Technical Report 1048

Combining
Associational and
Causal Reasoning to
Solve Interpretation
and Planning Problems

Reid Gordon Simmons

MIT Artificial Intelligence Laboratory

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

A C NS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
T REPORT NUMBER 3. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
AI TR 1048
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED
Combining Associational and Causal Reasoning technical report

to Solve Interpretation and Planning Problems

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8. CONﬁACT OR GRANT’ NUMBER(s)
Reid Simmons N00014-85-K-0124

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. :Rgiﬂ.Aw ERLEMENTT. PROBJEE'gT. TASK
Artificial Intelligence Laboratory R ORK UNIT NUMBERS
545 Technology Square
Cambridge, Massachusetts 02139

11, CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Advanc§d Research Projects Agency September 1988
1400 Wilson Blvd 132f2uaznor9Aczs

Arlington, Virginia 22209
14. MONITORING AGENCY NAME & ADDRESS(!f different from Controlling Office) 18. SECURITY CL ASS. (of this report)

Office of Naval Research UNCLASSIFIED
Information Systems
Ar] ington, Virginia 222'7 1Sa, ?E&ksgtl{!CATlon/DOVINGRADING

16. DISTRIBUTION STATEMENT (of this Report)

Distribution of this document is unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entersd in Block 20, il different from Report)

18. SUPPLEMENTARY NOTES

None

19. KEY WORDS (Continue on reverse aide if necessary and identify by block number)

associational reasoning geologic interpretation

causal reasoning debugging

planning multiple representations and reasoning
techniques

20. ABSTRACT (Continue on reveras aide if necessary and identity by dlock number)

Efficiency and robustness are two desirable, but often conflicting,

- characteristics of problem solvers. This report presents an
approach, called Generate, Test and Debug (GTD), that integrates
associational and causal reasoning techniques to efficiently solve a-
wide class of interpretation and planning problems.

LY
DD , %", 1473 EoiTion oF 1 NOV 65 15 OBsOLETE ' UNCLASSIFIED
S/N 0102-014- 6601 |

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

COMBINING ASSOCIATIONAL AND CAUSAL REASONING TO SOLVE
INTERPRETATION AND PLANNING PROBLEMS

by
REID GORDON SIMMONS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
SEPTEMBER 1988

This report is a revised version of a thesis submitted to the Department of Electrical
Engineering and Computer Science on May 10, 1988 in partial fulfillment of the
requirement for the degree of Doctor of Philosophy.

This report describes research done at the Artificial Intelligence Laboratory of the
Massachusetts Institute of Technology. Support for the author was provided in part by
grants from Schlumberger-Doll Research Labs and the National Science Foundation, and
by the Advanced Research Projects Agency of the Department of Defense under Office of
Naval Research contract N00014-85-K-0124.

© Copyright Massachusetts Institute of Technology, 1988.

Abstract

Efficiency and robustness are two desirable, but often conflicting,
characteristics of problem solvers. This report presents an
approach, called Generate, Test and Debug (GTD), that integrates
associational and causal reasoning techniques to efficiently solve a
wide class of interpretation and planning problems.

The GTD paradigm generates an initial hypothesis using rules that
associate features of the problem with events that can cause them.
If the tester detects bugs in the hypothesis, it is debugged until a
correct solution is produced. The debugger employs three domain-
independent causal reasoning techniques: 1) it analyzes causal
explanations produced by the tester to locate the assumptions
underlying bugs in the hypothesis, 2)it regresses values back
through the explanations to indicate the direction in which to change
the assumptions, and 3) it replaces faulty assumptions based on a
model of causality that explicitly represents time, persistence, and
the effects of events.

Our analysis of the GTD paradigm indicates that the generator's
efficiency stems from its use of nearly independent associational
rules. This enables it to construct hypotheses that are correct, or
nearly so, without having to check for potential interactions
between events. In contrast, the debugger achieves robustness by
using causal models of how the world works to determine how
events interact in the achievement of goal. We characterize domains
for which GTD may be useful based on this analysis of the strengths
and weaknesses of the two reasoning techniques.

An implementation of GTD has been tested in several domains,
including our primary domain of geologic interpretation, blocks-
world planning, and the Tower of Hanoi problem. In addition, parts
of the system have been used to help diagnose manufacturing faults
in semiconductor fabrication.

Acknowledgements

During my brief tenure at MIT (brief, at least, by geologic standards)
many people have contributed to making it an intellectually and
personally rewarding experience. Foremost has been my advisor
Randy Davis who, by word and deed, taught me how to do research
critically and express the results intelligibly. He was always
available to comment on my ideas and writings, invariably giving
sound advice (even if it was not always heeded).

Members of the hardware-troubleshooting research group — Walter
Hamscher, Brian Williams, Mark Shirley, and Jeff Van Baalen, in
particular — have provided much intellectual stimulation and

friendship. It is a privilege to have been associated with them over
the years. My committee members, Chuck Rich and Peter Szolovits,
supplied crucial insights into what was important and interesting
about the research. | have also benefited from discussions with Phil
Agre and David Chapman.

| am grateful to Schlumberger for their support, both financially and
intellectually, during the course of my research. In particular, |
have benefited much from interactions with Reid Smith, Marty
Tenenbaum, John Mohammed, and Roy Nurmi, who taught me to do
geologic interpretation. Many others outside the MIT community
have had an impact on my work, including Bruce Buchanan, Drew
McDermott, Tom Dean, Yoav Shoham, Kris Hammond and Ken Forbus.
To these and many others, my heartfelt thanks.

Most importantly, | thank my dear wife Pearl, who is a continual
source of love, friendship and amusement. She has been a source of
strength and comfort when | needed it the most. | eagerly anticipate
embarking on this new phase of my life with her.

Contents

1. TN OAUCTION ettt e ettt e 1

1.1 The GTD Paradigm........ccooeie et 3

1.2 Domains EXPIOred........oiviiieeeee e 6

1.3 A Geologic Interpretation Problem.............ooc, 8

1.4 History and ContributionS........ccoeeeioiiiiei e 14

1.4.1 A Theory of Debuggingcccorerernneiecccir e, 15

1.4.2 Combining Associational and Causal Reasoning............ 16

1.5 TeIrMINOIOQY ceoeieeeeeceet ettt b 19

1.8 OULING et e e s en e beneaes 22

P CT=1 o= =\ (= T OO T ST RORo 24

2.1 Generation of an Initial HypothesiS ..., 25

2.2 The GeNEIraAtOr. ..ot en e 29

2.2.1 Matching Scenario Patterns ... 30

2.2.2 Composing Local Interpretations..........c.ooooooiiiiiiiinnnn. 34

2.2.3 Controlling the Generator ... 40

2.3 Encapsulating Common Patterns of Interaction........cccc..... 44

K T - T (OO OO SOTTPSO PR SPR 49

3.1 Testing a Sequence of Geologic Events................ccccviiiiiiicinn. 50

3.2 The Testing Algorithm......... etee bttt bt te et b et et er e e eneenes 55

3.2.1 Linearizing HypotheSes ... 56

3.2.2 Causal SimUulation.........cocieieiiiecie e 57

3.2.3 Diagrammatic Simulation ... 66

3.2.4 Matching Diagramsccceeireinienseee et 70

3.3 Use of Simulation to Test Hypotheses.......coooviviceciiicicceeene. 74

3.3.1 Accuracy in Simulation.......cccooeiooieieeeeeeeeeeee e, 75

3.3.2 Producing Causal Explanations by Simulation............... 77

4. DBDUQG. ...ttt ettt e 80

4.1 Debugging an Incorrect Hypothesis..........ccc.oooviiiiiiiciciiecee 82

4.2 The Debugging AlIGorithm ..., 86
4.2.1 Locating Underlying Assumptions and

Regressing Values............cooooiiieiieiiiieecce e 86

4.2.2 Repaifing BugS.......coooeoiiiieececeeeee e 90

4.2.2.1 Producing Occurrence Repairs.......cccocoeecrceevennn. 90

4.2.2.2 Replacing Event-Occurrence Assumptions.......... 94

4.2.2.3 Replacing Parameter-Binding Assumptions....... 97
4.2.2.4 Replacing Temporal-Ordering Assumptions....100

- jv -

4.2.2.5 Replacing Attribute-Persistence

ASSUMPLIONS...ceiieiiic e 104
4.2.2.6 Replacing Object-Existence Assumptions....... 107
4.2.2.7 Replacing Known-Objects Assumptions............. 109
4.2.3 Control of Search and Evaluating Hypotheses.............. 112
4.3 A Theory of DeuUGQing oo 114
4.3.1 COMPIBIENESS......ooieeieeet e e 116
4.3.2 Termination ... 119
4.3.3 Coverage and Extensibility. ... 120
5. EXPEIIMENTS ..ottt e 124
5.1 Geologic Interpretation ... 124
5.1.1 Double Tilt EXample ..o 129
5.1.2 Double Deposition Example ... 132

5.1.3 Extended Window Example With
Incorrect Linearization ... 135
5.1.4 Double Intrusion Example.....cinciniiieee 137
5.2 Blocks World Planning ... 140
5.3 Tower of Hanoi Problem ... 142
5.4 Diagnosis in Semiconductor Fabrication Manufacturing.....143
6. Combining Associational and Causal Reasoning.........inne. 146
6.1 Relationship Between Scenarios and Causal Models.............. 149
6.1.1 Deriving Scenarios from Causal Models.......................... 152
6.2 Search and Control ISSUEScccovviineicie e 154
6.3 Guidelines for Domains in Which GTD may be Useful............ 158
7. Related and Future WOrkK ... 161
7.1 Associational Reasoningcccoceoveeviiiinieiieeeiceee e, 161
7.2 Causal Simulation .., 162
7.3 Debugging and Domain-Independent Planning..................cc........ 164
7.4 Future WOrK ..., s 167
8. CONCIUSIONS .ottt ettt et en e 170
9. References........cccooeeennn. S s 174
Appendix A. Geologic Interpretation Scenarios........cceeoivveiciienn. 179
Appendix B. Causal Models of Geologic Events..........ccccoooeiiieiiin. 192
Appendix C. Causal Models for Additional Domainsc.cccocccvveinnnen. 202
Appendix D. Blocks-World Scenarios. ..., 205

1. Introduction

Efficiency and robustness (the ability to solve a wide range of
problems) are two desirable, but often conflicting, characteristics
of problem solvers. This report describes an approach that combines
associational and causal reasoning techniques to achieve both
efficiency and robustness. The approach uses the Generate, Test and
Debug (GTD) paradigm: the generator uses associational reasoning to
construct an initial hypothesis that is typically correct or nearly so;
the tester simulates the hypothesis to determine whether it is in
fact correct; the debugger uses causal reasoning to repair any faulty
hypotheses found.

We have explored the use of GTD primarily for tasks of the form
"given an initial state and a final (goal) state, both of which are
partial descriptions of states of the world, find a set of events that
could achieve the final state from the initial state.” Both
interpretation and planning problems fit this task specification. If
the final state is in the future, we regard it as a planning problem;
if the initial state is in the past, we regard it as interpretation.

GORDIUS,! our implementation of GTD, has been used to solve
problems in several domains, including our primary domain of
geologic interpretation, blocks-world planning, and the Tower of
Hanoi problem. In addition, some experiments have been performed
using GORDIUS to diagnose manufacturing faults in semiconductor
fabrication.

Associational reasoning techniques solve problems by associating
observable features in the input states with events that could have
caused those features. For example, if we observe one sedimentary
formation on top of another, we can associate this with the likely
explanation that the lower formation was deposited before the upper
one. The GTD generator uses associational rules that are nearly
independent, which enables it to create hypotheses that are usually
correct without having to reason about potential interactions
between events.

Causal reasoning techniques solve problems by analyzing the cause
and effect relationships of events. For example, given the same two

1 GORDIUS was the king who tied the Gordian Knot. Undoing it was an intricate problem
that could be solved only by cutting through the knot.

-1 -

sedimentary formations as above, we can causally analyze our model
of deposition to determine that deposition always happens from
above, adding material along the surface of the Earth. Thus, to be
below the upper formation, the lower one must have already existed
on the surface at the time the upper formation was deposited.
Hence, the lower formation must have been created earlier. The
debugger determines how to repair bugs by reasoning about the
effects of events, interactions between events, and the changes that
happen to objects over time.

In short, associational reasoning is efficient because it uses
features of the problem to focus in on possible solutions and it
composes partial solutions without reasoning about interactions.
Causal reasoning is robust because it analyzes causal models of how
the world works to focus in on the events needed to change the
world to achieve the desired results. The integration of these two
techniques gives GORDIUS a high degree of performance and
competence. In addition, our understanding of their strengths and
weaknesses enables us to characterize domains for which the GTD
paradigm may be useful.

Much of our research has focused on developing the representations
and causal reasoning techniques used by the tester and debugger. A
wide class of events can be represented, including those that create
and destroy objects and those that have conditional, quantified, and
relative effects. To predict the effects of events accurately and
efficiently, GORDIUS employs several specialized representations
for reasoning about quantities, sets, diagrams, time, and the
persistence of attributes and objects over time. These
representations are integrated into a common framework, enabling
inferences made in one representation to constrain others.

We have developed a theory of debugging in which bugs are repaired
by tracking down and replacing faulty assumptions made during the
generation and testing of hypotheses. Faulty assumptions are
replaced using domain-independent repair strategies that reason
about the type of assumption, causal explanations for why the bugs
arose, and causal domain models. For example, if a bug arises
because the preconditions of an event are not met, the debugger
tries to replace the event with one that has the same desirable
effects but avoids the offending precondition. The debugger then
reasons about interactions between events to determine the effect
of each repair on the hypothesis as a whole.

-2 .

1.1 The GTD Paradigm

The GTD paradigm was developed to take advantage of the different
strengths of associational and causal reasoning. The generator
efficiently produces solutions to most problems. For those problems
that it handles incorrectly, the more robust, but computationally
expensive, debugger is used to transform the generator's initial
hypothesis into a solution.

Input to the GTD paradigm are descriptions of the initial and final
states of the problem. The generator matches a library of
associational rules against these state descriptions and combines
matching rules to construct an initial hypothesis that purports to
explain how the final state could be achieved from the initial state.
This hypothesis is then tested using simulation techniques. If the
result of the simulation matches the final state, the hypothesis is
accepted as a solution; otherwise, the tester passes to the debugger
causal explanations for the bugs detected.

The debugger suggests modifications to the hypothesis to repair
each bug. It then estimates the global effects of the modifications
— whether they introduce new bugs or achieve any of the remaining
ones. When satisfied that all bugs have been repaired, the debugger
submits the modified hypothesis to the tester for verification. This
debug/test loop continues until the test succeeds. Alternatively, if
the debugger appears to be moving far from a solution, the generator
may be invoked to produce a new hypothesis.

Each stage of the paradigm has a different task and requirements.
The generator must efficiently produce hypotheses that are usually
correct or nearly so. The tester must be accurate enough to
determine whether an hypothesis actually solves the problem. The
debugger must be robust enough to repair any bugs detected by the
tester. To achieve these desired characteristics, each stage uses
reasoning techniques and representations appropriate to its
particular task.

The representations used by the generator are domain-specific
rules, which we call scenarios, that associate patterns in the initial
and final states with events that plausibly explain how the patterns
could be achieved. In the geologic domain, for instance, the pattern
of an igneous rock surrounded by two rocks of the same composition

is likely to have arisen from the igneous rock intruding (pushing)
through an existing rock, splitting it into two pieces.

The generator works by matching scenario patterns against the input
state descriptions and composing the events from different
matching scenarios to generate a complete hypothesis. In essence,
the matching patterns indicate sub-problems and the associated
events are sub-solutions. Events are composed by trying to unify
them using simple, but general, principles — two events unify if they
are of the same type and have consistent parameter bindings.
Unifying events together indicates that they are really the same
event. For example, two events that purport to create pieces of the
same rock must be the same event, since objects can be created by
only one event.

The generator achieves efficiency by, for the most part,
independently composing the events of different matching scenarios.
It presumes, in other words, that the events associated with one
scenario pattern do not interfere with the achievement of other
patterns. Under this presumption of composability, hypotheses can
be constructed in time proportional to the number of goals.

Unfortunately, the generator may produce incorrect hypotheses since
the presumption of composability does not necessarily hold for all
combinations of scenarios. Thus, GTD tests the generated
hypotheses, simulating them to verify whether they are correct. The
GORDIUS tester relies on a domain-independent causal simulator to
predict the changes that the hypothesized events have on objects in
the domain. The simulator reflects these changes by updating the
various specialized representations of the system, using event
models that declaratively represent their preconditions and effects.

For geologic interpretation problems, an additional diagrammatic
simulation is used to predict the spatial effects of events more
accurately. The diagrammatic simulator constructs a sequence of
diagrams to reflect geometrical and topological changes to the
geologic objects. A specialized diagram matcher, which uses a
Waltz-type filtering algorithm, is used to compare the topological
structure of diagrams to determine whether the simulation diagram
matches the goal state of a geologic interpretation problem.

The main task of the tester is to detect bugs in the hypothesis,
where a bug is an inconsistency between the desired value of a

-4 -

statement and its value as predicted by the tester. For example, a
bug arises if the desired orientation of a formation in the final state
is 10°, while the orientation predicted by simulating the hypothesis
is 5°. The tester detects two types of bug manifestations: 1) the
preconditions of an event do not hold, and 2) the set of events does
not achieve the goal state. For each bug detected, the tester
constructs a causal dependency structure to explain why the bug
arises. The dependency structures, which are networks that
represent causal, functional and logical dependencies between
nodes, are produced as a by-product of our causal simulation
algorithm.

The debugger repairs bugs using three causal reasoning techniques:
1) it analyzes the causal dependency structures produced by the
tester to find the assumptions that underlie the explanations for
why the bugs arise, 2)it regresses values back through the
dependency structures to determine the desired values that need to
be achieved, and 3) it uses repair strategies that know how to
replace faulty assumptions with ones that can achieve the desired
values.

For example, if a bug depends on the assumption that a parameter
has a particular value, the general repair strategy is to change the
parameter to a value that fixes the bug. This desired parameter
value is determined by regressing the value that fixes the bug back
through the causal dependency structure. As a simple example,
suppose the desired orientation of some formation S1 is 14°, while
the tester predicts that the hypothesized sequence of events "first
deposit S1 horizontally, tilt all rock-units by 7°, then tilt again by
5°" will produce a value of 12°. By regressing the value of 14° back
through the causal explanation for the bug, the repair strategy
determines that changing the parameter value of the first tilt event
from 7° to (14-5)° repairs the bug.

For each proposed bug repair, the debugger determines how the
repair interacts with the hypothesis as a whole by using an
evaluation heuristic to estimate the number of bugs remaining in the
hypothesis. The evaluation heuristic uses a technique that is
similar to the causal simulator of the tester, but is somewhat less
computationally expensive and less complete.

In GORDIUS, best-first search is used to control the overall search
for a solution. When a partial hypothesis is proposed, either by

-5 -

composing events from a matching scenario or by repairing a single
bug, the hypothesis is placed on a priority queue sorted by an
estimate of the closeness of the hypothesis to a solution. GORDIUS
uses a fairly simple distance metric whose primary component is
the number of bugs in the hypothesis and whose secondary
component is the cost of the hypothesis, estimated as the number of
hypothesized events. This distance metric captures our desire to
find a solution that is both complete (i.e., it achieves all the goals)
and compact, in the sense of Occam's Razor. In practice, we have
found the metric to be quite adequate: for most problems examined,
this distance metric results in a very focused search, with few
false paths pursued.

Two aspects of our search strategy should be noted. First, using one
queue to keep track of hypotheses proposed by both the generator and
debugger provides a simple way to decide dynamically when to
continue debugging and when to return to the generator for a new
hypothesis. Under best-first search, control returns to the
generator whenever the next best generated hypothesis has fewer
unachieved goals than any of the hypotheses being debugged. Second,
the search heuristic does not attempt to optimize over any aspect of
the hypothesis since our task is to find a plausible, although not
necessarily the best, solution. While the tendency is to produce
solutions with fewer events, no guarantee is made that the solution
found will be the shortest.

1.2 Domains Explored

The GTD paradigm was originally developed for solving geologic
interpretation problems. The task is to infer a set of events that
can plausibly explain how a geologic region was formed, given a
vertical cross section of the region.

A cross section (the problem's goal state) describes topological,
geometrical, and compositional aspects of the region. The goal state
is shown schematically as a two-dimensional diagram and a legend
identifying the rock types (Figure 1). The initial state, which is the
same for all geologic interpretation problems we considered,
consists simply of bedrock under sea-level.

A solution to a geologic interpretation problem consists of the types
of events that occurred and constraints on the temporal orderings

-6 -

and parameter bindings of the events (e.g., "there is enough erosion
to partially erode the shale"). Figure 2 presents a plausible solution
to the problem in Figure 1. Unless otherwise noted, GORDIUS has
solved all examples presented in this report, and all the geologic
diagrams, such as Figure 1, are produced by the system.

£ B SHALE

)a GRANITE
Uit] MAFIC-IGNEOUS

AV ANAN AN AN Y
RS

LY

SR
RN

AEARRERERRRRERREEEN
~

Figure 1. Geologic Interpretation Goal State

Deposit Shale

Intrude Granite into Shale

Uplift

Intrude Mafic Igneous through Granite and Shale
Fault across Shale and Granite

Erode Shale and Mafic Igneous

ok wN

Figure 2. Plausible Solution Sequence to Figure 1

Geologic interpretation is a basic skill needed by geologists. It is
often the first step in analyzing geologic data, since the types and
ordering of events that occurred are crucial in answering such
questions as whether oil or minerals can be found in a region. It is
also one of the first skills taught to geologists. In fact, several of
our interpretation problems, including Figure 1, are adapted from
midterm examinations given to first-year geology undergraduates.

Geologic interpretation is a good domain for studying problem
solving. Knowledge acquisition is not a bottleneck since the problem
requires relatively little geologic knowledge, as evidenced by the
fact that first-year students are readily taught to perform the task.

-7 -

Qualitative, commonsense models of geology and simple quantitative
models suffice for doing many interpretation problems.

On the other hand, modeling geologic events involves representing
and reasoning about a wide range of temporal, spatial, conditional
and quantified effects, including the creation and destruction of
objects. The large number of potential interactions among events
means that problem solvers employing purely associational
reasoning will tend to be brittle, since associational reasoning alone
cannot handle unforeseen interactions. Similarly, purely causal
reasoning is computationally infeasible in this domain due to the
cost of determining all potential interactions. These domain
characteristics indicate the need for a problem-solving paradigm
that combines the best of both types of reasoning.

We have also carried out less extensive exploration of several other
domains: blocks-world planning, the Tower of Hanoi problem, and
semiconductor fabrication diagnosis. Blocks-world planning was
chosen because it is a well-studied domain in Al and serves as a
testbed to compare our methods with other planning techniques. We
have found that GORDIUS compares very favorably with traditional
domain-independent planners (e.g. [Chapman], [Sacerdoti], [Sussman],
[Wilkins]).

The Tower of Hanoi problem was chosen because it is characterized
by a high degree of interaction — moving a ring from one post to
another is likely to interfere with the goals of moving other rings.
As we will see, the degree of interaction has a profound effect on
the problem-solving efficiency of the GTD paradigm. Finally, we
briefly explored a rather different domain, that of diagnosing
manufacturing faults in semiconductor fabrication [Mohammed &
Simmons]. This domain was chosen primarily to exercise the Test
and Debug algorithms in another complex, real-world domain.

1.3 A Geologic Interpretation Problem

This section briefly describes how GORDIUS solves the geologic
interpretation problem of Figure 3 in order to introduce the
reasoning techniques and knowledge used in GTD. The details of
these techniques are discussed in Chapters 2, 3, and 4.

The three basic types of geologic objects in our model are rock-
units, boundaries, and points. A rock-unit is simply a mass of rock.
A formation is a rock-unit of homogeneous composition that was
formed by a single event. A boundary is the interface between two
rock-units or between a rock-unit and the Environment (the air or
sea). A fault, for example, is represented as the boundary between
the rock-units on either side of the fault (called the up-thrown and
down-thrown blocks). The surface of the Earth is the boundary
between the Environment and the top-most rock-units of a region.
A point, the third type of geologic object, represents a location on a
rock-unit or along a boundary. For example, "the top of the shale
formation" and "the bottom of the Earth's surface" are both points.
In addition, rock-units and boundaries may be composed of "pieces"
of other objects of the same type. For example, the shale formation
in Figure 3 is composed of the shale pieces SH1, SH2 and SH3, and
the surface of the Earth is composed of pieces B1-B4.2

ENVIRONMENT

GRANITE
B SHALE

[] nAFIC-IGNEOUS

Figure 3. Geologic Interpretation Problem

We have employed a simple model of geology known as "layer cake"
geology to model seven of the most common types of geologic events
— deposition, erosion, intrusion, faulting, uplift, subsidence, and
tilt. In our model, deposition, which occurs when silt in water
deposits on the sea bed, creates horizontal sedimentary formations
(e.g., shale and sandstone) that stack up like the layers of a cake.
Erosion, which occurs when wind abrades exposed rock formations,

2 The edges along the sides and bottom of the diagram form its window. Although the
system has no information about the appearance of the region outside the window, it is
presumed to continue linearly.

-9 -

is modeled as occurring horizontally, slicing through the Earth like a
knife. Intrusion creates igneous formations (e.g., mafic-igneous and
granite) when molten rock from below intrudes (pushes) into or
through upper rock layers. We distinguish two types of intrusion —

dike-intrusion and batholithic-intrusion. Dike-intrusion occurs
when a thin band of igneous rock intrudes all the way through
existing rock-units. MI1 in Figure 3 is a dike-intrusion.

Batholithic-intrusion occurs when a much larger mass of igneous
rock intrudes into, but not through, rock-units. G2 in Figure 3 is a
piece of a batholithic-intrusion. Faulting splits the Earth and, in our
model, moves one side of the fault (the down-thrown block)
downward relative to the other side (the up-thrown block). Uplift
and subsidence move the Earth uniformly up or down, respectively;
tilt rotates the Earth around some origin.

GORDIUS begins solving the problem of Figure 3 by matching
scenarios against the goal diagram and combining matching
scenarios to generate an initial hypothesis. Scenarios are heuristic
rules that associate observable patterns in the goal and initial
states with sets of events, called local interpretations, that could
have produced the patterns. For example, the "intrudes-through"
scenario, illustrated schematically in Figure 4, indicates that an
igneous formation intruded into an existing rock formation. The
scenario pattern (Figure 4a) matches those parts of a goal diagram
where an igneous rock is between two rocks of the same
composition and the boundaries of the rocks are parallel. One match
in Figure 3 occurs where MI1 is between SH2 and SH3.

A, Sct c R . . _
Events:
1. Create Rock1
2. Intrude IGN through Rock1
R1 IGN R2 pattern Constraints:
Igneous(IGN) Interpretation Constraints:
B1 B2 Same-type(R1, R2) Piece-of(Rock1, R1)
i i Parallel(B1, B2) Piece-of(Rock1, R2)

Intersects(Rock1, IGN)

Figure 4. Schematic of the "Intrudes-Through" Scenario

The local interpretation describes the events that occurred to form
the pattern, their parameter bindings, temporal orderings between

- 10 -

events, and the objects that are related via a piece-whole hierarchy.
The local interpretation of the "intrudes-through" scenario (Figure
4b) indicates that one event creates formation Rock1 (where R1 and
R2 are pieces of Rock1), which is followed by a dike-intrusion
event that creates the igneous formation IGN. In addition, the local
interpretation constrains the location of the igneous formation to
intersect with the existing rock formation.

Note that a scenario is just a heuristic since different events may
give rise to the same pattern. For example, there are at least two
interpretations for the pattern of a sedimentary rock on top of an
igneous rock: 1) the igneous rock intruded into the sedimentary rock,
or 2) the igneous rock intruded into some pre-existing rock,
everything was uplifted, the upper layers eroded exposing the
igneous rock, after which the region subsided and sedimentary rock
was deposited on top of the igneous rock. Although the generator
prefers to use the first interpretation since it is shorter, the second
may be used if the first leads to an inconsistency.

The local interpretations derived from matching scenarios are
combined to yield an initial hypothesis. In generating the initial
hypothesis shown in Figure 5, thirteen matches are employed. The
generator uses six of the fifteen currently defined scenarios (gi-
scenarios-fig), with some of the scenarios, such as "intrudes-
through”, matching in more than one place.

Deposit Shale

'

Intrude Granite
Fault Intrude Mafic Igneous

Erode

Figure 5. Initial Hypothesis Sequence Generated

The hypothesis of Figure 5 differs from the solution in Figure 2 in
two important respects. First, the generator leaves the faulting and
intrusion events unordered since the goal diagram does not contain
enough information to tell which occurred first. Second, the

- 11 -

hypothesis of Figure 5 does not contain an uplift event because the
"erosion-ends-boundary" scenario was altered for this example in
order to provide a simple illustration of the test and debug
capabilities of GTD.

This initial hypothesis is then tested using a combination of causal
and diagrammatic simulation techniques [Simmons, 83]. To make the
testing more efficient, GORDIUS first simplifies the initial
hypothesis by choosing one of the totally ordered sequences
consistent with it. This is a reasonable simplification because our
task is to produce one plausible interpretation; if the wrong
linearization is chosen, GORDIUS can use the debugger to repair the
choice.

The causal simulator takes each event in the sequence in turn and
checks whether the preconditions of the event hold. If so, the
simulated state of the world is updated to reflect the effects of the
event. In this example, the tester proceeds until the erosion step is
reached, at which point a bug is detected. The bug is that erosion
cannot occur because , being a wind-driven event, it must occur
above sea-level, but the current state of the simulation indicates
that the surface of the Earth remains below sea-level, unchanged
since the deposition of shale.

Erosion Does Not Occur
Height of Surface at Start of Erosion is Below Sea-Level

Value of Height of Surface at Start of Erosion Value of Sea-Level

Height Persisted From End of

Value of Height of Surface at End of Deposition Deposition to Start of Erosion

Deposition Effects Height of Surface Value of Height of Surface at Start of Deposition

Dlevel1 Amount is Deposited

Figure 6. Causal Dependency Structure for the Bug that Erosion Does Not Occur.

The tester passes to the debugger a dependency structure, outlined
in Figure 6, that explains how the events caused the bug (an arc

- 12 -

means "depends on"). The debugger traces back through the
dependency structure to locate the assumptions underlying the bug,
two of which are: 1)the assumption that some fixed amount of
material, Dlevel1, is deposited, and 2)the closed-world
assumption that the height of the surface persisted from the end of
deposition to (at least) the start of erosion.

The debugger's repair strategies attempt to replace the assumptions
with ones that will fix the bug. For example, taking assumption #1
above, the debugger considers increasing the parameter Dlevell
enough to raise the surface of the Earth above sea-level. The
debugger infers that this cannot help, however, since our model of
deposition indicates that it can only occur under water, hence no
amount of deposition can raise the surface above sea-level.

Analyzing assumption #2, the debugger considers replacing the
persistence assumption by adding an event that can increase the
height of the surface. Two possibilities are uplift and tilt. The
debugger evaluates both repairs and estimates that adding an uplift
event is better since tilt would introduce new bugs, namely that the
orientations of boundaries would no longer match those of the goal
diagram. The debugger thus inserts an uplift event between the
deposition and erosion events (Figure 7), adding the parameter
constraint that the amount of uplift must be enough to raise the
surface of the Earth above sea-level.

Deposit Shale

'

Intrude Granite

Fault Intrude Mafic Igneous _UPIift

~~

Erode

Figure 7. Debugged Hypothesis to Solve Figure 3.

This modified hypothesis is then submitted to the tester for
verification. As mentioned above, the tester chooses one total
ordering consistent with the partial ordering in Figure 7 (e.g., Figure
2). This time the causal simulation completes successfully. It is

- 13 -

followed by a diagrammatic simulation that tests the hypothesis in
more detail by constructing a series of diagrams that represent the
spatial effects of the geologic events. Since the final simulation
diagram (Figure 8) matches the goal diagram (Figure 3), GORDIUS
concludes that the sequence of Figure 2 is one plausible
interpretation for this problem.

Figure 8. Successful Simulation of Interpretation Example

1.4 History and Contributions

The problem-solving paradigm described in this report has a rich
history in Al. The "Problem Solving by Debugging Almost Right
Plans" paradigm of [Sussman], the "Abstraction, Inspection and
Debugging" paradigm of [Rich & Waters], and much of the work in
case-based reasoning (e.g., [Alterman], [Hammond], [Kolodner],
[Schank]) all use associational reasoning to generate a correct or
nearly correct hypothesis and use causal reasoning, when necessary,
to do debugging.

Our research extends this previous work in two major ways. First,
we have developed a domain-independent theory of debugging for
plans and interpretations, and can characterize its completeness
with respect to a set of models underlying the problem solver.
Second, we have analyzed why associational reasoning tends to be an
efficient problem-solving technique and why causal reasoning tends
to be robust, yielding insight into the types of problems amenable to
GTD-type problem solvers.

- 14 -

1.4.1 A Theory of Debugging

In describing HACKER, one of the first attempts at problem solving
by debugging, Sussman acknowledges that the "bug classifier in
HACKER is an ad hoc program ... An important area for development ...
would be the systematization of the knowledge in Types of Bugs in a
more modular form" [Sussman, p. 66]. Our theory of debugging takes
a large step in that direction. While an ad hoc approach might be
sufficient for simple blocks-world problems, the complexity of the
geologic domain calls for a more systematic approach. In particular,
the many combinations of different types of events, effects, and
possible interactions among events make it infeasible to produce a
robust debugger by introspectively enumerating possible bug types
and repairs.

Our theory of debugging treats bug manifestations, such as
precondition violations and failure to achieve goals, as surface
indicators of deeper failures. The basic idea is that all bugs
ultimately derive from faulty assumptions made during the
construction or testing of hypotheses. The underlying assumptions
are located by tracing back through causal dependency structures
that explains why bugs appear. The direction in which to change an
assumption is indicated by regressing the desired value of the bug
back through the dependencies. Bugs are repaired by replacing faulty
assumptions using domain-independent algorithms that analyze the
domain models, dependency structures, and regressed values.

Our assumption-oriented theory of debugging is very general since a
large number of potential bug types can arise from combinations of a
small set of different assumptions. Unlike other debuggers, which
use a predefined library of bug types (e.g., [Hammond], [Sussman],
[Marcus]), our debugger can handle novel bug types by using general
methods to analyze the explanations for why bugs arise. Our
approach of tracing faults to underlying assumptions has roots in
work on model-based diagnosis (e.g., [Davis], [deKleer & Williams])
and algorithmic debugging [Shapiro]. Our contribution is in providing
principled strategies for repairing bugs by replacing the underlying
assumptions once they have been located.

The coverage provided by the debugger is characterized by comparing
the types of assumptions currently handled with the range of
different types of assumptions that could possibly arise. The range
of assumptions is determined by analyzing three different models

- 15 -

upon which the problem solver is built — a model of causality, a
model of the problem-solving task, and a model of hypothesis
construction. Our model of causality, which describes how change
occurs, indicates that the state of the world can be predicted given
assumptions about the initial state, the hypothesis, and certain
closed-world assumptions, such as that attributes persist unless
some known event changes them. Since a problem is solved when the
predicted state of the world matches the final state, the coverage of
the debugger is given by how well it can handle the above
assumptions.

The problem-solving task model states that the assumptions about
the initial and final states, which define a particular problem, are
fixed and cannot be changed by the debugger. The model of
hypothesis construction indicates that an hypothesis is completely
specified by assumptions about 1) the events that occur, 2)
parameter bindings of events, and 3) temporal orderings between
events; the debugger has repair strategies for each of those.

The debugger also handles the types of closed-world assumptions
most commonly at fault in our examples: assumptions that
attributes persist, that objects exist until destroyed, and that all
objects are known to the system. Other closed-world assumptions,
such as those regarding the correctness of the domain models, while
beyond the scope of this report should be amenable to debugging
strategies similar to those described here.

While the debugger is quite robust, it is not theoretically complete
in that it cannot solve all problems describable in its representation
language. Although the dependency tracing technique and repair
strategies are complete, the regression technique is not.
Pragmatically, however, this has not affected the debugger's ability
to solve problems.

1.4.2 Combining Associational and Causal Reasoning

Our analysis of the problem-solving characteristics of GTD centers
on how the different techniques represent and reason about
interactions between events. Associational reasoning tends to be an
efficient means of problem solving because it presumes that its
scenarios encapsulate interactions and can therefore be combined
independently. A more robust reasoning technique is needed,
however, in cases where this presumption is incorrect. In such

- 16 -

cases, causal reasoning is used since it explicitly represents and
reasons about interactions between events.

A scenario is said to encapsulate interactions if the events within
the scenario are sufficient to achieve its pattern and events outside
the scenario do not interfere with the achievement of the pattern.
In the blocks-world domain, for instance, the scenario "to achieve
On(x, y) and On(y, z), put y on z then put x on y" encapsulates the
interaction that the alternative ordering of first putting x ony
would interfere with subsequently putting y on z.

The advantage of using scenarios that encapsulate interactions is
that solutions can be generated by independently composing
solutions to subproblems. This has direct bearing on efficiency,
since solving each subproblem independently reduces the need for
computationally expensive search [Simon]. In the best case, where
the scenarios are totally independent, problems can be solved in
time proportional to the number of goals in the problem. For
example, we can construct a plan for achieving On(B, C), On(C, D)
and On(A, B) by twice using the blocks-world rule above. One
application gives us the fragment "put C on D then put B on C" and
the second application yields "put B on C then put A on B." By
unifying the two occurrences of "put B on C," that is, by assuming
that they represent the same event, we come up with the totally
ordered solution "put C on D; put B on C; put Aon B."

Unfortunately, in many domains it is often impossible to produce
rules that are completely independent of one another. For example,
our "sedimentary-tilt" scenarios states that a sedimentary rock
whose orientation is a non-zero angle 6 was formed by deposition
(which deposits rocks horizontally) followed by a tilt of 6 degrees.
While this scenario yields a correct interpretation in many cases, it
is not independent for problems in which there are two sedimentary
rocks oriented at different angles, for instance, a sandstone
oriented at 10° beneath a shale oriented at 5°. Using the above
scenario twice results in the interpretation "deposit sandstone; tilt
10°; deposit shale; tilt 5°," which is incorrect because the sandstone
ends up with an orientation of 15°.

One way of alleviating the problem of non-independent rules is to

create more scenarios, ordered by increasing specificity of the
patterns. We might, for instance, encapsulate the above interactions

- 17 -

by creating a scenario whose pattern matches two sedimentary
rocks that have different orientations and whose local
interpretation states that the angle of the first tilt event is the
difference between the orientations. This is futile in general,
however, since in most complex domains unanticipated interactions
will always remain. Our strategy, therefore, is to use scenarios
that encapsulate the common patterns of interaction and let the
causal reasoning handle residual interactions. We are thus prepared
to efficiently handle domains in which most, but not all,
interactions are encapsulated.

Causal reasoning achieves robust problem-solving behavior by
explicitly representing and reasoning about interactions between
events. Events interact when one event affects how another event
changes the state of the world. The causal reasoning techniques
deal with interactions between events by representing and reasoning
about time, persistence, and domain models that encode the effects
that events can have.

In this sense, our debugger is like traditional domain-independent
planners (e.g., [Chapman], [Sacerdoti], [Vere], [Wilkins]), which are
concerned with achieving goals and using critics to find interactions
between goals. The causal reasoning techniques used by our
debugger extend this work in two important ways. First, the
complexity of the geologic domain demands more sophisticated ways
to represent and reason about the effects of events. In particular,
we need to represent the creation and destruction of objects and
conditional, quantified and relative effects.

Second, while traditional domain-independent planners use the
refinement approach, in which constraints are added only when
absolutely necessary, our debugger adopts a transformational
approach, in which constraints may be removed from an hypothesis
as well. The transformational approach is particularly beneficial in
complex, relatively under-constrained domains, such as geology,
since the problem solver can increase efficiency by making
simplifying assumptions and commitments, with the understanding
that erroneous choices can be subsequently debugged.

One downside of using causal reasoning is its high computational
cost. In solving a problem, the debugger tends to examine more
hypotheses than does the generator and the cost of evaluating each
hypothesis is higher — exponential for the debugger vs. polynomial

- 18 -

for the generator. It is for precisely this reason that GTD uses the
debugger sparingly to focus on the problems that the generator
cannot handle.

We have developed guidelines for other domains in which GTD may be
useful based on this understanding of the different characteristics
of associational and causal reasoning. The most important
guidelines are that the goals of the problem should be neither totally
independent nor totally interdependent. If the goals are totally
independent (or can be factored into totally independent
encapsulations) the debugger is not needed since the generated
hypothesis will always be correct. On the other hand, if the goals
are totally interdependent, the generator will frequently produce
incorrect hypotheses, and the system's behavior will be dominated
by the computationally expensive causal reasoning. The best
domains for GTD fall between the two extremes, with the overall
problem-solving efficiency increasing with the degree of
independence of the goals. To give a search space analogy, the GTD
paradigm works well where the generator can quickly find the right
"hill" in a bumpy search space and the debugger can incrementally
move up the hill to a solution.

1.5 Terminology

This section describes the terminology and syntax used in this
report for describing models of the world, problems, and solutions.

Time is represented both as points, designated t1...tn, and intervals,
designated I11...In (descriptions of our world models are always
designated using boldface text). Time intervals are defined by
their start and end points, l.start and l.end, respectively.
Relationships between time points are indicated using standard
inequality relationships (<, <, >, 2, =), for instance, t1 < t2. Time
intervals are related through their start and end points, for
instance, I1 preceding 12 is represented as I1.end < I2.start.

Our world model consists of objects, such as rock-units, blocks, and
quantities. Objects are typed, with the types forming a strict
hierarchy. Temporal objects correspond to real-world entities. A
temporal object, such as Rock1, has a temporal extent that is
designated by the object's creation time (Rock1.start) and

- 19 -

destruction time (Rock1.end), which may be unspecified if the
object still exists.

A temporal object has a set of attributes determined by its type.
For example, the attributes of a rock-unit include its thickness,
composition, top-most and bottom-most points. The attributes of
temporal objects encode their entire history over time; a temporal
reference, written Object.attribute@time, is used to refer to the
value of an attribute at a particular point in time. For example,
R1.thickness@t1 represents the thickness of rock-unit R1 at time
t1. Temporal references may be nested, for instance,
(USA.president@1988).hair-color@1955 designates the hair
color, in 1955, of the person who is president of the United States in
1988. If the same time point appears in a nested temporal
reference, the expression can be abbreviated by removing the
redundant time point. For example, (Surface.top@t1).height@t1
and Surface.top.height@t1 both represent the height of the top of
the Earth's surface at time t1.

Unlike temporal objects, abstract objects, such as quantities, sets,
and symbolic constants, do not correspond to real-world entities.
Abstract objects have no temporal extent and their values do not
change over time. The value of an abstract object is represented
without using the "@" notation, for instance, Q1 > 5 represents that
the value of quantity Q1 is greater than five. The elements of sets
are represented either as A € S1 or by using the brace notation,
such as {A B C} and {} (null set).

A statement about the world is constructed by combining more
primitive statements (e.g., time points, objects, and temporal
references) using functions (e.g., Q1+Q2), predicates (e.g.,
Clear(A, t1)), arithmetic relations (e.g., Q1 <Q2), and logical
connectives (e.g., P = Q — material implication). For example, the
statement (A.top@t1 = {}) = Clear(A, t1) defines that block A is
clear at time t1 if its top attribute contains no objects.

The value of a statement is determined by evaluating the statement.
For relations, predicates, and logical connectives the possible
values are true and false. Functions evaluate to objects or
constant symbols. In addition, statements can evaluate to unknown.
When GORDIUS evaluates a statement, it records dependencies that
justify the value of the statement in terms of the values of other

- 20 -

statements. For example, the truth of the statement Q1 > Q2+Q3
depends on the values of quantities Q1, Q2 and Q3.

A statement can also be assumed to have a particular value, for
instance, one can assume that Q3 has the value 1 or that Q1 > Q2 is
true. We use the term assumption to indicate that the value of a
statement is assumed to be true. For example, the assumption that
block A is clear at time t1 means that Clear(A, t1) is assumed to
be true. A bug (inconsistency) arises when the desired (assumed)
value of a statement conflicts with its predicted value obtained by
evaluating the statement. For example, it is inconsistent to make
the assumption that Q1 > Q2 if Q1 is already assumed to have the
value 1.5 and Q2 is assumed to be 2.0.

Events are represented as first-class objects in our world model.
An event, also referred to as an occurrence, affects the state of the
world by changing the values of attributes. An event is described by

its type and parameter bindings. For example, the four statements:
Occurs(Deposition, Deposition1),
Parameter-of(Deposition1, Rock, SH),
Parameter-of(Deposition1, Dcomposition, Shale), and
Parameter-of(Deposition1, Dlevel, 100)

indicate that Deposition1 is an event of type deposition3 that
creates a shale rock-unit named SH whose thickness is 100
(meters). For conciseness, this will often be written simply as:
Deposition1(SH, Shale, 100).
Deposition1 is constrained to occur during the interval from
Deposition1i.start to Deposition1.end. Ordering relations, such
as the statement that Deposition1 precedes event Erosion1, are
written as Depositioni.end < Erosion1.start.

For the purpose of this report, an hypothesis is a set of events,
represented by a collection of Occurs statements, Parameter-of
statements and temporal relations between events. A solution to a
problem is an hypothesis that can achieve the problem's goal state
from its initial state. An hypothesis may specify only partially the
parameter bindings and ordering of events. A partially ordered
hypothesis is pictured graphically using arrows to represent the
ordering of events, while totally ordered sequences are usually
depicted with the events numbered (see Figure 9).

3 To increase readability, the types of events are not always written in boldface.

- 21 -

Deposit Shale 1. Deposit Shale

Intrude Grani 2. Intrude Granite into Shale
ntrude Granite 3 Upllft

uplit 4. Intrude Mafic Igneous through Granite and Shale
5. Fault across Shale and Granite
Erode 6. Erode Shale and Mafic Igneous

Fault Intrude Mafic Igneous

Figure 9. Partially and Totally Ordered Hypotheses

A world state (or just state) is a collection of statements that
partially specifies the state of the world at some point in time or
over an interval of time. Two important states for interpretation
and planning problems are the initial state and final (or goal) state.
Although many of the reasoning techniques used in GORDIUS do not
require it, for simplicity this report restricts the initial and goal
states to single points in time. The time points of the initial and
final states are designated Plan-start and Plan-end, respectively.
For example, Figure 10 illustrates both graphically and
propositionally the initial and goal states for a blocks-world
planning problem. In Section 7.5, we briefly discuss the use of GTD
where the initial and goal states are not limited to single points in
time, for instance, where the goal state is "robot is at MIT at Plan-
end and robot is at concert at 8PM."

Initial State Goal State
1. On(A, B, Plan-start) C 1. On(A, Table1, Plan-end)
2. On(B, Table1, Plan-start) 2. 0n(B, A, Plan-end)
A 3. On(C, Table1, Plan-start) B 3. On(C, B, Plan-end)
B C 4. Clear(A, Plan-start) A
5. Clear(C, Plan-start)
Tablet Table1

Figure 10. Initial and Goal States for a Blocks-World Planning Problem.

1.6 Outline

Chapters 2, 3 and 4 describe the details of the Generate, Test and
Debug techniques, respectively. Each chapter is divided into three
sections. The first sections describe GORDIUS' behavior in solving
the example of Section 1.3 in more detail. The second sections of

- 22 .

each chapter present details of the representations and reasoning
methods used for each technique. The third sections discuss the
strengths and weaknesses of each technique. In particular, Section
4.3 analyzes our theory of debugging plans and interpretations.

Chapter 5 presents the results of experiments using GORDIUS to
solve problems in the geologic, blocks-world, Tower of Hanoi, and
semiconductor fabrication domains. The relationship between the
associational reasoning used by the generator and the causal
reasoning used by the debugger is analyzed in Chapter 6. This
chapter also describes the outline of an algorithm for deriving
associational rules from the results of debugging problems, and it
presents guidelines for other domains in which the GTD paradigm
may be useful. Chapter 7 discusses related work and speculates on
future directions for research in GTD-type paradigms that combine
associational and causal reasoning.

- 23 -

2. Generate

The role of the generator is to hypothesize a set of events that can
achieve the goal state of a problem. The generator constructs
hypotheses using a match and compose algorithm and a library of
scenarios. The scenarios associate patterns in the input with /ocal
interpretations, which are sets of events that can achieve the
patterns.! The generator matches scenario patterns against the goal
and initial states and composes together the local interpretations of
matching scenarios to form a complete hypothesis. GORDIUS
generator algorithm is fairly domain-independent — by supplying
different sets of scenarios, we have generated both geologic
interpretations and blocks-world plans.

The generator starts by matching scenario patterns against the goal
and initial states using a technique based on rete-nets. It then
examines each unachieved goal proposition and finds those matching
scenarios whose pattern contains the goal. For each such scenario,
the generator composes its local interpretation with the current
hypothesis, combining their events to create a new hypothesis. The
new hypothesis is presumed to achieve all the goals of the scenario
pattern plus the goals achieved by the original hypothesis.

A scenario provides only an heuristic indication, and not a guarantee,
that the local interpretation actually formed the scenario pattern
because the same pattern can often be formed by different
combinations of events. For example, the pattern of a sedimentary
and igneous rock-unit sharing a common boundary can be caused by a
dike intruding through the sedimentary rock-unit, by a batholith
intruding into the sedimentary rock-unit, or by the sedimentary
rock-unit being deposited onto an existing igneous formation.

To determine efficiently which events actually formed a particular
pattern, the generator uses scenarios that encapsulate patterns of
interaction, that is, scenarios whose local interpretations are
independent of other events in the hypothesis. Using independent
scenarios enables the system to generate hypotheses by finding
explanations for sets of goals separately and then combining the

1 The term "local interpretation” is historical — scenarios can be used for either
interpretation or planning. For interpretation, a local interpretation represents events
that could have led to certain goals; for planning it represents events that should be done
to achieve the goals.

- 24 -

explanations without the need for detailed checking for interactions
between events.

Unfortunately, because of the large number of potential interactions
between events in most domains, the best we can do is to create
scenarios that nearly, but not totally, encapsulate interactions.
Even so, the GTD paradigm presumes that scenarios can be composed
independently, or with at most simple checks for inconsistencies. It
is the role of the tester to determine if this presumption of
composability does in fact hold, and it is the role of the debugger to
repair hypotheses when the presumption does not hold.

The next section presents a concrete example of how GORDIUS
generates a geologic interpretation. Section 2.2 describes the
representations and reasoning techniques used by the generator in
more detail. Section 2.3 analyzes how the associational reasoning
used by the generator achieves efficiency by using scenarios that
encapsulate common patterns of interaction.

2.1 Generation of an Initial Hypothesis

The input to the generator is a list of propositions describing the
initial and goal states of the problem. For geologic interpretation,
the initial state consists simply of the propositions that the surface
of the Earth is bedrock, and that it lies below sea-level. The goal
state describes the topological, geometrical, and geological
properties of a vertical cross-section through the Earth.

For ease of use, the user describes the topological and geometrical
properties of the goal diagram (Figure 11) using a representation
based that concisely encodes the topological relationships between
rock-units (faces) and boundaries (edges) [Baumgart]. GORDIUS
translates this diagrammatic representation into a list of goal
propositions that represents the properties that geologists find
important in solving interpretation problems.

The important topological, geometrical, and geological properties
are represented using the predicates Abuts, Orientation and
Composition. For example, the section of the diagram with
boundary B5 between rock-units SH1 and SH2 translates to the
seven goals:

- 25 -

Abuts(SH1, B5, Plan-end),?
Abuts(SH2, BS5, Plan-end),
Orientation(B5, 100°, Plan-end),
Orientation(SH1, 0, Plan-end),
Orientation(SH2, 0, Plan-end),
Composition(SH1, Shale, Plan-end),
Composition(SH2, Shale, Plan-end).

For the diagram of Figure 11, there are a total of 28 Abuts goals
(two for each boundary), 17 Orientation goals (one for each
boundary plus one for each sedimentary rock-unit) and 7
Composition goals (one for each rock-unit). In addition, there is
one goal stating that there are no other objects within the window
of the goal diagram.

ENVIRONMENT

—SH1%8 GRANITE

] SHALE

Wty
(XY

DN
RWCRY

’,

[] nAFIC-IGNEOUS

RN RR NN

CRC RPN
RXW

Figure 11. Geologic Interpretation Example

The generator currently uses 15 scenarios that we have found to be
useful for the interpretation problems examined. Appendix A
presents the scenario patterns and local interpretations that purport
to explain how those patterns could have arisen (the representation
language used is described in Section 2.2.1). In the example below,
the generator needs only six of the scenarios to construct a solution
to Figure 11.

The generator starts interpreting Figure 11 by determining why MI1
abuts B6, which is the first in the list of goal propositions. One
scenario that can interpret this goal is the "intrudes-through"
scenario, which matches the section of the diagram where MI1 is
between SH2 and SH3. The local interpretation of the "intrudes-
through" scenario indicates that after some event created the

2 Plan-end is the time point associated with the goal diagram.

- 26 -

formation ROCK1 (consisting of pieces SH2 and SH3) a dike-
intrusion pushed the mafic-igneous DIKE1 (consisting of piece MI1)
and the intrusional boundary INTBOUND (consisting of pieces B6
and B7) through ROCKH1, splitting it in two.

Another match of the “intrudes-through" scenario is used to
interpret why MI1 is between G2 and G3. This scenario match
indicates that MI1 intruded through ROCK2, splitting it into G2 and
G3. Note that both matches of the "intrudes-through" scenario
hypothesize the occurrence of a dike-intrusion event. The generator
unifies the two events together to indicate they are actually the
same event, since both interpret how the same piece of rock (MI1)
was created. After composing the two "intrudes-through" local
interpretations, the current hypothesis is:

Rock-Creation1(ROCK1) Rock-Creation2(ROCK?2)

Dike-Intrusion1(D!IKE1, INTBOUND, Mafic-lgneous)

where SH2 and SH3 are pieces split from ROCK1, G1 and G2 are
pieces of ROCK2, Mi1 is a piece of DIKE1, and B6, B7, B13 and
B14 are all pieces of the intrusional boundary INTBOUND.

Next, a match of the "simple-fault" scenario is used to interpret why
SH1 abuts B5. This scenario match indicates that boundaries BS,
B9 and B12 are all pieces of FAULT1, a fault line that split the
existing shale and granite formations. Since the "simple-fault"
scenario interprets that SH1 and SH2 are pieces of the same
formation, the generator infers by transitivity that SH1 is also a
piece of the ROCK1 formation. Similarly, all three granite rock-
units are inferred to be pieces of the ROCK2 formation. The current
hypothesis is now:

Rock-Creation1{ROCK1) Rock-Creation2(ROCK2)

Faulting1(FAULT1) Dike-Intrusion1(DIKE1, INTBOUND, Mafic-igneous)

Next, the "erosion-ends-boundary" scenario is used to explain why
B1 abuts the Environment. The local interpretation indicates that
B1 and B2 are pieces of an erosional boundary EROBOUND and that
the level of erosion (Elevell) was enough to affect rock-units SH1
and SH2 (pieces of ROCK1) and boundary B5 (a piece of FAULT1).
The local interpretation also hypothesizes that before the erosion,
enough uplift occurred (Uamount1) to lift the surface of the Earth

- 27 -

above sea-level. Note that to show off the power of the debugger in
the example of Section 1.3, the "erosion-ends-boundary" scenario
was modified by removing the uplift event. Here we use the
complete "erosion-ends-boundary" scenario to show how the
generator produces a correct solution without the need of the
debugger.

At this point, the generator tries to explain why B3 abuts the
Environment. One scenario that matches this goal is "intrusion-to-
surface," which hypothesizes that MI1 intruded to the surface of the
Earth, that B3 is an intrusional boundary, and B2 and B4 are

depositional boundaries. This interpretation, however, is
inconsistent with the current hypothesis that B2 is an erosional
boundary. As a result, the ‘"intrusion-to-surface" local

interpretation is not composed with the current hypothesis.

Another scenario that can explain why B3 abuts the Environment is
the "erosion-ends-boundary" scenario. In this case, the scenario's
local interpretation is consistent with the current hypothesis. A
further application of the "erosion-ends-boundary" scenario is used
to explain why B4 abutsthe Environment, producing the
hypothesis:

Rock-Creation1(ROCK1) Rock-Creation2(ROCK2)

Uplift1(Uamount1)
Faulting1(FAULT1) Dike-Intrusion1(DIKE1, INTBOUND, Mafic-lgneous)

Erosion1(EROBOUND, Elevel1)

Three matches of the "sedimentary-no-tilt" scenario are now used to
determine why SH1, SH2 and SH3 have shale composition and
orientations of zero degrees. The local interpretations indicate that
the shale rock-units (all pieces of ROCK1) were all created by a
deposition event (Deposition1). The generator unifies together the
Deposition1 and Rock-Creation1 events since they both purport
to create the same formation. In the new hypothesis, Rock-
Creation1 is replaced by Deposition1, the more specialized of the
two events.

Similarly, three matches of the "igneous-under-sedimentary”
scenario are used to determine why G1, G2 and G3 are granite. As
above, the generator uses these scenarios to specialize Rock-
Creation2 to be a batholithic-intrusion event. In addition, the local

- 28 -

interpretation indicates that the intrusion of granite occurred after
the deposition of shale. Note that the "sedimentary-over-igneous”
scenario also interprets why G1, G2 and G3 are granite, but the
generator prefers the "igneous-under-sedimentary” scenario since it
produces an hypothesis with fewer events:

Deposition1(ROCK1, Shale)

Batholithic-Intrusion2(ROCK2, Granite)

Uplifti (Uamount1)
Faulting1 (FAULT1) Dike-Intrusion1(DIKE1, INTBOUND, Mafic-lgneous)

Erosion1(EROBOUND, Elevel1)

At this point, all the goals have been interpreted. The generator now
tries to determine whether any of the scenarios can be used to order
the currently unordered events. Although no matching scenarios
constrain the order of the faulting and dike-intrusion events, the
"eroded-sedimentary” scenario can be used to order the uplift and
deposition event. This scenario indicates that uplift must occur
between deposition and erosion, since deposition occurs under water
and erosion occurs in the air. Taking this scenario into account, the
initial hypothesis proposed by the generator is:

Deposition1(ROCK1, Shale)

Batholithic-Intrusion2(ROCK2, Granite)

Uplift1 (Uarmount1)
Faulting1(FAULT1) Dike-Intrusion1(DIKE1, INTBOUND, Mafic-igneous)

Erosion1(EROBOUND, Elevel1)

Testing this hypothesis, as described in Section 3.1, verifies that it
is a correct solution to the problem in Figure 11.

2.2 The Generator

This section contains a detailed description of the match and
compose algorithm used by our generator. The next two sections
describe the representations and reasoning techniques used to match
scenario patterns and compose local interpretations. Section 2.2.3
discusses how the best-first search for a solution is controlled — an
important consideration in domains, such as geologic interpretation,
where the search space of hypotheses is often very large.

- 29 -

2.2.1 Matching Scenario Patterns

The pattern of a scenario represents the conditions under which the
scenario may be applicable. By finding which scenario patterns
match against the input, the generator determines which associated
local interpretations could have occurred to achieve the goals of the
problem.

A scenario pattern is represented as a list of propositions
containing free variables. For example, Abuts(?r1, ?eb1, Plan-
end) denotes all sets of rock-units and boundaries that touch one
another at time Plan-end (a term starting with ? denotes a free
variable). In matching scenario patterns, GORDIUS determines
bindings for the variables, which in turn provides bindings for
instantiating the local interpretation associated with the pattern.

The propositions in a scenario pattern are divided into a goal part
and an initial part, which match against the goal state (time Plan-
end) and initial state (time Plan-start), respectively (see Figures
12 and 13).3 The two parts of a scenario pattern represent different
aspects of the scenario's applicability. The goal part, which
describes observable effects that will hold after the scenario's
local interpretation occurs, provides a way to recognize which
events occurred (or, in planning domains, which events should occur
to achieve the goals). For example, Figure 12 is a pattern that
typically arises when erosion occurs. In Figure 13, the goal part
indicates that the scenario is applicable if one has the goal of
stacking three (or more) blocks.

The initial part of a scenario pattern, which represents necessary
conditions for the local interpretation to occur, is used to determine
the context under which the scenario can be used. For example, the
initial part of Figure 13 indicates that in order to stack three blocks
simply by putting block B on C and then A on B, all three blocks
initially need to be clear on top. For our geologic scenarios, it is not
necessary to include an initial part to limit the applicability of
scenarios since in our interpretation problems the initial state is
always the same.

3 Some geologic scenarios include timeless propositions, such as ?theta = 0, that for
convenience are presumed to belong to the goal part.

- 30 -

Pattern Schematic of Pattern
Goal Part: Abuts(?r1, ?b1, Plan-end)

Abuts(?r2, ?b2, Plan-end) Environment
Abuts(Environment, ?b1, Plan-end) “B1 Bo=—
Abuts(Environment, ?b2, Plan-end) R17R2
Orientation(?b1, ?theta, Plan-end)

Orientation(?b2, ?theta, Plan-end) 3_3

Abuts(?r1, ?b3, Plan-end)
Abuts(?r1, ?b3, Plan-end)
Connected(?b1, ?b3, Pian-end)
Connected(?b2, ?b3, Plan-end)
Connected(?b1, ?b2, Plan-end)

Figure 12. The "Erosion-Ends-Boundary" Scenario Pattern

Initial Part: Clear(?a, Plan-start)
Clear(?b, Plan-start) Al |IB]]cCl
Clear(?c, Plan-start)

A

Goal Part: On(?a, ?b, Plan-end) B
On(?b, ?c, Plan-end)

C

Figure 13. Blocks-world Scenario Pattern For Stacking Three Blocks (from Appendix D)

The generator matches the propositions of a scenario pattern
against the propositions describing the goal and initial states and
constructs sets of binding lists for the free variables in the pattern.
Matching is implemented using rete-networks [Forgy], a technique
for efficiently matching patterns that share a large number of

common sub-patterns, as is typical of our geologic and blocks-world
domains.

The rete-network represents a scenario pattern as a binary tree
where the leaves, called match nodes, represent propositions and the
non-leaf nodes, called merge nodes, represent conjunctions of
propositions. Scenarios with similar patterns share the same match
and merge nodes up to the point where their patterns diverge. To
further increase the amount of sharing possible, and hence the
efficiency of matching scenarios, our rete-networks can incorporate
sub-trees, which we call defined predicates, that behave like match
nodes. For example, a common pattern in the geologic domain is
where a rock-unit shares a common boundary with another geologic

- 31 -

object (R1|F1). This "shared-rock-boundary” defined predicate
appears three times in Figure 14, which shows the rete-net
representation of the "erosion-ends-boundary” scenario of Figure 12.

Environment

- = ["Erosion-Ends-Boundary]

Rt / R
83 | \
/ (ENV) (ENv,B1,B2 Ri, B3, R2, THETA)
(ENV, B1)
[TsEnvironment? | | Faced-Rock-Boundary | [Above |
(B1, B2, R1, B3, R2, THETA)
(R2, B2, ENV) B B2
(R1,B1, ENV) [Colinear-Rock-Boundary | A R
\
(R1, B3, B2) (B1. At B9) (B1, B2, THETA)
(B2, R2, B3) B2 TN
B —B1— .
arl Fy Shared-Rock-Boundary R1 B3 —B1-e~B2— Colmear—Connectedl
|
(B”P',ETA) (B2, THETA)
1
R1) (R183) (F183) ®1RY) (B1, B3) Oriented-Boundary

(B1,B2)

/Bs o \ / / \
- (B1) (B1, THETA)
l Is-Rock-Unit? | Abuts Connected

- Boundary

Arcs are labeled with the parameter binding list passed between the rete nodes.
Schematics are shown for some nodes, indicating the pattern they match.
All nodes have a temporal argument, not shown here for simplicity.

Figure 14. Rete-Network Representation of the "Erosion-Ends-Boundary™ Scenario Pattern.

In a rete-network, a match node collects variable bindings for each
matching instance of its associated proposition and passes the
binding lists up to its parent merge nodes (the arcs in Figure 14 are
labelled with the variables passed between nodes). A merge node
receives binding lists from its two children nodes and, after
checking for consistency, combines the binding lists and passes
them up to its parent nodes. A complete scenario pattern matches if
its top-most merge node receives a non-empty set of binding lists.

Our pattern matcher differs from traditional rete-networks in two
important respects — 1) our matcher is goal-driven rather than

- 32 -

data-driven and 2) our matcher extends the method used by merge
nodes to combine variable bindings received from children nodes.

Traditional rete-networks are data-driven, in that match nodes are
activated whenever a new instance of their proposition is found and
merge nodes are activated whenever they receive bindings from
their children nodes. In contrast, our pattern matcher is used in a
goal-driven fashion. A merge node is activated when it receives a
partial (possibly empty) list of bindings from one of its parent
nodes. The merge node passes the bindings down to its left child,
activating it, then in turn passes each of the binding lists received
from its left child down to its right child, and finally returns the
resultant set of binding lists back to the node that activated it.

For our domains, the goal driven pattern matcher is more efficient
than a data-driven one would be. This is due mainly to the
combinatorics of matching large, under-constrained data sets, as is
typical in the geologic domain. For example, to find all matches of
the "shared-rock-boundary"” predicate (R1|F1), a data driven pattern
matcher would have to examine all pairs of rock-units and geologic
objects — an O(N2) operation. In the actual goal-driven matcher,
often only O(N) pairs need to examined since the initial parts of the
pattern typically constrain the bindings of one of the objects.

The other difference from traditional rete-networks is in the
method used by merge nodes to combine variable bindings received
from their children nodes. In traditional rete-networks, binding
lists can be combined as long as they do not bind the same variable
differently. We have added two extensions that have proven useful
for matching scenario patterns. First, pairs of variables (?x, ?y)
can be declared to be symmetric. The pattern matcher ensures that
if a binding list is constructed with ?x bound to A and ?y bound to B
then no binding list will be constructed with ?x bound to B and ?y
to A. Symmetries are used to prevent the matcher from finding
redundant matches. For example, the "erosion-ends-boundary”
pattern (Figure 12) is symmetric in ?r1 and ?r2 since the
interpretation of the pattern does not depend on whether the rock-
unit bound to ?r1 is to the left or right of ?b3 in the goal diagram.

The second extension for combining variable bindings is that the
pattern matcher ensures that no binding appears more than once in a
binding list, under the presumption that all variables are unique.
This presumption of uniqueness usually corresponds to our intuitive

- 33 -

notions of how patterns should be matched. For example, the
"shared-rock-boundary" pattern:

Abuts(?r1, ?b, Plan-end) and Abuts(?f1, ?b, Plan-end)
is meant to represent that ?r1 and ?f1 share a common boundary in
the goal state. We want ?r1 and ?f1 to match uniquely since we
usually do not want to infer that a rock-unit shares a common
boundary with itself. In the future, however, we plan to add the
ability to turn off this feature for selected pairs of variables, since
at times assuming uniqueness of variables is too restrictive.

2.2.2 Composing Local Interpretations

This section describes how local interpretations are represented and
composed. The local interpretation of a scenario is a set of events
that can plausibly achieve the scenario's pattern. Each matching
scenario can thus explain how a set of goals arose. To explain how
all the goals of a problem arose, the generator composes together
local interpretations from different matching scenarios.

The composition step instantiates a local interpretation, using
variable bindings derived from matching the scenario pattern. After
the local interpretation is instantiated, a new hypothesis is
generated simply by adding the events of the local interpretation to
those of the current hypothesis. For the most part, the events are
combined without checking for interactions. However, some
inexpensive checks are made to detect obvious inconsistencies, such
as cycles in the ordering of events (see Section 2.2.3).

Local interpretations are represented using four different types of
constraints:

1. Occurrence constraints describe which events occur. An Occurs
statement includes the type and name of the event. For example,
the local interpretation of the "erosion-ends-boundary" scenario
(Figure 15) states that the pattern arises from the creation and
subsequent erosion of two rock-units and one boundary.4

2. Parameter-binding constraints describe the objects that take
part in the events. For example, the "erosion-ends-boundary”
scenario indicates that Erosion1 creates Erobound, the

4 The rock-creation and boundary-creation events do not necessarily represent
different events. As described later in this section, the generator may unify them
together if they are found to refer to the same event.

- 34 -

Rock-Creation of ROCK2 Rock-Creation of ROCK1

(R2 is a piece of ROCK2) (R1 is a piece of ROCK1)
Environment
=B1 B2 Boundary-Creation of BOUND3 Uplift above
R1 £ R2 (B3 is a piece of BOUND3) Sea-level
B3

Erosion creating erosional boundary EROBOUND
(B1 and B2 are pieces of EROBOUND)

. Occurs(Rock-Creation, ?rock-creation?)
Occurs(Rock-Creation, ?rock-creation2)
Occurs(Boundary-Creation, ?boundary-creation3)
Occurs(Uplift, ?uplift1)

Occurs(Erosion, ?erosion1)

. Parameter-of(?rock-creation1, Rock, ?rock1)

Parameter-of(?rock-creation2, Rock, ?rock2)

Parameter-of(?boundary-creation3, Boundary, ?bound3)

Parameter-of(?erosion1, Boundary, ?erobound)

Parameter-of(?erosion1, Elevel, ?elevell)

Parameter-of(?uplifti, Uamount, ?uamount)

?2uamount> Sea-Level — Surface.top.height@?upliftt.Start ;; Enough uplift to raise the
surface of the Earth above sea-level

?elevel1< ?rock1.top.height@?erosioni.start ;» Enough erosion to affect rockt

?eleveli< ?rock2.top.height@?erosiont.start ;; Enough erosion to affect rock2

. ?rock-creation1.end < ?erosion1i.start
?rock-creation2.end < ?erosioni.start
?boundary-creation3.end < ?erosioni.start
?uplifti.end < ?erosioni.start

. Piece-of(?r1, 7?rock1)
Piece-of(?r2, ?rock2)
Piece-of(?b1, ?erobound)
Piece-of(?b2, ?erobound)
Piece-of(?b3, ?bound3)

Figure 15. The "Erosion-Ends-Boundary” Local Interpretation (from Appendix A)

erosional boundary between the environment and the eroded
rock-units. The local interpretation can also include arithmetic
constraints on the values of parameters. For example, Figure 15
indicates that enough uplift (Uamount) occurs to raise the
surface of the Earth above sea-level.

. Temporal-ordering constraints describe the order in which
events occur. Although our temporal representations can

- 35 -

support a full range of orderings [Simmons, 86], in practice we
have found it sufficient to use only one type of ordering for the
domains explored — one event precedes another, that is, the end
point of one event is less than or equal to the start point of the
other event.

4. Piece-of constraints describe piece/whole relationships
between objects. Piece-of(P,W) means that the matter
forming object P is a subset of the matter forming the larger
object W. Piece-of constraints enable GORDIUS to aggregate
physically discrete objects by their common origins. For
example, the "erosion-ends-boundary" scenario states that the
boundaries abutting the environment are pieces of the same
erosional boundary. By matching the "erosion-ends-boundary”
scenario against boundaries B1-B4 in Figure 11 and using the
transitivity of the Piece-of relation, GORDIUS can infer that
B1-B4 are all pieces of the same boundary and thus were
formed by the same erosion event.

The basic step in composing a local interpretation with the current
hypothesis is to instantiate the local interpretation by determining
bindings for its variables. The generator determines bindings in
three stages: 1) the binding list constructed in matching the
scenario pattern provides an initial set of bindings; 2) additional
bindings are dictated by the current hypothesis; 3) remaining free
variables are bound to unique names chosen arbitrarily by GORDIUS.

The mechanisms used in the first and third stages should be evident;
the rest of this section describes the second stage. We have
identified several ways in which the current hypothesis dictates the
choice of variable bindings for a local interpretation. Each of these
methods tries to choose bindings by unifying events in the local
interpretation with events in the current hypothesis.

Before describing the methods themselves, we introduce two

concepts used by them — that of potentially and necessarily

unifiable events. Two events are potentially unifiable if the

following three conditions hold:

1. The events are temporally unordered with respect to one
another.

2. The events have compatible types. Compatible means the type
of one event is the same as, or more specific than, the type of
the other. For example, Deposition and Rock-Creation are

- 36 -

compatible types, but Batholithic-Intrusion and Dike-
Intrusion are not.

3. The parameter values of the two events cannot be shown to be
different. For example, deposition of shale and deposition of
sandstone are not potentially unifiable since shale and
sandstone are different materials; on the other hand, uplift of
more than 500 meters and uplift of less than 1000 meters are
potentially unifiable, since there are values for the uplift
parameter that satisfy both constraints.

Two events are necessarily unifiable if they are potentially
unifiable and purport to create at least some of the same objects.
For example, a rock-creation event that creates rock-unit ROCK1
and a deposition event that creates ROCK1 and boundary BOUND1
are necessarily unifiable. Such events are necessarily the same
event because an object in the physical world can be created in only
one way and by only one event.

Two unifiable events are actually unified by combining their
temporal-ordering and parameter-binding constraints. The name and
type of a unified event is chosen to be that of the more specific of
the two event types (e.g., Deposition is more specific than Rock-
Creation). Similarly, the name of a unified parameter binding is
the object with the more specific type.

Getting back to choosing variable bindings, the generator uses three
methods for choosing bindings based on the current hypothesis, each
based on simple premises about the physical world: 1) an object
that is a piece of some aggregate in the current hypothesis must be
a piece of the same aggregate in the local interpretation, under the
premise that an object can be a piece of only one aggregate; 2) two
events that purport to create the same object are hypothesized to be
the same event, under the premise that an object can be created by
only one event; and 3) two events that have the same effects may be
the same event, under the premise that events have multiple effects
and can achieve multiple goals. The actual methods used are
described in more detail below.

The first method looks for Piece-of constraints in the local
interpretation that match existing Piece-of constraints. For each
constraint in the local interpretation of the form Piece-Of(?p,
?w), where ?p is already bound to some object P1, the generator
looks for any constraints in the current hypothesis of the form

- 37 -

Piece-of(P1, W1). If ?w is currently unbound, ?w is bound to W1.
If 2w is already bound to a different object W2, the generator
determines whether the event that created W2 is necessarily
unifiable with the event that created W1. If so, W1 and W2 are
constrained to be the same object, and the events that created them
are unified; otherwise the local interpretation is inconsistent with
the current hypothesis and, therefore, cannot be composed with it.

This method for choosing bindings is based on the premise that an
object can be a piece of only one aggregate object. Although this
premise holds for geologic interpretation, we do have sufficient
experience with other domains that support piece/whole
relationships to comment on the general applicability of this
premise or, for that matter, the applicability of our representation
for pieces of objects.

AL C Hypothesis (E | Plece/Whole Relationships

Deposition1(ROCK1) Deposition2(ROCK1)
Piece-of(SH2, ROCK1)
Piece-of(SH3, ROCK2)

Erosion of ROCK1 and ROCK2

IGN bound to M1 Piece-of(?ign, ?DIKE1)
R1| IGN] R2 R1 bound to SH2 Piece-of(?r1, ?2ROCK)
R2 bound to SH3 Piece-of(?r2, 7ROCK)

Deposition1(ROCK1)

Piece-of(SH2, ROCK1)
Dike-Intrusion(DIKE1) Piece-of(SH3, ROCK1)
Piece-of(MI1, DIKE1)

Erosion of ROCK1

Figure 16. The Generator Unifies Objects and the Events that Created Them.

Figure 16 illustrates this method for choosing bindings. The current
hypothesis (Figure 16a) has erosion preceded by two unordered
deposition events, where SH2 and SH3 are pieces of the deposited
formations Rock1 and Rock2, respectively. The generator is
composing the local interpretation of the "intrudes-through”

- 38 -

scenario, where the current bindings indicate that an igneous rock-
unit MI1 is between SH2 and SH3 (Figure 16Db).

The generator finds that the constraint Piece-Of(?r1, ?rock),
where ?r1 is bound to SH2, matches Piece-of(SH2, ROCK?1) in the
current hypothesis, so ?rock is bound to ROCK1. Similarly, since
the constraint Piece-Of(?r2, <?rock) matches Piece-of(SH3,
ROCK?2), the generator determines that ?rock must also be bound to
ROCK2. Since the deposition event that created ROCK1 and the
deposition event that created ROCK2 are necessarily unifiable (they
are unordered, of the same type, etc.), the generator presumes that
ROCK1 and ROCK2 are actually the same object and unifies the two
deposition events into one. Figure 16c illustrates the resulting
hypothesis, including the newly added dike-intrusion event.

The second method for using the current hypothesis to choose
variable bindings makes use of the premise that an object can be
created by only one event. For each event E1 in the local
interpretation, the generator finds the events in the current
hypothesis which create an object that is also purported to be
created by E1. |If there are such events, the generator determines
whether each of them are necessarily unifiable with E1 and with one
another. If some are not unifiable, which could happen if the events
do not have compatible types or they are already ordered, then the
local interpretation is inconsistent with the current hypothesis and
is not pursued further. Otherwise, the events are unified and the
name and parameter bindings of the unified events are used to
constrain the appropriate free variables in the local interpretation.

The third method chooses bindings for a local interpretation by
trying to unify events in the local interpretation with potentially
unifiable events in the current hypothesis. In effect, the generator
tries to achieve the desired effects of the local interpretation by
"reusing” existing events in the current hypothesis.5 This method is
based on the premise that events have multiple effects and can
serve multiple purposes, for instance, a Puton event can be used
both for stacking and for clearing blocks.

The generator unifies each event in the local interpretation with any
potentially unifiable events. If an event potentially unifies with

5 This same effect is achieved in planners such as NOAH [Sacerdoti] and SIPE [Wilkins]
by introducing "phantom" nodes into the plan network.

- 39 -

more than one other event, the generator creates separate
hypotheses to reflect the different unification choices. For
example, suppose the generator has constructed the current
hypothesis in Figure 17c to achieve the first two goals in Figure 17b
(the first goal is achieved by putting A somewhere, then putting B
on C; the second goal is achieved by putting something on B; Puton2
and Puton3 are linearized for simplicity). One of our blocks-world
scenarios (see Appendix D) suggests that the third goal On(A, B,
Plan-end) can be achieved using the event Puton4(A, B). The
generator reflects the fact that Puton4 potentially unifies with
both Puton1 and Puton3 by creating two new hypotheses:

1. Putoni(A, B) 1. Putoni(Source=A)
2. Puton2(B, C) 2. Puton2(B, C)
3. Puton3(Dest=B) 3. Puton3(A, B)

Note that while the second hypothesis is a solution, the first is
incorrect since putting A on B interferes with the precondition of
Puton2 that B be clear. The question of which hypothesis to pursue
further is the subject of the next section.

A 1. On(B, C, Plan-end) 1. Putoni(source=A)
2. Covered(B, Plan-end) 2. Puton2(B, C)
C B D 3. On(A, B, Plan-end) 3. Puton3(dest=B)

Figure 17. Composing Potentially Unifiable Events

2.2.3 Controlling the Generator

This section describes how the generator incorporates the
techniques for matching scenarios and composing local
interpretations into the overall search for an hypothesis that
achieves all the goals of the problem. We describe how the search
strategy used decides which scenarios to choose for matching,
which hypotheses to pursue further, and what to do when an
inconsistency is found in composing local interpretations.

GORDIUS begins with the null hypothesis (i.e., no events occur) and a
list of goal propositions. For the blocks-world and Tower of Hanoi
domains, the goal propositions are input manually. For the geologic
domain, the system translates the goal diagram into a list of goal

- 40 -

propositions that encode information about the orientation,
composition, and topological adjacency of objects.

The basic action of the generator is to pick an unachieved goal and
find the scenarios that explain how the goal can be achieved. The
generator constructs new hypotheses by composing the local
interpretations of matching scenarios with the current hypothesis,
continuing until all the goals of the problem are hypothesized to be
achieved.

The search space of the generator is rather large since, individually,
each goal can typically be achieved in many ways. Our generator
tries to minimize the search using heuristics. [Barr] identifies
three decision points in search that can benefit from the use of
heuristic information — 1) which hypothesis to pursue, 2) how to
expand a hypothesis, and 3) how to handle dead ends. Our generator
employs simple yet effective heuristics for making each of these
decisions.

Our generator uses best-first search to decide which hypotheses to
pursue. In best-first search, the hypothesis to pursue next is the
one on the fringe of the search with the best value of the distance
metric. The generator's metric relies primarily on how close the
hypothesis is to solving the problem, which is estimated by counting
the number of remaining unachieved goals. The metric's secondary
component, used to break ties, is the cost of the hypothesis.
Currently, we take the simple approach that each event has unit
cost, so the cost is simply the number of events in the hypothesis.
This distance metric is in keeping with the philosophy of the
generator — it is inexpensive to compute and, although fairly rough,
has proven adequate in practice.

Our choice of distance metric has several interesting consequences
on the overall search strategy. One consequence is that the search
tends to follow one path instead of jumping around, as often occurs
in best-first search. This is because our primary measure of
goodness is closeness to the goal state and expanding an hypothesis
always decreases the number of unachieved goals (see below).
Another consequence of the metric is that the generator tends to
pursue hypotheses constructed using scenarios with more specific
patterns. The generator tends to converge faster towards a solution
using more specific scenarios since they explain more goals. This
effect is only approximate, however, since some goals of a large

- 41 -

scenario pattern may already be achieved, so a scenario with a
smaller pattern may explain more of the currently unachieved goals.

The generator chooses the best hypothesis and expands it by
selecting a set of matching scenarios and composing them with the
current hypothesis. The generator selects matching scenarios by
choosing the first remaining unachieved goal as the focus item and
finding all matching scenarios where one of the items in the
scenario pattern matches the focus item.

For each matching scenario, the generator tries to construct a new
hypothesis by composing the scenario's local interpretation with the
current hypothesis. Although, for the most part, the generator
presumes that a local interpretation and current hypothesis can be
composed, the generator employs several computationally efficient
methods for detecting a limited class of inconsistencies. The
generator determines that a composition is inconsistent if any of
the following four situations arise: 1) different (non-unifiable)
events create the same object, 2) an object has incompatible types,
3) two events are temporally inconsistent, and 4) an object is a
piece of more than one aggregate object. For example, it is
inconsistent for a local interpretation to assume that one event
occurs before another event if the current hypothesis assumes that
they occur in the opposite order.

If no inconsistency is found, a new hypothesis is generated by adding
the constraints of the local interpretation to those of the current
hypothesis. The generator records that the new hypothesis achieves
all the goals that match an item in the scenario's pattern, plus all
goals already achieved by the current hypothesis. The new
hypothesis is then added to the set of unexplored hypotheses and the
generator continues by choosing the best hypothesis from that set.

It is conceivable that the generator will find no matching scenarios
whose pattern includes the focus item. This situation may arise if
the author of the scenario library forgot to include a scenario that
could explain the focus item. In this case, the generator simply
chooses the next unachieved goal as the focus item and leaves it up
to the debugger to determine how to achieve the unmatched focus
item.

"Dead ends" are handled very simply by the generator. A dead end
occurs when an inconsistency is found between a local

- 42 -

interpretation and the current hypothesis. In such cases, no updated
hypothesis is generated using that interpretation. If all matching
scenarios are inconsistent with the current hypothesis, the current
hypothesis is abandoned. A more sophisticated strategy would
involve determining which scenarios used in generating the current
hypothesis contribute to the inconsistency and creating an
hypothesis that does not include those scenarios. This strategy,
which is akin to dependency-directed backtracking, has not been
implemented for our generator, since we want to keep it simple and
inexpensive.

GORDIUS continues generating hypotheses until it finds one that
achieves all the goals (more precisely, one that achieves all goals
that are explainable using the current scenario library since, as
indicated above, some goals may not match any existing scenario).
The search is guaranteed to terminate because at each step the
generator examines one or more focus items, monotonically
decreasing the number of remaining goals that need to be examined
while adding only a finite number of new hypotheses.

Before sending the hypothesis to the tester, the generator tries to
constrain currently unordered events by finding scenarios whose
local interpretations order those events. For example, the "erosion-
ends-boundary" scenario states that uplift occurs before erosion,
but does not order uplift with respect to the events that create the
rock-units that get eroded. This is a reasonable interpretation since
uplift does not have to follow the rock-creation events if they
create igneous rocks. If one of the rock-units is sedimentary,
however, the "eroded-sedimentary" scenario can be used to
determine that uplift must follow deposition of the sedimentary
rock in order to raise the surface enough for erosion to occur.

The mechanism to constrain the order of events uses many of the
techniques described in this chapter for achieving goals. For each
pair of unordered events, the generator looks for matching scenarios
whose local interpretations include events that are ordered with
respect to each other and are potentially unifiable with the pair of
unordered events. For each such matching scenario whose local
interpretation is consistent with the current hypothesis, a new
hypothesis is produced by composing the local interpretation with
the current hypothesis. After all pairs of unordered evenis have
been focused on, the best hypothesis is sent to the tester.

- 43 -

In some cases, trying to constrain unordered events can have a major
impact on the hypothesis. For example, Figure 18b shows the
partially ordered hypothesis generated by GORDIUS to account for all
the goals of Figure 18a. The hypothesis contains two unordered
fault events — one whose fault line includes pieces FB1, FB2 and
FB3, the other including pieces FB4, FB5 and FB6. In trying to
order the events, GORDIUS matches the "igneous-cuts-boundary"

scenario (“B1—| IGN ["B2—) against the part of the diagram where
DIKE1 crosses FB3 and FB4. The local interpretation of this
scenario indicates that Dike-Intrusion1 split an existing boundary
into two pieces, FB3 and FB4. Since FB3 and FB4 are discovered to
be pieces of the same boundary, the generator unifies the two fault
events that created those boundaries into a single event. Thus, as a
result of trying to order events, the generator infers that there is
actually only one fault, cut by DIKE1.

A._The Goal Diagram B. _Hypothesis Generated to Account for Goals of the Problem
-------- T T Teea) Deposition1(ROCK1, Shale)
ey R s, (pieces SH1-SH4)
P o o ¢ 0o 0 0 0 ¢ o ¢ ’,.q}
.......... s =
SH FREa————————— Batholithic-Intrusion1(BATH1, Granite)

(pieces G1 and G2)
Deposition2(ROCK2, Sandstone)

v (pieces SS1 and SS2)
Faulting2(Fault2)
SH3 (pieces FB4-FB6)

Faulting1(Fault1)
(pieces FB1-FB3)

Uplift

’
Y%y
Gl
%
%%

Erosion1 of ROCK2 and FAULT1

‘7
Dike-Intrusion1(DIKE1, Mafic-lgneous)

Figure 18. Unifying Events While Trying to Order Them.

2.3 Encapsulating Common Patterns of Interaction

The match and compose technique used by our generator provides a
very efficient means of constructing hypotheses. The technique
decomposes a problem into sub-problems based on the scenario
patterns, solves the sub-problems independently using the local

- 44 -

interpretations, and then combines the partial solutions to achieve
all the goals of the problem.

An efficient generator is not very useful, however, unless it usually
constructs hypotheses that are correct or nearly so. We argue in
this section that the correctness of generated hypotheses depends
on the degree to which the scenarios encapsulate common patterns
of interaction.

A scenario encapsulates interactions if the events in its local
interpretation are sufficient to explain how the scenario's pattern
could be achieved and if no other events can interfere with the
achievement of that pattern. Scenarios that totally encapsulate
interactions are independent of one another, so complete and correct
hypotheses can be formed simply by independently composing their
local interpretations. Unfortunately, totally encapsulating
interactions is not feasible in many domains, due to the large
number of potential interactions between events. The GTD approach
is to supply the generator with a small library of scenarios that
nearly encapsulate common patterns of interaction and have the
generator presume that no other interactions happen. If
unanticipated interactions do arise, they will be detected by the
tester and repaired by the debugger.

In analyzing our library of geologic and blocks-world scenarios, we
have found that they encapsulate two types of interaction —
interaction within a single event, and interaction between events.
Interaction within a single event happens when effects are coupled,
that is, when one effect does not (or is unlikely to) happen without
the other happening as well. For example, a dike intrusion through a
formation splits the formation, creating two new rock-units. These
effects are coupled since the intrusion cannot create one of the new
rock-units without creating the other as well.

Interaction between events happens in two ways: 1) one event
affects a precondition (or change condition) of another event, and 2)
two events affect the same attribute, for instance, two tilt events
interact since they both act to increase the orientation of existing
rock-units. We can further classify interactions between events as
either cooperating or interfering. An example of cooperative
interaction is where uplift and erosion cooperate in eroding a
sedimentary formation, since uplift acts to achieve the
preconditions of erosion. An example of interference is where

- 45 -

putting block A on B interferes with subsequently putting B on C,
since the preconditions for the latter action no longer hold.

The main concern in creating a scenario is how much of the coupled,
cooperative, and interference interactions to encapsulate, which in
turn determines the size and scope of the scenario patterns. In
general, deciding how much interaction to encapsulate involves a
tradeoff between generality and independence of the scenarios. If
the patterns are too large, the scenarios tend to be overly specific
and a large number are required to ensure adequate coverage of the
domain. For example, a scenario whose pattern is the complete goal
state of a problem and whose local interpretation is the complete
solution is independent, but it is useful only for solving that
particular problem.

A, One-Sided § o 1o R ize. Dike-Intrusi B. Geologic | tation Goal Di

20
3

Dike-Intrusion1(DIKE1, INTBOUND)

(IGN is a piece of DIKE1)
(B1 is a piece of INTBOUND)

INININING
[SENTNEN
Attt

o\ ‘\\\\\N
(7]
N

Scenario Pattern ENVIRONMENT
—B1 ¥ B2 7 937_-;34=
R1 | IGN X 7 Vi
B X‘ I] II
1 [— g
—— - V4
| —SH1 B‘Ei 7 = —]
X SH2 B6 B7-SH3—
1 7 L
1 J L
1
LOC8| |nt0rpr0taﬂon P % % ’,B 30 ll 4
o 2%%%%%% 7B /
isiss PR FMI
Rock-Creation1(ROCK1) 255555455552 77781077 777 BN 7]
. . ¢ ¢ . ,,7, 7, -
(R1 is a piece of ROCK1) LN 3 RESA VAR Lo 04444 4
o %% N A (Yt 1
(4 (A 2 .’ PR . 4
45005505505 . 13B14. 1
AN]
o255 %]
A

AT\ \\ ENESENY NS \\ INY
D ANAN A AT AN A AN WY
VAV At At A A N
CIRTUTC PCRC RN SN
LI T PO R PCNR A NRN
LT TC LS SR SN
QR LR SR NN

CRCTCTCN
CRUC TR

N AN At A AN AN O
\\\\\\\\\O
QTR O PLPC IR PPN

RN
Satat At Ny
N AN Y
ORGPy
SN AN S

(R PUNRN
LTS VUNRN
AT SCPU VRN
PR PUVRN
MO

NANDY

ttttt

Figure 19. Scenario Pattern That Encapsulates Too Few Interactions

Encapsulating too little interaction, on the other hand, yields
scenarios that are not sufficiently independent. This can cause the
generator to often produce incorrect hypotheses. For example,
consider using the scenario in Figure 19a to recognize a dike-
intrusion through a formation. In the goal diagram of Figure 19b, the
scenario matches the regions SH2 |MI1and MI1|SH3, implying
that MI1 intruded through both SH2 and SH3. Using this scenario,
however, would cause the generator to hypothesize that two
separate rock-creation events occurred because the scenario misses

- 46 -

the crucial coupled interaction that SH2 and SH3 are pieces of the
same original formation. This coupled interaction is encapsulated in
our "intrudes-through" scenario, which includes in its pattern both
rock-units on either side of the dike and declares in its local
interpretation that they were created by the same event.

Both the problem domain and range of problems encountered help to
indicate a suitable level for encapsulating interactions. In our
domains, Occam's Razor indicates that one should prefer the
simplest possible explanations for why interactions arise. For
example, a tilted sedimentary rock-unit most commonly arises from
the effects of only a single tilt event, so the "tilted-sedimentary”
scenario that accounts for such a pattern includes only one tilt
event in its local interpretation.

Another indication of how to Ilimit the encapsulations of
interactions is to reason about those interactions actually
encountered during problem solving. For example, the intrusion
pattern R1 |IGN|R2 is encountered fairly often, but the pattern
R1|IGN1 |IGN2 |IGN3 |R2 (three intrusions side by side) is rarely
seen in geology. This suggests a strategy for creating scenarios
based on problem-solving experience: after the debugger solves a
problem that the generator handled incorrectly, the system would
produce a new scenario that encapsulates the interactions for that
problem by analyzing how the debugger repaired the hypothesis.
Section 6.1.1 presents an outline for such a learning algorithm.

Our analysis that scenarios encapsulate common patterns of
interaction provides insight into how the generator should handle
situations in which a goal proposition matches more than one
scenario. The generator should prefer the scenario with the most
specific pattern that matches, since the smaller patterns
encapsulate fewer interactions and, therefore, are more likely to
have interference from other scenarios. For example, in cases where
both the "intrudes-through" scenario (R1|IGN|R2) and the "igneous-

under-sedimentary” scenario (i%‘ﬁ) match, the "igneous-under-

sedimentary” is less preferable since it is not independent of the
event that formed the other side of the intrusion.

While the scenario with the more specific pattern does not always

provide the correct interpretation, preferring to use the more
specific scenarios is a useful heuristic. The goodness metric used

- 47 -

by the search algorithm implicitly embodies this preference for
more specific scenarios since it is based on the number of goals
achieved and the more specific scenarios tend to achieve more goals.

In cases where two scenario patterns are equally specific, the
generator heuristically prefers the more commonly occurring
pattern of interaction, which we take to be the one with the fewer
events (Occam's Razor). For example, in the problem of Section 2.1
the generator interpreted that granite intruded into shale. Another
conceivable interpretation is that the granite was exposed by
erosion and then shale was deposited on top of it. Although, given
only structural geologic information, it is impossible to tell which
interpretation is actually correct, the generator prefers the first
interpretation since it involves fewer events and is therefore
considered to be more plausible.

- 48 -

3. Test

The tester's role is to verify whether an hypothesis is a valid
solution to a problem. The tester used in GORDIUS combines causal
and diagrammatic simulation techniques to determine whether the
hypothesized set of events can achieve the problem's goal state
starting from its initial state. If the hypothesis is found not to be a
solution, the tester produces both a list of bugs detected and causal
explanations for why the bugs occur.

The tester begins by choosing one of the total orderings consistent
with the hypothesis. Testing linear sequences is preferable since it
is much more efficient than simulating partial orders. It is also
sufficient since our task is to find a single plausible solution, not
all (or the best) ones.

The heart of the tester is a domain-independent causal simulator.
For each event in the hypothesis, the simulator determines whether
the preconditions of the event hold and, if so, updates its model of
the world to reflect the changes caused by the event. The simulator
can handle both qualitative information (e.g., "the thickness of a
rock-unit decreases by some amount") and quantitative information
(e.g., "the orientation of a boundary increases by 5°").

We refer to the simulator as "causal" because it embodies a theory
of how changes happen in the real world. Basic to the theory is that
attributes of objects persist over time, until they are changed by
the effects of events. Our models are capable of representing
relative, conditional, and quantified effects as well as the creation
and destruction of objects. For example, our model of erosion
encodes that the thickness decreases for all rock-units whose tops
are above the level of erosion, and all rock-units whose bottoms are
above that level are destroyed entirely by the effects of erosion.

Since spatial effects such as the splitting of formations due to
faulting are difficult to represent and expensive to simulate using
the causal simulator, for the geologic domain an additional
diagrammatic simulation is performed. The diagrammatic simulator
constructs a series of diagrams to represent the spatial effects of
geologic events, using a specialized representation for diagrams in
which encoding and manipulating topological and geometrical
properties of objects is relatively easy and efficient. For example,
the effects of erosion are captured by constructing a line in the

- 49 -

diagram at the level of the erosion and then erasing the parts of the
diagram that lie above the line.

The final step of the tester determines whether the problem's goal
propositions hold in the final state of the simulation. For geologic
interpretation problems, this involves using a special-purpose
diagram matcher to compare the goal and simulation diagrams. The
diagram matcher determines both topological and geometrical
correspondences between diagrams using a Waltz-like filtering
algorithm. It efficiently finds partial matches, especially where
one diagram has extra features that do not exist in the other
diagram.

To facilitate debugging, the tester constructs causal explanations
for why goal propositions do or do not hold. The explanations are in
the form of causal dependency structures, which are graphs whose
nodes represent statements about the world state and whose arcs
indicate how their values causally, functionally, or logically depend
on the values of other statements. For example, the orientation of a
rock-unit at time t1 might depend on its value at time t0 plus the
fact that the orientation persisted in value between t0 and t1. The
causal dependency structures are implemented using a truth-
maintenance system to facilitate efficient updating when the
hypothesis is modified by the debugger.

The next section continues the example of Section 2.1 by illustrating
how GORDIUS tests the generated hypothesis. Section 3.2 describes
our causal and diagrammatic simulation techniques and the different
specialized representations they utilize. Section 3.3 discusses why
simulation is a useful technique for testing interpretations and
plans, and analyzes the different strengths and weaknesses of the
two types of simulation used — the causal simulator is well suited
for constructing causal dependencies, and the diagrammatic
simulator is well suited for accurately and efficiently predicting
spatial effects.

3.1 Testing a Sequence of Geologic Events

Given the initial hypothesis produced by the generator (Figure 20b),
the tester arbitrarily chooses one of its linearizations (Figure 21)
to simulate. Testing begins with the causal simulator, which takes
each event in the sequence in turn and determines the effects it has

- 50 -

on the geologic region — updating its world state to represent the
creation and destruction of objects and the alteration of attributes
of objects.

A. Goal Di B. Initial Hyoothesi

Deposition1(ROCK1, Shale)

Batholithic-Intrusion2(ROCK2, Granite)

Uplift1 (Uamount1)
Faulting1{FAULT1) Dike-Intrusion1(DIKE1, INTBOUND,
Mafic-igneous)

7
7
7

7

7
/

fravaas
xS
-3

Erosion1(EROBOUND, Elevel1)

Figure 20. Initial Hypothesis Produced by the Generator

1. Deposition1(ROCK1, Shale)

2. Batholithic-Intrusion2(ROCK2, Granite)

3. Uplift1(Uamount1)

4. Faulting1(FAULT1)

5. Dike-Intrusion1(DIKE1, INTBOUND, Mafic-lgneous)
6. Erosion1(EROBOUND, Elevel1)

Figure 21. Linearization of Initial Hypothesis, Chosen by the Tester

The initial state given to the simulator consists only of bedrock
under sea-level. The simulator determines that the precondition of
the first step (Deposition1) holds since the surface of the Earth is
currently below sea-level. The simulator then updates the world
state to reflect the effects described by its declarative model of
deposition — that ROCK1 is created, its composition is shale, its
orientation is 0°, it lies on top of the bedrock and along the surface
of the Earth, etc.

Simulating Batholithic-Intrusion2 next, GORDIUS records that a
granite ROCK2 is created, that its intrusional boundary abuts the
shale ROCK1, that the thickness of the shale decreases due to the
intrusion, etc. For Uplift1, constraints placed by the generator on
Uamount1, the uplift parameter, indicate that the event raises the
surface of the Earth above sea-level.

Likewise, the rest of the events are simulated, creating a fault
boundary, a mafic-igneous formation and intrusional boundary, and

- 51 -

an erosional boundary. For these events, parameter constraints
made by the generator enable the causal simulator to determine
which rock-units are affected. For example, constraints on
Elevel1, the level of erosion, indicate that both the shale and
mafic-igneous formations are affected, with their top points
changing and the thickness of the shale decreasing.

Unfortunately, the causal simulation does not determine topological
and geometrical effects in enough detail to adequately verify the
hypothesis. For example, the models used by the causal simulator
are not detailed enough to determine where the dike-intrusion cuts
the fault — the hypothesis would be incorrect if the fault were cut
within the window of the goal diagram.

- - - Elevell

Xiid fivs ‘ b ¥5%
K, “%9% s
%% 4
X %% y \’
AR

Figure 22. Diagrammatic Simulation of Erosion

To determine the spatial effects of events more accurately, the
tester follows the causal simulation with a diagrammatic
simulation. The diagrammatic simulator uses a specialized
representation of diagrams that explicitly encodes the topological
and geometrical relationships between faces and edges (i.e., rock-
units and boundaries), and uses specialized procedures to manipulate
the diagram representation. To simulate the effects of erosion, for
instance, a line is constructed in the diagram at the height Elevel1
(Figure 22a) adding new edges and splitting existing faces and edges

- 52 -

in two (Figure 22b). The simulator then erases the faces and edges
above the line and asserts that the new edges (E1-E4) are pieces of
the surface of the Earth (Figure 22c).

The numeric parameter values needed for the diagrammatic
simulation are obtained by relating the desired parameter values to
measurements in the goal diagram. To determine a value for
Elevell, for example, GORDIUS measures the height of the top of
SH2 (Figure 20a), since the causal simulation indicates that 1)
Elevell equals the height of the top of the shale formation after
~ erosion, and 2) nothing changed that height between erosion and
Plan-end, the time associated with the goal diagram.

l D .I- 2 E II |-I|i I I .
X
X
X
X
X
X
v, F %7, X
%
“%
24

Figure 23. Result of Diagrammatic Simulation of Figure 21

Diagrammatically simulating the initial hypothesis (Figure 21)
produces the sequence of diagrams shown in Figure 23. The tester
then compares the goal diagram in Figure 20a and the final
simulation diagram in Figure 23. A diagram matcher is used to
determine correspondences between the faces and edges in the two

- 53 -

diagrams, and these correspondences are used to determine whether
all the topological, geometrical and compositional goals of the
problem are met. In this case, the simulation diagram is judged to
achieve all the goals, so the tester reports that at least one
linearization of the initial hypothesis (Figure 21) is a plausible
interpretation of the problem (Figure 20a).

If this were always the outcome, the story could end here.
Occasionally, however, the generator produces an invalid hypothesis.
Such hypotheses must be detected by the tester and reported to the
debugger, together with an explanation for why the test failed.

To illustrate this, suppose we alter the "erosion-ends-boundary"”
scenario by removing all mention of the occurrence of uplift. In this
case, the generator produces the initial hypothesis in Figure 24a and
the tester attempts to simulate the linearized sequence of Figure
24b. The causal simulation proceeds until it reaches the the erosion
event. At this point, the tester detects a bug — Erosion1 cannot
occur because our models indicate that erosion occurs only above
sea-level, while the simulation predicts that the surface of the
Earth is currently below sea-level (since Deposition1 occurred
under water and no subsequent event acted to raise the surface).

A, Initial G | Hypothesi B. Linearized S For Test

Deposition1(ROCK1, Shale)
1. Deposition1(ROCK1, Shale)
Batholithic-Intrusion2(ROCK2, Granite) 2. Batholithic-Intrusion2(ROCK2, Granite)
3. Fautting1(FAULT1)
Faulting1(FAULT1) Dike-Intrusion1(DIKE1, INTBOUND, 4, Dike-Intrusion1(DIKE1, INTBOUND,
Mafic-Igneous) Mafic-Igneous)
Erosion1(EROBOUND, Elevel1) 5. Erosion1(EROBOUND, Elevell)

Figure 24. Hypothesis Generated by Incomplete Scenarios

In addition to detecting the bug that erosion cannot occur, the tester
produces a causal dependency structure that explains why the bug
arises. The (partial) causal dependency structure in Figure 25
indicates that the bug depends on the belief that the Earth's surface
is below sea-level at the start of erosion. This, in turn, depends on
knowledge about the value of sea-level and its relation to the value
of the height of the top of the Earth's surface at the start of the

- 54 -

erosion. Similarly, the height of the surface depends on various
factors, including the belief that the height of the top of the surface
persists in value from the end of shale deposition to the start of
erosion.

Chapter 4 discusses how the debugger actually uses these
dependency structures to repair hypotheses. Here, we examine how
the tester works and how causal dependency structures are
constructed.

Desired Value Predicted Valye

Erosion1 Does Not Occur

1

Surface.top.height@Erosion1.start < sea-level

T

Surface.top.height@Erosion1.start

Occurs(Erosion, Erosion1)

Persistence(Surface.top.height, Deposition1.end,
Surface.top.height@Deposition1.end Erosion1.start)

Surface.top@Deposition1.start i Deposition1.end < Erosion.start
Change(+, Surface.top.height, Dlevel{,
Deposition{) CWA(Surface.top.height, Deposition1.end,
Erosion1.start
Surface.top.height@Daeposition1.start + Dievell fosiont star
Tt Parameter-of(Depositiont, Dlevel, Dievel1) Occurs(Deposition, Deposition1)

Figure 25. Partial Causal Dependency Structure for the Bug that Erosion Cannot Occur

3.2 The Testing Algorithm

The next four sections describe the representations and reasoning
techniques used in the four stages of the GORDIUS tester: 1) a
totally ordered sequence is chosen to be tested; 2) a causal
simulation is performed to predict the effects of each event; 3) for
the geologic domain, a diagrammatic simulation is performed to gain
more accurate information about the spatial effects of the events;
4) the simulation state is compared against the goal state.

- 55 -

3.2.1 Linearizing Hypotheses

The first stage of the tester chooses one total ordering consistent
with the partially ordered events of the hypothesis. For each
unordered pair of events in the hypothesis, the tester adds an
assumption that one (chosen arbitrarily) actually precedes the other.

This linearization is done for efficiency. For the types of
representations needed to encode our geologic domain, the
computational complexity of simulation is exponential in the number
of events for partial orders, but is only polynomial for total orders
(see [Chapman]).

Testing linear sequences is also a very reasonable strategy for
GORDIUS. This can be seen by analyzing three categories of partial
orders — ones in which all, none, or some of the linearizations are
correct. If all are correct then any linearization will obviously do,
since the task is only to find a single plausible solution. Our
experimental evidence shows that since the generator usually
produces correct hypotheses, this is the most commonly occurring
case. If all linearizations are incorrect, it does not matter which
sequence is chosen since it will have to be debugged anyway.

The problematic case is where only some linearizations are
solutions, since debugging will be needed if an incorrect
linearization is chosen to be tested. Even in this case, however,
testing and debugging a linear sequence is usually more efficient
than testing a partial order, since typically only a fraction of the
exponential number of possible linearizations need to be tested and
debugged before a solution is found. This is often the case because
the dependency structures produced by the tester enable the
debugger to focus on replacing only those orderings that actually
contribute to the bugs.

Figure 26 illustrates a case where the choice of linearization
matters. The example is similar to the one in Section 3.1, except
that the window of the goal diagram is extended downwards. The
generator produces the same partially ordered hypothesis with the
uplift, dike-intrusion, and faulting left unordered (see Figure 20b).
In this example, having the faulting precede the dike-intrusion is a
solution (see Figure 26b) but the alternative ordering is not — the
diagrammatic simulation shows that an extra piece of mafic-

- 56 -

igneous appears within the window of the goal diagram (see Figure
26c¢).1

As described more fully in Section 5.1.3, the debugger analyzes the
tester's explanation for why the extra piece appears and determines
that the dike-intrusion and faulting events should be reversed. Note
that the ordering of the uplift event is unaffected since the bug is
independent of that particular ordering.

A, Extended Goal Di B. Faulting Preced C. Dike-Intrusi
Dike-] . Procedes Faull

=l —
7 /]

X —] L
7 L
L

411

ooooo

Figure 26. Consequences of Two Choices for Linearizing the Hypothesis

3.2.2 Causal Simulation

The causal simulation algorithm itself is quite simple. The
simulator considers each event in the sequence in turn and checks
whether its preconditions hold in the current state. If some
preconditions do not hold, the simulator reports the bug that the
event cannot occur, together with causal dependency structures
describing why the preconditions do not hold.

If all preconditions hold, the simulator updates the world state to
reflect the effects of the event. It also maintains dependencies to
indicate how the current state enables the (conditional) effects to
happen and how the effects in turn change the world state.

The simulator uses declarative event models to determine whether
events can occur and what effects they have. Event models are
represented by four fields — parameters, preconditions, effects, and
constraints.

1In the example of Section 3.1, the ordering of the dike-intrusion and faulting is truly
indeterminate given the limited window of the goal diagram.

- 57 -

Parameters: Boundary : Boundary (Created)
Elevel : Real
Preconditions: Surface.top.height@Erosion.start > sea-level
Effects:
Change(=, Boundary.orientation, 0, Erosion)
Change(=, Boundary.side-1, {Environment}, Erosion)
Change(=, Boundary.side-2, Ero-Surface(Elevel, Surface, Erosion.start), Erosion)
(For-all ($ru : rock-unit)
(If [Exists-at($ru, Erosion.start) and
$ru.top.height@Erosion.start > Elevel and $ru.bottom.height@Erosion.start < Elevel]
[Change(-, $ru.thickness, Erosion-of(Elevel, $ru, Erosion.start), Erosion) and
Change(=, $ru.top, EroFni(Elevel, $ru, Erosion.start), Erosion)]))
(For-all ($bd : boundary)
(If [Exists-at($bd, Erosion.start) and
$bd.top.height@Erosion.start > Elevel and $bd.bottom.height@Erosion.start < Elevel]
Change(=, $bd.top, EroFn1(Elevel, $ru, Erosion.start), Erosion)))
(For-all ($gf : geologic-feature)
(If [Exists-at($gf, Erosion.start) and $gf = Surface and
Elevel < $gf.bottom.height@Erosion.start]
Destroyed($gf, Erosion.end)))
Change(=, Surface.top, EroFn2(Elevel, Surface.top@Erosion.start), Erosion)
Change(=, Surface.bottom, EroFn2(Elevel, Surface.bottom@Erosion.start), Erosion)
Change(=, Surface.orientation, EroFn3(Elevel, Surface, Erosion.start), Erosion)
Change(=, Surface.side-2, Ero-Surface(Elevel, Surface, Erosion.start), Erosion)
Constraints :
Elevel > sea-level
Surface.bottom.height@Erosion.end < Surface.bottom.height@Erosion.start
Surface.top.height@Erosion.end = Elevel
Surface.bottom.height@Erosion.end < Elevel
(If Surface.bottom.height@Erosion.start = Elevel
Surface.bottom.height@Erosion.end = Elevel)
(For-all ($ru : rock-unit)
(If [Exists-at($ru, Erosion.start) and
$ru.top.height@Erosion.start > Elevel and $ru.bottom.height@Erosion.start < Elevel]
[$ru € Ero-Surface(Elevel, Surface, Erosion.start.start) and

$ru.top.height@Erosion.start.end = Elevel]))
EroFn1, EroFn2, Erosion-of, and Ero-Surface are user-defined functions representing
different aspects of the erosion event (e.g., Erosion-of(Elevel, ru, t) represents the amount
of ru eroded away; it is constrained to be non-negative and less than the thickness of ru).

Figure 27. Event Model of Erosion

The parameters field describes the formal names and types of the
event's parameters. For example, the parameters of erosion (Figure
27) include Elevel, a real-valued quantity representing the level to
which the erosion occurs, and Boundary, the erosional boundary
created by the event. The declaration that a parameter is created by
an event provides important information to the system. For

- 58 -

instance, the concept of necessarily unifiable events, used by the
generator to compose local interpretations, depends on knowing
which objects an event creates.

The preconditions field contains a set of propositions that must hold
in order for the event to occur. For example, the precondition for
erosion is that the height of the top of the Earth's surface at the
start of the erosion must be above sea-level (Figure 27); the
preconditions of the blocks-world Puton event are that both the
source and destination blocks must be clear (Appendix C).

The effects field describes the changes an event can have and the
conditions under which they can happen. The events are all discrete
in that their effects can be used to predict the state of the world
after an event occurs but say nothing about what happens during the
occurrence. We chose to use discrete event models because they are
sufficient for the domains explored.

In order to encode complex domains, such as geology and

semiconductor fabrication, we extended traditional discrete action

models, which represent effects as simple propositions (e.g., [Fikes],

[Sacerdoti], [Wilkins]). The extensions are significant in that they

allow:

1. Effects that are expressed in relative terms (e.g., uplift
increases the height of objects by the amount of uplift).

2. Effects that are conditionalized (e.g., if a rock-unit is on the
surface then its thickness decreases as a result of erosion).

3. Effects that are universally quantified (e.g., tilt changes the
orientation of all boundaries).

4. Creation and destruction of objects (e.g., deposition creates a
sedimentary formation; erosion destroys rock-units whose
bottom-most point is above the level of erosion).

Effects are described using statements of the form:
Change(type, object.attribute, magnitude, event).

The change statement is interpreted to mean that the attribute of
the object is affected by the event. Type and magnitude together
determine the value of the atiribute at the end of the event. If type
is = then the attribute's value is equal to magnitude. For example,
the statement Change(=, Boundary.orientation, 0, Erosion)
represents the effect that the orientation of the erosional boundary
is horizontal. Relative changes are also represented using this
syntax. If type is + or -, the value of the attribute at the end of the

- 59 -

event is determined relative to its starting value. For example,
Change(-, $ru.thickness, Erosion-Of(...), Erosion) encodes the
effect that erosion decreases the thickness of rock-units by some
amount. If the type of attribute is a set, such as the set of rock-
units along either side of a boundary, then + and - are interpreted as
set insertion and deletion, respectively.

Two special types of change statements are used to indicate that
objects are created and destroyed. Destroyed(object, time)
indicates that after time the object ceases to exist.
Created((object, type, time) consequent) is a type of
existential statement indicating that a new object of type is
created at time, and that the consequent statement holds after the
object is created. All parameters declared to be created by an event
are treated this way.

Conditional effects are represented using statements of the form:
(If antecedent consequent),
which indicates that the consequent holds if the antecedent
holds. Antecedent can be either a single proposition, a
conjunction, or a disjunction of propositions. Consequent is
limited to being one or a conjunction of the following types of
statements: Change, Created, Destroyed, If, and For-all.
Quantification of effects is described using the statement:
(For-all (var : type) consequent),

which indicates that the consequent holds for all objects of type,
where consequent has the same form as in conditional statements.

The fourth field of an event model consists of constraints on the
values of parameters and the magnitudes of effects. For example,
the erosion model constrains the level of erosion (Elevel) to be
greater than sea-level, and it constrains the height of the bottom of
the surface at the end of erosion to be no greater than its height
before the erosion occurred.

As mentioned above, the causal simulator uses the event models to
determine whether events can occur and what effects they have. It
accomplishes this by substituting the event's parameter bindings for
the formal parameters in the models and evaluating the resulting
preconditions, effects, and constraint statements.

Much of the power and flexibility of the causal simulator stems
from its technique for evaluating statements. Associated with each

- 60 -

type of statement is an evaluation method that can determine the
value of a statement given the current state of the simulation. The
methods also know how to update the various specialized
representations used by the system (described below) when a
statement is asserted to have a particular value.

All the evaluation methods are local in that a statement's value can
be determined just from the values of its arguments. The methods
also all record dependencies that indicate how the value was
derived. The dependencies recorded are causal in that the evaluation
methods reflect our model of how the physical world works. The
dependencies facilitate incremental retraction and update of
inferences using a TMS mechanism and are used extensively by the
debugger and the diagrammatic simulator. The next few pages
describe the evaluation methods and specialized representations
implemented in GORDIUS.2

Arithmetic Relations and Operations — Numeric quantities are
represented and reasoned about using the Quantity Lattice [Simmons,
86], which integrates information about ordinal relationships
between quantities (<,<,>,2,=,#) together with information about the
real-valued range within which the value of a quantity lies (e.g.,
[0...2]). The Quantity Lattice employs multiple inference methods to
determine relationships between quantities, including using graph-
search based on the transitivity of relations, and reasoning about
whether the ranges of quantities overlap. For example, from the
assertions A < B and B < C the Quantity Lattice can infer that
A < C by transitivity. From D < 1.36 and E > 2.56 the system can
infer that D < E since the upper bound of D is less than the lower
bound of E.

The Quantity Lattice also handles expressions involving arithmetic
operations (e.g., +, -, *, /, abs, sin), computing the value of an
expression using interval arithmetic on its arguments. Evaluating
arithmetic expressions may also constrain ordinal relationships
between quantities. For example, in evaluating the expression A + 2
the Quantity Lattice asserts that the value of the sum is greater
than A since it knows that adding a positive amount to any quantity
increases its value.

2 [Simmons, 83] describes some of the specialized representations in more detail.

- 61 -

Time — Since change is measured relative to time, the explicit
representation of time is crucial in reasoning about how the world
changes. In our system, time points are primitive and are
represented by quantities in the Quantity Lattice. An interval of
time | is represented by its start and end points, l.start and l.end,
respectively. The linearity of time is encoded by assuming that
l.start < l.end for all intervals.

Objects, Attributes, and Temporal References — Objects are
represented as collections of attributes, where the attributes
represent not single values but histories of values over time. A
history is represented as a sequence of time intervals, alternating
between dynamic and quiescent intervals. Dynamic intervals
represent times during which an event is changing the value of the
attribute; quiescent intervals represent times when the attribute
persists in value.

Temporal objects, such as rock-units and boundaries, also have a
temporal extent (their start and end times). The statement
Exists-at(object, time) is true if time falls between the start
and end of the object. The truth of this statement depends on the
facts that object is created before time and is not destroyed
before time. In the absence of conflicting information, GORDIUS
assumes that objects continue to persist in existence indefinitely
after they are created.

Temporal references (of the form object.attribute@time)
represent the value of the object's attribute at time. For
example, R1.orientation@t0 refers to the orientation angle of
rock-unit R1 at time t0. A temporal reference is evaluated by
searching the history time-line of the attribute to find the interval
in which the time point falls. If time falls within a dynamic
interval (i.e., L.start < time < l.end) the value of the attribute is
unknown, since the use of discrete event models prevents GORDIUS
from predicting what happens while an event is occurring.

If time falls at the end of a dynamic interval (or at the start of the
next quiescent interval), the value of the temporal reference
depends on the change statement that produced the dynamic
interval (see below). If time falls within a quiescent interval (or at
the start of a dynamic interval), the value depends on both the value
at the start of the interval and on a persistence statement that the
attribute does not change from the start of the quiescent interval

- 62 -

until time.3 The persistence statement, in turn, is supported by the
statement that the start of the quiescent interval precedes time
and by the closed-world assumption that no known event changes the
attribute during that interval.

The value of a temporal reference also depends on the value of the
object when it itself is a temporal reference. For example, the
expression (Surface.top@t1).height@t2 (i.e., the height at time
t2 of the point that was the top of the surface at time t1) partly
depends on the value of Surface.top@t1. This dependency
information enables the system to infer that it can change the value
of (Surface.top@t1).height@t2 either by changing the height (e.g.,
by uplift) or by changing the surface's top-most point (e.g., by
erosion).

Change Statements — When a statement of the form
Change(type, object.attribute, magnitude, event) is asserted,
GORDIUS updates the history time-line of the attribute by adding a
dynamic interval whose extent equals that of the event. The value
of the attribute at the end of the dynamic interval is constrained
to be equal to the value determined by the type and magnitude, as
described previously. The truth of the special change statement
Destroyed(object, time) is used to support the truth of the
equality object.end=time. Similarly, the Created change
statement supports the equality object.start=time. Together,
these equalities are used to support the Exists-at statement
described above.

Logical Propositions — GORDIUS supports propositional logic,
including the standard boolean connectives and, or, not, =
(implication), and iff (equivalence), using the RUP truth-
maintenance system [McAllester]. Inferences based on the truth
values of propositions are derived using natural deduction in a
forward-chaining manner. For example, asserting the propositions
On(A, B, t1) and On(A, B, t1) = not Clear(A, t1) would cause
the system to infer that Clear(A, t1) is false.

Quantification — GORDIUS also supports limited forms of
quantification. The statement (For-all (var : type) consequent)
is evaluated by finding all objects of type and, for each object,
creating a new statement by substituting the name of the object for

3 This does not preclude the fact that the attribute might still persist past time.

- 83 -

var in the consequent statement. The method then asserts that the
universal statement is equivalent to the conjunction of the newly
created statements plus the closed-world assumption that no other
object of type is known to exist. If the system subsequently
discovers a new object of type, the closed-world assumption is
retracted and a new conjunction of statements is created. The
existential statement (Exists (var : type) consequent) is
handled similarly.

Set Relations and Operations — The system currently has a
simple method for reasoning about set equality and set membership.4
The three types of assertions about sets currently handled are: 1)
two sets are equal, in which case they are constrained to have the
same members; 2) an object is (or is not) a member of a set (e.g., x e
S); 3) a set is closed, that is, its only members are those already
known to the system. Set closure is useful for evaluating
membership and set equality relations. For example, if RockSet is
closed and there are no explicit assertions that Rock1 is a member
of RockSet, then GORDIUS can infer that Rock1 ¢ RockSet.

New sets can be constructed using the operations Union, Intersect,
Difference, Set-Insert and Set-Delete (the last two operations
add and delete single elements from a set). The system maintains
the appropriate membership constraints among sets as their
members become known. For example, asserting that E1 is a
member of Intersection(Set1, Set2) causes the system to assert
that E1 is also a member of both Set1 and Set2.

Definitions — GORDIUS provides the capability for the user to
define new relations and functions. A relation is defined by giving
the names and types of its arguments and (optionally) a logical
expression that defines the relation. In the blocks-world, for
example, the relation Clear(b, t) is defined as: b.top@t = {} (i.e,,
block b is clear at time t if the set of blocks on top of b is empty).

To evaluate an instance of a defined relation, the system asserts
that it is equivalent to its definition and then uses the methods
described above to evaluate the definition. For relations that do not
have an associated definition, the user can specify a default truth

4 We have recently implemented a more sophisticated set reasoning system [Wellman &
Simmons], but currently it is not integrated into GORDIUS.

- 84 -

value to use. In such cases, the truth value of the relation is
presumed to depend on the values of each of its arguments.

Similarly, a function is defined by specifying its arguments, the
type of function's range, and (optionally) an expression for
computing the function's value. To evaluate a defined function, the
system asserts that its value equals its definition. For functions
without a definition, such as the Erosion-of function in Figure 27,
the system default action is to create a new object of the range type
and assert that the function's value is equal to that new object.

To illustrate the evaluation of statements, consider the following
quantified and conditional effect (taken from Figure 27) which has
been instantiated for an erosion event Erosion1 that erodes to
depth Elevel1:

(For-all ($ru : rock-unit)
(If [Exists-at($ru, Erosioni.start) and
$ru.top.height@Erosioni.start > Elevell and
$ru.bottom.height@Erosioni.start < Elevell]
Change(-, $ru.thickness, Erosion-of(Elevel1, $ru, Erosioni.start), Erosion1))).

The effect states that for each rock-unit existing at the start of the
erosion, where Elevell falls between the top-most and bottom-
most points of the rock-unit, its thickness decreases by some
amount (i.e., the rock-unit is partially eroded). Erosion-of,
representing the amount decreased, is a user defined function whose
value is constrained to be non-negative and less than the thickness
of $ru.

To evaluate the above statement, GORDIUS finds all objects of type
Rock-Unit and creates a conjunction of If statements by
substituting the name of each rock-unit for the variable $ru.
GORDIUS asserts that the For-all statement is logically equivalent
to this conjunction plus the closed-world assumption that all
objects of type Rock-Unit are known. When the simulator asserts
that the For-all statement is true, the deductive methods in RUP
infer that the conjunction is true and therefore that each individual
If statement is true.

We focus now on one particular conjunct — that of rock-unit SH1:
(If [Exists-at(SH1, Erosion1.start) and
SH1.top.helght@Erosion1.start > Elevell and
SH1.bottom.height@Erosioni.start < Eleveli]
Change(-, SH1.thickness, Erosion-of(Elevelt, SH1, Erosion1l.start), Erosion1))).
The system evaluates each expression in the antecedent of the If

statement. The truth of the Exists-at statement is determined by

- 65 -

checking whether Erosioni.start falls within the temporal extent
of SH1. The other two antecedent expressions are evaluated using
the Quantity Lattice to determine the relationships between the

parameter Eleveli and the temporal references:
SH1.top.height@Erosiont.start and SH1.bottom.height@Erosion1.start.

If all expressions in the antecedent evaluate to true, GORDIUS
deduces that the Change statement is also true, causing it to update
the thickness history time-line of the SH1 rock-unit by adding a
dynamic interval that has the same extent as Erosioni1. Finally,
GORDIUS constrains the eroded value of the thickness of SH1 by

asserting:
SH1.thickness@Erosioni.end =
SH1.thickness@Erosioni.start - Erosion-Of(Eleveli, SH1, Erosion1.start).

Since the value of the Erosion-Of function is defined to be non-
negative, the Quantity Lattice infers that the thickness of SH1 after
the erosion is no greater than its thickness before the event
occurred.

3.2.3 Diagrammatic Simulation

For geologic interpretation, a diagrammatic simulation is performed
to produce the additional spatial information needed to adequately
test hypotheses. The simulator uses a specialized diagram
representation and manipulation procedures to efficiently determine
detailed spatial effects of the geologic events.5

Our representation of diagrams is based on the wing-edge
representation of [Baumgart]. Originally designed for three-
dimensional modeling in computer vision, we have adapted it for
two-dimensional diagrams. The primitive objects in the wing-edge
representation are edges, faces and vertices. Edges and faces
encode the topology of the diagram: attributes of an edge include 1)
the two faces on either side of it, 2) its two end vertices, and 3) its
connecting edges; attiributes of a face include the edges on its
perimeter. The geometry of a diagram is represented by the
vertices, which encode their (X,Y) coordinate positions.

The wing-edge representation is well suited to representing and
reasoning about spatial changes to geologic objects for several
reasons. First, the primitive objects used in the representation —

5 More detail is found in [Simmons, 83].

- 66 -

faces, edges, and vertices — have a natural correspondence with the
primitive objects used in the geologic representation — rock-units,
boundaries, and geologic points. Second, the representation
facilitates computation of the spatial relationships (e.g., "above")
and metric properties (e.g., "orientation") that are needed for
geologic interpretation.

For the purpose of testing geologic hypotheses, the most important
advantage of the wing-edge representation is the ease with which
spatial changes can be simulated. The diagrammatic simulator uses
a set of low-level operations that modify the topology of wing-edge
structures. These operations can add and erase edges, split faces or
edges into two parts, and merge two faces or edges into one. The
operations are extremely efficient because they involve only local
changes to the wing-edge structure. For example, splitting a face
involves only changes to the face object itself and to the edges on
its perimeter. This is exactly what one wants from a spatial
representation — local spatial changes involve only local
representational changes.

The initial state given to the diagrammatic simulator is a diagram
consisting of a single line, representing the surface of the bedrock.
For each hypothesized event, the simulator applies a procedure that
takes as input a diagram and numeric parameter values and modifies
the diagram to reflect the spatial changes of the event.

The simulation procedures are quite simple for uplift, subsidence,
and tilting, since those events involve only geometrical changes.
The effects of the events can be simulated merely by adding some
value to the (X,Y) coordinates of the diagram's vertices. For
instance, the uplift procedure adds a constant to each Y coordinate.

The rest of the geologic events (erosion, deposition, dike-intrusion,
batholithic-intrusion, and faulting) all have topological as well as
geometrical effects. The procedures for simulating these events all
rely on a method for constructing lines in the diagram. For example,
erosion is simulated by constructing a line at the depth of erosion
and erasing all parts of the diagram above the line; dike-intrusion is
simulated by constructing two parallel lines and erasing all non-
boundary edges that fall between the lines.

- 67 -

To give a better feel for the types of manipulations used by the
diagrammatic simulator, we present the following iterative
algorithm used for constructing a line:

1. Find the boundary edge along the top or left-hand side of the
diagram that intersects the line being constructed (edge E1 at
point P1 in Figure 28). Pick the interior face abutting that edge
(face F1 in Figure 28).

2. Starting with edge E1, examine in order the edges along the
perimeter of the face to find the edge that intersects the line at
a pointé that is closest to, and below or to the right of, point P1
(edge E2 at point P2). Construct an edge E' from point P1 to
P2, splitting face F1 into two pieces, F1 and F1'.

3. Starting with edge E2 and examining the perimeter of F2, the
face on the other side of E2 from face F1, repeat steps 2 and 3
until no more intersection points are found.

8. Original D B. Aftor G ng the Li
E1 1P

F1 E? F1° FS

F1 / / F5
E2 —52452'
F3 P2L.F2' F3
F2 Fa ' F2 Fa
E"
F3'\

Figure 28. Constructing a Line in a Diagram

E1”

The line construction method also maintains associations between
topological changes in the diagram and geologic changes in the
object/attribute/history representation recorded by the causal
simulator. For example, when a face is split in two, adding one new
face, the line construction method associates the new face with a
newly created rock-unit and records that the new rock-unit is a
piece of, and has the same composition as, the rock-unit associated
with the face that was split. For example, if face F1 in Figure 28a
is associated with shale rock-unit SH1, the line construction
method creates a new rock-unit (say RU1), associates F1' with
RU1, and asserts that RU1 is a piece of SH1 and that it is composed
of shale.

6 There may be more than one intersection point if the face is concave.

- 68 -

One difficulty is that the constraints on parameter values produced
by the generator are typically only qualitative and therefore not
precise enough for an accurate diagrammatic simulation. Our
solution is for GORDIUS to obtain numeric parameter values by
making measurements in the goal diagram and relating the
measurements to the desired parameter values by tracing through
the dependencies recorded during causal simulation.

For example, the procedure that simulates dike-intrusion needs to
know the location of the intrusion in order to place it correctly in
the diagram. The location is given by the equation for the intrusion's
centerline, which is parameterized by the slope M and the y-
intercept B of the line. GORDIUS determines that M is equal to the
orientation of MI1 in the goal diagram (6 in Figure 29) since the
causal simulator records that at the time of the intrusion the
orientation of MI1 was M and that the orientation was not affected
by subsequent events.

\ ENVIRONMENT

P
="=‘>#Bz===}"3,7=“= 1. Deposition1(ROCK1, Shale)
; = 2. Batholithic-Intrusion2(ROCK2, Granite)
3. Upliftt(Uamountt)
4, Fautting? (FAULT1)
8. Dike-Intrusion1 (DIKE1, INTBOUND, Mafic-lgneous)
6. Erosion1(EROBOUND, Elevel)

Figure 29. Measuring From the Diagram

Similarly, the y-intercept B can be determined by picking a point P1
on the centerline and solving B=Y0-M*X0, where (X0,Y0) are the
coordinates of P1 at the time of the intrusion. GORDIUS reasons
that, due to the faulting event, points on MI1 have moved downwards
and to the right since the dike-intrusion occurred. Thus, (X0,Y0),
the coordinates of P1 at the time of intrusion, are related to (Xm,
Ym), the current coordinates as measured in the goal diagram, by the
equations:
X0 = Xm - DS*cos(6f) and YO = Ym - DS*sin(6f).

0f is the (measured) orientation of the fault line and DS is the fault

- 69 -

slippage, which can be determined, for instance, by measuring the
length of edge B9 in Figure 29.

For some parameters, the system can determine only ranges for
their values. For example, GORDIUS can determine that the amount
of shale deposition is greater than the thickness of SH2 (Figure 29)
since the causal simulation indicates that erosion decreased the
original thickness of the shale formation. How much greater the
original thickness was, however, cannot be determined. In such
cases, the system chooses an arbitrary value within the known range
of the parameter and propagates constraints so that other parameter
values are consistent with the chosen value. For example, in
choosing to make the shale deposition 12 meters greater than the
measured amount of SH2, GORDIUS constrains the value of Elevelt
(the level of erosion) such that in the final simulation diagram the
thickness of shale remaining after erosion will match its thickness
as measured in the goal diagram.

3.2.4 Matching Diagrams

The final stage of the tester determines whether the simulation
achieves all the goals of the problem. The system evaluates each
goal state proposition in the context of the simulated world state.
If none of the goals evaluate to false, the hypothesis is presumed to
be a plausible solution to the problem; otherwise the debugger is
invoked to repair the hypothesis. Currently, the system accepts
hypotheses as solutions even if the truth of some goal propositions
is unknown. A more complete algorithm, however, should try to
gather more information to determine whether the goals are in fact
achieved.

This simple means of matching the goal and simulated states is used
for all the domains we explored. Before evaluating the goals for the
geologic domain, however, the system must determine
correspondences between the parts of the goal diagram and
simulation diagram, since the diagrammatic simulator does not
maintain such correspondences itself.

We have implemented a diagram matcher that determines topological
and geometrical correspondences between the faces and edges in
diagrams. Importantly, for our purposes, the algorithm handles
diagrams that only partially match, usually producing matches that
agree with commonsense. In Figure 30, for instance, the matcher

- 70 -

determines that SS1 corresponds to R1, SS2 to R3, MI1 to R2, MI2
to R4, SS3 to R5, and similarly for the edges in both diagrams. In
addition, the matcher notes that faces R6 and R7 in the simulation
diagram do not correspond to any object in the goal diagram.?

A Goal D B. Simulation Di

ENVIRONMENT ENVIRONMENT

%%
"%%%f ® o ¢ o o @

Figure 30. Partially Matching Diagrams

Our diagram matcher uses a Waltz-like filtering algorithm that
enforces the constraint that objects in two diagrams correspond if
the objects they abut also correspond. For example, in Figure 30
edge B6 is held to correspond to E12 if faces SS1 and MI1
correspond to R1 and R2, respectively.

The matching algorithm starts by labeling each face (and edge) in
the goal diagram with the set of all faces (or edges) in the
simulation diagram, and vice versa. Three pieces of geologic
knowledge are then applied to constrain the labels. First, the faces
representing the Environment in both diagrams are constrained to
correspond. Second, since corresponding rock-units must have the
same composition, the algorithm removes from the label of each
face those faces that represent rock-units with different
composition. For example, the label for SS3 is constrained to be
{R1,R3,R5,R7}. Third, the edges forming the windows of the
diagrams (the side and bottom edges) are removed from all labels
since they do not correspond to real geologic entities.

The matching algorithm proceeds to enforce the topological
constraint that if two objects abut in one diagram they must

7 1t is actually ambiguous whether SS3 corresponds with R5 or R7; the diagram
matcher chooses one of the two possible correspondences arbitrarily.

- 71 -

correspond to objects that abut in the other diagram. For example,
the algorithm constrains B1's label to be {E1,E2,E3} — B1 must
correspond to an edge in Figure 30b that abuts the Environment
since B1 abuts the Environment and the Environments correspond
in both diagrams. Since S$S3 abuts B1, this in turn places
constraints on the correspondences of SS3 — R1 and R3 are removed
from its initial label of {R1,R3,R5,R7} because they do not abut
any of the edges left in B1's label. The diagram matcher also
enforces the constraint that correspondences are one-to-one. In
particular, if the label of an object F is reduced to the singleton set
{G} then the algorithm constrains the label of G to be {F} and
removes both F and G from the labels of all other objects.

The algorithm continues to constrain labels until no more
information can be propagated. At this point, if some labels still
contain more than one element, the algorithm selects one of the
ambiguous labels and sets up separate matches for each choice of
unique correspondence. After propagating constraints in Figure 30,
for instance, $S3 is labelled with both R5 and R7, so two new
matches are set up.

The algorithm continues propagating constraints and refining
ambiguous labels until no more choices remain. At this point, the
best match is chosen and returned. Two criteria are used to
determine the best match. First, a match is considered better if it
has fewer objects with empty labels, which signify objects that do
not correspond to anything in the other diagram. Second, a
geometric criterion is used if two matches have the same number of
correspondences: the better match is taken to be the one with the
most corresponding edges having the same orientation.8 In Figure
30, the match in which SS1 corresponds to R1, SS2 to R3, and B6
to E12 is topologically as good as the match in which SS1
corresponds to R3,SS2 to R1, and B6 to E13. In this case, the
geometric criterion would prefer the match where B6 and E12
correspond, since their orientations are the same.

In matching the diagrams in Figure 30, the matcher reports that no
objects in the goal diagram correspond with R6, R7, and all the
edges connected to them. In general, the existence of such extra
pieces is a bug that must be repaired by the debugger. An exception

8 To compensate for noisy data, two edges are considered to have the same orientation if
the angles are within 10%.

- 72 -

is where the extra piece falls outside the window of the goal
diagram. For example, GORDIUS considers that the diagrams in
Figure 31 match since the "extra" piece IGN2 in the simulation
diagram lies below the bottom edge of the goal diagram.

Figure 31. Successfully Matching Diagrams

The matching algorithm has several characteristics that make it
well suited for doing geologic interpretation using the GTD
paradigm. First, its primary reliance on topological matching
corresponds well with our geologic knowledge that diagrams whose
only differences are geometrical more nearly match since
geometrical differences are generally easier to explain (e.g., via
tilting) than topological differences.

Second, small topological differences in the diagrams are reported
as small differences in the match, which corresponds well with our
intuition that an hypothesis is close to being a solution if the
simulation diagram closely matches the goal diagram. For example,
the algorithm reports that all objects in Figure 30 have
correspondences except for R6, R7, and their abutting edges. In
comparing Figure 30a and Figure 31a, however, the matcher finds
that few of the objects correspond, which is reasonable since the
diagrams were formed from very different sequences of events.

Although the diagram matcher was developed specifically for doing
geologic interpretation, it is fairly general and may be useful in
other domains. In particular, the above discussion indicates that the
domains should be ones in which topology is more important than
geometry and the closeness of the match correlates with the
closeness of the events. that formed the diagrams.

- 73 -

3.3 Use of Simulation to Test Hypotheses

This section discusses how the causal and diagrammatic simulators
implemented in GORDIUS combine to fulfill the roles of the tester in
the GTD paradigm.

The tester has two major roles. First, it must verify whether an
hypothesis actually solves the problem, that is, whether the
hypothesized events can achieve the goal state from the initial
state. To fulfill this role, the tester must be accurate — avoiding
both false positives (i.e., accepting invalid solutions) and false
negatives. The latter condition is especially important in order to
prevent GTD from looping by continually rejecting legitimate
solutions proposed by the generator or debugger.

The need for accuracy implies that the domain models and model of
causality used by the tester must be at least as detailed as those
used by the generator and debugger. In particular, while the
generator can presume composability of events, the tester should
make as few assumptions as possible about how events interact.

The tester's second role is to provide causal explanations for any
bugs detected. As discussed in the next chapter, the causal
explanations are crucial to the operation of the debugger. The more
accurate and detailed the explanations, the greater the chance the
debugger has of finding out what went wrong and fixing it.

Simulation is a natural technique for testing interpretations and
plans. We can define simulation as the application of operators to a
world model in order to predict the consequences of the operators.
An operator is a function from world models to world models, where
in GORDIUS a world model is a partial description of the world over
an interval of time. Under this definition, testing a sequence of
events is expressed very naturally as the application of operators
(the events) to a world model (the initial state) to predict the
consequences of the operators (the goal state).

Although simulation, in general, is well suited for testing sequences
of events, the two types of simulations used in GORDIUS — causal
and diagrammatic — have differences with respect to how well they
fulfill the roles required of a GTD tester. The next two sections
describe the strengths and weaknesses of the two simulation
techniques in fulfilling those roles. We argue that the diagrammatic

- 74 -

simulator is better at accurately verifying hypotheses, while the
causal simulator is better in the role of providing causal
explanations.

3.3.1 Accuracy in Simulation

In theory, any desired degree of accuracy can be obtained using
causal simulation algorithms like the one described in this chapter.
In practice, however, there are several difficulties in actually
achieving the desired accuracy. While none are insurmountable, they
all tend to make causal simulation more expensive to perform. As
argued below, the desire for accurate simulations with tolerable
computational costs is the impetus behind using diagrammatic
simulation to determine complex spatial effects of geologic events.

One difficulty in achieving accuracy is providing the simulator with
sufficiently detailed domain models. This, however, is not just a
problem with causal simulation — any testing technique needs
accurate models. A more severe difficulty is providing an adequate
representation language for the domain models. For example, since
discrete event models do not represent what happens during the
occurrence of an event, our current simulator cannot reason
accurately about simultaneous events that interact by affecting the
same attribute at the same time. Although discrete models are
sufficient for the domains we explored, extending the representation
to use continuous process models (e.g., [Forbus]) might be necessary
for other domains.

An interesting question is whether the potential accuracy of the
causal simulator is limited by its use of local computation methods
(i.e., determining the value of an expression solely from the values
of its arguments). For example, it might be the case that certain
degrees of accuracy can be obtained only by using more global
methods, such as direct solution of simultaneous equations or
iterative methods.

Although we do not yet have a complete answer, we believe that
local methods are not an inherent limitation. The rationale is that
since events in the real world act locally, we should be able to
simulate their effects using local methods that mimic the causal
nature of events. The problem is that relying on local methods tends
to increase the cost of simulation. For example, we could accurately

- 75 -

simulate deposition locally, particle by particle, but that would
involve a ridiculous amount of computation.

The desire, then, is to achieve accuracy without sacrificing
efficiency. These twin goals are achieved in GORDIUS by tailoring
the tester to help overcome each of the three sources of difficulty
listed above — modeling, representation language, and local
computation methods. We argue that our causal representation
language can be used to overcome the first difficulty, but that the
other two suggest the use of a diagrammatic simulation technique
tailored to the geologic domain.

The first step in obtaining efficiency in simulation is choosing a
good modeling ontology — one that makes manifest the important
aspects of the domain needed to solve the problem [Simmons &
Davis, 83], [Van Baalen]. For example, the models used by both our
causal and diagrammatic simulators explicitly represent those
spatial objects and relations important in the geologic domain. The
causal models represent rock-units, boundaries, and points;
similarly, the diagrams represent faces, edges, and vertices. The
causal models encode geometrical attributes, such as the height of a
point and the orientation of a boundary; these same attributes are
either encoded explicitly or easily computed in the diagram
representation.

On the other hand, certain topological relations are represented only
implicitly in the causal models, making them expensive to compute.
For example, since the topology between a boundary and a rock-unit
is encoded only by the side-1 and side-2 attributes of the
boundary, the system must examine every boundary to find the set of
boundaries surrounding a rock-unit. In contrast, the perimeter of a
face is represented explicitly in the diagrams, making it trivial to
determine all the edges surrounding a face. To make the causal
simulator more efficient at simulating topological effects of
events, we should update the model of rock-units to include a
perimeter attribute.

Even with a good ontology, it may not be easy to simulate the
effects of events accurately. For example, even with a perimeter
attribute for rock-units, it is quite complicated to describe in our
causal representation language what happens when a rock-unit
splits in two — how new rock-units and boundaries are created as

- 76 -

existing ones split, and how the new objects are related
topologically to each other and to other existing objects.

The effects of events can be simulated more efficiently using
representations (data structures and inference techniques) that are
specialized for the types of changes that arise. This is the main
impetus behind our use of a specialized diagrammatic representation
— its associated manipulation techniques take advantage of
topological connectedness to efficiently compute changes to the
structure of the diagram. For example, the manipulation techniques
that split a face do not examine its whole perimeter; instead they
take advantage of the fact that the perimeter of the split pieces
have much the same topology as the original face.

A major reason for the increased efficiency of the diagrammatic
manipulation procedures is that they are operational descriptions
for how to perform the simulation, not causal descriptions of what
and why effects happen. These operational descriptions are most
efficiently computed using non-local computation, such as by using
global control constructs (sequencing and iteration) and by saving
state during the computation. For example, the iterative line
construction algorithm described in Section 3.2.3 computes how
edges and faces split in O(E*P) time, where E is the total number of
edges in the diagram and P is the number of edges intersected by the
line. In contrast, it would take O(E3) time to determine the same
effects using the local methods of our causal simulator.

In sum, the necessary degree of accuracy can be achieved with both
the causal and diagrammatic simulators. The diagrammatic
simulator, however, is more efficient due to its use of specialized
representations (with their associated inference techniques) and
non-local (procedural) methods of computation.

3.3.2 Producing Causal Explanations by Simulation

While major sources of inefficiency for the causal simulator stem
from using local computation methods and describing effects
causally rather than operationally, these are also the simulator's
strength in its role of providing causal explanations.

By using local methods, in which the value of an expression depends

only on the value of its arguments, dependencies can also be
determined from the expression's arguments alone. By using causal

- 77 -

descriptions that indicate why an effect happens, the dependencies
recorded by the local methods will reflect the underlying causality
of the description. In combination, the use of local methods and
causal descriptions makes the production of causal dependency
structures a natural by-product of our simulation algorithm.

Another advantage of using local methods is that evaluation methods
may be added or modified without having to consider their effects on
other methods. For example, the method to evaluate Change
statements has gone through several modifications as our
understanding of the underlying model of causality improved. In
each case, the modification involved merely changing way Change
statements were supported — the evaluation methods of other
statements did not have to be modified.

On the other hand, the more global methods and operational
descriptions used by the diagrammatic simulator are not amenable
to producing adequate causal explanations. With the diagrammatic
simulator, dependencies derived by tracing the simulation do not
necessarily correspond to our intuitive notion of cause and effect.
The problem is that based on such dependencies, the debugger would
suggest repairs that are not causally related to fixing bugs. For
example, in analyzing dependencies produced directly from
simulating our line construction algorithm (Section 3.2.3), the
debugger would suggest that adding faces above a given face might
prevent it from being split. To us this repair seems silly, since we
know that whether a line intersects a face is not causally related to
the topology of its surrounding faces, even though it is easier to
compute it that way.

To solve this problem of producing causal explanations, we do not
record dependencies based directly on executing the diagrammatic
procedures. Instead, only enough information is recorded by the
diagrammatic simulator to enable a domain-dependent algorithm to
construct post hoc causal explanations after testing is completed.
For example, our line construction algorithm records which objects
were split into pieces by which lines. If splitting an object F by
line L turns out to be a bug, the system constructs an explanation
for why the split occurred that depends on 1) the event for which L
was constructed, 2) the existence of F at the time the event
occurred, 3) the orientation and location of L, and 3) the height,
width, and location of F.

- 78 -

This approach of separating the simulation algorithm from the
mechanism used to create explanations has the advantage that the
tester can use non-causal simulators, which are often easier to
develop and more efficient to run, while it can still produce the
causal explanations needed by the debugger. Care must be taken,
however, to ensure that the explanations produced accurately reflect
the results of the non-causal simulation.

An additional problem with non-causal testing methods is that it is
often more difficult to determine which goals are not achieved. An
extreme case, for instance, is a tester that computes a single
statistic and compares it to some threshold, since this reveals
almost no information about what went wrong when the test fails.
In particular, since that is the case with the tester used by
DENDRAL, debugging is not a viable option in that domain [Buchanan,
personal communication]. In our own domain of geologic
interpretation, it took some effort to derive a diagram matching
algorithm that can determine which objects are and are not in
correspondence, information essential in determining which goals
are achieved by an hypothesis.

In conclusion, there are tradeoffs between causal and diagrammatic
simulators in their roles as testers. The diagrammatic simulator is
better in the role of verifying hypotheses accurately since it can
simulate detailed domain models efficiently by using operational
descriptions of events and global computation methods. The causal
simulator is better at providing explanations since its local methods
and causal event descriptions facilitate recording dependencies that
correspond to the causal nature of events.

Our approach of combining both causal and diagrammatic simulations
adheres to the general philosophy of GTD that more detailed
knowledge should be brought to bear only if and when less detailed
knowledge fails to solve the problem. The causal simulation in
effect forms a skeleton of the effects of the geologic events, and
the diagrammatic simulation allows us to flesh it out.

- 79 -

4. Debug

The task of the debugger is to modify hypotheses to repair the bugs
detected by the tester. Our approach to debugging is based on the
simple observation that the manifestation of a bug is only a surface
indication of some deeper failure. In particular, bugs ultimately
depend on the assumptions made during the construction and testing
of hypotheses. If the predicted state of the world does not match
the desired state, it must be that one of the underlying assumptions
is faulty and needs to be replaced.

Our debugging approach uses three causal reasoning techniques to
help focus on which assumptions to replace and how to replace them.
First, the debugger analyzes causal dependency structures to locate
the assumptions upon which the bugs depend. Second, the debugger
regresses values back through dependency paths to indicate the
direction in which to change the assumptions. Third, domain-
independent repair strategies are used to suggest ways to replace
assumptions in order tofix a bug. In addition, an evaluation
heuristic uses causal reasoning to estimate the global effects of
each suggested repair, determining whether it adds new bugs and/or
serendipitously repairs remaining bugs.

We refer to our debugger as assumption-oriented since it works by
replacing the faulty assumptions underlying a bug. Technically, an
assumption is defined as a statement whose value does not depend
on any other statements. Both propositions and expressions can be
assumptions. For instance, the system can assume that the
proposition Occurs(Erosion, Erosion1) is true, and it can assume
that the value of the expression Elevell is 50.

A bug is defined as an inconsistency between the desired value of a
statement and its predicted value. The tester detects bugs that
arise when 1) a desired event cannot occur because its preconditions
are not met, 2) the desired effects of events do not occur because
parameter constraints do not hold, and 3) a goal is predicted to be
unachieved in the final simulated state. In each case, the tester
constructs two causal dependency structures — one explaining how
the predicted value arises and the other explaining why the desired
value is needed (the latter typically consists of a single assumption,
for instance, the assumption that some event is supposed to occur).

- 80 -

The debugger begins repairing a bug by tracing back through the two
dependency structures explaining the predicted and desired values to
locate the assumptions upon which the bug depends. Using both
dependency structures gives the debugger an added degree of
flexibility — it can repair a bug either by changing the predicted
value to match the desired value, or by changing the desired to
match the predicted.

To help determine the direction in which to change an assumption,
the desired value of the bug is regressed back through the
dependency structure explaining the predicted value (and vice versa).
For example, suppose that the predicted value of
R1i.orientation@Plan-end depends on the constraint:
R1.orientation@Plan-end = Theta2 + 3°,

where Theta2 is the parameter of a tilt event. If we desire the
value of R1.orientation@Plan-end to be 10° regression indicates
that changing the value of Theta2 to (10-3)° will repair the bug.

The debugger uses six domain-independent repair strategies to
determine how to replace assumptions. The repair strategies reason
about the type of assumption being replaced, the regressed values,
and the event models of the domain. The strategies suggest ways to
repair a bug by adding or deleting events, changing parameter
bindings, or changing orderings between events. For example, the
repair strategy for a bug that depends on an assumption about the
value of a parameter is to replace the parameter value with the one
obtained through regression. Similarly, a repair strategy for an
assumption that some attribute persists in value during an interval
is to add a new event during the interval that can affect the
attribute.

Our debugging methodoclogy typically suggests many repairs for each
bug. To help control the search for a solution, the debugger uses an
evaluation heuristic to estimate the global effects of the suggested
repairs, and pursues the one estimated to come closest to solving
the overall problem. The debugger continues until it estimates that
all bugs are repaired, at which point the repaired hypothesis is
submitted to the tester for verification.

The evaluation heuristic used by the debugger is based on the
tester's causal simulator. It extends the causal simulator by
handling partially ordered hypotheses and by incrementally updating
causal dependency structures based on modifications to hypotheses.

- 81 -

For efficiency reasons, however, our evaluation heuristic is not
complete, occasionally failing to predict accurately which bugs
remain.

The next section illustrates GORDIUS' debugging capabilities on a
simple example. Section 4.2 describes how the debugger locates
assumptions and regresses values, and details the six repair
strategies currently implemented in GORDIUS, and discusses the
evaluation heuristic used to control search. Section 4.3 analyzes the
completeness and applicability of our theory of debugging. In
particular, we argue that the combination of dependency tracing,
regression, and our set of repair strategies is sufficient to handle a
wide range of bug types arising from many different combinations of
assumptions.

4.1 Debugging an Incorrect Hypothesis

Continuing our example from Sections 2.1 and 3.1, we examine how
the debugger handles the bug that arises in testing the
interpretation of Figure 32 — that erosion does not occur because its
precondition that the surface of the Earth is below sea-level does
not hold.

; 7/ 1. Deposition1(ROCK1, Shale)
S - 2. Batholithic-Intrusion2(ROCK2, Granite)
5 =/ 3. Faulting1(FAULT1)
—— /[4. Dike-Intrusion1(DIKE1, INTBOUND,
T i / Mafic-igneous)
a& / 5. Erosion1(EROBOUND, Elevel1)
429 y

Figure 32. An Incorrect Interpretation of the Diagram

Figure 33 shows the two causal dependency structures produced for
this bug — one is the trivial explanation that the generator assumed
that erosion occurred; the other explains why the causal simulator
predicts that the surface of the Earth would be below sea-level at
the start of the erosion event.! This prediction depends on

1 Figure 33 shows only part of the dependency structure for the predicted value — the
complete structure produced by GORDIUS has about twice as many nodes.

- 82 -

knowledge about the value of sea-level and the value of the height of
the top of the Earth's surface. The predicted height of the surface,
in turn, depends on various factors, including that it persisted in
value from the end of shale deposition to the start of erosion, and
that it increased by Dlevel1l due to the effects of the deposition of
shale.

The debugger locates the assumptions underlying the bug by tracing
back to the leaf nodes of the dependency structures (the boxed
statements in Figure 33). At the same time, the debugger regresses
values back through the dependencies to indicate the direction in
which to change the assumptions. For example, the regression
indicates that Surface.top.height@Erosioni.start should be
greater than Sea-Level in order to get erosion to occur. Regressing
further indicates that the desired value of Dlevel1, the amount of
shale deposited, is constrained by the expression:
Dlevell > (Sea-Level - Surface.top.height@Depositioni.start),

that is, enough deposition should be done to raise the surface above
sea-level.

Occurs(Erosion, Erosion1) Erosion1 Does Not Occur

Surface.top.height@Erosion1 .start < sea-level

4
Surfaoe.top.heifht@Erosion1 start

Persistence(Surface.top.height, Deposition1.end,

Surface.top.height@Deposition1.end Erosion start)
|

Surface.top@Deposition1 start Deposition1.end < Erosiont start
Change(+, Surface.top.height, Dievel,

e Deposition{) CWA(Surface.top.height, Deposition1.end,

Erosion1 .start

Surface.top.height@Deposition1.start + Dlevel1 i

Parameter-of(Deposition1, Dlevel, Dlevel1) Occurs(Deposition, Deposition1)

Figure 33. Partial Causal Dependency Structure

- 83 -

The debugger uses its repair strategies to consider each of the
assumptions illustrated in Figure 33:

1. Occurs(Erosion, Erosion1) (an erosion event occurs) — One
way to repair the bug is to change the intention that erosion is
supposed to occur. The debugger has two general strategies for
accomplishing this — 1) delete the event altogether, or 2) replace
it with a similar event that achieves the same goals but has
different preconditions. Following the first strategy, the
debugger proposes deleting the erosion event; for the second
strategy, it finds no way to replace the event, since it knows of
no other event that can remove parts of the shale and mafic-
igneous formations.

2. Sea-Level (sea-level has a particular value) — This assumption
is not handled because the debugger presumes that the values of
constants are unchangeable.

3. Depositioni.end < Erosionl.start (the deposition event
occurs before erosion) — The general strategy is to reorder the
events. In this case, however, the debugger determines that
putting erosion before deposition will not help since the
precondition of erosion will still not be met — the surface was
even further below sea-level before the deposition occurred.

4. CWA(Surface.top.height, Depositioni.end, Erosion1i.start)
(the closed-world assumption that nothing changes the height of
the top of the surface between deposition and erosion) — The
repair strategy for such persistence assumptions is to add an
event that can affect the attribute. In this case, that means
inserting an event between deposition and erosion that can change
the height of the surface. The regressed value of
Surface.top.height@Erosioni.start indicates that the event
needs to increase the height of the surface to a value greater than
Sea-Level.

There are four types of events in our domain models that can
affect the height of the Earth's surface — faulting, subsidence,
tilt, and uplift. The debugger rejects faulting and subsidence
because it determines that their effects are to decrease height.
Adding uplift is suggested as a possible repair because its effect,
raising the height of all geologic objects, is what is needed.
Adding a tilt event is also suggested. Even though tilt can either

- 84 -

increase or decrease height, depending on its direction and origin,
the debugger considers the resulting uncertain situation to be an
improvement over the currently known, but buggy, one.

5. Occurs(Deposition, Deposition1) (a deposition event occurs)
— As with #1 above, the two repair strategies are to delete or
replace the event. In this case, both strategies fail. The
debugger determines that deleting Deposition1 would not repair
the bug since the surface of the Earth would still be below sea-
level. The event cannot be replaced because the debugger fails to
find an alternative event that can create shale.

6. Parameter-of(Deposition1, Dlevel, Dlevel1) (the amount of
deposition done is Dlevell) — The strategy here is to change the
parameter to a value that fixes the bug. As described above, the
regression indicates that the desired value for Dlevel1 is:

Dlevell > Sea-Level - Surface.top.height@Deposition1.start.
This value, however, conflicts with a constraint in our model of
deposition that no amount of deposition can raise the Earth's
surface above sea-level. Thus, the debugger concludes that
Dlevel1 cannot be changed in such a way as to repair the bug.

Other strategies considered for parts of the causal dependency
structure not shown include increasing the height of the surface
before the deposition event occurs, and changing the geologic top of
the surface (e.g., by depositing another formation on top of the
shale). Since none of these other strategies succeed in this
example, the debugger suggests a total of three repairs for the bug
that erosion does not occur — deleting the erosion event, inserting
an uplift event, and inserting a tilt event.

The debugger evaluates each of the suggested repairs to estimate
the total number of bugs remaining after each repair is done. The
evaluation heuristic determines that the uplift event fixes the bug
and introduces no new bugs, but that the other two repairs introduce
new bugs. In particular, if erosion is deleted, the surface will not
end up being horizontal; if tilt is added, the orientations of the
boundaries and rock-units will no longer match their orientations in
the goal diagram.

Since the debugger prefers hypotheses that have fewer remaining

bugs, it modifies the initial hypothesis to insert an uplift event
between the end of deposition and the start of erosion (Figure 34).

- 85 -

From the results of the regression, the amount of uplift (Uamount1)
is constrained to be enough to raise the surface above sea-level.
The modified hypothesis is verified by the tester, which concludes
that the hypothesis (or, at least, one of its linearizations) is in fact
a plausible interpretation of the diagram in Figure 32.

1. Deposition1(ROCK1, Shale)

2. Batholithic-Intrusion2(ROCK2, Granite)
Uplift1(Uamount1) 3. Faulting1(FAULT1)
N.‘Dike-lntrusiom (DIKE1, INTBOUND, Mafic-Igneous)

5. Erosion1(EROBOUND, Elevel1)

Figure 34. The Modified Hypothesis with Uplift.

4.2 The Debugging Algorithm

The next three sections describe the reasoning techniques used by
our debugging algorithm — 1) locating underlying assumptions and
regressing values through dependency structures, 2) using repair
strategies to suggest ways to replace assumptions, and
3) evaluating the suggested repairs to determine how they affect
achievement of the other goals of the problem.

4.2.1 Locating Underlying Assumptions and Regressing Values

The debugger focuses on potentially faulty assumptions by analyzing
causal dependency structures. Dependency structures are
represented using a TMS [McAllester], where the belief that a
statement has a particular value is represented by a TMS node, and
the causal support for that belief is represented by justifications.
For an assumption, a justification consists of a symbol that
represents the degree of belief (e.g. given or closed-world); for a
non-assumption node, a justification is a set of TMS nodes plus the
inference rule used to derive the node's value from its support nodes.
Nodes can have multiple justifications. For instance, the belief that
an event occurs may be supported both by an assumption made by the
generator and by the belief that its preconditions hold.

Locating the assumptions underlying a bug is relatively simple. The

debugger traces through all justifications of a node back to the
assumption nodes — those that have at least one justification with

- 86 -

no supporting nodes. Each path to an assumption is collected since
the different paths represent alternative explanations for why the
bug depends on the assumption.

The debugger eliminates a path from consideration if its underlying
assumption has been made with a very strong degree of belief. An
assumption's degree of belief is represented using a partially
ordered set of symbols. Those above a certain threshold (given,
constant, domain-model, and physical-truth) are considered
too strongly held to be changeable by GORDIUS. In essence, GORDIUS
treats assumptions of this class as premises.

While the debugger traces dependencies, it also regresses node
values back through the justifications. In essence, the regression
inverts the dependence between a statement and its supports,
indicating how the values of supporting nodes should be changed to
achieve the desired value of the dependent node.

Associated with each type of statement in our representation
language is a function that takes a symbolic constraint on the value
of a statement and returns constraints on the values of its supports.
For example, if the regressed value of (A and B) is true, the
function associated with the and predicate determines that the
regressed values of both A and B are true. Similarly, if the
regressed value of the expression X-Y is 3, the system infers that
the regressed value of X is the constraint X=Y+3, and the regressed
value of Y is Y=X-3.

Figure 35 shows the regressed values (italicized) for one of the
dependency paths underlying the bug in Section 4.1 that erosion does
not occur. The regressed values indicate that the bug can be fixed by
negating the CWA assumption (a closed-world assumption that
nothing changes the height of the top of the Earth's surface) and

replacing it in a way that achieves the constraint:
Surface.top.height@Erosion1.start > Sea-Level.

The debugger algebraically simplifies the regressed constraints to
facilitate subsequent reasoning about them. For example, regressing
the constraint X > (Z + W) back through the dependency X =Y + Z
yields the constraint Y > (Z + W) - Z, which is simplified to Y > W.

- 87 -

Erosion1 Does Not Occur False

Surface.top.height@Eﬁsiom.start < sea-level False

Surface.top.height@Erosion1.start
Surface.top.height@Erosion1.start > sea-level

Persistence(Surface.top.height, Deposition1.end, Erosion1.start) False

CWA(Surface.top.height, Deposition1.end, Erosioni.start) False

Figure 35. Regression of Desired Values (ltalicized) Through a Dependency Path

For user-defined functions that do not have an associated definition
(e.g., Foo(x, y)), the debugger creates new functions for each
argument in the function's domain (e.g., Fooyx-inverse and Fooy-
inverse) and uses them to do the regression. For example,
regressing 1 through Foo(a,b) produces a=Fooyx-inverse(1,b) and
b=Fooy-inverse(1,a). Although this trick enables the debugger to
regress values, it does not provide much leverage in trying to select
appropriate repairs. For instance, it does not indicate how a can be
changed in order to make Foo(a,b) equal to 1.2

Since the dependency structures underlying bugs tend to be quite
large, the debugger employs techniques to prune the search for
underlying assumptions. The three pruning methods used all look for
situations in which a node cannot be changed in any way to achieve
its regressed value, which indicates that its underlying assumptions
cannot be changed in any way to repair the bug. For example, if a =
b/c, there is no way to change ¢ to achieve the constraint a = 0
(assuming c¢ is finite).

One pruning method stops tracing at a node if the regressed
constraint does not contain the name of the node itself. This
situation indicates that the regressed constraint is independent of
the node, so changing the node's value will have no impact on fixing
the bug. For example, Figure 36b illustrates a path in the
dependency structure derived from simulating the hypothesis of

2 Section 5.4 illustrates how such inverse functions do provide useful information for
the diagnosis of faults in semiconductor fabrication.

- 88 -

Figure 36a. The italicized statements are the constraints obtained
by regressing the desired value that R1.orientation@Plan-end
should be greater than R1.orientation@Tiltl.start. The
regression is pruned at the node R1.orientation@Tilt1.start
since its name does not appear in the regressed constraint Thetal >
0. This indicates that no change to R1's orientation at Tilt1.start
will affect its relationship with R1.orientation@Plan-end.

A. Current Hypothesis

1. Deposition1(R1, Shale)
2. Tilt1(Thetal)

B. I Path and R | Val talicized

R1.orientation@Plan-end
R1.orientation@Plan-end > R1.orientation@Tilt1.start

R1.orientation@Tilt1.end
R1.orientation@Tilt1.end > R1.orientation@Tilt1.start

R1.orientation@Tilt1.start + Thetat
R1.orientation@Tilt1.start + Thetal > R1.orientation@Tilt1.start
simplifies to: Thetal >0

R1.orientation@Tilt1.start

Figure 36. Pruning the Trace Through Dependency Structures

A related pruning method stops tracing if the regressed value of a
node is inconsistent, most notably, if it falls outside its legal range
of values. For example, in regressing the desired value:
R1.orientation@Plan-end = R1.orientation@Tilt1.start

through the dependency path in Figure 36b, the regressed value of
R1.orientation@Tilt1.start + Thetal is found to be Thetal = 0.
This conflicts with our tilt event model which constrains its Theta
parameter to be non-zero. Thus, it is futile to replace any of the
assumptions underlying this statement, since any change that
achieves the desired value would be inconsistent with the domain
models.

The third pruning method is applicable when the debugger regresses
the value false through a conditional statement of the form:
(If antecedent Change(type, object.attribute, magnitude, event)),

- 89 -

indicating that the bug might be repaired if the change did not
happen. In this case, the debugger traces back through antecedent
only if the predicted value of object.attribute@event.start is
closer to the regressed value of object.attribute@event.end than
is its current predicted value. This reflects the observation that it
is useless to try to prevent a change from happening if the situation
will be no better without the change's effect.

As the debugger traces dependencies and regresses values, it applies
the three pruning methods to each node, halting the search through a
node if any pruning method is found to be applicable. Our experience
shows that, in combination, the three pruning methods significantly
reduce the number of assumptions that would otherwise have to be
considered by the debugger's repair strategies.

4.2.2 Repairing Bugs

For each dependency path collected, the debugger suggests ways to
replace the assumption at the end of the path with ones that will
achieve the desired value of the statement at the head of the path.

We have implemented bug repair strategies for the six different
types of assumptions that our experience and analysis show are
responsible for most of the bugs in a wide variety of domains. The
strategies can replace faulty assumptions about 1) which events
occur, 2) parameter bindings of events, and 3) temporal orderings
between events, as well as three types of closed-world
assumptions: 4) the assumption that an attribute persists in value
because no known event affects it, 5) the assumption that an object
continues to exist because no known event destroys it, and 6) the
assumption that the system knows about all objects of a given type.

The repair strategies all share a common framework in that they
modify the current hypothesis by retracting one underlying
assumption and adding assumptions about new event occurrences,
parameter bindings, and/or temporal orderings. The strategies all
determine how to repair bugs by analyzing the dependency paths, the
regressed values along the paths, and the domain's event models.

4.2.2.1 Producing Occurrence Repairs

Several of the repair strategies, plus parts of the evaluation
heuristic described in Section 4.2.3, need to determine which events

- 90 -

can affect some temporal reference in order to achieve a given
value. For example, in trying to repair the bug in Section 4.1 that
erosion does not occur, the debugger needs to find events that can
change the value of Surface.top.height@Erosion1.start to be
greater than sea-level.

The technique used to determine the set of such events takes as
input 1) a temporal reference of the form object.attribute@time,
2) a symbolic constraint on the desired value of the temporal
reference, and 3) an initial list of events that might affect the
object's attribute. The technique produces a list of occurrence
repairs, which are events that, if inserted into the current
hypothesis, can achieve the desired value.

The technique works by determining, for each event in the initial
list, whether there exist parameter-binding constraints that can be
added to the event so that it can achieve the desired value. If more
than one set of such binding constraints exists, (i.e., the event can
achieve the value in more than one way), multiple occurrence repairs
are created for that event, each having different parameter
constraints.

An event can possibly achieve the desired value of a temporal
reference if: 1)it contains a change statement that can affect the
attribute of the temporal reference, 2) the change statement can
affect the object of the temporal reference, 3) all conditions
associated with the change statement are potentially achievable,
and 4) the magnitude of the effect can change the temporal
reference to the desired value.

The first step is to determine whether any change statement of the
event can affect the attribute of the temporal reference. This step
is efficient in GORDIUS because change statements of events are
indexed under the attributes that they affect, so finding the relevant
effects is a simple look-up operation. For example, associated with
the top attribute are two effects of the blocks-world Puton event:

1) Change(=, Dest.top, {Source}, Puton) and

2) (If (Source € $b.top@Puton.start) and ($b = Dest)

Change(-, $b.top, Source, Puton)),

where the first effect stacks the Source block on the Dest block
and the second effect removes the Source block from the top of all
blocks it is currently on (except for the one onto which it is being
moved).

- 91 -

The second step of the technique determines whether the change
statements found can affect the object of the temporal reference.
If the object is a constant or bound process parameter, the object
of the temporal reference must be the same constant; if the object
of the change statement is a quantified variable or unbound
parameter, the object must be a compatible type. In the latter
case, constraints are added to the event indicating that the variable
or parameter is bound to the object. For example, given the
temporal reference A.top@Plan-end, the technique produces two
occurrence repairs for Puton (using the change statements above) —
one with the Source parameter bound to A, and the other with the
variable $b bound to A.

An additional condition in matching parameters is that the object
must satisfy any parameter constraints of the event (i.e.,
propositions in the event's constraints field that consist only of
parameters, constants, and function or relation symbols). For
example, the Elevel parameter in the erosion event is constrained
by the proposition Elevel > Sea-Level. In addition, parameters
representing objects created by the event have the implicit
constraint that the object must not already have been created by
another event. This, for instance, rules out suggesting that the
change statement Change(=, Boundary.orientation, 0, Erosion),
where Boundary is the created erosional boundary, can be used to
alter the orientation of a pre-existing boundary.

The third step of the technique is to determine whether all of change
statement's conditions can be achieved. An achievable condition is
one that either currently holds or can potentially be achieved by
subsequent debugging. We use a simple heuristic to recognize
potentially achievable conditions — if the condition has terms
denoting time points or intervals, it is presumed that some repair
strategy can change the appropriate temporal references needed to
make the condition hold. For example, the condition (Source e
$b.top@Puton.start) is considered achievable — even if it does not
currently hold there are repair strategies that can achieve it by
changing the value of Source.top to include block $b. On the other
hand, if the condition ($b = Dest) in change statement #2 above
does not hold, it is considered unachievable. In other words, it is
unacceptable for the debugger to propose removing block A from the
top of block C by putting A back on C).

- 92 -

The final step in producing occurrence repairs is to determine
whether the magnitudes of the effects found are sufficient to
achieve the desired value of the temporal reference. For a
magnitude that is a simple expression (i.e., a constant, variable,
parameter, or temporal reference), it is sufficient if the magnitude
matches the desired value in the manner described above —
constants, bound variables, and parameters must be the same as the
desired value; free variables and parameters must have the same
type as the desired value. For the temporal reference A.top@Plan-
end, for instance, the magnitude of the effect:
Change(=, Dest.top, {Source}, Puton)

is sufficient to achieve the desired value {B} with the added
constraint that the Source block be bound to B.

A more semantic approach is necessary for magnitudes that are
expressed in terms of functions. In such cases, the debugger uses
its knowledge of arithmetic, sets, and the meaning of the Change
statement to determine whether any consistent bindings can be
found for free variables or parameters in the magnitude. The
debugger creates an equation relating the magnitude of the change
statement and the desired value, and symbolically solves for the
free parameters and variables in the equation. The resulting
expressions are then evaluated to determine whether they are
consistent with the domain model's constraints on the parameters
and variables.

For example, to decide whether the statement Change(-, $b.top,
Source, Puton))is sufficient to achieve the value {B} for
A.top@Plan-end, the debugger binds A to the variable $b and
creates the equation:

{B} = A.top@Puton.start - {Source}.
Solving for Source, the debugger produces:

Source € A.top@Puton.start - {B}.
Using the current predicted value of A.top@Puton.start, the
debugger evaluates the set-difference expression. The magnitude is
sufficient to achieve the desired value if the resultant set contains
exactly one element — in which case the debugger constrains the
parameter binding for Source to be that element.

Similarly, to determine whether the magnitude of Change(+,
$pt.height, Uamount, Uplift) can achieve the desired value that
Surface.top.height@Erosioni.start be greater than sea-level,
the debugger chains together the three equations:

- 93 -

Surface.top.height@Erosioni.start > Sea-Level
Surface.top.height@Erosiont1.start = Surface.top.height@Uplift.end
Surface.top.height@Uplift.end = Surface.top.height@Uplift.start + Uamount

and solves the result for Uamount, producing the expression:
Uamount > Sea-Level - Surface.top.height@Uplift1.start.
Since Uamount is constrained by our domain models to be positive,
the magnitude is sufficient if the arithmetic difference evaluates to
a positive quantity, indicating that there is some amount of uplift
that can achieve the desired value. In such a case, the debugger
would create an occurrence repair for an uplift event, adding the
inequality above as a parameter constraint on Uamount.

Sometimes the desired value cannot be achieved in one debugging
step. To handle such cases, the magnitude of an effect is considered
sufficient if it moves the value of the temporal reference closer to
the desired value. A reasonable definition of "closer" is to use less-
than for quantities, and subset for sets (e.g., set B is closer to A
than is CifAc Bc CorC c Bc A). In fact, our debugger uses an
even more conservative approach — the magnitude of an effect is
considered sufficient as long as it does not move the temporal
reference away from its desired value. For example, the debugger
suggests adding tilt to increase the height of the Earth's surface,
even though tilt may either increase or decrease height depending on
the tilt's angle and origin, neither of which may be known exactly.

Applying these four steps to all events in the initial input list of
events produces a list of occurrence repairs that are sufficient for
achieving the desired value of the given temporal reference. As
mentioned, these occurrence repairs form the basis for several of
the bug repair strategies described in the following sections.

4.2.2.2 Replacing Event-Occurrence Assumptions

An event-occurrence assumption — Occurs(type, event) —
indicates that an event of type is assumed to occur. Both the
generator and debugger can make such assumptions, the only
difference being that the debugger makes them with a higher degree
of belief since it analyzes more carefully whether the event actually
achieves the desired goals.

One strategy for handling an event-occurrence assumption is simply

to delete the event from the hypothesis. The situations in which
this strategy is applicable differ for the two ways in which such

- 94 -

assumptions can appear in our causal dependency structures. The
first situation is where the event is assumed to occur but currently
cannot because some of its preconditions do not hold. For this case,
the deletion strategy is always applicable.

The second situation is where an effect of the event contributes to
the bug by changing the value of some temporal reference. This
buggy temporal reference can be identified by tracing forward from
the assumption to find the first temporal reference along the
dependency path being analyzed. For the assumption Occurs(Puton,
Puton1) in Figure 37, for example, the buggy temporal reference for
is B.top@Puton1.end.

In such situations, the deletion strategy is applicable only if the
desired value of the buggy temporal reference will be achieved (or,
at least, will be closer) if the event does not occur. Operationally,
GORDIUS determines the effect of deleting an event (E1) on a
temporal reference (obj.attr@E1.end) by evaluating its value at
the start of the event (obj.attr@E1.start). In the problem of
Section 4.1, for instance, the bug that erosion does not occur
depends in part on the value of the height of the Earth's surface,
which in turn is affected by the occurrence of shale deposition.
Deleting the deposition event is not applicable in this case, however,
because the height of the surface was even further below sea-level
before the deposition occurred.

Deleting an event is a fairly drastic type of repair. It often
introduces more bugs than it fixes since the system include events
to satisfy certain goals and it is likely that these goals would not be
achieved if the events were deleted. A more useful repair strategy
for handling event-occurrence assumptions is to replace the event
with a similar event.

An event is taken to be "similar" if it has the same important
effects as the original event but avoids the problem that led to the
bug. For GORDIUS, the important effects of an event are not pre-
stored, but are determined dynamically by finding the effects that
contribute to achieving the problem's goals. For example, the
important effect of a Puton event may be either the one that stacks
two blocks or the one that clears one block off another, depending on
the problem being solved.

- 95 -

In addition to having the same important effects, a similar event is
defined as one that avoids the bug. For cases in which a precondition
of the event does not hold, similar events must not have the
offending precondition. For cases in which an effect of the event
supports the bug, similar events must achieve the desired value of
the buggy temporal reference. In Figure 37, for example, Puton1 is
hypothesized to achieve the goal of having A on B, and Puton2 is
used to achieve the goal of B on C. The bug is that Puton2 cannot
occur because Puton1 interferes with its precondition that B be
clear.3 The Puton2 event can be replaced with an event that puts B
on C but does not require B to be clear. In this problem, Putoni
cannot be replaced because its important effect is the same as the
one leading to the bug — any event that achieves the goal of having A
on B cannot possibly clear B at the same time.

Dependency Path (Regressed Value in [talics)
Schematic of Initial State Occurs(Puton, Puton2) True
A BI|IlcC Clear(B, Puton2.start) True

B.top@Puton2.start = {} True

Goal State P "

1. On(A, B, Plan-end)

B.top@ P¥ton2.start {}
2. On(B, C, Plan-end)

B.top@Putoni.end {}

Current Hypothesis Change(=, B.top, {A}, Puton1) False
1. Puton1(A, B)
2. Puton2(B, C) Occurs(Puton, Puton1) False

Bug: Puton2 cannot currently occur because a precondition does not hold

Figure 37. Replacing the Occurrence of an Event

The algorithm for replacing an occurrence by a similar event begins
by collecting the important effects of the occurrence. The
important effects of an event E1 are found by tracing forward along
all paths in the dependency structure from the event-occurrence
assumption to the top-level goals, then regressing the desired

3 This example, like many of those this chapter, is contrived to exhibit the range of our
debugger. In solving this problem, GORDIUS would actually find a correct solution
before proposing the buggy hypothesis of Figure 37.

- 96 -

values of the goals through those paths back to temporal references
of the form obj.attr@E1.end.

These temporal references are used to construct the set of similar
events. The debugger first chooses one of the temporal references
and produces an initial set of occurrence repairs that achieve the
regressed value of the temporal reference.# That set of events plus
another of the temporal references are used to produce another,
more constrained, set of occurrence repairs. The algorithm
continues to iterate until either a step produces no occurrence
repairs, in which case there are no similar events, or all the
temporal references have been processed, in which case the output
of the final iteration consists of events that achieve all the goals
achieved by the original event.

Finally, the debugger removes those occurrence repairs that do not
avoid the bug. For the case in which the original event has an
unachieved precondition, an occurrence repair is removed if it has
the same precondition. For the case in which an effect of the
original event supports the bug, one more iteration is performed
using the buggy temporal reference to yield a set of occurrence
repairs that repair the bug as well as achieving all the goals of the
event being replaced.

Note that our definition of "similar" events is fairly conservative —
a similar event must achieve all the important effects of the
original event. We have chosen this definition to limit the number of
replacements suggested by the debugger. This definition of
similarity, however, does not impinge on the completeness of the
debugger since in cases where it is too strict, the desired debugging
can be accomplished using combinations of the other repair
strategies. Instead of replacing an event, for instance, the debugger
could delete it and subsequently insert several other events which in
concert reachieve the goals supported by the deleted event.

4.2.2.3 Replacing Parameter-Binding Assumptions

The parameter-binding assumption — Parameter-of(event,
formal, actual) — indicates that actual is the binding of the

4 The initial list of events used for producing occurrence repairs consists of one event
for each type known to the system, except for the type of the event being replaced. The
constraints on their temporal orderings are the same as those of the replaced event.

- 97 -

formal parameter for the event. Such assumptions are made by the
generator in instantiating local interpretations, and by the debugger
in producing occurrence repairs. In addition, if parameters are still
unbound when an hypothesis is ready to be tested, the tester will
choose arbitrary bindings that are consistent with the existing
parameter constraints. For example, if the hypothesis were "put
block A somewhere," the tester would choose some object as the
destination of the Puton event, subject to the constraint that it not
be block A itself.

The repair strategy for parameter-binding assumptions is to find
alternative bindings for the formal parameter that will repair the
bug. Constraints on the bindings are found by regressing the desired
value of the bug back through the dependency path. The regressed
constraint is conjoined with the constraint that the new parameter
value not equal its old value, plus any parameter constraints for the
event. This produces a parameter-value constraint on the desired
binding for the formal parameter.

The debugger then creates occurrence repairs having bindings
consistent with the parameter-value constraint. If the type of the
formal parameter is real-valued, the debugger creates a new
quantity and asserts that the parameter-value constraint holds for
that quantity. For all other parameter types, separate occurrence
repairs are created for each existing object that is both of that type
and consistent with the parameter-value constraint.

For example, the bug in Figure 38 is that Puton2 cannot occur
because D is not clear. Regressing through the dependency structure
the desired value that Clear(D, Puton2.start) be true produces the
constraint Source.top@Puton2.start={}. The debugger conjoins
this with the constraint not to reuse the old parameter value and the
parameter constraint of the Puton event that a block cannot be put
on itself, producing a constraint on the desired binding of Source
for Puton2:
Source.top@Puton2.start={} and SourcezD and Source=Dest.

Of the existing blocks in Figure 38, only C and E are consistent with
this constraint. While debugger suggests both as replacements for
D, the evaluation heuristic determines that block E is a better
choice since binding Source to C introduces the new bug that On(C,
D, Plan-end) is no longer achieved.

- 98 -

c 1. 0On(C, D, Plan-end) 1. Puton1(C, D)
DJIA]IB 2. Covered(A, Plan-end) 2. Puton2(D, A)
Tablet

Bug: Puton2 cannot occur because D is not clear at the start of Puton2

Figure 38. Replacing a Parameter-Binding Assumption

Another example of the applicability of this repair strategy is
shown in Figure 39. The bugs are that the orientations of rock-unit
S$S1 and boundary B2 are predicted to be 17°, not 12° as depicted in
the goal diagram. The debugger regresses the desired value of 12°
through the dependencies in Figure 39 (the predicted values are in
boldface, the desired ones in italics), back to the assumption
Parameter-of(Tilt1, Theta, Thetal). The regression indicates
that the desired value of Tilt1's Theta parameter is 7°, since the
regressed value of SS1.orientation@Tilt1.start + Thetal is 7°
and the predicted value of SS1.orientation@Tilt1.start is 0°.
Since the desired value of 7° is consistent with the tilt event's
parameter constraints, the debugger creates an occurrence repair
indicating that the new tilt parameter of Tilt1 equals 7°.

For the other parameter-binding assumption in Figure 39, regression

indicates that the constraint on Tilt2's Theta parameter value is:
Theta=0 and Theta#5 and Theta=0,

where the last conjunct is a parameter constraint of the tilt event.

The debugger evaluates this constraint and determines that it is

inconsistent, indicating that there is no way of altering Theta2 to

repair the bug.

There are two enhancements to this repair strategy that we have
considered, but not yet implemented — 1) suggesting a parameter
value that only partly repairs the bug, and 2)trying to further
constrain the parameter value using other dependency paths. The
first enhancement would be applicable if the parameter-value
constraint is inconsistent, as in the above example. In such cases,
the debugger would choose a value that lies between the parameter's
current value and its desired value. In the above example, for
instance, the debugger could create a new tilt parameter whose
value is greater than zero but less than five. Although this strategy
does not help much in this example, it may be the right thing to do in
certain situations.

- 99 -

A second potential enhancement is to further constrain the
parameter-value constraint using the regressed values along
dependency paths supporting other top-level goals. The debugger
would trace forward in the dependencies to find top-level goals
supported by the parameter-binding assumption. It would then
regress their desired values back along the dependency paths and add
any regressed constraint that is not inconsistent with the current
parameter-value constraint. In replacing the Elevel parameter of
an erosion event, for example, we would like the debugger to use the
desired values of all goals that depend on this parameter's value to
produce a tighter bound on the desired level of erosion.

Current, Buggy Hypothesis

1. Deposition1(SS1, Sandstone)
2. Tilt1(Theta1=12°)

3. Deposition2(SH1, Shale)

4. Tilt2(Theta2=5°)

Partial Dependency Structure (Predicted/Desired Values)
SS1.orientation@Plan-end 17°/ 12°
SS1.orientation@Tilt2.end 17°/ 12°

SS1.orientation@Tilt2.start + Theta2 17°/ 12°

. Theta2 5°/ 12-12 = 0°
SS1.orientation@Tilt2.start

12°/ 12-Theta2 = | Parameter-of(Tilt2, Theta, Theta2)]
12-5 = 7°

SS1.orientation@Tilt1.start + Thetal 12°/ 7°

SS1.orientation@Tilt1.start Thetal 12°/ 7-SS1.orientation@Tilt1.start
0°/ 7-Thetal =-5° f =0-7=7°
[Parameter-of(Tilt1, Theta, Thetal) |

Bugs: Orientations of SS1 and B2 are 17°, not 12° as measured in the goal diagram.

Figure 39. Replacing a Real-Valued Parameter

4.2.2.4 Replacing Temporal-Ordering Assumptions

The debugger handles temporal-ordering assumptions of the form
Eventi.end < Event2.start by reordering the two events. All

- 100 -

three stages of GTD can make such assumptions — the generator and
debugger when constructing hypotheses, and the tester when
linearizing hypotheses before simulating them.

GORDIUS makes two other types of temporal-ordering assumptions
that are considered to be too basic to be changed by the debugger
(this is indicated by justifying the assumptions with a high degree
of belief). One type is the commonsense assumption that the start
of an interval always precedes its end (i.e., l.start < l.end). The
other type is part of the problem statement that, to be considered a
solution, an event must fall between Plan-start and Plan-end.

Temporal-ordering assumptions play two important roles in our
causal dependency structures — supporting statements of the form
Persistence(object.attribute, t1, t2) and Exists-at(object,
t1). For Persistence statements, the belief that an attribute
persists in value from time t1 to t2 depends in part on the belief
that t1 in fact precedes t2 (i.e., t1 < t2). For Exists-at
statements, the belief that an object exists at time t1 is supported
by the beliefs that the object was created no later than t1, and that
t1 precedes the time, if any, that the object was destroyed (i.e.,
object.start < t1 and t1 <object.end).

The repair strategy first determines whether the Persistence or
Exists-at statement has alternative supports, in which case
removing the temporal-ordering assumption will not help in
repairing the bug. This is checked by retracting the assumption,
propagating the retraction through the dependency structure (via the
TMS), and seeing whether the Persistence or Exists-at statement
still holds. For example, if the generator has asserted that
Deposition2.start < Intrusioni.start, the statement Exists-
at(SHALE1, Intrusioni.start) in Figure 40 still holds even after
retracting the assumption Deposition2.end < Intrusioni.start.
Thus, replacing the assumption will not repair the bug.

After retracting the temporal-ordering assumption, the debugger
adds new assumptions to reorder events. If the retracted
assumption supported an Exists-at(obj, t1) statement, a new
temporal ordering is added that reverses the previous ordering
between time t1 and the event that created (or destroyed) obj. For
our causal dependency structures, the correct ordering to be added
can be determined by tracing forward in the dependencies from the
retracted assumption to the penultimate support of the Exists-at

- 101 -

statement. The negation of that statement is a temporal ordering
that repairs the bug.

. B Hypothesi Simulation Di

1. Deposition1(ROCK1, Sandstore)
2. Deposition2(SHALE1, Shale)
3. Intrusion1(IGN, Mafic-igneous)

Partial Dependency Structure
Exists-at(SH2, Plan-end)
SH2.start < Plan-end Plan-end < SH2.end
. CWA-Exists(SH2, Plan-end
SH2 start = Infrusion1.start Intrusion1.start < Plan-end I xists(an-end) I

Created(Intrusion1, $ru, SH2) | Intrusion1.start < Intrusion1.end] [Intrusion1.end < Plan-end _]

(If [Exists-at(SHALET1, Intrusion1.start) and ...] Created(Intrusion1, $ru, SH2))

Exists-at(SHALE1, Intrusiom.staw\ha | Occurs(Dike-intrusion, Intrusion1) |
SHALE1 start Jntrusiom start Intrusion1.start < SHA§E1 .end

LCWA-Exisis(SHALE1 , Intrusion1.start) l

SHALE1.start = Deposition2.start

T Deposition2.start < Intrusion1.start
Creazed(oeposiﬁ?z, Rock, SHALE1) T \

L Deposition2.start < Deposition2.end | | Deposition2.end < Intrusion1.start —I

[Occurs(Deposition, Deposition2) I

Bug: Extra piece of shale (SH2) exists in simulation diagram

Figure 40. Reordering Events to Remove an Extra Piece of Rock

In the example of Figure 40, the diagram matcher detects the bug
that an extra piece of shale (SH2) appears in the simulation
diagram. The dependency structure for this bug explains that the
existence of SH2 depends on the fact that the dike-intrusion created
SH2 by splitting the already existing formation SHALE1. The
debugger retracts the assumption Deposition2.end <
Intrusioni.start and replaces it with Intrusioni.start <
Deposition2.start, the negation of the penultimate statement

- 102 -

before reaching Exists-at(SHALE1, Intrusioni.start) along the
dependency path from the retracted assumption. Adding this
assumption repairs the bug because it implies that SHALE1 will not
be split into SH1 and SH2, since it will not exist at the time of the
intrusion.

A similar repair strategy is used for temporal-ordering assumptions
that support statements of the form Persistence(obj.attribute,
event.end, t1), where event is the last one to have affected the
attribute before time t1. The repair strategy negates the
persistence by reordering so that the end of the persistence interval
(t1) actually precedes its start (event.end).

Unlike the repair strategy for Exists-at, however, this one is not
applicable in all situations. The strategy is applicable only if the
desired value of obj.attribute@t1 is achieved, or is closer to being
achieved, at the start of the persistence interval (i.e., before the
event occurs). If the strategy is applicable, the bug can be repaired
by adding the ordering assumption that event occurs after time t1.

Initial_Stat Partial Dependency Structure (Desired Values in [talics)
Occurs(Move-ring, Move-Ring2) True
Ring2 | Post2.topobj.size@Move-Ring2.start > True
Postt Post2 Post3 Ring2.size@Move-Ring2.start
Goal State :
1. On-Post(Ring1, Post2, Plan-end) Post2.topobj@Move-Ring2.start
2. On-Post(Ring2, Post2, Plan-end) Post2.topobj.size@Move-Ring2.start > Ring2.size@Move-Ring2.start
c LB Hypothesi Persistence(Post2.topobj, Move-Ring1.end, Move-Ring2.start) False

1. Move-Ring1(Ring1, Post2) - -
2. Move-Ring2(Ring2, Post2) l Move-Ring1.end < Move-Ring2.start]

Bug: Move-Ring2 cannot occur because the ring on top of Post2 (Ring1) is smaller than Ring2

Figure 41. Reordering Events to Change Persistence of Attribute

For example, in the Tower of Hanoi problem illustrated in Figure 41,
the bug in the current hypothesis is that Move-Ring2 cannot occur
because it has an unachieved precondition — the top object on Post2

- 103 -

must be larger than Ring2 (see Appendix C). The bug arises because
the top object of Post2 is currently the smaller object Ring1. The
reordering strategy is applicable here because the desired value of
Post2.topobj is achieved at the start of Move-Ring1 — before
Ring1 was moved onto Post2, the top object was the base of the
post, which is defined to be larger than any ring. The debugger
suggests retracting Move-Ringi.end < Move-Ring2.start and
assuming Move-Ring2.start < Move-Ringi.end (i.e.,, Move-Ring2
begins before Move-Ring1 ends).

For simplicity, GORDIUS actually modifies the assumptions
suggested by the repair strategies to ensure that events do not
overlap. For example, instead of assuming Move-Ring2.start <
Move-Ring1.end, as above, GORDIUS assumes Move-Ring2.end <
Move-Ring1.start (i.e., Move-Ring2 totally precedes Move-
Ring1). While having one event begin before another one ends is a
sufficient repair, given the semantics of our causal models, GORDIUS
ensures that no overlap occurs to avoid the possibility of having to
reason about simultaneous, interacting events, since this is beyond
our current models.

4.2.2.5 Replacing Attribute-Persistence Assumptions

The attribute-persistence assumption — CWA(object.attribute,
t1, t2) — is a closed-world assumption indicating that no known
event changes the value of the attribute during the interval from
times t1 to t2. Such assumptions are made when determining the
value of an attribute at a point in time. GORDIUS finds the interval
in the history time-line of the attribute that contains the time point
(t2) and, if the interval is quiescent, asserts that the value of the
attribute is the same as its value at the start of the interval (t1)
supported by the belief that the attribute persists over the interval.

The repair strategy for an attribute-persistence assumption
invalidates the assumption by hypothesizing that some event does
affect the attribute during that interval. This can be done by 1)
hypothesizing that a new event occurs that affects the attribute, or
2) finding an existing event that has the appropriate effect and
reordering it to occur within the persistence interval.

The repair strategy begins by producing the set of occurrence

repairs that can achieve the regressed value of obj.attribute@t2.
Input to the technique for producing occurrence repairs are the

- 104 -

temporal reference obj.attribute@t2, its desired value, and a list
containing each type of event, with the events constrained to end
during the persistence interval (i.e., between times t1 and t2).

The resulting occurrence repairs represent all the ways that
inserting an event can fix the bug. The debugger creates and
evaluates new hypotheses for each occurrence repair. In Section 4.1,
for instance, GORDIUS fixes the bug that erosion does not occur by
determining that uplift and tilt are the two events that can increase
the height of the Earth's surface. Both are suggested as repairs and
are evaluated to determine their overall goodness.

The repair strategy also checks for existing events that could
potentially affect the attribute, but currently do not because 1) they
occur outside the persistence interval and/or 2) they have
insufficient constraints on their parameter bindings. To find
existing events that can fix the bug, the repair strategy relaxes the
temporal constraints on the new occurrence repairs and determines
which, if any, of the new events unify with existing events. Recall
from Section 2.2.2 that two events potentially unify if their types
are compatible, their parameter bindings are consistent with one
another, and they are currently unordered. Two events necessarily
unify if they potentially unify and they create at least some of the
same objects.

If a new event and an existing event unify, the debugger creates an
occurrence repair to suggest that the existing event is a possible
repair. This occurrence repair consists of the existing event plus all
parameter binding constraints found for the new event. In addition,
if the existing event does not currently fall within the persistence
interval, it is reordered using the methods described for the
temporal-ordering repair strategy (Section 4.2.2.4),

If a new event potentially, but not necessarily, unifies with an
existing event then occurrence repairs are suggested for both the
new event and the existing event. This reflects our desire that the
debugger should explore all possible options. For example, in Figure
42 the debugger has achieved the goal of clearing B by proposing the
Putoni event to put A somewhere. In trying to achieve the goal of
having A on C, the debugger produces an occurrence repair for the
event Puton2(A, C). Since this potentially unifies with the
existing Puton1 event, the debugger proposes two repairs — one
achieves both goals with the single event of putting A on C; the

- 105 -

other achieves each goal with a separate Puton event. For this
problem, the former hypothesis is preferred since it is shorter. The
latter hypothesis would be preferred, however, if the problem were
to stack A on C on B, in which case the Puton event used to clear
block B should be different from the one used to stack A on C.

A
1. Clear(B, Plan-end) 1. Puton1(source=A)
B C 2.0On(A, C, Plan-end)
Table1

Figure 42. An Occurrence Repair Potentially Unifies with an Existing Event

If a new event and an existing event necessarily unify then both
events cannot co-exist in the same hypothesis. In this case, the
existing event subsumes the newly proposed event — an occurrence
repair is created for the existing event, and the new event is
eliminated from further consideration. |If, on the other hand, a new
event necessarily unifies with more than one existing event, the new
event is inconsistent with the current hypothesis, so no occurrence
repairs are suggested.

Environment Goals Current Hypothesis

. Composition(SS1, Sandstone, Plan-end) 1. Deposition1(SS1, Sandstone)
. Composition(SH1, Shale, Plan-end) 2. Deposition2(SH1, Shale)

. Abuts(B2, SH1, Plan-end)

. Abuts(B2, SS1, Plan-end)

Figure 43. An Occurrence Repair Necessarily Unifies with an Existing Event

The example in Figure 43 shows how the concept of necessarily
unifying events helps in constructing a correct solution.5 At this
point in the example, the debugger has proposed that the two
Composition goals can be achieved by deposition of Sandstone,
creating rock-unit SS1, and by deposition of Shale, creating SH1.
In trying to achieve the first Abuts goal, the debugger produces an
occurrence repair that indicates that some deposition event

5 This example, which is run without using the generator, is described more fully in
Section 5.1.2.

- 106 -

(Deposition3) created a depositional boundary (B2) between the
bottom of SH1 and whatever was on the Earth's surface at the time
of the deposition. Since this event necessarily unifies with
Deposition2(SH1, Shale) (both events purport to create the same
rock-unit SH2), the occurrence repair for Deposition3 is replaced
with one for Deposition2 that includes the parameter-binding
constraint that B2 s the lower depositional boundary of
Deposition2.

4.2.2.6 Replacing Object-Existence Assumptions

The object-existence assumption — CWA-exists(object, t1) — is
a closed-world assumption indicating that the object continues to
exist at time t1 since no event is known to have destroyed it. The
assumption is made when evaluating an Exists-at statement to
determine whether the object exists at time t1. In our dependency
structures, a CWA-exists assumption always directly supports an
ordering statement of the form t1 < object.end.

The object-existence assumption, which is similar in meaning to the
attribute-persistence assumption, has a similar repair strategy as
well. The repair strategy uses the technique for producing
occurrence repairs (Section 4.2.2.1) to find the set of events that
can destroy the object. The events are assumed to occur before
time t1 and after the object was created (since objects cannot be
destroyed before they are created). If any existing events unify with
the new events, they are reordered to occur before t1 and are
suggested as possible repairs.

Finding events that can destroy an object is slightly different from
finding events that can affect an object's attribute. One difference
is that instead of looking for Change statements that affect the
attribute, the system looks for statements of the form
Destroyed(object, event.end) (for efficiency in retrieval, such
effects are indexed under the "destroyed" attribute of the event).

The other difference is that there is no magnitude for a Destroyed
effect — the effect is applicable if 1) the object in the Destroyed
statement matches the object to be destroyed, and 2) all of the
conditions associated with the Destroyed effect are potentially
achievable. For example, if B3 (a piece of the fault boundary in
Figure 44) is the object to be destroyed, then the effect

- 107 -

(For-all ($gf : geologic-feature)
(If lIs-type($gf, rock-unit) Destroyed($gf, event.end)))

is not applicable because the condition Is-type(B3, rock-unit) is
necessarily false.

The repair strategy begins by inputting to the technique for
producing occurrence repairs the object to be destroyed and a list
consisting of each type of event, with each event constrained to
occur between times t1 and object.start. For each occurrence
repair, the debugger creates an hypothesis that adds the new event.
It also tries to unify the new event with existing events, using the
method described in Section 4.2.2.5 — setting up new occurrence
repairs for potentially unifiable events, removing new events that
are necessarily unifiable with existing events, and reordering
unifiable existing events so that they occur after the object is
created and before time t1.

Goal Diagram Current Hypothesis Simulation Diagram
¥ 7 F————p3
T = 1. Deposition1 (SAND1, Sandstone) . 7 £
— — = 2. Deposition2(SHALE1, Shale) —7 £
b e £ 3. Faulting1(FAULT1) L e e e Y
et \ee o/ 00T 4 intrusiont(DIKE1, Mafic-Igneous)p - « + + « + « + - / Ceeenaee
. * & o ¢ 0 P ¢ o o 0 s s o o s\, ® & 0 ¢ 0 ® ¢ ¢ 0o o
)..o¢. e o . . P ¢ © o & o ¢ o o o * ¢ ® & o & 0o @ . o
(Partial) Causal Dependency Structure

Exists-at(B3, Plan-end)

N

/ B3.start < Plan-end Plan-endf B3.end
B3.start = Faulting1.start Fau;r%ﬂan-end CWA Exists(B3, Plan-end)
Created(Faulting1, $bnd, B3) | Faulting1.start < Faulting1.end | | Faultingt.end < Plan-end |

(If [Exists-at(SAND1, Faulting1.start) and Intersects(FAULT1, SAND1, Faulting1.start)
Created(Faulting1, $bnd, B3)) T T

Bug: Extra piece of fault boundary (B3) exists in simulation diagram.

Figure 44. Destroying an Object to Remove an Extra Boundary Piece

- 108 -

Figure 44 illustrates a case where this repair strategy is applicable.
The diagram matcher finds correspondences for all the pieces in the
simulation and goal diagrams except for one extra piece, boundary
B3. Tracing back through the dependencies, the debugger finds that
the assumption CWA-exists(B3, Plan-end) underlies the bug. To
replace this assumption, the debugger looks for occurrence repairs
that can destroy B3. The only relevant effect found in our geologic
models is:
(For-all ($gf : geologic-feature)
(1f [Exists-at($gf, Erosion.start) and ($gf = Surface) and

Elevel < $gf.bottom.height@Erosion.start]
Destroyed($gf, Erosion.end))),

which indicates that erosion destroys any existing geologic feature
that is totally above the level of erosion, except for the surface of
the Earth.

Since this effect is applicable for destroying boundary B3, the
debugger suggests inserting a new erosion event (Erosion1)
constrained to occur before Plan-end and after the start of
Faulting1 (the time when B3 was created). In addition, the
debugger assumes that the currently unachieved condition of the

Destroyed effect holds:
Elevel < B3.bottom.height@Erosion1.start.

This condition provides the diagrammatic simulator with the
necessary constraints on how much erosion it needs to perform.

4.2.2.7 Replacing Known-Objects Assumptions

The known-objects assumption — CWA-object(type, O1,..., On) —
is a closed-world assumption that the only objects of type that
exist are O1 — Op. This assumption is used in evaluating quantified
statements. GORDIUS handles a universally quantified statement of
the form (For-all (x : type) P(x)) by expanding it into:

P(O1) and ... and P(On) and CWA-object(type, O1, ..., On).
Similarly, the expansion for (Exists (x : type) P(x)) is:

P(O1) or ... or P(Opn) or (not CWA-object(type, O1,..., Opn)).

The bug repair strategy for a CWA-object assumption is to create a
new object of the appropriate type. The repair strategy is
applicable in two cases: 1) if the object to be created is a type of
event, the debugger adds a new event occurrence of that type, and 2)
if there is a type of event that can create an object of the
appropriate type, the debugger inserts an event of that type together
with any parameter bindings needed to create the object. This

- 109 -

repair strategy is applicable for creating rock-units and boundaries,
for instance, but not for time points.

The debugger also assumes that the newly created the object or
event has the necessary properties to satisfy the quantified
statement. To achieve the statement:
(Exists ($ru : Rock-Unit) Is-Sedimentary($ru)),

for instance, the debugger would try to add an event that creates a
new rock-unit R1 and assume that Is-Sedimentary(R1) is true.
Thus, inserting a deposition event would work, but inserting an
intrusion event would not since it is inconsistent for an intruded
formation to be sedimentary.

As a concrete example of handling quantified goals, suppose given
the problem in Figure 45a, we add the goal that some sandstone
formation was partially eroded (perhaps we've found chunks of

sandstone in a nearby river bed). This goal can be represented by:
(Exists ($ru : Rock-Unit)

($ru.material@Plan-end = Sandstone) and

(Exists ($e : Erosion) ($e.Elevel < $ru.top.height@$e.start))),

where the inequality indicates that $e.Elevel, the level of erosion,
is enough to affect the rock-unit $ru.

To interpret the diagram, the generator produces the hypothesis of
Figure 45b. Simulating this hypothesis, the tester detects that the
quantified goal is not achieved since 1) the level of erosion for the
existing erosion event (Elevell1) is insufficient to affect the
existing sandstone rock-unit $S1, and 2) the other existing rock-
unit (SH1) is made of shale, not sandstone. Figure 45c shows
relevant portions of the dependency structure for this bug (values
predicted by the tester are in boldface).

The known-objects repair strategy is applicable for both CWA-
object assumptions in the dependency structure. The debugger
suggests replacing CWA-object(Erosion, Erosion1) with the
assumption that another erosion event occurs (Erosion2). The
debugger assumes that:
Erosion2.Elevel < SS1.top.height@Erosion2.start,

which ensures that the new erosion event affects SS1. Another
suggested repair replaces the assumption C W A -
object(Sedimentary, SS1, SH1)by hypothesizing that a new
deposition event created another sandstone formation that was
subsequently eroded by Erosiont.

- 110 -

A._Goal Diagram B. Current Hypothesis
SH1 1. Deposition1(SS1, Sandstone)
2. Deposition2(SH1, Shale)

3. Uplift1(Uamount1)
4. Erosioni(Elevell)

i in Boldfac

Exists ($ru : rock-unit)
($ru.material@Plan-end = Sandstone) and
Exists ($e : erosion) ($e.elevel < $ru.top.height@$e.start))

L d

L]
o o o 4
o o o 4

L]
o o

®
> o o ¢
o o o 4«
o o o o
> o o 4

Exists($e : erosion) ($e.elevel < SS1.top.height@$e.start) not CWA-object(Rock-Unit, SS1, SH1)
false ’ false
Elevell < SS1 .'taol;;:elght@Ero:lom.start I CWA-object(Rock-Unit, 581, SH1) |
Elevell not CWA-object(Erosion, Erosion1) true
1 false
Parameter-of(Erosion1,
Elevel, Elevel1) | CWA-object(Erosion, Erosion1) I
true true
SH1.material@Plan-end=Sandstone
S81.top.height@Erosion1.start talse

Persistence(SS1.top.height,
S81.top.height@Uplift1 .end Uplift1.end, Erosion1.start) SH1.material@Plan-end

! | A |

Bug: No sandstone formation gets eroded.

Figure 45. Repairing a Buggy Quantified Goal Statement

The debugger, of course, suggests several other repairs based on the
strategies discussed in previous sections. For example, it suggests
making Erosion1 affect SS1 by replacing the Elevel1 parameter
with a value that is less than the height of the top of SS1 (this,
however, introduces the bug that SH1 gets eroded away). Similar
repairs suggest raising the height of SS1 above Elevel1 by changing
the amount of uplift, increasing the height of SS1 by adding another
uplift event, etc. The debugger even suggests changing the material
parameter of Deposition2 from shale to sandstone, so when
Erosion1 affects SH1 it will be eroding a sandstone formation.

S 111 -

The large number of possible bug repairs highlights the importance
of controlling search by evaluating the goodness of hypotheses, the
subject of the next section.

4.2.3 Control of Search and Evaluating Hypotheses

Our debugging methodology typically suggests many repairs for each
bug. The system uses best-first search and a heuristic goodness
metric to control the search for a solution.

The primary component of the goodness metric is the number of bugs
remaining in the hypothesis, where a bug can be an unachieved top-
level goal, an event occurrence that has unachieved preconditions, an
unachieved change statement condition, etc. @ The number of
remaining bugs is often a good estimate of the amount of debugging
effort needed to find a solution since our task is to find an
executable sequence of events that can achieve all the goals of the
problem.

The secondary component of the goodness metric is the cost of the
hypothesis. This component is only used to differentiate two
hypotheses that have the same number of remaining bugs. Currently,
the cost of an hypothesis is simply the number of hypothesized
events. A more robust approach might calculate the cost of an event
as a function of its type and parameter bindings. For example, by
making the cost of Uplift proportional to the amount of uplift, the
system would prefer hypotheses that did as little uplift as possible.

Our experiments indicate that this goodness metric performs very
well for the types of problems encountered in the geologic and
blocks-world domains. We attribute this mainly to the fact that
these domains contain few garden paths, so hill climbing toward the
goal state is usually the right thing to do. This conjecture seems to
be confirmed by the system's relatively poor performance in solving
the Tower of Hanoi problem, a domain in which the correct strategy
often involves undoing previously achieved goals.

The goodness metric used by the debugger is essentially the same as
the one used by the generator. The major difference is in the method
used to calculate the number of remaining bugs. While the generator
presumes independence among scenarios, the debugger evaluates
each proposed hypothesis to determine its global effects, effects

- 112 -

that might include introducing new bugs or serendipitously fixing
other existing bugs.

The debugger's evaluation heuristic is based on the causal simulator
described in Section 3.2.2, using the same domain models and some
of the same methods to evaluate statements. It differs in that it
can handle partially ordered hypotheses, but it is not complete,
occasionally failing to predict when changes happen to an attribute.
We are currently working on ways of minimizing or eliminating that
situation while maintaining some degree of efficiency in evaluating
hypotheses.

To facilitate the system's search, the evaluation heuristic indicates
which orderings of the hypothesis are relevant in determining the
number of remaining bugs. For example, suppose our problem is to
have blocks A on B, B on C, and D on E, and the current hypothesis
consists of three unordered events: Putoni(A, B), Puton2(B, C),
and Puton3(D, E). The evaluation heuristic reports that ordering
Puton2 before Puton1 produces fewer bugs than the other way
around, but that the ordering of Puton3 with respect to the other
two events does not affect achievement of the goals.

To facilitate the incremental nature of our evaluation heuristic, the
causal dependency structure is implemented on top of a standard
monotonic, justification-based TMS [McAllester]. Retracting
assumptions causes the inferences supported by the assumptions to
be retracted as well. Adding assumptions causes new inferences to
be propagated using the local rules of the causal simulator described
in Section 3.2.2.

One problem with this scheme is that propagating the effects of
events is expensive, especially for non-linear hypotheses. To
alleviate this problem, our method does not propagate all effects,
only those that are needed to predict changes in the number of
remaining bugs. For example, while erosion affects the thickness of
rock-units, this effect can be ignored in solving geologic
interpretation problems.

Which effects to propagate are determined by analyzing each closed-
world assumptions (CWA, CWA-exists, and CWA-object) in the
dependency structure to see whether it still holds. For example,
GORDIUS checks whether the modifications to the hypothesis affect
the attribute of any CWA assumption during its persistence interval.

- 113 -

The system retracts each invalidated closed-world assumption and
recalculates the dependencies for the statements that were directly
supported by that assumption.

For retracted CWA assumptions, GORDIUS uses a polynomial time
algorithm to recalculate the dependencies of temporal references.
The algorithm uses the technique for producing occurrence repairs
(Section 4.2.2.1) to determine all possible supports for the temporal
reference. It then uses the context switching mechanism of our TMS
to predict values of the temporal references under each of the total
orderings consistent with the hypothesis. The algorithm essentially
pushes the exponential work of evaluating hypotheses down to the
TMS. This is a reasonable design decision because current TMS
implementations are able to switch contexts very rapidly, with
little overhead [McAllester].

Once all the necessary dependencies have been recalculated, the
remaining bugs are determined by propagating the changes to the
dependency structure using the causal simulation rules. For
example, if the value of A.top@t1 were recalculated, this would
propagate to affect the value of the goal Clear(A, t1) since Clear
is defined as A.top@t1 = {}. The number of remaining bugs is then
calculated simply by counting the number of inconsistent TMS nodes
in our causal dependency structure.

One additional characteristic of the debugger's search algorithm is
that it must check for cycles in the search tree. Cycles might
appear, for instance, if the debugger inserted an event and then
deleted it. To prevent the debugger from looping in such situations,
the debugger examines the ancestor nodes of each hypothesis to
determine if it is equivalent to one that had been suggested
previously. Two hypotheses are considered equivalent if the events
in each hypothesis unify with at least one event in the other
hypothesis.

4.3 A Theory of Debugging

The assumption-oriented debugger described in this chapter provides
the foundation for a general theory of debugging plans and
interpretations. The basic idea is that all bugs ultimately arise
from faulty assumptions made during the construction and testing of
hypotheses. The debugger repairs inconsistencies between the

- 114 -

predicted and desired states of the world by identifying and
replacing faulty assumptions that underlie the inconsistencies.

The theory conjectures that there is only a relatively small number
of different types of assumptions that can underlie bugs. It further
conjectures that the many ways that bugs can arise through
different combinations of assumptions can be handled by using
domain-independent methods for tracing through causal dependency
structures, regressing values of statements, and determining how to
replace assumptions. These three techniques — tracing
dependencies, regressing values, and using repair strategies that
employ causal reasoning — focus the debugger on which assumptions
to replace and how to replace them.

The efficacy of the GTD paradigm rests, to a large extent, on having
a robust debugger. The rest of this section analyzes the robustness
of our theory of debugging in terms of 1) its degree of completeness,
2) situations in which the debugging algorithm may not terminate,
and 3) the extent to which the implemented repair strategies cover
the range of assumptions that can possibly underlie a bug.

The conclusions reached for the different aspects of robustness are:

Completeness: for the causal representation language used and
the assumptions made explicit in our causal models, the
dependency tracing technique is complete, as are the repair
strategies, under the presumption that bugs can be fixed by
replacing one assumption at a time. Since the regression
technique, however, is not in general complete, in theory the
debugger might not find a solution when one exists. For the
problems we examined to date, however, it has in fact proven to
be pragmatically complete.

Termination: the implemented goodness metric and evaluation
heuristic need to be improved slightly to ensure that GORDIUS
will always halt if a problem has a solution. Since planning and
interpretation are undecidable, in general, the debugger is not
guaranteed to halt if the problem has no solution.

Coverage: by analyzing three models upon which GORDIUS is built
— a model of causality, a model of the problem-solving task, and
a model of hypothesis construction — we conclude that our set
of repair strategies is sufficient to handle many of the common
causes of bugs. In addition, the debugger can easily be extended

- 115 -

to handle assumptions currently only implicit in our system.
New simulation rules, regression rules, and repair strategies
can be added without changing the existing rules, repair
strategies, or the debugging algorithm itself.

4.3.1 Completeness

By "completeness” we mean "can the system solve all problems that
have a solution and are describable in the representation language
used?" The aim of this section is not to offer formal proofs, but
rather to characterize the degree of completeness for the
dependency tracing, regression, and bug repair techniques.

For a given causal explanation, the dependency tracing technique is
complete in that it will find all assumptions underlying a bug that
could be at fault. This is because all dependency paths are examined
except for those that the pruning methods show cannot possibly be
changed to repair the bug.

The caveat, of course, is that the method is only as complete as the
causal explanations examined. If an assumption does not appear
explicitly in the dependency structure, the debugger has no means of
locating it. Similarly, if the explanation does not match the true
causality in the domain, faulty assumptions may be overlooked.
Questions of how well our explanations actually model reality is the
subject of Section 4.3.3.

Although all the causal models used by GORDIUS are deterministic,
the debugging theory is applicable to non-deterministic models, as
well, as long as the causal explanations constructed include all
possible underlying assumptions. For example, in a probablisitic
model with rules of the form: "if X1 then Y happens with probability
p1" and "if X2 then Y happens with probability p2," the causal
explanations must indicate that Y depends on both X1 and X2.
Although this might greatly increase the number of assumptions that
must be examined, the debugger can perhaps use the probabilities to
heuristically order the assumptions according to their a priori
likelihood of causing the bug.

A major source of incompleteness is the technique that regresses
values back through the dependencies. The problem is that most of
the repair strategies depend on the regression to constrain the
choice of parameter values. If the constraints produced by the

- 116 -

regression are under-determined, the debugger must choose and test
different parameter values until one is found that solves the
problem.

This technique is incomplete when only a finite number of values out
of an infinite set (e.g., the reals) can solve the problem, since in
general it will take infinite time to test each choice before hitting
on a correct solution. While in many cases hill-climbing through the
space of parameter values can help to focus in on the correct choice,
in the worst case the complete parameter space will have to be
examined. This observation also shows that even the simple
technique of enumerating and testing all hypotheses is incomplete,
since it is not possible to enumerate all hypotheses (in particular,
the parameter bindings of events) in finite time.

There are several additional difficulties inherent in regressing
values. One is that the regressed constraints can become very
complex, making it difficult to reason with them. Although this can
be alleviated somewhat using better algebraic simplifiers,
simplification in general is an unsolvable problem. Another
difficulty is that not all dependency links can be symbolically
inverted. Although techniques exist to solve some of the problems
that GORDIUS cannot currently handle (e.g., expressions of the form
Y =X*X can be solved by [MACSYMA] or [Sacks]), there are many
expressions that cannot be inverted, for instance, those involving
higher order polynomials. Even more problematic is that the domain
models may contain user-defined functions whose exact definition
is not provided. In such cases, the regression gives the debugger
almost no information on how to change the function's arguments to
achieve its desired value.

Turning to the completeness of the repair strategies, although we do
not offer proofs, it should be clear from the descriptions given in
this chapter that our repair strategies are complete in determining
appropriate ways to replace an assumption, given sufficient
regression constraints. For example, a parameter-binding
assumption is replaced with one whose parameter value is
sufficient to repair the bug, as determined by the regression; an
event-occurrence assumption is handled by deleting (or replacing)
the event; etc.

- 117 -

One strategy whose completeness we did analyze more formally is
the attribute-persistence repair strategy (Section 4.2.2.5).
Formally, GORDIUS' model of persistence is:
V (attr, obj, t1, t2)
{Persistence(obj.attr, t1, t2) =
(t1 < t2) and
not 3(type, mag, event) [Change(type, obj.attr, mag, event) and
(t1 < event.end) and (event.end < t2)]},

where the negated existential clause states that no event changes
the object's attribute between the start and end of the persistence
interval.

In the dependency structures produced by the tester, the negated
existential clause is represented by an attribute-persistence (CWA)
assumption. Negating a CWA assumption is thus equivalent to
making the existential clause true, that is, having some event
change obj.attr during the persistence interval. By examining the
existential clause, we see that this can be accomplished by
1) inserting a new event that has the appropriate Change
statement, or 2) using an existing event and constraining it to occur
within the persistence interval. Both these strategies are tried by
the attribute-persistence repair strategy.

The repair strategies are not complete in one important respect —
although the debugger can repair bugs that depend on multiple faulty
assumptions, as long as replacing each assumption separately moves
the hypothesis closer to a solution, in general the debugger fails in
situations where changing any one of the assumptions separately has
no discernible effect on repairing the bug. For example, the debugger
cannot handle situations where two events must be added, neither of
which has a positive effect by itself (e.g., needing to use two hands
to pick up a box). The debugger also cannot handle cases where a bug
depends on two parameters being above a certain threshold, but
changing either parameter alone moves the hypothesis further from
repairing the bug.

One possible way for handling such problems is to use techniques
developed to handle multiple points of failure in diagnosis. The
technique described in [Davis] efficiently controls the combinatorial
search inherent in examining combinations of assumptions by
layering the search — examining single assumptions first, and
examining combinations only when no solution is found. Although

- 118 -

this may be a viable technique for our debugger as well, it is not
currently incorporated in GORDIUS because 1)it is difficult to
develop general repair strategies that can handle combinations of
assumptions, and 2) this is a fairly rare problem (it has not arisen
in our domains), and thus has limited impact on the robustness of
the debugger.

4.3.2 Termination

It is useful to consider separately whether the debugger terminates
when a problem does and does not have a solution. We will see that
in either case termination is not guaranteed for GORDIUS. Although
non-termination is intrinsic in the case where no solution exists,
termination can be guaranteed when a solution exists with simple
changes to GORDIUS' current search metric and evaluation heuristic.

Planning and interpretation tasks have been shown to be undecidable
for representation languages, such as ours, that model effects that
depend on the current state [Chapman]. Thus, for cases where no
solution exists, it is provably true that no debugger will always
terminate. On the other hand, our debugger may terminate in certain
situations — precisely those in which no more headway can be made
towards a solution, that is, where no modification can be suggested
that even partly achieves any of the problem's goals. A simple
illustration of this is where the desired value of some temporal
reference is not achieved and GORDIUS knows of no event that
affects the attribute of the temporal reference.

The debugger may also terminate without a solution in situations
where a bug cannot be repaired by replacing one assumption at a
time (see Section 4.3.1). Since these situations are rare, however,
termination without a solution usually indicates that no solution
exists.

In our current implementation, there are two potential ways in
which the debugger may not terminate when a solution in fact
exists. Both can be remedied with simple implementation changes,
which have not yet been made due to time constraints. One problem
is that our current evaluation heuristic does not accurately estimate
the number of remaining unachieved goals. In particular, it
sometimes fails to detect when a modification serendipitously
repairs additional bugs, causing the debugger to overlook potential

- 119 -

solutions. The solution here is to implement a more complete
evaluation heuristic that avoids such false negatives.

The second potential cause of non-termination is that our current
goodness metric is not admissible. This stems from using the
number of events only as a tie-breaker in cases where two
hypotheses have the same number of unachieved goals. This may
cause non-termination in situations where some event helps
towards achieving a goal, but no finite number of such events can
actually achieve the goal — something that is theoretically possible,
but practically unlikely.

For example, it would take an infinite number of events to move an
object a finite distance if each event moves it by only an
infinitesimal amount. In such cases, the debugger might add such
events endlessly, since it would consider that progress was
continually being made towards a solution. One way to make the
metric admissible is to combine both components into a single
measure, so when one hypothesis gets too long another is pursued,
even if it has more unachieved goals.

One other potential cause of non-termination is currently handled
correctly by GORDIUS. The problem is that the debugger might loop
endlessly by repeatedly adding an event to achieve one goal and then
deleting it to achieve a different goal. As described in Section 4.2.3,
GORDIUS avoids such cycles in the search space by not pursuing an
hypothesis if it is equivalent to one already proposed higher up in
the search tree.

4.3.3 Coverage and Extensibility

The previous two sections show that the debugger is quite robust in
handling faulty assumptions that appear explicitly in our causal
dependency structures. The issues discussed in this section are
1) how well the current set of assumptions covers the range of
interpretation and planning problems, and 2) how easily the debugger
can be extended to handle assumptions now made only implicitly.
Both our experience and analysis show that the six types of
assumptions currently handled cover a fairly large range of
problems. In addition, it is relatively easy to extend the system to
handle many new types of assumptions.

- 120 -

In practice, our experiments indicate that the debugger can handle a
wide range of bugs in several different domains, arising from many
different combinations of assumptions (Chapter 5). More formally,
the coverage provided by our current debugger can be characterized
by examining the premises underlying three different models upon
which GORDIUS is built — a model of causality, a model of hypothesis
construction, and a model of the problem-solving task.

Each model provides a representational framework that helps define
the scope and expressive power of the problem solver. For example,
our model of causality defines the system's understanding of how
the world works. The model explicitly represents time and the
effects of events, and it presumes that objects and their attributes
continue to persist in value unless some event changes them.

Our model of causality indicates that one can predict future states
of the world given only an hypothesized set of events and
assumptions about the initial state, closed-world assumptions that
all objects (including events) are known, and assumptions that the
domain models are correct and complete. A bug arises when the
predicted state is inconsistent with the assumptions of the goal
state.

To provide complete coverage, the debugger must handle all the
assumptions involved in predicting effects and detecting bugs — the
assumptions made in constructing hypotheses, assumptions about
the initial and goal states, closed-world assumptions made by the
causal model, and assumptions about the correctness of domain
models. We argue below that our debugger has wide coverage, since
it currently handles all but the latter assumption and some types of
closed-world assumptions.

The hypothesis construction model defines the actions available to
the system in forming an hypothesis. The model embodied in
GORDIUS indicates that hypotheses are completely specified by the
events that occur, the parameter bindings of events, and the
temporal orderings between events. Thus, pragmatically, these are
the only types of assumptions made in constructing hypotheses that
need to be handled. Our current debugger has repair strategies to
cover each of them.

The problem-solving task model defines what constitute planning
and interpretation problems and solutions. A problem is represented

- 121 -

by assumptions about the initial and goal states. The task model
indicates that these assumptions are fixed and cannot be changed by
the debugger, otherwise it would be solving a different problem. The
task model defines a solution as a set of events, occurring between
times Plan-start and Plan-end, that achieves all the goals. This
definition implies that temporal orderings containing the time
points Plan-start and Plan-end also cannot be changed by the
debugger.

The debugger currently handles three types of closed-world
assumptions (CWA, CWA-exists, and CWA-object) that are
commonly made (and commonly at fault) in predicting states of the
world in our domains. Although practical experience has not shown
the need for handling others (e.g., the implicit assumption that
discrete models are sufficient), it is a fairly simple matter to
extend the debugger to handle other closed-world assumptions.

To extend GORDIUS, one needs to add 1) local evaluation rules that
both determine the value of a statement based on the values of its
arguments and record dependencies based on the evaluation, 2) rules
that symbolically regress the value of a statement to determine
constraints on the values of its supports, and 3) repair procedures
that know how to replace assumptions given dependencies, regressed
values, and domain models.

Our experience has shown that in many cases it is relatively easy to
add these three types of knowledge to handle new types of
assumptions, usually with little need to modify existing simulation
rules or debugging repair strategies. For example, we recently added
evaluation and regression rules for handling quantified goal
statements, and added the known-objects repair strategy to handle
the closed-world assumptions (CWA-object) that support
quantified statements (Section 4.2.2.7). The additions were
integrated smoothly into the existing debugger with only almost no
change needed to the debugging algorithm itself. The only exception
is that the evaluation heuristic was augmented to examine CWA-
object assumptions when modifications are made to hypotheses.
This is necessary because closed-world assumptions are non-
monotonic and adding new information might invalidate them.

Not so simple to handle are the implicit assumptions that the

domain models are correct and complete. Handling them is
somewhat tricky because any bug can be fixed by changing the

- 122 -

domain models in an appropriate way. For example, we could debug
the example in Section 4.1 simply by eliminating the precondition
that erosion must occur below sea-level. Clearly any reasonable
repair strategy that changes domain models must constrain the
problem, for instance, by reference to a meta-theory of the domain
or by induction using multiple examples, subjects well beyond the
current scope of our research.

The inability to handle such assumptions has practical consequences
because some of our current event models are not in fact complete.
In particular, the current faulting and dike-intrusion models
incompletely represent the effects of splitting rock-units and
boundaries into pieces. This is primarily because we have found it
difficult to represent declaratively the complete range of
topological and geometrical changes that occur as a result of
splitting objects. One consequence is that the debugger does not
suggest repairs that would be reasonable had it access to the
geologic knowledge currently encoded by the tester's more complete,
but procedural, diagrammatic models.

In conclusion, our theory of debugging provides a very robust
framework for repairing bugs in plans and interpretations. The
debugger is nearly complete, and with simple implementation
changes can be guaranteed to terminate when a solution exists. Just
as important, it provides good coverage of the common types of
faulty assumptions, and is easily extended to handle assumptions
not currently made explicitly by GORDIUS. A subject for future work
is to examine how well the theory extends to debugging in other
tasks, such as design or diagnosis, that have different underlying
models of causality, hypothesis construction, and the problem-
solving task.

- 123 -

5. Experiments

GORDIUS has been tested in four different domains — our primary
domain of geologic interpretation, simple blocks-world planning
problems, Tower of Hanoi problems, and diagnosis of manufacturing
faults in semiconductor fabrication [Mohammed & Simmons].

5.1 Geologic Interpretation

We have used GORDIUS to solve approximately two dozen geologic
interpretation problems. Most were solved correctly by the
generator, using the library of 15 scenarios in Appendix A. A
representative sample of these problems is presented in Figure 46,
which shows the goal diagram and the (linearized) solution
generated for each problem.

Figure 47 presents statistics of GORDIUS' behavior for the examples
of Figure 46. The statistics include 1) the number of goal
statements in each problem, 2) the total number of scenarios
matched (a measure of the potential size of the search space), 3) the
number of hypotheses suggested (equivalent to the number of nodes
expanded in the search tree), 4) the number of those hypotheses
actually pursued, and 5) the length of the solution path (indicating
the number of scenarios needed to account for all the problem's
goals). Also presented are timing statistics for the generator and
tester.

The "efficiency" statistic (the ratio of hypotheses pursued to
solution path length) indicates how well the generator avoids
backtracking. This statistic indicates that the generator pursues
relatively few false paths, but that it is not perfect. Even so, the
generator is very efficient — the time spent searching for a solution
is typically only a third of the time spent matching scenarios! and is
only a fraction of the time spent needed to test the generated
hypothesis.

One notable exception to the efficiency of the generator is example
B, in which a rather large number of hypotheses are pursued. This
happens because one of the first scenarios instantiated ("Intrusion-
To-Surface") turns out to be inconsistent. Since the generator

1 The time needed to match can be reduced significantly using parallel processing.

- 124 -

1HH

v vv v

..... \
............
Ry 111 TR
IV 5313 URICEDISN
* LR

At '3

.......
..........
.....
......

e

(S, - /S B\ B abwOwN = NoOOhs~EON = OO wWN =

AL OO =

-

OWO~NOOH~WN—

. Deposition1(Rock1, Shale)

. Batholithic-Intrusion2(Rock2, Granite)
. Uplift3(Uamount1)

. Faulting4(Fault1)

. Dike-Intrusion5(lgn1, Mafic-igneous)
. Erosion8(Elevelt)

. Deposition1{Rock1, Sandstone)

. Deposition2(Rock2, Shale)

. Uplift3(Uamount1)

. Tilt4(-5°)

. Faulting5(Fault1)

. Dike-Intrusion6(lgn1, Mafic-igneous)
. Erosion7(Elevelt)

. Deposition1(Rock1, Sandstone)

. Tilt2(8°)

. Batholithic-Intrusion3(Rock2, Granite)
. Dike-Intrusion4(lgn1, Mafic-igneous)
. Deposition5(Rock2, Shale)

. Deposition1{Rock1, Sandstone)

. Dike-Intrusion2(lgn1, Mafic-igneous)
. Deposition3(Rock2, Shale)

. Depositiond4(Rock3, Sandstone)

. Dike-Intrusion5(Ign2, Mafic-igneous)

Deposition1(Rock1, Shale)
Uplift2(Uamount1)
Dike-Intrusion3(lgn1, Malfic-igneous)
Reverse-Faulting4(Fault1)
Erosion5(Elevel1)

Deposition1(Rock1, Sandstone)
Batholithic-Intrusion2(Rock2, Granite)
Dike-Intrusion3(Ign1, Mafic-igneous)
Deposition4(Rock3, Shale)
Deposition5(Rock4, Sandstone)
Deposition6(Rock5, Shale)

Faulting7 (Fault1)

Uplift8(Uamount1)
Dike-Intrusion9(ign2, Mafic-igneous)
Erosion10(Elevel1)

. Deposition1(SS1, Sandstone)
. Tilt1(9°)
3.

Deposition2(SH1, Shale)

Figure 46. Sample of Geologic Interpretation Problems Solved by GORDIUS Generator

125 -

a b owON -

N o

Examples A B C D E F G

Goal Statements in Problem 56 56 40 89 50 147 10
Scenarios Matched 28 28 29 64 29 108 3
Hypotheses Suggested by Generator 30 58 41 72 37 38 3
Hypotheses Pursued 16 42 8 15 13 29 2
Solution Path Length 13 13 7 13 9 27 2
Efficiency (Ratio of 4 to 5) 1.2 3.8 1.1 1.2 1.4 1.1 1.0

. Effort (Ratio of 3 to 1) 0.5 1.0 1.0 0.8 0.7 0.3 0.3
. Time Used by Generator (Min:Sec) :19 126 120 153 120 2:29 :04
8a. Pattern Matching Time (14 (14 14 147 14 1:46 :03
8b. Scenario Instantiation Time :05 12 :06 106 106 143 101

. Time Used by Tester (Min:Sec) 2:54 3:40 1:10 1:27 1:38 5:49 :28

9a. Causal Simulation Time 1:18 1:41 141 126 140 2:43 17
9b. Diagrammatic Simulation Time 1:36 1:59 29 1:01 :58 3:06 11

Figure 47. Statistics for Generating the Geologic Interpretations of Figure 46

A wWwN -

10.
11.

Examples H | J K Lt

Total Number of Bugs 1 2 10 1 2
Changeable Assumptions 7 15 95 5 18
Repairs Suggested by Debugger 3 7 16 5 10
Hypotheses Pursued 1 1 6 1 2
Solution Path Length 1 1 6 1 2

. Efficiency (Ratio of 4 to 5) 1.0 1.0 1.0 1.0 1.0
Effort (Ratio of 3 to 1) 3.0 3.5 1.6 5.0 5.0

. Time to Generate Initial Hypothesis (Min:Sec):18 12 N.A.* 127 17
. Time to Test Initial Hypothesis :34 1:35 N.A* 2:46 140
Time to Debug Hypothesis 2:17 142 2:32 1:08 3:20
Time to Retest Debugged Hypothesis 2:36 1:29 129 2:51 N.A.t

* Not applicable — the example was run without using the generator.
1 Did not run to completion (see Section 5.1.4); statistics are for part that ran.

Figure 48. Statistics for Debugging the Geologic Problems of Figure 49

- 126 -

Goal Di Initial, G ted H ! Del | Soluti
1. Deposition1(ROCK1, Shale)

ey

. Deposition1(ROCK1, Shale)

?Jf 2. Batholithic-Intrusion1 2. Batholithic-Intrusion1
(ROCK2, Granite) (ROCK2, Granite)
H. 3. Faulting1(Fault1) 3. Uplift1(Uamount1)
4. Dike-Intrusion1(DIKE1, 4. Faulting1(Fault1)
INTBOUND, Mafic-lgneous) 5. Dike-Intrusion1(DIKE1,
5. Erosion1(EROBOUND, Elevel1) INTBOUND, Mafic-lgneous)

6. Erosion1(EROBOUND, Elevell)

. Deposition1(SS1, Sandstone) 1. Deposition1(SS1, Sandstone)
l. . Tilt1(12°) 2. Tilt1(7°)
3. Deposition2(SH1, Shale) 3. Deposition2(SH1, Shale)
. Tilt2(5°) 4. Tilt2(5°)
(example run without 1. Deposition1(SS1, Sandstone)
J. using generator) 2. Tilt1(9°)
3. Deposition2(SH1, Shale)

1. Deposition1(ROCK1, Shale) 1. Deposition1(ROCK1, Shale)

2. Batholithic-Intrusion1 2. Batholithic-Intrusion1
(ROCK2, Granite) (ROCK2, Granite)
K. 3. Uplift1 (Uamount1) 3. Uplifti(Uamount1)
4. Dike-Intrusion1(DIKE1, 4. Faulting1(Fault1)
INTBOUND, Mafic-Igneous) 5. Dike-Intrusion1(DIKE1,
5. Faulting1(Fault1) INTBOUND, Mafic-lgneous)
6. Erosion1(EROBOUND, Elevell) 6. Erosion1(EROBOUND, Elevel1)

1. Deposition1(ROCK1, Sandstone)1. Deposition1(ROCK1, Sandstone)

(8S1, SS2, and SS3 2. Dike-Intrusion1(G1, Granite)
L. are pieces of ROCK1) 3. Dike-Intrusion2
2. Dike-Intrusion1(G1, Granite) (Mi1, Mafic-lgneous)

3. Dike-Intrusion2
(M1, Mafic-lgneous)

Uplift1{(Uamount1)
Erosioni(Elevell)
Subsidence1(Samountt)
Deposition2(ROCK2, Sandstone)

N O N

Figure 49. Sample Interpretation Problems Debugged by GORDIUS

currently uses chronological backtracking, GORDIUS explores many
intermediate hypotheses before it gets back on the solution path.
Once the generator is on the correct solution path, however, it finds
a solution in short order. In fact, by changing the order in which the
goals are examined, the generator can solve example B by pursuing
only 14 hypotheses, rather than 42.

- 127 -

The "effort" statistic (Figure 47, #7) indicates the average number
of nodes searched to achieve each goal. For the generator, the
"effort" per goal is typically less than one because each scenario
can account for multiple goals — our geologic scenarios, for
instance, the average six goals per scenario. Achieving multiple
goals at each search step is particularly effective when contrasted
with the alternative — for geologic interpretation problems, a
generator that achieved one goal at a time would suggest an average
of four hypotheses per goal (the average number of scenarios that
match each goal).

A similar analysis can be made for the behavior of the debugger.
Figure 48 presents the debugger's behavior for five interpretation
problems (shown in Figure 49), using statistics analogous to those
given for the generator. Note that example J is the same as example
G in Figure 46 — the difference is that in J, GORDIUS solves the
problem with the debugger alone (i.e., the generator's scenario
library is empty).

The "efficiency" statistic indicates that the debugger's search is
very focused for the problems examined, consistently choosing the
correct hypothesis to pursue next. The hill-climbing strategy is
successful in these geologic problems because the plausible
interpretations are usually those where an event achieves a goal
directly. This contrasts with Tower of Hanoi problems and some
blocks-world problems, in which the correct solution often involves
deliberately undoing previously achieved goals. In those cases the
debugger does in fact explore false search paths.

Interestingly, the debugger's search is even more focused than the
generator's. This is largely because the debugger, by analyzing
interactions between events, finds potential inconsistencies sooner
than does the generator. This analysis, however, is expensive — the
statistics show that the generator, which uses only simple
consistency checks, is about an order of magnitude faster per
hypothesis suggested. Overall, the generator's strategy of not
reasoning about potential interactions seems to be cost-effective,
even given that it sometimes results in searching false paths.

The "effort" statistic reveals another dimension along which the
generator solves problems more efficiently than the debugger — it
suggests far fewer hypotheses per goal. For example, the debugger
proposes over five times as many hypotheses in solving the same

- 128 -

problem (examples G in Figure 46 and J in Figure 49). This
comparison reflects the efficacy of trying to achieve multiple goals
at once. It also argues for using scenarios that encapsulate
interactions — many of the repairs suggested by the debugger to
achieve one goal interact badly with the rest of the goals. By using
encapsulations, GORDIUS can avoid suggesting and evaluating such
hypotheses.

The following four sub-sections describe how GORDIUS debugs the
problems of I-L in Figure 49 (example H is presented in Section 4.1).
The examples were chosen to highlight the capabilities of the
GORDIUS debugger, and are intended to show how our theory of
debugging can handle seemingly diverse types of bugs and their
manifestations.

5.1.1 Double Tilt Example

Figure 50 presents an interpretation problem in which the two
sedimentary formations are oriented at different angles. This
example was chosen to illustrate the applicability of many of our
bug repair strategies. In particular, it demonstrates the utility of
the parameter-binding repair strategy (Section 4.2.2.3).

B. Initial Hypothesis G l

Deposition1(SS1, Sandstone)
Tilt1(12°)

Deposition2(SH1, Shale)
Tilt2(5°)

HON =

Figure 50. Two Formations with Different Orientations

The generator begins interpreting the diagram by using the
"sedimentary-over-rock” scenario (which indicates that an overlying
sedimentary formation is younger) to hypothesize that a
Deposition1 event created SH1 after a Rock-Creation2 event
formed SS1. To interpret the orientations of SS1 and B2, the
generator uses the "tilted-sedimentary"” scenario (which indicates
that a sedimentary formation oriented at an angle 6 was formed by
deposition followed by a tilt of 8). The generator uses this scenario
a second time to interpret the orientations of SH1 and B1; it then
unifies the hypothesized Deposition2 event with Rock-Creation2

- 129 -

since both events purport to create SH1. Combining all the
constraints (and linearizing the events), the generator produces the
initial hypothesis in Figure 50b.

Two bugs are detected in testing the hypothesis — the predicted
orientations of both §$§S1 and B2 are 17°, while their desired
orientations in the goal diagram are 12°. The debugger first
considers the bug that the orientation of SS1 is not 12°. To locate
its underlying assumptions, the debugger traces back through the
dependencies in Figure 51 and regresses through them the desired
value of 12°.

Predicted Value Desired Value
SS1.orientation@Plan-end = 17 [SS1.orientation@Plan-end = 12 1

SS1.orientation@Plan-end

SS1.orientation@Ti{|§2.end

Persistence(im .orientation, Tilt2.end, anend)

Exists-at(SS1, Tilt2.start)
4

| Ti2end<Plan-end | | CWA(SS1.orientation, Tilt2.end, Plan-end) |

CWA-exists
(SS1, Tilt2.start)

Change(+, SS1.orientation, Theta2, Tilt2) SS1.0rien t|on@T'It2 start+Thetaz

Occurs(Tilt, Tilt2) SS1 onenmtlon@TultZ start hetaK(Search pruned here)
[Parameter-of(Tilt2, Theta, Theta?) |
SS1. onentatlon@Tlln end

4
Pemlstence(SS1 .orientation, Tilt1.end, Tilt2.start)
Exists-at(SS1 , Tilt1.start)

| T1|t1.end<T|It2.start |

CWA-exists
(SS1, Tilt1.start) | CWA(SS1.orientation, Tilt1.end, Til2.start) |

Change(+, SS1.orientation, Thetai, Tilt1) ~ SS1.orientation@Tilt1.start + Thetai

- heta
Occurs(Tilt, Tiltt) SS1.1orientation@T|It1 start \

| Parameter-of(Tiltt, Theta, Thetat) |

Created(Deposition1, Rock, SS1) SS1.orientation@Deposition1.end

Persistence(SS1.orientation, Deposition1.end, Tilt1.start)

Change(=, Ttorientation, 0°, Deposition1)

| Deposition1.end<Tilt1.start]

[Oceurs(Deposition, Deposiiont) | [CWA(SS1.orientation, Depositoni.end, Tit1 sar) |

Figure 51. Causal Dependency Structure for Bug that the Orientation of $S1 is not 12°

- 130 -

While regressing values, the debugger uses its pruning methods to
determine which nodes need not be pursued. One pruning method is
applicable at the node Theta2 in Figure 51 — the regression
indicates that the desired value of Theta2 is 0° which is
inconsistent a the constraint of the Tilt event that its parameter is
non-zero (see Appendix B). Thus, dependency tracing is halted at the
node Theta2, and the assumptions labeled Parameter-of(Tilt2,
Theta, Theta2) and 5° are never considered by the debugger.

Of the remaining 15 assumptions located by tracing dependencies
back to leaf nodes, four are ignored by the debugger because they are
considered to be unchangeable — SS1.orientation@Plan-end=12°
because it is a goal statement, the values 12° and 0° because they
are constants, and the ordering Tilt2.end < Plan-end because
hypothesized events are constrained to occur before Plan-end.2

For the three CWA assumptions, the debugger proposes the same
repair of adding a new tilt event of -5° between the start and end of
the persistence interval. The repairs, however, are rated differently
by the evaluation heuristic. Adding a tilt event between Tilt2.end
and Plan-end repairs both bugs in the initial hypothesis but also
introduces two new bugs — the orientations of SH1 and B1 are now
zero, not 5°. Adding the tilt between Depositioni.end and
Tilt1.start is considered a solution since it repairs all bugs
without introducing new ones. Adding the tilt between Tilt1 and
Tilt2 produces a non-linear hypothesis where the new tilt and
Deposition2 are unordered. This repair is also regarded as a
solution since one of the possible linearizations (where the new tilt
precedes Deposition2) achieves all the goals.

The parameter-binding repair strategy proposes replacing the
assumption Parameter-of(Tilt1, Theta, Thetal) with the
assumption that the Theta parameter is Theta3, together with the
constraint that Theta3 equals 7°. This constraint is determined by
the regression, which indicates that the desired value of the Theta
parameter is the difference between the desired value of
SS1.orientation@Tilt1.start + Thetal (7°) and the predicted
value of SS1.orientation@Tilt1.start (0°). The evaluation

2 Another four changeable assumptions are located by tracing through the dependency
structure that explains why the predicted orientation of B2 is 17°.

- 131 -

heuristic determines that this repair is a solution, achieving all the
goals of the problem.

For the Occurs(Tilt, Tilt2) assumption, deleting the event fixes
the bug, since without Tilt2 the orientation of SS1 would be 12°.
This repair is not a complete solution, however, since it introduces
the same two new bugs as above. For the other two Occurs
assumptions, deleting the event is not an applicable strategy, since
it does not repair the bug. For all three assumptions, replacing
events is also not applicable, since our geologic models do not
contain events that are similar enough to tilting or deposition.

The two CWA-exists assumptions can both be replaced by
assumptions that an erosion event occurred that destroyed the SS1
formation. The evaluation heuristic rates these repairs poorly,
however, since they undo all the goals of the problem by destroying
all existing formations and boundaries. For the assumption
Tilt1.end < Tilt2.start, the reordering strategy does not succeed
because the predicted value of SS1.orientation@Tilt1.start (0°)
does not equal its desired value at Tilt2.start (12°); similarly for
the assumption Depositioni.end < Tilt1.start.

In sum, the debugger proposes seven potential repairs for this
problem, of which three are considered solutions. Of the three
solutions, the evaluation heuristic prefers the one in which the
parameter of Tilt1 is altered, since this produces an hypothesis
with fewer events than the other two, both of which add new tilt
events.

5.1.2 Double Deposition Example

This problem (Figure 52) is similar to that of the previous section,
except that only one tilt event is needed to interpret the region.
This example helps demonstrate both the efficiency of the generator
and the robustness of the debugger. We ran the problem once using
the full set of scenarios and once with no scenarios, forcing the
debugger to solve the problem completely from scratch.

The generator solves the problem (Figure 52b) in essentially the
same manner as described in Section 5.1.1, except that only one
"tilted-sedimentary” scenario is used. The debugger's search for a
solution is a bit lengthier. In fact, this is one of the more
complicated geologic problems given to our current debugger — 10

- 132 -

unachieved goals (Figure 52c), a total of 95 assumptions examined,
and 16 repairs proposed.

ENVIRONMENT
81

SH1

Composition(SS1, Sandstone, Plan-end)
Composition(SH1, Shale, Plan-end)
Orientation(SS1, 9°, Plan-end)
Orientation(SH1, 0°, Plan-end)
Abuts(SS1, B2, Plan-end)

Abuts(SH1, B2, Plan-end)
Orientation(B2, 9°, Plan-end)
Abuts(Environment, B1, Plan-end)
Abuts(SH1, B1, Plan-end)
Orientation(B1, 0°, Plan-end)

—

. Deposition1(SS1, Sandstone)
2. Tilt1(9°)
3. Deposition2(SH1, Shale)

4
-
CPR® N RO =

Figure 52. Solving a Geologic Interpretation Problem Using the Debugger Alone

The debugger determines how the first goal proposition could have
been achieved by hypothesizing that deposition of sandstone created
S§S1. The second goal likewise can be achieved by a deposition event
creating SH1 with shale composition. This produces a non-linear
hypothesis, with the two deposition events unordered. The
evaluation heuristic determines that both linearizations achieve the
same goals — the two composition goals as well as the goal that the
orientation of SH1 is zero. The debugger fortuitously chooses to
pursue the linearization where SS1 is deposited first.

The next bug (unachieved goal) examined is that the orientation of
SS1 is zero, not 9°. A tilt event of 9° is proposed, that occurs
sometime after the deposition of sandstone but unordered with
respect to the shale deposition event. The debugger pursues the
linearization where tilt precedes shale deposition, since the
evaluation heuristic prefers it over the alternative ordering which
introduces the new bug that the orientation of SH1 is 9°, not 0°.

The debugger next tries to account for why SS1 abuts B2. It makes
five different suggestions: 1) B2 is an erosional boundary and SS1
was eroded, 2) B2 is the lower depositional boundary of the
sandstone formation, 3) B2 is the upper boundary of the sandstone
formation (the one abutting the environment after deposition),
4) B2 is the lower depositional boundary of the shale formation, and
5) B2 is a depositional boundary, formed by yet a third deposition

- 133 -

event. The evaluation heuristic prefers the fourth hypothesis since
that one also accounts for why SH1 abuts B2, and why B2 is
oriented at 9°.

The next unachieved goal is Abuts(Environment, B1, Plan-end).
The debugger proposes four repairs similar to those above: 1) B1
is an erosional boundary, 2) B1 is the upper boundary of the
sandstone formation, 3) B1 is the upper boundary of the shale
formation, and 4) B1 is the upper boundary created by another
deposition. The evaluation heuristic estimates that both the first
and third repairs completely solve the problem, but #3 is preferred
since it results in an hypothesis with fewer events. This
hypothesis, which is the same as the one produced by the generator
(Figure 52b), is then tested and found to be satisfactory.

In comparing the statistics for the generator and debugger (example
G in Figure 47, and example J in Figure 48) we find that the
generator produces a solution almost 40 times faster than the
debugger. This can be attributed to two aspects of the GTD
paradigm: 1) while each debugging step typically achieves just one
goal, a single scenario can interpret multiple goals, and 2) the
computational complexity of each debugging step is exponential,
versus polynomial for the cost of instantiating a scenario. While in
this example neither the generator nor the debugger deviates from
the solution path, the debugger takes more steps (6 versus 2) and
each is more expensive.

To explore the sensitivity of the debugger to perturbations in the
input data, we ran the same example (with no scenarios in the
library) except that we changed the orientation of the shale in the
goal diagram from 0° to 9°, the same as the sandstone's. Somewhat
surprisingly, the debugger proposes the same set of 16 repairs for
both examples. The only difference is the way the evaluation
heuristic rates the repairs.

This difference in ratings causes the debugger to pursue different
hypotheses at two choice points. The first is when the tilt event is
proposed — the debugger prefers the linearization where tilt follows
the shale deposition, since this achieves the orientation goals for
both SS1 and SH1. The second difference is the choice at the very
last step — the debugger prefers the proposal that B1 is an erosional
boundary since assuming that it is the upper depositional boundary
of SH1 implies that its orientation must be tilted at 9°. Thus, the

- 134 -

debugger proposes the following hypothesis, which the tester
verifies is indeed a valid solution:3

1. Deposition1(SS1, Sandstone)

2. Deposition2(SH1, Shale)

3. Tilt1(9°)

4. Erosion1(B1)

5.1.3 Extended Window Example With Incorrect Linearization

This section describes how the debugger can handle cases in which
some linearizations of an hypothesis are not actually solutions and
an incorrect ordering is chosen. In addition, this section and the
next both illustrate how GORDIUS can handle bugs in which the goal
and simulation diagrams differ topologically. This section
illustrates how topological bugs can be repaired by replacing a
temporal-ordering assumption; Section 5.1.4 illustrates replacing
CWA-exists assumptions to fix topological bugs.

A Goal Di B. Linearized. B Hypothesi

x 4
X 7
X 7
X 7 £
X -

=

Deposition1(ROCK1, Shale)
Batholithic-Intrusion2(ROCK2, Granite)
Uplift1(Uamount1)
Dike-Intrusion1(DIKE1, INTBOUND,
Mafic-Igneous)

hwn~

5. Faulting1(FAULT1)
6. Erosion1(EROBOUND, Elevel1)

Figure 53. Incorrect Linearization Produces a Bug

The diagram of Figure 53a is similar to the example in Sections 2.1,
3.1 and 4.1, except that the bottom of the goal diagram window is
deeper. Using the complete set of geologic scenarios (Appendix A),
the initial hypothesis produced by the generator is:

3 Uplift is not needed before the erosion since the tilt event is sufficient to raise the
surface above sea-level.

- 135 -

Deposition1(ROCK1, Shale)

Batholithic-Intrusion2(ROCK2, Granite)

Uplift1(Uamount1)
Faulting1(FAULT1) Dike-Intrusion1(DIKE1, INTBOUND, Mafic-lgneous)

Erosion1(EROBOUND, Elevel1)
To get a buggy hypothesis, we force the tester to choose a
linearization in which Dike-Intrusion1 precedes Faulting1
(Figure 53b). In testing this hypothesis, the diagram matcher
detects the bug that an extra piece of mafic-igneous appears within
the window of the goal diagram (IGN2 in Figure 53c).

Exists-at(IGN2, Plan-end)

IGN2.start < Plan-end Plan-end < IGN2.end
IGN2start = Faultingl.end | Faulting1.end <Plan-end | | CWA-Exists(IGN2, Plan-end) |
Created(Faulting1, $b, IGN2)

Spatially-Intersects

| Occurs(Faulting, Faulting1) | Exists-at(DIKE1, Faulting1.start) (DIKE1, FAULT1, Faulting start)

ﬁgtart < Faulting1 .‘s< Faulting1.start < DIKE 1.end
DIKE1.start = Dike-Intrusiont.start Dike-intrusion1.start < [CWA-Exists(DIKE1, Faulting1.start) 1

Faulting1.start

Created(Dike-Intrusiont, Dike, DIKE 1) 1 \

T Dike-Intrusion1.start < Dike-Intrusion1.end <
Dike-Intrusion1.end Faulting1.start

[Occurs(Dike-Intrusion, Dike-Intrusion1) |

Figure 54. Dependency Structure for the Bug that IGN2 is an Extra Piece

The debugger examines all the assumptions in the dependency
structure for this bug (Figure 54), except for two that are
considered to be unchangeable (Dike-Intrusioni.start < Dike-
Intrusioni.end and Faultingi.end < Plan-end). For the two
Occurs assumptions, the debugger suggests deleting the faulting
and dike-intrusion events. For the two CWA-exists assumptions,
the debugger suggests adding an erosion event, together with the

- 136 -

constraint that enough erosion occurs to destroy the existing object
(IGN2 or DIKE1).

The assumption Dike-Intrusioni.end < Faultingl.start is the
one added by the tester in order to linearize the hypothesis. The
debugger proposes reordering the events so that faulting occurs
before intrusion, which ensures that IGN2 will not be created (i.e.,
DIKE1 will not be split) since DIKE1 will not exist at the time of
the faulting.

The evaluation heuristic determines that this last modification is
the only one that does not introduce any additional bugs. GORDIUS
reorders the faulting and dike-intrusion events and tests the
modified hypothesis. In this case, the simulation diagram does not
contain any extra pieces of rock, so the hypothesis is accepted as a
solution.

5.1.4 Double Intrusion Example

This interpretation problem (Figure 55) is an example where the a
priori most plausible interpretation of a scenario pattern is not the
correct one, due to unanticipated interactions between events. The
problem also provides another instance of how the debugger can
repair topological bugs.

) (8S1, SS2 and SS3 are
pieces of ROCK1)
2. Dike-Intrusion1(G1, Granite)
3. Dike-Intrusion2
(MI1, Mafic-Igneous)

Figure 55. Unencapsulated Interactions in the Scenarios Produce a Buggy Hypothesis

The generator uses the "intrudes-through" scenario (R1[IGN|R2) to
hypothesize that a Rock-Creation1 event created formation
ROCK1, followed by the Dike-Intrusion1 event that intruded G 1
through ROCKH1, splitting it into pieces SS2 and SS3. Applying the
scenario again, GORDIUS hypothesizes that Rock-Creation2 created
ROCK2, followed by Dike-Intrusion2, which intruded MI1 and
split ROCK2 into SS2 and SS1. Since both ROCK1 and ROCK2
contain the same piece (§S2), the unifier concludes that they are

- 137 -

the same formation anc), therefore, the two rock-creation events are
really the same event.

Next, the generator hypothesizes that Dike-Intrusion1 preceded
Dike-Intrusion2 using the "non-conformable-boundary" scenario

(_——R2R|1 =3 Whose local interpretation indicates that R1 is younger

than both R2 and R3. Finally, three applications of the
"sedimentary-no-tilt" scenario are used to specialize the Rock-
Creation to be a Deposition event.

Upon testing the initial hypothesis, the diagram matcher discovers
that G2 and SS4 are two extra pieces in the simulation diagram
(Figure 55).4 The error stems from the fact that in reality SS2 and
SS1 are not part of the same formation. While the generator relied
on the presumption that the "intrudes-through" scenario provides the
most plausible explanation for an igneous rock appearing between
two rock-units of the same type, in this case it is merely
coincidental that SS2 and SS1 are the same type.

The unencapsulated interaction in this example is that the splitting
of the sandstone and granite formations by MI1 are coupled — one
cannot happen without the other. For the generator to handle this
example correctly, a scenario should be added whose pattern is

—==—and whose local interpretation indicates that R2, R3 and R4

"R2 | R3
are created by different events. With this scenario, the generator

would produce the plausible solution:

. Deposition1(ROCK1, Sandstone) — SS2 and SS3 are pieces of ROCK1
. Dike-Intrusion1(G1, Granite)

. Dike-Intrusion2(MI1, Mafic-Igneous)

. Uplifti(Uamount1) — above sea-level

. Erosion1(Elevel1) — down to the top of MI1
Subsidence1(Samount1) — below sea-level

Deposition2(ROCK2, Sandstone) — SS1 is a piece of ROCK2

NoOoOOh~_wWN =

In the current case, the debugger tries to handle the problem that G2
and SS4 are extra pieces. Unfortunately, as described below, our
current implementation only partly solves the problem. The
debugger first proposes repairs to the bug that G2 is an extra piece.
The most promising modification is to replace the closed-world
assumption that G2 continues to exist at Plan-end by adding an

4 Although it is equally likely that SS1 is the extra piece, in this case the choice does not
matter.

- 138 -

erosion event to destroy it. This introduces the bug that the erosion
event cannot occur because its preconditions are not met. The
debugger handles this case analogously to Section 4.1, proposing to
add either an uplift or tilt event, but preferring to add uplift since it
introduces no new bugs.

At this point, the evaluation heuristic estimates that the modified
hypothesis solves the problem and it is sent to the tester. Actually,
the evaluation heuristic determines that none of the goals are
unachieved. It does not know for sure that all are in fact achieved,
since from our causal models alone it cannot be determined whether
the erosion will destroy SS3 as well as G2.

In testing the hypothesis, in particular while determining parameter
values for the diagrammatic simulation, the Quantity Lattice
detects an inconsistency in the value of Elevel1 (the level of
erosion). The inconsistency occurs because the debugger constrains
Elevell to be less than the height of the bottom of G2 (to destroy
it), while the model of erosion constrains Elevel1 to equal the
height of the Earth's surface after erosion. The measured heights in
the goal diagram of G2 and the Earth's surface are inconsistent with
these two constraints.

Given this bug manifestation, we would expect the debugger to
analyze the bug's causal explanation to propose repairs.
Unfortunately, as mentioned, GORDIUS fails to solve this example
completely. In our current implementation the Quantity Lattice is
not fully integrated with the rest of the system. Inconsistencies
detected by the Quantity Lattice are not reported to the debugger,
preventing GORDIUS from solving the problem.

While the problem in this case is an implementation failure, not a
theory failure, it points up several requirements for systems, such
as ours, that consist of several specialized representations. First,
there needs to be a general method for handling inconsistencies. In
our current implementation, each representation detects and handles
inconsistencies independently; there is no general method for
invoking the debugger when an inconsistency is found. Second,
dependencies need to be represented in a consistent and unified
manner. In our current implementation, some dependencies are
actually computed post hoc when needed by the debugger. This
strategy is not general enough in cases where the dependencies are
needed in unforeseen circumstances, as in this example. We

- 139 -

anticipate that a re-implementation of GORDIUS along these lines
would be able to completely solve this example.

5.2 Blocks World Planning

In addition to geologic interpretation, we have tested GORDIUS using
simple blocks-worid planning problems. This domain is well studied
in Al, and can serve as a testbed to compare our techniques with
other problem-solving methods. In particular, we have found that
GORDIUS compares favorably with other domain independent planners
(e.g., [Sacerdoti], [Wilkins], [Chapman], [Vere]).

Figure 56 presents the initial states, goal states, and solutions
produced by GORDIUS for the 6 blocks-world problems in [Sacerdoti].
To approximate the capabilities of NOAH, we had GORDIUS solve the
problems without using any scenarios. Thus, the generator always
produced the null hypothesis, and the bugs passed to the debugger
were all goals not already achieved in the initial state.

Goal States Solutions

. Puton-Table1(B, Table1)
. Puton2(A, B)

Initial States
: A
Table1
A 1. Puton-Table1(C, Table1)
B. I (5] 2 2. Puton2(B, C)
Tablet
I I
Al [8]
Tabie1
ol
Table1

=[]
N —

— 3. Puton3(A, B)

- 1. Puton-Table1(D, Table1)
C. o 2. Puton2(C, D)
o] 3. Puton3(B, C)
Tablr 4. Puton4(A, B)

; 1. Puton-Table1(A, Table1)
D. o 2. Puton2(B, C)
Table? 3. Puton3(A, B)

‘E‘ [E{ 1. Puton-Table1(D, Tablet)
E A 8 A 8 2. Puton2(C, B)
Tablet Tabiet 3. Puton3(D, A)

-

Puton1(B, A)

F. X T[:l ﬁ:l E 2: Puton2(C, B)

Tabie1

Figure 56. Sample of Blocks-World Planning Problems Solved by GORDIUS Debugger
(from [Sacerdoti])

- 140 -

Examples A B Cc D E F
1. Goal Statements 1 3 4 3 2 2
2. Changeable Assumptions 3 6 22 9 7 8
3. Repairs Suggested 3 6 16 7 7 6
4. Hypotheses Pursued 2 3 4 4 3 2
5. Solution Path Length 2 3 4 3 3 2
6. Efficiency (Ratio of 4 to 5) 1.0 1.0 1.0 1.3 1.0 1.0
7. Effort (Ratio of 3 to 1) 3.0 2.0 4.0 2.3 3.5 3.0
8. Time To Construct Hyp. (Min:Sec) :05 1:23 5:06 :32 28 117
9. Time To Test Hypothesis :03 :05 109 :05 04 :03

Figure 57. Statistics for Blocks-World Problems of Figure 56

Figure 57 presents the problem-solving statistics for these
examples. The numbers are similar to those produced by the
debugger in the geologic domain (Figure 48). In both domains, the
"effort" expended averages about 3 repairs suggested for each goal
achieved. This is somewhat surprising, as it was expected that
more repairs would be suggested in the geologic domain, since each
bug has more underlying assumptions (averaging about 9 versus 4 for
the blocks-world domain) and there are more ways to affect
geologic objects (the geologic domain has more types of events with
many more effects per effect than does the blocks-world).

It turns out that the "effort" statistic is similar in both domains
because in the geologic domain the repair strategies are applicable
for a much smaller percentage of the underlying assumptions — 24%
versus 82% in the blocks-world. In particular, fewer of the geologic
event-occurrence and temporal-ordering assumptions can be
replaced (by deleting and reordering events, respectively). The
difference is because in the geologic domain bugs usually arise
because a goal was never achieved in the first place, while in the
blocks-world a bug is often caused by one event interfering with the
positive effects of another event. Thus, deleting and reordering
events are more applicable in the blocks-world because they
eliminate the interference. This also suggests a debugging heuristic
for the geologic domain — examine event-occurrence and temporal-
ordering assumptions last.

The "efficiency"” of the debugger in avoiding false paths is similar
for both domains as well. Both domains exhibit nearly linear search

- 141 -

behavior — GORDIUS deviates from the correct solution path in only
one blocks-world problem, and in that case it pursues only one extra
hypothesis. The false path is pursued because the correct solution
involves undoing an already achieved goal and the debugger's
goodness metric prefers hypotheses that minimize the number of
unachieved goals.

Example C is somewhat of an anomaly, since it takes over five
minutes to achieve only four goals. The problem is that the debugger
evaluates several non-linear hypotheses in solving this example.
Thus, a long run-time is to be expected since the evaluation is
exponential for non-linear hypotheses. We believe, however, that
the poor performance in this particular case reflects an as-yet-
undiscovered bug in our implementation, since other problems in
which non-linear hypotheses are evaluated (e.g., B and D) do not take
nearly so long.

Although it is uncertain whether the good performance in solving
blocks-world problems stems from the efficacy of our goodness
metric or the simplicity of the domain, it is encouraging at least
that our debugger alone can solve simple problems with some degree
of efficiency.

5.3 Tower of Hanoi Problem

Tower of Hanoi problems were examined to confirm our expectations
that the debugger's search strategy would exhibit poor performance
in domains where the goals are very interdependent. This is the case
in the Tower of Hanoi domain, where moving a ring from one post to
another often interferes with the goal of moving other rings, and the
correct solution often involves undoing previously achieved goals.

We had GORDIUS solve two-ring and three-ring Tower of Hanoi
problems using the debugger alone (the causal models are presented
in Appendix C). Figure 58 presents statistics for these problems.
The effect of interference can be seen in both the efficiency and
effort statistics. The debugger explores many more false paths and
proposes more repairs for each goal (especially for the three-ring
problem) than in either the geologic or blocks-world domains.

As noted above, this can be attributed to the goodness metric used —
by preferring hypotheses with fewer unachieved goals the debugger

- 142 -

explores paths that seem to be leading towards a solution, but are in
fact dead ends. Even so, the focusing techniques of the debugger
(combined with the simple search metric) enable GORDIUS to solve
the problems exploring only a fraction of the possible search space.
For the two-ring problem, for instance, GORDIUS suggests only 10%
of the 84 possible plans of length 3 or less; for the three-ring
problem, fewer than 1% of the possible plans are explored.

Two Rings Three Rings
1. Goal Statements 2 3
2. Changeable Assumptions 9 52
3. Repairs Suggested 7 36
4. Hypotheses Pursued 5 24
5. Solution Path Length 3 7
6. Efficiency (Ratio of 4 to 5) 1.7 3.4
7. Effort (Ratio of 3 to 1) 3.5 12.0
8. Time To Construct Hypothesis (Min:Sec) 21 3:15
9. Time To Test Hypothesis :05 109

Figure 58. Statistics for the Tower of Hanoi Problems

5.4 Diagnosis in Semiconductor Fabrication Manufacturing

The semiconductor fabrication domain was explored primarily to
exercise the tester and debugger in another complex, real-world
domain. In our experiments, the tester's causal simulator was used
to simulate the creation of electronic components on a silicon wafer
(Figure 59). Simulation is complex in this domain both because of
the large number of events simulated (typically around fifty) and
because most events have several tens of effects that can
potentially change the state of the wafer. The complexity is evident
in the dependency structures produced — many have on the order of
500-1,000 nodes.

The diagnostic task we explored involved finding the parameters of
events that could plausibly account for inconsistencies between the
predicted and measured characteristics of some component (e.g., the
resistance of a resistor). The diagnostic algorithm described in
[Mohammed & Simmons] analyzes the dependency structures produced
by our causal simulator to find the parameter-binding assumptions
underlying a measurement's predicted value. The algorithm then

- 143 -

determines constraints on the value of the parameter that could
account for the measured value.

For example, possible causes for the resistance of resistor A in
Figure 59 being too high include 1) the duration of the epitaxial-
growth step was too short, and 2) the temperature of the diffusion
step was too high (both of which would cause layer SL1 to be
thinner than predicted, thus increasing resistance).

Figure 59. Simulation of the Manufacture of Two Resistors

Two minor modifications to the GORDIUS debugger are needed to
achieve the same diagnostic functionality as reported in [Mohammed
& Simmons]. First, the diagnostic algorithm considers only event
parameters as the source of manufacturing faults. To replicate this
behavior, we merely justify all assumptions other than parameter-
bindings with the belief given, since the debugger treats
assumptions with that degree of belief as unchangeable premises.

The second modification enhances the debugger's ability to do
regression by enabling it to regress constraints through
monotonically increasing and decreasing functions. The addition
was needed because many of our semiconductor event models include
user-defined functions which do not have associated definitions.
For example, the function Diff(Temperature, Duration)
represents the amount the thickness of a layer decreases due to
diffusion. The function's actual definition is very complicated, and
for most purposes it is sufficient to declare that Diff is
monotonically increasing in each of its arguments.

To determine the relationship between parameter values and the

measured characteristics of a component, the debugger needs to
regress constraints through such functions. For example, the

- 144 -

dependency structures encode that for layer SL1 (simplifying a bit):
SL1.thickness@Plan-end =
Epi(Temperature1, Duration1) - Diff(Temperature2, Duration2),

where the function Epi represents the amount of epitaxial-growth
and the function Diff is as described above. Algebraically solving
for parameter Temperature2 yields:
Diff-inversey(Epi(Temperature1, Duration1) - SL1.thickness@Plan-end,
Duration?2).

The system uses this constraint to determine the relationship
between the thickness of SL1 and Temperature2. First, it uses the
table in Figure 60a and the knowledge that Diff is monotonically
increasing in its first argument to infer that Diff-inversey is also

monotonically increasing in its first argument. Next, since it knows
that arithmetic difference is monotonically decreasing in its second
argument, it can use the table in Figure 60b to compose Diff-
inversey and difference (-) to infer that Temperature2 is a

monotonically decreasing function of the thickness of SL1. Thus, if
SL1 is too thick, it may be because Temperature2 was too low.

The ability to regress constraints through monotonic functions may
be useful in debugging as well. Although the regression always
produced sufficient symbolic constraints in the problems we
examined, there are likely to be problems where the direction in
which to change a parameter may provide sufficient information to
repair a bug. For example, if the bug is that a sedimentary formation
is too thick and the system knows only that its thickness is
proportional to the duration of deposition, it may be useful for the
debugger to propose decreasing the duration, even if it cannot
determine by how much.

A Eunctional D ! for | ting Funct B.D ! for C ing Functi
C = F(A, B) A = F-inversey(C, B)

F(M+, M+) F-inversey(M+, M-) F(M+) G(M+) = F(G(M+))
F(M+, M-) F-inversey(M+, M+) F(M+) G(M-) = F(G(M-))
F(M-, M+) F-inversey(M-, M+) F(M-) G(M+) = F(G(M-))
F(M-, M-) F-inversey (M-, M-) F(M-) G(M-) = F(G(M+))

F(M+, M-) indicates that the function's value is monotonically increasing with respect
to its first argument and decreasing with respect to its second argument.

Figure 60. Tables for Reasoning About Monotonic Functions

- 145 -

6. Combining Associational and Causal Reasoning

Our thesis is that the Generate, Test and Debug paradigm exhibits
both efficient and robust behavior through its combination of
associational and causal reasoning techniques. This chapter
explores the relationship between the reasoning techniques used and
describes how GTD takes advantage of the strengths of each
technique. We argue that the problem-solving characteristics of the
reasoning techniques depend largely on the extent to which they
represent and reason about interactions between events. We also
argue that the associational scenarios used by the generator are
heuristic abstractions of the causal models and reasoning
techniques used by the debugger, and we present the outline of an
algorithm for deriving scenarios from the results of debugging.

By our definition, associational reasoning solves problems by
associating features of the problem with their solution. In contrast,
causal reasoning solves problems by reasoning about the structure
and behavior of objects over time. Simply put, associational
reasoning solves problems by recognition, while causal reasoning
solves them by analysis.

In GTD, the generator achieves efficiency by composing the local
interpretations of scenarios without detailed checking for
interactions. This is a reasonable strategy under the presumption
that the scenarios are (nearly) independent of one another. The
presumption of composability implies that combining the solutions
to sub-problems produces an hypothesis that achieves all the goals
of the sub-problems. With totally independent scenarios, correct
solutions can be generated in time proportional to the number of
goals in the problem. As we argued in Section 2.3, using scenarios
that encapsulate common patterns of interaction helps ensure that
the presumption of composability will usually hold, so that simply
matching and composing scenarios will often generate correct
hypotheses.

However, in most complex domains, such as geology, no set of
totally independent associational rules can be developed, aside from
the trivial set of exactly one rule per problem (i.e., each pattern
comprises the complete goal and initial states, and the local
interpretation is a complete solution). By presuming composability,
then, the generator will produce incorrect hypotheses in cases
where some combination of scenarios does in fact interact. These

- 146 -

unexpected interactions are the source of much of the brittleness
typically observed in associational systems. Since associational
reasoning techniques do not handle interactions not explicitly
encoded in the rules, they do not know when the rules' range of
applicability has been exceeded.

Given the fact that scenarios are not totally independent, it might
seem desirable to check for unexpected interactions when composing
scenarios, since an unprofitable line of search may be terminated if
it can be shown that the scenarios interfere. Unfortunately,
checking for non-independence is computationally very expensive.
Thus, a cost/benefit tradeoff exists between the desire to prune the
search space as early as possible by detecting interference and the
expense of detection. Our response to this tradeoff is to test
validity only after a complete hypothesis is generated. To avoid
having the generator pursue obviously incorrect hypotheses,
however, methods are used to detect a limited class of inconsistent
hypotheses, such as those with temporal cycles. To maintain
efficiency, the generator's consistency checking methods are all
computationally inexpensive, at most quadratic with respect to the
number of hypothesized events.

Although the consistency checks used by the generator are able to
detect many inconsistent hypotheses, the generator does not detect
all potential interactions. In addition, the generator may fail in
situations where it does not have any scenario that matches one of
the problem's goals. In such cases, more robust reasoning
techniques are needed to fall back on.

The causal reasoning techniques used by our debugger fit this bill.
While the associational reasoning presumes that scenarios can be
composed independently, causal reasoning takes the opposite stance
by explicitly representing and reasoning about interactions. This is
accomplished using an explicit model of how the world works, one
which represents time, the effects of change, and the persistence of
objects over time. The causal reasoning techniques use their
knowledge of these models to analyze how hypothesized events
affect the state of the world.

For example, in an effort to avoid interference interactions, the
debugger reasons about how modifications to an hypothesis affect
already achieved goals. The debugger can also find novel ways to
achieve goals by finding cooperative interactions between events.

- 147 -

For example, by reasoning about the cumulative effect of changes,
the debugger can hypothesize that a sequence of tilt events, rather
than a single event, accounts for the orientation of a rock-unit. This
ability to reason about different types of interactions and to
discover interactions not encoded explicitly gives causal reasoning a
greater potential range of applicability than associational reasoning.

One downside of causal reasoning is its high computational cost. For
domain models, such as ours, that incorporate relative and
conditional effects, detecting interactions between events is in
general exponential in the number of events occurring [Chapman]. In
addition, because it reasons at a lower level of detail, the causal
reasoner tends to search larger, more richly connected, search
spaces than does the associational reasoner.

In short, the extent to which associational and causal reasoning deal
with interactions gives them nearly opposite characteristics —
efficient but brittle versus robust but slow. These differing
characteristics indicate that the reasoning techniques are best
suited for different aspects of the problem-solving task. The GTD
paradigm takes advantage of the different strengths of the
techniques to achieve an overall system that exhibits a high degree
of performance (efficiency) and competence (robustness).
Associational reasoning is used first under the presumption that the
scenarios are sufficiently independent to produce correct
hypotheses most of the time. Causal reasoning is reserved to focus
on those problems not handled correctly by the associational
reasoner. The presumption here is that the generated hypotheses are
nearly correct, so only a small amount of expensive causal reasoning
will be needed. Otherwise, if the initial hypothesis were far from a
solution, it might be less work to start from scratch than to modify
the hypothesis into a solution.

Although our analysis indicates that a GTD-type paradigm is best
implemented with an associational generator and causal debugger,
other choices are conceivable. Rather than using causal algorithms,
for example, the debugger can be associational, employing heuristics
that deal with the problem at a lower level of detail than do the
rules in the generator (e.g., [Murthy], [Marcus]). Alternatively, the
generator can use causal reasoning. In fact, the GORDIUS generator
does use some causal reasoning to unify events and to detect
inconsistencies, and the debugger uses some associational reasoning
to associate the attributes of objects with the change statements of

- 148 -

events that affect the attributes. Overall, however, the generator
and debugger rely on the use of associational and causal reasoning to
achieve a high degree of efficiency and robustness, respectively.

A presumption underlying our combination of associational and
causal reasoning is that it is easier to construct robust causal
models than to construct a robust set of associational rules.
Otherwise, it would be less work simply to develop a robust
generate and test system. There is empirical evidence from our own
work and others (e.g., [Koton]) that robust causal models are indeed
often easier to construct than robust associational rules. We are
currently working to characterize why and for which domains this
presumption holds. One possible explanation is that combinatorially
it is easier to construct a small set of event models and general
rules for combining their effects than it is to construct a set of
rules that encompasses all possible ways the evenis could interact.

Another possible explanation is that associational rules are
typically derived either from experience or from domain models.
Since in any reasonably complex domain one is unlikely to experience
enough specific cases to span a large fraction of the domain, the
bulk of the rule set must be derived from domain models. Thus,
domain models are a pragmatic precursor to the rules — hence it is
more work to construct robust associational rules precisely when
experience alone cannot span most of the domain.

6.1 Relationship Between Scenarios and Causal Models

The associational scenarios used by GORDIUS provide an
encapsulated abstraction of the models and causal reasoning
techniques used by the debugger. This section examines the types of
knowledge abstracted away by the scenarios. We argue that
scenarios are both abductions of the causal models and are
abstractions along several dimensions, including level of vocabulary,
degree of effects encoded, and chains of causal reasoning. We also
speculate on the abstraction process itself, presenting the outline
of a technique to derive scenarios by analyzing the actions of the
debugger.

The following analysis presumes that the associational rules used

can be derived from causal models. This is not an unreasonable
restriction, since all the scenarios in the domains we explored are

- 149 -

derivable from our causal understanding of the domains. This does
not imply that the scenarios were actually derived from the causal
models, only that our causal knowledge of the domains is sufficient
that they could be.

The analysis starts by noting that causal models can be used in
conjunction with a reasoning technique such as causal simulation to
predict future states given an initial state and a set of events. That
is, causal models can be used to compute the mapping:

Initial-State x Events — Final-State.
Scenarios, on the other hand, map from partial descriptions of the
initial and final states (the pattern) to a set of events (the local
interpretation):

Initial-State x Final-State —» Events.
A scenario represents the knowledge that, starting from the initial
world state, the events can achieve the goals of the final state.

Scenarios represent a twofold transformation of the mapping
provided by the causal models — they are both an abduction and an
abstraction of the causal mapping. Abduction transforms valid
statements of the form "A causes B" into heuristics of the form "if
B is observed then A may have caused it." More specifically, from
the causal rule "from the Initial-State, the Events cause Final-
State," abduction produces the scenario "in the context of Initial-
State, if the Final-State is observed then the Events may have
occurred."”

Abduction is only heuristic because it implicitly presumes that A is
the only cause of B, which may not be true. In geology, for instance,
there are at least two plausible interpretations for observing
sedimentary rock on top of igneous — 1) a sedimentary formation
was deposited on an existing igneous rock-unit, or 2) an igneous
formation intruded into the sedimentary rock-unit.! Although in
some cases the cause is truly ambiguous, additional information may
often constrain which hypothesis is more plausible. Given the two
interpretations above, for example, if the same sedimentary
material is found on the other side of the igneous rock, it is more
likely that the second interpretation is correct — that the igneous
intruded through the older sedimentary rock. The generator's
preference for scenarios with more specific patterns is a heuristic

' We can actually construct an infinite number of additional, albeit less plausible,
interpretations by adding pairs of uplift and subsidence events.

- 150 -

attempt to handle situations where the abduction is not valid, that
is, where there is more than one plausible interpretation.

In addition to being an abduction of the causal mapping,
associational scenarios abstract the mapping along several
dimensions. One such dimension involves shifting towards a more
abstract level of vocabulary. For example, in the object/attribute
language of our causal models the fact that rock-unit ru is adjacent
to one side of boundary bnd is described by:
(ru € bnd.side-1@time) or (ru € bnd.side-2@time).

In contrast, in the scenario patterns the same information is
encoded without disjunction using the proposition Abuts(ru, bnd,
time). Although this proposition is more succinct, it loses
information about the structure of the domain, namely that
boundaries have two distinct sides.

A more important type of abstraction is that scenarios, which
encapsulate patterns of interaction, abstract away the effects of
events that do not interact with one another. As a result, scenario
patterns typically contain a small subset of the effects that can be
predicted using the causal models. For example, the "intrudes-
through" scenario, which deals with the interactions of a dike-
intrusion and a single formation, ignores effects explicitly included
in the causal models including how the intrusion affects other
formations, how it changes the appearance of the surface of the
Earth, etc. This abstraction makes scenario patterns easier to
match against the goal state, due to the smaller number of effects
encoded. On the other hand, it implies that the scenario patterns
cannot be used to recognize all the effects of an event, leading to
buggy hypotheses in situations where the missing effects are
important.

Another important dimension of abstraction is that scenarios
abstract away the chains of causal reasoning (e.g., simulation or
search) used to compute the causal mapping (lnitial-
State x Events —» Final-State). For example, it often involves
a fair amount of search to find a set of events that achieves one goal
without interfering with the achievement of other goals. By
abstracting away this search into a single rule, associational
reasoning can avoid the expense in similar situations. One
consequence of this abstraction is a lack of flexibility, since the

- 151 -

reasoning steps must be reconstructed in order to obtain the
information (e.g. dependencies) needed to modify buggy hypotheses.

Another consequence of abstracting away chains of reasoning is that
the scenarios are limited to situations in which the same domain
models and same problem-solving task apply. For example, the rule
that a "fork" is useful in chess abstracts knowledge about legal
chess moves (the domain models) and an analysis of possible moves
and counter-moves (the problem solving). In particular, a fork
encapsulates the coupled interaction that it simultaneously achieves
two "threat-to-capture" goals. It is useful under the presumptions
that capturing pieces is good and that the opponent can deal with
only one threat at a time. The presumptions are specific to the
standard chess game, however, and would be useless if the object of
the game were to lose one's pieces or if two moves at a time were
allowed. Similarly, scenarios are limited in their general
applicability by being tied to specific domain models and tasks.

Note that this abstraction process is not necessarily limited to two
levels. Just as the generator ignores interactions that are handled
by the debugger, so too the debugger ignores certain interactions
(e.g., reasoning about events that simultaneously affect the same
attribute of an object) that may be important in other domains or
tasks. We envisage that a more complete problem solver will utilize
a spectrum of models and reasoning techniques tuned to those
models. The more detailed models will offer a greater robustness,
due mainly to the increased types of interactions that their
associated reasoning techniques can handle. The more abstract
models offer greater computational efficiency, due to the
encapsulation of interactions and presumptions of non-interference
(e.g., the GORDIUS generator presumes that its scenarios are
independent, and the tester and debugger both presume that no
simultaneous, interacting events occur).

6.1.1 Deriving Scenarios from Causal Models

Given the close correspondence between the knowledge encoded in
the scenarios and causal domain models, a natural extension of the
GTD paradigm would be to derive new scenarios by analyzing
potential interactions in the causal models. We present below a
rough outline of an unimplemented technique for deriving new
scenarios by analyzing the results of debugging a problem. Using the
results of debugging is a good strategy because it focuses the

- 152 -

learning on those common patterns of interaction that actually arise
in the course of solving problems.

A problem in creating scenarios is to encapsulate just enough of the
potential interactions to learn generally useful scenarios — fairly
independent, but not too specific. Our proposed learning technique
involves analyzing the dependency structures produced during the
course of testing and debugging an hypothesis to find the extent of
interactions responsible for a bug. The causal explanations for
those interactions would be generalized using techniques based on
work in explanation-based learning (e.g., [Dedong], [Mitchell]).

Our proposal is to reason explicitly about the interference,
cooperative, and coupled interactions that underlie a bug, and to
encapsulate those interactions to create new scenarios.
Interference interactions can be found by analyzing the causal
dependency structure produced by the tester, which explains why the
bug occurred. The assumptions underlying this dependency structure
represent those decisions made by the problem solver that interact
to produce the bug. Cooperative interactions can be found by
analyzing the dependency structure produced by the debugger's
evaluation heuristic, which explains how effects of the debugged
hypothesis interact to repair the bug. Coupled interactions can be
found by tracing forward from assumptions in both dependency
structures to find change statements that with the same conditions
as those effects that interact to repair the bug.

The goal state of the new scenario pattern can be determined by
tracing forward from all interacting assumptions to find the top-
level goals that they support. The scenario pattern's initial state
would consist of those interacting assumptions that mention the
time Plan-start. The local interpretation of the scenario would
consist of all the event-occurrence, parameter-binding, and
temporal-ordering assumptions that support the propositions in the
scenario's goal state. The underlying closed-world assumptions can
be ignored since they are equivalent to the presumption of
independence used by the generator (i.e., no event outside the local
interpretation interferes in the achievement of the scenario
pattern). Finally, the scenario pattern and local interpretation can
be generalized by replacing constants with variables using one of
the algorithms discussed in the explanation-based Ilearning
literature (e.g., [Dedong], [Mitchell]).

- 153 -

As an example of how this learning technique might work in the
domain of geologic interpretation, suppose GORDIUS has constructed
the hypothesis of Figure 61b to interpret Figure 61a. The hypothesis
is buggy because it predicts that SS1 and B2 have orientations of
17°, not 12°. Section 5.1.1 shows how the debugger solves the
problem by altering the parameter of Tilt1 from 12° to 7°.

The assumptions underlying the interference interactions in this
example are that Deposition1 occurs to create a horizontal rock-
unit whose orientation is subsequently increased by the actions of
Tilt1 and Tilt2. The set of assumptions that cooperate to repair
the bug is the same as the set of interfering assumptions, except for
the assumption about the value of Tilt1's parameter.

The set of top-level goals supported by the Tilt1, Tilt2, and
Deposition1 events are that SS1 and B2 are oriented at 12°, and
SH1 and B1 are oriented at 5°. The generalized goal state pattern
of the learned scenario would consist of two sedimentary rock-units
(and their abutting boundaries) each oriented at a different angle.
The initial state of the scenario pattern is simply the preconditions
of Deposition1, that the Earth's surface is below sea-level.
Finally, the local interpretation of the new scenario would consist
of those assumptions underlying the causal explanations for the two
orientation goals of the scenario pattern — that two depositions
occur, each followed by a tilt.

1
50 1. Deposition1(SS1, Sandstone) 1. Deposition1(SS1, Sandstone)
e 2. Tilt1(12°) 2. Tilt1(7°)
Vet 20 3. Deposition2(SH1, Shale) 3. Deposition2(SH1, Shale)
. .ss1. ‘5: 1 4. Tilt2(5°) 4. Tilt2(5°)

Figure 61. Deriving New Scenarios from the Results of Debugging

6.2 Search and Control Issues

A major problem in solving interpretation and planning problems is
controlling the potentially explosive search. The combinatorics
arise largely from interactions among events, especially where
achieving one goal undoes other goals. Using nearly independent
rules in the generator alleviates much of that interaction. However,

- 154 -

control of search remains enough of a problem, especially for the
debugger, to warrant careful consideration.

An important control issue is deciding the best way to search the
space of hypotheses. Our approach is to perform best-first search,
ordering hypotheses using a distance metric that prefers hypotheses
with fewer unachieved goals and, secondarily, those with fewer
events. Both the generator and debugger use this distance metric,
although they differ in how the number of unachieved goals is
calculated.

This distance metric is intuitively reasonable. For domains in which
a solution consists of achieving all goals, the fewer the goals left
unachieved, the closer one often is to a solution. Preferring a
shorter hypothesis is reasonable for planning problems since shorter
plans will presumably be easier to carry out. For interpretation
problems, this preference follows Occam's razor that the simplest
explanation is often the most likely. As described in Chapter 5, we
have found this distance metric to be very effective in practice.
Only in the Tower of Hanoi domain does the search deviate
substantially from a correct solution path.

An important concern, especially for the generator, is the efficiency
of calculating the distance metric. For both the generator and
debugger, calculating the number of events in an hypothesis is
trivial — it is simply the number of Occurs assumptions.
Unfortunately, accurately calculating the number of unachieved
goals is rather expensive. Thus, there is a tradeoff between
accuracy and efficiency in calculating the distance metric. The
algorithms used by the generator and debugger come down on
different sides of this tradeoff — the generator emphasizes
efficiency, while the debugger emphasizes accuracy (i.e.,
robustness).

The generator makes use of the presumption that scenarios are
independent to efficiently estimate the number of unachieved goals.
The generator simply presumes that a scenario achieves all the
goals in its pattern, and that it does not undo any previously
achieved goal. Thus, the number of unachieved goals remaining after
a scenario is instantiated can be calculated in constant time for
each goal.

- 155 -

The evaluation heuristic used by the debugger performs a more
accurate determination by taking into account the possibility that a
local bug repair can have global effects on the hypothesis. The
algorithm, which updates closed-world assumptions invalidated by a
bug repair, is exponential in the number of unordered events.
Significant improvement in GORDIUS' performance would result from
using more efficient evaluation methods to calculate interactions.
For example, [Dean & Boddy] present a polynomial-time, albeit
incomplete, algorithm to predict the effects of events. Another
alternative, employed by [Lansky], is to reduce the size of the
exponent by augmenting a complete, exponential evaluation
algorithm with presumptions that certain events are independent of
one another.

A more global control issue is deciding in which situations to use
the generator, and when to resort to the debugger. Our current
implementation employs the simple control strategy that the
generator is used in isolation to construct an initial hypothesis,
which is then tested. The expensive debugger remains as the "last
line of defense" and is used only when the generator's scenarios are
found to be interfering or incomplete (i.e., there are goals not
matched by any scenario pattern). In the extreme case, with no
scenarios in the generator's library, the debugger must solve the
problem completely on its own. As the library of scenarios gets
built up (perhaps using a learning algorithm, as in Section 6.1.1) the
debugger will be used less and less, and the efficiency of the overall
system will increase.

Although our current control strategy is designed to exploit the
strengths of the various reasoning techniques used, it is not the only
choice. Other control strategies that more fully integrate the
generator and debugger may have certain advantages over the simple
flow of control used in GORDIUS. Although we have not had time to
do the experiments, different control strategies should be easy to
implement in GORDIUS since the generator and debugger already use
the same best-first search strategy and the same distance metric
for ordering hypotheses. In our current implementation, in fact, all
hypotheses are placed on a single priority queue, enabling GORDIUS
to choose the hypothesis estimated to be closest to solving the
problem, regardless of whether the hypothesis was constructed by
the generator or debugger. Thus, if the debugger is found to be
moving far from a solution, GORDIUS can try generating a new
hypothesis.

- 156 -

With our current control strategy, however, only the debugger can
make modifications to an hypothesis once it has been tested. This
reflects the presumption that if the generator does not produce a
correct solution initially, it does not have the knowledge necessary
to correct errors it made. This presumption, however, is not always
true. Given the incorrect hypothesis in Figure 62b, for instance, the
debugger fixes the bugs that G2 and SS4 are exira pieces by
inserting an uplift and erosion event after Intrusion2 to
completely erode away G2 and SS4. However, since this repair also
erodes away SS1 it introduces additional bugs, namely all goals that
mention $S1 are no longer achieved. At this point, GORDIUS could
continue with another series of debugging steps, but it would be
much more efficient to use the generator since the "sedimentary-
over-igneous" scenario, which hypothesizes erosion down to MI1
followed by subsidence and deposition of $S1, matches all of the
unachieved goals.

The computational savings in using the generator at this stage of the
problem is substantial. This example points up the fact that
research remains to develop problem-solving strategies that are
more flexible than the static Generate-Test-Debug control strategy
presented in this report.

] 1. Deposition1(ROCK1, Sandstone) } -
2. Dike-Intrusion1(G1, Granite)
3. Dike-Intrusion2

(MI1, Mafic-lgneous)

Figure 62. Example Showing Usefulness of Integrating Generator and Debugger

One promising control strategy is to use the generator first for all
problems — both for achieving goals and for repairing bugs — and to
use the debugger only if the generator does not have a suitable
scenario. An advantage of this strategy is the potential for
increased efficiency in solving problems in which a large amount of
debugging is needed This potential must be weighed, however,
against the fact that the scenario matcher will be invoked far more
often. Until experiments are done, it is unclear which costs will
predominate over the range of problems likely to be encountered. We

- 157 -

believe, however, that the proposed control strategy may prove
effective, especially given its similarities to the SOAR architecture
[Laird], for which good performance has been demonstrated using the
strategy of first trying to solve a subgoal at one level of
representation and, only if unsuccessful, dropping down to a more
detailed level.

6.3 Guidelines for Domains in Which GTD may be Useful

In this section, we develop guidelines for domains in which GTD may
be a useful paradigm. The guidelines are based on our understanding
of the relationship between the types of reasoning used in the
generator and the debugger.

One important guideline is that the goals of the problem should not
be totally independent. More precisely, there should not be a finite
number of totally independent scenarios that cover all of the domain.
If there were such a set, the presumption of composability embodied
in the generator would always hold, and the generator would always
produce a correct hypothesis. In such domains, the debugger would
never be needed.

This guideline stipulates that the set of totally independent
scenarios should not be finite because in theory one could cover any
domain with an infinite set of independent scenarios, each of whose
pattern is the complete initial and goal states of a problem, and
whose local interpretation is the complete solution to the problem.
The approach of having one scenario per problem is clearly
intractable, however, especially on a serial computer where the cost
of matching scenario patterns increases with the number of
scenarios. Thus, there is a tradeoff between the desire to create a
set of totally independent scenarios and the cost of determining
which scenarios are applicable. In the geologic domain, where there
are only a relatively few common scenarios but many infrequently
occurring ones, the decision was made explicitly to maintain a small
scenario library and to leave the uncommon cases for the debugger.

At the other extreme, an equally important guideline is that the
goals of the problem should not be totally interdependent. If they
were, the presumption of composability would never hold and the
generator would always produce incorrect hypotheses. In such
cases, especially when the generated hypothesis is far from a

- 158 -

solution, the debugger may work harder than if it had solved the
problem from scratch, without using the generator at all. For
example, suppose we have a scenario that indicates how to solve a
two ring Tower of Hanoi problem — move the top ring to the third
post; move the next ring to the second post; move the top ring to the
second post. Using that scenario in solving a three ring problem
actually produces a very bad hypothesis — the debugger would have
to change quite a few of the decisions made by the generator in
order to get onto the correct solution path.

Most domains fall somewhere between the extiremes of total
independence and total interdependence of the goals. The ideal
domain for GTD is one in which the goals are nearly independent, so
that the debugger is used as infrequently as possible. For example,
planning out assembly or machining tasks may be good domains for
GTD because, although there are interactions, they tend to be
localized and thus can be easily encapsulated into a small number of
nearly independent scenarios.

While the above two guidelines address aspects of the domain itself,
the guidelines below address aspects of our knowledge of the domain
and the technology available for representing and reasoning about
that knowledge.

One requirement to ensure efficiency is that we must identify a set
of (nearly) independent scenarios that covers a large portion of the
problem domain. If the scenarios interact to a large extent, or do
not cover most of the domain, the debugger will have to be used
frequently, resulting in a relatively inefficient system. Just
knowing that the goals of the domain are nearly independent is not
enough — we must be able to create the appropriate set of
encapsulations. In principle, the set of scenarios may be
constructed using a learning algorithm like the one described in
Section 6.1.1, but this is not yet a proven technology. With current
technology, we must still rely on people to identify the set of
scenarios, although our analysis of scenarios as encapsulations of
common patterns of interaction should help to provide a clear means
to recognize good scenarios.

Two additional guidelines bear on achieving robust behavior by the
debugger. First, we, as people, must have an understanding of the
causality in the domain. Second, we must be able to represent the
causality in a form that can be reasoned about by the system.

- 159 -

Although we believe that our representation language is sufficient
for domains with discrete event models, there are many domains
that need more robust models of how the world works. Extending the
range of causal models that can be reasoned about is an active area
of research in the qualitative physics community (e.g., [deKleer],
[Forbus], [Williams]).

The particular debugging repair strategies described in this report
are based on the models of causality, hypothesis construction, and
the problem-solving task that underlie the domains we explored. To
use the debugger in a domain based on different models, one must
uncover the assumptions underlying the models and develop domain-
independent repair strategies for each type of assumption. To use
our debugging algorithm to diagnose electronic circuits, for
instance, the model of hypothesis construction might have to include
assumptions about the working status of components, while the
model of causality might include closed-world assumptions
concerning the topology of circuits (e.g., that there are no shorts or
bridges).

A guideline for the tester is that it must be able to provide causal
explanations for any bug detected, and it must be accurate over the
range of problems likely to be encountered. In particular, the tester
should avoid both false positives and false negatives. This condition
is stronger than the assumption made by our debugger's model of
causality that the domain models are complete and correct, since
this implies only that the debugger avoids false negatives (i.e.,
rejecting valid solutions). It is also stronger than the presumption
of composability underlying the generator. Thus, the models used by
the tester must be at least as strong in predictive power as those
used by either the generator or the debugger.

Note that the above are just guidelines. Problems that fall outside
the guidelines, such as Tower of Hanoi, may still be solved within
the GTD paradigm but the efficiency, accuracy, or robustness of the
overall system will suffer if some of the guidelines are not met.

- 160 -

7. Related and Future Work

7.1 Associational Reasoning

Our approach of composing scenarios to generate correct, or nearly
correct, hypotheses derives from work in cliché-based problem
solving in which initial hypotheses are generated using a library of
common operations (e.g. [Sussman], [Rich]). Our generator is also
similar to case-based approaches (e.g. [Hammond], [Schank]) that
index into previously solved problems to find examples that nearly
match the current situation. Together with our generator, these
approaches share the twin problems that 1) matching the
associations (scenarios/clichés/cases) is expensive, and 2)it is
not always easy to choose which of the matching associations to
pursue. Since these problems have not been the focus of our
research, we have chosen the relatively simple solutions of
matching based on a rete-net algorithm and choosing scenarios
based on the specificity ordering of their patterns. Other work,
however, has focused more carefully on these problems, particularly
on how to match efficiently (e.g., [Wills], [Kolodner]).

The efficiency gained by using heuristics that take interactions into
account has been noted by other researchers. Many of these efforts,
like our own, deal with interactions using heuristic rules that
essentially pre-compile the interactions inherent in solving
particular sets of goals (e.g., [Rich], [C. Hayes]). Another approach is
to reason explicitly about potential goal interactions before solving
the problem (e.g., [Hammond], [Wilensky]). Although this approach
tends to be more flexible in finding unanticipated interactions, it is
also more expensive due to the extra reasoning steps needed. In the
domains explored, we have not found this extra flexibility to be
necessary.

The presumption that the associational rules are (nearly)
independent is present in other systems, as well. The "linearity
assumption” used in HACKER is an assumption that the goals of the
problem can be solved independently (see [Sussman], p. 53). The
assumption of rule independence is often found, implicitly at least,
in systems that use associational if-then rules with certainty
factors (e.g., [Shortliffe], [Duda]) In describing Mycin, for instance,
[Shortliffe] indicates:

- 161 -

"since the rules are not explicitly related to one another
... modifications and additions of new rules need not require
complex considerations regarding interactions with the
remainder of the system's knowledge." (p. 165)
Unfortunately, this view is not completely accurate since, as we
have argued, in many domains it is often impossible to find totally
independent rules. Analysis of the certainty-factor model used by
Mycin shows that, at best, the rules can be presumed to be only
conditionally independent with respect to the current rule base
[Heckerman]. Although the presumption of independence is used by
many different associational reasoning systems, the point is that it
is just a heuristic and the problem solver needs to rely on some type
of non-associational reasoning to handle unanticipated interactions.

The rule-based system R1 [J. McDermott], whose task is computer
component layout, provides an interesting case study in the
strengths and weaknesses of the type of match and compose
approach used by our generator. While straightforward match and
compose suffices for most of R1's subtasks, a backtracking
technique is needed for laying out the Unibus. Our conjecture is that
while most of the layout task can be factored into independent
subtasks,! the interactions in the Unibus slot assignment task are
too extensive to permit the decomposition into independent rules
needed to make match and compose an effective technique.

7.2 Causal Simulation

Many researchers have investigated different methods and
representations for doing causal simulation. The thrust of this
section is to indicate the sources for our models of events, time,
and change.

Our event representation derives from the precondition/action
representations of domain-independent planners (e.g., [Fikes],
[Sacerdoti], [Wilkins]). We have had to extend the basic action
representation, however, to represent and reason about the geology
and semiconductor fabrication domains. In particular, our models
represent relative effects (e.g., an attribute increases or decreases
by a certain amount), conditional effects, quantified effects, and the
creation and destruction of objects. While many of these features

1 More precisely, the task can be factored into subtasks that can be performed
sequentially.

- 162 -

are also found in the formal planning model of [Pednault], that model
has not yet been implemented.

One significant departure from traditional work on action
representation is our explicit use of time and persistence. The
explicit representation of time enables us to make inter-temporal
comparisons (e.g., "if the salary in 1984 is greater than the salary in
1987 then ..."), which we have found greatly facilitates the
representation of complex events. The explicit representation of
persistence enables us to handle the frame problem [Hayes, 73],
since the notion of persistence embodies the frame axiom that an
attribute does not change unless some event affects it. Persistence
also simplifies our action representations by enabling us to
eliminate the "delete" list of STRIPS-type operators. Our models do
not have to encode explicitly which values get "deleted" since by
definition a change to an attribute ends the persistence of its
current value.

Our temporal representations have been influenced by the work of
Drew McDermott and students (e.g., [McDermott], [Dean], [Shoham]).
In particular, that research calls for an explicit representation of
persistence and argues that one can understand the effect of events
as changing the persistence of statements.

A difference from our models is in the types of things that persist.
In our work, attributes of objects persist; in the work of McDermott,
et. al.,, it is propositions that persist over time. Although the
approaches are formally very similar, pragmatically there are
differences. For one thing, using histories of attributes?2 embodies
the implicit presumption that an attribute can only have one value at
a time. That presumption enables the problem solver to efficiently
discover value contradictions, such as the fact that a rock-unit
cannot be both igneous and sedimentary at the same time. On the
other hand, using propositions as primitives is more flexible,
particularly for representing binary relations between objects, such
as "greater than." We prefer our history-based representation
because the ability to detect contradictions efficiently is valuable
for doing debugging.

Our causal simulator shares much of the emphasis found in work on
qualitative simulation (e.g., [deKleer], [Forbus], [Kuipers]) that the

2 The idea of histories derives from [Hayes, 85].

- 163 -

simulator should be able to make predictions without complete,
quantitative knowledge of the situation, and that the simulation
should provide causal explanations for the changes that occur. The
main difference is in emphasis — rather than exploring the limits of
qualitative reasoning, our work stresses the integration of
qualitative and quantitative information, and the use of multiple
representations of knowledge, such as quantities, sets, and
diagrams.

7.3 Debugging and Domain-Independent Planning

Our debugging approach of tracing faults to underlying assumptions
has roots in work on dependency-directed search (e.g., [Stallman]),
model-based diagnosis (e.g., [Hamscher], [deKleer & Williams]) and
algorithmic debugging [Shapiro]. Our work extends these approaches
by providing principled repair strategies that determine how to
replace the underlying assumptions once they have been located. For
example, the algorithmic debugger of [Shapiro] has no automatic way
of replacing faulty assumptions, relying on the user to supply the
necessary bug fixes once the underlying assumptions have been
found.

Our assumption-oriented debugging approach stands in contrast to
work in which bug repair heuristics are associated either with bug
manifestations (e.g., [Alterman], [Marcus]) or with certain
stereotypical causal explanations (e.g., [Hammond], [Sussman]). By
"stereotypical explanations" we mean that the debuggers have a
predetermined catalog of explanations for bug types, and they try to
match the explanations for bugs against these stereotypical
explanations. Both [Hammond] and [Sussman] accomplish this by
asking a predetermined set of questions and using the answers to
index into a library of bug types, such as "Prerequisite Clobbers
Brother Goal" (PCBG) or "Desired-Effect:Blocked-Precondition”
(DE:BP). Associated with each bug type are one or more repair
strategies.

The problem with these approaches is that they are not very robust.
In particular, they cannot handle bugs arising from unforeseen
combinations of assumptions that do not match any of the
catalogued bug types. In contrast, our approach handles the large
number of possible ways bugs can arise by decomposing them into
combinations of a small set of underlying assumptions. Since we do

- 164 -

not have to anticipate all possible patterns of assumptions that can
lead to bug manifestations, our assumption-oriented approach tends
both to give greater coverage and to suggest more alternative
repairs than other approaches.

To support the claim of greater coverage, we analyzed the bug types
of [Sussman] and [Hammond] and found that our implemented
debugger can duplicate all four of the repair strategies in [Sussman]
and all but two of the 17 repairs in [Hammond]. The two bug types
not handled are ones where simultaneous, interacting events are
needed to repair the bug, which is beyond our current representation
language. By extending our model of causality, our debugging
approach should handle all of the repairs suggested in [Hammond].

In addition to covering more bug types, our debugging approach
provides more flexibility by suggesting alternative repairs for the
same bug type. As an example, consider the PCBG bug type in
[Sussman] that occurs when an event A, in attempting to achieve the
preconditions of an event B, undoes a goal that had been achieved by
event C (see Figure 63). The only repair for this bug type given in
[Sussman] is to reorder events A and C. The DE:BP bug type in
[Hammond], which covers similar situations, has an additional repair
strategy of replacing event B with one that does not have the
offending precondition. Our debugger would suggest even more
repairs, including inserting an event to reachieve the goal, replacing
event A, and changing A's parameters so as to make the goal and
precondition true simultaneously.

false GOALA1 GOAL2
) i
B Occurs

Dependency “"clobbered" by X
the occurrence of event A
A Occurs

C Occurs

Figure 63. Schematic Causal Explanation for the "Prerequisite Clobbers Brother Goal" Bug

Our analysis of the debugger's relative completeness is carried out
in terms of the assumptions underlying problem-solving models. A
similar analysis is also found in [Goldstein], where the bugs that can

- 165 -

arise in simple LOGO programs are categorized in terms of common
mistakes that occur during the construction of the program. Little
attempt is made, however, to catalog a complete set of planning
errors for the domain studied, and no attempt is made to relate the
bugs to faulty assumptions made about the model of causality used.

The basic approach to debugging described in this report — repair one
bug at a time by analyzing domain models, and then evaluate how the
local repair affects the hypothesis as a whole — is similar to the
approach used by most domain-independent planners (e.g. [Sacerdoti],
[Wilkins], [Tate], [Vere], [Chapman]). In fact, all our blocks-world
planning examples were run without the generator, in effect
"planning by debugging a blank sheet of paper." A major difference,
however, is that most domain-independent planners use hypothesis
refinement, while our debugger uses hypothesis transformation. In
the refinement approach, the system can only add information to its
current hypothesis, making the plan increasingly more detailed. In
our transformational approach, information may be deleted as well,
removing previous decisions such as which events occur or how
parameters are bound.

Phrased in terms of possible worlds, in the refinement approach
each modified hypothesis defines a set of possible worlds that is a
subset of the possible worlds defined by the original hypothesis. In
the transformational approach, the set of possible worlds defined by
a modified hypothesis may overlap, or even be disjoint from, the
possible worlds defined by the original hypothesis. One implication
of this analysis is that the transformational approach is not
guaranteed to converge on a solution; thus control issues are
particularly important with this approach.

An advantage of the transformational approach to planning is the
increased flexibility it gives the planner. In particular, in the
refinement approach previous decisions can be removed only by
backtracking — typically the control strategy is to continually try to
refine and only backtrack when a contradiction is reached. In the
transformational approach, the planner does not have to choose
between refining the hypothesis and backtracking, since both options
are essentially treated the same: some of our transformational
repair strategies add information (which is equivalent to
refinement) and some remove information (which is equivalent to
backtracking).

- 166 -

The refinement approach tries to avoid backtracking by making
decisions only when the problem forces them to be made. The
difficulty is that such a least-commitment strategy often produces
hypotheses with many unordered events and under-constrained
parameter bindings, making it very expensive to determine which
goals are achieved and when bugs exist. We have found that a
reasonable computational approach is to make commitments early
that seem likely to lead to a correct solution but to be prepared to
remove those commitments if later problem solving dictates. For
example, if a bug repair strategy proposes a non-linear sequence of
events, the debugger pursues the linearization that minimizes the
number of unachieved goals, even though the ordering chosen might
not prove to be the right one in the end. If the ordering turns out to
be wrong, the debugger can change it using the "temporal-ordering”
repair strategy.

The transformational approach is also particularly useful for
systems that use specialized planning algorithms, such as route-
planners, to produce initial hypotheses, and then use a domain-
independent planner to fine tune the plans. If bugs are discovered in
the hypothesis produced by the specialized planner, the domain-
independent planner cannot backtrack since it does not have a trace
of the choice points made by the specialized algorithm. In such
cases, transformational operators are needed.

7.4 Future Work

We believe that GTD, with its integration of different reasoning
techniques, has applicability in a wide range of domains. We intend
to use the GTD paradigm for solving problems in other complex
planning and interpretation domains, such as route planning and
economic interpretation. It is likely that these new domains will
require extensions of the current implementation. In particular, new
quantitative simulation algorithms will have to be developed to
supplement the current diagrammatic simulator, which is fairly
dependent on the geologic domain.

Unlike in geologic interpretation, in route planning and economic
interpretation the initial and goal states are not limited to single
points in time. For example, the initial state of a route planning
problem might be "robot is at home at Plan-start, and the bank is
open from 10AM to 3PM" and the goal state might be "robot should be

- 167 -

at MIT at Plan-end, and it should be at the concert at 8PM." While
the current debugger can already handle problems of this sort, the
generator would need to be extended to handle goals involving
multiple time points. A potential problem here is determining which
propositions of the scenario patterns hold without resorting to a
full-blown simulation. For example, it might be expensive to
determine whether the scenario pattern "robot is at X att1, and
bank is open at t1" matches the initial state above (in particular,
whether the robot being at home persists untii 10AM when the bank
opens).

We also believe that GTD-type paradigms have applicability over a
variety of problem types, including diagnosis and design. There are
some indications of that from our work in diagnosing manufacturing
faults in semiconductor fabrication [Mohammed], [Simmons &
Mohammed]. Extending GORDIUS to handle other types of problems
will probably necessitate additional bug repair strategies, since the
assumptions included in the models of the problem-solving task and
hypothesis construction will likely be different from those in the
models used for interpretation and planning tasks. A fruitful line of
research might be the development of a language for expressing such
models, from which the system might derive the underlying
assumptions for itself.

The most notable assumptions that not currently handled by our
debugger are the assumptions that the domain models are correct
and complete. A bug repair strategy to handle these closed-world
assumptions (i.e., to do theory formation) would be somewhat
different from the current set of strategies. While the current
strategies all evaluate a repair with respect to the current problem,
repairs that change domain models should only be made with respect
to a set of problems. The change should not only fix the current
problem but should be consistent with the solutions to all previous
problems.

A natural extension of the GTD paradigm is to derive new
associational rules based on the results of debugging a problem. A
step in that direction is the technique suggested in Section 6.1.1 for
creating encapsulations by reasoning about the extent of
interactions in a problem. There remains much work, however, to
implement such a technique and to determine whether it is, in fact,
useful for determining what to encapsulate and which interactions
to ignore.

- 168 -

A more radical extension to the basic paradigm is to use more than
just two levels of reasoning, where each level makes fewer
simplifying presumptions and handles more types of interactions
than the previous level. The more detailed levels would be used only
when the less detailed ones failed to solve a particular problem. For
example, one could have a system that combines associational
reasoning, discrete causal reasoning, and reasoning about continuous
process models in which interactions between simultaneous events
can be represented. [Simmons & Mohammed] presents an example of

how such a proposal might work in the semiconductor fabrication
domain.

- 169 -

8. Conclusions

This report has explored the combination of associational and causal
reasoning techniques to achieve both efficient and robust problem-
solving behavior. The Generate, Test and Debug paradigm and its
implementation, a program called GORDIUS, were developed to take
advantage of the strengths, and compensate for the weaknesses, of
associational and causal reasoning. GTD integrates multiple
reasoning techniques, where each technique employs representations
and inference algorithms tuned to its particular task and
requirements.

Associational reasoning is used to efficiently generate initial
hypotheses. The generator uses heuristic rules, called scenarios,
that associate patterns in the input with sets of events that could
plausibly achieve the patterns. Each scenario represents a fragment
of the solution — the generator forms complete solutions by
composing events from different matching scenarios. In composing
events, the generator tries to unify together those that really
signify the same event. The unifying technique is based on general
principles about the world, such as that an object can be created in
only one way, by only one event.

The tester uses detailed simulation to verify hypotheses. The tester
used in GORDIUS relies on a largely qualitative, domain-independent
causal simulation. The causal simulator updates a world model to
reflect changes to the attributes of objects. It records causal
dependencies that indicate how events affect the world, and how
objects and attributes persist over time. To increase the accuracy
of the test for geologic interpretation problems, the causal
simulator is augmented with a quantitative, diagrammatic simulator
that constructs a sequence of diagrams to represent the spatial
effects of events. GORDIUS compares diagrams using a general-
purpose diagram matcher that finds topological and geometrical
correspondences between parts of the diagrams.

Much of our research effort has involved developing and
implementing a domain-independent theory of debugging plans and
interpretations. The theory is based on the premise that all bugs
stem from faulty assumptions made during hypothesis construction
and testing. Bugs are repaired by replacing faulty assumptions. The
debugger uses three causal reasoning techniques to determine which
assumptions to replace and how to replace them: 1) it locates the

- 170 -

assumptions underlying bugs by tracing back through the dependency
structures produced by the tester, 2) it indicates the direction in
which to change assumptions by regressing desired values back
through the dependencies, and 3) it repairs bugs using domain-
independent repair strategies that determine which assumptions to
add or delete based on analyses of the dependencies, regressed
values, and causal domain models.

A fourth causal reasoning technique is used to determine the global
impact of a bug repair by estimating the number of remaining bugs.
The evaluation heuristic is based on the tester's causal simulator
and reasons about the interactions between events caused by a bug
repair. The algorithm achieves some measure of efficiently by
focusing on the closed-world assumptions that become invalid as a
result of the repair.

In practice, our experiments indicate that the six repair strategies
implemented in GORDIUS can handle a wide range of bugs in several
different domains, arising from a number of different combinations
of assumptions. More formally, the coverage provided by our current
debugger can be characterized by examining the premises contained
in three different models upon which GORDIUS is built — models of
causality, hypothesis construction, and the problem-solving task.
The model of causality indicates that bugs depend only on
assumptions about the events that occur, the initial and goal states,
and various closed-world assumptions, including assumptions about
the persistence of attributes and objects. The model of hypothesis
construction indicates that the events can be represented by
assumptions about the types of the events, their parameter bindings,
and orderings between events. The task model indicates that one
cannot replace assumptions about the initial and goal states, since
that would be tantamount to solving a different problem.

Our analysis of the relationship between associational and causal
reasoning leads to the conclusion that the problem-solving
characteristics of the generator and debugger depend on the extent
to which interactions between events are represented and reasoned
about. The generator's efficiency stems from using scenarios that
encapsulate common patterns of interaction, and from presuming
that scenarios can be composed independently. The correctness of
the hypotheses generated depends on the extent to which this
presumption of composability holds.

- 171 -

The robustness of the debugger derives, in large part, from its
ability to reason causally about interactions using domain models
that explicitly represent time, persistence, and the effects of
events. Since reasoning about interactions is computationally
expensive, however, we prefer to use the causal reasoning sparingly,
reserving it to incrementally modify incorrect hypotheses produced
by the generator.

As an indication of the close relationship between associational
rules and causal models, we have outlined a technique to derive
associational rules from the results of debugging an hypothesis. We
believe that GTD provides a natural foundation for studying such
explanation-based learning. In particular, the bugs detected provide
a focus for what to learn, reasoning about interactions provides the
scope for how much to learn, and learning within a problem-solving
framework provides the researcher an opportunity to evaluate the
usefulness of what has been learned.

Guidelines for other domains in which GTD may be useful were
developed based on our understanding of the characteristics and
roles of the different reasoning techniques. The ideal domain is one
in which the goals to be achieved are neither totally independent nor
totally interdependent, with overall efficiency increasing as the
goals become more nearly independent. For the generator, we must
be able to identify a set of (nearly) independent scenarios that span
a large portion of the domain. An accurate testing algorithm must
be available, in particular, one that avoids false negatives. Finally,
the debugger requires causal domain models and an ability to
construct causal explanations for bugs, otherwise the debugging
algorithms may perform no better than random permutation of the
hypothesis.

We believe that the GTD paradigm has applicability in other
interpretation and planning domains, such as economic
interpretation and route planning, and in other types of problems,
such as design and diagnosis. Important areas of research include
extending the debugger to handle different types of assumptions that
arise from the use of different underlying models, and adding more
flexible control strategies to decide dynamically when to use the
different reasoning techniques.

This report has demonstrated how efficient and robust problem-
solving behavior can be achieved through a combination of reasoning

- 172 -

techniques that differ largely in how they treat interactions.
Throughout this research, we have attempted to analyze why the
reasoning techniques behave as they do, and to ferret out the
important problem-solving issues and presumptions behind the GTD
paradigm. Both the specific reasoning techniques developed and our
analyses of those techniques should provide a firm foundation for
applying GTD to a wide variety of tasks.

- 173 -

9. References

R. Alterman, An Adaptive Planner, Proceedings of AAAI-86,
Philadephia, PA, 1986.

A. Barr, E. Feigenbaum, The Handbook of Artificial Intelligence,
Volume 1, William Kaufman, Los Altos, CA, 1981.

B. Baumgart, Geometric Modelling for Computer Vision, Al Memo 249,
Stanford, 1974.

D. Chapman, Planning for Conjunctive Goals, Artificial Intelligence,
vol. 32, pp. 333-377, 1987.

R. Davis, Diagnostic Reasoning Based on Structure and Behavior,
Artificial Intelligence, vol. 24, pp. 347-410, 1984.

T. Dean, D. McDermott, Temporal Data Base Management, Artificial
Intelligence, vol. 32, no. 1, pp. 1-55, 1987.

T. Dean, M. Boddy, Incremental Causal Reasoning, Proceedings of
AAAI-87, Seattle, WA, 1987.

G. Dedong, R. Mooney, Explanation-Based Learning: An Alternative
Approach, Machine Learning 1, 1986.

J. deKleer, J. S. Brown, A Qualitative Physics Based on Confluences,
Artificial Intelligence, vol. 24, pp. 7-84, 1984.

J. deKleer, B. Williams, Diagnosing Mulitiple Faults, Artificial
Intelligence, vol. 32, pp. 97-130, 1987.

R. Duda, P. Hart, et. al., Development of the PROSPECTOR Consultation
System for Mineral Exploration, SRI Technical Report, October 1978.

R. Fikes, N. Nilsson, STRIPS: A New Approach to the Application of
Theorem Proving to Problem Solving, Artificial Intelligence, vol. 2,
pp. 189-208, 1971.

K. Forbus, Qualitative Process Theory, Artificial Intelligence, vol.
24, pp. 85-168, 1984.

C. Forgy, RETE: A Fast Algorithm for the Many Pattern/Many Object

Pattern Match Problem, Artificial Intelligence, vol. 19, pp. 17-38,
1982.

- 174 -

I. Goldstein, Summary of MYCROFT: A System for Understanding
Simple Picture Programs, Artificial Intelligence, vol. 6, no. 3, 1975.

K. Hammond, Case-based Planning: An Integrated Theory of Planning,
Learning and Memory, PhD thesis, RR 488, Yale University, 1986.
Also, Explaining and Repairing Plans that Fail, Proceedings of Tenth
IJCAI, Milan, ltaly, 1987.

W. Hamscher, R. Davis, Issues in Model Based Troubleshooting, Al
Memo 893, MIT, March 1987.

D. Heckerman, E. Horvitz, The Myth of Modularity in Rule-Based
Systems, KSL Memo 86-33, Stanford, 1986.

C. Hayes, Using Goal Interactions to Guide Planning, Proceedings of
AAAI-87, Seattle, WA, 1987.

P. Hayes, The Frame Problem and Related Problems in Artificial
Intelligence, in A. Elithorn and D. Jones (eds.) Artificial Intelligence
and Human Thinking, Elsevier, Holland, 1973.

P. Hayes, The Second Naive Physics Manifesto, in J. R. Hobbs and R. C.
Moore (eds.) Formal Theories of the Commonsense World, Ablex
Publishing, Norwood, NJ, 1985.

J. Kolodner, Reconstructive Memory: A Computer Model, Cognitive
Science, vol. 7, pp. 281-328, 1983.

P. Koton, Empirical and Model-Based Reasoning in Expert Systems,
Proceedings of Ninth IJCAI, Los Angeles, CA, 1985.

P. Koton, Using Experience in Learning and Problem Solving, PhD
thesis, Laboratory of Computer Science, MIT, 1988.

B. Kuipers, Commonsense Reasoning about Causality: Deriving
Behavior from Structure, Artificial Intelligence, vol. 24, pp. 169-
204, 1984.

J. Laird, A. Newell, P. Rosenbloom, SOAR: An Architecture for General
Intelligence, Artificial Intelligence, vol. 33, no. 1, pp. 1-64, 1987.

A. Lansky, D. Fogelsong, Localized Representation and Planning

Methods for Parallel Domains, Proceedings of AAAI-87, Seattle, WA,
1987.

- 175 -

The Mathlab Group, MACSYMA Reference Manual, Laboratory of
Computer Science, MIT, 1977.

S. Marcus, J. Stout, J. McDermott, VT: An Expert Elevator Designer, A/
Magazine, vol. 9, no. 1, Spring 1988.

D. McAllester, The Use of Equality in Deduction and Knowledge
Representation, Al Technical Report 550, MIT, 1980.

D. McDermott, A Temporal Logic for Reasoning About Processes and
Plans, Cognitive Science, vol. 6, pp. 101-155, 1982.

J. McDermott, R1: A Rule-Based Configurer of Computer Systems,
Artificial Intelligence, vol. 19, no. 1, pp. 39-88, 1982.

T. Mitchell, R. Keller, S. Kedar-Cabelli, Explanation-Based
Generalization: A Unifying Approach, Machine Learning 1, 1986.

J. Mohammed, R. Simmons, Qualitative Simulation of Semiconductor
Fabrication, Proceedings of AAAI-86, Philadelphia, PA, 1986. See
also below, R. Simmons & J. Mohammed.

S. Murthy, S. Addanki, PROMPT: An Innovative Design Tool,
Proceedings of AAAI-87, Seattle, WA, 1987.

R. Patil, Causal Representation of Patient lliness for Electrolyte and
Acid-Base Diagnosis, LCS Technical Report 267, MIT, 1981.

E. Pednault, Preliminary Report on a Theory of Plan Synthesis,
Technical Report 358, Al Center, SRI International, 1985.

C. Rich, D. Waters, Abstraction, Inspection and Debugging in
Programming, Al Memo 634, MIT, 1981.

C. Rich, Inspection Methods in Programming, Al Memo 1005, MIT; also
to appear in Artificial Intelligence, 1988.

E. Sacerdoti, A Structure for Plans and Behavior, American Elsevier,
New York, NY, 1977.

E. Sacks, Qualitative Mathematical Reasoning, Proceedings of Ninth
IJCAI, Los Angeles, CA, 1985.

R. Schank, Dynamic Memory: A Theory of Learning in Computers and
People, Cambridge University Press, 1982.

- 176 -

E. Shapiro, Algorithmic Program Debugging, MIT Press, Cambridge,
MA, 1982.

Y. Shoham, Reasoning About Change: Time and Causation from the
Standpoint of Artificial Intelligence, MIT Press, Cambridge, MA,
1988.

E. Shortliffe, Computer Based Medical Consultations: MYCIN,
American Elsevier, New York, NY, 1976.

R. Simmons, R. Davis, Representations for Reasoning About Change,
Al Memo 702, MIT, 1983.

R. Simmons, Representing and Reasoning About Change in Geologic
Interpretation, Al Technical Report 749, MIT, 1983.

R. Simmons, 'Commonsense’ Arithmetic Reasoning, Proceedings of
AAAI-86, Philadelphia, PA, 1986.

R. Simmons, J. Mohammed, Causal Modeling of Semiconductor
Manufacture, SPAR Technical Report 65, 1987.

H. Simon, The Sciences of the Artificial, MIT Press, Cambridge, MA,
1969.

R. Stallman, G. Sussman, Forward Reasoning and Dependency-
Directed Backtracking in a System for Computer-Aided Circuit
Analysis, Artificial Intelligence, vol. 9, 1977.

G. Sussman, A Computer Model of Skill Acquisition, American
Elsevier, New York, NY, 1977.

A. Tate, Generating Project Networks, Proceedings of Fifth IJCAI,
Cambridge, MA 1977.

J. Van Baalen, R. Davis, Overview of a Theory of Representation
Design, Proceedings of AAAI-88, Minneapolis, MN, 1988.

S. Vere, Splicing Plans to Achieve Misordered Goals, Proceedings of
Ninth IJCAI, Los Angeles, CA, 1985.

M. Wellman, R. Simmons, Mechanisms for Reasoning About Sets,
Proceedings of AAAI-88, Minneapolis, MN, 1988.

R. Wilensky, Planning and Understanding, Addison-Wesley, Reading,
MA, 1983.

- 177 -

D. Wilkins, Domain-Independent Planning: Representation and Plan
Generation, Artificial Intelligence, vol. 22(3), pp. 269-301, 1984.

B. Williams, Qualitative Analysis of MOS Circuits, Artificial
Intelligence, vol. 24, pp. 281-346, 1984.

L. Wills, Automated Program Recognition, Al Technical Report 904,
MIT, 1986.

- 178 -

Appendix A. Geologic Interpretation Scenarios

This appendix illustrates both schematically and propositionally the
fifteen scenarios, and their associated definitions, used to solve the
geologic interpretation problems presented in this report.

1. Primitive Predicates

The following are the low-level predicates used to construct
scenario patterns. Each predicate has an associated procedure that
knows how to examine the goal state to determine whether the
predicate holds given a set of argument bindings (arguments are
preceded by a '?') . If one or more of the arguments of the predicate
is uninstantiated, the associated procedure returns a binding list of
all objects that complete the predicate.

1. Is-lgneous-Material(?material) — is the material an igneous type
2. Is-Sedimentary-Material(?material) — is the material a sedimentary type
3. Is-Environment(?env) — is env the Environment object

The following predicates all have a temporal argument ?t, meaning that the
predicate is defined to hold at time t.
. Is-Rock-Unit(?r, ?t) — is object r an existing rock-unit at time t
. Is-Boundary(?b, ?t) — is object b an existing boundary at time t
. Abuts(?r, ?b, ?t) — does rock-unit r abut boundary b at time t
. Connected(?b1, ?b2, ?t) — do b1 and b2 share a common end-point at time t
. Orientation-Equal?(?obj, 7?theta, ?t) — does the orientation of object obj
(approximately) equal angle theta
. Below(?r, ?b, ?t) — is rock-unit r below boundary b
. Above(?r, ?b, ?t) — is rock-unit r above boundary b
. RL-Side-Of(?r, ?b, ?rl-side, ?t) — is rock-unit r on the right or left side of
boundary b
. Between(?b1, ?r1, ?b2, ?t) — does rock r1 fall between boundaries b1 and b2
. Linear(?b1, ?b2, ?t) — do boundaries b1 and b2 lie (approximately) along the
same line

—_ -
- O ONOO UL N

—
w N

2. Defined Predicates

The following are the intermediate-level predicates that have been
found useful in defining scenario patterns for the geologic domain.
Each defined predicate is a conjunction of primitive predicates
and/or other defined predicates.

1. Same-Type(?r1, ?r2, ?mat, ?t) — do r1 and r2 have the same composition
a. ?ri.material@?t ?mat
b. 7r2.material@?t ?mat

- 179 -

10.

11.

. Is-lgneous(?r, ?mat, ?t) — is the material composition of r igneous

a. ?r.material@?t = ?mat
b. Is-lgneous-Material(?mat)

. Is-Sedimentary(?r, ?mat, ?t) — is the material composition of r sedimentary

a. ?r.material@?t = ?mat
b. Is-Sedimentary-Material(?mat)

. Oriented-Boundary(?b, ?theta, ?t) — is b a boundary orientated at theta at time t

a. Is-Boundary(?b, ?t)
b. Orientation-Equal(?b, ?theta, ?t)

. Shared-Boundary(?obj1, ?b1, ?0bj2, ?t) — do obj1 and obj2 share a common

boundary b1 (an object is either a rock-unit or the Environment)
a. Abuts(?obj1, ?b1, ?t) |)
b. Abuts(?0bj2, ?b1, ?t) obj1 b|1 obj2

. Shared-Rock-Boundary(?obj1, ?b1, ?r1, ?t)

a. Abuts(?obj1, ?b1, ?t) |
b. Abuts(?r1, ?b1, ?t) obj1 b1 r1
c. Is-Rock-Unit(?r1, ?t) I

. Parallel(?b1, ?b2, ?theta, ?t) — do boundaries b1 and b2 have (approximately)

the same orientation theta
a. Oriented-Boundary(?b1, ?theta, ?t)
b. Oriented-Boundary(?b2, ?theta, ?t)

. Colinear(?b1, ?b2, ?theta, ?t) — are boundaries b1 and b2 colinear

a. Oriented-Boundary(?b1, ?theta, ?7t)
b. Oriented-Boundary(?b2, ?theta, ?t)
c. Linear(?b1, ?b2, ?t)

. Colinear-Connected(?b1, ?b2, ?theta, ?t) — are boundaries b1 and b2 colinear

and have an endpoint in common
a. Oriented-Boundary(?b1, ?theta, ?t)
b. Oriented-Boundary(7b2, ?theta, ?t)
c. Connected(?b1, ?b2, ?t)

T-Joint(?r1, ?bleft, ?bmiddle, ?bright, ?theta, ?t) rn

a. Colinear-Connected(?bleft, ?bright, ?theta, ?t) —blefthnght—
b. Abuts(?r1, ?bleft, ?t) bmiddle

c. Abuts(?r1, ?bright, ?t) \

d. Connected(?bleft, ?bmiddle, ?t)

e. Connected(?bright, ?bmiddle, ?t)

L-Joint(?b1, ?r1, ?b2, ?7t) —b1—
a. Abuts(?r1, ?b1, ?t) M b2
b. Abuts(?r1, ?b2, ?t) \
c. Connected(?b1, ?b2, ?t)

- 180 -

12. Colinear-Rock-Boundary(?b1, ?b2, ?theta, ?r1, ?b3, ?r2, ?t)
a. Is-Rock-Unit(?r1, ?t)

b. Shared-Rock-Boundary(?r1, ?b3, ?r2, ?t) —Db1 b2——
c. L-Joint(?b1, ?r1, ?b3, ?t)
d. L-Joint(?b2, ?r2, ?b3, ?1) M a3
e. Colinear-Connected(?b1, ?b2, ?theta, ?t) \
13. Faced-Rock-Boundary(?obj1, ?b1, ?b2, ?theta, ?b3, ?r2, ?t) obj1
a. Colinear-Rock-Boundary(?b1, ?b2, ?theta, ?r1, ?b3, ?r2, ?t) —b1 bo—
b. Shared-Rock-Boundary(?obj1, ?b1, ?r1, ?t) " \ 2
c. Shared-Rock-Boundary(?obj1, ?b2, ?r2, ?t) b3

\
3. Scenarios
The following presents graphical representations of the scenario

patterns and local interpretations as well as the declarative
representations actually used by the generator.

1. INTRUDES-THROUGH
Rock-Creation of Rock1 (R1 and R2 are pieces of ROCK1)

R1] IGN] R2 Dike-Intrusion of DIKE1 and intrusional boundary INTBOUND
1 > (IGN is a piece of DIKE1)
1 . (B1 and B2 are pieces of INTBOUND)

Scenario Pattern:
Is-lgneous(?ign, ?ign-material, ?t)
Shared-Rock-Boundary(?ign, ?b1, ?r1, ?t)
Shared-Rock-Boundary(?ign, ?b2, ?7r2, ?t)
Same-Type(?r1, ?r2, ?rock-material, ?t)
Parallel(?b1, ?b2, ?theta, ?t)
Between(?b1, ?ign, ?b2, ?t)
Symmetries: (?r1, ?r2), (?b1, ?b2)

Local Interpretation:
Occurs(Rock-Creation, ?rock-creationt)
Occurs(Dike-Intrusion, ?dike-intrusion1)

Parameter-of(?rock-creation1, Rock, ?rockl)
Parameter-of(?dike-intrusion1, Rock, ?dike1)
Parameter-of(?dike-intrusion1, Boundary, ?intbound)
Parameter-of(?dike-intrusion1, lcomposition, ?ign-material)
Spatially-Intersects(?rock1, ?diket1, ?dike-intrusioni.start)

?rock-creation1.end < ?dike-intrusion1.start
Piece-of(?ign, ?diket)

Piece-of(?r1, ?rock1) Piece-of(?r2, ?rockt)
Piece-of(?b1, ?intbound) Piece-of(?b2, ?intbound)

- 181 -

2. SEDIMENTARY-OVER-ROCK

S Rock-Creation of Rockt (R1 is piece of ROCK1)

B1
R1 Deposition of SED1 (S1 is a piece of SED1)

Scenario Pattern:
Is-Sedimentary(?s1, ?material, ?t)
Shared-Rock-Boundary(?s1, ?b1, ?r1, ?t)
Above(?s1, ?b1, ?t)
Orientation-Equal(?b1, ?theta, ?t)

Local Interpretation:
Occurs(Rock-Creation, ?rock-creationt)
Occurs(Deposition, ?deposition1)

Parameter-of(?rock-creation1, Rock, ?rock1)
Parameter-of(?deposition1, Rock, ?sed1)
Parameter-of(?deposition1, Boundary, ?intbound)
Parameter-of(?deposition1, Dcomposition, ?material)
Is-Deposited-Upon(?rock, ?depositioni.start)

?rock-creationi.end < ?deposition1.start

Piece-of(?s1, ?sed1) Piece-of(?b1, ?depbound)
Piece-of(?r1, ?rock1)

3. IGNEOUS-UNDER-SEDIMENTARY
Deposition of SED1 iS1 is piece of SED1)

S1
B1

Batholithic-Intrusion of BATH1 into SED1
IGN1 (IGN is piece of BATH1)

Scenario Pattern:
Is-lgneous(?ign1, ?ign-material, ?t)
Shared-Rock-Boundary(?ign1, ?b1, ?s1, ?t)
Below(?ign1, ?b1, ?t)
Orientation-Equal(?b1, ?theta, ?t)

Local Interpretation:
Occurs(Deposition, ?deposition1)
Occurs(Batholithic-Intrusion, ?batholithic-intrusion1)

Parameter-of(?deposition1, Rock, ?sed1)
Parameter-of(?batholithic-intrusion1, Rock, ?bath1)
Parameter-of(?batholithic-intrusion1, Boundary, ?intbound)
Parameter-of(?batholithic-intrusion1, Icomposition, ?ign-material)
Spatially-Intersects(?sed1, ?bath1, ?batholithic-intrusioni.start)

?depositioni.end < ?batholithic-intrusion1.start

Piece-of(?ign1, ?bath1) Piece-of(?b1, ?intbound)
Piece-of(?s1, ?sed1)

- 182 -

4. SEDIMENTARY-OVER-IGNEOUS
Batholitic-Intrusion of BATH1 (IGN1 is a piece of BATH1)

Up“ﬂ \

Erosion of BATH1

S1
B1

IGN1

Subsidence Below Sea-level

Deposition of SED1 (S1 is a piece of SED1)

Scenario Pattern:
Is-Sedimentary(?s1, ?sed-material, ?t)
Shared-Rock-Boundary(?s1, ?b1, ?ign1, ?t)
Above(?s1, ?b1, ?t)
Is-Igneous(?ign1, ?ign-material, ?t)
Orientation-Equal(?b1, ?theta, ?t)

Local Interpretation:
Occurs(Batholithic-Intrusion, ?batholithic-intrusiont)
Occurs(Uplift, ?uplift1)
Occurs(Erosion, ?erosion1)
Occurs(Subsidence, ?subsidence1)
Occurs(Deposition, ?deposition1)

Parameter-of(?batholithic-intrusion1, Rock, ?bath1)
Parameter-of(?batholithic-intrusion1, Icomposition, ?ign-material)
Parameter-of(?uplift!, Uamount, ?uamount1)
Parameter-of(?erosion1, Elevel, ?eleveli)
Parameter-of(?subsidence1, Samount, ?samount1)
Parameter-of(?deposition1, Rock, ?sed1)
Parameter-of(?deposition1, Boundary, ?depbound)
Parameter-of(?deposition1, Dcomposition, ?sed-material)
?uamounti 2 Sea-Level — Surface.top.height@?uplift1.start
?elevell < ?bath1.top.height@?erosioni.start

?samounti > Surface.top.height@?subsidence1.start - Sea-Level
Is-Deposited-Upon(?bath1, ?deposition1.start)

?batholithic-intrusion1.end < ?erosioni.start
?upliftl.end < ?erosion1.start

?erosion1.end < ?subsidence1.start
?subsidence1.end < ?deposition1.start

Piece-of(?s1, ?sed1)

Piece-of(?b1, ?depbound)
Piece-of(?ign1, ?bath1)

- 183 -

5. EROSION-ENDS-BOUNDARY
Environment

-B1—y-B2—
R1/J R2
B3
Boundary-Creation of BOUND3 Rock-Creation of ROCK2 Rock-Creation of ROCK1 Uplift above
(B3 is a piece of BOUND3) (R2 is a piece of ROCK2) (R1is a piece of ROCK1) Sea-level

Erosion creating erosional boundary EROBOUND
(B1 and B2 are pieces of EROBOUND)

Scenario Pattern:
Is-Environment(?env)
Faced-Rock-Boundary(?env, ?b1, ?b2, ?theta, ?r1, ?b3, ?r2, ?)
Above(?env, ?b1, 7t)
Symmetries: (?r1, ?r2), (?b1, ?b2)

Local Interpretation:
Occurs(Rock-Creation, ?rock-creationi)
Occurs(Rock-Creation, ?rock-creation2)
Occurs(Boundary-Creation, ?boundary-creation?)
Occurs(Uplift, ?uplift1)
Occurs(Erosion, ?erosiont)

Parameter-of(?rock-creation1, Rock, ?rockl)
Parameter-of(?rock-creation2, Rock, ?rock2)
Parameter-of(?boundary-creation1, Boundary, ?bound1)
Parameter-of(?uplift1, Uamount, ?uamount?)
Parameter-of(?erosion1, Boundary, ?erobound)
Parameter-of(?erosion1, Elevel, ?elevell)

2uamount1 > Sea-Level — Surface.top.height@?uplift1.Start
?elevell < ?rock1.top.height@?erosioni.start

?elevell < ?rock2.top.height@?erosioni.start

?elevell < ?boundi.top.height@?erosion1.start

?rock-creationi.end < ?erosion1.start
?rock-creation2.end < ?erosioni.start
?boundary-creation1.end < ?erosioni.start
?upliftt.end < ?erosion1.start

Piece-of(?r1, ?rockt)

Piece-of(?r2, ?rock2) -
Piece-of(?b1, ?erobound)
Piece-of(?b2, 7?erobound)
Piece-of(?b3, ?bound1)

- 184 -

6. ERODED-SEDIMENTARY
Environment
m—— B

Deposition of SED1 (S1 is a piece of SED1)

St Uplift above Sea-level

S1.orientation@t = B1.orientation@t Erosion creating erosional boundary EROBOUND
(B1 is a piece of EROBOUND)

Scenario Pattern:

Is-Environment(?env)

Shared-Boundary(?s1, ?b1, ?env, ?)

Above(?env, ?b1, ?t)

Is-Sedimentary(?s1, ?sed-material, ?t)

Orientation-Equal(?b1, ?theta, ?t)

Orientation-Equal(?s1, ?theta, ?t)

Local Interpretation:
Occurs(Deposition, ?deposition1) Occurs(Uplift, ?uplift1)
Occurs(Erosion, ?erosion1)

Parameter-of(?deposition1, Rock, ?sed1)
Parameter-of(?depositiont, Dcomposition, ?sed-material)
Parameter-of(?uplifti, Uamount, ?uamount1)
Parameter-of(?erosion1, Elevel, ?elevell)
Parameter-of(?erosion1, Boundary, ?erobound)
?uamount1 > Sea-Level — Surface.top.height@?uplift1.Start
?elevell < ?sed1.top.height@?erosioni.start

?deposition1.end < ?uplift1.start ?uplifti.end < ?erosioni.start
Piece-of(?s1, ?sed1) Piece-of(?b1, ?erobound)
7. SEDIMENTARY-ON-SURFACE
Environment Deposition creating SED1 and depositional boundary DEPBOUND
— B — (S1is a piece of SED1)
S1 (B1is a piece of DEPBOUND)

S1.orientation@t = B1.orientation@t

Scenario Pattern:
Is-Environment(?env)
Shared-Boundary(?s1, ?b1, ?env, ?t)
Above(?env, ?b1, ?t)
Is-Sedimentary(?s1, ?sed-material, ?t)
Orientation-Equal(?b1, ?theta, ?t)
Orientation-Equal(?s1, ?theta, 7?t)

Local Interpretation:
Occurs(Deposition, ?deposition1)

Parameter-of(?deposition1, Rock, ?sed1)
Parameter-of(?deposition1, Upper-Boundary, ?depbound)
Parameter-of(?deposition1, Dcomposition, ?sed-material)

Piece-of(?s1, ?sed1) Piece-of(?b1, ?depbound)

- 185 -

8. TILTED-SEDIMENTARY
S1 Deposition of SED1 (S1 is a piece of SED1)

S1.orientation@t # 0 Tilt by angle of Orientation(S1)

Scenario Pattern:
Is-Sedimentary(?s1, ?sed-material, ?t)
Orientation-Equal(?s1, ?thetal, ?t)
?thetal = 0

Local Interpretation:
Occurs(Deposition, ?deposition1)
Occurs(Tilt, ?tilt1)

Parameter-of(?deposition1, Rock, ?sed1)
Parameter-of(?deposition1, Dcomposition, ?sed-material)
Parameter-of(?tilt1, Theta, ?thetal)

?depositiont.end < ?tilt1.start

Piece-of(?s1, ?sed1)

9. SEDIMENTARY-NO-TILT

St
Deposition of SED1 (S1 is a piece of SED1)

S1.orientation@t =0

Scenario Pattern:
Is-Sedimentary(?s1, ?sed-material, ?t)
Orientation-Equal(?s1, ?thetal, ?t)
?thetat = 0

Local Interpretation:
Occurs(Deposition, ?deposition1)

Parameter-of(?deposition1, Rock, ?sed1)
Parameter-of(?deposition1, Dcomposition, ?sed-material)

Piece-of(?s1, ?sed1)

- 186 -

10. NON-CONFORMABLE-BOUNDARY

R3 Rock-Creation of ROCK1 Rock-Creation of ROCK2
“B1 B2=— (R1 is a piece of ROCK1) (R2 is a piece of ROCK2)
R1 7 R2 v
B3 Rock-Creation of ROCK3 (R3 is a piece of ROCK3)

Scenario Pattern:
Faced-Rock-Boundary(?r3, ?b1, ?b2, ?theta, ?r1, ?b3, ?r2, ?t)
Is-Rock-Unit(?r3, ?t)
Above(?r3, ?b1, ?t)
Symmetries: (?r1, ?r2), (?b1, ?b2)

Local Interpretation:
Occurs(Rock-Creation, ?rock-creation1)
Occurs(Rock-Creation, ?rock-creation2)
Occurs(Rock-Creation, ?rock-creation3)

Parameter-of(?rock-creation1, Rock, ?rock1)
Parameter-of(?rock-creation2, Rock, ?rock2)
Parameter-of(?rock-creation3, Rock, ?rock3)
Parameter-of(?rock-creation3, Boundary, ?boundary3)

?rock-creation1.end < ?rock-creation3.start
?rock-creation2.end < ?rock-creation3.start

Piece-of(?r1, ?rock1)
Piece-of(?r2, ?rock2)
Piece-of(?r3, ?rock3)
Piece-of(?b1, ?boundary3)
Piece-of(?b2, ?boundary3)

11. BOUNDARY-CONTINUITY
R1

— B1 B2 Boundary-Creation of BOUND1
7 (B1 and B2 are pieces of BOUND1)

Scenario Pattern:
Colinear-Connected(?b1, ?b2, ?theta, ?t)
Abuts(?r1, ?b1, ?t)
Abuts(?r1, ?b2, ?t)
Is-Rock-Unit(?r1, ?t)
Symmetries: (?b1, ?b2)

Local Interpretation:
Occurs(Boundary-Creation, ?boundary-creation1)

Parameter-of(?boundary-creation1, Boundary, ?bound1)

Piece-of(?b1, ?bound1)
Piece-of(?b2, ?boundt)

- 187 -

12. INTRUSION-TO-SURFACE

. Deposition of SED1
Environment (81 and S2 are pieces of SED1)
=B1 B2=yrB3— *
1 fIGNIT s2 Dike-Intrusion of DIKE1 through SED1
B4 BS (IGN is piece of DIKE1)

Scenario Pattern:
Is-Environment(?env)
Faced-Rock-Boundary(?env, ?b1, ?b2, ?theta, ?s1, ?b4, ?ignt, ?t)
Faced-Rock-Boundary(?env, ?b2, ?b3, ?theta, ?ign1, ?b5 ?s2, ?t)
Above(?env, ?b1, ?1)
Is-lgneous(?ign1, ?ign-material, ?t)
Is-Sedimentary(?s1, ?sed-material, ?t)
Is-Sedimentary(?s2, ?sed-material, ?t)
Symmetries: (?s1, ?s2), (?b1, ?b3), (?b4, ?b5)

Local Interpretation:
Occurs(Deposition, ?deposition1)
Occurs(Dike-Intrusion, ?dike-intrusion1)

Parameter-of(?deposition1, Rock, ?sedi)
Parameter-of(?deposition1, Upper-Boundary, ?depbound)
Parameter-of(?deposition1, Dcomposition, ?sed-material)
Parameter-of(?dike-intrusion1, Rock, ?dike1)
Parameter-of(?dike-intrusion1, Upper-Boundary, ?intbound)
Parameter-of(?dike-intrusion1, Icomposition, ?ign-material)
Spatially-Intersects(?sed1, ?dike1, ?dike-intrusion1.start)

?deposition1.end < ?dike-intrusion1.start

Piece-of(?ign1, ?dike1)
Piece-of(?b2, ?intbound)
Piece-of(?s1, ?sed1)
Piece-of(?s2, 7?sed1)
Piece-of(?b1, ?depbound)
Piece-of(?b3, ?depbound)

- 188 -

13. SIMPLE-FAULT

.
B1 Rock-Creation of ROCK1 Rock-Creation of ROCK2
RB1 R2 (R1 and R2 are pieces of ROCK1) (R3 and R4 are pieces of ROCK2)
B3
R3 Y=Bi= Fault of FAULT1 ROC
B5 R4 ault o across K1 and ROCK2

(B1, B3 and B5 are pieces of FAULT1)

Scenario Pattern:
Colinear-Rock-Boundary(?b1, ?b3, ?theta, ?ri, ?b2, ?r3, ?t)
Colinear-Rock-Boundary(?b3, ?b5, ?theta, ?r2, ?b4, ?r4,)
Above(?r1, ?b2, ?1)
Same-Type(?r1, ?r2, ?rock-materialtl, ?t)
Same-Type(?r3, ?r4, ?rock-material2, ?t)
RL-Side-Of(?r1, ?b1, ?side, ?t)
Symmetries: (?b2, ?b4), (?r1, ?r2), (?r3, ?r4)

Local Interpretation:
Occurs(Rock-Creation, ?rock-creation1)
Occurs(Rock-Creation, ?rock-creation2)
Occurs(Faulting, ?faulting1)

Parameter-of(?rock-creation1, Rock, ?rock1)

Parameter-of(?rock-creation2, Rock, ?rock2)

Parameter-of(?faulting1, Boundary, ?fault1)

Parameter-of(?faulting1, Ffault-Type, ?ffault-type)

(= (iff (?b1.orientation@?faulting1.start > 90) (?side = 'LEFT))
(?ffault-type = 'NORMAL-FAULT))

(= (not (iff (?b1.orientation@?faultingt.start > 90) (?side = 'LEFT)))
(?ffault-type = 'REVERSE-FAULT))

Spatially-Intersects(?rock1, ?fault1, ?faulting1.start)

Spatially-Intersects(?rock2, ?faultl, ?faultingi.start)

?rock-creationt.end < ?faulting1.start
?rock-creation2.end < ?faulting1.start

Piece-of(?r1, ?rockt)
Piece-of(?r2, ?rock1)
Piece-of(?r3, 7?rock2)
Piece-of(?r4, ?rock2)
Piece-of(?b1, ?fault1)
Piece-of(?b3, ?fault1)
Piece-of(?b5, ?fault1)

- 189 -

14. EXTENDED-FAULT

R1 ‘B1 Rock-Creation of ROCK1 Rock-Creation of ROCK2
—Bz—\B 3 (R1 and R2 are pieces of ROCK1) (R3 and R4 are pieces of ROCK?2)
R3 g
B8 2 Fault of FAULT! across ROCK1 and ROCK?
BS R4 (B1, B3, BS and B6 are pieces of FAULT1)

Scenario Pattern:
Colinear-Rock-Boundary(?b1, ?b3, ?theta, ?r1, ?b2, ?r3, ?t)
Colinear-Rock-Boundary(?b6, ?b5, ?theta, ?r2, ?b4, ?r4, ?t)
Above(?r1, ?b2, ?t)
Same-Type(?r1, ?r2, ?rock-materiall, ?t)
Same-Type(?r3, ?r4, ?rock-material2, ?t)
RL-Side-Of(?r1, ?b1, ?side, ?t)
RL-Side-Of(?r2, ?b6, ?side1, ?t)
?side1 # ?side
Colinear-Connected(?b3, ?b6, ?theta, ?t)
Symmetries: (?b2, ?b4), (?r1, ?r2), (?r3, ?r4)

Local Interpretation:
Occurs(Rock-Creation, ?rock-creationt)
Occurs(Rock-Creation, ?rock-creation2)
Occurs(Faulting, ?faultingi)

Parameter-of(?rock-creation1, Rock, ?rockt)

Parameter-of(?rock-creation2, Rock, ?rock2)

Parameter-of(?faulting1, Boundary, ?fault1)

Parameter-of(?faulting1, Ffault-Type, ?ffault-type)

(= (iff (?b1.orientation@7?faulting1.start > 90) (?side = 'LEFT))
(?ffault-type = 'NORMAL-FAULT))

(= (not (iff (?b1.orientation@?faultingi.start > 90) (?side = 'LEFT)))
(?ffault-type = 'REVERSE-FAULT))

Spatially-Intersects(?rock1, ?fault1, ?faulting1.start)

Spatially-Intersects(?rock2, ?faulti, ?faulting1.start)

?rock-creation1.end < ?faultingi.start
?rock-creation2.end < ?faulting1.start

Piece-of(?r1, ?rock1)
Piece-of(?r2, ?rock1)
Piece-of(?r3, 7?rock2)
Piece-of(?r4, ?rock2)
Piece-of(?b1, ?fault1)
Piece-of(?b3, ?fault1)
Piece-of(?b6, ?fault1)
Piece-of(?b5, ?fault1)

- 190 -

15. IGNEOUS-CUTS-BOUNDARY
Boundary-Creation of BOUND1

'83 B'5 (B1 and B2 are pieces of BOUND1)
—_ 311 |GN|- Bo—

B4 B6 Dike-Intrusion of DIKE1 through BOUND1

1 1 (IGN is piece of DIKE1)

Scenario Pattern:
Is-Ilgneous(?ign, ?ign-material, ?t)
T-Joint(?ign, ?b3, ?b1, ?bd4, ?thetal, 1)
T-Joint(?ign, ?b5, ?b2, ?b6, ?thetal, ?t)
Colinear(?b1, ?b2, ?theta2, ?t)
Symmetries: (?b1, ?b2), (?b3, ?b4), (?b5, ?bs)

Local Interpretation:
Occurs(Boundary-Creation, ?boundary-creation1)
Occurs(Dike-Intrusion, ?dike-intrusiont)

Parameter-of(?boundary-creation1, Boundary, ?bound1)
Parameter-of(?dike-intrusion1, Rock, ?dike1)
Parameter-of(?dike-intrusion1, Icomposition, ?ign-material)
Parameter-of(?dike-intrusion1, Boundary, ?intbound)
Spatially-Intersects(?bound1, ?dike1, ?dike-intrusion1.start)

?boundary-creation1.end < ?dike-intrusion1.start

Piece-of(?ign, ?dike1)

Piece-of(?b1, ?bound1)
Piece-of(?b2, ?boundi)
Piece-of(?b3, ?intbound)
Piece-of(?b4, ?intbound)
Piece-of(?b5, ?intbound)
Piece-of(?b6, ?intbound)

- 191 -

Appendix B. Causal Models of Geologic Events

This appendix contains descriptions of the object definitions, event
model descriptions, definitions of predicates, and domain axioms
used in GORDIUS to model "layer-cake" geology.

1. Geologic Objects

Objects are presented as <Object> : Parent-Type {<attribute>:<Types}*.
An object inherits all attributes from its parent type, although for
completeness all attributes are repeated for each obect.

Point : Temporal-Object
height : Real
lateral : Real

Physical-Feature : Temporal-Object
Environment : Physical-Feature

Air : Environment

Sea : Environment

Geologic-Feature : Physical-Feature
pieces : set of Geologic-Feature
top : Point
bottom : Point
orientation : Angle

Rock-Unit : Geologic-Feature
pieces : set of Rock-Unit
top : Point
bottom : Point
orientation : Angle
thickness : Positive-Real
material : Rock-Material

Up-Thrown-Block : Rock-Unit
pieces : set of Rock-Unit
top : Point
bottom : Point
orientation : Angle
thickness : Positive-Real
material : Rock-Material

- 192 -

Down-Thrown-Block : Rock-Unit
pieces : set of Rock-Unit
top : Point
bottom : Point
orientation : Angle
thickness : Positive-Real
material : Rock-Material

Sedimentary : Rock-Unit
pieces : set of Sedimentary
top : Point
bottom : Point
orientation : Angle
thickness : Positive-Real
material : Sedimentary-Rock
bedding-plane : Gplane

Igneous : Rock-Unit
pieces : set of Igneous
top : Point
bottom : Point
orientation : Angle
thickness : Positive-Real
material : Igneous-Rock

Dike : Igneous
pieces : set of Igneous
top : Point
bottom : Point
orientation : Angle
thickness : Positive-Real
material : Igneous-Rock
center-plane : Gplane

Batholith : Igneous
pieces : set of Igneous
top : Point
bottom : Point
orientation : Angle
thickness : Positive-Real
material : Igneous-Rock
bounding-plane : Gplane

Rock-Material : Temporal-Object
minerals : set of Mineral

Sedimentary-Rock : Rock-Material
minerals : set of Mineral
detrial-sediment : Detritus

Shale : Sedimentary-Rock
minerals : set of Mineral
detrial-sediment : Mud

- 193 -

Sandstone : Sedimentary-Rock
minerals : {quartz}
detrial-sediment : Sand

Conglomerate : Sedimentary-Rock
minerals : set of Mineral
detrial-sediment : Gravel

Igneous-Rock : Rock-Material
minerals : set of Mineral

Mafic-lgneous : Igneous-Rock
minerals : set of Mineral

Granite : Igneous-Rock
minerals : {rock-mineral, quartz, feldspar}

Boundary : Temporal-Object
pieces : set of Boundary
side-1 : set of Physical-Feature
side-2 : set of Physical-Feature

Interior-Boundary : Boundary
pieces : set of Interior-Boundary
side-1 : set of Rock-Unit
side-2 : set of Rock-Unit

Exterior-Boundary : Boundary
pieces : set of Exterior-Boundary
side-1 : {Environment}
side-2 : set of Rock-Unit

Upper-Boundary : Exterior-Boundary
pieces : set of Exterior-Boundary
side-1 : {Environment}
side-2 : set of Rock-Unit

Fault : Boundary
pieces : set of Fault
side-1 : set of Physical-Feature
side-2 : set of Physical-Feature
fault-plane : Gplane
fault-type : one of 'NORMAL, 'REVERSE, 'LATERAL
slip-direction : Angle
slip : Real

Gplane : Abstract-Object
xz-angle : Angle
y-angle : Angle
location : Point

- 194 -

2. Geologic Events

Events are presented using the syntax given in Section 3.2.2 — events
have parameter, precondition, effect, and constraint fields. |In
addition, as with objects, events form a type hierarchy (AKO field),
inheriting all attributes from events higher in the type hierarchy.

BOUNDARY-CREATION
Parameters : Boundary : Boundary (created by eventy

ROCK-CREATION
AKO : Boundary-Creation
Parameters : Boundary : Boundary (created)
Rock : Rock-Unit (created)
Effects : Change(=, Boundary.side-1, {Rock}, Rock-Creation)

SUBSIDENCE
Parameters : Samount : Positive-Real
Effects : (For-all ($pt : Point)
(If Exists-at($pt, Subsidence.start)
Change(-, $pt.height, Samount, Subsidence)))

UPLIFT
Parameters : Uamount : Posiiive-Real
Effects : (For-all ($pt : Point)
(If Exists-at($pt, Uplift.start)
Change(+, $pt.height, Uamount, Uplift)))

TILT
Parameters : Theta : Angle
Effects : (For-all ($gf : Geologic-Feature)
(If Exists-at($gf, Tilt.start)
Change(+, $gf.orientation, Theta, Tilt)))
(For-all ($pt : Point)
(If Exists-at($pt, Tilt.start)
Change(=, $pt.height, (sin(Theta) * $pt.lateral@Tilt.start +
cos(Theta) * $pt.height@Tilt.start), Tilt)
Change(=, $pt.lateral, (cos(Theta) * $pt.lateral@Tilt.start -
sin(Theta) * $pt.height@Tilt.start), Tilt)))
Constraints : Theta # 0

- 195 -

EROSION
AKO: Boundary-Creation
Parameters: Boundary : Boundary (created)
Elevel : Real
Preconditions: Surface.top.height@Erosion.start > sea-level
Effects:
Change(=, Boundary.orientation, 0, Erosion)
Change(=, Boundary.side-1, {Environment}, Erosion)
Change(=, Boundary.side-2, Ero-Surface(Elevel, Surface, Erosion.start), Erosion)
(For-all ($ru : rock-unit)
(If [Exists-at($ru, Erosion.start) and
$ru.top.height@Erosion.start > Elevel and $ru.bottom.height@Erosion.start < Elevel]
[Change(-, $ru.thickness, Erosion-of(Elevel, $ru, Erosion.start), Erosion) and
Change(=, $ru.top, EroFn1(Elevel, $ru, Erosion.start), Erosion)]))
(For-all ($bd : boundary)
(If [Exists-at($bd, Erosion.start) and
$bd.top.height@Erosion.start > Elevel and $bd.bottom.height@Erosion.start < Elevel]
Change(=, $bd.top, EroFn1(Elevel, $ru, Erosion.start), Erosion)))
(For-all ($gf : geologic-feature)
(1f [Exists-at($gf, Erosion.start) and $gf # Surface and
Elevel < $gf.bottom.height@Erosion.start]
Destroyed($gf, Erosion.end)))
Change(=, Surface.top, EroFn2(Elevel, Surface.top@Erosion.start), Erosion)
Change(=, Surface.bottom, EroFn2(Elevel, Surface.bottom@Erosion.start), Erosion)
Change(=, Surface.orientation, EroFn3(Elevel, Surface, Erosion.start), Erosion)
Change(=, Surface.side-2, Ero-Surface(Elevel, Surface, Erosion.start), Erosion)
Constraints :
Elevel > sea-level
Surface.bottom.height@Erosion.end < Surface.bottom.height@Erosion.start
Surface.top.height@Erosion.end = Elevel
Surface.bottom.height@Erosion.end < Elevel
(If Surface.bottom.height@Erosion.start > Elevel
Surface.bottom.height@Erosion.end = Elevel)
(For-all ($ru : rock-unit)
(If [Exists-at($ru, Erosion.start) and
$ru.top.height@Erasion.start > Elevel and $ru.bottom.height@Erosion.start < Elevel]
[$ru € Ero-Surface(Elevel, Surface, Erosion.start.start) and

$ru.top.height@Erosion.start.end = Elevel)))
EroFnt1, EroFn2, Eroslon-of, and Ero-Surface are domain functions, not defined further, that

represent different aspects of the erosion event (e.g., Eroslon-of(Elevel, ru, t) represents the
amount of ru eroded away; it is constrained to be non-negative and less than the thickness of ru).

- 196 -

DEPOSITION
AKO : Rock-Creation
Parameters : Boundary : Interior-Boundary (created) ;; The lower depositional boundary
Rock : Sedimentary (created)
Upper-Boundary : Upper-Boundary (created) ;; Boundary between rock and sea
Dlevel : Positive-Real
Dcomposition : Sedimentary-Rock
Preconditions : Surface.bottom.height < Sea-Level
Effects :
Change(=, Boundary.side-1, {Rock}, Deposition)
Change(=, Boundary.side-2, Dep-Bound(Dlevel, Deposition.start), Deposition)
Change(=, Boundary.orientation, Surface.orientation@Deposition.start, Deposition)
Change(=, Boundary.top, Dfn4(Dlevel, Surface, Deposition.start), Deposition)
Change(=, Boundary.bottom, Surface.bottom@Deposition.start, Deposition)
Change(=, Rock.thickness, Dlevel, Deposition)
Change(=, Rock.orientation, 0, Deposition)
Change(=, Rock.material, Dcomposition, Deposition)
Change(=, Rock.top, Dfn2(Dlevel, Surface, Deposition.start), Deposition)
Change(=, Rock.bottom, Surface.bottom@Deposition.start, Deposition)
Change(=, Upper-Boundary.side-1, {Environment}, Deposition)
Change(=, Upper-Boundary.side-2, {Rock}, Deposition)
Change(=, Upper-Boundary.orientation, 0, Deposition)
Change(=, Surface.side-2, {Rock ...}, Deposition)
Change(=, Surface.orientation, Dfn3(Dlevel, Surface, Deposition.start), Deposition)
Change(=, Surface.bottom, Dfn1(Dlevel, Surface.bottom@Deposition.start), Deposition)
Change(=, Surface.top, Dfn1(Dlevel, Surface.top@Deposition.start), Deposition)
Constraints :
Dlevel < Sea-Level - Surface.bottom.height@Deposition.start
Surface.bottom.height@Deposition.end = Dlevel + Surface.bottom.height@Deposition.start
Rock.top.height@Deposition.end = Dlevel + Surface.bottom.height@Deposition.start
Boundary.top.height@Deposition.end < Surface.top.height@Deposition.start
Upper-Boundary.top.height@Deposition.end = Dlevel + Surface.bottom.height@Deposition.start
(For-all ($ru : Rock-Unit)
(If $ru € Surface.side-2@Deposition.start
[(If ($ru.bottom.heicht@Deposition.start <
Dlevel + Surface.bottom.height@Deposition.start)
$ru e Boundary.side-2@Deposition.end) and
(If ($ru.bottom.height@Deposition.start >
Dlevel + Surface.bottom.height@Deposition.start)
$ru e Surface.side-2@Deposition.end)]))
(If (Surface.top.height@Deposition.start < Dlevel + Surface.bottom.height@Deposition.start)
Surface.top.height@Deposition.end = Dlevel + Surface.bottom.height@Deposition.start)
(If (Surface.top.height@Deposition.start = Surface.bottom.height@Deposition.start)
Boundary.top.height@Deposition.end = Surface.bottom.height@Deposition.start)

Dep-Bound and Dfn1-Dfn4 are domain functions, not defined further, that represent different
aspects of deposition.

- 197 -

FAULTING
AKO : Boundary-Creation
Parameters : Boundary : Fault (created)
DTB : Down-Thrown-Block (created)
UTB : Up-Thrown-Block (created)
Ffault-plane : Gplane
Ffault-type : One-of 'NORMAL, 'REVERSE
Fslip : Positive-Real
Effects :
Change(=, Boundary.side-1, {DTB ...}, Faulting)
Change(=, Boundary.side-2, {UTB ...}, Faulting)
Change(=, Boundary.slip, Fslip, Faulting)
Change(=, Boundary.fault-type, Ffault-type, Faulting)
Change(=, Boundary.slip-direction, 90°, Faulting)
Change(=, Boundary.fault-plane, Ffault-plane, Faulting)
(For-all ($pt : Point)
(If Exists-at($pt, Faulting.start) and Is-Point-Of($pt, DTB)
[Change(-, $pt.height, Fslip * |sin(Ffault-plane.y-angle)|, Faulting) and
Change(+, $pt.lateral, Fslip * |cos(Ffault-plane.y-angle)|, Faulting)]))
Change(=, Surface.orientation,
Ffn1(Ffault-plane.y-angle, Surface.orientation@Faulting.start), Faulting)
(For-all ($gf : Geologic-Feature)
(If Exists-at($gf, Faulting.start)
[Change(=, $gf.bottom, Ffn2(Fslip, Ffault-Plane, $gf, Faulting.start), Faulting) and
(If Spatially-Intersects($gf, Boundary, Faulting.start)
(Created ($gf-new1, $gf.type, Faulting.start)
(Created ($gf-new2, $gf.type, Faulting.start)
Change(=, $gf-new1.material, $gf.material@Faulting.start, Faulting)
Change(=, $gf-new2.material, $gf.material@Faulting.start, Faulting)
Change(=, $gf-new1.orientation, $gf.orientation@Faulting.start, Faulting)
Change{=, $gf-new2.orientation, $gf.orientation@Faulting.start, Faulting)
Change(+, $gf.pieces, {$gf-new1, $gf-new2}, Faulting)
(If Is-Rock-Unit($gf, Faulting.start)
[$gf-new1 e Boundary.side-1@Faulting.end and
$gf-new2 € Boundary.side-2@Faulting.end]))))]))
Constraints :
Surface.orientation@Faulting.end # 0
(For-all ($gf : Geologic-Feature)
(If Exists-at($gf, Faulting.start)
Is-Point-Of($gf.bottom@Faulting.end, DTB)))
(For-all ($bd : Boundary)
(If Exists-at($bd, Faulting.start) and ($bd.orientation@Faulting.start = 0)
($bd.bottom@Faulting.end).height@Faulting.start = $bd.bottom.height@Faulting.start)))

Spatlally-Intersects, Ffn1 and Ffn2 are domain functions, not defined further, that represent
different aspects of faulting.

- 198 -

INTRUSION
AKO : Rock-Creation
Parameters : Boundary : Interior-Boundary (created)
Rock : Igneous (created)
Icomposition : Igneous-Rock
Iwidth : Positive-Real
Effects :
Change(=, Boundary.side-1, {Rock}, Intrusion)
Change(=, Boundary.side-2, Int-Boundary(Rock, Intrusion.start), Intrusion)
Change(=, Rock.thickness, Iwidth, Intrusion)
Change(=, Rock.material, Icomposition, Intrusion)

BATHOLITHIC-INTRUSION
AKO : Intrusion
Parameters : Boundary : Interior-Boundary (created)
Rock : Batholith (created)
lcomposition : Igneous-Rock
Iwidth : Positive-Real
Ibounding-plane : Gplane
Effects :
Change(=, Boundary.side-1, {Rock}, Batholithic-Intrusion)
Change(=, Boundary.side-2,
Int-Boundary(Rock, Batholithic-Intrusion.start), Batholithic-Intrusion)
Change(=, Rock.thickness, lwidth, Batholithic-Intrusion)
Change(=, Rock.material, lcomposition, Batholithic-Intrusion)
Change(=, Rock.bounding-plane, Ibounding-plane, Batholithic-Intrusion)
Change(=, Rock.orientation, 0, Batholithic-Intrusion)
Change(=, Boundary.orientation, Ibounding-plane.y-angle, Batholithic-Intrusion)
(For-all ($ru : Rock-Unit)
(If [Exists-at($ru, Batholithic-Intrusion.start) and
Spatially-Intersects($ru, Rock, Batholithic-Intrusion.start)]
[Change(-, $ru.thickness, Iwidth * Ifn($ru, Rock), Batholithic-Intrusion) and
Change(=, $ru.bottom, Ifn1(lbounding-plane, $ru.bottom@Batholithic-Intrusion.start),
Batholithic-Intrusion)]))
Constraints :
(For-all ($ru : Rock-Unit)
(If [Exists-at($ru, Batholithic-Intrusion.start) and
Spatially-Intersects($ru, Rock, Batholithic-Intrusion.start)]
[$ru e Boundary.side-2@Batholithic-Intrusion.end and
0 < Ifn($ru, Rock) and Ifn($ru, Rock) < 1 and
$ru.bottom.height@Batholithic-Intrusion.end = Int-Bound-Bottom(lbounding-Plane))))
Boundary.bottom.height@Batholithic-Intrusion.end = Int-Bound-Bottom(lbounding-Plane)
Boundary.top.height@Batholithic-Intrusion.end = Int-Top(lbounding-Plane)
Rock.top.height@Batholithic-Intrusion.end = Int-Top(lbounding-Plane)

Int-Boundary, Ifn1, Int-Bound-Bottom and Int-Top are domain functions, not defined

further, that represent different aspects of batholithic-intrusion. In addition, the function Ifn
is defined within the batholithic-intrusion event in terms of constraints on its value.

- 199 -

DIKE-INTRUSION
AKO : Intrusion
Parameters : Boundary : Interior-Boundary (created)
Rock : Dike (created)
Upper-Boundary : Exterior-Boundary (created) ;; Boundary with the Environment
Icomposition : Igneous-Rock
lwidth : Positive-Real
Icenter-plane : Gplane
Effects :
Change(=, Boundary.side-1, {Rock}, Dike-Intrusion)
Change(=, Boundary.side-2, Int-Boundary(Rock, Dike-Intrusion.start), Dike-Intrusion)
Change(=, Rock.thickness, lwidth, Dike-Intrusion)
Change(=, Rock.material, lcomposition, Dike-Intrusion)
Change(=, Rock.center-plane, Icenter-plane, Dike-Intrusion)
Change(=, Rock.orientation, Icenter-plane.y-angle, Dike-Intrusion)
Change(=, Boundary.orientation, Icenter-plane.y-angle, Dike-Intrusion)
Change(=, Boundary.top, Dlfn1(Surface, Dike-Intrusion.start), Dike-Intrusion)
Change(=, Upper-Boundary.side-2, {Rock}, Dike-Intrusion)
(If Icenter-plane.y-angle # 0
Change(=, Upper-Boundary.side-1, {Environment}, Dike-Intrusion))
(For-all ($gf : Geologic-Feature)
(If [Exists-at($gf , Dike-Intrusion.start) and
Spatially-Intersects($gf , Rock, Dike-Intrusion.start)]
(Created ($gf-new1, $gf.type, Dike-Intrusion.start)
(Created ($gf-new2, $gf.type, Dike-Intrusion.start)
Change(=, $gf-new1.material,
$gf.material@Dike-Intrusion.start, Dike-Intrusion)
Change(=, $gf-new2.material,
$gf.material@Dike-Intrusion.start, Dike-Intrusion)
Change(=, $gf-new1.orientation,
$gf.orientation@Dike-Intrusion.start, Dike-Intrusion)
Change(=, $gf-new2.orientation,
$gf.orientation@Dike-Intrusion.start, Dike-Intrusion)
Change(+, 3gf.pieces, {$gf-new1, $gf-new2}, Dike-Intrusion)
(If Is-Rock-Unit($gf, Dike-Intrusion.start)
{$gf-new1, $gf-new2} ¢ Boundary.side-2@Dike-Intrusion.end)))))
Constraints :
Boundary.top.height@Dike-Intrusion.end = Rock.top.height@Dike-Intrusion.end
Boundary.top.height@Dike-Intrusion.end < Surface.top.height@Dike-Intrusion.start
Boundary.top.height@Dike-Intrusion.end > Surface.bottom.height@Dikse-Intrusion.start

Int-Boundary and DIfn1 are domain functions, not defined further, that represent different
aspects of dike-intrusion.

- 200 -

3. Geologic Functions, Predicates and Axioms

This section presents the definitions of functions, predicates, and
axioms needed to complete the geologic models given above.

On-Surface(?ru, ?t) = (?ru e ?Surface.side-2@?t)
Abuts(?obj, ?bd, ?t) = (?obj € ?bd.side-1@?t) or (?0bj € ?bd.side-2@7?t)

Orientation-Equal(?obj, ?theta, ?t) =
(?theta - 0.05 < ?obj.orientation@?t) and (?obj.orientation@?t < ?theta + 0.05)

(For-all ($ru : Rock-Unit)
($ru.bottom.height@?t < $ru.top.height@?t) and
Is-Point-Of($ru.bottom@?t, $ru) and
Is-Point-Of($ru.top@?t, $ru))

(For-all ($bd : Boundary)
($bd.bottom.height@?t < $bd.top.height@?t) and
(1f ($bd.orientation@?t = 0)
$bd.bottom.height@?t = $bd.top.height@ ?t)))

- 201 -

Appendix C. Causal Models for Additional Domains

This appendix contains the domain-specific object definitions, event
model descriptions, definitions of predicates, and domain axioms
used for the blocks-world and Tower of Hanoi domains. The
representations for the semiconductor fabrication domain are found
in [Simmons & Mohammed].

1. Blocks-World Objects

Supportable-Object : Temporal-Object
top : set of Supportable-Object
bottom : set of Supportable-Object

Block : Supportable-Object
top : set of Block
bottom : set of Supportable-Object

Table : Supportable-Object
top : set of Block
bottom : set of Supportable-Object

2. Blocks-World Event Models

PUTON-OBJECT
Parameters: Source : Block
Dest : Supportable-Object
Effects: (For-all (?b : Supportable-Object)
(If (Source e ?b.top@Puton-Object.start) and (?b # Dest)
Change(-, ?b.top, Source, Puton-Object)))
Change(+, Dest.top, Source, Puton-Object)
Change(=, Source.bottom, {Dest}, Puton-Object)

PUTON-TABLE
AKO: Puton-Object
Parameters: Source : Block
Dest : Table
Preconditions: Clear(Source, Puton-Table.start)
Effects: (For-all (?b : Supportable-Object)
(If (Source e ?b.top@Puton-Table.start) and (?b # Dest)
Change(-, ?b.top, Source, Puton-Table)))
Change(+, Dest.top, Source, Puton-Table)
Change(=, Source.bottom, {Dest}, Puton-Table)

- 202 -

PUTON
AKO: Puton-Object
Parameters: Source : Block
Dest : Block
Preconditions: Clear(Source, Puton.start)
Clear(Dest, Puton.start)
Effects: (For-all (?b : Supportable-Object)
(If (Source e ?b.top@Puton.start) and (?b = Dest)
Change(-, ?b.top, Source, Puton)))
Change(=, Dest.top, {Source}, Puton)
Change(=, Source.bottom, {Dest}, Puton)
Constraints: Source # Dest

3. Blocks-World Predicates and Domain Axioms

Clear(?a, ?t) = (?a.top@?t = {})
On(?a, ?b, 7t) = (7a € ?b.top@7?t)
(For-all ($b : Block)

(For-all ($t : Time)

($b ¢ $b.top@$t) and
($b ¢ $b.bottom@$1))

- 203 -

4. Tower of Hanoi Objects

Tower-Object : Temporal-Object
top : set of Ring
size : Positive-Real

Ring : Tower-Object
top : set of Ring
size : Positive-Real
rbottom : Tower-Object
post : Post

Post : Tower-Object
top : set of Ring
size : Positive-Real
rings : set of Ring
topobj : Tower-Object

5. Tower of Hanoi Event Model

MOVE-RING
Parameters: Ring-Moved : Ring
To-Post : Post
Preconditions: To-Post.topobj.size@Move-Ring.start > Ring-Moved.size@Move-Ring.start

Ring-Moved.top@Move-Ring.start = {}
Effects:

Change(=, To-Post.topobj, Ring-Moved, Move-Ring)

Change(+, To-Post.rings, Ring-Moved, Move-Ring)

Change(=, Ring-Moved.post, To-Post, Move-Ring)

;; Don't do the following if trying to move the ring to the post it is already on

(If (To-Post # Ring-Moved.post@Move-Ring.start)

[Change(-, (Ring-Moved.post@Move-Ring.start).rings, Ring-Moved, Move-Ring) and
Change(=, (Ring-Moved.post@Move-Ring.start).topobj,
Ring-Moved.rbottom@Move-Ring.start, Move-Ring)

Change(=, Ring-Moved.rbottom, To-Post.topobj@Move-Ring.start, Move-Ring) and
Change(=, (Ring-Moved.rbottom@Move-Ring.start).top, {}, Move-Ring) and
Change(=, (To-Post.topobj@Move-Ring.start).top, {Ring-Moved}, Move-Ring)])

6. Tower of Hanoi Domain Axiom
(For-all ($post : Post)

(For-all ($ring : Ring)
$post.size@Plan-start > $ring.size@Plan-start))

- 204 -

Appendix D. Blocks-World Scenarios

This appendix presents a set of twelve scenarios that completely
span that sub-domain of blocks-world problems in which the goal
state can contain stacks of up to four blocks high (this includes all
the blocks-world problems presented in this report). Even though no
individual scenario is applicable to stacks higher than three blocks,
this set of scenarios can in fact be composed independently for
problems requiring stacks of four blocks.

1.

Scenario Pattern: (put A on B; both are clear)
Goal Part: On(?a, ?b, Plan-end)
Initial Part: Clear(?a, Plan-start) Clear(?b, Plan-start)

Local Interpretation:
Occurs(Puton, ?putont)
Parameter-of(?puton1, Source, ?a) Parameter-of(?puton1, Dest, ?b)

Scenario Pattern: (put A on B; O1 is on B; clear B by moving O1 onto object D1,
avoid putting O1 on to either A or B)
Goal Part: On(?a, ?b, Plan-end)
Initial Part: Clear(?a, Plan-start) On(?01, ?b, Plan-start)

Local Interpretation:
Occurs(Puton-Object, ?puti)
Parameter-of(?put1, Source, ?01) Parameter-of(?put1, Dest, ?d1)

Occurs(Puton, ?puton1)

Parameter-of(?puton1, Source, ?a) Parameter-of(?puton1, Dest, ?b)
(?d1 # ?a) and (?d1 # ?b)

?puti.end < ?puton1i.start

Scenario Pattern: (put A on B; A is not clear)
Goal Part: On(?a, ?b, Plan-end)
Initial Part: On(?01, ?a, Plan-start) Clear(?b, Plan-start)

Local Interpretation:
Occurs(Puton-Object, ?puti)
Parameter-of(?put1, Source, ?01) Parameter-of(?put1, Dest, ?d1)

Occurs(Puton, ?putoni)

Parameter-of(?puton1, Source, ?a) Parameter-of(?puton1, Dest, ?b)
(?d1 # ?a) and (?d1 = ?Db)
?puti.end < ?putoni.start

- 205 -

4.

Scenario Pattern: (put A on B; neither are clear)
Goal Part: On(?a, ?b, Plan-end)
Initial Part: On(?01, ?a, Plan-start) On(?02, ?b, Plan-start)

Local Interpretation:
Occurs(Puton-Object, ?put1)

Parameter-of(?put1, Source, ?01) Parameter-of(?put1, Dest, ?d1)
Occurs(Puton-Object, ?put2)

Parameter-of(?put2, Source, ?02) Parameter-of(?put2, Dest, ?d2)
Occurs(Puton, ?putont)

Parameter-of(?puton1, Source, ?a) Parameter-of(?puton1, Dest, ?b)
(?d1 = ?a) and (?d1 = ?b) (?d2 # ?a) and (?d2 # ?b)
?puti.end < ?putoni.start ?put2.end < ?putoni.start
Scenario Pattern: (put A on B, and B on C; all are clear; put B on C before A on B)
Goal Part: On(?a, ?b, Plan-end) On(?b, ?c, Plan-end)

Initial Part: Clear(?a, Plan-start) Clear(?b, Plan-start)

Clear(?c, Plan-start)

Local Interpretation:
Occurs(Puton, ?putoni)

Parameter-of(?puton1, 3Source, ?b) Parameter-of(?puton1, Dest, ?c)
Occurs(Puton, ?puton2)
Parameter-of(?puton2, Source, ?a) Parameter-of(?puton2, Dest, ?b)

?putoni.end < ?puton2.start

Scenario Pattern: (put A on B, and B on C; C is not clear)

Goal Part: On(?a, ?b, Plan-end) On(?b, ?c, Plan-end)

Initial Part: Clear(?a, Plan-start) Clear(?b, Plan-start)
On(?01, ?c, Plan-start)

Local Interpretation:
Occurs(Puton-Object, ?puti)

Parameter-of(?put1, Source, ?01) Parameter-of(?put1, Dest, ?d1)
Occurs(Puton, ?putont)

Parameter-of(?puton1, Source, ?b) Parameter-of(?puton1, Dest, ?c)
Occurs(Puton, ?puton2)

Parameter-of(?puton2, Source, ?a) Parameter-of(?puton2, Dest, ?b)
(?d1 = ?a) and (?d1 = ?b) and (?2d1 = ?c)

?puti.end < ?putoni.start ?putoni.end < ?puton2.start

- 206 -

7. Scenario Pattern: (put A on B, and B on C; B is not clear)

Goal Part: On(?a, ?b, Plan-end)
Initial Part: Clear(?a, Plan-start)
Clear(?c, Plan-start)

Local Interpretation:
Occurs(Puton-Object, ?puti)
Parameter-of(?put1, Source, ?01)

Occurs(Puton, ?putoni)
Parameter-of(?putoni, Source, ?b)
Occurs(Puton, ?puton2)
Parameter-of(?puton2, Source, ?a)

(?d1 # ?7a) and (?d1 # ?b) and (?d1 # ?c)
?puti.end < ?putoni.start

On(?b, ?c, Plan-end)
On(?01, ?b, Plan-start)

Parameter-of(?put1, Dest, ?d1)

Parameter-of(?puton1, Dest, ?c¢)
Parameter-of(?puton2, Dest, ?b)

?putoni.end < ?puton2.start

8. Scenario Pattern: (put A on B, and B on C; A is not clear)

Goal Part: On(?a, ?b, Plan-end)
Initial Part: On(?01, ?a, Plan-start)
Clear(?c, Plan-start)

Local Interpretation:
Occurs(Puton-Object, ?putt)
Parameter-of(?put1, Source, ?01)

Occurs(Puton, ?putoni)
Parameter-of(?putont, Source, ?b)
Occurs(Puton, ?puton2)
Parameter-of(?puton2, Source, ?a)

(?d1 # ?a) and (?d1 = ?b) and (?d1 # ?c)
?puti.end < ?puton2.start

On(?b, ?¢, Plan-end)
Clear(?b, Plan-start)

Parameter-of(?put1, Dest, ?d1)

Parameter-of(?putont, Dest, ?c)
Parameter-of(?puton2, Dest, ?b)

?putoni.end < ?puton2.start

9. Scenario Pattern: (put A on B, and B on C; B and C are not clear)

Goal Part: On(?a, ?b, Plan-end)
Initial Part: Clear(?a, Plan-start)
On(?02, ?c, Plan-start)

Local Interpretation:
Occurs(Puton-Object, ?putt)
Parameter-of(?put1, Source, ?01)
Occurs(Puton-Object, ?put2)
Parameter-of(?put2, Source, ?02)

Occurs(Puton, ?putoni)
Parameter-of(?puton1, Source, ?b)
Occurs(Puton, ?puton2)
Parameter-of(?puton2, Source, ?a)

(?d1 # ?a) and (?d1 # ?b) and (?d1 = ?c)
(?d2 = ?a) and (?d2 # ?b) and (?d2 # ?c)
?puti.end < ?putoni.start

?putoni.end < ?puton2.start

- 207 -

On(?b, ?c, Plan-end)
On(?01, ?b, Plan-start)

Parameter-of(?put1, Dest, ?d1)

Parameter-of(?put2, Dest, ?d2)

Parameter-of(?puton1, Dest, ?c)

Parameter-of(?puton2, Dest, ?b)

?put2.end < ?putoni.start

10. Scenario Pattern: (put A on B, and B on C; A and C are not clear)

Goal Part: On(?a, ?b, Plan-end)
Initial Part: On(?01, ?a, Plan-start)
On(?02, ?c, Plan-start)

Local Interpretation:
Occurs(Puton-Object, ?put1)
Parameter-of(?put1, Source, ?01)
Occurs(Puton-Object, ?put2)
Parameter-of(?put2, Source, ?02)

Occurs(Puton, ?puton1)
Parameter-of(?puton1, Source, ?b)
Occurs(Puton, ?puton2)
Parameter-of(?puton2, Source, ?a)

(?d1 # ?a) and (?d1 # ?b) and (?d1 # ?c)
(?d2 # ?a) and (?d2 # ?b) and (?d2 = ?c)
?puti.end < ?puton2.start

?putoni.end < ?puton2.start

On(?b, ?c, Plan-end)
Clear(?b, Plan-start)

Parameter-of(?put1, Dest, ?d1)

Parameter-of(?put2, Dest, ?d2)

Parameter-of(?puton1, Dest, ?c)

Parameter-of(?puton2, Dest, ?b)

?put2.end < ?putoni.start

11. Scenario Pattern: (put A on B, and B on C; A and B are not clear)

Goal Part: On(?a, ?b, Plan-end)
Initial Part: On(?01, ?a, Plan-start)
Clear(?c, Plan-start)

Local Interpretation:
Occurs(Puton-Object, ?put1)
Parameter-of(?put1, Source, ?01)
Occurs(Puton-Object, ?put2)
Parameter-of(?put2, Source, ?02)

Occurs(Puton, ?puton1)
Parameter-of(?putoni, Source, ?b)
Occurs(Puton, ?puton2)
Parameter-of(?puton2, Source, ?a)

(?d1 # ?a) and (?d1 = ?b) and (?d1 = ?c)
(?d2 # ?a) and (?d2 # ?b) and (?d2 # ?c)
?puti.end < ?puton2.start

?putoni.end < ?puton2.start

- 208 -

On(?b, ?c, Plan-end)
On(?02, ?b, Plan-start)

Parameter-of(?put1, Dest, ?d1)

Parameter-of(?put2, Dest, ?d2)

Parameter-of(?puton1, Dest, ?c)

Parameter-of(?puton2, Dest, ?b)

?put2.end < ?putoni.start

12. Scenario Pattern: (put A on B, and B on C; none of the three blocks are clear)
Goal Part: On(?a, ?b, Plan-end) On(?b, ?c, Plan-end)
Initial Part: On(?01, ?a, Plan-start) On(?02, ?b, Plan-start)
On(?03, ?c, Plan-start)

Local Interpretation:
Occurs(Puton-Object, ?put1)

Parameter-of(?put1, Source, ?01) Parameter-of(?put1, Dest, ?d1)
Occurs(Puton-Object, ?put2)

Parameter-of(?put2, Source, ?02) Parameter-of(?put2, Dest, ?d2)
Occurs(Puton-Object, ?put3)

Parameter-of(?put3, Source, ?03) Parameter-of(?put3, Dest, ?d3)
Occurs(Puton, ?puton1)

Parameter-of(?puton1, Source, ?b) Parameter-of(?putoni, Dest, ?c¢)
Occurs(Puton, ?puton2)

Parameter-of(?puton2, Source, ?a) Parameter-of(?puton2, Dest, ?b)

(?d1 = ?a) and (?d1 # ?b) and (?2d1 # ?c)

(?d2 = ?a) and (?d2 # ?b) and (?d2 # ?c)

(?d3 # ?a) and (?d3 # ?b) and (?d3 # ?c)

?puti.end < ?puton2.start ?put2.end < ?putoni.start
?put3.end < ?putoni.start

?putoni.end < ?puton2.start

- 209 -

