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1. Introduction

This paper is about vision for a mobile robot. It is about how to build a computationally
cheap robust vision system which delivers data for obstacle avoidance. The vision system is
continually self calibrating, making it tolerant of normal mechanical drift. But better than
that, it is tolerant of severe blows to its head-like sensor platforms. After a few seconds in
a trauma-induced daze it adapts to its grossly altered sensor alignments.

But wait, there’s more! The algorithms require no pre-knowledge of camera focal lengths,
fine orientation, or stereo baseline separation. With such quick calibration and adaption
the sensors can be mounted on cheap steerable systems. We can trade cheap computation
for deficiencies which arise from avoiding expensive mechanical solutions to sensor steering
problems.

We begin with three observations:

¢ Humans are able to extract meanginful information from images without being aware of
the camera geometry (e.g. baseline separation in stereo) or the focal parameters of the
imaging system. They can adapt almost instantly to TV or movie images made with
unknown optics and relatively quickly to disturbances in the optical pathway to their
retinas. For instance a change in stereo baseline separation induced by special glasses
can be adapted for in a matter of seconds. In contrast, most mobile robots today require
precisely understood optics and many seconds of intense computation at the begining of
an experimental run (Faugeras and Toscani (1986)) to accommodate small mechanical
and electronic drifts in their systems.

e Marr (1982) points out that the purpose of vision depends on the task the perceiving
organism is trying to achieve. Brooks (1986) demonstrates that data from a single sensor
system can be used in entirely independent channels (including independent perception
systems) to control different aspects of the behavior of a mobile robot. Thus there need
not be just a single purpose of vision. A useful engineering consideration in building
a perception system, then, is to analyze the requirements in terms of the task to be
achieved using the output of the perception system.

¢ Much of human and animal vision is extremely fast, taking place in small fractions of
a second. However, it is implemented on hardware which is extremely slow (perhaps
one thousand gate delays per second) as compared with today’s computer hardware
(ten to one hundred million or more gate delays per second). Nonetheless biological
vision is vastly superior to current computer implementations. Biological algorithms
must therefore be computationally shallow in order to fit on the available hardware.

In this paper we explore some visual techniques useful for a mobile robot navigating in
indoor environments. The particular task these techniques support is avoiding obstacles.
Brooks (1986) shows how to separate this particular task from others that a mobile robot
may concurrently be pursuing.

Noting the earlier observations, we are interested in finding self calibrating algorithms
which are tolerant of large drifts in optical properties of the imaging system, in finding
algorithms which have shallow computation depth, and in finding algorithms that are well
suited to the obstacle aviodance task.

The experiments we describe in this paper have been performed using Allen the robot
(Brooks (1987)) as a sensor platform and an offboard Lisp machine as the computational



Figure 1. Two cameras are mounted on Allen using standard tripod mounts. With such mounts
it is certain that the cameras will not be parallel. There is also mechanical misalighment between
the camera mounts and the drive mechanism of the robot. A more expensive mechanical system,
and a more complex camera mounting system could overcome these limitations, but the system
would still be susceptible to misalighment through minor mechanical damage. If we don’t demand
mechanical alignment we won’t be perturbed by normal wear and tear.

engine. The robot has two approximately forward-looking CCD cameras. A standard
camera mount is used to attach them to a tilt head, so there is considerable risk of not
having the cameras pointing directly forward. Figure 1 shows the cameras mounted and on
the robot.

1.1 Forward motion and stereo

Our primary algorithm analyzes forward motion by tracking strong vertical edges over many
consecutive images. As Bolles, Baker and Marimont (1987) have pointed out, one avoids
the problem of solving for corresponding points by taking closely spaced images.

Unlike Bolles, Baker and Marimont, however, we are addressing the problem of forward
rather than lateral motion, and we do not assume knowledge of camera motion or of camera
angle relative to motion.

Forward motion analysis relies on straight line motion of the robot at constant, but
unknown, velocity, but does not require that the camera point directly ahead, nor that it
point at a known angle relative to the motion. There are strong constraints on the possible
motion of features if the robot motion constraints are met, so it is often possible to detect
when the motion constraints are being violated.
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The particular way in which forward motion analysis supports the obstacle avoidance task
is to deliver distances to obstacles in units of time to collision at the current velocity. This
is the perfect coordinate system for obstacle avoidance. Steering commands and velocity
change commands can be given without the need to convert from an absolute coordinate
system to desired velocities for the robot.

Forward motion analysis has some surprising independence properties;

¢ the details of the focal geometry of a perspective camera are unimportant,

o the camera need not be pointing directly in the direction of motion (there is a sim-
ple procedure which recovers the orientation of the camera relative to the direction of
motion),

¢ and it naturally delivers the distance to the physical artifacts giving rise to tracked fea-
tures as the time to collision with that artifact in units of the inter-frame time intervals.

These properties make forward motion analysis ideal as an input to an obstacle avoidance
task on the robot. Additionally it is easily implementable on hardware which supports only
16 bit arithmetic.

Unfortunately forward motion analysis has some drawbacks also;

o it doesn’t deliver distances to obstacles which are straight ahead along the direction of
motion (and clearly these are some of the most important obstacles to consider),

¢ and it is useless when the robot is stationary or turning in place. Thus when the robot
stops to turn, it is completely blind in its new direction of motion until it has moved in
that direction for a period of time. In a cluttered environment it may be important to
be able to plan an obstacle free path before starting to move.

To compensate for these shortcomings we use a second early vision algorithm whose prop-
erties exactly complement those of forward motion analysis. We use a single scanline stereo
algorithm. Stereo provides depth measurements

¢ straight ahead,

¢ and when the robot is stationary.

But stereo too has a serious drawback. Even rough depth measurements rely on a knowledge

of camera focal geometry and the six parameters relating the geometries of the two cam-

eras. Alignment errors as small as +5° for each camera can lead to wildly incorrect depth

estimates, including negative depths and an order of magnitude wrong positive depths.
The main result of this paper is a simple method of continously calibrating the stereo

system to reliably deliver depths in the same units as the forward motion analysis algorithms.

1.2 Ezperimental assumptions

Man-made indoor environments give rise to images with strong vertical edges. We can make
use of this fact in designing our algorithms.

The forward motion and stereo algorithms both assume one dimensional cameras with
the plane defined by the image line and the optical center parallel to the ground (this was
also assumed by Bolles, Baker and Marimont (1987)). In the current experiments we use
regular video CCD cameras and average a swath of 16 scanlines from the middle of the
image. This highlights strong vertical edges. Grey levels are taken to 8 bits and range from
0 (white) to 255 (black).
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Two cameras were mounted side by side facing forward, separated by approximately
8 inches. The cameras were only approximately aligned in the forward direction. Our
analysis below allows up to a +5° misalignment of each camera. It assumes the cameras
are restricted to a field of view of 60°. Knowing the field of view lets us compute the focal
ratio of the camera. The analysis assumes the two cameras are identical in this regard but
is easily generalized to two different but known cameras.

In our experiments we used cameras and lens systems with approximately a 60° field
of view. There is only one place, and that is in the forward motion algorithm, where
knowledge of the field of view and hence focal ratio is used. In section 2 we show that in
order to relate the depth estimates, for stereo calibration, obtained from two cameras we
must include a small error term to correct for their misalignment. It is only in this error
term that the field of view is needed. We show that these errors can be at most £5% so
only an approximate knowledge of the field of view is necessary. For a robot which can
turn in place and which has appropriate encoders to measure its turn, the camera field of
view could easily be calibrated each time it turns by tracking image points over a signifcant
portion of the image. We did not so estimate the field of view in these experiments but
assumed it a priori.

All computation was done offboard and offline on a Symbolics lisp machine. Total
computation time for the reported experiments is on the order of a few seconds running
unoptimized lisp code.

We plan on porting these algorithms to a new robot with all onboard computation.
On that robot we plan on using cylindrical lenses and single scan line horizontal CCD
cameras. The lenses will optically average a horizontal swath of a more conventional image
highlighting strong vertical edges.

For the task of obstacle avoidance we estimate that knowledge of the distance to obstacles
to within +10% is quite adequate.

All our experiments described in this paper give distances in terms of the robot’s current
speed. We did not try to measure that quantity. Our evaluation of our experiments cannot
therefore be based on determinations of absolute accuracy. Rather, we compare computed
relative distances to pairs of tracked objects as a measure of accuracy, as in an ideal exper-
iment all such relative distances should remain constant. On this basis we believe we have
achieved +£10% accuracy with very computationally simple and shallow depth algorithms.

2. Forward Motion Vision

In this section we first derive the equations of forward motion vision without regard to
sensitivity to noise and sampling errors. We then describe some practical algorithms to
overcome problems due to noise and sampling errors.

2.1 One dimensional camera geometry

Consider figure 3. It is a view from above of a camera. The image plane is a one dimensional
strip, i.e., the camera provides only a 1-D image.

The image plane has P pixels, numbered 0 through P — 1. The optical center of the
camera is distance f, measured in pixels, from the image plane. We call f the focal ratio.
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Figure 2. In our experiments Allen ran in a straight line between various obstacles. The scene was
deliberately cluttered so that we could get a good calibration with only 100 stereo image pairs. We
are currently limited by computer memory from collecting more than that number in real time for
later analysis. In future experiments we expect to do all computation onboard and to be able to
calibrate over many more images in less cluttered environments.

The optical center plane is parallel to the image plane and runs through the optical center.
A line, the optical azis, runs through the optical center and intersects the image plane at
right angles. The point of intersection divides the image plane in two equal parts and is
called the center of view.

Points in the world are projected onto the image plane along lines that run through the
optical center. The field of view of the camera is ¢, the maximum angle subtended by any
two visible points. The focal ratio and field of view are related by:

P

I= Sante2) ()

This gives f in units of pixels.

On the cameras we used in our experiments, which are 576 pixels wide with approxi-
mately a 60° field of view, f is approximately 499 pixels.
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Figure 3. A one dimensional camera has an image plane f pixel units from the optical center of
the camera. The optical axis is perpendicular to the image plane, which is P pixels wide.

2.2 Forward motion vision geometry

Now consider figure 4. It is a view from above of a camera whose optical axis is offset
somewhat from the direction of motion of the camera. The camera is undergoing pure
translation in a constant direction of motion. The motion direction vector, the optical axis
and the image strip on the image plane are all coplanar.

This model corresponds to a 1-D camera mounted parallel to the ground plane on a
mobile robot which is travelling forward without turning. Typically one would mount a
cylindrical lens on such a camera to enhance the strong vertical edges found in man-made
indoor environments. Without careful alignment of the camera it will not point directly in
the direction of motion of the robot. Even if the camera is rigidly mounted on the body
of the robot, the direction the robot travels with respect to its body will vary gradually
over time due to tire wear and other mechanical processes. On our robot Allen we notice
that the body and drive base of the robot can easily be misaligned by a few dcgrees. In
this section we show how to calibrate dynamically for these effects with a few arithmetic
operations over a few images taken as the robot is moving at constant velocity.

The trajectories of image features under the geometry of figure 4 are described by Bolles,
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Figure 4. As a camera moves in a straight line, points to the left of the direction of motion of the
camera appear to move to the left and those to the right appear to move to the right.

Baker and Marimont (1987). Here we derive equations yielding the time-to-collision and
the center of expansion under this geometry.

The image of any point p, which is to the right of the direction of motion will move
rightwards in the image plane. The image of any point p; which is to the left of the
direction of motion will move leftwards in the image plane. Points directly ahead will not
move at all in the image. The projection of such points is called the center of expansion.
We write Cg, for its coordinate in pixels.

In an operational robot, we envision an estimator for Cg running continously and slowly
and incrementally updating the estimate as it drifts. More generally what we would like to
know, for the purpose of controlling a robot, is how long it will be before the robot reaches
some visible point p. The forward motion analysis described here determines the time that
will elapse for the robot to travel forward far enough that the plane, parallel to the image
plane and coincident with the optical center, intersects point p. This assumes that the
robot’s velocity is constant but not that it is known.

Now consider figure 5, which illustrates the same physical setup as the last figure but
with different quantities annotated. The camera has focal ratio f. Call the distance from
the optical center to the center of expansion f’. The camera is misaligned by an angle



direction

of
motion

of camera -,
e

A ’

xl f' ‘\ .« o e
~~ -7

- /

-
camera L. /
optical P /
axis

Z  jmage

|~ plane

_ optical
~ center
-
- plane

Figure 5. As a camera moves forward in some direction o offset from the optical center of the
camera, we are interested in computing the distance z to a point p.

o from pointing directly in the direction of motion. Suppose the camera is moving with
constant velocity v and consider what happens to the image of a point p. Its physical
location can be described by two non-orthogonal coordinates: z’, its distance parallel to the
image plane from the path taken by the optical center of the camera, and 2/, its distance in
the direction of motion from the optical center plane. Note that the derivative of 2’ with
respect to time, z’' is the constant —wv.

From similar triangles we can see that the distance, r, along the image plane, of the
image of point p from the center of expansion is given by:

i )

zl




and since z’ is constant its derivative with respect to time is:
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We can then observe that:
r 2 2
)

The last term is the time it will take for the optical center plane to intersect p. Thus r/7 is
just the time to collision of the optical center plane and the physical feature whose image
is being observed.

The accuracy of forward motion analysis is very sensitive to the estimate we make of
the center of expansion since r is measured relative to it. The position of Cg can range
over a third of the image when camera alignment of a 30° field of view camera is allowed
to vary by £5° (the range is not so bad for larger field of view cameras, but the quantity
being measured is correspondingly smaller). Its value clearly impacts greatly the estimates
of time to collision.

With perfect measurement it turns out to be easy to compute the value of Cg by tracking
a single point over a small time interval. Suppose we measure the image position of a point
in a coordinate frame relative to the left end of the image. It has position R, say, in this

coordinate system. Since C'g should remain constant we have that
r=R-Cg, =R
so the time to collision for the optical center plane is
r R-Cg.

= A 3

Suppose we can measure R and R at two distinct times o and #;. Then the estimate to

time to collision should decrease by precisely t; — to. Writing our estimates as functions of
time we then get that:

R(t(?) - Cg _ (tl _ to) _ R(tl.) - CEg
R(to) R(t1)

whence . ) . .
_ R(to)R(t1) — R(t1)R(to) + R(t1)R(to)(t1 — o) (4)
R(to) ~ R(t1)
In summary then we can easily (given perfect measurement) estimate Cg and therefore
compute the time to collision of the optical center plane
Py _R- Cg

s =2 5)

However, time to collision from the optical center plane to the point p, i.e., z'/v is not
exactly the information we want if the camera has been misaligned. In order to calibrate our
stereo system in section 3 of this paper we will need depth estimates in a common coordinate
system for the two cameras. Therefore we really want z/v where z is the component of
distance from the center of the camera in the direction of motion and

z=2'+2'sine (6)

CEg

as can be seen from figure 5.
Let ¢ = Cg — P/2, the distance in pixels along the image plane from the center of view
to the center of expansion, then referring to figure 5

sina =

A
fl
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so by equation (2)

z=z'+f——— ' crz
Iz ()2
and since
= VETT
we have )
2=+ % (7)

Notice that since we only really know 2z’ /v (from equation (5)) this only gives us z/v, which
in any case was what we wanted.

It is interesting to ask just how different z can be from 2’. Since « is restricted to £5°,
z' is almost perpendicular to 2’, so for a camera with a 60° field of view

!
z
—tan30° < 7 < tan 30°

and since tan 30° X sin 5° = 0.0503 we see that z = 2’ + z'sina is within £5% of z’. Thus,
since equation (7) is correcting such a relatively small error it is not critical to know f
(which can be derived from ¢ through equation (1)) particularly accurately.

We now know z/v, or the time to collision with the obstacle, very accurately using only
an imprecise approximation to the field of view of the camera as our a priori knowledge
(which is easily gained by rotating the camera a roughly known amount). Since time to
collision is precisely the right quantity to know for obstacle aviodance we don’t need to
try to compute the robot’s velocity v at all. In fact we don’t even need to know how our
measure of passage of time ¢ relates to external units. All we need is a steady on board
clock and we can do obstacle aviodance visually.

2.3 Tracking image features

The above analysis suggests the idea of detecting image features and tracking them over
many images.

We track edges. We simply convolve the image with a derivative of a Gaussian (the
actual mask is 1, 3, 5, 9, 14, 18, 20, 18, 11, 0, —11, —18, —20, —18, ~14, -9, -5, -3, —1)
and then look for local maximum absolute values (Horn (1986)). We threshold the edges
based on their strength of convolution with the mask. We accept only edges which have a
convolution value greater than 500. We do not attempt sub-pixel localization of edges as
our robot shakes enough as it rolls foward to impose at least 1 pixel error on top of any
localization noise due to discrete estimates.

Figure 8 is a data set showing edge traces from a run with the mobile robot as the robot
moves forward. It is a 2-D binary array where each row is a one dimensional image and time
flows downwards. Array elements are 1 (black) where an edge was detected and 0 (white)
otherwise. Equation (2) and the constant velocity of the robot tell us that each edge trace
is a hyperbola. If the images are taken sufficiently close together (such as in this dataset)
it is very simple to track edges without having to refer to the original grey level images.

It is sufficient to buffer only two rows of the array and keep track of the direction and
velocity of an edge track in order to predict a small search window and direction of search
in the second row. There are two cases in searching for the next edge in a trace; at the
beginning of an edge trace where the direction within the image may not be known, and
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later when the direction is known. At all times the possibility of noise in the edge motion
must be taken into account.

When the direction is not known a default symmetric window (+£3 pixels) is searched in
a succeeding row. If only one edge element is found, that is taken to be the next element
of the trace. If more than one edge is found the current trace is abandoned.

When the direction of motion (left or right) is known we keep track of the edge velocity
at each step of the trace. The trace is predicted to move the same amount at the next step
plus or minus a small window of margin in order to accomodate noise in the image and
edge velocity increases; —1 pixel short of prediction through +3 pixels extra. The search
proceeds in the direction of motion, and the first edge encountered is taken as the correct
edge. If no edge is encountered within the window then the edge trace is abandoned. No
attempt is made to hypothesize a missing edge in the given one dimensional image and to
try to look in the appropriate place in the next image.

There are two ways in which the direction of edge motion can be determined.

After a few elements of a trace have been tracked the direction should be clear by
comparing the position of the first and most recent pixels. If the direction is not clear then
the trace can be abandoned as there is no obvious depth information in it.

However, most edge traces have only one possible direction even considering only the
first row in which it appears. If Cg is known then edges on the left move leftwards, and
edges on the right move rightwards. Even when Cg is not known, an a priori knowledge of
f and the maximum permissible range of o determines a strip within the image where it
is possible that C'r might fall, and edge traces starting outside that strip have the obvious
direction.

The key heuristic used by the above edge tracking algorithm to handle noise is perhaps
not obvious at first glance. In fact the main idea is to abandon an edge trace when conditions
get complicated. Chances are that the disturbance will last only a few images at most and
the trace can be re-established as a brand new trace a few images later.

2.4 Noise and estimation

The analysis of section 2.1 assumes no noise and perfect measurement of various quantities.
Real image sequences suffer from digitization effects and large sources of noise due to un-
stable camera platforms, unconstant velocity and curved rather than straight line motion.
We must therefore fit all our measurements over many images.

To estimate the center of expansion we need to know R and R at more than one place
along an edge trace. To decrease the effects of noise it is clearly best to use more than one
edge trace. We use every edge trace and continually refine our estimate of Cg.

Quantity R is measured directly from the edge pixel array. To estimate R, the edge
velocity, we trade off localization in time of our estimate with accuracy of the estimate
through the choice of a constant V. In all our experiments reported here we have used
V = 4. We approximate R by the slope of a chord between two points on a hyperbolic trace
V images apart. By Rolle’s theorem some point on the hyperbola between those two points
has exactly that slope. We arbitrarily choose the midpoint in time. A larger V reduces the
magnitude effects of noise on the estimate but increases our localization error. We see that
VR is simply the distance travelled by the edge trace over V time intervals.
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Figure 6. Image strips averaged to a single scan line and ordered in time for 100 images from the
left camera.

Figure 7. Image strips averaged to a single scan line and ordered in time for 100 images from the
right camera.

LS
Toas Tt ev e
IEY R RAR

Figure 9. The edges detected in figure 7.

In the experiments reported in this paper we estimate VR at every pair of points on a
trace separated by 3V steps in time, and use them to estimate Cg using equation (4) (by
estimating VR rather than R, only one division is necessary for each estimate of Cg). !
Our estimates over all time and all traces are then averaged together. We choose 3V so that
R will have had time to change significantly and render the estimate for C'g more stable.

1Thus each estimate relies on four points along the edge trace. Horn (1987) has suggested an
iterative scheme for solving for a least squares fit along a complete trace.
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A more sophisticated algorithm could dynamically choose the step size for the comparison
based on the edge velocity.

Once Cg has been determined it is easy to compute the time to collision for a given edge
point in a given edge using the same estimate for R as above. However since we are tracking
edges and since edges correspond (hopefully) to a single three space feature, the time to
collision should be reducing by one every image. We can therefore smooth our estimate for
the time to collision by fitting a line of slope —1 over S images steps (i.e., S + 1 images).
A least squares fit of such a line amounts to averaging the time to collision estimate along
a trace over a set of § + 1 consecuctive images.

Thus our estimates for time to collision are valid for an image (V + §)/2 prior to the
most recently processed image.

In all our experiments reported here we have used S = 4.

Using this algorithm the centers of expansion are estimated at pixels 243 and 274 in
figures 8 and 9 respectively. These displays of edge traces are from a stereo pair of left
and right cameras mounted on our mobile robot. The cameras are 576 pixels wide so these
estimates say that each camera was skewed slightly to the right, with the left one skewed
more than the right. This corresponds to our visual estimate from examining the camera
mounts at the beginning of the experimental run. Figures 6 and 7 show the grey level
images from which these edge arrays were extracted.

2.5 Approzimation errors

It is worth asking how well this scheme does for computing depth even with synthetic data.
There are a number of sources of inaccuracies; all edge locations are approximated to an
integral number of pixels, divisions (such as in equation (4)) are rounded to the nearest
integer, and the edge velocity estimates are only difference approximations to derivatives.
With realistic camera parameters and using V' = 4 and '§ = 4 we have experimentally found
accuracy on synthetic edge arrays to be about 2%.

3. Calibrating Stereo

Recall that motion vision does not get good results close to the direction of motion since
estimates for R are necessarily small and therefore susceptible to noise problems. Also it is
useless when the robot is still, or not moving in straight lines. Stereo vision suffers from none
of these problems. Our stereo algorithm matches edges in two one dimensional images. If
all the camera parameters are known in advance we could then compute depth. An accurate
model] of the camera geometry is not sufficient because stereo is very susceptible to small
camera misalignments and so the cameras must be repeatedly calibrated.

One approach to this problem is to run a calibration procedure prior to running the robot
(e.g. Faugeras and Toscani (1986)). It usually involves placing the robot in front of a known
test pattern and examining the test pattern with the visual system. It is usually necessary to
run the calibration procedure before every run of the robot because of mechanical (thermal
and other) drift in the relative position of the optics and the robot’s drive mechanism.

A second approach is to calibrate from actual images during a run. Longuet-Higgins
(1981) shows how to recover all camera parameters save a scale factor from a single pair of
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images. However we also need to know the parameters of the cameras relative to the motion
of the robot, as in general the camera platform can mechanically drift relative to the drive
platform. Therefore we use the results of the forward motion algorithms to calibrate our
cameras.

8.1 The algorithm

We use the same edge operator as for forward motion and apply the operator to each of the
left and right images.

Matching of edges in the two images is accomplished by means of a dynamic programming
algorithm similar to that developed by Ohta and Kanade (1986) for two dimensional images
and by Serey and Matthies (1987) for single scanline images, except that the cost functions
here are different.

The dynamic programming algorithm searches for a minimum cost path left to right
across the two images where there is a cost associated with matching two edges, and a cost
with skipping an edge whether it is due to noise, occlusion, uncovering or something else.

The skipping cost is a constant (2000 in the experiments reported in this paper).

The matching cost is a larger number (effectively co) unless the signs of the gradients of
the two edges are the same (i.e., unless the grey levels of both edges go from dark to light
or vice versa). Otherwise the matching cost is the sum of squares of differences of pixel
grey levels on a small window around the edge (we used 7 pixels centered on the edge, in
the experiments reported here).

3.2 What needs to be calibrated

There are a large number of parameters needed to describe the optical system used for
stereo vision. Each of the two cameras has a focal ratio, and each has six positional and
rotational degrees of freedom relative to the robot. We are forced to calibrate for some
of these parameters, we can ignore some because their effects are too small to notice, and
others we take care of by our choice of stereo algorithm, camera design, and methodology.

Figure 10 illustrates the camera geometry we are assuming. The robot coordinate system
has the z-axis pointing in the direction of travel of the robot. The y-axis is vertical and the
z axis is perpendicular to the direction of motion.

We assume that the two cameras have the same focal ratio f or field of view.? Our
forward motion algorithm assumed some a priori knowledge of this parameter and we sug-
gested a simple way to determine a rough estimate for it. Rather than rely on such an
estimate we calibrate the stereo system assuming no previous knowledge of f.

Now consider the geometric degrees of freedom and refer to figure 10 for definitions of
geometric quantities.

z Our calibration assumes the base line separation of the cameras B in the 2 direction
is unknown.

y In general one would assume this parameter to be small, but in any case our use
of the average of 16 lines of grey level data in the current experiments, and our

2It is possible to relax this assumption but the introduction of the necessary extra parameter in
our calibration equations seems to make the calibration less stable. We do not have a theoretical
basis for this remark—only empirical.
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Figure 10. When there are two cameras they may both be misaligned relative to the direction of
motion. They have a separation B perpendicular to the direction of motion and a misalignment
zg in the direction of motion. Again we are interested in the forward distance z to some point.

intention to use cylindrical lenses mean that larger values of y will not effect the
stereo measurements at all.
z There may be small errors in mounting the cameras which lead to a non-zero z.
We show below that for small zp the effects are minimal and can be ignored.
pitch Again the averaging of scanlines or the use of cylindrical lenses takes care of this
parameter.
roll One would expect this parameter to be small. One could measure the fuzziness of
edges (since the image is really a vertically averaged, digitally or optically, image) to
estimate the amount of roll present in the cameras. We will ignore this parameter.
yaw Each camera can swing from side to side on a standard camera mount, and in
any case the orientation of the camera could easily drift mechanically from the
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orientation of the robot’s wheels. (It certainly does on our robots.) Our calibration
assumes small unknown yaw angles on each camera.

8.3 Calibration formulation

Figure 10 shows a view from above of a stereo pair of cameras mounted on a mobile robot
pointing approximately in the direction of motion. We assume both cameras have focal
ratio f. The optical axis of the left camera is misaligned by angle o from the direction
of motion, while the right camera is misaligned by angle 8. The baseline separation, B,
is measured perpendicular to the direction of motion. z¢ is the misalignment offset of the
optical centers in the direction of motion.

We will assume that none of these five parameters (a, 3, f, B, or zg) is known a priori.
We will, however, assume that we know bounds on some of these quantities. We assume
that o and f are no bigger than+5°, that f, in pixels, is comparable or larger than P the
width of the image plane, (499 compared to 576 in our experiments) and that zp is much
smaller than B.

The quantities we can directly measure given some matched feature in the two images
are d; and ds, the distances in pixels from the centers of view of the left and right cameras
respectively. Due to our assumption above about the size of f, we know that roughly

i < L. ®)

The quantity we wish to compute given some matched feature in the two images is its
distance z in the direction of motion. Figure 10 shows that z is measured from the optical
center of the left camera. The only other parameter we could compute is z, the displacement
of the feature perpendicular to the direction of motion. We use z in deriving equations for
z but do not compute it explicitly in any of our experiments. Given an estimate of f it can
easily be recovered for use in obstacle avoidance.

Consider the quantities labelled ¢ and b in the figure. They both relate to the z distance
of the feature from the left camera. We can write

z=a—->
a =21 COs
b=z;sina

where 2, is the distance of the feature in the direction of the optical axis of the left camera
and z; is the feature’s transverse distance from that axis. Now, because we are using
perspective projection we can write

z1

2 f

giving us an expression for z; in terms of z; and so we can rewrite z as
di .
z=a—b=zl(cosa—751na) 9)

which is a linear expression in 2;. We can get a similar linear expression for z in terms of
2y (it involves the constant offset z) and thus get a linear equation relating z; and z;.
We can do the same analysis for 2 getting a second simultaneous linear equation relating
21 and z3. Solving and substituting back in equation (9) we obtain
, = K=o +vB

> (10)
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where
p=— fdycosacosB + fdysinasin 8 — f%cosasin
+ dids sinacos 3
v=f%cosacos B+ dydssinasin 8 — fdy cos asin 3
— fdysinacos 8
p =(f* + dydy)sin(a — B) + f(dy — dz) cos(a — ).

We now have an equation for z, the quantity we wish to compute, in terms of d; and d;
the quantities we can measure. We want to derive a calibration procedure to identify the
unknown parameters in this equation. We begin by noting that we can safely ignore some
terms.

The sines of @ and 3 are both less than 0.1. The cosines are all greater than 0.995.
Thus the dominating term in pu is roughly fd; which by equation (8) is less than half the
dominating term f? in v. Since we also are assuming that zp is much smaller then B we
will simply ignore the u term. We can also ignore all but the f? term in v as the other
three are each at least 20 times smaller.

Turning attention to p we first observe that (d; — d2) can be arbitrarily small, and that
sin(a — B) can be larger than 0.17. Thus since either term can dominate both terms are
important. The only remaining question is whether in the left hand term we can ignore d1d;
as it is never more than 1/4 the size of f2. We choose to ignore it for now in our derivation
of a calibration procedure, but later we compare its inclusion and exclusion experimentally
and conclude that it is insignificant.

With these approximations, and dividing both the top and bottom of equation (10)
through by f cos(a — () we get
_ A
" T'+dy—d,
where A and I' are constants to be determined by calibration.

(11)

4

Suppose we have a collection of stereo images of features with known distance z, i.e., we
have a collection of n triples (d1;, da;, 2;). For a given A and T', we could write as a measure
of closeness of fit for each triple

A
- T -di+da (12)
(3
This is both linear in A and T and a good measure of error in the image plane.
When we minimize the sum of squares of measure (12) for n calibration triples we obtain
A =2 (i — dgi)/zi = 30 (1/2) 3 (dhi — dai)
n (1z2) — (X 1/2:)
r— > (1/2:)30 (dii — dai) /2 — 32 (1/22) (X dai — dai)
nd (1/z%) - (X 1/2)?

where all the sums range over the n values of i.

3.4 Calibration procedure

We collect triples to use for calibrating the stereo system by using forward motion analysis
through equation (7) to get depth estimates for points visible in both the left camera and
right camera. For each pair of images we know the pixel coordinates of each point for which
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Figure 12. The right image of a stero pair at the beginning of a straight line motion of the robot.

In these experiments we made two passes over the edge images. The first was to estimate
the centers of expansion and the second to extract motion depth estimates and correlate
those with the stereo matches in order to get triples for stereo calibration. On a robot
running these algorithms continuously there would only be one pass, simultaneously making
minor refinements to both the centers of expansion and stereo calibrations.

In the 100 image pairs, the algorithm found 94 estimates for Cg in the left image,
averaging to 243, and 110 estimates in the right image, averaging to 274. A total of 92 stereo
matches were found, of which 31 were strongly consistent with motion depth estimates.
These were used to calibrate the stereo system resulting in estimates of

A =1958.8475, T = 56.970116.

Figure 13 shows the original left and right averaged depth estimates from the motion algo-
rithm for each of these 31 points, along with the estimate produced by the stereo algorithm
with the derived calibration. The depth estimates are in units of time between collecting
images. Notice that the difference between locations of matched edges in left and right im-
ages of particular edges is sometimes positive and sometimes negative because the cameras
are not aligned to be parallel.

To test the stereo calibration we took four feature points corresponding to known objects
in the scene. We estimated where the robot had been when the first images in the sequence
were taken (to achieve the constant velocity constraint the robot had to be moving before we
started collecting images) and measured the distances to the known points in the direction of
motion. We substituted the left and right image edge coordinates into equation (12) to get
time to collision estimates, and divided each of those into the known distances (measured in
feet) and averaged the result to get a calibration of the stereo system in feet. The estimate
is 0.1874 feet per stereo pair image step, giving the robot’s velocity at 1.406 feet per second.
Figure 14 shows the unsurprising results of this procedure in the top four rows of the table.
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1 r disp motion stereo l r disp motion stereo
144 163 -19 50 52 163 189 -—26 69 63
525 550 -—25 60 61 521 545 -—-24 60 59
169 197 -28 54 68 516 541 -25 60 61
170 198 -—28 62 68 512 537 -25 60 61
507 532 —25 60 61 172 202 -30 71 73
503 530 -27 60 65 174 203 -29 69 70
174 204 -30 74 73 149 137 12 28 28
175 205 -30 63 73 153 142 11 28 29
155 146 9 30 30 73 68 5 32 32

77 73 4 32 32 81 79 2 33 33

85 85 0 34 34 90 90 0 36 34

93 96 -3 36 36 102 106 -4 36 37
105 111 -6 36 38 9 48 -39 112 109

11 51 -40 115 115 435 441 -6 46 38

13 54 -41 122 123 430 439 -9 48 41
426 435 -9 49 41

Figure 13. Display of the stereo calibration and results. Left two columns are pixel coordinates of
edges in the left and right images, third column is their difference, fourth column is the average
depth estimate from the motion algorithms running on the left and right image sequences and the
fifth column is the depth estimate produced by the stereo system calibrated with this data.

We then took the same four features and searched for them 20 images later in the image
sequences. The bottom half of figure 14 shows the stereo estimates for these four points.
Ideally, all the time to collision estimates should be reduced by 20. They are reduced by
18, 14, 20, and 17. Note that the third of these points appeared roughly in the centers
of the two images and no time to collision estimates were produced for it by the motion
algorithms. The fourth column shows the distance in feet that would have been estimated if
the stereo had come up with a decrease of exactly 20 units for each of the points. The sixth
column shows the estimate that was actually obtained. The relative distances between the
points known a priori from measurement given in the fourth column in the upper part of
the table, and the estimated distances in the sixth column of the lower part of the table are
quite good and can be summarized as:

exact — est
50 — 5.6
86 — 7.5
20 — 13
36 — 1.9
7.0 — 6.9
10.6 — 8.8

Note that these are relative distances, some of them at large distances from the robot
itself.
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l r disp known ttc est

194 216 -—-22 10.5 56 10.5
314 347 -33 155 82 15.4
263 300 -37 19.1 98 184
398 414 -16 85 48 9.0

173 179 -6 6.7 38 7.1
336 364 -—-28 116 68 12.7
273 305 -32 146 78 14.6
485 479 6 52 31 5.8

Figure 14. The first four rows show features with known distances (fourth column) in feet, their
depth (fifth column) in time to collision units as delivered by the calibrated stereo algorithm, and
their depth in feet (sixth column) by calibrating the previous two columns. In the second four
rows, the same points are displayed from images 20 time units later. This time the fourth column
is the predicted distance based on the sixth column above and the sixth column is the estimate
from stereo.

l r disp known ttc est

194 216 -22 10.5 56 10.5
314 347 -33 15.5 82 15.3
263 300 -37 19.1 99 185
398 414 -16 8.5 48 9.0

173 179 -6 6.7 38 71
336 364 -—-28 11.6 68 12.7
273 305 -32 148 79 14.8
485 479 6 52 31 58

Figure 15. Same as for figure 14 but using a much more complex stereo calibration procedure.
There is almost no difference in results.

3.6 Other calibration schemes

In experiments with synthetic data the most signifcant term omitted from equation (10) in
equation (11) appeared to be dydy in the denominator. We therefore repeated the above
experiment using a calibration equation of the form
A
- I'+ Qdydy +dy —dy”
The results were almost identical:
A =1957.6881, T = 56.864132, € = 2.360905 x 10~¢,

an estimate of (.1869 feet per image step (within 0.3% of the previous estimate) or robot
velocity of 1.401 feet per second, and almost identical results on the check with known
distances as shown in figure 15.

(13)

z

These experiments convinced us that (11) is certainly sufficient. But is it necessary? To
check we tried calibrating with the same data to a model of stereo that assumes the cameras
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l r disp known ttc est

194 216 -22 10.5 55 18.0
314 347 =33 15.5 37 12.1
263 300 -37 19.1 33 10.8

398 414 -16 8.5 76 248
173 179 -6 114 202 66.0
336 364 —28 5.6 43 14.0
273 305 -32 4.2 38 12.4

485 479 6 183 -202 -66.0

Figure 16. Same as for figure 14 but using a stereo calibration that assumes the cameras are aligned
parallel to the direction of motion. The results are meaningless.

are perfectly aligned, i.e., using a calibration equation of the form:
A
di —dy’

z= (14)

The results were:

A = -1213.2903,
an estimate of 0.3266 feet per image step or robot velocity of 2.450 (almost a factor of 2
off), and meaningless results on known distances as shown in 16. Clearly this naive model
is not sufficient.

4. Conclusions

In this paper we have demonstrated a number of aspects of forward motion analysis and
stereo vision.

The results of forward motion analysis are fairly noisy by the unnatural standards set by
most workers in computer vision and mobile robots. In this paper we first argued that those
standards are not necessary, and in fact are not met by humans, most of whom operate
perfectly well as autonomous mobile agents. In fact errors of £10% do not seem to large to
us for reliable mobile robot obstacle avoidance.

Forward motion analysis has some wonderful independence properties and only requires a
small number of 16 bit fixed precision arithmetic operations to deliver depth in a coordinate
system natural to the task of obstacle avoidance. At the same time as it is delivering
depth estimates it can continually recalibrate itself for camera misalignment relative to
the direction of motion. All of these computations could easily be transfered to a parallel
network of simple processors.

Despite the local noise in each forward motion estimate we demonstrated that with just
a few tens of such measurements we could calibrate a stereo camera system with grossly
misaligned cameras.

What does this buy us?

It means we can have a vision system on board a robot that doesn’t require a time
consuming calibration stage at the beginning of an experimental run. Rather we can build
power-up-and-go systems. If the sensor platform drifts mechanically from the drive align-
ment (as it does on many real robots) over time there is no calibration problem—the al-
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gorithms given in this paper continually adjust. If there is more severe and sudden mis-
alignment, e.g., due to a hard collision, the robot will be disoriented for only a few seconds
before it accommodates.

More than this however, the possibility of simple fast dynamic calibration to the world
opens up the possibility of having cheap (and hence mechanically sloppy) steerable sensor
platforms. If we can quickly and cheaply compute all we need to know about how such a
platform is aligned we will not feel pressure to spend inordinate amounts of money building
a precise platform. ,

Silicon is getting cheaper a lot quicker than precision machined parts are. We should
search for ways, as this paper does, of trading off silicon for such precision machined parts.
If the analysis and algorithms are simple we have a better chance of them being robust.
Of course it is critical to back up analysis with experiment—analysis in computer vision
without experiment is often a worthless intellectual pursuit.
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Appendix—Kludge Factors

Almost all computer vision programs have a large number of “tweakable” parameters hidden
in their code. These are usually used to implement certain English phrases used in the
scientific paper which describes the work. For instance there might be a phrase like “for
sufficiently close edge terminations we ...”. In this paper we have tried to explicity state
all such kludge factors that we have used. For the reader’s convenience we also collect them
here and give the values we used for them throughout all experiments we have done.

The edge mask (derivative of a Gaussian) is:
135914182018110 —11 —-18 —20 —18 -14 -9 -5 -3 — L

The threshold strength we demand of edges is 500. The same edges are used for stereo
and motion algorithms.

In the dynamic programming portion of the stereo algorithm we assign a cost of 2000
to skipped matches, and the sum of squares of pixel grey level differences in a window of 7
pixels centered on the left and right edges for accepted matches.

In linking edges in the motion algorithm we start off with a search window of +3 pixels
and later narrow that to —1 to +3 pixels from the most recent step.

To compute the edge velocity in the motion algorithms we use the slope of a chord joining
edge locations V = 4 images apart. In estimating C'g we do this twice at 3V = 12 images
apart.

We smooth the time to collision estimates over S = 4 time intervals (i.e., 5 images).

In deciding on consistent depth estimates and stereo matches we demand that the left
and right motion depth estimates lie within £10% of their average.
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