nical Report 1036

Heuristics
for Job-Shop
Scheduling

Kenneth Alan Pasch

MIT Artificial Intelligence Laboratory

Tius blank page was inserted to preserve pagination.

Heuristics for Job-Shop Scheduling
by
Kenneth Alan Pasch

B.5.M.E. Massachusetts Institute of Technology
(1981)

M.S.M.E. Massachusetts Institute of Technology
(1984)

Submitted to the
Department of Mechanical Engineering
in Partial Fulfillment of the Requirements for the Degree of

Doctor Of Science

at the
Massachusetts Institute Of Technology
January 1988

(©Kenneth Alan Pasch, 1988

The author hereby grants to M.I.T. permission to reproduce and to dis-
tribute copies of this document in whole or in part.

Signature of Author_M%VL :M

Kenneth Alan Pasch
Department of Mechanical Engineering
/) ,_ January 23, 1988

Certified by uﬂ W\/ A // éZQ/ 7

Professor Warren P. Seering
Committee Chairman

Accepted by

Ain A. Sonin
Chairman, Departmental Graduate Committee

Heuristics for
Job-Shop Scheduling

by
Kenneth Alan Pasch

Submitted to the Department of Mechanical Engineering on March 17,
1988 in partial fulfillment of the requirements for the degree of Doctor of
Science in Mechanical Engineering.

Abstract

Two methods of obtaining approximate solutions to the classic General Job-Shop
Scheduling Problem are investigated. The first method is iterative. A sampling of
the solution space is used to decide which of a collection of space pruning constraints
are consistent with “good” schedules. The selected space pruning constraints are
then used to reduce the search space and the sampling is repeated. This approach
can be used either to verify whether some set of space pruning constraints can prune
with discrimination or to generate solutions directly.

Schedules can be represented as trajectories through a cartesian space. Under
the objective criteria of Minimum Maximum Lateness a family of “good” schedules
(trajectories) are geometric neighbors (reside within some “tube”) in this space. This
second method of generating solutions takes advantage of this adjacency by pruning
the space from the outside in thus converging gradually upon this “tube.” On the
average this method significantly outperforms an array of the Priority Dispatch Rules
when the objective criteria is that of Minimum Maximum Lateness . It also compares
favorably with a recent iterative relaxation procedure.

Thesis Committee:

Prof. Warren Seering, Chairperson
Prof. Stephen Graves

Prof. Tomas Lozano-Perez

1

Acknowledgments

This report describes research done at the Artificial Intelligence Laboratory of
the Massachusetts Institute of Technology. Support for the laboratory’s artificial
intelligence research is provided in part by the Office of Naval Research University
Research Initiative Program under Office of Naval Research contract N00014-86-
K-0685, and in part by the Advanced Research Projects Agency of the Department
of Defense under Office of Naval Research contract N00014-85-K-0124. Support for
this research project is also provided in part by the IBM Corporation.

iii

Contents

1 Introduction - Review 1
1.1 General Problem Description. 2
1.2 Specific Problem Description 11
1.3 LiteratureReview 14

2 Cartesian Representation 27
2.1 Cartesian Completion Space v v v v v v v v et 27
2.2 Capabilities and Limitations of the Representation. 29
23 ObstaclesinN-Space v v v vt it e ee e e 30

3 Heuristic H1/CT 32
3.1 Definition of Heuristic H1I/CT 33
3.2 Explanation and Interpretationof Steps 33
3.3 Experiments 37

4 Heuristic H2 44
4.1 Definitionof Heuristic H2 44
4.2 Explanation and Interpretationof Steps 45
4.3 Intuitive Explanation of Heuristic H2 51
4.4 Extension to Higher Dimensions 52
4.5 Correctness Sketch 54
4.6 What Is Different About This Algorithm? 59
4.7 Complexity 59
48 LocalRule. 64
49 RateofPruning 65
4.10 Attempts at Increasing Performance. R 65
4.11 2D Counterexampleso i it 67

5 Experiments and Results 70

O Q w »

5.1 Experimental Objectives 70
5.2 Measures of Performance 70
5.3 Problem Structure/Sources 72
5.4 H2 vs. Priority Dispatching 73
5.5 H2 vs. Priority Dispatching on Problems with Due Dates 83
5.6 Dimensionality Increasing 96
Conclusions 99
Suggestions for Future Work 102
7.1 Modify Heuristic H2 ieene... 102
7.2 Develop New Heuristics Modeled On Heuristics H1/CT and H2 . .. 103
7.3 Modify Heuristic H1/CT 105
74 Veronoi Approach, 105
7.5 Normalize Path Probabilities For Random Sampler And Active Sampler107
7.6 Cpyclical Schedule Formulation 108
7.7 Representation Transformation 110
7.8 Learning Boolean Functions/Transformations 111
Free Space Fraction 112
N-D Cone Fraction Derivation 115
Notes on Random Sampling 120
Applying H1/CT to a Problem with Symmetry 127

vi

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

2.1

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

4.9
5.1

Activity On Node (AON) PERT network 3
AON Series, Parallel and N Subgraphs 5
Tree Representation of an AON PERT Network. 6
Disjunctive Graph. 8
AOEPert Network00 uenunen.. 9
AOE Series, Parallel and N Subgraphs 10
Example space associated with a 2 job problem 15
Solution shown in Gantt Chart form for a 10 job 10 machine problem. 19
Types of obstacles resulting from different resource constraints 31
Two spaces which could result when the precedenceisset 36
H1/CT Applied to a 6 job 6 machine problem 39
H1/CT Applied to a 6 job 6 machine problem 42
Pruned 2D Subspaces 43
Obstacle Selection,0 47
Two spaces which could result when the precedence is set 49
Trajectory Through Pruned Space 50
Example Space Associated With A Three Job Problem 53
Two Dimensional Subspaces Associated With A Three Job Problem . 55
Pruning which results in disjoint regions 56
Gantt Chart for Correctness Proof 58
Estimate of number of states of completion remaining as heuristic H2

proceeds on a 10 job 10 machine problem 66
Suboptimal Trajectories in 2D Problems 69
Relative performance under the makespan criterion (pagelof2) ... 76

vil

5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18

5.19
7.1

B.1
B.2

C.1
C.2

C3

Relative performance under the makespan criterion (page 2 0f2) . . . 77
Relative performance under the flowtime criterion (page 1 of 2) ... 78
Relative performance under the flowtime criterion (page 2 of2) ... 79
Comparison of H2 with Dispatch Rules under the makespan criterion 81
Comparison of H2 with Dispatch Rules under the flowtime criterion . 82
Relative performance under the max lateness criterion on problems

with due dates (page1of2) 84
Relative performance under the max lateness criterion on problems
with due dates (page2of2) 85
Relative performance under the tardiness criterion on problems with
duedates (page1of2) 86
Relative performance under the tardiness criterion on problems with
due dates (page20f2) 87
Relative performance under the makespan criterion on problems with
duedates (pagelof2)u ... 88
Relative performance under the makespan criterion on problems with
due dates (page20f2) 89
Relative performance under the flowtime criterion on problems with
duedates (pagelof2) 90
Relative performance under the flowtime criterion on problems with
due dates (page20f2) 91
Comparison of H2 with Dispatch Rules under the max lateness crite-
rion in problems withduedates 92
Comparison of H2 with Dispatch Rules under the tardiness criterion
in problems withduedates 93
Comparison of H2 with Dispatch Rules under the makespan criterion
in problems withduedates 94
Comparison of H2 with Dispatch Rules under the flowtime criterion
in problems withduedates 95
Performance of heuristic H2 as problem dimensionality is increased . 98
Torroidal Completion Space 109
Three D Cone Example.0..... 116
Base Calculation 118
Normalized Sample Distribution 122
Comparison of Distributions Obtained Using the Random Rule, a Nor-
malized Random Rule and an Active Schedule Generator 123
Joint Distribution Scatter Plot, Schedule Makespan vs Schedule Flow-
time e e 125

LIST Ot FIGURES

D.1
D.2
D.3
D.4

D.5

H1/CT applied to a 12 job 6 machine problem (makespan criterion) . 128
H1/CT applied to a 12 job 6 machine problem (flowtime criterion) . . 129

Symmetric 2-D Subspace e e . 131
H1/CT modified to account for symmetry applied to a 12 job 6 ma-
chine problem (makespan criterion) 133

H1/CT modified to account for symmetry applied to a 12 job 6 ma-
chine problem (flowtime criterion) 134

s

Introduction - Review

Chapter 1

Two methods of obtaining approximate solutions to the classic General Job-Shop
Scheduling Problem are investigated. The first method is iterative. A sampling of
the solution space is used to decide which of a collection of space pruning constraints
are consistent with “good” schedules. The selected space pruning constraints are
then used to reduce the search space and the sampling is repeated. This approach
can be used either to verify whether some set of space pruning constraints can prune
with discrimination or to generate solutions directly.

Schedules can be represented as trajectories through a cartesian space. Under
the objective criteria of Minimum Maximum Lateness a family of “good” schedules
(trajectories) are geometric neighbors (reside within some “tube”) in this space. This
second method of generating solutions takes advantage of this adjacency by pruning
the space from the outside in thus converging gradually upon this “tube.” On the
average this method significantly outperforms an array of the Priority Dispatch Rules
when the objective criteria is that of Minimum Maximum Lateness . It also compares

favorably with a recent iterative relaxation procedure.

1.1: General Problem Description ' 2

1.1 General Problem Description

One way of representing a superset of the scheduling problems considered in this
thesis is with a PERT/CPM network. This representation will be introduced
and will then be specialized down to the Job-Shop Scheduling problem. Typi-
cal applications are the scheduling of construction projects and research programs.
The term PERT/CPM is an abbreviation for Program Evaluation and Review
Technique/Critical Path Method. This representation was devised by the US Navy
to help plan and expedite the development of the Polaris Missile. A PERT network
is a graphical representation of how the activities of a project are related. Activities
require resources for their processing and can represent either a single event (pour
concrete) or a given operation repeated on a batch of parts (paint these widgets).
In one incarnation, the Activity On Node (AON) variety, the nodes of the graph
correspond to activities while the directed edges correspond to precedence relations.
The usual interpretation of one of these precedence relations is that the activity at
the tail of the directed edge must be completely finished being processed before the
activity at the head can be started. The edge lengths in an AON PERT network
have no significance. Shown in Figure 1.1 is a AON PERT network relating activities
A; through A,.

The nodes of the AON PERT network represent activities to be processed.
These are usually labeled with information specified from the project data and with
information computed from the network. Project data includes, the nature of the
activity, the processing time of the activity (one exact number or some distributional
information usually no more complex than optimistic and pessimistic estimates of

processing time), and the amount, type and cost of (possibly multiple) resources

1.1: General Problem Description 3

Al

A3

Figure 1.1: Activity On Node (AON) PERT network

required to process this activity. Note that dummy nodes Dy, and D, have been
added to the start and to the end of the network. Early Start Times (EST), Late
Start Times (LST) and Slacks are defined and can be computed from the network as
follows. To compute the EST of an activity (the earliest time at which an activity can
be started without violating precedence constraints) assume the dummy start node
is finished at time 0. Then for nodes who’s predecessors have all been assigned Early
Start Times set the EST of the node to the max of the EST+(Process Time)’s of all
the predecessor nodes. This will result in assignment of EST to all nodes including
the dummy finish node. To compute the LST’s (the latest time at which an activity
can be started without increasing the length of the overall project) set LST=EST of
the finish node, then for nodes who’s successors have all been assigned LST’s, set the

LST of the node to the minimum of the LST-(Process Time)’s of all the successor

1.1: General Problem Description 4

nodes. Note that the nodes are visited in Topological order. An activity’s slack is
then defined as the difference LST-EST. This slack indicates the amount of freedom
allowed in scheduling this activity without extending the overall length of the project
or violating precedence constraints. Note that some slacks are dependent.

Note also, if the EST’s, LST’s and slacks are computed as described above, then
there will be a chain (of width 1 or more) of activities from start to finish which
have slack values equal to 0. This chain or path is the so called Critical Path.
Assuming that infinite resources are available, this Critical Path determines the
overall duration of the project. In order to shorten the project duration one or more
activities along the Critical Path must be shortened. The Critical Path Method
(CPM) is a tool used to find the most cost effective way to shorten (“Crash”) the
Critical Path assuming that there is some time/cost tradeoff for each activity.

Instead of being explicitly represented as activities and precedence relations one
of these networks can be thought to be composed recursively in terms of series,
parallel and N subgraphs [14]. These subgraphs are shown if Figure 1.2. The overall
structure of a network can then be encoded as a tree with Series (S), Parallel (P) and
N (N) nodes with activities as leaves. The tree encoding of the network of Figure 1.1
is shown in Figure 1.3. Note that there is an implied ordering in the branches of the
S and N nodes.

In the previous discussion it was assumed that infinite amounts of the resources
required to process the activities were available at some cost. Specializing this as-
sumption down to finite amounts of each resource gives rise to the class of resource
constrained network problems. In these problems the Critical Path may or may not
determine the overall project duration. This is because some activities may have

to wait for resources to become available. Therefore, instead of allocating cash in a

1.1: General Problem Description 6

A3 A4

Al A2 A6

A5 AT

Figure 1.3: Tree Representation of an AON PERT Network

effort to reduce the Critical Path the objective is to find an allocation of the avail-
able resources to activities such that some criteria is optimized (e.g. overall project
duration).

Specialization of the resource constrained network problem to the case where each
activity requires only a unit quantity of one resource gives rise to the Job-Shop type
problem with arbitrary precedence relations (Also, in a Job-Shop Scheduling problem
there is only one unit of each resource available.). Specialization of the problem
further to-require the network to consist of Parallel linear chains of activities results
in the classic Job-Shop Scheduling problem. Each of the chains defines a “job.” In
this case the resources are the machines in a “shop.” If each of the jobs visits the
machines in the same order then the shop is termed a Flow Shop; if the jobs are free

to visit the machines in any order then the shop is termed a General Shop. In this

1.1: General Problem Description 7

thesis only problems of the General Job-Shop variety will be considered. Note that
specifying a linear order of the activities on each machine fully specifies a solution
to the scheduling problem.

The precedence relations used in the PERT network representation have the
property of tramsitivity. If activity A; precedes A; and A; precedes A; then A;
precedes A,. Explicitly computing the precedences among all nodes in the network
is called the transitive closure. In contrast, reducing the set of precedence relations
to a minimum by eliminating redundant precedence relations is called the transitive
reduction.

Closely related to the PERT network representation for a Job-Shop Scheduling
problem is the Disjunctive Graph representation (Figure 1.4). The directed edges of
the disjunctive graph correspond exactly to the precedence relations of the PERT
network of Figure 1.1. The Disjunctions are unresolved precedence relations, their
orientations are yet to be determined. The disjunctions are typically shown as dotted
lines or as a pair of parallel directed edges each with an opposite orientation. When
taken together, the precedence relations and disjunctions among a set of activities
which all require the same resource form a complete graph. There is either a prece-
dence relation or a disjunction between each pair of activities in this set. For the
network shown, grouping the activities according to resource required results in the
following sets: {A;, A4}, {A43,4s,47},and {43, A} -

When-the scheduling algorithm which processes this graph is finished, each of the
disjunctions will have been “settled” - one of the two possible precedence relations
will have been chosen. The precedence relations will then form complete graphs on
each set of activities requiring the same resource. Performing a transitive reduction

on the final graph results in a linear chain of precedencé relations through each of

1.1: General Problem Description

Figure 1.4: Disjunctive Graph

1.1: General Problem Description 9

Figure 1.5: AOE Pert Network

these sets. Thus a linear ordering of activities is specified at each machine. Note that
as the algorithm proceeds, the graph becomes a progressively more ordered partially
ordered set.

There exists a dual formulation of the PERT network termed the AOE (Activity
On Edge) PERT network (Figure 1.5). The directed edges in these networks corre-
spond to activities instead of precedence relations. The nodes correspond to “project
milestones” or the event that the preceding activities are finished being processed.
More care must be taken in formulating the AOE style network than a AON networks
because in some cases dummy activities must be introduced to achieve the desired
precedence relations. In particular, the AOE equivalent of the AON N subgraph

requires such a dummy activity (see Figure 1.6).

1.1: General Problem Description . , 10

—O—

Figuse 16: AOE Secies, Paralll and ¥ Sehgrephe

1.2: Specific Problem Description 11

1.2 Specific Problem Description

The General Job-Shop scheduling problem is an abstraction of a discrete-parts, batch
or lot production process. Typically, orders exist for a number n of jobs (com-
modities) to be produced, each of which is to be processed on all of m available
machines (processing facilities). In general, each job may take a different path
through the shop. The goal is to specify an ordering for the jobs at each ma-
chine such that both the technological constraints of the jobs are satisfied and a
measure of schedule goodness is maximized. An instance of one of these prob-
lems can be specified using the notation of Rinnooy Kan [73] as the four-tuple
{n, m, Special-Constraints, Objective-Criteria}. In this notation, n is the number
of jobs and m is the number of machines. Special-Constraints such as G (general
flow of jobs through the shop) and d (each job has an arrival date and a due date)
define the problem’s structure while Objective-Criteria is the measure of optimality
(e-8. Limaz = Minimum Maximum Lateness) used to compare schedules.

It is assumed that only short term detailed scheduling is to be done. The man-
ufacturing facility has a fixed amount of equipment as determined by some method
of long range planning. And that short range aggregate planning has been done by
a system such as MRP resulting in a product mix specification consistent with the
goals and limitations of the facility. MRP (Material Requirement Planning) is an
inventory control system which starts by forecasting end-item demand, then devel-
ops a master production schedule, and then explodes this schedule using a bill of
materials. These gross requirements are then compared to existing inventory levels
to determine net requirements. This static specification is to be contrasted with the

dynamic case where jobs arrive unpredictably.

1.2: Specific Problem Description : 12

In addition to this basic scenario, the following limiting restrictions are assumed
to apply. Each job is composed of a sequence of individual activities the partial
ordering of which is specified by precedence relations. Each activity requires a certain
fixed amount of time for its processing and these processing times are sequence
independent. There is no pre-emption of activities from machines (i.e. once an
activity begins being processed its processing continues until completion). Each job
is assumed to have an arrival date and a due date. All machines are independent
and can process only one activity at any given time.

This family of problems has been studied extensively and a variety of types of
algorithms have been developed for it. Many forms of the problem are known to be
NP-hard [73]. In other words, it is widely believed that no algorithm exists (although
one could theoretically exist) which is capable of solving these or any other NP-hard
problems in an amount of time which is some polynomial function of the size of
the input data. Consequently, exact methods were developed for relatively small
problems, while heuristic methods were developed for large problems. One thread
which is common to most of these algorithms is that they use the addition of a time
ordering or precedence constraint as a method of pruning the solution space. Using
such constraints allows a partial (or complete) solution (schedule) to be represented
as a partially ordered set of activities.

For example, this time ordering is explicit in the case of algorithms which branch
and bound on disjunctions or perform relaxation by interchanging the order of activ-
ities along a Critical Path. In the case of algorithms which run in a simulation type
environment the time orderings of the activities are fixed in a topological order.

An assumption underlying the use of these precedence constraints is that the sets

of sequences representable as partially ordered sets is rich in the sense that local rules

1.2: Specific Problem Description ‘ 13

can make progress toward a solution without the need for excessive backtracking. It
seems that under certain circumstances this is the case while in others it is not, as
evidenced by the narrow success of most algorithms.

Fox and Kempf [34], [35] propose a provably complete language of sequences in
which arbitrary sequencing constraints can be expressed succinctly using the prece-
dence relation >, the negation operator not combined with the logical connectives
and and or. Actually, a nand or nor connective along with the precedence relation >
would be sufficient. Fox and Kempf used the language in connection with the offline
generation of alternative “opportunistic” schedules for later use on line. Their objec-
tive was to generate offline sets of schedules which will offer maximum opportunity
to accommodate for uncertainty in the order of parts arrival at an assembly station.
Such a language allows more freedom in the selection and utilization of constraints
when designing algorithms for sequencing problems.

A common assumption is that the goal is to find a provably “optimal” sequence
or a quantifiably close approximation. This is a narrow view as it focuses only upon
some cost and neglects the other aspects such as robustness; perhaps a family of good
schedules could be found such that small variations in shop operation or problem
specification could be accommodated. The constraints that are typically used to
build and describe solutions usually preclude the specification of such families.

In this thesis two heuristics will be developed. The first one (H1/CT) is iterative
and based on Monte Carlo Sampling. Information gained from the generation of
sample schedules is used to prune the search space via some given set of pruning
constraints. Under certain objective criteria, H1/CT is observed to converge upon
a family of good schedules. Choosing a schedule from the “middle” of this family

should result in a schedule which is insensitive to small variations in shop conditions

1.8: Literature Review 14

(other reasonably good alternative schedules can be easily reached from this one).
Another use for heuristic H1/CT is to test whether some set of pruning constraints
is capable of selectively eliminating undesirable schedules from the search space.
Heuristic H2 is a one pass procedure which is tuned to converge upon a region
of the search space containing a high density of low Minimum Maximum Lateness
schedules. In the chosen representation this region is a “tube” connecting the origin

and the far corner of a cartesian space.

1.3 Literature Review

In order to compare previous work with the two heuristics developed in this thesis
and to describe the various algorithms uniformly, it is now necessary to introduce the
concept of a cartesian completion space. Related to a job shop scheduling problem
is a cartesian space (first introduced by Akers [5] and later used by Hardgrave and
Nemhauser {52]) in which position along an axis corresponds to the degree of com-
pletion of a job. Shown in Figure 1.7 is a two dimensional job space representation
of a two job problem. Each of the coordinate axes corresponds to a “job.” Each job
consists of a linear chain of activities and is drawn in the AOE (Activity On Edge)
style. The length of each edge corresponds to the processing time of the associated
activity. Any point along the length of a job defines a state of completion of the job.
A trajectory through this space corresponds to a schedule, which starts from a state
of zero co_mpletion at the origin and goes to a state with all jobs completed at the
far corner.

Thus, any point in the space corresponds to each of the jobs being in a partially

completed state. A trajectory through this space can be mapped directly to a sched-

1.3: Literature Review ' 15

END

Figure 1.7: Example space associated with a 2 job problem

ule. When a trajectory traverses only one coordinate direction only one job is being
processed. Similarly, when a trajectory is advancing in multiple dimensions the jobs
are being co-processed. The processing time for each piecewise linear segment of
the trajectory can be found by finding the maximum of the projections of it on to
the coordinate axes. Total schedule completion time is then the summation of these
maxima over the piecewise linear segments.

The shaded regions are infeasible states of completion due to resource constraints.
Obstacles include the area up to but not including the lines (2D case) which form
their boundaries. For example, the first activity of Job 2 and the last activity of

Job 1 require the same resource which is available in quantity 1.

A survey of some of the established methods used to generate solutions for the

1.3: Literature Review 16

problem of Job-Shop Scheduling follow. When appropriate, a brief description of
the algorithm in the context of a completion space will be given.

Since the problem is NP-hard [73], research has focused in two general areas,
exact (and usually computationally intense) methods to find “optimal” solutions
to small problems and heuristic (and usually computationally simple) methods to
find approximately optimal solutions to large problems. The heuristics developed
in this thesis are of intermediate complexity and thus fall between the two areas.
Branch and bound methods have traditionally been used to find exact solutions. The
performance of the branch and bound method depends heavily upon the strength of
the lower bound used to estimate the cost of completing a partial solution. If the
bound is exact (not an estimate) then an optimal solution can be found directly. If
the lower bound is inexact then some barren branches will be explored even though
they do not lead to an optimal solution. If the bound used is not a lower bound but
an approximation accurate to some known accuracy, then an approximately optimal
solution (within this known accuracy) can be found. Surveys of categorization and
complexity of algorithms and problems over various objective criteria can be found
in (9], [24], [26], [49], [67], [73] and [77].

Some of the steps of an example branch and bound algorithm can be visualized
in a 2D completion space as follows. Assume the algorithm is to branch and bound
on disjunctions along the current critical path. The first step is to find the critical
path. Staﬂrt a trajectory at the origin of the space and proceed diagonally (along
a 45 degree line) (ignoring obstacles along the way) or as near to this direction as
possible until the state of total completion is reached. This trajectory corresponds to
the schedule (possibly infeasible) which would result by assuming that there are no

resource limitations and that each activity is scheduled to start as soon as possible

1.3: Literature Review - 17

consistent with the given precedence constraints. The second step is to locate the
disjunctions along this critical path. Each intersection of the trajectory with the
previously ignored obstacles corresponds to a disjunction along the critical path.
Next, tentatively “settle” one of the disjunctions (each disjunction corresponds to
an obstacle). This “settling” of a disjunction (addition of a precedence relation) is
equivalent to requiring all subsequent trajectories to detour around the obstacle in
a given direction. A new critical path (trajectory) is then found and the process
repeated. It is usually necessary at some point to backtrack and try some of the
alternative detours.

One of the simplest and still widely used tools to aid a human scheduler is the
Gantt Chart. This chart is a graphical display of how resources are allocated to activ-
ities over time. This technique is puzzle-like because the scheduler has to rearrange
the boxes representing the processing of various activities by the resources until a
good enough schedule is obtained. Schedule quality reflects the skill and experience
of the scheduler.

Time is represented explicitly along the x-axis and either precedence constraints
within a job or resource limitations are enforced by the non-overlapping of the boxes
depending whether the y-axis corresponds to resources or jobs respectively. The
human scheduler must take care of the other constraint.

For an example of such a chart where the resource limitations are enforced graph-
ically see Figure 1.8. In this chart each row of boxes (activities) corresponds to
operations scheduled to be done on an individual machine. The numbers in the
boxes are an arbitrary numbering of the activities. Job 1 is composed of activities
1 through 10; job 2 is composed of activities 11 through 20 and so on. The empty

space between boxes is idle time inserted between activities so that the precedence

1.3: Literature Review 18

relations will not be vinlated. The schedule shown is one feasible solution for the no-
torious {10, 10, G, Makespan} problem found in [47]. The makespan for this example
solution is 985.

Very small problems can be solved by using brute force to enumerate all the pos-
sible sequences. Slightly larger problems can be solved by enumerating the dominant
members of equivalence classes of sequences. Erschler et al [32] take a “pyramidal”
approach specific to single machine problems. Akers and Friedman [5] discuss how to
reduce the set of schedules using only non-numerical means. Giffler and Thompson
[46] exploit dominance by enumerating all of the members of the set of so called Ac-
tive Schedules. The defining characteristic of an Active Schedule is that no activity
can be re-scheduled to start at an earlier time without forcing some other activity to
start at a later time. The set of all Active Schedules is smaller than the related set of
Non-Delay Schedules. Although the size of the set of schedules is reduced, it is still
not small enough to allow practical enumeration of a moderate {6,6,, } size problem
(6 jobs each 6 activities long). Hardgrave and Nemhauser [52] show how trajectories
corresponding to the Active Schedules map into the completion state space.

Much effort has been put into the generation and evaluation of priority dispatch-
ing rules [24]. These rules are used to rank the jobs waiting in a queue for processing.
This type of scheme is attractive because only a small amount of locally available
information is needed to make the queueing decisions and changes in the shop or
problem specification have no effect on the partial solution generated so far. These
rules are usually based on some job or queue attribute believed to be relevant to
the generation of good schedules. Some example rules are the Shortest Processing
Time (SPT) rule, the First Come First Served rule, the Least Work in Next Queue

rule, and the Random rule (see Section 5.4 for definitions of these and other rules).

19

1.3: Literature Review

IWIL

~—

—
1

ANIHOYWN

Figure 1.8: Solution shown in Gantt Chart form for a 10 job 10 machine problem.

1.83: Literature Review 20

The average performance of some of the rules, most notably SPT, is better than
the Random rule; however the performance of a particular rule on a given problem
instance is unpredictable.

In addition to being used directly in a running shop, the priority dispatch rules
have been used as the basis of simulation studies. Moore and Wilson [65] and Weeks
and Fryer [85)] have evaluated the relative performance of sets of rules. Nugent [66]
evaluated the merits of adding some randomness to the dispatch rules and Bunnag
[15] used computer search to determine what weighted combination of rules gives
good performance for a typical problem. Additionally, much work has been done to
provide simulation environments [20], [31], [71] and [83], and modeling systems [12],
[37] and [38].

Priority dispatching can be mapped into the completion space as follows. Start

a trajectory at the origin and proceed diagonally until the corner of an obstacle is

encountered. Use a dispatch rule to decide which way to detour around the obstacle.
Continue is this fashion until the state of total completion is reached. Following this
procedure generates one member of the class of the so called Non-Delay Schedules. In
other words, if some machine is idle and its queue is not empty, then one activity will
be selected via the dispatch rule and started immediately. This is to be contrasted
with the class of Active Schedules in which it is possible to have a schedule in which
a machine remains idle even though its queue is not empty. The supposition is that
waiting a little time now might enable one to avoid excessive idle time later.
Various randomized searching strategies have been explored. The strategy is
simple, sample schedules are generated and then compared with the best schedule
generated so far. Sampling with equal probability from the set of all schedules does

not give good results, consequently efforts in this area have concentrated on biasing

1.3: Literature Review 21

the sampling procedure so as to increase the probability of generating better schedules
(hopefully without excluding the best schedules). One way to bias the procedure is
to sample from the class of non-delay schedules. This is the same type of schedule
as generated by using the priority dispatch rules, and could in fact be generated by
using the Random dispatch rule. Here, as many activities are processed in parallel
as possible until some conflict arises (a queue with more than one element in it).
This conflict is then resolved by choosing at random from among the elements of the
queue. This sampling scheme increases the probability of generating schedules which
have fewer conflicts to resolve.

Another alternative, taken by Giffler and Thompson [47], is to sample from the
set of Active Schedules. In an Active Schedule, an activity’s processing may be
delayed even though it and the necessary resources are immediately available. The
activity is delayed in favor of some other job which will become available later.
Another characteristic of Active Schedules is that no activity can be rescheduled
to start at an earlier time without forcing some other activity to start at a later
time. Choosing at random when there is more than one choice again increases the.
probability of generating schedules with fewer conflicts to resolve, unfortunately in
numerical problems (as opposed to those with unity processing times) this biasing
does not necessarily work out to advantage. And although given enough samples this
method is guaranteed to come up with the optimal solution, the computational cost
1s prohibitive as problem size increases. Also, in most cases, the odds of producing
a superior schedule are greater when sampling from the set of non-delay schedules
than when sampling from the set of Active Schedules.

Yet another alternative is to bias the sampling based on some quality or measure

thought to be relevant to a good schedule. Toward this end Nugent [66] prioritized

1.3: Literature Review 22

the activities in a queue using a dispatch rule and then applied a geometrically
decreasing probability to choosing successive elements in the queue. It was found
that the distributions of schedules obtained via these randomized dispatch rules were
improved from those of purely random selection and a significant fraction of the
samples were better than those for the unrandomized dispatch rule. The conclusion
was that a fixed amount of randomization helps, but that the optimal amount of
randomization varies among problem instances.

A Bayesian approach has been used to estimate the likelihood of obtaining a
better schedule with the next sample. In this approach, some a priori distribution
of schedule attributes is chosen. Then information gained by sampling is used to
update the assumed distribution. If the assumed distribution is general enough it will
asymptotically converge to the actual distribution. This updated distribution can
be used to estimate the probability of obtaining a better sample than the best found
so far. One of the problems with this type of approach is finding a computationally
tractable a priori distribution. According to Rinnooy Kan [73] this method is only
of academic interest because it depends on asymptotic results and is only applicable
to structured situations.

Some less structured approaches to solution generation (modification) come under
the headings of Relaxation [1], Interchange, Neighborhood Search [56] and Annealing.
In these methods, some (possibly random) change is made in an existing solution.
This produces a new schedule which is in some sense close to (a neighbor of the
original schedule in some space) the initial solution. Perhaps this change is made by
interchanging the order of two activities which lie along the Critical Path of a PERT
network. The objective function of interest is then evaluated on this new schedule;

if there is an improvement, then the modified schedule is accepted (Relaxation) and

1.3: Literature Review ‘ 23

the process is repeated. If the value of the objective function is degraded then the
schedule is accepted (Annealing [55],(64]) with some probability depending upon the
annealing schedule. If the annealing schedule is selected correctly, then the algorithm
will not get stuck in a local minimum.

The relaxation process can be visualized in the completion space by starting
with a trajectory corresponding to any complete feasible schedule. Then, using
a modification rule, jump a portion of the trajectory over one or more obstacles.
Interchanging the order of two activities along a critical path [63] corresponds to
jumping over a single obstacle.

A variety of search techniques have evolved over the years. These methods can be
either exact or heuristic depending the strictness of the bounds used in the various
branching decisions and whether or not one is content with the best schedule found
so far. See [11] for an overview of search strategies. In the Operations Research
literature, search algorithms can be found under the headings of Branch and Bound
and Implicit Enumeration. These searches are usually carried out in either a depth
first mode [10] or beam search mode [39] as complexity of the problem usually pre-
cludes using breadth first mode. These algorithms usually based either on settling
disjunctions along a critical path or on resolving which activity to schedule next
during Active Schedule generation. Some examples of application of the branch and
bound technique can be found in [17], [19], [48].

The main difficulty with these approaches is that it is hard to find a lower bound
which on one hand is strict or tight enough to prune the search space effectively at
an early stage and on the other hand is not too computationally expensive. Conse-
quently, the majority of work in this area has been in the development of stricter and

more efficient bounds. In the extreme case the computation of the bounds themselves

1.8: Literature Review 24

is NP-hard [58]. Baker [8] studied the tradeoffs of various bounds used in flow-shop
branch-and-bound and elimination algorithms. Brooks [13] used a lower bound as
a decision rule for developing a single solution. Work has also been done using a
relaxed lagrangian transformation of the problem to generate stricter lower bounds
[33]. Picard [70] used a related time dependent traveling salesman problem to com-
pute bounds. The difficulty in obtaining tight lower bounds may in part be due to
choice of type of constraint to add. In genmeral, the overall run time of this type of
algorithm is not predictable.

Many operations researchers have approached the problem from a more theoret-
ical point of view. Usually an optimal or near optimal solution is sought using a
simplified model of actual shop conditions. One technique, dynamic programming
used by Schrage and Baker [76] on a one machine problem, recursively decomposes
the problem into subproblems, solves each unique subproblem once, then selectively
recombines the solutions. This technique is limited to small problems. A dynamic
programming approach suitable for two job problems presented in the completion
space can be found in [80]. Here the subproblems correspond to trajectory segments
between the outer corners of the obstacles which can be connected with a straight
line. Lawler [59] used a series parallel decomposition on a single processor problem.
Another type of decomposition is hierarchical. Problems are decomposed into differ-
ent levels of some hierarchy (e.g. capacity planning, long range, short range, detailed
scheduling [4] and Gershwin et al [42], [43], [44], [45], have worked in making an inter-
mediate level of a decomposition dynamically adapt to changing (breakdown/repair)
shop conditions. Lipton [60], [61] used a hierarchical approach with rescheduling
while Dempster [28] used a two stage approach.

The dynamic programming approach can be interpreted as a search through a

1.8: Literature Review 25

graph superposed on the completion space. Consider a scheduling problem in which
all the activities have integer processing times. Then the start and finish times of
each activity must occur at integer times regardless of the schedule. At all other
times a number of the jobs are being co-processed. Then the set of all possible
combinations of start and stop states of activities is included in a regular lattice on
the space at unit spacing. The possible transitions from lattice point to lattice point
are defined by allowing an increment of unity in one or multiple coordinate directions
(no lattice points can exist within an obstacle). This corresponds to processing one
or multiple jobs for one time unit. The dynamic programming problem is to find
the least cost path to each lattice point. This is accomplished by formulating the
cost of the path to a given lattice point in terms of the costs of the paths to other
immediately reachable lattice points which are closer to the origin. Davis [25], [27]
used this approach to transform a PERT [86] network problem into a shortest route
problem (with a combinatorial number of cities).

Relatively recently Petri Nets have started being used to model and analyze
scheduling systems [75], [18], [74]. These Nets were originally developed [69], [72]
with the intent of modeling interlocking concurrent computation systems in a time
independent manner. In the Petri Net representation both resource limitations and
sequencing constraints can be treated uniformly, although some modifications need
to be made to represent time considerations. These nets or their associated matrices
can be used to derive certain invariants and characteristics of the system. These nets
are equivalent to Vector Addition Systems. In a Petri Net representation of a Job-
Shop scheduling problem, the vectors correspond to the possible trajectory segments
in the completion space representation. If the scheduling problem being represented

has only integer processing times, then the vectors being added combine to point to

1.3: Literature Review 26

the lattice points defined in the previous paragraph.

An exact polynomial-time (in certain problem characteristics) algorithm has re-
cently been improved upon by Sidney and Steiner [78]. This algorithm is applicable
to the total weighted completion time problem, the total discounted cost problem,
the least-cost fault detection problem, and the jump number problem. In this algo-
rithm, dynamic programming along with a partial-order decomposition allows exact
solution of sequencing problems with worst case complexity n(¥+1), Where n is the
number of activities to be scheduled and w is the Dilworth number associated with
the Graph P formed by the n activities (nodes) and precedence relations (edges).
The Dilworth number is defined to be equal to the minimum number of chains needed
to partition the vertices of P. This algorithm increases the number of sequencing
problems (those with a reasonable value of w) that can be solved in practical time;
however this class does not include those of the Job-Shop variety. For example, a
{10,10,,} problem (10 linear chains of activities each 10 activities long) would be of
complexity 100(1°+1), The Dilworth number w is also equal to the dimensionality of

the completion space associated with the problem.

Cartesian Representation

Chapter 2

In Chapter 2 I will extend the representation introduced in [6] to provide a frame-
work on which to construct subsequent results. Then, in Chapter 3, I will develop
within this framework an iterative heuristic (H1/CT) based on Monte Carlo Sam-
pling. Results obtained using heuristic H1/CT serve to justify the formulation of
heuristic H2. This second heuristic (H2) is presented in detail in Chapter 4. In
Chapter 5 the performance of heuristic H2 will be documented. It’s performance
will be tested under various objective criteria in relation to the Priority Dispatch
Rules and in relation to some biased search techniques. In Chapter 6 there will be
conclusions about heuristics H1/CT and H2, and about the ideas of adjacency of

solutions and the types of constraints used to prune the search spaces.
2.1 Cartesian Completion Space

The idea of using a cartesian completion space to represent both the resource limita-
tions and the precedence constraints of scheduling problems was introduced by Akers

[6]. Subsequently, an algorithm was developed. for two job (2D space) problems by

27

2.1: Cartesian Completion Space 28

Szwarc [80] and an attempt was made to extend the results to the 3D case. The
idea was to first optimally solve each of the individual 2D problems defined on three
orthogonal faces of the 3D space. Then, the individual solutions were to be combined
to yield an optimal trajectory through the 3 space. The problem with this approach
is that only 2 projections are necessary to uniquely describe a trajectory in 3 space.
There is nothing in the formulation which guarantees the consistency of the third
subproblem solution with the other two.

Hardgrave and Nemhauser [52] suggested using a set of extremal trajectories
to define a region of the space within which the optimal solution lies. In the 2D
case, these trajectories are found by starting a pair of trajectories from the origin
and proceeding “diagonally” through the space. When trajectory 1 encounters an
obstacle it always branches in coordinate direction 1. When trajectory 2 encounters
an obstacle it always branches in coordinate direction 2. These two trajectories
define a “cone” shaped region with the apex at the origin. This procedure can then
be repeated starting from the state of total completion and working backwards. The
optimal solution then lies within the intersection of these two regions.

This procedure is well defined for the 2D case, but is unmanageable for higher
dimensional problems. In the 2D case, the boundaries of the regions are defined by
easily generated trajectories while in the higher dimensional cases the regions are
defined by n — 1 dimensional hyper-surfaces. In Appendix 1 is the derivation of the
volume fraction of the space enclosed by such a generalized “cone.” The bottom line
is that even though the amount of space which remains fo be searched is greatly

reduced, the complexity of the remaining space is still formidable.

2.2: Capabilities and Limitations of the Representation 29

2.2 Capabilities and Limitations of the Repre-
sentation

The completion state space incorporates both the resource constraints and the prece-
dence constraints of the Job-Shop Scheduling problem uniformly. And although
efficient results can be obtained in 2D problems, its usefulness in more complex
problems is to aid intuition and qualitative reasoning.

One of the limitations of this state space is that time is not explicitly represented.
This makes it difficult to merge into the space time based constraints such as arrival
dates, due dates and time specific availability of equipment. In order to utilize this
type of constraint, some processing of the space needs to be done such as finding
the minimum cost path to each interesting point in the space thereby establishing
a unique time value there. More generally, such a value can be established for any
path dependent function such as one which includes the effect of sequence dependent
set-up times.

For the constraints which are represented (precedence and resource limitations)
the space is a true state space. Each point in the space corresponds uniquely to the
degrees of completion of the various jobs. Therefore, all of the techniques applicable
to such a formulation can be used. For example, any function with a unique value
for some state of completion can be immediately defined at each point in the space.
An example of this would be in-process inventory costs.

When an arbitrary configuration of precedence relations is allowed, some corners
of the space are truncated. This is because the partial ordering of activities defined
by the precedence relations excludes certain states of completion from being feasible.

The number of lines emanating from the leading corner of an obstacle corresponds

2.8: Obstacles in N-Space ‘ 30

to the number of alternative activities which could be scheduled at this point. For
example, consider a trajectory encountering the leading corner of an obstacle in a
two dimensional problem. At this point, the trajectory can branch in one of the
two possible directions around the obstacle. Each of these directions corresponds to

choosing one of the two activities in a queue.

2.3 Obstacles in N-Space

In the classic Job-Shop Scheduling Problem, it is assumed that resource availability is
limited to one machine of each type. A resource which is available in quantity j gives
rise to a basic obstacle of dimensionality j + 1 in the space. In a two dimensional
(two job) problem with unit resource availability the resulting obstacles are two
dimensional rectangles (See the top left box of Figure 2.1). In a three dimensional
(three job) problem with unit resource availability the obstacles are defined as the
union of individual 2D obstacles (found on the 2D faces of the 3 space) which have
been projected through the remaining third dimension thus forming rectangular bars
(See the top center box of Figure 2.1). In general, basic j + 1 dimensional obstacles
defined in the unique j+1 dimensional subspaces are projected through the remaining

n — (7 + 1) dimensions to form the obstacles.

2.3: Obstacles in N-Space

31

Number (n) of activities requiring a given resource

n=2 n— n=
_-4': ——
= j=1
g 2-Cube
«
)
[3)
=
=
0
0
5]
= ‘o
§ J 3-Cube
"80
)
o=
o
Qo
)
—~ 1i=3
a J
.*E ° 4-Cube
=i
) °

Figure 2.1: Types of obstacles resulting from different resource constraints

Heuristic H1/CT

Chapter 3

In this Chapter I will present heuristic H1/CT. This heuristic is built upon Monte
Carlo sampling (see Appendix C). Based on a set of samples taken, the search space
is pruned such that undesirable schedules are eliminated thereby yielding a more
favorable distribution for subsequent sampling. This heuristic has three uses. The
first use is to generate a single solution. This is accomplished by keeping the best
schedule found among all the samples taken. The second use is to prune down the
search space thus leaving a reduced problem with more desirable properties. If the
size of the resultant space is sufficiently small, then it may be possible to employ an
exact method to search it. Alternatively, choosing some schedule from the middle of
the remaining space should yield a robust schedule. Presumably, other schedules of
good quality are near the chosen one. Therefore, if the chosen schedule gets slightly
off track, then it is likely that it’s quality will not degrade drastically. And the third
use is to test whether some set of constraints is capable of pruning the space effectively
(hence the /CT in the name for Cconstraint Tester). If the set of constraints used is

appropriate for the problem, then the distributions of schedule quality seen during

32

3.1: Definition of Heuristic H1/CT ' 33

successive iterations should improve. If the distributions do not improve, then it is
probably not worthwhile pursuing the use of the given set of constraints. Thus one
could avoid, for example, the frustration of developing a branching indicator and a

lower bound for a branch and bound algorithm based on this set of constraints which

is unlikely to perform well.
3.1 Definition of Heuristic H1/CT

This heuristic is defined as follows:

Step 1. Generate a collection of pruning constraints.
Step 2. Generate k new sample schedules.
Step 8. Pick the [best samples from all samples generated.

Step 4. Apply as many of the pruning constraints as possible without removing space

containing the ! best samples.

Step 5. Repeat Steps 2,3,4 for a fixed number of iterations.

3.2 Explanation and Interpretation of Steps

Steps 1 through 4 will now explained in more detail.

Step 1. The constraints used here are in one to one correspondence with the
set of 2D obstacles residing on the 2D faces of the cartesian space. Every trajectory
(schedule) in this space detours one of two ways around each obstacle. The con-
straints to be imposed are of the following form: all subsequent trajectories (sched-
ules) shall detour this way around a certain obstacle. This is equivalent to settling

a disjunction.

3.2: Ezplanation and Interpretation of Steps 34

Of course it is possible to use other constraints, but they must meet certain re-
quirements. First of all, it must be possible to determine whether a given constraint is
consistent with some set of sample schedules. Otherwise, Step 4 can not be executed.
Second, the technique used to generate sample schedules must be able to function
when an arbitrary (but technologically consistent) subset of the constraints is im-
posed (Technologically consistent meaning that some feasible schedule exists within
the pruned space). This is necessary to insure that the sample schedule generator
will not get stuck in a dead end or trap (petri-net terminology).

Step 2. Here the schedules will be generated using a random queueing heuristic
in the context of a simulation of a Job-Shop. Equal priorities are assigned to all
activities queued at a machine and one is chosen at random. In the completion space
this is equivalent to starting a trajectory at the origin, traversing diagonally until
some obstacle is encountered, then choosing at random which way to detour around
it. Here, the number of schedules generated k is typically 100.

One might possibly consider other sampling schemes such as biasing the random
priority dispatch rule towards one of the other dispatch rules. Alternatively, one
might sample from the set of Active Schedules or some biased version thereof.

Step 3. One must decide upon a measure of schedule optimality. Here, the two
measures considered are makespan and flowtime. Choosing the ! (typically 10) best
schedules is simply a matter of selecting the schedules with the best values of the
optimality criterion. As it turns out, the choice of optimality criterion has a profound
effect on the convergence of this heuristic.

Step 4. For each of the [best schedules found, a binary string was generated with
one digit for each of the obstacles. A “0” digit implies detouring one way around the

associated obstacle, and a “1” digit implies detouring the other way. These binary

3.2: Ezplanation and Interpretation of Steps 35

strings were then compared. If the ith digits were the same across the ten binary
strings, then all ten of the ! best schedules detoured the same way around the given
obstacle, and subsequent schedules were required to detour around the given obstacle
the same way.

Technically, it is necessary to insist upon total agreement among the ith digits of
the strings to guarantee that the pruned space contains feasible schedules. However,
many experiments were performed in which only 9/10ths agreement was required,
all of which retained feasible schedules.

Some results obtained using heuristic H1/CT serve as a motivation for the way
heuristic H2 is implemented. The following experiments were designed to show that
a family of good schedules are geometric neighbors in the completion space represen-
tation. For each schedule, there is a corresponding trajectory through the space, and
there exists a “tube” connecting the origin to the far corner within which the density
of good schedules is relatively high. Consequently, heuristic H2 has been designed
to converge upon such a “tube” full of good schedules.

The addition of a precedence relation to a problem specification corresponds
to the removal of a “corner” of the completion space as shown in Figure 3.1. The
removed corner contains states of completion which become technologically infeasible

when the precedence constraint is added.

A set of precedence relations added to a problem can be interpreted as the spec-
ification of an n-dimensional “tube” as follows. In each of the ('2‘) 2D subspaces of
the n job problem (form a unique 2D space from each unique pair of jobs) delete
the corners corresponding to the relevant precedence relations added. The unpruned

region in each of the ('2‘) 2D spaces is the projection of the tube (nD) on to the 2D

space.

3.2: Ezplanation and Interpretation of Steps 36

End
—it
Start Al
End End
Start Start

T A1 A2 A2Z—> A1

Figure 3.1: Two spaces which could result when the precedence is set

3.3: FEzperiments ' 37

3.3 Experiments

A number of experiments were performed using heuristic H1/CT to determine whether
or not the addition of precedence constraints would prune the space effectively under
the optimality criteria of makespan and flowtime. There is one precedence constraint
in the constraint set for each pair of activities which require the same resource for
processing.

The experiment is set up as follows: First a set of schedules is generated using
the Random priority dispatch rule in an event based Job Shop simulation. For these
experiments the number of sample schedules generated per iteration was 100. Next,
the makespan is computed for each of these 100 sample schedules. They are then
sorted by increasing value of makespan (for plotting purposes). The best 10 schedules
(those with minimal values of makespan) were then selected. Precedence relations
which were common to all 10 schedules were then used to prune the space. The
sampling scheme was then repeated within the pruned space lumping the 10 best
samples in with the new samples.

The distributions of schedule makespans (obtained using Random priority dis-
patching) for the original problem and for the pruned versions of it are displayed
using quantile plots. In these plots a separate curve is formed for each set of 100
samples taken. The value of the objective function for each member of the set is

plotted versus its position in the sorted data set. The quantile is closely related to

the percentile. If the value of the objective function is z at the 30th quantile then
30% of the samples have objective function values < z. Results were obtained for a
{6,6, G, } problem [47] using the objective criteria of makespan and flowtime. Three

curves are plotted in Figure 3.2.

3.3: FEzperiments ' 38

S 90,
(=3
@
2
S 0 of 90 Precedence Relations Added
E sk 000 e 52 of 90 Added
- =« 60 of 90 Added

5 5 1 2 1 L 1 1 1 1 1 —
0 10 20 30 40 50 60 70 80 9% 100
Quantiles

Figure 3.2: H1/CT Applied to a 6 job 6 machine problem

3.3: Ezperiments ' 39

The first (top) curve represents a random sampling before any additional prece-
dence constraints have been added to the problem. The second curve represents a
random sampling after the precedence constraints common to the best 10 of the first
100 samples have been used to prune the space. And the third curve represents a
random sampling after the precedence constraints common to the best 10 schedules
of the second sample set have also been added.

The distributions indicate that a class of good schedules have certain precedence
relations in common for this {6,6, G, Makespan} problem. This suggests that an
algorithm which successively reduced the search space by adding selected precedence
relations could successfully prune regions of the search space characteristic to unde-
sirable schedules while keeping regions favorable to good schedules.

This shows that trajectories corresponding to a group of good schedules under
the makespan criterion lie near one another in the associated nD completion space.
This can be seen as follows. Consider any 2D subspace of the space: some of the
corners of this 2D space will have been deleted as a result of the precedence relations
added leaving a relatively narrow connected region from origin to end. Intersecting
the projections of these regions would result in a nD tube which connects the origin
to the state of total completion of all jobs (end). All of the schedules in the pruned
problem lie within this tube. Note that there will be obstacles adjacent to and
intersecting portions of the tube. Shown in Figure 3.4 are the 2D spaces associated
with the _{6,6,G,Makespan} problem. The borders of the non-deleted space are
outlined with dotted lines. The origin of each subspace is in the lower left, and the
projections of the 10 best trajectories upon which the the last pruning operation was
based are shown as solid lines.

Heuristic H1/CT was applied to 50 {10,10,G, Makespan} problems in order to

3.3: Frperiments RS 40

test it’s performance relative to Monte-Carlo sampling. The best solution obtained
by H1/CT throughout all of the iterations was compared to the best solution obtained
by Monte-Carlo sampling. There were 100 samples taken during each of 5 iterations
of H1/CT for a total of 500 samples, and there were 500 samples taken in the Monte-
Carlo approach. The average improvement over the Monte-Carlo approach for the
50 problems was 1.0%. If this experiment was repeated on a similar 50 problems,
then the average improvement would fall with 95% confidence into the interval 0.3%
to 1.7%.

Figure 3.3 shows the results of a repeat of the experiment on the {6,6,G, } prob-
lem but under the flowtime criterion. Results were quite different for this case. The
precedence relations common to the 10 best sample schedules pruned the space rather
indiscriminately. This situation is improved only slightly with the next iteration and
the distribution would have been more favorable if no pruning had been done. This
suggests that the type of constraint used (adding precedence relations) to prune the
search space is not appropriate for this case. In other words, the orientation of a
group of precedence relations is insufficient to characterize a set of lesser flowtime
schedules (Even though the precedence relations added were consistent with the 10
best flowtime schedules found). That is, the pruning that was done during the first
iteration decreased the probability of generating good schedules during the subse-
quent iteration. This suggests that both good and bad schedules were eliminated
as a result of the pruning. Therefore, an algorithm which successively reduces the
search space by adding selected precedence relations would be unlikely to succeed as

the reduced space would include only a small fraction of good schedules.

Whether or not heuristic H1/CT converges depends heavily upon the spatial dis-

tribution of good schedule trajectories through the space. As was seen under the

3.3: Ezxperiments

l;owume
[
|
P

- 510090 Added
- 600l 90 Added

ey J
e 77
i oo ./)
P r /
..0’. .J / J
(] — o - ’—

Figure 3.3: H1/CT Applied to a 6 job 6 machine problem

3.3: FErperiments

42

Figure 3.4: Pruned 2D Subspaces

3.3: FErperiments ' . 43

makespan criterion, a high density of good schedules was found to lie within a tube
connecting the origin to the state of total completion in the cartesian space. Such
a tube can be specified by a set of precedence relations. The spatial distribution
of good flowtime schedules could not be captured (characterized) by a set of prece-
dence relations. Certain problem structures may influence the spatial distribution of
schedule trajectories a predictable manner. See Appendix D for an example where
the effects of and strategies to compensate for symmetry introduced into the problem

structure are shown.

Heuristic H2

Chapter 4

Based on the results of Chapter 3 a heuristic (H2) was developed for specifying
precedence constraints so as to converge upon a region of the completion space con-
taining a high density of “good” schedules under the objective criterion of Minimum
Maximum Lateness. When each job has the same arrival date and the same due date

this criterion is equivalent to the makespan criterion.
4.1 Definition of Heuristic H2

The heuristic is defined as follows:
Step 1. Generate a collection of the obstacles (disjunctions).
Step 2. Update the Early Start Times and the Late Start Times of each activity.
Step 3. Select an obstacle for deletion.
Step 4. Delete the selected obstacle (resolve the selected disjunction).

Step 5. Repeat Steps 2,3,4 until no obstacles remain.

44

4.2: Erplanation and Interpretation of Steps ‘ 45

4.2 Explanation and Interpretation of Steps

Steps 1 through 4 will now be explained both in terms of disjunctions and in terms
of obstacles.

Step 1. Each obstacle in the space corresponds to a possible conflict over a scarce
resource. In the classic Job-Shop Scheduling problem each activity requires a single
type of machine for it's processing and there is only one of each type of machine
available. In order to generate a collection of the obstacles, find all pairs of activities
which require the same machine yet are in different jobs. Each pair also corresponds
to a disjunction (an unresolved precedence relation between the elements of the pair).

Step 2. An activity’s Early Start Time is the earliest possible time at which
the processing of an activity can be started without violating job arrival times or
the precedence relations between activities. These times are computed assuming that
unlimited resources are available. An activity’s Farly Start Time is the maximum of
the Farly Start Time plus processing time of the activity’s immediate predecessors
(i.e. the Early Finish Times of the immediate predecessors) and the activity’s arrival
date (if it has one). To find an activity’s Late Start Time first find the minimum
Late Start Time of the given activity’s immediate successors. Then subtract the
given activity’s processing time from the minimum of the previous result and the
given activity’s due date.

Step 3. For each obstacle compute the following two quantities from the pair of
activities (A;, A;) which gave rise to the obstacle. The two quantities are the slacks
hetween the two activities for their two possible orderings. If activity A; precedes 4;
then the slack is the Late Start Time of 4, minus the Early Finish Time of 4,. It

activity A; precedes A, then the slack is the Late Start Time of A; minus the Early

4.2: FErplanation and Interpretation of Steps . 46

Finish Time of A;. The maximum of these two slacks is the Max-Slack associated
with the obstacle while the minimum is the Min-Slack. Select the obstacle with the
smallest value of Min-Slack. If there is a tie in Min-Slack value then break the tie
on the basis of largest Max-Slack.

Figure 4.1a shows what this selection process looks like in a two dimensional
example space. Figure 4.1a shows a number of trajectories used in the obstacle
selection process. These trajectories were obtained by ignoring all but one obstacle
and finding the longer of two possible trajectories around this remaining obstacle.
This process was then repeated on each of the obstacles to yield the trajectories
shown. (The length of a trajectory is determined by summing the maxima of the
projections of it’s piecewise linear segments on to the axes.) Then the obstacle
associated with the longest of these paths is selected for deletion. The longest path
is easily determined by visual inspection to be the one with the minimum amount of

co-processing (diagonal segments).

Step 4. The “longest” path selected in Step 3 is actually a lower bound on
the schedule length (makespan) for trajectories (schedules) which detour around the
same side of the obstacle as the longest path. In all of these schedules activity A; is
processed before activity .4;. The space is pruned such that these “longer” schedules
can no longer be generated. This pruning is accomplished by requiring that activity
A, always be processed before activity 4;. The pruned region of the space shown in
the lower left of Figure 4.2 corresponds to states which become infeasible as a result
of requiring that A; precede 1,. The lower right of Figure 4.2 shows how the space
would have been pruned if we had required that 4, precede 4;. These two possible
pruning operations correspond to the two possible ways of “settling” a disjunction.

Figure 4.1b shows the space divided into regions associated with the selected

4.2: FErplanation and Interpretation of Steps

47

X
B

&S
S5
S/

NN\

5
X
A

START

(b)

Figure 4.1: Obstacle Selection

.2: Ezplanation and Interpretation of Steps ' 48 .

End
b
Start Al
End End
Start ~ Start

AL— A2 A2 —> Al

Figure 4.2: Two spaces which could result when the precedence is set

4.2: Frplanation and Interpretation of Steps + 49

obstacle. Any trajectory which passes through regions A and then (' must be at
least as long as the longest path computed above. Those trajectories which also pass
through region B are even longer. Note that there is also a simple upper bound on
“length” for paths which traverse through the union of regions 4, B, and ('. This
is simply the path along the outer boundary of the space. The closer the obstacle
under consideration is to the outer limits of the space, the less difference there is
between these simple upper and lower bounds on the path length. In the limiting
case of an obstacle wedged into the corner the lower bound is equal to the upper
bound.

Consider a trajectory which starts out in region A, then enters region D and
finally enters region (. Regardless of what obstacles were previously ignored in D,
the path segment through D can be no longer than that of a vertical segment along
the inner boundary of A from the crossover point to the corner of the obstacle added
to a horizontal segment along the lower boundary of C' from the corner of the obstacle
to the crossover point in C'. Therefore, it is likely that deleting the corner of the
space including the obstacle and a portion of region B, which consequently limits
trajectories to those passing through D, will result in the pruning of an undesirable
set of schedules.

The above mentioned bounds and approximate results get weaker when applied
to obstacles residing in the inner regions of the space. Therefore in order to maximize
the effectiveness of the bounds used, obstacles at the outskirts are deleted first then
the space is gradually pruned from the outside inward. This way, the obstacles under
consideration will lie near the outskirts of the space. Figure 4.3 shows the obstacle-
less space resulting from repeated application of the sele(_'tion and deletion process.

Also shown is one of a set of possible trajectories through the space.

4.2: Erplanation and Interpretation of Steps ' 50

END

START

Figure 4.3: Trajectory Through Pruned Space

This bound or branching indicator has been used by other researchers (e.g. P*
73] pg. 123) as a node selection criterion for a branch and bound algorithm. In this
application, the obstacle which both lies on the critical path and has the minimum
value of P* is chosen to branch upon (In H2 an obstacle is selected from the set of
all undeleted obstacles, not from only those on the critical path.). It (P*) has been
found to be unsatisfactory for this purpose because it is a relatively weak branching
indicator and because the resultant search tree can be very deep (m(';) See section
4.7). I believe this weakness is caused by limiting the selection process to obstacles
along the critical path. Because the critical path (trajectory) lies near the body
diagonal of the space and not near the outer edges, this weakness is not surprising.
Instead of using this as a branching indicator this bound is used by H2 as a selection

rule. It has the effect of choosing obstacles which lie near the outer regions of the

4.3: Intuitive Erplanation of Heuristic H? N 51

space. These obstacles are deleted first, then those close to the outer edges are
deleted. The overall effect is to slowly converge about a tube shaped region of the

space.

4.3 Intuitive Explanation of Heuristic H2

Heuristic H2 looks for what seems to be the most detrimental decision possible - (this
decision would either lengthen the critical path or maximally reduce slack somewhere
in the network of activities). It then makes the decision complimentary to this most
detrimental one. In other words, it avoids the worst possible decision at any given
point.

Making such a decision leaves open more options for future decisions. This hap-
pens two ways. First, in general there is more slack left in the network than would
be if the worst possible decision was made. Second, in general this decision does
not decrease the number of subsequent decisions to be made (transitive closure of
the decisions precedence relations added| so far usually does not restrict any of the
remaining decisions). So, in some sense, small decisions are made. The graphical
interpretation is this: Usually when a 2D obstacle is deleted along with its appro-
priate corner of the space, only that one particular obstacle is deleted. Note, that
when the obstacle and corner are deleted only a relatively small portion of the total
space is removed.

By always working near the outer fringes of the space, the relatively simple bound
(which the decisions are based upon) are improved. The outer edges of the space are
involved in subseguent calculations which would not be the case, if for example, the

first obstacle considered for deletion was near the center of the space.

4.4: Ertension to Higher Dimensions - 52

4.4 Extension to Higher Dimensions

The above heuristic, although presented in two dimensions, can easily be applied
to higher dimensionality problems. Figure 4.4 shows an example three dimensional,
three job space. This corresponds to a “3x3 Job Shop” problem. Only two obstacles
are shown for clarity. The bar shaped obstacle results from two activities (the first
activity of Job 2 and the first activity of Job 3) which require the same resource.
The cross shaped one results from three activities in different jobs each of which
requires the same resource. This obstacle is formed by the intersection of three
rectangular bar segmehts thereby forming a three dimensional cross. In the classic
Job-Shop Scheduling problem (each job visits each machine once) there are three
of these cross shaped obstacles nested together with the protruding ends trimmed
to form the space. These obstacles occupy a large fraction of the volume of the
space. This density issue is dealt with in detail in Appendix A. An unobstructed
region of the three dimensional space corresponds to a situation in which all three
jobs can be co-processed. A unobstructed plane formed between the bar shaped
extensions of neighboring obstacles corresponds to a situation in which two jobs can
be co-processed. And a line corresponds corresponds to a situation in which only
one job can be processed. These unobstructed regions, planes and lines are available

for traversal by trajectories.

Instead of working directly in this three dimensional space, the heuristic is ap-
plied to the (;) = 3 unique two dimensional subspaces (non-redundant faces of the
three cube each of which corresponds to a unique pair of jobs). These are shown

in Figure 4.5. Each of the 2D obstacles is considered separately as in the previous

2D case, but when the bounds are computed the entire 3D space is used with the

4.4: FErtension to Higher Dimensions .

53

Job2

Jobl —p»

Figure 4.4: Example Space Associated With A Three Job Problem

4.5: Correctness Sketch 54

capacity constraints relaxed on all machines. The only relevant constraints at this
point are those from the single obstacle component in the 2 space and the outer
edges of the 3D space.

In the three dimensional example, it was assumed that only one of each machine
type was available. This gave rise to the 3D cross type of obstacle. If one assumes
that two of each machine type is available then the obstacle consists of only the
center of the cross (see Figure 2.1). In this case, the heuristic as described above
could not be applied and another similar heuristic which uses a three dimensional

base case would be required.

4.5 Correctness Sketch

Does following the steps of this heuristic guarantee that some technologically feasible
schedule will be generated? The answer is yes, and the question can be rephrased
negatively in two different ways. One, when the space is pruned can the pruning occur
such that the resulting space is composed of disjoint regions? Two, (equivalently) is
it possible to generate a directed cycle of precedence relations?

Shown in Figure 4.6 is how successive pruning operations could result in the
separation of the space into disjoint regions. First the upper left is deleted along
with the lower right hand obstacle. Then the lower right is deleted along with the
upper left hand obstacle. This resultant space is composed of the small upper right
and lower left regions with no possible path between them and consequently no

possible feasible schedule.

To show that this cannot happen. we resort to a Gantt chart representation of

the problem. Here the task is to show that a directed cycle is not generated as a

4.5: Correctness Sketch

55

(Top)

Job 3 —»

Job1l —»

(Front)

Job 2 —»

Job 1l —»p

- (Right)

Job 2 —»

Job3 —0p

Figure 4.5: Two Dimensional Subspaces Associated With A Three Job Problem

<
N

Correctness Sketch

56

End

Removed

Start

Figure 4.6: Pruning which results in disjoint regions

4.5: Correctness Sketch 5%

result of the addition of some precedence relation. In order to generate a directed
cycle by the addition of a single precedence relation, there must already exist a
linear sequence of two or more activities (ordering of some activity with respect to
itself is not considered). Such a sequence is shown in Figure 4.7. Activity A, is
constrained to precede the (possibly zero-length) sequence of activities A; the last
of which precedes activity A4,.

It is assumed that activities 4, and A, are members of different jobs and that we
are seeking to order these two activities by the addition of a precedence relation. The
current relationship of the two activities (A4, ~ A;) was assumed to be established
implicitly { via transitivity) at some previous step of the algorithm. In order to decide
whether A, should precede A; or vice versa the “slack” between these two operations
is computed for the two possible configurations (See Section 4.1). The precedence
relation is then added in the orientation corresponding to the larger slack. The top
of Figure 4.7 indicates the slack calculation for the case of activity A, preceding
activity 4,. This is simply the Late Start Time of activity 4, minus the Farly

Finish Time of activity A4,. These times are annotated in the figure.

The slack for the alternative configuration (A, > A,) can be computed as Late
Start Time of A; minus the Farly Finish Time of A;. This can be expressed
in terms of the precious calculation as shown in Figure 4.7b. The Farly Finish
Time of activity A; is equal to the Farly Finish Time of activity 4; plus the sum
of the processing times of the intervening activities A; plus the processing time of
activity A,. Similarly, the Late Start Time of activity A, is equal to the Late
Start Time of activity A, minus the sum of the processing times of the intervening
activities 4; minus the processing time of activity 4,. Subtracting the Farly Finish

Time of activity 4, from the Late Start Time of activity A; is strictly less than

4.5: Correctness Sketch - 58

SLACK-IF(A1,A2) = LST(A3) - EFT(A1)

Al ...D | | a3

| i
EFT(A1) LST(A3)

(a)

'L8T(A1)

| SLACK-IF(A2,A1) = [LET(A2) - SUM(P(AD) - P(A1) | -
| [EFT(AL) + SUMP(AD) + P(A2) |

- EFT(AS)

- = LST(A3) - EFT(AL) - [P(A1) + P(A3) + SUM(P(A))) |
= SLACK-IF(ALA3) - [P(A1) + P(AS) + SUM(P(A))) |

®)

Figure 4.7: Gantt Chart for Correctaess Proof

4.6: What Is Different About This Algorithm? : 59

the slack computed for the acyclic orientation of the precedence.

4.6 What Is Different About This Algorithm?

Heuristic H2 is most closely related to the algorithms which can be interpreted in
the completion space. These algorithms can be grouped into two classes. The first
class includes those which start a trajectory at the origin and subsequently delete
the space adjacent to the evolving trajectory (e.g. priority dispatching). The second
class includes those which generate the tube by pruning out large regions of the space
adjacent to the current critical trajectory (as found by the Critical Path Method)(e.g.
branching and bounding on disjunctions along the critical path). In these two classes,
the early pruning operations are major ones. In other words, relatively large numbers
of alternatives are precluded early on. If these decisions were not correct, then the
algorithm must either backtrack or fail to find an optimum.

The algorithm developed in this thesis falls into a third class. In this class the
tube is gradually converged upon by pruning away small pieces from the outer edges
of the space. With this approach the first decisions are minor ones precluding only
relatively small numbers of well bounded alternatives. Thus it is likely that the
pruning decisions made early on by heuristic H2 are correct ones. The outside in
approach just described is not attractive for use in branch and bound algorithms
because the large number of decisions made corresponds to a relatively deep search

tree.

4.7: Complezity 60

4.7 Complexity

One drawback is that heuristic H2 has to explicitly deal with every 2D obstacle in
every subspace. This results in the majority of cpu time being expended iterating

through the collection of obstacles.

The steps of heuristic H2 as defined in Section 4.1 follow:

Step 1. Generate a collection of the obstacles (disjunctions).

Step 2. Update the Early Start Times and the Late Start Times of each activity.
Step 3. Select an obstacle for deletion.

Step 4. Delete the selected obstacle (resolve the selected disjunction).

Step 5. Repeat Steps 2,3,4 until no obstacles remain.

For a complexity analysis assume that we have an {n,m, G, L 5.} problem. Here
there are n jobs each of which is a linear chain of m activities. Each job must visit
each machine exactly once. The nm activities can be collected into groups of size n
(one group for each resource) in O(nm) time. This O(nm) time is an estimate (in
terms of input problem size) of how many cpu cycles (or memory cells) are required
to compute the desired result. Typically, constant factors and terms which grow
relatively slowly with input problem size are omitted from such estimates. Then (;‘)
obstacles are generated from each of these groups. Step 1 is only performed once
and takes O(nm + m(’;)) = O(n?m) time.

Step 2 involves updating the slacks in a PERT network graph. This can be done in
O(Vertices + Edges) [2] time. There are O(nm)Vertices and O(nm)Edges to start
and O(n?m)Edges added as the algorithm proceeds (one for each deleted obstacle.)

4.7: Complezity ' 61

Therefore step 2 takes O(2nm + n?m) = O(n?*m) time. Step 3 is merely adding a
new edge to the PERT network graph which takes constant time.

Steps 2 and 3 are repeated once for each obstacle resulting in O(n*m?) for an
overall estimate of run time. If one assumes that the problem is “square” (i.e. n = m)
then the time complexity is O(a®) where there are a activities to be scheduled. From
the point of view of the number of obstacles o0 = m(';) the complexity is O(0?).

Preliminary experiments indicated that much cpu time was being expended trying
to update sections of the PERT network graph that were not affected by the latest
edge added. To alleviate this, a quick slack updating procedure was developed. In
this procedure, the effects of adding a new edge were propagated only as far as
necessary. This procedure could take longer in the worst case but on average takes
less time than the procedure which always processes the entire graph. Experience
shows that problems involving a couple of hundred activities can be processed in a
few minutes on a Symbolics 3650 Lisp Machine equipped with 2 Megabytes of core
memory.

The quick slack update procedure is as follows. Starting from the tip of the prece-
dence relation just added propagate Early Start Times forward by giving preference
to the activities which will be most affected. This effects an implicit topological sort-
ing because no activity can be affected more than the largest change in Early Start
Times and guarantees that the updating is performed in a correct order. Propagat-
ing large effects first supersedes smaller propagated effects, therefore each node will
be visited a maximum of one time.

Then repeat the procedure propagating Late Start Times starting from the tail of
the precedence relation added in a backwards direction toward the beginning of the

graph. The activities being processed are inserted into a “heap” [2] using the change

4.7: Complezity 62

in the activity’s slack as a “key.” Using a heap allows an element to be inserted
and allows the element with the maximum “key” to be removed in O(log(n)) time
if there are n elements in the “heap.”

To put the complexity of H2 into perspective, consider the complexity of some
of the existing algorithms. First consider the prospect of complete enumeration.
Assuming that we are trying to solve a {n,m, G, } problem, there is a simple upper
bound on the number of distinct possible sequences. This is given by (n!)™. This
bound could be attained by structuring the problem such that all the jobs visit the
machines in the same order. Then the n jobs could be ordered independently at each
of the m machines.

Second consider a Branch and Bound algorithm which branches on disjunctions.
In an {n,m, G, } problem, each of the m activities in a job requires a unique machine
for processing. There are (';) disjunctions associated with each of the m machines
for a total of m(';) disjunctions. This is an upper bound on the maximum depth
of the Branch and Bound search tree. The search tree is binary because any given
disjunction can be resolved in two ways. The computation of the lower bound used
in branching decisions range in complexity from trivial to NP-hard.

Third, consider a Branch and Bound algorithm based on the generation of Active
Schedules. In this case, the depth of the search tree is bounded by the maximum
number of conflicts which can occur on all machines. This maximum depth is nm and
reflects the possibility of all the n jobs conflicting at each of the m machines. Again
computation of the lower the bounds used branching decisions range in complexity
from trivial to NP-hard.

Forth, consider a Dynamic Programming approach. For a single machine problem

({n,1,G,}) a convenient representation to use is the n dimensional completion space.

4.7: Complezity ‘ 63

One dimension represents each job with the lengths of the axes corresponding to
the processing times of the various jobs. Since there is only one machine available
for processing, trajectories are constrained to follow the edges of the space. The
Dynamic Programming formulation is to find the optimal cost trajectory to each of
the vertices in terms of the immediate predecessor vertices. In this case there are 27
possible vertices to visit.

When there is more than one type of machine available, the situation is more
complex. We no longer have a lattice of vertices defining the endpoints of the tra-
jectory segments. This is because the trajectories are no longer constrained to the
edges of but may traverse diagonally through regions of the space. There is a way
around this though. If we are willing to constrain the problem to have only integer
processing times, then each of the n coordinate axes can be divided at unit intervals.
This divides the space up into unit n cubes. All trajectory segments are guaranteed
to have as endpoints the vertices of these n cubes. There are approximately mp + 1
vertices along the length of any given axis; p vertices for each activity of approxi-
mate processing time p and one point at the end. The total number of vertices is
approximated by (mp + 1)™.

Fifth, consider a Priority Dispatch Rule being used in a simulation environment.
Here, similar to the Branching and Bounding on Active Schedules, there is an upper
bound on the maximum number of conflicts which can occur. This bound is mn.
Associated with each of the conflict resolutions is the computation of the Dispatch
Rule. This ranges from a trivial constant (e.g. a due date) to looking ahead to the
next queue to possibly some function of all of the activities. In general relatively
simple indicators are used. Priority Dispatching could be thought of as a depth first

search of the search tree associated with Branching and Bounding based on Non

4.8: Local Rule ' 64

Delay Schedules. Perhaps the Lower Bounds developed for the Branch and Bound

algorithms could be adapted to form more sophisticated Dispatching Rules.
Similar to Priority Dispatching, Heuristic H2 can be thought of as a depth first

search of the search tree associated Branching and Bounding on disjunctions. In this

case the maximum depth is attained and is given by m(';)

4.8 Local Rule

Heuristic H2 is a local rule in the sense that only a relatively small amount of
information (slack) is used in deciding where and how the space will be pruned. In
some cases, the use of a local rule can be proved to lead to an optimal solution; but in
the case of heuristic H2 some simple counterexamples show that this is not the case
(see Section 4.11). This is no surprise considering the problem is NP-Hard. What is
surprising is how well it works given the nature of the “bounds” (local rule) used to
decide where and how to prune the space. There exist a spectrum of lower bounds
developed over the years ranging from ones as simple as the rule used in H2 to ones
which are NP-hard.

Adams et al [1] used bounds (which were NP-hard) in an iterative procedure
involving some redoing of earlier decisions. First, all machines but one were ignored
and the activities scheduled on the remaining machine. Then, leaving the order-
ing of these scheduled activities intact, activities requiring the next machine were
scheduled and so on. Periodically, activities scheduled on one machine were freed up
and then rescheduled as a method of relaxation to accommodate for factors which
were not accounted for earlier. Heuristic H2 produced a superior schedule on the

{10,10, G, Makespan} problem found in [47] even though the local rule used by H2

4.9: Rate of Pruning ' 65

was trivial in comparison to the lower bound used by Adams.

4.9 Rate of Pruning

In Figure 4.8 is shown an estimate of the number of feasible states of completion
within the cartesian space as heuristic H2 proceeds. This particular graph was from
the {10,10, G,Makespan} problem found in [47]. For this problem there are 450
disjunctions to be settled. If one were to define 11 points along each of the coordinate
axes (one at the beginning and end of each activity), then a lattice of points (states of
completion of activitiés) would be defined by choosing one coordinate (point) along
each axis. The graph is an estimate of the number of such lattice points left in the
cartesian space as the 450 disjunctions are successively settled. This estimate was
obtained using the numbering scheme in [76]. Notice that the number of remaining

lattice points is almost a constant fraction of the number from the previous iteration.

4.10 Attempts at Increasing Performance

A number of alternative obstacle selection rules for heuristic H2 were evaluated before
arriving at the final selection rule. Presently, each obstacle O; has two values associ-
ated with it (see Section 4.2 Step 3). These values correspond to what slack would
exist between the two activities for the two possible orientations of the precedence
relation between them. The larger of these two slacks is defined as Max-Slack while
the smaller one is Min-Slack. The obstacle with the smallest associated Min-Slack
is chosen for deletion first. If there is a tie then the obstacle with the largest value

of Max-Slack is chosen. Using the smaller of Max-Slack seems to make only a minor

4.10: Attempts at Increasing Performance ée

10.5

10.0

9.5

9.0

85

States of Completion Estimate [Logl0]

8.0

1.5

7.0

6-5 1 1 1 1 1 1 [1 [
0 50 100 150 200 250 300 350 400 450
Number of Precedence Relations Added

Figure 4.8: Estimate of number of states of completion remaining as heuristic H2

proceeds on a 10 job 10 machine problem

4.11: 2D Counterezamples ' a7

difference, possibly improving the solution obtained in certain problem instances.

Some of the other (fruitless) alternative obstacle selection schemes tried are:

e Instead of breaking ties with the largest value of Max-Slack, ties were tem-
porarily ignored. This delaying of resolution of the most critical obstacles was

found to be detrimental to performance.
e Choose the obstacle with the smallest Max-Slack.
e Choose the obstacle with the largest Max-Slack.
e Choose the obstacle with the largest Min-Slack.

One question which arises in problems of this sort is; is the solution locally
optimal? Even though the global optimum may not have been obtained it is desirable
that the solution be at least locally optimal, otherwise some simple modification
should be used to improve it.

In order to test the local optimality of the solutions obtained, a downhill only
relaxation routine was applied to some sample solutions. The relaxation is effected
by interchanging two adjacent activities along the critical path. In the test, the
interchange is accepted if the reordering results in a lower value of the objective
function, otherwise a reordering of another pair activities is tried. Applying this
procedure to some trial solutions resulted in little or no improvement indicating that

the initial solutions found by heuristic H2 were very near to or at a local optimum.

4.11 2D Counterexamples

When solving {2, m, G, Makespan} problems, heuristic H2 almost always finds an op-
timal solution. Several hundred randomly generated {2,5,G,Makespan} problems

4.11: 2D Counterezamples 68

were tested before one was found on which heuristic H2 failed to find the optimal so-
lution. The optimal solution which was used for comparison was found via exhaustive
enumeration. Figure 4.9 shows two problem instances in which the heuristic failed
to find an optimal trajectory. The numbers correspond to the order in which the
obstacles were selected for deletion. Obstacles number 1, 2, and 3 have already been
deleted and which way to delete number 4 is under consideration. The two alter-
native trajectories shown in each case are rated with equal value by the decision
procedure and the suboptimal one was chosen by chance. In both cases the subopti-
mal performance was due to ignoring the presence of the last obstacle when deciding

how to delete the next to last one.

4.11: 2D Counterezamples

89

Figure 4.9: Suboptimal Trajectories in 2D Problems

Experiments and Results

Chapter 5

5.1 Experimental Objectives

The objective of this chapter is to show how heuristic H2 performs as certain prop-
erties of the test problems are varied. Heuristic H2 will be benchmarked against an
array of the priority dispatch rules and some biased search methods. These experi-

ments are designed to show:

e Performance relative to the priority dispatch rules,
e Performance as problem dimensionality increases, and

o Performance over various objective criteria.

5.2 Measures of Performance

From the work of A. H. G. Rinnooy Kan the following collection of criteria form a
reasonably rich set of regular measures which can be used (possibly in combination)

as measures of schedule goodness.

70

5.2: Measures of Performance ' 71

A regular measure f has the following property expressed in terms of C; the

completion time of Job;.

If
f(Ch,y...,Cn) < f(Cy,y...,C}) (5.1)
then
Ci<C; (5.2)

for at least one 1.
These criteria are based on arrival times, completion times and due dates. They

can be combined to reflect a variety of shop operating costs [15], [73]. These six are:

¢ Chae = Max Completion Time or Makespan

o Y.C; = Sum Of Completion Times or Flowtime
o Y w,C; = Weighted Sum Of Completion Times

o Lopix = Max Lateness

o Y T; = Sum Of Tardiness

o Y wT; = Weighted Sum Of Tardiness

Lateness is the difference between a job’s due date and it’s completion time. The
tardiness is defined as the maximum of 0 and the lateness. These criteria do not
include costs incurred for the early completion of jobs.

An additional criterion which would be useful would be some measure of robust-
ness. This would measure cost sensitivity of the schedule either to minor variations in
problem data (some activity takes longer to process, etc.) or to major changes such

as shop reconfiguration (some machine breaks down). This would probably lead to

5.3: Problem Structure/Sources 72

schedule specifications which included alternative contingency sequences. This has

yet to be quantified.

5.3 Problem Structure/Sources

The test problems used in these benchmarking experiments were either obtained
from the literature [47], derived from such a problem by interchanging some of the
activities, or by random means. The problems were either of the flow type or the
general type. In flow type problems, each job visits each machine once and all jobs
visit the machines in the same order. In the cartesian space representation, all the
obstacles lie along the diagonals. In the general problem, again each job visits each
machine once, but any job can visit the machines in any order. In the cartesian space
representation, the obstacles are scattered about - one in each row and one in each
column.

A {10,10,G, Makespan} problem was chosen from the literature as a basic test
case [47]. This problem involves 10 jobs each 10 activities long and 10 different
machines. It is an instance of the General Job Shop Scheduling Problem and a value
exists for the optimal makespan solution for it. This optimal makespan is 930 time
units. Additional problems were derived from this one by interchanging the order
of some activities within a job. From the same source came a {6,6, G, Makespan}
problem with similar attributes. The optimal makespan for this problem is 55 time
units.

Arrival dates and due dates were added to the problems to generate additional
problems. The arrival date for the first job was set at 0, for the second at 10% of

the average job duration, the third at 20% and so on. The due dates were similarly

5.4: H2 vs. Priority Dispatching : 73

skewed, and the average due date was set such that all the solution techniques had
difficulty avoiding tardiness.

For problems that were generated totally randomly, either the flow or general
constraints were imposed, a machine ordering was randomly chosen, and processing
times were independently generated from a flat probability distribution. In [47]
is specified a problem parameter R, the ratio of the longest to shortest (integer)
processing time. They used values of 2, 3, 5, 8, 10 and 15. When the ratio is 1 (equal
processing times for all activities), the distribution of objective function value over
the schedules is approximately Gaussian. As the parameter R is increased, additional
peaks appear in the distribution which makes the problem more unpredictable. In the
problems generated here, relatively large values of R (e.g. 10) were used. Processing
times were assumed to be flatly distributed within the range of 100 to 1000 time

units.

5.4 H2 vs. Priority Dispatching

The heuristic was benchmarked against an array of the traditional priority dispatch
rules. Each rule was used to generate a single solution for comparison against the
solution obtained by heuristic H2. Fifty {10,10, Gen, } problems were generated as
described above with all jobs arriving simultaneously. The priority rules used for

comparison were:
¢ Earliest Due Date (DDATE) - The job with the earliest due date is chosen.

¢ Expected Work in Next Queue (XWINQ) - Look ahead to the next queue
that a job will visit. Add the job’s processing time to the sum of the processing

times of the jobs in the next queue. Choose the job with the smallest value.

5.4:

H2 vs. Priority Dispatching ' 74

Fewest Jobs in Next Queue (NINQ) - Look ahead to the next queue that

a job will visit. Choose the job headed to the shortest next queue.

Fewest Operations Remaining (FOPNR) - Choose the job with the small-

est number of operations remaining until completion.

First Come First Served (FCFS) - Choose the job which arrived in the

queue earliest.

Least Slack First (SLACK) - For each job subtract from the job’s due date
the current time and the processing time of the rest of the job. This is the

slack. Choose the job with the least slack.

Least Slack Per Operation (SOPN) - For each job, divide the slack by the

number of operations remaining. Choose the job with the least of these values.

Least Work in Next Queue (WINQ) - For each job, sum up the processing
times of the jobs in the next queue which the job is going to visit. Choose the

job with the minimum value.

Least Work Remaining (LWRK) - Choose the job with the least total

amount of processing left to be done.

Modified Due Date (MDD) - For each job, compute max(1,(due date -
current time)/total processing time of the rest of the job). Choose the job with

the smallest such value.
Process Time + (Slack / Operations Remaining) (PSOPN)

Process Time + Expected Work in Next Queue (PWQP)

5.4: H2 vs. Priority Dispatching ' 75

Process Time + Work Remaining (PWRK)

Process Time / Operations Remaining (POPNR)

e Process Time Difference J, J+1 (PSP)

Shortest Processing Time (SPT)

o (Slack * Process Time) / Work Remaining (MSPON)
e Work in Next Queue / Next Operation Process Time (PWQP)

Detailed descriptions of these rules and their relative merits can be found in [24].
Ties were broken using the First Come First Served rule.

Shown in Figures 5.1 and 5.2 are plots of the relative performance of the heuristic
and dispatch rules under the makespan optimality criterion. Shown in Figures 5.3

and 5.4 is relative performance under the flowtime criterion.

Each individual plot shows the performance of the rule listed in the title position
relative to the best solutions found by all of the rules taken together. Problem number
increases along the x axis. For each of the fifty problems, the relative difference
between the solution found by the rule under consideration and the best solution
found for the problem was plotted along the y axis. If a given rule always found the
best solution then its curve would lie along the x axis. The plots for each rule all
use the same y scale to facilitate visual comparison. Next to each title are a mean
and a standard deviation summarizing the performance of that rule.

As can be seen from the plots, heuristic H2 outperforms the array of priority
dispatch rules under the criterion of makespan. Under the criterion of flowtime the
least work remaining rule is consistently best. Heuristic H2 is “tuned” to converge

upon a tube shaped region in the cartesian space. It does this by gradually pruning

5.4: H2 vs. Priority Dispatching

76

T T T overatt Best

LA

"™ spn T Ints Rute L3710} ST In1s Rute
& T T % Ooveratt Best T T T overall pest
b0 ela e ALS s A NN AL \./L:Am,a:
Problens Mean 2.78 Dev 4.28 Problem§ Mean 6.89 Dev 6.32
-2 MODIFIED DUE DATE
™ spn T Inds avte Ak SON ST 1nis Rule

T T ° overall gest

Problent Nean 32.3 Dev 14.% Probleng ftean 12.8 Dev 9.88
PROCESS T + UORN REMRINING PROCESS TIME DIFFERENCE J, Jet
™ $pO ST Ins mute nwspn T s ute
T T 7 overalt sest T T ® overal Bast
o M AP AV ‘/A"‘NMM\/\:‘A #
Problent Mean 12.2 Dev 6.62 Problemf Mean 16.8 Dev 11.1
LERST SLACY PEP OPEP EXPECTED HORK IN NEYY 0
~ spn hasnandi TXT N VTS mcson hammasadt | YP X ITY
® T 7% overatt sest ST 7% overait Best
N WA
\A\J‘J\J
h[l: V‘.’*/" V\f\l \f' ca] Jo 0
Probleml Mean 15.8 Dev 10.7 Problemg Mean 32.6 Dev 11.6
FEWEST IN NEXT QUEUE LERST HWORK REMAINING
™ son ST inis myte M 50N ST 1his mute
® T T overalt pest * T 7% overatt Best
} -N ., '/v
AL A \J\W Al A}\J\/\,J\,W A
Probleng Nean 18.3 Dev 8.99 Problent MHean 18.3 Dev 8.99

EAPLIEST DIE DRTE

FST COME FST SERVED

Figure 5.1: Relative performance under the makespan criterion (page 1 of 2)

5.4: H2 vs. Priority Dispatching A ™

™ spn ST Ints mute " 5pn ST Ints Ryde
T T overalt sest T T 7% overal Best
| XA AN\ W) r"\./ L&M %W/\/J\AA\;W
Problemg MHean 6.77 Dev 6.39 Probleng Mean 10.2 Dev 6.63
(SLACK. = PROC T) ~/ WORK REMAINING PROC T + (SLACK <~ OPER REMAINING)
mspn ST Inis Rule Akspn T s Rute
T 7 overalt Best T 7 overal) Best
o
e fad Fod
Froblems Mean 15.8 Dev 10.8 Probteng Hean 9.74 Dev S.81
PROCESS T + EMPECTED LIORK IN NEXT @ PROCESS T QVER OFER REMRINING
M son T Ings Rute mspn ST Ins Rule
T T T % overalt sest T =T ® overal) Sest
n
o "“W\Jv\v/\"\/\‘,/\/l/\;o b /\J\/\f{p

Problem Mean 10.7 Dev 6.32 Problemf tean 15.9 Dev 9.67
LERST SLACK FIRSY LERST LORK IN NEXT O
™ son bl LIFI VITY g ST 1nas mute
& T T overatt Best =T T % overal) st
gl f‘er”w
’)
M/\ V\L} .\L re
Problerd Mean 16.3 Dev 11.9 Problemnt ftean 21.7 Dev 12.9
SHORTEST PROCESSING TIME FENEST OPER REMARINING

Figure 5.2: Relative performance under the makespan criterion (page 2 of 2)

5.4: H2 vs. Priority Dispatching

78

Fint T 1his Ryte
® T T overat best

”
InYs myle
Overal) pest

Flo t ——

- -~

4 Y \[“! A A N4
IS VAV IV N R) Y
WV e T NI | VAWV A vy
X { g b.s ed
Protlemg fean 24.7 Dev 12.2 Problem$ Mean 22.9 Dev 7.68
fODIFIED € DATE
Flo 1 YT Ints Rule Flo1 ST thas mute
T T T % overalt gest T T % overall Best

s\ 'V.—/k/\/' kj \AJ o

DYJ“‘*'A“\.[V MVVMM ‘&o

A 2 f \ A
i‘: '.kf.‘—’.,.‘.lf “'N.ﬁ\‘.’.‘j \.f v UA‘ v \ J - ;9

FProtiens Meanr 6.12 D 7,18 Probleng Rean 1€6.2 Dev 7,14
FEOCESS T « WCF PEMRINING PPOCESS TIME DIFFEPENCE J, Je1
Flo 1 ST 15 kyle flot T Ints Ryte
T T % overald sest T T % overa sest
’\, \
* W
b MAPALY N
v N\ v V (\' MJ
X il “j‘ A \u% ¥‘
Fredlens Mear 35.4 Der 12,9 Problem8 Mean 14.3 Dew 10.2
LERZY <SLACH PER OFEP EXPECTED WORK 1N NEXT ¢
flo ¢ ST Inas Rute flo 1t S this aute
* T 7 % overait gest ST T overal) Best

)
Nf' A #"/.\;n.@f\‘umj \ "\ ﬁ AW

© T 7% overalt Best

’{:,\/ \f\.«/“\p/\ﬂ\/‘\/‘\/'\/P

Fretlers fean 12.4 De» 8.32 Problem8 Mear 5.07 Dev %.83
FELEST IM MHE.T OUEE LEAST HOPY REMATNING
fFlo t ST Ings mule Flo 1 ST Ings mute

® T 7% overat) Best

PNV,

p

Froblend Hean 29.8 Dev 9.88

EFRLIEST DUE DATE

Probleng HMean 29.8 Dev 9.88

FST COME FST SERVED

Figure 5.3: Relative performance under the flowtime criterion (page 1 of 2)

5.4: H2 vs. Priority Dispatching

" 79

(SLACK * PROC T) s/ WORK REMAINING

Flo 1 S 1his Rute Flo ¥ " 1this ayle
= = T ° overatl Best * = = overall Bast
Problens Mean 23.2 Dev 7.63 Problemg Hean 33.3 Dev 11.6

PROC T + (SLACK /- OPER REMAINING)

rio t ST ins Rute
= 7 ° overal) Best

Flot S 1Inis Ryle
" T T ° overall Sest

,WM*\/\'\/\/V\/J\W?,

Problem§ HMean 11.4 Dev 9.4 Problemg Mean 19.7 Dev 7.7
PROCESS T + EXPECTED LIORK IN HEXT Q PROCESS T OVER OFER REMAINING
Flo ! S 1nis Rule Flot ST Ints Rute

" T T ® overall Bast

A,

& = = ° overa)! Best

e WU g

® = = oversl) Bast

r\\/\/\N'V/J\ ,N\/\,/V\, W

Problent Hean 38.9 Dev 12.7 Problent Hean 12.5 Dev 8.9%
LERST SLACK FIRST LERST WORK IN NEXT @
fle ? bomenend T YPR VITY AL S Inas Rule

& = = ° overatt Bast

,/\/J\Mf MJ\NV/\M

Problemii Mean 13.1 Dev ©.28

SHORTEST PROCESSING TIME

Problemg Mean 10.9 Dev 9.34

FEWEST OPER REMRINING

Figure 5.4: Relative performance under the flowtime criterion (page 2 of 2)

5.4: H2 vs. Priority Dispatching ' 80

the outer regions of the space until a tube containing a single Early Start Time
schedule remains. This method is relatively robust, because as the final tube shape
is approached, there is a high density of low makespan schedules contained within
the tube. This is not the case under the flowtime criterion. A high density of low
flowtime schedules does not exist within such a tube. This accounts for the way
heuristic H2 performs under the flowtime criterion.

Shown in Figures 5.5 and 5.6 is a statistical reduction performed on the exper-
imental results which were shown in Figures 5.1 through 5.4. Each horizontal bar
represents a 95% confidence interval for the expected average difference in objective
function value over 50 {10,10,Gen,} problems. In these problems, all jobs arrive
at the shop simultaneously. The heuristic and the dispatch rules were each used to
generate a single solution to each problem. A random dispatching rule was run 500
times on each problem and the best values of makespan and flowtime were saved.
In general, the schedule which had the best makespan was not the same one as had
the best flowtime. For this reason, the random dispatching rule has an advantage
over the rules which generate only one solution. Additionally, an active schedule
generator was run 500 times on each problem and the best values of makespan and
flowtime were saved.

As can be seen from the plots, the heuristic outperforms the dispatch rules under
the criterion of makespan and comes close the the best makespans found by the
randomized search technique. Under the criterion of flowtime, the rules which are

based on amount of work remaining seem to do well.

5.4: H2 vs. Priority Dispatching : 81

20

H2.-FCF§ —+—
H2-DDATE —+—
H2-FOPNR —F———
H2-SPT —+——
'H2-LWRK ———+—
H2-NINQ ———
H2-WINQ ——+—
H2-SLACK —+—
H2.XWINQ ———+———
H2-SOPN —+—
H2-POPNR —+—
H2-PXWQ ——
H2-pSp ———F+—
H2-PWRK -———t—
H2-PSOPN —+—
H2-MSOPN ——+—
H2-MDD —+—
H2-RAND | —+—

025 020 015 010 005 000 005
95% Confidence Intervals (Makespan Criterion)

Figure 5.5: Comparison of H2 with Dispatch Rules under the makespan criterion

5.4: H2 vs. Priority Dispatching 82

20

H2-FCF§ —+—
H2-DDATE —+—
H2-FOPNR ——+——
H2-SPT ——+—

H2-LWRK ——
H2-NINQ —+—
H2-WINQ —+—

H2-SLACK —+—
H2-KWINQ ——+——
H2-SOPN ——+—
H2-POPNR| —+—
H2-PXWQ —+—
He-PSp ——+—
H2-PWRK =———t——
H2-PSOPN ——+—
H2-MSOPN —1+—
H2-MDD ——+—
H2-RAND —+—

-0.10 -0.05 0.00 0.65 0.l10 0.l15 0.I20
95% Confidence Intervals (Flowtime Criterion)

Figure 5.6: Comparison of H2 with Dispatch Rules under the flowtime criterion

5.5: H2 vs. Priority Dispatching on Problems with Due Dates 83

5.5 H2 vs. Priority Dispatching on Problems

with Due Dates

Another similar set of problems were explored. In these problems, arrival dates and
due dates were imposed such that each subsequent job arrived 20% later than and
was due 20% later than the previous job. Jobs were 10 tasks long with processing
times chosen from a flat distribution in the range from 100 — 1000. The first job
arrived at time 0, the second at time 1000, the third at time 2000 and so on. Shown
in Figures 5.7 through 5.14 is the relative performance of heuristic H2, the priority
dispatch rules, and two search strategies under the optimality criteria of max lateness,
tardiness, makespan, and flowtime.

Figures 5.15 through 5.18 show statistical reductions of the results of the exper-
imental data. Each horizontal bar represents a 95% confidence interval for the ex-
pected average difference in objective function value over 50 {10, 10, (Gen,Due-Date), }
problems. In these test problems, heuristic H2 outperforms all of the dispatch rules
and the two random searching strategies under the criterion of minimum maximum
lateness (Lmaz). Heuristic H2 performs well above average under the two criteria of

tardiness and makespan, and performs above average under the flowtime criterion.

5.6 Dimensionality Increasing

This experiment is designed to show how the performance of heuristic H2 varies with
increasing problem size. This comparison would be easy to make if optimal solutions
to all of the problems existed. For small problems an active schedule generation

scheme [46] is used to exhaustively search for an optimal solution against which to

5.6: Dimensionality Increasing

84

(SLACK s PROC T) /- WORK REMAINING

L ner T Inas e L nax T mnts Rule
® T 7% overald gest ® T T C overald Best
pe ., P L P A AN A AP A S0
Frotleng Hean 0.603 Dev 1.69 Problems Mean 3.78 ey 3.67
RANDOM
L nm T Ints mule L nan T inas eule
T T 7% overall Best =T % overadt Best
- \/ WA«V\M,.J Wv\/;. .\o/‘w \-/\/V\MP’
Prctlent NMean 18.7 Dev 11.8 Problemt Mean 15.5 Dewv 8.39

PROC T ¢ (SLACK 7/ OPER PEMAINING)

L Aam TN s mule

& T =0 overatt pest

Ll

L Rax ST s Rule

& == C overalt best

Frobleng Nean 22.7 Dev 11.0
FFOCESS T ¢ EVPECTED WOPY IN MEXT O

Probleng Hean 24.4¢ De 11.3
PROCESS T OVER OPER REMAINIMNG

L oA T tnas mule

T =% overall Best

AN AN

L Aam T Ins Rute

* 7% overat) Sast

Vet fon N

“Problens Nean 13.5 Dev 7.47 Problemi Hean 20.9 Dev 10.5
LERST SLACK FIRSY LEARST WOPK IN NEXT O
L nen ST Inis Rule (LT ST ins Rule
T T % Overall test T T T " overalt pest
NS\ W A V\,f \ 1/ e
ﬁ \ 'Mf—f ¢ W ! V
.‘J ¥ 4L VIR XN
n J‘ \ IS o] »o \ R0
Froblemg Mean 22.7 Dev 10.9 Problem8 Mean 26.9 Dev 13.8

THORTEST PPOCESSING TIME

FEWEST OPEP REMAINING

due dates (page 1 of 2)

Al A

Figure 5.7: Relative performance under the max lateness criterion on problems with

5.6: Dimensionality Increasing ' 85

L nan T tnas Rute L nan ST 1his Rule
ST T overal) Best ® T T ° overal)yBest
p.o ?. p. P‘
Problent Mean 23.1 Dev 4.74 Frobteng Hean 24.4 Dev 13.0
ACTIVE-SCHED RODIFIED DUE DATE
Lonan ST Inis Rule L nax T Ings Rule
" = = % overal) Bast & T T overald Best
DMM o boo Fod
Problems Mean 26.5 Dev 12.9 Problent Hean 21.9 Dev 108.6
PROCESS T ¢ WORK REMAINING PROCESS TIME DIFFERENCE J, Jei
L Ran T Ints Ryle L man ST Ints Rute
& =~ ° overatl Best T T =0 overad) Best
WV\/V\MMV\ Mf\” AL \/\/\ .
Problens Mean 16.3 Dev 9.07 Froblem8 Hean 23.8 Dev 11.8
LERST SLACK PER OPER EXPECTED WOPY. IN MEXT Q
L A " In1s Ayle L Aan T Inis Rute
T T C overal) Best S 7 7% overai Best
i]
J ’ A WY
\Aa A [\’V\ AWM "f\/v/‘ WA
.o . ‘se| p.o]
Probleng lMean 20.9 Dev 10.7 Probleng Mean 27.0 Dev 13.0
FEHEST IN NEXT QUEUE LERST HORK REMAINING

Figure 5.8: Relative performance under the max lateness criterion on problems with

due dates (page 2 of 2)

5.6: Dimensionality Increasing

86

—

tara T Ins Rute Targ T thas rule
T T ° overald dest ® T T ® overatl Best
'-N ’/\‘/\M A\/\’/\'\J\Am/;o - A O
Frodleng Mean 11.8 Dev 7.6% Problem§ Mean 0.759 Dev 1.89
-2 RANDON
targ ST Ints myte Tare T Ints mule
T T % overal Best " T T overadl sest
W‘L
fof\ﬂ/“f o 50 »M..\M'\/V‘M'}o

Prcblent HMean 18.8 Dev 19.2 Probleng Hean 11.9 [De S.78
(SLACHL 9 PROC T) /7 HORK REMAINING PROC T ¢ (SLACY. /-~ OPER REMAINING)
Targ T Ints Rude Tara T Inas mute
T T ° overal) sest ® T 7% overall Best

(“*-.-'1«”\..-f\«'\/-/‘-._f\fv" i

p}v‘wxﬂ.ﬂ\/\/f\\/\w"@f AS

targ ST Inis myde
: ® T 70 overald gest

#','*r"\JJ ‘\ fkfj‘. 1 ./V\,V\I (;.

Frotleng Fean 108.2 Dev €.07 Problent Mean 14.7 Dev 8.11
FEOCESS T o E-PECTED WOPK IN MEXT 0 PROCESS T OVEP OPEP PERAINIMG
Tera TN inas Rute

S T 70 overatt sest

AN A N

‘ 1
P‘.o‘-/J s ,J"’f ‘e / "\V.\/. L‘f‘/ /&\f 4‘_;0

Froblems Hean 18.9 Dev 10.4 Problens Mean 12.0 Dev 6.3¢
LERST SLACK FIPST LEARST WORK [N MNEXT O
Tarag ST s Rute Targ T inis myte
© T T % overalt gest ® T T ° ouerall sest

ﬁ_, ~~ / \/\f ‘._,1\-«[\'\ ‘/ Y""A\ff"‘w.;.

Froblen tean 106.6 Dev 6.33
SHOFTEST PROCESSING TIME

Problemg Hean 12.5
FEHEST OPER FEMRINING

Dev 7.19

dates (page 1 of 2)

Figure 5.9: Relative performance under the tardiness criterion on problems with due

5.6: Dimensionality Increasing

87

- -

T Overalt Best

A ANV AN /A

o
rluc 1his Rute Targ This Rule
® T T % Ooverall gest T T overall gest
A
d YWt T N
X sel ». 50
Problem8 HMean 24.8 Deu 6.79 Problem$ Mean 17.0 Dev 9.82
ACTIVE-SCHED MODIFIED DUE DRTE
Targ T 1nas mute Taro T Inis Rute

- -

Overall Best

AL,

a?:a\,"\.NJ\f'/\ N"J\NW\}.

Problem§ Mean 10.5 Dev 6.06 Problent Hean 1S5.) Dev 8.68
PROCESS T + LORK PEMAINING PROCESS TINE DIFFERENCE J, Jei
Tare T Ings mule targ ST Ins myle

® T 7% overali Bast A

Overall Best

AnAn A A M-

Probleng Hean 17.6 Dev 9.07

Problern$ Mean 11.4 Dev 7.4
LEAST LAY PEP OPER EXPECTED WLORK IN NEVT 0
=
Tara This Rute Tara T 1his Rule
- - -y

Overall Bast

:‘L”’A*“)\MAN‘{_/\“A‘A’\-'\PQ

> - e

Overall Best

:\,m/\«!\/*w\-/\/\/\/‘w*-;o

Problemsg Hean 10.3
FEUESY IN NEXT QUEUE

Dev 6.67

Problem MHean 1§.9
LERST LORK REMARINING

Dev S.42

Figure 5.10: Relative performance under

due dates (page 2 of 2)

the tardiness criterion on problems with

9.6: Dimensionality Increasing 88

* This Rule

T Inis Ryle ™ spn
T 7% overant Best

T T T overatt past

. S

Nr;‘ﬂ‘/‘."j V»W\\[’\J \' /J sl po LI od

ra

Problens Mean 12.8 Dev 7.3t Probleng Mean 0.251 Dev 0.982
H2 RAMDOM

" spn YT Inds Rute AKSpN YT Ints Rute
T T 7% overalt Best

T T T 0 overal gest

) iV A

Probleng Mean 20.9 Dev 11.6
PROC T ¢ (SLACK ./ OFER FERAINING)

TN Ins rule
T T 7% overal past

Prebleng Nean 24.3 Dev 12.93
1SLALY 8 FROC T) 77/ WOPK REPRINING

ST ins mule Ll
T T overal) Best

™ son

'*’{\"’VA\‘I"\.’/. f\ﬂ/\\jtf\ \(\' [P‘ W/ \M‘ ﬂ\.‘/\ h\,"f‘a 4‘:’*\"\....?‘

Freiien8 Mean 16.7 Dev 12.2 Problengt Mean 8.9 Dev 6.€4
FROCESS T OVEP OFEP REMAINING

FROCESS T ¢ E-FECTED WOFK. IN MEMT O
LX) ST UIms Rule LS T Ints Rule
S T T ® overalt Best T T ° overall gest

A ‘ ‘\" |
AR \,J Yot LMy A \;IM.

Probleng Mean 16.1 Dev 10.1
LERST WOPK IN MEXT Q@
ST thas mule
® T T % aygeralt Bast

Frotlen Hean 18.9 Dev 10.€
LEAST SLRCK FIRST

ST 1nis Rule L ¥ 7))
7 7% overall Best

! I
f ;\‘L-"\« 2 '\“A‘."V\/\ j(x\/\}. ..\./LV\ j\iw / \.,j' Y? \"}{A‘/\ *;

b7 \f

~NSpn

Probleng Mean 17.1 Dev 10.6 Probleng Mean 29.7 Dev 1S.1
SHOPTEST PROCESSING TIME FEWEST QPER REMAINING

Figure 5.11: Relative performance under the makespan criterion on problems with

due dates (page 1 of 2)

5.6: Dimensionality Increasing

89

M $pn ST 1his Rule

Overall Pest

L

o N Ay

——

This Rule
Overal) tast

- - =0

AL ANV A M

Problemg Mean 14.8 Dev 6.28 Probleng Hean 10.8 Dev 6.2%5
ACTIVE-SCHED 1ODIFIED DUE DATE
nspn T Inis Rule mspn YT Ings rute
= T % overall Best T T % overadl sest
/e v\) ,\j V 50 W‘jp
Problemt Hean 27.9 Dev 12.9 Problens Hean 14.7 Dev 9.82
PPOCESS T + WORK REMAINING PROCESS TIME DIFFERENCE J, Je!
n&spn T Ints Rute fcspn ST Ints rule
T T % overall Best T T ° overal) Best
AN W r b b
V M/\\n/‘ w\/L TN .ld\f\/\w
o \ se| pe) v '\’N\V ! 50
Problens Mean 23.1 Dev 11.4 Problentt Hean 1.4 Dev 11.6€
LEAST SLACY PER OFER EXPECTED WORK IN MNEXT O
rmsoﬂ T this Rule Rk SDN T inds Ryle
- - -9 - - -

Overatl Sest

ﬁ‘\f‘/\,(\/\f\ﬂ‘\ehv\‘ft}.

Overatl Best

Wl

Problemg Hean 1S5.8
FENEST IN NEXT OUEUE

Dev 9.88

Problens Mean 29.7
LEAST WORK REMAINING

Dev 13.S

due dates (page 2 of 2)

Figure 5.12: Relative performance under the makespan criterion on problems with

5.6: Dimensionality Increasing

90

=
rno 1 ST Ints Rute Flo 1 T Inds Rule
T T 7% Overald test T T 7% overal) test
r a2l A A !

WAVl BV \\j \ .
FJJ {‘ v LA A/‘SIP. p~e . Yy P 2 ad
Frobleng Hean 13.2 Dev 9.48 Problteng Hean 0.941 Dev 2.07

~2 PRHDON
flot ST ines Rule flo 1 T 1h15 Ryle
® T T overalt Bast T T % overatt gest
\ﬁ "f *
A \N \.ad-f ‘\,J\J/ J\ oy
pﬁro\f ol el b.o \V 56
Frotleng Mean 22.3 Dev 12.2 Problent Hean 16.7 Dev 8.64

SLACK & PROC T) 7/ LORK REMAINING

PROC T + (SLACK -~ OPER REMAINING)

Fno ' ST Ings Rute

® 7 T % overalt Best

[} . * \
l-‘.':\f'\ ,""..«‘-" \...J/‘ k'\f AL/“"'.';\A‘{ JV’“

flo 1 ST Inis Rule

T T % overai Best

A.«.A/‘"\/\/\ v'LJ \L-A"n"‘/\/;.

Oseral) test

| .
A '*.,N'\ F‘\./ \ rﬂw‘"t,.

Frotlend Mear 14.1 Dev 9.07 Problend Hean 26.3 Dew 10.5
FRPOCESS T + EAPECTED WOFY T1¢ MEXT @ FPOCESS T OVER OFEP FENMINING
o1 T Inas Rule Flo ¥ T 1hs Rule
T T T ® overadt gest T T ° overal Best
1§ { 4
[3 2 ’n N | "’ 1
, :-.4”\ Y ““JK‘ 2 Ao i\
® 4] t b
e VA A A L . A
P.’a\‘ v l.[l 1 £a b.df“ \f\‘ ,/ V\f/ "L. ‘\fo
Problens Mean 22.7 Dev 12.3 Problemt Hean 13.2 D¢ 7.91
LEAST SLACK FIPSY LERST WOPK IN NEXT O
fio t ST Ins eute Fio 1 T Inis Rule
> - =@ > - -

Overal) Best

.. .’j\/\}\ ~ /~\\f\~,/\ A.«"."

Protlem8 Nean 14.5 Dev 9.11

SHOFTEST PROCESSING TIME

Probleng Mean 11.6
FEUEST OPER REMAINING

Dev 7.8%

Figure 5.13: Relative performance under the flowtime criterion on problems with

due dates (page 1 of 2)

5.6: Dimensionality Increasing

o1

® T T % overal Bast

AJ\J\VNAK /\M,.IA\ ¥ _jJ\,-\A "

flo 1 ST Ints Rule Flo 1 ST ihis Ryle
T T 7% overall sest T T T ° overall Best
Vé A /\r
\AW 4
.o \ so] b J\ 30
Problent Hean 19.2 Dev 8.29 Problen Mean 23.3 Dev 12.3
ACTIVE-SCHED HODIFIED DUE DATE
fio 1t ST Inas yle Flo 1 T Inas Rute
T T % overall Best " = =% overall Best
.«,-.’\,...J\A/-\/\,/ A aNAA .Y\JW””\[‘/W\/W;-
Problemg Hean 10.7 Dev 7.%51 Problemg fean 19.1 Dev 10.6
PROCESS T + HORK REMRINING PROCESS TIME DIFFERENCE J, J+l
Flo v ST Ints Rute Flo 1 ST inis mute
* T T ° overald Best = = ° overall Best
2
| N ’M
A\ /\ v sof p ,AJ AY N{\" o
Froblemg Mean 21.3 Dev 11.3 Problems Mean 15.3 Dew 10.2
LEAST SLACK PEP QOFER EXPECTED HOFK IN MEXT €
Fio 1 ST s mule fro 1 T tnis Ryle
- - -

Overall fest

e AN WM,

Problent HMean 14.1 Dev 8.16

Probleng Mean 11.3
LEAST HORK REMRINING

Dev 6.2¢

FEWEST IN NEXT OQUEUE

due dates (page 2 of 2)

Figure 5.14: Relative performance under the flowtime criterion on problems with

5.6: Dimensionality Increasing

92

H2-FCF§ —+—
H2.-DDATE —+——
H2-FOPNR —+——
H2-SPT —+———
H2-LWRK —t———
H2.NINQ —+—
H2-WINQ ~——t+—
H2-SLACK —+—
H2-XWINQ ——F—
H2-SOPN —+—
H2-POPNR —t—
H2-PXWQ ——+—
H2-PSpP —+——
H2-PWRK —+—
H2-PSOPN ——+—
H2-MSOPN ———+—
H2-MDD ——t—
H2-Active Schedule —+—
H2-RAND —t+—

20

-0.90 -0.80 -0.70 -0.60 -0.50 -0.40 -030 -0.20 -0.10 -0.00 0.10
95% Confidence Intervals (Max Lateness)

Figure 5.15: Comparison of H2 with Dispatch Rules under the max lateness criterion

in problems with due dates

5.6: Dimensionality Increasing

93

20
H2-FCFS
H2-DDATE t
H2-FOPNR
H2-SPT —F+——
H2-LWRK +
H2.NINQ —+——
H2-WINQ ———————
H2-SLACK
H2-XWINQ ————t——
H2-SOPN +
H2-POPNR
H2-PXWQ ———t——
H2-PSP
H2-PWRK ———+——
H2-PSOPN ——t——
H2-MSOPN ;
H2-MDD

H2-Active Schedule ——+——
H2.RAND it

040 -035 -030 -025 -020 -0.15 -0.10 -0.05 000 0.05
95% Confidence Intervals (Tardiness)

Figure 5.16: Comparison of H2 with Dispatch Rules under the tardiness criterion in

problems with due dates

5.6: Dimensionality Increasing : 94

20 ~
H2-FCF§ ———+———
H2-DDATE ———+—
H2-FOPNR +
H2-SPT ——+—

H2-LWRK -
H2-NINQ —+—
H2-WINQ ——+—
H2-SLACK ——+—
H2-XWINQ —+——
H2-SOPN —M——
H2-POPNR ——+—
H2-PXWQ —t——
H2-pPSp —+——
H2-PWRK ——
H2-PSOPN ———t——
H2-MSOPN +
H2-MDD —t——
H2-Active Schedule —+—

H2-RAND ——+——

-0.l12 -0.10 -008 -006 -004 -0.02 -0.00 002 0.04 0.06
95% Confidence Intervals (Makespan Criterion)

Figure 5.17: Comparison of H2 with Dispatch Rules under the makespan criterion

in problems with due dates

5.6: Dimensionality Increasing 95

20
H2-FCF§ ———+——
H2-DDATE ——+——
H2-FOPNR —+——
H2-SPT —+—
H2-LWRK ————t+—1—
H2-NINQ ———+———
H2-WINQ ———t——
H2-SLACK —+—
H2-XWINQ ———t—
H2-SOPN —+———
H2-POPNR ——t—
H2-PXWQ —+—
H2-PSp —t—
H2-PWRK ——+—1—
H2-PSOPN ———t—
H2-MSOPN ———+——
H2-MDD —————————
H2-Active Schedule —+——
H{-RAND —+—

010 008 -006 004 002 000 002 004 006
95% Confidence Intervals (Flowtime Criterion)

Figure 5.18: Comparison of H2 with Dispatch Rules under the flowtime criterion in

problems with due dates

5.6: Dimensionality Increasing 96

compare the heuristically obtained one. The maximum size problem which can be
comfortably enumerated this way is {4,4,,}.

For medium to large sized problems the solution spaces will be characterized by
examining distributions of solutions obtained by generating 500 sample schedules
using the Random priority dispatch rule. This sampling is a search technique which
if continued for long enough would find the optimal solution. Here, 500 sample
schedules were generated for each problem and the best one selected for comparison.
See Appendix C for a discussion of the relative merits of sampling procedures.

Shown in Figure 5.19 is a characterization of how the quality of solutions gen-
erated by heuristic H2 vary as problem dimensionality is increased. Looking at
the bottom of the figure, heuristic H2 found the optimal solution for all 50 of the
{2,5, Gen,Makespan} problems. For the {3,3, Gen,Makespan} problems, heuristic
H2 found the optimum 49 times out of 50. For the {4,4,Gen, Makespan} problems,
the heuristic found the optimum 41 times out of 50. For the {6,6, Gen, Makespan}
problems, the heuristic found the best solutions to 22 of the problems while the Ran-
dom search found 32 of them (4 ties). And finally, for the {10,10, Gen, Makespan}
case, heuristic H2 found the best solution 23 times, while the Random search found
the best solution 27 times (no ties). When the heuristic failed to find the best so-
lution, the deviation from best was greater than when the Random search failed to
find the best. In summary, the makespans of schedules generated by the heuristic
seem to get farther away from optimal as dimensionality of the problem increases,

yet it still outperforms the dispatch rules under the criterion of makespan.

97

5.6: Dimensionality Increasing
PHl ipn —m H4
Imxlo F‘r-:-t«1em?]
? "l n' ."."l l\ fl
afr by, S] 3!
it e D LA e e
H 2 FAHDOM
= -
Moo M ipn
s -".
b kY -"~';_ TSP
H FANDOM
I’HI N —Fll Ipn
{#x4 Problens] [Exhaustive Enumeration]
A
. M X J*
. L' ! . taeel d "k.j‘ l'u"‘u'_ il A Fad
ACTIVE-SCHED
_m Ipn -m sphn
L:'N3 F"’C't']“"'fl [Exhaustive Enun-‘:r-stion]
X . se| p.e S0
ACTIVE-SCHED
—ﬂﬁ <3 —Hk inpn
[ExS Frebient] [Exhausztive Erwmzrstion]
o @ :“ p.o f@
ACTIVE-LCHED

Figure 5.19: Performance of heuristic H2 as problem dimensionality is increased

Conclusions

Chapter 6

Visualizing algorithms in cartesian completion space helps to show some of the
similarities of existing algorithms that would otherwise not be apparent. If the
problem was represented as sequences, disjunctions or the vertices of a polytope
the similarities of the pruning methods would be obscured. Furthermore, insights
gained as to the location and adjacency of solutions helps to explain the performance
characteristics of certain algorithms.

Heuristic H2 generates significantly better schedules than the priority dispatch
rules on the Job-Shop Scheduling Problem when the optimality criterion is L nq..
Using heuristic H2 to generate a solution to the famous 10x10 Job-Shop Problem in
[47] results in a makespan of 985. The optimal makespan for this problem is known
to be 930._A recent iterative relaxation procedure (“Shifting Bottleneck Procedure”
[1]) SBI gives a makespan of 1015 for this problem.

The choice of optimality criteria affects the relative location of “good” solutions
in the search space. In particular, under the Makespan criterion, the trajectories

corresponding to “good” solutions were found to be geometric neighbors in the com-

98

99

pletion space. A large fraction of the “good” solutions were found to lie within a
“tube” through the space. Under the Flowtime criterion, the trajectories correspond-
ing to “good” solutions do not lie within a “tube” consequently an algorithm which
tends to converge upon such a “tube” has little chance of succeeding. Therefore, the
relationships of the locations of the “good” solutions in the solution space should be
taken into account during algorithm design.

Typically, some natural (in the problem formulation) constraint (e.g. a disjunc-
tion or a time ordering) presents itself and is used as the basis of a solution generation
process. There is no a priori reason to believe that using this particular process to
prune the solution space will yield the desired result. A possible consequence of
this is that many of the “good” solutions will be unavoidably pruned as the process
proceeds. Two possible results of this follow. By throwing away some of the “good”
solutions, it is now more difficult to continue the search. And, deciding which part
of the space to prune may be more difficult as the properties of the set under con-
sideration are less uniform thereby making the calculation of bounds more difficult.

Heuristic H1/CT can be used to test whether or not some set of constraints under
consideration are capable of pruning with discrimination; that is, to selectively prune
the space such that only the more desirable regions remain. This constraint testing
can be accomplished without developing branching indicators and a lower bound
(some necessary components for a branch and bound algorithm).

Symmetries in problem structure affect the spatial distribution of the trajectories
corresponding to good schedules and should be taken into account during algorithm
design. Under the L,,,. criterion, many “good” solutions were found to be adja-
cent in the cartesian space. Symmetries introduced into the problem cause certain

“mirror image” trajectories to be equivalent. This makes it difficult to converge to a

Suggestions for Future Work

Chapter 7

7.1 Modify Heuristic H2

In heuristic H2, the constraint used to prune the space was the addition of a prece-
dence constraint. This corresponds to the removal of a “2D corner” in completion
space . In a 2D case, “removing a 2D corner” deletes the entire associated obstacle.
In a 3D case, “removing a 2D corner” deletes 4 out of 6 of the bar shaped extensions
of the obstacle shown in Figure 4.4.

The proposed modification is to use constraints which remove less than 4/6 of
the bar shaped extensions of the obstacles (“a 3D corner”). The remainder of
the obstacles is left for later consideration. Instead of pruning by adding a sin-
gle precedence constraint, prune by imposing a boolean combination of precedence
constraints. Given three activities which correspond to an obstacle consider the ad-
dition of constraints of the form (A; < A4;) V (A; < A), (4; < Ar) V (4; < 4),
(A < A)) V (Ar < Aj). These correspond to the three ways of deleting a “3D
corner”.

As in heuristic H2, choose the constraint who’s compliment, if imposed, would

101

7.2: Develop New Heuristics Modeled On Heuristics H1/CT and H2 102

result in minimum slack in the resulting network. The compliments of the three
constraints above are (4; < A;) A (Ar < A;), (Ar < Aj) A(A; < Aj), and (4; <
Ap) A (4; < Ag). Implementing this would involve some method of encoding these
constraints, and keeping track of the implications of their combinations.

In general, for an nD problem one could consider deleting an “nD corner”, an
“(n —1)D corner” and so on down to one plus the number of available machines of a
given type. When there is more than one of each machine, say m, the lowest order
constraint which need be considered is of the form (A4; < A;)V(A; < Ax)V...V(4; <
Aitm).

Note that this approach reduces to heuristic H2 when the simplest possible con-
straints are used; if (A; < A;) generates the longest path then impose the constraint
(4; < 4).

One possible approach to utilizing a mixture of these constraints would be to
consider addition of the highest dimensional constraints first, then those of the next
highest dimension, down to the lowest order ones which need to be considered. Al-
ternatively, one could consider starting from 1 or more dimensions higher than the

lowest order ones which need to be considered.

7.2 Develop New Heuristics Modeled On Heuris-
tics H1/CT and H2

Heuristic H1/CT uses the addition of selected precedence relations to prune unde-
sirable regions of the search space. These selected precedence relations are capable
of describing a set of relatively good minimum maximum lateness schedules. Under

other objective criteria the distribution of good schedule trajectories through the

7.2: Develop New Heuristics Modeled On Heuristics H1/CT and H2 103

space cannot be described using such a set of selected precedence relations. This was
demonstrated for the flowtime criterion.

Flowtime is minimized when there is a minimum of delay between successive
activities in a job. By first processing all of the activities job 1, then all of the
activities of job 2 and so on, one could generate a schedule of minimum flowtime.
This schedule corresponds to a trajectory which traverses only the edges of the space.
The addition of precedence relations tends to prune away the outside of the space
and converges towards a tube, the opposite of what is needed under the flowtime
criterion. Alternative sets of pruning constraints need to be proposed and tested.
One method of pruning would be to reméve solid regions from the interior of the
space (“hollow it out” so to speak) in conjunction with some trimming from the
outside. This type of pruning would tend to converge toward a shell like region.

Heuristic H2 uses the “length” of certain trajectories through the space as the ba-
sis of the pruning operations. These lengths were computed by summing up for each
piecewise linear segment of the trajectory, the maximum of the segment’s projections
on to the coordinate axes. This is only one of many possible metrics that could be
used to assign weights to trajectories in the space. The particular “length” metric
used by H2 is effective when the objective criterion is that of minimum maximum
lateness. Perhaps alternative metrics could be used by heuristic H2 to find good
solutions under other objective criteria. An example alternative metric would be to
weight the processing time of each activity (stretch the length along the coordinate
axis associated with processing the given activity) by a work in process inventory

cost.

7.8: Modify Heuristic H1/CT ' 104

7.3 Modify Heuristic H1/CT

Heuristic H1/CT operates by pruning as much of the search space as possible without
eliminating the k best schedules found so far. It may be the case that potentially
good regions of the space are being pruned before they are even explored. Modify
the heuristic so that regions of the space are pruned only if both of the following
conditions hold. First, as before, never prune regions containing the k best schedules.
Second, only prune regions which are known (from the samples taken so far) to

contain inferior schedules.

7.4 Veronoi Approach

One way of approaching a scheduling problem is to convert it into a shortest path
problem and then solve it with some known optimization algorithm. Davis [25]
did this with a certain class of resource constrained PERT network problems. To
transform a PERT network first divide each activity into a chain of unit processing
time activities (this is contingent upon having only integer processing times) inserting
the necessary precedence relations between the unit activities. Any cut across this
network corresponds to some (integer) feasible partial state of completion of the
original tasks. Form a new network with these feasible states of completion as nodes.
The “distance” between any two adjacent nodes is one time unit. Find the shortest
path from start to end using a dynamic programming approach.

There are two problems with this. One, the activities must be of integer length.
Two, the activities cannot be very long and there must be a fairly large ratio of
precedence-relations to activities or else there will be a large number of partial states

of completion generated. In other words, a combinatorial problem in n tasks can be

7.4: Veronoi Approach 105

transformed to a polynomial time problem in the number of nodes but the problem
happens to have an unacceptably large number of nodes.

The proposition is to generate a network which has the least possible complexity,
yet has the property that any valid trajectory can be deformed to coincide with the
network. The problem then reduces to searching this network for the optimal path.
Consider the 3D cross shaped obstacle shown in Figure 4.4. If this was the only
obstacle in the space, then the desired network could be defined as follows. Start
with the rectangular network formed by the edges of the center of the 3D obstacle.
Then attach two additional edges; one from the origin of the space to the closest
vertex of the rectangular network; and one from the far corner of the space to the
closest vertex of the rectangular network. If one deformed this network such that
its edges were equidistant from the obstacle and the faces of the space then it would
form a Veronoi diagram.

In this 3D case there are 14 edges, 12 of which are associated with the rectangular
solid center of the obstacle and 2 connecting it to the rest of the space. In general
there are (n/2)2" edges on an n dimensional rectangular solid. There are 2" vertices
from each of which emanates n edges. Each edge is connected to two vertices hence
the factor of 1/2. For a {10,10,Flow,} problem the desired network is formed by
the edges around the center of each of the 10 10D obstacles. Since this is a flow
type problem, the obstacles line up along the body diagonal of the 10D space. This
total number of edges in this case is 10(10/2)2° = 51,200. This is a relatively small
number of edges to search considering an upper bound on the number of distinct
sequences associated with this problem is (10!)1° = 3.96F + 65. For the General
structure problem in which the obstacles do not line up along the body diagonal,

additional edges must be found to connect the various rectangular networks.

7.5: Normalize Path Probabilities For Random Sampler And Active Sampler 106

7.5 Normalize Path Probabilities For Random
Sampler And Active Sampler

The random and active samplers that I have been using have a tendency to gener-
ate anti-symmetric schedules (when the symmetry considered is the inversion of all
precedence relations in the problem specification). The solution sequences of this
inverted problem should be the same as the original problem. Using either of these
sampling schemes produces the various sequences with different probabilities for the
inverted problem versus the non-inverted problem.

The source of this discrepancy can be visualized on a rectangular 2D grid. Here
a sequence corresponds to a random walk from the lower left of the grid to the
upper right, with the steps taken either one to the right or one up. The probabilities
associated with the branches at each branch point are equal.

As an extreme case consider a 1 (vertical step) x 100 (horizontal steps) grid.
There are two ways to leave the origin each with 1/2 probability. At the other end
there are two ways to enter the destination. Note, that the probability of entering
the destination from the bottom is (1/2)'%®, a very small number. However, in the
inverted problem, the probability of using this particular link is 1/2.

A normalization scheme wherein the probability of taking a particular branch
is equal to the number of steps left in the branching direction divided by the total
number of steps left to take resolves this anti-symmetric problem.

The grid associated with an actual scheduling problem is by no means a regu-
lar grid as assumed in the above example; it may be close enough such that this
scheme might do some good. It seems plausible, in that when considering which

task to schedule next, higher probability is given to the task which has many tasks

7.6: Cyclical Schedule Formulation ' 107

constrained to follow it. This should reduce the probability of generating a schedule

in which one “job” is excessively delayed.

7.6 Cyclical Schedule Formulation

A slight modification of the heuristic might make it suitable for use in cyclical schedul-
ing problems. In these problems (described in [50]), the same mix of activities is to be
processed over some time period (e.g. daily) and there may be some partial ordering
among these activities. The objective is to find an ordering of activities which is of
minimum cost over the given time period when the Gantt chart of the final schedule
is repeated periodically.

In the 2 job case, the usual 2D space is wrapped around a torroid as shown in
Figure 7.1. A valid schedule corresponds to a continuous trajectory which avoids
the obstacles while making 1 twist around the major axis and one twist around the
minor axis.

Instead of computing the slacks between activity pairs by propagating arrival
and due date information through the activity network, propagate information from
one of the tasks under consideration around the network (consider the precedence
network to be wrapped around a cylinder - head touching tail) to the other task in
question. The slack between two tasks is how far apart two tasks can be displaced.

The rest of the algorithm would remain the same.

7.6: Cyclical Schedule Formulation 108

L4

Figure 7.1: Torroidal Completion Space

7.7: Representation Transformation : 109

7.7 Representation Transformation

Many algorithms that have been developed use as a basis of decision the setting of a
precedence. Each decision can be interpreted as selecting a certain subset from the
original set of solutions. Depending upon the optimality criterion used, the rejected
subset may contain a disproportionate number of the good solutions.

It is proposed to use some transformation of the original precedence constraints
which allows solutions which are similar in value to be in some sense adjacent (e.g.
Adjacent integers along the number line differ by only a single bit when represented
in Grey Code but may differ by many bits when represented in straight binary.)
Hopefully, this would improve the performance of branch and bound algorithms
by allowing easier characterization or bounds to be computed as the subsets under
consideration have more uniform properties. In the case of relaxation algorithms,
since good solutions are adjacent, local neighborhood type searches should yield
improved solutions.

Consider representing a sequence as a binary string where each digit corresponds
to the orientation of a precedence relation. In general, the good schedules will be
scattered between 0...0 and 1...1. Another way of stating the goal of solving one of
these problems is to find a 1 to 1 (bijective) mapping from the original binary strings
to a set of string in which 0...001 corresponds to the best sequence, 0...010 to the
next best and so on. Then, to find the good schedules simply map back starting
from 0...001 and counting up.

A fully general mapping function should be able to map any element from the
first set to any arbitrary element of the second set. There are 2™ elements in the first

set (n digits), and therefore (2")! possible transformations.

7.8: Learning Boolean Functions/Transformations - 110

7.8 Learning Boolean Functions/Transformations

Pose the scheduling problem as one of learning the characteristics of a good sched-
ule by observation and experimentation. Get some initial examples to learn from
via sampling. Formulate some hypothesis in some domain of characteristics being
considered. Then do planned experiments. This is different from the usual learning
by example because it allows one to immediately test a current hypothesis instead

of waiting for a counterexample to be presented.

Free Space Fraction

Appendix A

The following is an analysis to show what fraction of the completion space is
occupied by obstacles. The approach is combinatorial in nature and resembles the
multinomial theorem because it involves expanding an expression of the form (a +
b+ c+ ...+ g)". There are m (number of machines) terms inside of the parenthesis
and the exponent n is the number of jobs. the ratio of free space (space not occupied
by obstacles) to the total volume is given by the following formula assuming that all

activity processing times are unity.

m),,l n<<m
free/total = "; (A.1)
n>m

The top of the first expression is read as m-falling-factorial-n which is like m! but
consists of only the first n terms (e.g. (6); = 6 * 5 x 4).

A simple 3D example shows how the above expression arises. Say that we have
four machines a,b,c,d. Each job visits each machine once, so for each job we can
write a term of the form (a + b + ¢ + d) possibly with the elements permuted (i.e.
(b + a+ ¢+ d)) but the order really doesn’t matter under the addition operator. If

111

112

there are three jobs then we have three terms of the above form. Any rectangular
block in the job-space corresponds to the processing of one activity from the first job,
one activity from the second, and one activity from the third. There is a one to one
correspondence between the individual terms in the expansion of (a + b+ c+ d)® and
the 3-Dimensional rectangular blocks associated with the example 3-job problem.

Note that in the expansion there will be terms like a3, bc? and abd. Only terms of
the form z'yz! correspond to free space. Any term with a factor’s exponent greater
than 1 means more than one machine of some given type is required if a schedule
trajectory is to enter this particular block of the space.

The total number of blocks in this example is 4* = 64. The number of free blocks
can be computed by consideration of a series of choices involved in the expansion
of (a + b+ ¢ + d)® which lead to terms of the form z'y'z'. The object is to find
the sum of coefficients of these terms in the final expansion. Note that this is equal
to the sum of multinomial coefficients for terms of the form a‘b’c*d! where one of
t,J,k,1 is equal to 0 and the others are equal to unity. In the interest of generality,
the multinomial theorem is being avoided.

Consider the following series of choices in the expansion.

Choose one term from (a + b + ¢ + d) that won’t give a result with an exponent
greater than 1 - there are 4 ways to do this. Choose a,b,c or d.

Next choose one term from (a+b+c+d) that won’t give a result with an exponent
greater th_an 1 when multiplied by the previous choice. There are 3 ways to do this.

There are 2 ways to choose the next factor and one way to choose the last.

Then

4%3%2x1/4% = 3/8 is the free space fraction.

113

Note that if the number of choices (n = #jobs) is greater than m then an expo-
nent greater than 1 is unavoidable - hence the n > m case in the volume fraction
expression.

This leads to the following question: If the volume fraction of free N-Space is 0
then what space is left in which to plot trajectories? What happens if one has 3
machines and 4 jobs. Obviously not all 4 jobs can ever be co-processed. In other
words there is no free 4D space. But what about 3D subspaces. It turns out that the
same formula is valid for this case also. Instead of letting n be the number of jobs,
let n be equal to the dimensionality of the subspace of interest. Then for a given
problem one can calculate how much of each dimensionality space is free.

Note that the above analysis was carried out for the one of each machine job-
shop problem. It could also be easily modified for the case of more than one of each
machine (look for terms of different form) or more than one of certain machines.
Perhaps this type of calculation could be used to evaluate the usefulness of purchasing
some new piece of equipment. If the new purchase would result in no increase in the
free space fraction then there is no point in purchasing it. One might also consider
free space increase per dollar spent as an indicator of relative merit of alternative
purchases.

Coefficients could be put in front of each a,b,c etc to reflect processing times
thereby improving the accuracy of the calculation. Also, instead of simply using
a as a primitive term, use a term of the form aPT to represent the facts that we
need macixine a, person P, and tooling T to perform this operation. Of course this

removes much of the symmetry from the calculations and mean that a computer

might be required for the computation.

N-D Cone Fraction Derivation

Appendix B

We will now estimate the fraction of the space contained within the boundaries
of a cone in n-space (completion space). Figure B.1 shows an example of a conical
or pyramidal region in 3D space defined by two back to back pyramids. One has
its apex at the origin (shown using dotted lines), the second has its apex at the far
corner and they meet at their bases. For this example it is assumed that the cube
is a units along each edge and the parameter b is allowed to vary from 0 to a thus

defining the shallowness of the cone.

The volume V;, of an n-D pyramid is defined as follows where B is the base and

h is the height.

Vo= [(BYG)y e = 2 (B.1)

n

The total volume V, for the cube is given by a™.

The volume of 2 back to back pyramids V3, along the diagonal is

_ B(hl-l-hg) _ B/na’ _ Eﬁ

V;
» n n vn

(B.2)

114

115

Figure B.1: Three D Cone Example

116

Then the volume fraction in terms of B the common base of the to pyramids, the

dimensionality of the space n and the edge dimension a is

Vip B

Vi a\/n

What is needed now is an expression for the base B. In the 2D case the base B,

(B.3)

is simply &/2 as shown in the top of Figure B.2.

The base in 3D Bj is defined inductively in terms of B; as indicated in Figure B.2

as follows.

|Centroid(B;)—Centroid(Bs)| r

- - Y¥dr (B.4)
|Centroid(B;) — Centroid(Bs)|

133=319,/0

In general the base in n-space B, is given by

d,
n—1

d
B, = CoBos /o (3)"~dr = CoBay (B.5)

Where C, is the number of B,,_; which are involved in the integration, d is
defined as |Centr;id(Bn) - Centroi_;i(B _1)| and the exponent (n — 2) reflects the
dimensionality of B, ;. This gives a recurrence relation for B, with the additional
terms C,, and d,. These two quantities can be computed directly. Since C, is the
number of “faces” of B, it is also equal to the number of unique sets of n — 1 vertices

which can be selected from a set of size n. Then

an(ni1)=(72—:%=n (B.6)

To compute d, take the magnitude of the difference between two vectors defined

in the coordinate system of the far corner pointing to the centroids of B, and B,,_;.

e

118

Centroid(B,) = iy + iy + -+ + i,
and

Centroid(Bn_1) = =i+ 23iy+ -+ + xins

Then the Euclidean distance between these two centroids d,, is

dn =\/(‘n - l)bz(n_l_ T~ %)2 + (%)2 = —,ﬁ

Substituting C,, and d,, into Equation B.5 gives

bB,_in
Bn = n—-1
Va(r—1)(n-1)

(B.7)

(B.8)

(B.9)

Starting from the boundary condition B; = 5/2 and working out a few iterations

gives

bn=1v/nl
Bn= ——
Vil = 1)1

(B.10)

Substituting this into Equation B.3 gives the fraction of the total volume enclosed

within the two back to back pyramids as

L n =234,
Y _ (Oym-1)
v =)

1
m =1 and

(=]
IA
Qo
IA
[y

(B.11)

Notes on Random Sampling

Appendix C

There are a few issues concerning random schedule generation which should be
mentioned. The first issue is what class (set) of schedules one is sampling from. The
second issue is how the sampling is biased within this set. The third is the distinction
between the mode and the range of the sampling distribution. And the fourth issue
concerns joint distributions.

Ideally, one would like to sample from a set of schedules which is guaranteed to
contain all the schedules of interest. This could be accomplished either by sampling
from the complete set or by sampling from another set whose members somehow
dominate the complete set under the optimality criterion being used. One complete
set would be the set of all unique sequences. This set has infinite cardinality if one
allows delays in processing a given sequence. If one processes each activity as soon
as possible consistent with the given sequence, then each sequence corresponds to an
Early Start Schedule. These are the so called Semi Active Schedules.

The class of Non Delay schedules can be defined in the context of a Job Shop

simulation. These schedules are generated by having each machine never wait (delay)

119

120

to process some activity if there is an activity in the machine’s queue. The set of
Non Delay Schedules is a subset of the set of Early Start Schedules.

Given a set to sample from, the distribution of objective function values varies de-
pending on how the sampling operation is performed. For example, consider sampling
with equal probability from the set of Non Delay Schedules. An experimental esti-
mate of such a distribution was obtained by using the Random priority dispatch rule
to generate sample schedules from a {10, 10, Gen, Makespan} problem. The proba-
bility of obtaining any given sample schedule can be determined after the particular
schedule has been generated. This is done by multiplying together the probabilities
associated with each machine loading decision. Choosing one activity from a queue
of five activities contributes a factor of 1/5 to the overall probability of obtaining
the particular sample schedule. These computed probabilities were used as weights
on the samples obtained. This weighted distribution is plotted in Figure C.1. This
is an estimation of the distribution of schedule makespans assuming that each Non
Delay schedule is equally likely to be chosen.

Notice that using the Random priority dispatch rule (which assigns equal prob-
ability to choosing the various activities from a queue) introduces a biasing into the
sampling procedure. The distribution from Figure C.1 is replotted in Figure C.2 in
quantile format along with sample distributions obtained using the Random priority

dispatch rule and an active schedule generator.

The biasing introduced by the Random dispatch rule significantly improves the
expected makespan of the sample schedules in this case. This is because schedules
having less conflicts which need to be resolved (shorter queues) have higher proba-

bilities of being generated using this method.

121

Probability

2.00e-03

3.00e-03

2.50e-03

T

1.50e-03

1.00e-03

5.00e-04

0.00e+00
1000

2000 2200 2400 2600
Schedule Makespan

1200 1400 1600 1800

Figure C.1: Normalized Sample Distribution

122

2600

2400

Makespan

2200

2000

1800

1600

1400

1200 |;

1000

Random dispatching
........... Active Schedules
- — . — . Random dispatching (Normalized)

1 1 1 1 1 I 1] L

0 10 20 30 40 50 60 70 80 9% 100
Quantiles

Figure C.2: Comparison of Distributions Obtained Using the Random Rule, a Nor-
malized Random Rule and an Active Schedule Generator

123

The distributions shown in Figures C.1 and C.2 are approximately Gaussian.
Although the tails of the distributions have finite length the probabilities associated
with the tails gets very small before the end of the tails is encountered. In [47] is
suggested a method based on sampling for generating a schedule which falls with
some known confidence into a fraction of the area under the distribution. Suppose
that the true distribution was known. One could partition the distribution into two
parts. One part of area a (starting with the left side of the left tail) and one of area
1 — a. Then any sample generated has probability a of falling within the range of
the a area. The probability of at least one out of n samples falling within the a area
is equal to 1—Probability of all samples falling in the (1 — a) area. This is simply
1—(1—a)" Thusif ais 0.01 and n is 500 then the probability of generating at least
one sample out of the 500 which lies within the top 0.01 of the area under the curve
is 1 — (1 —0.01)5% = 0.993.

Suppose one of the samples lies within the range of the 0.01 area. This is not the
same as being in the top 0.01 of the range of possible schedule values. Consider a true
Gaussian distribution and define area a as the area under the left hand tail starting
3 standard deviations from the mean. Then a is 0.0015, and having a sample fall
within the range of this area means that it falls somewhere between minus infinity
and minus 3 sigma. This situation is somewhat exaggerated; in the case of the
approximate Gaussian distribution mentioned above, having a sample fall within the
top 0.01 of the area under the distribution translates to being approximately within
the top 0.10 of the range of possible schedule values.

As illustrated, the distributions of Makespans values is approximately Gaussian;
this is also true of the distribution of Flowtime values. As a matter of fact they seem

to be almost independent as evidenced by the scatter plot shown in Figure C.3.

124

10500

Flowtime

10000

9500

9000

4

8500

8000

7500

7000

e
Y

L.

1000 1100 1200 1300 1400 1500 1600
Makespan

Figure C.3: Joint Distribution Scatter Plot, Schedule Makespan vs Schedule Flow-

time

125

To generate this plot, first the makespan and flowtime of 1000 sample schedules
generated using the Random priority dispstch rule wepe computed. Then one data
point was plotted (flowtize vs makespan) for ench schadule generated. Four percent
of the range was added 1o the date so that duplicate data peints would not overprint.

Applying H1/CT to a Problem

with Symmetry

Appendix D

A 12 job by 6 machine problem was generated by making a copy of each of the jobs
in a 6 job 6 machine problem ({6,6,, }). Experiments similar to those of Chapter 3.3
using heuristic H1/CT were performed on this new problem using the criteria of
makespan and flowtime. For these experiments, first 200 sample schedules were
randomly generated, then the top ten schedules according to the optimality criteria
were selected. If all ten of these schedules had precedence relations in common,
these common precedence relations were used to prune the original problem and the
sampling repeated. The results of these experiments are shown in Figures D.1 and
D.2. The procedure produced mixed results in the case of the makespan criterion.
After 242 of the 450 possible precedence relations were used to prune the space the
probabilities of generating very low makespan schedules was reduced. This situation

improved during a subsequent iteration as shown by the solid curve.

126

127

140

135

Makespan

130

125

120

115

110

105

100

95
0

| s 0 of 450 Precedence Relations Added

— — — 242 0f 450 Added
i 330 of 450 Added
I N T

.......... T
cenead r-
L el e - ——— r ~!
poeeed r— o
LT
R |
=
I:-¢ ’_I_JJ
i
+
10 20 30 40 50 60 70 80 90 100
Quantile

Figure D.1: H1 /CT applied to a 12 job 6 machine problem (makespan criterion)

128

g 1050
0;
E p
= 1000 | 0 of 450 Precedence Relations Added "
— — — 213 of 450 Added J
050 | —--— 3080f450 Added //
- 337 of 450 Added 7

900

850

800
750 }f
700 ~
0 20 30 a0 S0 60 70 80 S0 100

Quantile

Figure D.2: H1/CT applied to a 12 job 6 machine problem (flowtime criterion)

129

The mixed results in the above{12,6, G, Makespan} experiment were unexpected.
One possible explanation for this is that a number of symmetries were introduced into
the state space by including a copy of each job. As sample schedules were generated
and compared these symmetries were not taken into account thereby causing a lack
of adjacency between schedule trajectories which would mirror on to one another.

Consider a 2-D subspace of the state space defined by a job and its copy as shown
in Figure D.3. Notice that there is an axis of symmetry along the main diagonal. Any
trajectory segment which crossed the diagonal could be mapped into an equivalent

(in terms of objective function value) trajectory on the opposite side of the diagonal.

An experiment was performed in order to verify the above supposition. There
would be two ways in which to take these symmetries into account. One, the sample
schedules could be generated as before and some post sampling processing could be
done to mirror the trajectories into a canonical form suitable for the comparison
step. Alternately, schedule generation could be restricted such that trajectories were
confined to one of the two regions defined by the diagonal of Figure D.3. The latter
of these two was chosen on the basis of ease of implementation.

Notice that the obstacles all lie on the diagonal in Figure D.3 and that in order to
pass from one region to the other the trajectory must pass by one of these obstacles.
But, negotiating these obstacles corresponds to making a machine loading decision
between two identical (in terms of objective function value of the completed sched-
ule) alternatives. The sampling scheme was modified such that when this situation
occurred a unique choice was made (i.e. stay in the lower region or equivalently give
activities from Job 1 priority over those from Job 2).

The correlation procedure was then repeated on the {12, 6, G, Makespan} problem

with the modified (to incorporate mirroring) random schedule generator. The results

130

END

Job 2

START Job 1 ;

Figure D.3: Symmetric 2-D Subspace

3 s’-f‘
s

131

-sesults are very similar
ek the {12,6,G, Makespan}
pliy dsnprove during succmsive

to those of the {0,6, G, Makepaa} pesblem feems.
iterations. ’

132

S 140
(=}
@
W
"z‘g 135 | e 0 of 450 Precedence Relations Added
E - - = 206 of 450 Added
— o — 282 of 450 Added
= oo =— - 319 of 450 Added
130 — «c-— 335 0f 450 Added
e 345 of 450 Added
125
120 i J
A |
115 o o
""" _.r rI'
------ o — _r
110 U, —_d N |
' ,._..l -
o L ‘r - o—— _ _'l— ——
...... . — e o]
105 AT e— = Pt :
e /
20— r——‘ r —efm oo et e oo T
1005 oo [
95 1 1 1 1 1 1 1 1 1]
0 10 20 30 40 50 60 70 80 90 100
Quantile

Figure D.4: H1/CT modified to account for symmetry applied to a 12 job 6 machine

problem (makespan criterion)

133

“E’ 950 -
C: -
g j
ST [— 0 of 450 Precedence Relations Added i
" — . —. 1740450 Added #
— — — 284 of 450 Added d
— .. — . 333 0f 450 Added ;
T 3250f450 Added oy
———— 350 of 450 Added -7
850 | - &
!
800
750
700
650
600 1 2 A 1 1 1 1 1 L]
0 10 20 30 40 50 60 70 80 90 100
Quantile

Figure D.5: H1/CT modified to account for symmetry applied to a 12 job 6 machine

problem (flowtime criterion)

Bibliography

[1] Adams, Joseph; Balas, Egon; and Zawack, Daniel,
“The Shifting Bottleneck Procedure for Job Shop Scheduling”, Management
Science Research Report No. MSRR-525, Carnegie-Mellon University, Pitts-

burgh, Pennsylvania, July 1986.

[2] Aho, A. V.; Hopcroft, J. E.; and Ullman, J. D.,
The Design and Analysis of Computer Algorithms, Addison-Wesley, Read-
ing, MA; Menlo Park, Ca.; London; Amsterdam; Don Mills, Ontario; Sydney,
1974.

[3] Akella, R.; and Kumar, P. R.,
“Optimal Control of Production Rate in a Failure Prone Manufacturing Sys-
tem—”, Series LIDS-P; 1427, Laboratory for Information and Decision Systems,

MIT, January 1985.

[4] Akella, Ramakrishna; Choong, Yong; and Gershwin, Stanley B.,
“Performance of Hierarchical Production Schedu]ing Policy”, Report # LIDS-

134

BIBLIOGRAPHY 135

[6]

[7]

(8]

[10]

[11]

FR-1357, Laboratory for Information and Decision Systems, MIT, February
1984.

Akers, Sheldon B.; and Friedman, Joyce,
“A Non-Numerical Approach to Production Scheduling Problems”, Operations
Research, Vol. 3, No. 4, pp 429-442, November 1955.

Akers, S. B.,
“A Graphical Approach to Production Scheduling Problems”, Operations Re-
search, Vol 4, pp 244-245, 1956.

Allen, James F.,

“Maintaining Knowledge about Temporal Intervals”, Communications of the

ACM, Vol. 26, No. 11, pp 832-843, 1983.

Baker, Kenneth R.,
“A Comparative Study of Flow-Shop Algorithms”, Operations Research, Vol.
23, No. 1, pp 62-73, January-February 1975.

Bakshi, Mahendra S.; and Arora, Sant Ram,
“The Sequencing Problem”, Management Science, Vol. 16, No. 4, pp B247-
B263, December 1969.

Balas, Egon,
“Discrete Programming by the Filter Method”, Operations Research, Vol
15, pp 915-957, 1967.

Barr, A.; and Feigenbaum, E. A.,
Handbook of Artificial Intelligence, Vol. 1, William Kaufmann, Inc., Los
Altos, California, 1981. |

BIBLIOGRAPHY ' 136

[12] Bourne, David A.; and Fox, Mark S.,

“Autonomous Manufacturing: Automating the Job-Shop”, Computer (USA),
Vol. 17, No. 9, pp 76-86, September 1984.

[13] Brooks, George H.; and White, Charles R.,

[14]

[15]

[16]

[17]

[18]

“An Algorithm for Finding Optimal or Near Optimal Solutions to the Produc-
tion Scheduling Problem”, The Journal of Industrial Engineering, Vol. XVI,
No. 1, pp 34-40, January-February 1965.

Buer, H.; and Mohring,
“A Fast Algorithm for the Decomposition of Graphs and Posets”, Math. Opns.
Res., Vol. 8, pp 170-184, 1983.

Bunnag, Panit; and Smith, Spencer B.,
“A Multifactor Priority Rule for Jobshop Scheduling Using Computer Search”,
IIE Transactions, pp 141-146, June 1985.

Campbell, Herbert G.; Dudek, Richard A.; and Smith, Milton L.,
“A Heuristic Algorithm for the n Job m Machine Sequencing Problem”, Man-
agement Science, Vol 16, No. 10, pp B630-B637, June 1970.

Carlier, Jacques,
“The One-Machine Sequencing Problem”, European Journal of Operations

Research, Vol. 11, pp 42-47, 1982.

Carlier,J.; Chretienne, Ph.; and Girault, C.,
“Modelling Scheduling Problems with Timed Petri Nets”, Advances in Petri
Nets 1984, Edited by G. Rozenberg with the cooperation of H. Genrich

and G. Raucairol ,

BIBLIOGRAPHY ' 137

[19]

[20]

[21]

[22]

[23]

[24]

Sringer-Verlag , Berlin, Heidelberg, New York, Tokyo, Lecture Notes in Com-
puter Science - 188, pp 62-82, 1985.

Charlton, John M.; Death, Carl C.,
“A Method of Solution for General Machine-Scheduling Problems”, Opera-
tions Research, Vol. 18, pp 689-707, 1970.

Chow, We-Min; MacNair, Edward A.; and Sauer, Charles H.,
“Analysis of Manufacturing Systems by the Research Queueing Package”, IBM
J. Res. Develop., Vol. 29, No. 4, pp 330-342, July 1985.

Conway, R. W., ’
“An Experimental Investigation of Priority Assignment in a Job Shop”, RM-
3789-PR, The Rand Corporation, Santa Monica, CA, 1964.

Chryssolouris, G.; Wright, K.; Pierce, J.; and Cobb, W.,
“Manufacturing Systems Operation: Dispatch Rules Versus Intelligent Con-
trol”, Tobe published in “Robotics and Computer-Integrated Manufacturing”,
1987.

Clemmer, George L.,
“An Artificial Intelligence Approach to Job-Shop Scheduling”, Master Thesis,
Sloan School of Mgmt., MIT, September 1984.

Conway, Richard W.; Maxwell, William L.; and Miller, Louis W.,
“Theory of Scheduling”, Addison-Wesley, Reading, MA; Menlo Park, Ca.;
London; Amsterdam; Don Mills, Ontario; Sydney, 1967.

Davis, Edward W.; and Heidorn, George E.,
“An Algorithm for Optimal Project Scheduling Under Multiple Resource Con-

BIBLIOGRAPHY ' 138

[26]

[27]

[28]

[29]

[30]

[31]

straints ”, Management Science, Vol. 17, No. 12, pp B803-B816, August
1971.

Davis, Edward W.,
“Project Scheduling under Resource Constraints - Historical Review and Cat-

egorization of Procedures”, AIEE Transactions, May 1973.

Davis, Edward W.; and Patterson, James H.,

“A Comparison of Heuristic and Optimum Solutions in Resource-Constrained
Project Scheduling”, Management Science, Vol. 21, No. 8, pp 945-955,
1975.

Dempster, M. A. H.; Fisher, M. L.; Jansen, L.; Lageweg, B. J.;
Lenstra, J. K.; and Rinnooy Kan, A. H. G.,

Mathematics of Operations Research, Vol. 8, No. 4, pp 525-537, November
1983.

Dewdney, A. K.,
“On the Spaghetti Computer and other Analog Gadgets for Problem Solving”,
Scientific American, pp 19-26, June 1984.

Dewdney, A. K.,
“Analog Gadgets that Solve a Diversity of Problems and Raise an Array of
Questions”, Scientific American, pp 18-28, June 1985.

Engelke, H.; Grotrian, J.; Scheuing, C.; Schmackpfeffer, A.; Schwarz,
W.; Solf, B.; and Tomann, J.,

“Integrated Manufacturing Modeling System”, IBM J. Res. Develop., Vol
29, No. 4, pp 343-355, July 1985.

BIBLIOGRAPHY ' 139

[32] Erschler, J.; Fontan, G.; Merce, C.; and Roubellat, F.,

[33]

[34]

[35]

[36]

[37]

[38]

“A New Dominance Concept in Scheduling n Jobs on a Single Machine with
Ready Times and Due Dates”, Operations Research, Vol. 31, No. 1, pp
114-127, January-February 1983.

Fisher, Marshall 1.,
“Optimal Solution of Scheduling Problems Using Lagrange Multipliers: Part
I’; Operations Research, Vol. 21, pp 1114-1127, 1973.

Fox, B. R.; and Kempf K. G.,
“A Representation for Opportunistic Scheduling”, 3rd ISRR, Edited by
Faugeras and Giralt,

pp 111-117, 1986.

Fox, B. R.; and Kempf, K. G.,
“Opportunistic Scheduling for Robotic Assembly”, Proc. Inter. Conf. on
Robotics and Automation, IEEE, pp 880-889, 1985.

Fox, B. R.; and Ho, C. Y.,
“A Relational Control Mechanism for Flexible Assembly”, Proceedings of
Advanced Software in Robotics, Liege, Belgium, pp 2.A/1-11, May 1983.

Fox, Mark S.; Allen, Brad; and Strohm, Gary,
“Job-Shop Scheduling: An Investigation in Constraint-Directed Reasoning ”,
AAAIL82, Vol. 1, pp 155-158, 1982.

Fox, Mark S.,
“The Intelligent Management System: An Overview”, Technical Report,

Robotics Institute, Carnegie-Mellon Univ., December 1982.

BIBLIOGRAPHY ' 140

[39]

[40]

[41]

[42]

[43]

[44]

Fox, Mark S.; Smith, Stephen F.; Allen, Bradley P.; Strohm, Gary
A.; and Winberly, Francis C. ,

“ISIS: A Constraint-Directed Reasoning Approach to Job Shop Scheduling”,
IEEE Paper CH1887, pp 76-81, 1983.

Fox, Mark S.,
“Constraint-Directed Search: A Case Study of Job-Shop Scheduling”, CMU-
RI-TR-83-22,CMU-CS-83-161, Carnegie-Mellon University, 1983.

Fox, M. S.; and Smith, S. F.,
“ISIS - A Knowledge Based System for Factory Scheduling”, Expert Syst.
(GB), Vol. 1, No. 1, pp 25-49, 1983.

Gershwin, Stanley B.,

“Material and Information Flow in an Advanced Automated Manufacturing
System”, LIDS-P-1199, Laboratory for Information and Decision Systems,
MIT, Cambridge, MA., May 1982.

Gershwin, Stanley B.,

“An Efficient Decompostion Method for the Approximate Evaluation of Pro-
duction Lines with Finite Storage Space and Blocking”, Report # LIDS-
P-1309, Laboratory for Information and Decision Systems, MIT, December
1983.

Gershwin, Stanley B.; Akella, Ramakrishna; and Choong, Yong,
“Short Term Production Scheduling of an Automated Manufacturing Facility”,
Report # LIDS-FR-1356, Laboratory for Information and Decision Systems,
MIT, February 1984. |

BIBLIOGRAPHY ' 141

[45]

[46]

[47]

[48]

[49]

[50]

Gershwin, Stanley B.,)

“An Efficient Decompostion Method for the Approximate Evaluation of Pro-
duction Lines with Finite Storage Space”, Report # LIDS-P-1308, Laboratory
for Information and Decision Systems, MIT, July 1983, revised September
1983, March 1984.

Giffler, B.; and Thompson, G. L. ,
“Algorithms for Solving Production Scheduling Problems”, Operations Re-
search, Vol 8, pp 487-503, 1960.

Giffler, B.; Thompson, G. L.; and Van Ness, V.,

Edited by Muth, J. F., G. L. Thompson,

“Numerical Experience with Linear and Monte Carlo Algorithms for Solving
Production Scheduling Problems ”, Industrial Scheduling, Chap. 3, pp 21-38,
Prentice-Hall, Englewood Cliffs, N. J., 1963.

Grabowski, Jozef; Skubalska, Ewa; and Smutnicki, Czslaw,
“On Flow Shop Scheduling with Release and Due Dates to Mimimize Maximum
Lateness”, pp 615-620,

Graves, Stephen C.,
“A Review of Production Scheduling”, Operations Research, Vol. 29, No. 4,
pp 646-675, July-August 1981.

Graves, Stephen C.; Meal, Harlan C.; Stefek, Daniel; and Zeghmi,
Abdel Hamid,

“Scheduling of Re-Entrant Flow Shops”, Operations Management, Vol. 3,
No. 4, pp 197-207, August 1983. ’

BIBLIOGRAPHY 142

[51]

[52]

[53]

[54]

[56]

[57]

Graves, Stephen C.; and Lamar, Bruce W.,
“An Integer Programming Procedure for Assembly System Design Problems”,

Operations Research, Vol. 31, No. 3, pp 522-545, May-June 1983.

Hardgrave, William W.; and Nemhauser, George L.,
“A Geometric Model and a Graphical Algorithm for a Sequencing Problem ”,
Operations Research, Vol. 11, No. 6, pp 889-900, 1963.

Hopcroft, J. E.; and Tarjan, R. E.,
“Dividing a Graph into Triconnected Components”, SIAM Journal of Com-

puting, Vol. 2, No. 3, pp 135-158, September 1973.

Kimemia, Joseph G.; and Gershwin, Stanley B.,

“An Algorithm for the Computer Control of Production in a Flexible Man-
ufacturing System”, LIDS-P-1134 Revised, Laboratory for Information and
Decision Systems, MIT, Cambridge, MA., Revised January 1982.

Kirkpatrick, S.; Gelatt, Jr., C. D.; and Vecchi, M. P.,
“Optimization by Simulated Annealing”, Science, Vol. 220, No. 4598, pp
671-680, 13 May, 1983.

Krone, Martin J.; and Steiglitz, Kenneth,
“Heuristic-Programming Solution of a Flowshop-Scheduling Problem”, pp 629-
638,

Kurtulus, I.; and Davis, E. W.,
“Multi-Project Scheduling: Categorization of Heuristic Rules Performance”,
Management Science, Vol. 28, No. 2, pp 161-172, February 1982.

BIBLIOGRAPHY ' 143

[58]

[59]

[60]

[61]

[62]

[63]

[64]

Lageweg, B. J.; Lenstra, J. K.; and Rinnooy Kan, A. H. G.,
“Job-Shop Scheduling by Implicit Enumeration”, Management Science, Vol.
24, No. 4, pp 441-450, December 1977.

Lawler, E. L.,

“Sequencing Jobs to Minimize Total Weighted Completion Time Subject to
Precedence Constraints”, Annals of Discrete Math, North-Holland Publishing
Company, Vol. 2, pp 75-90, 1978.

Lipton, Michael J.,

“Integrating Real Time Scheduling into a Flexible Automated Electronics
Plant”, SME Technical Paper # EE85-133, FMS for Electronics, February
1985.

Lipton, Michael J.,
“The Development of a Real Time Scheduling System for Automated Produc-
tion”, SME Technical Paper # MS85-1095, Autofact , November 1985.

Marcus, Robert,
“An Application of Artificial Intelligence to Operations Research”, Commu-
nications of the ACM, Vol. 27, No. 10, pp 1044-1047, October 1984.

McMahon, Graham; and Florian, Michael,

“On Scheduling with Ready Times and Due Dates to Minimize Maximum
Lateness ”, Operations Research, Vol. 23, No. 3, pp 475-482, May-June
1975.

Metropolis, Nicholas; Rosenbluth, Arianna W.; Rosenbluth, Mar-
shall N.; Teller, Augusta H.; and Teller, Edward,

\J

BIBLIOGRAPHY ’ 144

[65]

[66]

[67]

[68]

[69]

[70]

“Equation of State Calculations by Fast Computing Machines”, The Journal
of Chemical Physics, Vol. 21, No. 6, pp 1087-1092, June, 1953.

Moore, J. M.; and Wilson, R. C.,
“A Review of Simulation Research in Job Shop Scheduling”, Production and

Inventory Management, pp 1-10, January 1967.

Nugent, C. E.,
“On Sampling Approached to the Solution of the n-by-m Static Sequencing
Problem”, PhD Thesis, Cornell University, September 1964.

“Combinitorial Optimization: Annotated Bibliographies”, Edited by
O’hEigeartaigh, M.; Lenstra, J. K.; and Rinooy Kan, A. H. G.,
John Wiley & Sons, Chichester, New York, Brisbane, Toronto, Singapore,
1985.

Patterson, James H.,

“Alternate Methods of Project Scheduling with Limited Resources”, RDTR,
Research and Development, Naval Amunition Depot, Crane, Indiana, No.

174, 1970.

Peterson, James L. ,
“Petri Net Theory and the Modeling of Systems”, Prentice-Hall, INC., En-
glewood Cliffs, N.J. 07632, 1981.

Picard, Jean-Claude; and Queyranne, Maurice,

“The Time-Dependent Traveling Salesman Problem and Its Application to the
Tardiness Problem in One-Machine Scheduling”, Operations Research, Vol.
26, No. 1, pp 86-110, January-February 1978.

BIBLIOGRAPHY ' 145

[71]

[72]

[73]

[74]

[75]

[76]

Reddy, Y. V.; and Fox, Mark S.,
“KBS: An Artificial Intelligence Approach to Flexible Simulation”, Technical
Report, Robotics Institute, Carnegie-Mellon Univ., September 1982.

Reisig, W.,
“Petri Nets, an Introduction”, Edited by W. Brauer, G. Rozenberg, A.

Salomaa,
1982 Springer-Verlag , Berlin, Heidelberg, New York, Tokyo, EATCS Mono-
grapbs on Theoretical Computer Science, 1985.

Rinnooy Kan, A. H. G. ,
“Machine Scheduling Problems”, Martinus Nijhoff / The Hague, 1976.

“Advances in Petri Nets 1984”, Edited by G. Rozenberg with the coop-
eration of H. Genrich and G. Raucairol ,

Sringer-Verlag , Berlin, Heidelberg, New York, Tokyo, Lecture Notes in Com-
puter Science - 188, 1985 .

Alla, H.; Ladet, P.; Martinez, J.; and Silva-Suarez, M.,

“Modeling and Validation of Complex Systems by Colored Petri Nets - Ap-
plication to a Flexible Manufacturing System”, Advances in Petri Nets 1984,
Edited by G. Rozenberg with the cooperation of H. Genrich and G.
Raucairol ,

Srin—ger-Verlag , Berlin, Heidelberg, New York, Tokyo, Lecture Notes in Com-
puter Science - 188, pp 15-31, 1985 .

Schrage, Linus and Baker, Kenneth R.,

“Dynamic Programming Solution of Sequencing Problems with Precedence

BIBLIOGRAPHY ’ 146

[77]

[78]

[79]

[80]

[81)

[82]

[83]

Constraints”, Operations Research, Vol. 26, No. 3, pp 444-449, May-June
1978.

Sen, Tapan; and Gupta, Sushil K.,
“A State-of-Art Survey of Static Scheduling Research Involving Due Dates ”,
OMEGA, Vol. 12, No. 1, pp 63-76, 1984.

Sidney, Jeffrey B.; and Steiner, George,
”»

“Optimal Sequencing by Modular Decomposition: Polynomial Algorithms ”,
Operations Research, Vol. 34, No. 4, pp 606-612, July-August 1986.

Smith, Stephen F.; and Ow, Peng Si,
“The Use of Multiple Problem Decompositions in Time Constrained Planning

Tasks”, CMU-RI-TR-85-11, Carnegie-Mellon University, 1985.

Szwarc, Wlodzimierz,
“Solution of the Akers-Friedman Scheduling Problem”, Operations Research,
Vol. 8, No. 6, pp 782-788, November 1960.

Valdes, Jacobo,

“Parsing Flowcharts and Series-Parallel Graphs”, Stanford University Com-
puter Science Department Technical Report, STAN-cs-78-682, December
1978.

Valdes, Jacobo; Tarjan, Robert E.; and Lawler, Eugene L.,
“The Recognition of Series Parallel Digraphs”, SIAM Journal of Computing,
Vol. 11, No. 2, pp 298-313, May 1982.

Villa, A.; Fassino, B.; and Rosetto, S.,

“Performance Evaluation of Series Manufacturing Processes by Dynamic Ag-

BIBLIOGRAPHY ' 147

[84]

[85]

[86]

[87]

”

gregate Model. ”, Computer Integrated Manufacturing, Vol. 8, pp 33-38,
1983.

Villa, A.; Fassino, B.; and Rosetto, S.,
“Discrete Event Dynamic Aggeregate Model of Series Manufacturing Pro-
cesses”, Vol. 8, pp 9-17, 1983.

Weeks, James K.; and Fryer, John S.,

“A Simulation Study of Operating Policies in a Hypothetical Dual Constrained
Job Shop”, Management Science, Vol. 22, No. 12, pp 1362-1371, August
1976.

Wiest, Jerome D.; and Levy, Ferdinand K.,
“A Management Guide to PERT/CPM : with GERT/PDM/DCPM and other
Networks”, Prentice-Hall Inc., Englewood Cliffs, N.J. 07632, c1977.

Wittrock, Robert J.,
“Scheduling Algorithms for Flexible Flow Lines”, IBM J. Res. Develop., Vol.
29, No. 4, pp 401-412, 1985.

Tius blank page was inserted to preserve pagination.

CS-TR Scanning Project |
Document Control Form Date: S/ 7(195

Report # AT-TR.- 103C

Each of the following should be identified by a checkmark:
Originating Department:

ﬁ(Artificial Intellegence Laboratory (Al)
O Laboratory for Computer Science (LCS)

Document Type:

XTechnical Report (TR)] Technical Memo (TM)
O "Other:

Document Information Number of pages: (57 (164 -/mnges)

“ Not to include DOD forms, printer intstructions, etc... original pages only.

Originals are: _ Intended to be printed as :
IN Single-sided or O Single-sided or
O Double-sided JX Double-sided
Print type:
[0 Typewriter [0 Oftset Press Laser Print
[0 wisetPrinter [Uninown [oter_Copy T

Check each if included with document:

N DOD Form L) [J Funding Agent Form],1 Cover Page
O spine O Printers Notes O Photo negatives
O Other:
Page Data:
Blank Pagesey sege numben;

Photographs/Tonal Material aypege mmben:

Other (o descriptoniage numben
Description : Page Number:
@ Zmag map (110) kvt 'sy Timw eaCl, PERS o'y 13- TX unirsd LisTor Y,
((1-152)PaG<s HSD [147)

(5% - 164)SeancsumRol ,Cev SR ,000(2) TTRGT. TRGTS (7D
® xees

AT WAS 3T Hols Pu,Nc,Hi'D

Scanning Agent Signoff:
Date Received: _J /7| /95 Date Scanned: _9/_¢ /]S Date Retumed: 415195

i
Scanning Agent Signature: %)‘M IV\) A g'ﬁ'?’v Rev 994 DSALCS Dooument Control Form cetrform.ved

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE When Date Enteted)

. READ INSTRUCTIONS
\. REPORYT NUMBER 2. GOVY ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
AI-TR 1036
4. TITLE (end Subtitie) i S. TYPE OF REPORT & PERIOD COVERED
Heuristics for Job-Shop Scheduling technical report
§. PERFORMING ONG. REPORT NUMBER
7. AUTHOR(S) 8. CONTRACT OR GRANT NUMBER(s)
Kenneth Alan Pasch N00014-86-K-0685
N00014~85-K-0124
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELLEMENT, PROJECT, TASK

Artificial Intelligence~Laboratory AREA & NORK UNIT NuMBERS

545 Technology Square
Cambridge, MA 02139

t1. CONTROLLING OFFICE NAME ANP ADDRESS 12. REPORT DATE
Advanced Research Projects Agency January 1988
1400 Wilson Blvd. : 13. MUMBER OF PAGES
Arlington, VA 22209 163

. MONITQRING AGENCY NAME & ADDRESS(!f different from Controlling Oftice) 18. SECURITY CLASS. rof this repors)

Office of Naval Research

UNCLASSIFIED
Information Systems
Arlington, VA 22217 Sa. EESE;S{:1CANON/DONNGNADmG

. OISTRIBUTION STATEMENT (of thie Report)

Distribution is unlimited

17.

DISTRIBUTION STATEMENT (of tNe abetract entered In Block 20, ¥ dilterent trom Repert)

Unlimited

SUPPLEMENTARY NOTES

None

. KEY WORDS (Continue on reverse side il necessary and Identily by dlock number)

scheduling
job-shop
heuristic
geometric

[N

20,

ABSTRACT (Continue on reverse side If necessary and tdentity oy l.lock nunber) . .
Two methods of obtaining approximate solutions to the classic General Job-Shop

Scheduling Problem are investigated. The first method is iterative. A sampling of
the solution space is used to decide which of a collection of space pruning constraints
are consistent with “good” schedules. The selected space pruning constraints are
then used to reduce the search space and the sampling is repeated. This approach
can be used either to verify whether some set of space pruning constraints can prune

with discrimination or to generate solutions directly.

DD , 'J’i’:"n 1473 eoition oF 1 nOv es s ossoLETE UNCLASSIFIED

S/N 0:02-014-6601 |

SECURITY CLASSIFICATION OF THIS PAGE (When Dara Bnterec

Block 20 cont.

Schedules can be represented. as trajectories through a cartesian space. Under
the objective criteria of Minimum Maximum Lateness a family of “good” schedules
(trajectories) are geometric neighbors (reside within some “tube”) in this space. This
second method of generating solutions takes advantage of this adjacency by pruning
the space from the outside in thus converging gradually upon this “tube.” On the
average this method significantly outperforms an array of the Priority Dispatch Rules
when the objective criteria is that of Minimum Maximum Lateness . It also compares
favorably with a recent iterative relaxation procedure.

Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the ML.I.T
Libraries. Technical support for this project was
also provided by the M.L.T. Laboratory for
Computer Sciences.

darptrgt. wpw Rev. 9/94

