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Abstract

Dynamic systems which undergo rapid motion can excite natural frequencies that
lead to residual vibration at the end of the motion. This work presents a method
to shape force profiles that reduce excitation energy at the natural frequencies in
order to reduce residual vibration for fast moves. Such profiles are developed using a
ramped sinusoid function and its harmonics, choosing coefficients to reduce spectral
energy at the natural frequencies of the system. To improve robustness with respect
to parameter uncertainty, spectral energy is reduced for a range of frequencies sur-
rounding the nominal natural frequency. An additional set of versine profiles are
also constructed to permit motion at constant speed for velocity-limited systems.

These shaped force profiles are incorporated into a simple closed-loop system
with position and velocity feedback. The force input is doubly integrated to gener-
ate a shaped position reference for the controller to follow. This control scheme is
evaluated on the MIT Cartesian Robot. The shaped inputs generate motions with
minimum residual vibration when actuator saturation is avoided. Feedback control
compensates for the effect of friction. Using only a knowledge of the natural fre-
quencies of the system to shape the force inputs, vibration can also be attenuated in
modes which vibrate in directions other than the motion direction. When moving
several axes, the use of shaped inputs allows minimum residual vibration even when
the natural frequencies are dynamically changing by a limited amount.
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Introduction

Chapter 1

—

1.1 Motivation:

Tl}e advent of microprocessor technology has brought about an entirely new way to
control production machinery. No longer do control engineers have to rely on analog
circuits for controlling dynamic systems. Now, computers can be programmed and
reprogrammed to produce a wide range of control actions in real time. Micropro-
cessor technology has enabled the power of computers to be cheaply installed in
many dynamic systems. These capabilities have made the newly-developing field of
robotics possible. Robots and other computer-controlled machines have become the
dominant components in automating production processes.

Along with the opportunities that these microprocessor-controlled machines bring
has come a new set of challenges. For robots to perform assembly tasks economi-
cally they must be able to move from place to place very quickly. Such fast motions
will excite vibrations in the moving elements. Since robot structures are typically
only lightly damped, these oscillations require additional time to settle and hence
delay the start of the next task. Since each relative motion excites a different set of
frequencies, the only way to avoid exciting any structural modes using existing con-

trollers is to move sufficiently slowly. To achieve fast motions, an effective motion
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control scheme is necessary that will not excite the system natural frequencies.
The goal of this research is to develop methods to reduce motion-induced vibra-
tion dﬁring fast moves. The assumption is that the motion itself is the main source
of system vibration. Thus, force profiles which do not contain energy at the system
natural frequencies produce motions which do not excite structural vibration and
hence do not require any additional settling time. The approach adopted here is
to remove the task of reducing vibration from the controller which ensures accurate
positions in the presence of disturbances. In this way, a simple control loop can
accomplish accurate positioning without the complexity required to suppress vibra-
tion. Structural oscillations are not damped out but avoided by judicious choice of
force inputs. This approach works as long as the motion itself is the only source
of vibration, which is usually the case in typical positioning systems. Thus, this
work develops shaped input functions that can reduce residual vibration regardless
of which controller has been selected. In those cases in which even optimal regu-
lators fail to adequately suppress vibration, these inputs can significantly improve

performance.

1.2 Literature Review:

Many researchers have addressed the problem of controlling vibrating systems such
as robots and space structures. An excellent review of current theory and practice
in dynamics and control of large space structures has been presented by Nurre, et al.
[1]. A review of general control strategies is given by Bryson [2], with discussion of
specific contrel techniques applied to flexible systems given by Seltzer [3], Croopnick,
et al. [4]. Joshi and Groom [5], Meirovitch and Oz [6].

These control strategies can be loosely organized into two main classifications:
terminal controllers and regulators. Terminal controllers take the system from an

initial state to a final state while satisfying some optimization criterion. This is
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also known as slewing when applied to space structures. Open-loop slewing is ac-
complished using a control input that is strictly a function of time, not explicitly
of the system states. To accomplish slewing maneuvers, control inputs are specified
as smooth time functions to minimize excitation of system resonances. Aspinwall
7] shaped such a profile using a finite Fourier series expansion that minimizes fre-
quency content over a wide range of frequencies, but these functions take twice as
long as the corresponding time-optimal function to complete the motion. Other re-
searchers have used performance indices’in combination with Pontryagin’s principle
to generate “optimal” control functions for performing open-loop slewing maneu-
vers. Various performance indices and system models have been used by researchers
including Swigert [8], Farrenkopf [9], Turner and Junkins {10], Turner and Chun
[11], and Alfriend and Longman [12]. Swigert also included a penalty on residual
amplitude due to natural frequency changes to allow limited variations in frequency.
Lisowski and Hale [13] included the control input and its derivative as additional
states and imposed smooth start and stop transitions on the control input function
to minimize excitation of higher resonant frequencies.

Additional open-loop functions have been developed by making use of cam profile
shapes. Such a forcing function was developed by Makino [14] to drive the SCARA
robot arm. Sehitoglu and Aristizabal [15] used a cycloidal motion profile to generate
smooth motions. However, no attempt was made to tune these functions to the
dynamics of the system to minimize both move time and residual vibration.

Another open-loop approach has been to use a series of appropriately-timed step
inputs to eliminate residual vibration upon completion of the move. This technique
has come to be known as posicast control. A detailed presentation of this approach
is given in Smith [16]. An extension of this concept, incorporating robustness to
parameter uncertainties, is under development by Singer [17].

In addition to these opeﬁ-loop slewing functions, researchers have also developed

closed-loop slewing strategies that utilize time-varying gains on feedback states.
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Breakwell 18] determined these gains as a function of remaining time to maneuver.
Juang, Turner, and Chun {19,20] determined time-varying gains using a terminal
constraint on the performance index that penalizes residual vibration. Experimental
results using this approach are presented by Juang, Horta, and Robertshaw [21].

Classical proportional-plus-integral-plus-derivative (PID) control has been uti-
lized on the Space Telescope Pointing Control System, as presented by Dougherty,
et al. [22,23]. The stability properties of such a control scheme as applied to flexible
systems is discussed by Hughes and Abdel-Rahman [24].

A majority of control techniques applied to vibrating systems utilize regulator or
tracking control theory. Basically, the controller is designed to maintain a set-point
or to track a reference input. The terminal states are not incorporated into the de-
termination of constant feedback gains. The coupling between vibration regulation
and large-angle slewing is discussed by Baruh and Silverberg [25]. The design of
modal controllers to control several dominant modes of distributed flexible systems
has been suggested by Meirovitch, et al. [26] and Balas [27]. Other researchers, such
as Henrichfreise, Moritz, and Siemensmeyer [28], have developed a detailed system
model that includes the vibrating states. An observer is constructed to estimate
the unmeasured states. This technique works well if the model accurately repre-
sents the actual system. Stability problems can arise if system parameters change
significantly. Another approach has been to utilize measurements at the tip of the
flexible member to generate control signals. Such an approach has been used by
Cannon and Rosenthal 29], Cannon and Schmitz [30], and Hollars and Cannon [31]
to actively control both the rigid-body angle and the vibration of a flexible system.
Stability problems again may arise, however, when modeling errors exist because
actuator and sensor are not colocated.

An alternative to actively suppressing the vibration is to alter the damping char-
acteristics of the structure. Both passive and active methods have been proposed.

Alberts, et al. [32] added layers of viscoelastic material to a beam in order to add
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passive damping. This reduced vibration and enhanced stability in the presence
of higher unmodeled modes. Active damping techniques have also been proposed,
which add distributed damping to beam-like structures. Silverberg [33] has devel-
oped a discrete implementation which approximates uniform distributed damping
with several discrete actuators. Burke and Hubbard [34] generated a distributed
control law by applying a piezoelectric film to the beam that alters its resistance to
bending when given a voltage signal. An extension of active damping is presented
by Finzi, Lanz, and Mantegazza [35], who developed a control law that adds both
mass and damping at discrete locations to reduce residual vibration.

All of these techniques have shortcomings when applied to physical systems.
Problems arise because of unmodeled modes, parameter variations, and nonlineari-
ties. Robustness of the control methods in light of these modeling errors is discussed
by Nesline and Zarchan [36], Kosut, et al. [37], and Arbel and Gupta [38]. Balas
(39] points out that the presence of unmodeled modes can cause undesirable excita-
tion and potential instability. Radcliffe and Mote [40] discovered such an instability
when they tried to control the vibration of a rotating saw blade.

Some solutions to these problems have been proposed. Gupta [41] and Gupta, et
al. [42] have suggested a “frequency-shaped cost functional” that allows the feedback
control to be tailored to have less energy at frequencies corresponding to unmodeled
system resonances. “Innovations feedthrough” and output feedback control have
been proposed by Balas [43] and Lin, et al. (44] to introduce terms in the control
law which can prevent instability due to unmodeled modes. Sesak, et al. [45] have
proposed a modified performance index which suppresses excitation of unmodeled
modes in a technique known as Model Error Sensitivity Suppression.

A review of robust control techniques that ensure stability in the presence of
parameter errors is given by Dorato [46]. Yamada and Nakagawa [47] have developed
a technique for designing a state feedback controller with constant gains which works

over a limited range of parameter variations. The effect of parameter uncertainties
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on a controller designed for modal suppression is described by Calico and Moore
[48].

Some researchers have proposed adaptive control methods to compensate for
parameter variations. Several different approaches have been presented by Ih and
Leondes [49], Bar-Kana, et al. [50], Dubowsky and DesForges [51], Johnson [52],
Benhabib, et al. [53] and Potter and Ginter [54].

1.3 Overview of Thesis:

The approach taken here, as described in several previous papers [55,56,57,58,59], is
to generate smooth force profiles that have been shaped to reduce excitation energy
at the system natural frequencies. These profiles are constructed by summing har-
monics of the ramped sinusoid function using an appropriate choice of coeflicients.
They result in fast motions while minimizing the residual vibration which occurs
at the end of the move. By minimizing energy in a band of frequency components
surrounding the nominal natural frequency, some variation in system parameters
can be tolerated without affecting vibration attenuation. A detailed development of
these force profiles is given in Chapter 2.

To put this approach in perspective, some results using alternative filtering tech-
niques are presented in Chapter 3. The use of filters removes energy from the input
at certain frequencies instead of building up a function with specified frequency
content. These two different approaches are compared. |

Since the force inputs generated in Chapter 2 can only be directly implemented in
open-loop systems, Chapter 4 discusses closed-loop implementations. In any closed-
loop system, the actual force input is determined by a combination of reference and
feedback signals and hence cannot be prespecified. One approach to incorporate
these shaped inputs into closed-loop systems is to use a reference system model

to generate the reference trajectory. Results for this approach are presented along
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with a discussion of the problems that arise when the reference model significantly
differs from the actual system dynamics. Another implementation is then developed
that generates an app;‘opriate position reference by doubly-integrating the shaped
force inputs. Because this approach treats the closed-loop system as an equivalent
open-loop system, these shaped inputs must be tuned to the closed-loop natural
frequencies. Finally, the optimal regulator state feedback approach is studied in
some detail to point out several cases in which it fails to give adequate performance.
When used in conjunction with shaped reference inputs, however, residual vibration
can be significantly reduced.

The force profiles discussed so far assume that the actuators which drive the
system can generate peak force regardless of the velocity. But since the force that
real actuators can provide decreases with speed, the system will eventually saturate
at some peak velocity. This has motivated the development of velocity profiles which
accelerate to peak velocity, travel at peak velocity for some time, and then decelerate
to final position. The shaped inputs developed in Chapter 2 do not allow for any
motion at constant velocity. This limits system performance by requiring that the
peak force be kept sufficiently small. Thus in Chapter 5 a new set of force profiles
are developed using versine functions that allow motion at constant velocity.

To evaluate the practical implementation of these shaped inputs in actual sys-
tems, experiments were performed on the MIT Cartesian Robot. Chapter 6 discusses
the simulation model of the experimental hardware that helped determine appro-
priate inputs. Chapter 7 presents details of the micropr.ocessor implementation and
a set of response data indicating the usefulness of shaped inputs in reducing system
vibration. Chapter 8 presents a number of conclusions and recommendations for

future work.



Development of Shaped Inputs

Chapter 2

2.1 Review of Previous Work:

In work done for my Master’s thesis [55], I developed input functions constructed
from a ramped sinusoid and its harmonics. This function was the solution to a
boundary-value problem imposing zero magnitude and slope on the desired wave-
form. Harmonics are given by characteristic numbers that satisfy the boundary
values. The fundamental ramped sinusoid function alone requires nearly 50% longer
than the time-optimal input to move a given distance with a given peak force. To
reduce this move time, harmonics of the ramped sinusoid were added to the funda-
mental. The coefficients of the harmonic terms were chosen so the resulting function
gives a least-squares fit to a single cycle of a square wave. A typical input function
consisting of five ramped sinusoid terms is shown in Figure 2.1. Its frequency spec-
trum, shown in Figure 2.2, has troughs at certain frequencies. The location of these
frequency troughs depends on the total number of terms used to construct the input
function. If the system natural frequencies correspond to the trough frequencies of
a particular function, then that function generates much smaller residual vibration.
So the idea is to pick the input function with the appropriate number of terms.

Unfortunately, the troughs in the input spectrum are very narrow. If the actual

15
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natural frequency is sufficiently different from the nominal frequency for which the
function was developed, a considerable amount of residual vibration may still occur.

For this reason, a new method will be developed for determining the harmonic
coefficients of the ramped sinusoid functions. Functions will be generated having a
sufficiently wide trough in the frequency spectrum to accommodate errors in nominal
natural frequencies. The hope is that these functions will work not only for systems
having a static error in natural frequency but also for systems in which natural

frequency changes dynamically with time.

2.2 Relationship Between Input Spectrum and
Residual Acceleration Amplitude:

Before actually formulating the desired input functions, it seems useful to determi\ne
the relationship between the input function spectrum and the residual acceleration
amplitude. The work presented here will restrict attention to a two-mass system
model (Fig. 2.3) which has one rigid body mode and one resonant mode. Mass
m, represents motor inertia, mass m, represents endpoint inertia, and k represents
transmission and structural stiffness. This is a good model to represent the first
mode of a single Cartesian robot axis, in which the endpoint position y. oscillates
relative to the motor position y,, where the force f is applied. Other axes can
be similarly represented, treating any cross-coupling between axes as disturbances.
Damping is neglected in this model since it serves to reduce vibration amplitudes.
All system parameters are treated in dimensionless groups (Table 2.1), leading to
the dimensionless transfer function shown in Figure 2.3. All positions are nondi-
mensionalized with respect to final position ys, and T, represents the time to move
the equivalent rigid-body mass the same distance yy using a square wave input hav-
ing peak force F. Errors in system natural frequency are represented by the ratio

wa/wy, where wy is the actual natural frequency and wy is the nominal natural
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v_ (&)
fr s [32 + (%)2]

Figure 2.3: Two-Mass System Model.

frequency.

For this system model with a single natural frequency, a direct relationship can
be derived between the magnitude of the input spectrum at the natural frequency
and the amplitude of the residual acceleration. The amplitude of the acceleration

of mass m, (the unforced mass) after the input force f is turned off at time Ty is

given by
2
A=|a+ (——) (2.1)
where
a, = %y(Tf) is the acceleration of m, at time Ty,
Jy = g:—,y(Tf) is the jerk of m, at time T}, and
Wy = \/le(l + %) is the natural frequency of the two-mass system.
Note that A in expression (2.1) represents the amplitude of free undamped vibration.
In order to determine expressions for a, and J,, it is necessary to use Fourier
transforms. The general expressions for a, and J, are given by

a, = ! /_: Re[F(w)H,(w)] cos wTy dw (2.2)

T
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Table 2.1

Definition of Dimensionless Parameters

t* = th/'Zﬂ'

A 'ye

Ye = —

Yr

o e

Ye 2
Wyl

2
F* = — = ( )
(”ll ”12)yf“°12\f CU'N],

J, = 1 /w Re[F(w)Hj(w)| coswTy dw (2.3)
TJ-

where F(w) is the Fourier transform of the input function, H,(w) is the Fourier
integral representation of the transfer function relating the input force f to g;z—y,
and Hj(w) is the Fourier integral representation of the transfer function relating f
and i—’,y.

Any function f(t) which starts at time ¢ = 0 and ends at time ¢ = T will have

a Fourier transform of the form

Tf . wT
Flw)= [ f(t)e 7" dt = [Fa(w) + jFr{w)]e 7, (24)
0
where Fp(w) and Fi(w) are the real and imaginary parts, respectively. Deriving
the Fourier integral representations of the appropriate transfer functions requires
the use of singularity functions as described by Papoulis [60]. This leads to the

following expressions:

2

Hy(w) = —= { -+ ?[5(w—wn)—5(w+wn)]} (2.5)

my +my |w:-w?  2jw,

2

Hi(w) = —2 { 1 +§[6<w—wn)+6(w+wn)l} (2.6)

my + my | w? — w?
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where §(w) is the delta function defined by
|7 8w - w)p(w)do = ¢(w,) (2.7)

for an arbitrary function ¢(w).
Using these Fourier integral representations in the expressions for a, and J, gives

the following results:

a, = Y [FR(wn) sin wnTy + Fi{w,)cos W"Tf] (2.8)
my + mo 2 2
JO n nT . nT
Jo o _Yn [FR(wn)cos Inlt FI(wn)smw f] . (2.9)
W, My + m, 2 2
Inserting these expressions into (2.1) gives
A= = |F(w,)| (2.10)
my + m,
where
|F(wn)] = Fi(wn) + F}(wn). (2.11)
With the following definition of the dimensionless frequency spectrum,
| F(wy)]
F*(w,T})| = 2.12
Py = (212

where F is the peak force amplitude and Ty is the move time, the expression for

residual acceleration amplitude can be rewritten in dimensionless form as

. _ A _ .
A* = F/(m1+m2) ——wan|F (wan)l. (213)

These results show that only the frequency component corresponding to the
system resonant frequency w, contributes to residual acceleration amplitude. Of
course, the actual frequency spectrum of any given input function also depends on
its time duration Ty. The relationship (2.13) then establishes an upper bound on
the input spectral magnitude at the system natural frequency in order to achieve

acceptable residual acceleration amplitude.
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It is interesting to apply this relationship to the bang-bang function developed in
my Master’s thesis [55]. This forcing function generates only peak force and switches
between positive and negative force levels to produce time-optimal response. As Ap-
pendix A shows, this function leaves the system with zero residual vibration only
because vibration excited in the first half of the move is removed in the second half.
Thus, spectral energy for the entire function is zero at the natural frequency and
(2.13) is satisfied. However, if the actual system differs from the nominal system,
spectral energy at resonance will not completely cancel and residual vibration re-
sults. Therefore, we will develop another input function that tolerates uncertainty

in natural frequency.

2.3 Development of Shaped Functions:

We are now in a position to derive forcing functions that reduce residual vibration
when the system natural frequency is uncertain. We choose the ramped sinusoid
function and its harmonics to construct a series representation of the input, anal-
ogous to a Fourier series representation. The coefficients of each harmonic in this
series will be chosen so that the spectral magnitude constraint is satisfied. Ramped
sinusoid functions were selected as basis functions because of their odd symmetry
about t = T¢/2 (Fig. 2.4) and their smooth transitions in slope, which result in the
narrow frequency spectra of Figure 2.5.

In order to allow for changes; in systém parameters, one goal in picking coeffi-
cients in this series will be to reduce spectral magnitude in a sufficiently wide band
of frequencies surrounding the nominal natural frequency. The system natural fre-
quency is assumed to vary by £10%. This variation was chosen based on a detailed
dynamic analysis of the MIT Cartesian Robot. Garcia Reynoso [61] determined that
for two extreme locations of the moving axes, the maximum change in the first three

natural frequencies due to the change in geometric configuration is within +£10% of
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the nominal natural frequency. Thus, functions which have low spectral magnitudes
in a band of £10% surrounding the resonant frequency would represent practical
inputs for such a robot system.

In general, the input functions can be represented by the following series expan-
sion, where ®j(t) represents a particular harmonic of the ramped sinusoid function,
oy is the characteristic number associated with each harmonic (defined in [55]), B is
the coeflicient for each harmonic, T represents the time to reach a desired position,

and 7 is normalized time:

L
B,
=Y —5 (2.14)
=1 ay
1
d;(t) = (; ) + sin a7 — % cos T (2.15)
r=t/Ty (2.16)

The goal is to pick appropriate values for B, that will minimize move time Ty and
minimize spectral magnitudes over a range of‘ frequencies surrounding the system
natural frequency w,,.

To achieve this, we will combine these objectives into a single minimization prob-
lem to pick the coefficients B,. To minimize move time, we minimize the square of
the difference between the ramped sinusoid series and a single cycle of a square
wave. This gives a least-squares fit to a square wave. A square wave is chosen
since it is known to give optimal move time for a rigid body. This alone determined
the harmonic coefficients in my Master’s thesis [55]. To explicitly incorporate the
constraint in the frequency spectrum, a second expression will be added to mini-
mize the squared magnitude of the frequency spectrum F'* at several frequencies w;
surrounding system resonance. A weighting factor p determines relative weighting
between these objectives. The overall objective function J represents the quantity

to be minimized:

J = Tif{/oT’”[ dt+/ f(®))* d }
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(S
—
-~1
~—

+pzw1 VI (w,Ts)? (2.

In this formulation, we have arbitrarily chosen 11 frequencies surrounding resonance
to satisfy the spectral magnitude constraint. This provides enough frequencies to
keep spectral magnitudes small throughout the entire frequency band without the
need to integrate over all frequencies in this band. The upper and lower limits
on frequency can be adjusted to give any desired frequency band. For a £10%
frequency range, the bounds on the frequency w; are 0.9w, < w; < l.1w,.

The coefficients of the harmonics B, can be calculated by differentiating the
objective function J with respect to B,, where r represents a particular value of the

index ¢, and setting the result to zero.
0J/0B, =0 (2.18)

This gives an expression explicitly in terms of B, and I!', and I}, which are known

functions of a, and ay:

ZBt L (2.19)
(7] ar
I, = :
rt [ z+/’z (wiT, — (w;T§)? a2 — (w;Ty)?
, , 2
2sin 222 — T, cos 1t
. 2 (2.20)
(wiTy)?
1 ar tf_i ﬁi 1 1
—ag"o‘% a—: 12 * z e
+ agcos ag + Z(cos ap — 1)]
_%ﬁ,[_n_f_( 1)sinar
. - +a,cosar+°§(cosar—l)]} (r#90) (2.21)
2
;1—3 {24‘ + %a? n i [(%L) — 1 sin 2a,
+ <22i ‘)) sin ay + —Lcos‘)az + 204 cosa,} (r=19)
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1 e 2 r P r
I = a—f [(%—) —2cos <a7) — a, sin (%)

+cosa, + % sin a, + 1} . (2.22)

If the final move time T is known, then I, is known, and the coefficients B, can
be determined by simply solving the following set of linear equations, expressed in

matrix form:
[L)[Be} = [17] (2:23)

Unfortunately, Ty is not known until the coefficients B, are known. The dependence
of T; on B, can be expressed in terms of the square wave move time T, and a scale

function I':

T =TT, o (2.24)
where
r= : ' (2.25)
#Zf:l :;B-f
T =2 £LFm)y_f (2.26)

SF is a scale factor which normalizes the peak of the function to 1. 7, represents the
move time to cover a distance y; when the input is a single cycle of a square wave
of amplitude F. T is a function of a, and B, which ensures that the resulting
input signal brings the system to the desired final position. Since the ramped
sinusoid functions cannot supply as much energy for the same peak force as the
corresponding square wave, they will take somewhat longer to complete the same
move. This time penalty is represented by I'. Due to the inherent coupling of B, and
T, an iteration scheme is necessary to correctly compute values for the coefficients

B,. This iteration procedure can be outlined as follows:
1. Determine w,T, for desired move distance and system parameters.

2. Guess a value of I'. (Note that T is slightly greater than 1.)
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3. Solve for B, by solving the matrix equation (2.23).

4. Normalize ramped sinusoid series expansion by determining the value for the

scale factor SF.
5. Calculate ' using expression (2.25).
6. Use the new value of I' to update B,.

7. Repeat until I' converges to acceptable accuracy (error with respect to previous

value is less than 1073).

To improve convergence, every fourth value of I' is updated using Aitken accelera-

tion:
[T — T2,
Liy2 — 2l + T

(2.27)

Fi+3 =

Using the procedure outlined above, we can derive functions which satisfy our
objectives. We used a total of L = 15 terms for computational efficiency while
retaining enough mathematical degrees of freedom to achieve acceptable minimiza-
tion. A good compromise between minimizing move time and minimizing spectral
magnitude near the system natural frequency is achieved for a value of p = 10. Note
that larger values of p will give lower spectral magnitudes and slightly higher move
times. Functions were developed which minimize the frequency content at dimen-
sionless frequencies w,T,/27 of 5, 10, and 15, respectively. Each of these functions
minimizes spectral magnitude at 11 frequencies extending +10% around resonance.
These inputs are shown in Figures 2.6 to 2.8. The time function is shown in (a) and

_the frequency spectrum is shown in (b). Notice that the spectral magnitudes for
the entire range of frequencies extending +10% about w,T, have been significantly
attenuated. [n comparison with the five-term ramped sinusoid function of Figures
2.1 and 2.2, the spectral magnitude near the nominal natural frequency has been

attenuated by more than an order of magnitude (20 db).
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Figure 2.6: Ramped Sinusoid Input Tuned to w,T,/27 = 5+10%: (a) Time Function

(b) Frequency Spectrum.
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Figure 2.9: Simulated Acceleration Response for Nominal System With Ramped

Sinusoid Input; wyT,/27 = 10.
2.4 Open-Loop Simulation Results:

To determine the effectiveness of these shaped functions in meeting our goal, we
evaluated the response of the two-mass system to these inputs using computer simu-
lations. These simulations were performed using a Runge-Kutta-Merson integration
routine. A nominal value of w,T,/27 = 10 was assumed in order to construct the
input function. This gives the final dimensionless move time as w, Ty /27 = 12. The
response of the nominal system to this input is shown in Figure 2.9 as the dimen-
sionless acceleration of mass m,. The acceleration response is shown rather than
the position response because double differentiation accentuates the vibration sig-
nal. Notice that under nominal conditions, residual acceleration amplitude is nearly
eliminated when the input has finished.

A more challenging test, however, is when the actual resonant frequency is dif-

ferent from the nominal frequency. If we assume that the actual frequency is only



2.4: Open-Loop Simulation Results: 31

0.0015

0.0010

0.0005

Dimensionless Endpoint Acceleration

o.ww 1 1 i A <4 n A ) IR |
200 4.00 6. 8.00 10.00 17.00 14.00 16.00 18.00 20.00
Dimensionless Time
-0.0005 |-
-0.0010
-0.0015 L

Actual Response to a Ramped Sinusoid Input

Figure 2.10: Simulated Acceleration Response for Actual System With Ramped
Sinusoid Input; wyT,/27 = 10, wy/wy = 0.9.

90% of the nominal frequency and use the same input function derived in the nom-
inal case, the response in Figure 2.10 results. Notice that even with a 10% error in
resonant frequency, the input function still achieves nearly zero residual acceleration
amplitude.

These results can be compared with the square wave response to determine the
effect of shaped inputs on residual vibration. Square wave response is shown in
Figure 2.11. The square wave input generates considerably more residual vibration
than the ramped sinusoid input.

If only move time is compared, ignoring settling time needed to damp out residual
vibration, the move time ratio T;/T, has a value of 1.2 for the ramped sinusoid
function. Thus, we can achieve the desired vibration attenuation with a move time
only 20% longer than that required for a square wave. Since the optimal time to
complete the move without vibration is nearly the same as the square wave time,

these functions only take 20% longer than time-optimal inputs. Because the ramped
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Figure 2.11: Simulated Acceleration Response for Actual System With Square Wave
Input; wyT,/2x = 10, wy/wy = 0.9.

sinusoid inputs nearly eliminate residual vibration, this extra time is more than

compensated for by the reduction in settling time.

2.5 Shaped Inputs for Several Natural Frequen-
cies:

The approach outlined in Section 2.3 can be extended to minimize excitation energy

at several natural frequencies. The new objective function can be expressed as

1 T¢/2 5 Ty 2
J = T;{/O - s a7 (1 s dt}

1M
+p Y (W T,)? | F* (w;Ty)[? (2.28)

1=1
where M is the total number of modes (natural frequencies) to attenuate, and w; is
given by
(1 = p)wm < w; < (14 pm)wm, t=m,...,1lm (2.29)
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where p,, represents the fraction of nominal frequency that determines the upper
and lower bounds of the frequency band surrounding the nominal natural frequency
w,, for the mth mode.

The remaining development follows exactly as before. A function that attenu-
ates three natural frequencies was constructed in this way. For the dimensionless
frequencies w,,T,/2m = 1.5, 5, and 10, with +10% frequency bands, the resulting
shaped input function is shown in Figure 2.12(a), with the corresponding frequency
spectrum shown in (b). Notice that all three frequency bands have been attenuated

as specified.

2.6 Shaped Inputs for Lightly Damped Systems:

The development so far has assumed that the system to be controlled has no inherent
damping. Damping has the effect of spreading ouf*the resonant peak over a broader
range of frequencies. It will therefore also affect the vibration attenuation of inputs
that have been shaped for an undamped system. The following analysis is intended
to quantify the effect of damping on residual vibration. We will derive the residual
acceleration amplitude for a damped system in terms of characteristics of the shaped
input functions.

The model used to derive this relationship is similar to the undamped model of
Figure 2.3 with an additional viscous damping element b, as shown in Figure 2.13.
For this system, the peak residual acceleration ampiitude of mass m, after the input

force f is turned off at time Ty is given by

) Jy + Cwra, 2 )
A= a; + d— 1——0 (2.30)

where
a, is the acceleration of m; at time Ty,

J, = is the jerk of m, at time T},
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Figure 2.13: Damped Two-Mass System Model.

w,, is the undamped natural frequency, given by

k X
wnZ\/—— (1+ﬂ> (2.31)
my M9

( is the damping ratio, given by

b [ 1 my
C—§\/km1'(1+:n_2>' (

Using the same technique as before, a, and J, can be represented in terms of

(8]
[
[SV]

system parameters and input characteristics as follows:

tr= o= [ Flw)H,(w)e™Tdu (2.33)
T J -0 . }
1 [ <

J, = 5 F(w)Hj(w)e’* Tt dw (2.34)
T J -0

where F(w) is the Fourier transform of the input function, H,(w) is the Fourier
integral representation of the transfer function relating f to (—i‘%y, and Hj(w) is the
Fourier integral representation of the transfer function relating f and %y.

The ramped sinusoid functions under consideration have a Fourier transform
which can be written as

I
F]

F(w) = jFi(w)e™ (2.35)
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This is a more specific form of equation (2.4) in which Fgr(w) = 0.. The Fourier

integral representations of the transfer functions are given by:

1 w2 + 72 waw
H.(w) = n ; 2.36
) = T (@ = @) + 20w (2.36)

1 2w + jw?
Hj(w) = Cunw” + Jw,w (2.37)

my +my (w2 — w?) + j20waw’

After performing the required residue calculus to obtain the integrals, the square

of the residual acceleration amplitude can be expressed as

Wny 2 e—(wan ) . . .
A=~ ( ) 1-¢2 Fi(—wny/1 = (34 jlwn) Fr(way1 = ¢*+ jCwn). (2.38)

my + ma

This gives residual amplitude in terms of the input Fourier transforms of complex
frequencies. These can no longer be expressed simply in terms of the input frequency
spectrum as was the case for an undamped system (equation 2.10). However they
can be evaluated for the shaped ramped sinusoid function. In terms of real frequency

w, the function Fj(w) can be expressed as

L Ba, (2 sin w—? — wT} cos %ﬁ)

FT,
z; aj — (wTy)? (wTy)?

Fi(w) = F

, (2.39)

where F is the peak force and SF is a normalizing scale factor. In order to evaluate

sines and cosines of complex arguments, the following identities are useful:
sin(X +jY) =sin X coshY + jcos X sinhY (2.40)
cos(X +jY)=cos X coshY — jsin X sinhY (2.41)

After considerably more algebra, the final expression for the dimensionless squared

residual acceleration amplitude is given by

(A)? = A ’ _ (wan>2 e~ SwnTs
F/(m1+m2) SF 1—C2
[élszch2 + 4c?sh? — 4w, /1 — (?Tysc — 4w, Tyshch + wiT}(c2Ch2 + s%sh?)
.
(woTy)*

w BB,aa, [#lag)dlan) + 4C3(1 — ()T}

(2.42)
55 [#lan)? + 4031 - ()waTH] [6(en)? + 4C3(1 - (AT ]
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where s, ¢, sh, and ch are defined as

T
s =sinwyy/ 1 — Csz (2.43)

-

T
¢ =cosw,y/1 — Csz (2.44)

&~

sh = sinh c“’"sz (2.45)
ch = cosh g“”j)Tf (2.46)

and the functions ¢(a) are defined as
dla) = o - (1 (2T}, (2.47)

This expression (2.42) gives the dimensionless peak residual amplitude for a
particular ramped sinusoid input as a function of the dimensionless frequency wTy.
This functiqnal dependence can also be expressed in terms of wT, using the known
value of I' given by expression (2.25) for the particular input. When ( = 0, the
resulting function gives simply a scaled frequency spectrum of the input, as given
by (2.13). There is a direct relationship between residual amplitude and input
frequency spectrum for an undamped system. For { # 0, this functional dependence
on frequency is no longer proportional to the input frequency spectrum.

For the ramped sinusoid input tuned to the undamped natural frequency w, T /27
10, constructed using the technique of Section 2.3, we can now investigate the effects
of system damping on the residual response. Note that for lightly damped systems,
the resonant frequency where response amplitude peaks is very nearly the same as
the undamped natural frequency. Figure 2.14 shows the frequency dependence of
the residual amplitude for ( = 0. As expected, this looks similar to the Fourier spec-
trum of Figure 2.7. When ¢ = 0.1, the lobes which occur for ¢ = 0 disappear and
the curve becomes smoother, as shown in Figure 2.15. For { = 0.3 more smoothing
takes place, as shown in Figure 2.16. Notice that the peaks which appear in Figure

2.14 become lower and the troughs become more shallow as damping increases ( Fig-
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Figure 2.14: Residual Acceleration Amplitude as a Function of wT,/27 for Ramped
Sinusoid Input Tuned to w,T,/27r = 10 + 10%; { = 0.0.
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Figure 2.15: Residual Acceleration Amplitude as a Function of wT, /27 for Ramped
Sinusoid Input Tuned to w,T,/27 = 10 + 10%; ¢ = 0.1.



2.6: Shaped Inputs for Lightly Damped Systems: 39

Residual Amplitude

28.

Log Magnitude (dB)

-79. T L T 1
a.8 S.8 ‘10.9 5.0 28.0 25.8
Dimeneionlees frequency

Figure 2.16: Residual Acceleration Amplitude as a Function of wT,/27 for Ramped

Sinusoid Input Tuned to w,T,/27 = 10 + 10%; ¢ = 0.3.

tires 2.15 and 2.16). This implies that slightly higher residual amplitude will exist
for a lightly damped system than for an undamped one. In addition, because the
troughs bow up at their edges, the effective range of frequencies for which residual
amplitudes are small becomes narrower.

Simulation results using this ramped sinusoid input for a lightly damped system
(¢ = 0.1) are shown in Figures 2.17 and 2.18. Again, we plot the dimensionless
acceleration of mass m;. Figure 2.17 shows the case when the dimensionless
system undamped natural frequency w,7; coincides with the frequency for which
the ram[;ed sinusoid has been tuned. Figure 2.18 shows the case when the system
undamped natural frequency is only 90% of the nominal tuned frequency. Notice
that for light damping, the residual amplitude is higher than for the undamped case.
The effect of damping is to raise the residual amplitude for frequencies near the limits
of the notch in the frequency spectrum. Since the natural frequency of the actual
system coincides with the lowest frequency which has been filtered from the input

spectrum, damped response gives higher initial residual amplitude. However, this
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amplitude decays because of the presence of damping. Therefore, damped response
to the ramped sinusoid input for this lightly damped system is satisfactory. The
settling time for the damped system response to a square wave input is considerably
longer.

If the actual system has considerable inherent damping, then an alternative is
to incorporate the more complex damped expression (2.42) into the minimization
for determining the harmonic coefficients. Because of the complexity involved in
doing this, the simpler development assuming no damping is preferable since it gives
good attenuation over the frequency range of interest for lightly damped systems.
Since most practical systems tend to be only lightly damped, the inputs developed

assuming no damping are appropriate.

2.7 Closure:

LN

This chapter has described a method of constructing force profiles for moving a
dynamic system while keeping excitation energy near the natural frequencies as
small as desired. A useful feature is that the depth and width of the notch in the
frequency spectrum can be adjusted to allow for variation in the natural frequency.
Force profiles can be constructed for any number of natural frequencies occurring
in the physical system. As long as system damping is relatively small, these inputs
generate motions with small residual vibration, even when natural frequencies are

uncertain.



Alternative Filtering Techniques

Chapter 3

3.1 Introduction:

In the previous chapter, a set of input functions were developed to produce relatvi\vely
fast motions for a vibrating system. These inputs were built up from a ramped
sinusoid and its harmonics in an effort to increase the energy available for motion
while minimizing spectral energy near the natural frequency of the system. An
alternative strategy would be to start with a single cycle of a square wave, which
is known to give time-optimal response, and filter out any spectral energy near the
natural frequency.

Several methods for accomplishing this filtering are available. Two of these
techniques are discussed in the following sections and evaluated analytically. One
method is simply to use an analog low-pass filter to pre-shape the square wave before
sending it on to the vibrating system. This requires that the filter cut-off frequency
be sufficiently below the lowest natural frequency to provide acceptable attenuation.

Another method is to use a notch filter to filter out only those frequencies that
correspond to the system natural frequencies. Such a filter is hard to implement
in real time since an effective notch filter requires many poles which introduce

large phase lag at higher frequencies. This tends to delay the system response

42
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and lengthen the time needed to complete the move. So instead we will synthesize
a new time function that will serve as the notch-filtered input to the system. This
allows us to have the entire input waveform available for filtering, including future
values which would not be available to a filter in real time.

The square wave input can be filtered by removing frequency bands in its fre-
quency spectrum and then regenerating the time function by using the inverse
Fourier transform. This approach gives time functions described by sine integrals.
These functions must start earlier and end later than the square wave from which
they were derived in order to achieve the notched spectrum. This leads to unac-

ceptably long move times.

3.2 Analog Low-Pass Filter:

The simplest method to remove energy at system natural frequencies is to pass the
square wave through a low-pass filter. This attenuates all frequencies above the filter
cut-off frequency. The most important consideration is achieving a steep roll-off rate
at the cut-off frequency so that energy can be passed for frequencies nearly up to
the lowest natural frequency of the system.

A particularly useful filter to accomplish this is a Butterworth filter, which has
the desired low-pass frequency response in magnitude, allows for any desired roll-off
rate, and is physically realizable. A fourth-order Butterworth filter was selected for
analysis here. | ‘

The magnitude of the frequency response for an nth order Butterworth filter is

given by (see Papoulis [60], p. 105)

| Hp(w)] = ——— (3.1)

1+ (2)”

where w, is the filter cut-off frequency and n is the order of the filter. Thus, for a
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Figure 3.1: Magnitude of Frequency Response for Fourth-order Butterworth Filter.

fourth-order filter, the magnitude is given by

|Hp(w)| = L (3.2)

1+ (2)°
A plot of this frequency response as a function of the parameter w/w, is given
in Figure 3.1. Note the steep fall-off as w/w. becomes greater than 1. In order
to attenuate the frequency content at the natural frequency by a factor of 100
(|Hp(w,)| = 1/100), the ratio w,/w, must be equal to 3.16, as can be verified by
the magnitude expression (3.2). A Butterworth filter with this cut-off frequency
was used to pre-shape a square wave before sending it on to the vibrating system.
A block diagram representation of this scheme is shown in Figure 3.2. The filter
transfer function Hp(s) and the vibrating system transfer function H(s) are given

in terms of dimensionless parameters as follows:

Hrl(s) = 1 (33)

(22)"st + 2,613 (22)" 53 + 3414 (22)" 2 + 2,613 (22) s +1
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Figure 3.2: Block Diagram of Filtering Scheme.
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When we use the filtered square wave as input to this system, with v, T, /27 = 10,

H(s) = (3.4)

¢ = 0.1, and w,/w, = 3.16, we achieve the response shown in Figure 3.3. Figure
3.3(a) shows the filtered input waveform, (b) shows the position response of the
end mass m,, and (c) shows the acceleration of mass m,, all in dimensionless units.
Notice that the system does not settle down until w,¢/27 is nearly 16. Since the
time-optimal response would have finished in time w,t/27 = 10, this filtered input
takes 60% longer than the time-optimal one. This is also 30% longer than the
ramped sinusoid input presented in Chapter 2, which only takes 20% longer than
the time-optimal function.

Analog low-pass filters work, but they require considerably longer to complete the
move. In the example above, the situation is especially favorable for the filter since
the natural frequency is relatively high, permitting a reasonably wide bandwidth for
the filtered input. However, in fast systems the parameter w,T,/2x for the lowest
mode and for a typical move is closer to 1. To avoid vibration, the filtered signal
bandwidth in these systems must be reduced considerably, which increases move
time even more. The conclusion is that move time can be significantly reduced if
some excitation energy is permitted in the input function above the lowest system

natural frequency.
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3.3 Notch-Filtered Square Wave:

Excitation energy can be introduced above the lowest natural frequency by notching
out only the frequencies in the square wave frequency spectrum that correspond to
system natural frequencies. Such a notch filter will be implemented by generating
new filtered time functions from the square wave input. A similar approach has
been presented by Singer [62], who also has pointed out some of the drawbacks.
For the saT(e of clarity, we will again restrict attention to a system model hav-
ing only a single natural frequency, as shown in Figure 2.13. Thus, only a single
frequency will be filtered from the spectrum of the square wave. To generate the
filtered time function, we will analytically remove a band of frequency components
from the Fourier spectrum of the square wave. We will then produce a time function

corresponding to this filtered spectrum by taking the inverse Fourier transform.
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The Fourier transform of a square wave of height F' and time duration T, is given

by the expression:
F

F(w) =+ (1 - 2e77e% 4 7oTs) (3.5)
Since this expression applies for both positive and negative frequencies w, removing
spectral energy at the natural frequency w, requires notching both —w, and +w,.
The filtered Fourier transform is given by

F 1, .
Flw) = = (1= 2% 4 T ) (1 - pas(w + wa) — paslw —wa)) - (3:6)

where pa,(w—w,) represents a rectangular pulse of height 1 and width Aw centered
at w = w,. Notice that all frequency components in the two frequency bands about
w = t+w, have been removed by essentially subtracting the original spectrum in the
two regions specified by the pulses.

The inverse Fourier transform of the sum of these two rectangular pulses is given
by ) |

1 = : 2sin Awt
folt) = g/ [Paw(w + W) + Pav(w — w,)] €t dw = _su:r_tw_ coswpt.  (3.7)

The filtered time function can be completely represented in terms of the unit step
function u(t) and its time convolutions (represented by the symbol *) with the

sinusoidal function f,(¢) of equation (3.7):

f'(t) = Flu(t) — 2t — T,/2) + ot ~ T,)] |
— F[f,(t) xu(t) = 2folt = To/2) x u(t — T,/2) + fo(t — T,) xu(t - T.)] (3.8)

These time convolutions can be evaluated as

fo(t) xuft) = = dr. (3.9)

T

- 1 /(wn+Aw)t sin T
(

wn—Aw)t T
The integral on the right-hand-side is known as the sine integral, which is a tabulated

function. Thus, the above expression can be rewritten as

[s1 ((w,, + Aw)t) = si ((w, — Aw)t)] (3.10)

Sy

folt) xul(t) =
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where the sine integral si is defined by

© g} [
si(t) = —-/ Rl = ——g— +/ 22T ir. (3.11)
¢ 0

T T

Using these sine integral expressions, the time function f'(¢) can be rewritten in

terms of dimensionless parameters as

f’(wnt) = F [u(wnt) —2u (wn(t - Ts/2)) + u(wn(t - Ts))]
1 [si((w, + Aw)t) — si((wp, — Aw)t)]

~-F
—% [si((wn + Aw)(t — T,/2)) — si ((wn — Aw)(t — T,/2))] (3.12)
B +%[si((wn+Aw)(t —T,)) —si((wn — Aw)(t — T,))]| -

A plot of this filtered square wave input computed as a function of time is shown in
Figure 3.4, for values of w,T,/27 = 10 and Aw/w, = 0.1 (a £10% frequency band).

To strictly maintain zero magnitude in the filtered frequency spectrum requires
that the input start before t = 0 and end after ¢ = T,. This can readily be seen

in Figure 3.4. In fact, the input function would need to occur for all time. If this
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input function is truncated by a window of half-width T} centered at ¢t = T,/2,
then the input is active in the range T,/2 — T, < ¢t < T,/2 + T,. Truncation of
the time function will give a nonzero frequency spectrum in the specified frequency
band. The Fourier transform of this truncated time function gives the dimensionless

frequency spectrum as

. 1
lF (wTs)l - FT,

T,/2+T. , ot
/T/M F(t)e vt dt (3.13)

When this integral is evaluated, the following expression results:

wT
F* = -
1 T, . WwT,
-= [cos w2 Fi(wT,) + sin ‘—"Jz—Fz(WT,) - 2F3(wT,) — 2 cos ﬂle,F4] (3.14)

where Fy, F,, and F; are functions of w7, and Fy is a constant. To simplify the

representation of these functions, we define the following frequencies and coefficients:

T = (1 + Aw/w,)(w, Tt + w,T,/2) (3.15)

wrT = (1 = Awfwn)(waTs + wnTo/2) (3.16)

wsT = (14 Awfwn)(waTs — wnTo/2) (3.17)

waT = (1 = Aw/w, )(wa Ty — waT,/2) (3.18)

wsT = (1 + Awfwn)wnT, (3.19)

weT = (1 — Aw/uwn)onT, (3.20)

B = ::;‘ (3.21)

B Ba= (8 +5) (3.22)
f=(5-3) (3.23)

Using these parameters, the functions Fy through Fy can be written in terms of the

sine integral si, defined by (3.11), and the cosine integral ci, defined by

o ¢ _]_
i(t) = —/ ST ir = Int| +/ 9—%—&. (3.24)
t 0

T




3.3: Notch-Filtered Square Wave: 51

The functions can then be expressed as follows:

Fi(wT,) = si(inT + 3owT,) = si(weT + BawTy) + si(wsT + F3wTs)
—si(wyT + BswT,) + si(w T — BowT,) — si(w, T — BwT,) (3.25)
+si(wy T — FswT,) — si{wy T — B3wT,)

Fy(wT,) = —ci(wT + BewTy) + ci(w, T + BowT,) + ci(wsT + BawT,)
—ci(waT + BswT,) + ci(wy T — BawT,) — ci{w,T — FowT,) (3.26)
—ci(waT — BawT,) + ci{wsT — 33w T)

If v, T, = w,T,/2, then

Fy(wT,) = —ci(enT + BowT,) + ci{w T + powT,) + ci{lw T — BawT,)
—ci(wyT = BowT,) — In|wy T + BowT,| + In |y T + BowT,| (3.27)

—1In | T - 3ywT,| + In |w, T — BawT,|

Fy(wT,) = si(wsT + BwT,) — si(weT + prwTy) + si(wsT — p1wT)
—si(weT — B1wTy) (3.28)

Fy = si(wnT) = si(w,T) + si(waT) — si(waT') — 2si(wsT) + 2si(weT') (3.29)

A plot of this frequency spectrum, with values of w,T,/27 = 10, Aw/w, = 0.1,
and w,T,/2r = 5 is shown in Figure 3.5(a). In this case, the input function has
been truncated so that only the portion for 0 < ¢ < T, remains. The frequency
spectrum shgvs considerable spectral magnitude at the dimensionless frequency
w,T,/2m = 10, where the input should have been filtered. The considerable energy
which this input function contains at the natural frequency is a direct result of the
truncation in time.

If a longer portion of the input function is used, then the spectral magnitude

near the natural frequency will decrease. This is illustrated in Figure 3.5(b) and (c).
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Figure 3.5: Frequency Spectra of Truncated Notch-Filtered Square Wave: (a)
wnT,/2m =5 (b) w,T;/27 = 15.
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Figure 3.5: Frequency Spectra of Truncated Notch-Filtered Square Wave: (c)
w, Ty /2w = 50.

In Figure 3.5(b), the input is truncated with a window of half-width w,T;/27 = 15.
This correspo}nds to the function as shown in its entirety in Figure 3.4. In figure
3.5(c), the truncation window has half-width w,T,/2r = 50. This corresponds to an
input which lasts for a total dimensionless time of 100 multiples of 2r. This is an
order of magnitude longer to cover the same distance than the original square wave.
Yet the spectral magnitude near resonance is still more than an order of magnitude
larger than that of the corresponding ramped sinusoid function shown in Figure 2.7,
which only takes 25% longer than the square wave input.

In summary, the time function produced by completely removing the frequency
components in a notch near resonance has infinite duration. When this input is
truncated in time, considerable energy still remains near resonance. As spectral

energy is reduced, the input function takes longer to complete. To achieve sufficient
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filtering at resonance, so much of the input must be retained that the move takes
much longer than necessary. The ramped sinusoid functions, in contrast, have lower
spectral magnitude at resonance with a much smaller time penalty.

Before closing this chapter, it is worthwhile to comment on the use of continuous
Fourier transforms in the development of the preceding functions. It would have been
easier to take discrete Fourier transforms (FFT’s). However, the resolution of these
Fourier transforms is limited by the duration of the time function. With a square
wave input of duration ¢t = T, the discrete frequency components in the FFT occur
only at multiples of 27 /T,. Everywhere in between, the FFT claims to be zero when
in fact the continuous Fourier transform has discernible amplitude. This is a result
of the fact that the FFT assumes that the input function is periodic with period
T, when in reality it only occurs for time 0 < ¢ < T,. Should the actual natural
frequency lie between these discrete frequency points, even zeroing out the adjacent
components will not zero the frequency component at the actual frequency in the
continuous Fourier transform of the filtered input. Increased frequency resolution
can be obtained by adding zeros to the time function from t = T to t = Tnez > Ty,
thus giving frequency components at multiples of 27 /Ty, However, this does not
alter the original problem. Therefore, even though the computation of continuous
Fourier transforms is more complex, it ensures that all frequency components are at

least ideally reduced to zero.

3.4 Closure:

We have presented two alternative filtering techniques in this chapter to put the
work of Chapter 2 into perspective. Instead of constructing a function to look like
a square wave while maintaining some specified bounds in the frequency spectrum,
we tried here to filter out the specified frequency components of a square wave. A

simple low-pass filter can be used to remove all frequency components of the input
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above the filter cut-off frequency, which is chosen to be somewhat less than the
lowest system natural frequency. A fourth-order Butterworth filter works quite well
in reducing residual vibration, but response time is relatively long because no input
energy is passed above the lowest natural frequency of the vibrating system.
Another alternative is to generate time functions from a square wave spectrum
that has had all frequency components removed in a band surrounding the natural
frequency. This produces alternative time functions to those specified by the ramped
sinusoid series, which are given in terms of sine integrals. These functions must start
considerably earlier and end considerably later than the corresponding square wave
in order to achieve sufficient filtering. Thus, move time is unacceptably long.
Therefore, although these filtering techniques present viable alternatives, both
the low-pass filter and the notch filter lead to considerably longer move time. The
ramped sinusoid functions, however, permit a simpler implementation of filtered

inputs without excessively increasing move time.



Closed-Loop Implementation of

Shaped Inputs

Chapter 4

4.1 Introduction: .

The shaped inputs developed in Chapter 2 are given strictly as functions of time.
This means that they can only directly be used in systems where the force can be
specified as a function of time. Since closed-loop systems with feedback determine
control force as a function of system states rather than as a function of time, these
shaped inputs can be specified directly only in open-loop systems. Because most
physical systems experience disturbances, nonlinearities, and parameter uncertainty,
accurate performance cannot be guaranteed for open:loop control. Thus, we need
some way of incorporating these shaped inputs into a closed-loop control system.
In this chipter, we will present several methods for incorporating shaped inputs
into closed-loop systems. The first scheme directly sends the shaped force into the
vibrating system. This represents the feedforward portion of the control force. This
same input also goes into a reference model of the vibrating system to generate an
ideal response. This response is compared with feedback states and the error is used

as an additional control input to help generate the desired ideal response even when

56
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the actual system differs from the ideal system.

Some of the drawbacks of this method are then discussed, keeping in mind the
limitations which actual systems impose on the controller. These observations serve
to motivate a different closed-loop implementation. In this new formulation, only
motor states are measured and a simple PD loop is used to achieve accurate positions
in the presence of disturbances. The shaped force input is converted into an equiv-
alent position reference trajectory and the motor feedback allows the closed-loop
system to follow this time-varying reference signal.

Once an appropriate closed-loop implementation has been developed, we look
more carefully at the optimal regulator formulation and indicate several cases in
which it fails to give adequate performance. Shaped reference inputs then serve to

augment the optimal regulator and minimize residual vibration.

4.2 Model-Reference-Based Control S.che\me:

4.2.1 Overview of Concept:

The first closed-loop implementation to be studied involves the use of a reference
system model. This control scheme is not to be confused with Model Reference
Adaptive Control. State feedback is used to impose on the actual system the ideal
behavior of the reference system. The shaped force input is directly applied to both
systems. The error between the actual response and the ideal model response serves
to correct the control input to maintain the desired response.

A key feature of this control implementation is the use of the shaped force as a
direct feedforward input to the controlled system. The control input is thus specified
as a function of time as well as a function of the error states. The main advantage of
introducing a feedforward signal is the ability to deal with unwanted resonant vibra-
tions before they occur by proper frequency-shaping of the feedforward functions.

An outline of this approach was presented in an earlier paper [63].
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Figure 4.1: Block Diagram of Model-Reference-Based Control Scheme.

The use of additional feedforward signals to reduce system tracking error is
quite common. Dougherty, et al. [22] suggest the use of acceleration feedforward
in the pointing control of the Space Telescope. A similar technique has been used
to compute joint torques of serial-link robot arms. The acceler#tion of the refer-
ence trajectory is used to reduce tracking errors, as described by An, Atkeson, and
Hollerbach [64]. In each case, a feedforward signal derived from the reference is
directly fed to the system to reduce tracking error. However, no frequency-shaping

is done on the feedforward functions to reduce vibration.

4.2.2 Controller Specifications:

A block diagram of the proposal control scheme is shown in Figure 4.1. Since
in typical systems the motor position is usually measured instead of the absolute
endpoint position, we will do likewise here. Thus, an additional tfansfer function
H.(3) is necessary to obtain the endpoint position y; as a function of motor position
y* . The comipensator G(s) represents the combination of a state feedback control
law and a state estimator. State feedback ensures that all the actual system states
approach the ideal reference states. Since only motor position is measured, the
remaining states are estimated using a steady-state Kalman filter.

To evaluate this control scheme, very simple models were used to represent the
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Figure 4.2: Damped Two-Mass System Model.

Table 4.1

Definition of Dimensionless Parameters

u
t* = wnt/2x ut =
(my + ma)yswi
* ym « "U
Y == o= —
Ys Ys
yt ye * w
Yy = — w =
Ys (my + mo )y swi
y- — ge
© whys

ideal plant and the actual plant. A simple damped two mass, one spring model,

shown in Fig. 4.2, represents a system with one resonant mode and one rigid body

mode. The centrol force u acts on mass m;, while a disturbance force w acts on

my, the mass. we wish to control. For the sake of generality, all parameters have

been nondimensionalized, as shown in Table 4.1, where y; is the final position of

the controlled mass, v is the measurement noise, and wy is the nominal undamped

natural frequency, given by

(4.1)
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and ¢ is the damping ratio, given by

_‘b 1 m1> 9
¢ = 2\/;711 (1 + my/’ (4:2)

The ideal plant is assumed to vibrate at the nominal natural frequency wy and

to have no disturbance force acting on it. Its transfer function relating the control
input u* to the motor position y? is given by:

B y:n(s) _ (1 + %)82 + 2(5 +1
Hy(s) = u*(s)  s¥(s*+2(s+1)

This ideal plant is used to generate the motor position reference y for the feedback

(4.3)

loop.

The actual plant is assumed to vibrate at a natural frequency denoted by wy,
which may be different from the nominal frequency wy. It also has a disturbance
force w* acting on mass m,. Therefore, it has two transfer functions associated with

the measurement y; :

Cyn(s) (Lm0 () s+ (1)

Hy(s) = = = (4.4)
w0 sl rag () s+ (24)]
2
() 2 (s)o+ (2) s
2y % 2 :
wi(s) st +a¢(20) s+ ()]
In addition, the endpoint position is given in terms of the motor position by
2
. 2( Ya) g + wa
HC(S) — ye('s) — (WN) (WN) . (46)

Vnls) (L4 m) st o (s8) s+ (24)
This plant represents the idealized model of the actual system and is used to derive
the optimal feedback compensator for ws/wy = 1. It could also have included
additional ncinidea.l characteristics, such as nonlinearities and unmodeled modes,
but for simplicity these were neglected in this analysis.

The state-space formulation of the actual plant model is given by:
x = Ax + bu* + yw*
yr =cTx (4.7)

2 =cTx+v*
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where x is the state vector consisting of endpoint position y_ and its three derivatives,
A is the dynamics matrix, b is the control input vector, v is the disturbance input
vector, w* is the dimensionless disturbance force acting on m,, ¢ is the output
vector, z* is the noisy measurement of ¥*, and v* is the nondimensionalized noise
that corrupts the measurement of y},.

The feedback compensator shown in Fig. 4.1 represents the transfer function
equivalent of an optimal state feedback controller and a steady-state Kalman filter
applied to the plant model given by Equation (4.7). This approach was motivated by
an article by Bryson [65] that discusses a classical interpretation of optimal control
theory. Basically, quadratic performance index weightings are adjusted to achieve
desirable filtering properties in the compensator. The plant model used to construct
the compensator was assumed to have wy/wy = 1, my/m; =1, and ¢ = 0.1.

In conventional Kalman filter design, white noise processes are assumed for w*
and v*. In designing this compensator, the spectral densities for. w* and v* were
treated as parameters that were selected to achieve good filtering of the endpoint
position measurement at higher frequencies. Thus, the Kalman filter accommodates
disturbances and measurement noise as well as estimating unmeasured system states.

The feedback compensator was designed in two parts, as suggested by the sepa-
ration principle. In this development, u* is assumed to consist only of the feedback
component, i.e. no feedforward function is applied. The state feedback gains were

determined by minimizing the following quadratic performance index:

J= %/:o(y:z + put?) dt (4.8)

The value of p was selected to be 1/49 so as to weight the penalty on endpoint
position error more heavily than control input. This leads to a set of constant
feedback gains on the system states.

The steady-state Kalman filter gains were determined so as to minimize the

expected value of

/Om(z‘ —Tx)?dt (4.9)
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Figure 4.3: Magnitude of Frequency Response of Optimal Compensator.

given the spectral demnsities ¢ and r for w* and v*, respectively. In .analogy with the
optimal regulator problem, this minimum variance observer leads to a steady-state
Riccati equation which depends on the ratio 7/q. A value of 1 was used here for
r/q to give a compensator capable of accommodating both plant disturbances and
measurement noise.

The final compensator transfer function for these weightings is given by:

_ut(s) 22(s +0.27)(s2 + 0.12s + 1.5)
T oyn(s) (52 —0.94s + 1.3)(s% + 6.65 + 22)

G(s) (4.10)

This transfer function can be represented in a frequency response plot. Such a
depiction emphasizes the filtering properties of the compensator, which depend on
the number of controlled states, a fact pointed out by Larson and Likins [66]. A
plot of the magnitude of the frequency response for our compensator is shown in
Fig. 4.3. Here the frequency is normalized to the resonant frequency of the system.
Near resonance, the compensator acts as a notch filter. Beyond resonance, higher
frequency” components are at first amplified by the full state feedback controller,

then attenuated by the Kalman filter.
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This compensator has a pair of poles in the right-half-plane. These poles will
not appear in the closed-loop transfer function, but they could appear as closed-loop
zeros if a different compensator is used in the feedforward path. This can potentially
lead to poor transient response.

If the original plant for which the compensator is developed is more lightly
damped than ¢ = 0.1, then the characteristics of the compensator change. If the
open-loop damping ratio is assumed to be ¢ = 0.02, the compensator for the same
weightings as before has the transfer function given by

Gls) = w(s)  22(s + 0.25)(s* — 0.025s + 1.3)

= =— . 4.11
yr(s) (s* — 0.89s + 1.6)(s? + 6.6s + 22) (4.11)

Notice that this compensator has a pair of zeros in the right-half-plane in addition
to a pair of poles. This is common in optimal controllers for systems with lightly
damped poles, as pointed out by Martin and Bryson [67]. In the feedback loop,
this is of no concern. However, if this same compensator is used in a tracking
controller to act on the reference signal, then the nonminimum phase zeros occur in
the closed-loop system and can cause poor transient performance. This is a result
of the fact that this compensator was derived for a regulator control. Typically,
a new compensator would be derived for a tracking controller that would have no
right-half-plane zeros.

The closed-loop transfer function between y; and y;, for {( = 0.1 is given by

yn(s) 44(s + 0.27)(s% + 0.1s + 0.5)(s* + 0.12s + 1.5)

y*(s) (s + 1.4s + 0.69)(s? + 0.56s + 1.4)(s? + 2.7s + 2.3)(s? + 1.25 + 3.1)
- (4.12)

The right-half-plane poles of the compensator do not appear as right-half-plane ze-
ros because the same compensator is used in the feedforward path. The dominant
closed-loop poles (with the lowest natural frequencies) have damping ratios of 0.84
and 0.24. Thus, the optimal regulator has replaced the lightly-damped open-loop
poles with more heavily damped closed-loop poles. The dominant closed-loop damp-

ing ratio achievable with an optimal regulator depends on the control weight p, as
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Open-Loop Damping Ratios.

shown in Figure 4.4 for several open-loop damping ratios. As control weight de-
creases, the damping ratio of the dominant closed-loop poles increases. Systems
having higher inherent open-loop damping can achieve larger closed-loop damping.
But even with an optimal controller, the maximum achievable closed-loop damping

ratio is limited.

4.2.3 Closed-Loop Simulation Results:

The control scheme suggested in Fig. 4.1 was used to determine closed-loop re-
sponses using the shaped functions of Chapter 2 as the feedforward inputs uj. A
dimensionless time wy7, was used to specify move time relative to the resonant
period. The t-ime T, represents the time to move the center of mass of the two-mass

system a distance y; when driven by an input force which is + F for the first half of

the move and — F for the second half. Therefore, wyT, 1s given by:

wnT, = wyy/4(my + ma)ys/F (4.13)
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The actual dimensionless move time is somewhat longer than wy T, since the shaped
forcing functions do not provide as much energy for a given peak force F.

For this series of simulations, a value of 10 was used for the parameter wyT, /27,
damping ratio was assumed to be 0.1, and mass ratio m;/m, was taken to be 1.
Three sets of simulations were performed. In the first, the actual plant was taken
to be identical to the ideal model, with ws/wy = 1. The control system generates
the required control input to produce the output that is called for by the forcing
function. Of course, when the controlled system is ideal, as we assume here, the
output exactly follows the reference input and no feedback correction is generated.
However, the feedforward function applied here leads to some residual vibration even
in the ideal system. Therefore, the reference input imposed on the feedback loop was
set to y; after the feedforward function ended in order to bring the system to rest.
This response is shown in Figure 4.5, with total control input in (a) and acceleration
response (§?) of m; in (b). Notice that the feedforward function alone brings the
system to final position with very little vibration for the feedback loop to damp out.
This gives negligible settling time with residual vibration nearly eliminated beyond
wyt/2m = 13.

In the second simulation, the actual system was assumed to have a natural
frequency different from the nominal frequency, with ws/wy = 0.9. The response
under these conditions is shown in Figure 4.6. In this case, residual vibration takes
until wyt/27 = 14 before it settles. This is longer than the nominal system response
of Figure 4.5 because the initial residual amplitude is higher for damped systems
with an errorin natural frequency.

When a disturbance is added to the model for the actual system with ws/wy = 1,
the advantages of combining feedforward and feedback control become apparent.
Figure 4.7 shows the response when a constant opposing disturbance force acts on
the end mass. A force of dimensionless amplitude 0.0003 was used. This represents

a disturbance having 30% of the peak force level of the input functions. Notice that
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the total control input differs from the feedforward function at the start because
the feedback loop has recognized that output motion is lagging behind the reference
input. Beyond this initial transient, the control input is just as before except it
includes a constant force offset to oppose the disturbance. Settling time remains
essentially the same as without the disturbance. Thus, the model-reference-based
control scheme achieves response comparable to that for an open-loop system, even

in the presence of a disturbance force.

4.2.4 Discussion:

Although this feedforward/feedback control scheme seems to work quite nicely, it
has a number of drawbacks. First, derivatives of the reference position y; undergo
a sudden jump to zero when the feedforward input ends in order to ensure that
any residual vibration remaining in the ideal system is damped out. This reference
discontinuity could lead to a control input that excites vibration if the actual system
differs significantly from the nominal system.

~ Second, the feedforward inputs have been constructed on the assumption that
the only dynamics of interest are the reference model dynamics. However, if the
actual system is sufficiently different from the reference model, additional dynamics
will exist. This can be illustrated by determining the transfer function between y;,
and v} in terms of the compensator G(s), reference system model Hy(s), and actual

system H4(s): : :
yn(s) _ H 4(s)
- ui(s) 1+ G(s)Ha(s)

As long as H4(s) = Hy(s), only the dynamics of Hy(s) occur. But if Hy(s) #

(1+ G(s)Hn(s)) (4.14)

Hy(s), then more complicated dynamics exist which have been ignored in the design
of the feedforward inputs. More specifically, the natural frequencies of the closed-
loop system will appear, although these have been neglected in the design of the
feedforward inputs. These additional dynamics could potentially reintroduce energy

into the system at the natural frequencies to cause undesirable vibration. Because
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Figure 4.8: Block Diagram of PD Controller with Shaped Reference Input.

of these potential difficulties, we looked for an alternative method of incorporating

shaped input functions into a closed-loop system.

4.3 Proportional-Derivative Control with Shaped

kN

Reference Input:

4.3.1 Introduction:

The model-reference-based control scheme presented earlier was based on the premise
that a feedforward function could be tuned to a nominal system whose response
could then be imposed on the actual system. An alternative formulation would use
whatever closed-loop system has been configured as the basis for tuning the shaped
input functions. Such an idea has already been proposed in connection with the
posicast contzol concept developed by Smith [16, page 338]. In this section, the
frequency-shaped inputs will be tuned to the closed-loop natural frequencies.

In many respects, the new closed-loop system model of Figure 4.8 resembles
that of Figure 4.1. But there are important differences. First of all, the shaped
force input no longer acts as a direct feedforward input to the control force. For
sufficiently stiff systems, this extra input has little effect on the response and was

left out for simplicity. (Further discussion of the effect of a feedforward input is
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presented in Section 4.3.5.)

Another important difference is the use of a simple proportional-derivative (PD)
compensator instead of the optimal compensator presented earlier. There were a
number of reasons for vdoing this. Motor position and velocity are readily available
for measurement in most practical systems. Thus, no estimator with its inherent
sensitivity to parameter errors and unmodeled modes is required to obtain additional
unmeasured states. Since actuator and sensor are colocated, the system is much
more robust to modeling errors which otherwise could lead to instability.

The full-state optimal compensator is designed to remove the resonant charac-
teristics of the vibrating system by replacing them with its own set of dynamics. In
this way, the compensator is trying to suppress the resonant vibration, whether it
be excited by the motion or by a disturbance. However, the assumption underlying
the present work is that the motion itself causes the vibration and that a judicious
choice of input should be able to prevent the resonant vibration from occurring at
all. To fully test this hypothesis, a simple compensator was used that does not try
to suppress the resonant vibration. Such a compensator also keeps the controller
simple to make it easy to implement on existing servo systems.

When a simple controller gives adequate positioning accuracy and disturbance
rejection, development of shaped inputs to reduce residual vibration is easier than
development of an optimal regulator to suppress vibration. An optimal regulator
requires a system model with reasonably accurate values of the system poles and
zeros. Since the zeros are difficult to determine and are likely to vary, system
performance will suffer. Developing shaped inputs, on the other hand, requires
only a knowledge of the poles (natural frequencies), which can be determined to
reasonable accuracy.

In more complicated systems in which an optimal regulator is necessary to ensure
stability and disturbance rejection, the use of shaped inputs can still give beneficial

results. Conditions for which shaped reference inputs are useful in conjunction
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with optimal regulators are described in Section 4.4. Thus, the use of a simple
PD controller in the following discussion is not intended to preclude more complex
compensators, but rather to highlight the advantages of shaped inputs.

A final difference in the new control scheme of Figure 4.8 is that the reference
system model has been replaced by a double-integrator. This system element gener-
ates the position reference from the shaped force profile. Its use is further clarified
in Section 4.3.3. The compensator used on the reference y’ is the same as the PD

compensator to ensure good tracking.

4.3.2 Tuning Shaped Inputs to Closed-Loop Systems:

Since the effect of feedback is to alter the dynamics of the open-loop system, the
shaped inputs should be tuned to the closed-loop system, rather than the open-
loop system. In this way, the controller can operate as designed to ensure accurate
motion in the presence of disturbances, while the force inputs can be shaped to
avoid exciting any closed-loop resonances that occur.

To implement this strategy, the closed-loop system is treated as an equivalent
open-loop system. Figure 4.9 shows this equivalence in block diagram form. Note
that at this stage, the input to the equivalent open-loop system is treated as a force
input u} which can be prespecified.

Once the equivalent open-loop system has been characterized using the given
functions for G(s) and H(s), its natural frequencies can be identified and the shaped
force input can be derived as detailed in Chapter 2. Note that the frequencies which
are to be filtered from the input spectrum are the closed-loop natural frequencies.

Consider -the ideal system model presented in Figure 4.2 with transfer function
relating motor position y*, to control force u* given by equation (4.3). The effect
of closing the loop around this system using the PD controller can be seen in a
root locu§ plot as a function of feedback gains (Figure 4.10). The damping value

is assumed to be 0.1, with m;/m, = 1. For simplicity in seeing the trend, we have
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Figure 4.9: Equivalent Open-Loop System.

set ky = k;. Notice that the open-loop poles very rapidly approach the open-loop
zeros, even for moderate values of gain. Thus, we can safely use the open-loop zeros
to determine the closed-loop natural frequency wc, which occurs at a dimensionless
frequency (relative to the open-loop natural frequency wy) of we/wy = 0.7. For a
value of wyT,/27 = 10 as used in Chapter 2, the shaped input tuned to the closed-
loop natural frequency wcT,/2n = T is shown in Figure 4.11(a), with its spectrum

shown in (b).

4.3.3 Génerating a Shaped Reference Input:

The shaped input constructed above is only a force profile that must now be incor-
porated into a closed-loop controller. Using this profile u} as a direct input to the
closed-loop system, as shown in Figure 4.9, will not work. Since the closed-loop con-

troller attempts to follow the specified input, in this case the shaped force profile, the
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system would merely move away from and ultimately return to its étarting position.
Instead of specifying a force profile, we need to specify a position trajectory.

One way to do this would be to use the nominal open-loop reference system or
even the nominal closed-loop system to generate a position profile from the system
response to the shaped input. As pointed out in the discussion on the model-
reference-based control scheme, this element in the block diagram will introduce its
own dynamics into the closed-loop transfer function. Since the shaped inputs are
tuned to the closed-loop natural frequencies, it makes no sense to introduce the open-
loop natural frequencies ;;vhich have not been attenuated in the force profiles. Using
the nominal closed-loop system to generate a position trajectory simply reintroduces
the closed-loep natural frequencies.

Perhaps the easiest way to generate the position trajectory is to use a simple
rigid-body mass having the combined value m, +m,. This is equivalent to retaining
only the double-integrator in the dimensionless transfer function of equation (4.3),

eliminating the additional resonant frequencies. This generates a position trajectory
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that can be directly followed by the PD controller, while retaining the frequency-
shaping characteristics of the original force profile.

It is worth noting that the double-integrator is not intended to act as a filter.
In fact, as simulations will show, a doubly-integrated square wave used as position

trajectory still generates considerable residual vibration.

4.3.4 Closed-Loop Simulation Results:

Using the damped system model of Figure 4.2 with parameters wyT's/2m = 10,
¢ =0.1, my/my =1, k; = k3 = 4, and the force profile of Figure 4.11, we obtained
three sets of simulation results. The feedback gains k, and k, were chosen to give
critically damped response for the equivalent rigid-body system with closed-loop
bandwidth twice the natural frequency. In the first simulation, the nominal system
with wy/wy = 1 was used. This response is shown in Figure 4.12. The actual controi
force is shown in (a), while the acceler;ttion of mass m, is shown in (b). The residual
vibration has indeed been eliminated. Notice also that the control force differs from
the shaped force profile because of the feedback control action. Residual amplitude
is very nearly the same as that of the open-loop response of Figure 2.17.

The second set of results were obtained from an actual system model having
wa/wny = 0.9; that is, the actual open-loop natural frequency was assumed to be
10% less than the nominal natural frequency. Since this error puts the actual natural
frequency at the extreme low end of the spectral notch, the damped response is
expected to give some initial residual amplitude. Because the PD controller gives
very lightly damped closed-loop poles, the actual response shown in Fig. 4.13 takes
longer to dec;ly than that with the optimal compensator (Fig. 4.6). However, the
initial residual amplitude is smaller for the PD controller because the input has been
tuned to the actual closed-loop dynamics. The model-reference-based controller
introduces additional dynamics when modeling errors are present which increase

the initial residual amplitude.
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A third simulation gives the results when a constant opposing force of dimen-
sionless amplitude 0.0003 acts on mass m;. This represents a disturbance which
is 30% of the peak input force. The ratio wy/wy is again assumed to be 1. This
response is shown in Figure 4.14. Notice how the closed-loop feedback compensates
for the disturbing force, while the shaped input reduces residual vibration.

To point out the advantages of using the frequency-shaped profiles, we also
simulated the response to a square wave force input u. These results are shown in
Figure 4.15. At the end of the move, considerable amplitude of residual acceleration
remains that must be damped out by the relatively lightly damped closed-loop

controller.

4.3.5 Effect of a Direct Feedforward Input:

If the shaped force input, u} of Figure 4.8, is fed directly into the controlled system,
the new block diagram will look like Figure 4.16. The transfer function between y?,
and u} when this feedforward input is included is given by

yr(s) _ H,(s)
ul(s)  s3[1+ (kg + kos)Ha(s))

(52 + kos + k) (4.15)

This compares with the transfer function when feedforward is absent:

Ynls) H4(s)

ws(3) ST T oy + kpo)Ha(e)] 2o TR0 (4.16)

Basically, then, the feedforward input generates an additional acceleration reference
signal. This will tend to improve tracking performance by enhancing the higher-
frequency components of the input function u}.

As the transfer function (4.15) makes clear, the use of a direct feedforward signal
will enhance frequencies of the input function u; above the break frequency given by
Vky. For a system which is relatively stiff, with large k,, this effect is insignificant.
In our simulations, we used a value k&; = 4. This suggests that adding the di-

rect feedforward connection only serves to enhance frequencies which are twice the
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natural frequency of the system and higher. When the dimensionless closed-loop
natural frequency wcT,/27 is T, this suggests that only dimensionless frequencies of
14 and greater will be enhanced by feedforward. As the frequency spectrum of Fig-
ure 4.11(b) shows, there is very little energy in the shaped ramped sinusoid inputs
above wT,/2n = 14. Thus, we would not expect feedforward to markedly affect the
response in this case.

However, for systems which are relatively compliant, the additional feedforward
input can make a difference. For the sake of argument, assume that for a particular
move distance, force level, and inertia value, the dimensionless closed-loop frequency
weT,/2r is 2. Also, assume that the position loop is relatively compliant, with a
value k; = 0.25. This suggests that a direct feedforward input will amplify the
frequency components of the shaped input above wT,/27r = 1. This represents a
significant part of the input spectrum, as shown in Figure 4.17(b).

Simulation results comparing responses with and without feedforward are shown
in Figures 4.18 and 4.19, respectively. The total control input «* is shown in (a),
with the acceleration of mass m; shown in (b). The response does lag behind a
small amount when the direct feedforward signal is left out. But even under these
conditions, the advantage in using feedforward is minimal.

Thus, the effectiveness of a direct feedforward signal contributing to the control
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Ramped Sinusoid Input and without Direct Feedforward; wnT,/27 = 2.86,
weT,/2x =2, ¢ =0.1: (a) Control Force (b) Acceleration Response.
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effort is related to the stiffness of the position loop. For a relatively stiff control loop,
feedforward can be left out with very little effect on performance. For compliant
systems, the use of a feedforward input may speed up the response. This would
be especially useful for improving the performance of feedback loops which require

small position gains for stability.

4.4 Suppressing Vibration Using Optimal Reg-

ulators:

4.4.1 Introduction:

The preceding section has emphasized the use of shaped reference inputs to reduce
residual vibration. The PD compensator that was used to achieve accurate positions
does not actively sﬁppress vibration. Instead, excitation of system natural frequen-
cies is minimized by using appropriately shaped reference inputs. This approach
highlights the effectiveness of shaped inputs but ignores vibration suppression that
can be achieved by more sophisticated compensators. Optimal regulators can serve
as effective controllers to actively suppress vibration for systems having several nat-
ural frequencies. This section discusses optimal regulators and identifies several
conditions for which they do not sufficiently reduce residual vibration without the
use of shaped inputs.

Two different cases for which optimal regulators cannot adequately suppress
vibration will be investigated. First, we will show that optimal regulators can only
achieve limited closed-loop damping ratios for the higher frequency modes. Second,
we will describe a system having a mode which is nearly unobservable and therefore
cannot be adequately compensated.

In both of the examples used to illustrate these conditions, we will apply linear-

quadratic-regulator (LQR) theory to develop a state feedback controller. Feedback
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Figure 4.20: Block Diagram of Optimal Regulator State Feedback Controller.

gains were determined by minimizing the following performance index,

J= %/‘”(ygz + put?)dt, (4.17)
1]

where y' represents the dimensionless endpoint position whose deviation from a
. desired trajectory we wish to minimize, and u* is the dimensionless control effort of
the actuator. We will assume that all system states are available for measurement
to simplify the analysis.

State feedback derived from the optimal regulator formulation is augmented by
a reference input to bring the system to the desired position. The complete closed-
loop system is shown in Figure 4.20. The system state vector x is multiplied by the
state feedback gain vector kI. The reference position y* is multiplied by a position
gain k, that causes endpoint position y. to follow the reference.

Finally, the reference is generated by doubly integrating a square wave force
profile u}. Typically a simple step reference would be used to achieve the desired
position. But since we recognize that real actuators are force-limited, we will follow
a realistic position trajectory which achieves time-optimal motion for the equivalent
rigid-body. The task of the state feedback regulator is to maintain this trajectory
by minimizing vibration in the actual system.

Results using this control scheme with the integrated square wave input will

be compared with results using the ramped sinusoid force input to generate the
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Table 4.2

Definition of Dimensionless Parameters
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reference. The shaped force input is also transmitted directly to the system as a
feedforward signal to improve response, as indicated by the dotted line in Figure 4.20.
The same controller is used regardless of reference input. These comparisons for the
two cases being considered serve to illustrate the importance of carefully shaping the
reference input to minimize residual vibration when the optimal regulator cannot

do it alone.

4.4.2 Limited Closed-Loop Damping Ratio:

Even though optimal regulators are designed to actively damp out system vibration,
they are limited in the amount of additional damping they can impose on the system
modes. To illustrate this phenomenon, we will look at the response of a lightly-
damped three-mass system (Fig. 4.21). The dimensionless parameters used for
this system are defined in Table 4.2, where y; is the final position and w, is the
undamped natural frequency of the first mode of vibration. The second mode is
given in dimensionless form as w,/w;. Damping ratios for the first and second modes

are (; and (3, respectively. The transfer function relating the endpoint position y,
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Figure 4.21: Damped Three-Mass System Model.

to the control effort u* is given by:

o 20, (e w)?
) _ (2618 +1) {362 (2)s+(2) ] : (4.18)
u*(s) 82(s2 4+ 2(ys + 1) [32+2C2 (ff)s""(ff) ]

An optimal state feedback regulator was designed for this system using a control
weight p = 1/49. This weighting penalizes endpoint vibration more heavily than the
control effort. System parameters were chosen so that w;/w; =2 and {; = ¢, = 0.1.
Results when the square wave force profile generates the reference for a dimensionless
move time w,T,/2n = 1.5 are shown in Figure 4.22. The control effort u* is shown in
(a) and the endpoint acceleration 2 in (b). Even though the first mode vibration is
damped out quickly by the state feedback regulator, the second mode continues to
oscillate for several cycles. This suggests that the optimal regulator is less effective
at actively damping out the higher frequency. In fact, the damping ratio of the most
lightly-damped closed-loop poles is only 0.15.

To explain why optimal regulators give lower closed-loop damping ratios for
higher modes, we will look at the typical configuration of poles in optimally regulated
systems. As the control weight p approaches zero, all the closed-loop poles which do
not go toward the open-loop zeros will approach a Butterworth configuration in the
left-half-plane [68]. In general, a lightly-damped n-mass system like that of Figure
4.21 will have 2n open-loop poles and n — 1 real zeros. Thus, n+1 closed-loop poles
will approach the Butterworth configuration. Such a model has been shown to be a

good representation of dynamic systems, like industrial robots, having transmission
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Figure 4.22: Optimal Regulator Response of Three-Mass System using Integrated
Square Wave Reference for w,T,/27 = 1.5: (a) Control Force (b) Acceleration Re-

sponse.
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compliance and structural flexibility [69]. The number of masses contained in the
model will go up as more vibration modes are included. As the number of masses
n increases, the closed-loop poles closest to the imaginary axis will become more
and more lightly damped. For n = 2, the damping ratio is 0.5; for n = 5, it is
only 0.26. Even with infinite control effort available (p = 0), these closed-loop poles
cannot achieve higher damping ratios than those dictated by the Butterworth pole
configuration.

Often, these ideal pole locations cannot be achieved in practice because of band-
width limitations. Since the dynamics of real systems cannot be precisely known,
some modeling error can be expected. Ignoring some of the higher natural frequen-
cies in the system model may lead to instabilities unless control gains and hence
bandwidth are reduced [36]. Some modeling errors can lead to a flip in the rela-
tive locations of open-loop poles and zeros which can also drive a system unstable
[29]. Again, bandwidth must be reduced to guarantee stability. Under these cir-
cumstances, some of the higher frequencies will not be adequately suppressed by the
optimal regulator and lightly damped residual vibration can be expected.

When we use a shaped ramped sinusoid force profile to generate the reference
trajectory for the optimal regulator, residual vibration of the second mode can be
reduced. The ramped sinusoid input function we used was constructed to minimize
excitation energy at two frequencies: w,T,/27 = 1.5 and w,T,/27 = 3. This time
function is shown in Figure 4.23(a), with its frequency spectrum in Figure 4.23(b).
Response of the three-mass system to this reference input is shown in Figure 4.24.
Notice that residual vibration has been minimized for both natural frequencies.
Because an optimal regulator cannot always guarantee well-damped response, it is
helpful to use shaped reference inputs to generate motions which do not excite the

lightly-damped modes.
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Figure 4.23: Ramped Sinusoid Input Tuned to w,7T,/27 = 1.5 and w;T,/2x = 3.0:

(a) Time Function (b) Frequency Spectrum.



4.4: Suppressing Vibration Using Optimal Regulators: 93

0.05 -
0.04 |
0.03 -
0.02

Dimensionless Force

0.01

o_w 1 L 1 L I 1, I 1 1 J
0.50 1.0' 0 2 250,73.00 350 400 450 5.00
-0.01 | Dimensionless Time
-0.02 +
-0.03 +

-0.04 -

005 L

Response to Ramped Sinusoid Input

(a)
0.06
0.04
0.02 |

L

0.00

300 350 400 450 5.00
Dimensionless Time

0.50 100 150 200

-0.02 |-

Dimensionless Endpoint Acceleration

<0.04 1

-0.06 -

- Response to Ramped Sinusoid Input

(b)

Figure 4.24: Optimal Regulator Response of Three-Mass System using Integrated
Ramped Sinusoid Reference and Feedforward for w,7,/27 = 1.5: (a) Control Force

(b) Acceleration Response.



4.4: Suppressing Vibration Using Optimal Regulators: 94

O, KB
e

l_) " Je

Figure 4.25: Two-Mass System Model Exhibiting Weakly Coupled Torsional and

Translational Modes.
4.4.3 Nearly Unobservable Modes:

Another case in which optimal regulators fail to give adequate performance is in
systems having nearly unobservable modes. This occurs when the system consists
of several subsystems that are only weakly coupled. A simple example is a Cartesian
robot whose axes are not exactly orthogonal to one another. In that case, motion
in an axis can excite vibration in the other axes. Such systems are characterized by
transfer functions having open-loop pole and zero pairs that almost cancel. These
poles cannot be adequately compensated using an optimal regulator.

A good system to illustrate this kind of behavior is shown in Figure 4.25. This
system is basically a two-mass system but the second mass m, can exhibit rotation
as well as translation. This rotation is resisted by a torsional spring K and damper
B. Such a model may be used to represent a positioning axis riding on linear
bearings, which have a certain finite stiffness. The endpoint position y. will sense
both the translation and the rotation of the second mass as measured at the edge a

distance ¢, from its center of mass. To accurately position this mass, the endpoint
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Table 4.3

Definition of Dimensionless Parameters
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must undergo pure translation. That will be the goal of the optimal regulator.

Because any asymmetries in friction on opposite sides of mass m, will cause it to
pivot, the line of action of the force transmitted through the spring k& and damper
b will be a certain distance ¢, from the center of mass of m,. For simplicity, mass
my will be assumed to be square, with sides of length 2¢,. Thus, its mass moment
of inertia [ is given as

2
I= 3™ €. (4.19)

Dimensionless parameters can be defined as shown in Table 4.3. The desired final
position yy is used to normalize endpoint position y,. The undamped natural fre-
quency w; corresponds to the frequency for the purely-translating two-mass system
(Fig. 2.13). Another natural frequency w, corresponds to torsional vibration of

mass mesy:

K
w =17 (4.20)

In dimensionless terms, this second mode frequency is given as w;/w,;. Damping ra-
tios of the first and second modes are {; and (,. Additional dimensionless parameters

used in this model are the ratios m,/m; and €;/¢;.
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The transfer function relating the endpoint position y* to the control effort u*

can be expressed as

yi(s)  0.17(s +5.0)(s? +0.025 + 4.7)
u*(s)  s2(s?+ 0.2s + 1.0)(s% + 0.02s + 4.0)

(4.21)

for parameter values my/m; =1, ¢/, = 0.1, wy/wy = 2, and ¢; = {; = 0.1. Notice
the presence of a lightly damped pair of zeros nearly canceling the lightly damped
poles representing the second mode. The existence of these zeros near the vibrating
poles is characteristic of systems having weakly coupled subsystems. In this case,
the torsional mode is only weakly coupled to the remaining two-mass translating
system.

An optimal regulator can be derived for this plant model and combined with a
reference input to follow a specified trajectory. Control weight p = 1/49 was used to
determine the state feedback gains. Rigid-body response to a square wave force was
used as a reference trajectory (Fig. 4.20). Results for a dimensionless move time
w1T,/2x = 1.5 are shown in Figure 4.26, with control force u* in (a) and endpoint
acceleration ¢} in (b). The second mode continues to vibrate for a considerable time
after the system reaches the desired position. In fact, the closed-loop damping ratio
for this mode is only 0.03.

This response can again be explained by making reference to the closed-loop
pole configurations of optimal regulators. As control weight approaches zero, some
of the closed-loop poles approach the open-loop zeros. As the transfer function (4.21)
makes clear, two of these poles will approach a pair of very lightly damped zeros,
having damping ratio of 0.005. No matter how high the controller bandwidth is
made (p small), this pair of poles will always dominate and give vibratory response.

When the reference trajectory is generated from a doubly-integrated ramped
sinusoid input (Fig. 4.23) and a direct feedforward signal is added, then the response
of Figure 4.27 results. The system undergoes the same move (w,7,/27 = 1.5).
Notice that this time the residual vibration has been eliminated, even though the

same state feedback compensator was used.
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Figure 4.26: Optimal Regulator Response of Weakly-Coupled System using Inte-
grated Square Wave Reference for w; T, /27 = 1.5: (a) Control Force (b) Acceleration

Response.
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These examples illustrate the advantage of using frequency-shaped reference in-
puts in order to improve the performance of state feedback control systems. When
bandwidth limitations prevent adequate damping ratios of higher modes, or when
nearly unobservable modes prevent effective compensation by optimal regulators,

the use of shaped inputs can significantly reduce residual vibration.

4.5 Closure:

This chapter has presented two alternative methods of incorporating a shaped force
input into a closed-loop system. The first technique uses a reference model of the
open-loop system to impose the desired performance on the closed-loop system.
With modeling errors, however, this control scheme can introduce closed-loop nat-
ural frequencies that will not be attenuated by force profiles tuned to the open-loop
natural frequencies. Therefore, a second implementation was presented that tunes
the shaped inputs to the closed-loop natural frequencies. A simple rigid-body model
of the system generates a reference position profile from the shaped force. A simple
PD compensator is used to illustrate the effectiveness with which shaped inputs
alone can reduce system residual vibration. Then, several cases were presented
for which even an optimal regulator provides inadequate performance. The use of
shaped inputs in those cases helps provide good response with minimum residual

vibration.



Shaped Inputs for
Velocity-Limited Systems

Chapter 5

5.1 Introduction::

In generating force profiles up to this point, we have assumed that the systems
to be controlled can always reach peak velocity. Since all these inputs resemble a
single cycle of a square wave, the move consists of only acceleration and deceleration
regions. No time is spent coasting at the peak velocity. If the system has a maximum
allowable speed, the force input must be scaled down until the peak speed achieved
during the move falls within the velocity limit. This can lead to unnecessarily long
move times for longer moves. An alternative is to develop a new set of force profiles
that allow motion at constant velocity and give velocity waveforms resembling a
trapezoid. Su_ch force profiles will be developed in this chapter.

Velocity limits can occur in physical systems for a number of reasons. Typically,
peak motor velocity is limited by saturation in the amplifiers. With a limited supply
voltage available to the amplifier, the motor can accelerate only up to a speed where
this voltage just cancels the voltage drop across the winding resistance and the back

emf voltage. A plot of motor velocity as a function of time for a typical amplifier

100
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Figure 5.1: Motor Velocity for a Typical Saturating Amplifier.

giving full voltage output is shown in Figure 5.1. Notice that a velocity limit is
reached gradually. Other possible reasons for limiting peak velocity are requirements
on the speed with which balls can circulate in a lead screw or requirements on
decelerating large inertial loads.

In this chapter, we will develop open-loop force profiles, analogous to the ramped
sinusoid functions of Chapter 2, that accelerate a two-mass system to a specified
velocity. These open-loop functions will be used directly to accelerate this system to
peak velocity, and will then be incorporated into the closed-loop scheme presented
in Chapter 4. Finally, a complete force profile will be constructed, consisting 6f

acceleration, dwell, and deceleration regions, to achieve any desired position.

5.2 Development of Shaped Functions:

Typical systems with velocity limits approach peak velocity gradually. The accel-

eration during this period is constantly decreasing. Thus, the force or torque that



5.2: Development of Shaped Functions: 102

can be applied during acceleration is a maximum initially and then defreases. Since
the exact nature of this allowed force variation with time depends on the type of
amplifier being used, as well as other system characteristics, we decided against
trying to model this time-varying force signal. We chose instead to approximate
the open-loop force profile by assuming that the acceleration (and deceleration) are
constant. This can be accomplished by using constant force during acceleration and
deceleration. While the system is coasting at the peak velocity, the input force is
zero. This is only true under ideal conditions when no damping to ground or friction
is present. However, feedback control can be used to compensate for this effect.

The trapezoidal velocity waveform that results from the use of constant accel-
erating and decelerating force pulses is necessarily slower than the actual velocity
profile if saturation is to be avoided. But acceleration and peak velocity can be ad-
justed to give a trapezoidal profile that optimally fits within the actual achievable
profile. Details of this development are given in Chapter 6. Thus, even though a
trapezoidal velocity waveform is not the best response that a particular system can
achieve, it serves as a reasonably fast reference response that avoids saturation.

In order to produce a trapezoidal velocity profile having a constant velocity
region where the speed remains constant, the force profile must consist of three
regions: acceleration, dwell, and deceleration. Ideally, the acceleration and deceler-
ation regions resemble rectangular pulses in order to optimally utilize the available
force. However, with their large discontinuities, these pulses cause gonsiderable vi-
bration when applied to the system. Thus, a smooth version of a rectangular vpulse is
needed that has energy removed at the system natural frequency. This force profile
will accelerate the system to peak velocity.

Such a smooth profile can be constructed from a versine (1—cosine) function,
shown in Figure 5.2. Notice that there are no discontinuities in slope at the beginning
and end. When higher harmonics of this function are added to the fundamental,

a function resembling a rectangular pulse can be created. The coefficients of the
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Figure 5.2: Fundamental Versine Function.

harmonics can be chosen to minimize the energy of the resulting function at the
system natural frequency. This requires that the frequency spectrum of the function
be minimized at the natural frequency. This can be accomplished by performing an
optimization in a manner analogous to that done for the ramped sinusoid functions
of Chapter 2. Preliminary discussion of this development is soon to be published [70].
Shaped input functions will be constructed for a two-mass system as before (Fig.
5.3), having undamped natural frequency w, and dimensionless parameters as given
in Table 5.1. The parameter v, represents the peak velocity and Tg represents the
time to move the equivalent rigid-body mass to peak velocity v, using a rectangular
pulse input having peak force F. As in Chapter 2, dimensionless parameters use the
nominal natural frequency wy, while the actual natural frequency w, is represented
by the ratio wy/wy. To simplify the derivation of the shaped versine inputs, an
undamped system model will be assumed, which has a damping ratio ¢ of zero.

In general, the input functions can be represented by the following series expan-



5.2: Development of Shaped Functions: 104

-.X1’ym r’X:. ve

’ =
f* 52 [32 + QC (5:3-) s + (ﬁ)z]

Figure 5.3: Two-Mass System Model.

Table 5.1

Definition of Dimensionless Parameters

t‘ = uJNt/271'
. WNYm
Ym =
v,
* “"Nye
Ye =
v,
v Ye
Y =
UpW N
F 1
F‘ = =
(mqy + me)vpwny wnTr




5.2: Development of Shaped Functions: 105

sion, where B, is the coefficient for each harmonic, and 7}, represents the time for

the versine response to reach peak velocity:

L
f(t) =3 B, ®;(t) (5.1)
t=1
2rlt
®;(t) =1 — cos (5.2)
0=1,2,3,... (5.3)

The goal is to choose appropriate values for B, that will minimize the time T,
and minimize the magnitude of the frequency spectrum over a range of frequencies
surrounding the system resonant frequency w,.

To achieve this, we will combine these objectives into a single minimization prob-
lem to pick the coefficients B,. To minimize T,, we will minimize the square of the
difference between the versine series and a rectangular pulse. In addition, a sec-
ond expression will be added to minimize the squared magnitude of the frequency
spectrum F'* at several frequencies w; surrounding the system resonance. A weight-
ing factor p determines relative weighting between these objectives. The overall

objective function J represents the quantity to be minimized.

1 T 2 = 2| o+ 2
I=5 [ - sr + o S (T () (5.4)

In this formulation, we have chosen 11 frequencies surrounding resonance to satisfy
the spectral magnitude constraint. The upper and lower limits on frequency can
be adjusted to give any desired frequency band. For a £10% frequency range, the
bounds on the frequency w; are 0.9w, < w; < 1.1w,.

The coefficients of the harmonics B, can be calculated by differentiating the
objective function J with respect to B,, where r represents a particular value of the

index ¢, and setting the result to zero. This gives an expression explicitly in terms

of By and I,:
L
Z B, :z = (5.5)
(=1
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where
1 ¢? r? sin? ©1e
= \I* 4 Tg)? 2 5.6
1 r# L
= (5.7)

1.5 r=¢
If the time T}, is known then I’, is known and the coefficients B, can be deter-
mined by simply solving the following set of linear equations, expressed in matrix

form:

[1][Bd] = (1] (5.8)

where [1] is a vector of 1’s. Unfortunately, T, is not known until the coeflicients B,

are known. The dependence of T, on By is given by

| T,=TyvTgr (5.9)

where
'y = —SL;—E;:E, (5.10)
Tp = M (5.11)

F

SF is a scale factor which normalizes the peak of the function to 1. T represents the
time to reach peak velocity v, when the input is a rectangular pulse of magnitude F'.
I'yv is a function of B, that ensures that the resulting input signal brings the system
to the desired velocity. Since the versine functions cannot supply as much energy for
the same peak force as the corresponding rectangular pulse, they will take slightly
longer to reach peak velocity. This time penalty is represented by I'y.

Due to the inherent coupling of B, and I'y, an iteration scheme is necessary to
correctly compute values for the coefficients B,. This iterative procedure is com-

pletely analogous to that for the ramped sinusoid functions of Chapter 2:

1. Determine w,Tx for given peak velocity and system parameters.
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2. Guess a value of I'y. (Note that 'y is slightly greater than 1.)
3. Solve for B, by solving the matrix equation (5.8).

4. Normalize the versine series expansion by determining the value for the scale

factor SF.
5. Calculate I'y using expression (5.10).
6. Use the new value of I'y- to update B,.

7. Repeat until I'y converges to acceptable accuracy (error with respect to pre-

vious value is less than 107°).

Using the procedure outlined above, we can derive functions that satisfy our
objectives. We used a total of L = 15 terms for computational efficiency while
retaining enough parameters to achieve acceptable minimization. A good compro-
mise between minimizing acceleration time 7, and minimizing spectral magnitude
is achieved for a value of p = 10. Note that larger values of p will give lower spectral
magnitudes and slightly longer acceleration times. Results for two nominal values of
the dimensionless parameter w,Tr/27 (7 and 10), minimizing spectral magnitudes at
11 frequencies extending +10% around resonance, are shown in Figures 5.4 and 5.5.
The time function is shown in (a) and the frequency spectrum is shown in (b). No-
tice that the spectral magnitudes for the entire range of frequencies extending +£10%

about w,'lTR have been significantly attenuated.

5.3 Shaped Versine Inputs for Several Natural
Frequencies:

The approach outlined in the previous section can also be extended to minimize

-

excitation energy at several natural frequencies. The new objective function can be
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Figure 5.4: Versine Input Tuned to w,Tr/27 = 7 + 10%: (a) Time Function (b)

Frequency Spectrum
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expressed as
1 (Te \ um ‘ |
J:Tf (1 — f(O)]dt + p > (w;TR)? F*(w;Tp)|? (5.12)
p 0 =1
where M is the total number of modes (natural frequencies) to attenuate, and w; is

given by
(1= Pm)wm <w; <L+ Ppp)wpm, i=m,...,11lm (5.13)

where p,, represents the fraction of nominal frequency that determines the upper
and lower bounds of the frequency band surrounding the nominal natural frequency
wm for the mth mode.

When this minimization is carried out as before, a new set of coefficients are de-
termined. A versine input attenuating three natural frequencies at w,,T, /27 = 1.5,
5, and 10 with 10% frequency bands is shown in Figure 5.6(a), with corresponding
frequency spectrum in (b). Notice that all three frequencies have been attenuated

Y

as specified.

5.4 S.haped Versine Inputs for Lightly-Damped
Systems:

In section 2.6 of Chapter 2, we presented results that showed the effect of inherent
system damping on the residual acceleration amplitudes when the system is driven
by a particular shaped input. We can now apply those results to the versine functions
developed here. We will use the single-resonance model (Fig. 5.3) for simplicity.

The entire_ development follows exactly as in Chapter 2, except that the Fourier
transform of the versine function is expressed as

. wTp

F(w) = Fr(w)e™ ™2 (5.14)

where .
FT, i By(2m¢)?sin 22 , (5.15)
SF wl,[(2m€)? — (wTp)?]

=1

FR(w) =2
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Figure 5.6: Versine Input Tuned to w,,Tr/2% = 1.5, 5, and 10+%: (a) Time Func-

tion (b) Frequency Spectrum.
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F is the peak force, and SF is a normalizing scale factor. This modifies the expression

for the square of the residual acceleration amplitude to be in terms of Fg(w) rather

than Fi(w) as in (2.38):

Wy 2 C’_Cw"TP - . - N
A% = ( ) 1-¢2 Fr(wny/1 = ¢+ jCwn) Fp(—wny/1 — ¢ + j(w,). (5.16)

my + my

When the expression for Fg(w) is inserted into (5.16), the dimensionless residual

acceleration amplitude can be expressed as

oz A : _(waTp\? et T Ts2ch? + ¢?sh?
(A ) - (F/(m1+m2)) —4< SF ) 1_C2 (wnTp)z
L L BB, (2m€)?(2nr)?[¢(2x)p(27mr) + 4C3(1 — (PN waTp)?

* & 2 @R + 41— Ny Arr £ 401 = YT | 7
where s, c, sh, and ch are defined as

s = sinw, 1—42-T‘)£ ‘ (5.18)
c= coswn\/—l——@% (5.19)
sh = sinh c“"j)T” (5.20)
ch = coshc“”;T" (5.21)

and the functions ¢(27¢) are defined as
(276)? — (1 - 2¢%)(wnT)* | (5.22)

Expression (5.17) gives the dimensionless peak residual amplitude for a versine
input as a fur}ction of the dimensionless frequency wT,. Using the known value of
I'y for a particular versine input, this functional dependence can also be expressed
in terms of wTkg.

Some typical plots showing this functional dependence for several different values
of { with a versine input tuned to w,Tx/27 = 10 are shown in Figures 5.7 to 5.9.

For the case when { = 0 (Figure 5.7), the plot of residual amplitude as a function
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Figure 5.9: Residual Acceleration Amplitude as a Function of wTg/27 for Versine

Input Tuned to w,Tg = 10 + 10%; ¢ = 0.3.

of frequency resembles the frequency spectrum of the versine input (Figure 5.5). It
differs from the frequency spectrum because it represents w,Tg times the frequency
spectrum. As ( increases from ¢( = 0.1 in Figure 5.8 to ( = 0.3 in Figure 5.9,
the residual acceleration function becomes smoother, the valleys rise and the peaks
drop. In general, the range of frequencies over which good vibration attenuation is
maintained is reduced as the damping ratio increases.

For lightly damped systems, the effect of damping is small enough that ver-
sine inputs with notched frequency spectra will work quite well. For more heavily
damped systems, the expression (5.17) for.residuafl acceleration could be inserted
into the objective function J of (5.4) in place of the frequency spectrum. This would

ensure small residual vibration over the specified frequency range.

5.5 Closed-Loop Simulation Results:

The force profiles that we have just developed are suitable for open-loop implemen-

tation, where force inputs can be directly specified. In closed-loop systems, however,
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the force input is typically determined by the combination of a reference trajectory
and several feedback signals. Thus, only by specifying a reference trajectory can the
force input be affected.

We will again use the closed-loop control scheme proposed in Section 4.3 of
Chapter 4. A damped two-mass system model is used as the plant (Fig. 4.2).
Motor position and velocity are measured and fed back with gains k; and Ak, as
shown in Figure 4.8. This represents a simple PD controller. The control input
u* is generated from a reference signal y. and from the motor feedback position
and velocity. An advantage of this control scheme is its stability robustness when
system parameters change. Stability robustness improves when actuator and sensor
are colocated at the motor.

The force profile used in this control scheme must be tuned to the closed-loop
natural frequencies. For the PD feedback loop with &; = k; = 4, the dominant
closed-loop natural frequency is 70% of the open-loop natural frequency. Thus, the
versine force profile should be tuned to a natural frequency which is 70% of the
open-loop natural frequency.

Once the proper force profile has been tuned to the closed-loop system, the
corresponding reference trajectory can be determined. The reference trajectory y:
is generated by doubly integrating the force profile u). This generates a position
reference signal which contains very little energy at the specified closed-loop natural
frequency.

For a system model with paramete‘r wyTr/2m = 10, where wy represents the
nominal open-loop natural frequency, the shaped input must be tuned to weTr/27 =
7, where w¢ corresponds to the closed-loop natural frequency. This force profile is
shown in Figure 5.4(a). Using this force profile in the closed-loop control system
leads to the simulation results shown in Figure 5.10. The actual control force u* is
shown in (a), while the endpoint acceleration of the mass distant from the motor is

shown in (b). When the force ends near the dimensionless time of 15, the system
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Figure 5.10: Simulated Closed-Loop Response for Nominal System Accelerating to
Peak Velocity with Versine Input; wyTr/27 = 10, wcTr/27 = 7, ( = 0.1: (a)
Control Force (b) Endpoint Acceleration Response.
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has reached peak velocity. As the acceleration signal indicates, the system achieves
peak velocity with very little vibration remaining as it begins its constant velocity
region.

The situation described above represents the case when the closed-loop natural
frequency is known exactly. When the actual system frequency differs from the
nominal natural frequency for which the inputs were constructed, the simulation
response of Figure 5.11 results. In this case, the ratio of actual natural frequency to
nominal natural frequency was assumed to be ws /wny = 0.9. Notice that the residual
vibration has increased compared to that when no error in natural frequency exists.
This is due to the effect of damping. However, the response is still quite good despite
the error in natural frequency.

It is instructive to compare these results with the response obtained by simply
using a rectangular pulse as the force profile. Simulation plots for that case are
shown in Figure 5.12, again with control force in (a) and endpoint acceleration in
(b). Notice that considerable vibration occurs when peak velocity is reached after
11 dimensionless time units, and this has not decayed to the level achieved by the
shaped profile even after 20 dimensionless time units. Thus, the shaped versine
profile achieves peak velocity with considerably less vibration than the rectangular

pulse.

5.6 Development of Shaped Inputs to Reach a
Specified Position:

So far in thi§ chapter, shaped inputs have been developed in order to accelerate
a vibrating system to peak velocity with minimum residual vibration. In order to
arrive at a desired position, the system must also be brought from peak velocity to
rest using a shaped decelerating force profile. This can be accomplished by using

exactly the same force profile as for acceleration but with the opposite sign. The
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Figure 5.11: Simulated Closed-Loop Response for Actual System Accelerating to
Peak Velocity with Versine Input; wyTr/27 = 10, wcTr/27 = 7,( = 0.1, wa/wn =
0.9: (a) Control Force (b) Endpoint Acceleration Response.
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Figure 5.12: Simulated Closed-Loop Response for Nominal System Accelerating to
Peak Velocity with Rectangular Pulse Input; wyTr/27 = 10, weTr/2r =7,( = 0.1:
(a) Control Force (b) Endpoint Acceleration Response.
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only remaining parameter to be determined is the time for which the system moves
at peak velocity.

In order to ensure that the system arrives at the desired final position y;, the
dwell time T; at which the system moves at constant velocity v, should be deter-

mined as follows:

,=%_1, (5.23)

'Up

In dimensionless form, this can be rewritten as
‘-UNTd = y} - WNTp- (524)

A typical force profile, with the corresponding velocity profile and position tra-
jectory is shown in Figure 5.13. Notice that the velocity resembles a trapezoidal
profile. \

For a dimensionless distance y} giving a dwell time of wyTy = wnyT, for Ehe
versine input, the simulated nominal system response with PD feedback is as shown
in Figure 5.14. Notice that the acceleration amplitude remains low after both the
acceleration and the deceleration phases of the motion.

In comparison, the rectangular pulse input for the same distance y} has a dwell
time of wnTy = y} — wnTr. This is longer than the dwell time for the versine input
since the system accelerates and decelerates more rapidly with the rectangular pulse
input. System response for the rectangular pulse input is shown in Figure 5.15. As
before (Figure 5.12), there is considerably more vibration after acceleration and
deceleration with the rectangular pulse input than with the versine input.

A comparison of move times shows that the rectangular pulse input is faster
if the additional settling time is ignored. But this time advantage is lost by the
additional time required for the vibration to settle. For longer moves, the versine
time penalty becomes comparatively smaller because the longer acceleration time

becomes a smaller fraction of total move time. This can be seen by expressing total

-
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Figure 5.14: Simulated Closed-Loop Response for Nominal System Moving a Spec-
ified Distance with Versine Input; y}/2r = 28.6, wyTr/27 = 10, weTp/2x =T,

¢ =0.1: (a) Control Force (b) Endpoint Acceleration Response.
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Figure 5.15: Simulated Closed-Loop Response for Nominal System Moving a Spec-
ified Distance with Rectangular Pulse Input; y}/2r = 28.6, wnTgr/2r = 10,
weTr/2% =7, = 0.1: (a) Control Force (b) Endpoint Acceleration Response.
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move time as
wyTy = 2uJNTp +wnyTy = y} + uJNTP = y} + I'vwnThr. (5.25)

The effect of I'y > 1 becomes smaller as the distance y} increases. Thus, the time
penalty in shaping the inputs becomes less important for longer moves.

An additional advantage of versine inputs is that for a given set of system pa-
rameters and peak velocity, only a single shaped function needs to be derived for
all moves which are long enough to at least reach peak velocity. This can greatly
simplify the computations needed to develop inputs for any desired position. In
comparison, the ramped sinusoid inputs need to be rederived for each new position.

For distances which are short enough that the system cannot reach peak velocity,
the ramped sinusoid inputs are preferred. This is because they only reduce vibra-
tion at the end of the move, while the versine inputs reduce vibration after both
the acceleration and the deceleration phases. These more stringent constraints on
the versine input generally increase the total move time compared to the ramped
sinusoid input. Thus, ramped sinusoid inputs should be constructed for all moves
which can just reach peak velocity. For all longer moves, the versine inputs should

be used.

5.7 Closure:

This vchapter" has presented the development of a new set of functions that can
be used for systems having a velocity limit. Shaped versine inputs can accelerate
and decelerate the system with very little residual vibration. The total time to
cover a specified distance is longer for these shaped inputs than for rectangular
pulse inputs. But rectangular pulse inputs generate residual vibration that requires
additional time to damp out. For longer moves, the time penalty associated with
shaped versine inputs becomes less important. With moves long enough for the

system to reach peak velocity, the versine input need only be constructed once and
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i only the dwell time must be altered to arrive at any desises position. For shorter




Modeling the MIT Cartesian
Robot

Chapter 6

6.1 Introduction:

Having presented a set of shaped force inputs and a control scheme in which they can
be incorporated, we are now in a position to apply these inputs to a physical device
~ the MIT Cartesian Robot [71,72]. This chapter will develop a detailed model
of the robot structure, actuators, and digitally-implemented control loop. Once
this model has been verified by experimental results, it will be used to determine
optimum parameters for the velocity profile generating a specified motion.

The MIT robot was designed for stiffness and speed. A schematic is shown
in Figure 6.1. A Cartesian configuration was chosen in order to minimize coupling
between axes and to simplify trajectory calculations. This arrangement also permits
higher stiffnesses. The cantilevered top frame permits maximum access to the robot
workspace. Structural members are constructed of steel box sections welded and
bolted together. Moving elements are made of hollow aluminum weldments for
maximum stiffness-to-weight ratio.

The moving elements - X,Y, and Z carriages - move on cam rollers stiffly

126
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6.1: Introduction:

Figure 6.1: M.L.T. Cartesian Robot.
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Figure 6.2: Block Diagram Model of Actuator.

preloaded against ground steel ways. Three Aerotech DC permanent magnet motors
drive the axes. Ground ball screws convert motor rotation to translation of the X
and Y carriages. The Z-axis uses a rack and pinion drive. Further details on the
design and construction of the MIT robot can be found in Vaaler [71] and Podoloft
[72].

Power for the Aerotech motors comes from an Automatix pulse-width-modu-
lating amplifier which uses both current and tachometer feedback. Motor voltage is
supplied By varying the pulse width of a 19.4 kHz pulse generator having a supply
voltage of 150 volts. The inductance in the motor effectively filters this pulsing
signal to generate smooth motion. Further details on the amplifier are contained in

Nussbaum [73] and Drlik [74].

6.2 Actuator Model:

A block diagram model of the actuator can be developed by representing the dy-
namics of the amplifier and the DC motor. This model is shown in Figure 6.2. For
the time being, the robot axis is treated simply as a rigid-body inertia, with viscous
damping and friction.

The input to this model is a voltage command Vi, which specifies the desired
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Figure 6.3: Block Diagram Model of Closed-Loop Controller.

velocity. This is compared with the tach velocity signal and amplified in the pream-
plifier section. This generates a current command V, which is compared with the
measured current signal to regulate the pulse width of the voltage signal V,, to the
motor.

The motor model includes the effects of winding resistance R and inductance L.
The motor generates a torque 7,, proportional to current ¢ and develops a back em{
voltage proportional to rotational velocity w.

The transfer function relating the speed w to the velocity command V., can be

expressed as

1 ' E
w(‘s) _ EKTKamprre (6 1)
- ’am cur R am Cur am T e ac K ' :
V,et(s) s2 + (_R_tﬁ_irx_ + ?) s+ B(R+KampK )+K7.}(I,K pKpreKeacnt+Kan)

Treating this actuator model as a single block to represent the hardware, a com-
plete block diagram of the closed-loop position controller implemented in software
is shown in Figure 6.3.

Computer control of the robot is achieved by a hierarchical software architecture.
A PDP 11/23 minicomputer runs FORTH words that download commands to a set

of Intel 8031 microprocessors, one for each axis. The PDP 11/23 is also connected to



6.2: Actuator Model: 130

a VAX 780 running in UNIX that can be used for generating complicated trajectory
profiles and for plotting data. A detailed presentation of the computer controller
can be found in Benjamin [75].

In the block diagram of Figure 6.3, the position measurement is obtained from
an optical encoder mounted behind the tachometer on each motor. Velocity is
calculated by dividing the difference in encoder counts by the sampling time interval.
Each encoder generates 4000 counts per revolution and the servo loop runs at 1500
Hz so the velocity information obtained from these differences is quite satisfactory.
Because of the limited resolution of the analog-to-digital converter, this differenced
velocity is more accurate than the tachometer signal.

The proportional and derivative feedback gains are implemented in microcode
on the microprocessors. Since motor position is obtained in encoder counts and
the actual velocity command to the amplifiers is calculated as an equivalent 12-
bit count to the digital-to-analog converter, the values for K, and K, used in the
equivalent analog representation of Figure 6.3 differ from the digital counts K4
and K,q specified in the computer. The relationships between these two sets of

parameters are given by:

Kp = KdeencKD/A (6'2)
Kv = deKencKD/ATaamp (63)

where
K.,. = 4000 counts/2nr rad
Kpsa = 10V/2047 counts
Tamp = 0.667 msec.
The digital feedback gains used during actual tests were K,y = 0.9 and K4 = 7.5.
The response of the X-axis to a step change in position setpoint of 56.55 radians
on the actual robot is shown in Figure 6.4. The velocity is shown in (a), the motor
current in (b), the motor position in (c), and the motor velocity in (d). A number of

signals saturate during this step response. The velocity command voltage saturates
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Figure 6.4: Actual X-Axis Response to 56.55 rad Step Setpoint: (a) Velocity Com-

mand (b) Motor Current.
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Table 6.1

Actuator Model Simulation Parameters

Kye =43 Kioen = 0.024 Volt — sec/rad
Komp = 23.8 Jy = 2.053 x 10~ kg — m?
K., =0.333 Jy =2.780 x 10~* kg — m?
L=0.0158h B = 0.0055 Nm — sec
R=2Q Tt = 0.7 Nm
Kr =0.5 Nm/amp K,=3.11
Kg = 0.5 Volt — sec/rad K, = 0.04

at +10 volts, the current command at +£5.4 volts. Maximum motor voltage is 150
volts and the current saturates at 8 amps. This response served as the basis for
eva.luat‘ing the simulation model.

Parameters for the simulation model representing the robot under position con-
trol were determined from measurements and specifications. Values for these pa-
rameters are given in Table 6.1. Some of these values, in particular K,,, and K,,
had to be adjusted in order to make simulated transient response agree with the
actual data of Figure 6.4.

When saturation is included in the robot simulation model, the simulated step
response for the same 56.55 radian step is shown in Figure 6.5. Notice that the model
captures the same dynamic behavior that the actual system exhibits. While the
system is accelerating, motor voltage is saturated. As motor speed increases, so does
the back emf voltage. More motor voltage goes into overcoming the back emf losses
so that motor current begins to decrease. This reduces the rate of acceleration
and eventually motor velocity reaches a maximum value near 200 rad/sec. The
simulation model predicts this behavior quite well, and therefore will serve as a

good testbed for trying out various inputs before implementing them on the actual
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Figure 6.5: Simulated X-Axis Response to 56.55 rad Step Setpoint: (a) Velocity
Command (b) Motor Current.
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hardware.

6.3 Structural Resonance Model:

Before the simulation model can be used to predict the vibration response, it must
be modified to include the structural resonance of the lowest mode of vibration. We
will concentrate on those modes which have dominant motion in the X-direction.

Both open-loop and closed-loop determinations of the structural natural fre-
quencies were made. These were based on the extensive work done by Garcia (61]
to determine the mode shapes and frequencies of the MIT Robot. A piezoelectric
accelerometer (B&K 4371) was mounted at the bottom of the Z-axis measuring in
the positive X-direction. Open-loop measurements were performed using a Struc-
tural Dynamics Analyzer (HP 5423A). A random noise signal was used as a velocity
command input directly to the X-axis amtplifier. Acceleration was measured using
the accelerometer and a charge amplifier (B&K 2651). The analyzer was used to de-
termine the transfer function between random noise input and acceleration output.
The magnitude of this transfer function is shown in Figure 6.6(a), for the X-axis
located in front (+X) and the Y-axis midway in its total travel.

Closed-loop measurements with the proportional-derivative controller of Figure
6.3 were performed by moving the X-axis over a distance of 0.23 m (9 in.) corre-
sponding to the step setpoint of 56.55 rad. The Y-axis was in the same position as
before. The analyzer was used to record t.he resiciual acceleration signal after the
final position was reached (in 0.5 sec.). The magnitude of the Fourier transform of
this residual vibration is shown in Figure 6.6(b).

These two measurements indicate that modes with dominant X-direction occur at
12, 40, 51, 63, 70, 76, and 83 Hz. Most of these modes show up in both open-loop and
closed-loop measurements. The 12 Hz mode in particular does not appear to change

frequency despite the addition of the feedback controller. Since this mode dominates
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Figure 6.7: Resonant Model of First Mode of Robot.

the closed-loop residual vibration, we will use that frequency in a structural model
of the robot. Concentrating on a single mode simplifies the modeling and still allows
us to test the effectiveness of the shaped inputs on a realistic representation of an
actual system.

The detailed modal analysis of the robot performed by Garcia [61] showed that -
the 12 Hz mode consists of the entire robot structure rocking back and forth on the
floor in the X-direction. This requires a slightly different resonant model than the
two-mass model used so far. This new model is represented in schematic form in
Figure 6.7. The spring k; and Ldamper by represent the stiffness and dissipation of
the floor, while m; represents the mass of the nonmoving robot structure. Notice in
particular the reaction force f due to the motor pushing against the base in order to
move the axis m,. Damping b, and friction is assumed to exist between the moving
axis and the nonmoving structure.

This resonant model can be inserted into the block diagram of Figure 6.2 with
the addition of a transmission ratio r converting rotation to translation in the ball

screw. The transfer function model to be inserted in place of the rigid-body model
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is shown in Figure 6.8, where
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The measured motor velocity w actually represents the relative velocity between
the axis and the robot base. The acceleration as measured by the accelerometer is
the absolute acceleration of the axis. Thus, the simulations give the second derivative
of y, as the accelerometer output. Values for the additional simulation parameters
are given in Table 6.2.

Including the resonant model in the simulation gives the results shown in Figure
6.9 for a step setpoint of 56.55 rad. The motor current is given in (a) and the
absolute acceleration of the axis in (b). This compares with the actual X-axis step
response of Figure 6.10. The biggest difference in the responses is the oscillation of
the current signal at the natural frequency in the simulation. This does not occur in

the actual system response. This suggests that the encoder mounted on the motor
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Table 6.2

Resonant Model Simulation Parameters

r = 0.004 m/rad (1 inch/rev)
mg = J/r? = 126 kg
by = B/r? =337 N —sec/m
my, = 500 kg
by = 1546 N — sec/m
ky = 2.9875 x 10° N/m

cannot adequately measure the vibration of the structure for the controller to damp
it out. This also explains why the open-loop and closed-loop natural frequencies
are nearly the same. However, the resonant model is still useful in evaluating the

performance of the system to the proposed shaped inputs.

6.4 The Effect of Actuator Saturation:

In order to test the versine inputs in the simulation model, the closed-loop controller
of Figure 6.3 must be changed slightly. In this case, only the position reference
is used as the signal to be followed. The velocity is simply compared with zero.
However, in order to ensure good reference following, the velocity of the reference
trajectory should be included. This arrangement is shown in Figure 6.11, with both
#,.: and its time derivative being used as reference inputs.

The reference position trajectory #,.; is again determined by doubly integrating
the shaped force (torque) profile through an inertia. Thus, 8,.(s) = T(s)/Js*.
Since the velocity saturates near 200 rad/sec and the torque saturates near 4 Nm (8
amps), the torque profile must be chosen to remain within these limits. Because the

shaped inputs are constructed assuming no friction or damping to ground, additional
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Figure 6.11: Closed-Loop Controller Including Reference Velocity.

torque must be available beyond the maximum torque used in the shaped profile.
This can be accomplished by using a maximum torque 7. for the shaped input of
2.9 Nm and a peak velocity w, of 189 rad/sec. For these values, the dimensionless
parameter w,Tr/2% = (w,/27)Jw,/7, for the 12 Hz mode has a value of 1.44. The
shaped torque profile tuned vto this parameter is shown in Figure 6.12 along with
its simulated response. The reference velocity trajectory specified by the torque
waveform of Figure 6.12(a) is shown in Figure 6.12(b). Simulated motor current,
motor velocity, and endpoint acceleration are shown in Figure 6.12(c), (d), and (e).
A considerable amount of vibration remains despite the use of a shaped versine
input. |

A comparison of the desired and actual velocity profiles will help explain this
response. As Figures 6.12 (b) and (d) make clear, the actual simulated velocity can-
not keep up with the reference velocity profile. Even though the system does finally
reach the desired peak velocity, it does so more slowly than specified. A look at the
current waveform of Figure 6.12(c) shows a noticeable drop-off in current in exactly

the same region where velocity begins to lag behind. This current saturation was
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Figure 6.12: Simulated X-Axi; Response to Versine Input with . = 2.9 Nm and

wp = 189 rad/sec: (a) Reference Torque Waveform.

also observed for the step response of Figures 6.4 and 6.5. Basically, the saturation
in the amplifier prevents the system from following the specified input waveform.
As a result, the response behaves differently from the desired response and leads to
residual vibration.

This test highlights the importance of specifying an input waveform which will
not cause the amplifier to saturate. Once saturation does take place, some residual

vibration is to be expected even when properly shaped inputs have been specified.
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Figure 6.12: Simulated X-Axis Response to Versine Input with 7, = 2.9 Nm and
w, = 189 rad/sec: (b) Reference Velocity Trajectory (c) Motor Current.
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6.5 Development of Nonsaturating Velocity Pro-
files:

As the previous section makes clear, amplifier saturation may prevent the shaped
inputs from minimizing residual vibration. Even though the current waveform never
exceeds 8 amps, it still saturates when sufficient motor velocity is reached. A new
velocity profile must therefore be developed that takes this velocity-dependent sat-
uration into account. ’

The parameters of the velocity profile that are to be determined are acceleration
and peak velocity. The acceleration is proportional to the peak amplitude of the
shaped torque profile used. There are two different saturation phenomena that
should be avoided. First, the maximum specified current should never exceed 3
amps. Second, the specified current should never exceed the level that is achievable
with increasing back emf losses. \

Incorporating these constraints into a determination of velocity profile parame-
ters requires some assumptions on the shape of the reference input torque waveform.
This reference input ignores friction so its peak torque level must be low enough that
when the controller calls for extra torque to compensate for damping and friction,
the total torque will be within saturation levels. Since viscous damping torque is
proportional to velocity, we must determine the correspondence between torque and
velocity at the critical points when either reference torque or velocity are at max-
imum values. Since the reference torque profile is a complicated function of time
that also depends on the parameters for which it was tuned, relating torque and
velocity analytically can be difficult. Instead, we will make some conservative as-
sumptions that should apply for all inputs to be considered. We will assume that
the reference torque near maximum velocity w, is 1/2 of its peak value 7. and that

the peak reference torque occurs for a velocity as high as 2wp /3.

Keeping these assumptions in mind, we will proceed by specifying the constraints
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on the reference torque in order to avoid amplifier saturation. With current satu-
rating at 8 amps, the peak motor torque that can be generated is 4 Nm. Thus, peak
reference torque plus the torque required to overcome friction and damping must

never exceed this value:

2
Ty + 'S.BLUP + Tfric S 4 Nm (6'6)

In addition, the torque required at maximum velocity should not exceed the limit
imposed by back emf losses. This current limit occurs as a result of the saturation
of the current command V.. Steady-state current ¢ can be expressed in terms of V,

and w from Figure 6.2 as follows:

. Kamp‘/c - K—Bw

= 6.7
"7 Rt KampKeur (67)
Thus, the second torque constraint at peak velocity w, is given by
1 Kam Vc - KBw
5’7’,. + Bwp + Tfric < KT [ R jKamchurp] . (68)

These constraints can be expressed in terms of a linearized acceleration «, defined

as

a=w,/T, (6.9)

where T, is the time required for the versine input to reach peak velocity w,. Peak

reference torque 7, is related to this acceleration by the expression:
T, = Fv.]a. (610)

where 'y is the time-scale factor associated with the versine input defined by (5.10).
Thus, the constraint expressed by (6.8) using the equality establishes a relationship
between a and w, that will just avoid current saturation. This relationship can be
rewritten as

where ¢; and ¢; are constants resulting from the substitution of (6.10) into (6.8).
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To determine the best values of a and w, for fastest response without saturation,
we will try to minimize the total move time T given by

bowly 0 g (6.12)

Ty =2T, + - o
where 8 is the desired angular displacement. Qur goal is to express Ty in terms of §
and w, only, and then to determine that velocity which minimizes Ty for a given 0.
This can be done by expressing T, as w,/a from (6.9) and substituting for a from
(6.11). The result is the time T; expressed as a function of w,. For § = 56.55 rad,
this function is plotted in Figure 6.13(a). A value of 1.75 was assumed for I'y to
represent a typical versine function. With the help of expressions (6.10) and (6.11),
T can also be plotted as a function of 7,, as shown in Figure 6.13(b). The constraint
of (6.6) was included in these figures to ensure that the 4 Nm saturation torque is
not exceeded. This limit causes the discontinuities in these curves.

For the rotation of 56.55 rad, minimum T occurs for a peak velocity of roughly
145 rad/sec and a peak reference torque of about 2.75 Nm. Since the shaped torque
profile calls for half peak torque at a speed just below peak velocity rather than
at peak velocity as was assumed in this development, we will use the parameters
wp = 150 rad/sec and 7, = 2.75 Nm to generate versine inputs for the rotation of
56.55 radians. This corresponds to an axis velocity of 0.6 m/s (2.0 ft/s) and an
accelerating force of 688 N (155 lbf). For larger moves, the same approach can be
used. In general, as move distance increases, more time is spent at peak velocity.
Thus, the peak torque which will minimize move time will be lower and peak velocity
will be higher to minimize the time spent at constant velocity.

For the parameters selected, the versine input for the single-resonance model of
Figure 6.7 gives the simulated response shown in Figure 6.14. Notice that this time
the residual vibration, shown in Fig. 6.14(e), has indeed been eliminated, in part
because the amplifier current no longer saturates.

With these values for 7. and w, and the known X-axis inertia, the value for

Tp = Jwp/7, becomes 0.112 sec. We can now determine an appropriate versine
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Figure 6.13: Total Move Time for a Rotation of 56.55 rad as a Function of: (a) Peak
Velocity wp,, and (b) Peak Reference Torque 7,.
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Figure 6.14: Simulated X-Axis Response to Versine Input with 7. = 2.75 Nm and

wp = 150 rad/sec: (a) Reference Torque Waveform.

input using this time value to normalize the natural frequencies for the actual robot.
This input profile is constructed to minimize spectral magnitude at four frequencies
(12, 40, 70, and 84 Hz), with a £20% band about 12 Hz and +10% band about the
others. Such a shaped input is shown in Figure 6.15(a), with its frequency spectrum
in (b). This input was used to perform tests on the robot which are discussed in

Chapter 7.

6.6 Closure:

This chapter developed a detailed model of the MIT Cartesian Robot in preparation
for performing experiments. This model includes the effects of actuator saturation
and the first structural resonance of the robot. Simulation results with the versine

input indicate the importance of avoiding current saturation to ensure that resid-
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Figure 6.14: Simulated X-Axis Response to Versine Input with 7. = 2.75 Nm and

wp = 150 rad/sec: (b) Reference Velocity Trajectory (c) Motor Current.
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Figure 6.14: Simulated X-Axis Response to Versine Input with 7, = 2.75 Nm and
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wp = 150 rad/sec: (a) Time Function (b) Frequency Spectrum.
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Experimental Results

Chapter 7

7.1 Introduction:

This chapter will present experimental results for the MIT Cartesia:n Robot using
the versine input developed in Chapter 6. These responses will be compared with
the step response and the response to a rectangular pulse input. Robustness to
variation in natural frequency will be illustrated by performing tests on the X-axis
for several different positions of the Y-axis. The effect of modal coupling between
axes will be illustrated by generating motion in Y and measuring vibrations in X.
An advantage of the shaped versine input is its ability to avoid the excitation of any
specified natural frequency, including modes that vibrate in directions orthogonal

to the motion and cannot be measured.

7.2 Microprocessor Implementation:

Before presenting experimental results, we will describe the implementation of time-
varying setpoints in the control microprocessors. Since the reference signal used
by the controller presented in Section 4.3 of Chapter 4 is generated by doubly

integrating the shaped force profile, it represents a continuously-varying function

156
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of time. The controller as configured by Benjamin [75] takes a constant setpoint
as reference to be followed. This generates a step response but does not allow
the implementation of time-varying setpoints. Thus, some of the software for the
microprocessors must be changed.

Since the microprocessors are connected to a VAX computer (see Figure 7.1), the
time-varying setpoints could be stored in the VAX and sent to the microprocessors
at each time step, or stored directly in the microprocessors. Because the VAX and
the micros run on different internal clocks, the setpoints are stored directly in the
micros to ensure that the correct setpoint is synchronized with the servo time step.
Thus, before each move, a file of setpoints is downloaded to memory in the micros.
These setpoints are generated by doubly integrating the desired force profile.

To read these setpoints sequentially, using a different memory location at each
time step, the framework program that controls the operation of the micros must be
modified. The new code, in Intel 8031 assembly language, is given in Appendix C.
At the start of the move, the beginning memory location is read. Then, each new
time step increments the memory location to read the next setpoint, and so on. A
control bit is used to signal the micros to use a time-varying setpoint, rather than
the constant step setpoint.

In order to introduce both the position reference and the velocity reference as
called for by the controller of Chapter 4, the derivative of the sequence of position
setpoints must be obtained. This is easily accomplished by computing the difference
in reference setpoints in each time step. This difference is then compafed with the
actual differenced velocity and the resulting velocity error and position reference are

used in the PD servo loop as originally configured by Benjamin.
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7.3 Experimental Setup:

In all of the tests performed, the acceleration was measured in the X-direction.
A B&K 4371 accelerometer was mounted at the bottom of the Z-axis facing the
+X-direction. The accelerometer signal was conditioned by a B&K 2651 charge
amplifier, giving an output of 0.1 volt for 1 g (10 m/s?) of acceleration. Garcia’s
work suggests that accelerations on the order of 1 g are to be expected in the
transient response. Since the analog-to-digital (A/D) converter which sends this
data to the microprocessors for storage has a range of £10 V, the accelerometer
signal must be amplified. Therefore, an Analog Devices AD521 chip was configured
into an instrumentation amplifier with a gain of 105.

All data taken for each move was stored on the micros during the motion and
then transferred to the VAX for analysis and plotting. This data was stored in the
same block of memory as that containing the setpoints, writing over the setpoints
used for the previous time step. In order to ensure that this data does not write
over any setpoints which are yet to be used, data was only taken every other servo
time step, at a rate of 750 Hz.

In order to avoid aliasing of the acceleration signal when sampled at 750 Hz,
it has to be filtered before entering the A/D converter. To retain fidelity of the
vibration signal up to 100 Hz but effectively remove any frequency components
above the Nyquist frequency of 375 Hz, an Ithaco model 4112 low-pass filter was
used. Its cut-off frequency was set at 160 Hz to sufficiently attenuate the signal at
375 Hz.

Because of the limited memory on board the micros, the acceleration signal was
stored on the Y-axis micro, while the current signal measured by the amplifier was
stored on the X-axis micro, along with the encoder position and the amp velocity
command signal for the X-axis.

The residual acceleration signal and its frequency spectrum were measured using

an HP 5423A Structural Dynamics Analyzer. The accelerometer output was sent to
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both the analyzer and the micro A/D converter. The analyzer was triggered as soon
as motion began, with a sufficient time delay to start taking the measurement only
when motion had stopped. In this way, only the residual vibration was measured.

Before acceptable data could be obtained, an additional change had to be made
in the amplifiers. Initial tests using a nonsaturating reference input showed con-
siderable current oscillation during the constant velocity portion of the move. This
oscillation did not occur for the saturating step input. Perhaps saturation precluded
this oscillation because the current signal was kept at its extreme value.

Since the current oscillation during the constant velocity phase is also picked up
by the accelerometer, it tends to degrade the performance. Further tests indicated
that this oscillation has nothing to do with the input being used. In fact, the preamp
gains were originally chosen for maximum servo stiffness without going unstable
(Drlik [74]). Thus, the amplifiers were only marginally stable. To solve this problem,
resistor R100 which sets thé preamp gain was removed from the X-axis amplifier.
Likewise, resister R83 was removed from the Y-axis amplifier. (These resistors are
identified in schematics given by Nussbaum [73]). Replacing the resistors reduces
the inner loop servo stiffness of the amplifier and greatly improves the current signal
at constant velocity.

The FORTH commands used to generate motion for the experimental tests are
summarized in Appendix B. These FORTH words are defined in Appendix D. Once
the robot had completed its motion and data had been stored, the data was copied
from the micros to the VAX. There,. the numbers were converted into appropriate

units and plotted. These results are described in the next section.

7.4 Experimental Tests on X-Axis:

With the Y-axis in the middle of its workspace, the X-axis was moved from zero to

0.23 m (9 in.) in the +X-direction. Three types of reference inputs were used: a step,
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an integrated rectangular pulse input, and an integrated versine input. By doubly
integrating the rectangular pulse input and the versine input, a smooth reference
profile is achieved that the system can follow. Total motor rotation during this move
was 56.55 rad. The results for a step reference input are shown in Figure 7.2, those
for the integrated rectangular pulse input in Figure 7.3, and those for the integrated
versine input in Figure 7.4. In each case, the current signal is shown in (a), the
motor position in (b), the motor velocity in (c), and the endpoint acceleration in
(d). The current signal is nonzero even when the axis has reached its destination
because of stiction in the moving elements.

The step response reaches the final position most quickly but also generates
the most residual vibration. The shaped versine force input with reference torque
7. = 2.75 Nm and peak velocity w, = 150 rad/sec takes about 20% longer, but it
generates much lower residual vibration.

The rectangular pulse force input used here to generate a smooth reference pro-
file for comparison with the versine response was selected to have the same move
time as the versine input. Its peak torque therefore is less than 2.75 Nm. The
reason for choosing this input, rather than a pulse of equivalent peak torque, is that
the parameters 7, and w, chosen for the versine do not prevent saturation for the
rectangular pulse input. Saturation occurs because the reference acceleration for the
rectangular pulse is much higher than for the versine input. Since saturation tends
to increase residual vibration, the rectangular pulse peak torque was scaled down to
1.31 Nm to make total move time equal to that of the versine input. As the results
of Figure 7.3 show, the use of a smooth reference input based on a rectangular pulse
helps compared to the step input, but it still generates more residual vibration than
the versine input.

The frequency spectrum of the residual vibration resulting from the three dif-
ferent inputs are shown in Figures 7.5, 7.6, and 7.7.  Notice that the integrated

versine reference reduces the vibration of the 12 Hz mode by 20 db compared to the
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Table 7.1

Residual Endpoint Motion (mm)

Step Reference : 0.230
Rectangular

Pulse Reference : 0.028
Versine Reference : 0.014

step reference and by 8 db compared to the integrated rectangular pulse reference.
Further attenuation of the 12 Hz mode is impossible since the ambient noise in the
building generates the remaining excitation. Figure 7.8 shows the frequency spec-
trum of the robot excited only by ambient noise. Notice that the peak at 12 Hz is
at —30 db, the same level as that for the versine input.

The versine reference also reduces the residual vibration at 40 Hz, compared with
either the step or the rectangular pulse reference. However, modes at 68 Hz and
75 Hz remain despite the low excitation energy which the versine function has at
these frequencies. Perhaps some excitation energy from lower frequencies is exciting
these higher modes due to some nonlinearities in the robot structure. Regardless
of their origin, these modes contribute only 0.5 micron to the residual amplitude.
A comparison of the residuél vibration at the endpoint measured in mm (rather
than acceleration units) for the three inputs is shown in Table 7.1. These values
were determined by doubly integrating the acceleration amplitudes. If we assume
that a single frequency at 12 Hz dominates, then the amplitude of the endpoint
position oscillations can be approximated by dividing the acceleration amplitudes

by the square of the frequency.
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7.5 Rabustness to Variation in Natural Frequency:

Garcia [61] determined that the robot modes with dominant X-direction change
natural frequency by 10% depending on the location of the Y-axis. Therefore, tests
were performed with the Y-axis in the extreme left (Y = 0) and extreme right (+Y)
positions to see this shift in natural frequency and to determine whether the same
versine input will work equally well for all cases.

Results for X-axis motion with the Y-axis to the left are shown in Figures 7.9
to 7.11, and with the Y-axis to the right are shown in Figures 7.12 to 7.14. The
same three reference inputs are used as before. The acceleration signal is shown in
(a) and the frequency spectrum of the residual vibration in (b). The two different
step responses show a shift in the ﬁrs»t natural frequency from 11.5 Hz when the
Y-axis is to the left to 13 Hz when the Y-axis is to the right. Despite this variation
in natural frequency of roughly 10%, the same versine input effectively reduces the
residual vibration at that mode in both cases. In fact, the attenuation is the same as
it was previously for the Y-axis in the middle, the position for which the waveform
was originally specified.

One additional phenomenon shows up in the frequency spectrum when the Y-
axis is to the right. For that configuration, an additional mode at 33 Hz appears
that did not appear when Y was in the middle. The mode shapes measured by
Garcia [61] indicate that the 33 Hz mode consists of the top frame twisting about
the middle (Figure 7.15). Therefore, this mode'is difficult to detect in X when Y
is in the middle, but rather easy to detect when Y is to the right. A new versine
input can be developed which reduces the energy at 33 Hz. This new time function
is shown in Figure 7.16(a), with its spectrum in (b). The response of the X-axis
to this input with the Y-axis to the right is shown in Figure 7.17. Notice that the
residual vibration at 33 Hz is reduced by 8 db when the input is filtered at that

frequency.
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Figure 7.15: Measured Mode Shape for 33 Hz.
7.6 Modal Coupling Between Axes:

The 33 Hz mode in which the top frame twists involves motion in both the X and
Y directions when Y is to the right (+Y). Thus, motion in Y is likely to excite
this mode and hence cause vibration in the X-direction. Without a detailed three-
dimensional model of the robot, this mode would be very difficult to damp out using
a conventional modal controller for Y-motion. However, running the Y-axis with the
versine input which attenuates this particular frequency ensures that no excitation
occurs in the X-direction. |
Experimental results for vibration in X when the Y-axis is moved a distance
of 0.20 m (8 in.) using a step, rectangular pulse, and the versine reference of Fig.
7.16 are shown in Figures 7.18, 7.19, and 7.20. These reference inputs have been
constructed for a Y-axis inertia of 2.78 x 1073 kg-m?. Motion took place in the
rightmost part of the workspace. The step response shows considerable excitation

of the 33 Hz mode in X from the motion in Y. However, the versine input effectively
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reduces excitation of this mode by 8 db. Thus, even when the vibration cannot be
measured in the axis of motion, the shaped inputs can avoid excitation of vibration

occurring in orthogonal directions to the motion.

7.7 Time-Varying Natural Frequencies:

If both the X and Y axes are moved using the versine inputs, then the variation in
Y-position will continuously alter the natural frequencies which would be measured
statically at each succeeding Y-position. Such a test would determine whether
the shaped inputs can reduce residual vibration for dynamically varying natural
frequencies. The acceleration in the X-direction when moving the X-axis a distance
0£0.23 m (9 in.) and the Y-axis a distance of 0.20 m (8 in.) is shown in Figure 7.21.
The residual vibration at 12 Hz has again been reduced to the ambient level of —30
dbas before. Thus despite the dynamic variation in resonant characteristics during

the move, the versine input is still capable of attenuating the residual vibration.

7.8 Discussion:

The shaped versine reference inputs were tested on the MIT Cartesian Robot to
determine how effective they are at reducing residual vibration under actual condi-
tions. When moving in a single direction, the versine input is capable of bringing
the residual vibration down to the level existing only with ambient noise. This holds
true even when the location of the Y-axis is changed and the natural frequencies
vary.

Running the X-axis for different static positions of the Y-axis gives the same
attenuation of residual vibration. And when both axes are moved simultaneously,
causing a dynamic variation in natural frequencies, residual vibration still remains
low. Finally, for modes which can be excited by motion in an axis orthogonal

to the dominant vibration, the use of shaped inputs can significantly reduce such
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Conclusions and Future Work

Chapter 8

8.1 Conclusions:

Experimental tests done on the MIT Cartesian Robot indicate the effectiveness of
shaping inputs to generate motion with minimum residual vibration. Such inputs
allow the use of a simple PD controller to achieve accurate position without the
need for complex controllers to damp out vibration during motion. However, this
technique‘does not preclude the use of a more sophisticated controller to suppress
vibration. The shaped inputs will always improve the residual vibration response
generated by the motion, especially in cases when optimal regulators cannot provide
adequate vibration suppression.

This approach is especially effective when dealing with complex three-dimensional
structures with mode shapes in directions other than the motion direction. For such
systems, the modes in the non-motion direction are only weakly coupled to the
dynamics in the motion direction. As a result, these modes cannot be sufficiently
compensated, and they will exhibit considerable off-axis vibration if lightly damped.
These vibrations can be reduced during motion using shaped reference inputs tuned
to the oﬂ'-?,xis natural frequencies.

Shaped force inputs were developed as sums of ramped sinusoid harmonics by

187
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picking the coefficients to minimize excitation over a range of natural frequencies.
This allows for uncertainties in the determination of the natural frequencies and
dynamic variation in natural frequency during motion. An additional set of inputs
was developed using versine inputs to permit motion of constant speed for systems
which are velocity-limited.

Shaped inputs were constructed on the assumption that the system to be con-
trolled has no damping or friction. This simplifies the determination of coefficients
for these functions. The presence of mddal damping does reduce the effectiveness
of the inputs but only near the limits of the frequency band where spectral energy
has been minimized. This effect can be ignored for lightly-damped systems.

The presence of friction can easily be compensated for when these shaped force
inputs are incorporated into a closed-loop feedback system. All that is required
is that the shaped force profile be converted into a shaped position reference by
double integration. The feedback loop compensates for friction without altering the
vibration-reducing properties of the shaped inputs.

Despite these advantages, there are a number of drawbacks to this method.
While conventional controllers only require a step reference, these inputs require a
series of time-varying reference setpoints which must be recomputed for each move
distance. This is not a problem, since trajectory controllers already compute appro-
priate trajectories to achieve a desired move. But it does increase the computational
and storage requirements of the controller.

A more severe disadvantage is the fequirement that the actuator never saturate
during the motion. In order to ensure that residual vibration is minimized, the
actual response must closely follow the response called for by the shaped reference
input. If the actuator saturates, actual response lags behind and more residual
vibration occurs. To ensure that no saturation occurs, the forces used for the motion
must be reduced until the entire force profile fits within the saturation limits. This

significantly increases the time needed to complete the move using shaped inputs
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rather than a step reference. However, settling time due to residual vibration has

been greatly reduced.

8.2 Future Work:

Several additional studies are motivated by this work. First of all, it would be useful
to investigate the use of shaped inputs for large variations in natural frequency, such
as occur when the robot configuration changes significantly (e.g. PUMA Robot) or
when picking up a heavy workpiece.

A new set of inputs could be developed that compute coefficients to take into
account modal damping for moderately-damped systems.

An entirely new set of functions could be developed that are based on more
realistic assumptions about the allowable force profile. The actual motor torque
for a typical amplifier saturates as a function of velocity rather than saturating at
a constant limit. It would be useful to use more complicated saturation profiles
than a square wave or a rectangular pulse in developing shaped inputs resembling
these profiles. Such inputs could also be constructed to include the effects of friction
and damping to ground. This would ensure that these inputs lead to actual torque
profiles which maximally utilize the available torque without saturating.

Because feedback plays an important role in determining the actual torque pro-
file, it would be interesting to evaluate the effect of this feedback. If the feedback
signal introduces energy ét natuli'al frequencies which have been filtered out of the
shaped input, then considerably more residual vibration will occur. It would be
useful to study the interaction between feedback and the shaped inputs and deter-
mine whether different feedback compensators would improve performance. Perhaps
the use of acceleration feedback, either from the motor or from an accelerometer
mounted at the end point, would improve feedback compensation.

It would also be useful to evaluate the effect of actuator bandwidth on the
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residual vibration attenuation of shaped inputs used in closed-loop systems.

These additional Astyudies would answer further questms cd_néeming the use of
shaped inputs for generating motion in physical systems. These inputs have already
been shown to reduce residual vibration for motion of a Cattesian Robot. With
additional studies, inputs shaped to achieve minimum m vibration and mini-
mum move time may become an important element to W the vibration of actual

dynamic systems.
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Frequency Spectrum of
Bang-Bang Function

Appendix A

Chapter 2 presented a direct relationship betwec\en residual acceleration ampli-
tude of a two-mass system and the frequency spectrum of the input forcing function
used to generate the motion. Since this result applies for any input function, it
should also apply to the bang-bang function developed in my Master’s Thesis [55].
The bang-bang function is a generalization of a square wave forcing function that
always produces peak force and switches between positive and negative levels a given
number of times. This input function is known to give time-optimal response.

For the undamped two-mass system model of Figure 2.3, the appropriate bang-
bang function consists of three switches, as shown in Figure A.1. The first and third
switches, occurring at times ¢, and t; respectively, are symmetric about the second
switch at ¢, which happens halfway into the move. The input is turned off at the

final time Ty. The switch times ¢;, t;, and t3 satisfy the following expressions:

1 — 2coswpt; + 2c0s waty — 2coswpty + cosw,Ty =0 (A.1)
ty = T4/2 (A.2)

t3 = Tf - tl (A3)
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Figure A.1: Three-Switch Bang-Bang Forcing Function.

Making the appropriate substitutions, (A.1) can be simplified to

2 cosw"Tf—Qcoswn E—tl +1] =0. (A.4)
2 2

] -

This expression must be satisfied by t; and Ty in order to ensure zero residual
vibration for the two-mass system.
The frequency spectrum of the three-switch bang-bang function can be deter-

mined by taking the Fourier transform as follows:
Ty ,
F(w) = / F(t)e—itdt (A.5)
0

When the required integration is performed, the frequency spectrum can be repre-

sented as
T T
cosw.)f — 2cosw (—%—tl) +1‘. (A.6)

- 4

o)l =2

At the frequency corresponding to the system natural frequency w,, spectral mag-
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nitude is given by

2F nT T
|F(wy)| = — cos 22—t — 2coswy, (—-{—t1>+1|. (A.7)
Wn 2 2
Substituting the expression (A.4) into (A.7) gives the final result:
’F(wn)l =0 (A.8)

Thus, the bang-bang function developed to eliminate residual vibration can be shown
to have a frequency spectrum having no energy at the natural frequency. This is
consistent with the relationship (2.13) derived in Chapter 2.

Since the bang-bang function contains no spectral energy at the system natural
frequency, we might conclude that this input never excites the system at its natural
frequency. However, the sharp transitions in the forcing function suggest that many
frequencies are excited by this input, including the system natural frequency. In
fact what is happening is that the input does excite the natural frequency in the
first half of the move and then totally reverses the phase of the excited vibration in
the second half of the move to bring the system to rest when the function is over.

To prove this assertion, we will look at the frequency spectrum of the first and
second half of the bang-bang function separately. The Fourier transform for the first
half of the move is given by

Ty /2 ‘ T ol T _ T
Fi(w) = /(; ! f(t)e™7“tdt = ]f; [e”"?i ~2¢ ( : tl) + 1] el T, (A9)

The Fourier transform for the second half of the move is given by

F(w) = 2 f(t)e i*tdt = ]—FL;— {1 - Qe—jw(%t_tl> + e‘j“’g] e T, (A.10)
Since the frequency spectrum depends only on the magnitude of expressions (A.9)
and (A.10), we will restrict attention to the bracketed quantities. These can be
shown to have the same magnitude and opposite phase. Thus, whatever energy is

present in the input at the natural frequency during the first half of the move is
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removed in the second half. This leaves the system without residual vibration when
final position is reached.

Even though the bang-bang function produces no residual vibration, it does so
only because the input is precisely phased to cancel in the second half any vibration
generated in the first half. Thus, the vibration in the second half must have exactly
the opposite phase to that of the vibration in the first half. If there is any error in the
natural frequency for which this input was tuned, cancellation will be unsuccessful

and residual vibration will result.



Commands to Generate Robot

Motion

Appendix B

Many of the FORTH commands necessary to move the robot were defined by
Benjamin [75]. Several additional commands were written in order to allow the
servo routines to follow time-varying reference setpoints.

The servo control loops run in the 8031 microprocessors at a 1500 Hz update rate.
At each pass through the loop, various memory registers are checked to determine
subsequent action. Calibration, data-taking, and control output are specified by
setting appropriate bits in these memory registers using the corresponding FORTH
words.

The commands used to conduct experiments can be divided into three groups:
initialization, motion, and data-storage. The initialization section sets up the micro-
processors, allocates data storage, stores setpoints, and zeros the axis position. The
motion section actually generates the motion. The data-storage section transfers
data from the micros to the VAX for processing and plotting.

A typical sequence of commands to generate X-axis response to a versine refer-

ence input would be given as follows:
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Initialization:
PREP*
XAXIS
900 E-3 PGAIN
2 TMULTIPLIER !
9806 E_ADDR !
INIT DATA_VARS
YAXIS
8156 E_ADDR !
INIT DATA_VARS
XAXIS
SET_LOAD /U/MECKL/DATA/VERS1.DAT
SET_LOAD /U/MECKL/DATA/VERS2.DAT
START_CAL INFO
(move axis to zero position)
Motion:
(1ift red stop button)
GO=
XAXIS
DATA_& MOVE=*
Data-storage:
XAXIS DATA.TO_VAX X.DAT
YAXIS DATA_TO.VAX X-ACC.DAT

Most of the commands for initialization were developed by Benjamin [75] and are
defined there. PREP* initializes the X and Y-axis microprocessors and downloads
the servo routines from the VAX. The subsequent commands stiffen the position

gain and allocate memory for data-taking. The SET_LOAD command (as defined in
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Appendix D) downloads the setpoints given at each servo time step from files on
the VAX and stores them in successive memory locations on the microprocessor.
START.CAL INFO alerts the servo routine to look for the calibration micro-switch
to set. As the X-axis is manually moved in a negative direction, the position in
encoder counts will appear on the terminal display. After the calibration micro-
switch has been reached, the position count will zero out, and the axis will be at its
zero position.

To generate motion, all limit switches must be cleared and the red stop but-
ton must be released. Once this has been done, GO* activates the servo routines
to enable the amplifiers and generate a voltage command output. The command
DATA_& MOVE* (defined in Appendix D) tells the servos to look at successive mem-
ory locations for setpoints and sets up data-taking. Position, current, and amplifier
command data are stored in the X-axis microprocessor, while acceleration data is
stored in the Y-axis micro. In order to generate a simple step response, the com-
mand DATA_&_MOVE* would be replaced by 36000. DATA_&_SET* to generate a 36000
count move while taking data.

The data-storage commands simply take the data stored on each microprocessor

and transfer them to do unit conversions and to generate graphic plots.
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Microprocessor Assembly Code

Appendix C

The 8031 microprocessors which run each axis are programmed with three dis-
tinct pieces of software. In addition, routines have been burned into PROMs residing
on the micro cards to facilitate communication and interrupts.

The three software programs are written in 8031 assembly language and consist
of a framework program, servo loops, and mathematical routines. The servo loops
(LOOPS.ASS) and mathematical routines (MATH.ASS) have been retained as de-
veloped by Benjamin [75] without changes. The framework program establishes the
sequence of events during each servo clock cycle. A revised version of this program
(FRAMESET.ASS) was written to allow for time-varying position setpoints.

A copy of the assembly code for FRAMESET.ASS is given on subsequent pages.
A majority of this program remains unchanged from the framework program FRAME.ASS
written by Benjamin. Two additional sections were added to permit time-varying
setpoints. Section 3 checks whether time-varying setpoints are called for and if so
fetches the setpoint value from the appropriate memory location. This memory
address is incremented during each pass through the framework routine.

Section 3 also determines the change in setpoint from the previous pass. This
is a discrete representation of reference velocity. Section 4 then determines the

difference between this reference velocity and the measured velocity to generate a
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* *
* Micro-Processor Based Control Program T
* Mike Benjamin *
* *
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*** modified by Peter Meckl, 11-5-87 *=»x
reads time-varying setpoints if so enabled
(located at Starting Address of Data Block+3
and following); Data Rate must be 2 or more

uses velocity error (rather than merely
measured velocity) in PD loop

changed ’jinb ace.7’ to ’jnc’ in data-taking routine
to ensure that it stops at right address

*** modified by FGM, 3-31-86 ***
saves Force data rather than Setpoint data
ignores trouble, encoder overrun bit.

Pre-Defined Registers (all numbers base 8)

Reg 40: Bit 0 - Jump to RAM bit set by START com’nd in communications program
Reg 41: Bit 0 - Enable Bit - Set to enable out put to amplifiers
Bit 1 - Calibrate Bit - Indicates Calibration Routine should be run
Bit 2 - Calibration Indicator - Set by this program to indicate that
axis was calibrated.
Bit 3 - Amplifier Select Bit -~ Set for use with Automatix Amps

Cleared for use with MIT amps

Reg 44: Bit 0 - Enable data taking

Bit 1 - Set externally to save Position Data

Bit 2 - Set externally to save A/D Data

Bit 3 - Set externally to Save Output Data

Bit 4 - Set by this program to indicate full data buffer
- cleared by PDP-11

Bit 5 ~ Set by program to indicate data taking in progress
- cleared by program

Bit 6 - Set to enable time-varying setpoint

- Cleared by program at the end of the move

Bit 7 - Set by this program to indicate that move with time-varying

setpoints is in progress
- Cleared by program

Reg 45: Data Rate - Data is saved every N-th time through control loop

Reg 46: Starting Address of Data Block =~ low byte

Reg 47: -~ high byte
Reg 50: Ending Address of Data Block - low byte
Reg 51: - high byte
Reg 52: Current Address of Data - low byte

Reg 53: - high byte

Reg 54: Sampling Time - low byte

Reg 5S5: - high byte

Reg 56: Address of Servo Routine - low byte

Reg 57: - high byte

Reg 60,61,62: Current position of axis (Reg 60 is least significant)
Reg 63,64,65: Current Setpoint for axis

Reg 66,67: Two’s Compliment integer representation of OUTPUT value for

amplifiers - Loaded by Servo Subroutine

Reg 70: Used by servo subroutine to calculate output in micro-notation
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71 - 122: Scratch pad for servo routines

74,75,76: Must be Loaded with the Speed for use in the Servo subroutine

114: Current Address of Setpoint - low byte

115; - high byte

116,117,120: Change in Setpoint in micro-notation

121,122: Must remain unused to avoid conflict with velocity transitions
when using above registers (114-120) -- (see loopsvel.ass)

123, 124, 125, 126, and 127 Scratch pad for add and multiply routines

130 ~ 177: Stack Registers

MAIN SERVO FRAMEWORK PROGRAM ***
s code runs on a timed interrupt basis and is responsible for
Reading Encoder and updating position counts
Loading Time-varying Setpoints - if so enabled
Checking for calibration pulse -~ if we are in calibration mode
Checking Limit Switches and Enable Bit
Calling Servo Subroutine
Taking Data
Outputing values to PWM amplifiers
-mhb

000 ;TIMER 0 interrupt routine at 10000
tion 1: push items onto stack and restart timer.

clr tcon.4 ;stop timer 0 for a moment
push psw ;store things away

push dpl

push dph

push acc

setb psw.3 ;select register bank 1
mov th0,55 ;load starting counts

mov tl0,54

setb tcon.4 ;restart timer 0

Section 2: Read current Position and update high bytes of count

mov dptr,#154000 ;address of force d/a
movx @dptr,a ;start convert
mov 76,#1 ; initialize sign/exp byte of speed
mov 74,4#0 ; init lmb of speed to zero
mov dptr, $#140000 ; address of encoder count
mov r0,#60
mov S, #0 ;initialize high byte of change
movx a,@dptr ;fetch current encoder reading
clr ¢
subb a,@r0 :New-reading - Old-reading = Low-change
mov r4,a ;x4 = low=-change
mov 75,a ; speed~-hmb = low-change
jnb acc.7,pos ;jump ahead if positive change
mov &S5, #377 ;set High-change = -1
mov 76, #201 ;change sign of speed
clr ¢
clr a
subb a,75 ;take abs value of change for speed
mov 75,a ;store as the hmb of speed
pos mov a,@r0
clr ¢
addc a,r4 :New-reading = Low-change + Old-reading
mov @r0,a ;Stash new reading

inc r0
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e ve e we

read

’
neof

plus

P

mov a,@r0
addc a,r5

mov @r0,a
inc r0

mov a,@r0
addc a,rS

mov @r0,a

;fetch old-high-reading
:New-high-reading

H = old-high + high-change
;stash new-high-reading

;fetch old-very-high-reading
;New=very-high

H = old-very-high + high-change
;stash new-very-high-reading

Section 3: Load current setpoint and determine change in setpoint by

looking at lowest byte change

push dpl

push dph

jnb 44.6,cal
ib 44.7,read
mov dph, 47
mov dpl, 46
inc dptr

inc dptr

inc dptr

mov 115,dph
mov 114,dpl
setb 44.7

mov 120, #1
mov 116, #0
mov dph,115
mov dpl,114
movx a,ddptr
mov r6,a
mov r0,#63
clr ¢

subb a,@r0

cjne a,#177,neof
clr 44.7
clr 44.6
sjmp cal

mov 117, a

jnb acec.7,plus
mov 120, #201
clr ¢

clr a

subb a, 117

mov 117,a

mov a,ré

mov @r0,a
inec dptr
movx a,@dptr
inc r0

mov @r0,a
inc dptr
movx a,@dptr
inc r0

mov €r0,a
inc dptr
mov 115,dph
mov 114,dpl

;save pointer address to encoder count
:skip this if no time-varying setpoint
;move is in progress - skip on

;load in starting addr. of data block

;first setpoint located at S_ADDR+3

;store starting addr. of setpoints

:set indicator that move is in progress
;initialize sign/exp byte of change
;init lmb of change to zero

;load setpoint data pointer

;read low byte of new sstpoint (lb)
;temporarily store new setpoint lb
;point to low byte of current setpoint
;New-reading - Oid-reading = Low-change
:skip if more setpoints coming

;end-of-setpoint-file reached (a=177)
/use same setpoint from now on

;store as hmb of change = Low-change
;jump ahead if positive change
;reverse sign of setpoint change

;take abs value of change
;store as hmb of change

;stash new setpoint low byte

;fetch medium byte of new setpoint
;stash medium byte of new setpoint
;fetch high byte of new setpoint
;stash high byte of new setpoint

;store pointer to next setpoint

Section 4: Determine velocity error as position change - setpoint change to

conform to PD controller convention
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xrl 120, #200 ;change sign of setpoint velocity term
mov 0, #74 ;point to position change
mov rl,#116 ;point to -setpoint change
lcall add2 ;add -> @74 = @74 - @120

cal pop dph ;jrestore encoder count addr. pointer
pop dpl

; Section 5: Calibrate Axis if required

’

inc dph ;inc dph once to access enc status
jnb 41.1,bb ;bit 41.1 indicates that we are in
H calibration mode
jb 41.2,bb ;bit 41.2 indicates we are calibrated
movx a,@dptr ;fetch encoder status
anl a, #17 ;check for calib & A & B & Zero pulse
cine a,#13,bb ;1f not at calibration pt skip ahead
dec dph ' ;set dptr to encoder count register
mov a, #0 ;accum = 0
movx @dptr,a ;clear count
inc dph ;restore dptr
mov r0, #60 ;r0 = pointer to position & setpt blk
clr a
zap mov @r0,a
inec r0
cine r0,#66, zap ;jump back to clear more if necessary
setb 41.2 ;set to indicate calibration occured!
; Section 6: Initialize OQutput to zero and check for shut down conditions
bb clr a
mov 67,a ; Rag 67,66 = 0
mov €6,a
jb 41.0,1lim ; bit 41.0 is enable
sjmp out ; if not enabled - jump to output

; check for limit switches or encoder overrun.

;

lim movx a,@dptr ; fetch encoder status
anl a, #60 ;check for overrun flag or limit trip
jz cont ;1f none are set keep going!!
clr 41.0 ; clear enable bit
simp out ;if some have been tripped - BAIL OUT

; Section 7: Jump to servo Routine
cont acall load ; load subroutine loads addresses
lcall servo ; actual address for servo provided by
; load subroutine from Reg 56 & 57

; Section 8: Data taking

jb 44.5,dto ;jwe are currently taking data - skip on
jb 44.4,0ut ; data buffer is full - move on
jnb 44.0,o0ut ; not taking data at present
mov r3,#1 ; Start taking Data - Initialize things
mov 53,47 ; load in starting addr. of data block
mov 52,46
setb 44.5 :set indicator

dt0 djnz r3,out ; r3 is countdown for when to take data

;

; all tests have been passed - time to take data
mov r3, 45 ; initialize r3
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del

dc2

de3

;

; Section 9: Output to Motor

;

out

negl

posl
put

mov dph
mov dpl
jnb 44
mov a, 6

,53
,52
.1,dt1
0

movx Qdptr,a

inc dpt
mov a,6

T
1

movx @dptr,a

inc dpt

jnb 44
push dp
push dp
mov dpt
movx a,
pop dph
pop dpl

T

.2,dt2

1

h

r, #154000
Qdptr

movx @dptr,a

inc dpt
mov a,#

r
0

movx @dptr,a

inc dpt

inb 44
mov a, 6

r

.3,4t3
6

movx @dptr,a

inc dpt
mov a, 6
movx @d
inc dpt

mov S3,
mov 52,
mov a,5
clr ¢

subb - a,
jnz out
clr ¢

mov a,5
subb a,
subb a,
jnc out

mov 51,
mov 50,
setb 4
clr 44

jb 4
clr
mov
jnb
mov
mov
jnb
mov
clr
clr
subb
s jmp
mov
mov
movx

r
7
ptr,a
T

dph
dpl
1

3
0

52
129

; data block is full - stop data taking

53
52
4.4
.5

1.3,a0ut

a
2, #0
41.0,put
r2,#1

a, 67
acc.7,posl
r2,#3

c

a
a, 66
put
a,66
dptr, #152000
@dptr,a

~

load data pointer
; are we saving position data?

; get position from registers 60 & 61
; stash

are we saving A/D data?

~

; save dptr
; addr of A/D data
; fetch A/D reading

; restore
; stash

; high byte is zero

; are we saving output data?
; get output from registers 66 & 67
; stash

; store away data pointer

; is data buffer full?

; subtract high bytes of data addresses

; data not full

; subtract low bytes
; subtract an extra 1
; positive answer - keep going

; update end of data block markers

; raise flag
;lower flag

jump if we are using Automatix Amps
initialize for disabled amp

if we are not enabled jump ahead
set for forward motion

test sign

negative output

change sign

address of PWM Mag for MIT amps
output magnitude
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mov a,r2

mov dptr, #150000
movx @dptr,a
sjmp popr

e e se A

= 10600

sjmp init
mov r2, #0 i
jnb 41.0,apos

inc r2

mov dptr, #152000

mov a,66

movx @dptr,a

inc dpl

swap a

movx @dptr,a

inc dpl

mov a, 6?7

xxl a,#10

H
aout

apos

movx Qddptr,a

inc dpl

movx 8dptr,a

mov dptr, #15000Q
mov a,r2

movx Qdptr,a

;

address of PWM status
output status & direction bits

The following command causes initialization to occur at original location
but gives extra room to finish framework program.

initialize enable command to zero

jump if we aren’t enabled

r2 used later for status byte

dptr = base address of latch card’s d/a

output lowest four bits
incriment pointer

swap nibbles

output mid 4 bits
incriment pointer

compliment bit-11 to change into right
;format for d/a

output high 4 bits

increment pointer

output to latch convertion

dptr = address of enable register

output enable bit

; Section 8: Pop Stack and return from interrupt

pPopr pop acec
Pop dph
pop dpl
pop paw
reti

sServo nop

servo routine into locations 56

e Se S % N v

load pop dph

pop dpl

inc sp

inc sp

inc dptr
mov a,S7
movx @dptr,a
inc dptr
mov a, 56
movx @dptr,a
ret

Initialization Section - this program
at the start of operation

L R R

= 10700
init cir 40.0

; leave things as they were found

bogus label to f£ill in lcall
instruction

.

Subroutine LOAD - moves the address of the suervo subroutine to the end
of the two bytes directly following the lcall instruction.
This allows changing the subroutines by writing the address of the new

& 57 of internal RAM.
; get program counter address

; from stack
; and load into data pointer

; fetch high byte of servo rotine addr.
; store jump to address

; fetch low byte

is run only once

ithis code goes at micro-addr 10700
;clear jump to ram flag
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mov tmod, #1
mov 55, #375
mov 54, #164
mov tho0, 5SS
mov t10,54
setb tcon.4
mov iec, #203
mov ipc, #2
mov a, #316
anl 44,a
mov 112, #3177
mov 113, #7

wait jnb 40.0,wait
clr 40.0
push psw
anl psw, #347
mov dpl, r0
mov dph, rl
POP psw
clr a
jmp Qa+dptr

B v Se e

11000
nop

B ose o~ o~

12000
add2 nop

;

iconfigure timer zero in mode 1

: initialize servo rate registers for
; 1.5 kHz sampling

:load starting counts

;start up timer 0
;enable comm. and timer interrupts
: set priority of servo loop high

Clear start data and data full bits
Initialize amplifier Max.

. e

check which is startup flag
leave cleared before jumping to RAM

~.

select register bank 0
; load data pointer

~

;jmp to ram

The following label is purely for the assembler to check that the above
code fits before memory location 11000.

The following bogus label is so that the assembler will know where the
math services are.



This empty page was substituted for a
blank page in the original document.



FORTH Commands

Appendix D

;

The FORTH language operates as a hierarchy of definitions, in which more
complex words are built up from simpler words. These definitions are stored in a
dictionary when compiled, which resides on the PDP 11/23. Most of the FORTH
words needed to run the experiments were already contained in this dictionary.
Additional words were defined in a file on the VAX called /u/meckl/forth/data-
send.fth and were added to the dictionary on the PDP 11/23 using the FORTH
command: -

INTERPRET_VAX_FILE /U/MECKL/FORTH/DATA-SEND.FTH

The following glossary of FORTH words describes what each command does and
specifies the input and output for each word. FORTH operates on a stack, so input
and output is specified by the expressions surrounded by parentheses and separated
by a double hyphen. The first expression represents the input to be placed on the
stack, while the second expression represents the output returned from the stack.

One or both of these may be absent.

DATA_TO_VAX (FILENAME -- )

reads data from the microprocessor specified by MN and transfers it to

the ﬁie FILENAME on the VAX.
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VAX_TOMICRO (FILENAME -- )

transfers the contents of FILENAME on the VAX to the microprocessor

specified by MN.
SET_.LOAD (FILENAME -- )

transfers a sequence of setpoints from FILENAME on the VAX to the
microprocessor specified by MN starting at an actual memory location

given at the start of the file.
ENABLEMOVE ( -- )

signals the framework routine for microprocessor specified by MN to start

servoing to setpoints from successive memory locations.
DATA_& MOVE ( -- )

starts servoing to setpoints from successive memory locations for micro
specified by MN while taking data for position, A/D input, and amplifier

command.
DATA_& MOVE=* ( -- )

does DATA_& MOVE for axis specified by MN while reading A/D data on

other axis micro without moving that axis.
DATA_& MOVE** ( -- )

does DATA_& MOVE for X-axis and servos to setpoints from successive

memory locations in Y-axis micro while reading A/D data on that axis.



DATA_&_SET - (DOUBLE mm -)

sigaals the framevwack routine for microprocsssor sperified by MO to start
folowiag setpoint given by DOUBLE INTBISS while rending data for po-
sition, A/D mpwt, and umplfﬁer M &un tht ms axis, and
A/D xnputon!y ﬁmn theeth« mmwﬂoﬁm&u axis.
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