. This extension is based on the use of coupled
Markov Random Fields!, introduced recently by Geman and Geman[9] and
extended by Marroquin, Mitter and Poggio[19]. The standard regularization
method for vision is a special case of this new approach.

1.1 The Role of Discontinuities

One of the most important constraints for recovering surface properties is
that the physical processes underlying image formation are typically smooth:

1A different, interesting approach has be explored by Blake[3]



depth and orientation of surfaces are mostly continuous and so are reflectance
and illumination. The smoothness property is captured well by standard reg-
ularization. Surfaces and their properties, however, are not always smooth:
they are smooth almost everywhere, but not at discontinuities. Lines of
discontinuity are themselves usually continuous, relatively smooth, noninter-
secting curves. It is critical to detect the discontinuities reliably, because
they usually represent the most important locations in a scene: depth dis-
continuities, for instance, often correspond to the boundaries of an object
or of a part. Furthermore, discontinuities play a critical role in fusing in-
formation from different physical processes. The reason is clear: in smooth
regions, the physical processes are coupled together by the imaging equation,
and all contribute to image formation. However, the coupling is difficult to
know precisely: it depends on quantities such as the form of the reflectance
function. The effects of discontinuities are instead robust and qualitative: for
instance, depth discontinuities usually correspond to intensity edges. There-
fore, discontinuities are ideal places for integrating information. F urthermore,
partial information about discontinuities in a single process can be detected
relatively easily. Several types of motion discontinuities, for example, can
be measured with simple operations on the time-dependent intensity array,
especially if the interframe interval is small. Partial albedo discontinuities
also are often detectable using simple operations. Intensity edges are de-
tected quite reliably by the Canny edge detector. However, the fast, rough
detection of discontinuities performed by these early operations is noisy and
incomplete: it must be refined by integrating them across processes and by
exploiting constraints on the continuity of discontinuities.

In summary, discontinuities: 1) represent the most useful information, 2)
are easy to detect (though in a partial and possibly noisy way) and 3) provide
good locations to integrate different cues.

1.2 Coupled Markov Random Fields

Markov Random Fields for image modeling have seen increasing use since
the work of Geman and Geman[9]. Their utility for image modeling de-
rives from several MRF characteristics. MRFs provide a natural way to
impose general image properties of smoothness and continuity, for example
of depth and motion, while also incorporating discontinuities. Bayes’ rule
establishes a relationship between the possibly corrupted observed data and
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the desired scene data. Solution methods are available, though often time
consuming. Some recent MRF applications have involved scene segmentation
using depths[18], texture[6] and motion|[20].

A Markov Random Field on a lattice can be represented as a lattice of
sites, each one with a random variable. The value depends probabilistically
on the value of neighboring sites. The rules governing this local dependence
can be given in a variety of ways and can be made to capture constraints
such as the continuity of a surface (if the MRF represents depth values).

Our idea is to associate a MRF on a lattice to each physical process to be
integrated and another (binary) MRF to its discontinuities (see figure 1). The
lattices are coupled to each other to reflect the interdependence of the corre-
sponding processes in image formation. Thus the various MRFs mirror the
different physical events that underlie image formation: surface and surface
discontinuities, spectral albedo and albedo discontinuities, shadows, surface
normal, and so on. Physical constraints apply to each of these processes in-
dependently. In addition, there are constraints between these processes (for
instance between depth and surface normal). The image data constrain the
way the processes combine. Note that consideration of sequences of images in
time will introduce additional powerful constraints such as rigidity. The con-
straints on the surfaces are local conditions (such as smoothness, necessary
mainly because of its regularizing role in the face of omnipresent noise) valid
everywhere except at discontinuities. As we discussed earlier, discontinuities
are critically important and should be detected early.

Notice that the coupling of the line process with the associated continuous
process provides a module that combines region-based with boundary-based
segmentation (see figure 1).

The local potentials underlying the a prior: probability distribution of the
MRFs represent the constraints on the physical processes (smoothness, posi-
tivity, values within certain bounds, etc.); the coupling between MRFs repre-
sents the compatibility constraints between processes. The device of coupled
MRFs provides an ideal tool to impose local constraints such as smoothness,
allowing at the same time an explicit role for discontinuities through the line
processes[9] and similar processes such as occlusions[19]. Our new idea is to
incorporate additional observable discontinuity data provided by algorithms
specialized to detect sharp changes in the observed properties of intensity,
motion, stereo disparity, texture, and so on. The observable discontinuities



© o o o o
cooc oo Depth
Ccocoocoo P

g

g Albedo

(%)

-}

ey

A

=

‘g

A

>

2

g

€3]
Effective
INlumination

MNERAER)

Figure 1: MRF lattices representing the output of different early processes
and their discontinuities (the crosses represent the sites of the binary line
processes). Each representation, for instance depth, is coupled to its discon-
tinuities and to other cues such as intensity or motion.



provide an initial rough solution to the segmentation problem. Using the
MRFs for estimating the fields gives increasingly precise solutions, simulta-
neously filling in the continuous regions that are only sparsely observable.
The solution at each iteration is available to later modules, such as recogni-
tion.

1.3 The Key Role of Intensity Edges

One of the results of our integration work is that intensity edges play pri-
mary role in guiding the search for discontinuities in other processes (for
instance depth). The point seems so important that we would like to phrase
it as a rather general conjecture on the proper organization of the integration
stage: intensity edges guide the detection of discontinuities in the other phys-
ical processes, thereby coupling surface depth, surface orientation, shadows,
specularities and surface markings to the image data and to each other.

The reason for the critical role of intensity edges is intuitively clear —
usually changes in surface properties (depth, orientation, material, texture)
produce large intensity gradients in the image. Under the assumption of
opacity and of a simple imaging model (the reflectance function is assumed
to contain a lambertian and a specular term), there are six physical causes
for large intensity gradients in the image: occluding edges (extremal edges
and blades), folds, shadow edges, surface markings and specular edges. In
addition, motion discontinuities are usually coupled to intensity edges. It is
for exactly this reason that edge detection is so important in artificial — and
probably also biological — vision.

1.4 Plan of the Paper

In this paper we introduce a method for detecting and reconstructing depth
discontinuities by using the information provided by intensity edges. We do
the same for motion discontinuities. First we introduce the Markov Random
Field formalism. The use of intensity edges for surface interpolation is dis-
cussed next, together with the derivation of the associated MRF model. We
then describe our Connection Machine implementation and the results on
synthetic and real data. Finally the discussion focuses on the open problems
and on the implications of our results for the general problem of integrating
all vision modules.



2 Coupling Intensity Edges with Sparse Depth
Data

To illustrate our approach we consider the specific and important problem of
computing an approximate surface and especially the surface depth disconti-
nuities from sparse depth data[10,25,18]. The main new idea here is to exploit
the integration of additional vision cues. In particular we describe a scheme
in which intensity edges are integrated with sparse depth data. Sparse depth
data arise from the output of feature-based stereo algorithms. Typical stereo
algorithms provide depth data at a subset of image features[15,10,8]. These
features might be a Laplacian filter’s zero-crossings from one of the intensity
images. The depth information is computed by measuring pixel displace-
ments (disparity) between corresponding image features. As is typical of all
known stereo algorithms, the disparities are plagued by errors precisely at
depth discontinuities where surfaces are usually occluded.

The problem, then, is to smooth and fill in the sparse depth data (i.e.,
reconstruct the surface), while detecting the critically important depth dis-
continuities. Prior attempts at depth discontinuity identification allowed the
discontinuities to form anywhere in the image provided the depth difference
between neighboring sites was significant([18,24]. Due to the sparseness and
noise in the depth data, the identified discontinuities are: 1) offset from and
2) ragged or wiggly compared with the correct discontinuities. These limita-
tions become more serious when the images contain a large range of depth
differences, as in natural images.

Because of the constraints on image formation discussed earlier, the cor-
rect depth discontinuities will, in almost all cases, correspond precisely to the
locations of intensity edges. Our integration scheme exploits this by restrict-
ing depth discontinuity formation to a subset of the intensity edges. This
restriction ensures that the smoothness and continuity of discontinuities can
be no worse than the intensity edges themselves. In addition, the difficult
problem of MRF parameter specification is simplified since this integration
scheme proves less sensitive to MRF parameter variations, particularly when
the depth data contain a large range of depth differences.

There are some cases in which discontinuities will not occur at intensity
edges. Any object that blends in with its background presents such a case.
This situation occurs rarely in natural scenes; yet, for practical reasons such



as camera underexposure or saturation, the object may blend in with the
background at some locations. However, for these cases, the point is some-
what moot, since without intensity edges, feature-based stereo or motion
algorithms will not provide depth or motion data.

A more general situation arises when the features used for stereo or mo-
tion are different from the discontinuity-limiting features. This is desirable
since the continuity constraints used by stereo and motion algorithms assume
that the features used for matching are located on surfaces. Thus stereo and
motion algorithms should use high resolution, dense features that identify
surface markings as opposed to bounding contours which in general corre-
spond to surface locations that are different in the two images of a stereo
pair. The discontinuity-limiting features however can be chosen to better
correspond to object boundaries.

The results section contains examples in which the discontinuities are
identified and the surface reconstructed both with and without the benefit
of intensity edge information. The next section presents a limited overview
of MRF particulars and contains the appropriate MRF energy function for
integrating intensity edges with, in this case, the sparse depth data produced
by a stereo algorithm.

3 MRF Formulation for Stereo and Inten-
sity Edge Coupling

The theory of Markov Random Fields can be found elsewhere[9,17]. We
present only an overview here followed by a description of the energy func-
tions used for integration.

The Hammersley-Clifford theorem states the equivalence between a MRF
and a Gibbs distribution as follows. If X is a MRF on a lattice S with respect
to the neighborhood system G, then P(X = w) is given by:

1 .
P X =w)= —Z-e"+U(X) (1)
Z is a normalization factor, T is the temperature and U (X) is the energy

function. The temperature parameter, T, could be absorbed into U (X);
however, when the solution method is discussed, T proves useful as a separate



variable. The energy function is of the form:
U(X) = 3 Uo(X). (2)
c

The sum of the potentials, Uc(X), is over the neighborhood’s cliqgues. A
clique is either a single lattice site or a set of lattice sites such that any two
sites belonging to it are neighbors of one another. The function P(X =w)
is called the prior distribution and abbreviated here by P(X).

The prior distribution on X, where X, for example, might be the recon-
structed surface, must be determined based on some observations or input
data, Y. To relate X to ¥ Bayes’ formula is used,

PY|X)P(X)

P(X|Y) = P 3)

The observations, Y, are obtained conceptually by degrading X, such as by
the addition of noise or blurring. If the type of degradation is known, the
distribution P(Y'|X), can be computed. Marroquin[17] has shown that for
the case of zero-mean white Gaussian noise, P(Y|X) is a Gibbs distribution
with potential:

UY|X) =3 UY|X); UdY|X) = —avi(z; — ;). (4)
i€S
The sum is over all lattice sites and

~_J 1, if input data exists at lattice site s 5
V= 0, otherwise. (5)

When this result for P(Y|X) is combined with the MRF prior distribution,
P(X), and Bayes’ rule the a posteriori distribution P(X|Y) is:

PUIY) = e {- 1 S u )} ©)

for Uy(X|Y) = Uy(X) + Uy(Y|X) and with Z a normalization constant inde-
pendent of X. This a posterior: distribution provides the likelihoods for all
possible states X, given the observable data Y.

Given the posterior distribution P(X|Y) and the ezternal field Y the de-
sired field X can be retrieved once a suitable error criterion is specified. The
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Mazimizer of the Posterior Mean (MPM) reduces the problem of annealing
and has been successfully applied for our results. With the criterion specified,
the relaxation algorithm for solution is largely determined. The question of
a suitable error criterion and algorithmic consequences has been thoroughly
discussed by Marroquin[17].

The problem has now become one of specifying the MRF potentials,
Ui(X) and Uy(Y|X). The potentials impose the physical constraints of con-
tinuity and smoothness of surfaces (except at depth discontinuities) along
with continuity and smoothness of depth discontinuities. These constraints
are imposed by tailoring the energy function to minimize the energy (maxi-
mize the probability) when the state occupied satisfies the desired physical
constraints. Typically this choice is empirical although one might envisage
estimating the prior associated with, for instance, depth smoothness from a
specific class of surface data.

The MRF state space used herein is similar to that of Geman and Geman|9]
along with Marroquin[17] where each lattice site is composed of a depth pro-
cess and two line processes, X = {F,L}. The depth process, F, is a con-
tinuous random variable whose value is related to the distance of a surface
point from the observer. The value of F at site 7 is denoted as fi where
—00 < f; < 0o. The depth process neighborhood system to site i consists
of the four nearest neighbors: east, south, west and north, to i. Although
a continuous random variable should not be updated using the Heat Bath
algorithm, the depth process can be deterministically updated[17], provided
the MRF energy is suitably defined. Figure 2 illustrates the MRF lattice
with the depth and line processes.

The line process used here, L, contains a vertical and horizontal orien-
tation that are conceptually located between lattice sites. The vertical line
process is located between its lattice site and the neighboring eastern lat-
tice site, whereas the horizontal line process separates its lattice site and
the nearest southern lattice site. Each orientation is a binary random field,
I} € {0,1} where the scripts on I denote the line process that separates
lattice site ¢ from j. The horizontal line process at site i is denoted as I,
the vertical line process is IY. Smoothing of the depth process is inhibited
when the line state is on, I = 1, since smoothing should not occur across
depth discontinuities; otherwise, depth process smoothing is performed. An
on state signifies the presence of a depth discontinuity. The conditions for
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Figure 2: (a) A lattice site is composed of a single depth process (illustrated
with a circle) along with a vertical and a horizontal line process. The MRF
Lattice consists of a rectangular grid of these lattice sites. (b) The neigh-
borhood for the depth process and the vertical line process neighborhood.
The black dot in the line process neighborhood indicates the lattice site for
this neighborhood. (c) The five maximal cliques (north, east, south, west
and central) for the vertical line process are shown. In this paper we only
consider configurations of the central clique. This is equivalent to assigning

zero energies to all configurations of the other four cliques.

10



depth discontinuity formation are encapsulated in the MRF energy function
presented subsequently.

The external fields to the MRF are the sparse depth information and the
intensity edges. The sparse depths, G, are represented by two variables, g;
and +; for site . The value g; is analogous to f;; it is continuously valued
over the real numbers, although in practice, since g; is provided by stereo
output, it is discrete. The variable v; encodes the sparseness of the stereo
output and is defined as in equation 5.

The intensity edges are represented by the field, E. This field is similar to
the line process, L, except that e! = 1, rather than indicating the presence of
a depth discontinuity, permits the formation of a depth discontinuity between
lattice site 7 and neighbor j. The MRF energy is designed so that el =0
implies (in the present implementation) I/ = 0 for all 1,7 € S. An edge
detector, such as Canny’s[4], will mark a site i as an edge, but e marks
potential discontinuities between sites ¢ and j. To resolve this ambiguity, if
an edge is at site 7, then e = 1 where k is each of the nearest neighbors to
site 2. This intensity edge field, E, along with G comprise the MRF external
field Y such that Y = {G, F}.

Given the external fields, Y, and the random variables, X, equation 6
provides the posterior distribution with the MRF energy given as

U(zly) = >_Ui(zly)

Ui(ely) = awi(fi — 9:)* + 20 (1= )(f: — £i)*+
JjEnn
> [BU() + B (1 - edi]. (7)
JE<Lh,u>

The first term in this equation is the coupling between the depth process
and the sparse and noisy input data. The coupling factor, «, is related to the
noise in g. For noiseless data, @ — oo thereby ensuring f; = g;. Otherwise,
when o = 0 no input data coupling occurs and f is smoothed by the term
involving (f; — f;)? in equation 7. The precise relation between « and the
noise depends on the noise model assumed. For a model of measurement

that includes Gaussian random noise



where o is the gaussian’s half width at half maximum([17]. Note that if the
noise model’s parameters vary locally, it might be appropriate to vary a
locally as )

7.

a; =
(o4

Local variation in noise parameters does occur in the stereo algorithm of
Drumbheller and Poggio[7]; this variation is reflected in the stereo match scores
of that algorithm. The present paper does not address this issue; here we
keep o constant, usually in the range 0.1 to 2.0. The input data coupling
to f occurs when 4 = 1. Typically 5 to 10% of the lattice sites have input
depths associated with them.

The last term in equation 7 implements the integration scheme between
sparse stereo depths and intensity edges. The term forbids depth discontinu-
ity formation except where an external edge exists. Discontinuity formation is
prevented by letting 8’ — co. When I =1 and €] = 0, this term contributes
a large energy, U;(z|y) — oo and the associated probability for ¥/ = 1 is zero.
At sites where e} = 1 this energy term contributes nothing and the depth
discontinuity formation is determined by the other factors in equation 7. The
problems of misalignment might be handled by suitably modifying this term
in the energy U;(z|y) to produce a it cone of influence or, for a simple case,
by “thickening” the input intensity edges. For instance, we may use instead
of e} in equation 8, e} * G, where * denotes convolution and G is a gaussian
or another appropriate cone of influence function. The results presented in
this paper do not utilize a cone of influence.

The second and third terms in equation (7) encapsulate our prior expec-
tations concerning depth discontinuities and surface reconstruction. They
compose the potential U(X) of the prior distribution (equation 1). These
two terms ‘compete’ in the sense that turning on a line costs energy ﬂUC(l{ )
but saves energy (f; — f;). The interplay of these two potentials largely
determines the formation of depth discontinuities where el = 1. The second
term couples the line and depth processes, the third term determines the
line process clique energy. This line and depth process coupling is summed
over the nearest neighbors, nn, to site i, with each neighbor contributing an
energy (fi — f;)* when I = 0.

The quadratic term, (f; — f;)?, tends to smooth the depth process since it
is minimized when f; = f;. Depth discontinuities have a higher probability
of forming when the energy to create a line, BUx(1?), is less than this energy
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to smooth the depths. The factor 3 is a free parameter that determines what
size depth difference is likely to produce a depth discontinuity. Specification
of B is largely image dependent and, although a suitable range has been
determined, a general theory specifying 8 remains elusive. The line process
clique energy will be examined in detail later.

The Heat Bath algorithm cannot be simply applied to equation 7 since
the f; are continuous variables. Instead we employ a technique to smooth
the depth process deterministically, but to update the line process stochas-
tically with the Heat Bath algorithm[17]. With the line process state fixed,
the MRF energy of equation 7 is non-negative definite quadratic with a sta-
ble and unique fixed point for the f; (practically, 8’ never contributes since
the configuration e = 0 and #/ = 1 has a vanishing probability). In this
situation, the depth process can be smoothed deteministically to find the
fixed point. After this fixed point in depth is determined, the line process is
stochastically updated, the new fixed point in depth is determined and the
scheme is repeated.

Once the line process approaches equilibrium (roughly 1000 iterations),
statistics are gathered to compute the MPM estimate. The MPM estimate is
computed from P(I! =1) = LT I/, where n is the number of iterations over
which statistics are gathered[17]. When P(¥ =1) > (0.5+ 1/+/n), statistical
fluctuations about 0.5 are reduced and the MPM estimate is turned on to
mark a discontinuity. Use of the MPM estimate does not require annealing
but the a posteriori distribution’s coupling parameters must produce a rea-
sonable amount of line process agitation thereby sampling much of the line
process sample space.

3.1 Choice of Line Clique Energies

Figure 2 shows the line process neighborhood for the vertical line process.
Of the five cliques shown for this neighborhood, only the clique centered
about the vertical lattice site has, by design, a non-zero potential Uc(lf ).
This potential depends on the 256 possible configurations associated with
the clique. The desirable configurations are a small subset of all possible
configurations and they impose the constraints of smoothness and continuity
on the depth discontinuities. These constraints are embodied in the following
five heuristics which divide the desirable configurations into classes:
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Figure 3: The four classes of non-forbidden line configurations for the verti-
cal line process. A dot, ‘.’ represents an off state; on states are shown with
their oriented lines. The symmetry operations producing the other allowed
configurations are discussed in the text. The horizontal line process configu-
rations are identical provided the vertical line process cliques are rotated by
90 degrees.

® Turn on a lone site provided a ‘large’ depth discontinuity is present
[Line Creation].

¢ Turn on a site extending an already present line segment even if the
depth discontinuity is ‘small’ [Line Growth].,

o Always turn on a site if doing so would connect two line segments [Line
Completion).

Allow tees to occur infrequently where supported by at least a ‘small’
depth discontinuity [Tee Completion).

All other configurations should occur rarely if at all [Forbidden].

Examples of the first four classes are shown in figure 3. In addition
to these configurations, three symmetry operations produce the other non-
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forbidden classes. These symmetry operations are: rotation by 180 degrees
about an axis perpendicular to the page, reflection about the vertical axis (for
the vertical line process orientation) and the 180 degree rotation followed by
the reflection operation. With these symmetry operations and clique classes,
a total of 22 unique configurations are allowed from the original set of 256.
When I} = 0 (line is off), the clique potential is 0. However, when I? = 1, the
clique energy is determined by the five classes; this is the energy required to
turn on the line.

The line process clique considered here is only one of the cliques associ-
ated with the neighborhood shown in figure 2. In previous work[9,17], the
smaller neighborhood did not readily produce lines of any orientation; the
cliques tended to create vertical or horizontal line segments. The ‘large’
neighborhood used here (though incompletely, because we assign zero en-
ergies to several cliques), does encourage isotropic line formation without
exacting too high a computational penalty.

4 Stereo and Synthetic Image Results

The MRF scheme for coupling intensity edges to sparse stereo depth data
has been implemented on a Connection Machine[11]. The sparse depth data
and intensity images from both real stereo and synthetic images have been
examined. This section presents these image results for some typical images.

4.1 Connection Machine Implementation

The Connection Machine (CM) is a fine-grained parallel computer manufac-
tured by Thinking Machines Corporation. We used their CM-1 model with
16k processors. Each processor is connected to its four nearest neighbors
(north, east, south and west) in a two-dimensional grid, the NEWS network,
and each 16 processor group is connected to a 12-dimensional hypercube, the
Router. These two communication modes allow fast access between neigh-
boring processors and logarithmic-time access between any two processors.
Each processor is a simple 1-bit processor with 4 kilobits of memory. All
processors execute a single instruction stream. The CM was configured to
match the image size, 256 x 256, by using virtual processors.
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For the MRF implementation each CM processor represents an MRF lat-
tice site. This configuration proves ideal for implementing the MRF cliques
over the CM NEWS network. The limited number of non-forbidden line
clique states and energies are stored in tabular form at each processor. De-
termination of the line clique state requires access to the four nearest neigh-
bors plus the north-east (south-west) neighbor for the vertical (horizontal)
orientation. At the image borders, the line processes are always on, thereby
conveniently preventing depth process smoothing beyond the borders.

The MRF input data was obtained from two previously implemented
CM-1 algorithms. For the real stereo depth data, MIT’s Eye-Head system
provided the stereo pair and the Drumheller-Poggio CM-1 stereo algorithm|(§]
produced the disparity data at a subset of DOG zero-crossing features. The
intensity edges came from Todd Cass’ [13] implementation of Canny’s edge
detector. These edges do not coincide with the stereo algorithm features.

When synthetic data was used, the image depths were produced by the
TMC 3-D Toolkit as was a dense depth map. A sparse map was obtained
by randomly discarding 90 to 95 percent of the depth values. Uniformly
distributed random noise was added to the synthetic sparse depth data.

The initial line process state is set to mimic the intensity edge map as pro-
vided by the Canny edge detection stage. The MRF depth values are created
by using the sparse input depths to “brush fire fill” and then by determin-
istically smoothing the depth values. During the deterministic smoothing of
the initial depth process, the depth external field coupling, a, is infinite.

4.2 Results

Figure 4 shows the MRF results on a synthetic image for two intensity edge
coupling schemes. In the first scheme, intensity edges are not used in the
MRF process. This allows depth discontinuities to form anywhere and is
achieved by setting e! = 1 for all 4,5 € S. The upper left image shows the
synthetic scene from which the sparse depth data was derived. The lower
left image in Figure 4 illustrates the depth discontinuities identified with the
MPM estimate of the MRF process. When the depths vary rapidly, many
closely spaced discontinuities are formed. These discontinuities are ragged
and also displaced from the actual object boundaries (as marked by intensity
edges). The reconstructed depth surface is not shown.

The second scheme strongly penalizes depth discontinuity formation ev-
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Figure 4: The MRF process and its result on a synthetic image. Almost
all depth discontinuities are found when intensity edge coupling is utilized.

The steepness of the geodesic dome’s boundary leads to false discontinuity
identification.
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Figure 5: The MRF process and its result on a real image with computed
stereo data. For both cases the texture on the newspaper has disappeared:
however, without intensity edges, the small box on the upper right also dis-
appears. When intensity edges are used some of the box’s borders persist
and the newspaper border is well localized.
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erywhere except at the intensity edges shown in the upper right image of
Figure 4. The external field, e, equals one only at the intensity edges pixels.
The depth discontinuities found are shown on the lower right of Figure 4.
Nearly all the intensity edges due to surface orientation and texture are
eliminated. In some places, such as near the geodesic sphere’s boundary, the
surface slope alone is large enough to yield a depth discontinuity.

Another representative image-this time a real image-is shown in Figure 5
where a stereo algorithm produced the sparse depth data. The right image
from the stereo pair appears on the upper left of Figure 5. This scene consists
of a tall stack of newspapers and a small box or carton. The stereo depth
data and the reconstructed surface are not shown. Once again we consider
two cases, depending on whether or not the intensity edges are utilized.
Without the intensity edges, as with the synthetic stereo results, the depth
discontinuities are poorly positioned and ragged. However, with the intensity
edges (upper right of Figure 5), the discontinuities on the lower right agree
reasonably well with the object boundaries.

For these stereo image results, a few difficulties are worth mentioning,
A large depth discontinuity along the top left of the newspaper boundary
is not found. The stereo algorithm produced very poor depth data at this
location and positioned the depth change roughly 5 pixels above the news-
paper intensity edge used by the MRF process. Also the small box’s shadow
yielded a small disparity that created a depth discontinuity. The box itself
also had a small disparity so that modifying MRF parameters to eliminate
the shadow discontinuity would have eliminated the box’s discontinuity. This
sort of variability is inevitable until a reasonable method for local parameter
estimation is developed.

Situations can arise wherein discontinuity detection is hampered when the
intensity edge sites do not coincide with the sites at which external depth
data are provided. Figure 6 displays a possibility where a depth discontinuity
should form between features A-1 and A-2 inclusive. However, the discon-
tinuity can only form on the intensity edge at B-1 and, because of depth
filling and smoothing, the discontinuity may be washed out. The washing
out depends primarily on the depth difference, the separation between edges
A-1 and A-2 and the smoothing parameters. If edge B-1 were on A-1 or
A-2, then the discontinuity could form readily. One approach to avoid this
coincidence problem is to project a cone of influence about the intensity edge
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Figure 6: The disparities at edges A-1 and A-2 suggest that a depth discon-
tinuity should be formed somewhere between A-1 and A-2. Yet, because of
depth process smoothing, the depth difference at intensity edge B-1 may be
too small to support a discontinuity. No discontinuity will form due to this
‘misalignment’ of edges.

location. Then the discontinuities could form not only at the intensity edges
but also for one, two or more pixels on either side of the edge. This has
the disadvantage of leading to somewhat poorly localized and ragged edges.
Straightness of the resulting line process is enforced locally by the intrinsic
prior of the line process when the cone of influence is no larger than the
line process neighborhood. Another approach, used here, was to avoid the

washing out by an appropriate selection of the coupling parameters. More
work must be done in this area.

5 Coupling Intensity Edges to Sparse Mo-
tion Data

The simplicity of limiting discontinuities to a subset of intensity edges im-
mediately suggests its use for other vision modules. The same principles
employed for the stereo depth application have been utilized on motion data.
As with depths, motion fields both from synthetic data and a feature-based
motion algorithm have been used to identify motion discontinuities and to
smooth and fill the sparse motion field. The difference is that motion is a
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vector field; depth is not.

The MRF energy of equation 7 is modified by replacing the random field
variable, F', by a vector random field, M. Likewise, the external field, G,
becomes a vector field, N. The MRF energy is:

Ui(zly) = apilM; — Ni* + Y (1 — #)|M; — M+

JjEnn

[8Uc(#) + 81 - )] (8)

JE<hu>

where M = ué, + vé, with a similar definition for N and where |M;— M, 2 =
(ui — u;)? + (v; — v;)%. The input field N contains the two components of
the optical flow; the output is M or equivalently, (u;, v;) for all lattice sites 3.
With this energy formulation, motion field direction discontinuities are not
identified, only magnitude discontinuities are marked.

A specialized motion algorithm, such as Horn and Schunk’s[12], can be
used to compute the motion field for input to the MRF. The motion data
employed here derive from a parallel algorithm[14] that provides match scores
much like the previously used stereo algorithm. Match scores provide a local
measure of trust for the motion data but are not utilized here. Rather than
splitting the problem into early and middle vision parcels, an alternative
approach uses the MRF machinery to compute the motion field in addition
to segmenting the images[20].

Figure 7 illustrates some results on a simple synthetic motion sequence.
The image contains a white square with a small grey texture marking moving
diagonally across a grey and black background. The motion field is non-
zero only on the white square and its texture marking where both z and
y components exist. Roughly 5% of the image motion data is input to the
MRF. The bottom half of figure 7 shows the motion discontinuities identified
both with and without intensity edge information. Again, the intensity edges
significantly enhance the localization of “nice” motion discontinuities.
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Figure 7: The MRF process and its result on synthetic motion data. Motion
data exists at only 5 percent of the image pixels.
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6 Discussion

6.1 Central role of intensity edges

The results presented here support the idea that intensity edges can be used
as the primary cue to help detect, complete and precisely locate the discon-
tinuities in the other processes such as depth, motion, texture and color. As
we mentioned earlier, the reason for this is that discontinuities in depth, sur-
face orientation, motion, texture and color typically originate large gradients
in the image intensity, i.e. edges. Texture boundaries, for instance, can be
synthesized without any intensity edge; it is sufficient to look around to con-
vince ourselves that in the real world most of the texture boundaries occur
together with an intensity edge. The same is true for motion discontinuities.
Color boundaries also correspond to brightness boundaries (isoluminant bor-
ders exist only in the psychophysics lab!). In addition intensity edges can be
better localized than motion, depth, texture and color discontinuities. The
case of texture is especially clear: the uncertainty in the location of texture
boundaries is no less than the size of the basic elements of texture, called
textons[26] and usually several times as much. In most cases stereo can-
not provide precise depth discontinuities because of occlusions. Color is in
a similar situation because of the coarse scale at which it is computed (the
low resolution is imposed by the low signal to noise ratio and the desired
insensitivity to small surface markings).

Psychophysics also suggests that intensity information has a privileged
role relative to other cues. Cavanagh(5] has shown that only intensity edges
can support subjective contours and shadow interpretation. Furthermore,
discontinuities portrayed through cues besides intensity edges, are more dif-
ficult to see at the level of recognition.

6.2 Open problems in the approach

The preliminary results obtained by integrating intensity edges with depth
and motion data are encouraging, as the figures show. There are, however,
many open questions that have to be answered before our theory can be
regarded as a serious first step towards understanding visual integration.
First, there is the question of the overall organization of the integration
stage, the nature of the interactions and the couplings between the different

23



cues. There are also more specific questions about our technique of visual
integration and discontinuity detection.

6.2.1 The Structure of Visual Integration

The scheme sketched in figure 8 is a preliminary suggestion for the struc-
ture of visual integration. It is close in spirit to the ideas about intrinsic
images proposed by Barrow and Tennenbaum[l]. They did not, however,
have the powerful theory of coupled MRF models to implement their ideas.

Information about the image intensity has a primary role — intensity edges
help the line processes associated with color, texture, motion and depth.
Depth itself has also a special role — in a sense, it is the main output of
the whole system. Motion, texture and color are coupled to depth. They
may not be directly coupled to each other. Notice that the main couplings
are through the line processes, according to the principles outlined in the
introduction. Notice also that local estimates of reliability may be used to
control locally the strength of the coupling: we have seen earlier that in the
MRF model the coupling between depth and its discontinuities is controlled
by the parameter a which is inversely proportional to o2.

The line processes may receive data from early algorithms — at this point it
is an open question how. In the present implementation the intensity edges
are totally driven by external data provided by the Canny edge detector
whereas depth and motion do not get external information about disconti-
nuities in depth or motion.

The intensity edges are also coupled with a higher level field that favors
configurations of the subjective contour type, providing completion of lines
and collinearity on a more global basis than the neighborhood of the line
process[22]. The depth line process is coupled with another high-level field
that provides the correct constraints on the interactions between contours of
overlapping objects. A T junction is a clue to occlusion by one of the two
surfaces bounded by it; an X intersection indicates that one of the surfaces
may be transparent. The high-level features couple these configurations of
the line process to the appropriate states of the depth process. If no values
are locally available, default values for in front and behind are given to the
depth process.
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Figure 8: The organization of the integration stage. Each of the processes is
coupled to its line process. Intensity data feed into the motion, color, texture
and depth line processes. The line processes are not hidden processes: they
may also receive data from specialized discontinuity detectors. The intensity
line process gets input data from Canny edges. It is coupled to a higher level
field which implements constraints of line continuation and collinearity on a
more global basis than the neighborhood system of the line process. The line
process associated with the depth process is also coupled to a higher level
field which implements the appropriate constraints underlying occlusions of
surfaces. The plausibility of interactions between motion, texture and color

1s an open question.
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6.2.2 Detailed Questions

Other open questions are: integration of additional visual cues, local vs. global
constraints on the line process, tolerance in registration, multiresolution fields,
approzimative algorithms and neural implementations and learning of param-

eters from eramples.

Integration of additional visual cues As figure 8 shows, we plan to inte-
grate other visual cues with stereo, motion and intensity data. In particular,
we will include texture and color. Because texture boundaries usually depend
on changes of material or sharp changes in surface orientation, they could
be used to support the line processes in the depth and motion modules. For
color the goal is to find boundaries that delineate regions of constant albedo
(at a coarse resolution, since small surface markings should not be “seen” at
this stage). As in the case of depth and motion, intensity edges play a critical
role for these two additional visual modules. Hurlbert and Poggio (see [21])
have sketched a possible scheme for coupling albedo with intensity edges.

It is important to notice that the combination of several visual cues not
only allows reinforcement of evidence for, say, a depth discontinuity, but also
achieves a classification of an intensity edge in terms of its underlying physical
cause: for instance, whether it is due to a shadow or a depth discontinuity.
Clearly, psychophysics can give useful indications of which interactions are
important in the human visual system.

Local versus global constraints on the line process The line process
provides a means for imposing important physical constraints on the disconti-
nuities such as: continuity, relative spatial isolation and possibly collinearity.
These constraints are enforced by using appropriate cliques and associated
energy values. However, in our experience with Markov Random Field mod-
els applied to real data, a problem has emerged with the use of the line
process. In many cases the property of collinearity that can be enforced in
this way remains too local: discontinuities tend to be too jagged and some-
times even broken when integration with intensity edges is not used. How
can one enforce the property of continuity or simply collinearity over larger
distances within the MRF framework? The basic idea that we have begun
to explore is to have a higher-level MRF that consists of “features”, such as
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straight lines of different orientations, with its prior probability distribution,
coupled (bidirectionally) with the line process lattice (see figure 8).

Tolerance in registration When data from different cues are combined,
say from intensity and from stereo, they must be registered. Spatial coinci-
dence is the main constraint exploited here. In general, however, one cannot
expect that discontinuities in depth and intensity will always have ezactly
the same location. Because of errors in the early vision processes, effects of
filtering, photometric effects and so on, depth discontinuities may be offset
by one or more pixels from intensity edges. To deal with this registration
problem the cone of influence might be useful, in which the intensity edges
facilitate (or don’t veto) the formation of depth discontinuities. The cone of
influence size should be on the order of the line process neighborhood. In this
way the line process constraints will ensure collinearity within the cone-of-
influence. Again, important information will come from psychophysics: we
expect to learn how alignment of, for instance, intensity edges with depth
discontinuities affects human vision.

Learning parameters from examples A critical problem in using MRFs
is the problem of parameter estimation. The performance of the scheme
depends critically on the natural temperature of the field, the potentials
associated with the clique configurations, the coupling between the lattices,
and so on. Parameter estimation should provide estimates for these factors;
possibly by learning from a set of examples.

Does integration influence early vision modules? In our computa-
tional approach to integration we have tacitly assumed that information flows
from the early vision modules to the integration stage — the coupled MRF
system — but not backwards. The output of say, stereo, is modified by the
outputs of other modules at the level of the MRFs but the stereo process
itself — the matching, for instance — is not affected. The decision to neglect
feedback interactions, from the integration stage to the early processes, in the
present version of our theory is mainly due to reasons of simplicity. Without
modifying our scheme in an essential way, it is easy to incorporate backward
effects from the integration stage by assuming that the whole process from
early vision algorithms to the integration stage can be controlled by a higher—
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order system taking into account higher-level goals and the available results.
If recognition is the goal, for instance, the current results of the recognition
operation on the integrated information can control which early processes to
apply, where, and how (i.e. which parameters to use). In this case, one may
hope to develop a useful theory of integration without worrying at first about
the problem of feedback.

A different possibility is that interactions between the integration stage
and the early vision modules are an essential part of any integration theory
and cannot be neglected even in a first-order approximation. In an extreme
case one might not be able to separate the integration stage usefully from
the early vision modules and even the modules one from another.

In principle, this is possible. The algorithms for the early processes can
be regarded in several cases as MRF's themselves (regularization algorithms
are special cases of MRFs[2,23]). Thus our coupling schemes for integration
can be extended to couple the early processes. In practice, we expect that
parameter estimation may become a very serious problem once the early
vision processes are tightly coupled.

Hardware implementations As discussed elsewhere[19,21] the coupled
MRF models used here can be implemented efficiently in mixed digital and
analog hybrid networks. It is interesting that, the interaction underlying
coupling between fields is of the type of a multiplication, logical-and or veto
operation. These operations have some intriguing possible implementations
in terms of the properties of synapses.

While it is certainly possible to implement the same mixed deterministic
and stochastic algorithms described here in, say, VLSI technologies, it is
also interesting to explore approximative deterministic algorithms that may
be simpler and more efficient. Marroquin[16] has provided an encouraging
initial analysis along with estimates of convergence properties.
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