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Doctor of Philosophy

Abstract: Causal models of devices support many forms of problem solving
in the physical system domain, such as diagnosis and monitoring. I describe an
approach to forming hypotheses about hidden mechanism configurations within de-
vices given external observations and a vocabulary of primitive mechanisms. The
approach has two aspects: one involves a set of constraints drawn from physical and
causal principles to prune hypotheses; the other involves an ordering on hypothesis
types and a set of rules for traversing the ordering to carefully control the generation
of hypotheses. The rules are all based on the principle that incomplete hypothe-
ses exhibit characteristic deficiencies; they justify attempts to augment deficient
hypotheses by extending them into more complex hypotheses.

This approach has been implemented in a causal modelling system called JAck.
The program JACK generates manageably sized sets of hypotheses about the mech-
anisms within devices and makes fine distinctions among hypotheses. This causal
modelling system reasons about the behavior of several diverse devices, constructing
explanations for why a second piece of toast in a toaster comes out lighter, why the
slide in a tire gauge does not slip back inside the cylinder when the gauge is removed
from the tire, and how in a refrigerator a single substance can serve alternately as
a heat sink for the interior and a heat source for the exterior.

I analyze the performance of the program JACK in two ways: in terms of the
number of hypotheses admitted for each device example and how these hypotheses
are organized in an abstraction space, and in terms of empirical results from a
set of experiments which isolate the pruning power due to the different sources of
constraint in my approach to the causal modelling problem. In conclusion, I show
how causal models of devices produced by the program JACK can be used to support
diagnosis and monitoring tasks.

Thesis Supervisor:  Patrick H. Winston
Title:  Professor of Computer Science
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1. Causal Modelling: Figuring Out How Things Work

The process of constructing and refining physical models to account for ob-
servations is a fair characterization of what science is all about. In this work,
I investigate the modelling process itself. The domain is devices, or designed
physical systems. The research goal is to articulate a set of principles which
engender capabilities for hypothesizing manageably small sets of physically
plausible device models, and for making fine distinctions among those mod-
els.

The modelling problem for devices may be posed in several ways: “What
hidden configuration of mechanisms can explain this behavior?”, “Is this hy-
pothesis consistent with all observations?”, “How may have this device been
designed?”. I have developed a modelling system—called JAcCK—which ad-
dresses these questions and produces abstract causal models of several physical
systems, including a toaster, a pocket tire gauge, a bicycle drive, a refrigerator,
and a home heating system.

The importance of the modelling problem arises from its ubiquity. The
need to understand how things work inevitably arises in the course of other
problem solving tasks. In the physical system domain these other problem
solving tasks include diagnosis, monitoring, and planning. For example, iden-
tifying a fault in a device requires knowing how it was supposed to work in
the first place and hypothesizing how a fault explains the observed behavior.

The modelling problem, or “black box” problem, is notoriously difficult.
The difficulty is traceable in part to the great number of potential hypotheses.
The number of possible hypotheses for even a relatively simple device like a
toaster, within the representations used by the program JACK, is in the several
millions.

My approach to making the modelling problem tractable in the physical
system domain is two-pronged. One of the prongs involves applying a set of
constraints which embody physical and causal principles to prune hypotheses.
The other prong involves enumerating different forms for hypotheses, placing
an ordering on these forms, and using this ordering to carefully control the
generation of hypotheses. The pruning power resulting from the combined
application of these two thrusts has proven to be impressive. The program
JACK generates on the order of a hundred hypotheses for the toaster. Among
these is an abstraction of the standard design for toasters.

1.1 Scenarios

Before offering a set of scenarios which delineate specific performance goals



for a causal modelling system, I must state the following caveat—my work is
not cognitive science. Although I have heen inspired by attempts on the part
of people at modelling devices, including my own, I have no goal of gaining
insight into human performance at modelling devices and make no claims
along these lines. The scenarios developed in the next few paragraphs have
two purposes: First, to provide the reader with a greater grasp of the causal
modelling task and its difficulties in advance of the forthcoming details, and
second, to provide benchmarks against which to evaluate the spirit, if not the
absolute letter, of the reasoning exhibited by the program JACK.

1.1.1 A Toaster

The single most mysterious aspect of a toaster is the nature of the mech-
anism whereby bread stays down in the toaster for an apparently measured
amount of time. Most people have no trouble conjecturing that the downward
motion of the lever closes a switch, that the coils are electrically heated, that
the bread turns dark because it is heated, and that the carriage is spring-
loaded. However, the timing mechanism within a toaster which is responsible
for producing toast of just such a darkness is more puzzling. Curiously, it is
a common form of toaster mishbehavior which provides a clue to the nature of
this mechanism.

People typically offer two hypotheses concerning the timing device within
a toaster: one like an alarm clock, the other like a thermostat. The alarm
clock hypothesis involves a motor powered by electricity which steadily moves
a latch on a spring until it disengages—at this point the toast pops up. The
thermostat hypothesis also involves a moving latch on a spring, but here the
cause of the motion is thermal expansion due to heating within the toaster,
not an electric motor.

Both of these hypotheses can explain a single example of toaster opera-
tion. However, only one can explain the annoying and familiar behavior where
a second piece of bread placed in a toaster shortly after a first piece turns out
lighter. The causal explanation for this misbehavior is that the second timing
episode begins at a higher initial temperature. The already partially expanded
latch has a shorter distance to expand through hefore the spring is released.
The bread is heated for a shorter time and comes out lighter.

In the alarm clock model for a roaster. the initial temperature has no
effect on the length of the period during which the bread is in the toaster.
The bread is heated for the same amount of time in both episodes and should
turn out darker owing to the higher initial temperature, certainly not lighter.
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Figure 1.1. Why does a second piece of toast turn out lighter?

The causal modelling system—without knowing that the behavior involv-
ing the lighter second piece of toast falls outside the intended functioning of
a toaster—is able to reproduce the reasoning outlined above and utilize this
instance of toaster misbehavior to distinguish the alarm clock and thermostat
hypotheses.

1.1.2 A Pocket Tire Gauge

The pocket tire gauge is an excellent example of a device for which the
modelling problem is surprisingly thorny. Its range of behavior is quite small,
yet this behavior is baffling. I have posed this problem to several people and
few have been able to solve it.

No one ever has any trouble conjecturing that the motion of the slide
in a tire gauge is a response to air pressure. But why doesn’t the slide slam
all the way to the end of the cylinder? One possible explanation involves an
equilibrium state within the cylinder. There may be an opposing force—due
to a spring, for example—which balances the air pressure. However, why
doesn’t the slide slip back into the cylinder when the gauge is removed from
the tire? The conjectured spring force then should be the only active one.

At this point, most people become stumped. To get past this quandary,
one has to note that there are couplings which allow motion in one direction
but not in the opposite direction. One of these is a ratchet. However, once
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again observation does not provide confirmation. The slide may be pushed
easily back into the cylinder when the gauge is off the tire.

Fortunately, there is another kind of one-way coupling which is consistent
with all of the observable behavior of the tire gauge. This is a coupling based
simply on contact, not attachment, with which it is possible to push, but not
to pull.

When the gauge is placed on a tire, released air enters the cylinder and
pushes a piston inside the cylinder. This piston eventually touches and then
pushes the slide. The piston is spring-loaded so that its motion is arrested
when the restoring force of the spring exactly balances the force due to the air
pressure. The slide, no longer being pushed by the piston, also stops moving.

When the gauge is removed from the tire, the force due to air pressure
disappears and the now-unopposed spring pushes the piston back into the
cylinder. However, the slide—unattached to the piston—stays right where it
is.

C 77771
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Figure 1.2. Why does the slide remain stationary?

The design of the pocket tire gauge is elegant. This design proves obscure
for most people. Nevertheless. the program JAcX, embodying the approach to
modelling described in this thesis, is able to solve this modelling task.

1.1.3 A Refrigerator

Refrigerators are a complete riddle to most people. The physical princi-
ples on which they operate are not in the vocabulary of the typical layperson.
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These principles are: (1) the boiling point of a substance is a function of
the ambient pressure and (2) condensation and evaporation are, respectively,
heat-releasing and heat-absorbing processes.

The interior of a refrigerator is cooled by forcing the evaporation of a
substance through a sudden drop in pressure. The substance absorbs heat
from the interior while evaporating. If this were the end of the story, there
might be a problem, for the implication here is that this substance serves as a
heat sink of arbitrary capacity. One way to solve this problem is to continually
renew this substance.

Instead, this problem is better addressed through an elegant use of syn-
ergy. The forced evaporation described above is only one half of a cycle of
operations inside a refrigerator. The other half involves forced condensation
of the same substance, brought about by a pressure increase. During conden-
sation, the substance gives up the heat gained during evaporation; there is no
net heat gain or loss within this substance. The condensation half resets the
evaporation half of the cycle, allowing more heat to be absorbed safely from
the interior the next time around.

The pressure increase which forces condensation is usually achieved through
the use of a mechanical compressor. However, an equally effective pressure in-
crease can be achieved through—paradoxically — a temperature increase. For
a while, a refrigerator design which employed gas heating was competitive
with the compressor design. The heat exchange mechanisms in this absorp-
tion type of refrigerator are, not surprisingly, more complicated.

The program JACK is able to model the cycle of operations within a refrig-
erator by recognizing that condensation and evaporation imply hidden heat
sources and heat sinks and reasoning that sources and sinks may be avoided
by alternating gains and losses within a cycle.

1.2 The Causal Modelling Task

The task of the causal modelling system JACK is to conjecture configurations
of mechanisms inside the “black box” which are consistent with the externally
ohservable behavior of a device.

There are two inputs to the causal modelling system: one is a descrip-
tion of the externally observable behavior of a device; the other is a set of
mechanisms. The output is a set of compositions of those mechanisms, each
explaining the behavior of the device. See Figure 1.4.

The description of the behavior of a device consists of a timeline in which
changes in the observable quantities of the device are recorded. For example,
part of the description of the behavior of a tire gauge involves changes in the
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Gas Line
1

Fluid Line

Figure 1.3. Why is this a poor design for a refrigerator?

position of the slide. Initially, the slide is stationary. Some time later, it
moves out of the cylinder, reaching a new stationary position. The slide does
not move again.

Examples of mechanisms are mechanical couplings, thermal expansion,
fluid low, condensation, gravity, springs, valves, etc. These mechanisms serve
as the primitive causal explanations from which the model of a device is
constructed. They map causes to effects. For example, a mechanical coupling
maps the motion of one phyvsical object to the motion of another physical
object.

The causal modelling task is to hypothesize paths of mechanisms through
the black box. These causal paths map the primitive causes of a device or its
inputs, to its final effects or outputs.

Appendix A lists observations of the devices on which the program Jack
has been tested. Appendix B contains the vocabulary of mechanisms used
in all of the examples. Figure 1.5 shows a graphical representation of the
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Figure 1.4. The causal modelling task.

observation of a toaster.

Figure 1.6 shows a causal graph generated by the program JACK to explain
part of the observation of a toaster. The task is to explain how current at the
outlet can result in heating at the coils. The graph represents the following
hypothesis: Electricity flows from the outlet to the coils; at the coils current
is transformed into heat. Furthermore, the motion of the lever closes a switch
which enables the electrical flow.

1.3 Issues

Here, I briefly enumerate the issues which are central to this work. In the body
of the thesis, I enlarge on the principles which underlie the performance of the
program JACK in the context of discussing the operation of the causal modelling
system and the set of device examples I have successfully implemented.

How to constrain the formation of hypotheses?

The hypothesis space for the causal modelling problem turns out to be
exponential in the worst case in both the length of causal paths and in the
number of interacting causal paths. Some form of strongly constrained search
clearly is called for. This is the central computational issue of the thesis.

What are the constraints in the physical system domain?

On the testing end of hypothesis formation, I have devised a set of general
constraints for the physical system domain from physical and causal principles.
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0:00 1:00 1:01 1:06 3:06 3.07 7:30
Lever Position Amount Up Down Up
Lever Position Rate Zero Negative | Zero Positive Zero
Dial Angle Amount LM
Dial Angle Rate Zero
Carriage Position Amount Up Down Up
Carriage Position Rate Zero Negative Zero Positive Zero
Coils Temperature Amount Off Hot Off
Coils Temperature Rate Zero Positive Zero Negative Zero
Bread Appearance Amount Untoasted Golden
Bread Appearance Rate Zero Positive Zero
Outlet Charge Amount On
Outlet Charge Rate Positive
Earth Gravity Amount G
Earth Gravity Rate Zero

Figure 1.5. Observation of a toaster.

The principles embodied in these constraints include conservation of energy
and mass, entropy, inertia, no action at a distance, mechanical advantage, and
the directionality of causation. These constraints reflect necessary conditions
which all physically realized devices must satisfy.

What are the different causal structures for devices?

On the generation end of hypothesis formation, I have enumerated a set
of hypothesis forms corresponding to different causal structures for devices.
These structures include simple linear mechanism chains from inputs to out-

puts, enablement, disablement, and equilibrium interactions where the causal
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Outlet Charge Rate Coils Temperature Rate
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Figure 1.6. A causal graph.

contributions of different mechanisms combine in a single effect, and cycles in
which mechanism chains form closed loops.

How to deal with the complezity vs. completeness problem?

I have placed an ordering on these hypothesis forms based on a straight-
forward complexity analysis of the corresponding causal structures. This or-
dering provides a direct means of controlling hypothesis generation: propose
hypotheses of the simplest type first, those of the more complex types later.
However, we want to have compelling reasons for constructing the more com-
plex hypotheses. We do not want to generate them indiscriminately; neither
do we want to exclude them entirely from consideration.

Accordingly, I have designed heuristic justification rules for each level
of hypothesis. Each rule triggers on characteristic kinds of deficiencies in hy-
potheses at a less complex level. Hypothesis generation is explicitly controlled
by permitting an incomplete hypothesis at a given level to be extended into
a hypothesis at a more complex level only when the justification rule at the
more complex level is satisfied.

What is the power of causal reasoning in the mechanical, electrical, and
thermal domain?

Much of the work on causal reasoning about physical systems has con-
centrated on the digital and analog circuit domain {Barrow 84, Davis 84, de
Kleer 84, Genesereth 84, Williams 84]. In this domain, the relationship be-
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tween structure and behavior is well-understood because structure is nearly
equated with topology and component behaviors are by design composable. In
addition, circuit domain knowledge is compendious enough to make theorem
proving a feasible enterprise. These properties are more elusive in the domain
of mechanical, electrical, and thermal systems. The couplings between struc-
ture and behavior are less straightforward and there is no universal notation
for articulating domain knowledge. Nevertheless, a number of research efforts
have begun to address these problems [de Kleer and Brown 84, Forbus 84,
Kuipers 84].

This thesis is in part an investigation into the power of representing and
reasoning about causal relations in mechanical, electrical, and thermal sys-
tems, in the context of the difficult modelling or “black hox” problem. I am
interested also in isolating the contribution of causal knowledge from that of
teleological knowledge. I have deliberately suppressed reasoning about the
intended function of devices in the program Jack for this reason, although I
fully expect that such knowledge would prove to be an additional and com-
plementary source of constraint.

What makes for a convincing model of a device?

This is the most difficult issue which this work must address. The models
of devices produced by the causal modelling system are necessarily abstrac-
tions of the real devices. The abstraction is not just an unavoidable artifact; it
is an important part of the modelling process. Given the size of the hypothesis
spaces being dealt with, it becomes infeasible to generate hypotheses which
incorporate full details of mechanics or thermodynamics, etc., even putting
aside objections concerning the completeness of any knowledge base which
purports to have captured the level of detail in, say, a college physics text-
book. Quite deliberately, my representations for mechanisms and constraints
in the physical system domain capture abstractions of physical and causal
principles.

The trick, however, is to strike a proper halance hetween abstraction
and discriminatory power. We want suppression of detail while retaining a
capability for making fine distinctions among manageably few hypotheses. We
want abstractions which support sufficiently sound reasoning such that good
choices can be made about which hypotheses to admit and which to prune.

An important place to look is at device models proposed by the program
JACK which do not correspond to the standard designs for the given device.
Ideally, these alternate models should either be genuine alternate designs for
the given device, or there should be an identifiable lack of more specific knowl-
edge which could be added to the program.
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1.4 Roadmap

In Chapter 2, I offer a concise description of the causal modelling problem, I
determine the sources of complexity in the problem, and I outline the approach
which results in the successful modelling of several devices.

In Chapter 3, I describe the causal ontology and the set of representations
I designed in support of my solution to the causal modelling problem. Chapter
4 contains a detailed description of the manifestation of that solution in the
procedures which make up the program JACK.

In Chapter 5, I relate in detail the reasoning employed by the program
JACK on the several device examples. For each example, I describe the gener-
ation of several plausible models and identify abstractions and shortcomings
in those models.

Chapter 6 contains an analysis of the performance of the causal modelling
system. Here, I offer empirical results concerning the number of hypotheses
generated by the program JACK for each of the device examples. I offer also
statistics concerning the effectiveness of the individual constraints and the
ordering on hypotheses at constraining search. Finally, [ examine the robust-
ness of the program JACK and enumerate assumptions and limitations in my
approach to the causal modelling problem.

In the final chapter, I discuss how the issues enumerated at the outset
are addressed in this work, relate my research to other efforts, outline some
directions for future research, and offer some ideas about potential uses for a
causal modelling system.
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2. The Problem: JACK in the Black Box

I refer to the problem which is the central focus of this thesis as the causal
modelling problem. This term echoes the nature of the approach I have taken
to solve the problem. This approach involves instantiating and composing
causal explanations to account for the behavior of a device.

2.1 Formal Statement of the Problem

The causal modelling problem can be stated as a graph problem. The nodes
of the graph correspond to the events of a device—changes in the values of its
quantities. The arcs of the graph correspond to the mechanisms which map
events to other events.

Some of the ohservable events of a device are distinguished as known
inputs or primitive causes. Others are distinguished as known outputs or
final effects. The task is to construct a set of directed graphs consisting of
mechanisms and intermediate events which connect the known input nodes
to the known output nodes. See Figure 2.1. The direction of the arcs is from
cause to effect. These causal graphs are the output of the causal modelling

system.
observed conjectured observed
event mechanism event mechanism event
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Figure 2.1. A causal graph.

The original set of observable events forms the periphery of the graphs to
be constructed. The mechanisms and intermediate events correspond to hy-
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potheses about what hidden mechanisms may exist and what unobservable
events may take place inside the hlack hox.

2.2 Viewpoints on the Problem

In this section, I relate causal modelling to several forms of reasoning.

2.2.1 Explanation

Causal modelling is a form of explanation. An event—a change in an
observable quantity of a device—is explained in terms of other event(s) and
the mechanisms which mediate between them. Motion can be explained by
another motion and a mechanical coupling, by the force of gravity, by a change
in temperature and thermal expansion, etc.

The explanations formed by JACK carry the necessity property associated
with causality: If the cause(s) and mechanism(s) are present, the effect must
occur. This is the basis of my use of the term causal; no further philosophical
or other trappings should be read into it.

Forbus [Forbus 86| applies the term measurement interpretation to the
explanation of observations of a device in terms of mechanisms and events
within it. Causal modelling is measurement interpretation with the significant
difference that the model of the device is not given, but is hypothesized in the
very process of forming explanations.

2.2.2 Theory Formation

I take theory formation to be an elaboration of explanation; namely,
explanation refined across a set of examples. The motion of the slide in the
tire gauge can be explained by a coupling with a hidden object based either on
attachment or simple contact. However, when the unopposed spring pushes
the hidden object back into the cylinder, only the contact coupling hypothesis
remains consistent with the motionlessness of the slide.

The causal modelling system verifies existing hypotheses against addi-
tional examples of behavior. This refinement of hypotheses, or theory forma-
tion, is a form of learning in the program JicK.

2.2.3 Design

Causal modelling is also an abstract form of design. The program JACK,
in conjecturing compositions of mechanisms within a device to explain its
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behavior, is also conjecturing how the device may have been designed.

The reasoning in the causal modelling system is qualitative, making it
most like the early stages of design. There are two reasons why causal mod-
elling falls short of full-fledged design. First, the representations for structure
in the program JACK are limited. They cannot support the detailed reasoning
about how structure implements function which characterizes the later stages
of design. Second, the timeline of events which is one input to the causal
modelling system is a specification. albeit incomplete. of the range of hehav-
ior of the device. A designer, on the other hand, does not reason directly
from behavior, but works with functional specifications which are refined in-
crementally, and which ultimately define behavior.

2.3 The Domain

The program JACK operates in the domain of mechanical, electrical, and ther-
mal physical systems. This class does not include electronic devices: digital,
analog, or VLSI technology. The order of complexity which has been success-
fully tackled is roughly that of the common household gadget.

The device examples which have been implemented include a toaster, a
tire gauge, an old-style bicycle drive with coaster brake, a refrigerator, and
a home heating system. The program JACK models simplified versions of the
more complex among these physical systems.

In the toaster example, an example of hehavior in which toast turns out
too light is used to recognize the role of thermal expansion in the toaster. In
the pocket tire gauge example, the causal modelling system identifies the push-
but-not-pull nature of the coupling which moves the slide and then leaves it
there. In the bicycle drive example, the program JACK infers that independent
linkages drive the rear wheel and activate the hrake. The linkages operate in
opposite directions so that only one can he engaged at a time. The program
JACK proposes a model for a refrigerator where cooling of the interior and
heating of the exterior are two halves of a cycle. Finally, a hidden fluid
transport medium is offered as an explanation for the behavior of a home
heating systemn.

2.4 Motivation

In this section, I argue for the importance of rhe causal modelling problem.
The motivation for this investigation goes well hevond idle curiosity in mod-
elling as an abstraction of the scientific process. There are theoretical and
pragmatic reasons for studying this problem.
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2.4.1 Understanding Constraint in the Physical System Domain

My primary theoretical objective in investigating the causal modelling
problem is to expose sources of constraint for reasoning in the physical system
domain. Such an exercise is part of a well-known and successful paradigm for
conducting research in artificial intelligence [Marr 82]. Any success I achieve in
identifying constraint sources can provide a starting point for other researchers
working on problems in causal reasoning about physical systems.

2.4.2 Causal Models and Problem Solving

The importance of causal modelling can be argued from a purely prag-
matic stance. Device models can support numerous forms of problem solving
in the physical system domain, including diagnosis, monitoring, and planning.
For example, in diagnosis a model of the working device can be used to rec-
ognize departures from nominal behavior, and simulation of fault models can
be used to test hypotheses about the source of misbehavior.

Prediction of device behavior via model-based simulation can support de-
cisions about how to monitor a physical system. A simulation trace generates
expectations about changes in sensor values and exposes causal dependencies
which can be used to assess the importance of predicted events in the contin-
ued nominal operation of the device. These assessments in turn can support
decisions about how to allocate sensor resources.

Sometimes an existing model must be refined before it can support a
new problem solving task. For example, a simple model of a camera might
describe how the aperture width and shutter speed both contribute to expo-
sure. However, if the goal is to take unblurred photographs, a more detailed
model is needed, one which describes how aperture width affects blurring due
to distance and how shutter speed affects blurring due to motion.

In Section 7.4.1, I offer scenarios which show how causal models generated
by the program JACK can be used. The problem solving tasks in these scenarios
are diagnosis—reasoning about faults within a device, and monitoring—the
efficient allocation of sensor resources to verify the nominal operation of a
device.

2.5 Analysis: How Hard is the Problem?

In this section, I conduct a straightforward worst-case complexity analysis of
the causal modelling problem. The causal modelling problem is hard because
the number of possible hypotheses about what mechanisms may be inside a
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device is exponential in two parameters. The two sources of complexity are
direct consequences of the “black box”; they arise from the lack of knowledge
of the internal topology of the device. One is due to uncertainty about the
lengths of the mechanism paths in the causal graph of a device; the other is
due to uncertainty about how mechanism paths join in the causal graph of a
device.

2.5.1 Mechanism Paths

For any pair of events, the number of possible mechanism paths between
them is m! where m is the number of possible mechanisms and [ is the length
of the path. See Figure 2.2. For n observable events, there are n? pairings of
these events. The exponential contribution dominates; therefore the number
of mechanism path hypotheses for a set of observable events is O(m!).

Figure 2.2. Mechanism paths.

2.5.2 Mechanism Interactions

Unfortunately, linear chains of mechanisms are not the only form of hypothesis
which must be considered. An effect may be the result of an interaction
between multiple causes. See Figure 2.3. One cause may enable or disable
another, as when the opening or closing of a valve enables or disables fluid
flow. The contributions of two causes may cancel to form an equilibrium state,
as when the forces due to air pressure and a spring balance in a tire gauge.

The number of hypotheses for interacting, or joined mechanism paths
is the product of the number of hypotheses for each of the separate linear
mechanism paths. The number of hypotheses for linear mechanism paths is
O(m!); the number of hypotheses for joined mechanism paths is therefore
O(m!m‘...m!). For p interactions, the number of mechanism hypotheses be-
comes O(m'?). The causal modelling problem becomes exponential in two

parameters in the worst case.
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Figure 2.3. Mechanism interactions.

2.5.3 Hidden Inputs

Both linear mechanism paths and mechanism interactions may involve
hidden inputs. See Figure 2.4. Although the worst-case number of ways to
instantiate a given graph structure does not change in the presence of hidden
inputs, the ability to constrain instantiation is compromised. All hypotheses
must be consistent with the observed, incontrovertible events which make up
the periphery of a causal graph. A hidden input at the periphery of a causal
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Figure 2.4. Hidden inputs.

graph is, on the other hand, a wild card which offers no source of constraint.

2.5.4 Cyecles

Both linear mechanism paths and mechanism interactions may be ex-
tended to include cycles. See Figure 2.5. A cycle effectively adds an additional
mechanism path to a causal graph. The worst case number of hypotheses be-
comes O(mHP+1)). Although there is no new exponent, the worst case number
of hypotheses for a causal graph which includes a cycle is strictly greater than
the worst case number of hypotheses for the same causal graph without the
cycle.

2.6 The Approach

In this section, I describe informally the constraints from the physical system
domain and the ordering of hypotheses in the physical system domain which
are at the crux of my solution to the causal modelling problem.

2.6.1 Physical and Causal Constraints

The constraints I enumerate here are, I believe, a fair summary of com-
mon sense concerning devices. Nevertheless, they are based in, and inherit
the inviolability attributed to, physics and causality. All hypotheses about
the mechanisms within devices are subject to these constraints.

The constraints concern how different observable aspects of the behavior
and structure of physical systems are conserved or transformed across mecha-
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Figure 2.5. Cycles.

nisms. Any hypothesis about a configuration of mechanisms between an event
taken to be a cause and an event taken to be an effect must account for any
change or lack of change between the two events for all of these aspects of
behavior and structure.

2.6.1.1 Type

This constraint concerns the types of quantities in a physical system. Ex-
amples of quantity types are amount and rate of position, amount and rate
of temperature, amount of fluid and rate of fluid flow, etc. Proposed mecha-
nisms must be consistent with observed type conservations or transformations
between a cause and an effect.

For example, a mechanical coupling is an admissible explanation for a
cause whose type is rate of position and an effect whose type also is rate of
position.
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2.6.1.2 Delay

The delay constraint concerns the times of occurrence of events in a phys-
ical system. Mechanism hypotheses must account for any time lag hetween
causes and effects.

For example, electricity or a rigid coupling, whose propagation times
are essentially instantaneous, are consistent hypotheses for a cause and effect
which are perceptually simultaneous. Conversely, these same mechanisms
cannot be offered as an explanation for events which are separated in time.

2.6.1.3 Sign

The sign constraint concerns the signs of the values of quantities in a
physical system. Mechanism hypotheses must account for any conservation
or transformation of sign between causes and effects.

For example, an increase in temperature can account for an increase in
pressure but cannot explain a decrease in pressure. Flow in a closed system
implies a decrease in amount at the cause and an increase at the effect, or
vice versa. In an open system with an external source and sink, two amounts
may increase or two amounts may decrease.

2.6.1.4 Direction

The direction constraint concerns the orientations in space of quantities
in a physical system. Mechanism hypotheses must account for any deflection
between causes and effects. The direction constraint is an elaboration of the
sign constraint for vector, as opposed to scalar, quantities.

A spring, which produces a reversal in the direction of motion, is a consis-
tent explanation for a motion followed by a motion in the opposite direction.
A rigid coupling, on the other hand, which preserves orientation, is not.

2.6.1.5 Magnitude

The magnitude constraint concerns the magnitudes of the values of quan-
tities in a physical system. Mechanism hypotheses must account for similari-
ties or differences in magnitude hetween causes and effects.

For e =mple, a rigid coupling, which transters motion with no loss, can be
a causal explanation only for motions of the same magnitude. The acceleration
due to gravity over finite distances can account for velocities only within a
certain range of magnitude.
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2.6.1.6 Alignment

The alignment constraint concerns the relative values of quantities in a
physical system. Some mechanisms require the value at the cause to be in
some relation to the value at the effect. Only those mechanisms for which any
such required relation is satisfied may appear in mechanism hypotheses.

For example, the direction of heat flow always is from the warmer to
the cooler site. Or, stated differently, the temperature value at the cause
must be greater than the temperature value at the effect. This constraint also
distinguishes couplings which support pulling but not pushing, or vice versa.
For example, for a non-rigid coupling such as a string, the position of the
cause must be greater than the position of the effect, along the direction of
motion.

2.8.1.7 Bias

The bias constraint concerns the directions of change of quantities in a
physical system. Some mechanisms place a restriction on the absolute direc-
tion of change at the cause or effect. Only those mechanisms whose preferred
direction of change is satisfied may appear in mechanism hypotheses.

For example, a ratchet allows motion in one direction but not in the
opposite direction. A coupling based on contact, on the other hand, may
engage in either direction. Condensation results from a pressure increase and
evaporation results from a pressure decrease.

2.6.1.8 Displacement

The displacement constraint concerns the locations of objects in a phys-
ical system. Mechanism hypotheses must account for any physical separation
between causes and effects.

For example, thermal expansion cannot account for a temperature change
in one physical object and a motion in another because thermal expansion
takes place entirely within one physical object. However, thermal expan-
sion preceded by a heat flow, or thermal expansion followed by a mechanical
coupling can explain the observation hecause in both cases, the additional
mechanism is sufficient to account for the change in location.

2.6.1.9 Medium

The medium constraint concerns the connections between objects in a
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physical system. Examples of connections are attachment in a rigid coupling,
an unobstructed line-of-sight path in radiative heat flow, etc. Mechanisms
whose associated connection type cannot be established or conjectured be-
tween the sites of causes and effects may not appear in mechanism hypotheses.

For example, gas flow is an admissible hypothesis when two physical
objects are joined, but is untenable when they are separated. A valve must
span a conduit in order to explain a change in flow.

2.6.2 An Ordering on Hypotheses

Figure 2.6 shows an ordering on types of device model hypotheses. These
hypothesis types correspond to different causal graph structures. The ordering
is a partial ordering. Linear mechanism paths may be extended into branching
mechanism interactions. Either of these hypothesis types may involve hidden
inputs. Finally, hidden input hypotheses may be extended to include cycles.

Linear Mechanism Paths

* Mechanism Interactions

Hidden Inputs . /

Cycles

Figure 2.6. The ordering on hypotheses.

The directions of the arcs in this ordering are based on either: (1) in the case
of arcs leading to the hidden input node, loss of constraint due to unobservable
events on the periphery of the causal graph, or (2) in the case of all other arcs,
a hypothesis space of strictly greater cardinality.
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The causal modelling system must not proceed through this ordering
indiscriminately. There should be clear justifications for moving from one
level of hypothesis construction to another, for each level jump implies an
explosion. I have designed a set of heuristic look-ahead rules for justifying
level jumps. These rules capture manifestations of the following principle:
Incomplete hypotheses often erhibit characteristic deficienctes. These signa-
tures can indicate into what other form of hypethesis a deficient hypothesis
should be extended. Incomplete hypotheses displaying these signatures have
a heuristically justified chance of being reparable at another level.

These heuristics quite deliberately prevent the program Jick from making
a complete search. In fact, some of the arcs in the ordering on hypotheses are
suppressed entirely. Ouly certain deficient hypotheses ever are extended into
hypotheses at another level; no successful hypothesis ever is extended. This
focusing is necessary to offset the explosion awaiting at more complex or less
constrained levels of hypothesis generation.

2.6.2.1 Mechanism Paths

Linear mechanism paths form the root of the hypothesis ordering. The
program JACK always initiates hypothesis construction at this level; no justifi-
cation is needed.

2.6.2.2 Mechanism Interactions

Two kinds of mechanism interaction can be distinguished: (1) enable-
ments and disablements where one mechanism renders another active or inac-
tive, and (2) equilibria where the contributions of separate mechanisms cancel
each other.

An unsuspected enablement situation can be characterized by an un-
explained delay; the expected effect occurs, but too late. In addition, the
magnitude of the effect may bhe less than expected. An example is the open-
ing of a valve and an increasing amount of fluid after a fluid source has been
already established.

The hallmark of a disablement situation is an arrested change occurring
after the expected appearance of a non-zero effect. An example is the closing
of a valve and a resulting stable amount of Huid after a fluid source has become
already manifest in an increasing amount of fluid.

The signature of an equilibrium situation is the same as that for a dis-
ablement situation: an unexpected return to zero after an expected effect has
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occurred. An example is the establishment of a fluid sink and a resulting sta-
ble fluid level after a fluid source has become already manifest in an increasing
amount of fluid.

2.6.2.3 Hidden Inputs

Certain mechanisms can appear only in enablement or disablement in-
teractions; they cannot stand alone along linear mechanism paths. The valve
which permits or inhibits fluid flow is an example. The opening or closing
of the valve does not directly cause the genesis or cessation of a fluid flow.
Nothing happens in the absence of a fluid source.

A hidden input situation is signalled by any linear mechanism path hy-
pothesis which includes one of the non-stand-alone mechanisms. These hy-
potheses always incorrectly predict zero effects because of the missing fluid,
current, heat, etc. sources.

2.6.2.4 Cycles

One possible signature of cycles within a device is repetitive patterns of
behavior. However, cyclic behavior may not manifest at the macroscopic level;
the iterations may be blurred into apparently continuous changes. For exam-
ple, the cooling of the interior of a refrigerator, perceived to be continuous,
is actually the result of repeated cooling pulses supplied by the evaporation
half of the refrigerant cycle.

A more perspicuous signature for cycles can be derived by noting that
hidden inputs imply unknown sources and sinks. Well-designed devices are
expected to have a minimum of sources and sinks because conservation laws
demand that sources must be explicitly supplied and sinks must be explicitly
removed. Potential sources and sinks within a device can be avoided by form-
ing cycles where gains in one part of the cycle are offset with losses in another
part. A signature for this kind of synergistic cycle is the presence of at least
one conjectured source and one conjectured sink.
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3. Representations and Ontology:
The World According to JACK

Supporting my approach to the causal modelling problem is a host of repre-
sentations and an ontology—partially inherited and modified from the work
of other researchers, partially designed by myself. The representations are
aimed at supporting reasoning about the behavior and structure of devices
and at exposing the constraints which prevent mechanisms from being arbi-
trarily composed. The ontology is aimed at enumerating the types of causal
graph structures for devices, and the primitives which make up causal graphs.

3.1 Quantities

Quantities are continuous properties of physical ob jects. Examples of quanti-
ties from the devices modelled by the program JACK include the position of the
lever outside a toaster, the amount of gas inside a tire, the angular velocity
of the pedal in a bicycle drive, and the temperature inside a refrigerator, or a
hot-water radiator.

My representation for quantities is similar to and was inspired by the
quantity representation designed by Forbus in his Qualitative Process Theory
[Forbus 84]. Quantities are represented as triples of the form:

{-QUANTITY- physical-object property order}
The quantities enumerated in the last paragraph are represented as:

{-QUANTITY. Lever Position Rate}
{-quantiTY. Tire Amount-of-Gas Amount}
{-QUANTITY- Pedal Angle Rate}

{-QuanTITY. Interior Temperature Amount}
{-QUANTITY. Radiator Temperature Amount}

The first slot in the representation of a quantity denotes the physical
object whose continuous property is being described. The second slot de-
notes the type of continuous property being described. The third slot denotes
whether the property itself or its first derivative is being described.

3.1.1 Types

The type of a quantity is defined as its property and order. Thus, for
example, displacement {-TYPE- Position Amount} and velocity {-TYPE. Position
Rate} are treated as distinct types.
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3.1.2 Derivatives

The order of a quantity is either and only Amount or Rate; higher-order
derivatives cannot be represented explicitly.

3.1.3 Values

The values of quantities are represented in two complementary fashions:
as discrete qualitative regions and as ranges of orders of magnitude. In many
cases, the distinctions afforded by qualitative regions are sufficient to draw
useful inferences—that the value of a quantity is or is not changing, that a
switch is open or closed. Ranges of orders of magnitude allow finer distinctions
to be made, for example between the magnitude of motion due to gravity and
the magnitude of motion due to the uncoiling of a spring. Ranges of orders
of magnitude represent a compromise hetween purely symbolic qualitative
reasoning and precise quantitative reasoning.

3.1.3.1 Qualitative Regions

Qualitative regions are represented by symbols such as Positive, Down,
and Ambient.

3.1.3.2 Order of Magnitude Ranges

Ranges of order of magnitude are represented as:
{-RANGE- radiz™" : radiz™°"}

The low end of an order of magnitude range is the base radiz raised to
the exponent min and the high end is the base radiz raised to the exponent
maz. For example, the numeric interval [0.1 : 100.0] could be represented as
{-RANGE- 107! : 10°} or as {-RANGE- 273 : 27}.

The qualitative value Positive is associated with the order of magnitude
range {-RANGE- 27 : 2°°}; where 27 is a limiting value corresponding to zero
and 2% is a limiting value corresponding to infinity. Within this range, many
distinctions can be made which cannot be made in the associated qualitative
region. For example, the rate of motion due to gravity might be in the range
{-RaNGE- 2° : 2*}; while motion due to a spring might be in the range {-RANGE.
2V : 212} An ohserved motion in the range {-RANGE- 2!° : 219} would exclude
the gravity hypothesis. The qualitative region Positive hides the distinction
which supports this inference.
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3.1.4 Value Spaces

Quantities take on values from a continuous range. This range is terrmed
the value space of the quantity and is represented as a list of qualitative re-
gions. For example, the value space of the refrigerator quantity {-QUANTITY- In-
terior Temperature Amount} is {-VALUE SPACE- Cold Ambient}; the value space
of its derivative {-QUANTITY. Interior Temperature Rate} is {-VALUE SPACE- Neg-
ative Zero Positive}.

Value spaces are total orderings on the values of a quantity. Inequality
relations between values of a single quantity can be inferred directly from the
positions of the values in the value space list. Forbus describes how the value
space (quantity space) of a single quantity may sometimes be a partial order.
However, none of the device examples on which the program Jack was tested
included quantities with partially ordered value spaces.

3.1.5 Zeros

One value in the value space of a quantity is distinguished as the zero
value for that quantity. The sign of any value of a quantity can be inferred
from the position of that value in the value space relative to the zero value.
When no zero value is declared for a quantity, all values are assumed to be
positive. For example, no zero value is declared for the quantity {-QUANTITY.
Interior Temperature Amount}; both values in its value space {-VALUE SPACE-
Cold Ambient} are positive.

3.1.6 Inequalities

Explicit Less, Greater, or Equal relations may be asserted between values
in the value spaces of different quantities:

{-RELATION- Warm Greater Cold}

Greater relations are asserted automatically between contiguous values
in the value spaces of single quantities. These relations also contribute to
partial orders among the values of quantities. These partial orders enable in-
ferences to be drawn about inequality relations between the values of different
quantities. See Figure 3.1.

3.1.7 Orientations

The orientation of a quantity is the direction of increasing values in its
value space. Quantities may be defined in different coordinate systems. In this
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Figure 3.1. A partial order on quantity values.

case, the relative orientation of the two systems is needed to project a change
in the value of one quantity onto the value space of another. See Figure 3.2.
Even scalar quantities may have opposite orientations; in this case an increase
in one is in the same direction as a decrease in the other, and vice versa.
Quantities are assigned orientations through an explicit relation:
{-RELATION. {-QUANTITY. Lever Position Amount} Orientation +Y}
Relative orientations also are defined through relations:
{-RELATION.- +X Opposite -X}
{-RELATION. +X Perpendicular +Y}
{-RELATION. +X Skewed Cylinder-Axis}

3.2 Relations

Structural relations among physical objects, geometrical relations among ori-
entations, and inequality relations among the values of quantities all are rep-
resented with the form:

{-RELATION. subject relation object}
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Figure 3.2. Orientations.

Examples of relations are:

{-RELATION- Warm Greater Cold}
{-RELATION- +X Opposite -X}
{-RELATION- Lever Attached-To Carriage}

Arbitrary structures may appear in the subject and object slots of rela-
tions, including quantities and other, nested relations:

{-RELATION. -Y Orientation-Of {-QUANTITY- Earth Gravity Amount}}

The value space for all relations is {-VALUE SPACE- True Unknown False}.
Unlike the value spaces for quantities, there is no ordering placed on the pos-
sible values for relations, nor are there order of magnitude intervals associated
with these truth values.

3.2.1 Inverse Relations

Many types of relation have inverses. For example, the inverse of Greater
is Less, the inverse of Attached-To is Attached-To. Inverse relations are auto-
matically asserted whenever relations with defined inverses are asserted. For
example, the assertions:

{-RELATION- Warm Greater C'old}
{-RELATION- Lever Attached-To Carriage}

result in the additional assertions:

{-RELATION. Cold Less Warm}
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{-RELATION- Carriage Attached-To Lever}

3.3 Time

The observations of physical systems which the causal modelling system at-
temnpts to explain describe how the values of quantities and relations change
over time. Representations and methods for temporal reasoning have been a
major focus of research recently [Allen 83, Vere 83, Shoham 86, Williams 86,
Dean and McDermott 87]. [ have adopted a representation for time which
inherits results from these efforts.

3.3.1 Intervals

My temporal representation is based on intervals. An interval has a
beginning and an end.

{-INTERVAL. beginning : end}

The beginning and end of an interval are primitive intervals called mo-
ments. The beginning and end of a moment is always the moment itself.
Thus the interval {-INTERVAL- 10 : 10} and the moment {-MOMENT- 10} are the
same interval. Contiguous intervals, such as {-INTERVAL- 3 : 4} and {-INTERVAL-
4 : 9}, meet at instants, or temporal points. See Figure 3.3.

34 4:9 10:10

Figure 3.3. Intervals and Moments.

3.3.2 Histories

Interval-value pairs add the temporal dimension to assertions about the values
of quantities and relations. For example, an assertion that the value of the
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quantity {-QUANTITY- Interior Temperature Amount} is Ambient during the
interval {-INTERVAL- 0 : 60} is represented by associating with this quantity
the interval-value pair:

[0: 60 Ambient]

A history is a list of interval-value pairs which describe changes in and
durations of the values of quantities and relations. All quantities and relations
have histories. For example, the history of the relation {-RELATION. Cylinder
Joined-To Tire} might be:

{-HISTORY. [0 : 59 False] [60 : 69 True|[70 : +oo False]}

The values of quantities and relations always are assumed to be persistent.
They are changed only by explicit subsequent events.

3.4 Behavior

The set of constraints which contribute to my solution to the causal modelling
problem may be divided among three classes: those which have to do with,
respectively, the types of quantities, the behavior of devices, and the structure
of devices. Quantity types are described in Section 3.1.1. The constraints
which treat device behavior are delay, sign, direction, magnitude, alignment,
and bias. '

3.4.1 Delay

Time lags between cause and effect are represented by ranges of order
of magnitude. For example, a delay of one second to one minute, i.e., the
interval {-INTERVAL- 1 : 60}, is represented as {-RANGE. 2° : 2%}, Temporal
intervals derived from the observation of a device, where time is treated on a
linear scale, are converted to order of magnitude ranges before being used in
reasoning ahout delays.

3.4.2 Sign

The signs of quantities are represented by qualitative regions. The set
of possible signs is any subset of {Negative Zero Positive}. For example, a
non-zero sign is represented as { Negative Positive}.

3.4.3 Direction

Deflections in orientation between cause and effect also are represented
by qualitative regions. The set of possible directions is any subset of { Parallel
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Opposite Perpendicular Skewed}. See Figure 3.4. The most ambiguous de-
flection between scalar quantities is { Parallel Opposite}.

direction
> Perpendicular
Perpendicular
Skewed
Parallel
- t .
Opposite
Perpendicular
Perpendicular

Figure 3.4 Qualitative Directions.

3.4.4 Magnitude

The magnitudes of the values of quantities are represented by order of magni-
tude ranges. For example, a magnitude between —10 and +100 is represented
as {-RANGE- 27> : 27}, where 2~ corresponds to zero. Note that information
about sign is suppressed here. Sign and magnitude are treated separately.

3.4.5 Alignment

Constraints on the relative values at cause and effect are represented
directly by inequality relations. The set of possible inequality relations is
any subset of { Less Equal Greater}. For example, an alignment of { Greater}
requires that the value at the cause be greater than the value at the effect, as
in {-RELATION. Warm Greater Cold}.



3.4.6 Bias

Required directions of change at cause and effect are represented by bias
relations. The set of possible hias relations is any subset of {Down-Down
Down-Up Up-Down Up-Up}. For example, a bias of { Up-Down Down-Down}
constrains the effect to decrease without restricting the direction of change at
the cause. A bias of { Down-Down Up-Up} is equivalent to a direct dependence
between the quantity at a cause and the quantity at an effect. See Figure 3.5.

direction(s) of change I

at cause I

Down-Down

* Down-Up Up-Up

Figure 3.5. Bias relations.

3.5 Structure

The constraints which treat device structure are displacement and medium.

3.5.1 Displacement

Physical distances between cause and effect are represented by qualitative
regions. The set of possible displacements is any subset of { Same Different}.

|
v
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The displacement of a physical object with itself is Same; with any other
physical object is Different.

3.5.2 Medium

Physical connections hetween causes and effects are represented by struc-
tural relations. Examples of structural relation types are Attached-To, Touches,
Line-of-Sight-To. and the identity structural relation Same. Structural rela-
tions may change over time so that a relation such as {-RELATION- Tire Joined-
To Cylinder} may be True only intermittently.

3.6 Observations

Observations of devices consist of assertions about changes in quantities and
relations over time and along with several declarations. The declarations de-
scribe: (1) observable physical objects of the device, (2) observable quantities
of those physical objects, (3) the value spaces of those quantities with individ-
ual values stated both as symbolic regions and as order of magnitude ranges,
(4) the zero values of those quantities. (5) inequalities hetween the values
of different quantities, and (6) scales associated with quantities and relative
orientations among those scales.

The observations of a toaster, tire gauge, bicycle drive, refrigerator, and

home heating system input to the program JACK appear in Appendix A.

3.6.1 Events

Events are changes in the values of quantities and relations. Events are
represented by the quantity or relation involved, the new value achieved, and
the moment at which the change took place. Examples of events are:

{-EVENT- Lever Position Amount Down 61}
{-EVENT- Tire Joined-To Cylinder False 70}
Events are recorded in the histories of quantities and relations. For ex-
ample, the events:
{-EVENT. Lever Position Amount Up 0}
{-EVENT- Lever Position Amount Down 61}
{-EVENT- Lever Position Amount Up 187}
are recorded in the history of the quantity {-QUANTITY- Lever Position
Amount} as:

{-HISTORY- [0: 60 Up] [61 : 186 Down][187 : +00 Up|}
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3.6.2 Timelines

The events of an observation are collected into a timeline. See Figure
3.6. Timelines are moment-centered indexings of events; they complement
histories, which are quantity-centered or relation-centered indexings of events.

0:00 1:00 1:00.1 1:00.2 2:00 2:00.1
Slide Position Amount GO G28 GO
Slide Position Rate Zero Positive Zero Negative Zero
Tire Amount-of-Gas Amount P28 P28
Tire Amount-of-Gas Rate Zero Negative Zero
Earth Gravity Amount G
Earth Gravity Rate Zero

Figure 3.6. A timeline.

3.7 Mechanisms

Mechanisms are the building blocks for forming causal explanations. Mech-
anisms are represented exactly by how they impose restrictions on type, be-
havior, and structure. Each mechanism is defined in terms of the constraints
for type, delay, sign, direction, magnitude, alignment, bias, displacement, and
medium.

3.7.1 Constraints on Type, Behavior, and Structure

Every mechanism has a specific quantity type associated with its cause
and with its effect. For example, the cause type for the mechanism Conden-
sation is {-TYPE- Pressure Rate}; its effect type is {-TYPE.- Temperature Rate}.
This mechanism can explain only this particular type transformation.

The time constant of a mechanism determines the range of delays it can
account for. For example, the time constant associated with mechanisms such
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as Electricity, Rigid-Coupling, and Gravity is {-RANGE- 2 : 2°}. Delays are
computed by dividing the time constant of a mechanism into the characteristic
distance for a device. These mechanisms cannot explain any non-zero delay.

The sign of the quantity dependence associated with a mechanism re-
stricts the sign conservations or transformations it can explain. For example,
the sign associated with the Conductive-Heat-Exchange mechanism is Nega-
tive. This mechanism can explain only causes and effects of opposite sign.

The deflection associated with a mechanism determines the changes of
direction it can account for. For example, the deflection associated with the
Spring mechanism is Opposite. This mechanism can account for only reversals
of direction.

The efficiency of a mechanism determines what changes in magnitude it
can explain. For example, the Electro- Thermal mechanism, which subsumes
a range of electrical resistances, has an efficiency of {-RANGE- 277 : 27} and
can explain a range of temperature changes. On the other hand, the Rigid-
Coupling mechanism has perfect efficiency ({-RANGE- 2° : 2°}) and cannot
explain any change in magnitude. Efficiency as defined here includes the
notion of advantage; efficiencies may be greater than one.

The alignment relation associated with a mechanism places a restric-
tion on the relative values at cause and effect. For example, the Non-Rigid-
Coupling mechanism has an alignment of Greater and is inconsistent with an
observation where the position of the cause is less than the position of the
effect, along the direction of motion.

The bias relation of a mechanism constrains the directions of change at
cause and effect. For example, the Electro-Thermal mechanism, which has a
bias of {Down-Up Up-Up} can explain only increases in temperature.

The distance associated with a mechanism determines the displacements
between cause and effect it can account for. For example, mechanisms such
as Thermal-Expansion and Electro-Mechanical have an associated distance
of Same and cannot explain interactions between events at different physical
objects.

The medium associated with a mechanism indicates the structural rela-
tion which must obtain between cause and effect. For example, the medium
associated with the Contact-Coupling mechanism is Touches. This mechanism
can appear in a causal explanation for two motions unless a Touches relation
between the physical object associated with the cause and the physical object
associated with the effect is known to be False.
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3.7.2 Vocabulary of Mechanisms

The complete definitions for the mechanisms Rigid-Coupling and Thermal-
Expansion are:

(DefMechanism Rigid-Coupling
:cause-type {-TYPE- Position Rate}
:effect-type {-TYPE- Position Rate}
:distance Different
:time-constant {-RANGE- 2°° : 2}
:sign Positive
:deflection Parallel
sefficiency {-rance- 2°: 2%}
:aligrimerit {Less Equal Greater}
:bias { Up-Up Down-Down}
:medium Attached-To)

(DefMechanism Thermal-Expansion
:cause-type {-TYPE- Temperature Rate}
seffect-type {-TYPE. Position Rate}
:distance Same
:time-constant {-RANGE: 2% : 2°°}
:sign Positive
:deflection {Parallel Opposite Perpendicular Skewed}
:efficiency {-RAnGE. 2717 :2°10}
:alignment {Less Equal Greater}
:bias { Up-Up Down-Down}
:medium Same)
The entire vocabulary of mechanisms provided to the program JACK ap-
pears in Appendix B.

3.8 Causal Graphs

The program JACK constructs causal graphs which relate observable events of
a device. These graphs represent hypotheses about hidden configuration; of
mechanisms whereby events cause other events. The nodes of these graphs
correspond to device events; the arcs correspond to mechanisms.

3.8.1 Linear Mechanism Paths

The simplest kind of causal graph is a linear chain of mechanisms. An
example is in Figure 3.8. Mechanism paths are represented by (1) the list of
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mechanisms which make up the path, (2) the cause event which initiates the
path, (3) the effect event which terminates the path, and (4) a list of event
nodes which describe how type, delay, sign, direction, magnitude, alignment,
bias, displacement, and medium are constrained by the mechanisms along the
path. The representation of the mechanism path in Figure 3.7 (suppressing
the event nodes for brevity) is:

{-MECHANISM PATH-
:mechanisms (Electricity Electro-Thermal)
:cause-event {-EVENT- Outlet Charge Rate Positive 0}
:effect-event {-EVENT- Coils Temperature Rate Positive 61}}

Outlet Charge Rate Coils Temperature Rate
Positive 0 Positive 61
Electricity Electro-Thermal
o » O > @

Figure 3.7. A mechanism path.

3.8.2 Event Nodes

Device events also are represented in terms of the constraints for type, delay,
sign, direction, magnitude, alignment, bias, displacement, and medium. The
values propagated along a mechanism path for each of these constraints make
up a detailed description of the events which are expected to take place along
the path. For example, the node describing the expected event between the
Electricity and Electro-Thermal mechanisms in the mechanism path of Figure
3.8 is:
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{-EVENT NODE-
:type {-TYPE- Charge Rate}
:delay {-RANGE- 27> : 2"}
:sign { Positive}
:direction {Parallel Opposite Perpendicular Skewed}
:magnitude {-RANGE- 277 : 23}
:alignment {Less Equal Greater}
:bias { Positive}
:displacement {Different}
:medium {Coils}}

The first event node in a mechanism path is derived from the initial cause;
the last event node must be compatible with the final effect.

3.8.3 Mechanism Interactions

Linear mechanism paths are merely the simplest kind of causal graph.
Mechanism paths also may join to form branching graph structures. See
Figure 3.8. Mechanism interactions are represented by mechanism paths in
which other mechanism paths are embedded. For example, the interaction of
Figure 3.8 is represented as:

{-MECHANISM PATH-
:mechanisms (
Electricity
{ MECHANISM PATH. Integration Switch}
Electro-Thermal)
:cause-event {-BVENT- Qutlet Charge Rate Positive 0}
:effect-event {-EVENT. Coils Temperature Rate Positive 61}}

Representations of mechanism interactions reflect the order in which hy-
potheses are generated. In this example. the linear mechanism path {-MECHANISM
PATH. Electricity Electro-Thermal} was considered before the interaction.

3.8.4 Hidden Inputs

Mechanism paths may involve hidden inputs. See Figure 3.9. Hidden
input paths are represented as are other mechanism paths. except that a
cause event is missing. The representation of the hidden input path in Figure

3.9 is:
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Electricity

9o . — O

47

Coils Temperature Rate
Positive 61

Electro-Thermal

.

Lever Position Rate
Negative 60

Figure 3.8. A mechanism interaction.

{-MECHANISM PATH-
:mechanisms (
Energy-Exchange

{-MECHANISM PATH- Electricity Electro-Mechanical
Compression Integration Condensation})

:cause-event nil

:effect-event {-EVENT- Exterior Temperature Rate Positive 61}}

3.8.5 Cycles

Causal graphs also may involve cycles. See Figure 3.10. A cycle is rep-
resented by the list of hidden input paths which form the two halves of the
cycle. There is no initial cause event or final effect event. The cycle of Figure

3.10 is represented as:
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interior Temperature Rate
‘Negative 60

- - - "’o

Expansion . ‘
Electro-Mechanical /o ~ ‘
Outlet Charge Rate : /0 S % Heat-Exchange

Positmo/vo
Electricity

Figure 3.9. A hidden input path.

{-uEcEANISK PATE-
:mechanisms (
(Energy-Exchange
{-uscmaszon Patx: Electricity mmm
Compression Integration Gm})
(Energy-Exchange
{-uscusnzon savn- Blectrmty Mﬁ«l
Expassion Integration E!m}))
:cause-event ail
:effect-event ail}
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Interior Tmm,ﬂae .
Negative 60

. --QQ'Q .

Electro-Mechanical /0 |
Outiet Charge Rate /0

. Positive 0
=
Electricit (@ ~ . .
, et ‘ﬁQ -

Comptression

Figure 3.10. A cyele.
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4. The Procedures: JACK of Some Trades

In this chapter, I describe the procedures which generate manageably sized
sets of hypotheses about hidden mechanisms within devices. These proce-
dures have been implemented in the program called JACK. JACK is, of course,
an acronym and like most acronyms its interpretation was determined after
its conception. JACK stands for Justified Assertion of Causal Knowledge. JACK
is coded in Zetalisp and runs in Genera 7.1 for Symbolics series 3600 LispMa-
chines.

4.1 The Causal Modelling Procedure

There are two inputs to the causal modelling procedure at top level: an ob-
servation of a device and a vocabulary of mechanisms. The output of the
causal modelling procedure is a set of causal graphs which represent hypothe-
ses about hidden configurations of mechanisms which can explain the observed
events. The causal modelling procedure at top level is shown in Procedure
4.1. Details are added to this procedure throughout this chapter.

Given: a timeline, a mechanism vocabulary,
a maximum mechanism path length [z,
and a maximum number of interactions pmqz
For each (p+ 1)-tuple of events from the timeline
consisting of up to p,,., causes and one effect,
with no cause taking place after the effect
Generate hypotheses of up to pyq. interacting mechanism
paths of up to length .,

Procedure 4.1. Top-level causal modelling procedure.

4.1.1 Causal and Qualitative Simulation

Each generated hypothesis forms part of a proposed device model. Each
partial model is simulated by propagating and combining values for the con-
straints on type, behavior, and structure along the proposed mechanism paths.
Predicted values describe expected events which must be compatible with ob-
servations for a hypothesis to be admitted. See Procedure 4.2.
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Given: a set of cause events, an effect event,
and a hypothesized causal graph which connects them.
For each constraint
Derive seed value(s) from cause event(s)
Derive observation from effect event
Propagate and combine values along the mechanism paths
in the causal graph
Compare propagation to observation
When propagation and observation are compatible
Admit hypothesis

Procedure 4.2. Testing of hypotheses via simulation.

The propagation of each constraint along a proposed mechanism path
is seeded by values derived from the event taken to be the cause. The type
constraint is seeded with the type of the quantity at the cause event. The
seed value for the delay constraint is the zero value {-RANGE- 27%° : 27},
The propagation of signs is initialized with the sign of the cause event. The
direction constraint is seeded with the value Parallel. The initial value for
the magnitude constraint is the magnitude of the value associated with the
cause event. The initial alignment is always {Less Equal Greater}. The bias
constraint is seeded also with the sign of the cause event. The propagation of
displacement proceeds from the value Same. Finally, the medium constraint
is initialized with the physical object associated with the cause event.

The values propagated along a proposed mechanism path for each con-
straint are verified against the actually observed device event taken to be the
effect. The pertinent observation for the type constraint is the type of the
quantity at the effect event. The ohserved delay is the difference in time be-
tween the cause event and the effect event. The target sign is the sign of the
effect event. The observed change of direction between cause and effect is the
relative orientation between the quantity of the cause event and the quantity
of the effect event, propagated with the value Opposite if the events are of
opposite sign. The target magnitude is the magnitude of the effect event. The
ohserved alignment is computed from the partial order, if any, relating the
values at cause and effect. The target bias also is the sign of the effect event.
The ohserved displacement between cause and effect is Same if the physical
objects associated with the cause event and the effect event are the same;
otherwise Different. Finally, the target value for the medium constraint is the
physical object associated with the effect event.
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4.1.2 Propagation Rules

Values for the constraints on type, behavior, and structure are propa-
gated along the proposed mechanism paths of each hypothesis. Three forms
of constraint propagation are employed in the simulation of causal graphs,
corresponding to three types of values: qualitative regions, ranges of orders
of magnitude, and the subjects and objects of relations.

4.1.2.1 Qualitative Calculi

Values for the sign, direction, alignment, bias, and displacement con-
straints are represented by qualitative regions. Table C.1 through Table C.5
in Appendix C contain qualitative calculi which show how values for these
constraints are propagated along mechanism paths.

A non-zero sign {Negative Positive}, when propagated across a mecha-
nism which imposes an inverse dependence between cause and effect: Nega-
tive, is still non-zero: {Positive Negative}.

Signs are also affected by any change in orientation between the quantity
at the cause and the quantity at the effect. Table C.6 contains a qualitative
calculus for combining signs and orientation changes. The observed differ-
ence in sign between two events whose signs are Positive but whose relative
orientation is Skewed is the ambiguous {Negative Zero Positive}.

The direction {Parallel Opposite}, when propagated across a mecha-
nism which imposes an arbitrary deflection: {Parallel Opposite Perpendicular
Skewed}, becomes maximally ambiguous: {Parallel Opposite Perpendicular
Skewed}.

An alignment of { Equal Greater}, when propagated across a mechanism
with the alignment Less, which requires the value at the cause to be less than
the value at the effect, becomes null: {}. The hypothesis giving rise to this
propagation would be no longer viable.

A non-zero sign { Negative Positive}, when propagated across a mecha-
nism with a bias towards increase in the effect: {Down-Up Up-Up}, becomes
unambiguous: {Positive}.

The displacement { Different}, when propagated across a mechanism which
involves a change in site between cause and effect: Different, may result in a
return to the original location: {Same Different}.

4.1.2.2 Range Arithmetic on Orders of Magnitude

Values for the delay and magnitude constraints are represented by ranges
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of orders of magnitude. These order of magnitude ranges are propagated
according to arithmetic rules, which are given in Appendix D.

Delays are propagated across a mechanism by adding the time lag as-
sociated with the mechanism. This time lag is computed by multiplying the
distance across the mechanism by the time constant associated with the mech-
anism. The distance across a hidden, conjectured mechanism—the length of
a pipe or wire, for example—cannot be known, except for the trivial case
where the physical object at the cause and the physical object at the effect
are the same. For each device, a default hidden distance is established. This
characteristic distance is taken to be the length of the longest external axis
of the device.

For example, suppose the characteristic distance for a device being mod-
elled is {-RANGE- 273 : 273}, For a mechanism with time constant {-RANGE-
20 : 28}, the computed time lag is {-RANGE- 273 : 23}, This time lag, when
added to a delay of say, {-RANGE- 2? : 22}, results in a propagated delay of
{-Rance. 2% : 23},

Magnitudes are propagated across a mechanism by multiplying by the
efficiency associated with the mechanism. For example, a value for magnitude
of {-RANGE. 2! : 2%}, when propagated across a mechanism with efficiency
{RANGE- 272 : 20}, is propagated as {-RANGE. 271 : 2%},

4.1.2.3 Relations

Values for the type and medium constraints are the subjects and objects
of relations. These values are propagated by following chains of relations.

The type conservations and transformations associated with mechanisms
are represented by relations whose subjects and objects are quantity types and
whose relations are the names of the mechanisms themselves. These relations
are shown in Appendix E.

As an example, the quantity type {-TYPE- Temperature Rate} is propa-
gated across the mechanism Thermal-Expansion, as {-TYPE- Position Rate}.
Note that the mechanism Integration converts any type {-TYPE- ’type Rate}
into {-TYPE- type Amount}. The role of temporal integration in causal mod-
elling is discussed in Section 4.2.

Values for the medium constraint are physical objects which participate in
structural relations. A structural relation, or medium, is associated with each
mechanism. The propagation of a set of physical objects across a mechanism
is the set of physical objects which participate with the given set of physical
objects in the type of structural relation associated with the mechanism.
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For example, the set of physical objects { Tire}, when propagated across a
mechanism whose medium is Joined-To, is the set of physical objects { Cvlinder},
providing the relation {-RELATION- Tire Joined-To Cylinder} has been asserted.
and no other relations {-RELATION- Tire Joined-To *} have heen asserted.

Structural relations must not be False in the interval during which a
mechanism is hypothesized to be active. This interval is computed from the
value propagated for the delay constraint. The beginning of the interval is
the low end of the delay range before propagation across the mechanism; the
end of the interval is the high end of the delay range after propagation across
the mechanism. Both of these moments are measured from the time of the
event taken to be the cause. For example, if the time of the cause is 60,
and the value for delay is {-RANGE- 2% : 2%} before propagation and {-RANGE-
23 : 24} after propagation, then the interval during which the medium must
be established is {-INTERVAL- 64 : 76}. This calculation involves a conversion
from orders of magnitude back to a linear time scale.

For the most part, structural connections and physical objects are hidden
inside the “black box” of a device. When no asserted relations are found, a hid-
den structural relation and physical object are conjectured, as in {-RELATION-
Tire Joined-To ?physical-object-1}. The conjectured physical object is repre-
sented by a variable which may become bound subsequently.

4.1.3 Comparison Rules

The target values derived from the externally observable device events,
are compared to the values propagated along the conjectured mechanism
paths. The propagated values amount to predictions concerning expected
events. The means of comparing prediction and observation differ for the
various constraints.

The propagation of type always results in a single value. This predic-
tion must match the observation exactly. The propagation of displacement,
sign, direction, alignment, and bias result in a set of qualitative values. The
observation must be a member of this set.

Ranges of orders of magnitude are propagated for the delay and magni-
tude constraints. The observation must intersect the prediction. The test for
intersection is:

high(prediction) > low(observation) or

low(prediction) < high(observation)

A set of physical objects is propagated for the medium constraint. The
observation must be a member of this prediction set. However, there may
be an unbound physical object in the propagation set. If this is the case,
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the unbound physical object is considered a match and takes on the binding
of the observation. Any other unbound physical objects which participate in
Same relations with the newly-bound physical ob ject also take on this binding.
This procedure deals with the problem of equality for conjectured objects in
hypothetical worlds [McAllester 80).

We now have a formal basis for deciding when a mechanism hypothesis
“explains” or “accounts for” or “is consistent with” an observation of a device.
For each of the nine constraints on type, behavior, and structure, the values
propagated must match observed values according to the specific tests outlined
in the preceding paragraphs. ’

4.2 Temporal Integration

Causal modelling often involves reasoning about values of quantities changing
over time. Quantities may reach critical values—thresholds—which result in
abrupt changes in behavior. For example, a sustained motion may result in
the closing of a valve which arrests fluid flow, or in the loading of a spring
which provides a restoring force.

Temporal integration is the means whereby questions such as “What will
be the next value of this quantity?” and “For how long will this quantity
change?” are answered. The temporal integration procedure employed in the
program JACK utilizes the magnitude of the rate, the duration of change, the
direction of change, and the value spaces of quantities.

Temporal integration is treated as a special mechanism which may appear
in a causal graph like any other mechanism but for which the propagation rules
for the constraints on type, behavior, and structure are in some cases different.

Quantity types are propagated across the temporal integration mecha-
nism in a straightforward manner. A seed type of {-TYPE. ’type Rate} is
propagated as {-TYPE- “type Amount}.

The delay associated with temporal integration is the interval during
which the rate of a changing quantity remains non-zero, until a new stable
value for the amount of the quantity is achieved.

This delay can be computed from the familiar relation: At = Aa/r where
t is time, a is the amount and r the rate of a quantity.

In causal modelling, the events at which the values of quantities change
are often hidden. Delays due to temporal integration rarely can be computed
from observed events. Nevertheless, an upper hound on the delay can be com-
puted from the direction of change, the magnitude of the rate, and knowledge
about limiting values in the value spaces of quantities.
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The direction of change is the value for the bias constraint propagated
thus far. The magnitude of the rate is the value for the magnitude constraint
propagated thus far. Limiting values for quantities are taken from default
value spaces associated with mechanisms. From this information delay due to
temporal integration is propagated as shown in Procedure 4.3.

Given: direction of change, magnitude of rate and
value space for amount

a; = observed value or default limiting value for amount
opposite to direction of change

ay = observed value or default limiting value for amount
in direction of change

Aa = ay — a;

r = magnitude of rate

delay = Aa/r

Procedure 4.3. Delay across integration.

For example, a default initial value of {-RANGE.- 27 : 2=}, a default
final value of {-RANGE- 2~ : 27}, and a rate of magnitude {-RaNGE. 20 : 23}
results in a propagated delay of {-RANGE. 2~ : 27}

The sign of the new value achieved after temporal integration is con-
strained by the delay, the direction of change, the magnitude of the rate, and
limiting values in the value spaces of quantities. Signs are propagated across
the temporal integration mechanism as shown in Procedure 4.4.

Given: delay, direction of change, magnitude of rate and
value space for amount

At = delay

r = magnitude of rate

a; = observed value or default limiting value for amount
opposite to direction of change

ay = observed value or a; + At- ror
default limiting value for amount in direction of change

s; = sign of a;

sy = signof ay

sign = all signs, inclusive, from s; to sy in { Negative Zero Positive}

Procedure 4.4. Sign across integration.
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For example, an initial sign of Positive and a direction of change of Pos-
itive results in a propagated sign of {Positive}. On the other hand, an initial
sign of Positive and a direction of change of Negative results in a propagated
sign of {Negative Zero Positive}, providing the final value reached has sign
Negative.

The sign of a value is computed by comparing the position of the value
in the value space of the quantity to the position of the zero value in the value
space of the quantity. A zero value is always identified in the default value
spaces specified in mechanisms.

The amount and rate of a quantity always are presumed to have the same
orientation. The deflection due to temporal integration can be inferred from
the direction of change (set of signs for the rate) and the resulting set of signs
for the amount. If any pair of signs, one from each set, are the same, the
deflection includes Parallel. If any pair of signs are opposite, the deflection
includes Opposite. This deflection is propagated according to the qualitative
calculus in Table C.2.

The magnitude of the new value achieved via temporal integration is
inferred, once again, from the delay, the direction of change, the magnitude of
the rate, and limiting values in the value spaces of quantities. Magnitude is
propagated across the temporal integration mechanism as shown in Procedure
4.5,

Given: delay, direction of change, magnitude of rate and
value space for amount

At = delay

r = magnitude of rate

a; = observed value or default limiting value for amount
opposite to direction of change

ay = observed value or a; + At- r or
default limiting value for amount in direction of change

if sign of a; = sign of af
then magnitude = {°RRNGE' gmin(low(a,),low(ays)) . 2ma.r(high(a.'),high(af))}
else magnitude = {-RANGE. 27> : 2maez(high(a:),highlas))}

Procedure 4.5. Magnitude across integration.

The functions low and high return, respectively, the low and high order
of magnitude in a range of orders of magnitude.

The special zero value 27> is taken to be the smallest possible result-
ing magnitude whenever temporal integration may result in a zero crossing.
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For example, an initial value of 40 and a final value of —10 results in the
propagated magnitude {-RANGE.- 2~ : 2°}.

Inequalities between values of the amount and rate of the same quantity
are not well-defined. The alignment imposed by the temporal integration
mechanism is taken to be the maximally ambiguous {Less Equal Greater}.
This alignment is propagated according to the qualitative calculus in Table
C.3.

Values for the bias constraint are propagated intact across the temporal
integration mechanism so that the direction of approach to a threshold value is
preserved. This information can contribute to the determination of the admis-
sibility of hypotheses. For example, an enablement hypothesis involving, say,
a Pneumatic- Valve mechanism must be associated with an increase towards
positive values; a disablement hypothesis involving the same mechanism must
be associated with a decrease towards the zero value.

The amount and rate of a quantity are always associated with the same
physical object. The contribution of the temporal integration mechanism for
the displacement constraint is the identity displacement Same. Values for
displacement are propagated as for any other mechanism, according to the
qualitative calculus in Table C.5.

Similarly, the medium for temporal integration is the identity structural
relation Same and this constraint is propagated as for any other mechanism,
by extending chains of structural relations.

4.3 Handling One Exponent—Linear Mechanism Paths

One of the sources of complexity in the causal modelling problem is due to
uncertainty about the lengths of the mechanism paths within a device. Recall
that the number of possible mechanism paths between an arbitrary pair of
device events is O(m!) where m is the number of possible mechanisms and [
is the length of the path.

The search for device models always begins at the root of the ordering
on hypotheses—the linear mechanism path level. This part of the causal
modelling procedure is shown in Procedure 4.6.
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Given: a timeline, a mechanism vocabulary,
a maximum mechanism path length /42,
For each pair of events from the timeline
consisting of one cause and one effect,
with the cause not taking place after the effect
Generate linear mechanism path hypotheses
of up to length /4.

Procedure 4.6. Causal modelling procedure up to linear mechanism paths.

4.4 Handling the Other Exponent—Mechanism Interactions

The other source of complexity in the causal modelling problem is due to
uncertainty about interactions among mechanisms. Recall that the worst-
case number of possible hypotheses becomes ()(m'?) when interactions among
mechanism paths are considered, where p is the number of interactions and
m! is the number of hypotheses associated with any mechanism path.

Three types of mechanism interaction are distinguished: enablement,
where one mechanism arranges for the preconditions of another mechanism to
become satisfied; disablement, where one mechanism arranges for the precon-
ditions of another mechanism to become unsatisfied; and equilibrium, where
the contributions of separate mechanisms come into balance.

An example of enablement is a switch being closed and permitting the
flow of electricity. An example of disablement is a latch being engaged and
arresting a motion. An example of equilibrium is the steady level of water in
a sink when the flow in at the faucet balances the flow out at the drain.

Mechanism interaction hypotheses appear below linear mechanism path
hypotheses in the ordering on hypotheses. However, the causal modelling
system does not extend all hypotheses generated at the linear mechanism
path level. In the interest of keeping the hypothesis set manageably small
at all times, a set of heuristics is employed for deciding whether or not to
consider hypotheses involving mechanism interactions.

All of the heuristic rules for justifying level jumps are based on the prin-
ciple that too-simple hypotheses exhibit characteristic deficiencies. Heuristic
rules capture these signatures and justify attempts to repair recognizably de-
ficient hypotheses by extending them into more complex or less constrained
hypothesis forms in the ordering on hypothesis types.
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The modified causal modelling procedure which includes the heuristically
justified level jump to mechanism interactions is shown in Procedure 4.7.

Given: a timeline, a mechanism vocabulary,
a maximum mechanism path length /..,
and a maximum number of interactions pnq»
For each pair of events from the timeline
consisting of one cause and one effect,
with the cause not taking place after the effect
p=1
Generate linear mechanism path hypotheses
of up to length [,z
Extend: For each hypothesis
When p < pmaez and a mechanism interaction heuristic is satisfied
p=p+1
Generate mechanism interaction hypotheses
Go to Extend:

Procedure 4.7. Causal modelling procedure up to mechanism interactions.

4.4.1 Heuristics for Mechanism Interactions

Enablements are characterized by unexplained delays. Once a pending
mechanism becomes enabled however, the resulting effect is always as ex-
pected. The only exception is a possible decrease in magnitude as in the case
of say, a half-open valve. The heuristic for recognizing enablement situations
is shown in Procedure 4.8.

Given: a hypothesis.
Either exactly the delay constraint is violated
or exactly the delay and magnitude constraints are violated

Procedure 4.8. Enablement heuristic.
The signature for disablements is an unexpected zero value occurring

after a non-zero effect is expected. The heuristic for recognizing disablement
situations is shown in Procedure 4.9.
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Given: a hypothesis.

Exactly the delay, sign, magnitude, and bias constraints are violated
and the value of the effect is zero
and the effect is not at a limiting value

Procedure 4.9. Disablement heuristic.

Equilibria also are characterized by an unexpected zero value when the
expected effect is non-zero. The zero value may occur after the expected time
of occurrence of a non-zero effect. The heuristic for recognizing equilibrium
situations is shown in Procedure 4.10.

Given: a hypothesis.

Either exactly the sign, magnitude, and bias constraints are violated
or exactly the delay, sign, magnitude, and bias constraints are violated
and the value of the effect is zero
and the effect is not at a limiting value

Procedure 4.10. Equilibrium heuristic.

Note that the disablement and equilibrium heuristics are indistinguish-
able when there is an unexplained delay.

4.4.2 Combination Rules for Enablement and Disablement
Hypotheses

Once the possibility of an enablement or disablement situation is estab-
lished, causal modelling shifts from hypothesizing linear mechanism paths to
hypothesizing interacting mechanism paths.

Candidate events for the initial cause of an enabling or disabling mecha-
nism path are those events which are strictly before the effect event. Enable-
ments and disablements always involve integrating a quantity over a non-zero
temporal interval—a switch is closed, a pressure is raised, etc. Enablements
and disablements do not occur instantaneously.

An interaction may take place at any point along a mechanism path. For
example, a hydraulically induced motion may be inhibited by closing a valve
on fluid flow or by directly latching a piston.

Procedure 4.11 is used to generate enablement and disablement interac-
tion hypotheses.
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Given: a linear mechanism path hypothesis
For each event from the timeline before the effect event
For each mechanism in the mechanism path
Hypothesize an enablement/disablement
interaction at the given mechanism

Procedure 4.11. Enablement and disablement hypothesis generation.

After the separate contributions of interacting mechanism paths are com-
bined at points of interaction, values for each of the constraints are propagated
further along the remainder of the original mechanism path according to the
propagation rules for linear mechanism paths. See Figure 4.1.

combination
propagation propagation
> >
o /v » O )
P propagation

Figure 4.1. Propagation and combination in mechanism interaction hy-

potheses.

All that remains to be described is how values for the constraints on type,
behavior, and structure are combined at interaction points under enablement
and disablement.

The types propagated along the interacting mechanism paths must match
exactly. For example, a Vent, which controls changes in Temperature, cannot
interact with Electricity which involves Charge quantities. ‘
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Delay is measured from the time of interaction, as described in Procedure
4.12. See also Figure 4.2.

Given: moment of primary cause ¢.,
moment of interacting cause t,
delay along primary path delay,,,
and delay along interacting path delay,,
delay = maz(delay,, delay., - (t., —t.,)

Procedure 4.12. Delay for mechanism interactions.

delay cl ]

delay c2 ( ]

delay L ]

tcl tc2 time

Figure 4.2. Delay for mechanism interactions.

Values for sign are composed multiplicatively, with values along the enable-
ment or disablement path being restricted to { Zero Positive}. A fully enabled
mechanism corresponds to multiplying by +1; a fully disabled mechanism
corresponds to multiplying by 0. The qualitative calculus for combining signs
under multiplication is the same used for propagating signs along linear mech-
anism paths, and appears in Table C.1.

Direction is entirely unaffected by enablement or disablement; values for
direction are passed directly.

Values for magnitude also are composed multiplicatively, with values in
the value space of the quantity along the enablement or disablement path
being normalized to the order of magnitude range {-RANGE- 27> : 29} (corre-
sponding to the range [0 : 1] on a linear scale).
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Alignment also is unaffected by enablement or disablement; as long as the
alignment propagated along the enablement or disablement path is non-null,
the alignment propagated along the primary causal path is passed directly.

Values for bias are combined in the same manner as values for sign.

Displacements are mostly passed unaffected; the exception is when the
value along both interacting paths is {Same} and the physical objects associ-
ated with the initial cause event on the each path are not the same. In this
case, the null set is passed on to mark the contradiction.

Similarly, the physical objects propagated for the medium constraint
along the enablement or disablement path and the primary causal path must
match if they are bound; otherwise they are asserted to be the same physical
object.

4.4.3 Combination Rules for Equilibrium Hypotheses

The procedure for generating equilibrium hypotheses is nearly the same
as the procedure for generating enablement and disablement hypotheses. The
only difference is that events occurring simultaneously with the effect event
also are candidate initial causes for the interacting mechanism path. Equilib-
ria may be achieved instantaneously whereas enablements and disablements
always involve a threshold value being reached over a non-zero temporal in-
terval. This procedure is shown in Procedure 4.13.

Given: a linear mechanism path hypothesis
For each event not after the effect event
For each mechanism in the mechanism path
Hypothesize an equilibrium interaction
at the given mechanism

Procedure 4.13. Equilibrium hypothesis generation.

Some of the rules for combining values for the constraints on type, be-
havior, and structure for equilibrium hypotheses are different from the com-
bination rules for enablement and disablement hypotheses.

Enablement and disablement situations may be thought of as mechanism
conjunction; all preconditions must he satisfied or all enabling mechanisms
must be active for an effect to occur. Not surprisingly, many of the rules for
composition are multiplication rules.

On the other hand, equilibrium situations are instances of mechanism
disjunction; the contributions of the interacting mechanisms are separable.
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Some effect occurs whether or not there is an interaction. Correspondingly,
many of the rules for composition are addition rules.

For example, values for sign are combined additively rather than multi-
plicatively under equilibrium. The qualitative calculus for composing signs
under addition appears in Table C.7.

Values for direction also are combined additively. The calculus employed
for this purpose may be thought of as qualitative vector addition. This cal-
culus is found in Table C.8.

Values for magnitude are composed according to the addition rule for
ranges of orders of magnitude.

Biases are composed under equilibrium as are signs, using the qualitative
calculus for sign addition in Table C.7.

The combination rules for the type, delay, alignment, displacement, and
medium constraints are the same as for enablement and disablement hypothe-
ses.

4.5 Handling Lost Constraint—Hidden Inputs

Implicit in the construction of linear mechanism path and mechanism interac-
tion hypotheses is the assumption that the initial cause or primitive input on
each conjectured mechanism path is always among the observable events of a
device. This assumption precludes, for example, hypothesizing an unknown
electrical source such as a hidden battery.

The cost of removing the assumption of no hidden inputs is not a greater
number of possible hypotheses in the worst case, but a sharply reduced capa-
bility for testing hypotheses. Without observations against which to compare
the results of propagating values for the constraints on type, behavior, and
structure, hypothesizing becomes a case of “almost anything goes.” There
must be compelling reasons for entertaining hidden input hypotheses.

The modified causal modelling procedure which includes the heuristically
justified level jump to hidden inputs is shown in Procedure 4.14.
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Given: a timeline, a mechanism vocabulary,
a maximum mechanism path length [, .,
and a maximum number of interactions p,,qz
For each pair of events from the timeline
consisting of one cause and one effect,
with the cause not taking place after the effect
p=1
Generate linear mechanism path hypotheses
of up to length /02
Extend: For each hypothesis
When p < pna.r and a mechanism interaction heuristic is satisfied
p=p+1
Generate mechanism interaction hypotheses
When p < pma. and the hidden input heuristic is satisfied
p=p+1
Generate hidden input hypotheses
Go to Extend:

Procedure 4.14. Causal modelling procedure up to hidden inputs.

4.5.1 Heuristic for Hidden Inputs

Some mechanisms can participate only in enablement and disablement

interactions; they cannot stand alone along linear mechanism paths. These
mechanisms are enumerated in Appendix B. For example, an explanation for
a fluid flow in terms of an enabling opened valve is incomplete; there also
must be a fluid source. Similarly, an explanation for cooling in terms of a
pressure decrease enabling evaporation also is incomplete; there also must he
a heat sink. The appearance of an “interaction-only” mechanism on a linear
mechanism path implies a missing input. The heuristic for recognizing hidden
input situations is shown in Procedure 4.15.

Given: a linear mechanism path or mechanism interaction hypothesis.
There is an enabling or disabling mechanism
on a linear mechanism path

Procedure 4.15. Hidden input heuristic.
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4.5.2 Propagation and Combination Rules for Hidden Input
Hypotheses

The construction of hidden input hypotheses involves extending linear
mechanism path hypotheses into interaction hypotheses at the mechanisms
which must participate in interactions. This process involves inverse propaga-
tion and combination of constraint values and is described in Procedure 4.16.
See also Figure 4.3.

Given: a candidate hypothesis for a hidden input

Propagate forward from cause event to point of interaction

Propagate backward from effect event to point of interaction

Invert combination at point of interaction

Propagate backward along new mechanism path from point of interaction

Procedure 4.16. Hidden input hypothesis generation.

inverse

combination
back propagation back propagation
4—_—— <»
O /. » O > @
40 propagation

/
/
4

Figure 4.3. Propagation and combination in hidden input hypothesis gen-
eration.

The inverse propagation rules for the constraints on type, behavior, and struc-
ture are defined as follows:



88

The qualitative calculi for the sign, direction, alignment, bias, and dis-
placement constraints are traversed in the backward direction.

The appropriate inverse arithmetic rules for ranges of orders of magni-
tude are substituted for the delay and magnitude constraints: subtraction for
addition and division for multiplication. In particular, delay is propagated
by subtracting the time lag associated with a mechanism from the time of an
effect; magnitude is propagated by dividing the magnitude of an effect by the
efficiency of a mechanism.

The relations for the type and medium constraints are traversed from
object to subject, rather then from subject to object.

The propagation rules for temporal differentiation are based on the for-
mula r = Aa/At. This formula is used to infer the interval during which the
rate is non-zero for the delay constraint, the direction of change for the sign
constraint, and the magnitude of the rate for the magnitude constraint. Aa
is bounded by the current value for the amount, given by the value for the
magnitude constraint propagated thus far, and default limiting values in the
value spaces of quantities. At is bounded by the observed time of the effect
and the earliest moment on the timeline. » is not bounded by default limits.

The temporal differentiation rules for the direction, alignment, bias, dis-
placement, type, and medium constraints are the same as those for temporal
integration.

The inverse combination rules at points of interaction for the constraints
on type, behavior, and structure are defined as follows:

The delay between the time of the contribution due to the hidden input
and the time of the effect is bounded by the delay propagated backward from
the effect and the beginning of the timeline.

When an equilibrium interaction is being inverted, values for sign are
combined by traversing the additive calculus for sign in the backward direc-
tion. When an enablement or disablement interaction is being inverted, values
for sign are combined by traversing the multiplicative calculus for sign in the
backward direction, with the contribution of the enabling or disabling path
being restricted to {Zero Positive}.

When an equilibrium interaction is being inverted, values for magnitude
are combined with the subtraction rule for ranges of orders of magnitude.
When an enablement or disablement interaction is heing inverted, values for
magnitude are combined with the division rule for ranges of orders of magni-
tude, with the contribution of the enabling or disabling path heing normalized
to the range [0 : 1].

The inverse combination rule for the bias constraint is the same as the
inverse combination rule for the sign constraint.
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The inverse combination rules for the type, direction, alignment, dis-
placement, and medium constraints are the same as the corresponding direct
combination rules.

4.6 Handling Sources and Sinks—Cycles

Potential sources and sinks in a physical system sometimes can be avoided by
balancing one against the other. Such a balance can be achieved in a cycle
where gains alternate with losses so that there is never an unbounded increase
or decrease. An example of such a synergistic cycle is the circulation of re-
frigerant in a refrigerator: a single material is alternately evaporated, taking
up heat from the interior, and condensed, giving off heat to the environment.
The net heat gain or heat loss in this material remains always bounded.

Synergistic cycles, in which potential sources and sinks are removed, are
to be contrasted with iterative cycles, in which an increase or decrease is built
to a threshold. Only the synergistic type of cycle is being treated here. Fur-
thermore, only hidden input hypotheses serve as candidates for extension into
this kind of cycle hypothesis. Synergistic cycle hypotheses show how the con-
jectured sources and sinks of hidden input hypotheses can be avoided. (Inputs
can be either sources or sinks—the air entering a tire gauge and the air leaving
a vacuum cleaner both serve as inputs). The same cycle construction exercise
is pointless for linear mechanism path or mechanism interaction hypotheses,
whose initial causes always are among the observable, declared inputs of a
device.

The modified causal modelling procedure which includes the heuristically
justified level jump to cycles is shown in Procedure 4.17.
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Given: a timeline, a mechanism vocabulary,
a maximum mechanism path length /...,
and a maximum number of interactions pmqz
For each pair of events from the timeline
consisting of one cause and one effect,
with the cause not taking place after the effect
p=1
Generate linear mechanism path hypotheses
of up to length 42
Extend: For each hypothesis
When p < pnq, and a mechanism interaction heuristic is satisfied
p=p+1
Generate mechanism interaction hypotheses
When p < pira. and the hidden input heuristic is satisfied
p=p+1
Generate hidden input hypotheses
Go to Extend:
For each pair of hidden input hypotheses
When the cycle heuristic is satisfied
Generate a cycle hypothesis

Procedure 4.17. Causal modelling procedure up to cycles.

4.6.1 Heuristic for Cycles

Synergistic cycles are characterized by a potential source together with
a potential sink. The heuristic for recognizing cycle situations is shown in
Procedure 4.18.
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Given: two hidden input hypotheses.
s1 = the set of signs associated with
the hidden input of one hypothesis
sy = the set of signs associated with
the hidden input of the other hypothesis
There is a pair of signs,
one from s; and one from s,,
which are of opposite value

Procedure 4.18. Cycle heuristic.

4.6.2 Combination Rules for Cycle Hypotheses

A cycle hypothesis is constructed from a pair of hidden input hypotheses
by additively combining the hidden inputs from the two hypotheses—one
source and one sink. This procedure is shown in Procedure 4.19. See also
Figure 4.4.

Given: two hidden input hypotheses.
Hypothesize a cycle interaction between
the two hidden input event nodes,

one from each hypothesis.

Procedure 4.19. Cycle hypothesis generation.

The rules for additive combination in cycle hypotheses are nearly the
same as those for constructing equilibrium hypotheses.

Values for the type constraint must match exactly.

Propagated delays must be “out-of-phase” because gains and losses al-
ternate in a synergistic cycle. Given that values for the delay constraint are
propagated as ranges, this requirement is easy to satisfy. Only equal point
ranges fail to do so.

The Zero value must result from the combination of values for the sign
and bias constraints.

The Opposite value must result from the combination of values for the
direction constraint.
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Figure 4.4. Combination in cycle hypotheses.

The ranges of orders of magnitude propagated for the magnitude con-
straint must overlap so that upon combination, the low end of the resulting
range is the zero value 27,

The values propagated for the alignment constraint must be non-null.

The physical object associated with the two hidden inputs must be the
same physical object. Otherwise the gain from one and the loss from the other
do not offset.

Values for the displacement constraint violate this requirement when
{Same} is propagated for both hypotheses and the physical ob jects associ-
ated with the final effect in each hypothesis are not the same.

Similarly, the two physical ob jects propagated for the medium constraint
must be the same physical object, or both must be unbound, at which point
they are asserted to be the same physical object.

4.7 A Detailed Example

In this section, I work through a detailed example of hypothesis construction.
The hypothesis is shown in Figure 4.5. This example serves to illustrate the
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propagation and combination rules and the temporal integration procedures
which make up the causal and qualitative simulation method, the comparison
rules for verifying predicted events against observed events, and the heuristics
for traversing the hypothesis ordering.

Outlet Charge Rate Coils Temperature Rate
Positive 0 Positive 61
Electricity Electro-Thermal
@ . —» O » @

/ Switch

Lever Position Rate
Negative 60

Figure 4.5. An example hypothesis.

In this example, the device event {-EVENT- Qutlet Charge Rate Positive 0} is
taken to be the cause and the device event {-EVENT- Coils Temperature Rate
Positive 61} is taken to be the effect. One of the generated hypotheses is the
linear mechanism path {-MECHANISM PATH. Electricity Electro-Thermal}. The
seed event node computed from the cause event is:

{‘EVENT NODE-
:type {-TYPE- Charge Rate}
:delay {-RANGE. 27 : 2~}
:sign Positive
:direction Parallel
:magnitude {-RANGE. 23 : 23}
:alignment {Less Equal Greater}
:hias Positive
:displacement Same
:medium Qutlet}
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The target event node computed from the cause event and the effect event
is:

{-EVENT NODE-
:type {-TYPE- Temperature Rate}
:delay {-RANGE. 26 : 26}
:sign Positive
:direction Parallel
:magnitude {-RANGE- 2! : 2!}
:alignment {Less Equal Greater}
:bias Positive
:displacement Different
:medium Coils}

The event node which represents the effect of the Electricity mechanism
is computed via the propagation rules. This event node is:

{-EVENT NODE-
:type {-TYPE- Charge Rate}
:delay {-RANGE. 2% : 2>}
:sign { Positive}
:direction {Parallel Opposite Perpendicular Skewed}
:magnitude {-RANGE. 27% : 210} '
:alignment {Less Equal Greater}
:bias {Positive}
:displacement {Different}
:medium {Coils}}

The event node which represents the effect of the Electro- Thermal mech-
anism, computed similarly, is:

{-EVENT NODE-
:type {-TYPE- Temperature Rate}
:delay {-RANGE. 27> ;: 2~}
:sign { Positive}
:direction {Parallel Opposite Perpendicular Skewed}
:magnitude {-RANGE. 2711 : 217}
:alignment {Less Equal Greater}
:bias { Positive}
:displacement { Different}
:medium {Coils}}

This event node is incompatible with the target event node. In partic-
ular, this hypothesis fails because the delay constraint is violated. However,
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this partial failure triggers the enablement interaction recognition rule. The
hallmark of an enablement interaction is an unexplained delay.

Next the device event {-EVENT- Lever Position Rate Negative 60} is taken
to be an additional cause. One of the generated enablement path hypotheses
{-MECHANISM PATH- Integration Switch}. The seed event computed from this
second cause is:

{-EVENT NODE-
:type {-TYPE- Position Rate}
:delay {-RANGE. 27> :2- >}
:sign Negative
:direction Parallel
:magnitude {-RANGE. 273 : 273}
:alignment {Less Equal Greater}
:bias Negative
:displacement Same
:medium Lever}

The event node which represents the effect of the Integration mechanism—
computed via the temporal integration procedures—is:

{-BVENT NODE-
:type {-TYPE- Position Amount}
:delay {-RaNGE- 20 : 20}
:sign { Negative}
:direction {Parallel}
:magnitude {-RANGE- 27% :27°}
:alignment {Less Equal Greater}
:bias { Negative}
:displacement {Same}
:medium {Lever}}

The event node propagated past the Switch mechanism is:
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{-EVENT NODE-
:type {-TYPE. Charge Rate}
:delay {-RaNGE. 2°: 20}
:sign {Negative}
:direction {Parallel Opposite Perpendicular Skewed}
:magnitude {-RANGE- 2% : 273}
:alignment {Less Equal Greater}
:bias { Negative}
:displacement {Different}
:medium {Coils}}

This event is composed with the event node propagated past the Elec-
tricity mechanism via the combination rules for enablement interactions. The
result is:

{-EVENT NODE-
:type {-TYPE- Charge Rate}
:delay {-RANGE. 26 : 26}
:sign {Positive}
:direction {Parallel Opposite Perpendicular Skewed}
:magnitude {-RANGE- 2% : 210}
:alignment {Less Equal Greater}
:bias {Positive}
:displacement {Different}
:medium {Coils}}

The result of a final propagation past the Electro- Thermal mechanism is
the event node:

{-EVENT NODE.
:type {-TYPE.- Temperature Rate}
:delay {-RANGE. 2% : 26}
:sign {Positive}
:direction {Parallel Opposite Perpendicular Skewed}
:magnitude {-RANGE- 2711 : 217}
:alignment {Less Equal Greater}
:bias {Positive}
:displacement {Different}
:medium {Coils}}

This event node is compatible with the target event node. This hypothesis
is admitted.
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4.8 Refining Hypotheses

A hypothesis may explain some of the hehavior of a device and yet be incon-
sistent with other behavior. For example, several linkages may be proposed
to account for the motion of the slide in a pocket tire gauge: a coupling with
attachment, a coupling based on contact only, a ratchet. However, an attach-
ment coupling is inconsistent with the slide remaining where it is when the
gauge later is removed from the tire; a ratchet is inconsistent with the slide
later being pushed back into the cylinder.

Hypothesis refinement distinguishes theory formation, which operates on
as many examples of the behavior of a device as are available, from explana-
tion, which operates on isolated examples of the behavior of a device with no
concern for global consistency.

The constraints on type, behavior, and structure are abstractions of phys-
ical and causal principles; they capture necessary but insufficient conditions
which all causal models must -atisfy. Accordingly, false positives are assumed
to be possible but false negat..es are not. The only form of refinement in the
causal modelling process is specialization. Hypotheses which are found to he
inconsistent with additional examples of device behavior are retracted.

The procedure for refining hypotheses is given in Procedure 4.20.
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For each p-tuple of cause events
Form the set of quantities associated with the p cause events
Collect the hypotheses indexed under this set of cause quantities
For each existing hypothesis
Propagate constraints in the context of the hypothesis
to form a prediction
Search timeline for observation
When prediction and observation
then
When predicted change in delay does not match
observed change in delay
then FALSE ; disproportionate delay
When predicted change in magnitude does not match
observed change in magnitude
then FALSE ; disproportionate magnitude
else TRUE ; verified effect
When prediction and no observation
then FALSE ; unverified effect
When no prediction and observation
then FALSE ; unezpected effect
When no prediction and no observation
then TRUE ; no unezpected effect

Procedure 4.20. Hypothesis Refinement.

Admitted hypotheses are indexed under the set of quantities associated
with the initial cause events of the hypothesis. For example, the hypothesis
of Figure 4.5 is indexed under {{-QUANTITY- Qutlet Charge Rate} {-QUANTITY.
Lever Position Rate}}. Then, as other events in a timeline are processed,
existing hypotheses for a given set of cause quantities can be retrieved and
used to form predictions.

For each retrieved hypothesis. there is a predicted effect event for the
new set of cause events exactly when all of the values propagated for the
constraints on type, behavior, and structure are non-null. Global consistency
across multiple examples of behavior is ensured by propagating constraints
in the context of any assertions made during the generation of the original
hypothesis. For example. in a Contact-Coupling hypothesis, an assertion is
made concerning the relative position of the physical objects associated with
cause and effect. This inequality assertion must not be violated by other
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observed motions or lack of motions concerning those physical objects.

The type, medium, delay, sign, and magnitude constraints are used to
focus the search for an observation from the timeline. The type and medium
constraints jointly determine the quantity associated with the expected event.
Quantities are uniquely defined by a physical object, provided by the value
of the medium constraint, and a type. The value of the delay constraint,
after translation from order of magnitude scale to linear scale, determines the
temporal interval during which to expect the effect. The sign and magnitude
constraints jointly determine the range of values to expect. These are the val-
ues from the value space of the predicted quantity which are compatible with
the propagated sign and magnitude. The predicted quantity, moment, and
value completely determine the expected event to be sought on the timeline.

4.8.1 Linear Mechanism Paths

Forming predictions for linear mechanism paths is straightforward. An
effect is expected as long as none of the constraints are violated. The cases
are enumerated in Table 4.1,

Mechanism Path | Effect
active expected
inactive not expected

Table 4.1. Prediction for linear mechanism paths.

4.8.2 Enablement and Disablement Interactions

Forming predictions for enablement and disablement interactions is slightly
more complicated. The contributions of the primary path and the enabling
or disabling path must be teased apart. The cases are enumerated in Table
4.2 and Table 4.3.

Primary Path Enabling Path Effect
active active expected
active inactive not expected

inactive active not expected
inactive inactive not expected

Table 4.2. Prediction for enablement interactions.
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An effect is expected only as long as none of the constraints are violated
for either the primary path or the enabling path.

Primary Path Disabling Path Effect
active active expected
active inactive effect due to primary path expected
inactive active expected
inactive inactive not expected

Table 4.3. Prediction for disablement interactions.

The expected effect for a disablement situation is that the value of a
quantity will cease to change. This effect is expected whenever none of the
constraints are violated for the disabling path—whether or not the constraints
are violated for the primary path. Furthermore, when the primary path is
intact but the disabling path is not, a different effect is expected—the effect
due to the primary path alone.

4.8.3 Equilibrium Interactions

Forming predictions for equilibrium interactions also requires the contri-
butions of the opposing paths to be teased apart. The cases are enumerated
in Table 4.4.

One Path Other Path Effect

active active expected

active inactive effect due to the one path expected
inactive active effect due to the other path expected
inactive inactive not expected

Table 4.4. Prediction for equilibrium interactions.

The expected effect for an equilibrium situation also is that the value
of a quantity will cease to change. This effect is expected only as long as
none of the constraints are violated for either of the opposing paths. If these
constraints are violated in exactly one of the opposing paths, the expected
effect is the one due to the remaining intact path alone.

4.8.4 Hidden Inputs

Refinement of hidden input hypotheses is pointless. Whatever predic-
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tion may be generated—smaller hidden input, earlier hidden input, no hidden

input—it is unverifiable because hidden inputs are, by definition, unobserv-
able.

4.8.5 Cycles

Forming predictions for cycles is nearly the same as forming predictions
for equilibrium situations. The alternating, additive contributions of the cycle
halves have to be teased apart. The cases are enumerated in Table 4.5.

Source Path Sink Path Effect
active active expected
active inactive effect due to source path expected
inactive active effect due to sink path expected
inactive inactive not expected

Table 4.5. Prediction for cycles.

However, these predictions are interpreted differently for cycle hypothe-
ses. The expected effect of a synergistic cycle is that a potential increase or
decrease in a quantity remains always bounded. This effect is expected only
when the constraints are satisfied for both halves of a cycle. Whenever only
one of the alternating contributions is active the synergy is compromised and
the latent source or sink emerges. A cycle hypothesis is tenable only as long
as both or neither of the cycle halves is active for all observations.

Several examples of hypothesis refinement are discussed in Chapter 5.
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5. Examples: These Are the Models That JACK Built

In this chapter, I describe the operation of the program JACK on several ex-
amples. For each device example, I discuss how much of the complexity of
the “real” physical system is examined by the program, which aspects of the
causal modelling process are exercised by the example, and how the reasoning
exhibited by the program JACK both captures important aspects of and falls
short of an engineer’s understanding of the device.

As part of this scrutiny of performance, I examine both the “correct”
hypothesis generated by the causal modelling system—the one which captures,
albeit approximately, the standard design for the device—and some of the
“bogus” hypotheses which, after the first chuckle, sometimes turn out to be
perfectly plausible. These hypotheses reflect the same physical and causal
principles as the target hypothesis and in some cases represent genuine, if
abstract, alternate designs for the devices.

5.1 The Toaster

In this example, I test the program JACK on a simplified version of the common
household toaster. The observation of the toaster, which may be found in
Figure 5.1 runs as follows: Initially, the lever and carriage are in their upright
position and motionless. The dial has some particular stable setting. The
coils are cold, the bread is white and neither is changing. Both electricity
at the outlet and gravity are declared to be available as primitive causes, or
device inputs. The first thing that happens is the lever and carriage move
downward together; the lever’s motion is declared to be a device input. Next
the lever and carriage stop moving together and at the same time, the coils
begin heating up. Next the bread begins to get darker; this event is declared
to be a final effect, or device output. Some time later, the lever and carriage
move upward together. Simultaneously, the coils stop heating and the bread
stops getting darker. Immediately, the coils begin to cool. The lever and
carriage reach their uppermost position and stop moving. Sometime later,
the coils reach a stable temperature.

5.1.1 Distinguishing Properties of the Toaster Example

The toaster example was the first implemented and has remained the
primary benchmark against which all modifications to the program are tested.
The example is particularly rich and is well suited to this role. The toaster
contains electrical, mechanical, and thermal mechanisms. In addition, there
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0:00 1:00 1:01 1:06 3:.06 3.07 7:30
Lever Position Amount Up Down Up
Lever Position Rate Zero Negative Zero Positive Zero
Dial Angle Amount LM
Dial Angle Rate Zero
Carriage Position Amount Up Down Up
Carriage Position Rate Zero Negative Zero Positive Zero
Coils Temperature Amount Off Hot Off
Coils Temperature Rate Zero Positive Zero Negative Zero
Bread Appearance Amount Untoasted Golden
Bread Appearance Rate Zero Positive Zero
Outlet Charge Amount On
Outlet Charge Rate Positive
Earth Gravity Amount G
Earth Gravity Rate Zero

Figure 5.1. Timeline of toaster observation.

are enablements and disablements: switches opening and closing, latches being
engaged and disengaged. A second observation of the toaster, in which the
bread turns out lighter, affords opportunities to refine hypotheses.

5.1.2 Reasoning About the Toaster

Figure 5.2 shows one of the hypotheses constructed by the program Jack
to account for the temperature increase of the coils in the toaster. Let us
examine the steps taken by the causal modelling system in arriving at this
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hypothesis. First, the program JACK attempts to construct hypotheses consist-
ing solely of linear mechanism paths; this is the simplest type of hypothesis
in the ordering of hypothesis types. As it happens, no linear mechanism
path hypothesis satisfies all the constraints on type, behavior and structure.
However, some of the failed hypotheses trigger the heuristic for suspecting en-
ablement situations: there is an unexplained delay. Among these is the linear
mechanism path hypothesis {-MECHANISM PATH. Electricity Electro-Thermal}.
A delay is observed between the event describing current at the outlet and
the event describing the temperature increase at the coils. However, both of
these mechanisms have zero delays: electricity propagates at the speed of light
and the electro-thermal transformation has no distance to cover, taking place
inside a single physical object.

The program JACK now attempts to construct hypotheses describing en-
ablement interactions. Candidates for the enabling event are those events
which occur before the effect event, in this case before the temperature change
of the coils. The causal modelling system is able to construct a hypothesis
involving the motion of the lever which satisfies all the constraints. This is
the hypothesis in Figure 5.2. The enabling path in this hypothesis includes
an Integration mechanism; the switch moves from one position to another
as part of the enablement process. This integration episode accounts for the
observed delay between cause and effect which the original hypothesis could
not explain. For enablement interactions, the composed delay is the maxi-
mum of the delay due to the primary causal path and the delay due to the
enablement path. The new value for the position of the lever is achieved at
the same moment at which the temperature of the coils begins to increase.
This observation is consistent with the hypothesis; once the flow of electricity
is enabled, there is no additional delay associated with the electro-thermal
transformation.

The causal modelling system generates another set of enablement hy-
potheses involving motion of the carriage rather than motion of the lever.
This is entirely reasonable given the similarity between the two events: the
lever and carriage move at the same rate and stop moving at the same time.
Without knowledge of internal structural connections which might disam-
biguate whether it is the lever or the carriage which interacts with the flow of
electricity, the program JACK has no basis for preferring one over the other.

Another linear mechanism path hypothesis which triggers the enablement
heuristic is the hypothesis {-HECHANISiI PATH- Electro- Thermal Conductive-
Heat-Flow}. Here the program JACK proposes that current at the outlet results
in a temperature increase at the outlet which is then transferred to the coils
via a heat flow. The delay associated with the Conductive-Heat-Flow mech-
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Outlet Charge Rate Coils Temperature Rate
Positive 0 Positive 61
Electricity Electro-Thermal
o o » O » @

/Switch

Lever Position Rate
Negative 60

Figure 5.2. Switch hypothesis for coils.

anism is not long enough to account for the observed delay.

The program JACK now attempts to extend this heat flow hypothesis to
include an enablement interaction. One of the successful attempts appears
in Figure 5.3. Here the motion of the lever is opening a vent which enables
heat flow rather than closing a switch which enables electrical flow. The
heat flow and vent hypothesis satisfies the delay constraint in the same way
as the electricity and switch hypothesis. In fact, the causal modelling system
generates a set of heat flow and vent hypotheses similar to the set of electricity
and switch hypotheses. The hypotheses involve either the motion of the lever
or the motion of the carriage as the initial enabling event and they differ in the
inclusion of additional linkages up to the maximum mechanism path length.

The heat flow and vent hypothesis may seem strange because people
have enough experience with toasters to know that the outlet does not heat
up appreciably and that the cord carries electricity, not heat. However, the
hypothesis is physically plausible and is not at variance with the given obser-
vation of the toaster. It is instructive at this point to examine the reasoning
by which the program JACK prunes out other hypotheses which, at first glance,
seem no more strange than the heat flow and vent hypothesis.

In several pruned hypotheses, gravity is proposed as the initial enabling
event which produces the motion which closes a switch or opens a vent. Such
hypotheses seem perfectly reasonable, but it turns out that they are eliminated
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Outlet Charge Rate Coils Temperature Rate
Positive 0 Positive 61
Electro-Thermal Heat Flow
o » O ° » @
/Vent
O
4
’
7/
o
Lever Position Rate
Negative 60

Figure 5.3. Vent hypothesis for coils.

from consideration by reasoning about the magnitude of the gravitational force
and the delay associated with temporal integration episodes. The problem is
that gravity acts too quickly to account for the observed delay.

Upper bounds on the delays associated with temporal integration episodes
are inferred from rates of change and the minimum and maximum possible
values of the quantities involved. The rate of change is the propagated value
of the magnitude constraint. Limit values for unobservable quantities are
taken from defaults specified in mechanism descriptions. After the effects of
acceleration are approximated (see Section 6.4.4), the expected time required
for a gravity-induced motion to cross the span of a Switch or Vent is much
less than the observed delay. Hypotheses involving gravity still fail to satisfy
the delay constraint; on this basis they are removed from consideration.

Reasoning about enablements also leads to hypotheses to explain the
upward motion of the lever. The lever is observed to move upwards after
having moved downwards. The linear mechanism path hypothesis {-MECHANISH
PATH- Spring-Loading Integration Spring} nearly accounts for these events:
the downward motion of the lever is conjectured to generate a restoring force
in a spring; this force increases as the spring is displaced; finally, the force
results in motion of the lever in the opposite direction. The problem is that
the displacement of the spring and the generation of the restoring force are
expected to occur quickly, more quickly than the observed delay between the
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downward and upward motions of the lever.

The enablement heuristic is triggered once again; the only constraint
violated is the delay constraint. The causal modelling system now attempts
to construct enabling mechanism paths which interact with the linear path
involving the spring. Again, only those enabling paths which can act slowly
enough to account for the observed delay are admitted as hypotheses. One of
the admitted hypotheses appears in Figure 5.4.

Lever Position Rate Lever Position Rate
Negative 60 Positive 186
Spring
®------------ +0 . » @
/ Latch
O
4

Heat Flow Thermal Expansion J
o » O > QO

Coils Temperature Rate

Positive 61

Figure 5.4. Spring and thermally expanding latch hypothesis.

In this hypothesis, the heating of the coils is conjectured to result in motion of
a latch through thermal expansion. Eventually, the latch is displaced enough
to release the spring, which then moves the lever upwards. The magnitude of
the motion associated with thermal expansion is exceedingly small. The time
required to move at this rate through the default maximum range of motion
for a Latch is consistent with the observed delay.

Another hypothesis which accounts for the observed delay between the
two motions of the lever appears in Figure 5.5. In this hypothesis, electricity
is transformed into motion. This motion displaces a latch until the enabling
position is reached and the spring is released.

The range of efficiency associated with the Electro-Mechanical mechanism
is intended to capture the wide range of stepped-down or stepped-up motors
which all operate from electrical power sources of a single magnitude. The
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program JACK is able to hypothesize a motorized latch which takes as long as
the observed delay between the downward and upward motions of the lever
to release a spring.

Lever Position Rate Lever Position Rate
Negative 60 Positive 186
Spring
Q----------- »O . > @
/Latch
O

Electricity Electro-Mechanical /

I’

@ » O » O

Outlet Charge Rate
Positive 0

Figure 5.5. Spring and motorized latch hypothesis.

Many enablement interaction hypotheses are pruned because they are unable
to explain the observed delay between the opposite motions of the lever. These
abandoned hypotheses include latch motions which are gravity-induced and
latch motions which are mechanically coupled to the motions of the lever or
carriage. All of these hypotheses are inadmissible because the time required
to span the maximum range of positions for a latch at the propagated rate of
motion is still less than the observed delay.

The causal modelling system admits and prunes the same hypotheses for
the opposite motions of the carriage as it does for the opposite motions of the
lever. The magnitudes, directions, and times of occurrence of the lever and
carriage motions are indistinguishable, and without further information, the
program JACK has no basis for conjecturing that one but not the other of these
physical objects is spring-loaded and latched.

Most toasters exhibit an annoying inability to reset quickly. If a second
piece of toast is placed before the toaster has cooled off appreciably, the lever
and carriage will pop up too quickly and the toast will be too light. The
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reason for this misbehavior is that the latch on the spring is still partially
expanded due to the latent heat in the toaster and will take less time to fully
expand to the position at which the spring is released.

The program JACK operates equally well from observations which describe
nominal behavior of devices as from observations which describe misbehavior.
The approach to modelling implemented in the causal modelling system does
not make use of teleological information concerning the intended behavior of
a device. Nevertheless, observations of mishehavior can provide opportunities
for refining hypotheses. Some proposed device models may provide no means
to account for additional observed behavior, whether or not that behavior
represents a failure to achieve the intended function of the device.

Figure 5.6 shows a second ohservation of a toaster. The differences be-
tween this observation and the original observation of Figure 5.1 is that the
initial temperature of the coils is higher, the delays between the downward and
upward motions of the lever and carriage are shorter, and the final darkness of
the bread is lighter. The program JACK uses this observation of misbehavior to
prune the spring and motorized latch hypothesis of Figure 5.5 while retaining
the spring and thermally expanding latch hypothesis of Figure 5.4.

The thermally expanding latch hypothesis is retained because a shorter
delay between the downward and upward motions of the lever is both expected
and observed. The reasoning which leads to a shorter expected delay is subtle.
The delay is attributed to the time needed to move the latch from an initial
position to a final position at which enablement occurs. The range of motion
of the latch in the two observations is inferred as follows:

The rate of motion of the latch is proportional to the rate of temper-
ature change of the coils; this proportionality is implicit in the assertion of
a mechanism path between the two quantities. In the first observation, the
temperature of the coils is observed to change from the minimum value Cold
to the maximum value Hot. In the second observation. the initial value of
the temperature of the coils is the intermediate value Warm. The change of
value in the latch position is inferred to be less in the second observation in
proportion to the smaller temperature change in the coils. Since the magni-
tude of the motion is the same in both cases. the delay associated with the
displacement of the latch in the second observation is shorter.

The motorized latch hypothesis is pruned because a shorter delay between
the downward and upward motions of the lever is not expected, an inference
at variance with the shorter observed delay. In this hypothesis, the current
at the outlet is the quantity associated with the initial event on the enabling
path. The conjectured motion of the latch is proportional to this current.
There is no difference in the current in the two observations; hence there is no
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5:00 5.01 5:06 6:06 6:07 10:30
Lever Position Amount Down Up
Lever Position Rate Negative | Zero Positive Zero
Dial Angle Amount
Dial Angle Rate
Carriage Position Amount Down Up
Carriage Position Rate Negative Zero Positive Zero
Coils Temperature Amount Warm Hot Off
Coils Temperature Rate Positive Zero Negative Zero
Bread Appearance Amount Untoasted Light
Bread Appearance Rate Zero Positive Zero

Outlet Charge Amount
Outlet Charge Rate

Earth Gravity Amount
Earth Gravity Rate

Figure 5.6. Timeline of second toaster observation.

reason to infer that the latch begins and ends its motion at different positions.
The delay for both observations is expected to be the same.

5.1.3 Abstractions and Shortcomings in the Toaster Models

The Thermal-Expansion and Latch mechanisms appearing in the toaster mod-
els constructed by the program JACK are a considerable simplification of how
the spring in a toaster actually is released. The force induced in a bimetallic

strip by thermal expansion is of too small a magnitude to serve as a robust
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release mechanism for a spring. One way in which this force is amplified is by
having the expanding bimetallic strip release the support of a small weight in
a vertical track. The weight, which moves upward with the carriage, catches
on its support when the carriage moves downward. The unsupported weight
slides downward under the influence of gravity and displaces a latch on the
spring. The falling weight can directly release the spring reliably whereas the
feeble bimetallic strip cannot.

A shortcoming shared by all of the proposed causal models of the toaster
is the absence of conjectures concerning how the position of the darkness dial
contributes to the delay between the downward and upward motions of the
lever and carriage. Two factors determine the initial position of the latch
in a real toaster: the ambient temperature and the position of the darkness
dial, which is mechanically coupled to the latch. The latch must move from
this initial position to the enabling position at which the spring is released.
The rate of thermal expansion is always the same, hence the initial position
of the latch, determined in part by the position of the darkness dial, in turn
determines the delay between the opposite motions of the lever and carriage.

The reason for the lack of conjectures about the role of the darkness
dial position is straightforward: currently the hypothesis ordering does not
include tradeoff interactions—additive interactions where the net magnitude
of the effect is non-zero. The causal modelling system can generate additive
interaction hypotheses for zero effects; these are the equilibrium hypothe-
ses. The obvious triggering heuristic for tradeoff interactions is one based on
the magnitude constraint: suspect an additive interaction when the propa-
gated magnitude is inconsistent with the observed non-zero magnitude. The
problem is that the order of magnitude ranges propagated for the magnitude
constraint are often so wide that this constraint is not violated when it should
be. The alternative of generating additive interaction hypotheses whether or
not the magnitude constraint is violated is not in keeping with the principle
of Occam’s Razor and leads to an explosion of hypothesizing.

I discuss a possible triggering heuristic for tradeoff interactions in Section
6.4.3. This heuristic along with multiple observations of the toaster in which
the delay between the downward and upward motions of the lever varies with
the position of the darkness dial might enable the program JACK to generate
hypotheses concerning the role of the darkness dial position.

5.2 The Pocket Tire Gauge

In this example, I test the program JACK on the surprisingly puzzling pocket
tire gauge. The observation for this device appears in Figure 5.7. Initially, the
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slide is all the way inside the cylinder and the amount of gas within the tire
is stable. Once again, gravity is declared as an available device input. Next,
the cylinder of the tire gauge is joined to the tire. Immediately, the amount
of gas within the tire decreases and the slide moves out of the cylinder. A
short time later, the flow of gas ceases. At the same time, the motion of the
slide terminates, an event declared to be a device output. The slide is not at
the limit of its range of motion. Some time later still, the cylinder is removed
from the tire. The slide does not move again until it is pushed back into the
cylinder, an event declared to be another device input.

0:00 1:00 1:00.1 1:00.2 2:00 2:00.1
Slide Position Amount GO G28 GO
Slide Position Rate Zero Positive Zero Negative Zero
Tire Amount-of-Gas Amount P28 P28
Tire Amount-of-Gas Rate Zero Negative Zero
Earth Gravity Amount G
Earth Gravity Rate Zero

Figure 5.7. Timeline of tire gauge observation.

5.2.1 Distinguishing Properties of the Tire Gauge Example

The tire gauge example exemplifies how the design of a device with a relatively
simple behavior can be quite puzzling. The tire gauge example turns out to
be more complex than the toaster and serves as a more rigorous exercise
for the pruning power of the constraints on type, behavior, and structure.
The program JACK must conjecture mechanism paths of length four before
the target hypothesis emerges. In addition, the tire gauge contains a kind of
interaction not found in the toaster: the equilibrium between forces due to
air pressure and a spring.
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5.2.2 Reasoning About the Tire Gauge

One of the tasks set for the program JACK in the tire gauge example is
to explain why the slide stops moving before reaching its limit position. The
hypothesis which corresponds to the way a real tire gauge works appears in
Figure 5.8. Here the causal modelling system conjectures that an equilibrium
has been achieved. The two opposing contributions which make up the equi-
librium are a pneumatically-induced motion of a hidden physical object due
to the flow of gas from the tire, and a spring-induced motion of the same
physical object in the opposite direction due to displacement of a spring by
the moving object, resulting in a restoring force in the opposite direction to
the displacement.

Gas Flow

Tire Amount-of-Gas Rate Pneumatic

Negative 60
egative Contact Coupling

o = O—— ¢
G\‘O 4 Slide Position Rate

as Flow w0
- —>0 Zero 60.2
neumatic

Figure 5.8. Spring hypothesis.

The triggering heuristics for suspecting equilibrium and disablement situa-
tions are the same. Not surprisingly, the program JAcK is able to generate
disablement hypotheses to explain the halting of the motion of the slide. One
of these hypotheses appears in Figure 5.9. This proposed causal model for
the tire gauge also involves pneumatically-induced motion of a hidden phys-
ical object. However, in this case the motion of the hidden object displaces
not a spring but a valve. When the valve is closed, the flow of gas is disabled,
and the motion of the slide—transmitted along a mechanical coupling from
the hidden object—also stops. Thus an impulse of displaced gas is responsible
for the start-and-stop motion of the slide.

An alternate disablement hypothesis generated by the causal modelling
system proposes that the pneumatic motion of the hidden object, rather than
closing a valve which disables the flow of gas, instead engages a latch which
directly arrests the motion of the slide.
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Tire Amount-of-Gas Rate

Negative 60 .
Gas Flow Pneumatic Contact Coupling
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Figure 5.9. Impulse hypothesis.

Unfortunately, additional observations of the tire gauge describing the
motion of the slide for different input tire pressures do not serve to prune
these “impulse” hypotheses. Let us examine the reasoning involved closely,
using the case of a second observation involving a greater amount of gas inside
the tire. For both the spring hypothesis and the impulse hypothesis, a greater
rate of gas flow from the tire is propagated via the magnitude constraint to
a greater rate of motion for the hidden object. The time required for the
displacement of the spring may be shorter, the same, or longer: the rate of
motion is greater but a greater displacement of the spring is required to achieve
equilibrium. On the other hand, the time required for the displacement of the
valve in the impulse hypothesis is strictly shorter: the valve becomes closed
at the same position and the rate of motion is greater. Either inference about
the change in delay until equilibrium or disablement is achieved is compatible
with the observed shorter duration of the motion of the slide. Furthermore,
this shorter duration combined with the greater rate of motion of the slide is
consistent with the greater displacement of the slide.

Another opportunity to reason about the spring and impulse hypotheses
is afforded by the part of the tire gauge observation which describes how the
slide, which had been stationary, continues to be motionless when the cylinder
of the tire gauge is removed from the tire. This part of the observation, while
not distinguishing the two hypotheses, does shed some light on the nature of
the mechanical coupling between the hidden object and the slide conjectured
in both hypotheses.
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The false {-RELATION- Tire Joined-To Cylinder} relation violates the medium
constraint for the Gas-Flow mechanism in hoth hypotheses. For the impulse
hypothesis, this results in both the primary path and the disabling path in
a disablement interaction becoming inactive. The prediction of no expected
effect (see Table 4.3) is consistent with the observation of the slide remaining
motionless.

The reasoning for the spring hypothesis is considerably more subtle.
Both halves of the proposed equilibrium become inactive because the now-
unsupported Gas-Flow mechanism appears as the first mechanism along both
interacting paths. However, and this is a key point, the two mechanism paths
do not become inactive at the same time. The delay along the mechanism
path which contains the spring is longer. Just as time is required to displace
the spring and achieve the equilibrium state, so time is required to unload the
spring and remove this influence on the position of the hidden object. There
is an interval during which the pneumatic half of the equilibrium interaction
has become inactive while the spring half is still active. The program JACK is
able to infer this broken equilibrium from the unequal delays along the two
mechanism paths and predicts, according to Table 4.4, that the hidden ob ject
moves in the direction opposite to its original motion.

The task now is to explain how the slide need not move despite the
conjectured motion of the hidden object inside the tire gauge. Three tvpes of
mechanical couplings between the hidden object and the slide are proposed by
the causal modelling system as part of the spring and impulse hypotheses: the
Rigid-Coupling, Contact-Coupling, and Forward-Ratchet mechanisms. The
Rigid-Coupling is predicted to be active and is inconsistent with the motion-
less slide. The slide should move into the cylinder along with the hidden
object. The Contact-Coupling mechanism is predicted to be inactive because
the alignment constraint is violated: the position of the hidden object is
greater than, not less than, the position of the slide along the direction of
motion. In other words, the hidden object cannot pull the slide. This mecha-
nism can explain the stationary slide. The Forward-Ratchet mechanism also
is predicted to be inactive hecause the bias constraint is violated: the motion
is not in the positive direction—the only direction allowed. This mechanism
also is compatible with the slide remaining at rest.

The Forward-Ratchet mechanism ultimately is eliminated when the slide
is pushed back manually into the cylinder. This observation is inconsistent
with the prediction that the slide will not move in this direction.
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5.2.3 Abstractions and Shortcomings in the Tire Gauge Models

The abstracted account of classical mechanics inherent in the representation
of mechanical coupling mechanisms is the source of one of the shortcomings
in the causal models proposed by the program JACK to explain the events in
the observation of the tire gauge. This account is more Aristotelian than
Newtonian. In particular, there is no notion of momentum. Thus a sufficient
explanation for the halting of the slide’s motion is the equilibrium or disable-
ment which stops the motion of the hidden object coupled to the slide only
through contact. There is no apparent deficiency in this explanation which
might be removed in a more complete model which includes friction.

The causal modelling system explains events involving quantities moving
to their zero values only through equilibrium interactions or disablement in-
teractions. There is a third possibility: an intermediate, hidden quantity may
reach a limiting value, with this forced cessation of change propagating to the
observable effect event. A limit value hypothesis can explain the halting of
the motion of the slide in the tire gauge observation. The flow of gas from the
tire may result in pneumatic motion of a hidden physical object. However,
this object may be constrained to move only so far. The slide, mechanically
coupled to this object, stops moving when the object stops moving. This
“stop” hypothesis is shown in Figure 5.10.

Tire Amount-of-Gas Rate Slide Position Rate
Negative 60 Zero 60.2
o » QO . JOETEE 2§ »0O »>@
Gas Flow Pneumatic Stop Contact Coupling

Figure 5.10. Stop hypothesis.

The hidden object moves to a limit position in the depicted temporal inte-
gration episode. The Stop mechanism records that the rate of motion is zero
after this episode.

However, the stop hypothesis cannot explain how the slide moves further
out of the cylinder when the flow of gas from the tire is greater. The prediction
for any gas flow rate is that the hidden object moves to its unchanging limit
value and stops. The slide also moves to the same position each time. The
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final position of the slide cannot be proportional to the input gas flow rate,
as it is observed to be. This hypothesis would be pruned on the evidence of
additional observations.

Another hypothesis which is beyond the capability of the current version
of the program JACK combines the limit value form of hypothesis with the
concept of momentum. This hypothesis is an extension of the stop hypothesis.
When the hidden physical object reaches its limit value, it stops moving.
However, the slide, not being attached to this object, not having reached
the end of its range of motion, and operating under the physical principle
of momentum, continues to move out of the cylinder. Friction ultimately
terminates this motion. This “throw” hypothesis is shown in Figure 5.11.

/ 0 \
Pneumatic Stop O

Tire Amount-of-Gas Rate Slide Position Rate

Negative 60 . ' Zero 60.2
Gas Flow Contact Coupling er
® /=, o
Ga.sl“kA o) Friction
O /
\ /O Contact Coupling
Pneumatic O---+0 Stop

Figure 5.11. Throw hypothesis.

Continued motion due to momentum can be captured by propagating the
event node following the Pneumatic mechanism past the Stop mechanism
without change. The Friction mechanism depicted is similar to the Spring
mechanism; in both motion engenders a restoring force in the opposite direc-
*on. However, in the case of friction, the magnitude of the force is propor-
tional to the rate of motion, not to the displacement.

The mechanical couplings which can be incorporated into the throw hy-
pothesis are those which do not involve attachment. Continued motion due to
momentum is suppressed by attachment; the slide would stop moving when
the hidden object stopped moving. Both the Rigid-Coupling mechanism and
the Forward-Ratchet mechanism—which is simply a rigid coupling with a
bias—involve attachment and would be inadmissible. The Contact-Coupling
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mechanism does not and would permit the slide to continue to move outward
via momentum.

The throw hypothesis would not be pruned by additional ohservations of
the tire gauge involving different rates of gas flow from the tire. A greater
input gas flow rate results in a greater velocity for both the hidden object and
the slide. Due to this greater velocity, the slide moves further hefore being
halted by friction. The throw hypothesis can explain how the final position
of the slide is proportional to the input gas flow rate.

5.3 The Bicycle Drive

In this example, I test the program JACK on a simplified version of the old
style of bicycle drive distinguished by the coaster hrake. The coaster brake is
engaged by pedaling backward. The observation of a bicycle drive appears in
Figure 5.12. Initially, the pedal, sprocket, and hub of the back wheel are all
stationary. Then the pedal begins to rotate forward; this event is declared to
be a device input. At the same time, the sprocket begins to rotate in the same
direction. Finally, after a slight delay, the hub also rotates forward in an event
declared to be a device output. Later, the pedal stops rotating; this event is
another device input. Simultaneously, the sprocket stops rotating but the hub
continues to rotate. Later still, the pedal is rotated in the opposite direction—
yet another input. The sprocket instantly rotates in the same direction. Then
the pedal and sprocket stop rotating at the same time. The hub also stops
rotating at this time. This last event is an output of the device.

5.3.1 Distinguishing Properties of the Bicycle Drive Example

The type constraint is partially compromised in the bicycle drive exam-
ple because all of the quantities in the observation are angle quantities. This
example helps to reveal the pruning power of the remaining constraints on be-
havior and structure. The linkages in the bicvcle drive which engage the back
wheel and the brake are one-way linkages which operate in opposite directions.
The alignment and bias constraints, which support reasoning ahout one-way
behavior, are one of the keys to the performance of the program JACK on this
example. Furthermore, the one-way nature and independence of the drive and
brake linkages can be inferred only by comparing multiple instances of events.
This example serves also to test the hypothesis refinement procedure.
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0:00 1:00 1:.01 1:10 1:20 1:21
Pedal Angle Amount Top Front Top
Pedal Angle Rate Zero Positive Zero Negative Zero
Sprocket Angle Amount Front Bottom Front
Sprocket Angle Rate Zero Positive Zero Negative Zero
Hub Angle Amount Back Bottom
Hub Angle Rate Zero Positive Zero

Figure 5.12. Timeline of bicycle drive observation.

5.3.2 Reasoning About the Bicycle Drive

The bicycle drive example involves two modelling tasks: (1) hypothesiz-
ing how the angle of the back wheel hub is made to increase in the forward
direction, and (2) hypothesizing how this rotary motion is made to cease.
The causal modelling system has a repertoire of five rotary linkages to con-
sider. There is an attachment coupling: Rigid-Rotary-Coupling. There is a
push-but-not-pull coupling: Contact-Rotary-Coupling. There is a pull-but-
not-push coupling: Non-Rigid-Rotary-Coupling. There are two ratchet cou-
plings, one in each direction: Forward-Rotary-Ratchet and Backward-Rotary-
Ratchet. Finally, there is a mechanism for enabling and disabling rotary mo-
tion: Rotary-Latch.

Two of the rotary linkages fail to support hypotheses in which the forward
rotation of the sprocket is the cause of the forward rotation of the hub. The
Rigid-Rotary-Coupling mechanism fails to explain the observed delay and the
Backward-Rotary-Ratchet mechanism can explain only backward rotations.

The program JACK refines the set of remaining hypotheses against other
events involving the angle of the sprocket. One of these events describes a
backward rotation of the sprocket. The causal modelling system predicts the
outcome of this event for each hypothesis according to Table 4.1 and verifies
these predictions against the actually observed events in the timeline.

The Forward-Rotary-Ratchet hypothesis is dismissed because the bias
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constraint is violated; rotation in the backward direction is not possible.
The Contact-Rotary-Coupling and Non-Rigid-Rotary-Coupling mechanisms
are both predicted to be inactive. In both cases, the alignment constraint
plays a central role. In the original Contact-Rotary-Coupling hypothesis the
position of the sprocket was asserted to be less than the position of the hub
along the direction of motion. The direction of motion is now reversed and the
sprocket, which had pushed the hub forward, cannot now pull it backward.
The position of the sprocket was asserted to be greater than the position of
the hub in the original Non-Rigid-Rotary-Coupling hypothesis. The sprocket,
which had pulled the hub forward, cannot now push it backward. Both of
these hypotheses are retained because no backward rotation of the hub is
expected, and none is observed. The models which are consistent with the
forward and backward rotations of the sprocket are summarized in Figure
5.13.

Sprocket Angle Rate Hub Angle Rate
Positive 60 Positive 61

Contact-Rotary-Coupling or Non-Rigid-Rotary-Coupling

L -

Figure 5.13. One-way drive linkages.

The event describing the halted rotation of the hub triggers the heuristics
for equilibrium and disablement situations. An interacting mechanism path
is suspected either to balance or inhibit the rotation of the hub caused by
the rotation of the sprocket. No equilibrium hypotheses are generated but
a number of disablement hypotheses satisfy the constraints. The disabling
mechanism path in all of these hypotheses begins at the backward rotation of
the pedal and consists of a rotary linkage and the Rotary-Latch mechanism.
In each disablement hypothesis, the Rotary-Latch mechanism interacts with
the rotary linkage between the sprocket and the hub. The only rotary linkage
which is not proposed for the disabling path is the Forward-Rotary-Ratchet
mechanism. This mechanism participates only in forward rotations.

The program JACK refines this set of disablement hypotheses using rea-
soning similar to that used to refine the set of hypotheses which explain the
forward rotation of the hub. Predicted outcomes of the event describing for-
ward rotation of the pedal are generated for each of the proposed disablement
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interactions using Table 4.3. These predictions are verified against the ac-
tual observation of the bicycle drive. The prediction for the disablement
path involving a Rigid-Rotary-Coupling mechanism is that the disablement
path is active and the hub stops rotating. This prediction is unverified and
this disablement hypothesis is pruned. The hypothesis involving a Backward-
Rotary-Ratchet mechanism is dismissed because the bias constraint is vio-
lated; rotation in the forward direction is not possible.

The other two proposed disablement paths are predicted to be inactive
because of the alignment constraint. In the hypothesis involving a Contact-
Rotary-Coupling mechanism, the pedal is conjectured to be pushing a hidden
physical object which it cannot now pull. Similarly, in the hypothesis involv-
ing a Non-Rigid-Rotary-Coupling mechanism, the pedal is conjectured to be
pulling a hidden object which it cannot now push. Each of these disablement
hypotheses is retained because no inhibiting of the hub rotation is expected
from the forward rotation of the pedal and none is observed. See Figure 5.14.

Sprocket Angle Rate Hub Angle Rate
Positive 60 Zero 81
Contact-Rotary-Coupling or Non-Rigid-Rotary-Coupling
o >0

Rotary-Latch

O
Contact-Rotary-Coupling or ’,4
Non-Rigid-Rotary-Coupling /
@ 0O
Pedal Angle Rate
Positive 60

Figure 5.14. One-way drive and brake linkages.

5.3.3 Abstractions and Shortcomings in the Bicycle Drive Models

The reasoning employed by the program JACK in refining the set of models for
the bicycle drive does not incorporate the concept of momentum—a short-
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coming exhibited also in the modelling of the tire gauge. Because of this
limitation, a Rigid-Rotary-Coupling hvpothesis for the drive linkage hetween
the sprocket and the hub cannot be dismissed on the basis of the continuing
forward rotation of the hub after the forward rotation of the sprocket stops.
Rather, this hypothesis is pruned hecause it cannot account for the observed
delay between the two rotations. This reasoning, while successful in this case,
would be buttressed by knowledge of the concept of momentum.

The Rotary-Latch mechanism used by the causal modelling system to
explain how the hub of the back wheel stops rotating abstracts considerably
away from how a real bicycle coaster brake system works. The Rotary-Latch
mechanism simply maps the amount of one angle quantity to the rate of
another angle quantity. The explanation in the bicycle drive example is that
the backward rotation of the pedal moves the rotary latch to its zero value,
resulting in a zero value for the rate of the hub angle.

A real coaster brake works in the following way: the backward rotation of
the pedal is transmitted to a long strip of material through a one-way linkage.
This strip of material is coiled against the rim of the hub of the back wheel.
When pulled, it wraps more closely against the hub rim. Friction between the
strip and the hub slows the rotation of the hub and can halt it altogether.

The structural and geometrical information needed to conjecture a better
approximation of a coaster brake system is not available—the same limitation
seen in the modelling of a latch in the toaster. In particular, the representation
of the Rotary-Latch mechanism does not support reasoning about the inward
coiling behavior of a flat physical object which is anchored at one end and
pulled from the other. Nor does it support reasoning about the change in
linear distance between the inner surface of the coiling physical object and
the outer surface of the object to which it is attached—a change which results
in contact. The program JACK is unable to generate explanations which involve
complex structural and geometrical constraints.

5.4 The Refrigerator

In this example, I test the program JACK on an idealized version of a refriger-
ator. The observation of a refrigerator is shown in Figure 5.15. Initially, the
temperature of the interior of the refrigerator is Cold and the temperature
of the exterior is Ambient. Current at the outlet is declared to he an avail-
able input. Shortly thereafter, the temperature of the interior rises. Some
time later, the temperature inside the refrigerator begins to decrease; this is
declared to be an output of the device. Shortly after that. the temperature
outside the refrigerator begins to increase; another output.
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0:00 0:01 1:00 1:.01
Interior Temperature Amount Cold
Interior Temperature Rate Zero Positive Negative
Exterior Temperature Amount Ambient
Exterior Temperature Rate Zero Positive
Outlet Charge Amount On
Outlet Charge Rate Positive

Figure 5.15. Timeline of refrigerator observation.

5.4.1 Distinguishing Properties of the Refrigerator Example

The refrigerator example is the most complex device example on which
the program JACK has been tested. Mechanism paths of length four are needed
to generate the target hypotheses. Furthermore, this example tests the ability
of the causal modelling system to reason about hidden inputs and cycles.
The hidden inputs inside a refrigerator are heat gains and heat losses in a
refrigerant which acts as a heat carrier. This refrigerant circulates in a cycle
in which the amount of heat alternately gained and lost remains bounded.

5.4.2 Reasoning About the Refrigerator

In one of the causal models generated by the program JAcK to explain the
observation of a refrigerator, the two halves of the cycle of operations within
a compression refrigerator are identified, albeit approximately. This model is
depicted in Figure 5.16. One mechanism path explains how the interior of the
refrigerator gets colder: Current from the outlet is transformed into motion
via the Electro-Mechanical mechanism. This motion results in a pressure
decrease through the Expansion mechanism. This pressure decrease, once a
threshold is crossed, generates a heat loss at the refrigerator interior via the
Evaporation mechanism.
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A different mechanism path explains how the exterior of the refrigerator
gets warmer. Along this path, electrically-induced motion results instead
in a pressure increase through the Compression mechanism. This pressure
increase, after a threshold is crossed, results in a heat gain at the refrigerator
exterior via the Condensation mechanism.

Interior Temperature Rate
Negative 60

Evaporation

Expansion -0
P O

Electro-Mechanical /
Outlet Charge Rate /O 3

Heat-Exchange

PositiveO/VO
Electricity

Electricity O
Heat-Exchange

Electro-Mechanical O \
O

Compression

Condensation

Exterior Temperature Rate
Positive 61

Figure 5.16. Compression refrigerator hypothesis.

Both of these mechanism paths involve hidden inputs. The Evaporation and
Condensation mechanisms along the paths provide incomplete explanations;
they describe how pressure changes can result in a heat loss or heat gain
but do not indicate where the heat goes to or where it comes from. The
Evaporation and Condensation mechanisms can only appear in enablement
and disablement interactions. Without the missing contribution representing
the heat sink or heat source, they do not provide explanations for heat losses
or heat gains.
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Whenever the program JACK constructs a linear mechanism path which
contains one of these “interaction-only” mechanisms, the heuristic for sus-
pecting hidden input situations is triggered. A hidden input hypothesis is
constructed by propagating forward from the cause event in the normal man-
ner to the required point of interaction, propagating backward from the effect
event to the same point, inverting the enablement interaction at this point,
and extending the hidden input path backward through one mechanism. In
the refrigerator hypothesis shown in Figure 5.16, this procedure results in con-
jecturing Heat-Exchange mechanisms interacting with the Evaporation and
Condensation mechanisms, and inferring event nodes describing a hidden heat
sink and a hidden heat source. These hypotheses must be admitted as long as
any values can be propagated to the event nodes describing the hidden inputs;
these event nodes cannot, by definition, be compared to observable events.

The model for a refrigerator proposed by the causal modelling system
implies an internal heat source and an internal heat sink. Refrigerators plau-
sibly could be designed in this way. There could be two additional inputs
besides electricity: a gas line and a fluid line. The gas could be condensed on
demand, giving off heat to the exterior and the fluid could be evaporated on
demand, taking up heat from the interior. Of course, heating of the exterior
is entirely gratuitous in this design. But the proposed model is reasonable,
given that the program JACK is not provided with the teleological information
that cooling of the interior is the only intended function of a refrigerator and
heating of the exterior is merely a side effect.

An alternate model generated by the causal modelling system approx-
imates the absorption type of refrigerator. This model is shown in Figure
5.17. The only difference between this model and the one appearing in Figure
5.16 is the means by which a pressure increase is achieved along the mecha-
nism path which terminates in the C'ondensation mechanism. Instead of being
achieved mechanically via the Compression mechanism, the pressure increase
is brought about, curiously enough, by raising the temperature through the
Thermal-Compression mechanism.

This explanation is actually accurate, as far as it goes. The pressure
increase which forces condensation may he brought about either through the
manipulation of volume or through the manipulation of temperature. How-
ever, this explanation introduces another heat source of arbitrary capacity.
in addition to the heat source. In a real absorption refrigerator, some of
this additional heat is transferred to the refrigerant vapor returning from the
evaporator before it is directly heated, to assist in forcing condensation. This
aspect of the operation of an abhsorption refrigerator goes unmodelled by the
program JACK in the hypothesis of Figure 5.17.
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Interior Temperature Rate
Negative 60

Evaporation

Expansion eee-»0O
P O

Electro-Mechanical /

Outlet Charge Rate /O 5 Heat-Exchange
Positiveo/'o
Electricity

Electricity O O
o Heat-Exchange

Electro-Thermal

Thermal-Compression

Condensation

Exterior Temperature Rate
Positive 61

Figure 5.17. Absorption refrigerator hypothesis.

The causal modelling system, not being constrained to generate models
where the heating of the exterior is a side effect of the cooling of the interior,
also proposes a model for the refrigerator involving direct electrical heating
of the exterior. This hypothesis is depicted in Figure 5.18. This model for
a refrigerator involves only a single hidden input. A refrigerator designed
in this way would need a fluid line to seed the evaporation process which
cools the interior but would not require a gas line to seed condensation. The
heating of the exterior is traceable to a known input to the device: the current
at the outlet. In an ordering based only on the number of hidden inputs,
the direct heating hypothesis is preferable to the compression refrigerator
hypothesis. However, the compression refrigerator hypothesis can be improved
by introducing a cycle, whereas the direct heating hypothesis cannot.

The heuristic for suspecting cycle situations is triggered by conjectured



107

Interior Temperature Rate
Negative 60

Evaporation

Expansion -0
P O

Electro-Mechanical /
Outlet Charge Rate /O g Heat-Exchange

Positi veo/VO
Electricity

m;o

Electro-Thermal O

Heat-*s.

Exterior Temperature Rate
Positive 61

Figure 5.18. Direct heating hypothesis.

hidden inputs of opposite sign. The causal modelling system constructs cycle
hypotheses by additively combining pairs of hidden inputs in much the same
way that the contributions of separate mechanism paths are combined in
proposed equilibrium interactions. The only cycle hypotheses admitted are
those for which the net change around the proposed closed loop may be zero
and for which the separate hidden inputs involve the same physical object.
These cycle hypotheses show how the conjectured sources and sinks may be
avoided.

A cycle hypothesis admitted by the program JiacK is shown in Figure
5.19. In this hypothesis, the internal heat gain associated with the Evapora-
tion mechanism and the internal heat loss associated with the Condensation
mechanism form two halves of a cycle and do not accumulate. This hypothesis
captures in part the synergy in the actual design of compression refrigerators.
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Interior Temperature Rate
Negative 60

Evaporation

Expansion -0
P o

Electro-Mechanical /
Outlet Charge Rate /O g

Heat-Exchange

PositiveO/VO
Electricity

Electricity @)
Heat-Exchange

Electro-Mechanical O \
O

Compression

Condensation

Exterior Temperature Rate
Positive 61

Figure 5.19. Refrigerant cycle hypothesis.

The causal modelling system is unable to form a cycle hypothesis for the
direct heating model of the refrigerator. There is no heat sink which can offset
the heat source associated with the Evaporation mechanism. In an ordering
based on the number of hidden sources and sinks, the compression refrigerator
hypothesis with a cycle is preferable to the direct heating hypothesis.

5.4.3 Abstractions and Shortcomings in the Refrigerator Models

Several of the mechanisms appearing in the proposed models for the refrig-
erator represent constraints which are consequences of the Ideal Gas Law:
PV = nRT. For example, the Compression and Expansion mechanisms cap-
ture the volume-pressure relationship. The Thermal-Compression mechanism
captures the temperature-pressure relationship. The remaining variables in
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the Ideal Gas Law are not mentioned in these mechanism descriptions. Other
mechanism descriptions also contain hidden parameters: the expansion coef-
ficient in the Thermal-Expansion mechanism, the threshold temperature and
pressure in the Condensation and Evaporation mechanisms.

Two consequences result from hidden parameters: Typically, a range of
reasonable values for hidden parameters are encoded into the efficiency slot of
a mechanism description. This range, which can be quite wide, compromises
the utility of the magnitude constraint. Furthermore, an assumption that
hidden parameters are being kept constant may be invalid.

Some of the reasoning employed by the program JACK in the modelling
of the refrigerator incorporates the constancy assumption for hidden param-
eters. Specifically, the temperatures at which phase changes occur in the
Evaporation and Condensation mechanisms are not computed as a function
of pressure; rather, enablement of these processes is associated with a fixed de-
fault value for pressure. Effectively, evaporation or condensation is inevitable,
given a monotonic pressure decrease or increase. This representation of these
processes misses some of the subtlety of the principles involved, particularly
in the absorption refrigerator where condensation is forced by raising the boil-
ing point by increasing the pressure, even as the temperature is raised. The
causal modelling system is not misled by the hidden parameter assumption in
this case, but nevertheless the rendering of the physical principles upon which
the reasoning is based is incomplete.

Conservation is one of the most powerful of physical principles. This is the
main principle behind the construction of cycle hypotheses in the reasoning of
the causal modelling system. The conservation principle states that the total
amount of any quantity is a physical system does not change. In a closed
system, any increases in a quantity in one part of the system are offset by
balancing decreases in another part of the system. In an open system, any
source of a quantity entering the system is offset by a sink of that quantity
leaving the system; the total amount of the quantity does not arbitrarily
increase or decrease within the system.

A proposed hidden input is a conjectured source or sink to an open sys-
tem. A cycle hypothesis demonstrates how the increase or decrease associated
with a proposed hidden input can be balanced elsewhere in the system; how a
hypothesized source or sink to an open system can be successfully subsumed
into a closed system. This conservation reasoning applies to both energy
quantities, e.g., Temperature. and mass quantities. e.g., Amount-of-Fluid.

Cycles within a device can produce a form of synergy which illustrate the
conservation principle—gains in one part of a cycle are balanced by losses in
another part. There are other cyclic phenomena in physical systems which
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are not modelled by the program JAcK. In particular. the causal modelling
system does not reason about iteration. The cooling of the interior of a
refrigerator is the result of many “pulses” of heat loss due to the evaporation
of refrigerant. The program JicK does not reason about how small changes can
be accumulated into large changes through iteration. The models proposed by
the causal modelling system describe only a single cycle of operations within
a refrigerator.

5.5 The Home Heating System

In this example, I test the program JACK on a simplified version of a home heat-
ing system. The observation of a home heating system appears in Figure 5.20.
Initially, the temperatures of a furnace, a radiator and a room are all stable.
Current at an outlet and gravity are declared to be available inputs. First the
temperature of the room begins to fall. Some time later, the temperature of
the furnace begins to increase. Shortly thereafter, this temperature increase
ceases. Still later, the temperature of the radiator and the temperature of the
room rise simultaneously. The change in room temperature is declared to be
an output of the system. Finally, the temperatures of the radiator and the
room stop changing.

5.5.1 Distinguishing Properties of the Home Heating Example

The home heating system example is moderately complex compared to
the other device examples. As in the refrigerator example, the target hypoth-
esis involves a hidden input—in this case, the water which transports heat
from the furnace to the radiator. This hypothesis involves three interacting
mechanism paths. Three interacting mechanism paths imply up to two hid-
den inputs; this example also serves to reveal the loss of pruning power which
results when the causal modelling system is given free reign to conjecture hid-
den inputs. Finally, this example exposes some of the difficulties involved in
representing and reasoning about mass quantities such as fluids.

5.5.2 Reasoning About the Home Heating System

The target hypothesis for the home heating system. successfully gener-
ated by the program JAcK. is shown in Figure 5.21. The mechanism of heat
transfer from the furnace to the radiator is simplv Heat-Flow. However. two
enablement interactions support this heat transfer. There is a Fluid-Heat-
Transport mechanism; in this mechanism a fluid flow supports heat transfer
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0:00 001 6:00:00 6:01:00 6:03:00 6:06:00
Furnace Temperature Amount Off On
Furnace Temperature Rate Zero Positive Zero
Radiator Temperature Amount Cold
Radiator Temperature Rate Zero Positive
Room Temperature Amount Nice Cool
Room Temperature Rate Zero Negative
Outlet Charge Amount On
Outlet Charge Rate Positive
Earth Gravity Amount G
Earth Gravity Rate Zero
6:06:10 6:09:00 6:16:10
Furnace Temperature Amount
Furnace Temperature Rate
Radiator Temperature Amount Hot
Radiator Temperature Rate Zero
Room Temperature Amount Nice
Room Temperature Rate Positive Zero

Outlet Charge Amount

Outlet Charge Rate

Earth Gravity Amount
Earth Gravity Rate

Figure 5.20. Timeline of home heating system observation.
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between two locations. There is also a Pump mechanism; in this mechanism
motion initiates a fluid low. The hidden input in this hypothesis is the miss-
ing fluid source at the enablement interaction involving the Pump mechanism.
The causal modelling system proposes a Fluid-Exchange mechanism at this
point of interaction.

Furnace Temperature Rate Radiator Temperature Rate
Positive 21660 Positive 21960
Heat Flow
[ > @

Heat Transport
Fluid Exchange

O »Q
Pump
Electro-Mechanical
@ 2a®
Outlet Charge Rate
Positive 0

Figure 5.21. Pumped heat transport hypothesis.

Several of the other home heating models proposed by the program JACK
are variations of the hypothesis of Figure 5.21. In one of these alternate
hypotheses, Fan and Gas-Heat-Transport mechanisms are substituted for the
Pump and Fluid-Heat-Transport mechanisms, respectively. This hypothesis
captures an abstraction of a home heating system based on circulating steam,
rather than circulating hot water.

With the freedom to conjecture up to two hidden inputs, the program
JACK is able to generate some unusual hypotheses. One of these is shown in
Figure 5.22. In this hypothesis, the delay between the heating of the furnace
and the heating of the radiator is attributed to the time required to open a
vent. The vent is moved pneumatically via a gas flow driven by a fan. The
hidden inputs in this hypothesis are the gas source and the origin of the fan’s
motion.
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Furnace Temperature Rate Radiator Temperature Rate
Positive 21660 Positive 21960
Heat Flow
o o »@®
Vent

1

’I

Gas Flow Pneumatic K
O +—»0O >0

Fan
)

Figure 5.22. Pneumatic vent hypothesis.

The observed delay before the temperature of the furnace begins to rise
is on the order of several hours. This observation might describe a home
heating system which turns on at night after having been off throughout the
daylight hours. The only enablement hypotheses which can account for this
delay are those in which the enablement path involves a Thermal-Expansion
mechanism, with the initial cause being the cooling of the room. See Figure
5.23. Only this slow temperature change and the creeping motion it can
produce can explain the observed delay. No “alarm clock” hypotheses are
admitted, involving an Electro-Mechanical mechanism, with the initial cause
being current at the outlet.

5.5.3 Abstractions and Shortcomings in the Home Heating Models

The proposed heat transport models for the home heating system expose
some of the difficulties in representing and reasoning about mass quanti-
ties such as fluids. There are two complementary approaches to dealing
with mass quantities in the literature: the contained-stuff and the molecular-
collection paradigms {Hayes 79,85, Forbus 84,85, Collins and Forbus 87|. In
the contained-stuff approach, instances of mass quantities are defined and dis-
tinguished by the containers which hold them. This paradigm supports rea-
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Furnace Temperature Rate

Outlet Charge Rate Positive 21660
Positive O Electricity Electro-Thermal
o g ®) »®
Switch
O
<

Heat Thermal /
Flow Expansion

o L ® »O

Room Temperature Rate
Negative 1

Figure 5.23. Thermostat hypothesis.

soning about global properties of mass quantities but not about how different
parts of a contained mass quantity may participate in different mechanisms.
The molecular collection approach, on the other hand, supports reasoning
about how different parts of a mass quantity may be participating in different
mechanisms at different sites and at different times, but not about interactions
which involve an entire contained mass quantity.

A shortcoming of the pumped heat transport hypothesis for the home
heating system is that the source of the Fluid-Exchange mechanism is not
constrained to be coincident with the source of the Heat-Flow mechanism. In
other words, the program JacK offers only the arrival of fluid at the radiator
as an enablement explanation for heat flow from the furnace to the radiator,
not the arrival of fluid from the furnace to the radiator.

The representations for the Fluid-Exchange and Fluid-Heat-Transport
mechanisms follow the molecular collection paradigm. In the Fluid-Exchange
mechanism, an amount change in a mass quantity at one site propagates to
an amount change in a mass quantity at another site. In the Fluid-Heat-
Transport mechanism, an amount change in a mass quantity at one site en-
ables a temperature change at another site to propagate to a temperature
change at the given site. This representation does not include mention of the
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site from which the amount change in the mass quantity propagated.

A contained-stuff representation can partially overcome this shortcom-
ing. Specifically, a fluid flow quantity can be associated with the medium
{-RELATION- Furnace Joined-To Radiator} which spans the sites of the furnace
and radiator. The medium represents the pipe which is a container; the fluid
flow quantity represents global motion of a mass quantity associated with
this medium. With this representation, the enablement path which termi-
nates at the Heat-Transport mechanism involves fluid flow along the medium
between the furnace and radiator, instead of only—and incompletely—an
amount change in a mass quantity at the radiator. The form of this hy-
pothesis is shown in Figure 5.24.

Furnace Temperature Rate Radiator Temperature Rate
Positive 21660 Positive 21960
Heat Flow
o » »@
Heat Transport
Electro-Mechanical Pump
| 1l ©) @)

Outlet Charge Rate

Positive 0

Figure 5.24. Contained-stuff heat transport hypothesis.

The contained stuff hypothesis shows how a fluid flow process can enable
the Heat-Flow mechanism between the furnace and the radiator. In this hy-
pothesis, the fluid flow process is subsumed into a single fluid flow quantity.
Unfortunately, this subsumption confounds the separate source and desti-
nation of the fluid flow which are distinguished in the molecular collection
representation.

A different approach to representing heat transport by a fluid involves
buttressing the molecular collection representation by extending the ontology
for causal graphs so that mechanisms, instead of just quantities, can enable
other mechanisms. In particular, a Fluid-Exchange mechanism, in which both
the fluid source at the furnace and the fluid destination at the radiator are
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Furnace Temperature Rate Radiator Temperature Rate
Positive 21660 Positive 21960
Heat Flow
o —»0

Heat Transport
Fluid Exchange

o ‘ >0

Pump
Electro-Mechanical

[ >0
Outlet Charge Rate

Positive 0

Figure 5.25. Molecular collection heat transport hypothesis.

represented, can enable the Heat-Flow mechanism via a Heat- Transport mech-
anism. The form of this hypothesis is shown in Figure 5.25.

In the contained-stuff hypothesis, the Pump mechanism does not enable
a Fluid-Exchange mechanism in which an amount change in a mass quantity
is propagated from one site to another; rather, the Pump mechanism directly
causes a change in a flow quantity of a contained mass. This difference in the
structure of the causal graph introduces a curious deficiency not present in
the original fluid heat transport hypothesis: there is no hidden input. The
fluid moving between the furnace and the radiator is represented as a singular
contained stuff which can be directly acted upon by the Pump mechanism.
In the molecular collection paradigm, where pieces of stuff are tracked explic-
itly from site to site, it is not possible to reason about a Pump mechanism
without identifying a fluid source. In the original fluid heat transport hy-
pothesis of Figure 5.21 there is a hidden input involving an Amount-of-Fluid
quantity. In the extended molecular collection hypothesis of Figure 5.25 there
are two hidden inputs: an Amount-of-Fluid quantity at the furnace and an
Amount-of-Fluid quantity at the radiator. Furthermore, the Fluid-Exchange
mechanism constrains these quantities to be of opposite sign. This hypothe-
sis, and only this one, can be extended to include a cycle which describes the
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closed circulation of fluid in a home heating system. This cycle hypothesis is
shown in Figure 5.26.

Furnace Temperature Rate Radiator Temperature Rate
Positive 21660 Positive 21960
Heat Flow
[ J —>@

Heat Transport
Fluid Exchange

O ¢ >0
Pump
Electro-Mechanical
[ —-0
Outlet Charge Rate
Positive 0

Figure 5.26. Heat transport cycle hypothesis.

This final model for a home heating system appears to combine the comple-
mentary advantages of the molecular collection and contained stuff paradigms
for representing and reasoning about mass quantities.
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6. Analysis of Results and Performance:
JACK Be Simple, JACK Be Quick

My aims in this chapter are several: (1) to reveal the number of hypotheses
generated by the program JACK for each of the device examples, (2) to separate
the sources of pruning power which keeps the size of the hypothesis space
manageable, (3) to examine the robustness of the approach in response to
small changes in device observations and finally, (4) to outline assumptions
and limitations in the approach.

6.1 Number of Hypotheses Admitted

The program JACK constructs causal graphs which connect observable events
of a device. Each proposed causal graph is a possible explanation of some
subset of the observable behavior of a device. From these causal explanation
fragments, a complete and consistent model of a device can be built.

6.1.1 Grey Compartments

Each set of proposed causal graphs which connect the same subset of ob-
servable device events may be termed a “grey compartment”—grey because
some light has been shed on the original black box in that specific sets of
possible mechanism configurations have been enumerated; compartment be-
cause the proposed explanations cover some part of the black box of the entire
device.

The grey compartments found by the program JAcK for the toaster ex-
ample are shown in Figure 6.1. The number of grey compartments found for
each of the device examples is given in Table 6.1.

Device Grey Compartments
Toaster 12
Tire Gauge 2
Bicycle Drive 3
Refrigerator 2
Home Heating 8

Table 6.1. Number of grey compartments.

Grey compartments form a useful abstraction space in which to reason
about a device. The most important point is that the grey compartments
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are decoupled from one another. Each grey compartment represents a set of
possible causal explanations for the events of some set of observable device
quantities. The viability of any grey compartment as a component in a com-
plete model of a device depends only on whether at least one of the proposed
mechanism configurations within a grey compartment continues to be con-
sistent with subsequent observable events involving the same specific and no
other quantities.

The usefulness of the abstraction space provided by grey compartments
lies in this mutual independence of the compartments. Should all the pro-
posed causal graphs within a grey compartment become refuted, all complete
models built on that grey compartment also become refuted. For example,
the thermal latch and motorized latch hypotheses for the toaster (see Section
5.1.2) correspond to different grey compartments. When the motorized latch
compartment is refuted, all complete models of the toaster which incorporate
one of the motorized latch hypotheses become unviable.

Complete models of a device are built from the grey compartments by
conducting a straightforward graph search from the declared inputs of a device
to its declared outputs. Starting from grey compartments whose causes cor-
respond to device inputs, grey compartments are chained together matching
effects to causes until all device outputs are reached. These complete models
also are guaranteed to be consistent because of the mutual decoupling of the
grey compartments. A complete and consistent model for the toaster in the
grey compartment abstraction space is shown in Figure 6.2.

L1 p—> |2

L1

Figure 6.2. A complete and consistent model for the toaster.

Some care must be taken in indexing proposed causal graphs into grey com-
partments so that redundant grey compartments are not generated. In par-
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ticular, the causal modelling system should notice when a conjectured hidden
event in a proposed causal graph matches an observable event. See Figure 6.3.
In this case, the proposed grey compartment is redundant because smaller grey
compartments which subsume it have already been proposed. The observable
events of a device impose a grain scale on the hypothesizing activity of the
causal modelling system.

mechanism A

E1 @ » @® B2
mechanism B
£2 @ »@® B3
mechanism A mechanism B
£1 @ » O »@® E3

Figure 6.3. Redundant grey compartments.

There is a special case in which different grey compartments can be determined
to be a priori mutually inconsistent. This is the case where the cause event
and effect event of one grey compartment are juxtaposed in another grey
compartment. An event cannot be both the cause and the effect of another
event. Note that this ambiguity can occur only between simultaneous events.

This confusion arises in the toaster example in the simultaneous down-
ward and upward motions of the lever and carriage. Does the lever move the
carriage or vice versa? The ambiguity is resolved by teleological knowledge:
the downward motion of the lever is declared to be a device input and cannot
be an effect; the upward motion of the lever is declared to be a device output
and cannot be a cause. In the case where neither event is a device input or
output, the ambiguity can be resolved by determining which event is causally
closer to a device input or output in a complete model of the device.
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6.1.2 Causal Graphs

Each grey compartment is grey because there are several causal graphs
which explain the observable events associated with the compartment. There
remains some ambiguity concerning what mechanism configurations give rise
to the parts of the observable behavior of a device defined by the grey com-
partments.

Table 6.2 shows the total number of causal graphs within the grey com-
partments admitted by the program JACK for each of the device examples.
lmaz is the length of the longest mechanism path in any causal graph for the
given device. P4 is the greatest number of interacting mechanism paths in
any causal graph for the given device. Refinement of hypotheses over muitiple
observations was disabled in these runs; the concern here is to determine the
size of the initial set of causal graph hypotheses produced.

Device Inaz Prmaxz Causal Graphs
Toaster 2 2 93
Tire Gauge 4 2 400
Bicycle Drive 2 2 31
Refrigerator 4 2 222
Home Heating 3 3 464

Table 6.2. Number of admitted causal graphs.

The number of causal graphs generated by the program JAcCK is reported
as the sum of the causal graphs in the individual grey compartments to em-
phasize the fact that hypotheses in different grey compartments are decoupled
from one another. Although it is true that, strictly speaking, the number of
complete models for a device is a product and not a sum (it is the product of
the numbers of causal graphs in the grey compartments chained together to
form composite graphs which connect device inputs to device outputs), this
much greater number is misleading. At no time is it desirable, sensible, or
necessary to enumerate the complete causal models. When individual causal
graphs or entire grey compartments are refuted, huge swaths of the space of
complete causal models are pruned away. The grey compartments are decou-
pled by observable events, and the causal graph hypotheses within them can
he constructed and refined in isolation from one another.

The overall amount of pruning achieved by the causal modelling system is
impressive. For example, in the case of the tire gauge, the worst case number
of hypotheses is on the order of 48**% x~ 1013,
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In addition, the overall pruning ratio increases as the worst case number of
hypotheses increases. Although not conclusive. (necessary but not sufficient)
this property suggests that the performance of the causal modelling procedure
is out of the exponential realm. The overall pruning ratio ranges from ~ 10°
in the case of the toaster to ~ 10!! in the case of the refrigerator.

6.2 Pruning Power

For each of the device examples, a potentially exponential hypothesis space
is pruned down impressively. In this section, I examine the origins of this
pruning power and assess the relative computational utility of the various
sources of constraint in my approach to the causal modelling problem.

6.2.1 The Constraints

One of the sources of pruning power in the causal modelling system is
the set of constraints on type, behavior, and structure. Table 6.3 shows the
results of a set of experiments designed to isolate the pruning contributions
of the various constraints. All of these experiments were run on the toaster
example, with /52 = 2 and pmes = 1. The setting for pnq. prevents hypoth-
esizing from moving past the linear mechanism path level so that the pruning
contribution of the hypothesis ordering is not confounded with that of the
constraints.

The experiments are divided into two series. In one series—aimed at ex-
posing the isolated pruning power of the individual constraints—the program
JACK was run with a single constraint active. In the other series—aimed at
exposing the incremental pruning power of the individual constraints—the
program JACK was run a single constraint inactive. In addition, there were
two control runs with all and none of the constraints active.
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Constraint Pruning ratio when Pruning ratio when
only constraint active only constraint inactive
Type 995 15.7
Delay 6.28 3640
Sign 3.04 7200
Direction 1.98 8190
Magnitude 4.77 5160
Alignment 3.10 7530
Bias 2.93 7060
Displacement 2.31 8190
Medium 2.31 8190
none 1.00 8190

Table 6.3. Relative pruning power of the constraints.

The type constraint clearly is the single most powerful constraint. After
these experiments were completed, I modified the control structure of the
causal modelling system to employ the type constraint as an initial generator:
causal graphs which satisfy the type constraint are constructed in one phase,
then the other constraints are applied in parallel.

However, the type constraint does not do all the work. The size of the
hypothesis space after application of the type constraint remains too large
to be termed manageable. For example, the number of hypotheses admitted
by the type constraint alone in the tire gauge example is 5842. The other
constraints further reduce the size of this set to 400.

To take the anthropomorphic viewpoint for a moment, the type con-
straint separates out the patently ridiculous hypotheses; the other constraints
embody principles which allow finer distinctions to be made among the re-
maining hypotheses.

A rough understanding of the unique power of the type constraint can
be gained by considering the amount of focusing which occurs as values are
propagated across mechanisms for the various constraints. I define focusing
here as the ratio of the number of values propagated to the number of possible
values. The number of values propagated for the type constraint across any
number of mechanisms is always one; if the number of distinct types is n,,
the focusing ratio is always 1/n,. For the current vocabulary of mechanisms,
ny =9.

The focusing ratios for the constraints whose values are qualitative re-
gions never can be as favorable. The number of possible values is fewer and all
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possible values can be generated across as few as a single mechanism. In par-
ticular, all possible values can be generated for the direction and alignment
constraints after propagation across a single mechanism. For the sign and
bias constraints, the highly ambiguous { Negative Positive} value set can be
generated across a single mechanism. Finally, for the displacement constraint,
all possible values can be generated across a mechanism path of length two.

A brief inspection of Table 6.3 reveals that the pruning attributable to
the delay and magnitude constraints, whose propagated values are ranges of
orders of magnitude, is approximately twice that of the constraints based on
qualitative regions, yet still falls well short of that of the type constraint.

The number of possible values for the delay and magnitude constraints
is 36, ranging from 27'"—taken to be the value for zero, to 2!®—taken to
be the value for infinity. Despite the greater number of possible values, the
focusing ratios for these constraints remain poor because the propagated or-
der of magnitude ranges can expand quickly to encompass the entire set of
contiguous possible values. The origin of the weak focusing is the often wide
order of magnitude ranges which specify the time constants and efficiencies of
mechanisms.

The values propagated for the medium constraint are the subjects and
objects of structural relations. Knowledge of structural relations within a
device is almost always lacking given the “black box” nature of the modelling
problem. In the absence of this knowledge, unbound physical objects are
propagated. Of course, these conjectured physical objects are compatible
with any observed effect event. The pruning power of the medium constraint
in the absence of structural knowledge can never be high because unbound
variables represent any number of possible values and manifest the poorest
possible focusing ratio of 1.0.

A perusal of the second column of Table 6.3 reveals that the marginal
pruning contribution of the weaker constraints approaches zero. In these
particular runs disabling the direction, displacement, and medium constraints
made no difference in the size of the hypothesis set. These empirical results
suggest that additional physical and causal constraints may not bear much
fruit. Constraint sources of a different character are needed.

6.2.2 The Ordering on Hypotheses

The constraints on type. hehavior, and structure reflect physical and
causal principles which are used to test hypotheses. The hypothesis ordering,
on the other hand, is used to control the generation of hypotheses. The aim of
the ordering is to suppress the extension of hypotheses into more complex or
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less constrained ones unless there is a compelling reason for suspecting that
augmentation will result in more complete hypotheses.

Table 6.4 shows the pruning which takes place between levels of the hy-
pothesis ordering. The layers of pruning are attributable to the heuristic
recognition rules associated with the hypothesis levels. Linear mechanism
path hypotheses which fail to satisfy all the constraints are passed through
the mechanism interaction recognition rule. All hypotheses—even those which
satisfy all the constraints—are passed through the hidden input recognition
rule. Finally, pairs of hidden input hypotheses are passed through the cycle
recognition rule.

Hypothesis Level Pruning Ratio at Level
Mechanism Interactions 149
Hidden Inputs 5.46
Cycles 2.30

Table 6.4. Pruning power of the recognition rules.

The greatest amount of pruning achieved across a level jump is the prun-
ing associated with the recognition rules which justify the jump from the linear
mechanism path level to the mechanism interaction level. The importance of
focusing between these two levels cannot be understated for the worst case
number of hypotheses increases here from exponential in one parameter to
exponential in two parameters. The mechanism interaction recognition rules
are second only to the type constraint as a source of pruning power.

The importance of the pruning which takes place between the linear mech-
anism path level and the mechanism interaction level is apparent in the tire
gauge example. Only 18 of 2663 failed hypotheses satisfied the mechanism
interaction recognition rules. These 18 hypotheses were augmented into 385
admitted disablement and equilibrium interaction hypotheses. Without the
pruning due to the recognition rules for mechanism interactions, the explosion
here would have been truly prohibitive.

The pruning ratio associated with the jump to the hidden input hypothe-
sis level directly reflects the frequency of occurrence of the “interaction-only”
mechanisms along conjectured mechanism paths. The low pruning ratio dur-
ing hypothesis generation at this level is unfortunate because hidden inputs
compromise the ability to test hypotheses by comparing predicted events to
ohserved events. The type constraint is the only constraint of any utility once
the assumption that all inputs are observable is removed. .

As expected, hidden input hypothesis construction is mostly successful
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because there is no observable event against which to compare inferred events.
For example, in the case of the home heating system, 1390 triggerings of the
hidden input recognition rule led to 382 admitted hidden input hypotheses.
Most of the admitted hypotheses for the home heating system are hidden
input hypotheses.

The recognition rule for cycles identifies pairs of hidden input hypotheses
made up of one conjectured source and one conjectured sink. The pruning
ratio associated with this recognition rule approaches the limiting case where
the number of hypotheses involving hidden sources and the number of hy-
potheses involving hidden sinks are equal. In the limiting case, exactly half
of the possible pairs satisfy the rule.

Cycle hypothesis construction also has a high success rate. In the re-
frigerator example, 9966 pairings of hidden input hypotheses resulted in 2010
successful cycle hypotheses. Failures mostly are due to sources and sinks be-
ing of incompatible types, being associated with different physical objects,
and having magnitude ranges which do not overlap so that they do not cancel
when added together.

6.2.3 Abstraction by Type

Abstraction spaces based on type provide yet another means of controlling
search in causal modelling. The idea behind abstraction spaces is to partition
a set of primitives into a hierarchy of classes and to perform search in stages.
Initial search at the coarse level of the classes is used to focus search at the
finer grain size of the primitives.

The primitives in causal modelling are mechanisms. Type, which already
has proven to be the single most powerful source of constraint, is used as the
basis for partitioning mechanisms into classes. Mechanisms which map the
same cause type into the same effect type are collected into the same class.
For example, the Rigid-Coupling and Forward-Ratchet mechanisms, both of
which map {-TYPE- Position Rate} into {-TYPE- Position Rate}, are collected
into the class Mechanical-Coupling.

The composite mechanisms which represent classes are formed by com-
bining the descriptions of the constituent mechanisms. More specifically, the
union of the qualitative region sets specified in the constituent mechanisms is
taken for the sign, direction. alignment, bias, and displacement constraints.
The union of the order of magnitude ranges specified in the constituent mech-
anisms is taken for the delay and magnitude constraints. . And the union of
the structural relations specified in the constituent mechanisms is taken for
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the medium constraint. The mechanism classes formed in this way are shown
in Appendix B.

Table 6.5 indicates the search reduction achieved in the abstract mech-
anism space for each of the device examples. The results of these less costly
searches can be used to focus search at the level of the primitive mechanisms
by substituting constituent mechanisms for composite mechanisms in the hy-
potheses generated in the abstraction space. These more detailed hypotheses
are tested by propagating constraints in the usual manner.

Causal Graphs Causal Graphs
Device w/o Type Abstraction w/ Type Abstraction
Toaster 93 27
Tire Gauge 400 48
Bicycle Drive 31 4
Refrigerator 222 60
Home Heating 464 190

Table 6.5. Search reduction in type abstraction space.

Another way of utilizing the mechanism classes stems from the observa-
tion that the classes are nearly closed under composition. Stated differently,
the constraints on behavior and structure imposed by any mechanism path of
length two or greater comprised solely of mechanisms from a single class are
almost always already represented in a single mechanism of the same class.
For example, a Rigid-Coupling mechanism composed with a Contact-Coupling
mechanism is indistinguishable from the Contact-Coupling mechanism. Some
mechanisms are not composable at all: for example, the Forward-Ratchet and
Backward-Ratchet mechanisms.

Closure under composition within a mechanism class does not hold cat-
egorically, however. For example, the efficiency of a chain of Conductive-
Heat-Flow mechanisms is lower than a single such mechanism. Nevertheless,
this property of mechanism classes forms the basis of a heuristic which pro-
vides another source of pruning power. This heuristic states that adjacent
mechanisms in a mechanism path cannot be of the same class.

6.3 Robustness

The device observations input to the causal modelling system are idealizations
of what real perceptual data might be. In any investigation where idealized
data is substituted for real data, there always is a possibility that too much
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of the desired output is encoded in the input. In partial response to this
potential charge, I point to the alternate hypotheses admitted by the causal
modelling system for each of the device examples.

In order to ascertain more fully whether I had inadvertently and subtly
guided the hypothesizing activity of the program JACK by encoding too much
of the target models in the device observations, I conducted experiments to
determine the robustness of the causal modelling system’s performance in the
face of changes in the device observations. These experiments fall into two
categories: those where spurious detail is added to a device observation and
those where the “black box” is opened partially and pertinent detail is added
to a device observation.

6.3.1 More Irrelevant Detail

The experiments in which irrelevant detail was added to a device ob-
servation took the following form: The quantity {-QUANTITY- Earth Gravity
Amount} was added to both the toaster and the tire gauge observations.
Motions form part of the observable behavior of both of these devices; never-
theless, gravity plays no role in the operation of either.

The causal modelling system is misled in the case of the toaster: a hypoth-
esis involving the Gravity mechanism is admitted as a possible explanation
for the observed downward motion of the carriage.

In the case of the tire gauge, a Gravity hypothesis fails to explain the
observed motion of the slide. The direction constraint is violated because the
orientation of the slide motion is not downward. This basis for pruning the
hypothesis is not particularly convincing; one can easily imagine a hypothesis
which includes a mechanism which alters the direction of the motion. How-
ever, the magnitude constraint provides a more compelling justification for
pruning this hypothesis: the rate at which the slide moves is too high to be
due to gravity.

The causal modelling system exhibited acceptable performance in these
instances of irrelevant events being included in device observations. Some
spurious events were incorporated into admitted hypotheses; in other cases,
the physical and causal principles embedded in the constraints provided the
basis for removing hypotheses concerning these events from consideration.

6.3.2 More Relevant Detail

The experiments in which relevant detail was added to a device obser-
vation took the following form: The structural relations {-RELATION. Cylinder
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Contains Piston}, {-RELATION- Piston Attached-To Slide}, {-RELATION: Piston
Connected-To Slide}, and {-RELATION- Piston Touches Slide} were added to
the tire gauge observation.

No truth-value histories were associated with these relations; they served
only to declare the existence of physical objects and structural pathways inside
the device. They had the effect of constraining the causal modelling system
to incorporate declared physical objects in hypotheses rather than to freely
conjecture hidden physical objects.

Care was taken to avoid predisposition towards particular mechanisms.
Specifically, the several declared relations involving the Piston and the Slide
constrain the causal modelling system to incorporate the previously unknown
Piston in hypotheses without introducing a preference for any particular mech-
anism of the Mechanical-Coupling class.

With this ancillary knowledge of the internal structure of the tire gauge
available, one would expect that—via the medium constraint—a number of
additional hypotheses could be eliminated. This indeed proved to be the case,
as shown in Table 6.6. The experiment was conducted with the vocabulary
of primitive mechanisms and in the abstraction space.

Type Causal Graphs Causal Graphs
Abstraction? w/o structural knowledge w/ structural knowledge

no 400 202

yes 48 17

Table 6.6. Performance with internal structural knowledge.

6.4 Assumptions and Limitations

My purpose in this section is to root out assumptions embedded in my ap-
proach to the causal modelling problem and to delineate limits in that ap-
proach on generating and distinguishing hypotheses about mechanisms within
devices.

6.4.1 Closed-World Assumptions

(Closed-world assumptions are impossible to avoid; nevertheless one must
strive to be aware of them and understand their impact. In my work, closed-
world assumptions manifest in the vocabulary of mechanisms and at the onto-
logical level. Mechanisms such as pulleys and friction and magnetism, to name
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a few, do not appear in the vocabulary. Furthermore, certain types of causal
graphs do not appear in the ordering on hypotheses. These include iterative
cycles and interactions wherein entire mechanisms (as opposed to quantities)
enable or disable other mechanisms. As a result of these closed-world as-
sumptions, hypotheses concerning friction in the tire gauge and concerning
fluid flow enabling heat flow in the home heating system are excluded from
consideration.

6.4.2 Hidden Parameters

Much of the potential pruning power of the constraints based on ranges of
orders of magnitude—the delay and magnitude constraints—is compromised
by hidden parameters in the mechanism descriptions. For example, the wide
range specified for the time constant of the Fluid-Flow mechanism reflects
uncertainty about the unknown path length between source and destination.
Similarly, the wide range of efficiency specified in the Electro-Thermal mech-
anism reflects uncertainty about the unknown resistance of the material.

The uncertainty associated with hidden parameters is endemic, for they
correspond to unobservable quantities. There is .ictle point in making these
suppressed unobservable quantities explicit, for this just pushes the uncer-
tainty “over the horizon” without reducing it.

6.4.3 Tradeoff Interactions

The only type of mechanism interaction in the ordering on hypotheses
involving additive contributions is the equilibrium interaction. There is no
tradeoff interaction, in which unbalanced additive contributions result in a
net change in the direction of the largest contribution.

The most obvious signature for a tradeoff interaction is a non-zero effect of
an unaccountably reduced magnitude. Unfortunately, a recognition heuristic
based on this signature proves ineffective, because the order of magnitude
ranges propagated for the magnitude constraint typically are wide enough to
account for too-low magnitudes arising from tradeoff interactions.

An alternate recognition heuristic is based on the observation that a
hypothesis identifying only the “background” contribution of a tradeoff in-
teraction fails to account for the observed direction of change. The way to
repair such an incomplete hypothesis is to conjecture an additional, dominant
contribution in the opposite direction. At this time, a tradeoff interaction
recognition heuristic has not been implemented.
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6.4.4 Higher-Order Derivatives

Second and higher-order derivatives can be represented by multiple in-
stances of the temporal integration mechanism along mechanism paths. How-
ever, higher-order derivatives in individual mechanisms—such as acceleration
due to gravity—are not represented explicitly. Instead, a range of efficiency
is associated with the mechanism which approximates the results of integra-
tion. For example, in the gravity mechanism, this efficiency range results in
a range of values being propagated for the velocity associated with the effect.
This treatment of higher-order derivatives is admittedly rough because the
interval over which temporal integration occurs is not represented explicitly
but is hard-coded in the efliciency range.

6.4.5 Monotonicity and Linearity

The dependencies between quantities due to mechanisms are assumed to
be both monotonic and linear. These assumptions are embedded in the pro-
cedures for refining hypotheses. For example, once the sense of a mechanism
dependence has been established in one observation, it is assumed, by mono-
tonicity, to be the same in other observations. The monotonicity assumption
may result in the unjustified retraction of a hypothesis.

The impact of the linearity assumption on hypothesis refinement is more
subtle. Without knowledge of the order of a dependence, no attempt can be
made to determine if observed magnitude differences across multiple examples
of behavior are consistent with linearity or non-linearity. This potential basis
for retracting hypotheses is unavailable.

6.4.6 Representation of Structure

The representation for structure encoded in the displacement and medium
constraints supports descriptions only of distinguishable physical objects and
simple physical connections between objects. This fairly impoverished rep-
resentation for structure results in abstract models of devices whose physical
structure is complex: to wit, the models of the latch mechanism in the toaster
and the brake mechanism in the bicycle drive. Some ideas concerning addi-
tional aspects of externally observable structure which can place constraints
on internal mechanism configurations are presented in Section 7.4.3.

6.4.7 Teleology

The teleological reasoning exhibited by the program JacK is limited. Only
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one form of teleological knowledge is provided in the device observations: some
events are labelled as known inputs or known outputs. The known inputs
cannot appear as effect events in any hypothesis and the known outputs cannot
appear as cause events.

Only one of the recognition rules which control passage between levels in
the ordering on hypotheses has a teleological basis: the cycle recognition rule
is based on the principle that synergistic cycles can remove potential sources
and sinks. This is fundamentally a rule of design; models with the extra
sources and sinks are physically realizable and explain the same observations.

In this work, I have focused on the the use of causal reasoning in the
modelling problem. I expect fully that teleological knowledge would prove to
be a complementary source of pruning power. However, by making a clean
separation between causal and teleological reasoning, the approach to mod-
elling described in this thesis can in principle be applied to domains where
teleological knowledge is lacking, such as natural systems, and domains where
teleological knowledge is inarticulate, such as economics.
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7. Lessons Learned: The Morals of the Story

In this final chapter, I articulate the principles behind the reasoning exhibited
by the causal modelling system in generating and distinguishing hypotheses,
I reexamine the set of issues set out at the beginning of the thesis, I compare
the results of my research effort to those achieved in other related efforts, I
outline some future directions for my work, including some scenarios on how
causal models constructed by the program JACK can support problem solving
tasks, and finally, I offer some ideas concerning possible applications for a
causal modelling system.

7.1 Principles

All research efforts in artificial intelligence must be evaluated on two criteria:
the generality of the set of principles articulated in the work, and the compu-
tational utility of those principles. In Chapter 6, I analyzed the performance
of the causal modelling system JACK. In this section, I enumerate the princi-
ples which underlie my approach to causal modelling. The diverse reasoning
exhibited by the causal modelling system on the set of implemented device ex-
amples serves as a demonstration of the generality of these principles. These
principles fall into two categories: (1) the constraints on type, behavior, and
structure and (2) the rules for recognizing incomplete hypotheses at different
levels of the ordering on hypotheses. '

7.1.1 Physical and Causal Constraints

Al of the constraints support reasoning about how mechanisms map de-
vice inputs to device outputs. Each constraint concerns a different observable
aspect of the behavior and structure of physical systems. All hypotheses
about hidden mechanism configurations within devices must account for any
observed changes or lack of changes between cause events and effect events
for all of these aspects of behavior and structure.

The type constraint concerns the types of quantities in physical systems.
Hypotheses must account for observed type conservations or transformations
between causes and effects. The type constraint turns out to be the single
most powerful constraint.

Several conservation laws from physics are mingled in this constraint. The
law of conservation of energy which permits the form of energy to change while
it is conserved is reflected in type transformations. The law of conservation of
mass is reflected in type conservations which concern mass quantities such as
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fluids. The law of conservation of momentum is reflected in type conservations
which concern motion.

The delay constraint concerns the times of occurrence of events in physical
systems. Hypotheses must account for observed time lags between causes
and effects. The delay constraint figures prominently in the generation of
enablement, disablement, and equilibrium hypotheses. A reliable hallmark of
unsuspected mechanism interactions is an unexplained delay.

The delay constraint embodies the causal principle that effects cannot
precede their causes and the physical principle that the propagation time for
any interaction must be finite. Perception plays a limiting role, however. The
distances to be crossed may be so short (the extent of a single physical object)
and the speeds of propagation may be so high (the speed of light) that causally
connected events may be perceived to be simultaneous.

The sign constraint concerns the signs of the values of quantities in phys-
ical systems. Hypotheses must account for any change or lack of change of
sign between causes and effects. The sign constraint plays an important role
in the construction of equilibrium hypotheses in the tire gauge example and
cycle hypotheses in the refrigerator example. In all of these hypotheses, the
interacting additive contributions must be of opposite sign.

The sign constraint captures the sense, direct or inverse, of the depen-
dencies between quantities due to mechanisms. In addition, when applied to
mechanisms of flow, the sign constraint reflects the essence of the concept of
conservation: a substance can be redistributed within a system, but can never
be consumed or spontaneously created.

The direction constraint concerns the orientations of quantities in physi-
cal systems. Hypotheses must account for any deflections between causes and
effects. The direction constraint supports reasoning about the behavior of
springs in the toaster and tire gauge examples.

The direction constraint embodies hoth Newton’s law of inertia and the
law of conservation of momentum. The descriptions of mechanisms which
concern motion state explicitly whether or not the direction of motion may be
altered between cause and effect. Furthermore, deflections notwithstanding,
motions must be transferred; they cannot vanish between cause and effect.

The magnitude constraint concerns the magnitudes of the values of quan-
tities in physical systems. Hvpotheses must account for any decreases, in-
creases, or lack of change in magnitude between causes and effects. The
magnitude constraint plays the key role in distinguishing thermal expansion
as the mechanism employed in the thermostat of the home heating system.

The magnitude constraint reflects two physical prineiples: the law of
conservation of energy, and the notion of mechanical advantage. Energy can
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never be lost, but the efficiency of energy transfer across a mechanism may
be less than perfect. Also, it is possible to achieve amplifications across a
mechanism, albeit always at the expense of some other quantity. For example,
a small gear driven by a large gear will revolve faster, the speed of a fluid in
a pipe may be increased by constricting the diameter of the pipe, etc.

The alignment constraint concerns the relative values of quantities in
physical systems. Hypotheses must incorporate any inequality relations im-
posed by mechanisms between causes and effects. The alignment constraint is
indispensable in revealing the one-way nature of the linkages in the tire gauge
and bicycle drive examples.

The bias constraint concerns the directions of change of quantities in
physical systems. Hypotheses must incorporate any restrictions concerning
absolute directions of change imposed by mechanisms between causes and
effects. The bias constraint supports reasoning about the complementary
roles of condensation and evaporation in the refrigerator example.

Two physical principles concerning directionality are reflected in the
alignment constraint: The thermodynamical principle of entropy, and the
notion of “path of least resistance” which states that motion or flow is always
towards points of locally lesser potential. The bias constraint reflects other
origins of directionality in asymmetrical processes and mechanisms, such as
those due to geometry.

The displacement constraint concerns the locations of objects in physical
systems. Hypotheses must account for any physical separation between causes
and effects. The displacement constraint plays a role in reasoning about how
a moving fluid or gas can transport heat in the home heating system.

The medium constraint concerns the structural connections between ob-
jects in physical systems. Only those hypotheses for which the appropriate
structural connections between causes and effects can he established or con-
Jjectured may be admitted. The medium constraint supports reasoning about
collapsing equilibrium states within the tire gauge.

The displacement and medium constraints reflect the causal notion of no
action at a distance. Mechanisms must span any separation between cause
and effect. And more specifically, causal interactions can take place only if
the appropriate structural connections are established.

7.1.2 Rules for Traversing the Hypothesis Ordering

The ordering on hypotheses is a manifestation of Occam’s Razor. Hy-
pothesis types are organized into a hierarchy according to two simplicity met-
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rics: the worst-case number of possible hypotheses for each type and the
potential for constraining hypotheses of each type by observable events.

The simplest control structure for traversing the hypothesis ordering in-
volves exhaustively generating hypotheses at each level and proceeding to the
next level only when all hypotheses at the previous level have been eliminated.
There are two problems with this form of control: (1) It is likely that many
observations are needed before all hypotheses at a given level can be elimi-
nated. My intuition is that hypotheses generation from first principles can
and should proceed further with limited observations. (2) More importantly,
no focusing occurs as control is passed to the more complex or less constrained
hypothesis levels. The explosion lurking at the next level is merely delayed
but not contained.

We want a control structure which supports justified and focused excur-
sions into the more complex or less constrained hypothesis levels. Control
never should be passed indiscriminately between levels. There should be al-
ways a clear justification for moving from one level of hypothesis construction
to another, and there should be always a sharp focusing to offset the potential
explosion. The control structure I have implemented supports justified and
focused jumps between levels in the hypothesis ordering and is based on the
following principle:

Incomplete hypotheses ezhibit characteristic deficiencies.

Manifestations of deficiency justify attempts to augment hypotheses at
another level of hypothesis construction. Focusing occurs in two ways: The
deficiency signatures indicate into what other form of hypothesis a hypothesis
should be extended. Furthermore, only certain deficient hypotheses ever are
augmented; in particular, no admitted hypothesis ever is extended.

For each level in the hypothesis ordering beyond the root level, there is a
rule used to recognize situations in which an attempt to augment a deficient
hypothesis at that level of hypothesis construction might be successful. Each
rule is a different instantiation of the principle that incomplete hypotheses
exhibit characteristic deficiencies.

Unsuspected mechanism interactions manifest in some combination of
unexplained delays, magnitudes, and signs. Unexplained delays manifest be-
cause the time of occurrence of an interaction is always the later of the times
of occurrence of the contributions. Stated differently, both contributions must
occur before an interaction occurs.

Unexplained magnitudes manifest in enablement situations hecause an
effect may be disrupted over a continuous range. A fluid rate controlled by a
valve may take on a range of values, whereas electric current controlled by a
switch is either on or off.
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Unexplained signs and magnitudes manifest in disablement and equilib-
rium situations because the non-zero effects expected from the contributions
of single mechanism paths are always at variance with the zero effects which
result from disablement and equilibrium interactions.

Some mechanisms can only enable and disable other mechanisms. These
mechanisms have no power to produce effects other than through interaction
with other mechanisms. For example, a switch can disrupt electrical flow,
but cannot produce current in the absence of a current source. Similarly, a
pressure change can result in a heat loss through the process of evaporation,
but only in the presence of a heat sink.

Hidden inputs are implied whenever “interaction-only” mechanisms are
hypothesized outside of interactions. These incomplete hypotheses may be ac-
companied by unexplained signs and magnitudes because isolated “interaction-
only” mechanisms cannot account for non-zero effects. The missing inputs
which can explain observed non-zero effects may be present, even though can-
didates for these inputs have not been identified among observable events.

The recognition rule for cycles, unlike the other recognition rules, is based
on a principle of design: well-designed physical systems have a minimum of
sources and sinks. Potential sources and sinks within a device may be avoided
by forming cycles where gains alternate with losses so that both are always
temporary and bounded. The possibility for such a synergistic cycle exists
whenever both an undeclared source and an undeclared sink are proposed as
part of the explanation of the behavior of a physical system.

7.2 The Issues Revisited

In this section, I relate the degree of success achieved in addressing the set of
issues outlined in Chapter 1.

How to constrain the formation of hypotheses?

With a set of physical and causal constraints and an ordering on hypothe-
ses.

My approach to making the causal modelling problem tractable is a two-
pronged approach. One of the prongs involves applying a set of constraints
which embody physical and causal principles to prune hypotheses. The other
prong involves enumerating different forms for hypotheses, placing an ordering
on these forms. and using this ordering to carefully control the generation of
hypotheses. The pruning power resulting from the combined application of
these thrusts has proven to he impressive.

What are the constraints in the physical system domain?
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Among them are type, delay, sign, magnitude, direction, alignment, bias,
displacement, and medium.

I have identified a useful, although certainly not exhaustive set of con-
straints for reasoning in the physical system domain. These constraints high-
light diverse aspects of the behavior and structure of devices. They provide
several dimensions along which to reason, including: the types of quantities,
the times, locations, and magnitudes of events, orientations in space, the
causal pathways between events, and restrictions on directions of change due
to dependencies between quantities, the direction of causation, and one-way
behavior. These constraints are derived from physical and causal principles
and represent necessary conditions which all physically realized devices must
satisfy.

What are the different causal structures for devices?

Among them are linear mechanism paths, mechanism interactions tnclud-
ing enablements, disablements, and equilibria, hidden inputs, and cycles.

I have enumerated a number of different causal structures for devicas,
These include simple linear mechanism chains from inputs to outputs, enable-
ment, disablement, and equilibrium interactions between mechanisms where
multiple causes combine into single effects, and synergistic cycles where gains
and losses within a device offset each other. Any of these hypothesis forms for
devices may involve primitive causes or initial inputs which are not observable.

How to deal with the complezity vs. completeness problem ?

By utilizing the principle that incomplete hypotheses often ezhibit char-
acteristic deficiencies.

I have placed on ordering on the different hypothesis forms for devices
based on a straightforward complexity analysis of the corresponding causal
structures. A heuristic rule is associated with each level in the hypothe-
sis ordering. These rules are used to recognize characteristic deficiencies in
hypotheses and justify attempts at augmentation at more complex or less
constrained levels of the hypothesis ordering.

The ordering serves as a manifestation of Occam’s razor: the simplest
hypothesis forms are considered first: hypothesis forms deeper in the order-
ing are considered only when simpler forms exhibit signs of incompleteness.
Within each level, hypotheses are generated in order of the length of mecha-
nism paths and the number of mechanism interactions. All hypotheses within
each level of the ordering can be generated and the ordering is extensible.

What is the power of causal reasoning in the mechanical, electrical, and
thermal domain?

Comparable to its power in the circuit domain, given a-uniform represen-
tation for describing diverse mechanisms.
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One of the results of this research effort is a uniform representation for
describing a wide variety of mechanisms in devices. This representation sup-
ports reasoning about mechanical, electrical, and thermal phenomena in the
toaster, mechanical and pneumatic phenomena in the tire gauge, mechanical
phenomena in the bicycle drive, mechanical, electrical, and thermal phenom-
ena in the refrigerator, and mechanical, thermal and hydraulic phenomena in
the home heating system.

This uniform representation and the set of procedures which operate on it
support reasoning about causal relations between events due to hypothesized
mechanisms. This causal reasoning is at the core of my solution to the “black
box” problem for devices.

What makes for a convincing model of a device?

Abstractions which preserve physical plausibility, predictive power, and
the ability to support problem solving tasks.

Abstraction is an important aspect of the causal modelling process. De-
tailed reasoning about hidden mechanism configurations within devices is in-
feasible due to the size of the hypothesis space. In addition, precise reasoning
is impossible due to lack of knowledge about unobservable mechanisms and
events.

My goal in designing the constraints on type, behavior, and structure was
to capture compact sources of discriminatory power strong enough to over-
come the unavoidable dearth of information due to the “black box”. These
constraints are based on principles from physics and causality. They reflect
conditions which all designs for devices must satisfy. Ideally, we want a causal
modelling system which removes physically implausible hypotheses from con-
sideration and which is able to make fine distinctions among physically plau-
sible hypotheses. Results from the several implemented device examples indi-
cate that the causal modelling system does not admit physically implausible
hypotheses. These same results offer many instances of successful discrimina-
tion among physically plausible hypotheses.

For example, the program JACK is able to distinguish toaster models in
which a latch on a spring is released either through thermal expansion or
a motor, is able to expose the one-way nature of the coupling between a
hidden piston and the slide in a tire gauge, and is able to determine that an
evaporation/condensation model for a refrigerator can include a cycle but an
evaporation/space heater model cannot. Moreover, the toaster models are
distinguished when a prediction derived from the thermal latch hypothesis is
compatible with an additional observation while a prediction derived from the
motorized latch hypothesis is not.



141

Remaining confusions among hypotheses are often traceable to the loss
of resolution arising from default values in mechanism descriptions. In other
cases, conceivable distinctions cannot be described within the given set of con-
straints or the given ontology of causal graphs. In still other cases, competing
hypotheses represent genuine, if abstract, alternate designs for devices. For
example, a refrigerator could be designed with a renewable fluid input to seed
evaporation.

In Section 7.4.1, I offer scenarios in which causal models constructed by
the program JiCK support diagnosis and monitoring tasks.

7.3 Relation to Other Work

In this section, I discuss a number of themes of current interest in causal and
qualitative reasoning in the context of my work and the work of others. In
addition, I look at a different research project concerning theory formation for
devices. Finally, I interpret causal modelling as an instance of Waltz network
labelling.

7.3.1 Causal and Qualitative Reasoning

Many approaches to causal and qualitative reasoning have appeared in
the literature. Seminal works among these include Forbus’ Qualitative Process
Theory [Forbus 84], de Kleer and Brown’s qualitative physics based on con-
fluences [de Kleer and Brown 84}, and Kuipers’ method for inferring behavior
from causal structure [Kuipers 84].

These and other research efforts all identify composability as an impor-
tant property of causal reasoning: the overall behavior of a physical system
must be derivable from its topology and the behavior of its constituents. The
composability of the mechanism descriptions in the vocabulary of the causal
modelling system derives from the uniform representation for the constraints
on type, behavior, and structure and the propagation and combination pro-
cedures which operate on this representation.

The same research efforts indicate that causal and qualitative reasoning
subsumes several complementary forms of inference. There are techniques for
reasoning about dynamics—which changes occur?, time—when do events oc-
cur?, physical objects—where do events occur?, topology—what are the causal
pathways?, thresholds—what new values are reached?, and preconditions—
which mechanisms are active and which are inactive? Here I describe how the
procedures in the program JAcK support all of these forms of reasoning. Where
appropriate, I compare my inference method to others in the literature.
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The type, delay, sign. magnitude, and medium constraints collectively
determine which changes occur in a physical system. The medium constraint
addresses the question of where events occur by determining the physical
objects involved. Physical ohjects along with types determine the quantities
involved. The delay constraint addresses the question of when do events occur
by determining moments. The sign and magnitude constraints jointly deter-
mine values. Inferred quantities, moments, and values collectively determine
events, which addresses the question of which changes occur.

The medium constraint directly addresses the question of what are the
causal pathways by determining structural connections between the sites of
events. My treatment of causal pathways improves on others described in the
literature. Kuipers does not make structural connections explicit; his “struc-
ture” is actually the set of functional relationships or qualitative differential
equations which describe a physical system. de Kleer and Brown do not al-
low for time-dependent structural connections. In my approach, structural
connections are represented by relations with histories, enabling the program
JAcK to verify the existence of causal pathways at different times. Further-
more, the causal modelling system can reason about how changing quantity
values establish or disrupt causal pathways. In enablement hypotheses, the
medium of the enabled mechanism is affirmed at the moment of the inter-
action; in disablement hypotheses, the medium of the disabled mechanism is
denied at the moment of the interaction. These assertions make for a compact
description of active and inactive mechanisms, useful in generating predictions
in the context of additional observations. Although Forbus does allow for the
declaration of causal pathways in process descriptions, they are treated as a
static input; there is no reasoning about the interplay between quantity values
and physical structure.

The temporal integration procedure in the program JACK addresses the
question of what new values are reached. The temporal integration schemes
employed by Forbus, de Kleer and Brown, and Kuipers use only the direc-
tion of change and the value space to determine the next value of a quan-
tity. My scheme also employs the magnitude of the rate and the duration
of change. Although there is certainly nothing new here, this more complete
rendering of temporal integration allows finer distinctions to be made. For
example, the “alarm-clock” and “thermostat” hypotheses for the toaster are
distinguished by determining that a higher initial temperature in the toaster
implies a shorter interval until a latch on a spring is released.

Kuipers’ causal and qualitative simulation system QSIM is able to reason
about undeclared landmark values of quantities. Similarly, the causal mod-
elling system JACK is able to construct disablement and equilibrium hypotheses
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about observed stable values which are not declared limit values in the value
spaces of quantities.

The question of which mechanisms are active and which are inactive is
addressed by several of the constraints. Preconditions concerning threshold
values of quantities are handled by the sign and magnitude constraints and
the temporal integration procedure. Preconditions concerning the presence
or ahsence of structural connections are handled by the medium constraint.
Preconditions concerning relative values of quantities, for example that the
pushing object must be behind the pushed object in a contact coupling, are
handled by the alignment constraint. Preconditions concerning absolute di-
rections of change, as in a ratchet, are handled by the bias constraint.

The “no-function-in-structure” principle of de Kleer and Brown states
that individual mechanism descriptions must not be able to explain behav-
ior which arises from interactions with other mechanisms. This principle is
reflected in the handling of hidden input hypotheses in the causal modelling
system. A Switch mechanism alone cannot account for a current flow; a cur-
rent source must also be identified. Similarly, an Evaporation mechanism
cannot explain cooling in the absence of a heat sink.

The “no-function-in-structure” principle and its dual “no-structure-in-
function,” are reflected also in the clean separation in the program JACK of
the constraints which concern behavior (delay, sign, direction, magnitude,
alignment, and bias) from those which concern structure (displacement and
medium). These constraints are mutually independent; no value propagated
for any constraint depends on a value propagated for any other.

In his work on diagnostic reasoning based on structure and behavior
[Davis 84|, Davis enlists a hypothesis ordering to control search through a
hypothesis space. Each level in his ordering on fault hypotheses corresponds
to the removal of a different assumption about how devices are supposed to
work. The ordering relations are derived not from a complexity analysis, but
from empirical knowledge concerning the frequency of different kinds of faults.
Hypothesis orderings, whatever their derivation, are an effective and general
way of dealing with the complexity vs. completeness problem.

Another theme in Davis’ work is the use of multiple representations for
structure, each highlighting a different kind of causal pathway in devices and
each corresponding to a different manifestation of the concept of adjacency. In
my work, the several constraints serve as multiple representations, supporting
reasoning about physical systems along several different dimensions of type,
behavior, and structure.

The utility of multiple representations is self-evident: a distinction which
is muddled in one representation can be sharp in another. The key idea again
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is abstraction. Which details to expose and which to suppress? The set of
constraints in the causal modelling system provide an assortment of compact
sources of discriminatory power. Any one of the constraints can provide the
key to distinguishing hypotheses. A difficult issue in the use of mulitiple rep-
resentations is how to select or even construct the right representation for
the task at hand. I have addressed this issue partially in my work. Choices
about which form of hypothesis to consider are supported by the recognition
rules for the levels in the hypothesis ordering. However, no choices are made
concerning which subset of the constraints to apply to a given modelling task.

Dependencies between quantities are assumed to be linear (see Section
6.4.5) in my approach to causal modelling. This qualitative approach to
reasoning about the behavior of physical systems is limited in that rates of
change are abstracted and interesting properties such as extrema, stability and
asymptotic approach cannot be represented [Kuipers 85]. Sacks’ piecewise lin-
ear reasoning approach [Sacks 87,88] offers a useful compromise: higher-order
equations are approximated by linear segments, retaining some of the infor-
mation (e.g., maxima and minima) lost in the qualitative approach.

The procedures for refining hypotheses in the program JACK embody a
simple form of comparative analysis. These procedures support predictions
about activations and deactivations of mechanisms and changes in delays and
magnitudes across different observations. Weld has provided a comprehensive
treatment of comparative analysis [Weld 88]. He offers two complementary
methods, differential qualitative analysis and exaggeration, which together
solve many problems in predicting how a device responds to perturbations of
its parameters.

7.2.2 Theory Formation for Devices

Surprisingly enough, at least to me, there is a dearth of other work on
theory formation for devices. The notable exception is Shrager’s work on a
theory of human instructionless learning [Shrager 87]. Shrager describes a
method called view application whereby device hypotheses are incrementally
refined by incorporating abstract schemas into developing models. One of
Shrager’s explicit goals is psychological validity. My approach concentrates on
the sources of constraint and the causal reasoning which make the modelling
problem tractable. OQur approaches are complementary.

7.2.3 Waltz Labelling

Causal modelling can be cast as an instance of Waltz network labelling
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(Waltz 75]. The networks are the causal graphs which represent hypothe-
ses about hidden configurations of mechanisms within devices. The arcs are
labelled with mechanisms and the nodes are labelled with values for the con-
straints which describe events.

A singular difference separates the causal modelling problem from other
instances of Waltz labelling—the network is not known. Only the peripheral
nodes and their labellings are known. These are the externally observable
events. During the causal modelling process, networks are constructed by
conjecturing mechanism arcs and additional event nodes.

The performance of the program JAcK offers an extraordinarily convincing
demonstration of the potential power of the Waltz network labelling technique.
In the right domain and with the right constraints, the network need not
even be known. Network topologies can be generated in concert with the
actual labelling process, and this process can still result in a hypothesis set of
manageable size.

7.4 Future Work

In this section, I present scenarios which illustrate how causal models pro-
duced by the program JACK can be used in problem solving, and I explore
ideas about how to further limit search in causal modelling, how teleologi-
cal reasoning can be incorporated into causal modelling, and the role which
experiment design can play in causal modelling.

7.4.1 Using Causal Models

The acid test for a device model is whether or not it can support problem
solving. An important form of problem solving in the physical system domain
is diagnosis. Here I present a scenario which shows how causal models of a
tire gauge constructed by the program JACK can be used in troubleshooting a
misbehaving tire gauge.

Imagine a tire gauge is giving an incorrect pressure reading. In par-
ticular, imagine this reading is too high. Consider the “spring” (see Figure
5.8) and “impulse” (see Figure 5.9) hypotheses generated by the causal mod-
elling system. Further consider types of failure in which the value space of
a quantity becomes shifted or truncated so that one of the limit values is
unattainable. See Figure 7.1. This kind of behavior might manifest when a
device component is broken. or bent, or becomes displaced.

In the spring hypothesis, either type of fault would result in the equilib-
rium state which halts the motion of the slide being achieved at a different
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Figure 7.1. Shifted and truncated value spaces.

position. In particular, a final position of the slide corresponding to a higher
pressure reading is possible.

In the impulse hypothesis, neither type of fault can explain a higher
pressure reading. In the cases where the disabling (smallest, by convention)
value cannot be attained, the motion of the slide would not cease and it
would move all the way to its limit of motion. In the cases where the range of
motion of the valve has been shifted or truncated towards the disabling value,
the valve would close sooner than in the nominally operating device, resulting
in a lower pressure reading.

Another problem solving task in the physical system domain is monitoring—
verifying the nominal operation of a device. Causal models can support effi-
cient, reliable device monitoring without the need for exhaustive checking of
all observable quantities.

A causal model reveals causal dependencies among events in a physical



147

system. An analysis of these causal dependencies can support decisions about
which events to monitor. In particular, the importance of events can be as-
sessed by determining how many other events are effects or causes of a given
event. The importance of an event is related to the amount of subsequent
activity it supports, and the amount of activity which arranges for its occur-
rence. Events which lie on more than one mechanism path should be verified
with care. On the other hand, events which are side effects and do not support
further activity of the device need be given only cursory attention, if at all.

Figure 7.2 shows a causal model for a toaster generated by the program
JacKk. In this figure, next to each observable event is the number of events
which are causes or effects of the given event. By this analysis, the upward
and downward motions of the lever and the heating of the coils are the most
informative events in the toaster. The other observable events cannot as
reliably verify that the toaster is working properly.

In Appendix F, these ideas on using causal models in device monitoring
are elaborated further. There I describe the transfer of results from my thesis
work to a project at the Jet Propulsion Laboratory.

7.4.2 Limiting Search

Differential diagnosis is a technique used in medical diagnosis to limit
the size of the set of hypotheses [Patil et al 82, Pople 82]. The technique is
a straightforward manifestation of beam search. Generated hypotheses are
ordered according to a set of criteria and a cutoff threshold is established.
Clinical tests then are selected to distinguish only these best hypotheses.

The abstraction space of mechanisms used to focus search in the program
JACK was formed by grouping into classes mechanisms which map the same
cause type into the same effect type. There are many other bases for forming
a-kind-of hierarchies for mechanisms: mechanisms which span two locations
vs. those which take place within a single physical object, mechanisms which
conserve type vs. those which transform type, mechanisms which impose
constraints on directions of change vs. those which do not, etc.

Each a-kind-of hierarchy reflects different choices about which distinc-
tions to expose and which to suppress. Ideally. the selection and/or construc-
tion of abstraction spaces should be sensitive to the modelling task at hand.
Given an observation, which sources of discrimination are likely to prove most
useful in distinguishing hypotheses to explain the observed events? For ex-
ample, are there many quantities which change in one direction but not the
other? The issue of choosing among multiple abstraction spaces indicates an
intriguing direction in which to extend this work. Of relevance is Lathrop’s
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work on developing methods for constructing abstractions in several domains,
including the physical system domain [Lathrop et al 87a. Lathrop et al 87h,
Lathrop 88].

Another way to limit search is to coarsen the grain of the search space by
combining primitives into macros. Macros reduce search by highlighting some
subset of the possible ways to compose primitives. Good candidates for macros
in causal modelling are those mechanism compositions which made multiple
appearances in the device models generated by the program JAcK. An example
is the “thermostat” hypothesis in which motion due to a Thermal-Expansion
mechanism results in an enablement.

Explanation-based learning methods [Mitchell et al 86, DeJong and Mooney
86] are techniques for forming macros from those compositions of primitives
which contribute to successful problem-solving episodes. The idea is to use
experience as the filter to decide which macros are worth forming and using.
This form of learning could be used to incrementally enhance the perfor-
mance of the program JACK. An early effort on my part to explore the use of
explanation-based learning in causal modelling is described in [Doyle 86].

7.4.3 Teleological Reasoning

The teleological reasoning in the program JAcK is limited: Events declared
as known inputs cannot be effects and events declared as known outputs
cannot be causes. Cycle hypotheses do not explain any additional behavior;
instead they reflect a principle of design which states that the number of
inputs to a device should be reduced whenever possible.

Other forms of teleological knowledge can help to constrain hypothesizing—
for example, declarations concerning intended causal dependencies in a device.
In a refrigerator, the cooling of the interior is intended, the warming of the
exterior is not. This distinction can offer a different kind of clue for the pres-
ence of a cycle. In a typical synergistic cycle, one half of the cycle lies on
a causal path leading to intended outputs, the other half exists only to re-
move the potential source or sink associated with the first half. This is true
of the cycle in a refrigerator. The evaporation half of the cycle powers the
intended cooling of the interior. The warming of the exterior arising from the
condensation half of the cycle is a side effect.

Still other sources of discriminatory power can he gleaned from the simple
fact that a device is a designed artifact. A designer always satisfies constraints
other than the inviolable ones due to physics and causality. Designs also
reflect constraints of a pragmatic nature which provide different dimensions
along which to reason about a device. Among the possibilities are: cost—
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is the set of conjectured mechanisms consistent with the price tag of the
device; availability—do any of the proposed mechanisms involve materials
not readily obtainable; size and layout—can the hypothesized configuration of
mechanisms be packed into the observed volume of the device; and weight—is
the set of conjectured mechanisms consistent with the heaviness of the device.

7.4.4 Experiment Design

Designing experiments is premature while the number of possible hy-
potheses is overwhelming. The causal modeiiing system produces manageably
sized sets of hypotheses about the mechanisms in devices by reasoning from
first principles. The program JACK also can refine hypotheses over multiple
observations of a device. A clearly indicated next step is to introduce an ex-
periment design capability for determining how best to alter the configuration
of a device to actively and efficiently distinguish hypotheses.

Jonathan Amsterdam is doing exactly that. He has begun an investiga-
tion into the role of experiment design in theory formation, using the causal
models output by the program JACK as a starting point.

Other relevant work includes de Kleer and Williams’ minimum entropy
method for determining the site of the most discriminating next observation
of a circuit [de Kleer and Williams 87|, Shirley’s work on efficiently generat-
ing test vectors in troubleshooting [Shirley 86], and the work of Rajamoney
and others on a general experiment design capability [Rajamoney et al 85,
Rajamoney and DeJong 87].

7.5 Applications for a Causal Modelling System

In this final section, I discuss two possible practical applications in the long
term for a causal modelling system.

7.5.1 Early Design

Engineers make use of numerous abstractions when they first tackle de-
sign tasks. The set of constraints in the causal modelling system capture a
particular set of abstractions for reasoning about devices. These constraints
support the kind of rough, “within-an-order-of-magnitude” reasoning typical
of the early stages of the design of a device. A causal modelling system could
be used to generate a set of abstract, physically plausible designs for a device.
The engineer could then proceed to the more difficult task of tweaking and
tuning first-cut designs until specifications are met.
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A causal modelling system could also permit the engineer to explore
designs for a device without having to enumerate formal specifications. The
designer could construct “observations” which instantiate the desired behavior
of the device and could slowly converge on the set of specifications needed in
the later stages of design.

Ulrich is developing a similar approach to the conceptual design of elec-
tromechanical systems [Ulrich 88]. He describes a method for specifying
schematic descriptions of devices which meet a behavioral specification. The
approach involves generating rough solutions to meet nominal input-output
behavioral specifications and then debugging these prototype designs to meet
full behavioral specifications. His design and debug approach helps to harness
the potential combinatorial explosion of possible solutions to design problems.
Ulrich’s representations for mechanisms are based on bondgraphs [Rosenberg
and Karnopp 1983).

7.5.2 Modelling In-Line with Problem Solving

Causal models support numerous problem solving tasks concerning de-
vices: verifying the nominal operation of a physical system, diagnosing faults,
planning how to use a device to achieve particular goals. Models are inevitably
incomplete for they are always constructed in the context of particular prob-
lem solving tasks. An automated causal modelling capability presents an
intriguing possibility—the on-demand augmentation of models in the face of -
deficiencies exposed in the context of new problem solving tasks. A causal
modelling system might generate hypotheses to explain alarm situations in a
nuclear power plant, or might extend a model of a camera to support reasoning
about strategies for taking fast-action sports photographs.

Admittedly, the results of this thesis represent a modest step towards
automated modelling, but such a capability would have clear impact both
inside and outside the academic community. Researchers could reduce their
overhead by utilizing off-the-shelf domains. Even more importantly, these
domains could be standardized; new research results would be accepted more
quickly into a growing corpus. In the pragmatic world of knowledge-based
expert systems, automatic modelling could help circumvent the knowledge
engineering bottleneck. Furthermore, knowledge-based systems could have
their knowledge bases extended as needed, rather than failing gracelessly in
the context of new problem solving tasks.
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Appendix A: The Device Observations

:;;PHYSICAL OBJECTS::;
(define-physical-objects LEVER DIAL CARRIAGE COILS BREAD
OUTLET EARTH)

135 QUANTITIES:;;

(define-quantities
(LEVER POSITION)
(DIAL ANGLE)
(CARRIAGE POSITION)
(COILS TEMPERATURE)
(BREAD APPEARANCE)
(OUTLET CHARGE)
(EARTH GRAVITY))

133QUANTITY SPACES:;;;

(define-quantity-space LEVER POSITION Amount
(DOWN -0.1) (UP 0.0))

(define-quantity-space LEVER POSITION Rate
(NEGATIVE -0.1) (ZERO 0.0) (POSITIVE 0.1))

(define-quantity-space DIAL ANGLE Amount
(L (* (// *pi* 6) 5)) (LM (* (// *pi* 3) 2))
(M (// *pi* 2))

(MD (// *pi* 3)) (D (// *pi* 6)))

(define-quantity-space DIAL ANGLE Rate
(NEGATIVE -1) (ZERO 0) (POSITIVE 1))

(define-quantity-space CARRIAGE POSITION Amount
(DOWN -0.1) (UP 0.0))

(define-quantity-space CARRIAGE POSITION Rate
(NEGATIVE -0.1) (ZERO 0.0) (POSITIVE 0.1))

(define-quantity-space COILS TEMPERATURE Amount
(OFF 30) (WARM 30 200) (HOT 200 300))

(define-quantity-space COILS TEMPERATURE Rate
(NEGATIVE -1) (ZERO 0) (POSITIVE 2))

(define-quantity-space BREAD APPEARANCE Amount
(UNTOASTED 0) (LIGHT 50) (GOLDEN 100)
(MEDIUM 200) (BROWN 400)
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(DARK 800) (BURNT 2600))
(define-quantity-space BREAD APPEARANCE Rate
(ZERO 0) (POSITIVE 1))

(define-quantity-space OUTLET CHARGE Amount
{ON 100.0))

(define-quantity-space OUTLET CHARGE Rate
(ZERO 0.0) (POSITIVE 10.0))

(define-quantity-space EARTH GRAVITY Amount
(G 9.8))

(define-quantity-space EARTH GRAVITY Rate
(ZERO 0.0))

13ZEROS;:;

(define-zero LEVER POSITION UP)

{(define-zero DIAL ANGLE)

(define-zero CARRIAGE POSITION UP)

{define-zero COILS TEMPERATURE OFF)
(define-zero BREAD APPEARANCE UNTOASTED)
(define-zero OUTLET CHARGE)
(define-zero EARTH GRAVITY)

;i3 DIRECTIONS;;;
(define-direction UP)
(define-direction DOWN)
define-direction CLOCKWISE)
define-direction SCALAR)

(
(
(define-quantity-direction UP (LEVER POSITION))
(define-quantity-direction CLOCKWISE (DIAL ANGLE))
(define-quantity-direction UP (CARRIAGE POSITION))
(define-quantity-direction SCALAR (COILS TEMPERATURE))
(define-quantity-direction SCALAR (BREAD APPEARANCE))
(define-quantity-direction SCALAR (OUTLET CHARGE))
(define-quantity-direction DOWN (EARTH GRAVITY))

;i TIMELINE;;;

H{l)

(start 0)

(assert-quantity-m LEVER POSITION Amount 1'p)
(assert-quantity-m LEVER POSITION Rate Zero)
(assert-quantity-m DIAL ANGLE Amount LM)
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(assert-quantity-m DIAL ANGLE Rate Zero)
(assert-quantity-m CARRIAGE POSITION Amount Up)
{assert-quantity-m CARRIAGE POSITION Rate Zero)
(assert-quantity-m COILS TEMPERATURE Amount Off)
(assert-quantity-m COILS TEMPERATURE Rate Zeto)
(assert-quantity-m BREAD APPEARANCE Amount Untoasted)
(assert-quantity-m BREAD APPEARANCE Rate Zero)
(assert-quantity-m OUTLET CHARGE Amount On)
(declare-known-cause-event

(assert-quantity-m OUTLET CHARGE Rate Positive))
{declare-known-cause-event

(assert-quantity-m EARTH GRAVITY Amount G))
{assert-quantity-m EARTH GRAVITY Rate Zero)

itl
(tick 60)
(declare-known-cause-event
(assert-quantity-m LEVER POSITION Rate Negative))
(assert-quantity-m CARRIAGE POSITION Rate Negative)

it2

(tick 61)

(assert-quantity-m LEVER POSITION Amount Down)
(assert-quantity-m LEVER POSITION Rate Zetro)
(assert-quantity-m CARRIAGE POSITION Amount Down)
(assert-quantity-m CARRIAGE POSITION Rate Zero)
(assert-quantity-m COILS TEMPERATURE Rate Positive)

;t3
(tick 66)
(declare-known-effect-event
(assert-quantity-m BREAD APPEARANCE Rate Positive))

it4
(tick 186)
(declare-known-effect-event

(assert-quantity-m LEVER POSITION Rate Positive))
(assert-quantity-m CARRIAGE POSITION Rate Positive)
(assert-quantity-m COILS TEMPERATURE Amount Hot)
(assert-quantity-m COILS TEMPERATURE Rate Zero)
(assert-quantity-m BREAD APPEARANCE Amount Golden)
(assert-quantity-m BREAD APPEARANCE Rate Zero)

1t5
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(tick 187)
(mcrt-qmy-u LEVEE PO&W &m Up) o
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;#:PHYSICAL OBJECTS:::
(define-physical-objects SLIDE PISTON TIRE CYLINDER EARTH)

1iQUANTITIES;::
(define-quantities
{SLIDE POSITION)
(TIRE AMOUNT-OF-GAS)
(EARTH GRAVITY))

:3QUANTITY SPACES:;;
(define-quantity-space SLIDE POSITION Amount
(G0 0.0) (G20 0.02) (G24 0.024) (G28 0.028)
{G32 0.032) (G36 0.036) (G40 0.04))
{(define-quantity-space SLIDE POSITION Rate
(NEGATIVE -0.05) (ZERO 0.0) (POSITIVE 0.05) (FAST 0.1))

{define-quantity-space TIRE AMOUNT-OF-GAS Amount
(P0 0.0) (P2 2.0) (P4 4.0) (P6 6.0) (P8 8.0) (P10 10.0)
(P12 12.0) (P14 14.0) (P16 16.0) (P18 18.0) (P20 20.0)
(P22 22.0) (P24 24.0) (P26 26.0) (P28 28.0) (P30 30.0)
(P32 32.0) (P34 34.0) (P36 36.0) (P38 38.0) (P40 40.0))

(define-quantity-space TIRE AMOUNT-OF-GAS Rate
(NEGATIVE -0.1) (ZERO 0.0) (POSITIVE 0.1))

(define-quantity-space EARTH GRAVITY Amount
(G 9.8))

(define-quantity-space EARTH GRAVITY Rate
{ZERO 0.0))

3 ZEROS;553

(define-zero SLIDE POSITION GO0)
{(define-zero TIRE AMOUNT-OF-GAS P0)
(define-zero EARTH GRAVITY)

;3CORRESPONDENCES:;;
;(define-correspondence
(SLIDE POSITION GO0) Greater (PISTON POSITION S540))

;s DIRECTIONS:;:
{(define-direction CYLINDER-AXIS)
(define-direction TIRE-STEM-AXIS)
(define-direction DOWN)

(

define-quantity-direction CYLINDER-AXIS (SLIDE POSITION))
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{define-quantity-direction TIRE-STEM-AXIS (TIRE AMOUNT-OF-GAS))
(define-quantity-direction DOWN (EARTH GRAVITY))

(affirm-relation CYLINDER-AXIS ‘Skewed DOWN)

s TIMELINE::;

;t0
(start 0)
s(affirm-relation CYLINDER ’'Contains PISTON)
i(consider-relation PISTON 'Attached-To SLIDE) ::declaration of piston
j(consider-relation PISTON 'Connected-To SLIDE) :inside tire gauge
;(consider-relation PISTON "Touches SLIDE)
(assert-quantity-m SLIDE POSITION Amount GO)
(assert-quantity-m SLIDE POSITION Rate Zero)
(assert-quantity-m TIRE AMOUNT-OF-GAS Amount P28)
(assert-quantity-m TIRE AMOUNT-OF-GAS Rate Zero)
(declare-known-cause-event

(assert-quantity-m EARTH GRAVITY Amount G))
(assert-quantity-m EARTH GRAVITY Rate Zero)

itl

(tick 60)

(affirm-relation TIRE 'Joined-To CYLINDER)

(affirm-relation CYLINDER-AXIS "Opposite TIRE-STEM-AXIS)
(declare-known-cause-event

(assert-quantity-m TIRE AMOUNT-OF-GAS Rate Negative))

it2
(tick 60.1)
(declare-known-effect-event
(assert-quantity-m SLIDE POSITION Rate Positive))

;t3
(tick 60.2)
(assert-quantity-m SLIDE POSITION Amount G28)
(declare-known-effect-event

(assert-quantity-m SLIDE POSITION Rate Zero))
(assert-quantity-m TIRE AMOUNT-OF-GAS Amount P28)
(assert-quantity-m TIRE AMOUNT-OF-GAS Rate Zero)

it4
(tick 70)
(deny-relation TIRE “Joined-To CYLINDER)
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:PHYSICAL OBJECTS::;
(define-physical-objects PEDAL SPROCKET HUB)

:33QUANTITIES:;:

(define-quantities
(PEDAL ANGLE)
(SPROCKET ANGLE)
(HUB ANGLE))

;3QUANTITY SPACES::

(define-quantity-space PEDAL ANGLE Amount

(BACK (* *pi* 0.0)} (TOP (// *pit* 2)) (FRONT *pi*)
(BOTTOM (* (// *pi* 2) 3)) (BACK (* *pi* 0.0)))

(define-quantity-space PEDAL ANGLE Rate
(NEGATIVE (minus (// *pi* 2))) (ZERO (* *pi* 0.0))
(POSITIVE {// *pi* 2)))

(define-quantity-space SPROCKET ANGLE Amount
(BACK (* *pi* 0.0)) (TOP (// *pi* 2)) (FRONT *pi*)
(BOTTOM (* (// *pi* 2) 3)) (BACK (* *pi* 0.0)))

{define-quantity-space SPROCKET ANGLE Rate
(NEGATIVE (minus (// *pi* 2))) (ZERO (* *pi* 0.0))
(POSITIVE (// *pi* 2)))

(define-quantity-space HUB ANGLE Amount
(BACK (* *pi* 0.0)) (TOP (// *pi* 2)) (FRONT *pi*)
(BOTTOM (* (// *pi* 2) 3)) (BACK (* *pi* 0.0)))
(define-quantity-space HUB ANGLE Rate
(NEGATIVE (minus (// *pi* 2))) (ZERO (* *pi* 0.0))
(POSITIVE (// *pi* 2)))
ZEROS;:;
{define-zero PEDAL ANGLE BACK)

(define-zero SPROCKET ANGLE BACK)
(define-zero HUB ANGLE BACK)

;11 DIRECTIONS::;

(define-direction COUNTER-CLOCKWISE)

(define-quantity-direction COUNTER-CLOCKWISE (PEDAL ANGLE))
(

(

define-quantity-direction COUNTER-CLOCKWISE (SPROCKET ANGLE))
define-quantity-direction COUNTER-CLOCKWISE (HUB ANGLE))

5:;TIMELINE::;
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211)

(start Q)

(affirm-relation PEDAL "Attached-To SPROCKET)
(deny-relation PEDAL 'Connected-To SPROCKET)
(deny-relation PEDAL ‘Touches SPROCKET)
(consider-relation SPROCKET “Attached-To HUB)
(consider-relation SPROCKET 'Connected-To HUB)
{consider-telation SPROCKET Touches HUB)
(deny-relation PEDAL 'Attached-To HUB)
(deny-relation PEDAL 'Connected-To HUB)
(deny-relation PEDAL "Touches HUB)
(assert-quantity-m PEDAL ANGLE Amount Top)
(assert-quantity-m PEDAL ANGLE Rate Zero)
(assert-quantity-m SPROCKET ANGLE Amount Front)
(assert-quantity-m SPROCKET ANGLE Rate Zero)
(assert-quantity-m HUB ANGLE Amount Back)
(assert-quantity-m HUB ANGLE Rate Zero)

itl
(tick 60)
{declare-known-cause-event
(assert-quantity-m PEDAL ANGLE Rate Positive))
(assert-quantity-m SPROCKET ANGLE Rate Positive)

it2
(tick 61)
(declare-known-effect-event
(assert-quantity-m HUB ANGLE Rate Positive))

it3
(tick 70)
(assert-quantity-m PEDAL ANGLE Amount Front)
{declare-known-cause-event

(assert-quantity-m PEDAL ANGLE Rate Zero))
(assert-quantity-m SPROCKET ANGLE Amount Bottom)
(assert-quantity-m SPROCKET ANGLE Rate Zero)

it4
(tick 80)
(declare-known-cause-event

(assert-quantity-m PEDAL ANGLE Rate Negative))
(assert-quantity-m SPROCKET ANGLE Rate Negative)

itS
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(tick 81)
(assert-quantity-m PEDAL ANGLE Ameount '!’op)
{declaze-known-conse-event

(mm m&a Am m M?




;:PHYSICAL OBJECTS:::
(define-physical-objects INTERIOR EXTERIOR OUTLET)

;i5QUANTITIES;:;
(define-quantities

(INTERIOR TEMPERATURE)

(EXTERIOR TEMPERATURE)

(OUTLET CHARGE))

;1:QUANTITY SPACES::

(define-quantity-space INTERIOR TEMPERATURE Amount
(FROZEN -5.0 5.0) (COLD 5.0 20.0) (AMBIENT 20.0 25.0))

(define-quantity-space INTERIOR TEMPERATURE Rate
(NEGATIVE -1.0) (ZERO 0.0) (POSITIVE 1.0))

(define-quantity-space EXTERIOR TEMPERATURE Amount

(AMBIENT 20.0 25.0) (WARM 25.0 40.0) (HOT 40.0 100.0))

(define-quantity-space EXTERIOR TEMPERATURE Rate
(NEGATIVE -1.0) (ZERO 0.0) (POSITIVE 1.0))

(define-quantity-space OUTLET CHARGE Amount
(ON 100.0))

(define-quantity-space QUTLET CHARGE Rate
(ZERO 0.0) (POSITIVE 100.0))

33 ZEROS;;3;
(define-zero INTERIOR TEMPERATURE FROZEN)
(define-zero EXTERIOR TEMPERATURE)
(define-zero OUTLET CHARGE)

;13 DIRECTIONS:;;
define-direction SCALAR)

(

(define-quantity-direction SCALAR (INTERIOR TEMPERATURE))
(define-quantity-direction SCALAR (EXTERIOR TEMPERATURE))
(

define-quantity-direction SCALAR (OUTLET CHARGE))

si3sTIMELINE;;;

;t0
(start 0)

assert-quantity-m INTERIOR TEMPERATURE Amount Cold)

(
(assert-quantity-m INTERIOR TEMPERATURE Rate Zero)
(

assert-quantity-m EXTERIOR TEMPERATURE Amount Ambient)
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(assert-quantity-m EXTERIOR TEMPERATURE Rate Zero)

(declaze-known-canse-event '
(assert-quantity-m QOUTLET CSAﬁGI Amosat On))

(assert-quaatity-m OUTLET CRARGE Rate: Pouitive)

i1
{tick 1)
(assert-quantity-m INTERIOR TEB&PERAT‘!E Rate Mn)

2
(tick 60)
(declare-known-effect-event
(assert-quantity-m INTERIOR raurmwn W llewm))

HY
(tick 61)
(declaze-known-eflect-event
(M-n zammoa Tlﬂlm M Mive))
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:wPHYSICAL OBJECTS:::
(define-physical-objects FURNACE RADIATOR ROOM OUTLET EARTH)

;35 QUANTITIES:;;
(define-quantities

(FURNACE TEMPERATURE)
RADIATOR TEMPERATURE)
ROOM TEMPERATURE)
OUTLET CHARGE)
EARTH GRAVITY})

;13QUANTITY SPACES:::

(define-quantity-space FURNACE TEMPERATURE Amount
(OFF 10.0 25.0) (ON 80.0 90.0))

(define-quantity-space FURNACE TEMPERATURE Rate
(NEGATIVE -1.0) (ZERO 0.0) (POSITIVE 1.0))

(define-quantity-space RADIATOR TEMPERATURE Amount
{COLD 15.0 25.0) (WARM 25.0 80.0) {HOT 80.0 90.0))

(define-quantity-space RADIATOR TEMPERATURE Rate
(NEGATIVE -1.0) (ZERO 0.0) (POSITIVE 1.0))

(define-quantity-space ROOM TEMPERATURE Amount
(COOL 15.0 20.0) (NICE 20.0) {WARM 20.0 25.0))

{define-quantity-space ROOM TEMPERATURE Rate
{NEGATIVE -0.0001) (ZERO 0.0) (POSITIVE 0.01))

(define-quantity-space OUTLET CHARGE Amount
{ON 100.0))

(define-quantity-space OUTLET CHARGE Rate
(ZERO 0.0) (POSITIVE 100.0))

(define-quantity-space EARTH GRAVITY Amount
(G 9.8))

(define-quantity-space EARTH GRAVITY Rate
(ZERO 0.0))

133 ZEROS;;3;

(define-zero FURNACE TEMPERATURE)
(define-zero RADIATOR TEMPERATURE)
(define-zero ROOM TEMPERATURE)
(
(

o~ — —

define-zero OUTLET CHARGE)
define-zero EARTH GRAVITY)
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;3:DIRECTIONS::;
define-direction SCALAR)
define-direction DOWN)

{
(
(define-quantity-direction SCALAR (FURNACE TEMPERATURE))
(define-quantity-direction SCALAR (RADIATOR TEMPERATURE))
(define-quantity-direction SCALAR (ROOM TEMPERATURE))
{define-quantity-direction SCALAR (OUTLET CHARGE))
(define-quantity-direction DOWN (EARTH GRAVITY))

1w TIMELINE:;;

;t0
(start 0)
{consider-relation FURNACE ‘Joined-To RADIATOR)
(considet-relation FURNACE 'Connected-To RADIATOR)
(deny-relation FURNACE 'Line-of-Sight-To RADIATOR)
(deny-relation FURNACE 'Joined-To ROOM)
(deny-relation FURNACE 'Connected-To ROOM)
(deny-relation FURNACE 'Line-of-Sight-To ROOM)
(deny-relation RADIATOR 'Joined-To ROOM)
(consider-relation RADIATOR 'Connected-To ROOM)
(consider-relation RADIATOR ’'Line-of-Sight-To ROOM)
(assert-quantity-m FURNACE TEMPERATURE Amount Off)
(assert-quantity-m FURNACE TEMPERATURE Rate Zero)
{assert-quantity-m RADIATOR TEMPERATURE Amount Cold)
(assert-quantity-m RADIATOR TEMPERATURE Rate Zero)
(assert-quantity-m ROOM TEMPERATURE Amount Nice)
(assert-quantity-m ROOM TEMPERATURE Rate Zero)
(declare-known-cause-event

(assert-quantity-m OUTLET CHARGE Amount On))
{assert-quantity-m OUTLET CHARGE Rate Positive)
(declare-known-cause-event

(assert-quantity-m EARTH GRAVITY Amount G))
(assert-quantity-m EARTH GRAVITY Rate Zero)

3t
(tick 1)
(assert-quantity-m ROOM TEMPERATURE Rate Negative)

it2
(tick 21600)
(assert-quantity-m ROOM TEMPERATURE Amount Cool)



170

1t3
(tick 21660)
(assert-quantity-m FURNACE TEMPERATURE Rate Positive)

it4

(tick 21780)

(assert-quantity-m FURNACE TEMPERATURE Amount On)
(assert-quantity-m FURNACE TEMPERATURE Rate Zero)

it5
(tick 21960)
(assert-quantity-m RADIATOR TEMPERATURE Rate Positive)

;t6
(tick 21970)
(declare-known-effect-event
(assert-quantity-m ROOM TEMPERATURE Rate Positive))

t7

(tick 22140)

(assert-quantity-m RADIATOR TEMPERATURE Amount Hot)
{assert-quantity-m RADIATOR TEMPERATURE Rate Zero)

;t8

(tick 22570)

{assert-quantity-m ROOM TEMPERATURE Amount Nice)
(assert-quantity-m ROOM TEMPERATURE Rate Zero)
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Appendix B: The Vocabulary of Mechanisms

;sisMECHANICAL COUPLING;;;
(DefMechanism MECHANICAL-COUPLING Causal
(
:independent-quantity-type 'Position
:independent-quantity-order 'Rate
:dependent-quantity-type 'Position
:dependent-quantity-order 'Rate
:distance 'Different
:time-constant (make-range 0.1 *c*)
:sign 'Positive
:deflection 'Parallel
:efficiency (make-range 1.0)
:alignment ’(Less Greater)
:bias ’(Up-Up Down-Down)
:medium '(Attached-To Connected-To Touches))
{Components
Propagation))

;13 RIGID COUPLING:;;
(DefMechanism RIGID-COUPLING Causal
(
:time-constant (make-range *c*)
:medium 'Attached-To)
(Components
Mechanical-Coupling))
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;s NON-RIGID COUPLING:::
(DefMechanism NON-RIGID-COUPLING Causal
(

:time-constant (make-range 0.1 *c*)

:alignment 'Greater

:medium ‘Connected-To)

(Components

Mechanical-Coupling))

1#:CONTACT COUPLING::;
(DefMechanism CONTACT-COUPLING Causal
(
:time-constant (make-range 0.1 *c*)
:alignment "Less
:medium 'Touches)
(Components
Mechanical-Coupling))

;#sFORWARD RATCHET:;;
(DefMechanism FORWARD-RATCHET Causal
(

:time-constant {make-range *c*)

:bias 'Up-Up

:medium ’Attached-To)

(Components

Mechanical-Coupling))

;s BACKWARD RATCHET:::
(DefMechanism BACKWARD-RATCHET Causal
(

:time-constant (make-range *c*)

:bias 'Down-Down

:medium ‘Attached-To)

(Components

Mechanical-Coupling))



13 ROTARY COUPLING::;
(DefMechanism ROTARY-COUPLING Causal
(
:independent-quantity-type "Angle
:independent-quantity-order ‘Rate
:dependent-quantity-tvpe ‘Angle
:dependent-quantity-order ‘Rate
:distance 'Different
:time-constant (make-range 0.1 *c*)
:sign 'Positive
:deflection 'Parallel
:effictency (make-range 0.01 100.0)
:alignment '(Less Greater)
:bias '(Up-Up Down-Down)
:medium '(Attached-To Connected-To Touches))
(Components
Propagation))

3 RIGID ROTARY COUPLING::;
(DefMechanism RIGID-ROTARY-COUPLING Causal
(
:time-constant (make-range *c*)
:medium Attached-To)
(Components
Rotary-Coupling))

;33 NON-RIGID ROTARY COUPLING:;;
(DefMechanism NON-RIGID-ROTARY-COUPLING Causal
(

:time-constant (make-range 0.1 *c*)

:alignment 'Greater

:medium 'Connected-To)

(Components

Rotary-Coupling))

;33CONTACT ROTARY COUPLING::;
(DefMechanism CONTACT-ROTARY-COUPLING Causal

(

:time-constant (make-range 0.1 *c*)

:alignment ’Less

:medium 'Touches)

{Components

Rotary-Coupling))
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;33 FORWARD ROTARY RATCHET:::
(DefMechanism FORWARD-ROTARY-RATCHET Causal

(

:time-constant (make-range *c*)

:bias 'Up-Up

:medium ‘Attached-To)

{Components

Rotary-Coupling))

;335 BACKWARD ROTARY RATCHET:::
{DefMechanism BACKWARD-ROTARY-RATCHET Causal

(

:time-constant (make-range *c*)

:bias 'Down-Down

:medium "Attached-To)

{(Components

Rotary-Coupling))

;i3 ELECTRICITY 55
(DefMechanism ELECTRICITY Causal
(
:independent-quantity-type *Charge
:independent-quantity-order 'Rate
:dependent-quantity-type "Charge
:dependent-quantity-order 'Rate
:distance 'Different
:time-constant (make-range *c*)
:sign 'Positive
:deflection '(Parallel Opposite Perpendicular Skewed)
:efficiency (make-range 0.01 100.0) :(depends on resistors, transformers)
:alignment '(Less Equal Greater)
:bias '(Up-Up Down-Down)
:medium 'Connected-To)
(Components
Propagation))
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s HEAT TRANSFER:::

{DefMechanism HEAT-TRANSFER Causal
(
:independent-quantity-type “Temperature
:independent-quantity-order ‘Rate
:dependent-quantity-type ‘Temperature
:dependent-quantity-order ‘Rate
:distance 'Different
:time-constant (make-range 0.01 *c*)
:sign '(Negative Positive)
:deflection ’(Parallel Opposite Perpendicular Skewed)
:efficiency (make-range 0.001 0.5)
:alignment 'Greater
:bias '(Down-Down Down-Up Up-Down Up-Up)
:medium ‘(Connected-To Line-of-Sight-To))
{Components

Propagation))

;3CONDUCTIVE HEAT EXCHANGE:::
(DefMechanism CONDUCTIVE-HEAT-EXCHANGE Causal
(
:time-constant (make-range 0.01 0.1)
:sign "Negative
cefficiency (make-range 0.01 0.5) ;(depends on thermal conductivity)
:bias (Down-Up Up-Down)
:medium 'Connected-To)
(Components
Heat-Transfer))

#33CONDUCTIVE HEAT FLOW:::
{DefMechanism CONDUCTIVE-HEAT-FLOW Causal
(
:time-constant (make-range 0.01 0.1)
:sign 'Positive
:efficiency (make-range 0.01 0.5) :(depends on thermal conductivity)
:bias '(Down-Down Up-Up)
:medium 'Connected-To)
(Components
Heat-Transfer))
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:#RADIATIVE HEAT EXCHANGE:::
(DefMechanism RADIATIVE-HEAT-EXCHANGE Causal
(

:time-constant (make-range 0.01 *c*)

:sign "Negative

:efficiency (make-range 0.001 0.1) :(inverse square)

:bias ’(Down-Up Up-Down)

:medium ’Line-of-Sight-To)

(Components

Heat-Transfer))

:::RADIATIVE HEAT FLOW::;
(DefMechanism RADIATIVE-HEAT-FLOW Causal

(

:time-constant (make-range 0.01 *c*)

:sign 'Positive

:efficiency {make-range 0.001 0.1) ;(inverse square)

:bias '(Down-Down Up-Up)

:medium 'Line-of-Sight-To)

(Components

Heat-Transfer))

533 LIGHT TRANSMISSION;:;
(DefMechanism LIGHT-TRANSMISSION Causal
(
:independent-quantity-type ‘Intensity
:independent-quantity-order 'Rate
:dependent-quantity-type 'Intensity
:dependent-quantity-order 'Rate
:distance 'Different
:time-constant (make-range *c*)
:sign 'Positive
:deflection '(Parallel Opposite Perpendicular Skewed)
:efficiency (make-range 0.001 0.1) :(inverse square)
:alignment 'Greater
:bias ’(Down-Down Up-Up)
:medium ‘Line-of-Sight-To)
{Components
Propagation))
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1335GAS TRANSFER:;:

{DefMechanism GAS-TRANSFER Causal
(
:independent-quantity-type 'Amount-of-Gas
:independent-quantity-order ‘Rate
:dependent-quantity-type ‘Amount-of-Gas
:dependent-quantity-order 'Rate
:distance 'Different
:time-constant (make-range 0.1 100.0)
:sign (Negative Positive) :
:deflection ’(Parallel Opposite Perpendicular Skewed)
:efficiency (make-range 0.01 1.0) :(gas is compressible)
:alignment ‘(Less Greater)
:bias '(Down-Down Down-Up Up-Down Up-Up)
:medium ‘Joined-To)

{Components

Propagation})

133GAS EXCHANGE;;;
(DefMechanism GAS-EXCHANGE Causal
(
:sign 'Negative
:bias '(Down-Up Up-Down))
(Components
Gas-Transfer))

335GAS FLOW s
(DefMechanism GAS-FLOW Causal
(
:sign 'Positive
:bias ’(Down-Down Up-Up))
(Components
Gas-Transfer))
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#wFLUID TRANSFER:::

{DefMechanism FLUID-TRANSFER Causal

(
:independent-quantity-type 'Amount-of-Fluid
‘independent-quantity-order 'Rate
:dependent-quantity-type "Amount-of-Fluid
:dependent-quantity-order ‘Rate
:distance 'Different
:time-constant (make-range 0.1 100.0)
:sign '(Negative Positive)
:deflection '(Parallel Opposite Perpendicular Skewed)
:efficiency (make-range 1.0) :(fluids are not compressible)
:alignment ‘(Less Greater) \
:bias '(Down-Down Down-Up Up-Down Up-Up)
:medium ‘Joined-To)

{(Components

Propagation))

i+ FLUID EXCHANGE;:;;
{DefMechanism FLUID-EXCHANGE Causal
(
:sign 'Negative
:bias '(Down-Up Up-Down))
{Components
Fluid-Transfer))

3:FLUID FLOW;:;
{DefMechanism FLUID-FLOW Causal
(
:sign "Positive
:bias '(Down-Down Up-Up))
{Components
Fluid-Transfer))



179

;sELECTRO-MECHANICAL::
{DefMechanism ELECTRO-MECHANICAL Causal
(
:independent-quantity-type "Charge
:independent-quantity-order ‘Rate
:dependent-quantity-type 'Position
:dependent-quantity-order "Rate
:distance ‘Same
:time-constant {make-range *c*)
:sign "Positive
:deflection '(Parallel Opposite Perpendicular Skewed)
:efficiency (make-range 0.01 100.0) ;:(depends on transmission ratios)
:alignment '(Less Equal Greater)
:bias '(Up-Up Down-Down)
:medium 'Same)
(Components
Transformation))

;i3 ELECTRO-ROTARY:;;
(DefMechanism ELECTRO-ROTARY Causal
(
:independent-quantity-type ‘Charge
:independent-quantity-order 'Rate
:dependent-quantity-type *Angle
:dependent-quantity-order 'Rate
:distance 'Same
:time-constant (make-range *c™)
:sign 'Positive
:deflection '(Parallel Opposite Perpendicular Skewed)
:efficiency (make-range 0.01 100.0) :(depends on transmission ratios)
:alignment ’(Less Equal Greater)
:bias ’(Up-Up Down-Down)
:medium ’Same)
{Components
Transformation))
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#ELECTRO-PHOTIC:::
{DefMechanism ELECTRO-PHOTIC Causal
{
:independent-quantity-type "Charge
:independent-quantity-order 'Rate
:dependent-quantity-type ‘Intensity
:dependent-quantity-order ‘Rate
:distance 'Same
:time-constant (make-range *c*)
:sign Positive
:deflection '(Parallel Opposite Perpendicular Skewed)
:efficiency (make-range 0.01 100.0) :(depends on resistivity)
:alignment ’(Less Equal Greater)
:bias "Up-Up
:medium 'Same)
(Components
Transformation))

i ELECTRO-THERMAL;;;
{DefMechanism ELECTRO-THERMAL Causal
(
:independent-quantity-type 'Charge
:independent-quantity-order 'Rate
:dependent-quantity-type "Temperature
:dependent-quantity-order ‘Rate
:distance 'Same
:time-constant (make-range *c*)
:sign 'Positive
:deflection ’(Parallel Opposite Perpendicular Skewed)
:efficiency (make-range 0.01 100.0) :(depends on resistivity)
:alignment '(Less Equal Greater)
:bias 'Up-Up
:medium ’Same)
(Components
Transformation))
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i PHOTO-CHEMICAL::;
(DefMechanism PHOTO-CHEMICAL Causal
(
:independent-quantity-type ‘Intensity
:independent-quantity-order ‘Rate
:dependent-quantity-type ‘Appearance
:dependent-quantity-order 'Rate
:distance 'Same
:time-constant (make-range *c*)
:sign 'Positive
:deflection '(Parallel Opposite Perpendicular Skewed)
:efficiency (make-range 0.001 0.1) :(depends on ASA rating)
:alignment '(Less Equal Greater)
:bias 'Up-Up
:medium ‘Same)
(Components
Transformation))

;53 THERMO-CHEMICAL:;;
(DefMechanism THERMO-CHEMICAL Causal
(
:independent-quantity-type "Temperature
:independent-quantity-order 'Rate
:dependent-quantity-type 'Appearance
:dependent-quantity-order 'Rate
:distance 'Same
:time-constant (make-range *c*)
:sign Positive
:deflection '(Parallel Opposite Perpendicular Skewed)
:efficiency (make-range 0.1 10.0) :(depends on chemistry)
:alignment '(Less Equal Greater)
:bias "Up-Up
:medium 'Same)
(Components
Transformation)
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i:MECHANICAL EXPANSION:;
(DefMechanism MECHANICAL-EXPANSION Causal
(
‘independent-quantity-type 'Position
:independent-quantity-order ‘Rate
:dependent-quantity-type 'Pressure
:dependent-quantity-order 'Rate
:distance 'Same
:time-constant (make-range *c*)
:sign '(Negative Positive)
:deflection '(Parallel Opposite Perpendicular Skewed)
:efficiency (make-range 0.01 100.0)
:alignment '(Less Equal Greater)
:bias '(Down-Down Down-Up Up-Down Up-Up)
:medium 'Same)
{(Components
Transformation))

i EXPANSION::;
(DefMechanism EXPANSION Causal
(
:bias '(Down-Down Up-Down))
(Components
Mechanical-Expansion))

15 3COMPRESSION:::
(DefMechanism COMPRESSION (ausal
(
:bias "(Down-Up Up-Up))
(Components
Mechanical-Expansion))
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3 THERMAL COMPRESSION:::
(DefMechanism THERMAL-COMPRESSION Causal
(
:independ. at-quantity-type "Temperature
:independent-quantity-order ‘Rate
:dependent-quantity-type ‘Pressure
:dependent-quantity-order ‘Rate
:distance "Same
:time-constant {make-range *c*)
:sign 'Positive
:deflection '(Parallel Opposite Perpendicular Skewed)
:efficiency {make-range 0.01 100.0)
:alignment '(Less Equal Greater)
:bias '(Down-Down Up-Up)
:medium 'Same)
{Components
Transformation))

;i35 THERMAL EXPANSION:;:
{DefMechanism THERMAL-EXPANSION Causal
(
sindependent-quantity-type "Temperature
:independent-quantity-order 'Rate
:dependent-quantity-type ‘Position
:dependent-quantity-order 'Rate
:distance 'Same
:time-constant {make-range *c*)
:sign 'Positive
:deflection '(Parallel Opposite Perpendicular Skewed)
sefficiency (make-range 0.00001 0.001) :(depends on expansion coefficient)
:alignment '(Less Equal Greater)
:bias '(Up-Up Down-Down)
:medium 'Same)
(Components
Transformation))

(DefMechanism FORCE Causal
0

(Components
Propagation))
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;5" GRAVITY :::

(DefMechanism GRAVITY Causal

(
:independent-quantity-type 'Gravity
:independent-quantity-order ‘Amount
:independent-quantity-space "((G 9.8))
:dependent-quantity-type 'Position
:dependent-quantity-order ‘Rate
:distance 'Different
:time-constant (make-range *c*)
:sign 'Positive
:deflection 'Parallel
:efficiency (make-range 0.5 10.0) :(approximates acceleration)
:alignment '(Less Equal Greater)
:bias "(Up-Up Down-Down)
:mediu.n 'Reaches)

(Components
Force))

;3:.SPRING;;;
(DefMechanism SPRING Causal
(
:independent-quantity-type 'Position
:independent-quantity-order 'Amount
:independent-quantity-space
'(UNLOADED *zero*) (LOADED *zero* 0.1))
:independent-quantity-zero "UNLOADED
:dependent-quantity-type 'Position
:dependent-quantity-order 'Rate
:distance 'Same
:time-constant (make-range *c*)
:sign 'Negative
:deflection 'Opposite
:efficiency (make-range 1.0 100.0) :(depends on spring constant)
:alignment ’(Less Equal Greater)
:bias 'Up-Up
:medium 'Same)
{Components
Force))
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WPNEUMATIC::;
(DefMechanism PNEUMATIC Causal
(
:independent-quantity-type "Amount-of-Gas
:independent-quantity-order 'Rate
:dependent-quantity-tvpe ‘Position
:dependent-quantity-order "Rate
:distance 'Different
:time-constant (make-range *c*)
:sign "Positive
:deflection "Parallel
:efficiency (make-range 0.1 10.0)
:alignment ’(Less Equal Greater)
:bias (Up-Up Down-Down)
:medium ‘Contains)
(Components
Force))

;s HYDRAULIC:::
(DefMechanism HYDRAULIC Causal
(
:independent-quantity-type 'Amount-of-Fluid
:independent-quantity-order 'Rate
:dependent-quantity-type 'Position
:dependent-quantity-order "Rate
:distance 'Different
‘time-constant {make-range *c*)
:sign "Positive
:deflection 'Parallel
:efficiency (make-range 0.1 10.0)
:alignment ’(Less Equal Greater)
:bias (Up-Up Down-Down)
:medium 'Contains)
(Components
Force))

(DefMechanism ENABLEMENT Enablement
0
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3 SWITCH:::
(DefMechanism SWITCH Enablement
(
:independent-quantity-type 'Position
:independent-quantity-order 'Amount
:independent-quantity-space
‘((CLOSED *zero* 0.01) (OPEN 0.01))
:independent-quantity-zero 'CLOSED
:dependent-quantity-type 'Charge
:dependent-quantity-order ‘Rate
:distance 'Different
:time-constant (make-range *c*)
:sign 'Zero ;(cannot explain non-zero effect alone)
:deflection ‘(Patalle] Opposite Perpendicular Skewed)
:efficiency (make-range *zero*) :(cannot explain non-zero effect alone)
:alignment ’(Less Equal Greater)
:bias 'Up-Up
:medium 'Connected-To)
(Components
Enablement))

;5 LATCH ;5
(DefMechanism LATCH Enablement
(
:independent-quantity-type 'Position
:independent-quantity-order 'Amount
:independent-quantity-space
‘((CLOSED *zero*) (OPEN *zero* 0.1))
:independent-quantity-zero 'CLOSED
:dependent-quantity-type 'Position
:dependent-quantity-order 'Rate
:distance 'Different
:time-constant (make-range *c*)
:sign "Zero
:deflection '(Parallel Opposite Perpendicular Skewed)
:efficiency (make-range *zero*)
:alignment ’(Less Equal Greater)
:bias (Up-Down Up-Up)
:medium ‘Attached-To)
{Components
Enablement))
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;#:ROTARY LATCH::
{DefMechanism ROTARY-LATCH Enablement
(
:independent-quantity-tvpe "Angle
:independent-quantity-order "Amount
:independent-quantity-space
‘((CLOSED *zero*™) (OPEN *zero™ (// *pi* 2)))
:independent-quantity-zero 'CLOSED
:dependent-quantity-type 'Angle
:dependent-quantity-order "Rate
:distance 'Different
:time-constant (make-range *c*)
:sign 'Zero
:deflection '(Parallel Opposite Perpendicular Skewed)
:efficiency (make-range *zero*)
:alignment ‘(Less Equal Greater)
:bias '(Up-Down Up-Up)
:medium ‘Attached-To)
(Components
Enablement))

35 VENT s

{(DefMechanism VENT Enablement
(
:independent-quantity-type 'Position
:independent-quantity-order "Amount
:independent-quantity-space

‘((CLOSED *zero*) (OPEN *zero* 0.1))
:independent-quantity-zero "CLOSED
:dependent-quantity-type "Temperature
:dependent-quantity-order "Rate
:distance 'Different
:time-constant (make-range *c*)
:sign ’Zero
:deflection ’(Parallel Opposite Perpendicular Skewed)
:efficiency (make-range *zero*™)
:alignment '(Less Equal Greater)
:bias "Up-Up
:medium 'Spans)
(Components
Enablement))
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wSHUTTER:::;
{DefMechanism SHUTTER Enablement
(
:independent-quantity-type 'Position
:independent-quantity-order 'Amount
:independent-quantity-space
"((CLOSED *zero*) (OPEN *zero* 0.01}))
:independent-quantity-zero 'CLOSED
:dependent-quantity-type 'Intensity
:dependent-quantity-order 'Rate
:distance 'Different
‘time-constant (make-range *c*)
:sign 'Zero
:deflection '(Parallel Opposite Perpendicular Skewed)
refficiency (make-range *zero*)
:alignment '(Less Equal Greater)
:bias 'Up-Up
:medium 'Spans)
(Components
Enablement))

;s PNEUMATIC VALVE:;;
(DefMechanism PNEUMATIC-VALVE Enablement
(
‘independent-quantity-type 'Position
:independent-quantity-order A mount
:independent-quantity-space
‘((CLOSED *zero*) (OPEN *zero* 0.1))
:independent-quantity-zero 'CLOSED
:dependent-quantity-type "Amount-of-Gas
:dependent-quantity-order "Rate
:distance 'Different
:time-constant (make-range *c*)
:sign 'Zero
:deflection '(Parallel Opposite Perpendicular Skewed)
:efficiency (make-range *zero*)
:alignment '(Less Equal Greater)
:bias (Up-Down Up-Up)
:medium 'Spans)
(Components
Enablement))
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#:HYDRAULIC VALVE:;:
(DefMechanism HYDRAULIC-VALVE Enablement
(
:independent-quantity-type 'Position
:independent-quantity-order "Amount
:independent-quantity-space
‘({CLOSED *zero*) (OPEN *zero* 0.1))
:independent-quantity-zero 'CLOSED
:dependent-quantity-type "Amount-of-Fluid
:dependent-quantity-order "Rate
:distance 'Different
:time-constant (make-range *c*)
:sign 'Zero
:deflection '(Parallel Opposite Perpendicular Skewed)
:efficiency (make-range *zero*)
:alignment ’(Less Equal Greater)
:bias (Up-Down Up-Up)
:medium "Spans)
(Components
Enablement))

;3 PHASE CHANGE;;;
(DefMechanism PHASE-CHANGE Enablement
(
:independent-quantity-type ‘Pressure
:independent-quantity-order "Amount
:independent-quantity-space
'((GAS *zero* 10.0) (LIQUID 10.0 100.0))
:dependent-quantity-type 'Temperature
:dependent-quantity-order 'Rate
:distance 'Same
:time-constant (make-range *c*)
:sign "Zero
:deflection '(Parallel Opposite Perpendicular Skewed)
:efficiency (make-range *zero*)
:alignment ’(Less Equal Greater)
:bias '(Down-Down Up-Up)
:medium 'Same)
{Components
Enablement))
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333CONDENSATION:::
{DefMechanism CONDENSATION Enablement
(
:independent-quantity-zero "GAS
:bias 'Up-Up)
(Components
Phase-Change))

;53 EVAPORATION:;:
(DefMechanism EVAPORATION Enablement
(
‘independent-quantity-zero 'LIQUID
:bias "Down-Down)
(Components
Phase-Change))

3. FAN;s;
(DefMechanism FAN Enablement
(
sindependent-quantity-type 'Charge
:independent-quantity-order Rate
:dependent-quantity-type 'Amount-of-Gas
:dependent-quantity-order ‘Rate
:distance 'Same
:time-constant (make-range *c*)
:sign "Zero
:deflection ’(Parallel Opposite Perpendicular Skewed)
:efficiency (make-range *zero*)
:alignment ’(Less Equal Greater)
:bias "(Up-Down Up-Up)
:medium 'Same)
(Components
Enablement))
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;i PUMP:s:
{DefMechanism PUMP Enablement
(
:independent-quantity-type ‘Charge
:independent-quantity-order ‘Rate
:dependent-quantity-type 'Amount-of-Fluid
:dependent-quantity-order 'Rate
:distance "Same
‘time-constant {make-range *c*)
:sign "Zero
:deflection '(Parallel Opposite Perpendicular Skewed)
:efficiency (make-range *zero*)
:alignment '(Less Equal Greater)
:bias "(Up-Down Up-Up)
:medium ‘Same)
(Components
Enablement))

;3;3GAS FALL::;

(DefMechanism GAS-FALL Enablement
(
:independent-quantity-type 'Gravity
:independent-quantity-order 'Amount
:independent-quantity-space '((G 9.8))
:dependent-quantity-type *Amount-of-Gas
:dependent-quantity-otder 'Rate
:distance 'Different
:time-constant {make-range *c*)
:sign 'Zero
:deflection 'Parallel
:efficiency (make-range *zero*)
:alignment '(Less Equal Greater)
:bias "(Up-Up Down-Down)
:medium 'Reaches)

(Components

Enablement))
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3 FLUID FALL;:;

(DefMechanism FLUID-FALL Enablement
(
:independent-quantity-tvpe 'Gravity
:independent-quantity-order "Amount
:independent-quantity-space (G 9.8))
:dependent-quantity-type "Amount-of-Fluid
:dependent-quantity-order 'Rate
:distance ’Different
:time-constant (make-range *c*)
:sign 'Zero
:deflection 'Parallel
:efficiency {make-range *zero*)
:alignment '(Less Equal Greater)
:bias '(Up-Up Down-Down)
:medium ‘Reaches)

{Components

Enablement))

;:13GAS HEAT TRANSPORT;:;
(DefMechanism GAS-HEAT-TRANSPORT Enablement
(
:independent-quantity-type 'Amount-of-Gas
:independent-quantity-order ‘Rate
:dependent-quantity-type "Temperature
:dependent-quantity-order ‘Rate
:distance 'Same
:time-constant (make-range *c*)
:sign "Zero
:deflection ’(Paralle]l Opposite Perpendicular Skewed)
:efficiency (make-range *zero*)
:alignment *(Less Equal Greater)
:bias '(Down-Up Up-Up)
:medium 'Same}
(Components
Enablement))
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::FLUID HEAT TRANSPORT::;
(DefMechanism FLUID-HEAT-TRANSPORT Enablement
(
:independent-quantity-type ‘Amount-of-Fluid
:independent-quantity-order Rate
:dependent-quantity-type "Temperature
:dependent-quantity-order 'Rate
:distance ‘Same
:time-constant (make-range *c*)
:sign "Zero
:deflection '(Parallel Opposite Perpendicular Skewed)
:efficiency (make-range *zero*)
:alignment ‘(Less Equal Greater)
:bias '(Down-Up Up-Up)
:medium ‘Same)
(Components
Enablement))

(DefMechanism INTEGRATION Integration
(
:independent-quantity-type 'Quantity
:independent-quantity-order 'Rate
:dependent-quantity-type 'Quantity
:dependent-quantity-order 'Amount
:distance 'Same
:time-constant (make-range *zero* *c*)
:sign ’(Negative Zero Positive)
:deflection ’(Parallel Opposite Perpendicular Skewed)
:efficiency (make-range *zero* *c*)
:alignment '(Less Equal Greater)
:bias {Down-Down Down-Up Up-Down Up-Up)
:medium ‘Same))



Appendix C: Qualitative Calculi

Seed Value

Contribution of Mechanism
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Propagated Value

Negative
Negative
Negative
Zero
Zero
Zero
Positive
Positive
Positive

Negative
Zero
Positive
Negative
Zero
Positive
Negative
Zero
Positive

Table C.1. Qualitative Calculus for Sign.

Positive
Zero
Negative
Zero
Zero
Zero
Negative
Zero
Positive

Seed Value Contribution of Mechanism Propagated Value

Parallel Parallel Parallel

Parallel Opposite Opposite

Parallel Perpendicular Perpendicular

Parallel Skewed Skewed

Opposite Parallel Opposite

Opposite Opposite Parallel

Opposite Perpendicular Perpendicular

Opposite Skewed Skewed

Perpendicular Parallel Perpendicular

Perpendicular Opposite Perpendicular

Perpendicular Perpendicular {Parallel Opposite Perpendicular}
Perpendicular Skewed Skewed

Skewed Parallel Skewed

Skewed Opposite Skewed

Skewed Perpendicular Skewed

Skewed Skewed {Parallel Opposite Perpendicular Skewed}

Table C.2. Qualitative Calculus for Direction.




Seed Value

Contribution of Mechanism
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Propagated Value

Less
Less
Equal
Equal
Equal
Greater
Greater

Less
Equal
Less
Equal
Greater
Equal
Greater

Table C.3. Qualitative Calculus for Alignment.

Less
Less
Less
Equal
Greater
Greater
Greater

Seed Value Contribution of Mechanism Propagated Value
Negative Down-Down Negative
Negative Down-Up Positive

Zero Down-Down Zero

Zero Down-Up Zero

Zero Up-Down Zero

Zero Up-Up Zero

Positive Up-Down Negative
Positive Up-Up Positive

Table C.4. Qualitative Calculus for Bias.

Seed Value Contribution of Mechanism l Propagated Value
Same Same Same

Same Different Different
Different Same Different
Different Different {Same Different}

Table C.5. Qualitative Calculus for Displacement.



Sign at Cause

Relative Orientation

Sign at Effect

Negative
Negative
Negative
Negative
Zero
Zero
Zero
Zero
Positive
Positive
Positive
Positive

Pacrallel
Opposite
Perpendicular
Skewed
Parallel
Opposite
Perpendicular
Skewed
Parallel
Opposite
Perpendicular
Skewed

Negative

Positive

{Negative Zero Positive}
{Negative Zero Positive}
Zero

Zero

Zero

Zero

Positive

Negative

{Negative Zero Positive}
{Negative Zero Positive}

Table C.6. Qualitative calculus for sign and orientation.

One Contribution
Negative
Negative
Negative

Zero

Zero

Zero

Positive

Positive

Positive

Negative
Zero
Positive
Negative
Zero
Positive
Negative
Zero
Positive

Other Contribution

Combined Value
Negative
Negative

Negative
Zero
Positive

Positive
Positive

Table C.7. Qualitative calculus for sign addition.

{Negative Zero Positive}

{Negative Zero Positive}

196



One Contribution

Other Contribution
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Combined Value

Parallel
Parallel
Parallel
Parallel
Opposite
Opposite
Opposite
Opposite
Perpendicular
Perpendicular
Perpendicular
Perpendicular
Skewed
Skewed
Skewed
Skewed

Parallel
Opposite
Perpendicular
Skewed
Parallel
Opposite
Perpendicular
Skewed
Parallel
Opposite
Perpendicular
Skewed
Parallel
Opposite
Perpendicular
Skewed

Parallel

{ Parallel Opposite}
Skewed

{Perpendicular Skewed}
{Parallel Opposite}
Opposite

Skewed

{Perpendicular Skewed}
Skewed

Skewed

Skewed

{ Parallel Opposite Perpendicular Skewed}

{ Perpendicular Skewed}
{Perpendicular Skewed}

{Parallel Opposite Perpendicular Skewed}
{Parallel Opposite Perpendicular Skewed}

Table C.8. Qualitative calculus for direction addition.
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Appendix D: Arithmetic for Order of Magnitude
Ranges

The addition rule for orders of magnitude is:
be1 + pe2 — pmazley,ez)
The addition rule for ranges of orders of magnitude is:

{-RANGE. b : bM} + {mANGE. b'2 : pM2} =
{'RANGE' bma.r(ll.l;) . bma.t(hl,hz)}

A graphic depiction of this addition rule appears in Figure D.1.

range 1 ::
range 2 3
sum I
|
I

< | | |
I I |

orders of magnitude

Figure D.1. Addition for ranges of orders of magnitude.

The subtraction rule for orders of magnitude is:

bt — pe3 =
ife; = ey
then 6~

else pmaz(eres)

The subtraction rule for ranges of orders of magnitude is:
{mange: b : 6™} — {-RaNGE- bl : bh2} =
ifhy > Iy
then {'RANGE‘ b :bma.t(max(ll.hz).maz(hl.lz))}
else {-RANGE- bmin(ma:(ll.hz).maz(hl.lz)) :bma:(ma.r(ll,hz).maa:{hl,lz))}

This subtraction rule appears in Figure D.2.
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range 1 —/
range 2 1
difference ]
—

orders of magnitude

Figure D.2. Subtraction for ranges of orders of magnitude.
The multiplication rule for orders of magnitude is:
bel bez - be1+e3

The multiplication rule for ranges of orders of magnitude is:
{-RANGE- bt : 5"} {-RANGE- b'> : bP2} =
{~RANGE- blx-r—lz . bh1+hz}

This multiplication rule is portrayed in Figure D.3.

range 1 :
range 2 —
product C—/—/

| | | | |
B S i | ! i >

orders of magnitude

Figure D.3. Multiplication for ranges of orders of magnitude.

The division rule for orders of magnitude is:
bel / bez = be1 —€2



The division rule for ranges of ordoncf mg‘ﬂ,
{namem b M) / {aaman- 85 0} = |

"~ {-pamen- ’5!.“0(11 =hahy~ly) , gnaatly <Ay =1, ;} _
This division rule is shown in Figure D.4.

range 1 ’ ' v m ‘
range 2 \ {::::]
quotient 1

Figute D.4. Division for ranges of mgm
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Appendix E: Cause and Effect Types of Mechanisms

Cause Type Mechanism Effect Type

{-TYPE- Position Rate} Rigid-Coupling {-TYPE. Position Rate}
{-TYPE- Position Rate} Non-Rigid-Coupling {-TYPE. Position Rate}
{-1YPE- Position Rate} Contact-Coupling {-TYPE- Position Rate}
{-1YPE- Position Rate} Forward-Ratchet {-TYPE- Position Rate}
{-TYPE- Position Rate} Backward-Ratchet { TYPE. Position Rate}
{-TYPE- Angle Rate} Rigid-Rotary-Coupling {-TYPE- Angle Rate}

{-TYPE- Angle Rate} Non-Rigid-Rotary-Coupling {-TYPE- Angle Rate}

{-TYPE- Angle Rate} Contact-Rotary-Coupling {-TYPE- Angle Rate}

{-TYPE- Angle Rate} Forward-Rotary-Ratchet {-TYPE- Angle Rate}

{-TYPE. Angle Rate} Backward-Rotary-Ratchet {-TYPE- Angle Rate}

{'TYPE- Charge Rate} Electricity {-TYPE- Charge Rate}

{-TYPE:- Temperature Rate} Conductive-Heat-Exchange {-TYPE- Temperature Rate}

{ TYPE- Temperature Rate} Conductive-Heat-Flow {-TYPE- Temperature Rate}
{-TYPE- Temperature Rate} Radiative-Heat-Exchange {-TYPE- Temperature Rate}
{-TYPE- Temperature Rate} Radiative-Heat-Flow {‘TYPE: Temperature Rate}
{-TYPE- Intensity Rate} Light-Transmission {-TYPE. Intensity Rate}
{-TYPE- Amount-of-Gas Rate} Gas-Exchange {'TYPE- Amount-of-Gas Rate}
{-TYPE- Amount-of-Gas Rate} Gas-Flow {‘TYPE- Amount-of-Gas Rate}
{-TYPE- Amount-of-Fluid Rate} Fluid-Exchange {-TYPE- Amount-of-Fluid Rate}
{-TYPE- Amount-of-Fluid Rate} Fluid-Flow {‘TYPE: Amount-of-Fluid Rate}
{-TYPE- Charge Rate} Electro-Mechanical {-TYPE. Position Rate}
{-TYPE- Charge Rate} Electro-Rotary {-TYPE- Angle Rate}

{-TYPE- Charge Rate} Electro-Photic {-TYPE: Intensity Rate}
{‘TYPE- Charge Rate} Electro-Thermal {-TYPE- Temperature Rate}
{-TYPE- Intensity Rate} Photo-Chemical {-TYPE.- Appearance Rate}
{-TYPE- Temperature Rate} Thermo-Chemical {-TYPE.- Appearance Rate}
{-TYPE- Charge Rate} Expansion {‘TYPE. Pressure Rate}
{‘TYPE- Charge Rate} Compression {‘TYPE. Pressure Rate}
{-TYPE- Temperature Rate} Thermal-Expansion {‘TYPE- Position Rate}
{-TYPE- Gravity Amount} Gravity {-TYPE- Position Rate}
{-TYPE- Position Amount} Spring {-TYPE- Position Rate}
{-TYPE- Amount-of-Gas Rate} Pneumatic {-TYPE- Position Rate}
{-TYPE- Amount-of-Fluid Rate} Hydraulic {'TYPE- Position Rate}

Table E.1. Type relations for mechanisms.




Cause Type Mechanism Effect Type

{-TYPE- Position Amount} Switch {-TYPE- Charge Rate}
{-TYPE- Position Amount} Latch {-TYPE. Position Rate}
{-TYPE- Angle Amount} Rotary-Latch {‘TYPE- Angle Rate}
{-TYPE. Position Amount} Vent {-TYPE- Temperature Rate}
{-TYPE- Position Amount} Shutter {-TYPE- Intensity Rate}

{-TYPE
{-TYrE
{-TYPE.
{-TYPE
{-TvPE-
{-TYPE.
{-TYPE
{-TYPE
{-TTPE-
{-TYPE

Position Amount}
Position Amount}
Pressure Amount}
Pressure Amount}
Charge Rate}

Charge Rate}

Gravity Amount}
Gravity Amount}

Amount-of-Gas Rate}
Amount-of-Fluid Rate}

Pneumatic-Valve
Hydraulic-Valve
Condensation
Evaporation

Fan

Pump

Gas-Fall
Fluid-Fall

{-TYPE-
{-T1PE-
{-TYPE-
{-TYPE-
{-TYPE-
{-TYPE-
{-TYPE-
{-TYPE

Amount-of-Gas Rate}
Amount-of-Fluid Rate}
Heat Rate}

Heat Rate}
Amount-of-Gas Rate}
Amount-of-Fluid Rate}
Amount-of-Gas Rate}
Amount-of-Fluid Rate}

Gas-Heat-Transport
Fluid-Heat-Transport

Table E.1 (cont.). Type relations for enablement mechanisms.

Cause Type Mechanism Effect Type

{-TYPE- Position Rate} Integration {-1YPE- Position Amount}

{-TYPE- Angle Rate} Integration {-TYPE- Angle Amount}

{'TYPE- Charge Rate} Integration {-TYPE- Charge Amount}

{-TYPE. Temperature Rate} Integration {-1YPE- Temperature Amount}
{-TYPE- Pressure Rate} Integration {-TYPE- Pressure Amount}

{-TYPE- Amount-of-Gas Rate} Integration {-TYPE- Amount-of-Gas Amount}
{-TYPE- Amount-of-Fluid Rate} Integration {-TYPE- Amount-of-Fluid Amount}
{-TYPE- Intensity Rate} Integration {‘TYPE. Intensity Amount}

{-TYPE- Appearance Rate} Integration {‘TYPE- Appearance Amount}

Table E.1 {cont.). Type relations for temporal integration.

{-TYPE- Temperature Rate}
{-TYPE- Temperature Rate}
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Appendix F: Using Causal Models in Device Monitoring

In this final appendix, I argue for the utility of causal models in a specific
problem solving task concerning physical systems—the monitoring of devices.
This phase of my research involved the transfer of results from my thesis to a
project at the Jet Propulsion Laboratory [Doyle et al 87].

Monitoring is the detection of anomalies in the behavior of a physical
system. Monitoring involves collecting measurements from sensors, combin-
ing this data into a picture of the current state of the system, and assessing
any departure from nominal behavior. Traditional approaches to monitoring
prove inadequate in the face of two issues: The dynamic adjustment of expec-
tations about sensor values when the behavior of the device is too complex to
enumerate beforehand, and the selective but effective interpretation of sensor
readings when the number of sensors precludes comprehensive monitoring.

I explore an approach to monitoring which addressing these issues and
which involves the use of causal models of devices. Model-based simulations of
behavior support the dynamic adjustment of expectations about sensor values
as the operating context of a device changes. Furthermore, a causal simula-
tion which describes device events and dependencies among them supports
planning decisions about how to utilize a limited numbers of sensors to verify
correct operation of the device efficiently and reliably.

F.1 Motivation

Numerous on-line physical systems require round-the-clock supervision. As
the complexity of devices and the number of sensors have increased, auto-
mated monitoring techniques to aid the human operator are showing signs
of becoming inadequate. Both false alarms and undetected anomalies occur,
increasing the burden of interpretation on the operators. As devices continue
to become more complex, machines must take on a greater portion of the
monitoring task if a near real-time response capability is to be maintained.

Automated monitoring becomes a matter of necessity with some physical
systems. An example is the life support system for the proposed national
Space Station. Clearly, the human resources onboard are too scarce to com-
mit to the interpretation of sensors. Unfortunately, diverting this task to hu-
mans on the ground contains an element of risk. Communications do fail and
telemetry is lost—and even a momentary interruption in monitoring could
prove catastrophic. The only acceptable option is an onboard automated
monitoring capability.
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F.2 Issues

Traditional approaches to monitoring associate predefined nominal ranges
with sensors. Alarms are raised whenever sensor readings fall outside these
fixed ranges. This approach is appropriate for ensuring that a device does not
operate outside its performance limits, but is woefully inadequate for monitor-
ing physical systems which have multiple operating modes or which interact
with their environment.

For example. consider the flow rate of coolant in a nuclear reactor. The
tolerance on the safe rate of flow depends on whether or not the control rods
are engaged in the reactor core. In other words. the nominal range for the
relevant sensor is dynamic. A fixed range can lead to either false alarms or a
potentially disastrous undetected anomaly.

In another example, consider a mobile robot traversing the surface of
Mars. The monitoring system certainly sinould raise an alarm when the incli-
nation of the rover approaches the point of overbalance. But in addition, the
monitoring system should be able to flag even a slight tilt, albeit not immedi-
ately dangerous, when the world model indicates that the terrain is flat. The
nominal sensor range for the inclinometer depends on the interaction of the
rover with its environment.

Another problem in monitoring is potentially overwhelming sensor data.
When the number of sensors in a physical system is numbered in the thou-
sands, the ability to read and interpret these sensors in real-time, whether by
man or machine, becomes compromised. The difficulty arises not only from
bandwidth and sampling rate limitations, but also in trying to synthesize dis-
parate sensor data into a global picture of the state of the system. Current
monitoring systems do not address this problem, except through the brute
force approach of faster and faster hardware—a solution which treats only
the symptom.

The apparent human solution to this problem is straightforward. At
any time, only a few sensors are interpreted—those which provide the most
relevant data on the state of the system, in the current context. For example,
when changing lanes on the freeway. a driver makes use of the side mirrors.
While cruising in the fast lane. these particular sensors are sampled only
infrequently, if at all.

Automated monitoring should be buttressed by a sensor planning capabil-
ity in which sensors are treated as resources and context-sensitive importance
criteria are used to determine which sensors to sample and interpret at any
given time.
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F.3 Domains

In choosing a testbed for this research we restricted our choice to domains with
relevance for the Jet Propulsion Laboratory and the National Aeronautics
and Space Administration. We enumerated selection criteria which reflect the
issues raised by shortcomings in traditional approaches to monitoring.

Our ideal problem domain satisfies the following criteria:

e Numerous and diverse mechanisms and sensors.

o  Multiple operating modes and/or interaction with environment.

¢  Real-time response required.

e  Desirable to remove burden of interpretation from human operators.
o  Comprehensive sensor interpretation difficult.

We narrowed our choice to four domains, including JPL's Space Simu-
lator, the Deep Space Network tracking stations, the Thermal Management
System of the Space Station, and the Mars Rover.

The Space Simulator is a chamber in which spacecraft and instruments
can be subjected to some of the aspects of the space environment—intense
cold, near vacuum, and solar radiation. The Deep Space Network is used
to track and maintain communication with spacecraft. The Thermal Man-
agement Systemn of the Space Station maintains appropriate temperatures
in the areas assigned to crew, cargo, and scientific instruments. An au-
tonomous Mars Rover offers an unprecedented challenge to monitoring tech-
nology. Given that the minimum communication time to Earth is on the order
of ten minutes, there must be an onboard capability for quickly recognizing
potentially dangerous situations. The conventional approach to monitoring
might very well leave the rover in a state of paralysis, constantly processing
false alarms.

F.4 Predictive Monitoring Based on Causal Simulation

Our approach to the monitoring problem involves the use of causal models
of devices. Our claim is that causal models contain the information which
provides answers to the questions “What should be happening in the device
at this moment?” and “How can the correct operation of the device be verified
quickly and reliably?”. We term our approach predictive monitoring.

We envision three complementary capabilities in a predictive monitoring
system: causal simulation, sensor planning, and sensor interpretation. We are
developing a system which we call PRENON. See Figure F.1.

The causal simulator, given a causal model of a physical system and an
initial set of events, generates predictions concerning the next expected events
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Sensor Data Sensor Commands

Figure F.1. A predictive monitoring system.

in the device. The causal model distinguishes different operating modes of
the device and, when appropriate and possible, includes knowledge about the
environment with which the physical system interacts.

The sensor planner, given this set of expectations concerning the next
events in the device, makes choices about what subset of this behavior to
verify, which sensors to employ, and how sensors should be sampled. These
determinations are passed as a set of instructions to the sensor interpreter.

The sensor interpreter reads sensor channels as instructed by the sensor
planner and compares actual sensor data with the expectations generated by
the causal simulator. Discrepancies result in the raising of alarms. Finally,
this most up-to-date sensor data is passed back to the causal simulator to
seed the next cycle of predicting, planning, and sensing.

In the remainder of this section, I elaborate on causal simulation and
sensor planning. Sensor interpretation is not treated further.
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F.4.1 Causal Simulation

Simulation directly addresses the issue of changing operating contexts in
monitoring. Part of the input to a simulator is the current state of the device
and possibly its environment. This state specifies the operating context of
the device—for example. whether the control rods are in or out of the reactor
core, or whether the Mars rover is traversing terrain or collecting samples.

Predefined alarm thresholds constitute an over-summarized model of a
device. They are ineffective because tew sensor values can he classified a priori
as always indicative of a problem or always indicative of correct operation.
An explicit model restores the ability to evaluate sensor values in the dynamic
operating context of a device. Both false alarms and undetected anomalies
can be avoided, as shown in Figure F.2.

fixed ranges dynamic ranges

- expected value l
. actual value [

False Alarm Nominal Operation

- expected value -
l actual value l

Undetected Anomaly Real Alarm

Figure F.2. Fixed vs. dynamic nominal sensor ranges.

The causal models input to the predictive monitoring system PREMON are hand-
generated from the same vocabulary of mechanisms used by the program Jack.
They are not generated by the causal modelling system Jack. My intent is not
to validate specific causal models generated by the program JACK, but to argue
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for the utility of the reasoning supported bv causal models of complex real-
world phyvsical systems.

The causal simulation method used in the program PREMON is taken di-
rectly from the program Jack. Effect events are predicted from cause events
by propagating values for the constraints on tvpe, behavior, and structure
across mechanisms which form the arcs of causal graphs.

Precise numerical data about the state of a device will not always be
available. It is neither desirable nor likely possible to verify every aspect of
a device's behavior in each predict-plan-sense cvcle. The causal simulator of
PREMON must be able to sustain predictions about the next events in a device
in the face of spotty sensor data.

The representations for mechanisms accommodate default values for quan-
tities. In addition, the methods for propagating qualitative regions and order
of magnitude ranges allow for robust computing in the absence of numerical
precision. These aspects of the causal simulation method borrowed from the
program JACK enable the predictive monitoring system PREMON to generate ex-
pectations about events without acquiring precise numerical values to seed
simulation: values which may be costly or impossible to come by.

F.4.2 Sensor Planning

The problem of potentially overwhelming sensor data in monitoring is
addressed by introducing a sensor planning capability. Sensors are treated as
information resources which need to be explicitly managed. The goal is to
efficiently acquire relevant sensory information.

Our intuition is as follows: the set of sensors which provide the most
direct and complete verification of the operation of a device depends, as do the
values expected on those sensors, on the operating context of the device. For
example. proximity detectors. tachometers, inclinometers, and accelerometers
provide the most relevant sensory information for a mobile robot traversing the
surface of Mars. On the other hand, when the rover is collecting samples and
is stationary, force sensors, position encoders, and the vision system provide
the most direct confirmation of correct operation. Just as it is unreasonable to
assume that nominal sensor values can be predetermined. so it is unreasonable
to assume that there is an ¢ priori distinguishable subset of sensors which are
sources of pertinent information for all situations.

Once again, the key to our approach is the nuse of a causal device model.
A simulation derived from a causal model yields information about where the
next changes in the values of quantities will occur. Sampling can be focused
on those sensors which measure the quantities which are predicted to change.
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A simulation trace also reveals causal dependencies among events in a
physical system. For example, heating may lead to thermal expansion which
closes a switch and turns on a motor; motion may result in the displacement
of a spring which produces a restoring force and arrests the motion. Analysis
of causal dependencies supports decisions about what to monitor and how
carefully to monitor. The importance of events can be assessed by determining
how many other events are effects or causes of a given event. In other words,
the importance of an event is related to the amount of subsequent activity
it supports, and the amount of activity which arranges for its occurrence.
Events such as the closing of a valve and .ne release of a latch which lie on
more than one mechanism path should be verified with care, perhaps with a
battery of sensors. On the other hand, events which are side effects and do not
support further activity of the device need be given only cursory attention, if
at all. See Figure F.3.

side effect

O ®)

o O

critical event
@ @) O
o O

Figure F.3. Assessing the importance of events.

Our approach to sensor planning is similar to the minimum entropy method
of de Kleer and Williams {de Kleer and Williams 87.. Their technique deter-
mines the best sites for test measurements in diagnosis by propagating known
quantity values and component failure probabilities along causal dependencies
in circuits.
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Figure F.4. Mirror cooling circuit of the JPL Space Simulator.

Sensor planning has received attention in the robot planning literature
{Sacerdoti 77, Fox et al 84, Miller 85, Gini et al 85]. The roots of our own
work are in a project on the monitoring of robot plan execution [Doyle et
al 86]. In that project. we implemented a sensor planner called GRIPE which
analyzes a robot task plan, inserting appropriate perception requests into the
plan and generating expectations about sensor values. The program GRIPE has
been tested successfully on a task plan which reproduces the actions taken by
Space Shuttle astronauts to repair the Solar Max satellite.

Sensor planning issues have equal relevance for physical system monitor-
ing and robot plan monitoring. We have a reasonable expectation that results
from our current research effort will transfer over to the task of monitoring
the execution of robot plans.

F.5 An Example: The JPL Space Simulator

In the JPL Space Simulator. a mirror is used to direct simulated solar radiation
onto the spacecraft or instrument inside the chamber. This mirror must be
cooled close to the temperature of the shroud which surrounds the chamber.
Cold gaseous nitrogen is used as the cooling medium and is circulated by
a fan. Chilling is achieved by <praving liquid nitrogen .into the circulating
gaseous nitrogen. Any required warming is achieved electrically. A schematic
diagram of this subsystem of the JPL Space Simulator is shown in Figure F.1.
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A causal simulation of the mirror cooling circuit is shown in Figure F.5.
This simulation is derived from a hand-generated partial model of the circuit.

Analysis of the causal dependencies in this trace of the operation of the
miirror cooling circuit identifies the flow of gas at the fan as the single most
critical event in the nominal operation of the circuit. More events in the
simulation trace are causes or effects of this event than of any other event.
Other important events include the temperature changes which occur in the
circulating gas at the chiller and at the heater.

F.6 Research Topics in Sensor Planning

In this section, I enumerate a number of issues associated with the task of
monitoring physical systems.

What to Monitor?

[t is neither desirable nor feasible to interpret all sensor channels of a
device at all times. Choices have to be made concerning which aspects of
the expected behavior of a physical system should be verified at any given
time. We are developing heuristics for evaluating the relative importance of
sensor data. Among these heuristics are: Changed quantity values are more
important than unchanged values. Importance is related to the number of
causal dependencies in which an event participates.

How to Monitor?

In many cases, the sensor most appropriate for measuring a given quantity
of a physical system can be predetermined. Indeed, sensor configurations
often reflect particular anticipated monitoring needs. However, for the most
important events, it may be appropriate to employ multiple sensors to enhance
the reliability of verification.

A different problem arises when sensors fail. The most appropriate sensor
for measuring a particular quantity may be unavailable. The only recourse is
to determine which sensor(s) can verify an expected event indirectly.

When to Monitor?

The issue of when and how often to monitor, is the continuous general-
ization of the issue of what to monitor at all. For example, the tachometers
in a rover locomotion system might be monitored nearly continuously when
slippery terrain is being traversed, less often on stable terrain, and very infre-
quently when there is no intention to move the rover.

Even a quantity which is not expected to change might he monitored at a
low sampling rate, particularly if the stable value represents a state on which
later events depend, or a state difficult to re-achieve.

What to Ezpect?
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Figure F.5. Causal simulation of the mirror cooling circuit:
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In most cases, expectations about sensor values can be gleaned directly
from a simulation. However—particularly when sensors fail—there mayv bhe no
sensor which can directly verify an anticipated event. In this case. a different
event which implies the event of interest should be verified. For example. the
closing of a valve might be verified indirectly by monitoring a pressure sensor
upstream from the valve. should the valve's own state indicator fail. Such
alternate events can be found by tracing dependencies in the simulation.

Device Operation and Sensor Planning

Decisions about how to operate a device can depend on monitoring capa-
bilities. For example, when sensors fail, it may be prudent to operate a device
in an inefficient but verifiable manner.
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set of experiments which isolate the pruning power due to the different sources of
constraint in my approach to the causal modelling problem. In conclusion, I show
how causal models of devices produced by the program JACK can be used to support
diagnosis and monitoring tasks.
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