Dexterous
Robotic Hands:
Kinematics

and Control

Sundar Narasimhan

MIT Artificial Intelligence Laboratory

Tius blank page was inserted to preserve pagination.

Dexterous Robotic Hands: Kinematics
and Control

Sundar Narasimhan
B. Tech. Mechanical Engineering
Indian Institute of Technology, Madras, India
(1983)

(©OMassachusetts Institute of Technology 1988

Revised version of a thesis submitted to the Department of Electrical Engineering and Computer
Science on October 15, 1987 in partial fulfillment of the requirements for the Degree of Master of
Science in Electrical Engineering and Computer Science

This report describes research done at the Artificial Intelligence Laboratory of the Mas-
sachusetts Institute of Technology. Support for the Laboratory’s Artificial Intelligence
Research is provided in part by the Office of Naval Research University Research Initiative
Program under Office of Naval Research contracts N00014-86-K-0685 and in part by the
Advanced Research Project Agency of the Department of Defense under Office of Naval
Research contract N00014-85-K-0124.

Dexterous Robotic Hands: Kinematics and Control
by
Sundar Narasimhan

Abstract. This report presents issues relating to the kinematics and control of dexter-
ous robotic hands using the Utah-MIT hand as an illustrative example. The emphasis
throughout is on the actual implementation and testing of the theoretical concepts pre-
sented. The kinematics of such hands is interesting and complicated owing to the large
number of degrees of freedom involved.

The implementation of position and force control algorithms on such tendon driven
hands has previously suffered from inefficient formulations and a lack of sophisticated com-
puter hardware. Both these problems are addressed in this report. A multiprocessor
architecture has been built with high performance microcomputers on which real-time al-
gorithms can be efficiently implemented. A large software library has also been built to
facilitate flexible software development on this architecture. The position and force control
algorithms described herein have been implemented and tested on this hardware.

Thesis Supervisor: Dr. John M. Hollerbach
Associate Professor of Brain and Cognitive Sciences

Acknowledgements

There are a number of people who’ve inspired, taught, and worked with me during these
years.

First and foremost, I thank David Siegel, who has been responsible for the hardware
design of both the Version I and II systems on which most of the work was implemented.
Without him, the hardware would simply not exist. He has been fun to work with, and
has taught me many tricks. We have had to fix bad blocks on disks, fix gateways, bring up
operating systems on bare machines, run innumerable cables, and do other such fun things.
He has always been around to share the work, and share cold pizza at 3am.

This work would not have been possible without the commitment, faith and support
from my advisor, Prof. John Hollerbach. His dedication toward experimental validation
of theoretical results has been inspiring. I thank him for his encouragement, and for his
understanding of the trials of being a graduate student.

I must also acknowledge the tremendous contribution made by a number of people to
the CONDOR development environment described in this report. It has been their work
as much as it has been mine. Firstly, I would like to thank the Real Time Systems Group
working under Prof. Robert Halstead. Our first implementation was based largely on their
Concert system. Secondly, I would like to thank David Kriegman, and George Gerpheide
for sharing a summer working on the first implementation of the CONDOR. Next, I would
like to thank David Taylor for designing and implementing the ptrace emulator that forms
the basis for our debugger and modifying the Sun kernel to receive vectored interrupts from
the Ironics processors. I also thank Steve Drucker for sharing the initial grunge work on
the user interface code.

Chris Atkeson and Chae An have been good friends — their complaining about bugs
in my software on Version I was partly the reason for the cleanliness of Version II. Steve
Buckley, Bruce Donald, Vanduc Nguyen, Michael Erdmann, John Canny, and the rest of
the Motion Planning group have been fun to get around with. Through them, I have gained
the knowledge to appreciate that this report could be considered in some circles as ‘mere
implementation detail’.

I’d also like to thank the official and unofficial support staff at the Artificial Intelligence
Laboratory. People like Chris Lindblad, Gerry Roylance, Laurel Simmons, Penny Berman,
Ron Wiken, Inaki Garabieta and Peggy Fong keep the laboratory running. Their jobs are
often trying and unrewarding, and I thank them for coming through for the rest of us.

Inaki Garabieta, Noble Larson, and John Purbrick shared their technical expertise with
me on more than one occasion. I’d also like to thank Priscilla Cobb, Marilyn Melithoniotes
and the rest of the fiscal office for tracking down all those purchase orders for me.

Most of all, I’d like to thank everyone at the Artificial Intelligence Laboratory for making
it the place it is.

And last but not the least, I thank the people at Utah, notably Prof. Steve Jacobsen
and Prof. John Wood, who led the project there, Ed Iverson, Jim Olson, Don Knutti and
Tony Jacobs, who built the device that still puzzles me at times, and Klaus Biggers for
yelling at me at the right times to unwedge me.

il

Contents

1 Introduction 1
1.1 Dexterous RobotHands oo, 2
1.2 A Framework for Hand Control oo, 4

1.2.1 Forward Kinematics v i v vt v e et e e 5
1.2.2 Inverse Kinematics« . . . v v v v vttt e e e 6
1.2.3 Sensing i it e e e e e 7
1.2.4 Programming« o v ot i e e e e e e e e 8
1.2.5 Modeling and Planning 9
1.2.6 Error Detection and Recovery 11
1.2.7 Engineering and Design Issues 11
1.3 OutlineofthisReport o 11

2 Dexterous Hands - Past and Future 13

2.1 Designlssues e e e e 13
2.1.1 Early Studies e e e e e 13
2.1.2 Industrial Grippers o e e 14
2.1.3 Dexterous Robot Hands, 14

2.2 Workspace and Kinematics o v i i i e 15

23 WorkinSensing e 16

2.4 Workin Control i i i i e e e e e e e e e e e e 16

2.5 Planning and Programming0, 17

3 Kinematic Issues 19
3.1 Description of the Utah-MIT Hand/Arm System 19
3.2 Forward Kinematics 0 0 i i i it et 20

3.2.1 Forward Kinematics of the Utah-MIT Hand 23

3.3 ImnverseKinematics i e e e e e e e e e e e 24
3.3.1 Inverse Kinematics of the Utah-MIT Hand 25

3.4 OtherIssues v v v i i i i it e e e e e e e e e e e e e e 31

4 Control 33
4.1 Tendon Management v v v v it i i e e e 34
42 Joint Level Control e e 34
4.3 Finger Level Control o e 38
4.4 Implementation Issues o oo o 45
4.5 Higher Level Control o 45

4.5.1 Hand Primitive Motions v v i v v v v vt et 46

4.5.2 Cartesian SpaceControl i i i e

4.5.3 Motions Specified using Homogenous Transforms
4.5.3.1 Motion Specified Relative to an Absolute Reference . . .
4.5.3.2 Motion Specified Relative to an Alternate Frame

4.5.4 Motions Specified using Quaternions

5 Force Control

5.1 Introduction and Previous Work e e e
5.2 The Force Control Algorithm
5.2.1 Lines, Screws, Wrenches, and Twists
52.2 Internal Forces @ . i i it i it it v

53 Algorithm e e e
5.4 Computing the Object Displacement
5.5 Computing the Fingertip Forces.
5.5.1 Three Point Contact with Friction
5.5.2 Four Point Contact with Friction

5.6 Computing the Joint Torques,
5.7 Implementation e e e
5.8 Future Work e e e e e e e e

6 Computational Architecture

6.1 Design Motivation i e
6.1.1 Comparison between Version I and Version IT

6.2 Software e e e e e e e e e e e e e e
6.2.1 Devices e e e e e e e e e e e e e
6.2.2 Interrupts v v i i e e e e e e e e e e e e e e e e
623 Message Passing i
6.2.3.1 Introduction

6.2.3.2 MeSSages . . . v i i v e e e e e e e e e e e e

6.2.3.3 Support for Message Passingon the Sun End

6.2.3.4 Message Passing and its Implication for Control

6.2.4 Virtual Terminals, The File Server, Debugging
6.2.4.1 The Pseudo Terminal Emulator

6.24.2 FileServer e

6.24.3 TheDebugger

6.2.5 The CONDOR UserInterface
6.2.6 Controller Implementation.

7 Conclusions and Future Work

71 Control e
7.2 Planning 0 L. e e e e e e e e
T3 Sensing . . v v i i i e e e e e e e e e e e
7.4 Conclusion e e e e e e e e

vi

57
57
59
59
60
63
64
66
66
69
72
74
74

: n e e 8o e s li?
:-;-L;Q t"a';ia“‘fi‘-..ovn RPN IFIENY m

List of Figures

1.1
1.2
1.3

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12

5.1
5.2

6.1
6.2
6.3

Al
A2
A3
A4

The Stanford-JPL Hand v 2
Picture of a conventional 2-jaw gripper 3
Block diagram of controller oo 5
Picture of the Utah-MIT hand 0. 19
Picture of the Utah-MIT hand arm system 21
Vertical trajectory using fixed orientation constraint 28
Horizontal trajectory using fixed orientation constraint 28
Vertical trajectory using equal angles constraint constraint. 30
Horizontal trajectory using equal angles constraint constraint 30
Linear trajectory using equal angles constraint constraint 31
The simple rectification functionused 35
Step response from second order joint model 36
Actual step response L Lo e e e e e e 36
Single joint example L e e e 37
Tendon tensions - summing before rectifying 38
Tendon tensions - rectification before summing 39
Actual tendon tensions L e e 39
Simple 2-joint controlled by four actuators 40
Coupling action between joints 40
Step response after decoupling 43
Actual torques to show effect of decoupling 44
Joint controller black box o oo L 44
Three point contact with friction, 67
Four point contact with friction 70
Block Diagram of Version I of the hardware 81
Block Diagram of Version II of the hardware 82
The CONDOR running under the X Window System 99
Numbering of the joints on the Utah-MIT hand 117
Picture of asinglefinger o oo 118
The relation between the palm and the zeroeth joint frame 119
The first two frames for the thumb, 123

ix

List of Tables

3.1
3.2

4.1
4.2
4.3

5.1
5.2
5.3
5.4

6.1

6.2
6.3
6.4

Al
A2

D-H Parameters for Non-Thumb Fingers 23
D-H Parameters for the Thumb 23
Performance of the finger level controller 45
Performance of the Version II finger level controller 46
Hand Primitives o i i e e e 48
Summary of external force components oo 62
Summary of computational requirements: Three point contact 69
Summary of computational requirements: Four point contact 72
Summary of computations for the force control algorithm 74
Comparisons of processing power available from alternative hardware con-

figurations L. L e e e e e e e 80
Comparisons of different types of interconnect 80
Performance of the Message Passing System 95
Opcodes for messages implementing ptrace 98
D-H Parameters for Non-Thumb Fingers, 121
D-H Parameters for the Thumb 124

Chapter 1

Introduction

Within the artificial intelligence community, robotics is often characterized as having to do
with “relating perception to action”. Perception deals with the acquisition of information
through a wide variety of mechanisms, and the process of using such information to affect
the state of the world intelligently is the task of present day robotics.

While there have been great strides in our understanding of some of the problems associ-
ated with “relating perception to action”, there are others which still defy the concentrated
attack of a number of research efforts.

One of the important capabilities required of robots is the ability to grasp and manipu-
late objects. In order that we discover the fundamental principles that guide manipulation,
it is extremely important that theoretical analyses proceed hand in hand with practical
implementations. The increasing availability of dexterous hands and other mechanically
sophisticated devices, provides ample scope for constructing testbeds for experimentation.

It must also be mentioned that while the technology for building better robots has
advanced tremendously, our understanding of how to best use these robots has scarcely
widened. Partly this has been due to the lack of sophisticated computer architectures to
control robots. Often, (even in research laboratories) one finds a costly robot hooked up
to an old computer on its last legs, programmed by a few wizards in an arcane assembler
language. Such situations result in ever-widening gaps between theory and practice, with
most theories of manipulation being relegated to doctoral theses reports.

In this technical report, I hope to present a view of robotics as it applies to dexterous
robotic hands. These robotic hands tend to be extremely complex devices with a large
number of joints compared with the traditional six degree of freedom robot. Consequently,
as we will see in subsequent chapters, problems that have been considered solved for all
theoretical purposes, reappear owing to purely practical considerations. Besides the prob-
lems that beset conventional robots, dexterous hands give rise to quite a few problems of
their own.

This report addresses a number of issues that arise when one tries to implement control
algorithms on such robot hands, using the Utah-MIT hand as an illustrative example. The
problems that had to be solved involved kinematics, control and computational architecture
issues, and consequently involved different areas of theoretical and experimental inquiry.
It is my hope that after reading this document the reader will get a sense of the issues
involved and get some insight into a few of the problems that I have tried to address.

2 Chapter 1 Introduction

1.1 Dexterous Robot Hands

One of the glaring deficiencies in today’s robots is in their flexibility. The earliest argu-
ments for the use of robots indeed stressed their versatility when compared to conventional
machine tools. And yet, today one finds 85 percent of most robots used in industry being
relegated to tasks like spot welding or spray painting — tasks that do not require a great
deal of dexterity or co-ordination.

The problem of building mechanically better robots capable of higher performance is
being addressed (see Salisbury [1982], Jacobsen et al. [1983]). In the following chapters,
I deal exclusively with such advanced robots which are mechanically more complex than
conventional robots. Their actuation and transmission systems are rather sophisticated.
These dezterous hands as they are called, are devices with a number of joints (see Fig. 1.1
for a picture of the Stanford-JPL hand which is an example of such a device).

Figure 1.1: The Stanford-JPL Hand.

Since robots were invented, there has been a wide variation in their designs, but most
of them are equipped with what has become famous as the two-jaw gripper. This gripper
is the robot’s end-effector, its primary way of interacting with objects in its environment
(see Figure 1.2). But as is rather obvious, the range of motions that a robot can impart to
a grasped object and the range of forces it can exert on it with such a gripper, is rather
limited. Dexterous hands with a number of joints afford a more flexible alternative to this
primitive form of grasping and manipulating objects.

There are a number of reasons why studying such hands could be immensely useful.

o Flezibility argument:
Conventional robot grippers are often just a pair of vice-like jaws. Articulated me-
chanical hands with a number of fingers are much more versatile. Such hands, with
their large number of joints, can adapt to objects of different shapes. They can grasp

§1.1 Dexterous Robot Hands 3

|1

Figure 1.2: Picture of a conventional 2-jaw gripper.

objects more stably because of a larger number of points of contact or gripping sur-
faces. They can perform fine motions without moving the entire arm around, and can
reorient the grasped object without regrasping.

Augmented with sensory capabilities, these hands will become useful tools for haptic
exploration. Touch sensors can help in the identification and recognition of objects
grasped by such hands. They can also help in determining properties of objects
like surface texture and temperature, and provide information as to what kind of
contact is being made between the hand and a grasped object. Such information
is extremely important to understand the physics of manipulation tasks, but is not
usually accessible to non-contact sensing modalities like vision.

o The Artificial Intelligence argument:
Our current understanding of machine dexterity is fairly low. One of the important
capabilities required of intelligent, autonomous machines, is that they be able to
manipulate the objects in their immediate environment. This is necessary to acquire
active information about objects that passive sensory mechanisms like vision cannot
provide, to interact with these objects in a meaningful fashion as required by the task,
and to use and manipulate tools that vary in size and shape. With hands that have
multiple fingers and multiple degrees of freedom, such a capability becomes possible.

4 Chapter 1 Introduction

Recently, there have been efforts to move away from the “blocks-world” paradigm
in A.L and build real systems that must deal with the nature of the real world (see
for example Brooks [1986]). This report presents our approach to issues involved in
building and programming a robot to manipulate objects.

o Empirical argument:
Robot hands are complex mechanical devices, far more complex than present day
robots. From a kinematic viewpoint, this makes them interesting ob jects worth study-
ing for their own sake. The study of such complex kinematic chains can lead to a
better understanding of some of the basic principles involved in machine design and
pave the way to the synthesis of better robots and hands.

Besides this, studying such hands can also provide insight into the study of how
human hands function. Such an understanding could have substantial impact on
human hand prostheses, and our understanding of biological motor control.

Although some of the earliest mechanical hands were aimed at prosthetic applications,
the focus of present-day robot hands has shifted toward researchers in robotics laboratories.
These later attempts are aimed at providing a basic understanding of what it means to
achieve dexterous manipulation. A number of such hands have been built, and hand control
research has become an active field of inquiry in the past few years.

1.2 A Framework for Hand Control

In this section an overall framework for robot hand control and planning is presented.
Different problems that arise in the control and programming of robot hands are introduced,
and I hope that such a discussion will provide the motivation for the work presented in
this report. Such a discussion should also be helpful in evaluating and understanding the
contributions made by previous and future research efforts. A brief summary of previous
work pertaining to hand control research is presented in the next chapter.

Hand control involves a number of different issues. To begin with, it is illustrative to
consider the block diagram shown in Figure 1.3. As can be seen from this relatively high
level specification, there are basically two kinds of hand control which follow from their
counterparts in conventional robotics. We will first briefly describe what these types of
control involve, and then enumerate the problems to be solved before they can be imple-
mented to run efficiently.

Pure position control of a conventional robot involves controlling the robot’s position at
all times to achieve a specified task. For controlling a revolute manipulator, for example,
these positions could be a stream of joint angles over time, or the cartesian positions and
orientations of the tip of the manipulator. There are many metrics by which a position
controller’s performance can be quantitatively measured like accuracy, repeatability, stability
and robustness. Grasping and manipulating an object can be specified purely in terms of
the motions that the fingers go through, if each of the fingers is treated as an independent
robot. It is easier however to think of the motions that a grasped object is making, and
specify these motions in terms of this object. Such a specification would be modular and
would be independent of the particular kind of robot hand used.

§1.2 A Framework for Hand Control 5

Object Stiffness Hand Primitives
Trajectory Specs

l

Higher Level Control

FingerTi . .
gertp l lTIp trajectory Joint Positions/Torques
Forces
Finger Level Joint Joint Torque | Desired | Tendon Tension| To
COﬂtl’Ol Torques eve Tensions Level Actuators
ﬁ T From
Sensors

Figure 1.3: Block diagram of the controller.

Force control, on the other hand, involves specifying and controlling the forces of inter-
action between a robot and its environment. Since a robot hand is almost always in contact
with an object in its environment while it is performing useful work, this mode of control is
uniquely important for robot hands. Such a force controller specification usually takes the
form of a stiffness matrix that the grasped object together with the hand control system
present to the environment.

There are many problems that arise in actually implementing these types of control
algorithms.

1.2.1 Forward Kinematics

This refers to the problem of computing the cartesian co-ordinates of the finger tips
of an articulated hand from its various joint angles. Fortunately, most of the articulated
hands’ fingers are individually less complex than conventional six degree of freedom robots.
Hence the forward kinematic problem is usually simpler for articulated hands at the finger

6 Chapter 1 Introduction

level. Such a treatment can be useful, for example, in the initial phases of a manipulation
operation, while the hand’s fingers are moving in free space, and are not in contact with
the environment.

At the object level, once the fingers of a robot hand come into contact with a grasped
object, the fingers can no longer be approximated as serial link kinematic chains. What
we really have is a closed loop kinematic chain, whose degrees of freedom at the contacting
surfaces depend on the type of contact made. The forward kinematic problem for such a
closed loop chain mechanism involves computing the position and orientation of the grasped
object (which is the output variable that one is interested in), given the various joint angles
of the robot hand. This is a harder problem for robot hands than it is for conventional
robots.

Another factor that compounds the problem in the case of robot hands is that multi-link
contact occurs often. While conventional robots typically rely on making contact with a
grasped object with only the tips of their end effector, this is not the case with dexterous
hands. We only need to look at any typical human manipulation task to realize that we
almost always make contact with a grasped object at more surfaces of our fingers than just
the finger tips. With multi-link contact, one is no longer interested in just the positions
and orientations of the end-point or end-effector, but in the positions and orientations of
intermediate links as well. Not only does such a contact help secure a grasped object more
stably, but it also restricts the mobility of the hand’s joints in a complex fashion.

To summarize, the problems are:

1. Computing the configuration of the finger tips given the joint angles of each finger.

2. Computing the configuration of a grasped object given the joint angles, assuming a
finger-tip grasp.

3. Computing the configuration of a grasped object given the joint angles and locations
of contact on the various finger joints.

1.2.2 Inverse Kinematics

The problem of computing the joint angles given the cartesian co-ordinates of the finger
tips or end-effector is more complicated, even for conventional robots. In the case of articu-
lated hands, the problem is exacerbated by the enormous amount of redundancy involved.
From our statement of the forward kinematic problem for robot hands, it can be seen that
the inverse kinematic problem is one of finding out the joint angles corresponding to a
configuration of the grasped object.

If purely finger tip! grasps are assumed, this problem can be broken into two subprob-
lems that involve

1. computing the positions of the finger tips given the position and orientation of the
grasped object, and geometric information pertaining to the grasp, and then

1A finger tip grasp is one wherein an object is grasped purely by the tips of the serial kinematic chains
that form the hand’s various fingers. Such a grasp leads to every closed loop in the system containing all
the links of two fingers and the grasped object.

§1.2 A Framework for Hand Control 7

2. computing the joint angles of each finger given its finger tip position and orientation.

Only the second portion of such a computation would then depend on the kinematics of
the particular hand involved. A similar formulation can also be obtained for the forward
kinematic problem given this rather restrictive assumption.

For a purely positioning and orienting task, the number of degrees of freedom required
is only six, and yet the human hand-arm system comprises twenty-nine degrees of freedom.
This would seem to be far more than what most tasks typically require. The success of the
human hand-arm system in manipulation tasks, however, serves as an existence proof for
the desirability of such redundancy. Even with very simple robot hands, multiple inverse
kinematic solutions can be expected to exist. This points to the need for quantitative
criteria that can help optimization algorithms choose the best configurations of the hand’s
joints for particular tasks. As is the case with most optimizing problems, the problems
involved are

1. defining computable indices of performance, and

2. developing algorithms that can use these indices to compute optimal solutions.

1.2.3 Sensing

It is possible that the success of the human hand in manipulation tasks is purely related
to the sophistication and rich variety of the sensor information that the motor system can
make use of when needed. Current robots and robot hands are not very sophisticated
devices when it comes to sensing their environment. Most robots come equipped with
position and maybe velocity sensors but very little else. In manipulation tasks however, it
is important to know where contact is being made with a grasped object along the finger
tips and how the nature of this contact is changing.

Designing sensors for dexterous hands is complicated for two reasons:

1. Since there are a large number of joints and actuators, each sensor has to be repli-
cated a number of times. The enormous number of sensors necessitates sophisticated
multiplexing and layout schemes to minimize wiring and maximize reliability.

2. The space constraints in a dexterous hand are rather severe. Often sensors must be
designed to fit into the only space available for them, which may make it impossible
to use certain transduction technologies.

There are many ways in which sensors interact with the controller that may be struc-
tured as shown in Figure 1.3.

Conventional position, velocity and force sensors can be used to implement stable and
repeatable position and force control feedback loops. Touch sensors, on the other hand, can
be used to sense when contact is made and precisely what kind of contact is being made.
The object localization problem, refers to the problem of computing the configuration of a
grasped object based on information obtained from such sensors.

Touch sensors can be used at the higher levels to implement guarded moves. For exam-
ple, most intermediate level robot programming languages have a construct similar to the
one shown below:

8 Chapter 1 Introduction

move y until force y > 50

Such conditional action statements can form the basis for iteration, execution or logic
branching and even recursion.

Besides such statements that trigger when force or position values exceed certain thresh-
olds, other uses for sensor information are also possible. One possibility that has been
suggested in the force control literature is the switching of control laws once contact has
been made with a surface in the environment.

Sensor information could also be used to trigger further planning steps. Such a flow of
information from the lowest to the highest levels in the control hierarchy has begun to be
explored only recently. Information about errors occurring during the execution of a task
can be used to learn over successive trials. Tactile sensors have been constructed and even
mounted on finger tips of a dexterous hand, but information provided by such sensors has
until now not been used for control or planning.

1.2.4 Programming

Robot programming is still a tedious and unrewarding task. Starting with teach pen-
dants of yester years, we have progressed today to what one may call intermediate level
programming languages. A number of research papers have addressed the issue of auto-
matic and task level programming but none have yet resulted in practical systems. This
may partly be due to the difficulty of the problem but also due to considerable ambiguity
in what researchers typically consider a task to be. Even now, no useful taxonomy of tasks
exists that a theoretician or a practitioner can agree upon as a set of useful tasks that a
robot must be capable of doing. The search for a truly general purpose task level program-
ming language can be considered similar to the problem of searching for a truly general
purpose instruction set to program computers with.

Current robot programming languages require the user or programmer to be aware of
too much detail with respect to the kinematics and control. If a programming language is to
be successful at all, it has to endeavor to hide this complexity below workable abstractions.
It is easy to write statements in a fictitious automatic programming language like

moveto coke_can
grasp coke_can
pickup coke_can

without realizing the number of problems that need to be solved before even a subset of
these primitives can be implemented.

One should also be wary of the temptation to shy away from these high level program-
ming languages. At the lowest level, robots are composed of joints and hence, in principle,
can always be programmed in joint level programming languages. But such methods are
akin to using machine and assembler level languages to attack computational problems.

One argument against automatic programming has been purely economic. The propo-
nents of this argument claim that if the time taken to develop and debug a robot program
is x and the time it spends running (i.e. actually executing) is y, it makes sense to reduce

§1.2 A Framework for Hand Control 9

z only if it is considerable when compared to the production time. This does happen to be
true for complex robots today. Higher level programming languages not only reduce design
and debug time, but they are infinitely more readable and easy to maintain. Moreover,
they can be capable of doing tasks that low level robot programs can never do.

It is my view that the conventional practice of extending regular programming languages
to perform robot manipulation is perhaps the best we can hope for in the near future. Given
this basic assumption, to program complex robots like the Utah-MIT hand there should
be a hierarchy of tools available to the programmer. One should be able to drop down to
the individual joint level if need be, and be able to use the high level abstractions in cases
where such facilities are needed. The approach I have taken reflects this view. Most of the
facilities for controlling and programming the Utah-MIT hand have been built as program
libraries using an existing programming language.

1.2.5 Modeling and Planning

There are many levels at which a task to be performed by a dexterous hand has to be
planned. The lowest level is perhaps the trajectory planning problem, wherein an algorithm
computes a stream of cartesian positions or joint torques that the underlying controller
ought to achieve to be able to perform a given task correctly.

This problem involves computing the trajectories of the grasping surfaces (which may
or may not be just the finger tips), given the trajectory of the grasped object. In cases
where the hand is actually grasping an object, this problem is quite complicated, since the
constraints imposed at the grasp surfaces by the object on the links of the hand need to be
satisfied at every instant throughout the trajectory.

While position trajectories are easy to compute under certain assumptions about types
of contact, force trajectories are not. As can be seen from the block diagram of the con-
troller, computing a stream of torques and forces to be exerted on a grasped object in order
to make it move, may be highly inappropriate and even impossible for some tasks. For
other tasks, like turning a screw driver however, such a specification may be easy to come
by and may even be the most natural one.

Besides trajectory planning, there are other levels in which planning dexterous hand
manipulation tasks can be done. One important problem is the grasp planning problem,
which is really composed of quite a few hard sub problems. There has been a lot of research
in this area in the recent past.

For the purposes of the following discussion, a grasp can be considered to be just a
matching between grasp surfaces (which could be a point, edge, or surface on the fingers
of a robot hand), and component surfaces on a grasped object. Like most computational
geometric problems, a grasp involves topological information as well as geometric informa-
tion. The former specifies what the contacting surfaces are, and the latter specifies where
exactly they make contact and how.

A number of obstacles remain before such grasp planning algorithms can be used in
practice.

1. Geometric modeling: Owing to the complexity involved in representing complex ob-
jects (despite recent progress in CAD/CAM and computational geometry), many of

10

Chapter 1 Introduction

the algorithms are based on polygonal models. The stability of grasps, however, de-
pends on the local curvature of the objects at the grasp points. This suggests that for
grasp planners to be truly effective, surfaces have to be modeled rather accurately, or
existing polygonal modeling systems have to augmented to deal with local curvature
information in some fashion.

. Feasibility: Most of the grasp planners plan in an abstract geometric world, and ignore

constraints that could be exploited to result in useful plans. The set of feasible grasps
is the set of those grasps that are possible for a particular kinematic mechanism and
a particular object.

There are two interesting questions that can be asked of the feasibility issue.

(a) Given a grasp between a particular hand and an object, determine if the grasp is
feasible. This we will call the F-A-problem. This can be seen equivalent to the
problem of finding a position and orientation of the palmar plane such that the
inverse kinematics of the grasp points expressed relative to this position results
in a set of feasible joint angles. In fact, even if one such solution exists, then the
grasp must be feasible.

(b) Given a particular hand and an object, synthesize all feasible grasps. This can
be called the F-S-problem.

Looked at one way, these questions involve rather complex calculations involving the
workspaces of the different fingers of the robot hand. Looked at another way, such
constraints provide powerful heuristics to prune the set of possible grasps.

. Reachability: This is a more complex problem than the F-S or F-A problems. A

reachable grasp is one wherein there exists a collision-free path for each of the fingers
from their current state to the state wherein the object has been stably grasped by
the hand. All reachable grasps are feasible but not all feasible grasps may be reachable.

The reachability problem as described above may be a very hard problem, since it
involves as a subproblem, the motion planning problem. It also involves taking into
consideration other objects in the environment, and perhaps the nature of the task.
Similar to the F-S and F-A problems one can ask questions as to the reachability of
a particular grasp and the set of all reachable grasps.

One approach to simplifying the problem may be to relax the collision-free require-
ment so as to not include objects in the environment.

. Task Level Synthesis: How does one use information about the nature of a task when

picking a particular grasp? When you pick up an eraser to erase a whiteboard, you
do not hold it by its erasing surface since you know that the nature of the task
requires you to use this surface for something else. Similar examples abound when
one considers the innumerable tools and other objects that humans use everyday.
Such information about task level constraints needs to be mapped into the domain
of grasps and may prove to be one more heuristic that helps solve the grasp planning
problem.

§1.3 Outline of this Report 11

Besides grasp planning, other tasks associated with robot hands that could currently
benefit from automation include methods to deal with the complexity of controlling such
a robot on a day-to-day basis. An automatically calibrating, self-tuning robot is still quite
some distance away, but the existence of humans and other animals provides proof for the
hypothesis that such systems can be built.

1.2.6 Error Detection and Recovery

After the planning phase has been completed, the ezecution of the task needs to be
carried out. It has been this execution that I have concerned myself with in most of the
work that follows. Robots, even conventional ones, however, are prone to failure (especially
on days when an important demonstration is scheduled). The current complexity of hands
makes them even more fragile than conventional six degree of freedom robots.

There are two approaches to solving the problem. One is to simplify mechanically
and in terms of computer control, the software and hardware associated with a dexterous
hand. The other approach is to develop strategies that can detect errors and recover from
them. Recently, researchers have begun to explore the theoretical issues associated with
error detection and recovery strategies (see Donald [1987]). Failure analyses of tasks could
indicate the potential sources of problems and areas in which modeling and planners need
to be made more accurate. Sensors could play a big role in the detection of errors. Their
intelligent use could help recovery.

1.2.7 Engineering and Design Issues

Some of the problems involved in building a robot that has more than ten degrees of
freedom, are purely practical in nature. These have to do with dealing with the enormous
number of wires, communication bandwidths, computing power, and other such tradeoffs.
There are immense problems to be solved while building high performance actuators, flexible
transmission systems, and adequate sensors. There has been some principled work done
in the area of mechanical design in order to determine the parameters of a workable hand.
However, the design space for dexterous hands has by no means been completely explored
or systematically studied.

1.3 Outline of this Report

In the sections above, I have tried to outline the various issues and problems associated
with dexterous hands, specifically trying to point out those areas in which solutions from
conventional robotics research cannot be blindly applied. Later on, solutions to some of
these problems are presented. The emphasis throughout will be on actual implementation
and testing of ideas.

The first section will be devoted to discussing previous work in related areas, to place the
research to be described in its proper context. I will then look at the problem of controlling
a robotic device like the Utah-MIT dexterous hand by looking at its kinematic structure,
and solving the forward and inverse kinematic problems mentioned above. Algorithms
for doing conventional position control are outlined, and I present a threaded interpretive

12

Chapter 1 Introduction

command language that can drive such a hand using the position control paradigm. A
computationally efficient force control algorithm is described in the section following this.
Finally, I discuss the computational architecture that we have developed on which most of
this work has been implemented and tested.

The main contributions of this report are:

1.

The solution to the kinematics (both forward and inverse) of the Utah-MIT hand.
Two approaches to resolving the redundancy are suggested and compared.

A hierarchical controller for the Utah-MIT hand that includes a stable position and
force controller, a trajectory generator, and a threaded interpretive primitive com-
mand language.

Algorithms for solving the trajectory control problem, assuming finger tip grasps with
no slip, for finite small motions.

Algorithms for computing the differential screw displacement of a grasped object,
given the displacements of the finger tips, as part of the force control algorithm.

A novel force control algorithm that is computationally very efficient. The efficiency
of the algorithm derives from its avoidance of the Grip Jacobian in its computations.

. A new computational architecture that forms the basis of a new generation of multi-

processor robot controllers in terms of hardware and software. The real-time develop-
ment environment described herein should form a useful tool to conduct experiments
with robots, ranging from the very simple to the most complex.

Chapter 2

Dexterous Hands - Past and Future

This chapter contains a brief description of research relevant to hand control and planning.
The discussion has been organized into sections suggested by the framework presented in
the previous chapter.

2.1 Design Issues

Mechanical hands have been built and studied for a long time. Early attempts to
build such hands were motivated because of their use as prosthetic devices. Issues that
were considered important in the design of such hands were quite different from those that
concern robot hand designers today. Besides, the human hand-arm system is an extremely
complicated system to imitate. Consequently, most of the prosthetic hands built to date
have concentrated only on providing a very limited subset of mechanical capabilities.

Even though the design goals of such hands were modest, and the issues involved in
their design were quite different, the biological studies of these early efforts have influenced
recent robot hand designs.

2.1.1 Early Studies

The studies of Schlesinger [1919] and Skinner [1975] guided the design during these
early attempts to emulate the so called six types of human grasping patterns. The human
hand, however, has twenty-two degrees of freedom with which to accomplish these tasks
(Tubiana [1981]). To this date, no artificial hand has approached this level of complexity.
Studies carried out by Keller [1947] show that of these six grasping patterns, humans
typically tend to use the palmar grasp. The lateral grasp was found to be the second
most frequently used grasping pattern. This illustrates an important difference between
human and prosthetic hands and present day robot hands; while the former rely on force
or power grasps to accomplish their tasks, the emphasis of present-day robotic hands has
shifted toward dezterous grasps that are often accomplished with just the finger tips. Finger
tip grasps enable dexterous manipulation of the grasped object and precise control of its
positioning. Power grasps that rely on structural restraint are more secure in the presence
of disturbance forces since they rely more on the kinematic structure of the grasp to keep
the object from slipping rather than on the forces imparted to it through the finger tips.
When present day robot hands have to manipulate tools and exert large forces on the
environment with the objects/tools they are grasping, the need to plan and execute power
grasps may arise.

Most of this early work was descriptive. One could hope that a taxonomy for describing
human and robotic grasping patterns in a fashion that would be concise and powerful would

13

14 Chapter 2 Dexterous Hands - Past and Future

arise out of such descriptions, but none has been forthcoming. Recent attempts in a similar
vein have included Cutkosky et al. [1986] and Iberall [1987].

It is clear that humans typically tend to use relatively few grasping patterns very suc-
cessfully to deal with a large number of objects. One could perhaps hope for a database of
such grasping patterns indexed by the nature of a task’s constraints and object geometry
to arise from these taxonomic studies but this seems to be a long-term goal that is not
practically achievable in the near future.

2.1.2 Industrial Grippers

Paralleling the development of mechanisms whose primary application was human pros-
theses, industrial machines on the factory floor have also become more sophisticated. Most
robots used in factories today, however, are severely constrained by the kinematic structure
of their hands which are often just a pair of parallel vice-like jaws. In fact, their inability to
conform to a wide variety of shapes and their inability to make small movements without
moving the entire arm, are partly the reasons for robots being used today primarily in spot
welding and spray painting tasks: tasks that do not require a great deal of dexterity or
co-ordination (Seering [1984]).

To address this problem, many alternative solutions have been proposed. Changeable
grippers have been proposed by Luo [1984]. Although these quick-change grippers enable
high performance in those tasks for which the grippers are specially designed, they fail
miserably to adapt to other tasks. Hollerbach [1982] suggests that the cost involved in
designing such specialized grippers for a large number of different operations could be very
expensive. When the robot changes from one task to another such grippers would have to
be switched. This involves additional lost time due to gripper changing operations.

Other exotic solutions like vacuum-suction grippers, electro-magnetic grippers and chucks,
flexible element grippers etc., have been applied to bin picking or parts handling. Although
some of these designs are mechanically ingenious, these devices are often highly task specific
too. A reasonable account of such mechanisms used in industry is provided by Chen [1982].
Chelpanov et al. [1983] provide a more detailed account of some of the problems with the
mechanics of industrial robot grippers. Kato [1982] provides an illustrated collection of
numerous hand designs used both in industry and for prostheses.

2.1.3 Dexterous Robot Hands

Some of the limitations of present day robots could be overcome if they had arms with
more degrees of freedom (Yoshikawa [1983], Hollerbach [1984]). The other solution with
which we will be concerning ourselves for the rest of this document is one which involves
multi-fingered robot hands. These robot hands are very different from conventional robot
grippers. Some of them are very anthropomorphic. Almost all of them have many fingers,
each of which is composed of a number of joints. A number of such hands have been
constructed with recent advances in actuation, sensing and control technologies. (Crossley
et al. [1977], Okada [1979], Salisbury [1982], Abramowitz [1982], Jacobsen et al. [1984]).
Articulated hands such as these are capable of adapting to a wide variety of object shapes

§2.2 Workspace and Kinematics 15

and are capable of making extremely fine motions under computer control. Thus they
reduce the need for special tooling while being adaptable to a wide variety of operating
tasks.

Salisbury [1982] presents an analysis using the condition number of the Jacobian matrix
of a mechanism to choose parameters involved in the linkage design of such robot hands.
Mobility analysis of different mechanisms may also be used to choose optimal configurations
of the various fingers. The hand presented in this work is driven by tendons attached to
electric motors. Mechanically, the device comprises three fingers each with three joints.
Salisbury et al. [1985] continue this early work and discuss the problem of choosing link
lengths for a redundant mechanism.

In an another important effort, Jacobsen et al. [1984] present the design issues per-
taining to the Utah-MIT hand which will be described in detail later. There have been a
series of papers devoted to discussing the various engineering aspects of this project (see
Jacobsen et al. [1985], Jacobsen et al. [1986]). This hand is pneumatically driven and is
tendon operated. In contrast to the Salisbury hand, the design is anthropomorphic with
four fingers. Each finger has four degrees of freedom.

Besides these two hands, perhaps the only other hand that has actually been used to
perform non-trivial manipulation tasks is the hand built by Okada [1979] (see also Okada
[1982]).

If any conclusion can be drawn at all from these various efforts, it is that the engineering
problems involved in hand design can be separated into four very broad categories which
involve actuation, transmission, mechanism design and sensor design. For actuation electric
motors, hydraulic and pneumatic actuators have been used. For the transmission system,
tendons made out of a variety of materials have proven to be the most successful. The
mechanism and sensor design spaces however are much too large and the choices made by
these efforts thus far have to be characterized as careful engineering tradeoffs.

2.2 Workspace and Kinematics

The kinematics of multi-fingered hands is quite different from that of conventional
robots. Workspace issues involving such hands can be quite complicated. Each finger of a
robot hand is usually simpler than a conventional six degree of freedom robot. Consequently,
texts like those of Paul [1982], Craig [1986] or Asada and Slotine [1986], can be expected
to provide the machinery needed to tackle the kinematic structure of the individual fingers.
The problem of having to deal with multiple fingers, however, is hard, considering the
closed-loop nature of the mechanism they give rise to, once the hand has grasped an object.

In solving the kinematics problems for individual fingers, complications could arise
owing to the redundancy present relative to a task. For example, a single finger of the
Utah-MIT hand has four degrees of freedom. Positioning the tip of such a finger in three
dimensional cartesian space, however, involves only three degrees of freedom. For this task,
therefore, such a finger is redundant. Resolving the redundancies in such lower degree of
freedom kinematic chains presents many interesting problems.

If no such redundancy were present, then solving the kinematics of the individual fingers
is a rather trivial problem. Once the fingers of a hand have grasped an object, the resulting

16 Chapter 2 Dexterous Hands - Past and Future

closed loop chain’s kinematics become complicated. The motion of the grasped object and
its configuration at any given moment are dependent on the nature and position of the
grasping surfaces and the relative degrees of freedom at these surfaces. Contacts could be
made at a point, along a line or along a planar surface. Each of these different types of
contact gives rise to a different relative mobility between the hand and the grasped object.

Workspace issues have traditionally been difficult to resolve owing to the complexity of
the issues involved. Bajpai and Roth [1986] discuss the issues associated with closed-loop
manipulators. Kerr’s [1985] thesis contains a section devoted to workspace issues associated
with dexterous robot hands.

2.3 Work in Sensing

In recent years, there has been an explosion of work in sensing and designs of sensors
for various tasks. Some of these have been motivated by careful analyses and followed
up by careful testing and evaluation. Most, however, have concentrated merely on the
exhibition of a new transduction process and have stopped after a proof of concept had
been demonstrated.

Siegel [1986] has presented objective criteria for the design and testing of tactile sensors.
This work also presented a promising tactile sensor based on a capacitance technology.
Other designs have been based on optical (Begej [1984], Crosnier [1986]), capacitance (Boie
[1984]), rheological (Brockett [1985]), magnetoelastic (Checinski [1986]), ultrasonic (Grahn
(1986]), pneumatic (Hanafusa [1976]), and piezoelectric (Nakamura [1986]) transduction
principles.

A series of papers by Harmon provide valuably informative surveys on the state of the
art with respect to issues pertaining to sensing (see for example Harmon [1980], Harmon
[1984] and Harmon [1985]).

Besides the construction of these sensors, there have been numerous papers on how
these sensors can be used in algorithms for ob ject identification (Ellis [1987], Grimson et al.
[1984], Okada [1977]), perception of the environment to build models (Brock et al. {1985],
Dario et al. [1985]), estimating the configuration of objects (Driels [1986], Palm [1985]), and
to actually help in the manipulation of objects (Fearing [1986]). Of these efforts, Fearing
[1986] (see also Fearing [1987]) and Brock et al. [1985] have actually mounted their sensors
on robot hands. The former also provides a detailed study of the solid mechanics problems
involved in contact phenomena. Similar such studies are being pursued by Cutkosky et al.
([1986] and [1987]). A preliminary discussion of theoretical issues associated with tactile
sensing can be found in Montana [1986).

2.4 Work in Control

In his early work on the hand that he built, Salisbury [1982] also presented control
algorithms for achieving stable force control. His method was based on the so-called Grip
Jacobian matrix, and is, as we will see in the chapter on force control, computationally very
expensive. The form of control introduced in this seminal thesis is now known as stiffness
control. Other forms of force control have also been documented in the literature, but none

§2.5 Planning and Programming 17

has been applied to robot hands. Approaches similar to this one have been proposed by
Kobayishi et al. [1986], and by Yoshikawa [1987].

Chiu [1983] presents the implementation of a controller and a brief description of a
programming language for the Salisbury hand. He introduced the concept of a grasp-frame
that is computed as a function of the positions of the finger tips. This frame can then be
used to compute trajectories of the finger tips once the trajectory of the grasped object
is specified. Biggers et al. [1986] provide a summary of the issues involved in low level
control of the Utah-MIT hand. Model based control of the Salisbury hand is addressed by
Loucks et al. [1987] and multivariable control issues are tackled by Venkataraman et al.
[1987). Other issues associated with identification and estimation are addressed in a thesis
by Speeter [1987].

2.5 Planning and Programming

To summarize our survey of previous related work, we look at issues associated with
planning that has been the target of numerous research efforts.

Some of the problems associated with robot grasp planning were outlined in an early
thesis by Lozano-Pérez [1976]. In this paper that dealt with automated robot programming,
the choice of a single grip from amongst the number of grips possible was recognized as a
hard problem. The configuration space! approach was applied to solve a simple version of
the problem for a parallel jaw gripper.

Hanafusa et al. [1977] present the solution to a planar version of the grasp selection
problem using a potential field approach to choose stable grasps. Further attempts to solve
the planar version of the problem with simple and articulated fingers can be found in Abel
et al. [1985], and Nguyen [1986].

There have been a number of attempts at analyzing the stability of a given grasp, but
relatively few attempts toward synthesizing grasps. The work of Kerr [1984], Jameson
[1985] and Cutkosky [1984] represent the state of the art with respect to analysis. Perhaps
the best work related to synthesis is offered by Nguyen [1986] and Nguyen [1987]. This
work presents algorithms that synthesize grasps that are stable and force closed based on
purely geometric calculations. The objects to be grasped are modeled as polyhedra and
the fingers are treated as points.

It must be mentioned that the problems associated with feasibility and reachability of a
grasp, mentioned in our earlier framework remain unsolved, even for hands with a relatively
simple kinematic structure.

1This approach has yielded important results with respect to robot motion planning problems in the
recent past.

Chapter 3

Kinematic Issues

The previous chapters have provided a brief overview of the various problems associated
with dexterous robot hands and a look at previous research efforts that have tried to address
some of these problems.

Dexterous hands are complex manipulating devices, and some of the interesting prob-
lems that arise in using such devices are purely kinematic in nature. This section presents
some of these problems using the Utah-MIT hand as an illustrative example.

3.1 Description of the Utah-MIT Hand/Arm System

The Utah-MIT hand consists of four fingers, powered pneumatically and driven by
tendons. The first version of the hand used kevlar with dacron wound around it for tendon
material, while the second and present version of the hand uses polyethylene (see Figure
3.1 for a picture of the hand and Figure 3.2 for the hand arm system).

Figure 3.1: Picture of the Utah-MIT hand.

The hand comprises sixteen revolute joints, divided into four fingers each with four
joints. Each joint is driven by 2 tendons routed over pulleys. The tendons are routed from
the actuator pack which houses the actuators, to the hand’s joints through a remotizer that
allows the actuators to be located remotely relative to the joints. The hand can carry a

19

20 Chapter 3 Kinematic Issues

payload of about 15 pounds and it weighs about as much.

Current sensing capabilities of the hand include two tendon tension sensors per joint and
Hall effect angular rotation sensors, that enable the position of any joint to be measured
accurately.

The Utah-MIT hand has a number of novel features that make it one of the best robot
hands designed to date. As mentioned earlier, the issues involved in the design of this hand
have been presented in a series of papers by Jacobsen et al. [1984], {1985] and [1986]. The
innovative features of this hand are summarized below:

1. Each joint is driven by two tendons requiring 2n tendons to drive n joints. As a
point of contrast, the Salisbury hand requires n 4+ 1 tendons to drive n joints. The
engineering tradeoff was between the added complexity of routing the extra tendons
compared to the simplicity of the decoupling involved and the added power obtained.

2. Each pneumatic actuator is driven by a modular valve design. The actuator essentially
drives a graphite piston moving in a glass cylinder to which a tendon is attached.

3. Compact Hall effect position and tendon-tension sensor designs.
4. Polyethylene tendons that are strong and durable.

5. Each finger comprises four degrees of freedom and there are four such fingers. The
hand looks anthropomorphic since the design includes an opposing thumb and the
axes of all the distal revolute joints are parallel, much like in the human hand. The
size and shape of the various joints are also comparable to that of the human hand.

A hand that cannot move about in a workspace is of little use. To facilitate the palmar
plane to be moved around, a cartesian table was constructed on which the hand could be
mounted. This table is a four degree of freedom robot. All four axes of the table are driven
by stepper motors. The stepper motor controller uses electromagnetic sensing to determine
the position of a stepper motor very accurately, and hence it is possible to operate the
cartesian table without relying on feedback from devices like optical shaft encoders. Out
of the four cartesian axes, two are oriented in the same direction, which facilitates tracking
operations.

The table was designed and built so that we would be able to position the hand in a
workspace that was roughly a cube 18 inches on its side.

All of the implementations and experiments that we are to describe were conducted on
this robot. The computer architecture designed for it, however, is a truly general purpose
real time development machine, and hence has been applied to control other robots like the
MIT Serial Link Direct Drive Arm.

3.2 Forward Kinematics

The problem of forward kinematics, very simply put, is the problem of finding out
the coordinates of the finger tips in cartesian space given the joint configuration as input.
With dexterous hands, this problem is always well defined since most dexterous hands can

§3.2 Forward Kinematics 21

Figure 3.2: Picture of the Utah-MIT hand arm system.

be represented by tree-like open-loop kinematic chains (see Salisbury [1982], Jacobsen et

al. [1983] for examples of such designs). This is so because most robot hands today are

manipulating devices that have many fingers (each with a number of joints) attached to

some kind of wrist which in turn can be positioned in space by other joints and links.
The forward kinematics problem can therefore be expressed as computing:

x = f(6) (3.1)

where x is the vector of finger tip locations expressed in cartesian space, and @ is a vector
of joint angles.
There are two reasons why computing the forward kinematics efficiently, is important.

(a) As we will see later, some control algorithms depend on being able to compute the
forward kinematics as a subproblem. In particular, force and position control algo-
rithms that need to compute the position of a grasped object in cartesian space use
forward kinematics computations extensively. Most of these algorithms assume that
contact is made between a grasped object and the finger tips. Knowing the positions
of the finger tips in cartesian space helps in determining the position and orientation
of the grasped object.

(b) The forward kinematics computation is an important part of a kinematic simulator,
that could be used for a variety of purposes.

There are many ways of solving the forward kinematic problem. Here I present two of the
most widely used. The first method relies on what I call the modified Denavit-Hartenburg
notation.

22 Chapter 3 Kinematic Issues

The Denavit-Hartenburg notation is perhaps the most widely used to represent the
kinematic structure of robots. Briefly stated, it involves representing the transformation
between two successive links in a kinematic chain (composed of revolute or prismatic joints)
as homogenous transformation matrices. These matrices can be derived uniquely from the
four so-called D-H parameters of the link, which can be described as follows:

1. 0; which represents the angle made by the i’th joint,

2. a; which represents the twist angle between the two axes of movement (these axes
would be rotational if the axes were revolute and translational if the axis were pris-
matic),

3. a; which represents the distance along the common normal between the two axes, and

4. d;, the distance along the z;_; axis between the origins of the two coordinate systems.

It must be pointed out that this notation is not unique, even for serial kinematic chains.
In fact, when applied to tree-structured kinematic chains, this notation is ambiguous (see
Khalil [1986] for an example of such a situation). Alternatives have been proposed by many
to remedy this situation with respect to tree-structured and closed-loop kinematic chains.
Sheth and Uicker [1971] propose a rather complex alternative wherein they separate the
information pertaining to the shape of the link from the variable part that varies with joint
motion. This notation is not only overly complex, but it is computationally quite expensive,
as noted by Roth [1985].

It is rather easy to see that there are two basic ways of dealing with the ambiguity in
the DH notation with respect to tree structured manipulators, and both have to do with
the numbering scheme chosen to deal with branch-points in the tree-structured chain. A
breadth-first numbering scheme would number the k joints attached to a joint n as n + 1,
n+2..ton+k. A depth-first numbering scheme on the other hand can be described to
recursively compute the numbering as follows:

joint_number(joint)

{
number_of(joint) = no + 1
no = no + 1
for all sons of joint do
joint_number(son_joint)
}

One can see that this would result in a branch point at joint & being numbered as n + 1
where n was the last number used in the previous serial chain encountered instead of k£ + 1
as in the previous scheme.

Once the ambiguity has been resolved, the same D-H matrices can be used to deal with
tree-structured manipulator chains as before.

§3.2 Forward Kinematics 23

3.2.1 Forward Kinematics of the Utah-MIT Hand

The Utah-MIT hand is a four-fingered dexterous hand. Each finger of the hand has four
joints, making a total of sixteen degrees of freedom. As was mentioned earlier, the hand is
mounted on a four degree of freedom x-y table.

The structure of the arm must be factored into the forward kinematic calculations to
determine the position and orientation of the finger tips. It was for this reason that a carte-
sian design was chosen for the x-y table: namely, to simplify the kinematic considerations
involved in dealing with the arm. Currently there is no way of measuring the orientation
of the palmar plane relative to the z-axis. This deficiency is to be corrected shortly.

While considering the forward kinematics problem, therefore, we will split the problem
into two subproblems. First the position and orientation of the palmar plane will be deter-
mined using the arm system. Then the position of the finger tips will be determined relative
to the palmar plane. Notice that this procedure will extend to arbitrary tree structured
kinematic chains rather trivially. The position and orientation of each node that forms a
branching point when computed, allows the computation of the positions of joints further
down the tree to be computed rather easily.

The Denavit-Hartenburg parameters of the Utah-MIT hand are given in Table 3.11.

[Joint+1 | d; | a; | o |
7,)
1 cos(5) + lo cos(¢o) | lo sin(¢o) | —7/2
2 0 l 0
3 0 I 0
4 0 I3 0

Table 3.1: D-H Parameters for non-thumb fingers.

The single thumb of the Utah-MIT hand is different from the rest of the hand’s fingers.
The Denavit-Hartenburg parameters for the thumb are given by Table 3.2.

|Joint+1 l d; I a; [a I

1 0 | ko | —7/2
2 0L]| 0
3 0|k | 0
4 0| 0

Table 3.2: D-H Parameters for the thumb.

Since each finger can be individually considered to be a robot affixed to the palmar plane,

?A more detailed derivation and explanation of the various coordinate systems used can be found in
Appendix A, which also explains in detail the various symbols used.

24 Chapter 3 Kinematic Issues

one can use the final °As frame to describe the position and orientation of the finger tip
relative to the palm.

Notice also that in general, we might have a tactile pad mounted at the tip of the finger
and hence the co-ordinates of the actual contact location will be expressed relative to the
co-ordinate system of the final reference frame. This would mean that to derive the actual
contact location in the palmar frame these co-ordinates have to be pre-multiplied by the
045 matrix.

We choose to describe the cost of these particular computations in terms of elementary
operations like multiplications (denoted by M), additions (denoted by A) and transcen-
dental function calculations (denoted by T) rather than the asymptotic analysis that is
more common, since we desire to get a very detailed picture of the computations involved.
Such an understanding is required to facilitate fast implementations operating in real time.
Computationally, it would take 26M+16A+8T operations to compute all the elements of
this matrix, which describes completely the position and orientation of a finger tip relative
to the palm for a non-thumb finger. To compute the co-ordinates of a contact point relative
to the palmar plane, an equal number of operations would be required. For three fingers
therefore, a total of 78M+48A+24T would be required.

For some computations, the entire matrix A5 need not be computed. If only the
cartesian positions of the finger tips are needed for example, such information can be
obtained with 12M+14A+48T operations.

Since the thumb is kinematically simpler, it takes only 12M+9A+8T operations to
compute the elements of the ®As matrix (also known as the T matrix) for the thumb.

The total number of operations required to solve the forward kinematics problem for
the Utah-MIT hand’s fingers is therefore given by:

C(fkin) = 94M + 63A + 32T operations (3.2)

3.3 Inverse Kinematics

The inverse kinematics problem can be stated as that of computing the inverse of the
mapping f mentioned in Equation 3.1. The problem is to find a configuration of joint
angles given the cartesian coordinates of the end points of the finger tips as given by:

9= flx (3.3)

This problem turns out to be, surprisingly, quite a hard one. This is because of the fact
that while the number of joints in a manipulator is restricted only by physical constraints
and perhaps by its designer’s imagination, the cartesian space the manipulator operates in
is the familiar three dimensional world that its tasks are performed in. This means that
while six coordinates suffice to describe the cartesian or task space, the joint coordinates
associated with robots can be considerably more in number.

This is true especially of dexterous robot hands. The Utah-MIT hand has, for example,
four joints on each of its four fingers, requiring sixteen joint angles to completely describe
just the configuration of the hand (see Jacobsen et al. [1983]). The Stanford-JPL hand has
three fingers with three degrees of freedom each (see Salisbury [1982]). This large number

§3.3 Inverse Kinematics 25

of degrees of freedom present in dexterous hands means that the inverse kinematic mapping
may not be well defined or there may be multiple solutions to choose from. The mapping
f~1 is not a function but is a one to many mapping,.

The inverse kinematic problem basically involves the solution of the non-linear equation
expressed by Eqn. 3.3.

3.3.1 Inverse Kinematics of the Utah-MIT Hand

We will now consider the inverse kinematics of one finger of the Utah-MIT hand. The
hand has four fingers, each of which has four degrees of freedom. Each finger is not equiv-
alent to a full-fledged six degree of freedom robot and it will not be possible to specify
the end point position and orientation of a finger individually. We do have control of four
parameters however, and one can choose these parameters in a number of different ways.
If we choose to specify end-point position in 3-space, we will have to provide as input to
the trajectory planner the z,y and z coordinates of the finger tip and would still have one
degree of freedom left over. Stated another way, a four degree of freedom finger will be
redundant by one degree of freedom for this 3 degree of freedom positioning task.

The question then arises as to how to use this extra degree of freedom. A number of
researchers have investigated redundant arms and there have been many different proposals
seeking to utilize this redundancy for the purposes of obstacle avoidance (Maciejewski
and Klein {1985]), energy minimization (Liegeois [1977]), and joint torque optimization
(Hollerbach and Suh [1985]).

A number of local dexterity measures have been proposed to solve this problem and to
aid in obtaining the solution to the inverse kinematics problem. Usually the problem is
expressed in the velocity domain and the task is then to find the solution 6 from:

x=J6 (3.4)

where J is the Jacobian matrix.
Usually, this is done by the following equation:

f=Jtx+(I1-J%J)z (3.5)

where J* is usually some kind of generalized or pseudo inverse, and z is an arbitrary vector
chosen to optimize secondary criteria.

A number of different so-called dezterity measures have been proposed in the literature,
as the appropriate secondary criterion to minimize or maximize. These include the deter-
minant of the Jacobian, (Paul and Stevenson [1983]), the square root of J J7 (Yoshikawa
[1984]), the condition number of the Jacobian (Salisbury and Craig [1982]), the minimum
singular value, and the joint-range availability index to minimize the possibility of the joints
attaining their joint limits. Comparative studies between these numerous dexterity mea-
sures have been rare (see Klein [1987] for an example), and even when performed have been
largely inconclusive, since the purpose of each of the dexterity measures is different.

Rather than use one of these studied approaches which treat the problem in the velocity
domain, we will look at the problem in the position domain. We will call such methods for
resolving the redundancy as direct methods.

26 Chapter 3 Kinematic Issues

Perhaps the simplest of all approaches is to treat one of the joint angles as fixed. Since
the axis of rotation of the three distal joints of the Utah-MIT hand are parallel, fixing joint
0 would be wasting a very important degree of freedom, one that changes the entire plane
of operation of the distal links. Fixing the joint angle of any of the three distal joints,
however, would enable us to reduce the finger to a 3 degree of freedom finger much like the
fingers of the Stanford-JPL hand (the link that is considered fixed can be considered to be
just a part of the previous link). This approach, while easy to implement and understand,
makes no use of the additional degree of freedom and hence we will not concern ourselves
with it any further.

There are two other ways to address this question. Both involve the specification of an
extra constraint equation or an extra parameter that can be controlled. To my knowledge,
the direct specification of these constraint equations in joint space has not been explored
in detail in the past.

We propose two ways of specifying an extra constraint directly in joint space. Both
ways are simple and result in compact equations. The need for simplicity at this level is
motivated by the need to evaluate these equations in real time for certain operations.

The first way to resolve the redundancy issue is to specify the endpoint orientation
relative to the palmar plane in addition to the position information. Although this may
seem equivalent to fixing one of the joint angles, it is different in that this added parameter
can be specified and controlled meaningfully. The r.h.s of Equation 3.3 will then be a four
by one vector involving three cartesian positions and one angle.

To solve the resulting inverse kinematics equations, we first convert the z,y, 2 coordi-
nates expressed in the palmar plane coordinate system, to the coordinate system affixed to
the first link. This can be done simply by premultiplying the desired cartesian position by
the 1 Ap matrix. For non-thumb fingers this matrix can be found out from °A1”1 which is
given by:

0 1 0 -7

14, = sin(¢p) 0 cos(¢pp) hy cos(¢p) —-plp sin(Pp) (3.6)
cos(¢p) 0 —sin(dy) tan(ep)[lp sin(¢p) — hy cos(¢p)] .
0 0 0 1

Once the coordinates have been converted to be in this coordinate system, joint angle
6o (or the joint angle of the proximal link attached to the palm) of each finger can be
determined simply from

6o = arctan(y/z) (3.7

We still have to determine the three remaining joint angles. Now that we know angle
0o, we can as before express the coordinates relative to a frame affixed to the next distal
joint. Since the axes of the three most proximal joints in each finger are parallel to one
another, the problem is now essentially that of deducing three joint angles given the x,y
position of the finger tip, in this plane of operation.

§3.3 Inverse Kinematics 27

The inverse of the second matrix is given by 2A;, which is equal to lAg_l.

CO SO 0 ——lo Sin(¢o)
lp
24, = 0 0 -1 lycos(go)+ cos(dy) (3.8)
-5 Co O 0
0 0 0 1

If we let the orientation of the final link be fixed at some angle 8¢, (which can be com-
puted either relative to the palm or as a function of the path during trajectory execution),
we can see that what we have is essentially the familiar two degree of freedom problem,
where

zy = xq— I3 cos(by)

ye = ya—lasin(d))
and (zq,yq) are the co-ordinates of the finger tip after the multiplication expressed by
Equation 3.8 has been made.

Given z; and y; we can compute the angles §; and ; using the familiar formulae given
below. Note that the kinematic structure of the Utah-MIT hand’s fingers prevents the
attainment of what is normally called the elbow-down (or curling out) configuration, and
therefore there is only one solution possible for this reduced two degree of freedom problem.

24 .2 _J2_ 72
- ety - -1
0, = acos(51T,

Yt I3 sinf,)
o t — | —al —_—
! aran (mt) aran (ll + I3 cos(63)
05 9f — (01 + 92)

The condition for reachability for the two degree of freedom problem can be given as

Notice that the angle that the finger tip makes with the palm has been assumed to have been
specified in the plane of operation of the three distal joints. This may not be necessarily
true. It is more realistic to expect this angle be specified as a vector that is perpendicular
to the surface of the finger tip. Going from this latter or any other representation of this
angle to its projection on the plane perpendicular to the axes of revolution of the three
distal joints is usually quite simple.

The effect of choosing this way to resolve the redundancy is illustrated in Figure 3.4,
which simulates a horizontal trajectory directly above the palmar plane. Notice that the
orientation of the distal link relative to the palm remains fixed throughout the entire motion.
Figure 3.3 illustrates the consequence of the same assumption on a vertical trajectory.

Keeping the orientation of the last link fixed is not the only possibility. One could vary
this orientation as a function of the trajectory to be executed. Such a capability could be
used for example in manipulating objects with known shapes, for it allows a precise control
over the locus of the contact point on the finger tip surface.

(3.9)

(3.10)

Il

28 Chapter 3 Kinematic Issues

11=20
A\ 12=15
N -
\\;\ . 13=10
"
Palmar Plane

Figure 3.3: Vertical trajectory using fixed orientation constraint.

11=20
12=15
13=10

Palmar Plane

Figure 3.4: Horizontal trajectory using fixed orientation constraint.

Another approach to resolving the redundancy was motivated partly by the observation
that in human fingers the angles made by the two most distal joints remain approximately
equal throughout the course of a motion. This is essentially the specification of an extra
constraint equation of the form

05 =K x 6, (3.12)

where K is some proportionality constant. Setting K to 1 specifies that the two angles are
equal.
Using a constraint equation of this form (where K= 1), one can rewrite the kinematic

§3.3 Inverse Kinematics 29

equations and solve for the inverse kinematics as follows?.
We first note that:

zg = lycos(61)+ 13 cos(8y + 02) + I3 cos(8y + 0, + 63)

. . . 3.13
ye = 1 sin(0y) +1; sin(0y + 03) + I3 sin(fy + 02 + 03) ()
Squaring the above equations and adding, we get:

B4i241242101 15 cos(82)+ 21y I3 cos(62) + 2 Iy 3 cos(2 82) = 2% + y] (3.14)

Using the double angle formula for the cosine, we can see that the above equation reduces
to a quadratic in 8,.

414 136032(92) +2 (ll Iy + 1o 13)608(02) - (:EZ + y§ - l% - l% - l% +24L 13) =0 (3.15)

This quadratic equation can be solved for the value of cos(f;) rather easily. Again, because
of the kinematic structure of the Utah-MIT hand’s fingers, only one of the solutions is
possible. Since K equals 1 in the above example, 63 is equal to the above value of #2. The
last remaining joint angle can be found from:

Yd ly sin(63) + I3 sin(2 6;))
_ ya\ _ 1
b1 = atan (a:d) atan (11 + T3 cos(83) + I cos(2 63) (3.16)

This way of resolving the redundancy certainly results in different joint angles for the same
cartesian finger tip positions.

The effect of this method is illustrated on the horizontal and vertical cartesian space
trajectories as before in Figures 3.5 and 3.6. Besides having a human-like graceful motion,
the second method offers the advantage of a larger workspace in certain regions. This can
be seen from the fact that the first method essentially reduces the workspace to that of
a two-degree-of-freedom revolute manipulator augmented ellipsoidally by the length of the
third link. In regions of the work space where the fixed-orientation requested is parallel
to the orientations of joints 1 and 2, the trajectory planner is limited by the fact that it
cannot use the third link very much.

Figure 3.7 shows a diagonal linear trajectory using the second method, which illustrates
the large workspace attainable. The curling motion of the fingers during such a motion could
be useful for acquisition operations as we will see later.

On the other hand, the vertical trajectory illustrates a disadvantage of the second
method. If the trajectory had been computed attempting to move a grasped object one
can see that as the motion begins at the top, the finger’s joints are clear of the object. But
as the finger moves progressively down, the distal joint would attempt to actually move
into the object. Depending on the stiffness of the grasped object and the finger servos, this
could result in large forces of interaction.

2] have shown the derivation only for the last three joint angles. The derivation for 8o remains the same
as before.

30 Chapter 3 Kinematic Issues

Palmar Plane

Figure 3.5: Vertical trajectory using equal angles constraint.

11=20
12=15
13=10

r &
rami
[1]

/0

Palmar Plane

1
13
)

i

411

Figure 3.6: Horizontal trajectory using equal angles constraint.

One would like to quantitatively measure the difference between these different ways
of choosing the extra constraint equation. The norm of the joint-angle differences and the
difference in arc length along the homogenous solution path have both been proposed as
possible measures that could be used for this purpose in a recent paper (Klein [1987]). While
it is true that such measures do indirectly measure other desirable features of trajectories,
intuitively one finds it troublesome that in all recent attempts to compare and measure
the effects of these different measures no importance is given to the task to be performed.
No attempts have been made also to judge the different performance measures over widely
different areas in the workspace and through widely different trajectories. Daunting as such
a task may be, a principled approach to such evaluation may yield lasting results.

§3.4 Other Issues 31

Palmar Plane

Figure 3.7: Linear trajectory using equal angles constraint.

One must also mention that the second method of specifying an extra constraint equa-
tion raises other interesting possibilities. In some cases, configuration space planners rely
on taking what are known as slices of the configuration space (see for example Lozano-Pérez
[1986]). This usually involves fixing one joint angle and looking at the range of orienta-
tions possible for the other joints. Stated another way, these planners sweep a generalized
hyperplane through configuration space, one that is perpendicular to some axis of the con-
figuration space. Critical slices are those slices at which the topology of the configuration
space changes drastically. It is important for a planner to at least find all such critical
slices, since otherwise it could fail to recognize the presence of an obstacle between two
slices (see Erdmann and Lozano-Pérez [1986]). The specification of constraint equations as
above illustrates the notion that slices can be taken of the configuration space in other ways
besides the usual. While we have used this constraint to determine a slice where in the
problem of inverse kinematics becomes solvable, the advantages of such slices with respect
to detecting critical slices still remain largely unexplored.

3.4 Other Issues

As we mentioned earlier the Utah-MIT hand is mounted on a cartesian table with a
simple kinematic structure. Mounting the hand on such a device however raises other issues,
which I can only briefly mention here.

The first of these has to do with how end-points are specified in conventional robotics.
The usual way end point configuration of a robot is specified is through a homogenous
transform or some other representation that provides information as to the cartesian loca-
tion (in z,y,z) and orientation of the end point. In the case of a dexterous robot hand,
one has not only to provide this information for an arm, but in addition the end-point
positions of the various fingers that make up the hand. But providing information as to

32 Chapter 3 Kinematic Issues

where each finger tip is located throughout a trajectory may be overly wasteful. What
one needs instead is a decoupling between the hand’s kinematics and the arm’s kinematics
where possible. This decoupling however is a function of the task to be performed and
hence only heuristic decompositions may be possible. In a pick and place operation, for
example, we can obviously exploit the fact that we do not expect to move the hand’s joints
during certain parts of the motion trajectory.

In the case of anthropomorphic hands like the Utah-MIT hand mounted on a six degree
of freedom robot, there is a natural decoupling between the wrist’s positioning and the
positioning of the finger joints. However, this may not be the case if either the hand gets
more complex or if the arm gets simpler.

Another thorny issue is determining when to move the hand’s fingers and when to move
the arm. We mentioned earlier that one of the advantages in using a dexterous hand is
that for small incremental motions, one needs to move only the fingers associated with the
hand and not the entire arm. However, it seems intuitively obvious that for larger motions
we would prefer to move the arm rather than the hand. In practice, one thumb rule that
could be used is for motions larger than the size of the hand itself, the arm should be used.
However, if one is to use the higher bandwidth available at the hand’s finger level, more
intelligent ways of partitioning the motion must be considered.

Workspace questions are usually harder to pose and answer even for conventional robots.
They are even more so for dexterous hands. During the motion of a robot hand, one must
make sure that none of the fingers collide with one another, or with the grasped object
in a fashion that would cause the task to fail. When one holds an object, which is small
relative to the size of one’s hand, it is easy to see that one can manipulate it far easier
over larger regions in the hand’s workspace than if one were holding a large object. This
rather complex interaction between the shape of a grasped object and the kinematics of
the hand’s fingers proves to be a rather interesting area where much fruitful research can
be expected in the future.

Chapter 4

Control

This section will present a hierarchical controller that has been implemented to run under
the multiprocessor architecture to be described in a later section. There are a number
of ways that a complex device like the Utah-MIT hand can be controlled. Each way
of controlling the hand has its own advantages in terms of convenience and performance
relative to a particular task.

The controller is hierarchical in that there are many control loops each of which im-
plements a particular input output relationship. One of the important advantages of the
computational architecture to be described in a later section is the ease with which the
addition of such control loops can be done.

The choice of the hierarchy is partly dictated by the necessity to separate different levels
of abstraction. The highest level needs necessarily to operate in object space (or task space).
Subsequent levels of the hierarchy move lower toward the actuator space. For example, if
the highest level controlled a grasped object’s cartesian position, intermediate levels could
involve the computation of finger tip cartesian positions and joint angles corresponding to
these tip positions. A lower level then could compute tendon tensions from these joint angles
and the last level in the hierarchy would actually compute the actuator voltages needed to
achieve these tendon tensions. It is interesting to note that a similar hypothesis has been
proposed for how human movements are formulated (see Hollerbach [1982]). In fact, one
finds that the hierarchy proposed by Hollerbach [1982] comes very close to describing how
the hand controller hierarchy operates.

In this and subsequent sections, the different spaces in which the controller operates are
outlined along with the algorithms implemented by each level. This section is not intended
to cover design aspects involved in synthesizing a digital controller. Such information is
more easily found in a number of texts devoted to the subject (see for example Astrom and
Wittenmark [1984], Ogata [1987]). Rather, this section is intended to provide a flavor of
how such low level computations are structured by using the Utah-MIT hand as a concrete
example.

All the implementations to be described below are fully digital implementations. There
are many reasons for leaning toward a digital implementation, foremost amongst which are:

(a) In most cases, the hardware can be made simpler.

(b) Digital controllers do not exhibit troublesome features such as drift, electrical nonlin-
earities, etc., that are usually associated with analog components.

(c) They are flexible, and allow fast prototyping and testing of different control algo-
rithms.

33

34 Chapter 4 Control

(d) They need not necessarily mimic their analog counterparts and can indeed use special
algorithms for nonlinear compensations and dead-beat control that have no counter-
part in the analog domain.

4.1 Tendon Management

The controller was designed using a layered approach proceeding from the bottom
(which is the lowest level of control) to the top. At the lowest level, tendon manage-
ment issues predominate. At this level the controller servos tendon tensions associated
with a particular actuator.

In most robots, the lowest level of the controller has been termed the actuator level,
and the space in which the controller operates the actuator space (see Craig [1986]). In
conventional robots driven by electric motors, this would be the level that would, for ex-
ample, convert joint torques to currents or voltages. Since the Utah-MIT hand is driven by
pneumatic actuators and tendons, the ultimate variable controlled by the lowest level of the
controller is the tendon tension associated with an actuator. (In practice, there may or may
not be one further level of control beneath this level of digital control, usually associated
with the amplifiers controlling the actuator). The important variables associated with this
level of the controller are the tendon tension loop gain, the co-contraction level, and the
rectification function, which will be described shortly.

The tendon space controller has to be extremely simple so that it can be run extremely
fast. A simple P, PD or PV controller is usually good enough at this level.

Physically speaking, tendons can only be pulled and not pushed. Hence it becomes
necessary to rectify the desired tendon tension, so that it is always positive. There are
many ways of doing this rectification. Jacobsen et al. [1983] mention the possibility of
using an exponential function to perform the rectification. In practice, the complexity of
implementing a non-trivial rectification function is not commensurate with the benefits it
brings in terms of performance. Hence, we decided to use a simple rectification scheme
pictured in Figure 4.1.

In practice, deciding what levels of co-contraction should be used is non-trivial. For
fast operation, the non-linear nature of the system tends to make co-contraction similar
to active damping - i.e., the higher the co-contraction, the higher the damping. After
experimenting with various ideas on dynamically varying the co-contraction, it was decided
to keep it constant at a level which would permit smooth operation over a wide range of
speeds.

4.2 Joint Level Control

To develop the next level of the controller, I used a simple second order model of the joint
in simulations!. With the underlying tendon space controller operating at high sampling
rates (see Page 45 for performance information), it becomes possible to treat the lower level
as a simple second order system for the purposes of higher level control.

'Most of the simulations were performed using MatrixX, a control package developed by Integrated
Systems Inc.

§4.2 Joint Level Control 35

Flexor Out _| Extensor Out
i

T

L 1 1

Flexor Tension Extensor Tension

Figure 4.1: Rectification function.

In this section, we will assume that our purpose is to do position control (i.e., the
controller will take as input joint angles and output actuator space commands — in the case
of the Utah-MIT hand this output will be desired tendon tensions).

Figure 4.2 shows the step response of the underlying joint, which is modeled as a
continuous time system. The step response of the actual system after the controller has
been tuned appropriately is shown in Figure 4.3.

To understand the final form of the controller, it is illustrative to begin with a simple
form of what we would like to achieve in terms of position control:

where M, is the torque to be exerted about a joint and is proportional by some gain Kp
to the position error A6.

Note that the simple form given by the above equation does not take into account a
number of factors, but is extremely easy to understand. It simply produces a restoring
torque in order to reduce positional error. The task before the joint angle controller is
now to convert this restoring torque (called 7, to indicate that it is a position torque) into
actuator space commands.

To illustrate how this is done, consider the simple single joint shown in Figure 4.4. The
torque about the joint can be written as

r=(Ty =T xr (4.2)
where Ty stands for the flexor tension, 7. stands for the extensor tension and r stands

for the pulley radius. Notice that this equation implies that if we need to solve for tendon
tensions from torques, we have two unknowns but only one equation. However, if we assume

Chapter 4 Control

140~

1.20 -

0.80 -

0.60 I~ ..
— Actual position

od40+/(... Desired position

step response (normalized)

020

[N R TR DR M S T B R
00045 8 10 12 14 16 18 20

time (s)

Figure 4.2: Step response of the model.

| L 1 i
800 850 900 950

position (adc units)

__Actual position
... Desired position

time (1/300 s)

Figure 4.3: Actual step response of final controller.

§4.2 Joint Level Control 37

Figure 4.4: Picture of a single joint controlled by 2 tendons.

that the two tensions will be symmetric about the co-contraction point 7., we can write

Ty = T.+ Tyigy

4.3
T. = T.-Tyiy (4.3)
Putting these two equations to gether we can see that

r
rX2

Tuigs =

In practice, we would like to augment equation 4.1 with a factor depending on the
velocity of the joint as given by

Mp = Kp x A8 + Ky x A (4.4)

An integral term based on the position error is also used in the actual implementation
to improve the steady state error. A plot of the tendon tensions generated by the controller
using the modified equation, for the step response pictured earlier, is shown in Figure 4.5.
Since we do not have a way of directly measuring joint angle velocities in the Utah-MIT
hand, we rely on using the first difference of joint positions as an estimate of the velocity.
More complicated ways of estimating the velocities and using them in the control equation
could also be implemented.

The plot does not include co-contractions, which would just shift the entire graph along
the y-axis. Notice, however, that the plots indicate a non-synergistic interaction between
the actuators. A more synergistic interaction occurs if instead of summing the position
and velocity torques and then computing the tendon tensions from this summed value, we
were to apply the rectification function on each of the individual torques and then sum the
resulting tensions.

38 Chapter 4 Control

2 1000
S
‘G 9.00
-l
£ 800
@ 700
c
& 600
P
8 500
Q —— Flexor tensio
s o\ T Xtensor tsrls? n
= 300 Rnear tendon management

2,00 RN

1.00 SN

0,00 I L T S S T

: 4 6 8 10 12 14 16 18 20
time (s)
Figure 4.5: Tendon tensions generated.
The equation for this would be:
T = Rect(K,) + Rect(K,)+ C (4.5)
instead of the earlier
T = Rect(K,+ K,)+ C (4.6)

A plot of the tendon tensions produced by such an equation is shown in Figure 4.6. The
plot of actual tensions generated by the controller (which takes into account a coupling
effect discussed next) is shown in Figure 4.7.

4.3 Finger Level Control

The finger level controller needs to take into account the coupling between the various
joints. Since there are two tendons per joint and since the hand is tendon driven, the
tendons for the distal joints must pass over pulleys installed in the proximal joints. This
means that there is coupling between the motions of the proximal joints and the distal
joints. This can be seen from a simple two jointed example as shown below (see Figure
4.8).

In practice, the effect of this coupling is rather noticeable. Figure 4.9 demonstrates that
while joints 1 through 3 of a finger are moved, joint 3 actually seems to move backward
before it recovers and moves forward. Obviously, when the ranges of motion are large, the
excursions become larger.

40

Chapter 4 Control

Figure 4.8: Simple 2-joint example.

F

Joint 1
Joint 2

@ 1500 -
‘c
)
O 1000 Mo T mm e Lo
B e Tt e e e e e -
S
5 500
‘D
1 1 I]
2 0 300 400 500 600
-500 - Joint 0
~ —.- Joint1
——_. Joint2
-1000 __ Joint3
-1500 L
time (1/300s)

Figure 4.9: Coupling action between joints.

§4.3 Finger Level Control 41

The coupling manifests itself in two ways. Firstly, when a proximal joint is moved, the
tendons associated with a distal joint move. Thus, in order to keep a distal joint at the
same joint angle relative to a proximal joint, it becomes necessary to introduce decoupling
explicitly into the controller. The other way this decoupling can be observed is in the force
domain - i.e., a torque exerted at the distal joint will mean that the same torque gets
exerted at the proximal joint too.

For the Utah-MIT hand, we can write the torques exerted at the joints as:

- Tfl -

Tel
s rpn -1 0 0 0 0 0 O Ty
T2 = 0 0 T =T9 T —T9 T —T2 T32 (47)
T3 0 0 0 0 ry —rz T3 -Ts3 Tf3)
T4 0 0 0 0 0 0 T4 —T4 Te3

T;4

| Tea

or
r=RT

where r; refers to the radius of the pulley at the i’th joint, 7; refers to the torque exerted
at the ¢’th joint and Ty;, T.; represent the flexor and extensor tensions associated with the
t’th joint.

Notice that since the axes of the distal three joints are parallel to each other, and move
the finger in a plane that is perpendicular to the first joint’s axis of rotation. The joint
level controller developed in the previous section gives us a set of joint torques to exert
about the joints. If one uses Equation. 4.3 to compute tendon tensions we would have
“independent joint control”. In practice, however, the coupling expressed by the equation
given above needs to be taken into account.

The inversion of the above equation (since we need tendon tensions from joint torques)
could be done with pseudo-inverses:

T=R%r (4.8)
where .
Rt = RT(RRT)™

Such an expensive computation can be avoided if we choose to resolve the redundancy by

making the tendon tensions symmetric about a co-contraction level (as we did in Equation
4.3). With this assumption, we can solve for the tendon tensions as:

Trs = Tea+ 714/(2r4)

Te4 = Tc4 — 7'4/(27‘4)

Tizs = T3+ 13/(2r3) — 74/(214)

Ts = Tc3 — 73/ (203) + T4/(274) (4.9)
Tra = Tep+1of(272) — 73/(2r3))
T, = T —12/(2r2)+ 13/(2r3)

Tpn = Ta+7m1/(2r)

Ta = Ta—m7/(2r)

42 Chapter 4 Control

It can be seen that the relationship between tendon velocities and joint angle velocities
(or the differential movement relationship), and the relationship between joint torques and
tendon tensions is not unlike the relationship expressed conventionally by the Jacobian.
Recall that the Jacobian expresses a mapping between joint angle motions and cartesian
motions given by

x=360 (4.10)

and relates joint torques to cartesian forces by
r=JTf (4.11)
The mapping expressed by the R matrix performs a similar function since one can write
v=RT.4 (4.12)

where Ty is a vector representing tendon velocities.
Notice that the columns of this matrix can be easily written down if one uses the
differential form of this second relationship.

ATx =RT. A6 (4.13)

which clearly indicates that if one keeps all the joints fixed and just moves joint ¢, the
corresponding tendon displacement vector AT, will provide the #’th column of the RT
matrix.

The mapping specified by Equation. 4.9 is relatively straightforward to compute. We
could consider the mapping expressed by the matrix R as being composed of two matrices

R=RiR,

where R is a 4 X 4 matrix that performs all the decoupling necessary and R, is a 8 x 4
matrix that computes tendon tensions from these decoupled torques using the straightfor-
ward single-joint model. Rewriting terms one can express:

10 0 0
01 -2 o

R2=0012-;§
00 0

Multiplying the torque vector with this matrix would give us a matrix of decoupled
torques which can then be used to compute the tendon tensions from:

Tfi = T+ ;d_c“
S (4.14)
Tei jci - ;d,-i

where the subscript ¢ has been used to indicate that the values refer to the ¢’th joint, and
T4¢ refers to the decoupled torque.

§4.3 Finger Level Control 43

w1500 -
c
3
8 1000 |- l:":_::i:-———-_-j:.—___—-—i-’ fffff
8) i
‘S 500 -
g 0 (PO AN AN NN AN SO |
600 650 700 750 800 850 900 950 1000
!
S0k —g Ll Joint 0
—---. Joint 1
-~~~ Joint2
-1000 . Joint 3
-1500

time (1/300s)

Figure 4.10: Decoupled step response.

The controller expressed by Eqn. 4.4 can be replaced therefore by:
Mp = Ry - (Kp x A6+ Ky x Af) (4.15)

In reality, the decoupling matrix should include dynamic effects that depend on the
configuration of the joints and their velocities. Expressing such a complex functional de-
pendency would make the controller more complex, and hence we choose to neglect the
dynamic effects and concentrate only on the static coupling that exists (see Biggers et
al. [1986] for one such attempt at including such effects in the off diagonal terms in the
decoupling matrix Rg).

In our current implementation we have found that the static decoupling matrix works
rather well. We have provided for a weighting matrix R3 in addition which uniformly scales
the effect of this decoupling, but in practice this matrix has always been set to the identity
matrix. The actual step response output after setting the decoupling matrices appropriately
is shown in Figure 4.10, and the effect of the decoupling matrix in the calculation of the
torques is shown in Figure 4.11.

We now have derived a controller that takes as input joint angles and then computes
at the first layer the joint torques needed to achieve the given joint angles. These joint
torques are then translated to tendon tensions and servoed by a tendon management servo,
after the necessary decoupling and co-contraction levels have been added. Such a controller
can be used to directly execute joint-space trajectories. Besides joint angles we could also
choose to specify joint torques. The force control algorithm described in the next chapter
relies on directly computing joint torques. Structuring the lower level of control in the

44 Chapter 4 Control

20000
18000
16000
14000
12000
10000
8000
6000
4000
2000

torques(adc units)

— . Torque desired
- .Decoupled Torque

I | I 1 ! 1] }
%00 550 800 650 700 750 800 850 900 950 1000

time (1/300 s)

Figure 4.11: Decoupled torques.

fashion described above allows us the flexibility of operating in force control or position
control modes.

To summarize therefore, as far as a higher level control loop is concerned this level of
the control loop can be viewed as a functional box that looks like the one shown in Figure
4.12.

Finger Level

Joint Angles
me———
4x1

Joint Torques] Tendon Tensions
S—— Joint Controllers
“

4x1 8x1

Tensions
“\

8x1

Figure 4.12: Joint controller as viewed from a higher level.

§4.4 Implementation Issues 45

| Task Assignment | Speed |
4 Joints/Processor 283 Hz
4 Joints/Processor + A/D,D/A | 192Hz
2 Joints/Processor 560 Hz

Table 4.1: Performance of the Finger Level Controller - Version I.

4.4 Implementation Issues

We have implemented the hierarchical controller outlined above on two different archi-
tectures. In this section we will discuss a few of the issues relevant to implementing such a
hierarchical controller. The performance of the two implementations is also described.

Since the two levels of the hierarchy mentioned above (namely, the tendon space level
and the joint level) are interwoven and have data dependencies between them, our imple-
mentation assigns the so-called finger-level controller to a specific processor. The compu-
tational architecture designed to implement such control hierarchies is outlined in a later
chapter. The important points are that the task is broken up at the finger level and the
assignment of tasks to processors is made at compile time and not dynamically.

In the first implementation on the Motorola 68000 based single-board computer, one
finger was assigned per processor. In Version II, based on the Motorola 68020 based single
board computer, two fingers were assigned to a single processor. The performance of the
implementation on the Version I hardware is shown in Table 4.1.

In our first implementation, it was found experimentally that reading and writing the
A/D and D/A converters was time consuming. Hence we moved this task to a separate
processor. In Version II, the control processors are fast enough to service the A/D and
D/A conversions as well.

As can be seen from Table 4.1, reading the analog-to-digital converters and writing to
the digital-to-analog converters alone takes approximately half the time in the feedback
computation. The performance of the second implementation is indicated in Table 4.2.
The last row in this table indicates that the performance of the current implementation
is adequate for tracing and monitoring functions as well. In all previous implementations,
adding such functionality slowed the performance of the servo loops considerably. Both the
two implementations use scaled integer calculations for their control loop computations.

4.5 Higher Level Control

The next level of control forms the highest level in the current control hierarchy. There
are different ways of implementing this level, and a number of different choices that have to
be made in the process. Since this level directly interacts with the joint level controller, it
is clear that the output of this level should be either a sequence of joint angles (as is usually
associated with position control), or a sequence of joint torques (as is usually associated
with force control). We will first deal with the issues associated with pure position control

46 Chapter 4 Control

| Task Assignment | Speed |
8Joints/Processor 550 Hz
8Joints/Processor + A/D,D/A 390Hz
8Joints/Processor + A/D,D/A + Tracing | 340Hz

Table 4.2: Performance of the Finger Level Controller - Version IL

in this section. Issues devoted to force control will be addressed later.

4.5.1 Hand Primitive Motions

We will first deal with what I like to call open loop object level control. In this type
of control the position and orientation of a grasped object is controlled with little or no
feedback. The idea is essentially to specify co-ordinated motion of the finger joints relatively
independently, without worrying too much about the interaction between the finger joints
and a grasped object. This style of control follows mainly from the approaches outlined in
Mason [1982] and Fearing [1983].

The motivation for this approach stems from the observation that stated in very abstract
terms, a grasping operation can be specified as follows:

1. Open the hand’s fingers wide in anticipation of the grasp operation to be executed.
2. Execute a series of moves that take the hand and arm to a pre-grasp configuration.

3. Execute a grab or close operation at the end of which the object that is to be grasped
will be stably positioned within the hand.

Clearly, each one of the above steps involves the specification of a number of parameters.
For example, in the first step, one needs to know how far apart the fingers need to be
moved. The termination conditions for the second and third steps may also not be easy
to specify, since they may depend on objects in the environment. We envision that given
a task description and a model of the environment, one should be able to compute a
series of parametrized trajectories that fill in the details involved in a co-ordinated motion
template suggested by the above framework. As an example of such a parametrized grasping
operation I have included a short program segment that illustrates how a chess piece can
be picked up:

pick_piece_at(x, y, piece_height, piece_radius)
int x, y;
float piece_height;
float piece_radius;
{
float tablex, tabley, closeval;

§4.5 Higher Level Control 47

cvt_chess_to_table(x, y, &tablex, &tabley);

if(tablex != otablex || tabley != otabley) {
move_table_xppriority(tablex, tabley, CHESS_FINAL_HEIGHT, 1000);
traj.go.background();
traj_wait(STEPPER_ONLY);

}

closeval = 2.0 * piece_radius;
/* Open the Hand */
pcd_execute(GRASP, -(closeval), 1000);

/* Move hand down */

move_table_xppriority(tablex, tabley, piece_height, 1000);
traj.go.background();

traj.wait (STEPPER_ONLY);

/* Now perform closing operation */
closeval = 1.0 * piece_radius;
pcd_execute(GRASP, closeval, 1000);

/* Move hand up */

move_table_xppriority(tablex, tabley, CHESS_FINAL_HEIGHT, 1000);
otablex = tablex;

otabley = tabley;

traj._go_background();
traj_wait(STEPPER_ONLY);

The function pcd_execute performs the critical co-ordinated motion of finger joints,
and in this section we deal with the specification and development of such primitives.
The advantages associated with such an approach include:

1. The primitives form pre-compiled routines that can be used to accomplish a task
quite easily. Since primitives can include other primitives and can be built up over
time, they ease the task of a robot programmer.

2. Parametrised trajectories have been found in practice to be surprisingly robust in
the presence of object and environment uncertainties, and in the acquisition and
grasping of objects. In fact, open loop control essentially means that the final position
of a grasped object within the hand may not be known, and hence sophisticated
manipulation operations that require such detailed information may not be possible.
Planning such operations so that they are guaranteed to succeed is a difficult problem

48 Chapter 4 Control

Primitive Fingers affected | Joints Affected
CLOSE O[+],1{+],2[+],3[+] 1
CURL O[+],1[+],2[+],3[+] 2,3
CUP 1[+),3[+] 1
SPREAD 1[+],3[] 0
GRASP O[+],L+],2[+],3[+] 12,3
TWIST 1[+],3[-] 1
THUMB 0[+] 0
WAIT All All
RESET All All
START All All
SINGLEJOINT Specified Specified

Table 4.3: Hand primitive operations.

and requires a sophisticated knowledge of both the environment and the grasped
object (see Brost et al. [1983]).

In practice, using this type of control, we have been able to perform a number of
demonstrations by using a higher level loop wherein the success or failure of an attempted
operation is indicated to the control loop. The Utah-MIT hand’s kinematic structure that
resembles the human hand also makes it easier to define such primitives and actually use
them in tasks.

The specification of such motion sequences would be verbose if the position trajectory
of every joint needed to be specified. To avoid this, we have chosen to specify the co-
ordinated movement of a number of joints via so-called hand motion primitives. Hand
primitives are essentially a way to avoid specifying a large numbers of joint parameters
repeatedly. To grasp a cylindrical object, for example, the simultaneous movement of many
of the hand’s joints is required. Conventional approaches of using a teach pendant would
be hopelessly tedious for programming sixteen joints. Some researchers have proposed
using a master/slave system and then operating hands in a teleoperative mode. While
this suggestion is not without merit, some rather complex problems have to be overcome
to make such a master/slave device. The problems are further compounded by hands
with non-anthropomorphic kinematics, where the mapping between the master and slave
is non-obvious and may require considerable operator training.

These primitives provide a way of treating entire sets of joints as a single controllable
entity. Some of the implemented hand primitives are shown in Table 4.3.

The table is by no means meant to be all-inclusive since the user has the ability to define
his own primitives. Primitives can be classified into two categories.

1. Servo Level primitives that affect the performance of the control hierarchy by changing
the servo parameters (these primitives have not been mentioned in the table).

§4.5 Higher Level Control 49

2. Joint Subset Level primitives that affect some given subset of joints of the hand.

Each entry in the table above specifies a primitive and the corresponding joints affected
by that primitive. For example, the THUMB primitive specifies a motion that is to be ex-
ecuted on joint zero of finger zero, in the positive direction. The TWIST primitive causes
joint number one of fingers one and three to move in opposite directions simultaneously.
Servo level primitives can likewise be specified for subsets of joints. Thus a primitive es-
sentially specifies a co-ordinated motion of a chosen subset of joints. A primitive is not
considered to have finished executing until all the joints it affects have moved to their final
positions as required by the primitive’s single argument. In a conventional robot program-
ming language these primitives could be implemented as a series of MOVE statements.

The primitives and the names chosen for them are not important. However, what should
be noted is that by treating a number of joints to be controlled as a single parameter, a
large amount of the complexity involved in programming the hand can be overcome.

In the current implementation, these hand motion primitives have been extended to
form a sort of threaded-interpreted language in which the hand can be programmed. The
user can define his own primitives by specifying a name, a set of joints that the primitive
affects and the direction of motion associated with each of those joints. At the hand
primitive level we have implemented a motion editor that allows one to define and operate
on entire sequences of hand primitive motions, much like one would operate on pieces of text
in a conventional text editor. Using this editor one can enter sequences of hand primitive
motions which can then be stored and retrieved from files.

A sequence of motions, once programmed and tested, can itself be treated as a prim-
itive in other motions, enabling the stringing together of long and complicated motion
sequences.?

Given below are two short examples of such motion sequences, both of which were
developed interactively to perform simple tasks:

01. START(+00) 02. WAIT(+05) 03. SPEED(+10)
04. GRASP(~40) 05. WAIT(+05)

The first sequence is an example of a simple grasping operation. As mentioned before, since
the hand is controlled completely as a position controlled device, the sequence succeeds in
grasping cups or coke cans by relying on the passive compliance provided by the underlying
mechanical device.

The second example given below is performed after the hand has successfully grasped
a pair of scissors. When executed, the sequence simulates a cutting action.

01. CURL(+10) 02. WAIT(+05) 03. CLOSE(-40)
04. WAIT(+05) 05. CLOSE(+45) 06. WAIT(+05)
07. CLOSE(-45) 08. WAIT(+05) 09. CLOSE(+45)
10. WAIT(+05) 11. CLOSE(-45) 12. WAIT(+05)

%Since sequences of primitives can themselves be treated as primitives, it becomes necessary to do a full
topological sort of the sequences before they are written out to a disk file. My approach to solving this
problem was essentially gotten from a hierarchical editor called HPEDIT for doing VLSI circuit layouts which
maintains a hierarchy of component circuit cells in disk files.

50 Chapter 4 Control

Notice that other ways of programming the hand would involve specifying a trajectory for
each of the joints in a more tedious way involving end points and via points.

Both the above examples did not use any servo-level primitives to change the servo
characteristics as they were being executed. It is easy to see, however, that by judiciously
altering the servo parameters like gain and damping, the performance of the hand can be
altered during the course of a motion sequence. This is useful for changing between the
two extremes of performance achievable with the hand, namely, that of force accuracy and
positional accuracy.

It must be mentioned that these motion sequences are parameterizable in terms of speed.
This is so because each primitive motion actually causes a series of joint level trajectories to
be enqueued. The trajectory generator then uses a simple joint level interpolation scheme
(linear, quadratic and sinusoidal interpolation are the three types of interpolation schemes
presently supported), to generate the sequence of joint angles that the lower levels in the
control hierarchy must servo to. The linear interpolation is given by the equation

Bd(t) =6; + t(0f - 0,) (4.16)

where t ranges from 0 to 1, with a specified step size #x. This step size is what is altered by
the SPEED primitive. By increasing the step size the same primitive motion is performed in
a shorter time. The actual time it takes for the primitive motion to complete, of course, is
a function of the servo rate and is given by:

1
torim = ————————— 4.17
PTURT servorate X tk ()
It should also be noted that this type of control can co-exist with the cartesian position
and force control schemes to be described later.

4.5.2 Cartesian Space Control

While hand primitives and other such schemes of open loop position control of the joints
do accomplish a wide variety of tasks, these suffer from the disadvantage that they fail often
owing to a variety of reasons (see Fearing [1987] for a discussion of the baton twirling task).
Ensuring that the failure rate goes down would involve a great deal of modeling — both in
terms of the geometry of the grasped object and in terms of the physics of the grasping
operations.

In this section we present a method for solving the trajectory planning problem during
manipulation tasks. This method relies on a number of restrictive assumptions. Some of
these will be relaxed in later sections and we will see that planning trajectories in carte-
sian space for robot hands has quite a different flavor from conventional robot trajectory
planning.

In conventional robotics, trajectory planning is usually considered a problem of speci-
fying the positions, velocities and accelerations of the end-effector to carry out a particular
task. One way of finding such a specification given the initial and final positions of the end-
effector is by using constraint-satisfaction techniques. A variety of constraint polynomials

§4.5 Higher Level Control 51

have been used, including cubics to ensure continuity of positions and velocities at the end-
points of the motion, quintics to ensure position, velocity and acceleration constraints (see
for example Mujtaba [1977]). Resolved motion rate control proposed by Whitney [1969]
has been used to repeatedly compute the velocity commands to an underlying velocity
controller from the equation:

6=J"1x (4.18)

This method assumes that the cartesian velocity of the end-effector is known or can be com-
puted from the task specification. A method based on computing the successive positions
and orientations of the end-effector using homogenous transforms has also been proposed
by Paul [1981]. A recursive way of computing the joint space trajectories associated with
straight-line cartesian space trajectories has been proposed by Taylor [1979]. This bounded-
deviation method relies on computing the error in cartesian space of a given trajectory using
forward kinematics.

Computing the trajectories to be followed by fingertips of a robot hand manipulating a
grasped object is slightly more complicated. As can be seen easily, if one computes straight-
line trajectories from the initial positions of the finger tips to their final positions, one could
end up crushing a grasped object. A grasped object basically imposes kinematic constraints
on where the finger tips or the contacting surfaces can be. Throughout the motion of such a
grasped object these constraints have to be satisfied so that the relative distances between
the grasp surfaces does not change. A three-fingered hand like the Salisbury hand can be
said to make three point contacts with any object it grasps. These three points define a
triangle in space which must not change shape as the object is moved by the hand. In the
case of the Utah-MIT hand one can think of the tetrahedron formed by the contact points
as being manipulated in space instead of the grasped object.

The goal, therefore, is to compute a time history of cartesian positions z;; which denotes
the cartesian position of the ¢’th finger tip at the k’th time step. Once we have these
cartesian positions, using the inverse kinematics relations, we can compute the stream of
required joint angles.

In the following sections we outline two ways of solving the trajectory planning prob-
lem during a grasping operation. The two ways differ in their representation of rotations
and consequently in how many operations they need to compute the intermediate points.
The first method uses homogenous transformations to represent rotations while the second
method uses quaternions.

The first scheme of computing the joint space trajectories follows the presentation out-
lined in Chiu [1983], wherein linear joint interpolation is used to achieve cartesian space
trajectories of the finger tips. The scheme relies on computing intermediate knot points of
a given trajectory and then uses linear joint interpolation between the knot points.

4.5.3 Motions Specified using Homogenous Transforms

The motion of a grasped object can be specified in a number of ways. We first deal
with motions specified using homogenous transformation matrices.

52 Chapter 4 Control

4.5.3.1 Motion Specified Relative to an Absolute Reference

Generally speaking, it will be possible to indicate this motion relative to an absolute
reference frame by a homogenous transform matrix A2 . In order to satisfy the constraints
that at each point in the motion the contact points must not move relative to one another,
we have to compute the position of the grasped object at every instant of the motion.
Following the notation in Paul [1981], we can see that this can be done by the following
equation. Note that the equation indicates a screwing motion that translates and rotates
the grasped object at the same time, in contrast to method outlined by Paul wherein the
rotation is split into two separate rotations.

A% (1) = R‘(’)t(‘?)’og)) p(lt) (4.19)

The above equation essentially expresses the famous theorem by Chasles, that any
motion can be considered to be a combination of a translation p with a unique rotation of
angle # about a unique rotation axis f. If a linear interpolation is used, and if this motion
needs to be performed in N steps, then after k steps the body will have translated to a
position given by

_kp
Pr = N
and will have rotated by k /N about the rotation axis . However, the orientation of the
object will be indicated by

R(ty) = R’“(ﬁ,%)

since rotations are composed by multiplying the rotation matrices together.

Now consider an object grasped by the finger-tips at n contact points. The cartesian
co-ordinates of the finger-tips can be represented by x;. At any given instant during the
specified motion therefore

x;(t) = A% (%) x;(%0)

where x;(%o) specifies the position of the finger tips at the beginning of the motion.

4.5.3.2 Motion Specified Relative to an Alternate Frame

In some cases it may be necessary to specify the motion not in a global reference frame
but relative to some other frame, say A,. The contact points x;j(fo) can be expressed
relative to this initial frame by A; ! xj(¢o). If the motion expressed relative to the A, frame
is A7 (t), then the finger tip positions at any given instant during the motion can be seen
to be

Ar AL (1) AT x(to)

relative to the global reference frame.

As outlined in the previous section, motions can be specified relative to an absolute
reference frame. Such motions are meaningful only in a few situations. More often one
desires to specify these motions relative to the grasped object; For example, the operation

§4.5 Higher Level Control 53

of a screw driver involves twisting about an axis defined by the screw driver, while exerting
a force about that axis. The problem therefore becomes one of determining a meaning-
ful frame relative to which the motion ought to be specified. In other words, what is a
meaningful value for the frame A, in the last equation?

Location of this object specific reference frame A, can be referred to as the grasp
localization problem, since it refers to identifying the position and orientation of a grasped
object within a dexterous hand. This can be solved in three different ways.

1. The first method is to use external sensing modalities like vision or tactile sensing,
to identify the frame A, directly from identifying visually or tactually observable
features on the grasped ob ject.

2. The second method is to assume that the grasp points are known relative to this
frame (usually this is the form that the output of a planner will generally take). This
implies solving for the elements of A, from:

xi(to) = Arxi”

The left hand side of the above equation can be gotten from the forward kinematics
at instant #g9. x;” specifies the grasp points relative to this frame A,. The first
method which relies on sensors could be affected by sensor noise but is unaffected
by uncertainties in the initial positions and orientations of the grasped object. The
second method on the other hand requires a detailed knowledge of where the fingers
are placed relative to this frame and could compute the wrong value for A, if the
fingers are not where they are supposed to be.

3. A third method outlined in Chiu [1983] is to compute a frame known as the grasp

- frame relative to the positions of the finger tips A, = F(X;(to)). Then the frame
A, can be specified relative to this grasp frame by A, = A; Ay. This method
computes forward from the current finger tip positions and is a compromise between
the previous two. It will be affected both by sensor noise and by uncertainties in the
initial position and orientation of the grasped object.

To summarize therefore, we present the iterative algorithm for actually computing the
intermediate knot-points during a cartesian trajectory.
Input:

1. A motion spec of the form [#,0,p] specifying a rotation of § about an axis i1, and a
translation p along the axis.

2. N The number of intermediate knot points to compute.

3. The frame A, relative to which this motion spec has to be applied.
Output:

1. A stream of cartesian positions xj for all the finger tips. For the Utah-MIT hand i
ranges from 0 to 3, and k ranges from 0 to N — 1.

54 Chapter 4 Control

Computation:
1. Compute A1, x;(t0), and Xgart = 45! x;(%0).
2. Compute A8 = §/N and Ap = p/N.

3. Let A, represent the incremental translation and rotation represented by [a,Ad, Ap)].

A = Rot(2,A0) Ap
T 0 0 0 1

4. Let Ag = A,. For ¢ from 0 to N by 1 do compute:
Aip1 = A; - A,
Xi+1 = Ait1 Xstart

4.5.4 Motions Specified using Quaternions

In the previous section, we used homogenous transforms to represent motions. We
presented algorithms for two cases. First, the motion was specified relative to an absolute
frame, and then, an alternate frame of reference was used to specify the motion. The
algorithms outlined above essentially rely on computing the position and orientation of a
grasped object at different points during a motion, and then computing the trajectories
traced by the finger tips relative to this frame. The computational complexity of doing this
in real time can be seen to be essentially

C(T1 (o] T2) -|- nC(T [o] V)

where C(Ty o T3) represents the complexity of composing one transformation matrix with
another, and C(T o v) represents the complexity of computing a vector transformed by a
motion transformation.

If one represents the configuration of an object using homogenous transformations, it
would take a total of 33M+24A to compose two transforms. (The rotations alone would take
24M+15A - since the rotation matrix part of a homogenous transform is orthonormal the
third column can be computed as the cross product of the previous two). The operation
of computing the transformation of a single point v by a transformation matrix T can be
expressed as

v = Rot(T) o v + Trans(T)

Computing the first term in the above equation can be done in 9M+6A operations, while the
second term takes 3 more additions. Therefore a total of 9M+9A operations are required
to do the second operation.

The total number of operations needed to perform the online trajectory computation
neglecting the precomputations performed is given by (33+9n)M + (24+9n)A. For n = 4 as
is the case with the Utah-MIT hand this turns out to be 60M+514.

§4.5 Higher Level Control 55

In this section, we will essentially use the same algorithm as in the previous section,
but use a different representation for rotations. Unit quaternions provide a compact rep-
resentation of rotations. In fact, such quaternions have been used by Taylor [1979] in his
trajectory planning scheme for conventional robots. Such a quaternion represents a rota-
tion of # about an axis # as [cos(%), isin(§)]. We will denote a quaternion as the a scalar
part go taken together with a vector part qg to form the quaternion Qg = [go, qo]-

The configuration of the object can be described by C, = [xo, Qo). The position of the
object is represented by the position vector x, while the orientation is represented by the
unit quaternion Qo. A short description of the quaternion representation for rotations and
its use can be found in Horn [1986].

In the standard representation quaternion composition of rotations takes only 16M+9A.
Computing the transformation of point vectors by a quaternion takes 22M+124 in the stan-
dard representation of this composition which is:

v=v(-q-q+2(v-q)q+2gaxy
As suggested in Canny [1984], we can express the above equation as
v'=v+2q><(q><v)+2qq><v

which can be computed using only 15M+12A operations. 3.

The total complexity of doing the online trajectory computation using such a repre-
sentation of rotation is given therefore by (16+15n)M + (9+12n)A operations. For the
Utah-MIT hand this figure turns out to be 76M+57A. The complexity of operating with
quaternions can be seen to be slightly higher.

The above two ways of computing the trajectories assumed that the object was translat-
ing uniformly and rotating at a uniform angular velocity as it made the required rotation.
If one relaxes this requirement that the angular velocity be uniform, an alternate represen-
tation for rotations that uses the scaling property of quaternions can be used to denote Qg
by Qo = [1, ﬁtan(%)]. Using this a linear representation for intermediate points during a
rotation can be derived as

Q) = [1,thtan(3)]

where ¢ could range continuously from 0 to 1.

This allows the intermediate orientations of an object be computed essentially with
three multiplications and renormalizations. Such a trajectory through orientation space
will not have a uniform angular velocity as noted by Canny [1984], although it will ac-
complish the required rotation about the required axis. The desirable feature about this
representation is that since it relies on a continuous representation it allows a planner to be
able to compute the intermediate orientation of the grasped ob ject at any point during the
trajectory. Needless to say, there are other ways of defining Q(t), but a linear interpolation
as defined by the equation suggested above, is perhaps the simplest.

®Multiplication by 1 or 2 is counted trivially as an addition operation ~ see Salamin [1979]

Chapter 5

Force Control

Pure position control requires accurate manipulators. This is especially true in assembly
tasks that require fine manipulation capabilities. Typical part dimensions in optical fiber
assemblies or magnetic core assemblies for computers are less than a millimeter while the
tolerance on the parts is of the order of 0.25 micrometers. More recent integrated circuit
manufacturing tasks require positioning stages that are accurate to 0.02 micrometers (see
Toumi et al. [1986]).

It is clear that to achieve such accuracies, much higher standards need to be achieved
in the manufacturing and control of robots.

In some tasks, however, merely increasing the accuracy of the robot performing the task
is not enough. If such tasks are to be performed by robots under conventional position con-
trol, the models that the robot uses need to be near perfect. The model of the environment
needs to be accurate so that the motion planner can generate the right positions that the
robot must move to. The model of the robot in terms of kinematic and dynamic param-
eters needs to be accurate too, so that a controller can generate the right signals to the
actuators while making the motions that the planners generate in the presence of unknown
disturbances. In reality, perfect robot models, and even good robot models, are hard to
come by. The changing and unstructured environment is again impossible to model and
hence pure accurate position control for robot manipulators faces fundamental limitations
for certain kinds of tasks.

In this section, we present the force control algorithm presented originally in Hollerbach,
Narasimhan and Wood [1985] that forms the basis for the implementation of the force
controller for the Utah-MIT hand.

5.1 Introduction and Previous Work

A force controller can be implemented in a number of different ways. In general, using
a force sensor to monitor the forces of interaction that a manipulator experiences, and then
using this force information to modify the controlled parameters like position or velocity
of the robot has been termed force control (see Whitney [1985]). It has also been applied
to the process of generating force signals, in response to deviations from some nominal
trajectory (see Salisbury [1982]).

It is instructive to consider the different alternatives that have been proposed in the
literature (Whitney [1985] presents a survey of current force control methods and Maples
and Becker [1986] provide a further classification). We will deal exclusively with active force
control schemes, as opposed to passive force control schemes wherein the inherent mechan-
ical compliance of a manipulator is used to perform tasks that require fine manipulation.

57

58 Chapter 5 Force Control

It must be mentioned that no real manipulator is perfectly stiff, and every robot has some
amount of inherent mechanical compliance. This is especially true in the case of a robot like
the Utah-MIT hand wherein the inherent damping and mechanical compliance provided by
the underlying mechanical system comes very close to providing an ideally stable system
for tasks that involve contact with the environment.

Damping control was proposed by Whitney [1977]. In this form of force control, the
inverse of a damping matrix is used to modify the desired velocity vector based on the
sensed forces. Such a form of control has also been assumed by planners which use the
so-called generalized damper formulation (see Lozano-Pérez et al. [1984], Donald [1987],
Erdmann [1984]).

Salisbury et al. [1982] proposed an alternative to damping control, which has now come
to be known as stiffness control. In this method, the underlying controller is one that
generates forces in response to deviations from some nominal trajectory according to a
generalized-spring model. His driving equations then could be expressed as

f = K, -Ax
(5.1)
r = JTK, JAéd

The quantity J T K,, J can be denoted as K, and represents the cartesian stiffness matrix
mapped to joint space.

Hogan {1985] provides yet another alternative called impedance control which uses damp-
ing and stiffness matrices to control a so-called virtual manipulator. Raibert and Craig
[1981] propose a scheme called the hybrid force control scheme wherein certain axes of the
manipulator are force controlled while others are controlled using conventional position
control schemes. Mason [1982] presents a formal theory of how natural and artificial con-
straints arising out of a given task situation can be used to provide information to a hybrid
controller.

Perhaps the most important choice that has to be made in designing a force control
scheme is to decide the co-ordinate system in which the error to the controller will be
measured. In the scheme proposed by Salisbury et al. [1982] the cartesian error Ax can
be mapped to joint space using the cartesian stiffness matrix mapped to joint space. The
errors in this method are computed in joint space (A#). In the hybrid position and force
control scheme (Raibert and Craig [1981]), and in the generalized damper scheme (Whitney
[1977]) the errors are computed in cartesian space.

There are many problems associated with computing the error in joint space. First,
it is more natural to describe tasks in cartesian space and describe the partitioning of
which joints are to be force controlled and which are to be position controlled in this task
space (see Mason [1982]). Specifying these task level constraints in joint space is certainly
cumbersome. If the task level constraints are specified in cartesian space but the underlying
controller is written to operate in joint space, then usually some scheme for interpolating
has to be designed. These interpolation schemes in joint space usually result in curved axes
in cartesian space (see Chiu [1983] for an interpolating controller based on the generalized
stiffness method).

§5.2 The Force Control Algorithm 59

The advantage to joint based schemes that is often cited in the literature is that the
computation associated with such schemes is often small when compared with cartesian
based schemes. But as we will see later on in this chapter, this is not necessarily true.
In practice, as reported in Maples and Becker [1986] specialized fine tuning of joint based
controllers often adds to system complexity.

These considerations led to our choice for computing the error in cartesian space instead
of joint space.

A number of papers on force control published recently have dealt with the stability
issues associated with such controllers, since most force controllers have had problems
with stability when the robot comes into contact with a stiff environment. An [1986]
identifies the kinematic and dynamic instabilities that can occur when a robot contacts its
environment, and presents the results of a number of experiments performed with a high
performance direct drive robot. The importance of modelling and estimation coupled with
experimentation to test the validity of theoretical results is emphasized in this significant
work. To solve the stability problem, Whitney [1985] and Roberts [1984] have proposed
using a compliant covering to increasing the damping at the end-effector. An [1986] has
proposed adapting to the stiffness of the environment by using an identified model of the
dynamics of the environment. Using joint torque sensing in lieu of a tip force sensor in the
feedback loop has been proposed by Wu and Paul [1980] and studied in detail by An [1986].

5.2 The Force Control Algorithm

Before going into the details of the force control algorithm, it is useful to briefly outline
what needs to be computed and why.

Consider an object being grasped by the finger tips. (Note that we are making the
assumption that no non-tip contact is made, which in some cases could be overly restrictive).
To manipulate the object (i.e. to move it) or to exert forces on the environment with it, one
could say that one has to exert a wrench on the object. These wrenches can be exerted on
the object only through the contacting surfaces. If the wrench to be exerted on the object
is specified, then the problem can be seen to comprise of two subproblems, viz.,

1. computing the wrenches to be exerted at the contacting surfaces and then

2. computing the joint torques so that these wrenches will be exerted at these contacting
surfaces.

5.2.1 Lines, Screws, Wrenches, and Twists

The following section presents briefly some necessary mathematical groundwork, so that
the algorithm presented later on in this chapter can be easily understood.

A line in space can be represented by four quantities, for example, the slope and in-
tercept of the projections of the line onto two different orthogonal planes. A line can also
be represented by its so-called Pliicker co-ordinates, wherein a line is represented by six
numbers L = [l[,m,n,p,q, 'I']T. The numbers I, m,n are the direction cosines of the line

60 Chapter 5 Force Control

and p, g, r represent the moment of the line about the origin of some reference co-ordinate
system. This can also be denoted as [I,r x 1]. From this it follows that

P4m?+n? = 1

Ip+mg+nr = 0 (5-2)

A screwis a five dimensional quantity, which is basically a line in space augmented with
a quantity called the pitch. If the screw is represented by S = [So, S1, 52, S3, S4,.95)7, the
pitch is given by:
_ 5053 + 85154 + 5255
Pe = T ST 53

If a screw is given by S = [S,, S,] the Pliicker line co-ordinates of S are given by

Sp = [Sm S, — pssv]

Owing to a famous theorem by Poinsot, any system of forces and torques acting on a
body can be reduced to a single force and torque, in effect, a wrench. This means that the
effect of all the contact wrenches will be the same as if a single body wrench were applied
to the body as a whole. An analogous theorem due to Chasles states that a displacement
of a rigid body can be considered to be a unique rotation about an axis combined with a
unique translation about that axis.

A twist (or wrench) is a six dimensional quantity used to represent generalized motion
(or forces). The primary difference between the two is that wrenches add just like vectors
while twists do not (only infinitesimally small twists do). The six dimensional quantities
are basically a screw augmented with an amplitude. In the case of five-dimensional screws

Se+SE+83=1

but in the case of a twist (wrench), the sum of the square of the primary component forms
the amplitude.

Twists and wrenches provide a convenient representation for thinking about contacts
and grasping with articulated hands.

5.2.2 Internal Forces

Consider an object being held by the fingers of a dexterous hand. Each contacting sur-
face exerts a particular wrench on the object, by restricting its motion in certain directions.
This set of wrenches exerted by the contact points can be termed the contact wrenches.

Let the generalized force exerted by the grasped object on the environment be denoted
by

Wy = (fo, no)

and the sum of the contact wrenches be denoted by

We = (fe7 ne)

§5.2 The Force Control Algorithm 61

Such an object force can be synthesized from the task requirements using artificial and
natural constraints, but for now we will assume that it is specified in some fashion (see for
example Mason [1982]).

Each contact point 7 exerts a wrench w; through the point of contact. This wrench
is made up of a number of components parallel to the basis wrenches, the composition of
which depends on the type of contact model assumed. For example, a point contact with
friction in three dimensions prevents relative translation between the contacting surface
and the grasped object, but does not prevent relative rotation. Relative translation will be
opposed by a frictional force. This frictional force will have one component normal to the
surface of contact, and two parallel to a plane tangential to the contacting surface. The
force normal to the surface is unisense, but the other two components can be bidirectional.
If a soft finger contacting model is assumed, then there can be a fourth component in
the wrench exerted by the contacting surface, namely, a torque arising about the contact
normal.

Salisbury [1982] classifies the different types of contact possible based on the wrench
systems they exert on the grasped object in three dimensions. Let w, be the external
wrench exerted on the grasped object as the result of all the tip contacts.

n N
We =D > Aijwi (53)
i=1 j=1
where n is the number of contacts and n; refers to the number of wrenches belonging to
the set of wrenches caused by contact surface i. More compactly,

we = We

where W = (W11, vy Win, s Won,,... ,Wnnn) and ¢ = (All, ceey /\1n1, A217 PN a/\nnn)-

It can be seen that this system of equations is underconstrained. In the case of three
fingers assuming a model of point contact with friction, W is a 6 x 9 matrix, while under
a soft finger contact model, it is a 9 X 12 matrix.

In the above equation);; refers to the intensity or magnitude of the j’th component of
the 2’th contact wrench. Clearly, since some of the contact wrench components need to be
unisense, these wrench intensities have to be positive in any solution.

In its most general form, the solution to the above equation can be expressed as:

C=Cp+Cy (5.4)

where Cp is the particular solution, and Cy, is the homogenous solution that lies in the
null space of W. Salisbury [1982] and Kerr [1984] have both suggested the use of the right
generalized inverse to solve for Cp. The components of Cy, are the internal grasp forces.
Such a combination of wrench intensities lying in the nullspace of W that will result in no
net wrench on the object can be chosen a number of different ways.

Salisbury [1985] augmented this equation with additional internal grip force equations
to make the system of equations solvable, as follows:

fij = (£ = £5) - vy (5.5)

62 Chapter 5 Force Control

where f; is the force exerted by finger i, r;; is the unit vector from the ith to the Jth contact
point, and f;; is a specified scalar internal grasping force.

In general, there is a question as to how these internal forces are defined and how they
are specified. Kerr and Roth [1986] present an algorithm to choose these internal forces SO
that an optimally stable grasp can be achieved. This algorithm relies on simplifying the
friction constraints to four linear constraints (the friction cone is considered to be bounded
by some friction pyramid), and then solving the resulting linear programming problem
using standard techniques.

Notice that from the above equation we have one internal force component per pair of
contacts. This means that for three degree of freedom fingers there will be C; or three such
internal force components. If we assume a point contact with friction model, each contact
exerts a force on the object but no torque at the contacting point. The specification of all the
finger tip forces would involve specifying the nine components of these three force vectors.
Augmenting the wrench to be exerted on the ob ject (which involves six components) with
the internal forces, we see that the resulting system of equations becomes solvable.

The same result holds for point contact with friction models, for four contact points as
well as can be seen from Table 5.1.

no. of contacts | tipforce components | w, | internal forces
2 6 6 1
3 9 6 3
4 12 6 6
5 15 6 10

Table 5.1: Summary of external equations required - point contact with friction.

We can see from the table that for point contacts with friction, the above definition of
internal forces gives rise to an overdetermined system in the case of two finger contacts, and
an overdetermined system for five fingered contacts. It has been pointed out by Salisbury
[1982] that to achieve complete restraint with any of the three degree of freedom contact
types is not possible. For example, two point contacts with friction grasping an object will
still not be able to restrict twists about an axis between the two point contacts.

In the case of three soft-fingered contacts there are twelve components to be solved for.
By using the above definition of internal forces we can get three additional constraints. The
remaining three constraints can be defined to be the linear forces along lines formed by the
intersection of the planes normal to the contacting surfaces.

fs = Ay(ny x nyp)
f5 = /\5(n1 X n3) (5.6)
fs = As(nz2 x n3)

where n; represents the surface normal vector at the i’th contact point, A; represents the
force component and f; the i’th additional force. These three equations when added to

§5.3 Algorithm 63

the others make the system of equations solvable in the three fingered contact case, with
soft finger contacts. Notice that using such a definition implies knowledge of the contact
surface geometry. In the algorithm presented below, we solve the three and four fingered
case assuming a point contact model with friction but do not solve the soft-finger contact
model.

5.3 Algorithm

In general therefore, the computation of the control law can be broken into the following
steps.

1. Sense joint positions and contact points at finger surfaces.
2. Compute present cartesian position of the grasped object.
3. Compute the cartesian position error Ax of the object from its desired position.

4. Compute the control wrench wy to be exerted on the object. This is done by some
control law (usually the Generalized Stiffness equation is used), using the position
error computed in the previous step.

5. Compute from this wrench the wrenches that need to be exerted at the finger tips,
or other contacting surfaces.

6. From the finger tip force compute the joint torques that need to be exerted by the
actuators.

There are a number of assumptions implicit in the above mentioned algorithm. It is
instructive to enumerate them, so as to get an idea of the algorithm’s general applicability.
It should also be mentioned that while certain steps of the algorithm are inherently serial,
others are not. Such portions of the algorithm can be implemented very conveniently in
parallel on the computational architecture that we have developed.

1. We have assumed that the contact points stick. No sliding or relative motion is
assumed to occur between the contact points and the grasped object.

2. Usually some kind of contact model has to be assumed, which remains fixed for
a specified duration. A soft-finger type of contact is very different from a planar
contact with friction, and the solvability of some of the equations will depend on the
type of contact model chosen. Also, a planar contact may change to a line contact
when the object moves around within the hand.

3. The entire operation is assumed to be quasi-static. If fingers move fast enough, then
the dynamics of the contact situation need to be considered and will complicate the
analysis to a very great extent.

64 Chapter 5 Force Control

4. We have also implicitly assumed that accurate joint torque control is possible. This
assumption is usually implicit in most force control schemes. Almost all of these
formulations whose output involves forces or torques assume that the underlying
controller and actuation systems will be able to achieve the forces or torques asked
of them. This may not be necessarily true.

5. Objects are assumed to be rigid as are fingertips. In reality most finger tips have soft
coverings on them to prevent them from damage and to increase grip stability, and
objects can be made of non-rigid materials too.

5.4 Computing the Object Displacement

The first two steps of the algorithm essentially involve the computation of the forward
kinematics which we have already covered. As a result of this computation, we get the
cartesian positions of the contact points (which are usually at the fingertips).

Given the cartesian positions of the finger tips, the next step is to compute the differen-
tial displacement of the grasped object. This differential displacement can be computed in
one of two ways. The first is conceptually easy to understand but suffers from the inability
to recognize a number of special cases; the second yields a simple and compact solution.

It is easily shown that one can compute the displacement of a body, given the displace-
ment of three non-collinear points on the body. We can express the position vector of a
contact point as

ri=r+1;

From this the displacement of each of the fingertips can be written as:
dr; =dr4+wx];

where dr represents the translation of the grasped object, w represents the rotation of the
grasped object and I; represents a vector drawn from the representative point to a contact
point. Subtracting one equation from the other and expressing them in matrix form we
get:

dr; —dr, L -1
dr1 - dl‘3 = wX 11 — 13 (5.7)
dl‘g - dr3 12 - 13

for three contact points. The above equation can be easily solved for the components of w
by using the fact that
0 —Ww; Wy
wX = Wy 0 w;
—wy wz 0

To solve the vector equation, one can solve for w and then recover the components of
dr using one of the above equations. There are many special cases involved in the above
computation which takes 17M+384 steps. These have to do with cases wherein a division by
zero would occur. Taking care of such cases would require further computation. Whether

§5.4 Computing the Object Displacement 65

the motion is really a translation or a rotation is also not readily apparent in the above
formulation.

Using the theorems mentioned above, one can formulate another algorithm that recovers
the components of a screw displacement, given the displacements of the finger tips. The
algorithm is a slightly modified version of the algorithm given in Angeles [1982]. Let a, b
and c denote three displacement vectors dry,dr; and drs. The objective is to compute 1,
the vector about which the rotation occurs, the translation along this vector and the angle
of rotation. The algorithm proceeds as follows:

1. Compute differences between pairs of displacement vectors. Let

6, = a-b
b = b-c (5.8)
6 = a-—c

2. Check for collinearity. Compute (a — c) x (b — ¢), and check if this vector is equal to
the null vector. If the points are collinear, then choose another point and try again.

3. If all of them are identical to zero, then the motion is a pure translation which is
equal to any of the displacement vectors.

4. If two of these differences are identical to zero and if these are §, and &;, then define
a new motion arising out of subtracting 6. from the other two vectors. This will
mean that there will now be two non-vanishing difference vectors and one can use the
following case.

5. If one of them is identical to zero!, then check if the two remaining are parallel by
checking if the cross product 8, x é. is the null vector. If the two difference vectors
are non-parallel, then fi can be computed as their cross product. If they are parallel,
then one of them can be expressed as a constant multiple of the other.

0y = Bbe
The vector i can then be computed as the normalized form of the vector given below:

b-c-p(a-c)

6. If none of the differences are identical to zero, then we compute §. - (6, X &) to see
if they are co-planar. If they are not coplanar then the vector fi can be computed as
the cross produce of two of the displacement vectors as before. If they are co-planar,
then we compute if the differences are parallel, by computing (6, — 6.) X (8 — ;). If
they are parallel, then the motion is once again a pure translation. If they are not
parallel, then i can be computed as the cross product of these two difference vectors
as before.

'Without loss of generality, we can assume that §, is the vector that vanishes.

66 Chapter 5 Force Control

7. Compute the angle of rotation and the linear displacement if they haven’t still been
computed. This is done using

’
ac-ac

cos(¥) = Tram (5.9)
§ = &-h

where a is the initial position of one of the points, @' is its final position after the
move has been made and ¢ is a point on the screw axis.

The complexity of the above algorithm is higher than the previous one mentioned in
the worst case. As can be seen, depending on the nature of the motion involved, the
computations can range between 6M+19A to 31M+28A. The average case complexity will of
course be much better in this algorithm, and we prefer it since it recognizes all the special
cases involved.

The next step in the algorithm calculates the force to be exerted on the object based
on its displacement. The usual form of a generalized stiffness formulation is used. The
stiffness matrix Kp is specified in cartesian space as mentioned before. The force on the
object is calculated using:

w, =K, Ax+ K, - Ax + w (5.10)

where K, represents the stiffness matrix, K, represents the damping matrix and wy is a
bias wrench. Usually, both the 6 x 6 matrices K, and K, are diagonal. Such matrices can
be specified by a programmer or synthesized from the nature of a task. This computation,
assuming diagonal matrices, takes 12M+12A operations.

5.5 Computing the Fingertip Forces

The next step is perhaps the most complicated one in the algorithm. Given the wrench
to be exerted on the object, our objective is to compute the wrenches that need to be
exerted by the fingertips in order that the desired object wrench be realized. There are
many ways of performing this computation, the most efficient of which is to use a method
that relies on representing the forces as vectors and uses the definition of internal forces as
given by Salisbury [1982].

5.5.1 Three Point Contact with Friction

The single observation that helps in speeding up this part of the computation consid-
erably is that one can take advantage of the inherent geometry involved in the situation.
This can be done by solving not for the components of the tip forces themselves but for the
projections of these forces along the interfinger position vectors, along which the internal
forces have been defined to act (see Figure 5.1).

The internal gripping forces are specified as:

$5.5 Computing the Fingertip Forces 67

Figure 5.1: Three point contact with friction.

(fl - f2) ‘T12 = fi2
(fi —f3)-r1i3 = fiz (5.11)
(fz - fs) . (1‘12 - 1'13) = fa3

where these quantities have been defined previously. The force and torque balance equations
are:

fo = f1+f2+13

ne = ripxfa4rizxfs (5:12)

The torque n. exerted on the object is expressed about the contact point made at the
first finger. This can be derived from the torque n, specified with respect to some other
reference point O on the object by:

n.=n,+r, xf, (5.13)

where r, is the vector connecting the first finger contact point to the reference point O.
The force balance equation can be projected along the non-orthogonal co-ordinate sys-
tem formed by the vectors ry2, ris, and ryp X ry3. This gives:

68 Chapter 5 Force Control

foorig = fiorig+f2-ri2+1f3-r12
fooriz = f1 - ra+f2-ris+f3-m3 (5.14)
fe-(rig xri3) = f1-(riz Xxriz)+f2-(r12 X r13) + 3 - (r12 X r13)
Similarly for the torques,
ne-ri2 = (rig xf2) -rig+ (riz X f3) .o
ne-ryiz = (ryg Xfy)-riz+ (ris x f3) -ry3 (5.15)

(r12 X f2) - (r12 X r13) + (r13 X £3) - (r12 X r13)

n - (ri2 X ri3)

which is more conveniently rewritten as

n.-ripg = f3- (1'12 X r13)
n,-ryi3 = —f5-(ri2 X ry3) (5.16)
ne-(riz xriz) = (f2-r13)(r3,) — f2-ri2(ri2 - r13) + f3 - ria(ri2 - ri3))

—f3 - r12(r};)

With the above equations the solutions for the fingertip forces can be found first in the
non-orthogonal co-ordinate system given by the vectors ry3, ri3, and ry3 X ry3 as follows:

_ (r12 X 13) * ne + 35(foz — fe - 113) + r25(fe - T12 — f12) — K(2 r33 — r13 - 113)
2(r1z 13— 1, —r?y)

f3.ri3

(5.17)
where K = %(f]g — fi2 — fas + f. - r12 + f. - r13). Using the above, and solving for the
projection of f; along ri2 and ry3 :

farig = K—f3-r13
faeriz = fooriz— fas—21f3:133

5.18
fa.riz = feeria— fiz—21f3-r12 (5.18)
fooris = fo-riz— faz—2f3-ry3

One can now finally solve for the projections of f; along the two vectors ri2 and ris:

fi ri2 = fiz+f2-r12
5.19
fi:riz3 = faz+f3-r13 ()

From the above equations it is apparent that computing the components of the fin-
gertip forces along rjg, ri3, and ryj2 X ri3 can be done extremely efficiently. Once these
components have been computed it may be necessary to orthogonalize them. To convert
these components into orthogonal force components, Gaussian elimination of the following
matrix equation can be used:

T
ryg

ris f; =b; (5.20)
(1‘12 X 1‘13)T

§5.5 Computing the Fingertip Forces

Computation Multiplies | Additions
Coeflicients needed to compute f3 - ry3 30 25
Recovering the other components 12 10
Orthogonalization 36 30
Conversion of n, to n. 6 6
Grand Total 84 71
Direct Gaussian-Elimination 295 183

69

Table 5.2: Summary of computational requirements: Three point contact.

where the constants b; are the actual finger force components in the non-orthogonal co-
ordinate system just computed.

A summary of the computational complexity of the method is presented in Table 5.2.
Performing the transformation to the non-orthogonal co-ordinate system in the three point
contact case can be seen to reduce the computational burden by almost a factor of four.?

5.5.2 Four Point Contact with Friction

The four point contact case with friction is an interesting case, since it corresponds
more closely to the case of the Utah-MIT hand. In this case one has to compute three
orthogonal force components for four fingertip contact forces. The specified external force
has six components and therefore an additional six internal grasping force components need
to be specified.

Using the same definition of internal force as before, we can see that it is always unam-
biguously possible to get six components taking the inter-finger forces pairwise, providing
that all the four grasp points are non-coplanar.

The force and torque balance equations for four-point contact are:

fe = E?:l fi

5.21
ne = ripgXfo+rzxfz+ryxfy (5-21)

The vectors ry3, ry3, and ry4 form a non-orthogonal co-ordinate system. These three vectors
provide a natural system in which to solve for the force components (see Figure 5.2). The
internal force constraints written in terms of these vectors are:

*It can be shown that to perform simple Gaussian Elimination on an n x n matrix it takes M)ém
multiplies, n divides and $n® + $n® — 2n additions as in Hovannessian et al.[1969]. In our analysis, divisions
have been assumed to take the same amount of time as multiplies.

70 Chapter 5 Force Control

Figure 5.2: Four point contact with friction.

(fi—f2)-r12 = fi2.

(f1—f3) ri3 = fis.

(fi—f4) T4 = fia
(f —f3)-(ri2—r13) = fas. : (5.22)
(f4 - fz) : (1'14 - 1’12) = fa2.
(f4 - f3) : (I'14 - 1'13) = fa3.

Since f; does not appear in the torque balance equation because the torques were
referenced to the first finger contact point, we begin the process of eliminating variables by
removing f; from the first three equations in (5.22) through substitution from (5.21). Also,
expanding the last three equations in (5.22) yields:

fiz+2fy ria+f3 . ri2+f4-r2 = foor2 (a)

fiz+fy-ria+2f3-ria+fy-ri3 = f.-riz (b)

fiu+fa rig+fs - ria+2€f4-14 = foor4 (c) (5.23)
fo-rio—fo riz—fa-rio+f3-ri3 = fo3 (d) '
foryq—fy rig—fo-riu+f2-ri2 = fao (e)

faz (f)

fa-rig—f4-ri3—f3.-m4+13-13

§5.5 Computing the Fingertip Forces 71

Adding the above set of equations and rearranging:

forro+fs ris+fy ry= % (fo3 + faz + fa3 — frz — fr3a — fra + fc - (r12 + r13 + 1r14))
(5.24)
To reduce the vector equation for the torque-balance into its scalar components, it is
projected along the vectors rys X ris, riz X rig, and riz X ri4. This yields the following
three equations after the appropriate expansions have been performed:

(rizxr13)-me = (f2-1r13) (r3;) — (f2 - r12) (r12 - 113) + (f3 - r13) (r12 - r13)

—(f3 - 112) (1'%3) + (f4-r13) (r12 - r14) — (f4 - T12) (r13 - T14)
(ri2 xrig)-me = (f2-r14) (r];) — (f2 - r12) (r12 - T14) + (f3 - 114) (112 - T13)

—~(f3 - r12) (r13 - r14) + (f5 - r14) (P12 - T14) — (£ - 112) (r},) (5.25)
(rizaXr1g)-me = (f2-r14) (r1z-r13) — (f2 - 113) (r12 - r14) + (£3 - 114) (r33)

—(fs : 1‘13) (1‘13 : 1‘14) + (f4 : 1'14) (1‘13 . 1‘14) - (f4 : l‘13) (1'34)

Since f1 has been eliminated, nine variables remain. The solution proceeds by reducing
(5.25) to four variables, f3 - r12, f3-113, f4 -T14 and f; - ry3. With (5.24) the original system
of equations is reduced to a 4 X 4 matrix equation solvable by Gaussian elimination. The
remaining components are then recovered, and finally the components of the fingertip forces
along the inter-finger vectors are orthogonalized as before.

By simple manipulations on (5.23), the remaining five variables are expressed in terms
of these four variables:

fa-rz = —f2-ri3—-2f3:r3- fis+fe-r3

fyrrs = -3f2-rp+fo-riz—Ff3-ri3+ fas— fia+fe-ri2

fs-ria = f2-ri3+3f3-ri3+f5-ra+ fis— fas—fc-ry3 (5.26)
fs-riz = f2erio—fo-ria+f3-ri3— fos

fooriy = —fo-ri3—3f3-r13-3f4 ra+ fizs— fra+ fas +fc- (r13 +r14)

Substituting into (5.25),

(r%2 + 1‘%3 —I12-Tyg — I3 1‘14)(f2 : I'13) + (31'13 ‘g — rf3 -T2 Pls)(fz . 1'12) + (1'12 *I13
—rfs — 2ry3 - rya + 13- 114)(f3 - 113) = ne - (12 X £13) + (r13 - v14)(fe - P12 + f23 — f12)

+(r13 - r14)(f1z — fe - r13) — fas(r?;)
(5.27)

72 Chapter 5 Force Control

Computation Multiplies | Additions
Coeflicients of the 4 x 4 matrix 65 91
Gaussian Elimination of the matrix 40 32
Recovering other components 4 28
Orthogonalization 48 40
Conversion of n, to n. 6 6
Grand Total 163 197
Direct Gaussian-Elimination 662 446

Table 5.3: Summary of computational requirements: Four point contact.

(1'12 ‘T3 +ri3-ryg — 1‘%2 - 1'%4)(1‘2 * 1'13) + (3l’¥4 —Tri2:Ty4—ri13- 1'14)(f2 : 1‘12)
+(r?, — 3r, + 3r12 - T13 — r13 - r1a)(f3 - 113) + (P12 - T13 + 12 - T1g — 3rd,)(f4 - T14)
= n. - (r12 X r14) + (fe - r13)(r12 - 113 — r35) + r35(f1a — fas + f1z — fe - r14) — fas(r13 - r14)

+ri,(faz — frz + fe - T12)
(5.28)

(r3y+rd;3 —riz-rig—rig-ri3)(f2-113) + (3r33 + 213, — 3r13 - 113 — r13 - r14)(f3 - 113)
+(r?; + ri3-r1g — 3ri2 - r13)(fa - r14) = ne - (113 X r14) + (Fe - 113)(x%5 + 12, — 112 - 113)

—(r12 - 113)(fe - r14 — fia + faz — f13) — v33(faz — fa3) — f13 (vdy)
(5.29)
Equations (5.27)-(5.29) and (5.24) form a 4 X 4 matrix equation, that can be solved by
Gaussian elimination. Once this has been done, the remaining components can be recovered
using (5.26). This procedure will result in finally solving for the fingertip forces along the
three vectors formed by ry3, ri3, and ry4. These components can be orthogonalized in a
manner similar to that outlined for the three point contact case.
The computational requirements for the four point contact case are summarized in
Table 5.3. Similar to the three point case, a factor of four improvement in efficiency over
Gaussian elimination is obtained.

5.6 Computing the Joint Torques

As we saw on the section on position control, the lower level controller is designed to
take as input either joint positions or joint torques. In this chapter, we have shown how one
can compute the forces to be exerted at the fingertips based on a desired force to be exerted
on a grasped object, and a desired stiffness matrix. The actual torques to be exerted at
the joints can be computed from these values using the relation 7; = J;7f;.

85.6 Computing the Joint Torques 73

In the case of the Utah-MIT hand, however, one can use an important kinematic feature
of each finger to reduce the computations needed for this part of the algorithm. The last
three joints of each finger of this hand form a 3R planar pair; also, the first axis of rotation
is perpendicular to the axes of the planar pair.

For point contact with friction, only the force component f. of the contact wrench w,
acts on the finger joints. To take advantage of the 3R planar pair formed by the last three
joints, f. is first rotated by 8, using the following A matrix3:

C, 0 S
Ar=| 8§ 0 - (5.30)
01 0

This yields:

fexCI - feysl
f, = fez (5.31)
fea:Sl - feycl

The contact point made at the fingertip is located by the vector 14, as measured from
the co-ordinate system affixed to the last finger joint. This quantity can be sensed using a
tactile sensor (Siegel [1986]) and expressed with respect to a co-ordinate system affixed to
the first joint of the finger using the following equation:

*14:C234 — *l4ySo34
Ny = | 458234 — U4yCaaa (5.32)
4l4z

Expressing w. about the most distal joint p:

f, = I,

lnp —_ 114X1fe (5'33)

It is now fairly straightforward to solve for the joint torques. Denoting 7; to be the
torque to be exerted at joint 7, and a; as the various link lengths, one gets:

T4 = 1npz

T3 lnpz + as (lfpyC23 - lfp:r;S23)
T2 T3 + a2 (lfpyC2 - lfpzS'.’)

Tt = lngy —'fp (a1 4 a2C; + a3Ca3)

These equations can be evaluated quickly with only 23 multiplications and 14 additions.
Other methods that rely on the transpose of the Jacobian matrix are computationally not
as efficient.

The total for the entire algorithm is therefore summarized in Table 5.4.

(5.34)

®Notation: a) Ciy. stands for cos(8s + 8y +6,). b) The left superscript before any quantity indicates
the frame of reference in which that quantity has been expressed. c) Joint numberings are 1 to 4 instead of
0 to 3 as indicated in the kinematics calculations.

74

Chapter 5 Force Control

Computation Multiplies | Additions
Forward Kinematics 94 63
Computing object displacement 40 34
Control Equation 12 12
Fingertip force computation 167 210
Joint torque computation 23 14

| Total | 336 | 333 |

Table 5.4: Summary of computations for the force control algorithm.

5.7 Implementation

The implementation of this force control algorithms has been completed on the ar-
chitecture to be described in the next chapter. We have just begun performing various
experiments with this implementation and hope to continue these experiments in the near
future. Force controllers present in the literature often stop at the point when the torques
have been computed. It is assumed to be the job of the underlying real time controller to
ensure that these torques are accurately achieved.

In reality, this may be true of robots driven by electric motors where the current applied
to the motors is a very good approximation of the torques applied by the motors at the
robot’s joints. Even with such robots, Paul [1987] indicates that simply closing a torque
loop may not be the best one can do. In the case of robots like the Utah-MIT hand the
voltages applied to the actuators affect the tendon tensions in a very complicated fashion.
The hysteresis present in the magnetic field that causes the deflection of the primary jet in
the pneumatic valves causes stiction which is very hard to model. The coulombic friction
present in the transmission as the tendons pass over the pulleys is another source of problems
although it is not quite so severe.

Another practical issue that has to be dealt with, since the system is dual-acting, is the
effect of the controller on one of the tendons (on the flexor say), which shows up as a load
on the other (on the extensor). Modelling the effect of the tendon dynamics present in such
a system would enable much higher performance to be attained.

5.8 Future Work

A lot of work remains to be done with respect to the force controller implementation.
It is imperative that a good understanding of the underlying actuator and transmission
system be attained first. Without such a model, it would be very hard to ensure the accu-
rate exertion of torques, which is what the algorithm presented in this chapter ultimately
relies on. As indicated by our initial grasping experiments, it is clear that the kinematic
structure of the hand interacts with a grasped object in a number of interesting ways. An
understanding of how the passive compliance in such mechanisms as the Utah-MIT hand
could be used to sense contact, grasp ob jects more stably and manipulate them still seems

Chapter 6

Computational Architecture

Experimentation and validation of theoretical results is important in any applied science.
Consequently, research publications in robotics often contain sections devoted to implemen-
tation. The value of such experiments cannot be overemphasized.

For performing such research coupled with experimentation, powerful tools are neces-
sary. Robots like the Utah-MIT hand that push the state of the art in terms of mechanisms,
actuators and transmission systems allow investigations into new levels of performance that
previous generation robots could not hope to achieve. These robots are characterized by a
number of joints and consequently demand powerful computer architectures to be controlled
and utilized effectively.

An unusually large portion of time spent on the work presented in the previous chapters
was actually spent on the implementation and testing of the control algorithms on real
hardware. In this chapter we describe the computational architecture on which the control
algorithms outlined in the previous chapters have been implemented. This chapter is fairly
self-contained, and is intended for researchers who spend their time implementing control
strategies on robot hardware. As such, it contains a somewhat eclectic collection of ideas
and can be omitted by the reader not interested in such detail.

As we saw earlier, controlling a complex device like the Utah-MIT dexterous hand in
real-time is an extremely compute intensive task. One of the first problems we addressed
therefore, (and one that took the longest to find a good solution to) was the development
of a suitable computational architecture which would be adequate for the task. As a tool
for doing useful research in robotics, we feel that the computational architecture described
in the following sections will be adequate for some time to come.

The term “computational architecture” is used to denote both the hardware architecture
and the software systems that have been developed as a solution to the real time control
problem in a research environment. The first version of the solution was implemented on
Motorola 68000 single board computers running on the Multibus-I. The second and present
version is based on Motorola 68020 boards running on the VME-Bus. The entire real time
development system has come to be known as the CONDOR programming environment.

We feel that the amount of time spent on implementing the software and hardware
systems has been worthwhile. One of the glaring deficiencies in the state of current research
in robotics control is the diversity of the primitive control architectures that are used. The
diversity makes it harder for researchers to share implementations, to build on previous
work and to some extent even hampers the reproducibility of experimental results. The
primitive nature of the hardware on the other hand, restricts the complexity of the devices
that can be controlled by such systems.

We must mention that our effort in developing the computational architecture has been

77

78 Chapter 6 Computational Architecture

more successful than we had anticipated. The system has been used to control other robotic
devices beside the Utah-MIT dexterous hand, notably the MIT Serial Link Direct Drive
Arm, and more recently the Whole Arm Manipulation System. A number of similar systems
are in the process of being built inside MIT’s Artificial Intelligence Laboratory to control
various real-time devices and other research institutions that have the Utah-MIT hand.

6.1 Design Motivation

Controlling the hand, or any other high-performance real-time robotic device, is essen-
tially a compute bound task. If one uses a single processor to control all the joints and
process all the sensory information, one would need an extremely fast (and consequently, a
very expensive) cpu to perform the lowest levels of control.

Two desirable goals for any real-time controller to be used as an experimental tool
are flexibility and efficiency. The first of these ensures that adequate mechanisms will
be provided by the system to perform the necessary experiments, while the second ensures
that the needed performance in terms of computational horsepower to control these complex
experimental devices will also be provided. Computational architectures found in industry
often provide performance at the expense of flexibility, while university efforts have resulted
in architectures that sometimes do not provide adequate real-time response.

To illustrate this problem, consider the fact that the Utah-MIT hand has four fingers
each with four-degrees of freedom. If the sixteen joints need to be servo’ed at a rate of
one thousand hertz, then using a one MIP? processor like a VAX 11/780 would leave only
63 instructions per joint per servo in which all the computations have to be performed.
The cost of a uniprocessor whose performance is adequate could be as high as one million
dollars. Clearly, less expensive solutions are desirable.

The first observation that makes this problem easier is that

e At the level of actuators and joints, robot control exhibits coarse-grain parallelism.

By the above statement we mean that the parallelism inherent in most robotics control
algorithms (see Hollerbach [1980], Raibert and Craig [1981] for typical examples) is not at
the level of individual instructions or arithmetic statements but at the level of functions and
processes (see Lathrop [1983] for a systolic architecture approach to exploit the parallelism
in manipulator dynamics).

What this observation transfers down to at the architecture level is that having multi-
tudes of processors, each of which can execute only a small repertoire of instructions, will
probably not help very much for implementing robot control algorithms. By coarse-grain
parallelism 1 also mean that the amount of processing power required at each node could
be substantial. In fact, Version I of the CONDOR had no provisions for floating point
arithmetic since it was felt at the time that scaled integers would suffice for most of our
computations. Soon, however, the complexity of implementing digital control loops with
such scaled arithmetic forced us to realize that we would benefit substantially with the

1One MIP is one million instructions per second — a measure over which there has been considerable
controversy in the recent past with the advent of RISC machines.

§6.1 Design Motivation 79

addition of floating point hardware. Version II of the CONDOR therefore has the fast
Motorola 68681 floating point unit in addition to the Motorola 68020 processor.
The second observation of controllers for real time systems is that

¢ Real time control involves i/o with external peripherals, and the word “real” in real-
time translates to servicing hardware interrupts with low latency.

This constraint is often a very severe one, especially when the robot to be controlled
is even moderately complex. The need for low-overhead and efficient schemes for imple-
menting control programs often is in direct conflict with the goals of flexibility and ease
of program development. Servicing interrupts on a single processor is not a significant
problem, and if the scheduler has been designed correctly, very complex servoing can be
done. However, on a multiple processor system, this raises rather complex issues. First, the
system needs to be modeled as a multi-rate system if a hierarchical controller with various
routines running at different rates on different processors is implemented. Secondly, the
issue of synchronization becomes harder to address than in a SIMD environment. How-
ever, such issues are far outweighed by the advantages of having a multiple microprocessor
system, which are:

(a) The implementation of hierarchical controllers is possible in a flexible and modular
way.

(b) More processing power can be added if needed, by adding more processors to the
system.

The hardware design that we finally chose has fairly sophisticated processors in the form
of single-board computers plugged into a standard bus. The Version-I design was based
on computers based on the Motorola 68000, while the Version-II design was based on the
Motorola 68020 cpu, coupled with the Motorola 68881 floating point unit. The interconnect
scheme chosen for the different processors was the Multibus for Version-I hardware and
VME-Bus for the next version.

In Table 6.1 we give a performance comparison of the different cpu’s we looked at, and
in Table 6.1 we give a summary of the different interconnect schemes we considered.

Another major design decision we made was to use off-the-shelf hardware. A number of
man years have been wasted in robotics laboratories, building custom solutions to hardware
problems, which we wanted desperately to avoid. Developing high performance hardware is
a task best left to companies that specialize at it. Integration at the board level might have
been appropriate had board level products not been available to satisfy our requirements,
but as it turned out, powerful single board computers were available at low costs. Hence we
chose to concentrate our efforts at the system integration level, using board level products.

The use of an industry standard interconnect scheme cannot be overemphasized. The
benefits of using a standard interconnect bus are that

(2) One can get other peripherals (like A/D and D/A converters) for such interconnects
relatively easily.

80 Chapter 6 Computational Architecture

Processor Type | Speed Cost | Comments

Microvax 11 1 MIP mod | interconnect problems
Vax 11/750 0.6 MIP | high | interconnect problems
Vax 11/780 1 MIP high | interconnect problems

Symbolics 3600 | 1 MIPS high | lacks real time support

National 32032 | 1 MIPS low
Motorola 68000 | 1 MIPS low | lacks floating point

Motorola 68020 | 2.5 MIPS | low | has a ffp co-processor

Table 6.1: Comparisons of processing power available from alternative hardware configura-
tions.

Interconnect Type Speed Bandwidth | Comments

Serial Lines 300-38Kbaud low Too slow

Parallel Ports 100K-200Kbaud | low Slow

Ethernet 10 Megabits/s fairly high | Complicated software
but fast

DMA-DR11-W 1 Megabyte/s fairly high | Complicated software
but fast

Bus-to-Bus Adaptor | Bus Speeds high Simple software and
fast

Table 6.2: Comparisons of different types of interconnect.

(b) The migration path to newer hardware as faster boards become available is relatively
painless.

(c) Replication and trouble shooting are much easier with published specifications.
(d) An objective comparison of such interconnect schemes can be made.

The block diagram of the resulting hardware is shown in Figure 6.1 for the Version-I
hardware, while Figure 6.2 shows the final hardware configuration.

The selection of the right pieces of hardware certainly took more time than anticipated.
This was mainly caused by the fact that although we had chosen the industry standard
VME bus as our interconnect, the concept of linking such busses together using a bus-to-
bus adaptor had not been put to test fully at the time we put our system together. The use
of a 16 MHz 68020, with 1 megabytes of no wait-state, dual port ram also was state of the
art at the time. This meant that we had our bit of hardware trouble shooting to do, even

§6.1 Design Motivation 81

M68000 M68000 M68000 M68000 M68000
Multibus-I
A/D and D/A
DR11W-Interface Boards
VAX-11/750 Utah-MIT Hand

Figure 6.1: Block Diagram of Version I of the hardware.

though the individual components we were working with were all supposed to conform to
a standard.

A more detailed discussion of the design decisions pertaining to the Version I hardware
can be found in Siegel et al. [1985]. This paper also details some of the software issues
involved.

It must be pointed out that other research efforts have also recognized the cost ben-
efits in using such a microprocessor architecture for their control laboratories. Of these,
the NYMPH system described in Chen et al. [1986] and the system being built at IBM
described by Korein et al. [1986] are patterned after our CONDOR system. Besides these
systems, there have been other efforts that have tried to couple a real time microprocessor
architecture along with a development host. Our system differs from these controllers in
two important ways. Firstly, we attempt to avoid duplicating software and hardware com-
ponents that can be found on conventional, non real-time systems. Essentially, our system
is partitioned into a real-time processing component and a conventional time-sharing com-
puter development component. Secondly, we provide an extremely efficient computation
environment. Only the minimal set of features necessary to provide a reasonable and con-
venient environment were included. This insures highly efficient operation of the CONDOR
controller.

82 Chapter 6 Computational Architecture

M68020 M68020 M68020 M68020
M68881 M68881 M68881 M68881
VME-BUS
A/D and D/A
VME-VME Adaptor Boards
Sun-3/160 Utah-MIT Hand

Figure 6.2: Block Diagram of Version II of the hardware.

For example, Kim et al. [1987] describe a Multibus based real time system for controlling
the Puma/RAL hand system. Their system is based on single board computers connected
with a Multibus. Their development processor is one of the single board computers, and
it provides access to disk and other system resources. We chose not to use this approach
for several reasons. Most importantly, we feel that conventional computer systems offer
adequate file serving and user interface capabilities, and did not want to duplicate such
facilities in our real-time system. Secondly, bus bandwidth on the real-time system is best
left for real-time uses, and adding the development host’s traffic on the same bus only
exacerbates the contention for this resource.

Paul et al. [1986] describe another system built to control a Puma robot. This system
is similar to our Version I architecture in that it uses the Multibus-I for its intercon-
nect scheme. Connection to the development host was made initially through an ethernet
communication link, but the complicated software needed to drive such an interface has
necessitated the addition of boards that provide DMA access, much like in our Version I
hardware.

§6.1 Design Motivation 83

6.1.1 Comparison between Version I and Version 11

As is obvious from the figures, perhaps the main difference between the two different
versions of the hardware has been the inclusion of the bus-to-bus adaptor which makes
possible a shared-memory implementation of a message passing scheme, which has been
the key to a fast and extensible control hierarchy.

There are a number of desirable features present in the new hardware that were com-
pletely absent in the earlier version. The bus-to-bus adaptor enables transparent access
from the development host into the dual-ported shared memory on the control micropro-
cessors. In the Version I hardware, the DMA connection was being made between widely
disparate hardware. Consequently, the software had to contend with different data formats,
and this resulted in wasteful format conversions that had to be performed on every data
transfer. The connection was slow, at times unreliable and of low bandwidth.

The individual microprocessors on the Version II hardware are fast processors, and
coupled with the floating point engine they come equipped with, provide a much faster
environment for scientific and control computing. The Version I software performed most
of its computation using scaled integer arithmetic. Although such code is highly efficient,
it is also unreadable and unmaintainable in some instances. Floating point on the other
hand may be significantly slower if implemented in software.

The Sun-3 development host also provides a much better environment in terms of bit-
mapped graphics, an industry standard window system and a transparent compiler (in
Version I a cross compiler had to be used) that generates compact code. Programs that
run on the controller processors can typically be run on the Sun-3 development host without
recompilation.

To summarize, the features common to both versions of our hardware design have been:

1. Low cost, but powerful, multiple, single board computers performing the real time
control function.

. A development host that runs 4.2 BSD Unix to perform the software development on.
A relatively high bandwidth interconnect between the two systems.

An industry standard bus that connects up the slave microprocessors.

oos e e

Dual-ported ram on the control processors, that facilitates control programs to take
advantage of the shared-memory architecture.

6. A Mailbox interrupt that provides a hardware mechanism for interprocessor commu-
nication.

The differences have been:

1. The Version II hardware uses the same processor for the development host and the
control processor, obviating the need for a cross compiler.

2. The Version II interconnect is the VME-Bus which is faster, provides support for full
32 bit transfers and is now the industry standard. The Multibus-I which was the
interconnect used in the Version I hardware is now outdated.

84 Chapter 6 Computational Architecture

3. The single board computer used in the new hardware runs at 16 megahertz, and
contains a floating point co-processor.

4. The development host in the new system, a Sun-3, provides bit-mapped graphics, a
fully networked file system and a much better software environment.

5. The connection between the development host and the control processors is made via
a bus-to-bus adaptor in the Version II hardware which provides a more transparent
form of access and communication.

6.2 Software

An important piece in any computational architecture is the software that is available
to run on the hardware. Our comments regarding flexibility and efficiency of robot control
hardware apply equally as well to the software components.

The software system designed to control the hand and other such robotic devices is
relatively large and is adequately described elsewhere in a programmer’s manual. In this
section we will merely provide an overview of what we feel are the innovative aspects of the
software system.

The design goals of the software system were to:

(a) provide a flexible environment in which control programs can be written, debugged
and run,

(b) provide efficient, low overhead means of doing often required tasks,

(c) provide easy to use programmer libraries for dealing with data transfer hardware, and
real-time interaction with robotic devices and

(d) provide a sophisticated user interface with support for bit-mapped graphics.

To achieve these goals, the CONDOR system is structured around a few relatively simple
organizing principles. In a typical program development scenario, the user is expected to
write and compile his program on a development machine. This development host is a Sun-
3 workstation in our system. Since the Sun runs the Unix operating system?, this means
that the programmer has at his disposal all the software tools that he needs for writing and
compiling his program. Once the program has been compiled, it is downloaded onto the
slave microprocessors, where it is actually run. In this environment, which is also called the
run-time environment, the user has access to a number of program libraries at his disposal,
which enable him to do a number of tasks in a flexible and portable fashion.

Thus, the CONDOR environment is really two different environments. First, there
is the environment on the Sun workstations known as the development environment, and
then there is the run-time or real-time environment on the slave microprocessors. Much
effort was put into making the Sun and the slave microprocessor run-time environments as

2Most of the system runs on Sun 0.S. 3.2 which is closely compatible with and is based on Berkeley 4.2
BSD Unix.

$6.2 Software 85

compatible as possible. In fact, most programs that run on the real-time controllers will
run on the Sun simply by relinking them with the appropriate library.

In the following sections, we provide a brief overview of some of the important subsys-
tems of the CONDOR programming environment. The discussion is restricted to pieces
of software that actually took substantial time to implement and that contain innovative
contributions in terms of software engineering and system development.

We must mention that the hardware architecture is a tightly-coupled, truly MIMD ma-
chine. As such, it requires that a programmer write programs that run on the different
processors. Our approach to managing this multiplicity problem in terms of software en-
gineering has been largely to ignore it. We felt that the coarse-grain parallelism existing
in current control programs and algorithms could be managed by the programmer himself.
Therefore, we chose not to impose any restrictions on what a programmer could do. Fur-
thermore any automatic scheduling or load-balancing scheme necessitates some overhead,
impairing the performance of the system as a whole. The effort involved in implementing
such a scheme is often not commensurate with its benefits.

Typically, control programs partition fairly cleanly, and hence manually deciding upon
a partitioning scheme has not proved to be a problem in practice.

The number of processors in our control development scenario rarely exceeds five or six
and we do not expect this architecture to be applied to problems requiring more than a
dozen processors. Under this number, managing the different programs that need to run
on the different processors can be done with existing software tools like make3.

6.2.1 Devices

Interacting with robots usually means involvement with different types of hardware
devices. Most robots have idiosyncratic controllers as their front ends, and a diverse array
of sensor devices. A number of schemes exist for actually performing data transfers; polling,
vectored and non-vectored interrupts, direct memory access are but few of many.

Any computational architecture that expects to deal with these robots must have mech-
anisms to support these different ways of interacting with devices.

The design of the device system was motivated partly by our experience with an earlier
version of the system. In Version I of the CONDOR there was no systematic way of
dealing with devices. In fact, what existed was an ad-hoc interface between the read and
write system calls and various device specific routines. Even this interface was not strictly
adhered to by most of our device drivers. This meant that to use a parallel port board
that had been plugged into the system a user had to be aware of the procedures needed to
initialize it, and be aware of what addresses the device’s registers occupied and a myriad of
other low level details. In Version IT of the CONDOR we distinctly felt a need for a clean
design at the lowest level.

The CONDOR real-time environment was therefore designed to provide an extensible
way of writing device drivers which are program modules that control real-time devices that
the CONDOR environment is aware of. Only the writer of a device driver need be aware

3make is a Unix program for managing complex programs comprising a number of different modules.

86 Chapter 6 Computational Architecture

of low level details like hardware addresses and interrupt mechanisms. The CONDOR
system also provides a standard and well-documented manner in which device drivers can
be written and automates much of the bookkeeping previously done by the device drivers
themselves.

The CONDOR system’s device mechanisms have been designed to be extremely fast
and portable. The mechanism is static. All that is required to install a new hardware
device is to recompile the system libraries used by the programmers. This is in contrast
to other complicated systems that provide support for downloadable device drivers at run
time rather than compile time. The overhead associated with recompilation is significantly
lower than the overhead and complexity associated with any dynamic loading scheme.

The functions that these mechanisms provide are as follows:

1. Provide for automatic device initialization.

2. Provide capabilities to handle interrupting devices.

3. Provide capabilities to handle shared interrupt vectors.

4. Provide standard system calls like open, read and write, where appropriate.

9. Provide extensibility to handle devices that may require more than the standard set
of routines.

The mechanisms for handling devices is modeled after the style found in early versions
of Unix although there are a few significant differences. Each device is essentially modeled
as an abstract data type, on which a few standard operations can be performed. When
such a device is opened, an integer object called a file descriptor is returned whose
semantics are close to that of the conventional Unix file descriptor. Users can then use this
object as an argument to other operations that they need performed on the device.

The standard file descriptor usually maps to a device structure that has the following
fields:

struct devsw {
char *dvname;

int (*dvopen) (); /* open routine */

int (*dvclose)(); /* close */

int (*dvread) (); /* read */

int (*dvwrite)(); /* write =/

int (*dventl) (); /* ioctl */

int (*dvinit)(); /* init - probe */

int (*dvputc) (); /* put a char */

int (*dvgetc)(); /* get a char */

int (*dvseek) (); /* seek */

int (*dviint)(); /* input interrupt routine */
int (*dvoint)(); /* output interrupt routine */

char *dvdata; /* device specific data */

86.2 Software 87

char *dvbuf; /* device’s buffer */

int dvno; /* device’s no */

int *dvcsrs; /* device csr array */

int *dvvectors; /* device’s vector array */

int dvnumvectors; /* number vectors for a single devicex/

};

The configuration for the entire system is initialized statically at compile time. For
example, a parallel port board may be described by an entry similar to the one given below
in the configuration file:

/* 4 Motorola Parallel Port Board */

{
"mpp", mpp_open, mpp_close, mpp_read, mpp_write,
mpp_cntl, mpp_xinit, NULL, NULL, ionull,
mpp_xint, mpp_xint, NULL, NULL, O, mpp_csr, mpp.vec, 2,
3,

The following piece of code shows how a programmer can for example open a parallel
port device and set it up for further operations:

int
parallel_port_startup(board_number)
int board_number;
{
int £d;
if((£fd = open(‘‘:mpp’’, board_number, 2)) < 0){
printf(‘‘Couldn’t open device?\r\n’’);
exit(0);
}

/* Reset the board */
mpp_reset(fd);

/* Configure the board to be in raw 16-bit mode */
mpp_config_16bit_raw(fd);

/* return the fd, so that the user can use it later */
return(fd);

As the above usage illustrates, each device has an open() routine, a close() routine
etc. There is one system-specific configuration file that tells the run-time system, what
types of devices are supposed to exist and other required parameters. The CONDOR run-
time system will, upon startup on the slave microprocessors, try to find all such devices

88 Chapter 6 Computational Architecture

and initialize them as specified by the device’s init() routine. This is analogous to the
probe() routine in conventional Unix systems.

When the user-level program then begins running on the slave microprocessors, they can
perform operations like open, read, or write on these devices. The system maps these
device independent calls, through the file descriptor objects to device specific routines.
Although the file descriptors are allocated each time a device is open’ed, they will
map to the same device level buffers, since the CONDOR is not multi-tasking. The lower
level interrupt routines, which we will mention briefly later, operate on these device-specific
buffers.

Thus it becomes extremely easy to add devices onto an existing CONDOR system. The
writer of the device driver merely has to write his individual routines that correspond to
entries in the device configuration file, and recompile the system.

There are a number of different operations that can usually be performed on devices
besides the usual read, write set. The common Unix way of handling such unusual oper-
ations is to overload the common system call known as ioct1(). But this approach can
soon get out of hand, with a large number of ioctl options being defined, each with its own
peculiarity. In the CONDOR system we chose to use the following conventions to deal with
this problem, and in practice, this has proved effective.

1. Device specific routines will be uniquely named by prefixing the routine with the
name of the device (for example, a routine for configuring the mpp device will be
called mpp_configure).

2. Routines that are peculiar to a device will take the file descriptor as the first argument
and map it to a device specific structure. Once this mapping has been performed,
that driver can then do any kind of operation that it desires. This essentially provides
entry points into the device driver through a back door — not through the standard
device structure that contains device specific versions of read, write etc.

The device driver interface also provides the low-level glue for the interrupt mechanisms,
the file server interface and the buffered stdio libraries.

6.2.2 Interrupts

Besides the ability to deal with devices, another capability that control system archi-
tectures require is the ability to service interrupts in real-time. These interrupts usually
correspond to events that require attention, or periodic interrupts from the timer at some
sampling rate.

The VME-bus provides support for eight levels of prioritized vectored interrupts, and
the Motorola 68020 processor has the capability to support 256 different interrupt vectors.
Interrupts on the VME-Bus are vectored, in contrast to the Multibus-I which supports
non-vectored interrupts. The Multibus-II supports a different notion of interrupts which
essentially increases the number of different levels of interrupt possible on the bus.

Interrupts can come from a variety of sources: interval timers, a-d and d-a converters,
parallel and serial i/o devices, etc. It is important that all such interrupts be handled in

§6.2 Software 89

a uniform and extensible fashion. In Version I of the CONDOR, interrupts were handled
in a rather ad-hoc fashion. This resulted in a lot of assembler code sprinkled throughout
the system, since most interrupt servicing routines have a small assembler portion that
dispatches to a routine written in a higher level language.

In Version II of the CONDOR, all interrupts vector to the same higher level routine.
The system has a software data structure that maps vector numbers to interrupt servicing
routines. This scheme has resulted in a single assembler routine that services all interrupts.

There are a few complications that must be dealt with. When an interrupt is generated
and needs to be serviced by a processor, somehow enough information must be found that
allows this interrupt to be mapped to a file descriptor corresponding to a device. Since the
CONDOR is not multi-tasking, no distinction exists between system space and user space.
When a serial chip interrupts the system telling it that it has a character to transmit, the
system has to be able to tell which serial-i/o driver’s input buffer the character must be
sent to.

The problem is further complicated by the fact interrupt vectors can be shared. This
means that two devices can both interrupt the system using the same level and same
interrupt vector. The CONDOR system solves such complications by maintaining a list of
all devices that express interest in receiving interrupts on a particular vector. When more
than one device can vector using the same interrupt vector, the CONDOR system maps this
interrupt vector to a generalized device-level interrupt vector. This routine goes through
the list of interested devices and invokes the interrupt routine of each of those devices one
by one.

Each interrupt routine when invoked by the system is passed two arguments telling it
the vector number and a pointer to a saved copy of the registers that reflect the state of
the machine when the interrupt occurred. The device level interrupt on the other hand
invokes its interrupt routines with arguments indicating the file descriptor corresponding
to the interrupt, and the minor device number (since more than one device may use the
same interrupt vector number), in addition to these two.

6.2.3 Message Passing

The message passing sub system is another low level system of the CONDOR. While the
device driver and support routines are intended mainly to provide support for bootstrapping
and running a program on a single processor, the message passing system tries to address
the issue of multiple processors and the need for communication between them.

6.2.3.1 Introduction

The message passing system provides a simple, low-overhead manner in which com-
munication of data can occur between processors that comprise the CONDOR controller.
A typical application running on the CONDOR controller comprises of a set of processes
running on the microprocessors. These processes can communicate with one another using
the message passing system. Since the servos are always compute bound tasks, any system
for communication between such tasks has to be extremely time-efficient in order not to

90 Chapter 6 Computational Architecture

impair the real time performance of the system noticeably. The primary design goal of the
message passing system was therefore efficiency.

The present system is to a large extent, a redesign of the system described in Narasimhan
et al. [1986]. Although the functionality provided by that system was far greater than that
provided by the present version, I feel that this second attempt has been made substantially
more efficient.

6.2.3.2 Messages

In any multiprocessing environment interprocessor communication is a necessity. Since
the Ironics processors and the Sun host computer are all bus masters on a common VME
bus, each machine has access to each other’s dual ported memory. Interprocessor commu-
nication occurs over the bus and directly uses shared memory. This allows, for example,
any processor to directly access data in another processor’s memory. The most basic form
of interprocessor communication possible would be direct memory reads and writes from
another processor storage. Unfortunately, this unrestricted access, though highly efficient,
is hard to control.

To overcome the problems of unrestricted memory access, a mailbox-based message
passing system is supported. Mailbox interrupts can be thought of as a software extension to
the processor’s hardware level interrupts. Another way of thinking about them conceptually
is to regard mailbox numbers as port numbers that map to specific remote procedure calls.

A mailbox interrupt has a vector number and a handler routine. When a particular
mailbox vector arrives, its appropriate handler is invoked. The handler is passed the pro-
cessor number that initiated the mailbox interrupt and a one integer data value. This
integer data value is the message data?. To summarize, there are two pieces of data that
get transmitted for every message — a message handler number and a piece of integer data
that can be used as the user sees fit.

The Version I message passing system was substantially more complex. Messages could
be of arbitrary size, and they could be addressed not to individual processors but to so-
called virtual devices that corresponded to Version II’s remote procedures. These remote
procedures were assigned to processors by a preprocessor that took as input an assignment
file, that mentioned which routines were to be available on which processor. The prepro-
cessor then generated a routing table that had to be linked in with each program running
on the individual processors so that the send routine on that processor could decide based
on the recipient virtual device number alone which processor it ought to send the message
to.

Another important capability that the Version I implementation lacked was the ability
to reply to messages. This meant that application programmers had no way of knowing
when a particular message succeeded or failed. Implementation of messages with replies
could be done in the Version I system through busy-waiting or spin locks, which was also
very undesirable. The Version II protocol provides support for replying to every message,
at a very basic level, should the user require reliable and synchronous transmission of

*An integer in the present implementation refers to any quantity that can fit in 32 bits.

§6.2 Software 91

messages. The implementation uses a reverse send from the recipient processor to the
sending processor to acknowledge the receipt of a message. This addition has proven to be
extremely useful.

The Version II redesign was done mainly because of the complexity and the overhead
of the earlier system, that prevented most control programs from hardly ever using the
message passing system.

To illustrate the present system, let us say for example, that the user wants to write
an address handler that will receive a message composed of a memory address, and will
respond with the value found at that particular memory address. This simple example
will illustrate not only how messages are received, but also how messages are sent and how
certain messages can be replied to.

The conceptual design for such a user level message passing system is simple. Each
mailbox handler is invoked with the first argument being the processor number that sent
the message and the second argument being a piece of data that is wide enough to fit into
a 32 bit quantity. We can therefore design the message handler such that when invoked,
the memory address it needs to look at will be passed to it as the data associated with
the message (since we do not expect our addresses to be longer than this). The message
handler will essentially decode the message to find out what this address is, and return it.

The handler can therefore be written thus:

simple_decoder(proc, data)
int proc;
int data;
{
return(*(unsigned int *)data);

}

After writing the handler one has to associate this handler with a vector number so that
when other processors request this service, it will be performed correctly. This is done by
the following piece of code.

int simple_decoder();
mbox_set_vector(12, simple_decoder, ‘‘A test handler’’);

Once this call has been executed messages that arrive for vector numbered 12 will cause
the simple decoder routine to be invoked automatically.

But how does another processor invoke this routine? This is done by the mbox_send
routine. If the simple_decoder routine is available on processor 0 one can execute the
following piece of code on any of the processors (including 0) to invoke the service.

value = mbox_send_with_reply(0, 12, address);

This will cause the handler that corresponds to the number 12 to be invoked on processor 0
with the second argument being address. The call will not return until the other processor
has responded with the value found at the given address. This call can therefore be used
to provide synchronization.

92 Chapter 6 Computational Architecture

There does exist another version of message sends that does not require the sender to
wait until the handler for the message has completed executing on the recipient processor
(called mbox_send).

There are several important points to be noted about using the mailbox handler for
communication:

(a) Since message sending happens asynchronously, the execution of a handler resembles
an interrupt. All caveats that apply to interrupts and interrupt handlers therefore
apply to message handlers too.

(b) The base system is extensible in the sense that more complicated protocols can be
built on top of it. For example, the underlying system does not provide any support
for queueing, although one can very easily build one for mailboxes that require this.

(¢) On the Sun, message handling is arranged to always happen on the process that sets
up the handler using the Unix select system call.

(d) Since the message system is based on shared memory, sending long messages is usually
handled by sending a pointer to the beginning of a long piece of data. If the com-
munication mechanism is serial, wherein a stream of data needs to be sent, sending
a large number of messages may cause unwanted system overhead (although message
sending is usually a single subroutine call). This can be avoided via a packet based
interface to the message passing system the details of which are beyond the scope of
this document. It is our opinion, that such links will be of such low bandwidth that
they will rarely be used, if ever at all.

(e) Most often, one may need a variety of functions that need to be performed in response
to a message. Instead of defining ONE message handler for each such function, it may
be helpful to collect related groups of handlers into a single handler, that dispatches
to separate routines based on the data item sent along with the message.

(f) We have thus far used the convention that related messages thus grouped will be found
in a single file, and that the vector numbers that correspond to message handlers be
localized to a single .h file. This allows the symbolic use of handler names rather
than numbers.

(g) Where efficiency is important, the message handling system can be used just to set up
pointers from one processor into another’s memory. After such a set up is complete,
the processors can read and write this shared memory as they please. This removes
the burning of addresses in programs, but maintaining the integrity of shared data
structures will entirely be the programmer’s responsibility.

Message sending and the invoking of message handlers is implemented under the present
system using a so-called mailboz interrupt which is a hardware interrupt that allows one
processor to interrupt another processor on the VME-Bus. This hardware support is critical
to our current implementation’s efficiency. To protect the integrity of certain implementa-
tion dependent data structures the TAS or test-and-set instruction is used. It is important

§6.2 Software 93

that this instruction be supported truly indivisibly by the hardware even across the bus,
for our implementation to work correctly.

6.2.3.3 Support for Message Passing on the Sun End

The development host in the system must have and support the basic primitives needed
to do message passing with the slave or control microprocessors. The Sun on the other
hand, runs a time-sharing operating system, and at any given moment there may be a
number of processes on this machine all communicating with one or more slave processors
across the bus-to-bus adaptor.

As we mentioned earlier, message handling resembles the occurrence of a hardware
interrupt, in that a routine is invoked in response to a send from another processor. On
the Sun, however, when a message comes in from the slave processors, a decision needs
to be made as to which process must be woken up or interrupted. The CONDOR system
supports the notion of virtual processor. Every process on the Sun end, which desires to
communicate with the slave microprocessors, must express its interest to the kernel. Since
interrupts on the VME-Bus are vectored, this is done by the process expressing its interest
relative to a particular vector. When a slave processor desires to interrupt the Sun, it does
so using this vector. The Unix kernel traps on this interrupt vector and signals all processes
that have expressed an interest in receiving the interrupt. Currently, only one process can
own an interrupt vector on the Sun, although a low level mechanism does exist for multiple
processes to be woken up on the same interrupt vector.

An Ironics processor’s memory is entirely dual ported, and hence totally accessible over
the bus. The Sun has a region of memory called DVMA space (for Direct Virtual Memory
Access). The DVMA area occupies the lowest megabyte of the VME 24D16 and 24D32
address space of the VME bus. However, it is not convenient for an Ironics processor to
communicate with the Sun using this space, since Unix memory management issues become
complex.

Instead, an extra 1 megabyte dual ported ram board was installed in the VME bus for
use primarily by the Sun. This board can be thought of as the local memory that the Sun
has control over. Ironics processors can directly communicate with this storage, instead
of using the DVMA space on the Sun. If need be, this area of memory that the Sun uses
for receiving messages intended for it, can be allocated on any of the Ironics single board
computers’ onboard dual-ported memory.

From the Sun, the CONDOR system maps the entire VME 24D16 space (or VME 24D32
space if the adaptor used is the hve-2000) into the user address space of the control process.
Memory references to any of the Ironics or the Sun’s 1 megabyte board on the VME bus
become simple array references from a user’s program. The PROC_RAM(processor) macro
returns the pointer to the bottom of memory for the particular processor. For example, to
write a value to location 100 in processor 3’s memory one could use the following code:

int *processor3_ram
processor3_ram[100]

(int *) (PROC_RAM(3));
value;

94 Chapter 6 Computational Architecture

The PROC_.RAM macro is also used for programs running on Ironics processors to
access memory of other Ironics processors. The code above would work, in fact, on any
processor in the system.

Even though the mailbox routines in the CONDOR system are highly efficient, it is
sometimes desirable to directly use the VME bus shared memory for interprocessor com-
munications. For example, consider a data structure on processor A:

struct data {
int a;
int b;

} data_A;

Consider the following mailbox handler also present on processor A:

get_data_pointer(proc, data)
int processor;
int data;
{
return ((PROC_RAM(PROC_A) + (int)(&data_A));
}

Processor B could define a pointer to such a structure, and initialize it’s value using the
mailbox handler made available on processor A:

struct data {
int a;
int b;
} *data_A = (struct data *)
mbox_send_with_reply (PROC_A,GET_A_DATA_PTR, 0);

The mailbox handler on A will pass the VME bus address of its data structure back to
processor B.

6.2.3.4 Message Passing and its Implication for Control

The previous section has briefly outlined the message passing scheme present in Version
IT of the CONDOR system. The scheme is extremely efficient and fast since it exploits the
shared dual-ported memory across the VME-Bus to the maximum.

Table 6.3 summarizes the performance of the message passing system as benchmarked
by a variety of routines.

As can be seen from the table, the performance of the message passing system is ex-
tremely good between two control processors and slows down only when messages are being
sent up to the development host owing to the overhead caused by the Unix timesharing
operating system running on this host.

§6.2 Software 95

Type of Operation MilliSecs/Message | Variation (secs)
Ironics to Sun 34 5
Ironics to Sun + Reply 38 10
Sun to Ironics 4 0
Sun to Ironics + Reply 4 0
Ironics to Ironics 0.2 0
Ironics to Ironics + Reply 0.25 0

Table 6.3: Performance of the Message Passing System.

The reliability of the Version II implementation has also been unusually good. A number
of other protocols have been implemented on top of the base message passing system, which
will be described shortly, and all these other services perform extremely reliably.

It must be mentioned that the message rates are not as high as servo rates. Conse-
quently, messages are used only as signals to start and stop processes or control the flow of
computation and are not used as timing pulses.

Using the facilities provided by the message passing system judiciously it becomes pos-
sible to treat a hierarchical controller as a truly object-oriented system that will respond to
certain messages in certain ways. For example a low-level joint level PID controller could
be described as an object that responds to different kinds of messages. These could be
messages that

(a) alter internal parameters like gains, damping co-efficients, position set points, etc.,
and

(b) others that start and stop the execution of the servo loop or change the servo rate.

Once the necessary code has been written to respond to these messages, and the program is
running on a particular control processor, any other processor can now act as a supervisor
of the lower level controller. This master processor can now send commands down to the
lower processor telling it what to do. Since the protocol is clearly implemented by the
message handler in the lower control processor, it is clearly specified and easy to change
and hides all implementation details of how the messages are actually implemented, just as
a good data abstraction requires. Such an implementation could be nested, with one control
processor sending a message down to a lower level processor which in turn communicates
with another processor to perform its task and so on.

In fact, most of the control implementations described in the previous sections have
been implemented using such an object-oriented paradigm.

6.2.4 Virtual Terminals, The File Server, Debugging

The CONDOR system requires the concurrent operation of several control micropro-
cessors to perform its task. Programming such a complex MIMD machine would certainly

96 Chapter 6 Computational Architecture

be a nightmare were it not for the numerous services that were built on top of the base
system using the message passing facilities.

These subsystems enable flexible interaction with a number of slave microprocessors
at a time, provide file server capabilities on the development host, and enable symbolic
debugging.

It is in the implementation of such rather complex subsystems that our message passing
design has truly paid off. Although the Version I software was flexible enough to implement
these facilities, the system was complex enough to warrant most programmers to actually
use only a few of its capabilities.

6.2.4.1 The Pseudo Terminal Emulator

The pseudo terminal emulator is a prime example of such a complex facility. It was
originally intended to provide a terminal interface to the multiple slave microprocessors
controlling the hand. Such a real-time facility to look at the states of the different machines
was required to develop and debug the rest of the software.

In the Version I hardware, this would have meant either attaching multiple terminals
to the different nodes or having the programmer switch modes actively. Complex issues of
buffering, forwarding and flow control needed to be addressed. The Version II hardware
provides a simple solution. Different areas or windows on the bit mapped screen are used
to indicate different processors. A multiplexor/demultiplexor process that routes keyboard
input to the designated processor’s input queue and routes the output from a processor to a
particular window was all that was needed to facilitate a rather sophisticated user interface
that enables the user to interact with any of the control microprocessors simultaneously.
The protocol used for the transmission of the data is extremely simple and could be built
and tested in a day.

6.2.4.2 File Server

Another such complex subsystem is the file server. One of the predominant needs for
such a service arises from the fact that control programs, especially in a research envi-
ronment need to collect data and store this data in disk files to facilitate further analyses
and examinations. If programmers could write their programs to run on the slave control
processors just as though they were writing their programs to run on the development host:

1. They can debug their code faster since they can test it out on the development host,
since it eliminates a few stages in the edit, compile, download, run, debug cycle that
would otherwise be required.

2. They can use the same model they use in programming conventional Unix machines
as far as the file system is concerned.

The file server on the Sun end provides such a transparent service to control programs
running on the control microprocessors. For example, when the following program is run
on the control processors, the open() call essentially gets translated to an mbox.send that
sends up a message to the Sun, asking it to service the request.

§6.2 Software 97

FILE *fp;

if((fp = fopen(filename, ‘‘r?’)) == NULL) {
printf(‘‘Couldn’t open file ¥%s\r\n’’, filename);
return(-1);

}

Other system calls related to the file system are also sent up to the Sun in a similar way.

To make the file server efficient, shared memory is extensively used to avoid copying
data. When a microprocessor performs a read or a write, the file server process running
on the Sun reads or writes the data directly to or from the microprocessor’s memory. No
intermediate data copy is required. To perform a read, for example, the microprocessor
would send a message to the Sun giving the address to read the data into, and the number
of bytes to read. The data is directly transferred into the processors buffer.

The file server is designed to operate in a stateless manner. All data necessary is stored
on the microprocessor. The Sun server does cache some information, but if necessary, it
can request the information from the microprocessor. Thus, if the Sun file server process is
terminated and restarted, the microprocessor can continue its file operations without any
noticeable effect.

6.2.4.3 The Debugger

Perhaps the most complex of all the subsystems to be implemented using the message
passing system is the ptrace/wait emulation facility that enables sophisticated symbolic
debugging of C programs running on the control processors from the development host
remotely. In conventional Unix systems, debugging is done in the following manner: A
parent process is set up to communicate with a slave process, which is the process being
debugged. The user interacts with the parent and the parent carries out his requests, by
controlling the slave process via a system call known as ptrace. This system call essentially
is a message passing specification, which enables one process to control and trace another
process’s actions in terms of single stepping, setting up break points, examining register
values and so on.

Debugging is a rather unique activity associated with programming and programmers.
In practice, even after good system design and careful coding, it is in debugging an initial
system that the skill level and productivity of a programmer usually shows up. As the
complexity of the system goes up, the need for such debugging aids becomes important.
Before designing the second version of the CONDOR system, while we were evaluating
our experiences with the first version, it was the debugger that occupied most of our
thinking. This was an area we felt sorely needed addressing. The solution we came up
with, was to avoid writing a new debugger, since most conventional Unix debuggers did
have the capabilities we needed. What they lacked was the ability to debug a process
running independently, perhaps on another machine. Hence, we decided to implement an
emulation facility for the ptrace system call using the Version II message passing system.
In this manner, any conventional Unix debugger could act as the master during a debugging
session and could communicate with a slave process running not on the same machine, but
on one of the control microprocessors.

98 Chapter 6 Computational Architecture

A short table of the message passing operations needed to implement such a scheme is
shown in Table 6.4.

TRACEME Start tracing the process

ATTACH Attach to a particular processor
DETACH Detach from a processor being debugged
PEEKTEXT | Look at a program running on a slave
PEEKDATA | Look at the data on a slave
POKETEXT | Modify the program running on a slave
POKEDATA | Modify the data running on a slave

KILL Kill the slave process
SINGLESTEP | Single step the slave process
CONT Continue the slave process
GETREGS Get registers from a slave process
SETREGS Set the registers on a slave
START Start up the slave process

STOP Stop the slave process

Table 6.4: Opcodes for messages to implement the ptrace emulation.

This emulation facility can be linked into any conventional Unix debugger. Once this linking
has been done the debugger can be used to debug control processes running on the slave
microprocessors across the bus to bus adaptor.

Such a remote debugger interface can be used in many ways. The first allows the user
to start executing a program directly under the debugger’s control. This mode would be
used when a bug is actively being tracked down, and setting initial break points might
be necessary. The second mode allows the debugger to be attached to a processor after
execution has begun. For example, if a program were in an infinite loop, the debugger could
be attached to the running program to determine what went wrong. Finally, if a program
receives a fatal exception, for example an addressing error occurred, the debugger can be
attached after the error occurred to help analyze the problem.

Once the debugger has attached to a process on the slave control processor, all the
capabilities of the debugger can be used to debug the program running on the remote host,
just as if it were running on the development host.

Besides these important utilities a host of other programs have been written to aid in
program development on the CONDOR real time system. These include plotting programs
to graph real time data collected on the slave processors, simulators that provide a three-
dimensional graphics capability to the industry standard X window system, a number of
programmer libraries that can be used on both environments, and diagnostic programs for
the different pieces of hardware that exist in the system.

Taken together, the system comprises of an architecture that we feel comes very close
to satisfying our initial design goal of providing a flexible software environment in which a

86.2 Software 99

researcher can design his real-time control programs without sacrificing performance.

6.2.5 The CONDOR User Interface

Figure 6.3: The CONDOR running under the X Window System.

The file server, debugger and virtual terminals combined together form the CONDOR user
interface. This program is an X-window system based application that programmers utilize
to interact with the slave microprocessors. The user interface provides one virtual terminal
for each slave processor, it runs a file server, and it can start debuggers. Figure 6.3 shows
the screen of a typical CONDOR user interface session.

6.2.6 Controller Implementation

To make the above abstract discussion of the computational architecture more concrete,
in this section we outline how the actual partitioning has been done for the controller
implementations that have been described in the previous chapters.

The current digital controller implementations use four processors. One processor is
allocated for performing the joint-torque and tendon tension level servoing of eight joints
at 400 hertz. Another processor is dedicated to controlling the zyz table. The fourth
processor is a master controller.

An abstraction similar to that used for device configuration is also used for configuring
the hand control programs. There is one central configuration file, which specifies which
Joints are allocated to which processor. This configuration file also specifies which A/D’s and
D/A’s are allocated to a particular joint. This permits hand control programs to developed
in a modular fashion. Changes in hardware occur in terms of changed connectors, boards,
and hardware addresses. To cope with these changes, no changes to the actual control

100 Chapter 6 Computational Architecture

programs is necessary. All that is needed are small changes to the controller file and
recompiling the entire hand controller system.

The trajectory generator currently executes at 50 Hz on the master processor. Besides
executing this slower loop, the master processor also performs a number of other functions,
including;

(a) It forms the primary interface to the Sun, to load and save entire sequences of motions.

(b) It provides a sophisticated interface to the user, who can select a subset of joints to
monitor at any given moment. The required controller variables can be tuned from
this level, and the status of the hand at any given moment can be ascertained.

(c) It controls the execution of the servos on the slaves. Using the message passing
system, it can enable or disable servos on the other processors, find out their status,
or restart errant programs.

The current implementation is also very modular, in that the actual servo portion of a
program that implements the control computation is contained in a single file. By replacing
this file with another of his own choosing, a prospective user can begin to experiment with
low, medium and higher level control algorithms, without having to rewrite or even look at
the rest of the user interface programs.

Besides the actual real-time programs, the hand control environment also comprises of
programs that run on the Sun. These programs include a real-time plotter that allows a
user to monitor any of the controller variables in real time, and a kinematic simulator that
can be used to generate input to the trajectory generator running on the master processor.

Chapter 7

Conclusions and Future Work

This report has looked at different problems that arise in actually controlling a robot
hand to perform simple tasks. The bottom-up approach taken in this report is perhaps not
representative of other efforts that have concentrated on a single theoretical issue. However,
it has resulted in valuable tools and experience that can now be used to deal with the truly
important and relevant higher level issues.

To complete this report, I would like to briefly describe representative problem areas
that need to be looked at in the near future. These include extensions to the work presented
herein, and new problem areas that have been suggested during the initial experiments that
I have begun performing with the controller implementations.

7.1 Control

There are a number of problems that still need to be resolved with respect to the
control of dexterous robot hands. With respect to position control, we have shown that
stable control of such hand-arm systems is indeed possible, and that simple hierarchical
controllers can perform the required tasks. The interesting task that remains to be done is
to mount such a dexterous hand on a robot that has a multi degree of freedom wrist. This
will increase the versatility of the hand by increasing the number of tasks it can be used
for tremendously.

Achieving stable force control in manipulation tasks however, does not seem to be so
simple. In particular the experiments performed with the force controller implementation
seem to indicate the following areas in which much fruitful research can be expected in the
future.

Actuator Modeling: Part of the problem involved in the current implementation of the force
controller implementation is that there is no good underlying model of the actuation and
transmission systems that the controller can use. The pneumatic actuator is in fact a highly
non-linear system with stiction and coulombic friction.

Torque Estimation: Since the Utah-MIT hand does not have any torque sensors, the torque
about a joint must be estimated. Without such information, there exists no good way of
determining how well the force controller is performing. In practice these torques can be
estimated in many different ways:

1. From the sensed tendon tensions:
7 = (Tfi — Tei)ri

This is equivalent to making an estimate of the joint torques, from the input variables

101

102 Chapter 7 Conclusions and Future Work

to the controller. Since the tendon tensions are measured fairly close to the joint, the
friction between the actuators and the sensors can be neglected.

2. From the outgoing actuator voltages:
i = (Vi — Ve)k

This assumes that the estimate of the joint torque is made from the output variables
of the controller.

3. Use a sensed finger tip force and use the relation 7 = JTf. This method is feasible if
there is some kind of sensor at the finger tip that can output sensed force information.
This is true of the Salisbury Hand which has a ball sensor mounted on its finger tips,
which provides force and torque information, but not of the Utah-MIT hand.

4. From the position error:
T = K;60;

where K is some specified joint stiffness.

5. From estimated accelerations.
Ti = Mib;

7.2 Planning

Currently there does not exist any flexible manner in which a high level task can be
planned on the Utah-MIT hand. It would be interesting to apply the algorithms presented
in the literature to choose grasp points and evaluate if indeed they enable achievement of
stable grasps.

The higher level problems of feasibility and reachability mentioned in the introduction
certainly need to be solved before such algorithms can be put to use in practice. Trying
to use such high level planners could indicate the importance and relevance of the various
issues involved.

There are many issues with respect to planning that we have only hinted at. The
level of geometrical modeling needed to achieve stable and dexterous manipulation and the
sophistication of current algorithms both need to be enhanced for the development of a
more or less automatic programming environment for dexterous hands.

7.3 Sensing

It would certainly be instructive to mount tactile sensors on the hand and try to use the
information coming off of these sensors while performing grasping and manipulation oper-
ations as well. In particular, the use of such information in the detection and prevention of
failures during such tasks needs to be studied. The interface between such high-bandwidth
sensors and the hierarchical controller needs to be made in a principled way.

The interaction between such sensors and higher level planning or learning algorithms
that learn to plan over successive trials is also a subject that could bear fruitful results.

§7.4 Conclusion 103

7.4 Conclusion

In conclusion therefore, I would like to mention that this report has looked at problems
from widely different areas. We have looked at problems involving kinematics, control,
planning and computer architecture. The problems involving kinematics and control were
solved and a novel computational architecture was presented as a tool with which to address
the experimental issues that arise in controlling dexterous robotic hands. A new force
control algorithm was presented that is computationally very efficient. Future effort will
concentrate on experiments that look at other issues pertaining to force control and higher
level issues involved in the planning of grasping and manipulation operations.

References

10.

11.

12.

. Abel, J. M., Holzmann, W., and McCarthy, J. M., “On Grasping Planar

Objects with Two Articulated Fingers”, Proc. IEEE International Conference on
Robotics and Automation, pp. 576-581, 1985.

. Abramowitz, J.,et al, “The Pennsylvania Articulated Mechanical Hand”, The

University of Pennsylvania, 1982.

. Abramowitz, J. D., Goodnow, J., and Paul, B., “The Pennsylvania Articulated

Mechanical Hand”, Proc. ASME Conference on Robotics, Chicago, 1983.

. An, C. H., “Trajectory and Force Control of a Direct Drive Arm”, Ph. D. Thesis,

Department of Electrical Engineering and Computer Science, Massachusetts Institute
of Technology, 1986.

. Angeles, J., “Spatial Kinematic Chains - Analysis, Synthesis and Optimization”,

Springer-Verlag, 1982.

. Angeles, J., “On the Numerical Solution of the Inverse Kinematic Problem”, In-

ternational Journal of Robotics Research, Vol. 4, No. 2, pp. 21-37, 1985.

. Angeles, J., “Automatic Computation of the Screw Parameters of Rigid Body Mo-

tions. Part I: Finitely Separated Motions”, Journal of Dynamic Systems, Measure-
ment, and Control, Vol. 108, pp. 32-38, 1986.

. Angeles, J., “Automatic Computation of the Screw Parameters of Rigid Body Mo-

tions. Part II: Infinitesimally Separated Motions”, Journal of Dynamic Systems,
Measurement, and Control, Vol. 108, pp. 39-43, 1986.

. Arnold, “Mathematical Methods of Classical Mechanics”, Springer-Verlag, 1978.

Asada, H., and Slotine, J. J., “Robot Analysis and Control”, Wiley-Interscience,
New York, 1986.

Astrom, K. J., Wittenmark, B., “Computer Controlled Systems: Theory and
Design”, Prentice Hall, 1984.

Bajpai, A., and Roth, B., “Workspace and Mobility of a Closed Loop Manipu-

lator”, International Journal of Robotics Research, Vol. 5, No. 2, pp. 131-142,
1986.

105

106

13

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24.

25.

26.

Chapter 7 Conclusions and Future Work

Baker, D. R., and Wampler, C. W., “On the Inverse Kinematics of Redundant
Manipulators”, General Motors Research Laboratories, No. GMR-5478, July,
1986.

Begej, S., “An Optical Tactile Array Sensor”, Proc. SPIE Conference on Intelligent
Robots and Computer Vision, pp. 271-280, 1984.

Biggers, K. B., Gerpheide, G. E., Jacobsen, S. C., “Low Level Control of the
Utah-MIT Hand”, Proc. IEEE International Conference on Robotics and Automa-
tion, pp. 61-66, 1986.

Brock, D., and Chiu, S., “Environment Perception of an Articulated Robot Hand
using Contact Sensors”, ASME Winter Annual Meeting: Robotics and Manufactur-
ing Automation, pp. 89-96, 1985.

Brockett, R. W., “Robotic Hands with Rheological Surfaces”, Proc. IEEE Inter-
national Conference on Robotics and Automation, pp. 942-947, 1985 .

Brooks, R. A., “Achieving Artificial Intelligence Through Building Robots”, AIM
No. 899, The Artificial Intelligence Laboratory, Massachusetts Institute of Technol-
ogy, Cambridge, Massachusetts, May, 1986.

Brost, R. C., “Automatic Grasp Planning in the Presence of Uncertainty”, Proc.
IEEE International Conference on Robotics and Automation, pp. 1575-1581, 1986.

Canny, J. F., “Collision Detection for Moving Polyhedra”, Pattern Analysis and
Machine Intelligence, Vol. 8, No. 2, 1986.

Canny, J. F., “The Complezity of Robot Motion Planning”, Ph. D. Thesis, De-
partment of Electrical Engineering and Computer Science, Massachusetts Institute
of Technology, 1987.

Chang, P., “A Closed Form Solution for the Kinematics of Redundant Manipula-
tors”, AIM No. 854, The Artificial Intelligence Laboratory, Massachusetts Institute
of Technology, Cambridge, Massachusetts, March, 1986.

Checinski, S. S., Agrawal, A. K., “Magnetoelastic Tactile Sensor”, Robot
Sensors, Volume 2 - Tactile and Non-Vision, Springer-Verlag, pp. 229-235, 1986.

Chelpanov, I. B., Kopashnikov, S. N., “Problems With the Mechanics of In-
dustrial Robot Grippers”, Mechanism and Machine Theory, Vol. 18, No. 4, pp.
295-299, 1983.

Chen, F. Y., “Gripping Mechanisms for Industrial Robots”, Mechanism and Ma-
chine Theory, Vol. 17, No. 5, pp. 299-311, 1982.

Chen, J. B., Fearing, R. S., Armstrong, B. S. and Burdick,J. W., “NYMPH:
A Multiprocessor for Manipulation Applications”, Proc. IEEE International Confer-
ence on Robotics and Automation, pp. 1731-1736, 1986.

§7.4

27

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Conclusion 107

Chiu, S. L., “Generating Compliant Motion of Objects with an Articulated Hand”,
S. M. Thesis, Department of Mechanical Engineering, Massachusetts Institute of
Technology, 1983.

Colson, J. C., and Perreira, D. N., “Kinematic Arrangements Used in Industrial
Robots”, Proceedings of the 13’th International symposium on Industrial Robots,
Soceity of Manufacturing Engineers, pp. 20-1-20-18, 1983.

Craig, J. J., “Introduction to Robotics: Mechanics and Control”, Addison-Wesley,
1986.

Crosnier, J. J., “Grasping Systems with Tactile Sense using Optical Fibres”, Robot
Sensors, Volume 2 - Tactile and Non-Vision, Springer-Verlag, pp. 209-217, 1986.

Crossley, F. R. E., and Umbholtz, F. G., “Design of a Three-Fingered Hand”,
Mechanism and Machine Theory, Vol. 12, pp. 85-93, 1977.

Cutkosky, M. R., “Mechanical Properties for the Grasp of a Robotic hand”, CMU-
RI-TR-84-24, Carnegie Mellon University, 1984.

Cutkosky, M. R., and Wright, P. K., “Modelling Manufacturing Grips and Cor-
relations with the Design of Robotic Hands”, Proc. IEEE International Conference
on Robotics and Automation, pp. 1533-1539, 1986.

Cutkosky, M. R., Jourdain, J. M., and Wright, P. K., “Skin Materials for
Robotic Fingers”, Proc. IEEE International Conference on Robotics and Automa-
tion, pp. 1649-1654, 1987.

Cutkosky, M. R., “Friction, Stability, and the Design of Robotic Fingers”, Inter-
national Journal of Robotics Research, Vol. 5, No. 4, pp. 20-37, 1986.

Dario, P., Bicchi, A., Vivaldi, F., Pinotti, P. C., “Tendon Actuated Ezploratory
Finger with Polymeric Skin-like Tactile Sensor”, Proc. IEEE International Confer-
ence on Robotics and Automation, pp. 701-706, 1985.

Denavit, J. and Hartenberg, R. S., “A Kinematic Notation for Lower-Pair
Mechanisms Based on Matrices”, Journal of Applied Mechanics, Transactions of the
ASME, Vol. 77, No. Series E, pp. 215-221, June 1955.

Donald, B. R., “Motion Planning with Siz Degrees of Freedom”, AI-TR-791, The
Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge,
Massachusetts, 1985.

Donald, B. R., “Error Detection and Recovery for Robot Motion Planning with
Uncertainty”, Ph. D. Thesis, Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, 1987.

108

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

Chapter 7 Conclusions and Future Work

Driels, M. R., “Pose Estimation using Tactile Sensor Data for Assembly Oper-
ations”, Proc. IEEE International Conference on Robotics and Automation, pp.
1255-1261, 1986.

Ellis, R. E., “Acquiring Tactile Data for the Recognition of Planar Objects”, Proc.
IEEE International Conference on Robotics and Automation, pp. 1799-1805, 1987.

Erdmann, M., and Lozano-Pérez, T., “On Multiple Moving Objects”, AIM No.
883, The Artificial Intelligence Laboratory, Massachusetts Institute of Technology,
Cambridge, Massachusetts, May, 1986.

Erdmann, M. E.; “On Motion Planning with Uncertainty”, S. M. Thesis, De-
partment of Electrical Engineering and Computer Science, Massachusetts Institute
of Technology, 1984.

Fearing, R. S., “Simplified Grasping and Manipulation with Dezterous Robot Hands
”?, Proc. IEEE International Conference on Robotics and Automation, pp. 188-195,
1986. '

Fearing, R. S., “Some Experiments with Tactile Sensing during Grasping”, Proc.
IEEE International Conference on Robotics and Automation, pp. 1637-1643, 1987.

Fearing, R. S., “Touch Processing for Determining a Stable Grasp”, S. M. Thesis,
Department of Electrical Engineering and Computer Science, Massachusetts Institute
of Technology, September 1983.

Grahn, A. R. and Astle, L., “Robotic Ultrasonic Force Sensor Arrays”, Robot
Sensors, Volume 2 - Tactile and Non-Vision, Springer-Verlag, pp. 297-315, 1986.

Grimson, W. E. L., and Lozano-Pérez, “Model-based Recognition and Localiza-
tion from Sparse Range or Tactile Data”, International Journal of Robotics Research,
Vol. 3, No. 3, pp. 3-35, 1984.

Hanafusa, H., and Asada, H., “An Adaptive Control of Robot Hand Equipped with
Pneumatic Prozimity Sensors”, Proc. 6’th International Symposium on Industrial
Robots, pp. D4-31-42, 1976.

Hanafusa, H., and Asada, H., “Stable Prehension by a Robot Hand with Elastic
Fingers”, Proc. 7’th International Symposium on Industrial Robots, pp. 361-368,
1977.

Harmon, L. D., “Automated Tactile Sensing”, The International Journal of
Robotics Research, Vol. 1, No. 2, pp. 3-32, 1982.

Harmon, L. D., “Touch-Sensing Technology: A Review”, Tech. Rep. MSR 80-83,
Society of Manufacturing Engineers, 1980.

§7.4

53

54.

55.

56.

o7.

58.

59.

60.

61.

62.
63.

64.

65.

Conclusion 109

Harmon, L. D., <“Automated Touch Sensing: A Brief Perspective and Several
New Approaches”, Proc. 1’st IEEE Computer Society International Conference on
Robotics, pp. 326-331, 1984.

Harmon, L. D., “Tactile Sensing for Robots”, Recent Advances in Robotics, Wiley
and Sons, pp. 389-421, 1985.

Hogan, N, “Impedance Control: An Approach to Manipulation: Part I - Theory?,
ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 107, pp. 1-7,
March 1985.

Hogan, N, “Impedance Control: An Approach to Manipulation: Part II - Imple-
mentation”, ASME Journal of Dynamic Systems, Measurement, and Control, Vol.
107, pp. 8-16, March 1985.

Hogan, N, “Impedance Control: An Approach to Manipulation: Part III - Applica-
tions”, ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 107,
pp. 17-24, March 1985.

Hovannessian, S. H., and Pipes, L. A., “Digital Computer Methods in Engi-
neering 7, McGraw-Hill, 1969.

Hollerbach, J. M., “Computers, Brains and the Control of Movement”, Trends
in NeuroSciences, Vol. 5, No. 6, pp. 189-192, June 1982.

Hollerbach, J. M., and Suh, K. C., “Redundancy Resolution of Manipulators
Through Torque Optimization”, Proc. of the 1985 IEEE International Conference on
Robotics and Automation, pp. 1016-1022, March 1985.

Hollerbach, J. M., Narasimhan, S., Wood, J. E., “Finger Force Computation
Without the Grip Jacobian”, Proc. IEEE International Conference on Robotics and
Automation, pp. 871-875, 1986.

Horn, B. K. P. , “Machine Vision”, MIT Press, Cambridge, 1986.

Iberall, T., “The Nature of Human Prehension: Three Dexterous Hands in One”,

Proc. IEEE International Conference on Robotics and Automation, pp. 396-401,
1987.

Jacobsen, S. C., Knutti, D. F., Biggers, K. B., Iversen, E. K., and Wood,
J. E., “An Electropneumatic Actuation System for the Utah/MIT Dextrous Hand”,
Theory and Practice of Robots and Manipulators, Proceedings of RoManSy ’84: the
Fifth CISM-IFToMM Symposium, MIT Press, Cambridge, Mass, pp. 271-280,
1985.

Jacobsen, S. C., Iversen, E. K, Knutti, D. F., Johnson, R. T, Biggers,
K. B., “Design of the Utah-MIT Dexterous Hand”, Proc. IEEE International
Conference on Robotics and Automation, April 7-10, 1986.

110

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

Chapter 7 Conclusions and Future Work

Jacobsen, S. C., Wood, J. E., Knutti, D. F., Biggers, K. B., “The Utah/MIT
Dezxterous Hand: Work in Progress”, International Journal of Robotics Research,
Vol. 3, No. 4, pp. 21-50, 198/.

Jameson, J. W., “Analytic Techniques for Automated Grasp”, Ph. D. Thesis,
Department of Mechanical Engineering, Stanford University, June 1985.

Kato Ichiro, “Mechanical Hands Illustrated”, Hemisphere Publishing Corporation,
New York, 1982..

Keller, A. D., Taylor, C. C., Zahm, V., “Studies to Determine the Functional
Requirements for Hand and Arm Prosthesis”, Dept. of Engg. UCLA, 1947.

Kemper, A., and Wallrath, M., “An Analysis of Geometric Modelling in Database
Systems”, Computing Surveys, Vol. 19, No. 1, pp. {7-91, March 1987.

Kerr, J., “Analysis of Multifingered Hands”, Ph. D. Thesis, Department of
Mechanical Engineering, Stanford University, 1985.

Kerr, J., Roth, B., “Analysis of Multifingered Hands”, International Journal of
Robotics Research, Vol. 4, No. 4, pp. 3-17, 1985.

Kerr, J., Roth, B., “Special Grasping Configurations with Deztrous Hands”, Proc.
IEEE International Conference on Robotics and Automation, pp. 1361-1367, 1986.

Khalil, W., and Kleinfinger, J. F., No. A New Geometric Notation for Open
and Closed-Loop Robots, Proc. IEEE International Conference on Robotics and
Automation, Vol. 2, pp. 1174-1179, April, 1986..

Klein, C., and Blaho, B. E., “Dexterity Measures for the Design and Control of
Kinematically Redundant Manipulator”, International Journal of Robotics Research,
Vol. 6, No. 2, pp. 72-83, Summer 1987..

Kobayishi, H., “Grasping and Manipulation of Objects by Articulated Hands”,
Proc. IEEE International Conference on Robotics and Automation, pp. 1514-1519,
1986.

Korein, J. U., Maier, G. E., Taylor, R. H., and Durfee, L. F., “A Config-
urable System for Automation Programming and Control”, Proc. IEEE International
Conference on Robotics and Automation, pp. 1871-1877, 1986.

Lathrop, R., “Parallelism in Arms and Legs”, S. M. Thesis, Department of
Electrical Engineering and Computer Science, Massachusetts Institute of Technology,
1982.

Lee, C. S. G., “Robot Arm Dynamics”, Tutorial on Robotics, IEEE Computer
Society, pp. 93-101, 1984.

§7.4

80

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

Conclusion 111

. Lee, C. S. G., “Robot Arm Kinematics”, Tutorial on Robotics, IEEE Computer
Society, pp. 47-65, 1984.

Lee, C. S. G., Mudge, T. N., Turney, J. L., “Hierarchical Control Structure
Using Special Purpose Processors for the Control of Robot Arms”, Proceedings of the

1982 Pattern Recognition and Image Processing Conference, IEEE, pp. 634-640,
1982.

Liegeois, A. , “Automatic Supervisory Control for the Configuration and Behavior
of Multibody Mechanisms”, IEEE Transactions on System, Man, and Cybernetics,
Vol. SMC-7, No. 12, pp. 842-868, 1977.

Loucks, C. S., Johnson, V. J., Boissiere, P. T., Starr, G. P., Steele, J. P.
H., “Modeling and Control of the Stanford/JPL Hand”, Proc. IEEE International
Conference on Robotics and Automation, pp. 573-578, 1987.

Lozano-Pérez, T., “Spatial Planning: A Configuration Space Approach”, IEEE
Transactions on Computers, Vol. C-32, No. 2, pp. 108-120, February, 1983.

Lozano-Pérez, T., “The Design of a Mechanical Assembly System”, S. M. Thesis,
Department of Electrical Engineering and Computer Science, Massachusetts Institute
of Technology, 1976.

Lozano-Pérez, T., “Robot Programming”, Proceedings of the IEEE, Vol. 71, No.
7, pp. 821-841, July, 1983..

Lozano-Pérez, T., Mason, M. T., and Taylor, R. H., “Automatic Synthesis
of Fine-Motion Strategies for Robots”, International Journal of Robotics Research,
Vol. 3, No. 1, 1984.

Lozano-Pérez, T., “A Simple Motion Planning Algorithm for General Robot Ma-
nipulators”, AIM No. 896, The Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, Cambridge, Massachusetts, June, 1986..

Lozano-Pérez, T., “Handey: A Robot System that Recognizes, Plans and Manip-
ulates”, Proc. IEEE International Conference on Robotics and Automation, pp.
843-849, 1987.

Luo, R. C., Grande, D., “Servo-Controlled Gripper with Sensors for Flexible
Assembly”, Proc. IEEE International Conference on Robotics and Automation, pp.
451-460, 1984.

Luo, R. C., Lin, Min-Hsiung, and Scherp, R. S., “The Issues and Approaches of
a Robot Multi-Sensor Integration”, Proc. IEEE International Conference on Robotics
and Automation, pp. 1941-1946, 1987.

Maciejewski, A. A., and Klein, C. A., “Obstacle Avoidance for Kinemati-
cally Redundant Manipulators in Dynamically Varying Environments”, International
Journal of Robotics Research, Vol. 4, No. 3, pp. 109-117, 1985.

112

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

Chapter 7 Conclusions and Future Work

Maples, J. A., Becker, J. J., “Ezperiments in Force Control of Robotic Manip-
ulators”, Proc. IEEE International Conference on Robotics and Automation, pp.
695-702, 1986.

Mason, M. T., “Compliance and Force Control for Computer Controlled Manipu-
lators”, IEEE Transactions on System, Man and Cybernetics, Vol. SMC-11, pp.
418-432, 1981.

Mason, M. T., “Manipulator Grasping and Pushing Operations”, AI-TR-690,
The Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cam-
bridge, Massachusetts, June 1982.

Mason, M. T., Salisbury, J. K., “Robot Hands and the Mechanics of Manipula-
tion”, MIT Press, Cambridge, Massachusetts, 1985.

Mason, M. T., “Manipulator Grasping and Pushing Operations”, Ph. D. The-
sis, Dept. of Electrical Engg. and Computer Science, Massachusetts Institute of
Technology, 1985.

Montana, D. J., “Tactile Sensing and the Kinematics of Contact”, Ph. D. Thesis,
Division of Applied Sciences, Harvard University, 1986.

Mujtaba, M. S., “Motion Sequencing of Manipulators”, STAN-CS-82-917, Dept.
of Computer Science, Stanford University, 1982.

Nakamura, Y., Hanafusa, H., Ueno, N., “A Piezoelectric Film Sensor for
Robotic End-Effectors”, Robot Sensors, Volume 2 - Tactile and Non- Vision, Springer-
Verlag, pp. 247-257, 1986.

Narasimhan, S., Siegel, D. M., Jones, S. A., “Controlling the Utah-MIT Hand”,
Proc. of SPIE symposium on Advances in Intelligent Robotic systems, Fall, 1986.

Nguyen, V., “Constructing Stable, Force-Closure Grasps”, S. M. Thesis, Depart-
ment of Electrical Engineering and Computer Science, Massachusetts Institute of
Technology, 1986.

Nguyen, V., “The Synthesis of Stable Grasps in the Plane”, Proc. IEEE Interna-
tional Conference on Robotics and Automation, pp. 884-889, 1986.

Nguyen, V., “Constructing Force-Closure Grasps”, Proc. IEEE International
Conference on Robotics and Automation, pp. 1368-1373, 1986.

Nguyen, V., “Constructing Stable Grasps in 3-D”, Proc. IEEE International
Conference on Robotics and Automation, pp. 234-239, 1987.

Nguyen, V., “Constructing Force-Closure Grasps in 3-D”, Proc. IEEE Interna-
tional Conference on Robotics and Automation, pp. 240-245, 1987.

Ogata, K., “Discrete-Time Control Systems”, Prentics Hall, 1987.

§7.4

108

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

Conclusion 113

. Ohwovoriole, E., “On the Total Degree of Freedom of Planar Bodies with Direct
Contact”, American Society of Mechanical Engineers, Vol. 84-DET, No. 22, pp.
1-6, 1984.

Ohwovoriole, M. S., “An Eztension of Screw Theory and Its Application to the
Automation of Industrial Assemblies”, Ph. D. thesis, Department of Mechanical
Engineering, Stanford University, April 1980.

Okada, T., “Object Handling system for Manual Industry”, IEEE Transactions on
System, Man and Cybernetics, Vol. SMC 9, No. 2, pp. 79-89, February 1979.

Okada, T., “Computer Control of Multijointed Finger System for Precise Object
Handling”, 1EEE Transactions on System, Man and Cybernetics, Vol. SMC 12, pp.
289-299, 1982.

Okada, T., and Kanade, T., “Appropriate Lengths Between Phalanges of Multi-
Jjointed Fingers for Stable Grasping”, CMU-RI-TR-83-13, Robotics Institute, Carnegie-
Mellon University, 22 July 1983.

Okada, T., Tsuchiya, S., “Object Recognition by Grasping”, Pattern Recognition,
Vol. 9, pp. 111-119, 1977.

Palm, W. J., Datseris, P., “Pose Seeking Algorithms for the Control of Dexterous
Robot Hands”, Proc. IEEE International Conference on Robotics and Automation,
pp. 582-587, 1985.

Paul, B., “A Systems Approach to the Torque Control of a Permanent Magnet
Brushless Motor”, S. M. Thesis, Department of Mechanical Engineering, Mas-
sachusetts Institute of Technology, 1987.

Paul, R., and Shimano, B., “Compliance and Control”, Proceedings of the Joint
Automatic Control Conference, The American Society of Mechanical Engineers, pp.
694-699, 1976.

Paul, R. P., and Zhang, H., “Design of a Robot Force/Motion Server”, Proc.
IEEE International Conference on Robotics and Automation, pp. 1878-1883, 1986.

Paul, R. P., “Robot Manipulators: Mathematics, Programming and Control”, MIT
Press, Cambridge, Massachusetts, 1981.

Pieper, D. L., No. The Kinematics of Manipulators Under Force Control, Ph. D.
Thesis, Computer Science Department, Stanford University, October 1968.

Raibert, M. H., Craig, J. J., “Hybrid Position/Force Control of Manipulators”,
ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 102, pp.
126-133, June 1981.

114

121

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132,

133.

Chapter 7 Conclusions and Future Work

Roberts, R. K., Paul, R. P., and Hillberry, B. M., “The Effect of Wrist Force
Sensor Stiffness on the Control of Robot Manipulators”, Proc. IEEE International
Conference on Robotics and Automation, pp. 269-274, 1984.

Roth, B., “Overview on Advanced Robotics: Manipulation”, 1985 ICAR, pp.
559-570, 1985.

Salamin, E., “Application of Quaternions to Computation with Rotations”, Internal
Working Paper, A. I Laboratory, Stanford University, 1979.

Salisbury, J. K., “Kinematic and Force Analysis of Articulated Hands”, Ph. D.
Thesis, Department of Mechanical Engineering, Stanford University., July, 1982.

Salisbury, J. K., and Craig, J. J., “Articulated hands: Force Control and Kine-
matic Issues”, International Journal of Robotics Research, Vol. 3, No. 4, pp. 4-17,
1982.

Salisbury, J. K., and Abramowitz, J. D., “Design and Control of a Redundant
Mechanism for Small Motion”, Proc. IEEE International Conference on Robotics
and Automation, pp. 323-328, March, 1985.

Seering, W. P., “Robotics and Manufacturing - A Perspective”, The First Inter-
national Symposium on Robotics Research, pp. 973-983, 1984.

Schlesinger, G., “Der Mechanische Aufbau der Kunstlichen Glieder”, Ersatuglider
und Arbeitshilfen, M. Borchardt et al., Springer, 1919.

Sheth, P. N. and Uicker, J. J., “A Generalized Symbolic Notation for Mecha-
nisms”, Journal of Engineering for Industry, Transactions of the ASME, Vol. 93,
No. Series B, No 1., pp. 102-112, Feb 1971.

Sheth, P. N. and Uicker, J. J. Jr., “IMP (Integrated mechanisms program) - A
Computer Aided Design Analysis System for Mechanisms and Linkage”, Journal of
Engineering for Industry, Transactions of the ASME, Vol. 94, pp. 454-464, May
1972.

Shimano, B., and Roth, B., “On Force Sensing Information and Its Use in Con-
trolling Manipulators”, Proceedings of the Eighth Industrial Symposium on Industrial
Robots, IFC Publications Limited, pp. 119-126, Washington, D.C,

Siegel, D. M., “Contact Sensors for Dexterous Robotic Hands”, S. M. Thesis,
Department of Electrical Engineering and Computer Science, Massachusetts Institute
of Technology, 1986.

Siegel, D. M., Narasimhan, S., Hollerbach, J. M, Gerpheide, G. E., Krieg-
man, D., “Computational Architecture for the Utah-MIT hand”, Proc. IEEE
International Conference on Robotics and Automation, pp. 918-925, 1985.

§7.4

134

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

147.

Conclusion 115

. Siegel, D. M., Garabieta, 1., Hollerbach, J. M., “A Capacitive Based Tactile
Sensors”, SPIE Conf. Intelligent Robots and Computer Vision, Sept. 1985.

Siegel, D. M., and Simmons, L., “A Thermal Based Sensor System”, SME
Sensors 85 Conference, Detroit, MI, November 1985.

Skinner, F., “Designing a Multiple Prehension Manipulator”, Mechanical Engi-
neering, pp. 30-37, September 1975..

Speeter, T. H., “Analysis and Control of Robotic Manipulation”, Ph. D. Thesis,
Department of Biomedical Engineering, Case Western Reserve University, 1987.

Taylor, R. H., “Planning and Ezrecution of Straight-Line Manipulator Trajectories”,
IBM Journal of Research and Development, Vol. 23, pp. {24-436, 1979.

Tournassoud, P., Lozano-Pérez, T., Mazer, E., “Regrasping”, Proc. IEEE
International Conference on Robotics and Automation, pp. 1924-1928, 1987.

Toumi, Y. K., Ro, P. I., “A Dual-Drive Design Concept for Enhancing the Micro
Manipulation of Direct-Drive Arms”, Proc. of The Winter Annual Meeting of the
ASME, pp. 115-121, December, 1986.

Tsai, L. W., and Morgan, A. P., “Solving the Kinematics of the Most General Siz
and Five Degree of Freedom Manipulators by Continuation Methods”, The American
Society of Mechanical Engineers, Vol. ASME-84-DET-20, pp. 1-12, December,
1984.

Tubiana, R., “The Architecture and Functions of the Hand”, The Hand, Vol. 1,
W. B. Saunders and Co., pp. 19-93, 1981.

Uicker, J. J. Jr., Denavit, J., and Hartenburg, R. S., “An Iterative Method
for the Displacement Analysis of Spatial Mechanisms”, Transactions of the ASME,
Journal of Applied Mechanics, Vol. 86, No. Series E, No. 2, pp. 309-314, June
1964.

Venkataraman, S. T., and Djaferis, T. E., “Multivariable Feedback Control of
the JPL/Stanford Hand”, Proc. IEEE International Conference on Robotics and
Automation, pp. 77-82, 1987.

Whitney, D. E., “Historical Perspective and State of the Art in Robot Force Con-
trol”, Proc. IEEE International Conference on Robotics and Automation, pp. 262-
268, 1985.

Whitney, D. E., “Force Feedback Control of Manipulator Fine Motions”, Trans-
actions of ASME, Journal of Dynamic Systems, Measurement and Control, The
American Society of Mechanical Engineers, pp. 91-97, June 1977.

Whitney, D. E., “Resolved Motion Rate Control of Manipulators and Human Pros-
theses”, IEEE Transactions Man-Machine Systems, MMS-10, pp. 47-53, 1969.

116

148.

149.

150.

151.

152.

Chapter 7 Conclusions and Future Work

Wu, C. H., and Paul, R. P., “Manipulator Compliance Based on Joint Torque
Control”, Proc. IEEE Conference on Decision and Control, pp. 88-94, 1980.

Wu, C. H., and Paul, R. P., “Resolved Motion Force Control of Robot Manipu-
lators”, IEEE Transactions on Systems, Man and Cybernetics, Vol. SMC-12, No.
3, pp. 266-275, June 1982.

Yoshikawa, T., Nagai, K., “Manipulating and Grasping Forces in Manipulation
by Multi-Fingered Hands”, Proc. IEEE International Conference on Robotics and
Automation, pp. 1998-2004, 1987.

Yoshikawa, T., “Manipulatability of Robotic Mechanisms”, International Sympo-
sium of Robotics Research, Vol. 2, 1984.

Yoshikawa, T., “Analysis and Control of Robot Manipulators with Redundancy?”,
The First International Symposium on Robotics Research, MIT Press, Cambridge,
pp. 735-747, 1984.

Appendix A

Kinematics of the Utah-MIT hand

This appendix deals with computing the forward kinematics of a single finger of the Utah-

MIT hand.

The numbering of the various fingers and joints are indicated in Figure A.1.

for

Wrist Side

Right-Handed Hand

Joint 3

Joint 3
Joint 2

Joint 1 Finger 3

Joint 2

Finger 2

Joint 0 Finger 1

Joint 1

Joint O

Palmar Plane

Figure A.1: Numbering of joints on the Utah-MIT hand

A picture of the finger geometry is included in Figure A.2.

A.1 Co-ordinate transforms based on D-H matrices

The Denavit-Hartenburg notation can be easily applied to denote the various co-ordinate
systems associated with each finger. In what follows, the z; axes are aligned with the axis
of rotation of joint :.

These parameters are included here even though the controller and the rest of the software

117

118 Appendix A Kinematics of the Utah-MIT hand

13=0.735inches

12=1.3inches

Fingers 1'2 and 3 Il:l.?iﬂches

Palmar Plane 10=1_2inches

30

Joint 0 Axis

Figure A.2: Single finger - Non thumb

use vector manipulations rather than matrix calculations. The popularity of the D-H
matrices after the publication of Paul [1982] and Craig [1986] has made this notation more
accessible and somewhat of a standard.

Let the co-ordinate system whose axes are defined by [xg,yg,Zg] denote a co-ordinate frame
affixed to the palmar plane of the Hand. This co-ordinate system is the one relative to which
all other co-ordinate frames will be expressed. This frame is chosen so that positive z and
y values will be on the palmar plane and the z axis is perpendicular to the palmar plane,
pointing upward from it.

Then the relation between this frame and the first joint axis frame of a non-thumb finger
can be expressed by:

Trans(yo,rp) - Trans(zg,lptan(dp) — hy) - Rot(yo, /2 + ¢p) - Rot(z',7/2)

where z' denotes the zq axis after the rotation about yg has been performed, ¢, denotes
the angle made by the axis of rotation of joint 0 with the palmar plane (which is 12 degrees
for non-thumb fingers), r, denots the distance separting the joint 0 axes and I, denotes the
length of the palmar plane and is equal to 1.05 inches (please refer to Figure A.3).

0 sin(¢y) cos(ep) 0
1 0 0 7

=10 cos(d) —sin(dy) lytan(dy) = hy (a1)
0 0 0 1

§A.1 Co-ordinate transforms based on D-H matrices 119

y |
1
X
i
zZ O~
1 ~
~—
~
~
, R 1 Z\ Joint 0 Axis
. \
y 0
- Palmar Plane "2 .
X0

Figure A.3: The relation between the palm and the zero joint frame

where 7, refers to the distance of the finger from the zo axis as measured along yo (which
is 1.42 inches for finger 2, and 2.69 inches for finger 3), and I, refers to the length of the

palmar plane as mentioned above. h, is the height of the palmar plane above the joint 0
axes which is equal to 0.95 inches.

Once the frame affixed to joint 1 has been determined the other frames associated with the
finger joints can be determined by using the standard D-H matrix given by:

Ci =-SiC, 8:;5 aC;
iqg |8 CiCy —CiSy aiS;
A= g o7 o (A2)

0 0 0 1

where C; denotes cos(6;) and S; denotes sin(6;).

The first link of the non-thumb fingers makes an angle of 30 degrees with the axis of rotation
of the zeroeth joint of these fingers. This angle is denoted by ¢o. lp denotes the link length
of this first link and is equal to 1.2 inches.

120 Appendix A Kinematics of the Utah-MIT hand

Using the above equation, we can write:

Co 0 —So losin(¢o)00

. So 0 Co losin(¢o)50
A = I, (A.3)
0 -1 0 o5 + locos(¢o)
0 0 0 1
[
which can be derived from the fact that og is —7/2, ag = lpsin(¢o), and do = P 4
cos(dp)

locos(¢o). The angle ¢ denotes the constant angle made by the link between the joint 1
axis, and is equal to 30 degrees.

The remaining three axes are simple revolute axes. All of these three axes are parallel and
are perpendicular to the plane of finger movement called the operational plane. Their A
matrices can be seen to be:

Cy -8 0 LCy
Si C, 0 LS
2 _ 1 1 121
4s = 0 0 1 0
0 0 0 1
C2 =8 0 5,Cp]
Sy Co 0 I8
3 - 2 2 272
Ay = s o1 o (A.4)
0 0 o 1 |
-03 —53 0 1303-
Ss Cs 0 I35
4 _ 3 3 3J3
As = 0 0 1 o
0 0 0 1 |

where I; is 1.70 inches, /5 is 1.30 inches, and I3 is the distance from the contact point to
the last joint’s axis of rotation, which is 0.735 inches.

From the last of the above equations, it can be seen that the contact point between a
grasped object and the finger tip is assumed to be a constant given by /3. In practice, this
is only an approximation. In fact the contact point ought to be expressed as a vector in the
last co-ordinate frame of the distal joint. This would be possible for example when tactile
sensors are mounted on the finger tip enabling the acquisition of such information.

The A matrices given above make the solution of the forward kinematics problem easy. A
summary of the D-H parameters for the non-thumb fingers is given in Table A.1. The final
mapping is given by Equation A.5.

8§A.1 Co-ordinate transforms based on D-H matrices 121

Table A.1: D-H Parameters for Non-Thumb Fingers

[Joint+1 | d; a; [o |
7 ;
-7 /2
1 cos(3]) + lo cos(¢o) | lo sin(eo) | —7/
2 0 hL 0
3 0 I, 0
4 0 I3 0

0A500 = sm(qu) So 0123 — COS(¢p) 5123

0A501 = —sin(¢p) So Si23 — cos(¢p) Cr23

0A502 = 3in(¢p) Co

0A503 = 608(¢p) [—13 S123 =13 S12— 11 $1 + cosl(pd)p) + g 003(¢0)
+sin(¢p) [So (I3 Ci2z + I3 Cr2 + 1y C1) + lp sin(¢o) So]

%45, = CoCias

22511 = —go 5123

51, = =0

%45, = Colls C1as + 12 Cra + I C1] + lp sin(¢o) Co + 7

%45,, = sin(¢p) Si2s + cos(d,) So Cizs

0A521 = szn(q&,,) 0123 — COS(¢p) So 5123

0A522 = 003(¢P) Co

045,, = —sin(dp) [—ls S123 — Iz S12 — 11 S1 + cosl(p¢p) + 1o 003(¢0)]
+COS(¢p) [So (l3 0123 + 12 012 + 11 Cl) + 1 81n(¢0) So] - hp -+ lp tan(¢p)

%45, = O

045, = 0

045,, = 0

0A533 = 1

(A.5)
where S;; refers to sin(6; + 6;), Ci; refers to cos(8; + 0;), Sijx refers to sin(8; + 6; + 6%)
and Cjj, refers to cos(6; + 8; + 6;). (Note that the numbering scheme is different from the
conventional usage of the D-H parameters since we have introduced an extra constant ®A;
matrix.

Computationally, it would take 26M+16A+8T operations to compute all elements of the
forward kinematics for a non-thumb finger. ! If we are merely interested in computing
the cartesian positions of the fingertips, it would take 12M+14A+8T to perform the above
computations. For three fingers, this number works out to 78M+48A+24T operations.

1xM+yA+zT refers to x multiplies, y additions and z transcendental function lookups.

122 Appendix A Kinematics of the Utah-MIT hand

A.2 The thumb frames

The Utah-MIT hand has a four degree of freedom thumb whose co-ordinate frames are
different from the other non-thumb fingers. The main differences are caused by the fact
that the zero’th joint on the thumb rotates about an axis that is parallel to the palmar
plane and is aligned along with the z¢ axis. Joint 1 of the thumb is also only 0.4 inches
above the joint 0 axis. Furthermore, this axis is perpendicular to the joint 0 axis.

This means that for the thumb the relation between the first two frames can be expressed
as

Trans(yo,rp) - Rot(yg,7/2) - Rot(z ,)

where r,, for the thumb is 0.695 inches, and z' denotes the zg axis after the rotation about
the yg axis.

Expanding the matrices, we get:

0 0 10

0 _ 0 -1 0 'I‘p

AA=11 9 0 o (A-6)
0 0 0 1

The derivation of the 2A4; frame is relatively straightforward. With aq set to a constant hg
(0.45inches) and ap set to —x/2 and using Equation. A.2 we get:

Co 0 —So hoCo

So 0 Co hoSo (A7)

0 0 0 1

The orientation of the different co-ordinate frames are illustrated in Figure A.4.

Since the thumb’s three distal joints have the same structure as the other non-thumb fingers
the other A matrices turn to be the same as indicated above for the non-thumb fingers.

Therefore the remaining transforms can all be lumped together as:

Crzz —8123 0 I3C123 + 12C12 + L Ch

24, = S123 Craz 0 IB3S123+ 1512+ 15
0 0 1 0
0 0 0 1

(A.8)

The D-H parameters for the thumb are summarized in Table A.2.

8A.2 The thumb frames 123

X
| 2

Wrist side X 1

z, A

r Other fingers

v /
Palmar Plane//_

Figure A .4: The first two frames for the thumb

Multiplying the individual transforms out, we get:

0A500 = _'5123
2A501 = —Cias
A502 =0
%450, = —l3S123—12 S12-11 &1
0A51o = -850 Chas
2A511 = So Si23
A512 = —Cy
%45, = —=So(l3Cis+12Cia+1 C1)—ho So+1p (A9)
0A52o = CO 0123 :
2A521 = —Cp S123
A522 = —SO
0A523 = Co (13 Cizz+1l:Cia+ 1 Cl) + ho Co
0A530 = 0
OA531 =0
%45, = 0
0A533 =].

124

Appendix A Kinematics of the Utah-MIT hand

Computationally, to compute all elements of the frame for the thumb, it takes only 12M+9A 48T
operations. Computing just the cartesian co-ordinates of the tip of the thumb can be done

in 8M+9A+8T operations.

Table A.2: D-H Parameters for the Thumb
I Joint+1 { d; | a; o
1 0 ho -7 / 2
2 014 0
3 0] 0
4 011 0

The entire forward kinematics for the Utah-MIT hand can therefore be done in 94M+63A+32T

operations.

CS-TR Scanning Project |
Document Control Form Date: &/ 17 19S5

Report# AT-TR-1056

Each of the following should be identified by a checkmark:
Originating Department: :

]Z:Artiﬂcial Inteliegence Laboratory (Al)
- [O Laboratory for Computer Science (LCS)

Document Type:

&I Technical Report TR) [Technical Memo (TM)
O other:

Document Information _ Number of pages: 132040 -/mAacxs)

Not to include DOD forms, printer intstructions, etc... original pages only.

Originals are: intended to be printed as :
Single-sided or ' O Single-sided or
O Double-sided . Double-sided
Print type:
O Typewriter [0 oftset Press X Laser Print
O tinksetPrinter [] Unknown O other;

Check each if included with document:

X pob Form (0 O Funding Agent Form JZ(Cover Page
TX spine [Printers Notes 3 Photo negatives
O Other:
Page Data:
Blank Pagesey e mmbes:

Photographs/Tonal Material ey pege numbes; ;,} SN

Other (o descriptonipags sumben;
Description . Page Number:

FMAGE MAF ? (;- g) Uy TTILE f/QCfJ, {;rt'ffj, Vevii ™%
(3-139)Pacss Tep 1-UY

[(’?3 - Jug) SC,ANomJTMt,.)énusﬂ\; SP&’NWJDO O(&)/WJS)

Scanning Agent Signoff:
Date Received: _8//7/9S Date Scanned: _S/27/95s Date Retumed: _J/349/9S

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

READ INSTRUCTIONS
1. REPORT NUMBER 2. GOVT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER
AI TR 1056
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED
Dexterous Robotic Hands: Kinematics and Control technical report

§. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
Sundar Narasimhan N0OQ014-86-K-0685
NO0014-85-K-0124
9. PERFORMING ORGANIZATION NAME AND ADDRESS 0. PROGRA

2 Y w ERLEMENTT PR OJECST TASK
Artificial Intelligence Laboratory ARE ORK UNIT NUM
545 Technology Square

Cambridge, Massachusetts 02139

1. CONTROLLING OFFICE NAME AND ADDRESS 12, REPORT DATE
Advanced Research Projects Agency November 1988
1400 Wilson Blvd . 15. NUMBER OF PAGES
Arlington, Virginia 22209 124

14. MONITORING AGENCY NAME & ADORESS(if different from Controlling Office) 18. SECURITY CLASS. (of this report)
Office of Naval Research UNCLASSIFIED
Information Systems

H H int 1%a, / RADING

Arlington, Virginia 22217 e Dk ASSIFICATION/DOWNGRADIN

16. DISTRIBUTION STATEMENT (of this Report)

Distribution of this document is unlimited.

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if difterent from Report)

18. SUPPLEMENTARY NOTES

None

19. KEY WORDS (Continue on reverse side if necessary and identity by block number)
hands

kinematics

computational architecture

20. ABSTRACT (Continue on reverse side if necessary and identity by block number)
Abstract. This report presents issues relating to the kinematics and control of dexter-
ous robotic hands using the Utah-MIT hand as an illustrative example. The emphasis
throughout is' on the actual implementation and testing of the theoretical concepts pre-
sented. The kinematics of such hands is interesting and complicated owing to the large
number of degrees of freedom involved.

The implementation of position and force control algorithms on such tendon driven
"hands has previously suffered from inefficient formulations and a lack of sophisticated com-

DD ,"SR%s 1473 eocition oF 1 nov 65 1s omsoLETE ‘ UNCLASSIFIED
S/N 0102-014-6601 |

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

i algorithms described herein have been implemenm tnd mwfan his hardware.

NI

GO Tk THAY WO S HALRO B r«
B4

vFIsg e:*«vu&asaaaﬁ 2pbit

TIYETIS o S 2% L oy T - IEERELS

¥

£

comic e ek
AN

sdsl sonagilisinl feini®i;
sisupe ypofondasy &

1

A

] ik
IS T I I

saraph 2ineiond dApveszad beonsv

S TEIRRGEA S TRA D VORTDA

oAk S WS o

R e

i i 5100

;,:gsﬁm» & f&aﬁa zs-u-st BOITRAD B

e

w0 HE

#0558 Mmgﬁﬁf .m?wn et

fdotsnzef [sved 1o =o
emaievd nollenno
TISSR sinlpyi¥ .npion o

ringe® et ot TRIWBTATE WOV URIRT2M gt

tnamosal 2idy %G ﬁc:fm@ w3eif

wire sonsrade v vl ¢ ARMBTATE KOI TUEIRT 230 X1

e

e s e A

EFITOL YRATRIME (A2u2 M

skt H

B i sy sorevan ae penilacly) TORCW Tax B

E R wr b shecr s

i

stup3nctidoty Ipao!l

e R SRR

IR S S Y4
4 g5 3
Gl

PR

BHE e

wp il WA

e 4% Pt
I Y IEE R

Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.L.T
Libraries. Technical support for this project was
also provided by the M.L.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94

