MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A. 1 Memo No 999 November 1987

Expressing Mathematical Subroutines
Constructively

Gerald L. Roylance

Abstract

The typical subroutines that compute sin(z) and exp(z) bear little
resemblance to our mathematical knowledge of these functions: they are
composed of concrete arithmetic expressions that include many mysterious
numerical constants. Instead of programming these subroutines conven-
tionally, we can express their construction using symbolic ideas such as
periodicity and Taylor series. Such an approach has many advantages: the
code is closer to the mathematical basis of the function, less vulnerable
to errors, and is trivially adaptable to various precisions.

Acknowledgments. This report describes research done at the Artificial
Intelligence Laboratory of the Massachusetts Institute of Technology. Support
for the Laboratory’s artificial intelligence research is provided in part by the
Advanced Research Projects Agency under Office of Naval Research contracts
N00014-86-K-0180 and N00014-85-K-0124.

(©Massachusetts Institute of Technology 1987

;35 calculate sin(z * (pi/2)), -1 <=z < 1
HRA error < .5e-9
(define (sine-quad z)

(let ((22 (* z 2)))

(* z
(+ 1.57079632662143
(x 22
(+ -0.64596409264401
(* z2
(+ 0.07969258728630
(* z2
(+ -0.00468162023910
(* z2
(+ 0.00016021713430
(*x 22
-0.00000341817225
NN

(define (sine x)
(let ((quad (floor x (/ pi 2.0))))
(let ((phase (- (mod (+ quad 1.0) 4.0) 1.0)))
(if (> phase 1.0) ;8in(pi+z)=-sin(z)
(- (sine-quad (- phase 2.0)))
(sine-quad phase))))

Figure 1: A Conventional Sine Routine in Lisp.

1 Introduction

Scientific subroutines such as sin(z) and exp(z) have few abstractions, are lit-
tered with numerical constants, and are tailored to specific machines. A Lisp
translation of a typical sine subroutine is given in figure 1. What is it doing?
Where do these multidigit constants come from? We should be suspicious of
any code that looks like this; perhaps someone has miscalculated or mistyped
one of the constants. The problem with this code lies in the poor description
that numerical programmers use: they write down the results of a calculation
(eg, 1.57079632662143) rather than what the calculation is (eg, first term of an
economized Taylor series).

This poor description is unnecessary, and this paper provides an alternative
called Constructive Programming (CP). Instead of writing a subroutine that
computes the value of the sine function, the programmer writes code to con-
struct the subroutine that computes a value. He essentially describes how he

would write the program rather than merely writing it. This level of indirection
improves the clarity and the believability of the programs. A further benefit
of CP is that a single description specifies a family of subroutines: just chang-
ing the number that specifies the accuracy will generate the single, double, or
quadruple precision versions of a subroutine.

Constructive Programming can be as efficient as the conventional methods
because the extra work of manipulating the constructive description is essen-
tially carried out at “compile time”. The meaning of “compile time” in a de-
scription based on higher order procedures is more general than when we run
the compiler, and so CP can also produce efficient subroutines at “run time”.

In the following sections, the sine routine will be rewritten in a constructive
style. Initially the code will focus on describing the sine function and will ignore
the issue of efficiency which is taken up in the later sections.

The procedures given here are in the Lisp dialect Scheme[1]. The actual code
was written in Common Lisp[4], but its higher order procedures are syntactically
more cumbersome.

2 Reducing the Interval

One of the most obvious things a sine routine does is exploit the periodicity of the
sine function to map the sine’s infinite domain onto a finite interval. The sine
routine produces an approximation to the sine function, and approximations
are most eflicient if they cover only small intervals. Reducing the interval of
approximation also eases the demand for high precision arithmetic.

Here is a definition of a sine routine that maps the argument into the interval
[-7/2,37/2] (this particular interval is used because it is symmetric about 7/2
— a property that is important in a transform below). The routine sine-full
is described below.

(define (sine-fcn x)
(let ((cycles (floor (/ (+ x (/ pi 2)) (* 2 pi)))))
(sine-full (- x (* cycles (* 2 pi))))))

Exploiting periodicity is something that we will do many times in the con-
struction of mathematical subroutines, so it is worthwhile to encapsulate the
idea of reducing an interval down to one period in a higher order procedure.

(define (period-maker fcn a period)
(lambda (x)
(let ((cycles (floor (- x a) period)))
(fen (- x (* cycles period))))))

This procedure takes a procedure fcn that is defined on [a, atperiod] and
returns a procedure that replicates that function over the rest of the real line.
The code above is now achieved using period-maker:

(define sine-fcn
(period-maker sine-full (- (/ pi 2)) (* 2 pi)))

A further reduction of the interval of approximation uses the reflective sym-
metry of the sine function about #/2.

(define (sine-full x)
(sine-half (if (< x (/ pi 2)) x (- pi x)))))

As before, a higher order procedure will express this reflective symmetry.

(define (reflection-maker fcn a)
(lambda (x)
(fcn (if (< x a) x (- (* 2 a) x)))))
(define sine-full
(reflection-maker sine-half (/ pi 2)))

While other trigonometric identities can be applied to further reduce the interval
of approximation, they are usually not beneficial for reasons beyond the scope
of this paper.

These procedures exploit properties of the sine function in order to reduce
the routine’s argument to a small interval (in this case, the domain of the
as yet undefined procedure sine-half: [—w/2,7/2]). There are no obscure
constants and we should feel comfortable with the trigonometric identities used.
We must still address, however, the method of generating values of the sine over
this reduced interval. The next section discusses the construction of a sine
approximation on the half period.

3 Power Series Approximations

A transcendental function such as the sine function can be represented by a

Taylor series:
o0

. _ i1 2i+1
sin(z) = Z:(1)] 1)!1;
This particular Taylor series is absolutely convergent for all values of z. Notice
that there are no multidigit magic constants in the description of the Taylor
series.
A simple way to procedurally represent the ith term of the sine power series
is as a simple function:

i=0

(define (sine-term i)
(term-make (/ (expt -1 i)
(factorial (+ (* 2 i) 1))) ; coefficient
(+ (x 2 1) 1))) ; power

The function (term-make a b) produces a representation of az’. The sine--
term procedure is a finite description of the infinite series. In the code that
follows we will use this procedure as the representation of the sine function.

It would take infinite time to use all the terms of a power series, so we must
have some method of truncating the series to a finite number of terms. The first
n terms of the power series can be turned into a polynomial (which we will call
a termlist) with this code.

(define (sine-truncated-series n)
(if (< n 0)
(termlist-make)
(termlist-adjoin (sine-term n)
(sine-truncated-~series (1- n)))))

The procedure termlist-make creates a termlist with no terms; termlist—-
adjoin produces another termlist that has one more term. The general version
that will truncate a power series represented by a term function is:

(define (truncated-series term-fcn n)
(if (< n 0)
(termlist-make)
(termlist-adjoin (term-fcn n)
(truncated-series term-fcn (1- n))))))

Thus we can rephrase the truncated sine series more simply as

(define (sine-truncated-series n)
(truncated-series sine-term n))

Now, with the aid of a function termlist-eval that evaluates the polyno-
mial represented by a termlist for a particular point, we can approximate the
sine function with our truncated series. For example, if we need only the first
10 terms of the series to get a required accuracy, then we could use this code to
evaluate the sine function.

(define (sine-half x)
(termlist-eval (sine-truncated-series 10) x))

While this routine will compute values of the sine function, it has a couple
of severe problems: we don’t know how accurate it is, and it is ridiculously slow
and inefficient. The next sections will fix these problems without changing the
basic strategy.

4 How Many Terms Should be Used?

The discussion in the previous section got rid of many magic numbers, but
didn’t eliminate all of them: the number of terms to include in the truncated

series is a magic number, so let’s get rid of it. For a particular accuracy and
a particular argument, we need to know the number of terms needed to attain
that accuracy.

We should not truncate a series until we know that its terms are definitely
getting smaller. Notice that the individual terms of the sine series

. = i1 2i41
sin(z) = Z(—l) -(-2—i+—1)!:c +

=0

are monotonically decreasing when the denominator starts growing faster than
the numerator. This point happens when 2i + 1 > z.

The absolute error in the truncated sum of an alternating sign, absolutely
convergent, series is less than the magnitude of the first term neglected. Thus
we can write some code to tell us how many terms of the series we need to take.
The function term~eval evaluates the term at a particular value of z.

(define (sine-number-of-terms eps x)
(do ((i (ceiling (/ (- x 1) 2)) (1+ i)))
((< (abs (term-eval (sine-term i) x)) (abs eps))
(1- 1))))
(sine-number-of-terms 1.0e-6 (/ pi 2)) -> &
(sine-number-of-terms 0.5e¢-9 (/ pi 2)) -> 7

Thus we only need 5 terms (which is a 9th degree polynomial) to find the sine
of /2 to 6 digits.

In order to generalize these ideas to other alternating sign, absolutely con-
vergent, power series, we must specify when the absolute value of the series
terms are monotonically decreasing and when the terms have are small enough
to be ignored. When the series turns monotonic is, in general, a function of the
series variable z, so we should use a lambda expression to specify it. For the
sine example, we would use

(define (sine-mono x)
(ceiling (/ (- x 1) 2)))

We only require that this function be conservative in its estimate.
With the aid of the monotonic function, we can determine the number of
terms required to achieve an accuracy eps.

(define (number-of-terms term-fcn mono-fcn eps x)
(do ((i (momo-fcn x) (1+ i)))
((< (abs (term-eval (term-fcn i) x)) (abs eps))
(1- i))))

(number-of-terms sine-term sine-mono 1.0e-6 (/ pi 2)) -> 5

Rolling everything together, we can calculate an arbitrary (alternating sign,
absolutely convergent) truncated power series that will achieve a desired accu-
racy.

(define (truncated-series-eps term-fcn mono-fcn eps x)
(truncated-series term-fcn
(number-of-terms term-fcn
mono-fcn
eps x)))

Thus we can define a version of the half period sine routine using no magic
numbers that is accurate to 9 digits.

(define sine-half-9
(lambda (x)
(termlist-eval
(truncated-series-eps sine-term sine-mono
1.0e-9 (/ pi 2))
x)))

We can, in principle, generate arbitrarily accurate routines this way. Using ratio-
nal arithmetic (because our floating point numbers were not accurate enough!),
we have generated sine routines that have 346 digits of precision.

5 Compile Time and Run Time

The unfortunate feature of the code we’ve shown so far is that every time we
call the sine routine, we have to recompute the truncated power series and then
evaluate it. That’s a lot of overhead. It would be better if the truncated series
could be determined once and never computed again.

A trivial change to the code above calculates the termlist only once — when
the procedure is defined.

(define sine-half-9
(let ((terms (truncated~series-eps sine-term sine-mono
1.0e-9 (/ pi 2))))
(lambda (x)
(termlist-eval terms x))))

In this version, the termlist is explicitly calculated and then squirreled away in
the environment of the closure (see figure 2) made by the lambda expression.
Whenever the closure is called, it accesses the termlist stored in the environment
instead of recomputing it.

Traditionally, this optimization is a compile time versus run time distinction.
Doing things at compile time requires doing them only once; things done at run
time are done again for each call. While intuitively this distinction is what
we want, the world of higher order procedures is a little more complicated.
In conventional programming languages, procedures are only built at compile
time, but Lisp lets them be built at run time. The code above calculates the

global environment

sine-half-9 \

/

termlist

(lambda (x) (termlist-eval termlist))

Figure 2: Environment Diagram for sine-half-9.

truncated series when the procedure (closure) is defined (definition time); it
makes no difference whether the code is interpreted or compiled, the termlist
will only be calculated once.

In theory, Lisp compilers could do extensive optimization of these procedures
using transformations such as constant folding of the termlists and procedure in-
tegration of termlist-eval. In practice, Lisp compilers are not that advanced
and there will be a performance penalty caused by lexical lookups, procedure
call overhead, and the inability to compile out general type dispatches. These
problems should be short-lived, but even if they are not, they have minimal
impact on constructive programming. One can, for example, recast the above
procedures as macros whose compile time expansions include these optimiza-
tions. Though that approach is expedient, it is not an appropriate long term
methodology. Writing macros that do such optimizations also runs counter to
the point of this paper: we want the programming language, not the program-
mer, to do the low level work.

6 Economization

By exploiting the periodicity and the symmetry of the sine function, we pro-
duced a sine routine that uses a finite number of the terms of the original Taylor

Sine Approximation Error: 7 Term Truncated Taylor
error = sin*(x) - sin(x)
8.00d~13

7.00d4-13

6.00d-13 l

5.00d-13 /

4.00d-13 /

3.004-13 /

2.004-13 /

1.00d4-13 //////
0.d+0

0.000 0.200 0.400 0.600 0.800 1.000
argument x

Figure 3: Uneconomized Sine Approximation

series. We could use this routine, but there are some other improvements that
should be made. A Chebyshev economization [3] of the truncated series reduces
the number of terms that need to be calculated. Economization is a trick that is
worthwhile whenever a polynomial will be evaluated repeatedly (as in a subrou-
tine library). The reduction in computation time can be significant: a 7 term
polynomial can be reduced to 5 terms using a Chebyshev economization.

The reason that the truncated series for sine can be economized is that most
of its error is concentrated near the end points of the approximation interval.
Economization spreads this error throughout the interval. The initial error curve
of a 6 term sine series is shown in figure 3. An economized error curve is shown
in figure 4.

The expression
(chebyshev-economization-scaled s poly initial-error error-bound)

takes a polynomial (termlist) whose domain is -s to s and whose initial er-
ror is initial-error and returns a new polynomial whose error is less than
error-bound. It is an error if initial-error > error-bound. The routine
uses Chebyshev polynomials.

Figure 5 gives a definition of sine-half-maker that uses an economized
series to produce a sine function to a desired accuracy.

Sine Approximation Error: 5 Term Economized Taylor
error = sin*(x) -~ sin(x)
+2.5d-11

+2.0d-11 yARN N
+1.5d-11 /1N \
+1.0d-11 / \ A\
+5.0d-12 / \ [\

+0.d+0 / \ / \
-5.0d-12 / \ [\
-1.0a-11)\ / \ / \
“1.5a-11]_\ / N \

-2.0d-11 \ / \ / \[
-2.5d-11 N\ _/ V

0.000 0.200 0.400 0.600 0.800 1.000
argument x

Figure 4: Economized Sine Approximation

(detine (sine-half-maker eps)
(let ((termlist
(chebyshev-economization-scaled
(/ pi 2)
(truncated-series-eps sine-term sine-mono
(/ eps 10) (/ pi 2))
(/ eps 10)
eps)))
(lambda (x)
(termlist-eval termlist x))))

Figure 5: sine-half-maker

10

7 Sine Summary

Programming a sine routine constructively involves specifying a few steps. The
domain of the function is reduced to a reasonably small interval by employing
the periodicity and symmetry of the sine function. Within that interval, the
sine function is approximated by an economized Taylor series. In order to be
readable and believable, a program should reflect these steps; the code in figure
6 tries.

8 DBessel Functions

Constructive Programming is not limited to sine routines; it applies to a broad
class of problems that occur in subroutine libraries and even includes some
exotic functions. For example, these methods can be used on Bessel functions.
Abramowitz[2] (section 9.1.10) gives the power series expansion for the Bessel
functions of integer order v as:

_ , 00 (_1/422)k
7@ =G/ 2 G D

Translating this expression into the termlist representation (and making use of
I'(n + 1) = n! for integer n gives us a term-maker function:

(define (bessel-term-maker v)
(lambda (k)
(term-make (* (expt (/ 1 2) v)
(/ (expt (/ -1 4) k)
(factorial k)
(factorial (+ v k))))
+v (2K

A term-maker function is used here because the Bessel functions are a parame-
terized family. Calling bessel-term-maker with an argument v gives us a term
function for that order Bessel function.

The Bessel function series is monotonic decreasing if |2|/2 < k, so we can
determine the term after which the terms are monotonically decreasing:

(define (bessel-mono-maker v)
(lambda (x)
(ceiling (/ (abs x) 2))))

These two functions now let us construct a termlist to arbitrary accuracy.
bessel-series-eps returns a termlist for the Bessel function of order v that
has accuracy eps as long as the argument does not exceed the value x.

11

;33 Describe the Taylor Series
(define (sine-term i)
(term-make (/ (expt -1 i)
(factorial (+ (* 2 i) 1)))
(+ (* 21i) 1))
(define (sine-mono x)
(ceiling (/ (- x 1) 2)))

;53 Build a half period sine to any accuracy
(define (sine-half-maker eps)
(let ((termlist
(chebyshev-economization-scaled
(/ pi 2)
(truncated-series-eps sine-term sine-mono
(/ eps 10) (/ pi 2))
(/ eps 10)
eps)))
(lambda (x)
(termlist-eval termlist x))))

;33 Expand a half period sine to the real line
(define (sine-maker eps)
(let* ((sine-half (sine-half-maker eps))
(sine-full (reflection-maker sine-half (/ pi 2))))
(period-maker sine-full (- (/ pi 2)) (* 2 pi))))

;33 Make an instance accurate to 9 digits
(define sine
(sine-maker 0.5e-9))

Figure 6: Sine Routine Without Magic

12

(define bessel-0-8-c
(let* ((a 3.0d0)

(eps 5.04-8)

(eps2 (/ eps 1000))

(termlist (chebyshev-economization-scaled
a
(bessel-series-eps v a eps2)
eps
eps2)))

(lambda (x)
(termlist-eval termlist x))))

Figure 7: bessel-0-8-c¢

(define (bessel-series-eps v x eps)
(truncated-series-eps (bessel-term-maker v)
(bessel-mono-maker v)
eps x))

Chebyshev economization is also appropriate here and also little trouble.
Figure 7 has an economized Bessel procedure that is accurate to 7 digits. A
plot of the approximation error is given in figure 8.

Earlier we were suspicious about code that used magic numbers. Abramowitz,
in section 9.4.1, gives the coeflicient values for a Bessel function approximation
over the interval [—3, 3] with an accuracy of 5.0E-8. A plot of the approxima-
tion error is given in Figure 9. The approximation that we computed (without
magic numbers) has just as many terms as in the Abramowitz reference, but
it is 40 times more accurate. The approximation they give is not wrong
because they correctly state the error bound, but it is sad that they needlessly
threw away some available accuracy.

9 Summary

This paper has only shown a few techniques for approximating functions, but
there are many others. The primary goal has been to show how to express code
in terms of its development rather than as a sequence of arithmetic operations.
Such an expression makes explicit the properties of the approximation — its
accuracy, for example, is an integral part of the code rather than a comment
that the programmer just happened to add to the source code amid several
mysterious numbers. A further benefit of this approach is that one expression
of a function will provide single, double, and quadruple precision instances.

13

Bessel Approximation Error: Calculated Coefficients

error = JO0*(x) - J0{(x)
+1.50d-9
+1.00d-9 7\ /™ N

+5.0d-10 (\ / \ / \
e/ [

o /L N VT

~1.00d4-9 // \\// \ ‘V

\/

0.000 0.500 1.000 1.500 2,000 2.500 3.000
argument x

-1.504-9

Figure 8: Error curve for economized Bessel function.

Bessel Approximation Error: NBS Coefficients
error = JO0*(x) - J0(x)
+1.004~8

+0.d+0 //\\

-1.00d~-8 \
N

-2.00d-8 \\\\\

-3.004d-8 N\
-4.004-8 \

-5.00d4-8

0.000 0.500 1.000 1.500 2.000 2.500 3.000
argument x

Figure 9: Error curve for NBS Bessel function

14

The paper also argued that run time efficiency does not suffer. While the
construction of a function does require doing a mathematical derivation, that
derivation need only be done once. The actual calls of the function are not
encumbered.

There is, however, still a lot of magic in the descriptions given here. The
code has implicitly assumed that series are alternating sign and absolutely con-
vergent, but conventional routines make these same assumptions. There are
other problems that the above discussion did not address: desired error metric
(eg, absolute error or relative error), more detailed descriptions of algorithm
restrictions (eg, argument ranges and argument types), and the accuracy of the
arithmetic.

References

(1] Harold Abelson and Gerald Sussman. Structure and Interpretation of Com-
puter Programs. MIT Press, Cambridge, MA, 1985.

[2] Milton Abramowitz and Irene A. Stegun. Handbook of Mathematical Func-
tions with Formulas, Graphs, and Mathematical Tables. U. S. Department
of Commerce, National Bureau of Standards, Washington DC, 1972.

[3] Forman S. Acton. Numerical Methods That Work. Harper & Row, New
York, 1970.

[4] Guy L. Steele Jr. Common Lisp. Digital Press, 1984.

15

Tius blank page was inserted to preserve pagination.

CS-TR Scanning Project

Document Control Form Date: S /& 15

Report#_Aijﬂ*HCﬁ

Each of the following should be identified by a checkmark:
Originating Department:

Artificial Intellegence Laboratory (Al)
O Laboratory for Computer Science (LCS)

Document Type:

O Technical Report (TR) I Technical Memo (TN
O Other:

Document Information Number of pages: 15(x- mages)
~ Notto include DOD forms, printer intstructions, etc... original pages only.

Intended to be printed as :

Originals are:

_ Single-sided or 0 Single-sided or
O Double-sided X Double-sided
Print type:

O Typewriter [J oftset Press _ Laser Print

[0 inketPrinter [] Unknown [other,

Check each if included with document:
h DOD Form O Funding Agent Form O coverPage

O spine O Printers Notes O Photo negatives

O Other
Page Data:

Blank Pagesey pege numben

Photographs/Tonal Material ey pege numben:

Qther (now descriptonpage mumben;
Description : Page Number:
[MASE mAF (1) wyit'En TiTle PAGE
[2-15) PACES #'50 &-1S
(16 13) S<ppsec TTRGL , Dod
(% 2) TooTs (3D

Scanning Agent Signoff: o
Date Received: 5 /2¢ /35 Date Scanned: 5~ /701 15 Date Returned: RYNEAS)

(71 | / m)‘? /;-J ontol Form st
Scanning Agent Signature; 2O A - 14/ (8 lokey S Form e

UNLLAJDOITILY
SECURITY CLASSIFICATION OF Tai1S PAGE 7When Date Entered)

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
\. REPORT NUMBER 2. GOVY ACCESSION NOJ). RECIPIENT'S CATALOG NUMBER
AI Memo 999- AD-A 90559
4. TITLE (end Subtitie) S. YYPE OF REPORT & PERIOD COVERED
Expressing Mathematical Subroutines
Constructively ' memorandum

§. PERFORMING ORG. REFPORT NUMBER

7. AUTHOR(e) 8. CONTRACT OR GAANT NUMBER(e)

Gerald Royiance N00014-86-K-0180
N0OO14-85-K-0124
9. PERFORMING ORGANIZATION NAME AND ADDRESS T0. PROGRAM ELEMENT PROJECT, TASK
Artificial Inteligence Laboratory AREA & WORK UNIT NUMBERS

545 Technology Square
Cambridge, MA 02139

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Advanced Research Projects Agency November, 1987
1400 Wilson Blvd. ' 15. NUMBER OF PAGES
Arlington, VA 22209 . 15

14 MONITORING AGENCY NAME & ADORESS(!! different irem Contrelling Otiice) 18. SECURITY CLASS. (of thie repert)
Office of Naval Research

Information Systems
Arlington, VA 22217

T8a. DIC&ASSI'ICATION/DO'NQIAD"‘G
SCHEDULE

6. DISTRIBUTION STATEMENT (of thies Repert)

Distribution is unlimited.

17. DISTRIBUTION STATEMENT (ef tNe abstract entered in Bleck 20, I dittorent frem Repert)

18. SUPPLEMENTAARY NOTES

None

19. KEY WORDS (Continue en reverse side it y and identily by blechk ®

Mathematical Subroutines

20. ABSTRACT (Continue en reverse eide If y and identity by Mech beor)
The typical subroutines that compu*~ sin(x) and exp(x) bear little
resemblance to our mathematica! knowledge of these functions: they are
composed of concrete arithmeticexpressions that include many mysterious
-numerical constants. Instead of programming these subroutines conventionally
we can express their construction using symbolic ideas sych as periodicity
and Taylor series. Such an approach has many advantages: the code is closer
to the mathematical basis of the functions,less vulnerable to errors, and is
trivially adaptable to various precisions.

DD ,55%'5; 1473 eoimion oF 1 nov ¢35 omsoLETE UNCLASSIFIED
S/N 0:02-014- 6601 |

SECURITY CLASSIFICATION OF THIS PAGE (ﬁm Data Bntevec

Chgygvb(§>62<J7 6 /@y@?ﬁ’

Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.L.T
Libraries. Technical support for this project was
also provided by the M.L.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94

