MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A.I.Memo No. 977 July, 1988

A Standard Architecture for Controlling Robots

Sundar Narasimhan
David M. Siegel
John M. Hollerbach

Abstract: This paper describes a fully implemented computational architecture that
controls the Utah-MIT dextrous hand and other complex robots. Robots like the Utah-MIT
hand are characterized by large numbers of actuators and sensors, and require high servo
rates. Consequently, powerful and flexible computer architectures are needed to control
them. The architecture described in this paper derives its power from the highly efficient
real-time environment provided for its control processors, coupled with a development host
that enables flexible program development. By mapping the memory of a dedicated group
of processors into the address space of a host computer, efficient sharing of system resources
between them is possible. The software is characterized by a few simple design concepts but
provides the facilities out of which more powerful utilities like a multi-processor pseudo-
terminal emulator, a transparent and fast file server, and a flexible symbolic debugger could
be constructed.

Acknowledgements: This report describes research done at the Artificial Intelligence
Laboratory of the Massachusetts Institute of Technology. Support for the laboratory’s
artificial intelligence research is provided in part by the Office of Naval Research University
Research Initiative Program under Office of Naval Research contract N00014-86-K-0685 and
in part by the Advanced Research Projects Agencv of the Department of Defense under
Office of Naval Research contract N00014-85-K-0124.

‘©Massachusetts Institute of Technology, 1988.

1 Introduction

This paper describes the Condor system, a real-time control environment designed for
robotics research applications. The Condor system was derived from the Muse (Narasimhan
et al. [1986]), an earlier system also developed at MIT.

Sophisticated control strategies, advanced robot designs with more degrees of freedom,
and high performance actuation and sensor systems all add to the computational needs
of a robot controller. Without advanced computational architectures, it is impossible to
develop and test more than the simplest of control strategies.

In our laboratory, the Utah-MIT Dextrous Hand pushed these limits in all directions.
The hand has 16 joints, each powered by two antagonistic tendons connected to electro-
pneumatic actuators. There are 32 tendon tension sensors and 16 joint position encoders.
Typically, a servo rate on the order of 400 hertz is required. This necessitates reading 19,200
sensor values per second and writing 12,800 actuator values per second. An examination
of robot controllers developed at our laboratory and elsewhere revealed that conventional
uni-processor based controllers would not be suitable for this device.

Any research oriented real-time controller must be both flexible and efficient. A high
performance controller that lacks sufficient development tools will be hard to use, and is not
suitable for a research environment. A system with a good development environment, but
lacking in computational performance, will not handle the needs of robots being built in
research laboratories today. Computational architectures found in industry often provide
performance at the expense of flexibility, and often lack an adequate software development
environment. University efforts have often resulted in architectures that do not provide
adequate real-time response. The Condor attempts to meet both these needs by combining
a real-time processing engine with a conventional development host.

Computers alone cannot make up for inefficient algorithms. Even the fastest processors
may not be able to execute poorly designed control algorithms at the required speeds. Thus,
the control of a robot requires both adequate processing power and efficiently formulated
algorithms. For example, Hollerbach et al. [1986] formulate a finger force computation
scheme for the Utah-MIT Hand that greatly reduces the computations required by the
standard Grip-Jacobian approach.

Initially, the Condor was designed to control the Utah-MIT Hand (Jacobsen et al.
[1984]). However, the architecture is sufficiently general to control other robots. At MIT,
this system is being used to control the MIT Serial Link Direct Drive Arm and the Whole
Arm Manipulator. It is also being used to run biological motor control experiments, since
the Condor is a general real-time system useful outside of robotics. Additionally, the Condor
is being used by other research groups that have obtained the Utah-MIT Hand.

This paper provides an overview of our architecture and how it is being used to control
the Utah-MIT Hand. Since this is a fully implemented project that has been in operation on
several robots for over a year, we feel our experiences will be of interest to other researchers
who face similarly complex control needs.

1.1 Special purpose vs. general purpose hardware

The spectrum of choices available for robot controller architectures ranges from using
off the shelf commercially available systems to building special purpose VLSI chips tailored
to specific algorithms (Leung et al. [1987]). The Condor is designed to control research
robots. Control algorithms for such robots are often as intense a sub ject of research as
the design of the robots themselves. The programmability required of such control systems
coupled with the evolving nature of their control algorithms dictated the use of general
purpose micro-processors for the Condor system.

There were many reasons why we decided not to build special purpose hardware for
the Condor . Firstly, we wanted a standard computer platform on which many research
robots could be built, all sharing the same base of controller software. Using a standard
bus ensures the availability of peripherals for interfacing analog to digital and digital to
analog converters, resolvers, and shaft encoders. Secondly, the amount of effort invested
in building and maintaining custom hardware is often disproportionate when compared
with the increased performance they provide. Most university robotics laboratories are not
staffed by hardware designers, but rather by researchers whose primary focus is robotics.
Hardware development is therefore best left to organizations that specialize at it.

We do not wish to imply that there is no place for special purpose hardware in robotics.
Time and space constraints and very tight performance requirements may necessitate cus-
tom VLSI implementations in certain cases. There is a trend nowadays toward using ASIC
based hybrid designs and special purpose DSP hardware to speed up critical computa-
tions involved in robotics. The Condor is sufficiently open-ended to facilitate the addition
of suitable hardware speedups as they become available. We feel such additions will be
useful if they are determined to be essential once the control algorithms have matured suf-
ficiently. Such chips are inadequate, however, to form the basis for an entire development
environment at an early stage.

1.2 Multi-micro processor based systems

Given the above remarks, there are a number of different “standard” choices on which
one could base a robot control development environment (see Leunget al. [1988] for a survey
of possible alternative designs). We feel the power delivered by present day microprocessors
is quite adequate for controlling most robots.

o Coarse parallelism. Robot control is characterized by a relatively small number of
computations that run in parallel, such as joint servo loops. Hence highly parallel
architectures are unnecessary.

e Efficient algorithms. The computational requirements for implementing robot kine-
matics, dynamics, and control algorithms are just not that severe [Hollerbach, 1988].
Current microprocessors are adequate for this task, and there is no need for special-
purpose architectures.

Other researchers who have echoed a similar view include Bisiani and Reddy [1982] and
Brooks et al. [1984].

Essentially, the Condor is comprised of a development host connected to a real-time
controller. The former offers all the facilities for program development while the latter is
a tightly coupled multi-microprocessor based environment. The Motorola 68020 processor
is used in both components of the system to insure a high degree of software and data
compatibility between them. When computational requirements increase, additional power
can be obtained simply by adding more processor boards to the system and repartitioning
the control algorithms.

Other researchers have also recognized the advantages that such multi-micro processor
based controllers can provide in terms of price, performance, and programming ease (Chen
et al. [1986], Paul and Zhang [1986], Kazanzides et al. [1987]). A recent survey article by
Gauthier et al. [1987] contains information on other robot control architectures based on
microprocessors. Our system differs from many of them in two important ways:

1. We attempt to avoid duplicating software and hardware components that can be
found on conventional, non real-time, systems.

2. We provide an extremely efficient computation environment.

Only the minimal set of features necessary to provide a reasonable and convenient environ-
ment were included. More complex facilities are always available from the host computer.
This insures highly efficient operation of the Condor ’s controller component.

For example, Kim, et al. [1987] describe a Multibus based real-time multiprocessor
system for controlling the Puma/RAL hand system. Their development environment runs
on one of the controller processors and provides access to disk and other system resources.
We chose not to use this approach for several reasons. Most importantly, we feel that
conventional computer systems offer superior file serving and user interface capabilities,
and we did not want to duplicate such facilities in our real-time system. Secondly, bus
bandwidth on the real-time system is best left for real-time uses; adding the development
host’s traffic on the same bus only exacerbates the contention for this resource.

2 The Hardware

Our hardware system is pictured in Figure 1. In this design, a Sun-3 system forms
the main development machine, while the real-time controller utilizes Ironics Corporation
Motorola 68020 based single board computers each equipped with a Motorola 68881 floating
point unit. The control processors are linked using a VME bus and are coupled to the
development host through a VME bus to VME bus adaptor. The real time bus is separate
from the bus on which the development host resides.

2.1 The Condor system hardware

There are a number of desirable features in this hardware design which we highlight in
the following discussion:

1. Industry standard interconnect: The high speed VME bus has become an industry
standard for control applications. The advantage of using such a standard bus is

M68020 M68020 M68020 M68020
M68881 M68881 M68881 M68881
VME-BUS
A/D and D/A
VME-VME Adaptor Boards
Sun-3/160 Utah-MIT Hand

Figure 1: Condor hardware block diagram

the availability of CPU and peripheral boards from a number of vendors. This is an
important capability needed for robots whose sensors and actuators often require a
diverse array of interfacing capabilities.

. Bus to bus adaptor: The bus-to-bus adaptor permits transparent access from the de-
velopment host into the dual-ported shared memory on the control microprocessors.
Downloading of control programs, for example, becomes equivalent to an array copy
operation. The adaptor also enables programs that collect data to run on the devel-
opment host with access to disk files, without interfering with the tasks involved in
real time control.

In an earlier version of our hardware, a DMA connection was used to communicate
between the host processor and the control microcomputers. The DMA connection
was found to be of limited use due to the high overhead of each transfer. Though
a DMA connection has the desirable property of isolating the connected buses when
transfers are not occurring, the performance overhead that this incurs in a real-time
control environment is unacceptable. In particular, a DMA connect precludes shared
memory pointer access from one system into the other. Though message passing over
the DMA link can be used to move data rapidly, a shared memory access incures
much less overhead, and is desirable in many controller applications.

4

We decided to use a bus to bus adaptor to connect the development and real time
hosts because communication hardware like RS-232 serial lines, or parallel interfaces
would have been too slow and devices like ethernet controllers would have required
too much overhead to set up and complicated software to be utilized effectively.

. Real time host and development host compatibility: Both the Sun-3 and the Ironics

computers are based on the same Motorola 68020 microprocessor. This avoids the
need for cross-compilers and special-purpose linkers and loaders. This also enables
debugging of most programs on the development host, which reduces time spent in
the download, run, debug cycle. The separation of the real time and development
environments has also allowed us to optimize the former for extreme efficiency and
the latter for ease of writing and debugging control programs.

. Speed of the single board computers: The individual microprocessors are fast proces-

sors, and coupled with a floating point engine they provide a much faster environment
for scientific and control computing. We decided against some of the more recent RISC
CPU’s and other products under development primarily because of software consid-
erations. The Condor needed to be based on stable optimizing compilers and needed
to have an environment which could be programmed in a conventional programming
language.

. Development host: The Sun-3 development host provides a very good environment in

terms of bit-mapped graphics, an industry standard window system, and a transpar-
ent compiler (in the Muse a cross compiler had to be used) that generates compact
code. Code that runs on the controller processors can typically be run on the Sun-3
development host without recompilation. Simply relinking the procedures with a Sun
version of the run time library is all that is required.

Based on our experience with two versions of our design, we outline below hardware
capabilities that we view as important for any architecture proposed for a multi-micro
processor based robot controller.

(a)

(b)

(c)

(d)

Support for a mailbox interrupt: This capability is used for message passing based in-
terprocessor communication. It provides the mechanism for one processor to interrupt
another, indicating that a message is being sent between them.

Dual ported memory: used for interprocessor communication, shared data structures,
and host to microprocessor utilities. Allows highly efficient access of shared data,
unlike a DMA, parallel, serial or ethernet connection which necessitates transfer of
data.

Interrupt generation unit: used for interprocessor communication between micropro-
cessor and host computer. Provides a mechanism for the microprocessors to interrupt
the Sun, which lacks the mailbox interrupt mechanism.

Floating point unit: eases development of control code.

(e) Timer interrupt generator: used for control loop scheduling. Generates a regular
interrupt source for use in executing control code.

(f) Test and set instruction: used for interprocessor communication. Allows multiple
processor to access shared data structures in a controlled fashion.

3 System Software

An important part of any computational architecture is the software that is available to
run on the hardware. The previous comments regarding flexibility and efficiency of robot
control hardware apply equally as well to the software components. In this section we will
provide an overview of what we feel are the innovative aspects of this part of the Condor
system.

The design goals of the software system were to:

(a) provide a flexible environment in which control programs can be written, debugged,
and run,

(b) provide efficient and low overhead means of doing often repeated tasks,

(c) provide easy to use programmer libraries for data transfer hardware, and for real-time
interaction with robotic devices, and

(d) provide a user interface with bit-mapped graphics.

To achieve these goals, the Condor system is structured around a few relatively simple
organizing principles. In a typical program development scenario, the user is expected
to write and compile a program on the development Sun-3 host. Since the Sun runs the
Unix operating system!, the programmer has access to all the standard Unix software
development tools. Once the program has been compiled, it is linked with the real-time
library, and then downloaded onto the slave microprocessors for execution. The run-time
environment provides the user with access to a number of program libraries for performing
common tasks in a portable manner. For example, libraries are provided for control loop
scheduling, file serving, and plotting data, to name just a few. Besides these, libraries are
also provided for mathematical and control computations.

Thus, the Condor environment is two different environments. First, there is an environ-
ment on the Sun known as the development environment, and then there is the run-time
environment for both the Sun and the slave microprocessors. Much effort has been put
into making the Sun and the slave microprocessor run-time environments as compatible as
possible. In fact, most programs that run on the real-time controllers will run on the Sun
simply by relinking them with the appropriate library.

The hardware architecture is tightly-coupled, and is a true MIMD machine. As such,
it requires a program to be partitioned into segments that can run on multiple processors.
Our approach to managing this multiplicity problem in terms of software engineering has

"Most of our system software runs on Sun 0S versions 3.4, which are closely compatible with and are
based on Berkeley 4.2 BSD Unix.

been to largely ignore it. The number of processors in a Condor system rarely exceeds five
or six and we do not expect this architecture to be applied to problems requiring more than
a dozen processors. In essence, the course-grain parallelism applied to control programs is
managed by the programmer directly.

Typically, control programs can be partitioned fairly easily. For example, in the digital
controller for the Utah-MIT Hand, one processor is dedicated to controlling two fingers.
Should the controller’s complexity increase to the point where one processor is required to
control each finger, a manual repartitioning of the computations would be required. By
careful use of message passing, however, it is possible to design code that can easily be
reconfigured for different partitioning schemes. Managing the different programs that need
to run on the different processors can be done with a few simple rules of thumb and with
existing software tools like make.?

Thus, the Condor system as a whole consists of

(a) a tightly coupled MIMD processing engine, linked to a Sun with a VME-VME memory
mapped adapter,

(b) Sun window based interface to the microprocessor controllers,
(c) Sun window based plotting and other analysis tools,

(d) a Sun version of the run-time library, and

(e) a microprocessor version of the run-time library.

The following sections provide an overview of some of these components in more detail.
More detailed documentation on these functions can be found in the working paper titled
The Condor Programmer’s Manual (Narasimhan et al. [1987]).

3.1 Devices

Interacting with robots usually requires interfacing a controller to various input and
output devices. Most robots have idiosyncratic front-end controllers, and the array of
sensors connected to them is diverse. A computational architecture must support both
easy hardware interconnections and easy software interface to these external devices. Since
the Condor is based on the VME bus, hardware interfacing is straightforward. Software
integration utilizes a device switch structure modeled after the system used by the Unix
kernel.

The design of the device system was motivated partly by experience. In the Muse ,
there was no systematic way of accessing devices. What existed was an ad-hoc interface
between the Unix-style read and write calls and various device specific routines for the
controller interface hardware. To use a parallel port board a user had to know its particular
initialization routine, and often needed to know such details as the device’s control register
address. In the Condor we replaced this with a clean design from the lowest level.

’make is a Unix utility for managing programs built from a number of different modules.

The Condor real-time environment was designed to provide an extensible way of writing
device drivers. The low level details of a device, including its register formats and interrupt
mechanisms, are abstracted from user code and hidden within the device driver. The
trick was to keep the device drivers highly efficient, while providing the necessary level
of abstraction to free user code of low level details. The added expense incurred by a
standard operating system’s device driver mechanism would not be acceptable in our real-
time controller environment.

The Condor system’s device mechanism is designed to be extremely fast and portable.
The mechanism is static. No support for dynamic loading of device drivers is provided,
which necessitates recompiling the system libraries each time a new hardware device is in-
stalled. The overhead associated with recompilation is significantly lower than the overhead
and complexity associated with any dynamic loading scheme.

These mechanisms provide functions that:

(a) automatically initialize devices,

(b) handle interrupting devices,

(c) handle shared interrupt vectors,

(d) emulate system calls like open, read and write, and

(e) handle devices that may require more than the standard read and write style accesses.

Though the mechanism is modeled after the style found in early versions of Unix, there
are a few significant differences. Each device is essentially modeled as an abstract data
type, on which a few standard operations can be performed. When such a device is opened,
an integer object called a file descriptor is returned whose semantics are close to that
of the conventional Unix file descriptor. This object can be used as an argument to other
operations that are performed on the device.

The following code fragment shows how a parallel port is opened, and used:

int
parallel_port_startup(board_number)
int board_number;
{
int fd;
if((fd = open(‘‘:mpp’’, board_number, 2)) < 0){
printf(‘‘Couldn’t open device?\r\n’’);
exit(0);
}

/* Reset the board */
mpp.reset(fd) ;

/* Configure the board to be in raw 16-bit mode */

mpp_config_16bit_raw(fd);

/* return the fd, so that the user can use it later */

return(fd);
}
parallel_port_read(fd, buffer, count)
int f4; /* fd associated with the board */
short buffer[]; /* Buffer passed in by user */
int count;
{

register int i;
short value;

for(i=0;i<count;i++) {
/* Perform the read 16 bits at a time */
buffer[i] = mpp_read_16bits(fd);

}

return(count) ;

}

parallel_port_exit(fd)
int fd;
{
return(mpp.close(£d));
}

As the above example illustrates, each device has an open routine and a close routine.
There is one system-specific configuration file that tells the run-time system the types of
devices that may exist. The Condor run-time system will determine upon startup, which
of those possible devices are actually present and initialize them using their device specific
init routines. This is analogous to the probe routine, used by Unix systems.

Device independent operations like open, read, write, and close are mapped to device
specific routines using the supplied file descriptor and the device switch mapping table. In
addition, a device-specific buffer is allocated for each opened device, and contains data that
is used internally by the device system. The lower level interrupt routines operate on these
device-specific buffers.

There are a number of operations performed on devices that do not easily fall into the
Unix read and write paradigm. The standard Unix way of handling such unusual devices
is to overload the ioctl system call. In the Condor system we chose to use the following
conventions, and in practice, this has proved effective.

1. Device specific routines are uniquely named by prefixing the routine with the name
of the device (for example, a routine for configuring the mpp device will be called mpp_
configure).

2. Routines that are peculiar to a device will take the file descriptor as the first argument
and map it to a device specific structure. Once the mapping has been made the driver
can perform any necessary operations. This essentially provides entry points into the
device driver bypassing the standard device structure, and eases the task of writing
modular device drivers.

The device driver interface also provides the low-level glue for the interrupt mechanisms,
the file server interface, and the buffered input and output libraries (commonly known as
stdio under Unix).

3.1.1 Interrupts

Another capability that control system architectures require is servicing interrupts in
real-time. These interrupts usually correspond to events that require attention, or periodic
interrupts from timers.

The VME bus provides support for eight levels of prioritized vectored interrupts, and
the Motorola 68020 processor has the capability to support 256 different interrupt vectors.
Interrupts on the VME Bus are vectored, in contrast to the Multibus which typically
supports only non-vectored interrupts. The Multibus-II supports a different notion of
interrupts which essentially increases the number of different levels of interrupt available
on the bus, and is in some ways more desirable than the scheme supported by the VME
bus. However, VME bus compatibility with the Sun-3 hardware was considered to be more
important.

In real-time control, interrupts can come from a variety of sources: interval timers,
analog to digital and digital to analog converters, parallel and serial devices, etc. A uniform
way in which all interrupts are handled is indispensable in a development system. In the
Muse , interrupts were handled using a number of different stubs all written in assembler.
In the Condor , all interrupt vectors map to the same higher level routine. The system has
a software data structure that maps vector numbers to interrupt servicing routines. This
data structure is used to map incoming interrupts to their appropriate servicing routines.
This scheme has resulted in a single assembler routine that services all interrupts.

There are a few complications that the system must handle. A raw interrupt event
must be mapped to a file descriptor corresponding to a device. Since the Condor is not
multi-tasking, no distinction exists between system space and user space. When a serial
port interrupts the system, the device generic interrupt handler must determine which serial
driver’s input buffer should receive the character.

The problem is further complicated by shared interrupt vectors, where multiple devices
can interrupt the system with the same interrupt vector. The Condor system solves this
complication by maintaining a list of all devices that receive interrupts on a particular
vector. When more than one device uses the same interrupt vector, the Condor system maps
this interrupt vector to a generalized device-level interrupt vector. This routine searches a
list of interested devices and invokes the interrupt routine of each of those devices one by
one, polling the possible choices.

10

3.2 Scheduling

Real time control involves scheduling events at specified servo rates. For example, most
robot control involves loops that read data from analog to digital converters, perform some
control law computation, and then write out computed values to the actuators using digital
to analog converters. These low level control loops need to be scheduled so as to run at
specified sampling rates. The Condor provides two such mechanisms by which servo loops
can be scheduled on the real time microprocessors. Both mechanisms rely on scheduling at
the C procedure level; the user has the ability to specify that a particular C procedure has
to be executed at a specified rate. Other systems that provide scheduling at a higher level
(task or process level) suffer from higher task-switching overhead and hence lower real-time
performance.

3.2.1 Simple Servos

The simple mechanism for scheduling servo loops on the Condor provides support only
for two running tasks on a single Condor micro processor. One of these tasks is the control
loop that is scheduled to run at a specified rate, while the other is a background task that
runs whenever the control loop is not running. This background task is usually dedicated
to running a command loop that interacts with the user, and can perform various functions
like enabling or disabling the real time task. The background task can also reschedule the
real time loop to run at different rates. This simple mechanism has very little overhead.

3.2.2 The MOS

For users that need to schedule more than one real-time loop to run on a single Condor
microprocessor, a more complex interface called the MOS is provided.

This second set of library routines allows a processor to run various control loops at
different rates, in a highly efficient manner. Since a typical hand control program will have
several servo loops running at rates in excess of 400 Hertz, it is important for each scheduler
invocation to be fast. To achieve this, scheduling flexibility has been limited to minimize
the execution overhead that it requires. In fact, it is a gross overstatement to call this an
operating system. It is, in fact, just an efficient utility for programming a system timer and
for starting procedures based on precomputed rate information.

To minimize execution overhead, the MOS is table driven. An event table is automat-
ically generated by the system when the mos_start command is issued. This table lists
the elapsed time between invocations of the scheduled servo loops. For example, the event
table for two servo loops, one running every ten seconds and the other running every five
seconds, has two entries. The first entry indicates that both loops are to start, and five
seconds elapse until the next event. The second entry indicates that the five second loop
should start, and another five seconds are to elapse before the next event. After this, the
cycle repeats, and the first entry of the event table is reused.

With the system outlined so far, it is possible for more than one loop to be runnable at
the same time. The system must have an orderly method for selecting the actual loop that
will be run from the set of runnable loops. A process table is maintained for this purpose.

11

All the tasks in the system are arranged, in order of decreasing servo rate, in this table.
When the event table indicates a loop is ready to run, it is marked runnable in the process
table. The system then searches down the process table, and starts the fastest rate loop
that is marked runnable.

The time to the next event stored in the event table is loaded into a timer on the
processor. When the time has elapsed, the running task is interrupted, and the scheduler
is reinvoked. The next tasks in the event table that are scheduled to start are marked
runnable in the process table. If a loop with a speed slower than the interrupted loop is
made runnable, the interrupted loop will be resumed. If a higher speed servo loop is made
runnable the slower loop that was interrupted will be temporarily suspended, until higher
speed loops that are runnable complete.

An implication of assigning a priority to a process based on its rate is that a loop can
only be interrupted by a higher speed loop, and hence, no coprocessing can take place.
This is not considered to be a problem. The rate specified for a servo loop is a request that
the loop be run that number of times a second. The exact time that a loop is invoked is
not important, as long as it is runs within its specified time slice. In other words, a loop
scheduled to run every second is only a guarantee that the loop will run sometime within a
second. A finer precision in selecting the time at which a procedure will run is not needed
within our control programming scenario.

Eliminating coprocessing results in a convenient simplification to the system; only one
stack need be maintained for all the servo processes running on a processor. Stack pointers
are not changed when a new process is invoked, or a suspended process is resumed.

When a loop terminates, the scheduler is also invoked. The terminating loop is marked
idle in the process table, and a new loop is selected to run. If no servo loops in the process
table are runnable, the background job is activated.

We have found that the mechanisms described above satisfy most of our requirements
when it comes to scheduling real time servo loops on the Condor .

3.3 Message Passing

While device drivers and other utilities provide support for bootstrapping and running
a program on a single processor, the Condor message passing system addresses the issue of
multiple processors and communication between them.

The message passing system provides a simple and low-overhead manner in which com-
munication of data can occur between multiple processors, and between processes on the
Sun. Since robot control is always compute bound, a system for communication between
such tasks has to be extremely time-efficient. The primary design goal of the Condor
message passing system was therefore efficiency.

Interprocess communication for robotics, as mentioned by Gauthier et al. [1987], has
been tackled in a variety of ways. Architectures based on RS-232 serial lines and parallel
ports rely on framed protocols while those based on ethernet devices rely on packet switched
protocols for their communication needs. In tightly coupled systems, shared memory based
schemes are more popular than message passing schemes.

The present system is to a large extent a redesign of the system described in Narasimhan

12

et al. [1986], which was more flexible but less efficient. The newer implementation essen-
tially uses shared memory to implement a highly efficient message passing based scheme.

3.3.1 Messages

Since the Ironics processors and the Sun host computer are all bus masters on a common
VME bus, each machine has access to each other’s dual-ported memory. Interprocessor
communication occurs over the bus and uses shared memory. This allows any processor to
directly access data in another processor’s memory. The most basic form of interprocessor
communication possible would be direct memory reads and writes. Unfortunately, while
this unrestricted access is highly efficient, it is hard to control.

To overcome the problems of unrestricted memory access, a mailbox-based message
passing system is supported. Mailbox interrupts can be thought of as a software extension to
the processor’s hardware level interrupts. Another way of thinking about them conceptually
is to regard mailbox numbers as port numbers that map to specific remote procedure calls.

A mailbox interrupt has a vector number and a handler routine. When a particular
mailbox vector arrives, its appropriate handler is invoked. The handler is passed the proces-
sor number that initiated the mailbox interrupt and a one integer data value. This integer
data value is the message’s data3.

The message passing system in the Muse was substantially more complex. Messages
could be of arbitrary size, and they were addressed to virtual devices that corresponded to
the mailbox handler routines in the present version. These handler routines were assigned
to processors by a preprocessor that took as input an assignment file, that configured the
routines available on each processor. The preprocessor then generated a routing table that
had to be linked in with each program. The routing table mapped a virtual device number
to a processor that could handle the function. The Condor redesign was done because the
complexity and the overhead of the earlier system prevented most control programs from
using message passing.

An important capability that the earlier implementation lacked was the ability to reply
to messages. A program could not determine if a particular message succeeded or failed.
Implementation of messages with replies could be done in the Muse only through an ad-hoc
mechanism that was very inflexible. The Condor provides support for messages with or
without replies. The implementation uses a reverse send from the recipient processor to
the sending processor to acknowledge the receipt of a message. The implementation has
been written carefully to be reentrant so that nested sends will work correctly.

The following example illustrates the basic facilities provided by the system. In the
example, a message will be sent to a handler to read the value of a memory location.
The location to be read is passed to the handler as the data portion of the message. The
reply from the handler is the contents of that memory location. The code fragment for the
handler would be:

simple_reference(proc, data)
int proc;

3Integers are currently any 32 bit data quantity.

13

int data;
{
return(*(unsigned int *)data);

}
The handler is associated with a vector number using mbox_vector_set:
mbox_set_vector(12, simple_reference, ‘‘A test handler’’);

Now, any message sent to this processor for vector 12 will be handled by the simple_decoder
handler.

Another processor can invoke the decoder by using the mbox. send routine. If the
simple_reference routine is available on processor 0 one can execute the following piece
of code on any of the processors (including 0 itself) to invoke the service.

value = mbox_send_with_reply(0, 12, address);

This will cause the handler that corresponds to the number 12 to be invoked on processor 0
with the second argument being address. The call will not return until the other processor
has responded with the value found at the given address. This call can be used to provide
synchronization. For services that do not require synchronization, and hence do not return
a value, the mbox_send call can be used.

In summary, the following are the key features of the message passing system:

(a) Since message sending happens asynchronously, the execution of a handler resembles
an interrupt. Real time computation is based on a timer interrupt whose priority is
higher than that of the mailbox interrupt. Consequently, mailbox handlers have to
be written so as to be interruptible.

(b) The base system is extensible in the sense that more complicated protocols can be
built on top of it. For example, the underlying system does not support queueing of
messages, although one can easily build one for mailboxes that require this.

(c) Since the message system is based on shared memory, sending long messages is usually
handled by sending a pointer to the beginning of a long piece of data.

(d) Where efficiency is important, the message handling system can be used to set up
pointers from one processor into another’s memory. The processors can read and
write this shared memory, without the minimal overhead of message passing.

Message sending and the invoking of message handlers is implemented using a mailbox
interrupt which is a hardware interrupt that is invoked by writing into a particular memory
location in a processor’s memory. This hardware support is critical for the implementa-
tion’s efficiency. To protect the integrity of certain critical data structures the test-and-set
instruction is used. It is important that this instruction be supported truly indivisible by
the hardware across the bus.

14

Table 1: Performance of the Message Passing System. (R) refers to messages with replies.

Type of Operation Msecs/Message
Ironics to Sun 34+5
Ironics to Sun (R) 38+ 10
Sun to Ironics 3.9+0
Sun to Ironics (R) 4010
Ironics to Ironics 02£0
Ironics to Ironics (R) 025+0

3.4 Support for Message Passing on the Sun

The Sun development host supports the same primitives for message passing available
on the control microprocessors. Any number of processes on the Sun may communicate
with each of the slave processors using the message passing protocol.

A message that arrives on the Sun must be mapped to a particular Unix process that can
handle it. While each microprocessor is thought of as a single message-receiving processor,
the Sun supports the notion of virtual processors. Each Sun process that receives interrupts
is assigned a unique hardware interrupt vector. Each process on the Sun which participates
in message passing must register itself with the Sun kernel, indicating which hardware
interrupt vector corresponds to its messages. When a slave processor interrupts the Sun
it does so using this vector. The Unix kernel traps on this interrupt vector and signals all
processes that have expressed an interest in receiving the interrupt.

From the Sun, the Condor system maps the entire VME bus 24 bit address, 32 bit data
(VME24D32) space into the user address space of the control process. Memory references
to any of the control processor’s memory, or to the additional one megabyte memory board
allocated in the VME backplane for Sun use, become simple array references. The PROC_RAM
macro returns a pointer to the beginning of memory for the particular processor. For
example, to write a value to location 100 in processor 3’s memory one would use the
following code:

(int *) (PROC_RAM(3));
value;

int *processor3_ram
processor3_ram[100]

The PROC_RAM macro is also used for programs running on controller processors to access
memory of other Ironics processors. The code above would work, in fact, on any processor
in the system.

Table 1 summarizes the performance of the message passing system as benchmarked
by a variety of routines. As can be seen from this table, the performance of the message
passing system is extremely fast between two control processors. The slower speed for
messages sent from the control processors to the Sun host is caused by overhead present in
the Unix timesharing operating system.

It should be noted that the message rates are not as high as servo rates. Consequently,
messages are used only as signals to start and stop processes or control the flow of compu-
tation and are not used as timing pulses.

15

3.5 Message Passing and its Implication for Control

Using the facilities provided by the message passing system it is possible to treat a
hierarchical controller as an object-oriented system that responds to control messages. For
example, a low-level joint PID controller could be described as an object that responds
to two different kinds of messages: messages that alter internal parameters like gains and
position set points, and messages that control the execution of the servo loops. Using this
scheme, any processor, including the Sun host, can control the execution of any servo loop
in the system.

3.6 Higher Level Protocols

The Condor system requires the concurrent operation of several control microprocessors
to perform its tasks. Programming such a complex MIMD machine would certainly be a
nightmare were it not for the numerous services that were built on top of the base system
using the message passing facilities. These services provide flexible interaction with a
number of slave microprocessors at a time, file server capabilities on the development host,
and symbolic debugging.

3.6.1 Debugging with ptrace()

One of the most important utilities in the system is the symbolic debugger. To imple-
ment a debugger in a flexible manner it was decided to emulate the Unix ptrace system
call. Ptrace is used by Unix debuggers to examine registers, set breakpoints, and con-
trol program execution of a slave process. Our emulated ptrace is linked into all control
programs as part of the standard library.

The emulated ptrace communicates with the Sun-3 development host using the message
passing system. For example, if the Sun-3 host wishes to examine a control program’s
registers, it would send a message down to the processor’s ptrace handler. The ptrace
handler would reply with the desired information. The debugging program runs on the
development host. Only the low level ptrace routine runs on the microprocessors. It is
conceptually useful, therefore, to think of debugging messages as being passed between
two processes; a slave ptrace process that runs on the control microprocessors and the
debugger that runs on the development host.

By emulating the low level ptrace call, almost all Unix based debuggers can be adapted,
with little modification, to debug programs on the controller microprocessors. Currently
the Condor uses the Gnu Debugger (GDB). This debugger provides fully symbolic, C source
code level debugging tools. It has been used to debug high level application programs, and
to find and fix low level system bugs.

The debugger can be used in three basic modes. The first allows the user to start
executing a program directly under the debugger’s control. This is done by beginning the
execution of a downloaded program at a different location that transfers control to the
debugger instead of the usual start point. The program can then be single stepped or
continued by the debugger on the development host.

16

The second mode may be used when a bug is actively being tracked down, and when
setting initial break points might be necessesary. This mode allows the debugger to be
attached to a processor after execution has begun on the control microprocessor. For
example, if a program were in an infinite loop, the debugger could be attached to the
running program to determine what went wrong,

The third mode is used by default when a program receives a fatal exception that is
considered to be a debuggable error. For example, addressing errors, bus errors, and various
floating point exceptions would cause the errant program to be stopped. Control would be
transferred to the ptrace slave process which will then wait for a debugger to be invoked
on the development host.

Once the debugger has attached to a process on the slave control processor, all the
capabilities of the debugger can be used to debug the program running on the remote
host, just as if it were running on the development host. This scheme permits the best
debugger available on the development machine to be used on programs running on the
control microprocessors with very little effort.

3.6.2 File Serving

Control programs often need access to data stored in files. Experimental data collected
during experiments also need to be stored in disk files to facilitate further analyses. To allow
these types of access, a file server protocol, built using the low level message passing system
is provided. From a control program point of view, the standard Unix file operations are
available, both buffered and unbuffered. Typically, each file operation results in a message
being sent to the Sun, where a server process performs the equivalent Unix file operation.
The result is then sent back to the microprocessor as a reply.

To make the file server efficient, shared memory is extensively used to avoid copying
data. When a microprocessor performs a read or a write, the file server process running
on the Sun reads or writes the data directly to or from the microprocessor’s memory. No
intermediate data copy is required. To perform a read, for example, the microprocessor
would send a message to the Sun giving the address to read the data into, and the number
of bytes to read. The data is directly transferred into the processor’s buffer.

The file server is designed to operate in a stateless manner. All necessary data is stored
on the microprocessor. The Sun server does cache some information, but if necessary, it can
request the information from the microprocessor. Thus, even if the Sun file server process
were to be terminated and restarted, the microprocessor can continue its operation without
interruption.

3.6.3 Virtual Terminals

Many microprocessors are used in a Condor system. The Sun-3 host computer provides
a window-system based interface to access these computers. One window for terminal
input and output to each computer is provided. A virtual terminal protocol, built using
the message passing system, routes data between the Sun and the microprocessors. This
avoids the bank of terminals that would otherwise be connected to the real-time controller.

17

The virtual terminal protocol works in both directions. The Sun can send a message to
a microprocessor that contains an input character. The character is added to the terminal
input queue by the virtual terminal message handler. Each character is sent in one message,
since transfers in this direction are limited by the rate at which a person can type.

Terminal output from a microprocessor to a Sun virtual terminal window is sent in
blocks, and not one character at a time. The output message contains a pointer into
the terminal driver’s memory, and the number of characters to output. Such a virtual
terminal protocol allows a programmer to have independent windows assigned to each of
his processors through which he can interact with each of his programs running on those
processors.

3.7 The Condor User Interface

Figure 2: The Condor running under the X Window System

The file server, debugger and virtual terminals combined together form the Condor user
interface. This program is an X-window system based application that programmers utilize
to interact with the slave microprocessors. The user interface provides one virtual terminal
for each slave processor, it runs a file server, and it can start debuggers and other programs.
Figure 2 shows the screen of a typical Condor user interface session. This user interface
program provides the capabilities most needed in a typical debugging, development session.
Currently, we have been using X Release 10 for such programs. In the future, we expect to
be using Release 11 which is expected to become the industry standard for window systems.

18

4 Controlling the Utah-MIT hand

In this section, we provide a short overview of how the Condor is used to control the
Utah-MIT hand, an advanced robot that has been developed by the Center for Engineering
Design at the University of Utah and the Artificial Intelligence Laboratory at the Mas-
sachusetts Institute of Technology to study issues involved in machine dexterity. There
have been a series of papers published on different aspects of this project; on design and
construction of the hand (Jacobsen et al. [1984] and [1986]), on low-level control issues
(Biggers et al. [1986]), on algorithms for force control (Hollerbach et al. [1986], and on
tactile sensor design and construction (Siegel et al. [1987]).

4.1 The Controller Hierarchy

Object Stiffness

Trajectory Specs

l

Hand Primitives

Higher Level Control

FingerTip : :
Tip trajectory Joint Positions/Torques
Forces
Finger Level Joint Joint Torque | pDesired | Tendon Tension| To
Level
Control Torques eve Tensions Level Actuators
' ' I From
Sensors

Figure 3: Block diagram of the controller

The block diagram for the current controller hierarchy is indicated in Figure 3. The
lowest level in the hierarchy is formed by the tendon space controller that takes as input
the torque that needs to be exerted at the joint level. This level converts the torque to two

19

desired tendon tensions, appropriately rectifying and filtering the output to the actuators,
as needed. The next level is formed by the joint torque servos that take as input either joint
positions or joint torques. This level computes the torques that need to be exerted by the
hand’s joints, to achieve particular positions or torques taking into account the coupling
between the various joints.

A higher level of the controller currently can operate in one of two modes; In the first
mode, it takes as input hand primitives which are motion specifications of a number of
the hand’s joints. This level of the controller then converts these primitives to a stream of
joint angle trajectories, to be achieved by the lower level controller. The user can directly
specify these trajectories too. In the second mode, this level of the hierarchy takes as input
a desired grasp stiffness matriz. Using this matrix, it can compute the torques to be exerted
at the joints to correct for deviations from an expected grasp position of a grasped object.

4.2 Controller Implementation

The current controller implementation uses four processors. One processor is allocated
for performing the joint-torque and tendon tension level servoing of eight joints at 400
hertz. Another processor is dedicated to controlling the zyz table. The fourth processor is
a master controller.

An abstraction similar to that used for device configuration is also used for configuring
the hand control programs. There is one central configuration file, which specifies which
joints are allocated to which processor. This configuration file also specifies which A/D’s
and D/A’s are allocated to a particular joint. This permits hand control programs to be
developed in a modular fashion. Changes in hardware occur in terms of changed con-
nectors, boards, and hardware addresses. To cope with these changes, no changes to the
actual control programs is necessary. All that is needed are small changes to the controller
configuration file and recompilation of the hand controller system.

The trajectory generator currently executes at 50 Hz on the master processor. Besides
executing this slower loop, the master processor also performs a number of other functions.

(2) It forms the primary interface to the Sun-3, to load and save entire sequences of
motions.

(b) It provides a sophisticated user interface to the user, where a user can select a subset
of joints to monitor at any given moment. The required controller variables can
be tuned from this level, and the status of the hand at any given moment can be
ascertained.

(c) Controlling the execution of the servos on the slaves. Using the message passing
system, it can enable or disable servos on the other processors, find out their status,
or restart errant programs.

Besides the actual real-time programs, the hand control environment also comprises of

programs that run on the Sun-3. These programs include a real-time plotter that allows a
user to monitor any of the controller variables in real time, and a kinematic simulator that

20

can be used to generate input to the trajectory generator running on the master processor.
We have also concluded implementing an RPC based interface to such a controller that
enables trajectories to be enqueued from a Lisp Machine.

5 Conclusion

This paper has described a controller architecture suitable for the demanding compu-
tational tasks of robots like the Utah-MIT hand. Efficiency and convenience are the key
features that distinguish this controller from other real-time systems; the Condor lacks the
bells and whistles that lead to inefficiency that are present in many real-time architectures,
but it provides convenient and powerful mechanisms for code development. Since the hard-
ware is built out of standard components, such a system can be built relatively easily. We
hope that this will allow other robotics researchers to concentrate on the tasks they wish
to be spending time on, by reducing the time they currently spend on designing, building
and debugging custom hardware for robotics related projects.

To summarize, the Condor software includes the following key features:

(2) No dynamic loading of device drivers.
(b) An efficient servo-loop scheduler for tasks that need such a facility.

(c) Efficient low level communication primitives built upon a shared memory hardware
base.

(d) Easy methods for circumventing message passing when even higher speed communi-
cation is required.

(e) Implementation of stdio for both terminal devices and disk files.
(f) Efficient mathematical and control library routines.
(g) Built in support for debugging.

The hardware redesign described in this paper reflects our technical experiences with
the earlier Muse architecture; the software has been made more streamlined, portable and
efficient, and the environment has been enhanced. During the past year, we have been
actively using the Condor for program development. We are now reasonably satisfied that
the Condor provides a researcher with the flexibility needed to write programs that are
typical of advanced robotics research, without sacrificing performance.

6 Acknowledgements

This report describes research done at the Artificial Intelligence Laboratory of the Mas-
sachusetts Institute of Technology. Support for the AI-Lab’s artificial intelligence research
is provided in part by the Office of Naval Research University Research Initiatives Contract
N00014-86-K-0180 and the Defense Advanced Research Projects Agency under Office of
Naval Research contracts N00014-85-K-0124.

21

The authors would also like to acknowledge the contributions made by the following
people to the building of the Condor system. The first version of our architecture was
based on work done for the Concert Project under Prof. Halstead at MIT’s Real Time
Systems Group. David Kriegman wrote the first version of our message passing system.
David Taylor wrote the evh (exception vector handler) device to trap unhandled vectors on
the Sun-3, and wrote the ptrace/wait emulator, which helped in porting the debuggers to
our environment. Steve Drucker wrote some of the early X 10 code, and has always been
around to help us deal with all the cabling.

7 References

1.

10.

Biggers, K. B., Gerpheide, G. E., Jacobsen, S. C., “Low-level control of the
Utah-MIT dextrous hand,” IEEE Conference on Robotics and Automation, pp. 61-66,
San Francisco, April 1986.

. Bisiani, R., and Reddy, R. “Workshop on Computer Engineering for Robotics”,

The Robotics Institute, Carnegie-Mellon University, Pennsylvania, October 1982.

. Brooks, T., and Wilcox, B., “Workshop on the Application of VLSI for Robotic

Sensing”, Jet Propulsion Laboratory, Vol. 1, March 1984.

Chen, J. B., Fearing, R. S., Armstrong, B. S. and Burdick, J. W., “NYMPH:
A Multiprocessor for Manipulation Applications,” Proc. IEEE International Confer-
ence on Robotics and Automation, pp. 1731-1736, San Francisco, April 1986.

. Gauthier, D., Freedman, P., Carayannis, G., and Malowany, A. S., “In-

terprocess Communication for Distributed Robotics,” IEEE Journal of Robotics and
Automation, Vol. RA-3, No. 6, pp. 493-504, 1987.

. Hollerbach, John M., “Kinematics and dynamics for control,” in: SDF Benchmark

Volume on Robotics, M. Brady, ed., MIT Press, Cambridge, Massachusetts, 1987, in
press.

. Hollerbach, J. M., Narasimhan, S., Wood, J. E., “Finger force computation

without the Grip Jacobian,” IEEE Conference on Robotics and Automation, pp. 871-
875, San Francisco, April 1986.

. Jacobsen, S. C., Woad, J. E., Knutti, D. F., Biggers, K. B., “The Utah/MIT

Dextrous Hand: Work in Progress,” Robotics Research, MIT Press, pp. 601-653,
Cambridge, MA, 1984.

. Jacobsen, S.C., Iversen, E.K., Knutti, D.F., Johnson, R.T., and Big-

gers, K.B., “Design of the Utah/MIT Dextrous Hand,” Proc. IEEE Conference
on Robotics and Automation, pp. 1520-1532, San Francisco, April 1986.

Kazanzides, P., Wasti, H., and Wolovich, W. R., “A Multiprocessor System for
Real-Time Robotic Control: Design and Applications”, IEEE Conference on Robotics
and Automation, pp. 1903-1908, Raleigh, NC, April 1987.

22

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Kim, J. J., Blythe, D. R., Penny, D. A., Goldenberg, A. A., “Computer
Architecture and Low Level Control of the Puma/RAL Hand System: Work in
Progress,” IEEE Conference on Robotics and Automation, pp. 1590-1594, Raleigh,
NC, April 1987.

Leung, S. S., and Shanblatt, M. A., “Real-Time DKS on a Single Chip,” IEEE
Conference on Robotics and Automation, pp. 453-456, Raleigh, NC, April 1987.

Leung, S. S., and Shanblatt, M. A., “Computer Architecture Design for Robotics”,
IEEE Conference on Robotics and Automation, pp. 453-456, Philadelphia, April 1988.

Lozano-Perez, T., Brooks, R. “An approach to Automatic Robot Programming,”
Artificial Intelligence Laboratory Memo AIM 842, MIT Artificial Intelligence Labo-
ratory, April 1985.

Narasimhan, S., Siegel, D. M., Hollerbach, J. M., Biggers, K. B., Ger-
pheide, G.E., “Implementation of Control Methodologies on the Computational
Architecture for the Utah/MIT Hand,” IEEE Conference on Robotics and Automa-
tion, pp. 1884-1889, San Francisco, April 1986.

Narasimhan, S., Siegel, D. M., “The Condor Programmer’s Manual - Version 1,
A. I Lab. Working Paper No: 297, July 1987.

Paul, R. P., and Zhang, H., “Design of a Robot Force/Motion Server”, IEFFE
Conference on Robotics and Automation, pp. 1878-1883, San Francisco, April 1986.

Salisbury, K., “Kinematic and force analysis of Articulated Hands,” Ph. D. Thesis,
Department of Mechanical Engineering, Stanford University, July 1982.

Siegel, D.M., Narasimhan, S., Hollerbach, J.M., Kriegman, D., Gerpheide,
G., “Computational Architecture for the Utah-MIT Hand,” IEEE Conference on
Robotics and Automation, pp. 918-925, St. Louis, March 1985.

Siegel, D.M., Garabieta, I., Hollerbach, J.M., “A capacitive based tactile sen-
sor,” Proc. of the SPIE Conference on Intelligence Robots and Computer Vision, pp.
153-161, Cambridge, MA, September, 1985.

23

