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Abstract: Optical flow is the apparent (or perceived) motion of image brightness pat-
terns arising from relative motion of objects and observer. Estimation of the optical flow
requires the application of two kinds of constraint: the flow field smoothness constraint
and the brightness constancy constraint. The brightness constancy constraint permits
one to match image brightness values across tmages, but is very restrictive. We propose
replacing this constraint with a more general constraint, which permits a linear transfor-
mation between smage brightness values. The transformation parameters are allowed to
vary smoothly, so that inexact matching is allowed. We describe the implementation on

a highly parallel computer, and present sample results.

1 Introduction

Optical flow is the apparent (or perceived) motion of image brightness patterns arising
from relative motion of objects and observer. Optical flow can give important information
about motion of the observer (i.e. passive navigation), motion of objects in the scene, and
the spatial arrangement of these objects. Additionally, discontinuities in the optical flow
field can be used to segment the image into regions corresponding to different objects.

To be precise, an optical flow field is a two-dimensional vector field relating brightness
patterns in an image at one instant of time to brightness patterns at the next instant of
time. There does not exist a unique optical flow field for a given image sequence; rather
there are infinitely many flow fields satisfying the image constraints. This illustrates one
of the difficulties associated with determining optical flow, namely, identifying sufficient
constraint to produce a unique optical flow field. The other difficulty in determining
optical flow is more fundamental, and involves finding image elements to be placed into
correspondence.

As in stereo, methods for computing optical flow can be classified according to whether
detected features are used as primitive elements, or whether image brightness values (and
gradients) are used directly. Feature-based approaches to optical flow use detected edges
almost exclusively (Hildreth [1983], Davis et al [1983], Murray & Buxton [1984], Wohn
[1984]). Although it is possible to use detected points to process visual motion, no one
seems to have attempted to determine optical flow from isolated point displacements.
Horn & Schunck [1981] were among the first to use image brightness directly to determine
optical flow. They solved the problems mentioned above by identifying two constraints:
the spatial smoothness constraint and the brightness constancy constraint. Other methods
based on various smoothness assumptions have been proposed (Prager & Arbib [1983],
Paquin & Dubois [1983], Yashida [1983], Anandan [1984]).

The smoothness constraint arises from the observation that most visual motion is
the result of objects of finite size undergoing rigid motion or deformation. Neighboring
object points have similar motions or velocities, and to the extent that they project
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to neighboring image points, neighboring image points will also have similar motions.
Therefore, the optical flow field should be smooth almost everywhere. Exceptions occur
at occluding boundaries, where neighboring image points are not generally the projections
of neighboring object points.

The brightness constancy constraint rests on the assumption that the brightness of
a small image patch remains approximately constant as the corresponding surface patch
moves in the environment. This is a reasonable assumption when the lighting conditions
are unchanged between successive images, object surfaces are non-specular, and there is
only a small amount of motion between image frames. If these conditions are met, then
the brightness constancy constraint will apply approximately at all image points.

It should be noted that the smoothness constraint depends on the scene structure,
and is independent of illumination, surface reflectance characteristics, and the type and
degree of motion involved. On the other hand, the brightness constancy constraint does
not depend on scene structure (except for the influence of surface microstructure on
reflectance), but instead depends on the degree and types of motion, and factors such
as illumination and surface reflectance which affect image irradiance. Violations of the
brightness constancy constraint, when they occur, affect image patches or even entire
images. Therefore, it is important to find ways to relax this constraint.

Cornelius & Kanade [1983] propose a variation of the Horn & Schunck [1981] method.
In their formulation, they allow gradual changes in the way an object appears in a se-
quence of images. An image point does not have to preserve the same brightness value
as the object point that give rise to it moves in the environment, however, the variation
is enforced to be smooth from one image point to the next.

In this paper, we propose a new formulation by relaxing the brightness constancy con-
straint. Our approach does not require exact brightness matching across image frames,
but accepts even approximate matches. We achieve this by permitting a linear transfor-
mation of image brightness values between image frames, and constraining the allowed

transformations. Our formulation, in special cases, reduces to that of Cornelius & Kanade
[1983] or that of Horn & Schunck [1981].

2 Mathematics of Optical Flow

Let a coordinate system be aligned with the imaging system so that the z-axis points
along the optical axis. The image plane can arbitrarily be chosen to lie at z = 1 so that
image points are given by r = (z,y,1)7. Let E(r,t) denote the brightness of image point
r at time £. At a later time ¢ + 6¢, the brightness pattern at r will have moved to a new
location r + ér = (z + éz,y + 6y,1)T. The optical flow is the velocity field arising from
the perceived motion of image points r. It is derived from the displacements of image



points by taking the limit as 6t — 0,
dr (dx dy
dt ~ ‘dt’dt’

where u and v denote the components of optical flow r;.

r: = O)T = (u,v,O)T,

The brightness constancy constraint of Horn & Schunck [1981] expresses the restriction
that the brightness of an image patch remains approximately constant as the surface patch
that gives rise to that image patch moves in the environment. Setting the total derivative
of image brightness equal to zero, we can write

dE
e
Applying the chain rule, we obtain
OF  OBds 0Bdy
ot Oz dt Oydt ’
or
Ei+Ep ¢ =0,

where E, = (OE/dz,0E/dy,0)T. This equation is sometimes referred to as the image
brightness change constraint equation derived under the constant brightness assumption.
It has also been referred to as the optical flow constraint equation.

Assuming brightness constancy, we define optical flow as any 2D vector field r;, defined
on the image plane, that satisfies the image brightness continuity equation.

2.1 Image Brightness Constraint

Nagel [1983a,1983b] suggests a formulation that incorporates second-order effects in or-
der to obtain a better estimate of the optical flow around edges and corners. In his
formulation, the brightness change constraint equation is written

Ei+ Ep-xi + —;-rg‘E,.,rt =0,
where
%E/dxz> OE[/0zdy O
E. = | 8%E/0z8y O%E/dy* O
0 0 0
Here, again, the constraint equation rests on the brightness constancy assumption.
The formulation proposed by Cornelius & Kanade [1983] allows gradual changes in

the way an object appears in a sequence of images. In their formulation, the brightness

change constraint is written

dE
—d-t—-=Et+Er'rt.
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An image point does not have to preserve the same brightness value as the object point
that gives rise to it moves in the environment. Hence, the rate of brightness change can
be non-zero; that is, iE

y # 0.

More generally, we propose a formulation that allows a linear transformation between
brightness values in consecutive images. We choose a linear transformation because it is
one of the simplest non-trivial transformations. This is a less restrictive assumption than
brightness constancy, and can be formulated as

E(r + ér,t + 6t) = M(r,t) E(r,t) + C(r,t),

where M is the multiplier and C is the offset functions in the linear transformation. This
is our revised image brightness change constraint equation.

For small ét, we expect M to be close to 1, and C to be close to 0. Since we are
dealing with incremental changes, we can let M =1+ ém and C = éc. In fact, m and ¢
are the quantities of interest to us. Noting that §m — 0 and é¢ — 0 as 6t — 0, we can
define time derivatives, m; and c;,

my = slti]—:?o ‘;—r: and ¢; = lim —,
that we will use in our derivation.

Rewriting the brightness change constraint equation, we obtain
E(r + ér,t + 6t) = [1 + m(r,t)] E(r,t) + b¢(r, t).

The left hand side can be expanded as follows:
oF oF
E(r + ér,t + 6t) = E(r,t) + e ér+ -a—t—6t+ O(€) = Ey - 6r + E; 6t + O(e).
Substituting this into the constraint equation and simplifying, we have
E - -ér+ E;6t — Ebm — éc+ O(e) = 0.
Finally, dividing through by 6t and taking the limit as 6t — 0, we arrive at
Ei+ Ep-ri— FEmy—c¢; =0.

This is our revised optical flow constraint equation. In the special case that M = 1 and
C # 0 (and, hence, m; = 0 but ¢; # 0), this becomes similar to the constraint equation
in the Cornelius & Kanade [1983] formulation:

ce=FEi+ E; -1y

Further, in the more restricted case that M =1 and C = 0 (that is, m; = ¢; = 0), our
constraint equation reduces to the one in the Horn & Schunck [1981] formulation:

Et+Er‘rt=0.



==
)=

Image at Time t image at Time t+dt

Figure 1. Corresponding iso-brightness contours in an image sequence.

3 The Aperture Problem

There are an infinite number of valid optical flows given an image sequence. To see
this, we note that if r; is an optical flow, so is

ry =1+ f(z,y) (Er X &)

for any f(z,y), where % is a unit vector perpendicular to the image plane. First, note
that r} -z = r; - 2 = 0, as it should. Furthermore, we have

Et+E,-[rt+f(E,xi)]—Emt—c¢=Et+E,-rt—Em¢—ct=0.

This can also be explained graphically. Consider the simple case where M = 1and C = 0,
so that the constraint equation reduces to that of Horn & Schunck formulation:

Er'rt+Et=0.

Referring to figure 1, suppose that C’ is a contour of constant brightness in the second
image corresponding to contour C in the first image. It is not easy to decide which point
P' on C’ corresponds to a particular point P on C since the contour generally changes
shape as the object moves in the environment (Horn [1986]). In fact, there are many
possible ways to establish correspondence between points on contours C and C'. This
ambiguity has been referred to as the aperture problem. In terms of the iso-brightness
contours, any vector field that transforms contour C into contour C’ is an acceptable
optical flow.
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In our extended formulation, the indeterminacy of the optical flow is even worse than
this example suggests. Since m; and c; are unconstrained, the optical flow field can be
completely arbitrary, with either or both of these transformation fields varying in such a
way as to guarantee that the brightness constraint is obeyed. It is, therefore, necessary
to select, out of the infinite number of possible optical flows, one which is consistent with
the physical constraints of the problem. One may hope to obtain an optical flow field
that approximates the apparent motion of brightness patterns in the image as judged by
a human observer.

3.1 Smoothness Assumption

Discontinuities in depth (for example, at occluding boundaries) give rise to disconti-
nuities in the optical flow field. Also, object motions may be different across occluding
boundaries, which can give rise to discontinuities in the optical low. Additionally, discon-
tinuities can be expected in m; and ¢;, if illumination conditions or reflectance properties
that depend on surface material change abruptly as the surface moves in the environment.
In the absence of depth discontinuities or abrupt changes in illumination or surface re-
flectance properties, the optical flow and transformation fields are expected to be smooth.
Based on these facts, we require that the optical flow, the multiplier, and the off-set fields
should be consistent with our revised optical flow constraint equation, and should vary
smoothly from one image point to the next.

Smoothness can be imposed by minimizing a functional that is a measure of departure
from smoothness. Horn & Schunck [1981] proposed minimizing the integral of the square
of the magnitude of the gradient of the optical flow. Hildreth [1983] investigated a similar
formulation, but incorporated different measures of smoothness.

The gradient of the optical flow is

ou/dz OdAufdy O
Vri=—"L=| dv/dz dv/dy O
0 0 0

The measure of departure from smoothness that is to be minimized is written
eo= [ [19xd2dzay.

Here, || - |2 denotes the Euclidean or Frobenius norm of a matrix, which is the sum of the
square of all the elements of the matrix.
Similarly, smoothness deviations can be defined for the transformation fields

em:/ [Vm|?dzdy and ec=/ | Ve:||? dz dy.



4 Minimization

The image brightness constraint and the smoothness constraints can be combined by
defining a single functional that weighs each contribution. Rather than enforcing the
brightness change constraint exactly, we use a penalty term that measures the square of
the error in the constraint equation over the whole image:

eb=//(Et-i-Er-rt—Emt—ct)zdxdy.

To ensure that the optical flow and the transformation fields (approximately) satisfy the
optical flow constraint equation, we want ¢, to be small.
All together, the problem can be formulated as that of minimizing the functional

e =ep+ Ases + Amem + Acee,

where A;, A, A; weigh the total error contributed by each term.

Using variational calculus, the Euler-Lagrange equations for this problem can be
found. These equations form a set of necessary conditions that a solution to our mini-
mization problem has to satisfy. Sufficiency is not guaranteed, in particular, it is possible
for a particular proposed solution to obey the Euler-Lagrange equations yet not be a
global minimum. This will occur at local minima, points of inflection, and local maxima.
Note, however, that there is no global maximum, as the functional is not bounded from
above. We will not address the question of sufficiency further in this paper.

The variational problem is solved by using the formula

a 0

Y- 32V "5

\I’fv = 0’

where ¥ is the integrand in the cost functional and f is each of u,v,m; or ¢¢, in turn.
Applying the above formula, we obtain

Viu = %(Et + Ezu + Eyv - Emt — ct),

-]
2 Ey
Vv = ’\—(Et+Ezu+Eyv—Emt—ct),
8
2 —E
Vim: = A_(Et + Ezu+ Eyv — Emy — ¢4),
m
-1
Vi = ,\_(Et + E;u+ Eyv — Emg — ¢4).
[

For a well-posed problem, we need to specify the appropriate boundary conditions. In the
absence of fixed boundary conditions (values of u, v, m;, and ¢; on the image boundaries),
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we need to specify natural boundary conditions. For our problem, the natural boundary
condition is

(fz;fy)T -0 = 0,

where i is a unit vector perpendicular to the boundary. Again, f can be any one of
u,v,m; O ¢, in turn.

4.1 A Discrete Implementation

In the discrete domain, the Laplacian operator V2 can be approximated as a center-
surround operator

sz ~ K(T_ f)’

where f (the “surround”) is an averaged or smoothed version of f. For example, we can
use the following simple approximation:

f= %(fﬂl,j + ficr,5 + fij+1 + fij-1)-

The scale factor ¥ can be absorbed into the appropriate A and, therefore, need not be
considered further.

Substituting the approximation to the Laplacian in the Euler-Lagrange equation,
derived earlier, we can write a single matrix equation

Af =g,

where

u Aaﬁ - EzEt

_ v _ AU — EyE;
f= me ’ g(f) - Am_rﬁ;"' EEt ’

ct Al + By

and
E:+)\, E,E, -E,E -E,

~E,E -E,E E'+), E

A=

These equations have to be solved iteratively since the optical flow, at each image cell,
depends on the average of the optical flow from the neighboring cells. The same is true
for m; and ¢;.

Solving for the unknown fields, u, v, m¢, and c¢, we find that

f=A"1g(f),



where
é\fgi:‘ﬁfégni:\: _EzEyAcAm EzE)cAs EzAmAs
a1 | BB MRS mEM. B
- = 2 ’
o E,E)\ ), EyEAcAa (Eg+E,}:1-t\,),\cz\. _EAE
2 E2\3+
EzAmAe EyAmAs _EA8 (E2+E?+A')AMA'
and

o= Ap A2 + E2A N2 + (B2 + EE + M)A AmAs.
This is a system of linear equations, which can be used to recover the optical flow v and
v, and the transformation fields m; and ¢;.
The field equations can be solved iteratively, at every image cell, according to the
equation
k+1 -1 (F*
f*7 = A7 g(f),

where k is the iteration number. The matrix A (or A~!) depends only on the observed
data. It needs to be computed once, but it differs from point to point.

This formulation, in general, requires a lot of computation and is not really suitable
for implementation on a serial machine. It can, however, be readily implemented on a
highly parallel computer, such as the Connection MachineT™. For a 128 by 128 image, the
Connection Machine implementation runs approximately 1000 faster than a Symbolics
3640™ Lisp Machine implementation.

5 Examples

Example 1 — Multiplier Effect with No Offset: Figure 2 shows a pair of image
frames from a synthetic motion sequence. Each image contains a background texture
and a central texture; each texture is gaussian-smoothed uniform noise. Sharp texture
boundaries between the background and the central circular object have been preserved
in each image. The circular region undergoes rigid rotation between frames. In addition
to the rotation of the central circular region, the second image has been multiplied by
a factor which varies linearly from 0.75 in the lower left corner to 1.25 in the upper
right corner, as shown in Figure 3a. An offset of zero was used and all A parameters
were set to 1. The computed multiplier field, shown in Figure 3b, varies in a range from
0.82 in the lower left corner to 1.22 in the upper right corner. Here the linear trend is
clearly discernible. The computed optical flow after 100 iterations is shown in Figure
4 (the needles indicate flow direction and rate). The offset field for this example had
negligible values, with absolute values not exceeding 0.002. This is to be expected, as the
experiment was designed so that the offset field would not be needed.
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Figure 2. A pair of images from a synthetic motion sequence; the central circular region undergoes rigid
rotation. In addition to the rotation of the circular region, the second image has been scaled by a factor
that varies linearly from 0.75 in the lower left corner to 1.25 in the upper right corner.




true mulriplier field

.

Figure 3. The true (a) and the computed multiplier fields used for the image sequence in Figure 2.
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Figure 4. Example 1: The computed optical flow using the method described in this paper (all A param-
eters were set equal to 1).
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Figure 5. Example 1: The computed optical flow using the method described in this paper (Ap = 0.1,
but the remaining A parameters were set equal to 1).
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Figure 6. Example 1: The computed optical flow using the method of Horn & Schunck.
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The computed optical flow using the method of Cornelius & Kanade.

.
.

Figure 7. Example 1
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More accurate results were obtained for A, = 0.1 (all other A parameters were set to 1)
as shown in figures 5. The off-set field was negligible with absolute values not exceeding
0.0002, and the multiplier field varied in a range from 0.76 in the lower left corner to 1.26
in the upper right corner.

To check the improvement offered by this algorithm, the Horn & Schunck algorithm
was also used on this image sequence. This is equivalent to using Ay, = A, = 00 in our
formulation. The results of the Horn & Schunck algorithm, Figure 6, were in agreement
near the center of the image and the upper left and lower right corners, where the multi-
plier was approximately 1. The two algorithms did not agree, and the unmodified Horn
&Schunck algorithm was clearly incorrect, at the lower left and upper right image corners
where the multiplier had its greatest effect. This illustrates the inability of the Horn &
Schunck algorithm to correctly handle images sequences where the brightness constancy
constraint does not apply.

Figure 7 shows the solution obtained using the algorithm of Cornelius & Kanade.
(This was done using A,, = co and A, = 1 in our formulation.) As expected, there is
not much improvement over the solution from Horn & Schunck algorithm since their
algorithm is designed to compensate for effects similar to an offset in an image sequence
(however, the offset was set to zero for this example).

Example 2 — Multiplier and Offset Effects: Figure 8 shows the pair of images for
this example. The motion is as in the previous case, the multiplier field varies linearly
from 0.9 in the lower left corner to 1.1 in the upper right corner, and the offset is 5 (the
grey-level values were increased by 5 units). The computed optical flow using our method
is shown in Figure 9 (all A parameters were set equal to 1). Figures 10 and 11 show the
same using the methods of Horn & Schunck and Cornelius & Kanade, respectively. Again,
these were obtained by setting Ay, = A, = 0o (to simulate Horn & Schunck algorithm),
and A, = 0o and A, = 1 (to simulate Cornelius & Kanade algorithm) in our formulation.
These results are reasonable where the multiplier and offset effects approximately cancel
each other. They break down where the multiplier and offset have their greatest effects;
that is, in the upper right corner of the image. We conclude that the Horn & Schunck
algorithm does not correctly handle images sequences where the brightness constancy
constraint is violated. Similarly, the algorithm of Cornelius & Kanade breaks down in
regions of the image where multiplier effects are dominant.

6 Reducing the Computation

In many practical situations, the off-set ¢; is near 0. Therefore, the algorithm can be
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Figure 8. A pair of images from a synthetic motion sequence; the central circular region undergoes rigid
rotation, the multiplier field varies linearly from 0.9 in the lower left corner to 1.1 the upper right corner,
and the offset is 5 units.
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Figure 9. Example 2: The computed optical flow using the method described in this paper.
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Figure 10. Example 2: The computed optical flow using the method of Horn & Schunck.




20 Computing Optical Flow

Figure 11. Example 2: The computed optical flow using the method of Cornelius & Kanade.
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sped up by ignoring the offset term. We can instead use the updating equation
flk+l — (AI)—I gl(f’k)

to compute the optical flow and the multiplier fields. Here, we have defined

u o Aai - EzEt
ff=| v |, g@)=| \v-EE |,
my Am™i; + EE;
and
1 [ Esdm+ E2X 4 A, —E:Ey\m E.E),
(AN =5 —E,E)\p, E2Am + E®X, + Ams E,E), ,
« E,E), E,EX, E2)\, + E3\, + A2
where

o = ApAl + E*X] + (B2 + E2)Ap)s,

If the offset term is not negligible, then the estimates obtained from the above vector
equation may be used as initial conditions in the original updating equations.

7 Summary and Extensions

Much of the existing methods for computing the local optical flow depend on two kinds of
constraint: the flow field smoothness constraint and the brightness constancy constraint.
The brightness constancy constraint permits one to match image brightness values across
images. This constraint is sometimes very restrictive.

We have proposed a new formulation by replacing the brightness constancy constraint
with a more general constraint, which permits a linear transformation between image
brightness values. The transformation parameters are allowed to vary slowly in space,
so that inexact matching is allowed. We have formulated the problem of computing the
optical flow as a minimization of a quadratic cost functional. Using variational methods,
we have shown that the problem reduces to solving Laplacian equations for the two
components of the optical flow field and the two transformation fields. We have described
the implementation on a highly parallel computer, and presented sample results.

One of the disadvantages associated with the use of the smoothness constraint is
the degree of smoothness imposed on the unknown velocity and transformation fields.
In fact, the algorithm developed here tends to smooth over discontinuities both in the
optical flow and transformation fields. One way to overcome this shortcoming is to use
“line processes” (Marroquin [1984]). Simply put, the idea is to incorporate in the penalty
function the cost of introducing a discontinuity in the optical flow or transformation fields
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instead of interpolating smoothly between two neighboring points when the gradient
becomes large. A line process is a boolean variable; it takes on the value 1 where there
is a discontinuity and 0, otherwise.

There is, however, a drawback associated with the introduction of line processes in
the minimization scheme, namely, that the cost functional becomes non-convex. This
generally calls for inventing sophisticated optimization methods that can be computa-
tionally exhaustive; for example, a simulated annealing scheme (Marroquin [1984]), or
an algorithm based on neuronal network models (Hopfield & Tank [1985], Koch et al.
[1986]).

Alternatively, we can employ the graduated non-convexity algorithm based on the
concept of weak continuity constraints (Blake & Zisserman[1986]). Here, the process of
minimizing a non-convex cost functional is replaced by minimizing a sequence of cost
functions, the first of which is a convex approximation to the true cost functional and the
last one is the true non-convex cost functional. Needless to say, we have yet to implement
any of these schemes.

8 Acknowledgments:

We are very grateful to Berthold K.P. Horn for many helpful comments and sugges-
tions on the representation of the transformation fields as well as for reviewing several
drafts of the paper, and Ellen Hildreth for reviewing the final draft.



23

References

Anandan, P. (1984), “Computing Dense Displacements Fields with Confidence Measures
in Scenes Containing Occlusion,” COINS TR-84-32, University of Massachusetts,
Ambherst, MA, December.

Barnard, S.T., & W.B. Thompson (1980), “Disparity Analysis of Images,” IEEE Trans.
PAMI, vol. 2, no. 4, July.

Blake, A, & A. Zisserman (1986), “Some Properties of Weak Continuity Constraints and
the GNC Algorithm,” Proceedings of CVPR, Miami, June.

Cornelius N., & T. Kanade (1983), “Adapting Optical Flow to Measure Object Motion
in Reflectance and X-Ray Image Sequences,” ACM SIGGRAPH/SIGART Interdis-

ciplinary Workshop on Motion; Representation and Perception, Toronto, Canada,
April.

Davis L.S., Z. Wu, & S. Hanfang (1983), “Contour-Based Motion estimation,” CVGIP,
vol. 20, no. 3, September.

Gennert, M.A. (1987), “A Computational Framework for Understanding Problems in
Stereo Vision,” Sc.D. thesis, MIT AI Laboratory, in preparation.

Hildreth, E.C. (1983), The Measurement of Visual Motion, MIT Press, Cambridge, MA.

Hopfield, J.J., & D.W. Tank (1985), “Neural Computation in Optimization Problems,”
Biol. Cybernetics.

Horn, B.K.P., & B.G. Schunck (1981), “Determining Optical Flow,” Artificial Intelli-
gence, vol. 17.

Horn, B.K.P. (1986), Robot Vision, MIT Press, Cambridge, MA.

Koch, C., J. Marroquin, & A. Yuille (1985), “Analog Neuronal Networks in Early Vision,”
A.L Memo 751, The MIT Artificial Intelligence Lab, Cambridge, MA, June.

Marroquin, J. (1984), “Surface Reconstruction Preserving Discontinuities,” A.I. Memo
792, The MIT Artificial Intelligence Lab, Cambridge, MA.

Murray, D.W., & B.F. Buxton (1984), “Reconstructing the Optical Flow Field from
Edge Motion: An Examination of Two Different approaches,” Proc. of 1st Conf. on
AT Applications, Denver.

Nagel, H.H. (1983), “Displacement Vectors derived from Second-Order Intensity Varia-
tions in Image Sequences,” CVGIP, vol. 21, no. 1, January.

Paquin, R., & E. Dubois (1983), “A Spatio-Temporal Gradient Method for Estimating
the Displacement Field in Time-Varying Imagery,” CVGIP, vol 21, no. 2, February.



24 Computing Optical Flow

Prager, J.M., & M. Arbib (1983), “Computing the Optical Flow; The MATCH Algorithm
and Prediction,” CVGIP, vol. 24, no. 3, December.
Ullman, S. (1979), The Interpretation of Visual Motion, MIT Press, Cambridge, MA.

Wohn, K. (1984), “A Contour-Based Approach to Image Flow,” Ph.D. Thesis, Center for
Automation Research, University of Maryland, September.

Yashida, M. (1983), “Determining Velocity Maps by Spatio-Temporal Neighborhoods
from Image Sequences,” CVGIP, vol. 21, no. 2, February.



Tius blank page was inserted to preserve pagination.




CS-TR Scanning Project
Document Control Form Date: 5 /3¢ /195

Report# Alm-9)S

Each of the following should be identified by a checkmark:
Originating Department:

X Artificial Intellegence Laboratory (Al)
[0 Laboratory for Computer Science (LCS)

Document Type:

[0 Technical Report (TR) J2< Technical Memo (TM)
O Other:

Document Information  Number of pages: J5(3!- /MG )
 Notto include DOD forms, printer intstructions, etc... original pages only.

Originals are: _ Intended to be printed as :
/ﬁ Single-sided or O Single-sided or
O Double-sided _E( Double-sided
Print type:
] Typewriter [J Ofteet Press XL Laser Print
0 wkietPrinter [] Unknown [ other:

Check each if included with document:

K[ 0ob Form (1) O Funding Agent Form O coverPage
O spine [0 Printers Notes O Photo negatives
O other:

Page Data:

Blank Pagesaysage numbe:

Photographs/Tonal Material ey pegs smbes: I'OI I 0

Qther (e desciptonipege mmbed;
Description : PageNumber
imagE mag (D unH’r0 TiTLE PAGE
(395) PAGES H’s0 (- JH
(% -a3) §¢AN\6J\“P~»L DoD (3)
63-21) TRGTS,

Scanning Agent Signoff: é 75
Date Received: 9 Iolc /1) Date Scanned: & YN 5 /1) (75 Date Returmed: _S / 2_ /12

Scanning Agent Signature: ()"NM Q’V A Qzﬁ_ Rev %04 DSALCS Document Control Form cetrform.vad




«

UNCLASSIFIED

SECURITY C_ASSIFICATION OF Twi$ PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE b CNSTRUCTIONS

BEFORE COMPLETING FORM
! REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECI®IENT'S CATALOG NUMBER

AT Memo 975 /}D'ﬁ/37‘/37

3
4 TITLE (and Subtitie) S. TYPE OF REPORT & PERIOD COVERED

Relaxing the Brightness Constancy Assumption

in Computing Optical Flow AL

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(e) 8. CONTRACT OR GRANT NUMBER(s)
Shahriar Negahdaripour Michael Gennert NO0O14-85-K-0124
DACA76-85-C-0100

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
Artificial Intelligence Laboratory AREA & WORK UNIT NUMBERS
545 Technology Square

Cambridge, MA 02139

‘1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Advanced Research Projects Agency June 1987

1400 Wilson Blvd. 13 NUMBER OF PAGES
Arlington, VA 22209 24

4. MONITORING AGENCY NAME & ADORESS(/! difterent from Controlling Ollice) 1S. SECURITY CLASS. (of thie report)
Office of Naval Research

. UNCLASSIFIED
Information Systems
Arlington, VA 22217 %a. ?g.c‘:éﬁts{ucnuou/oowncnomc

6. DISTRIBUTION STATEMENT (of thie Repors)

Distribution is unlimited.

17. DISTRIBUTION STATEMENT (of tHe ebetract entered in Block 20, i difterent from Report)

18. SUPPLEMENTARY NOTES

None

13. KEY WORDS (Continue on reverse eide I nececsary and identity oy bdlock number)

Optical Flow, Brightness Constancy Assumption, Passive Navigation,
Smoothness Constraint

20. ABSTRACT (Continue on reveree elde if necessary and tdentity by block number)

| Optical flow is the apparent (or perceived) motion of image brightness patterns

‘arising from relative motion of objects and observer. Estimation of the optical
flow requires the application of two kinds of constraint: the flow field smoothne
constraint and the brightness constancy constraint. The brightness constancy
constraint permits one to match image brightness values across images, but is
very restrictive. We propose replacing this constraint with a more general const-
raint, which permits a linear transformation between image brightnesg values.

SS

The c On paramete = allowed +o varv smoothl S0 at inexact

DD , :2:"" 1473 eoiTion OF 1 nOV 63 1S OBsSOLETE UNCLASSIFIED
S/N 0102-014- 6601 |

. LECH® Ty Ot ASSIFICATION aF_Tug ’AGQ L™™ax Nesa Batevec



T owen TS VUM L v Timp ¥

A T'ﬁf’ﬁﬁg
’ HAGsiie T SR ag. T
‘; Ve eyt T4
aticn o6 a * highly paretisy: N

SN

FREMUN TROBSE BRO GHmnOIRIR &

K3
.3

PR L5 P SO0

ARETRIE YRR RS FEIETHEE TR

AU e B 8- L LW
FOEO~0=E 8- AAT

R HEITATImaA DRD ORIMRB €A RS €
v- 395339} &5354 Igisiibash
18008 vgoclomdseT L84

I )

. e W wARJERS  #
FREEW S TIRY FRO% 2 ASRA

,-

. $L %0 AM LegblydmsO

I STITTRRREN ——— tzm; TR SHAN SSIRRG TS ORTHOS 1T

: TR0 ol oasgA a¥sstord durssesi heonsvhd
T CTTETAE g AShman E1 , o LBYIE posliW OG0T
3 ‘ o G0888 4V .moggallizi

S TR R TSRS A DWRET e ]

Tryamen wiFE Vee GAA 2D S sii"'f"m;g} mmgm . 73 :
' #yrneeefd {svsd Yo axllI0

GATEIT 04 I3 . S
GRIETEEA LY i amelayd 2ol Iamy odai §
B WOKEE w00 HOITR Srvada L S €T SE , 0 VISSS AV modgaling

Ears TAY]

o THIRFTATE WO P a RTS8

sBejbellas oF noiyudizzeld #

T tigmar, . - 4

i et W 8% Arath »@m T T N HATATE WO TURINTEIG ETE

MRS " ERTON YRATRANS JRAGE 8]
sao¥

tmm“ﬂ Mhm gm%nmﬂmm’it

,mﬁr@m& ol mz:)c@

JOLIsnEvEl avieesd (noitomseald
m:msm raspritoons

PR Sawr s he matiem )} TAKWTEEA k13

i

RSN RAaIS 76 QAN Bes YAk

asﬁm aportirpig! onsmi Jo mobdom {(hevievreg 30} mmgqﬁ ait 2: wol¥ Lﬁp.(“m{}

"mif;o sl To oidemided .*:ﬂ"r:z%:én Brs a3nebdo Yo saliom swidsloy moxl paiaizs”

Meﬂ wo o =:} :rﬁ.r.mt fen "*fx Pl owd o mobisnilogs odd zeviuvper woll

' RS, omsdenon eeachriniad o3 brs dnisTienco |

':j;mm;zia@mmma:tm?mmg

-3E000 1’ %mcm oy ® ‘Jw %:m:rﬂnoo 2142 oniosigey seaocowg oW .evidnixdasy yisv

aw{sv eaarhipid oremt raewrtad mn%sﬂm’k&mﬁ mm.ci IS a:tmﬁwfﬁ'f \miﬁ?z

b . % hfL&m W ot By CEBRERE TR e 7 e '.' * - - ’ 2

:nmmumﬂ 3 xn mas £ gfﬁff, {'553
4 ‘“ﬁ*&lﬂ EThIE W

¢ A

,'_ J A TADI 385 5 ¥ Fihus B8 ’
id B o o SEobe Frren; ol «ij %um%? Jewolls &i oakdodss

_e..-.-_.,\..,.,\. N e _z..w.’
B




Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.L.T
Libraries. Technical support for this project was
also provided by the M.L.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94



