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1. Introduction

The general problem considered in this note is how to locate a known object from
sensory data, especially when that object may be occluded by other (possibly un-
known) objects. In previous work [Grimson and Lozano-Pérez 84, 87] we described a
recognition system, called RAF (for Recognition and Attitude Finder), that identifies
and locates objects from noisy, occluded data. In that work, we concentrated on a
particular subclass of rigid models. If the sensory data provided two-dimensional
geometric data, for example intensity edges from a visual image, we considered
the recognition of objects that consisted of sets of linear segments, or equivalently,
polygonal objects in which some edges are not included. If the sensory data was
three-dimensional, we considered the recognition of objects that consisted of sets of
planar fragments, or equivalently, polyhedral objects in which some of the faces are
not included.

In general, of course, we cannot guarantee that the recognition system will be
confronted only with rigid polyhedral objects of known size. The RAF has been
extended to deal with curved objects, in the two-dimensional case [Grimson 1987].
In this note, we consider extensions of our method to deal with families of objects
that are characterized by sets of free parameters.

2. Recognition as constrained search

Before dealing with the problem of parameterized parts, we briefly review the recog-
nition method used [Grimson and Lozano-Pérez 84, 87].

2.1 Definition of a solution

Suppose we are given a set of data fragments, obtained from the boundary of an
object or objects, and measured in a coordinate system centered about the sensor.
Suppose we are also given a set of object models, specified by a set of faces (whose
definition we will make formal shortly) measured in a local coordinate frame specific
to the model. A solution to the recognition problem consists of a three-tuple

<°bj ect;, {(dil y My )> (diz’ mjz)v cee (dik s Mg, )} ’ (R, VO))
where object; identifies which object from a library of known objects, the d,m
pairings are associations of a subset of the sensory data d with model faces m from
object; and R is a rotation matrix, and vy is a translation vector such that a vector
Vi in model coordinates is transformed into a vector v, in sensor coordinates by

Vi = Rvm + Vo
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and where this coordinate frame transformation maps the model from its local co-
ordinate frame into the sensor coordinate frame in such a manner that each data
fragment correctly lies on its assigned model face.

As has been described elsewhere [Grimson and Lozano-Pérez 84, 87}, we ap-
proach the recognition problem as one of search. Thus, we first focus on finding
legitimate pairings of data and model fragments, for some subset of the sensory
data. We chose to structure this search process as a constrained depth first search,
using an interpretation tree ( IT). Each node of the tree describes a partial interpre-
tation of the data, and implicitly contains a set of pairings of data fragments and
model faces. Nodes at the first level of the tree define assignments for the first data
fragment, nodes at the second level define assignments for the first and second data
fragments, and so on. Each node branches at the next level in up to n + 1 ways,
where n is the number of model faces in the object. The last branch is a wild card
or null branch and has the effect of excluding the data fragment corresponding to
the current level of the tree from part of the interpretation.

Given s data fragments, any leaf of the tree specifies an interpretation

{(ds, mj1)’ (d2,mj;),. .. (ds, my, )}
where some of the mj, may be the wild card character. By excluding such matches,
the leaf yields a partial interpretation

{(dh » iy ) (diz, mj, )se oo (diys M, )}
where 1 < 43 < %3 < ... < i but these indices may not include the entire set from 1
to s. This interpretation may then be used to solve for a rigid, scaled transformation
that maps model faces into corresponding data fragments, if such a transformation
exists. Thus, by searching for leaves of the tree and testing that the interpretation
there yields a legal transformation, we can find possible instances of object models
in the data.

Since this search process is inherently an exponential problem, the key to an
efficient solution is to use constraints to remove large subtrees from consideration
without having explicitly to explore them. In [Grimson and Lozano-Pérez 84, 87]
we describe a set of constraints based on the local shape of parts of objects, either
in two dimensions or in three. In this work, the object models and the sensory data
consist of linear edge or face fragments. The constraints include the following:

e The length of a data fragment must be smaller than the length of a correspond-
ing model fragment, up to some bounded measurement error;

e The angle between the normals to a pair of data fragments must differ from the
angle between the normals of the corresponding model fragments by no more
than a bounded measurement error;

e The range of distances between two data fragments must lie within the range
of distances of the corresponding model fragments, where the model range has
been expanded to account for measurement errors;

e  The range of components of a vector spanning the two data fragments in the di-
rection of each of the fragment’s normal must lie within the corresponding range
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of components for vectors spanning the model fragments, modulo measurement

error.

In [Grimson 87] we extended these constraints to include curved objects in two
dimensions.

2.2 The constraints reduce the search

Given these unary and binary constraints, the constrained search process can be
straightforwardly specified. Suppose the search process is currently at some node at
level k in the interpretation tree and with a consistent partial interpretation given
by

{(dl, mj, )’ (d23 mjz)’ cer (dk7 mjp )} .
We now consider the next data fragment di41, and its possible assignment to model
face m;,,,, where ji4, varies from 1 ton + 1.

The following rules hold.

o Ifmy ., is the wild card match, then the new interpretation

{(dl’ mj )’ (dZ’ mj2)7 B (dk+l’ Mjiya )}
is consistent, and we continue downward in our search.
e Ifmj,,, is areal model edge segment, we must verify that the length constraint
holds for matching dix41 to mj,,,, and that the angle, distance and component
constraints hold for the pairings (di41,mj,,,)(di,mj;), for 1 < i < k.

o If all of these constraints are true, then

{(dl’ mj )’ (d2’ mJ’z)v see (dk+11 LT )}
is a consistent partial interpretation, and we continue our depth first search. If

one of them is false, then the partial interpretation is inconsistent. In this case,
we increment the model face index jx41 by 1 and try again, until jy41 = n + 1.

If the search process is currently at some node at level k in the interpretation tree,
and has an inconsistent partial interpretation given by

{(dl’ mj, )7 (d2’ mj2)7 cee (dk, m )}

then it is in the process of backtracking. If jx = n + 1 (the wild card) we backtrack
up another level, otherwise we increment jr and continue.

2.3 Model tests

Once the search process reaches a leaf of the interpretation tree, we have accounted
for all of the data points. We are now ready to determine if the interpretation is in
fact globally valid. To do this, we solve for a rigid transformation mapping points
vV, in model coordinates into points v, in sensor coordinates,

vyg= Rvy, + Vo
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where R is a rotation matrix, and vy is a translation vector. We can solve for this
transformation in a number of ways [e.g. Grimson and Lozano-Pérez 84, 87, Ayache
and Faugeras 86].

Given such a transformation, which is usually found using some type of least
squares fit, we must then ensure that the interpretation actually satisfies it. We do
this by considering each of the data fragments associated with a real model frag-
ment in the interpretation, and transforming the associated model fragment by the
computed transform. For each such fragment, we then verify that the transformed
fragment differs in position and orientation from its associated data fragment by
amounts that are less than some acceptable error bounds. These bounds on trans-
form error can be obtained from the predefined bounds on the sensor error [Grimson
86b]. Any interpretation that passes such a model test is a consistent interpretation
of the data.

2.4 Additional search reductions

While the constrained search technique described above will succeed in finding all
consistent interpretations of the sensory data, for a given object model, it is not par-
ticularly computationally efficient. This is mostly due to the problem of segmenting
the data to determine subsets that belong to a single object. Indeed, if all of the
sensory data do belong to one object, the described method is known to be quite
efficient, as has been verified both empirically [Grimson and Lozano-Pérez 84, 87)
and theoretically [Grimson 1986a]. In order to improve the efficiency of the method,
we can add two additional methods to our search process, both previously discussed
for the case of linear fragments in [Grimson and Lozano-Pérez 87], and extended to
circular segments in [Grimson 87].

The first is to use a parameter hashing scheme, such as a Hough transform,
to hypothesize small subspaces of the entire search space that are likely to contain
an interpretation. The second is to use a measure of matching, such as the portion
of the object perimeter correctly accounted for by the matched sensory data, to
prematurely terminate the search process. In the work described here, we use only
the second heuristic.

3. Parameterized Families

3.1 Examples of Parameterized Objects

While our previous work has illustrated the utility of our approach to the prob-
lem of rigid objects, we are interested here in extending the method to deal with
parameterized objects. We consider a number of different possibilities.



Scale

Perhaps the simplest example of a parameterized family is that defined by a rigid
object that can undertake a range of possible sizes, that is, the shape of the object is
fixed, but the overall scale factor can vary. Many techniques for object recognition
and localization can easily deal with this case, since the scale factor can simply be
considered part of the coordinate frame transformation required to map the model
patches into their corresponding sensed patches.

Coordinate-frame transformations

A more interesting class of parameterized objects are those that involve a limited
number of moving parts. A good example is a pair of scissors, which has a single
degree of freedom, namely the rotation of the two blades relative to a common
joint. We would like to be able to recognize the scissors, independent of the relative
orientation of the blades, and without requiring a different model to represent each
orientation. This class could further be extended to include scissors of different
sizes.

Stretching deformations

A third class of parameterized objects are those in which subparts can stretch along
an axis. An example would be a family of hammers, for which there is a generic
handle shape, but which can stretch along the axis of the handle, as indicated in
Figure 1.

-
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Figure 1. A set of parameterized subparts, in which the generic shape in the upper left is
stretched along the axis of the shape.

Our goal is to extend our recognition method to handle such classes of parameterized
families.
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In dealing with parameterized families, we restrict our attention to two dimen-
sional objects, that are composed of sets of linear edge fragments. Each linear edge
fragment consists of two endpoints, and a unit vector normal to the line between
them and pointing away from the interior of the object. Formally, this is given by

linear; = (fi,(bi,ei)).
Note that a point on the edge can be represented by
ii; and b; + a;t;, a; €[0,4]
where fi; is the unit normal vector, t; is a unit tangent vector, oriented so that it
points from b to e, and «; can vary from 0 to the length of the edge £;.

3.2 Possible approaches

A large number of methods have been explored in the literature for recognizing rigid
objects, both in two dimensions and in three. When considering parameterized
objects, far fewer methods have been considered. In particular, while a number
of schemes have been suggested for representing parameterized objects, such as
generalized cylinders and superquadrics, at this point very few actual recognition
engines based on such parameterized representations have been demonstrated. The
best known such system is probably ACRONYM [Brooks 1981]. Within the context
of our approach to recognition, there are two distinct alternatives for extending
the method to handle parameterized parts, both related in a global sense to the
approach taken by Brooks.

The first approach is to extend our geometric constraints to directly incorporate
the free parameters. In this case, the search process would become a constraint
propagation technique, in which the current range of possible values for each of the
parameters would be passed from a parent node of the IT to each of its sons. At each
new node, the constraints imposed by matching the new data patch to its assigned
model patch would be used to refine the range of free parameters, which would then
be passed to that node’s children. If any parameter is reduced to an empty range of
values, the interpretation is inconsistent and the search along that subtree can be
terminated.

The main difficulty with this approach is finding a clean way of representing
the parameterized constraints, especially in a manner that will easily allow the
computing and updating of feasible ranges for each of the parameters. Consider our
example of a pair of scissors, where the parameter to be determined is the angle
between the two blades. If two data fragments are being considered as belonging to
two model fragments that are part of the same rigid subpart, then the constraints
are the same as in our earlier approach. They either indicate consistency, in which
case the range of possible values for the rotation parameter remains the same as it
was before considering this pairing, or they indicate inconsistency, in which case the
search must backtrack. On the other hand, suppose two data fragments are being
considered as belonging to model fragments on different rigid subparts. In this case,



we need a means of expressing the range of possible values for the rotation parameter
as an explicit function of the relative geometry of the two model fragments and the
two data fragments. This may prove difficult to obtain.

The second approach is to break the object model into rigid subparts, all of
which are connected to a global model-based coordinate frame through a series of co-
ordinate frame transformations. Each subpart can then be recognized by application
of our earlier technique, including a free scale parameter. Once the subparts have
been recognized and located, we must check that they are consistent by confirming
that the parts satisfy a set of predetermined global coordinate-frame constraints.

Consider the earlier example of a pair of scissors, with a free overall scale factor.
In this approach, we treat each blade of the scissors as a rigid subpart. Thus, we
attempt to locate instances of the right and left blade in the sensory data. Once we
have done this, we then confirm that the subparts are parts of a consistent whole.
In the case of the scissors, this would involve checking two things: (1) the scale
factor associated with each blade is roughly the same, and (2) the transformations
from model coordinates to sensory coordinates associated with each blade are such
that the position, in sensor coordinates, of the pin joining the two blades is roughly
the same (i.e. the located instances of the blades in the data are rotated about the
expected common axis). The advantage of this second method is that the geometric
constraints remain simple, yet combinatorially powerful.

Note that we can apply our search for rigid subparts in several ways. The
simplest is to search the data independently for each rigid subpart, then test all
possible combinations of subparts for consistent wholes. A more efficient method
would be to first search the data for one subpart (e.g. the largest). For each
candidate solution found in the data, we can then use limits on the ranges of the
parameters to restrict the possible positions of the other subparts in the sensory
data. Using this reduced data set, we can then search for instances of the other
subparts, testing each instance for global consisistency. If no instance of the initial
seed subpart is found, (for example, it is occluded in the data) we can then consider
the next seed subpart (e.g. the next largest) and proceed as before.

In this paper, we explore both options. We first derive the set of geometric
constraints on interpretations, and then illustrate the search process on some simple
examples.

3.3 Scale Factors

Perhaps the simplest family of objects to consider are those in which a single, rigid
object of known shape can undergo an arbitrary global scaling, within some limits.
We need to consider how to adjust the recognition process, so that it can not only
recognize where an object is in the data, but also its overall size.

We assume that the scale factor is applied to the data, so that the transfor-
mation from a point in model coordinates, v,,, to sensor coordinates, vg, is given



by

sva = Rgvm + Vo
where s is a scale factor, 8 is an angle, Ry is a rotation matrix of angle # and vy is
a translation vector.

3.3.1 Length constraint

If we are matching data edge d;, given by
(1, (bi, e:))
to model edge myp, given by

(K, (By, Ey))
then the length of the data edge must be less than the length of the corresponding
model edge, modulo measurement error. We let ¢; denote the length of the data
fragment, and L, denote the corresponding length of the model fragment, where
these lengths are given by
& = |b; —eil, Ly =|Bp— Eyp|.
Then we must have
s; < Lp+ ¢ Vs
where €7, is a predefined upper bound on the amount of error inherent in measuring
the length of an edge.
We can define
Ly,+¢L
¢ ]
that is, the range of scales consistent with this assignment. This constraint returns
a (possibly empty) range of values.

scaled-length-constraint(i, p) = [0,

3.3.2 Angle constraint

Let 6;; denote the angle between f; and fi;, and let ©p, denote the angle between
1§Ip and N,. We let

binary-angle-constraint(i, j, p, ) = True iff 8;; € [@py — 2¢4,0pq + 2€4]
where all arithmetic comparisons are performed modulo 27 and where ¢, is an upper
bound on the amount of error inherent in determing the direction of a normal.

3.3.3 Component constraint

The third constraint concerns the separation of the two edge fragments. In particu-
lar, we consider the range of components of a vector between the two edge fragments,
in the direction of each of the edge normals. Algebraically, this is expressed by the
dot product

(bi + a,-fi —_ bj —_ Otj%j, ﬁ,‘)



which reduces to
(bi = bj,0u) — o (tj,0:)  o; €[0,4]
Of course, there is an equivalent constraint for components in the direction of ;.

Note that this expression actually determines a range of values, with extrema when
aj = 0,£;. We denote this by

di;; = min{(b; — b;, A;) — a; (;,0;) [a; € {0,4;}}

dj;;; = min{(b; = bj, f:;) — & ({5, 1) laj € {0,4;}}

These ranges can be computed both for pairs of data edges and pairs of model
edges. In the ideal case, consistency will hold only if the data range is contained
within the model range (since the data edges may correspond to only parts of the
model edges). As in the case of the other constraints, we also need to account for
error in the measurements. We derive a simple method for doing this below.

Consider the base case, shown in Figure 2a. The perpendicular distance from
the endpoint of one edge to the other edge is shown as D*. In Figure 2b, the
edge is rotated by ¢, about its midpoint, and the new perpendicular distance X is
shown. We need to relate X to measurable values. We already have D*. We can also
measure 5, the distance from the midpoint of the edge to the perpendicular dropped
from the endpoint of the other edge, as shown. Straightforward trigonometry then
yields the new distance

X = (DL - Ssinea) cos €,.
Since the position of the second edge is not known exactly, we must adjust this
expression, to yield one limit on the range of possible measurements:

Dj;pq = (D‘L — Ssin ea) COS €5 — €p.

The other extreme is shown in Figure 2c. Trigonometric manipulation yields

the following upper bound
D,‘i‘,pq = (S - D* sinea) sine, + Dt seceq + €p.

Thus, given two model edges indexed by p,q, we can compute a range of possible
measurements (modulo known error bounds), by using Dy, and Dj.,, computed
over all the endpoints of the edges. We denote this range by [M é],'pq’ M ,;L,pq].

Given a range of projections of data edge ¢ onto edge j, and a corresponding
range of projections for model edge p onto model edge ¢, we need to determine
bounds on s such that

[Sdtij’Sle{,ij] < [Mépq’M'th]'
The following cases hold:
If (t;, #;) > 0 then
If (bj—bi, flj) >0
MJ.
then Sh S Trh’%q—-r—y
5 = D, B
If (b]'—-b,', fl_,) <0
M,

then S¢ Z —Z—rﬁ‘-—l—y
i = D, Ny
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Figure 2. Errors in computing the direction constraint. (a) The component of a vector
from one endpoint in the direction of the other edge’s normal is given by the perpendicular
distance d to the extended edge. (b) Since the actual normal is only accurate to within
€a, one extreme case is given by rotating the extended edge about its midpoint by that
amount and finding the new perpendicular distance. (¢) The other extreme is obtained by
considering the other endpoint.

¥ (b; — b;, 7)) — & (%, ;) >0

then Sg > L

If (b; — by, nj) — & (%, ;) <0
Ml{- rq

then $h < ( b; - by, D) - "'(%"’ ﬁj)

If (t;, f;) < O then
If (b]' - b;, ﬁj) >0
M.L
then s > THHRy

If (bJ - b;, ﬁj) <0
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then sp < j%ﬁ_ﬁ—y
I (b — by, a;) — &k, n;) > 0

MJ.
then sp < k. pg

- <b, —b;,fl,‘) —l;(%.‘,ﬁ»
If ( bj — by, flj) - ¢ (%i, flj) < 0
then S > k. pg .
( b,' - b.‘, ﬁ,) - l.‘<t.‘, fl,>
Thus, based on the measured and model constraint ranges, we can compute a range
of scale factors [$¢,i,j,p,qs Sh,i,j,p,q] fOr Which the assignment of data edges to model
edges is consistent. We let

scaled-component-constraint(i, J,p, ¢) = [$¢,i,j,p,q> Shoi,jipal-
Although we will not use it here, note that we could derive a similar form for the
distance constraint.

Given these unary and binary constraints, we can now modify our constrained
search process. With each node of the search tree, we associate a range of consistent
values for the scale parameter, which we will denote [s(lk), s%k)], where k indicates
the level of the node in the tree. Suppose the search process is currently at some
node at level k in the interpretation tree and with a consistent partial interpretation
given by

{(dy, mj, ), (d2,mj,),...(dk, mj, )}
We now consider the next data fragment di+1, and its possible assignment to model
fragment mj, _,, where ji;, varies from 1 to n 4 1.
The following rules hold.

o If my,, is the wild card match, then the new interpretation
{(d17 mj ), (d2, mj;), . - (i1, My 41 )}

is consistent, and we continue downward in our search, setting
k+1) _(k+1 k) (k
[s¢+1), s+ D] = [, 091,
o Ifmj,,, is alinear edge segment, we let

[sﬁ,kﬂ), sglk"'l)] = [s(ek), sglk)] ﬂ scaled-length-constraint(k + 1, jx41).
If this new range is non-empty, then for all ¢ € {1,...,k} such that d; is a linear
edge fragment, we verify that

binary-angle-constraint(i,k + 1, j;, jx+1) = True
and we set
k+1) (k41 k+1) _(k+1
[32 + ),5% )] =[8(g + ),32 + )]
n scaled-component-constraint(i, k + 1, ji, jk+1)

n scaled-component-constraint(k + 1,1, jiy1, Ji)-

o If
[S(zk+1), 82’6-}-1)]
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is non-empty, then

{(dl’ mj )’ (d2’ mjz)v ce (dk+17 LLLS TO )}
is a consistent partial interpretation, and we continue our depth first search.
Otherwise, the partial interpretation is inconsistent. In this case, we increment
the model fragment index ji+; by 1 and try again, until jr41 =n + 1.

If the search process is currently at some node at level k in the interpretation tree,
and has an inconsistent partial interpretation given by

{(d1,my,),(d2, my, ), . . . (di, mj, )}
then it is in the process of backtracking. If jx = n + 1 (the wild card) we backtrack
up another level, otherwise we increment ji; and continue.
In this manner, we can naturally extend our constrained search method to
recognize objects from families in which the free parameter is overall scale. An
example is shown in Figure 3.

3.4 Rotating Subparts

More interesting classes of parameterized families include those in which parts of the
object are allowed to move with respect to one another. A good example of such a
family is a pair of scissors. A fixed size pair of scissors has a single degree of freedom,
namely the rotation of the two blades relative to a common joint. We would like
to be able to recognize the scissors, independent of the relative orientation of the
blades, and without requiring a different model to represent each orientation. This
class could further be extended to include scissors of different sizes.

As we suggested earlier, this could be done by generalizing the constraints to
directly take the free parameters into account. However, an easier approach is to
break the object up into rigid subparts, and deal with each separately. We illustrate
this with our scissors example.

Suppose we treat each blade assembly as a separate part. We choose the location
of the common pin as the origin of the model coordinate frame. Now suppose that we
run our recognition system on each part, solving for a transformation 8r,sr, ve,L
for the left blade and for a transformation 6g,sg, vo r for the right blade. This
can proceed in a manner identical to that described previously. To ensure that
the two subparts are actually part of a common whole, we need to test that their
interpretations are globally consistent. This can be done by means of a simple set of
geometric constraints on their respective transformations. In this case, we require

S &~ SR
Vo,L = Vo,R
Note that 87, and #r could in principle take on any values. In practice, there is a

limited range of orientations that the scissors can take on, so that a third constraint
would be

16 — 0rll < C
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Figure 3. Examples of recognition when the free parameter is overall scale. The first part
shows a set of linear edges segments, the second shows the overlay of the located object,
and the third shows the located object in isolation.

where C is some threshold on the range of rotations, and the arithmetic is done
modulo 27. An example is shown in Figure 4.

Note that the search can be done independently for each part, followed by
the application of the global constraints on each candidate pair of subparts. More
effectively, we can first solve for the location of one of the subparts, and then use
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Figure 4. Examples of recognition when the free parameters are overall scale and rotation
about a common axis. The first part shows a set of linear edges segments, the second shows
the overlay of the located object, and the third shows the located object in isolation.

that position to restrict the possible positions of the second part, thereby directly
removing some portions of the sensory data from consideration. We can also use
the solution for the first subpart to restrict the values of the free parameters, for
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example, limiting the range of acceptable scale factors before beginning the search
for the second subpart.

We also need to add another level of backtracking search to our process. In
particular, suppose we have found a candidate for the first rigid subpart, but we
cannot find an acceptable candidate for the second one. In this case, we must
backtrack to the point in the search for the first subpart at which we found the first
candidate, and continue that search. If a second candidate for the first subpart can
be found, then we can initialize a new search for the second subpart, and so on.

In this case, the data structures used to represent an object become somewhat
more complex than in the case of rigid objects. Here, an object representation must
include: a list of rigid subparts, each of which is represented by a set of constraint
tables as in the original recognition method; a list of the free parameters; a set of
procedures for verifying the post constraints; and a procedure for generating the
restricted search area for a part, as a function of the pose of solution for other parts.

3.5 Subparts that Stretch

As a third example, consider a family of tools, say a set of hammers with identical
heads, but different handles. Again, we would like to extend our method to recognize
both the identity and location of the hammer, and to determine which handle is
attached. To model the handles, we assume that a generic shape (such as that shown
in the left of figure 1) can stretch by some variable amount along an axis (in the case
of the handle in figure 1 this is the axis of symmetry). The problem is to extend
the search method to deal with constraints that are themselves parameterized. We
do this as follows.

Without loss of generality, we assume that the model part has been oriented so
that the axis of stretching is the z-axis in model coordinates. We let o denote the
amount of stretching along that axis, with @ = 1 designating the base case. Note
that « is likely to be restricted to some range of values, which may be specified
beforehand.

Consider first the constraints on the surface normals. In the case of rigid models,
our constraint was that the angle between two data normals must be the same as
the angle between the corresponding model normals, to within some error. In the
case of stretching parts, the normals will vary relative to one another as a function
of the stretching parameter a. Suppose we let 6;; denote the measured angular
difference, we let € denote the allowed error range in measuring the angles, and we
let ®,, ®, denote the corresponding model angles, in model coordinates, for the base
case a = 1. By appropriate algebraic manipulation, the following cases hold.

o &,0,¢€{0,7,%,—%}. In this case, we need only check that 8;; € [®, — ®, —

6%, — &, + €]

o &,c{0,n}. &, ¢{0,7,%,—F}. In this case, the stretching factor is given by
— tan 8, i
tan &,
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A similar case holds when the roles of 7 and j are reversed.
o &,e{%,-%} &, ¢{0,7,%,—%}. In this case, the stretching factor is given

by
1

*= tané;; tan &,
A similar case holds when the roles of ¢ and j are reversed.
o tand, # 0,tan®, # 0,tané;; = 0 In this case, @ = 0 which indicates an
inconsistency.

e  All other cases. The stretching factor is given by

oo tan®,—tand, | 4.1 4tan? 0;; tan §, tan B,
2tan @, tan ®, tan 6;; (tan @, — tan ®,)?

Note that the measurement 6;; is actually a range of measurements, due to error in
sensory data. Thus, by applying the above computation over a sampling of values
for 6;; within this range, we can obtain a range of consistent values for the stretch
factor, which we represent by

[alyivjvp,q’ ahyivjrp’Q]
and we define
stretch-angle-constraint(i, ,p, q) = [@4,i,j,p,q) Xh,i,j,p,q)-

For the component constraint, we can perform a similar analysis. Suppose we
are given two non-parallel data edges, each of which is designated by a base point
b; and an end point e;. These are chosen so that the tangent vector pointing from
the base point to the end point is 90° clockwise from the normal vector f; to the

edge. For these two edges, we can compute the component of the vector b; — b; in
the direction of the normal vector fi;, which we call

dj:,-j = (b; — b, 11;)
and the component
di;; = (ej — bi, ).
Then given a corresponding pair of model edges, we can compute similar components
M, = (B, ~ B, N,)
and
My = (B - B, N,).
We also let
o = signum {((e,- -by)* ,(ej — bj)>}
and we let Az; and Ay; denote the z and y components respectively of the vector
e; — b;. Then the range of values of the stretch factor « is given by the range

spanned by
o'dé:ij |Ay:

o =
VOME,)? ~ (4, (820
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and
o= Ude{,iﬂAyi‘ _
VME)? = (dF )2 (M)’

In fact, one must also allow for error in the measurements, which will yield a

range of values for dj;; and dj; j» leading to a larger range of values for the stretching

factor a, again denoted

[al,i,j,p,q ’ ahﬂ.»jypﬂ]’
We define

stretch-component-constraint(s, j, p,q) = [a4,i,j,p,gs Xhi,j,pa)-

Finally, we can also alter the length constraint, which in this case is given by

—€1)? — (Az;)? 00]-
(Ay:)? ’

Given these unary and binary constraints, we can now modify our constrained
search process. With each node of the search tree, we associate a range of consistent
values for the stretch parameter, which we will denote [a(ek), aslk)], where k indicates
the level of the node in the tree. Suppose the search process is currently at some
node at level k in the interpretation tree and with a consistent partial interpretation
given by

stretch-length-constraint(¢,p) = [\/(Im

{(dv,my,), (d2, mj, ), .. . (diy mj, )}
We now consider the next data fragment dx41, and its possible assignment to model
fragment m, ., where ji.y varies from 1 to n + 1.
The following rules hold.

e Ifmj,,, is the wild card match, then the new interpretation

{(dl, mj ), (d2’ mjz)’ ce (dk+17 Mkt )}
is consistent, and we continue downward in our search, setting

k k+1 k) (k
[af Y, off ] = [, o).
o If mj,, is alinear edge segment, we let
[agk"'l),aglk"'l)] = [a(lk),agk)] ﬂstretch-length-constraint(k + 1, jk41)-

If this new range is non-empty, then for all ¢ € {1,...,k} such that d; is a linear
edge fragment, we let
k+1)  (k+1 E+1) (k+1
[ Y, e ] =[ag Y, o)
n stretch-component-constraint(i,k + 1, j;, jk+1)
n stretch-component-constraint(k + 1,7, jxy1, 7i)

n binary-angle-constraint(i,k + 1, ji, Jk+1)-

[a2k+l), a2k+l)]
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is non-empty, then

{(dl, mj, )’ (dZ’ m]’z)’ X (dk+1’ My yr )}
is a consistent partial interpretation, and we continue our depth first search.
Otherwise, the partial interpretation is inconsistent. In this case, we increment
the model fragment index ji4+y by 1 and try again, until jr4q = n + 1.

If the search process is currently at some node at level k in the interpretation tree,
and has an inconsistent partial interpretation given by

{(dlv mj, )’ (d, mjz)v oo (d, mj, )}
then it is in the process of backtracking. If 5 = n + 1 (the wild card) we backtrack
up another level, otherwise we increment j, and continue.
Figure 5 shows an example of a set of overlapping handles (taken from the
family illustrated in Figure 1). Each instance of one of the handles is identified and
located, including determining the actual value of the stretching parameter.

3.6 Combining Parameterizations

It is useful to be able to recognize objects that combine different types of param-
eterizations. For example, consider a pair of shears, that have both a rotational
freedom between the two blades, and a stretching freedom along the axis of each
blade. We can combine the methods described in Sections 3.3 and 3.4 to deal with
this more general problem. An example is shown in Figures 6-9. Here, the system
correctly solves for the position and orientation of the object, the angle of rotation
between the blades and the stretching factor of the blades.

One could also combine stretching and scaling parameters in a single family
of objects. This is equivalent to allowing independent stretching in two orthogonal
directions. In this case, there are two parameters for which to solve, so that each
constraint only specifies a relationship between the parameters. We can define a
two-dimensional parameter space, spanned by the stretching parameter in the z
and y directions. Initially, this space will contain a region of feasibility, defined by
any limits on the range of parameters. As we add each constraint in our search
process, a new region of the space will be defined, and the intersection of the two
will determine the range of feasible parameter values consistent with the current
interpretation. As in the earlier cases, if the region of feasibility becomes empty, the
interpretation is inconsistent.

Determining the region of feasibility defined by the constraints is somewhat
delicate. The length constraint, for example, yields an ellipse centered at the ori-
gin of the parameter space, whose complement demarks the feasible region. The
angle constraint yields a feasible region that consists of a contiguous family of rays
passing through the origin of the parameter space. In principle, one could use such
constraints, together with procedures for intersecting regions in the plane to imple-
ment a recognition system for parts that stretch, scale and rotate at the same time.
We have not yet done so.
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Figure 5. Examples of recognition when the free parameter is stretching along an axis.
The first part shows a set of linear edges segments, the second shows the overlay of the
located objects, and the third shows the located objects in isolation.

One drawback of the system presented here is that the analysis of how to pa-
rameterize an object model is done by hand, rather than automatically determining
the parameterization for a model [Brooks 81].



Figure 6. Example of recognition with different types of parameterizations. The object has
a rotational free parameter and a stretching free parameter. The figure shows the original
image.

4. Relation to previous work

The literature on object recognition stretches over a period of at least twenty years.
An extensive (70 page) review of much of this literature for 3D objects can be found
in [Besl and Jain 1985]. A survey of model-based image analysis systems can be
found in [Binford 1982].

In terms of the approach to be described here, a number of authors have taken
a similar view to ours that recognition can be structured as an explicit search for a
match between data elements and model elements [Ayache and Faugeras 86, Baird
85, Bolles and Cain 82, Bolles, Horaud and Hannah 83, Faugeras and Hebert 83,
Goad 83, Ikeuchi 87, Lowe 86, Stockman and Esteva 84]. Of these, the work of
Bolles and his colleagues, Faugeras and his colleagues, and that of Baird are closest
to the approach presented here.

The interpretation tree approach is an instance of the consistent labeling prob-
lem that has been studied extensively in computer vision and artificial intelligence
[Waltz 75, Montanari 74, Mackworth 77, Freuder 78, 82, Haralick and Shapiro 79,
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Figure 7. Example of recognition with different types of parameterizations. The edge
fragments extracted from the image in Figure 6 are shown.

Haralick and Elliott 80, Mackworth and Freuder 85]. This paper can be viewed as
suggesting a particular consistency relation (the constraints on distances and angles)
and exploring its performance in a wide variety of circumstances. An alternative
approach to the solution of consistent labeling problems is the use of relaxation.
A number of authors have investigated this approach to object recognition [Davis
79, Bhanu and Faugeras 84, Ayache and Faugeras 82]. These techniques are more
suitable for implementation on parallel machines.

The literature on recognition of parameterized objects is much smaller. The
best known system is probably ACRONYM [Brooks 81], which also attacks the
recognition problem by means of constraints to reduce ranges of parameterized vari-
ables. One of the main differences is that Brooks’ system dealt with both rigid
subparts and constraints that incorporated free parameters at runtime. In the ap-
proach presented here, we are compiling special cases of parameterization by hand
in advance, so that the runtime portion of the problem is much simpler, and uses
stronger constraints. This makes our system somewhat less general than Brooks’,
although it does benefit from a simpler recognition engine.
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Figure 8. Example of recognition with different types of parameterizations. The solution
is overlaid on the edge fragments extracted from the image in Figure 6.
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