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The Role of Knowledge in
Visual Shape Representation

Eric Saund

Abstract

This thesis shows how knowledge about the visual world can be built into a shape
representation in the form of a descriptive vocabulary making explicit the impor-
tant spatial events and geometrical relationships comprising an ob'ect's shape. We
offer two specific computational tools establishing a framework by which a shape
representation may support a variety of later visual processing tasks: (1) By main-
taining shape tokens on a Scale-Space Blackboard, nformation about configurations
of shape events such as contours and regions can be manipulated symbolically, while
the pctorial organization inherent to a shape's spatial geometry 'is preserved. 2)
Through the device of dimensionality-reduction, configurations of shape tokens can
be interpreted in terms of their membership within deformation classes; this pro-
vides leverage in distinguishing shapes on the basis of subtle variations reflecting
deformations in their forms. The power in these tools derives from their contri-
butions to capturing knowledge about the visual world. In contrast to "building
block" approaches to shape representation (e.g. general.ized cylinders), we employ a
large and extensible vocabulary of shape descriptors tailored to the constraints and
regularities of particular shape worlds. The approach is 'Illustrated through a com-
puter implementation of a hierarchical shape vocabulary designed to offer flexibility
in supporting 'important aspects of shape recognition and shape comparison in the
two-dimensional shape domain of the dorsal fins of fishes.

Thi's document describes research done at the Artificial Intelligence Laboratory of the
Massachusetts Institute of Technology. Support for the Laboratory's Artificial Intelligence
Researchis provided in part by the Advanced Research Projects Agency of the Depaxtment
of Defense under Office of Naval Research contract N00014-85-K-0124. While conducting
this research the author was supported by a fellowship from the NASA Graduate Student
Researchers Program.
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Chapter 

Introduction

With a glance one can recognize in figure 1.1 that the shapes are the profiles of fishes.

Casual inspection reveals that they are not the same kind of -fish; one has a wider body,

the other has more fins, teir snouts are tapered 'in different ways. Most people would

venture that the fish 'in figure 1.1b is probably some kind of shaxk, while figure 1.1a is not;

the triangular dorsal fin is a clue here. An expert in fishes could say that figure 1.1a. is a

member of the Herring family, while 1.1b is a Requiem Shark; he would point out that,

among other things, the Shark's tail is. asymmetrical, the Herring's pelvic fin 'is located

directly below the dorsal fin, and the Shark's body 'is relatively narrow where it meets

the tail. And if a fisherman were to see the figure, he might immediately recognize 1.1a

as an American Shad, perhaps wthout necessarily being able to say why; his eye simply

a

b

Figure 1-1: (a) American Shad. (b) Requiem Shark.
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"knows" what a Shad looks like. In the course of looking at an ob'ect, we consciously

or unconsciously make note of various properties and features that form the basis for
an 1 ures

interpreting, distinguishing, d classifying what we see. What properties and feat

we use is a function of our visual knowledge, that is, roughly, the richness of the internal

language our visual system uses for processing information. What is the visual knowledge

that we use in perceiving, alyz' understanding the shapes of objects? This broad

question forms the basis for this thesis research.

The problem we address is known in the field of Computational Vision as that of

shape representation: what information about objects' shapes should be made explicit 'in

order to support important vsual processing tasks? We seek representations subserving a

wide range of tasks, including recognizing, categorizing, reasoning about, comparing, and

answerin' specific qestions about shapes. These tasks axe associated with Later Visual

processing, as opposed to Eaxly Visual processing which1s concerned wth the extraction

of sgnificant events such as surfaces and edges from images of a visual scene. A general

purpose shape representation should express not only that figure 1.1b is a Requiem Shark,

but also, what aspects of the figure's spatial geometry-the taper of the snout, the angle of

the dorsal fin, the asymmetry of the tail, and so forth-qualify it to be called a Requiem

Shark. To do this a representation must possess knowledge about the shape world of

fishes.

This thesis shows how knowledge about the visual world can be built into a shape

representation in the form of a descriptive vocabulaxy making explicit the 'Important spa-

tial events and geometrical relationships comprising an object's shape. The scope of this

knowledge is crucial. Most current approaches to visual shape representation employ a

fixed set of generic shape primitives 'Intended to behave as building blocks leading to a

concise, canonical approximation for virtually any shape. In order to purchase broad ap-

plicability across many classes of objects using a limited ocabulary, these representations

sacri'fice the ability to express explicitly the geomet 'cal properties important to particular

shape domains. The objective of this thesi's work is to formulate a dfferent appro a-ch to
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shape representation: A vocabulary of shape descriptors should be tailored to the geo-

metrical constraints and regularities of whatever particular world of visual shapes it is to

describe. The vocabulary should be extensible, so that new descriptors may be added to

match the structural properties of additional shape domains. Instead of approximating

shape by piecing together primitive building blocks, the vocabulary should label all sig-

nificant configurations of contours and regions, even when these shape fragments overlap

one another in a fashion more comparable to a fabric than building blocks. Through

its repertoire of descriptive elements, a good representation knows something in advance

about the shapes it will be describing.

Knowledge in this form serves two purposes. Frst, the volume of knowledge employed

by a visual representation can grow to become very large, simply by extending the descrip-

tive vocabulary. Progress 'in Computational Vision has taught that it is knowledge about

regularity, structure, and constraints in the external world gving rse to 'images that per-

mits visual information to be interpreted in terms of meaningful concepts and constructs.

In Early Vision, this knowledge acts in the form of mathematically expressed assumptions

about physical aspects of the imaging process and about the most elemental aspects of

visual scenes (e.g. surface smoothness). For purposes of Later Visual processing, and with

regard to the shapes of objects in particular, the sources of constraint axe further removed

from basic physical processes that can be captured concisely. Instead, knowledge about

the visual world must take account of many cases that may be encountered. For example,

most fishes share a common body plan placing a dorsal fin, a pelvic fin, and a taid 'in certain

rough locations wth respect to one another. Therefore it becomes worthwhile to devise a

descriptor that names with great specificity just the relative proximity of these features,

as shown 'in figure 12. Specialized vocabulary elements of this type can make it easier to

perform certain visual tasks such as distinguishing different shapes-the Mackerel Shark

and the Requiem Shark, for example-on the basis of subtle differences 'in geometry. By

maintaining knowledge in the form of a large number of predefined elements describing

particular geometrical configurations that tend to oc'cur in connection with specific types

9
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and general classes of objects, a shape representation can achieve both broad applicabil-

ity across many shape domains and fine sensitivity to the important shape properties of

particular domains.

Second, a large vocabulary of shape descriptors permits the description of objects'

shapes 'in many alternative ways and at many levels of abstraction. For example, some of

the ways of describing the shape of a fish's til are shown 'in -figure 13. At great detail one

may specify the location of individual pixels; less detail is provided in a polygonal approx-

imation to the contour- only the gross lobe bfurcation 'is captured by description of its

major parts in terms of "spines"; and fi nally, the tail's location and approximate Size but

none of its internal structure are indicated by a circle approximation. A representation

capable of making explicit many aspects of an object's spatial geometry contributes to

the support of a wde variety of computational tasks because the information pertinent

to many tasks can be brought readily to hand without a great deal of extraneous com-

putation. The area covered by the fin can be measured in detail by counting pixels; the

perimeter is easily calculated by adding lengths of polynomial segments; the symmetry

can be judged by ex ning the relative lengths and orientations 'of the lobe spines; and

the distance from the snout to the tail may be estimated by measuring from the center

of the crcular marker. Part of the job of designing a shape representation 'Involves evalu-

ating visual domains and vsual tasks and deciding to just what aspects of shape explicit

descriptors should be devoted. This reseaxch mounts a foray into this problem.

in order to elucidate and support the claim that an extensive vocabulary of shape

descriptors may constitute an important component of the visual knowledge useful to

processing shape information, we develop such a vocabulary for a specific world of shapes,

and we show how it supports visual distinctions that are difficult to achieve using other

approaches. This enterprise raises three questions: (1) What 'is the form of the descriptive

vocabulary elements (are they feature spaces? frame-like data structures? templates?)

(2) What is the content of the vocabulary? (edges? distinct, parts? specific fin and tail

forms?) 3 How is the vocabulary used 'in performing specific visual tasks? The major

10



dorsal fin
1-

a

b

I

c i

Figure 12: (a) Requiem Shark. (b) Mackerel Shark. (c A specialized shape de-
scriptor helps to distinguish between these sharks by noting the relative locations
of the dorsal fin, pectoral fin, and tail.
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Figure 13: Shape descriptions at different levels of abstraction: (a) field of pixels,
(b) polygonal approximation to the bounding contour, (c) part llsp'nes," (d) crcle
noting tail's approximate size and location.
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focus of this thesis 'is on the first of these questions.

In order to keep the size of the vocabulary manageable, the shape domain is a restricted

one, namely, the dorsal fins of fishes.1 Though lited, we argue in Chapter 2 that this

class of shapes possesses many important characteristics that reflect fundamental issues 'in

shape representation for broader classes of objects. Our dorsal fin shape vocabulaxy has

been implemented 'in a computer program demonstrating its utility for dstinguishing and

recognizing these shapes. Figure 14 presents a few highlights of the working program.

Figure 1.4a 'Illustrates that a shape is described at multiple levels of abstraction. In figure

1.4b, two dorsal fins axe shown that may be considered similar to one another in one aspect

of shape (their aspect ratios are the same), but different from one another (roundedness

of their corners). Our representation provides the flexibility to emphasize or deemphasize

the significance of either of these properties. Finally, figure 1.4c, shows that the descriptive

vocabulary supports graphic illustration of the ways in which one dorsal fin shape would

have to be deformed in order to make 'it more smilar to another.

This work offers two specific computational tools contributing to the representation

and manipulation of information about spatial relationships in a way that 'is useful for

describing the shapes of ob'ects. These characterize the form of a shape vocabulary, and

are called the Scale-Space Blackboard and dimensionality-reduction. These tools support

two types of useful abstraction over spatial 'Information: (1) grouping and naming of

spatial events localized in position, orientation, and scale (or size), and 2) classifying and

interpreting geometrical configurations in terms of families of spatial deformations. The

ways in which scale-space and dimensionality-reduction support these kinds of abstractions

in shape representation are introduced in Chapter 2 These tools facilitate the design

of vocabularies of shape descriptors that make explicit shape 'Information at levels of

abstraction appropriate to capturing the regularities, structure, and constraints of target

shape domains. Shape representations constructed in terms of these vocabulaxies can be

said to possess knowledge about a particular world of visual shapes.

'The class of dorsal fins considered is limited to those that protrude outward from the body; we exclude

fishes whose dorsal fins extend along the entire length of the body.

12
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Figure 14: (a) A shape vocabulary for fish dorsal fins employs parameterized tokens
making explicit: (i) at a primitive level, figure/ground boundaries and regions, (ii)
at an intermediate level, smooth extended contours, corners, and regions, and, (iii)
at an abstract level, certain configurations of 'intermediate level descriptors. (b)
A comparison of two shapes should identify aspects of both their smilarities (e.g.
aspect ratio) and differences (e.g. curvatures of sides). (c) One computation that
our shape vocabulary supports is an evaluation of the ways in which one shape must
be geometrically deformed in order to make it more smilar to another shape.
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1.1 Constraining the Problem

This work concerns shapes of objects, not grey-scale 'images of objects. It does not address

the early vision problems of computing shape from shading, shape from texture, shape from

contour, and so forth. Furthermore, in order to avoid the complexity inherent in the three

dimensional world and focus on purely representational issues, I deal with a binary world

of two-dimensional shapes, such as the profiles of fishes, and 'in particular, their dorsal

fins. Note that this does not refer to two-dimensional projections of inherently three-

dimensional objects, 'in which case 'it might be useful to recover the three-dimensional
shape of the ob'ects; we regard the ob'ects of our laboratory shape world as truly flat

J J

(though they may overlap). In this thesis, the word, "i'mage,' 'is generally used to refer to

a black and white silhouette in an array of pixels.

This work emphasizes representation, not control. Representation refers to data struc-

tures for expressing information-what i's made explicit?-plus the operations defined for

combining, transforming, transporting, and otherwise computing on data, while control

refers to the conduct of the application of the operations-which operations are applied

when, and on wh -at data structures? The question of how a shape vocabulaxy is used in

performing specific vsual tasks is very much a control issue, and secondarily a representa-

tion issue. Certainly, the utility of a representation can only be demonstrated with regard

to 'its support of visual tasks, and control issues are addressed to some extent. However,

in focusing on shape representation as such, we explore certain choices about the form

and content of a shape vocabulaxy, for the moment leaving aside the control strategies

specifying when, and how, in the course of carrying out at task, decisions are made as

to which of the various descriptors to compute. For example, we completely avoid 'issues

related to visual attention. In this regard we 'interpret thi's work as complementary to

current work on vsual routines [Ullman, 1983; Mahoney, 1986], which 'is, 'in a broad sense,

concerned with the means by which sequences of computational operations are chosen and

executed for the purposes of performing vahous visual tasks.

This work is about the purpose and design of shape representation, not about learning a

14



representation. Forceful arguments can perhaps be made that a representation embodying

a great deal of knowledge can only be built via some means for acquiring knowledge

automatically through experience. Nonetheless, the learning problem introduces many

complications in itself, and while a good representation might profitably be amenable to

modification through learning, this work relies on building and enhancing the capabilitiesS

of shape representation by hand.

1.2 Outline of the Thesis

Chapter 2 'introduces the- basic ideas and motivation for the research. The shape world

of dorsal fins 'is presented in the context of a simply-stated vsual task concerned with

judging and dstinguishing among various fish dorsal fin shapes. The task raises several

fundamental 'issues associated with the representation of shape, and 'it focuses attention

on the 'issue of making important information explicit. Through the dorsal fin example,

the 'Important structural properties of scale and deformation in visual shape worlds axe

illustrated- these motivate the tools of scale-space and dimensionality-reduction. We show

how multiple-scale token-based shape representations using descriptors of predefined de-

formation classes support the construction of shape vocabularies that permit judgments

about subtle aspects of an object's geometry.

Chapter 3 reviews previous work in shape representation, most of which is drected

toward the task of shape recognition. This chapter contains a critique of bUilding-block"

approaches to shape representation, of which members of the generalized cylinder family

are the most prominent.

Chapter 4 expands upon the significance of scale and spatial relationships in the repre-

sentation of shape, and develops a technique for building multiple scale shape descriptions

through token grouping. The Scale-Space Blackboard is presented as a data structure

extending the Primal Sketch'[Marr, 1976], and bridging pctorial and propositional frame-

works for visual representation.

Chapter ex ands upon the significance of deformation and spatial relationships in

15



the study of shape, and shows how the technique of dimensionality-reduction can be used

to interpret shapes in terms of useful deformation classes. This chapter also shows how

dimensionality-reduction can be applied to configurations of shape tokens via an energy-

minimization technique.

Chapters 6 and 7 return to the shape omain of dorsal fins. Equipped- with the

tools of dimensionality-reduction and multiple scale shape descriptions on the Scale-Space

Blackboard, we present an example shape vocabulary existing at three levels of abstraction.

Several intermediate level shape descriptors are developed 'in Chapter 6. Then, Chapter

7 offers a specific vocabulary of thirty-one descriptors tailored to the dorsal fin shape

domain. We show how the domain-specialized descriptive vocabulaxy supports 'Important

aspects of shape recognition and shape comparison requiring evaluation of the smilarities

and differences among shapes from a variety of perceptual vantage points.

Chapter concludes by reconsidering the role that knowledge of the visual world plays

in the representation of visual shape.

16



Chapter 2

Fundamental Issues as Portrayed in

The ShapeWorld of Dorsal Fins

Let us consider the following informal experiment: A volunteer 'is presented wth a set of

silhouette images of the dorsal fins of about forty fishes, printed on little squares of paper.

The task 'is to arrange the fins in an orderly fashion so that similarly shaped fins are placed

near to one another. See figure 2.1. The rather open-ended and unstructured nature of this

,exercise demands some versatility in the analysis of shape information-versatility which

is certainly a hallmark of the human vsual system. There is no "right" answer. Rather,

the various fin shapes are similar to and different from one another in very many ways, and

many arrangements are possible that emphasize certain aspects or properties over others.

The performance of human volunteers on this task yelds clues as to what aspects of

spatial geometry might achieve perceptual salience, and what information can perhaps be

regarded as less sgnificant. By analyzing dorsal fin shapes in the context of the "arrange

the shapes" task, we encounter several fundamental issues in shape representation, and

we gain insight 'into what I in computational terms, is required of a shape representation

capable of supporting this and other general purpose vision tasks.

This chapter conducts a tour through several fundamental 'issues in shape representa-

tion which motivate thi's thesis work. The "arrange the shapes" task and the dorsal fin

world serve as focal points for the dscussion. The main ideas presented are the following:

A shape representation should make t possible to name useful fragments or chunks

of shape data, to access these chunks 'in accordance with their arrangement in space,

and to handle scale in a natural way. These criteria lead to an approach to shape rep-

resentation whereby shape tokens are placed on a Scale-Space Blackboard. Grouping

operations and other operations manipulate shape information symbolically by ex-

17



Figure 21: Forty-three dorsal fin shapes. The vsual system is capable of identifying
many aspects 'in which various shapes may be considered similar or different from
one another. This becomes appaxent when volunteers axe asked to arrange these
shapes on a page so that similar shapes are placed together.

18



amining the contents of the blackboard, by performing pattern-matching, by adding

and deleting shape tokens, and by moving tokens around on the blackboard.

0 Serious dfficulties underlie any attempt to describe a continuous world (such as

a world of shapes) in categorical terms (such as wth discrete symbolic shape to-

kens). Useful constraints can nonetheless be exploited by explicitly naming certain

classes of continuous deformation. The tool of dimensionality-reduction allows shape

descriptors to parameterize configurations of shape tokens according to degree of de-

formation along constraint manifolds.

* A vocabulary of shape descriptors constitutes a store of knowledge about the shape

world it is 'intended to describe. It is advantageous to design large and extensible

vocabularies whose knowledge extends beyond generic shape properties common to

all shape worlds. By offering prefabricated shape descriptors tailored to the spatial

configurations known to occur in particular shape domains, a shape representation

gains breadth and depth 'in the variety of ways that shapes may be described indi-
'dually 'th one another. Later vis'

vi or in comparison w ion exploits this flexibility by

its ability to 'Interpret shape nformation with respect to a multitude of descriptive

perspectives.

The shape world of dorsal fins is a sitable test domain for this inquiry because it stands

in many ways as a microcosm of the complete shapes of fishes and even of the shapes of

most objects occurring in the everyday world: dorsal fins have an overall characteristic

plan, yet there are many variations on the plan- metric information about distances, sizes,

and angles axe often important, but categorical properties can also be identified. The

major difference between the domain of dorsal fins and the shape domain of, say, chairs,

is that dorsal fins have no cleaxly discernible internal part structure. A fin protrudes from

a fish's body, but the details of the fin shape itself cannot be described in terms of part

attachment. This characteristic forces the present exploration to examine the problem of

shape representation from a viewpoint often ignored by part-based approaches.

19



A central purpose for a shape representation 'is to support the transformation from

primitive, 'image-level data to more abstract expressions at the level of task goals. The

starting point for the "arrange the shapes" task is a set of iages of fish dorsal fins. In

the present aGe of binary shape profiles, each image may be considered a two dimensional

array of pxels taking the value or 1. From these 'images must be computed some

description of similarity and dfference among shapes supporting decisions as to how shapes

should be placed on a page. For example, 'it might be useful to compute such things as:

[Fin A has similarity-measure to Fin equal to X], or [Fin A is more similar to Fin 

than to Fin C], or [The shape difference between fins A and is analogous to the shape

difference between fins C and D, therefore A should be placed relative to.B as C is placed

relative to D]. Assertions such as these are abstractions that condense the large volume of

information contained in arrays of pixels down into concise statements.

A great diversity of abstract assertions may be computed and employed for the purpose

of arranging dorsal fin shapes according to- various aspects in which they may be consid-

ered similar or different from one another. Figure 22 shows some criteria considered

s gnificant by some human volunteers. Volunteer DD classified -dorsal fins as "curvy" or

riangular, and saw tangular fins as either "smooth" or "hard," apparently depending

upon the roundedness of the fin's corners. Volunteer KS identified five categories of dorsal

fins, based in part on the number of corners and sides, and on the convexity of the "2nd

'de." Other volunteers did not form catego, 'es, but laid out fins according to continuously

variable proper-ties. For example, Volunteer KW's arrangement might be said to have an

axis roughly corresponding to the relative size of the 'notch" and to the fin's rounded-

ness." Volunteer RH filled the page ost uniformly, labeling regions as "protruberant,"

44 equilateral triangle," and "convex." Many volunteers used a hybrid organization. For

example, DC divided fins into "notch" and "no notch,' then subdivided according to the

sharpness/roundedness and angle of a prominent corner, and finally arranged fins within

each subdivision according to an angle of tilting back."

20



Arrange the Shapes

Instructions

These are silhouettes of the dorsal fins of fishes. The purpose of this
exercise is to gather data about te characteristics of shapes that make them
appear imilar and different. Your task ip to arrange these shapes an
organized fashion on an 11 x 1T inch piece of paper. Similarly shaped fins
should be placed together. For cample, you may find that the shapes fl
naturally into several groupc. Pay ttention to the shape of the fin only, not
to it's overall size, nor to the shap-e of the portion of the body, below the 4
that happens to be shovm. T&W as much time as you like. When you have
arranged the shaped to your satisfaction, please anchor them with scotch
tape- If you would likc to, explain your critesia for orpm =St'he shapes by
writing or drawing directly on the paper.

a

Figure 22: (a) Instructions provided to volunteers performing the informal "axrange
the shapes" task. (b) through (g) Arrangements of dorsal fin shapes by several hu-
man volunteers, ustrating several properties and strategies for organizing thes,�-%
shapes according to similarity. In some causes fins were grouped into discrete ct-
egories, 'in other cases they were spread evenly according to continuously varying
properties.
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2.1 Naming Chunks of Shape

Among the most important computational devices implicit in volunteers' dorsal fin ax-

rangements 'is the following: data in the 'images of fins 'is grouped or chunked over space.

The properties that people find significant in jud 'ng smilarity and difference among dor-

sal. fins axe not directly computable from the pixels comprising the 'image, as would be a

property such as NUMBER OF PIXELS, or TOTAL LENGTH OF PERIMETER. Rather, signifi-

cant properties of the shapes of dorsal fins concern their two-dimensional spatial structure,

and they involve such concepts as the proximity of edgers, the roundedness of corners, and

the elongation of regions. These properties involve measures over extended portions of a

shape 'image, and they involve measures that treat extended portions of a shape image as

whole uits.

A shape representation should provide the capacity to collect together and name im-

portant groups of data, or chunks of an 'image. The underlying reasons for this have

been widely discussed [Marr, 1982; Witkin and Tenenbaum, 1983; Mahoney, 1987; ll-

man, 1983; Pentland, 1986a; Lowe and Binford, 1983; Biederman, 1985]. The essential

argument leads eventually to the issue of the efficiency and convenience of caxrying out

computations. Marr's 1976] Principle of Explicit Naming argued that any time a collec-

tion of data is treated as a whole, the collection should be given a name. By doing so

operations acting upon the whole may be saved the expense of manipulating each data

element individually. It is important to note that the matter of 'expense' or "inconve-

nience" is not a trivial one, but can be of major significance in determining whether or not

a computation can be practicably carried out at a. The difficulty in multiplying numbers

using the notation of Roman Numerals is a famous iustration of this point [Marr, 1982].

A crucial question arising in the design of a shape representation is, just what infor-

mation about shape will tend to be treated as a whole, what geometrical structures merit

their own explicit names in a vocabulary for describing shapes? We reflect upon two sorts

of answer. One sort of answer emphasizes that data may be profitably chunked accord-

ing to the computational requirements of certain perceptual tasks [Mahoney, 1987]. For
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Figure 23: The task of computing path distances between points 'in an 'image (such
as the shortest path distance between the two crcles) is facilitated by chunking
un'form segments of arc into units and precomputing axc lengths for these chunks.
(Adapted from [Mahoney, 1987].)

example, were 1it commonly required to estimate the lengths of various contours in a line

drawing, these computations would be facilitated by having precomputed the lengths of

smaller pieces of contour faIling between breaks and junctions (see figure 23). Another

sort of answer notes that the 'Information manipulated by a perceptual system will in all

likelihood reflect the regulaxities and structure of the external world. For example, in a

world containing many rectilinear objects, identification of objects would be facilitated by

identifying projections of parallel lines in images [Lowe, 1987].

Many possible natural chunks or groupings over image data can be found that reflect

morphological regularities 'in the world of dorsal -fins. In general, these regularities are

grounded n the laws of biological phylogeny and the hydrodynamics of swimmin'. Dorsal
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Figure 24: It is useful to chunk and name many types of shape fragments occurring
on dorsal fin shapes. These include: (b) edges, (c) corners, ) the leading edge
(only), (e) the top corner (if there is one), (f) the posterior "notch," (g) thei'maginaxy
line forming the base of the fin, (h) the best fitting ellipse grossly approximating the
fin's shape, (i) the re 'on behind the fin. The nternal properties of fragments such91
as these (for example, the vertex angle of a corner) and the spatial relations among
them, a-re the constituents defining the geometry of the dorsal fin.

fins take the shapes they do, not by accident, but because of the way they ae formed

and the functions they fulfill (Gregory, 1928; Lindsey, 1978; Blake, 1983]. A very simple

regulaxityls, the EDGE, or figure/ground boundary (see figure 24); edges can be smooth or

jagged, straight or curved. Edges occur in the natural world because of the coherence of

matter; fins are relatively compact masses of tissue, distinct from the surrounding water.
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Another common structure 'is the CORNER; corners can vary in several properties, such as

vertex-angle, and roundedness. A corner occurs where an edge contour changes direction.

Other, more complex groupings of image data 'in the domain of dorsal fins that may be

named as wholes include shape fragments corresponding to the leading edge of a fin (but to

no other edge), the top edge or corner, a posterior notch (occurring on only some fins), the

imaginary line defining the base of the fin, the region enclosed by the best-fitting eipse,

,the space just behind the fin, and more that we wl see later. Volunteers consciously

identify some of these structures as units, and not others. To the extent that grouped

or chunked structures such as these occur and vary over the set of dorsal fins that the

perceptual system may be called upon to observe, the explicit assertion of these elements

can facilitate decisions about similarities and differences among fin shapes.

Well chosen chunks of shape serve computational tasks, such as determining in what

ways two fins may be considered similar or different, 'in paxt because they provide a means

for holding ntermediate results. A gven portion of a shape image often contribute's to the

computation of many abstract assertions, including assertions directly supporting visual

task requirements (such as deciding how dorsal fins should be arranged on a page). By

grouping image data and naming useful intermediate level chunks, a multitude of later

computations can then refer to significant geometrical properties and events without hav-

ing to examine a great deal of pixel-level image data. For example, once edges have been

named (corresponding to portions of a shape image containing an extended figure/ground

boundaxy), then the spatial relationships among edges, such as the angle between the

leading edge and the forward body edge, the distance between the center of the leading

edge and the end of the posterior body edge, and the curvature of the trailing edge, may

be computed cheaply and without reference to the many pixels comprising the edges. We

pursue the notion that this principle carries over to more complex and more abstractly

defined units of shape data.

Another, related, motivation for naming chunks of shape 'is that complex structures

can be built advantageously out of smpler structures. For example, one mght imagine
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that corners are found by first computing edges, and then grouping pairs of edges that

form a corner configuration. Note that chunks of shape need not necessarily be spatially

localized. A pair f parallel edges, or a pair of edges that align wth one another across a

great distance, could be grouped and treated as a unit, if so desired. An 'important aspect

of the knowledge we will build into a vocabulary of shape descriptors lies in the chunks of

shape to which these descriptors refer.

2.2 Chunks of Shape 'in Space and Scale

Many chunks of shape useful in generating abstract assertions about similarities and dif-

ferences between dorsal fin shapes have a rather obvious yet significant property: they

recur at various locations, orientations, and sizes 'in images of dorsal fins. This may be

called a spatial recurrence gularity. For example, figure 2.5a highlights a number of

instances 'in which corners appear in dorsal fin shapes, and figure 2.5b presents several

a

b

Figure 25: Useful fragments of shape can occur at any location, orientation, and
size or scale. (a) Corners, (b) Elongated regions (depicted here by eipses).
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cases in which image data may be chunked and named as elongated re 'ons. By iden-

tifying corners, elongated regions, and other chunks wherever they occur in a shape, a

representation buys the means for generalizing, or treating data according to equivalence

classes, 'in the course of computation. For example, several volunteers classified dorsal

fins on the basis of "smoothness "roundedness," "sharpness,' or "pointiness" (of a fin's

corners). The measurement of these abstract properties is facilitated by the ability to

identify and extract information from a fin about every corner, regardless of where each

corner occurs on the fin. Section 26.3 discusses further the significance of generalization

in shape representation. I

The spatial recurrence regularity makes certain suggestions about the design of a data

structure responsible for maintaining assertions about chunks of shape that have been

identified 'in a shape image. First, it makes sense to explicitly describe the location,

orientation, and sze (or scale) of each chunk. This information facilitates the measurement

of spatial relations between parts of a shape, for example, the distances between corners,

or the alignment of edges. Second, this regularity suggests the utility of a typeltoken

relationship 'in the representation: certain types of shapes descriptors are established, and

tokens are instantiated whenever data are found to'fit the descriptions.

A type/token relationship 'in shape representation can be realized in several ways.. One

way is through a collection of fields, each of which spans the entire two-dimensional im-

age. In a computer, each field could be represented by a two-dimensional array. Each field

stands for a given type of chunked structure, and, under the simplest model, a token of

that type is interpreted as having been instantiated wherever the contents of the field 'is

TRUE; no token of that type 'is asserted in the remaining locations which are assigned the

value FALSE. For example, a stack of eight fields could be used to assert edges at 45' 'in-

tervals of orientation [Walters; 1987]. Another way to achieve a type/token relationship is

through a-collection of symbolic markers or tokens, where each token becomes a packet of

information carrying the token's type, pose (location, orientation, and scale), and perhaps

other information as well. A symbolic token approach carries the advantage that a great

30



deal of information can be associated with a symbol wthout having to define entire sep-

arate fields for each property. In addition, symbolic tokens are mobile. The information

indicating a token's location may be changed, say, to correspond to a change i'the fin's

movement in an 'image, but the remaining contents of the packet remain unchanged. (For

a somewhat less literal 'Interpretation of symbol mobility see [Touretzky and Derthick,

1987]).

The iformation relevant to a dorsal fin's identity or similarity to another dorsal fin is

closely ted to its two-dimensional spatial structure. It 'is important to be able to compute

information about where each chunk or fragment of shape lies wth respect to others in 'its

vicinity. A field-based, representation facilitates such computations because shape infor-

mation is organized pictorially, that is, shape assertions are arranged 'in the data structure

in an ima ge-like fashion, analogously to their arrangement in space. To investigate what

shape features are, say, above and to the right of a given location, one need only "look"

there 'in the field. In other words, a field-based representation supports indexing of in-

formation on the basis of spatial location. This 'is not necessarily the case with shape

tokens represented as symbolic packets of information, for a shape event's location 'is car-

ried within a packet of nformation belonging to its corresponding symbolic token, but the

set of tokens could be organized along arbitrary criteria. The next section introduces the

Scale-Space Blackboard, which 'is a hybrid data structure combining avantages from both

field-based and symbolic token-based approaches.

Dorsal fins illustrate that the issue of scale assumes major significancein the description

of objects' shapes. An edge, corner, or other named chunk of shape data can occur at any

size or scale, as well as at any spatial location and orientation. AU of this information

,should be 'identified. The explicit treatment of scale in shape representation serves three

purposes: First, 'it simplifies the isolation of different types of spatial structure occurring

at derent scales but at the same location. For examples figure 26 shows a stuation

in which an EDGE i present when viewed at a large or coarse scale, but at a fine scale

a CORNER 'is locally salient. It is 'important to assert the presence of both structures
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Figure 26: It 'is important to make explicit the multiscale structure of a shape.
Here, the large scale form of this contour 'is an edge, while the fine scale structure
contains a corner.

because either could be important to asserting identit or otherwise distinguishing the

shape. Second, explicit identification of scale makes it possible to compute distinguishing

properties related to the relative sizes of shape features. For example, Volunteer GK

established a classification scheme, in the "aff ange the shapes" task, whereby dorsal fins

fell 'into four groups corresponding in part to the relative sizes of the fin itself and its

posterior "notch" (figure 27). Third, explicit treatment of scale facilitates computation of

spatial relations among shape features 'in a manner that removes effects of their absolute

magnification 'in the image. It is the relative distances among the corners of a Herring

dorsal fin that define the fin's geometry, not their absolute distances, and a scale-dependent

distance measure (developed 'in Chapter 4 simplifies the computation of the essential

properties (figure 2.7b).

2.3 Tokens on a Scale-Space Blackboard

In an attempt to attain shape representations making explicit instances of useful chunks

or fragments of shape in a manner that exploits advantages of both symbolic token and

field-based data structures, this work adopts the following approach: place symbolic shape

tokens on a Scale-Space Blackboard. Shape tokens compactly name 'instances of useful

shape features occurring in the pixel-level 'image, but the set of tokens is organized 'in

correspondence with the visual field , that 'is, mimicking a spatial arrangement, as shown
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Figure 27: (a) Volunteer GK organized dorsal fins 'Into four major categories that
correspond quite closely with the relative size of the fin and the posterior notch. (b)
An object's geometry is characterized by the relative distances among 'Its features,
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Figure 28: (a) Edge fragments asserted by shape tokens named 001 through 005.
(b) Although shape tokens internally maintain information as to the pose (location,
orientation, and scale) of the shape fragment they describe, useful spatial relations
among fragments can be cumbersome to assess if the tokens fall haphazardly into an
amorphous data structure. (c) By placing tokens on a spatially organized blackboard
data structure, computations may be designed to efficiently dete lie important
spatial relations. For example, the question, "what is the orientation of the token
nearest to and above token 004?" may be answered by 'looking" above token 004,
without having to query all of the other tokens in the data structure.
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in figure 2.8. This integration of symbolic and pictorial approaches to shape representation

follows that of Marr's 1976] Primal Sketch.

In addition to the two spatial dimensions corresponding to the x and y dimensions of

two-dimensional geometry, the Scale-Space Blackboard provides a third, cale (a) dimen-

Sion corresponding to the size (or scale) of the shape feature denoted by a shape token.

The term "scale-space," is borrowed from Witkin 1983], and refers to the devotion of an

independent dimension to scale. In this way, the Scale-Space Blackboard may be called a

rnuffiscale shape representation, in that it segregates information about geometrical struc-

tures according to their szes Witkin, 1983; Mokhtar'an and Mackworth, 1986; Asada and

Brady, 1986; Pizer et al., 1986; Koenderink, 1984; Burt and Adelson, 1983; Crowley and

Parker, 1984- Crowley and Sanderson, 1984; Sammet and Rsenfeld,'1980]. Fgure 29

illustrates the way 'in which this segregation serves in distinguishing dorsal fins according

to size-related criteria such as, for example, Volunteers KW and GK's schemes of classi-

fying fins incorporating the relative size of the fin and posterior notch. The greater the

relative size difference of these chunked entities, the greater will. be their separation along

the scale ams. Shape features represented as tokens in the Scale-Space Blackboard may

be 'Indexed on the basis of their spatial locations and on the basis of their sizes or scales.

The Scale-Space Blackboard is designed to serve as a scratchpad or substrate for

any of a number of operations on shape data. Among the most important of these are

operations performing grouping or chunking. The general scenaxio is as follows (see figure

2.10): A shape description at some stage of computation eists as a constellation of shape

tokens in the Scale-Space Blackboard. For 'Instance, these may be tokens corresponding

to contour edges present 'in the original shape image. The contents of the Blackboaxd are

inspected by pattern matching rules looking for certain spatial configurations of tokens,

for example, two edges that form a corner. When a qualified configuration is found, the

rule writes a new token on the Blackboard at the appropriate location. In this way a

complex description, perhaps employing tokens of more specialized types, may be built

hierarchically based on a simple token description that can be computed directly from
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Figure 29: In a Scale-Space Blackboard data structure, shape tokens a-re placed
along the scale dimension according to the sze of the shape fragment they denote.
The relative size of two fragments, such as the size of the notch relative to the
size of the body of the fin, is dete ned by measuring the distance along the
scale dimension between the shape tokens representing these fragments. Note -that
Aal > Aa2 

the pixel-level image. Chapter 4 presents grouping rules for building a multiscale shape

description based on fine-to-coarse grouping of primitive edge type tokens. In addition,

Chapter 4 offers rules for combining edges 'Into pmitive regions of shape such as corners

and bars. More complex spatial configurations can be identified by the token grouping

operations presented in Chapters 6 and 7.

Other operations on the contents of the Scale-Space Blackboard may include searching

for certain tokens or configurations of tokens, modifying a shape by replacing certain

structures with others, modifying shape by moving and rearranging tokens, and comparing

shapes by matching and aligning corresponding paxts. Some of these possibilities are
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Figure 210: Computation of multiscale primitive edge and region description by
token grouping. First, shape tokens denoting fine scale pmitive edges (denoted by
tokens of type, PRIMITIVE-EDGE) are computed from the pxel level boundary con-
tour. Next, token grouping operations compute additional, coarser scale, PRIM ITIVE-
EDGES in a fine to coaxse fashion. Pictured are tokens occurring at three scales.
Then, primitive regions (denoted by tokens of type PRIMITIVE-PARTIAL-REGION)
are computed at each scale wherever pairs of PRIMITIVE-EDGES lie in a suitable con-
figuration with respect to one another. Additional, more abstract, shape fragments
are computed at later stages (not pictured here) and axe named by appropriate
token types computed from PRIMITIVE-EDGES and PRIMITIVE-PARTIAL-REGIONS.
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discussed in the later chapters of the thesis.

The token grouping scenario resembles the architecture of a raw production system- it

is ver general and its power to atually carry out computations is as yet undeveloped. A

further examination of the dorsal fin domain leads to further 'Insights into the nature of

the structure and regularities in the world of vsual shapes, and therefore to suggestions

as to the form and content of a vocabulary of shape tokens that might support later visual

tasks such as the "arrange the shapes" exercise.

2.4 ualitative and Quantitative Properties

The world of shape 'images is a continuum.' Any dorsal fin shape can be continuously

deformed into any other dorsal fin shape, and the deformation can take any of an infinity

of paths. This is 'Illustrated fancifully in figure 21 1. Dorsal fin shapes actually observed on

'More precisely, the set of all binary profile shapes may be regarded eectively as a continuum when

the shapes are large in comparison to the pixel size.

Swordfish Pike

Figure 211: The world of shapes is a continuum- any shape may be deformed nto
any other shape along any of an 'infinity of paths. Two paths between the Swordfish
and Pike dorsal fins axe shown. One problem posed for shape representation is
exemplified by the question, "At what points in the deformation do the shapes on
the left cease to be a Swordfish fin?"
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real fishes are scattered throughout this continuum ' e places more or less uniformly,

in others clustering into shape categories. This quality leads to a number of 'important

issues in shape representation.

I Many volunteers on the "arrange the shapes" task attempt to place dorsal fins into

distinct categories; these efforts reveal a fundamental tension between quantitative and

qualitative modes of shape description. On the one hand, 'it is apparent to the human eye

that there are qualitative dstinctions to be made about dorsal fin shapes, and furthermore,

that distinct categories of fins can be identified according to these distinctions. On the

other hand, the boundaries of potential categories, and the qualifications for membership

in a given category, are unclear, in large part because dorsal fins may often assume shapes

anywhere along the continuum separating discrete categories. Figure 212 presents

some results of volunteers' encounter wth this phenomenon. One qualitative distinction

by hich most fins can be classified is whether they are two-sided, " or triangulax"

"2versus whether they are "three-sided" or have a posterior "notch. As it happens, some

fins have such a small notch that 'it is debatable into which category the fin should be

placed. Take, for example, the Mackerel Shark dorsal fin, whose gross structure isclearly

triangular although it has a distinct yet very small posterior notch. Volunteers BG and

KS included this fin in the notched category, while LL and DL placed the Mackerel Shark

fin wth clearly triangulax fins. Some volunteers attempted to handle the fuzziness of

category boundaries by blurring the groups 'into which they placed fins on the page. For

example, Volunteer PW labeled a region, "triangle,' and introduced notched fins on the

outskirts of this region.

It is mportant to note that even under an 'Idealized case in which qualitative de-

scriptive features may be decided unambiguously, many categorizations of dorsal fiAs are

possible, generated under the many intersecting criteria by which fins can be distinguished.

Figure 213 offers two examples of categories 'Into which dorsal fins may be partitioned,

based on qualitative measures on the curvature of edges, the relative location of the top

2 Triangular" fins are considered to be 'two-sided' because the third side of the triangle is the base of

the fin, which does not form a figure/ground boundary.
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Figure 212: The Mackerel Shark dorsal fin (figure 12) has such a small posterior
notch that it falls on the boundary in an attempt to categorize dorsal fins as "with
notch" and "without notch.' Volunteers LL and DL placed the Mackerel Shaxk near
fins "without a notch, while BG and KS (figure 22) interpreted this fin as having
a notch. Volunteer PW escaped this choice by placing the Mackerel Shark dorsal
fin midway between fins clearly wth a notch and fins clearly without.
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corner and the posterior notch, and other properties. Note in these examples that some

distinguishing properties become relevant only within the boundaries of categories defined

by other properties. For example, it becomes meaningful to inquire as to the location of

the top corner only for fins that have a readily identifiable top corner, and not for purely

rounded fins. The complications of attempting to organize dorsal fins 'Into meaningful

categories are magnified when descriptive features can return ambiguous or continuous-

valued measures, such as with the distinction between triangulaz and three-sided dorsal

fins.

One computing model for how shape data might be organized according to categories

falls under vrototype theory [Posner and Keele, 1968- Rosch et al., 1976; Hollerbach, 1975].

Under this model, the visual system maintains one or more descriptions of ideal or proto-

typical members for each category. As a newly presented shape is evaluated, it is compared

'th the vaxious stored prototypes and classified according to the one to which it s most

similar. Thus, even if similaxity between shapes is judged on a continuum, categorical

distinctions can be assigned based on the relative magnitudes of continuous-valued mea-

sures. Some volunteers in the "arrange the shapes" task alluded to using a prototype

strategy.3 Typically, one of these volunteers might point to or circle a sngle dorsal fin

w'thin a group, saying, "these fins axe a like this one" (see figure 214). Prototype theory

is appealing because it pronuses a ready-made answer for how at least some volunteers are

able to organize the dorsal fins 'in terms of categories. Fuzzy category boundaries occur

because some shapes may be 'udged relatively equally similar to more than one proto-

type. It is thus natural to entertain gradedness in category membership, corresponding to

interpretation of the similarity measure as the degree to which the object fits or matches

the prototype.

A prototype account of dorsal fin shape interpretation exposes some serious issues for a

shape representation attempting to analyze novel shapes 'in terms of comparison with other

shapes. Under the prototype model, a statement 'is required as to how one determines the

3A subset of these may have had prior exposure to prototype theory.
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Silverside Mooneye Trout-Perch

Figure 215: To which fin is the Mooneye dorsal fin to be considered more sim'lax?
The answer to the question depends upon the relative weight accorded properties
such as, squared," concave trailing edge," and "aspect ratio," and these properties
may be assigned different weights under different circumstances.

degree of similaxity between a given presented shape and this or that prototype. As shown

in figure 215, the Mooneye fin may be considered similar to the Silverside fin in that they

both have squared corners and a concave trailing edge, but it may be considered similar to

the Trout-Perch fin 'in that they have the same aspect ratio. To which 'is it more similar?

One way of viewing this situation is that prototype theory-and, indeed, the "arrange the

shapes task" itself-asks that a multitude of component similarity measures be combined

into a global similarity measure. The component measures are presumably to be each

simpler, more localized, and less ambiguous than any attempt to compare entire shapes

directly. In order to combine the components, each must be weighted in accord with its

importance wth respect to the others. Thus, if aspect ratio is more important than corner

squareness and edge concavity, then these components axgue that the Mooneye fin is more

sir'lax to the Trout-Perch than to the Silverside, and vice versa.

But how is the proper weighting of component features arrived at? The performance

of "arrange the shapes" volunteers indicates that many such weightings axe valid. Some

cons'der the roundedness of corners of great significance, others give greater weight to the

angles of the leading and trailing edges, and so forth. Perhaps then the visual system
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is not designed to entertain the question, "how silar to fin A is fin B," but rather,

"how smilar to fin A is fin with respect to properties X, Y, and Z Volunteers' fin

arrangements support a view under which the properties X, Y, and Z become a descriptive

perspective from which to organize one's interpretation of shapes. Part of the flexibility

of later vsion derives from its ability to adopt a multitude of such perspectives. Each

of the volunteers' arrangements of dorsal fins may be regarded as a sensible one, with

respect to the descriptive perspective adopted by that volunteer. The issue of selecting

and evaluating among the uiverse of descriptive perspectives is addressed in Section 26.

What are smpler, more localized, and less ambiguous component properties that might

contribute to more complex and more sophisticated nterpretations of the similarities and

differences among shapes, such as the generation of shape categories based on one or

another descriptive perspective? The underlying argument of this thesis is that the ability

of a shape representation to support sensible shape categorizations, shape comparisons,

and shape distinctions hinges on the vocabulary of shape descriptors available for making

explicit various component geometrical features and component measures on significant

spatial relationships. The problem we face 'is understanding how to transform shape data

described 'in terms of pixel-level images 'Into features and measures that can serve as useful

components at more abstract levels of processing. To say that a shape description is built

through grouping operations on shape tokens takes us only part way towaxd solving this

problem. In order to know what knowledge to build into a shape vocabulary, we must also

have an account of the constraints and regularities that structure the visual world. This

issue 'is addressed in the following sections.

The fundamental dilemma of describing a continuous world 'in terms of discrete sym-

bolic elements applies at all levels of abstraction. The assertion that some fragment of

shape merits being chunked and named wth an EDGE type shape token, for example, is

a form of classifying or categorizing, and it suffers from the difficulty of having to decide

upon the qualifications required for category membership, just as does the decision as to

whether a fin 'is triangular or notched. In the case of a shape representation employing a
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Figure 216: The problem of asserting categorical descriptors to the continuum uni-
verse of shapes arises at the level of placing dscrete shape tokens in the Scale-Space
Blackboard. (a) Shape tokens denoting primitive edges should clearly be placed at
these poses. (c) These are cleaxly inappropriate poses for primitive-edge assertions.
(b) It 'is difficult to devise principled criteria for deciding whether primitive-edge
tokens should identify these questionable edges.

vocabulary of shape token types, this problem surfaces as the question: How is it decided

where 'in the shape image a token of a given type should be instantiated? Figure 216

illustrates. Suppose the vocabulary 'includes the shape descriptors EDGE. Then there are

clearly some places on the dorsal fins where an edge should be aserted. However, at other

places it becomes questionable whether a qualified figure/ground boundaxy edge 'is present

or not. One approach to this problem 'is to assign a quality measure, or estimate of the

degree to which a given shape token fits the supporting data; this is equivalent to allowing

graded degrees of category membership. This line of attack is worthy and is raised again

in Chapter 4 However, the uiverse of object shapes yet offers an interesting structural

property suggesting a more powerful representational tool that may be brought to bear.

2.5 Deformation Classes and Dimensionality-Reduction

A further look at the nature of the dorsal fin shape world yelds insight 'into the problem

of computing qualitative, categorical descriptors on the basis of shape data residing in the

effectively continuous medium of an array of pixels. The shapes of dorsal fins, and the
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shapes of ob'ects in general, are related to one another by certain deformations on their

spatial geometries. Furthermore, deformations may be identified that are not arbitrary,

but instead obey certain constraints. Volunteers performing the arrange the shapes" task

identify several classes of such deformation, some of which are apparent in figures 22,

2.12, and 214. Clear classes of deformation are associated with rounding or sharpening

corners, modifying the concavity or convexity of edges, modifying the angle of corners,

and stretching or extending the form in a particular irection. A shape representation

may exploit this manner of regularity 'in shape worlds by employing shape descriptors

that explicitly name useful classes of deformation.

Deformation types vary with regard to their applicability to shapes in general, versus

their specificity to dorsal fin shapes, or shapes drawn from other circumscribed domains 'in

particular. For example, deformations corresponding to magnifying or stretching a shape

are qu'te general and can apply to any shape object. Other types of deformation may be

meaningful only with respect to certain classes of shapes. Deforming a corner in order to

change its vertex angle or- roundedness is generic to any corner, but it 'is not meaningful to

attempt to change the vertex angle of an edge, which after all has no vertex. Bending or

tapering are useful deformations for a "bar" shape; currently popular approaches to shape

representation often provide handles for modifying shapes through generic deformation of

this type [Binford, 1971; Pentland, 1986b; Barr, 1984]. Finally, deformation classes eist

that are only applicable within specific shape domains. Figure 217 shows several sets of

dorsal fins that are related by characteristic spatial deformations such as, for example, a

change in the angle of a particular edge on the fins.

The capture of these deformation classes is assisted by the representational device

discussed in Section 23 of grouping or chunking shape data and naming these chunks

using shape tokens. Shape deformations ma be described not in terms of modifications.

of contours and regions expressed through the locations of individual pixels, but instead

in terms of spatial relations among shape tokens such as EDGE type tokens and CORNER

type tokens abstracting over individual pxel locations. At the level of more abstract
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Figure 217: Four sets of dorsal fins related largely 'in terms of characteristic de-
formation classes. Note variations in: (a) trailing edge angle, (b) relative depth of
posterior notch, (c) roundedness of top corner, (d) curvature of trailing edge. Shape
descriptors noting fins' locations along these continua are useful for distinguishing
among dorsal fins occurring within these deformation classes.

shape descriptors, the fragments of shape data named need not be based on a fixed proto-

typical spatial configuration of edges, corners, or other more priMItive elements. Rather,

deformable prototypes are possible a categorical shape descriptor may accept as qualified

members any of a class of spatial configurations, where this class is specified by a certain

locus of geometrical deformation. The simplest case in which this occurs is that of a

primitive comer. A primitive corner 'is created whenever a pair of edges occurs within a

certain class of spatial prox'mities to one another, as shown in figure 2.18a.

To interpret a configuration of shape tokens as a member of a deformation class of con-

figurations is to exploit constraint. This constraint has a mathematical interpretation 'in

terms of feature spaces where the features measure aspects of the metrical relations among
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Figure 218 A deformation class is generated by a locus of spatial configurations of
shape tokens. (a) A pair of edge tokens constrained to lie end-to-end generates a
set of comers with varying vertex-angle. (b) The spatial relationship among a pair
of tokens can be expressed as a point in a configuration component feature space,
where the feature dimensions may be the tokens' distance, D, relative orientation,
0, and relative angle, ip. (c) The constraint on a deformation class, such as the
constraint that a pair of edge tokens lies end-to-end, dictates that the locus of token
configurations lies on a lower-dimensional constraint-surface 'in the configuration
component feature space. Location on this constraint surface corresponds to the
configuration's identity wthin the deformation class. In this case, location on the
constraint surface corresponds to the corner's vertex angle.
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tokens. Consider the simple case of a pair of DGE type shape tokens occurring in a two.-

dimensional plane ignoring the scale dimension for the moment). Then three measures are

required to specify the spatial relationship between these edges. One convenient tripleof

such measures forming a three-dimensional configuration-component feature space 'is: the

distance between the tokens, D, their relative orientation, 0, and their direction," (see

figure 2.18b). Note that only a subset of locations in this space correspond to configura-

tions of edges that form a corner. This subset constitutes a lower-dimensional constraint

surface embedded in the high-dimensional configuration-component feature space. The

locus of points on this constraint surface generates the deformation class associated with

the range of configurations of EDGE token pairs forming a CORNER.

Formulated in this way, a shape descriptor can now 'Interpret a configuration of tokens

in terms of 'its identity within the membership of a deformation class. This occurs when

the descriptor explicitly names location wth respect to some coordinate system- defined

on the constraint surface. For example, the location along the CORNER constraint surface

in figure 218 becomes a parameter corresponding to the vertex-angle of the comer.

The computation mapping between the description of a point in a high-dimensional fea-

ture space (say, representing a spatial configuration of shape tokens), and the description

of this point 'in terms of its location on a lower-dimensional constraint-surface embedded

in the high-dimensional feature space, is called dimensionality-reduction. Dimensionality-

reduction can be carried out by any of a number of computational devices, including as-

sociative or content-addressable memory schemes [Kohonen, 1984], backpropagation net-

works [Saund, 1987a], or modified lineax models Appendix A). Common to au of these

techniques is the fact that a dimensionality-reducer carries knowledge. Specifically, 'it car-

ries knowledge of a paxticular constraint surface, wth respect to which it interprets data.

In general, n shape repr esentation it 'is useful to employ a collection of dimensionality-

reducers, each of which maintains knowledge of one deformation class over configurations

of shape tokens.

By associating categorical shape descriptors, named by shape tokens, with the (fimen-
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sionality-reducers generating deformation classes of configurations of more primitive shape

tokens, the vocabulary of descriptors becomes the repository of knowledge about defor-

mation constraints or regularities occurring in the shape world. These descriptors make

explicit not only the token type, and pose location, orientation and scale) of the relevant

chunk of shape in the shape image, but also other attributes as well, 'in particular, paxam-

eters localizing the shape wthin the deformation class of the token. In this way, shape

tokens carry out a form of abstraction over shape data, each interpreting data according

to its deformation class. For example, two types of shape token might be defined, each

grouping a pair of edges, and. each noting a different aspect of the geometry of a triangu-

lar fin, as shown in figure 219. In this example one token's dimensionality-reducer makes

ba

Figure 2.19. Two useful deformation classes for a triangle configuration might make
explicit (a) aspect ratio, and (b) skew.
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explicit the "aspect ratio" of the triangles, and the other names the triangle's leftward
1 1 ion

or rightward "skew." Through the interaction of many such parameterized deformat'

descriptors the entire geometry of a dorsal fin or other shape can be specified in detail.

2.6 Knowledge 'in the Descriptive Vocabulary

Given the tools of: 1. grouping and naming fragments or chunks of shape using shape

tokens placed 'in the Scale-Space Blackboard, and 2. dimensionality-reduction as a means

of naming membership wthin predefined deformation classes of spatial configurations of

shape tokens, we are now in a position to discuss the ways in which a collection of shape

descriptors may capture and exploit knowledge about a visual shape world.

We offer two central criteria governing the relationship between: (1 a vocabulary

of shape descriptors, and 2) the structural regularities operating 'in the shape world it

is to represent. First, the shape fragments and deformation classes made explicit by

vocabulary elements should match the recurrent spatial configurations and deformation

classes found in the visual world. Second, 'in order to support a wide variety of vsual tasks,

the vocabulary should make available shape descriptions from many perceptual vantage

points, or descriptive perspectives. The next two sections argue that satisfaction of the

first criterion leads to satisfaction of the second. The third following section elaborates

on the ways in which a good shape vocabulary addresses a difficult outstanding problem

in shape representation: that of spatial context in the interpretation of shape data.

2.6.1 Match the Shape Vocabulary to the Shape World

The efficiency and effectiveness of transmitting, storing, and manipulating data is en-

hanced when the data is encoded into a language exploiting regularities and redundancies

imposed by the data's source. This fundamental idea from In formation Theory may be

imported to visual information processing [Restle, 1982; Leeuwenberg, 1971; Buffart et al.,

1981 Smon, 1972; Marr, 1970], and it underlies the Principle of Explicit Naming [Marr,

1976]. By providing explicit descriptors in anticipation of visual events and situations that
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are likely to occur, a visual system equips itself with apparatus appropriate for classifying

and interpreting data. Moreover, properties likely to be useful for recognizing and judging

visual input are also likely to be useful for inferring the sigiufficance to the organism of the

events observed [Marr, 1970; Bobick, 19871. For the purposes of shape representation, we

seek to design vocabularies reflecting or matching the structural regularities of particular

worlds of visual shapes. The strategies of naming significant chunks of shape by placing

tokens on Scale-Space Blackboard, and of naming deformation classes of configurations

of shape tokens, provide two major tools for doing this. Through the example world of

dorsal fin shapes, we turn our attention to the specific nature of the geometric regularities

that might be named by explicit vocabulary elements using these tools.

In the dorsal fin shape world, a great many geometric regularities occur at what may

be called an "'intermediate" level of abstraction. They 'Involve spatial relationships among

rather simple shape fragments such as edges, corners, and regions, but significant recur-

rent configurations of these elements describe only part of a complete dorsal fin. The

intermediate level of abstraction 'is therefore more complex than the primitive edge and

region chunk level (and well above the pxel level) but less encompassing than any symbol

denoting a complete object (an object being in this case, the dorsal fin).' For example,

many dorsal fins have a posterior "notch" formed by a chaxacteristic arrangement of two

corners and an included (trailing) edge, as shown in figure 2.20a. By nming this fragment

of an object's shape explicitly a representation is better equipped to evaluate spatial re-

rations involving this feature, such as the relative size of the notch and the rest of the

fin, the location of the notch with respect to the leadin edge, and the angle between the

leading edge and trailing edge.

Many such intermediate level shape fragments recur 'in dorsal fin shapes. Moreover,

these fragments overlap one another, that 'is, they share support at the level of more

primitive edges, comers, and regions. For example, the lower corner participating 'in the

'Chapters 6 and 7 refer to "intermediate level' and 'high level' shape descriptors. Since none of the

descriptors encompass an entire dorsal fin, these may both be considered 'intermediate' within the context

of the present discussion.
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Figure 220: Edge and corner chunks participate 'in many overlapping spatial con-
figurations comprising a dorsal fin shape. The corner at the base of the posterior
notch (a) also forms a particular configuration wth respect to the leading edge (b).
The leading edge in turn forms configurations with other paxts of the fin (c).

notch feature also plays a role in another geometric situation inherent to dorsal fin shapes

involving the configuration of this corner and the leading edge. This is shown 'in figure

2.20b. And the leading edge in turn plays a role in several configurations independently

involving the back edge, the imaginary line forming the base of the fin, the posterior corner

(the upper corner of the notch), and so on (figure 2.20c). Typically, these spatial relations

involve deformations, a different dorsal fins will exhibit somewhat different configurations

among their component posterior corners, leading edges, back edges, and so orth An

extensive vocabulary of shape descriptors for dorsal fins 'is presented in Chapter 7.

In this way the recurring geometric configurations encountered 'in the dorsal fin shape

domain may be likened to the overlapping and nterweaving fibers of a fabric, in contrast
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to the metaphor of piecing building blocks together that characterizes most current ap-

proaches to shape representation (this work is discussed in Chapter 3). Our representation

is redundant. By the laws of geometry, a change 'in one spatial property, for example, the

distance from the notch to the leading edge, leads to changes on other spatial relationships.

We accept this property because it reflects that fact that the objectives of a general pur-

pose shape representation differ from those of Information Theory; we seek not to encode

an object's shape as cheaply as possible, but rather to provide a rch description making

explicit all of the relevant spatial relationships characterizing the shape. Either of these

objectives, however, nonetheless demands that the descriptive language reflect regularity

in the shape world.

Another important quality characterizing the structure of the shape world of dorsal

fins is that it consists of many cases. The overlapping configurations of subsets of edge,

corner, and region elements that comprise a dorsal -fin are numerous, and they are for

the most paxt different from the configurations that form, say, a tail, or a snout. By

devising a prefabricated vocabulary element for each of the configuration cases, a shape

representation can prepare 'itself to make explicit significant geometrical events as they

are encountered in shape data. To the extent that vocabulary elements are matched

to spatial configurations common only to a particular shape domain, for example, the

domain of dorsal fins, the vocabulary can be said to possess knowledge about that domain.

Furthermore, this store of knowledge can be extended to other shape domains simply by

adding elements to the vocabulary.

In order to achieve sensitivity in the measurement of shapes' distinguishing character-

istics, it becomes useful to provide shape descriptors' tailored to very specific geometrical
Ruations, many of given

si which may be relevant to only subclasses of objects within

shape domain. For example, figure 2.21a shows that a number of "isosceles triangular

notched" dorsal fins lie on a two-dimensional manifold indexed by aspect ratio and corner

roundedness. It is not meaningful, however, to attempt to place fins not sharing the basic

isosceles plan, such as 'rounded" fins, in this subspace. For rounded fins, another special-
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Figure 221: Shape descriptors may be tailored to measure properties of specific
classes or subsets of the uiverse of dorsal fins. (a) The measures, 'comer round-
edness and 'aspect ratio" are two sgnificant imensions along which "notched
triangular dorsal fins may be organized. However, it is less meaningful to attempt
to 'Interpret "rounded" fins in these terms (b). (c) Shape descriptors specialized to
distinguish among rounded fins may measure such properties a the location of the
circle 'inscribed along the rounded top edge with respect to the notch and leading
edge, the arc length of this circle, and the angle between the leading and trail-
ing edges. Specialized shape descriptors offer enhanced sensitivity in distinguishing
among shapes on the basis of subtle differences.
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ized class of descriptors might be profitably designated to pck out the most sgnificant

dimensions of variability, as shown 'in figure 2.21b. Useful measures for these fins pertain

to the curvature of the top edge, the location of a roughly crcular region inscribed by this

edge, the arclswept by this circle, the angle between the leading and trailing edges, and

more as shown in the figure. Thus, under a shape representation employing a large and

extensible vocabulary of shape descriptors, 'it becomes appropriate-to design measures or
in regi but

feature dimensions that apply only to a certa' on of the universe of dorsal fins,

whose sgnificance wanes, away from this region. In this way our approach differs from

conventional representations in terms of "feature spaces" [Shepa-rd, 1962; Kuennapas and

Janson, 1969; Krumhansl, 1978; Tversky, 1977). If one wished, one could view our shape

descriptors as the component dmensions of a huge feature space; but, this feature space

is distinguished by the notable fact that the components are so specialized that most

dimensions have no meaningful 'Interpretation with respect to most shapes.

2.6.2 Support a Wealth of Descriptive Perspectives

A shape representation intended to serve later visual tasks such as the 'axrange the shapes"

task must support the transformation from the pixel-leveli'mage to abstract assertions such

as assessments of smilarities and differences among shapes. The performance of human

volunteers suggests that these assessments can take place with respect to a wide range

of descr' tive perspectives, where, as discussed 'in Section 24 a descriptive perspective

is some subset of features, properties, parameters, or measurements on shapes that are

selected out for performing comparison or iscrimination (see [Fischler and Bolles, 19861).

Among the many possible components of descriptive perspectives for judging dorsal fin

shapes are triangular vs. 3-sided, relative sze of fin and notch, sweepback of leading edge,

trailing edge, or fin as a whole, roundedness of corners, aspect ratio or protuberance, nd

convexity vs. concavity of edges.

The universe of descriptive perspectives opened by intermediate level shape descriptors

grows as the number of such descriptors increases. Therefore 'it is advantageous to make
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explicit many properties. One may choose to distinguish dorsal fin shapes on the basis of

relative size of the notch and the leading edge, relative orientation of leading edge and back

edge, relative length of back edge and base line, relative length of base line to fin height,

and so on. From a large and extensible descriptive vocabulary with which to construct

descriptive perspectives are more likel to be f6und the 'ingredients needed for carrying

out a range of visual tasks. In some cases descriptive perspectives may be selected that

differentiate shapes on the basis of peculiar or specialized attributes or subtle geometric

qualities of form. Other descriptive perspectives reveal clusters or natural categories of

shapes. For example figure 222 presents a two-dimensional plot of the parameter "relative

angle of
posterior corner
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Figure 222: Dorsal fins cluster into well-distinguished categories when 'Interpreted .
in terms of certain properties. Here, fins are plotted according to "angle of poste-
rior corner" versus "radius of top edge or corner (relative to width of the base)."
The three categories correspond to dorsal fin categories identified by several human
volunteers as, "triangular, wthout notch," "triangular, with notch," and "rounded.'
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curvature of the top edge or corner" versus the parameter, "vertex-angle of posterior

fin/body junction," for the set of dorsal fins used 'in the "axrange the shapes task." The

scatter plot shows three clusters of fins defining three fairly well separated categories

of dorsal fins. These categorical organizations of dorsal fins are in fact reflected 'in the

arrangements of several human volunteers.

The properties leading to interesting descriptive perspectives wl be those that reflect

the structural regularities of the particular shape world in question. In the dorsal fin

case, these will be shape descriptors naming articular spatial configurations common to

dorsal fins, and naming the parameters by which these configurations vary or deform from

fin to fin. In other words, a descriptive vocabulary built to match the constraints and

regularities of a given shape domain will be one that yelds the components for useful

descriptive perspectives with which to evaluate shapes from that domain.

It might be expected that human volunteers possessing amiliarity with a given visual

domain would have acquired a richer descriptive vocabulary than lay people. Evidence

for the tuned "perceptual" abilities of domain experts is diverse Chase and Smon, 1973;

Diamond and Carey, 1986]. Anecdotally, we may note here the ways 'in which 'chthy-

ologists deploy their familiarity wth fish shapes in perfo ng the "arrange the dorsal

fins" task. Their organizations and comments employ many geometric attributes similar

to those mentioned by nive volunteers, including notions of pointedness, roundedness, of

corners, curvatures of edges, and notice of the posterior notch feature, but these compo-

nent attributes are combined 'in sophisticated ways to make 'Inferences about the fish's

phylogenetic identity, the fin's location on the body, and especially about the dorsal fin's

functional role in the fish's swimming behavior. For example expert Volunteer LK or-

ganized fins along the property of incisiveness 77 of the posterior edge, which roughly

combines the size of the posterior notch wth the degree of concavity of the posterior.edge

(figure 223). This partially corresponded with his assessment of the fin's stiffness and

drag. Expert volunteers tend to judge whether the fin serves a keel or stability function,

versus whether it is used for maneuvering, versus its role as a fleshy Adipose fin (probably
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Figure 223: Dorsal fins organized by expert volunteers on the "arrange the shapes"
task.
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for dampening turbulence). These properties are judged on the basis of the fins' base of

support (baseline length with respect to its overall width and height), on its aspect ratio,

on whether it has a triangular top, and on its roundedness. In some causes, expert volun-

teers just blurt out "shark," "catfish," or "killifish" wthout aticulating what particular

geometric properties led them to these classifications. We should note that the fish ex-

perts proficiency in analyzing subtleties in shape becomes especially striking with regard

to the entire fish profile- variation of dorsal fin shape among ndividuals plus evolutionary

convergence conspire to render the identification of fish species based solely on dorsal fin

shape a sometimes problematical exercise. The power of a large, domain specialized shape

vocabulary is magnified in the more complex domain of complete fish shapes in which a

multitude of spatial relations become significant, ncluding the aspect ratio of the body,

taper of the snout, relative placements of fins, alignments of edges of fins, wdth of the

join between the body and tail, forkedness of the tail, etc.

We have mentioned that a descriptive vocabulaxy reflecting knowledge of a shape

domain enhances shape iscrimination and the construction of useful descriptive perspec-

tives because 'it leads to greater sensitivity and specificity in the measurement of subtle

variations in spatial relationships. However, a rich shape vocabulary offers yet another

important attribute: 'it leads to powerful generalizations over useful classes of spatial con-

figurations. This issue is conveniently illustrat ed in connection with the very difficult

problem of integrating information from surrounding context 'in the course of computing

a description for a viewed shape.

2.6.3 Generalization and Spatial Context

The information that bears on the decision as to whether or not a portion of a shape 'image

should be collected as a chunk, named with a shape token, or assigned to acategory

includes data that might be considered "within the scope" of the descriptive element,

and data that might be considered surrounding context. The role of context in visual

inter retation 'is cert .n but difficult to attack. To illustrate, figure 224 presents an
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Figure 224: Rhombusfish.

imaginary "Rhombusfish" shape. Here, the 'individual components of the fish do not look

a great deal like the body, fins, and tail of any real fish, yet when placed 'in appropriate

proximity to one another, a dorsal fin, ventral fin, tail, and so forth can easily be identified.

The rhombuses are able to assume the roles of the different structures on a fish not so

much because of their inherent geometry, but because of their spatial relationships to

other things.

The question raised by this observation 'is, 'in what ways does the notion of a dorsal

fin generalize to forms sharing only some of the properties normally associated with ideal

instances? What range of shapes could qualify to fdI the "dorsal fin" slot in configuration

of parts arranged roughly 'in acord with fishes' body plans? Figure 225 offers a few

suggestions as to the scope and limits of forms naturally 'interpretable as a dorsal fin.

We suggest that the present approach to shape representation lends insight into this

problem. A large and rch vocabulary of shape descriptors offers the means to tailor

the contours of generalizations, or equivalence classes of shapes, shape fragments, and

spatial configurations. The shapes in figure 225 that are easiest to interpret as dorsal fins

share certain properties in common. They all protrude from the body, they fl wthin
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Figure 225: Some of the shapes occupying the dorsal fin position on the fish shape
satisfy the qualifications for 'Interpretation as a dorsal fin more naturally than do oth-
ers. The relevant morphological properties include size, elongation, height, width,
slant, contour texture, and slant agle.
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a certain size range, they tend to slant rearward to some extent, they have smoothly

curving contours, the "notch" feature, if 'it appears, appears at the posterior base of

the fin. In a representation encouraging extensible shape vocabularies, it is possible to

devote descriptive elements to large numbers of such distinguishing features of a protruding

shape. These descriptors provide sensitivity in defining the limits of the range of shapes

that satisfy the qualifications for a dorsal fin Within the context of the fish body plan; they

provide a language for assessing rather directly whether the properties of a novel observed

protrusion shape satisfy those of a fish's dorsal fin. Furthermore, shape descriptors tailored

to specialized classes of spatial configurations not only collectively define the contours of

shape equivalence classes, but they offer precision in assessing the ways 'in which some

shapes fail to meet the qualifications for 'inclusion 'into a shape category. When a novel

observed shape falls outside a gven equivalence class, the descriptive vocabulary is able

to tell why, that is 'in exactly what properties the observed shape violates the requisite

qualifications. For example, the shape in figure 2.25n is not a very good candidate for a

dorsal fin because 'it violates the constraint that dorsal fins are slanted backward.

Furthermore, the capacity to name explicitly many spatial properties leads to flexi-

bility and adaptability in molding equivalence classes for paxticulax tasks or contextual

situations. Fgure 226 'illustrates. A very long and pinted dorsal fin appears ill-placed on

a fish proportioned as in figure 2.26a, but it appears natural within the context of other

elongated and pointed features. The availability in the descriptive vocabulary of such pa-

rameters as "elongation,' and "pointedness" smplifies the adjustment or normalization of

the boundaries characterizing the class of protruding shapes that might qualify as a dorsal

fin, within a given context. By asserting these and other abstract properties explicitly,

the representation supports computations comparing protrusions to one another 'in direct

terms, property for property. This facilitates appeals to global constraints on a fish's mor-

pholo 'cal characteristics, and it facilitates evaluation of a single fin's description wthin

the context of other fins. For example, if the fins of a fish tend to share the property,

"fin pointedness," in common, then the fin in figure 226a is easily determined aomalous,
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Figure 226: The dorsal fin shape on the left appears out of place. But in the
context of other portions of the ob'ect sharing similax properties of elongation and
pointedness, the fin fits naturally. A representation gains power in evaluating a shape
with respect to surrounding context when it provides a rch vocabulary of shape
properties by which a shape fragment and surrounding context can be compared.

along this property, in comparison to the other fins on the fish shape. If all of the fins

were pointed, however, then the dorsal fin would no longer stand out with respect to thi's

property. -

The problem of 'Interpreting geometrical structure in terms of in the presence of sur-

rounding context axises within the shapes of dorsal fins as well as in the whole fish

case. Figure 2.27a presents the fin of a bullhead catfish. Many volunteers utilizing a

triangular/three-sided distinction classify this fin as three-sided. This suggests that the

portion of the posterior contour segment bounded by the arrows in the figure may be

interpreted as a corner, albeit, perhaps, a shallow corner. Fgure 2.27b, however, presents

the same section of contour under different context; the contour segment now becomes a

part of what is pssibly a circle shape. The "corner" interpretation for thi's contour seg-

ment is supported in situations where shape descriptors fitting to other fragments of the
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Figure 227: (a) ead Catfish dorsal fin. Many volunteers classify this as a
"three-sided" fin, suggesting that the segment of contour lying between the arrows
may be interpreted as a CORNER. (b) The contour segment between the arrows is
identical to the corresponding contour segment 'in (a), yet in this different context the
contour is 'interpreted as an arc of an imperfectl sketched circle. (c) A collection of
shape descriptors tailored to the spatial configuration of "flaglike' dorsal fins shapes
(figure 217) may include many slots seeking to be fled by a corner bounding the
trailing edge and the posterior notch. These descriptors offer structural members
supporting the 'Interpretation of the ambiguous contour segment as a CORNER.
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fin shape maintain slots or expectations for a corner type feature at this pose, as shown in

figure 2.27c. This example shows that alternative abstract level descriptors for shape data

may have overlapping generalizations. That is, the presence of surrounding context can

support alternative interpretations for a given fragment of shape. A specialized vocabu-

lary of shape descriptors that "know" about configurations of edges, corners, and so forth,

occurring in the dorsal fin domain or some other particular shape domain, constitutes the'

descriptive structure that cements one interpretation or aother.

2.7 Summary

The shape world of dorsal fins supports an exploration of many fundamental issues and

principles 'in shape representation. As illustrated by the "arrange the shapes" task, the

requirements of Later Visual processing demand flexibility in the capacity of a rep resen-

tation to make explicit many aspects of geometry and spatial relationships. Shapes can

be vewed as similar or different from one another, or as qualifying for membership in

distinct categories, according to a wide variety of criteria and perspectives. In an effort to

develop an approach to shape representation offering the rchness and versatility to sup-

port the open-ended requirements of Later Visual processing, this chapter has discussed

the following points:

* It 'is important for a shape representation to be able to group fragments of shape

into chunks that can be treated as units.

* Certain configurations of shape data that may be chunked tend to recur over space,

orientation, and scale.

* It 'is advantageous to maintain a type/token relationship whereby characteristically

recurring fragments of shape are assigned categorical types, and 'Instances of these

types in shape data are named by shape tokens maintaining information as to pose

(location, orientation, and scale).
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* A 5cale-Space Blackboard data structure offers a means for organizing shape tokens

pictorially, so that spatial relationships in an 'image are maintained 'in an analogous

fashion in the computational apparatus. Unlike a true image, the contents of the

Scale-Space Blackboard can 'Include symbolic entities that refer in abstract ways to

the contents of the pixel-level 'image. Token grouping operations using the Scale-

Space Blackboard are discussed at greater length in Chapter 4.

* A fundamental difficulty emerges in any attempt to describe an inherently continuous

domain, such as the domain of a class of shapes, 'in symbolic terms. This difficulty,

having to do wth discretizing a continuum, arises in the assignment of fin shapes to

shape categories and it arises in the computation of instantiations of shape tokens

in the Scale-Space Blackboard.

* A shape's 'Interpretation in terms of defined classes of shapes is to be vewed With

respect to one or another descriptive perspective, or subset of properties that can be

measured and evaluated in comparison to other shapes. The richness of the set of

descriptive perspectives afforded by a shape representation contributes to the variety

and subtlety 'in the specification of shape categories according to which shapes may

be classified or dstinguished.

* Among the important classes of shape fragments that become useful to name explic-

itly 'in a shape representation are those defined by constrained spatial deformations.

* The tool of dimensionality-reduction provides a means for translating between high-

dimensional feature space characterizations of the spatial relationships among a set

of tokens, and a lower-dimensional characterization of the configuration in terms

of a degree of deformation along predefined constraint manifolds. Computational

apparatus for performing dimensionality-reduction is developed in Chapter .

* The vocabulary of shape descriptors offered by a shape representation for identifying

particular shape fragments or configurations of shape tokens may include descriptors
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tailored to the spatial relationships commonly occurring only in particular shape do-

mains. These descriptors contribute sensitivity and richness to the representation's

ability to distinguish among shapes occurring within that domain. Such a special-

ized vocabulary constitutes knowledge about a particular shape domain. An example

shape vocabulary embodying knowledge of the shape domain of dorsal fins is devel-

oped in Chapters 6 and 7.

The domain-specific knowledge residentin a descriptive shape vocabulary contributes

to the ability of the representation to tailor the boundaries of shape categories ac-

cording to geometrical properties that may be specific to that domain, and to 'in-

terpret shape data with regard to surrounding context characteristic to that shape

domain.

The preceding discussion 'ustifies our attempt to establish a framework by which a

shape representation may embody a great deal of knowledge about a world of vsual shapes

in the form of a vocabulary of shape descriptors. After a review of previous approaches

to shape representation, we proceed by developing in detail the specific tools of the Scale-

Space Blackboard and dimensionality-reduction, and we put these tools to work in an

example shape vocabulary for the world of fish dorsal fins.
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Chapter 3

Background.- Representations for Shape Recognition

Most approaches to shape representation in the field of computational vision are intended

to support the task of recognition, that is, deciding in which of a set of known categories

a novel shape belongs. As suggested in Chapter 2 the evaluation of a shape can, however,

involve much more than simply assigning it to a sgle predefined category.- shapes may

be viewed as similar or different from one another in a great many ways. Shape categories

may be established that refer to just some aspects of geometry; the boundaries between

categories can become fuzzy or malleable; and sometimes it is most useful to evaluate

shapes according to continuous measures instead of with respect to categorical dstinctions.

Nonetheless, our intuition is strong that objects in the world are of distinct types. The

idealized view that ob'ects' shapes fall into well-defined categories, and that the visual

system may be able to classify viewed shapes according to these categories, 'is a useful

model, and shape recognition remains the target problem for a large fraction of current

research in computational vision. This chapter reviews some major approaches to shape

representation, most of which have been brought to the task of shape recognition, and it

makes an effort to identify aspects of these approaches that might contribute to the more

flexible kinds of processing taking place later in the visual system as suggested by the

44 arrange the shapes" task.

Central to virtually all modern shape representations designed to support shape recog-

nition is some manner of approxz .mating the shape of an object. Generally, a library of

object models is maintained that approximate the shapes of known objects, and when a

-novel object is presented to the system, its approximation is compared wth the models

in the library. One of the key questions we may ask 'is What devices are provided for

performing abstraction, that 'is, for naming useful fragments or chunks of shape data and

treating them as wholes? Named shape chunks ae useful for approximating shapes eco-
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Comically, and they are useful for indexing into the library to identify object models to

match a viewed object.

We distinguish two polar extremes in shape representation research that differ in their

use of abstraction in the form of shape chunking. In template'-based recognition systems,

an object's shape is generally approximated very closely by shape primitives of relatively

small spatial extent (such as contour fragments) localized with respect to a global reference

frame. The recognition task becomes one of identifying the correct template-like model

in the library, and identifying a pose (positional displacement, orientation, and scaling

factor) that will align this template with primitives extracted from an image. If collec-

tions of shape fragments are grouped into larger chunks or shape features, these ae used

only for the purpose of accelerating and 'improving the process of indexing into the library

and finding good object-model/pose hypotheses. By contrast, building-block shape rep-

resentations crudely approximate objects' shapes using a smaller number of larger shape

fragments that typically correspond to the object's natural parts. Significant information

lies in the spatial relations among the parts. The recognition process usually consists

not of aligning the object model with primitives extracted from the viewed image, but of

evaluating shape properties at the level of the abstract part structure model, e.g. lollipop

= long skinny part attached at its end to a round part. Both template-based recognition

systems and building-block shape representations offer insights nto how knowledge of the

visual world can be used to advantage in shape recognition.

3.1 Template-Based Approaches to Shape Recognition

Template-based shape recognition systems maintain a library of 'internal object models

in terms of a spatial configuration of primitives. The objects may be two-dimensional

[Bolles and Cain, 1982- Grimson and Lozano-Pe'rez, 1987; Turney et al., 1985; Tucker et

al., 1988] or three-dimensional [Faugeras and Hebert, 1986; Lowe, 1987; Thompson and

Mundy, 1987; Huttenlocher and Ullman, 1987; Bhanu, 1984]. The primitives typically

consist of edge fragments, but can also include individual points along a contour, extended
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line segments, polynomial curve approximations, and, in the case of three-dimensional

object recogr'tion, two-dimensional surface patches. Localized shape primitives axe able

to approximate ob'ect's shapes very accurately, and larger primitives such as extended

line segments are used only in cases where the ob'ects themselves contain extended linear

edges. Shape primitives comprising the object model are localized wth respect to a

global coordinate frame defined for the ob ect as a whole. Although the term, "template,"

sometimes connotes fixed shape patterns, the template-based recognition paradigm may be

extended to parameterized deformable configurations of primitive shape features [Grimson,

1987b; Ullman, 1987]. The goal of template-based recognition algorithms is to select

objects from the ob'ect model library, and to identify poses of these objects, 'in order to

account for measured image data. The image description can include grey-level edges,

ob'ect boundary contours, or three-dimensional depth data. Typically, the image data is

itself processed in order to extract shape primitives corresponding to those used in the

object models.

A template-based recognition algorithm consists conceptually of two stages. First, a

hypothesis generation stage performs some sort of processing on a description of the in-

coming image 'in order to generate a set of hypotheses, or candidate pairs consisting of (1)

an object model selected from the library, and 2 a pose for that ob'ect (position, orienta-
tion and optionally, scale). Second, a testin or verification stage evaluates hypotheses in

I 9

order to select out those that, 'if correct, would predict primitive feature data matching the

image data actually measured. Hypothesis testing is viewed as a relatively straightforward

computation because 'it is more or less equivalent to projecting object model primitives

into a two-dimensional 'image. But, the expense incurred in testing large numbers of false

candidates drives the quest for effective hypothesis generation techniques. It 'is from this

first stage of template-based recognition algorithms that more general lessons about shape

representation may be drawn.

The problem faced by template-based recogrution algorithms 'is one of exploring a

large search space. The space may be cast in either of two ways: it may be'cast 'in terms
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of the large number of possible matchings between features occurring on object models

and features extracted from an image (these may be called feature labeling approaches)

[Faugeras and Hebert, 1986; Bolles and Cain, 1982; Bhanu and Faugeras, 1984; Grimson

and Lozano-Pe'rez, 19871, or, it may be cast more directly in terms of the large number

of possible poses in which the members of the object model library may appear (for con-

venience we call these pose generation approaches) [Thompson and Mundy, 1987- Tucker

et al., 1988; Huttenlocher and Ullman, 1987- Lamdan et al., 1987; Turne et al., 1985;

Lowe, 1987]. Both formulations attack the search problem by exploiting knowledge about

the set of shapes the recognition system is to identify. By and large, feature labeling

formulations use precompiled knowledge about spatial relationships among simple shape

features in order to drect and constrain feature matching search, while pose generation

formulations tend to employ knowledge in the form of more sophisticated shape features

used to limit and improve the candidate poses generated.

3.1.1 Feature Labeling Approaches

When object recognition is vewed as a problem of searching a space of possible image-

feature/model-feature matchings called here feature labeling, but also called the inter-

pretation tree by Grimson and Lozano-Pe'rez 1984], and segment labeling by Bhanu and

Faugeras 1984]; see figure 31), then geometrical constraints may be brought to bear

that guide the recognition process toward plausible nterpretations of the data. These

constraints can be as simple as noting that a pair of 'image features must bear the same

spatial relationship to one another as the pir of model features to which they are matched.

For example, in figure 31, the edges dl and d2 found 'in an image cannot be assigned to

the model edges, ml and m2, respectively, because their distance 'is too great. This con-

straint is used, for example by Grimson and Lozano-Pe'rez 1984, 1987] and by Faugeras

and Hebert 1986], 'in order to exclude incorrect branches from the 'Interpretation tree; a

more localized version of this constraint 'is used by Bhanu and Faugeras 1984] and Bhanu

[1984] in the cost functional of a relaxation labeling process.
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Figure 31: (a) The edges, ml through m6, of a template-like ob'ect model. (b)
Edges d through d12, as might be found in an image of the taxget object occluded
by another ob'ect. (c) The feature labeling search space (Interpretation Tree). Each
branch represents a pairing of a data feature, di, With a model edge, m. The sub-
branch, d2 M2 can be pruned from the branch, d : ml), because the measured
data features, (di and d2) are found at too great a distance for them to be assigned
to the model features, ml andM2, respectively.
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This use of geometrical constraint in image-feature/model-feature matching 'Involves

precomputing certain 'information on the library of object models prior to performing

recognition on viewed data. I particulax, data structures are bilt making explicit allowed

and disallowed spatial relationships between primitive features on the basis of the spatial

relationships occurring among features approximating shapes in the object library. The

precomputation step speeds run-time pruning of the search space.

This ideals amplified by Bolles and Cain 1982] and by Goad 1983]. The Local Feature

Focus Method Bolles and Cain, 1982]) employs features such as holes and corners that are

somewhat more distinguished than mere edge fragments. A preprocessing step identifies

special clusters of these features that serve to focus or direct the run-time search. A

hypothesis is generated when a cluster of features 'in the image 'is found to match a cluster

occurring on an object model. An important part of the preprocessing step is selecting

feature clusters for each model object that, if found, wil uiquely distinguish that object

and its pose in the image. Goad's 19831 method 'involves extensive precomputing.of an

efficient search tree for each three-dimensional object 'in the library. This tree embodies

information as to which model features axe visible from each of 218 different viewing

positions, and it permits feature matches reflecting implausible viewpoints to be pruned

rapidly.

Feature labeling approaches to shape recognition demonstrate that leverage can be

obtai-ned'by precompiling certain information about the geometrical properties of the

object model library. This information, which may be viewed as knowledge about the

stored set of ob'ects that may be recognized, improves the efficiency of shape recognition

by directing the run-time exploration of the feature labeling search space. The emphasis of

this form of knowledge is thus on contributing to the control of processing. In contrast, the

form of knowledge emphasized 'in this thesis work 'Involves the vocabulary for describing

shape; this latter interpretation of the use of knowledge is emphasized by pose generation

approaches to shape recognition by template matching.
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3.1.2 Pose Generation Approaches

When object recognition is cast directly as a problem of searching a space of shape models

in the ob'ect library along with possible poses (locations, orientations, and scales) for

object models, then it becomes important to limit the number of incorrect poses proposed

for testing (or verification).

Among the most widely used methods for generating candidate poses are variants

on the Hough transform [Merlin and Farber, 1975; Sklansky, 1978; Ballard, 1981]. This

technique nvolves having image-feature/model-feature pairs vote for the pose of the model

that bngs them into correspondence. Votes are accumulated from a such feature pairs

in a pose space indexed by the pose parameters of location and orientation. Regions of

pose space acquiring a high density of votes become candidates for the pose of the object

template model.

The Hough transform can suffer from several serious difficulties related to the detection

of vote clusters in the transform space Grimson and Huttenlocher, 1988]. Small errors in

the ob'ect model or 'in feature localization lead to smearing of the clusters; clusters be-

come severely weakened when large portions of an object's contour become occluded (even

though sufficient nformation may still be present to identify the object); spurious vote

clusters can aise from incorrect feature pairings. The performance of Houghing techniques

has been found to 'improve wth 'increases in the specificity of mage-feature/model-feature

pairs matched. For example, Ballard 1981] shows that the vote clusters in Hough trans-

form space become more distinct 'if oriented edge features are used constraining the object

model's orientation. One trend in pose generation approaches to shape recognition has

therefore been to improve the specificity of the shape features matched.

A weak version of this approach has been used by Tucker et al. 1988] in developing a

two-dimensional shape recognition program for a data parallel computer (the Connection

Machine). Corner features axe fou nd in the image based on 'intersection between fineax edge

segments. These are paired with corners on ob'ect models. Each possible 'Image/model

corner match specifies a pose for the model, and a very large number of pose hypotheses are
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generated by each such pairing. The processing power of the computer makes it possible

to nonetheless test many of these hypotheses quickly. The Hough technique is used to

order these hypotheses so that poses accumulating many votes, which are more lkely to

correspond to be correct, may be tested before poses accumulating fewer votes.

Stronger versions of the drive for greater specificity in the shape features used to

generate candidate poses have been proposed by Huttenlocher and Ullman 19871, and

by Lamdan et al. 1987]. These alignment methods 'Involve dentifying a limited set of.

informative features that can uiquely define a small number of canonical poses for the

object in space (preferably one pose), regardless of the object's identity. Then, the search

for matches between the image and object models reduces to a search over all object

models, transformed into the canonical pose, but not over the full space of possible poses.

For example, 'if an axis of elongation can be found, then the set of permissible poses of

stored object models is constrained at the hypothesis testing step: candidate objects must

align wth this axis.

The search for an ob'ect-model/pose match to 'image data can be constrained even

further by the use of ever more distinguished local shape features. Turney et al. 1985]

discuss methods 'in which "subtemplates," or especially useful boundary contour segments,

'dent'fied over the set of objects n the fibraxy. The precomputation stage evaluates the

entire object library at once in order to select "salient' subtemplates. These are boundary

segments that, if found, would be particularly useful in identifying a particular object and

'Its pose. For example, figure 3.2a. shows a set of distinguishing contour segments on four

hypothetical parts. Because they are smaller and smpler than an entire object boundary,

and because they define a local contour orientation, subtemplates are easier to identify by

straightforward techniques such as the Hough transform than would be an entire object.

Furthermore, local subtemplates can be identified even when other portions of an object's

bounding contour are occluded.

Ettinger 1987] takes a similar approach in which the object model lbrary is evaluated

in advance n order to 'Identify "subparts" that, because of their relative simplicity and
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Figure 32: (a) Salient boundary contour segments (thick lines) are useful for hy-
pothesizing which of the parts, A, B, or C, is present (from Turney et al., 19851).
(b) Plausible sub-paxt hierarchy for a class of hammer shapes. Subpaxts axe shaxed
among complete objects (from Ettinger, [1987]).
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spatial locality, can be identified more readily than entire objects. As shown in figure 3.2b,

subparts may be shared among different known ob'ects- it 'is the Particulax combination of

subparts, and their spatial relations, that dentifies an object model uniquely. Ettinger s

analysis includes examples showing that this two-stage recognition process, n which shape

data is grouped into chunks at an 'intermediate level of abstraction before whole objects

are dentified, proves to be a more efficient attack on the object model/pose search space

than attempting to recognize objects directly from the primitive features. Jacobs 1988]

presents a related approach under which groups of shape features axe formed according to

computed probabilities, under certain assumptions, that they belong to the same object.

Lowe 1987] pushes this idea toward more general 'perceptual grouping" of primitive

image edge features occurring on three-dimensional objects (see also [Witkin and Tenen-

baum, 1983]). The groupings he describes correspond to parallel edges, edges converging

at vertices, and edges colinear across gaps. See figure 33. Unlike Turney et al. and

Ettinger's subtemplates and subparts, these are not identified as structures which hap-

pen to be salient with respect to particular object model libraries. Rather, instances of

parallel edges and so forth are arguably common to 'images of large classes of manmade

and natural objects. I In Lowe's approach, increasingly domain-dependent structure is 'in-

troduced later in the system in the form of a hierarchy of more specialized groupings such

as, for example, parallel lines forming a skew-symmetry configuration. Lowe's system uses

matches between instances of grouped structures found in the image, and enumerations

of locations on models in the object library that 'Could have produced these structures, 'in

order to generate hypotheses for the poses of objects 'in the scene.

The addition by Turney et al. and Ettinger of "subtemplates" or "subparts," and by

Lowe of "perceptual feature grouping" to ad 'in the successful generation of candidate

object model poses, amounts to 'Installing knowledge about the shape domain 'in the form

of a vocabulary of intermediate level shape descriptors. The present work advocates

taking this approach to the design of shape representations supporting later vsual tasks

extending beyond template-based shape recognition.
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Figure 33: Line drawing of a 'razor' shape illustrating the prevalence of parallel
lines, lines converging at comers, and lines collnear across gaps. "Perceptual group-
ing" of these structures is a useful intermediate step toward hypothesizing the pose
of an object model to account for edges measured in an image (adopted from Lowe,
[1987]).
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3.2 Building-Block Models for Representing Shape

The predominant candidate approach to shape representation that might extend beyond

shape recognition to more general later visual processing encompasses a family of rep-

resentations that may be called building block models: a fixed, predefined vocabulary of

shape pmitives 'is employed that amount to a set of building blocks for approximating

object's shapes. [Binford, 1971; Hollerbach, 1975; Marr and Nishihaxa, 1978; Nevatia

and Binford, 1977; Brooks, 1981; Bederman, 1985; Pentland, 1987; Brady and Asada,

1984; Connell, 1985; Truv6 and Richards, 1987]. Although building block shape represen-

tations have been advanced primarily to support the task of shape recognition, they are

also viewed as offering properties conducive to other sorts of ta-sks such as construction of

category hierarchies [Brooks, 1981], and Computer Aided Design. Building block represen-

tations. axe closer to providing a "language" for flexible and general purpose manipulation

of shape information than are the shape descriptions used in template-based recognition

algorithms, but, as realized to date, they nonetheless carry significant drawbacks limiting

their expressive power.

3.2.1 Part Structure and Ob'ect Shape

The central insight behind most bilding block representations 'is that an object's part

structure leads to a natural scheme for its partitioning into chunks or units of shape. [Marr

and Nishihara, 1978- Pentland, 1987; Hoffman and Richards, 1984]. Thus, a building block

representation generally consists of two components: (1 a way of describing the shapes

of paxts themselves, and 2 a way of describing spatial relationships among the parts.

Because an objective is to assign to each of an object's 'Individual parts a single build-

ing block descriptor, the parts' geometries can often be only crudely approximated. Typi-

cally, the building blocks consist of some mathematically convenient parameterized region

or volume. For example, Pentland proposes three-dimensional part models, caUed su-

perquadrics, utilizing twodegrees of freedom controlling squareness or roundedness from

two vewpoints, and augmented -by parameters corresponding to stretch, taper, bend,
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and twist [Pentland, 1986b]. An alternative proposal by Bederman 1985] is to select

part models from a library of volumetric solids (such as cubes, pyramids, cylinders, etc.),

called geons, which may, 'if desired, be parameterized in order to vary the dimensions or

other fundamental properties of each basic part shape. Under these schemes, a human

arm might be approximated by a couple of cylindrical solids, joined end-to-end at the

elbow joint. Note, however, that this approximation does not capture many subtleties

of an arm's shape such as the vsible bumps and bulges of the bones and muscles which

govern the contours taken by the skin. Theoretically, the generalized cylinder representa-

tion [Binford, 1971; Marr and Nishihara, 1978] can support more complexity and subtlety

in shape description because 'it aows an arbitrarily complex path for a "spine" and an

arbitrarily complex cross section, or "sweeping rule.' However, one of the purposes for

chunking shapes into parts 'is to smplify, compress, and abstract over the description

of an object's shape. In practice, the spine and sweeping rule of generalized cylinders

descriptions are usually approximated by mathematically convenient functions such as a

spine's circulax curvature approximation, and a simple round or rectangular cross section.

(See also [Brady and sada, 1984), and Connell, 1985], for two-dimensional analogues of

generalized cylinder models).

The spatial arangement of building block part descriptors can be specified either With

respect to the object as a whole, or with respect to one another. Common practice is

to define a local coordinate frame embedded in each part, and to speak of the spatial

transformations among these coordinate systems for adjacent or connected parts. Several

advantages follow from defining the spatial relations among parts locally in this fashion

(Marr and Nishihara, 1978; Brooks, 1981; Hinton, 19791. First, the physical constraints

holding an object together operate locally, at the joins between paxts. Thus, the spatial

relationship between the fingers and p of a hand persevere even as the hand is moved

through space; it is natural for the shape description of the hand to preserve this invariance

by describing local spatial relationships explicitly, in local terms. Second, partial object

descriptions are unaffected by global spatial events. Using locally defined coordinate
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transformations, the description of a hand in terms of the relative locations of fingers and

palm can remain the same whether the hand fills the field of view or whether it appears

in the context of an entire human form. Third, locally defined coordinate systems are

natural for establishing herarchies of size and detail. An approximation of the hand in

terms of one part descriptor 'is useful for describing the spatial relationship between the

hand and the arm, while the same hand coordinate frame is also convenient for describing

the locations of the hand's details-the palm and fingers.

A building block shape description 'is typically realized as a gaph representation, where

the nodes of the graph correspond to the parts and are attributed with the part parameters,

and the links are attributed with the spatial relations among the parts. Shape recognition

then becomes a problem of graph matching, that is, of matching nodes and links 'in the

part description of a viewed object with the nodes and links of building block object

models. Note that this 'Interpretation of what 'it means to recognize a shape is different

from that of template-based recognition algorithms. The units of shape information that

must find correspondence between image data and object models are at the level not of

the primitive edge or contour fragments extracted from an 'image, but rather, of the larger

and more abstract chunks of shape that more nearly approach natural interpretations of

the functional purposes, and the fabrication, generation and growth processes believed to

govern the part structures of objects [Hoffman and tichards, 1984; Pentland, 1986a].

By attempting to carry out a manipulation of shape information at the level of rel-

ativel large and abstract units of shape such as object parts, building block models

facilitate certain aspects of shape recognition and reasoning about shape, and they hinder

others. A review of what kinds of computations on shape are easy and difficult to perform

using shape building blocks lends support to the suggestion that, while part decomposi-

tions can be an important component to effective representation of objects' shapes, the

structures to which explicit shape descriptors are devoted should not be limited to a small,

fixed, vocabulary of building blocks.
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3.2.2 Similarity Measures and Equivalence Classes

One test of a shape representation 'is the expressive power 'it provides for judging sim-

ilarities and dfferences among shapes. As discussed n Chapter 2 shape comparisons

are useful components of interesting visual tasks in their own rght. Furthermore, the

computations involved 'in judging shape similarities and differences are closely allied wth

important steps of shape recognition. The efficiency, subtlety, and precision wth which

shapes may be compared parallels a representation's facility at defining equivalence classes,

or categories of shapes. A form of similarity judgment is required when shape recognition

is cast as a problem of deciding whether or not a viewed shape "matches" one or another

prototype shape model selected from an object model library. This computation demands

attention to generalizations of shape descriptions. Dfferent instances of the same type of

object (instances of chairs, cups, and cows, for example) differ in their precise geometries

and even the same individual object may on derent occasions or under differing view-

ing conditions be assigned somewhat different descriptions, as we shall see. What tools

do building block representations offer for comparing shapes wth one another, and for

naming aspects of geometry and spatial configuration that might be used to define the

contours of shape categorie, encompassing a spectrum of shape descriptions?

A parts-based shape representation maLes explicit certain information about the qual-

itative part structure of an object, that is, about the topology of part connectivity, and

it makes explicit certain metric information about the shapes of paxts and about spatial

relations among parts. In particulax, 'it provides direct access to the identity and/or defor-

mation parameters of the pzxt models (geons, superquadrics, generalized cylinders), and

it provides direct access to the parameters specifying the spatial transformations among

part coordinate frames (translation vectors, es and degrees of rotation). Two versions

.of shape comparison in building block representations then arise: (1) stuations in which
t

two shape descriptions share a common qualitative paxt structure, and 2 situations in

which two shape descriptions have qualitatively different part structures.

When two shape descriptions shaxe a common qualitative part structure, their similar-
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ities and differences are to be judged on the basis of their component metric parameters.

In general, 'it is convenient to perform comparisons on the basis of spatial properties mea-

sured directly by the parameters provided. For example, consider a shape recognition task

where the blding block approximation of a human arm shape must be compared with

prototypes 'in an ob'ect model library. It is typically easy to define a class of shape models

that encompass common gross differences in human arm shapes: cylindrical solids corre-

sponding to the upper arm and forearm would each be assigned upper and lower bounds

in their allowed length, taper, diameter, and curvature. Paxts 'in a novel 'image observed

to fall within the prescribed parameter ranges would be accepted as potential matches to

the upper arm or forearm nodes in an ob'ect model graph. The parts model also makes

'it relatively easy to speak of some aspects of the spatial relations among parts, and even

some kinds of articulated joints. If the coordinate transformation between the upper and

lower arms is defined appropriately (with respect to the elbow joint), then elbow motion

appears as a variable value 'in one rotation parameter.

However, other sorts of spatial properties become more difficult to specify when they

are not directly expressed in terms of part parameters. For example, figure 3.4a exhibits

a shape for which one very salient characteristic 'is the continuous curvature of the outer

edge. This property 'is quite cumbersome to express in terms of the parameters of part

spine curvature taper, flare, and the spatial transformation between parts. In figure 3.4b,

the Cardinalfish prominently exhibits alignment of the posterior edges of the dorsal and

anal fins. Again, however, the part description of the fish would offer little support for

making this property explicit. Figures 34c and 34d present other situations in which

the fixed, generic, predefined vocabulary offered by domain-independent building block

representations does not capture the salient characteristics of objects' shapes.

The most concrete proposal to date for dealing wth spatial properties corresponding

not to explicitly named building block parameters, but resulting from interactions among

the predefined part and transformation parameters, is by Brooks 1981]. His method

involves mintaining algebraic relationships between part parameters, for, example, spec-
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Figure 34: (a) The large circular outer arc is a prominent feature of this object. In
a part-based building block representation the object would be described in terms
of the length, curvature, taper, and flare part parameters of the three component
parts, as well as the spatial coordinate transformations between these parts. Not
only is the circular axc not explicit in this representation, but even detecting its
presence would 'involve rather cumbersome and involved computations on the paxt
parameter description. (b) The Cardinalfsh is characterized by alignment of the
posterior edges of the dorsal and anal fins. A parts-based decomposition of the
fish's shape would not only fail to capture subtleties 'in the contours of each fin,
but it would obscure this global spatial alignment. (c) At a coarse scale, the outer
boundaxy of this shape is round. A paxts-based description of the shape would
ignore this obvious feature. (d) The proximity of the two tips is easily judged in an
image without regard to the shape of the rest of the object. In a parts-based model,
the spatial transformation among parts usually follows part connectivity; in order
to find the spatial relationship between the tips, a computation would have to trace
link by link, through the object, from one Up to the other.
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ifying not only that an axm part must be of length, L,i, < L < Lmax, but that the upper

arm and lower arm must be of si 'lax length: Lperarm - Lforearml < Lmax-difference-

This idea is incorporated 'Into a complicated constraint propagation scheme for interpret-

ing 'image data and has to date not lead to any wdely accepted technique for generating

building block based ob'ect categories for shape recognition.

Difficulties 'in omparing shapes or defining important classes of shape equivalence

using bilding block models are not limited to situations in which a common graph model

is applicable, that 'is, in which the same parts and links are present in both the shape

object model and the viewed object. Any attempt to extract a meaningful interpretation

of the comparison between two building block shape descriptions becomes even more

problematical when the shapes are assigned qualitatively different part structures. Figure

3.5 offers an illustrative example. The central figure appears in many ways more similar to

the shape on the right, which has a different qualitative part structure, than it does to the

shape on the left, with which 'it shares a common part structure. It is important to note

that although the reconstruction of two shapes from their part descriptions may appear

similax' to the human eye, they may be quite different with respect to the operations

provided by a shape representation for comparing abstract shape descriptions. Seldom

does the literature developing building block shape models address the problem of devising

similarity measures on part descriptions that take into account the interacting effects on

spatial geometry of both qualitative part structure and quantitative part parameters.

3.2.3 Segmentation and Descriptive Instability

The problem of creating similarity measures over building block shape descriptions is

important because very similar shapes can be assigned very different part decompositions.

One of the strengths of building block representations-that they attempt to capture the

natural part structure of objects-also becomes one of their weaknesses when an object's

"natural" part decomposition is not obvious. Figure 36a iustrates one such case, where

it 'is ambiguous whether an ankle 'is best described as a single curved part or as an assembly
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Figure 3.5.- Under a representation making explicit only qualitative part structure
and metric part parameters, it can be difficult to combine qualitative -and metric
information to arrive at global judgments about similarities and differences between
shapes. This example shows that a shape (b) can appeax in many ways more similax
to another shape possessing a different qualitative part structure (a) than to a shape
sharing the same part structure c).

consisting of a leg and a foot. Because 'indexing, compaxison, and recognition of shape

takes place at the part level of abstraction, a visual system using the blding block

representation is forced to commit to a paxt segmentation at an early stage. If the object

model for an ankle consists of a foot paxt attached to a leg part, but 'in a particular scene

only one curved part is extracted, then finding a correct match becomes uncertain. The

issue has been confronted most forthrightly by Pentland [1986b], who offers the rather

unsatisfying suggestion of maintaining multiple object models with different qualitative

part decompositions.

The fundamental problem with forced decompositions of shapes in terms of parts is

that in many cases a part segmentation is descriptively unstable. This is to say, the criteria
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Figure 36: (a) Two exploded-view illustrations (from [Pentland, 1986b]) of a human
figure constructed by hand (left), and the parts reconstructed by a compu 'ter, from
a synthetic image of this model right). Note that the ankle in the left-hand figure
consists of separate leg and foot paxts, 'it is approximated in the right-hand figure
by a sngle curved part. Part-by-part matching of viewed object and models is
complicated by descriptive instability of this kind. (b) Descriptive instability arising
from two equally plausible paxt decompositions of a branching shape.

91



for parsing an object 'into parts become arbitrary in borderline cases, and a small change

in an ob'ect's shape can lead to a large change in 'its abstract level description. Figure

3.6b presents another example of this kind of situation. The problem ases for two related

reasons (1) building block models attempt to 'ump directly from a shape description at a

very primitive level (in terms of edge fragments for the entire boundary, for example) to a

description at a very abstract level containing many fewer descriptive parameters (namely,

only the part parameters), and 2) the variations in shape of the ob'ects in the world do

not always correspond to the variations in geometry accorded by the free parameters of

part models. The price paid for these characteristics of building block approaches to

shape representation includes, as we have seen, the inability to capture subtleties in shape

geometry, difficulty 'in defining appropriate shape similarity measures, and descriptive

instability in part segmentation. These problems surface in the shape rec Rion task at

the steps of computing the description of a novel, viewed shape, and indexing 'into the

library of object models.

Because the first major step 'in shape recognition under a building block representation

is to compute the abstract level shape description from primitive shape data closely tied

to the image (for example, fitting generalized cylinders to range data) the problem of

descriptive instability appears immediately: decisions must be made as to whether to

segment the shape this way or that. Criteria for making these decisions typically appear

as heuristic rules 'in computer programs attempting to perform the parsing automatically.

For example, figure 37 presents a number of situations in which rules might be brought to

bear to decide under what circumstances a corner cut out of a block should be paxsed as

conjunction of two prts, versus the removal from a single block of a "negative" part.

Bagley 19851, Fleck 1985], and ConneR 1985] discuss at length the difficulties encountered

in attempting to devise appropriate heuristics in the absence of any principled grounds

for choosing them.

A related problem encountered in computing building block shape descriptions from

image level- data occurs when only prtial data is available. This occurs in two-dimensional
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Figure 37: What is the 'correct" building block decomposition of these shapes? (a)
Depending upon certain dimensions, this may be interpreted either as a lrger block
wi ved, or as a block wth a small block glued on. (b) Any proposed
set of rules governing which interpretation is to be preferred can become axbitraxl'ly
complex and ad hoc. These shapes iustrate some of the factors that can influence
the interpretation. It is uncertain that a satisfactory set of rules can be devised
for interpreting shapes purely 'in terms of part-based building blocks in a consistent
manner.
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I 1shape recognition when an object is partially occluded, and in three-dimensional shape

'tion when the backside of an object is not visible (even if a depth map s available

for the vsible surfaces). See figure 38. Because the abstract level description of a shape

exists only in terms of parts, 'if any sort of matching 'is to take place, a bilding block

recognition system can be forced into attempting to infer paxt structure by guessing at

the eistence of properties such as occluded boundary contours and part symmetry. The

result is another set of heuristic rules about fitting abstract level part approximations to

image level data; in this case, the rules attempt to state circumstances under which it

is permitted to hallucinate unobserved surfaces and contours. This unfortunate necessity

of volating the principle of least commitment [Maxr, 1976] 'is required because a paxt-

level descriptive vocabulary lacks terminology for effectively naming and using sub-part

collections of shape data.

The second major step of shape recognition under a building block representation 'is

indexinginto a library of known object models. Any encumbering computational cost or

clumsiness encountered in companng two shapes, such as that discussed in Section 32.2,

is multiplied when a shape model 'matching a viewed shape must be -selected among a

database of known objects.

One of the stated goals of many building block shape representations is the ability to

derive a unique canonical description for an object's shape [Marr and Nishihara, 1978].

The idea is that any shape should give rise to only one description, and that description

should lead to a unique address for the shape 'in a database. This could simplify the

problem of searching through the database in order to locate the model to which the

description of a viewed shape matches. Also, the ability to index to a unique address

would enable a representation to decide that 'it does not recognize a novel object for which

no model is stored at the address computed for this object. While the notion of a canonical

description seems worthy, the prospects axe doubtful for achieving such a scheme using

building block representations. The elements of an address would presumably have to

be drawn from the vocabulary for describing the qualitative part structure and metric
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Figure 38: A building block shape representation is -compelled to interpret scenes
in terms of 'its vocabulary of building block shape descriptors. When only partial
prirfuRive level object descriptions are available from an 'image (such as when objects
occlude one another), part segmentation rules can be forced to hallucinate missing
information on the basis of heuristic rules. The inference that two simple parts, are
present (b) would be incorrect were the situation actually as shown 'in (c).

95

I\N-4 -,4



part parameters of building blocks. As discussed above, this vocabulary 's limited 'in the

information about shape that it can make explicit. The following three conditions would

have to hold 'in order for paxt-based building block representations to form a suitable basis

for canonical shape representation: (1) the essential and salient characteristics of a shape

would have to be made plain smply 'in terms of just the building block part parameters,

(2) the part descriptions of all object types encountered in the world would have to fall

into clear and distinct categories, and 3) the part description would have to be reliably

and reproducibly computable from a complete and paxtial vews of an object. None of

these conditions 'is true of any building block representation proposed to date.

3.3 Ob'ect-Specific Knowledge 'in CAD Systems

Thus far we have explored a number of difficulties arising in attempts to describe shapes

according to building block approaches. Building block representations may be said to

lack knowledge of any particular shape domain because they offer a fixed, predefined

vocabulary of generic shape descriptors that are intended to span all shapes.' The only

information made explicit in a shape's description is the information contained in the part

models and in the spatial traasformations localizing the parts in space. As a result, chunks

of shape data and spatial relationships not made explicit by the building blocks can be very

difficult, cumbersome, or in some cases impossible to access, even if, for particular shape

domains, this latent information may be especially useful for distinguishing, categorizing,

and reasoning about shapes.

The building block approach to manipulating shape information has been used not only

in computational vision, but also in the area of Computer Aided Design (CAD). Recent

trends in CAD systems offer useful nsights into the role that extensible vocabularies of

shape descriptors can play in manipulating shape 'Information.

While many CAD systems employ building blocks consisting of volumetric solids equiv-

'In fact, the success of Hollerbach's 1975] program for identifying Greek vases using a generalized

cyfinder-based representation may be attributable to its focus on this particular shape domain.
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alent to Biederman's geons or to generalized cylinders, we focus here on systems for which

the elemental units of shape data axe edges, corners, and surfaces (called boundary repre-

sentations). The purpose of these systems is essentially to facilitate the task of drawing

the shape of a part on a computer screen. User-interactive tools are provided for drawing

lines, for magnifying and reducing views, and for moving collections of drawn features

around on the screen using a mouse or other pointing device.

It has become evident in the development of CAD systems that it is useful to provide

tools for a designer to specify that certain geometric constraints should hold among the

lines or other elements that have been drawn on the screen (Sutherland, 1963; Light and

Gossard, 1982; Newell and Parden, 1983; Aldefeld, 1988] For example, figure 39 illustrates

a situation in which a designer may have declared that one pair of lines should remain

perpendicular to each other, that another pair of lines should be parallel and at a certain

distance, -and that the crcle should lie a certain distance from one of the lines. Under

these constraints, the designer is free to, say, move corner A to the right if he decides that

the flange should be oriented more toward the square end of the object. But, under the

interactive computer assistance, the locations and orientations of the other lines and the

circle can be adjusted appropriately in order to maintain the specified constraints.

In essence, this kind of CAD tool enables a designer to manipulate shape interactively

under the umbrella of a form of knowledge, that is, the computer "knows' certain informa-

tion about the geometric configuration of elements that the designer wishes to maintain.

This knowledge may be called object, because it applies only to the machine part

or object that the designer is drawing at the moment.

Typically, a large number of interacting constraints among pnts and surfaces are

required to specify an object's geometry-in fact, the approach to using a constraint- based

CAD system parallels that of a drafter dimensioning a drawing. Many of the geometric

properties in which designers are 'Interested, such as distances between surfaces, rad of

holes, and other measures relating to the fit, weight, and strength of machine paxts, occur

at the level of the elemental descriptors provided, that is, edges, points, and surfaces.
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Figure 39: A constraint-based CAD system might allow a designer to declare that
lines a and b are to remain parallel and at a certain distance, that lines a and c axe
to remain perpendicular, and that the hole remain at a certain distance from line a.
The designer may then 'Interactively tug on corner A (axrow), while the computer
maintains the other constraints. The database ofuser-specified constraints amounts
to a form of ob'ect-specific knowledge about the geometric relationships holding 'in
the ob'ect under design. (This example is hypothetical: most current CAD systems
do not necessarily support this degree of real time human/computer interaction.)

By allowing the designer to name his own constraints over these elements, CAD systems

afford a designer flexibility in specifying precisely the geometric properties of significance

to the particular shape he 'is creating. This step toward specialized vocabulaxies of shape

descriptors tailored to special shape domains and ta-sks can be taken 'in CAD systems 'in

part because an intelligent human 'is 'in the loop. One intent of the present thesis work 'is

to comprehend how this 'Idea might illuminate our understanding of autonomous machine

and biological vision systems.
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Chapter 4

Symbolic Construction of a 2D Scale-Space Imagel

4.1 Introduction

The shapes of naturally occurring objects characteristicallyinvolve spatial events occurring

at a multitude of scales. For example, the fish shape in figure 41 appeaxs at a coarse scale

simply as an elongated blob; at a medium scale as a somewhat more wen-defined blob with

smaller blobs (fins) attached; and finally, at a fine scale, as a shaxply defined Anchovy

complete with pronounced fin contours, pointed tail flukes, and a mouth. Shape details

appearing at finer scales are stuated in relation to one another by the spatial structure

emergent at coarser scales. It 'is important to make explicit the multiscale structure of a

shape object2 in order to effectively perform shape recognition or to engage in other forms

of reasoning about shape because important distinguishing characteristics or features may

occur at any scale.

For this reason one widely cted goal for early visual shape processing is to construct

a description of a shape at a variety of scales [Witkin, 1983; Mokhtarian and Mackworth,

1986; Mackworth and Mokhtarian, 1984, 1988; Asada and Brady, 1986; Pizer et al.,

1986; Koenderink, 1984; Burt and Adelson, 1983; Crowley and Parker, 1984; Crowley and

Sanderson, 1984; Sammet and Rosenfeld, 1980]. From these descriptions may be extracted

important primitive shape events to be used by later stages devoted to object recognition

or other visual tasks. This chapter is concerned with building multiscale shape descriptions

of two dimensional binary (silhouette) shape 'images in terms of edge and region (blob)

shape primitives.

Currently available techniques for multiscale shape analysis axe of two basic types:

'This Chapter appears as MIT AI Memo 1028.

2We refer to a figure whose shape we are analyzing as a shape object.
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contour-based smoothing and region-based smoothing. Both of these approaches are based

on the application of a numerical smoothing operator uniformly to some one-dimensional

(contour-based) or two-dimensional (region-based) array of shape data. The operator is

typically characterized by a size or width parameter indicating the degree of smoothing

performed and hence the scale of the result. Region-based smoothing techniques may

be further subdivided into isotropic smoothing operators, and oriented filters. As will

be shown, at coarse scales both contour-based smoothing and isotropic region smoothing

approaches fail to capture in a consistent manner 'important structure iherent to shape

objects. The prospects for oriented filters are uncertain.
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Figure 41: Important shape features occur at many scales.
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This chapter describes a fundamentally different approach to extracting pmitive

shape descriptions at multiple scales. The approach 'is based on grouping of shape tokens

in the style of the Primal Sketch [Marr, 1976]. Each token may bear more nformation

than 'ust the local magnitude of an image intensity or local orientation of a contour. The

approach may be considered symbolic because the tokens axe, conceptually, discrete enti-

ties, and because the grouping steps atually taken depend necessarily on the shape data

itself. This is in contrast to uniform numeric smoothing algorithms which carry out the

same ari'thmetic procedure everywhere regardless of the shape content of the data.

An important tool we introduce for carr ing out the grouping operations 'is the Scale-

Space Blackboard. Tokens are placed on the Blackboard according to their location, ori-

entation, and scale. The Scale-Space Blackboard facilitates manipulation of shape 'Infor-

mation because it permits tokens to be indexed on the basis of location and scale.

The grouping procedures specify situations under which a collection of tokens should

give rise to a new token. Two types of grouping operation are presented: (1) Fine-to-coarse

aggregation of edge primitives generates a coarser scale edge map from finer scale edge

primitives, 2) Pairwise grouping of symmetrically placed edge primitive tokens supports

assertions of curved-contour, primitive-corner, and bar events, all of which demark partial-

regions. These events axe marked by partial-re 'on type tokens placed on the Scale-Space

Blackboard.

The outline of the chapter is as follows: The remainder of the Introduction explores

characteristics desired of a multiscale shape representation. Sections 42.1 and 42.2 briefly

illustrate disadvantages of contour-ba-sed smoothing and isotropic region based smoothing

approaches to identifying important coarse scale structure in shape images, while Section

4.2.3 shows that oriented edge filters offer some improvement over isotropic region-based

smoothing operators. Section 43 introduces the Scale-Space Blackboard as a data structure

which allows shapes to be manipulated symbolical while preserving a pictorial quality

to the organization of spatial information. Section 44 offers an algorithm for fine-to-

coarse aggregation of edge primitives through token grouping. Section 45 presents rules
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for grouping edge primitives 'in order to identify more complex structures constituting

partial-regions.

4.1.1 Object'Ives for Multiple Scale Shape Representation

The motivation for describing shapes at multiple scales is to separate geometric features

and properties of differing size or scale, on the assumption that they are likely to reflect

different parts, processes, or functional properties of objects encountered in the visual

world. For example, the body and stem of an apple are related to one another by, among

other things a difference in relative size. If the early stages of visual processing can

deliver object descriptions making explicit relative szes, then later stages of processing,

such as visual recognition, may be assisted in carrying out tasks such as matching these

descriptions to internal models of known objects: An apple consists of a large blob (body)

wiRh a small elongated part (stem) attached.

In evaluating the performance of a multiple scale shape description, 'it is important

to have established, at the outset, expectations for just what sorts of geometric structure

the computation is 'intended to segregate according to size or scale. We proceed from the

following notion: size or scale corresponds to spatial extent in the image of a shape ob'ect.

Thus, the body of an apple is considered a larger scale feature than the stem because it

has greater spatial extent.

To be more precise, however, the term, spatial extent,' may be interpreted in either

of two ways: as linear distance, or as axea. It is clear that the body of an apple is a large

scale feature relative to the stem, both because its diameter 'is larger than the length of

the stem, and because it has greater area than the stem. But suppose the apple is hanging

from a string. (See figure 42). The -string may have a length comparable to the diameter

of the apple, but, because of its narrow width, cover an area more similar to that of the

stem. So should the string be considered a large or small scale spatial event?

This example suggests that a multiscale shape representation treat object boundaries

differently from the regions they enclose. Thus, the scale assigned to a contour boundary,
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such as the edge of a piece of string, should depend on its linear extent, while the scale

assigned to a local blob or region, such as the body of the apple or a snippet of string,

should depend upon its area.

- If the purpose of a multiscale shape description 'is to segregate features according to

scale, then shape events at different scales should not interfere with one another. For

example, the rounded top of an apple forms a large scale boundary between the -body of

the apple and the background, as shown in figure 4.2d. The presence of the small scale

apple stem, or even the string, does not change this gross feature, and the coaxse scale

description of this boundary should not be affected by the presence or absence of the stem

or string. Conversely, the description of smaller scale shape features or properties should

remain unchanged no matter what their proximity to large features. For example, were

the apple placed next to another, much larger object, the body of the apple would become,

in comparison a small scale object (figure 4.2c). Nonetheless, the description of the apple

body should remain unaffected; the apple is still a roughly circular blob wth dmples on

the top and bottom.

a b

I
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Figure 42: A two-dimensional apple shape (a) retains 'Its fine and coarse scale
structure even when the apple hangs from a string (b) and when the apple 'is placed
near another large object (c). (d) The large scale figure/ground boundary formed
by the top of the apple remains unchanged under these circumstances.
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4.2 Uniform Numerical Smoothing Methods

A two-dimensional region, and the one-dimensional contour enclosing this region, are

complementary ways of describing a two-dimensional shape object. Accordingly, two ai-

ternative schemes are available for representing a shape object at the pixel level: as a

two-dimensional array indexed by x, y spatial coordinates, or, as a one dmensional array

indexed by distance along the contour, s. With each type of representation are associated

natural approaches to obtaining descriptions at different scales by applying some form of

numerical smoothing technique uniformly to the data.

4.2.1 Contour-Based Smoothi'ng

Contour based shape representations orgaraze the description of a shape 'in terms of a

succession of points along an object's boundary. Several vari'ati'ons of contour based shape

representation have been used. These 'include encoding of: (1) successive pixel (xy)

location, e.g. [Mokhtarian and Mackworth, 1986; Mackworth and Mokhtarian, 1984],

(2) differences 'in successive pixel locations (Ax, Ay), e.g. (Freeman, 1974], and 3) loc.

orientation (ardan e.g. [Asada and Brady, 1986]. Contour smoothing operationsAx

modify the path of the two-dimensional contour curve in space, and sometimes also 'its

length. Here we illustrate contour based smoothing under the technique of encoding pixel

(XI ) location as a function of arc length, a (measured 'in terms of pixel count), and

smoothing the x(s) and y(s) functions independently:

aa,

1: G., i)x(s - i) (4.1)
i=-aa

acr

V(s) E Go, i) y( - i), (4.2)
i=-aa

where G 'is a Gaussian of width a and the factor, a, effectively truncates the tail of the

Gaussian (a = 3 is a suitable number). Under this scheme a dosed contour is guaranteed

to remain closed after smoothing, while this is not true for representations of orientation

versus arc length. Figure 43 shows the contour of an apple shape under different degrees
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Figure 43: Apple shape encoded 'in terms of pixels along its bounding contour, x(s)
and y(s). Smoothing these one-dimensional axrays yields a smoothed shape contour.

of contour smoothing obtained by using Gaussians of various widths.

For some shape objects, contour-based smoothing does a od job of removing fine

scale detail while preserving the larger scale aspects of the shape.' Indeed, the apple is one

example of such a case. However, many other shapes exist for which contour smoothing

fails to identify 'important coarse scale structure, or else inappropriately suggests the

presence of nonexistent coarse scale structure. Figure 44 illustrates. To the human eye,

in -figure 4.4a two parallel bars are prominent; under contour smoothing one of the bars

remaIns at a coarse scale, while the other breaks up. In figure 4.4b, the apple 'is shown

hanging from a string. Contour smoothing to a coarse scale results in misleading distortion

and absurd implications about the gross shape. These effects can create hardships for any

later processing stages which may seek to perform part segmentation, match to object

models, or otherwise interpret coarser scale shape descriptions. A related problem arising

with contour-based smoothing occurs in figure 4.4c. Here, a banana 'is placed near the

apple. A very small change in shape, resulting from the banana being moved a little closer

to the apple, leads to a very large change in the coarsely smoothed contour.

As these examples show, contour based representations place undue emphasis on the

topology of shape boundaries. The resulting descriptive instabilities are likely to introduce

insurmountable complications later on. We conclude that purely contour-based smoothing

approaches do not provide an appropriate basis for constructing multiscale shape descrip-

tions.
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Figure 44: (a) Contour smoothing fails to capture the large scale interpretation
that two parallel bars are present. (b) Under contour smoothing a string te to
the apple grossly distorts the apple's shape at coarse scales. (c) Moving a banana -
so that it ust touches the apple leads to a large and discontinuous change in' the
coarse scale description. Contour-based smoothing methods place undue emphasis
on the topology of bounding contours.
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4.2.2 Isotropic Region-Based Smoothing

Re 'on based smoothing techniques start With representations for shape consisting of two-91

dimensional arrays of numbers. A two-dimensional shape object slhouette) assigns the

value, (say) 1, to locations in a two-dimensional axray covered by the object (figure), and 

to the surrounding space (ground). In general, filtering a two-dimensional array of binaxy-

valued pixels results in an array containing real numbers. Each such grey-level value may

be 'Interpreted as the "strength" of the filtering kernel response at that location.

Most popular among region-based smoothing operators 'is convolution with the circu-

larly symmetric Gaussian. This operator 'is spatially isotropic, and is often followed by a

differential operator such as the Gradient Magnitude or Laplacian. The latter is usually

incorporated into the Gaussian smoothing step, yielding the well known V2G, and 'Its ap-

proximation, the DOG Difference of Gaussians). The outputs of these ftering operators

typically feed some sort of thresholding step resulting in edge [Marr and Hildreth, 1980;

Cann 1986] or re 'on/blob [Crowley and Sanderson, 1984; Crowley and Parker, 1984;

Voorhees, 1987] assertions.

Figure 45 shows the result after Gaussian smoothing the binary silhouette of an apple

w'th filters of various wdths. Also shown axe edges found by thresholding and then

3thinning the gradient magnitude Gaussian smoothing yelds a field of numbers that

may be 'interpreted as the "density of matter" at each spatial location, averaged 'in all

directions. The edges found by taking peaks 'in the gradient magnitude of this map do

a good job of removing small scale details about the apple's bounding contour, while

preserving its overall, large scale shape.

Figures 46 and 47, however, show that the isotropic Gaussian blurring operation may

obliterate evidence of extended edges when they occur in proximity to large yet unrelated

regions or when they enclose narrow regions. In figure 46, the string tied to the apple

is lost altogether under thresholding following Gaussian blurring. Because of its narrow

width, it dssipates away under even moderate amounts of blurring.

3This is the foundation of the popular Canny edge detector.
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Fiaure 46: Under Gaussian blurring the string dissipates away even thouah it has
�n z!)

large spatial extent along its length.
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Figure 47: When the apple is placed near the banana, Gaussian blurring bleeds
them together and distorts evidence of their large scale geometry.�n
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The converse problem arises in figure 47, in which the apple shape is placed next to the

banana. -Now, the results of Gaussian smoothing and coarse scale edge detection yield an

apparent coarse scale'contour for the apple shape that is substantially different from te

one obtained in figure 45. What happens is that, at coarse degrees of smoothing, "matter"

from the banana leaks over to the region of the apple. Evidently, under Gaussian blurring,

the coarse scale descri ption of an object's shape cannot be trusted to remain stable under

the presence of nearby objects, even when no object occludes any other. Again, as i the

contour smoothing case, this instability effectively undermines the purpose of multiscale

shape analysis.

4.2.3 Oriented Region-Based Flters

Another class of region based operators for extracting events at multiple scales are oriented

filters, such as the Gabor filters [Daugman, 1985]. Here, we illustrate the performance

of oriented edge msks consisting of a Gaussian weighting along the length of the edge,

and the derivative of a Gaussian across the edge (figure 4) (see [4ucker and Iverson,

I

I

Figure 48: Oriented two-dimensional edge mask.
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1987], who use the 2nd derivative of the Gaussian). Orientation tuning is determined by
the relative widths of these profiles. Because oriented filters carry out sp

I atial averaging

non-isotropically, that is, depending upon the orientation and eccentricity of the mask,

they perhaps stand a better chance of achieving smoothing along the length of a contour,

while isolating regions lying on opposite sides of the contour.

Figure 49 shows the results of oriented edge detection for the apple shape. The filter

mask was convolved with the ori 'nal bnary image at sixteen different orientations for each

scale, and yields sxteen grey-level axrays for each scale. In order to facilitate presentation,

it is convenient to condense this laxge amount of information 'into' two arrays of numbers

for each scale. One (figure 4.9b) depicts the strength of the maximally responding filter

response, at each spatial location, the other (figure 49a) shows the orientation of the

maximally responding filters for a selected subset of spatial locations, such as, for example,

locations where the filter response 'is above a certain threshold.

Figure 410 indicates that the performance of oriented filters 'in identifying extended

edges at coaxse scales 'is 'improved over isotropic Gaussian smoothing. For example, in

the absence of background clutter, the string 'is detected at fairly coarse scales when its

boundary contour aligns with the orientation axis of the elongated mask.

However, figure 411 suggests that cases yet exist where oented edge filters fail to

'Identify important coarse scale edges. One source of difficulty arises from the fact that

large aspect ratios may be required to detect long edges bounding an ob'ect placed very

near to another object. Such greatly elongated filters by and large bring severe orientation

tuning, and an 'inordinate number of them may be required to over the visual field at

all orientations. It is not clear to what extent this problem tarnishes the advantages of

oriented fters.

Uniform numerical smoothing techniques are conceptually straightforward and smple

to apply, but these in themselves amount to no sound bases for believing that they should

necessarily extract the important shape properties that later visual processes can most

effectively use. It seems possible, though, that oriented filters may yet offer some promise
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Figure 49: Apple shape under oriented edge filtering. (a) Line segments denote
orientations of edges after thinning and thresholding. (b) Maximum filter response
out of 16 orientations. 113
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for finding large scale structure in shape images. We leave them as a subject for additional

study, and turn next to a very different approach to multiscale shape analysis.

4.3 The Scale-Space Blackboard

4.3.1 Tokens vs. Fields of Numbers

The purpose of a shape representation is to dstinguish, identify, and characterize to make

explicit-certain shape properties and spatial events 'in the shape image that are likely to

have significance either in the external world or to the system's task goals. By highlighting

and naming these events, 'important information can be more easily manipulated by later

processes carrying out pattern matching, counting, tracing, perceptual grouping, and other

operations.

Alternative nterpretations are available for what it takes to "make information ex-

plicit." In the case of typical region-based edge detecting filters, for example, "edgeness"

is made explicit over the entire image 'in the form of a field of numbers describing the

response strength of a convolution kernel centered at each pixel. On the other hand, edge

information may also be said to have been made explicit 'in a list of line segments fit to edges

in the image. The former representation may be called iconic or image-like [Pylyshyn,

1973, 1981; Anderson, 1978; Kosslyn, et. al. 1979], while the latter is co nsidered symbolic.

Most approaches to later shape interpretation employ symbolic representations- because

they offer greater flexibility in assigning meaningful interpretations to parts of shape, for

example, that "this edge corresponds to the stem of an apple."

This work adopts an intermediate representational format preserving the spatial char-

acter of an 'Iconic representation while permitting symbolic tags to be attached to spatial

events occurring in a shape image. The genus may be called semi-iconic representation.

Information is made explicit via symbolic tokens. Tokens are symbolic in that, unlike pixel

values each token can maintain lists of properties, pointers, and other 'items of internal

state. Yet, the pctorial aspect of spatial geometry is preserved by the assignment to each
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token of a location on the shape image. Furthermore, as is discussed in the next section,

the tokens may be indexed by spatial location. Not every pint 'in the 'image is necessarily

covered by a token, however, and some locations may be associated with more than one

token. The use of tokens in making explicit important 'image events was introduced by

Marr 1976, 1982] in hs proposal of the Primal Sketch as an early visual 'image repre-

sentation, and has been applied to multiscale, straight line extraction by Weiss and Boldt

[1986] (see also Boldt and Weiss, 1987]).

The transition from an iconic to a symbolic representation rises an issue of discretiza-

tion. Shapes are fundamentally continuous things. Consider the shaxp corner shape shown

in figure 4.12e. This may be continuously deformed 'Into a flattened corner, figure 4.12a.

An iconic representation has no trouble describing shapes anywhere along this continuum

because every location is assigned some pixel value. In contrast, a symbolic or asemi-

iconic representationis inherently discrete.- properties are asserted only for locations where

a symbol or token has been assigned. Any time a discrete representation is to be computed

from a continuous representation, qualitative decisions must be made of the form, "Should

we put a token here?" Usually this decision 'Involves the use of some threshold value, for

example, "put a token everywhere an edge 'is present stronger than x".

It is 'important that later processes perfo ng operations on discretized representa-

tions not rely upon the presence or absence of tokens that might or might not have been

asserted had a threshold been slightly different. This is to say, it is desirable for a shape

representation to preserve the continuous qualities that the world of naturally occurring

eC d
a b

Figure 412: A sharp comer may be continuously deformed into a flattened comer.
As the flattened edge gradually disappears, at some point a decision must be made
that a corresponding edge token should no longer be asserted. A priori, no principled
grounds exist for de-fining the decision criteria.
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shapes in fact displays. We attempt to abide by this principle by endowing each token

wi'th a strength parameter 4- The strength parameter indicates to roughly what degree

the shape property associated with a token is asserted at that token's particular location

in the image. Later processes manipulating the nformation conveyed by shape tokens

are intended to achieve independence from the instabilities of early quantization steps by

modulating their computations according to the tokens' strength parameters. As a given

shape property fades from significance 'its later 'implications can have waned before its

associated token disappears entirely.

The primary token employed 'in building multiscale shape descriptions is the edge

primitive. In addition to strength, an edge primitive possesses the attributes of x spatial

location, y spatial location, orientation, and scale. The primitive edge token denotes a

boundary between figure and ground occurring approximately along its length axis, in

much the same way as that measured by the oriented edge filter shown in figure 48.

Though its token 'is assigned specific (xy) coordinates, an edge primitive is to be in-

terpreted as asserting information about some elongated local region as shown in figure

4.13. The edge assertion 'is to be considered strongest at the center of the region and it

diminishes with increasing distance.

'Alternatively this may be called a response-strength or activity parameter.

I

I

b
4

Figure 413: An edge primitive is marked by a token. The edge is viewed as having
spatial extent roughly corresponding to a gaussian ellipsoid. A primitive edge token
is displayed ether as an ellipse (a), or as a lne segment with a circle at the "front"
end indicating the figure/ground orientation of the edge (b).
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4.3.2 Justification for Scale-Space

Despite their deficiencies in extracting coarse scale structure, contour based and region

based numeric smoothing techniques deliver identical results in the limit of the finest scales

of resolution. For example, were we to distribute edge-denoting tokens at nearby inter-

vals along a very slightly smoothed object boundary contour, these would agree with to-

kens located by taking the maximum gradient magnitude following slight two-dimensional

Gaussian smoothing. Although we would properly label these as fine scale edges, the

coarse scale structure of the shape remains implicit in the distribution of tokens about the

image. Our goal is to make this coarser scale structure explicit, for example by placing

appropriate additional tokens on an 'image.

The approach we offer to computing where such additional tokens might go 'is to look

directly at patterns of smaller scale tokens already present. The style of computation

corresponds to what 'is widely known as a "blackboard architecture" in the Artificial

Intelligence lterature: maintain a set of current assertions, as if they were written out on

a blackboard. A set of rules or procedures performs pattern matching on the contents of

the blackboard, and updates these contents by erasing, adding, and modifying assertions.

In the present case, assertions about shape are made by placing shape tokens into the

blackboard.

Indexing Spatial Information 'in a Blackboard

A number of 'important design choices are available as to just where and how various as-

pects of shape 'information are to be stored and organized using a blackboard architecture.

Note that having two-dimensional as in a physical blackboard) or n-dimensional spatial

arrangement is only an optional component to the organization of blackboard architectures

as they are classically viewed.

The most crucial set of issues revolves around the means provided for indexing into

the blackboard, that 'is, for addressing and accessing the shape information it contains.

The following question arises: To what degree is information viewed as residing "inside"
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a token, and to what degree 'in terms of the token's location in some coordinate system

defined on the blackboard. To illustrate, the information borne by each edge token could

be written on a scrap of paper tossed in a heap; one examines symbols written on the scraps

to read off tokens' location in space, orientation, and other properties. The blackboard

becomes then the heap of paper. Alternatively, a physical blackboard on a wall may easily

be assigned a two-dimensional coordinate system making explicit horizontal and vertical

distance from an origin- a shape token might correspond to a dot drawn on the blackboard,

this token expressing information only by virtue of 'its location on the board's surface.

Obviously, each scheme has its advantages and disadvantages. The token-as-scraps-of-

paper scheme permits each token to maintain a large number of properties about 'Itself,

such as location, orientation, strength, tme of day that 'it was created, and so forth, but

this scheme offers no efficient way of attacking the heap to find a token possessing a given

set of properties. Conversely, the coordinate-system scheme provides a handy means

for indexing 'information on the basis of content-is there an edge at location 4?,

just go there and look-but it requires that the blackboard have as many dimensions as

independent pieces of information denoted by each token.

For the present purposes, we adopt an intermediate course.- tape scraps of paper to the

blackboard. Tokens are localized on, the blackboard 'in terms of a coordinate system orga-

nizing along a few crucial properties, but each token possesses internal state maintaining

additional useful nformation. The interesting design choice arising is which nformation

is important enough to merit 'Its own coordinate dimension on the blackboard?

In the world of two-dimensional shape objects, four leading candidates present them-

selves. These are, x spatial location, y spatial location orientation and scale. These are

the four geometric parameters fixing an edge primitive in the representation: Where 'is it?,

What is its orientation.?, and How big is it? Because shape slhouettes axe by definition

two-dimensional images, x, y coordinates are obvious choices for structuring the black-

board. As for the other two candidates, Walters 1987] has argued in favor of rho-space, in

which a third, p, dimension makes explicit the orientation of features, and Witkin 1983]
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5suggests creating a scale-space by establishing a separate scale dimension 

Scale-space segregates spatial events of different sizes, that is, it provides a handle for

indexing information on the basis of scale. The sze of a edge primitive, for example, is

indicated by the placement, along a separate scale (a) dimension, of a token corresponding

to that edge. This organization simplifies the sequence of operations required to query a

shape description as to whether certain properties are true of the object under observation.

If a pattern matching rule needs to know whether a medium scale edge at location 5,6) and

orientation 32' s present in order to decide that an object has parallel sdes, then under

a scale-space organization 'it may more rapidly narrow down the set of tokens that must

be exanuned than if it had to check through tokens representing all scales. Depending

upon the degree to which algorithms for analyzing shape regard scale as an important

shape property, this gain in efficiency may be as significant as that obtained by ruling the

blackboard with x, y spatial coordinates.

Similar gains in efficiency may be obtainable, for some purposes, wth blackboard

organizations making explicit a separate orientation dimension. However, given the stated

purpose of identifying the multiscale structure of shapes, and because of the difficulties in

managing high-dimensional spaces, the present work sacrifices the possibility of indexing

shape information directly on the ba-si's of orientation, and instead employs a Scale-Space

Blackboaxd consisting of two spatial dimensions plus one scale dimension.

4.3.3 Behavl'or of Scale-Space

Scale-space possesses a number of useful and interesting properties whose examination

clarifies what it means for a shape event to be "at a certain scale." The maintenance of

these desirable properties may depend upon the enforcement of certain definitions and con-

ventions over the computational operations that act upon the scale-space data structure.

'Witidn's original presentation of scale-space dealt with the evolution across scales of zero-crossings of

a DoG-filtered one-dimensional signal, as the width of the Gaussian filter increases. Here, we forbear zero

crossings, Gaussians, and linear filtering operations and instead refer only to the use of an independent

dimension denoting size or scale.
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Self-Similarity Across Scales

The principle quality offered by scale-space is self-similarity across scale$ [Burt and Adel-

son, 1983]: it is most convenient that a computation performed on any shape of a gven

size yields the same results a the same computation performed on an identical shape that

has been uformly magnified (or reduced) in size. For example, the tests establishing

whether four line segments are arranged as a square-adjacent edges perpendicular, op-

posite edges lie at a distance equal to their lengths, ratio of dagonal to edge length equals

v"'2, and so forth-should be the same no matter how large or small the square is.

The most important implication of the self-sin'laxity principle 'is that computations

on scale space should be defined so that magnifications in the spatial dimensions correlate

with uniform translations n the scale dimension. Figure 414 illustrates 'in the ase of a

simplified scale-space consisting of a scale dimension and only one spatial dimension. Two

shape features possessing different sizes and spatial locations are represented as tokens

placed at different scales and spatial locations in scale space. Call their proximity in scale
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Figure 414: (a) A one-dimensional figure composed of two binaxy pulses. (b) The
same figure magnified in the spatial dmension by a factor, m. Scale-space images
of these shapes are shown above. Each pulse is depicted as a dot, and the width
of the pulse determines the dot's placement along the scale (a) dimension. The
principle of self-similarity aross scales dictates that when the relative distance of
shape features is preserved, their distance along the scale dimension (Aa) is also
preserved. 122



space, (Ax, Aa). Now, take the original shapes and simply magMfy the pcture by a factor,

m. Obviously, the features each grow in size, and the distance between them increases by

this factor, but, their relative distance (distance relative to sze) does not change. Under

the self-similaxity principle, the scale space 'image of this new picture places tokens in

proximity to each other, (mAx, Aa); the shape features' preserved relative szes becomes

manifest as a preserved distance along the scale imension.

In order to enforce this property the scale dimension is graduated on a logarithmic scale

[Witkin, 1983; Schwartz, 1980]. Consider a shape event, for example an edge primitive,

occurring at some reference scale, a = . The placement along the scale dimension of

another edge primitive which is identical to the first, but uiformly magnified by a factor,

M, is given by:

C = Alogm, (4-3)

where A i's a constant.

Another sgnificant consequence of the self-similarity principle is that precision in the

specification of a spatial event's spatial location depends upon the scale of that event.

Suppose that some tolerance 'is associated wth stating the exact placement, 'in x and

y, of a token denoting a primitive edge. This tolerance region may for convenience be
'dered equivalent to the of space described by a shape token (figure 413).

consi region

Then self-similarity implies that this tolerance region grows proportionally with the size

of the edge primitive. This 'is to 'imply that a large scale edge primitive alone does not

precisely localize the boundaxy of the shape object that gave rise to it.

Further mplications anse concerning the meaning contained by the assertion of a

primitive shape event occurring "at scale a'. As illustrated in figure 415, a long, well

defined edge, and a long jagged edge, appeax at coarse scales as identical 'in terms of edge

primitives. It is only when one examines medium and finer scale information that descrip-

tive edge primitives obtain sufficient precision to, discriminate between these two shape

events. Thus, a complete description of even a geometrically simple shape object must

involve anal sis of information across a wide range of scales. For example, the description

123



Figure 415: At coarse scales a long smooth edge and a long jagged edge appear
'dentical. Only at finer scales do edge primitives obtain sufficient resolution to
distinguish smaller scale detail.

of a long, straight contour boundary, in terms of tokens denoting edge primitives placed

on a Scale-Space Blackboard, wl be comprised of a collection of tokens lying a along

the boundaxy, and at various depths 'in the scale dimension.

The Scale-Space Blackboard leaves open the possibility of inventing more complex

types of tokens that 'Integrate shape information occurring over several scales.

Scale-Normalized Distance

The measurement of distance plays an integral role in the analysis and interpretation of

shape. In order to conform to the principle of self-similan'ty across scales, it is necessary

that computations involving distance measurements among shape tokens 'in the Scale-

Space Blackboard be able to take into account the relationship between distance and

scale. Just stating that two edge tokens are parallel and lie at 2cm distance from one

another does not complete the story, for if they are both fine scale tokens then they could

have arisen from opposite ends of an object, while 'if they are both coarse scale tokens they
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Figure 416: Whether or not the contours describedby two edge primitive tokens
are in fact the same contour depends upon the tokens' scales as well as their relative
distance and orientation.

must by necessity be asserting virtually the same 'Information (see figure 416). Relative

distance (distance relative to scale) is the 'important property, not actual distance.

For this reason we define scale-normalized distance with the property that the scale-

normalized dstance between a pair of tokens remains constant a the configuration un-

dergoes uform magnification. By taking this step, whenever computations take place

involving relative distances between shape tokens, scale is automatically taken into a-

count. Some leeway is afforded in the selection of the scale-normalized distance measure.

We choose the following:

Definition: The Scale NormallOed Distance (sn-distance) between two tokens ccur-

ring at scales a, and a2, respectively, and separated by a distance D, is gven by

snD = D (4.4)
El ZZ1( A + eA

The justification for this defirdtion is as follows: If a unit distance is measured at scale

a = , then this distance 'is magnified at scale a by a factor, ei (inverse of equation 4.3)).

Sn-distance adjusts for the scale of two tokens by dividing the spatial dstance between

them by the average of their associated magnification factors.

It 'is instructive to consider the behavior of the sn-distance between two tokens occur-
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Figure 417: (a) When colinear tokens occur at the same scale, then scale-normalized
distances behave according to the law, 111aD(A, B) + snD(B, C) = snD(A, C). (b)
However, when token is moved to a coarser scale this relationship no longer holds.

ring at different scales. Imagine three tokens, A, B, and C, positioned colinearly and as

shown 'in figure 4.17. Their pairwise distances obey the relationship,

D(Aq B) + D(B7 C = D(Aj C) (4.5)

When the tokens all occur at the same scale, their pairwise scale-normalized distances also

obey this relationship:

snD(A, B) + snD(B, C = n D(AC) (4-6)

But consider what happens when token increases in scale while the three tokens remain

colineax in space. Then, by equation 4.4), the sn-distances between tokens A and B, and

between tokens and C decrease, while the sn-distance between tokens A and C remains

unchanged. In general, the laws of Euclidian dstances for spatially colinear locations as

expressed by equation 46) do not hold for scale-normalized distance.

Quantization and Sampling

The x-y-cr Scale-Space Blackboard data structure permits algorithms to 'index into a shape

description on the basis of spatial location and scale. This is conceptually a continuous
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space. However, for purposes of implementing the Scale-Space Blackboard on a computer,

it becomes necessary to quantize the space so that, for example, points 'in scale-space may

be assigned to elements of an array. As a purely practical matter, how might we go about

tesselating scale-space?

First, note that as long as shape tokens behave as scraps of paper on which may be

written down any information desired, then an appropriate strategy 'is to include among

thi's list of properties a token's pose in scale-space (spatial location, orientat on and scale).

Computations involving a token's pose should use this information rather than the quan-

tized array 'Indices specifying the token's address in the Scale-Space Blackboard. This

tactic ensures that whatever array quantization scheme 'is used, 'its effects may be con-

fined to the efficiency of computation but not the results.

The array quantization 'issue separates nto two: quantization along the spatial coor-

dinates, and quantization along the scale coordinate. Quantization of the scale coordinate

will depend 'in part on how closely spaced along the scale dimension two different shape

tokens, specifying different properties, yet occurring at the same spatial location, might

be placed. To illustrate the question more clearly, figure 418 shows a figure whose local

orientation at a coarse scale is quite different from 'its local orientation measured at a fine

Figure 4.18- At a given spatial location, the jagged contour can give rise to edge
primitives with different orientations at different scales.

127



scale. Over how small a dstance in the scale dimension mght such a phenomenon occur?

We present no theoretical analysis but simply relate empirical experience suggesting that

a magnification of about a factor of two (one octave) characterizes the rapidity with which

the 'information asserted at one scale can differ from the information asserted at another

scale. Thus, scale quantization at steps in the neighborhood one octave or slightly less

seem about right.

As for the spatial dimensions, coordinate quantization should accord wth the purposes

of the algorithms that consult the Scale-Space Blackboard. One of the most common

operations is likely to be a query of the form, "Is there a token at pose P?". The purpose

in making this query 'is of course really to discover whether the shape object under analysis

displays some spatial event such as an edge at pose P, under the assumption that this

spatial event will be represented by a token (or tokens) 'in the Scale-Space Blackboard. It

would therefore seem reasonable to choose a tesselation size 'in the neighborhood of the

range of poses that a token might take 'in describing a given single localized spatial event,

1e. choose array bin sizes to cover about the same spatial extent as the spatial localization

tolerance of a shape primitive (figure 413).

Note that individual elements or bs in the array maintaining the contents of the

Scale-Space Blackboard may contain not just one but several tokens. Note also that

appropriate spatial quantization changes with scale, so that many fewer array elements

need be provided per unit area at coarse scales than at fine scales. A stable picture

is of a collection of two-dimensional arrays stacked at octave distances along the scale

dimension, as shown 'in figure 419. This data structure closely parallels pyramid style

image representations [Sammet ad Rosenfeld, 1980; Burt and Adelson, 1983].

4.4 Multiscale Description by Fine-to-Coarse Aggregation

We are now equipped to offer a procedure for building a multiscale shape description

one scale at a tme, from fine scales to coarse. A shape 'is at this early stage described

in terms of edge pmitives possessing the attributes of location, orientation, scale, and
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Figure 419: A stack of two-dimensional arrays for implementing the scale-space
blackboard. Each array bin holds a list of tokens faRing wthin is domain of scale-
space. Coarser tesselation at coarser scales gves resemblance to a pyramid data
structure.
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strength. A token's strength attribute indicates something like "how good" an edge is

present at the token's pose. The objective for the fine-to-coarse aggregation procedure is

to place "good" edges at successively coarser scales, starting with primitive edge tokens

placed at intervals along the shape ob'ect's boundary contour at some initial (finest) scale.

The aggregation procedure iterates, proceeding from fine scales to coarse, until a desired

coarseness of description is reached.

The design of a fine-to-coarse aggregation procedure is motivated by considering con-

figurations of edge primitives that give rise to good coarser scale edges. A sampling of

prototypical situations 'is presented in figure 420.

Figure 4.20a is the simplest case. A collection of finer scale edges that align with one

another' give rise st rElightforwardly to a coarser scale edge. Note n this figure that the

portion of the 'image that a given edge token describes may overlap wth that of other edge

tokens. The spacing of primitive edge assertions along a contour is a free parameter of

the representation. For reasons elaborated below, we find it useful for one edge primitive

to overlap the next by about 50% of its length.

-now.

.00

a

C

d

Figure 420: Configurations of finer scale edge primitives (solid eipses) supporting
assertions of edge primitives one octave coarser in sale (dashed eipses).
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Figure 420b shows that a section of curved contour gives rise to edge tokens very

well agned with one another at fine scales, but with 'increasing orientation derence

at coarser scales. We suggest that coarser scale primitive edges associated wth curved

contours be considered weaker than edge primitives associated with straight contours, in

much the same way that a coarse scale oriented edge filter would ge a weaker response

to a curved contour than to a straight edge.

Figure 4.20c 'Illustrates that a broken contour appearing at a fine scale as two agned

yet dsparate portions of a shape may nevertheless be described by a single edge primitive

at a coarser scale. This is to say, the pattern matching methods deciding where coarse

scale edges are to be placed must be able to identify prs of finer scale edges aligning

w'th one another across a gap or protrusion.

Finally, 4.20d shows that, when appropriately configured, a collection of fine scale

edges may individually have very different orientations from the coarser scale edge that the

collection generates. The algorithm described in this chapter Omits explicit consideration

of this type of situation.

4.4.1 Fine-to-Coarse Aggregation Procedure

The basic step of the fine to coarse aggregation procedure takes as input a set of rimitive

edge tokens occurring at a single scale, ai, in the Scale-Space Blackboard, and it returns

a set of new edge primitives at scale , Let us refer to scale ori as the current "input'

scale, and scale a, as the coarser" scale. As 'implemented, the new tokens delivered are

one octave coarser in scale than the 'Input tokens, though the algorithm does not depend

upon this rate of aggregation. The basic step proceeds in four smaller steps:

I. Identify seed poses for new coarser scale tokens.

II. Starting from the seeds, refine the placement of new coarser scale tokens based on

primitive edge tokens occurring at the 'input scale.

III. DeterrIline the strengths of these coarser scale tokens.
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IV. Prune redundant coarser scale tokens.

These steps are discussed in turn.

Step I. Identify seed poses for coarser scale tokens

A seed pose is an initial guess as to where a coarser scale token might be well placed.

Observing figure 420, we introduce seed poses at every primitive edge token at the input

scale, and at locations where two primitive edge tokens approximately align with- one

another across an s-distance (scale-normalized distance) approximately equal to twice

the length of a token. Call the latter case, "gap-jumping' seeds. The orientation of a

gap-jumping seed is taken to be the average orientation of the two input tokens that gave

rise to it.

The detection of gap-jumping seeds requires checking of input tokens pairwise to de-

termine whether or not they fulfill the seeding qualifications, i.e. proper distance and

alignment (and no other token aligned in between). This operation is assisted enormously

by the spatial and scale indexing provided by the Scale-Space Blackboard, as this data

structure greatly facilitates the inspection of only tokens lying wthin some spatial neigh-

borhood.

Step IL Reflne the placement of coarser. scale tokens

The second step 'is, for each seed, to determine the best pose for a new coarser scale token

suggested by this seed. Selecting the "best pose" originating from a given seed involves

finding a pose that tends to maximize the strength of the resulting coarser scale token

while tethering the new pose so that it still "belongs' to the seed.

The general approach of the fine-to-coarse grouping procedure is that a coarser scale

description is to be aggregated from the information contained in the finer scales. Ac-

cordingly, the algorithm computes a coarser scale token's pose as a weighted average of

pose information over some support set of nput tokens in the neighborhood of the seed

(see figure 421). A question 'Immediately arisesas to how each supporting input token
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Figure 421: A token at scale a, 'is placed by taking a weighted average of information
contained 'in a set of support tokens occurring at scale ci.

associated wth a given new coarser scale token is to be weighted relative to the other

supporting tokens. The factors influencing this weighting are: (1) the spatial relat'onsh'

between the seed pose and the pose of the supporting 'Input scale token, 2) the proximity

of other nearby, possibly redundant, supporting inpA scale tokens, and 3) this supporting

input scale token's strength. These factors axe dealt with as follows:

1. Spatial relationship between seed pose and supporting 'Input scale token.

Figure 4.22a. shows several possible configurations among a seed pose and the pose of an

input-scale token that will have some influence on the placement of a new, coarser scale

token initially placed at the seed pose. How should this 'Influence, or weight, be assigned,

say, as a number between (low nfluence) and (high influence)? From figure 422 we

reason that influence should: (1) decrease with distance from the seed pose, 2) decrease

with distance faster across the orientation of the seed pose than along its orientation,

(3) decrease as the relative orientation of the seed pose and the supporting token differ,

but 4) less so as their sn-distance decreases. These factors translate into the following

expression for calculating the raw-influence-weight, of a token occurring at scale
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Figure 422: (a) A number of possible spatial relationships between a coarser scale
token placed at 'its seed pose (larger le segment) and one of its supporting finer
scale tokens (shorter line segment). The supporting token's 'Influence 'is considered
greater when it is near to and aligned with the seed pose. (b) The distance, D and
angle, , entering 'Into the Gaussian weighting ellipsoid, G,nDq5,,i), shown 'in (c).

ai, on the pose of a token, T, at the next scale, , which has been initially placed at 'Its

seed pose:

wil -- G(,,nD, 0,,i)[1 - min(l, B snDp)l sin A9cjj]j (4.7)

wheresnD s the sn-distance between the seed and the supporting input scale token,

is the direction from token T, to token Ti, AO,,i is their relative orientation, and G(D, is

an ellipsoidal two-dimensional Gaussian weighting function with major axis aligned with

0 (see figures 4.22b and c). B and p are positive constants. The eipsoidal Gaussian

weighting function has maximum value when G = , and 'it trails off to at infinity.

This ellipsoid's aspect ratio is a free parameter, for which the value 4 has been found

to serve acceptably. The term 'in brackets drops below only when tokens axe relatively
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Figure 423: The two smaller scale support tokens supply redundant pose 'Informa-

tion.

distant and have substantially different orientations.

2. The proximity of nearby, possibly redundant, supporting input scale tokens.

Figure 423 presents a situation in which two 'input scale tokens are very near to one an-

o .ther, and would contribute similar influence on the pose of a coarser scale token initiated

at the seed pose shown. The information that these two tokens offer about the underlying

finer scale shape 'is redundant, and these two tokens should not both shaxe equal weight

with other tokens providing very different nformation. Some scheme is required causing

the information from input tokens located very near one another to saturate in their col-

lective influence upon the pose of the coarser scale token under construction. This effect

is achieved by the following procedure.-

I. Sort supporting input tokens by decreasing raw-influence-weight, W.

IL For input token Ti, 'Identify the supporting input token, Tj, that: (1) has greater or

equal raw-influence-weight, and 2) is most smilar 'in pose. Pose similarity, L, may

be estimated by the following expression:

L (T I Tj = G8n DI , ) Cos Aoij (4.8)3

III. Choose the value of the modifled-influence-weight, will , for token Ti in such a manner

that 'it decreases' according to its degree of smilarity to 'its most similar stronger

neighbor, Tj:

will +- W(1 - L (T I T)) (4.9)
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3. Strength of this supporting nput scale token. The influence-we' t of a sup-

porting 'Input scale token on the pose of a coarser scale token should be proportional to

the primitive edge strength, Si, of that nput token. Thus, finally, the influence-weight,

Wi, of an input scale token Ti on a gven coarser scale token is expressed by

Wi +- Si will (4.10)

Once the influence-weights of all of its supporting 'input scale tokens have been es-

tablished, then the pose of each new coarser scale token may be determined. The new

token's (x, y) location can simply be taken as the weighted average of the (x, y) locations

of supporting tokens, and its orientation as that providing best alignment with the lo-

cations of the supporting tokens, in the least-squares sense. If desired, it is possible to

devise formulas assigning the coarse scale token's orientation on the basis of the aggregate

orientations of the supporting tokens as well as their locations.

Step III. Determine coarser scale token strength

Under the Scale-Space Blackboard representation, the qualitative presence or absence of

a descriptive token such as, for example, an edge primitive, 'is to be modulated with an

indication of how strongly the token asserts that 'its attribute is actually present, at a

corresponding pose, 'in the shape object under observation. This 'is the token's strength

parameter. Every seed generated 'in step I leads to the placement of a coarser scale shape

token in step IL However, some of these coarser scale tokens represent better primitive

edges than others. Fgure 424 presents a few examples of situations 'in which the assertion

of a coarser scale edge is more strongly or more weakly supported by the finer scale edges

present. Step III assigns a strength, S, < < to every newly created coarser scale

primitive edge token.

Reasoning from the examples in figure 424 a coarser scale edge 'is strongly supported

when finer scale edges 'are aligned all along its length. Strength decreases when: (1) the

orientations of supporting finer scale edges deviate from that of the coarser scale edge,

and when 2) supporting tokens fail to span its entire length. A mathematical expression
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Figure 424 A oarser scale token is assigned a strength according to whether finer
scale tokens are aligned with 'it all along its length. The situation 'in (a) receives
greater strength than in (b), (c), or (d).

reflecting these criteria is:

S 4-- min f 1, [Min (V,,,,, C) + min(Vf ront i C) + min(Vrear i CA 1 7 (4.11)

where C 'is a positive constant. V,, is a sum over all supporting tokens, Ti, of each

supporting token's contribution to the strength of the new coarser scale token.

SUM Vi (4.12)

V = Wip COO Ae"i, (4.13)

where p and q axe positive constants, and A# is the difference between the orientation of

the coarse scale token and that of the supporting finer scale token, Ti. The use of the

influence-weight, W, ensures that redundant supporting tokens do not unduly influence

the strength computation. The terms, Vf,,,,,t and V,,,, in equation 4.11), weigh support

at the two ends of the coarser scale edge, as follows:

f ront 1: V I sn D�roi (4.14)
if ront

Vear = : Vsn DprLj 1 (4.15)
irear
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DPrOJ

Figure 425: DPrOj is the distance from a token to a reference token, projected onto
the reference token's length axis.

snDproj is the scale-normalized distance between supporting token Ti and the new coaxse

scale token, projected onto the length axis of the coarse scale token (see figure 425).

Equation 4.11) is constructed so that 'in order for a token to receive a maximum strength

of 1, 'it must receive substantial support along its entire length.

0Step IV. Subsample the coarser scale descrip'ti*on

By the principle of self-similarity, coarser scale edge primitives describe larger portions of

a shape 'image than do edge primitives occurring at finer scales. Also, they are propor-

tionately less precise 'in specifying absolute spatial location. Therefore, the coaxse scale

description of a shape employs tokens more sparsely dstributed across the shape image

than does a -fine scale description. This is analogous to the case in signal processing in

which the sampling required to reconstruct a signal depends upon 'its bandwidth.

The procedure for generating coarse scale tokens creates a new token at every seeded

location. When the jump in scale is one octave, approximately twice as many coarse

scale tokens are generated as, are necessary. While this should not be harmful to later

computations for any fundamental reasons, it is wasteful, and it adversely affects the

perspicuity of the coarse scale shape description. For this reason the fourth step 'in the
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Figure 426: Tokens are pruned, weakest first, when they: (a) lie very near in pose
to another token, or (b) axe sandwiched between other tokens.

fine-to-coarse aggregation procedure is to prune the coarse scale shape description so that

tokens overlap one another by approximately 0% of their length.

The design of a procedure for subsampling the coarser scale description follows three

guidelines: (1) prune tokens of weaker strength first, 2) prune a token lying very near

another token 'in location and orientation, 3) prune a token closely -sandwiched between

and aligned with two other tokens. See figure 426. A satisfactory algorithm is the

following:

I. Sort tokens by decreasing strength, S.

IL In three passes through the sorted list of all tokens, remove tokens falling under

criteria 2 and 3.

The three passes are taken with increasingly stringent bounds on how near to another

token a 'ven token may not be. Taking several increasingly severe passes has been found

helpful 'in ensuring that weaker tokens which may perhaps yet describe important nuances

in shape axe not prematurely stomped out by stronger tokens.
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4.4.2 Results

Performance of the fine to coarse edge primitive aggregation procedure 'is illustrated in

figures 427 though 430. As seen in figure 427, the coarse scale description of the apple

survives well even when the contour is interrupted by the protrusion of a string (figure

4.27d and when other large ob'ects ae in proximity (figure 4.27b). In figure 4.27c, when

the banana moves close enough to occlude part of the apple's contour, much of the apple's

boundary in the vinity of the banana is nonetheless detected at coaxser scales.

Figure 428 helps to illustrate the fact that as scale 'increases, primitive edge tokens

demark figure/ground boundaries of decreasing spatial resolution. This figure depicts

grey-level images "reconstructed" from the tokens residing in each of six slices of the

Scale-Space Blackboard. For each token, a lightened re 'on (figure) and a darkened region

(ground) were colored 'Into an 8-bit image on either side of each token. For convenience,

the light/dark colored region for each token takes the form of the oriented filter mask

shown in figure 48. As the pseudo-blurred images show, at coarser scales the primitive

edge information describes figure/ground boundaxies of greater spatial extent while smaller

details of the object's boundary axe smootlied. over.

In order to illustrate the significance of a token's strength parameter, figure 429 dis-

plays edge tokens at three scales using three different thresholds on token strength. As

may be observed, coarser scale edges that bridge gaps and cut comers are assigned lesser

strength than edges ng along a line of smaller scale edges.

Figure 430 shows a situation 'in which the aggregation procedure falls to identify coarse

scale structure. Note that the smooth pear and rippled pear give rse to nearly identical

coarse scale descriptions. However, wen the contour texture of the pear is extremely

jagged, finer scale edge tokens lie nearly perpendicular to the large scale figure/ground

boundaxy, and are not successfully grouped into coarse scale tokens falling along the

boundaxy. Detection of this sort of contour may be addressed by the development of

additional grouping rules, or else by some form of numeric smoothing operation.

We have shown that symbolic processes operating on collections of tokens 'in a Scale-
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Space Blackboard are able in most cases to construct successively coarser shape descrip-

tions in terms of a smple vocabulary 'in which tokens denote edge primitives. The Scale-

Space Blackboard also supports other interesting grouping operations making explicit

more complex shape entities.

4.5 Pairwise Grouping of Edge Primitives

Symbolic tokens denoting edge primitives are extremely smple, possessing only the at-

tributes of pose (location, orientation, and scale) and strength. Let us refer to these as

primitive-edge, or Type tokens. This section introduces another class of shape token,

called primitive-partial-mgion, or Type tokens, possessing one additional parameter of

internal state.6 Type tokens are constructed from pairs of Type tokens. The spatial

configurations (Type I configurations) subsumed by this class of tokens form a contin-

UUM which includes shapes that might be called, "curved contour segments," primitive-

corners and "bars." These terms are elaborated below. In analogy to the fine-to-coarse

aggregation procedure, we construct pattern matching procedures to 'identify Type con-

figurations occurring in the Scale-Space Blackboard, and then mark these occurrences by

placing Type tokens appropriately.

4.5.1 Definition of Type Conflgurations

Two tokens 'in scale-space are spatially related to one another by four numbers. These

numbers must collectively specify the tokens'relative x and y location, relative orientation,

and relative scale. Type tokens possess one internal parameter whose range generates

a one-dimensional amily of configurations, in other words, a one-dimensional constraint-

curve in the four-dimensional space of a pair of Type tokens' relative configuration (see

[Saund, 1987]). The definition for Type tokens must therefore constrain or otherwise

account for three remaining degrees of freedom.

'For brevity, this chapter uses the shorthand, Type and Type 1; the remaining chapters use the more

descriptive names, PREWTIVE-EDGE and PRIWTIVE-PARriAL-REGION, respectively.
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Type I configurations are defined by specifying three constraints on the relative poses

of the two component Type tokens: (1) The Type tokens must occur at the same scale,

(2) The Type tokens must be symmetrically placed, 3) The Type tokens must lie at

a fixed, prespecified, scale-normalized distance from one another.

The first condition, that two Type tokens satisfying a Type configuration must

occur at the sa-me scale, 'is straightforward.

The second requirement states that a Type confi uration must be comprised of Type

0 tokens that are symmetrically placed. This condition is illustrated in figure 431; the

relative orientations between each token and the line segment ining them must be equal.

This specification of angular equality lies behind the definition of the Smoothed Local

Symmetries shape representation [Brady and Asada, 1984- Connell, 1985, Fleck, 19851,

and has also been called "co-circularity" by Parent and Zucker 1985].

Strictly speaking the first two conditions allow no tolerance for the tokens to der

in scale or to deviate from symmetrical placement by even a slight amount. Obviously,

some tolerance is desirable. A potential question arising is then, how much tolerance is

acceptable.? We handle this question by ap 'ealing to a token's strength parameter. The

closer to 'Identical scale and perfectly symmetrical alignment a pair of Type tokens are

I snDtarget

n
-Oll \0I-

is b

Figure 431: Constraints on the spatial relationship of a p, 'r of Type tokens (edge
primitives) if they are to satisfy the Type configuration conditions: (a) symmetric
placement (co-circularity) (b) fixed, predetermined scale-normalized dstance An
additional condition 'is that the Type tokens must occur at the same scale.

146



placed, the closer to can be the strength of the Type token naming the pair. As the

Type tokens stray, the Type token strength must drop to .

The third condition suggests that two Type tokens satisfying the conditions of a
1 'InDtargeti from

Type I configuration must lie at a characteristic predefined sn-d'stance,

one another. See figure 431. Now, a pair of Type tokens may certainly lie at virtually

any (true) distance from one another, depending upon the geometry of the shape ob'ect

giving rise to 'It. By equation 4.4) a given true dstance (D) corresponds to another given

scale-normalized distance (for example, snDtarget) only at one particular scale. However,

the fine-to-coarse aggregation procedure places Type tokens only at octave 'intervals

in the scale dimension. We cannot guarantee that Type tokens will have been placed

precisely where needed along the scale dmension in order to satisfy condition 3 of the

definition of a Type configuration.

The resolution to this matter 'is to note that a shape description does not change

rapidly across scales. In other words, the orientation and strength attributes computed

for a primitive edge token at one scale would be almost identical to those of a primitive

edge positioned at a closely nearby scale. Therefore 'it 'is fair to adopt the following tactic:

pretend that a Type token placed at a given scale generates a virtual set of Type 

tokens possessing the same (x, y) location and orientation, but placed at all surrounding

scales within, say, a one-half octave range. Then, Type grouping takes place on just

the pair of virtual tokens required to satisfy condition 3 The resolution amounts to this:

place a Type token 'in scale-space at a scale coordinate depending upon the measured

sn-distance between the two component Type tokens. Specifically,

- OrTO + � snDT1

OTi A log - (4.16)
snDtarget

where aTI is the placement of the Type I token along the scale dimension, oTO and snDTO

are respectively the scale of and scale-normalized distance between the constituent Type 

tokens, and snDt,,,,,t is the characteristic sn-distance defined for the Type configuration.
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4.5.2 The Class of Type I Configurations

The internal parameter of a Type token makes explicit one remaining degree of freedom

in the spatial configuration of two Type tokens. This degree of freedom is equivalent

to the relative orientation of the Type tokens. Figure 432 iustrates the range of

configurations generated as thi's parameter varies. Intuitive 'Interpretations of several of

these shapes come readily to mind. When the Type tokens' orientations are roughly

aligned, the parameter makes explicit the local curvature of a curved-contour segment.

When the relative orientation is more or less 90', the parameter describes the vertex angle

of a primitive-corner.' Finally, when the Type tokens axe oriented approximately 180'

with respect to one another, the parameter describes the taper of a bar. Bars, primitive-

corners and to a lesser extent, curved-contours demark local partial-regions, as shown

by the shaded areas in figure 432. Note that the Type parameter may take ether

positive or negative values. Parameter values of opposite sign axe related by reversal of

the figure/ground relationship.

7The term, 'primitive-corner' is used to emphasize that the Type shape description occurs indepen-

dently at different scales. The term, 'corner" is reserved for future descriptors of corner shapes integrating

information across several scales.

0 I

I
\1

i 8
II \- \ - N -, v

curved contour prin-iitive-corner bar

Figure 432: Members of the class of Type configurations. Each member defines
the open boundary of a partial-region.
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Computation of Type I tokens from Type tokens is quite straightforward. Pairs of

Type tokens satisfying the three criteria are easily found by virtue of the spatial indexing

and scale index-ing afforded by the Scale-Space Blackboard data structure. Wherever a

Type configuration is found, a Type token is placed at some suitable pose on the

Blackboard, such as midway between the constituent Type tokens.

4.5.3 Results

Figures 433 through 435 present the results of Type token grouping for several shape

ob'ects. Each Type token is displayed as a line segment placed at the token's pose in the

image, with a small crcle at one end indicating 'its orientation. In addition, the two Type

0 tokens supporting this Type token are also drawn. For clarity, those Type tokens

are omitted which describe a gently curved section of contour; only primitive-corners and

bars axe shown.

Figure 433 shows partial-regions found for a Trout-Perch shape. Note that Type I

tokens make explicit salient negative or background partial regions, such as the fork of

the tail, as well as regions forming parts of the figure itselL These are distinguished by

the sign of the Type parameter wthin each Type token (although this number 'is not

displayed). Figures 434 and 435 show that large scale partial-region description of the

body of an apple is not fazed by a radical alteration in the bounding contour formed when

the apple is hung from a string, nor by the presence of a nearby ob'ect such as a banana.

Figures 433 through 435 also show that the Type and TVDe 1 grouping rules 'in-

terpret the scale of regions and the scale of contours 'in a different manner. Type 

fine-to-coarse aggregation places figure/ground boundaries at a coarse scale if they are of

large linear (one-dimensional) extent. Thus, the string ted to the apple generates coarse

scale Type tokens. In contrast, Type 1 partial-region grouping places shape features at

a coaxse scale according to their two-dimensional spatial extent, or area. Therefore the

string, which is of locally small area because of 'Its naxrow wdth, appears only at fine

scales 'in the Type representation.
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It 'is worth noting that one aspect of shape structure not sought by the Type grouping

rules is nonlocal symmetry. This 'is to say, structure 's found only at distances commen-

surate with the scale of the tokens being grouped. In particular, at this early stage

no attempt is made to identify configurations such as shown 'in figure 436, where fine

scale tokens form a symmetrical pair but are spaced remotely wth respect to their scale.

Thi's attitude bounds the complexity of the Type grouping operation because it lim-

its the neighborhood within which to search for other Type tokens forming a Type 

configuration with any 'ven Type token. The spatial and scale indexing provided by

the Scale-Space Blackboard provides the substrate mechanism supporting this spatially

limited search. Because the neighborhood of a Type token is defined in terms of scale-

normalized distance, that is, that it's absolute size depends upon the scale of the Type

0 token itself, symmetrical configurations spanning large distances are 'Identified by the

Type grouping rules, but only when their component Type tokens axe themselves

of a large scale. This scale-relative quality of the computation arises naturally from the

property of self-similarity across scales supported by the scale-space representation.

Figure 436: Type grouping does not attempt to group pairs of edge prir'tives
located remotely with respect to their scale.

153



4.6 Conclusion

This chapter has presented an alternative to numerical smoothing or blurring approaches

to building multiscale shape descriptions. By performing grouping operations on symbolic

shape tokens, coaxse scale structure is made explicit based on information present at

finer scales of description. Unlike numerical blurring, however, the symbolic grouping

rules afford substantial control over just what kinds of coarser scale structure is and

is not identified. As a result the multiscale, description of an object's shape retains

stability under the presence of other nearby ob' cts, such as when an apple 'is placed near

a banana, and under disruptions of perceptually salient contours, such as when an apple

is hung from a string. We acknowledge the 'Importance of treating regions and contours as

complementary aspects of shape geometry, and therefore have designed distinct operations

for extracting multiscale contour and region information.

In the course of developing the symbolic grouping approach to multiscale shape repre-

sentation, we have 'Introduced the Scale-Space Blackboard as a tool for maintaining and

accessing spatial information. Shapes are represented 'in terms of symbolic tokens placed

on the Blackboard. This strategy serves as a step towaxd bridging the gulf between the

iconic or image-like representation of a shape 'Implicit in an array of pixels, and later stages

of representation making use of purely symbolic data structures. The tokens placed on

the Scale-Space Blackboard are symbolic in that they may contain not just a grey-level

value, but frame slots, numbers, lists, and pointers, yet the representation is image-like

in that the Scale-Space Blackboard provides for indexing of tokens based on location and

scale. The use of symbolic tokens, spatially arranged, was first suggested by Marr 1976]

in his dscussion of the Primal Sketch. Although Marr recognized the significance of scale,

the possibility of interpreting scale as a distinct dimension in addition to the spatial di-

mensions was not elaborated until some years later by Witkin [1983]. This work unites

these two ideas. A similar approach to finding extended straight lines 'in grey-level images

is adopted by [Weiss and Boldt, 1986] and [Boldt and Weiss, 1987].

The stage is now set to construct additional procedures operating over the contents of
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the Scale-Space Blackboard in order to identify more complex and more abstract geometric

events and shape properties. Chapter 6 proceeds along this Ene of attack. But first, the

next chapter develops a technique for "shoving" shape tokens around on the Scale-Space

Blackboard according to the constraints imposed by known classes of spatial deformation.
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.Chapter 

Deformation Classes and

Energy-Minimizing Dimensionality-Reducers

5.1 Introduction

One job for a shape representation is to support transforms between levels of abstraction

in the description of spatial geometry. While at an early stage an object may be described

in terms of shape primitives corresponding closely to features measured 'in images, it 'is

desirable at later stages to deal in terms of more complex geometric structures allied with

objects' dentifying or functional properties. For example, figure 5.1 presents the two-

dimensional profiles of several smple fish dorsal fin shapes.' At a primitive level, these

shapes may be said to consist of a number of edges and corners dstributed about the

image; directly measurable 'information 'Includes the distances and angles among edge and

corner primitives. A more useful descriptive langu age for these fin shapes would, however,

tell about height," "sweepback," "taper," and other properties of sgnificance wthin the

universe of dorsal fins. It is these more meaningful.descriptors that capture the essential

similarities and differences among the fins of different fishes.

The transformation between pmitive and abstract levels of shape description may

proceed 'in either the bottom-up, 'interpretive, or top-down, generative, direction. We

refer to the former roughly as the "perception" direction of computation, and to the latter

as the "graphics" direction [Witkin et al., 1988]. For a number of reasons, it may be

useful to seek shape representations capable of operating in both drections. For example,

models of machine and human visual processing often incorporate both 'Interpretive and

generative aspects of visual computation, such as in hypothesis testing for model-based

'In order to focus on the deformation issues this chapter deals primarily with a simplified version of

the dorsal fin shape containing no rounded corners and no posterior 'notch.'
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eptual drect'perc I ion
G
graphics direction

I axyIng taper, sweepback
Figure 5.1: (a) Simple squared-off dorsal fin shapes wth v
(skew), height, etc. (b) Shape tokens residing in a Scale-Space Blackboaxd denote
primitive level corners and edges. (For smplicity, in this chapter all tokens are
placed at the same scale). Circle 'Indicates the orientation of the token. (c) Abstract
level properties can depend upon many aspects of spatial geometry reflected in
configurations of prinuffi'ves. 157
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recognition, e.g. [Ayache and Faugeras, 1986; Bolles and Cain, 1982; Grimson and Lozano-

Perez, 1984], and in human mental imagery, e.g. [Kosslyn et al., 1979; Shepard, 1982].

Because the perception and graphics problems are inverses of one another, they are likely to

share underlying principles offering a common framework for their solutions. In particular,

both shape perceptual interpretation and generative shape graphics involve the interaction

between (1) information made explicit 'in a representational language or data structure,

and 2) additional knowledge about the geometric structure of the external world. The

problem addressed by this chapter is to construct shape representations capable of treating

computations in both the perception and graphics directions under a common framework.

We present a tool, called the Energy-Minimizing Dimensionality-Reducer, for perform-

ing bdirectional transformation among levels of abstraction in the description of shape.

Two objectives govern the design of thi's tooh (1) shape 'information must flow fluently

across and within levels of description, and 2) a shape language must reflect the regularity

and structure of the shape world within which it operates. The first of these objectives

is met through the popular technique of minimizing an energy function 2 [Grimson, 1982-
Hildreth 1984; Hummel and Zucker, 1983; Pog 'o and Torre 1984; Poggio and Koch,

I 91

1984; Hopfield and Tank, 1985; Terzopoulos et al., 1987, Kass et al., 1987- Kirkpatrick

et al., 19831- this provides a convenient mechanism by which different shape descriptors

may nteract by "pushing" on one another according to the aspects of shape geometry

they specify. The second objective requires that a shape representation possess knowledge

about constraints on spatial relationships inherent 'in the set of shapes it may be called

upon to describe. We focus on a particular kind of constraint identified in Chapter 2 for

many shape domains smilarities and differences in ob'ects' shapes can be characterized

by classes of geometric deformations specific to those ob'ects. This kind of structural reg-

ularity is captured through dimensionality-reduction, a technique for exploiting constraint

under mappings between descriptive parameter spaces. Combined 'into a modulax build-

ing block, the Energy-Minimizing Dimensionality-Reducer, the energy minimization and

2We use the term, energy, loosely and do not necessarily imply strict analogy with physical notions of

energy including adherence of conservation laws, etc.
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diffiensionality-reduction. tools permit the construction of domain-specific shape vocabu-

laries supporting flexible interpretation and specification of geometric properties at levels

of abstraction well suited to visual tasks such as shape recognition and shape comparison.

5.2 "Energy" Specification of Spatial Relationships

A great deal of recent work has shown how different sources of 'visual data and world

knowledge can be integrated within the framework of minimizing an 44 energyll cost func-

tion [Terzopoulos et al., 1987- Kass et al., 1987; Koch et al., 1985- Hopfield and Tank

1985; Grimson, 1982- Hildreth, 1984]. Under this framework, the relationships among

descriptive assertions axe expressed in terms of constraints, or cost generators. Each con-

straint contributes cost according to the degree to which the evidence and assertions with

which it deals become mutually incompatible. For eample, Grimson 1982] reconstructs

smooth three-dimensional surface depth assertions from sparse stereo depth data by in-

troducing two kinds of cost term: a data congruity term penalizes deviation between the

reconstructed depth assertion and stereo depth measurements, and a smoothness term

penalizes solutions for which neighboring pixels adopt very different depth or orientation

assertions.

The energy minimization paradigm 'is very general, and its effectiveness 'in any particu-

lar problem depends upon the formulation of the various contributing constraint or energy

terms. In the present case we seek to characterize the spatial geometry of two-dimensional

shape obects. At the most primitive level of description, objects' shape are described 'in

3terms of shape tokens placed on the Scale-Space Blackboard (figure 51b). Each token

possesses a location and orientation (pose), and 'it marks some primitive shape event such

as an edge, comer, or blob. Constraint costs in energy functions arise in part from the

spatial relationships among tokens.

Figure 52 iustrates that the spatial relationship between a pair of tokens 'in the plane

3For simplicity, in this chapter we confine all shape tokens to a single scale in the Scale-Space Black-

board, The analysis extends directly to multiple scale shape representation.
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Figure 52: (a) The spatial relationship between a pair of shape tokens occurring
at the same scale is characterized by three measurOffients: Distance, D, Relative
Orientation, 0, and Direction," ip. (b) These can form the coordinate axes of a
three-dimensional configuration component feature spare. Circles denote an energy
landscape" surrounding a target configuration (point attractor).

(neglecting change in their scale) is characterized by three degrees of freedom. In order

to achieve translation and rotation-invariant shape representation, it is usually desirable

to specify a pair of tokens' relative location and orientation independent of their absolute

pose in the 'image. For example, convenient measures are the distance between a pair

of tokens, D, their relative orientation, 0, and the "direction" from one to the other, .

Thus the spatial relationship between -a pair of tokens is characterized by the location of

a point in a three-dimensional configuration-component feature space.

Top-down influences on tokens' spatial relationships, and therefore on the shape of an

object as described at the primitive token level, may be exerted by the use of "energy land-

scapes" 'in tokens' configuration-component feature spaces. For example, one convenient

landscape is defined by:

E(DI Dtargetl 07 Otargeti 07 Otarget = (D - Dtarget)' + ( - Otarget) + ' - Otarget )2 (5-1)
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This energy function creates a point attractor at the spatial relationship defined by the

target values of distance, D, relative orientation, , and direction, 1k, between a pair of

tokens.

The energy approach provides a convenient mechanism for handling interactions and

conflicts among various 'influences on shape. For example, figure 53 iustrates a case

in which five shape tokens axe given an energy landscape such that each seeks to align
'th ts forward and rearward neighbor: the total energy cost 's the sum of five p 'rwise

wi I ai

a

i I

A/

1

C

Figure 53: (a) A point attractor can be placed 'in configuration-component feature
space so that shape tokens seek to agn with one another. When five shape tokens
each seek to align with 'Its forward and rearward neighbor (b) a 'nimum energy
solution 'is a pentagonal ring (c). (c) shows steps in an iterative relaxation en-
ergy nuzation procedure when the tokens were irkitially placed at the locations
enclosed by eipses.
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spatial relationship cost functions in the form of equation (.1). No configuration of

tokens eists that satisfies all of these target constraints simultaneously (that 'is, that

(D - Dtarget) = ( - Otarget) = ( - Otarget = for all pairs of tokens), but the energy

minimization mechanism offers a compromise" solution, under which the tokens form a

pentagonal ring.

An important issue 'is the method by which a minimum energy solution is found once

the cost landscape has been created. In general, more than one local minimum in energy

cost may exist, and the expense of searching a large parameter space for the global mini-

mum can be high. Recent research 'in energy minimization approaches has been concerned

with techniques by which the energy landscape may be "smoothed" in order to 'improve

the chances of. settling into a more opitmal solution [Hopfield and Tank, 1985; Saund,

1987a]. For the present purposes we elect to focus on situations for which an 'initial est'_

mate of the solution is assumed to be available, so that the -final solution can be found by

a straightforward technique such as gradient descent [Luenberger, 1984].

Performing gradient descent in the energy cost landscape is equivalent to treating

each influence or constraint on spatial relations among tokens as a force generator. For

example, some systems may be simulated by treating each attractor taxget as the rest

'tion of a physical spring tugging on a pair of tokens, attempting to coerce them into

the configuration defined by a target location in their configuration component feature

space. In general, this chapter formulates energy 'ninuziniz techniques in terms of force

generators instead of energy functions. While the significance of a complex energy function

can be rather obscure, forces may be interpreted directly in terms of "pushing' on shape

tokens to change their spatial configurations.

Under the energy minimization or force generation paradigm, the goal of bilding

shape representations capable of transforming between levels of abstraction becomes one

of designing shape descriptors whose 'assertions about spatial geometry are established in

terms of appropriately defined cost functions or force generators. Section 5.4 shows how

abstract level assertions can modify the driving energy landscapes in order to 'Interact
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w'th a shape's primitive level geometry. This 'is done in conjunction with the tool of

dimensionality-reduction, discussed next.

5.3 Dimensionality-Reduction

A useful abstract level representation for a fin shape would permit one to'deal in terms of

properties such a FIN-SKEW (sweepback) or FIN-TAPER. These properties may depend in

complex ways upon the information made explicit at the primitive token level. For exam-

ple, as iustrated in figure 5.1c, modifying the FIN-TAPFR of a fin shape involves modifying

a number of angles and distances among the edges, comers, and regions comprising the

image-level components of the fin. Achieving a means for perfo ng such mappings

between primitive and abstract levels of description would permit a visual system to ma-

nipulate shape information using vocabularies well-suited to given visual domains and

tasks.

One potentially useful type of abstract shape descriptor specifies a family of shapes

defined in terms of the configurations attained by a set of shape primitives undergoing

continuous deformation in the plane. An example of such a situation is shown 'in figure

5.4: a pair of scissors generates a family of shapes as the blades pivot. At the level

of shape primitives, the spatial relations among measurable elements can be cast as a

high-dimensional feature space. For 'Instance, the feature dimensions in the scissors case

might consist of pairwise distances among identifiable edges and comers. Each 'Instance

of the scissors defines one point in the feature space. But because the set of spatial

relations defined by this object axe physically constrained to one degree of freedom, the

set of points generated by the scissors is constrained to lie on a one-dimensional constraint

surface embedded in the high-dimensional feature space. Two alternative representations

for an 'Instance of the scissors are therefore possible: 'in terms of its coordinates, (fl, f2,...),

in the ori 'nal high-dimensional feature space, or 'in terms of 'its location, a, along the one-

dimensional constraint surface.

The computational mapping between the description of datain terms of its coordinates
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Figure 54: Pairwise distances among dentifiable features such as corners form a
many-dimensional feature space. A two-dimensional slice of feature space illustrates
that scissors generate a one-dimensional constraint surface.
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in a high-dimensional feature space, and in terms of its location on a lower-dimensional

constraint surfaces is called dimensionality-reduction [Krishnaa'ah and Kanal, 1982; Koho-

nen, 1984]. We adopt the following notation:

M = Rc('S)

nS = R1(ma)C

R 'is the dimensionality-reducer transforming data with respect to the m-dimensional

constraint-surface, C, embedded 'in some n-dimensional feature space, m < n; S is a point

in this space contained by C, and a expresses this point's location on C in terms of some

(for now unspecified) m-dimensional coordinate system. Note that the dimensionality-

reduction mapping is one-to-one, so both the forward and inverse transformations, R and

R-1, axe well-defined (e. R-I does not mean "matrLxinverse").

Dimensionality-reduced representations can be employed to make explicit descriptive

parameters capturing the natural degrees of variability inherent to classes of shapes related

by constrained deformation. For example, a shape description stating that a viewed object

lies on the family of scissors shapes, and that its location within the fmily corresponds to

the scissors being open 20', is certainly preferable to a listing of the coordinate locations

of each of the original feature measurements. Should a primitive feature level shape

description, S, not faU upon a given dimensionality-reducer's constraint surface, then

the shape is interpreted as not falling within the class of shapes to which this abstract

descriptor applies: i.e., the object 'is not scissors. A suitably constructed collection of

dimensionality-reducers can form components of an abstract level, domaln-dependent,

shape vocabulary.

Dimensionality-reduction is a form of data recoding, and is possible only when a rep-

resentation possesses prior knowledge about the likely source of the data, that is, about a

regularity or constraint, in the form of the constraint surface, C, which will be latent in

data obtained from a given visual domain. The construction of a dimensionality-reducer

therefore 'Involves the installation of this knowledge, typically by generalizing over samples
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of data points drawn from the constraint surface during some "training' period. This issue

is discussed further in section 54.4.

A d'mensionality-reduction mapping can be performed by any of a number of compu-

tational mechanisms [Kohonen, 1984; Saund, 1986, 1987a]. One simple mechanism, called

the inear- Tabular Dimensionality-Reducer, is described 'in Appendix A. In general, the

lower-dimensional constraint surface of a dimensionality-reducer can be of dimensionality

one, two, or greater, up to the dimensionality of the high-dimensional feature space. The

present work eploys dimensionality-reducers, reducing to one dimension only, in an at-

tempt to characterize useful properties of shapes in terms of collections of one-dimensional

parameterized descriptors. The ideas presented are traightforwardly generalizable should

higher dimensional abstract parameters eventually prove necessary.

For the purposes of developing shape representations making explicit abstract geo-

metrical properties such as FN-TAPER and FIN-SKEW, dimensionality-reducers axe useful

in mapping between the values of abstract parameters and the distance, relative orien-

tation, and direction configuration components describing pairwise spatial relationships

among shape tokens. Depending upon the implementation of dimensionality-reduction

used, these mappings can be nonlinear and rather complex. For example, figure 5.5 shows

a sequence of configurations of shape tokens tracing the motion of a seagull wing in flight,

as viewed head-on. Once the mapping between the abstract parameter, "location in flap-

ping cycle," and configurations of shape tokens representing the wing and body has been

established, the coordinated flapping motion of the several shape tokens smply corre-

sponds to vaxying the single abstract parameter.

An arrangement of shape tokens corresponds to a pint in a configuration-component

feature space describing the spatial relations among the tokens. An abstract level de-

scriptor representing membership in a continuous family of spatial configurations defines.

a lower-dimensional constraint-surface embedded in the feature space. Strictly speaking,

it is permitted to transform a shape description from high-dimensional feature space co-

ordinates into a location along the constraint surface only if the point fies exactly on the
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Figure 55: In general, a dimensionality-reduction mapping can be nonlinear and
complex. Here, a one-dimensional parameter controls the configuration of a set of
tokens whose spatial axrangement corresponds to a seagull's wings in flight.
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constraint surface. However in many cases it is desirable to relax this condition so that

an abstract parameter may be used to describe spatial configurations lying. within some

sausage-like volume surrounding the constraint surface. For example, figure 56a shows a

set of right-angle fin shapes with various degrees of taper. These define a one-dimensional

constraint surface in the space of spatial relations among the base, sides, and top edges

of the fin. It is desirable also to be able to describe the taper of the fin shown in figure

5.6b, although this fin 'is swept back somewhat and consequently does not lie on the con-

straint surface defined by right-angle fins of varying taper. This generalization of strict

dimensionality-reduction is achieved by interpreting the abstract parameter value of con-

I N-

b i

I
I

I I

31-

Figure 6: (a) Right angle wng shapes of vaxying taper. (b) It is desirable to
evaluate the taper of a skewed (sweptback wng. (c) This can be accomplished by
talking the nearest distance projection onto the constraint surface of interest.
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figurations represented by points lying nearby but not on a given constraint surface 'in the

following way: take the nearest-distance projection onto the constraint surface, as shown

in figure 5.6c. This is denoted as follows:

C = PjRc(S)7

where the point, S, is no longer required to lie on C.4 Thus, dimensionality-reduction is

used as a convenient tool for carrying out certain types of many-to-one mappings between

parameter spaces. In other words, dimensionality-reduction 'is a device for interpreting

primitive level feature data, S, in terms of abstract level parameters, et, and for gener-

ating assignments to primitive level features on the basis of the values of abstract level

parameters.

For the purposes of shape representation, the most effective use of dimensionality-

reduction is likely not to nvolve abstract shape parameters embedded in huge feature

spaces combining a primitive shape tokens at once. A more sensible approach 'is to

break problems 'Into smaller pieces, so that, for example, the dorsal fin of a fish would be

treated separately from the tail. As will be shown shortly, dimensionality-reducers may

be used hierarchically: abstract parameters defined in terms of one feature space may in

themselves serve as primitive coordinate dimensions for other spaces.

5.4 Energy-Minimizing Dimensionality-Reducers

The problem of building shape representations supporting both interpretive perceptual

and generative graphics computations 'is complicated by the fact that the mapping be-

tween primitive and abstract levels of description is many-to-many (see figure 5.1c). The

interpretation of any given abstract feature, such as FIN-SKEW, may depend upon a large

number of features as described at the primitive level. Conversely, in the graphics di-

rection any image level feature, such as the angle between a pair of edges, may depend

upon the specifications assigned to several abstract properties. Some means is required

'We elect to leave the issue of how near must lie to C-the sausage radius-unsettled at this time.
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for reconciling within and between primitive and abstract level assertions -about an ob-

ject's shape, so that a coherent shape description may be obtained when either or both

top-down and bottom-up information 'is available. For example, what configuration of

shape tokens corresponds to a fin shape that has a leading edge angle (angle AC) of 700

(primitive level assertion) and a FIN-TAPER Of 80' (abstract level assertion)? The en-

ergy nummization technique discussed in section 52 can be combined wth the tool of

dimensionality-reduction to answer questions such as this.

The computational vehicle we present for propagating and combining shape asser-

tions arising at different levels of abstraction is a module called the Energy-Minimizing

Dimensionality-Reducer. This module serves as a kind of computational transmission or

gearbox, that applies forces to primitive level and abstract level descriptive shape paxam-

eters in such a way as to u''mize an energy cost. The energy cost roughly assesses the

degree of incongruity between assertions made at the primitive and abstract levels. Sec-

tion 54.1 sets forth the basic technique for combining shape assertions in the top-down,

graphics, direction, and section 54.2 shows how primitive level assertions can also exert

forces bottom-up, in the perception direction.

5.4.1 Graphics Direction: Interaction Among Abstract Level Specifications

The dimensionality-reduction tool provides a handy means to move the energy well or point

attractor corresponding to a trget configuration of shape tokens around along predefined

paths in distance-orientation-direction configuration-component space. Every such path is

the constraint surface known by a given dimensionali'ty-reducer: simply place the attractor

at the location along the constraint surface indicated by the value of the corresponding

abstract parameter. In this way more abstract shape descriptors can exert control on con-

figurations of primitives at the image level by deforming the energy landscapes governing

the spatial relationships into which shape tokens settle.

Interactions among abstract parameters which share support 'in terms of primitive

spatial relationships may be handled by summing each of their contributions into the
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total energy to be minimized. For example, a dimensionality-reducer belonging to the

FIN-TAPER abstract parameter places point attractors, in the configuration component

feature spaces defining pairwise spatial relationships among shape tokens relevant to this

property, such as those prs specifying angles between top, base and sides of the fin.

To this energy landscape is added other point attractors corresponding to the FIN-SKEW

FIN-HEIGHT, FIN-WIDTH, and other abstract parameters. Under an terative relaxation

or gradient descent energy minimization procedure, the point attractor energy landscapes

generate "forces" on primitive level tokens, as iustrated in figure 57. Under these forces

tokens push and tug on one another in order to optimize their configuration wth respect

to the target spatial relations specified by abstract level descriptors.

5.4.2 Perception Direction: Pushing on Shape Tokens to Influence Abstract

Level Parameters

As discussed in Section 53, a shape description expressed at a primitive level in terms

of the spatial relationships among shape tokens is transformed to a more abstract level

through dimensionality-reduction, that s, by interpreting points in high-dimensional con-

figuration-component feature spaces in terms of locations on lower-dimensional constraint

surfaces. The energy minimization technique can be 'Integrated wth dimensionality-

reduction 'in two ways to permit information asserted at the primitive feature level to

interact, bottom-up, with assertions made at abstract levels. These are called the Energy

Trough scheme and the Parallel Forces scheme, described blow.

Bottom-up 'Influences on shape are smoothly 'integrated 'Into the energy-minimization

approach because these influences behave simply as additional forces on shape descriptors.

As shown in section 54.1, top-down influence on shape is ahieved by the establishment

of point attractor energy landscapes 'in the configuration-component feature spaces rep-

resenting the spatial configuration of primitive level shape tokens. Under a relaxation or

gradient descent procedure, these energy landscapes behave as generators of forces acting

upon the point in feature space representing the configuration of shape tokens. Bottom-up
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component feature spaces according to dimensionality-reduction mappings, (R-1).
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one another by summing their respective forces on shape tokens.
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Figure 5.8: Forces on tokens can arise from external sources such as an edge token's
attraction to figure/ground boundaries in an image. Here are shown successive steps
in an iterative relaxation process as a shape token is drawn to the back edge of a
dorsal fin.

influences on abstract shape descriptors arise when these forces axe themselves given the

power to move point attractors around in configuration-component feature space.

Forces acting in a bottom-up fashion may arise from sources other than energy land-

scapes. For example, a primitive level token that roams about an 'image may be designed

to behave as 'if 'it is attracted to certain image features such as edges (see figure 5.8). (See

also [Kass et al., 1987]). Such forces on the pimitive shape tokens appear as components of

an 46 external" force vector in configuration-component feature space. The Energy Trough

scheme and the Parallel Forces scheme represent two alternative methods for combining

top-down forces with forces aising externally from 'image data or from other sources of

pressure on the spatial relationships among shape tokens.

Energy Troughs

Under the energy inimization paradigm, a system's state, as indicated by a point in

configuration-component feature space, evolves according to forces axising from the en-

ergy landscape, as well as from external forces such as attraction of tokens to image fea-

tures. Section 54.1 showed that through the tool of dimensionality-reduction mapping,
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abstract level shape parameters are used to deform energy landscapes in configuration-

component feature spaces by moving point attractors along dimensionality-reducers' pre-

defined constraint-surfaces.

If, however, an attractor is aowed to roam freely on the constraint surface, then the

energy landscape effectively assumes a topography dfferent from the energy wen created

by a single point attractor fixed by its placement along the constradnt-surface. Specifically,

the energy landscape then becomes a trough defining a family or class of minimum energy

configurations centered along the constraint surface. This is achieved by the following

tactic: maintain the point attractor at that location along the constraint surface which is

the projection onto the constraint surface of the system's current state, as shown-in figure

5.9, and as described by the following expressions:

pr"jR(Si)

Ti R_1(ai), (5-2)

p

II -- -- II-- -- -%-

a b

Figure 59: Energy-Trough scheme: (a) If the point-attractor (T) is maintained at
the projection of the current state (S) onto the constraint surface, then the resulting
energy landscape becomes a trough as shown 'in (b).
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where Si is the state of the system at time i as expressed by a point 'in configuration-

component feature space, a 'is the location of the point attractor on the constraint surface,

and T 'is the computed location of a point attractor or target state n the configuration

component feature space. At each step of the terative relaxation process, the point

attractor T tracks the projection of onto the constraint surface as the location of is

updated as a result of the bottom-up forces acting upon 'it:

Si+1 Si cl(T - Si) C2FexternaI7 (5-3)

cl andC2 act as spring constants or gain factors weighting the sources of pressure on S.

By this method, constraints on objects' shapes may be established that permit cer-

tain classes of deformation while opposing others. The deformations permitted axe those

defined by constraint surfaces embedded 'in the high-dimensional configuration compo-

nent feature spaces of primitive spatial relations among tokens. As an illustrative exam-

ple, figure 5.10 shows a pair of shape tokens whose spatial relationship 'is governed by a

dimensionality-reducer enforcing a "simple-corner' configuration of the tokens. Change in

the abstract parameter, a, corresponds to the tokens pvoting as about a hinge centered at

the vertex of the comer. External forces on the shape tokens appear as an external force

vector, Fexternal, in equation 5.3), that can cause tokens to move around on the plane, but

the internal energy landscape applies additional forces to maintain the tokens in a corner

configuration. Because of the trough behavior of this landscape, however, any vertex angle

for the corner corresponds to an energy minimum, so is energetically acceptable.

According to the procedure reflected in equation 52) the trough character of the

energy landscape is generated by pe tting external forces to control the location of a

point attractor on a constraint surface. This update rule may be modified so that top-

down factors can simultaneously exert their own influence on the topography of the energy

landscape and therefore on the configuration settled upon by the primitive shape tokens.

This is accomplished by establishing a taxget value of the abstract parameter, a, bu t

then placing the point attractor on the constraint surface at some compromise location,

0, between this target value and the projection of the current state onto the constraint
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Figure 5.10: (a) Various configurations of a pair of shape tokens forming a IMPLE-
CORNER constraint surface. (b) The SIMPLE-CORNER latches onto corners found
in images when 'Its component edge tokens are attracted to edges 'in the image as
'Illustrated in Figure 5.8. Shown axe 'Initial poses (i), successive- stages of iterative
relaxation (ii) and final poses (iii) of the SIMPLE-CORNER for two dfferent dorsal
fins. Under the energy-trough scheme described in the text), forces are created
enforcing the constraint that the two tokens must form a symmetrical or co-circulax
configuration. But because the energy mir'mum 'is a trough, the configuration
constraints are equally well satisfied by each of the differing vertex angles af the two

dorsal fins.
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a b

Figure 5.11: The Energy-Trough scheme can be modified so that a target value of
the abstract parameter CItarget) also exerts forces on configurations of shape tokens.
The resulting energy landscape is shown in (b).

surface. This is illustrated in figure 5.11, and is expressed by the following update rule:

ai '�._ PrOjR(Sj)

Oi +- kaj + ( - k)ata,,,,!t

Tj - R-1 (0j)

k is a constant between and weighing the relative influence of the bottom-up forces

acting upon S, and the target value for the abstract parameter, a. Depending upon the

value of k the energy landscape varies in eccentricity between a point attractor and a

trough. In the case of the simple-corner7 Citarget can be used to pressure the corner toward

taking a particular vertex angle.
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Parallel Forces

As discussed in section 53, abstract shape descriptors such as -FIN-TAPER can be useful for

characterizing classes of configurations of primitive level shape tokens corresponding not

just to points lying directly on dimensionality-reducers' constraint surfaces, but also to

volumes, or sausages, in configuration-component space. The abstract parameter makes

explicit information about the shape corresponding to where it lies along the length of

the sausage, but not about its location wthin the cross section. In the approach to shape

representation we aim for t is only over the collection of abstract descriptors such as FIN

TAPER, FIN-SKEW, HEIGHT, and so forth-a collection of sausages cutting configuration-

component space in derent directions-that all aspects of a shape's spatial geometry

might be addressed (see [Rumelhart et al., 1986; Hinton, 1986; Ballaxd, 1986]).

The Parallel Forces scheme for combining bottom-up and top-down 'Influences on shape

descriptors permits a representation to enforce the condition that certain abstract param-

eters may vary, and shape deformations corresponding to these variations wl be allowed,

while the geometrical constraints imposed by stated values of other abstract parameters

must be obeyed, and their corresponding deformations prohibited. Unlike the Energy

Trough scheme, the Parallel Forces scheme does not attempt to attract configurational

states toward abstract parameters' defining constraint-surfaces. Rather, the forces gener-

ated by abstract descriptors operate only parallel to the constraint surfaces, regardless of

the location of the actual state within the volumetric sausage in configuration-component

feature space. This is illustrated in figure 512.,5 Under the Paxallel Forces scheme, the

target state, T is computed according to the following rule:

proa 4- IR(Si)

Oi - kci + ( - k)at,,rqt

Ti - Si + [R-1(0i - R-'(ai))

'Actually, the force direction becomes truly parallel to the constraint surface only as approaches T.
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Figure 512: (a) Placement of the point attractor T) in configuration component
feature space under the Parallel Forces scheme. Resulting energy landscape.

The constant k weights the relative influence from top-down (atarget) and bottom-up

pressures on the placement of the pnt attractor, T. By this rule, as in the Energy

Trough scheme, the description of a shape at an abstract level, and its description at a

Primitive level (and hence the geometrical configuration adopted by the primitive level

shape tokens) are arrived at by an interaction between two influences: (1) bottom-up

influences asing from external forces on shape tokens, and 2) top-downinfluences arising

from higher level specifications of taxget abstract paramaeter values. In other words, image

features can push against shape tokens which can push against abstract level descriptive

parameters, and abstract level descriptive parameters can push back. An example of this

interaction at work in the dorsal fin shape is presented below. As in the previous cases, for

purposes of shoving tokens around 'in space we are only 'Interested in the local character

of the resulting energy landscape, not 'in its global topography.
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5.4.3 Hierarchies of Energy-Minimizing Dimensionality-Reducer Modules

The Energy-Minimizing Dmensionality-Reducer (EMDR), of ether the Energy-Trough

or Parallel Forces type, can be used as a modular building block for constructing shape

representations. Each EMDR performs a mapping between a high-dimensional feature

space and a lower-dimensional abstract parameter whose value corresponds to a location

on a constraint-surface embedded in the feature space. For each descriptive feature or

parameter, information flows in two directions, as shown in figure 5.13a. In the bottom-up

direction, a shape description enters the primitive feature side of an EMDR as a vector,

S, describing a point in the high dimensional feature space. An interpretation of this

description, 'in terms of a location on the constraint surface maintained by this EMDR,

emerges at the abstract parameter side; this 'is the input vector's projected location, a, on

the constraint surface. In the top-down direction a taxget value for the abstract parameter

value, ttargeti enters the abstract parameter sde of the EMDR. This is translated into

target vector, T, for the component feature dimensions on the primitive side of the EMDR.

Energy- 'm'rnizing dimensionality-reducers may be stacked hierarchically, as shown in

figure 5.13b. The abstract parameter emerging from one EMDR can serve as a component

feature dimension of a later EMDR, and the target feature values of later EMDRs can

sum downward as target as for earlier EMDRs. The ability to build hierarchies of Energy-

minimizing dimensionality-reducers serves two purposes. First, it permits the construction

shape vocabularies whose explicit parameters fit naturally to the dimensions of variability

observed in given shape domains at many levels of abstraction. Second, it helps to manage

the sizes and complexities of the dimensionality-reducers needed.

Energy 'nimization occurs 'iteratively as actual and target values of primitive and

abstract parameters are updated according to various forces. Forces are generated as a

result of mismatch between actual parameter values and target prameter values associated

with Minima in the energy landscape of each EMDR. Additionally, external forcer arising

from image data, from object identity hypotheses, or from a graphic artist's specifications,

may also contribute to forces affecting the iterative state update. As described above, the
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state update rule differs according to whether the EMDR 'is of the Energy Trough or

Parallel Forces type.

Figure 514 shows a two-stage hierarchical vocabulary of Parallel Forces type Energy-

minimizing dimensionality-reducers for the simple dorsal fin shape constructed from five

4C edge" type shape tokens plus four "corner" type tokens. In two stages, the vocabulary

proceeds from a primal level of description in terms of relative angle ad relative distance

among pairs of pimitives, to a more abstract level making explicit fin height, width, taper,

skew, and tip-angle.

This representation supports flexible manipulation of fin geometry because fin-specific

shape attributes are referred to explicitly through the vocabulary of shape descriptors pro-

vided, 'Instead of only 'Indirectly through primitive level spatial relations among individual

edge, corner, and blob tokens. For example, one abstract parameter represents the angle

between the tp of the fin and the base, another represents the angle between the tip of

the fin and the fin's ams, while another represents the skew or sweepback of the fin. With

incorporation into a suitable user interface, a user may adjust FIN-SKEW under alternative

constraints (1) that the TIP-ANGLE remaln parallel to the base, or, 2) that TIP-ANGLE

remain perpendicular to the fin am's. Geometrical constraints are enforced b the clamping

of explicit parameter values within the shape description hierarchy. Through the energy

minimization procedure, geometrical constraints at any level of abstraction are enforced

equally and independently of whether forces for modifying a shape axise at primitive or

abstract levels of description. Thus, a partial description of a fi-n shape at the primitive

level, such as information that the leading edge angle, (angle AC) is 70', can be combined

ith abstract level hypotheses, such as that the FIN -TAPER 'is 80', n order to reconstruct

a complete picture of a dorsal fin meeting these constraints.

5.4.4 Installing Domain Knowledge

The Energy-Minimizing Dimensionality-Reducer can serve as a representational medium

from which to construct vocabularies of shape descriptors making explicit geometrical
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properties important to specific vsual shape domains. The task of bilding such vocab-

ularies 'involves 'Identifying these properties, discovering the primitive level spatial rela-

tionships upon which they depend, and then building dimensionality-reducers mapping

between the primitive and abstract levels. Decisions as to which properties might best

be named at which level in a herarchy rest with the representation builder. The process

is not automatic, but instead reqwres careful analysis of the regularities and structure

inherent to the set of shapes which the representation wl be called upon to handle.

Each dimensionality-reducer mntains a mapping between primitive level features

and values of an abstract parameter 'in the form of a lower-dimensional surface embed-

ded in a high-dimensional feature space. Different implementations of dimensionality-

reduction ill represent knowledge of a constraint-surface 'in different ways. Regardless

of the form in which knowledge of constraint-surfaces is stored, this information must be

imported into each dimensionality-reducer built. Typically, this is done by presenting a

dimensionality-reducer with a training set" of data samples drawn from the constraint

surface, from which the device is to generalize the entire constraint surface, say, s a

smooth function through the training samples. Appendix A discusses how the inear-

Tabulax Dimensionality-Reducer accomplishes this. In the case of building a shape rep-

resentation, the representation builder selects samples of shapes illustrating a range of

values of the abstract property to be trained upon. For example, instances of fish dorsal

fins with various degrees of taper (figure 56) served as samples for training the FIN-TAPER

abstract parameter.

5.5 Conclusion

A central lesson in the computational study of vsion 'is that the perceptual system must

employ knowledge about the external world giving fise to sensory input. Whereas in

early vsion knowledge about fundamental physical properties of the world may be cap-

tured conveniently in the form of analytically expressed assumptions such as the surface

smoothness constraint, the world knowledge supporting meaningful interpretation at later

184



visual stages is likely to be much more complicated. The sources of constraint 'in object
shape are complex and in general inaccessible from first principles because real ob'ects

I J

take the shapes they do for myriad rational, irrational, and obscure reasons. No simple

mathematical formula is likely to express the constraints on an ob'ect's shape that may

allow t to be called, "dorsal fin."

The tool of dimensionality-reduction offers one means for a vsual system to store

and access one type of these more complicated sorts of knowledge, namely, knowledge

of deformation classes inherent to particular shape domains. By supporting successive

(often nonlinear) transformations 'into appropriate feature spaces, a representation can

make explicit many different aspects of shape at many different levels of abstraction. The

domain-specific, knowledge-based, approach to describing the deformations by which the

objects' shapes are related contrasts with other approaches seeking domain-independent

principles based on implicit general assumptions about shape formation processes [Leyton,

1988] or morphological homology [Thompson, 1942].

This chapter shows how dimensionality-reduction may be coupled with an energy nun-

in'zation mechanism so that descriptive assertions about shape may propagate in bottom-

up, data driven fashion to abstract levels, as well as 'in the top-down, hypothesis driven

or graphics direction. The energy- 'nimization paradigm 'is a convenient one for combin-

ing dispaxate sources of evidence and constraint. In analogy to a physical device, shape

descriptors are treated as "force' generators that exert pressure on other descriptors wth

which they communicate information about shape properties.

185



Chapter 6

Intermediate Level Shape Descriptors

Collections of natural shapes exhibit geometrical structure and regularity at many levels

of abstraction. At the simplest level, the recurrence of figure/ground boundaxies at var'_

ous locations, orientations, and scales 'is an important regularity common to virtually all

objects in our physical world. This regularity motivates the use of edge and region descrip-

tors 'in computational approaches to shape representation, including the PRIMITIVE-EDGE

(Type 0) and PRIMITIVE-PARTIAL-REGION (Type 1) tokens 'Introduced 'in Chapter 4 At

more abstract levels, geometrical structure is found in the spatial relations among simple

edges and regions. Chapter addressed the fact that important structural regularities

occurring in objects' shapes are captured through classes of deformations over spatial

arrangements of shape prim itives. Thi's and the following chapter describe a specific vo-

cabulary of intermediate and higher level shape descriptors naming 'important geometrical

properties of two-dimensional shape objects.

The underlying argument of this thesis pertains to knowledge about a vsual shape

world that is contained 'in the vocabulary of shape descriptors comprising a shape repre-

sentation. A good representation for shape is noted by the fact that the spatial configura-

tions and deformation classes named by the descriptive vocabulary must reflect the spatial

configurations and deformations occurring in the shape world that the representation is in-

tended to describe. Coroflaxy to this argument, the shape descriptors capturing primitive

spatial regularities common to most or all shape objects will have universal applicability.

For example, almost any shape can.be described at an eaxly stage by the PRIMITIVE-EDGE

and PRIMITIVE-PARTIAL-REGION tokens. But conversely, spatial regulaxities. characteristic

of only certain classes or domains of shapes demand the design of domain-specific shape

vocabulary elements that will be useful only for describing members of those articular

shape domains.
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This chapter examines shape descriptors at an intermediate level of abstraction. We

describe three types of shape descriptor that identify two-dimensional spatial structure

occurringin configurations of PRIMITIVE-EDGEs and PRIMITIVE-PARTIAL-REGIONS. These

shape descriptors were designed with the purpose of supporting, at a later stage, the

abstract levels of a shape vocabulary devoted to the shape world of the dorsal fins of

fishes (Chapter 7. However, not surprisingly, it will become apparent that the geometrical

regularities named at this intermediate level of abstraction are common to many objects

in the natural visual world, not just fish dorsal fins.

The intermediate level shape descriptors are called: extended-edges, partial-circular

regions (pcregions), and full-corners (fcorners). See figure 61. Formal specifications for

these descriptors arise by virtue of the procedures for their computation given in this chap-

ter. Configurations of shape primitives comprising these structures axe found by grouping

PRIMITIVE-EDGEs and/or PRIMITIVE-PARTIAL-REGIONS residingin the Scale-Space Black-

board, in the manner described in Chapter 4. New tokens, of type EXTENDED-EDGE,

PCREGION, or FCORNER, are placed in the Scale-Space Blackboard as these structures

are identified 'in shape data. Each type of intermediate level shape descriptor encom-

passes a family of configurations of primitive level 'Shape tokens, related by deformation in

the spatia arangement of the constituent primitives. For example, EXTENDED-EDGEs are

comprised of a string of PRIMITIVE-EDGE tokens lying along a circulax arc, and accordingly,

the family of EXTENDED-EDGES is parameterized by the curvature of the arc. The sym-

bolic tokens naming intermediate level structures are therefore given 'Internal attributes

for the deformation parameters associated with each type. As described 'in Chapter 4 the

overall spatial structure of a shape object 'is preserved by the fact that each intermediate

level shape token 'is placed into the Scale-Space Blackboaxd according to -the location and

scale of the shape fragment it identifies. Although the specific tool of energy-minimizing

dimensionality-reducers (Chapter 5) 'is not employed by the token grouping operations of

intermediate level shape description, the computational device of dimensionality-reduction

nonetheless plays a crucial role conceptually. The way in which intermediate-level token
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PCREGION FCORNER

N I

EXTENDED-EDGE

PRIMITIVE-PARTIAL-REGION

(Type 1) mob, I

PRIMITIVE-EDGE b

(Type 0)
Figure 61: (a) 2D shape fragments identified by three inter 'ediate level

m shape
descriptors. (b) Computing dependency hierarchy for primitive and intermediate
level shape descriptors. 1 qQ
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grouping 'is a form of dimensionality-reduction is elucidated at the end of the chapter.

6.1 Extended-Edges

6.1.1 Rationale for Extended-Edges

The Type 0, or PRIMITIVE-EDGE type of descriptive shape token introduced 'in Chapter

4 maxks an oriented figure/ground boundary. The parameters of x-location, y-location,

orientation, and scale localize the token 'in the Scale-Space Blackboaxd. The scale of a

PRIMITIVE-EDGE indicates a boundary fragment's spatial extent, and ts 'Includes not

only the fragment's length, but also the width of the "fuzzy' region in which the precise

contour might fall. As shown 'in figure 62 a variety of contours differing 'in their fine scale

detail can give rse to the same PRIMITIVE-EDGE description at a coaxse scale. This section

introduces the EXTENDED-EDGE token, which offers a means of concisely describing the

fine scale structure of certain classes of spatially extended figure/ground boundaries.

EXTENDED-EDGE tokens axe computed through grouping of PRIMITIVE-EDGE tokens

satisfying certain configuration constraints. For the present purposes we employ a c6n-

straint reflecting an important regularity 'in the visual world: many naturally occurring

shape contours are well approximated by circular arcs. Thus, the grouping rules used to

compute EXTENDED-EDGES will attempt to identify collections of PRIMITIVE-EDGES failing

along circular arcs. Circular contour descriptors have been used by many investigators

[e.g. Perkins, 1978- Brady and Asada, 1984; Grimson, 1987a], but in defining EXTENDED-

EDGES computed from symbolic PRIMITIVE-EDGES this effort departs from previous work

on contour description in several regards that will become apparent.

An EXTENDED-EDGE token contains the standard attributes of x-location, y-location,

orientation, and scale, plus two others. The scale of an EXTENDED-EDGE token indicates

the chord length of the circular arc.

One additional internal attribute of an EXTENDED-EDGE token describes the contour's

curvature, K. Curvature is conventionally defined as 1/radius-of-curvature, but because
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Figure 62: A of the shape boundary contours at right give rise to the same coarse
scale description. Coarse scale tokens at left are depicted at top 'in standard fash-
ion (line wth a circle at one end denoting orientation) and at bottom by ellipses
indicating the tolerance region for the precise location of the boundaxy.

extended edges are used as part of a multiscale shape representation, a slight augmentation

is in order. Fgure 63 'illustrates that extended edges of different sizes are self-similar

with respect to magnification not when radius of curvature is preserved, but when the

arcls angular extent is maintained as the edge changes size (or equivalently, translates in

the scale dimension). Accordingly, the curvature of an EXTENDED-EDGE tokeni's assigned

according to the following:
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sn,Definition: The scale-normalized-curvature, , of the circular arc denoted by an

EXTENDED-EDGE is given by

sn a,
= KeX (6-1)

where a is the location along the scale dmension of the EXTENDED-EDGE token (as de-

termined by its size), is the absolute curvature of the arc as measured at some reference

scale, a = , and A is the constant relating distance along the scale dimension to magni-

fication (see equation 4)).

Suppose we say that the scale of an EXTENDED-EDGE token is defined as follows: An

EXTENDED-EDGE whose arc length 'is the constant 10, 'is said to have scale (7= 0. Then

by equation 4.3) an EXTENDED-EDGE whose scale is a has arc length

i

A

same scale-normalized
curvature

- T

A

I
same scale-normalized

curvature
same absolute

curvature

Figure 63: An EXTENDED-EDGE's scale-normalized curvature parameter remains

constant as the crcular arc 'is magnified or (firrdnished in size, while 'its absolute
curvature changes.
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C�
I = loeA

and
an = e A = -eA (6.2)

r 10 r TO
where AO 'is the angular extent of the arc (and r is its radius of curvature). That 'is, unlike

absolute curvature, scale-normalized curvature is proportional to angular extent.

Under our definition the scale-normalized curvature of an EXTENDED-EDCE contour

is preserved as that contour 'is magnified or reduced 'in sze. This is easily verified: Take

some circular arc whose scale a is 0. Suppose 'Its curvature is K = 1/ro, where the radius

of curvature, o, 'is measured at the reference scale, a = . By the definition above, the

edge's scale-normalized curvature, sn Kalso 'IS K. Now, magnify the token 'in size by a

factor, l, such that the token's scale 'is now cr = o,,. By equation 4-3),

ZLml = eA . (6-3)

Under this magnification, the token's new radius of curvature, ri, becomes r mirol

and its new absolute curvature becomes

KI (6.4)
ri miro

Plu 'ng 6-4) and 6.3) 'into definition 6.1), the scale-normalized curvature for the token

remains sn K =1/ro= K.

A second internal attribute of EXTENDED-EDGE tokens pertains to the precision or

smoothness of the contour modeled as a circular arc. Figure 64 shows circular contour

segments forming EXTENDED-EDGES of 'Identical scale and curvature, but supported by

PRIMITIVE-EDGE tokens of ifferent scales. The EXTENDED-EDGE supported by finer scale

PRIMITIVE-EDGES can make a stronger assertion about the smoothness of the circular

arc or the precision to which the figure/ground boundaxy of the actual shape ob'ect truly

follows the crcular arc. The contour boundaxy asserted by coarser scale PRIMITIVE-EDGES

is "fuzzier" than that asserted by finer scale PRIMITIVE-EDGES.
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greater smoothness less smoothness

Figure 64-. The EXTENDED-EDGE modeled by a circular arc can be supported by
PRIMITIVE-EDGE tokens occurring at any of a number of scales. The XTENDED-
EDGE smoothness parameter indicates the precision to which the EXTENDED-EDGE
arc must fit the shape ob'ect's actual boundary.

Definition: The smoothness of an EXTENDED-EDGE is given by:

smoothness = axtended-edge - 'support� (6.5)

where Oextended-,dg, is the scale of the EXTENDED-EDGE (as determined by its contour

length), and cruppt is the scale of the PRIMITIVE-EDGE tokens supporting the assertion

of the EXTENDED-EDGE (under the grouping rules described below.)

. Because the scale.dimension is defined logarithmically with respect to magnification,

as discussed in Section 43.3, this definition corresponds to the ratio of the szes of the

EXTENDED-EDGE and supporting PRIMITIVE-EDGE tokens.

By mintaining an explicit assertion of contour smoothness in this way, the multiscale

token grouping approach to building shape descriptions addresses an 'important issue in

the analysis of shape contours. This 'Issue is illustrated in figure 65. Suppose we were to

set forth the task of approximating the shape profile of this fish wth circular arcs. There
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is an 'Inherent tradeoff between using fewer arcs, (figure 65a), versus approximating the

contour more accurately (figure 6.5b). The key to this tradeoff lies 'in the issue of scale.

In order to preserve the property of self-sirr'larity under magnification, that is, that the

shape should be approximated by the same number of arcs no matter what its absolute

magnification, the appropriate measure of the accuracy of the contour approximation 'is

not absolute approximation error, but approximation error relative to the sze of each arc

used. For example, an approximation tolerance may be specified such that the deviation

from the boundary to an approximating arc must be no' more than 5% of the arc's length.

This 'is exactly the sort of nformation made explicit by the EXTENDED-EDGE smoothness

parameter.

Naturally occurring shapes rarely offer contours consisting of a sequence of wl-

demarcated uniform curvature segments. More typically a segment of approximately

uniform curvature gradually blends into a segment of approximately ulu'form but different

curvature. See figure 66. Furthermore, the determination as to whether some section

of contour 'is to be considered a single segment or a number of segments depends upon

the desired approximating contour smoothness. Depending upon. the purposes of later

processing tasks, any of a number of contour segmentations may contain the appropri-

ate interpretation. Current approaches to curve description in terms of curved contour

segments typically seek a series of "knot" points along a curve, and then fit curves to

contour sections bounded by successive pairs of knot points eg. Pavlidis, 1982, Plass and

Stone, 1983]. These approaches can lead to stuations 'in which, in order to capture certain

extended contour segments, knot points are forced to fall on (and break) other, equally

important extended contour segments, as shown in figures 66b and 66c. When the goal

of the segmentation is simply to approximate the curve cheaply, these instances cause no

harm. However, our purpose in grouping PRIMITIVE-EDGE tokens 'into EXTENDED-EDGES

is not simply to encode a curve, but to dentify all contour segments of approximately uni-

form curvature, in the anticipation that it is important to explicitly name these fragments

of shape so that the spatial relations among them might be measured in later stages of
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Figure 66: (a) The curving contours of natural shapes often blend smoothly into
one another. One approach to boundary contours approximation is 'in terms of a
sequence of arcs'bounded by "knot" points, andjoined end-to-end. Knot points
can fall in the middle of smoothly curving segments, as shown in (b) and (c). Our
approach to EXTENDED-EDGES allows arcs to overlap one another so that every
smoothly curving segment is made explicit.

shape processing. Therefore, we set as the goal for the computational procedure grouping

PRIMITIVE-EDGES into EXTENDED-EDGES to identify the locations, orientations, curva-

tures, and smoothnesses of a contour fragments of approximately uniform curvature.

Fragments of curve chunked into EXTENDED-EDGE Segments may overlap one another,

and a given fragment of contour may participate in several EXTENDED-EDGE segments.

6.1.2 Grouping Rules for Extended-Edges

The procedure we have developed for grouping PRIMITIVE-EDGE tokens residing in the

Scale-Space Blackboard into tokens of type, EXTENDED-EDGE, narrung contour fragments

of roughly uniform curvature is carried out in two major� steps:

L Identify groups of PRIMITIVE-EDGE tokens lying along circular arcs for all scales of

PRIMITIVE-EDGES 'Independently, and create EXTENDED-EDGE tokens for them.
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IL Prune less salient EXTENDED-EDGE tokens.

These major steps are discussed in turn.

Step I: Identify uniformly curved contour segments

The output of the procedure described in Chapter 4 forconstructing a multiscale shape

description in terms of PRIMITIVE-EDGE type tokens (Type tokens) leaves a collection

of PRIMITIVE-EDGEs at octave 'intervals in the Scale-Space Blackboard. The procedure

described 'in this section identifies subsetsOf PRIMITIVE-EDGES occurring at a sngle scale

that lie along curved arcs. This procedure is run independently for each scaleOf PRIMITIVE-

EDGE tokens. The routine proceeds in the following stepsi:

I.1 Identify short contour segments of uniform curvature at seed locations along the con-

tour, and measure the local curvature of each short contour segment.

I.2 Merge short contour segments lying along a common circular arc, as determined by

their poses and curvatures.

I.3 Assign shape tokens of type EXTENDED-EDGE to these longer contour segments.

1.1 Identify short contour segments at seed locations: A least squares method

can be used to fit arc segments to PRIMITIVE-EDGEs describing a shape ob'ect's bounding

contour. (For convenience, we fit a parabolic arc, which at the vertex locally approximates

a circular arc.) In general, the average squared error between the arc model and the

PRIM ITIVE EDGE data will grow as the model attempts to span a larger section of contour,

as shown in figure 67. We begin by attempting to fit local arc models of limited extent

very accurately, centered at closely spaced seed intervals along the contour. Call these

44 short contour segments." Seeds axe spaced at approximately the length of one PRIMITIVE-

EDGE token. Thus, because PRIMITIVE-EDGES overlap one another by approximately half

their length, an arc is seeded at approximately every other PRIMITIVE-EDGE token along

'Some details of the computing procedures described in this chapter are omitted for clarity.
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Figure 67: (a) The error between a boundary contour and 'its approximation by
a circular arc (or any analytic model for that matter) will generally grow as the
model attempts to fit a larger portion of the contour. (b) The terms in the least-
squares error measure for fitting an arc model to PRIMITIVE-EDGE data includes
distance from a PRIMITIVE-EDGE token to the axc, d, and orientation between the
PRIMITIVE-EDGE and the point on the arc closest to it M.
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the contour. For each such short contour segment, the local curvature of the contour is

delivered as a result of the least-squares fit. The least-squares error measure between

the arc model and the PRIMITIVE-EDGE data combines both location and orientation

information, as follows:

E d? + MO (6-6)
iEN

where di is the scale-normalized distance from the ithPRIMITIVE-EDGE tokento the arc, b

is a constant, and 69i is the dfference in orientation between this token' and the arcs' ori-

entation at the most proximal point along the arc, as shown in figure 6.7b. The neighbor-

hood, N, 'includes all PRIMITIVE-EDGEtokens lying wthin some scale-normalized dstance

of the seed PRIMITIVE-EDGE, and 'is szed to typically include the two neaxest neighbor

PRIMITIVE-EDGES on each side of the seed. Thus, typically five PRIMITIVE-EDGES con-

tribute to the estimation of each short contour segment. If the error measure, E, falls

above a threshold value, then the local contour segment is discarded.

I.2 Merge short contour segments lying along a common circular arc: Each

short contour segment is described in terms of an arc location, orientation and curvature.

The following expression estimates the Mutual Similarity Cost, M, of two arcs, that 'is,

the degree to which two arcs may be said to lie on the same crcle, for purposes of merging

short contour segments into larger chunks:

M = Md + MO A, (6.7)

Mutual Similarity cost 'increases as two arcs become less similar, and is the sum of three

terms, a dstance term, Md a cotangency term, Me, and a curvature dfference term, M.

The dstance term and cotangency term require the construction of a point in space, ,

which is approximately the point of intersection, or else the point of nearest approach, of

the two arcs, as shown in figure 68. The dstance term, Md, is the sum of the dstances

from this point to each arc, and the cotangency term, MO, is the difference in the orien-

tations of the arcs at the projection points. The curvature difference'term, M, is smply

the difference in the curvatures of the arcs.
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Figure 6.8.- The Mutual Similarity Cost measure of the degree to which two arcs are
part of the same contour makes use of the point, P, constructed as follows: Find the
point, q, midway between the to EXTENDED-EDGE arcs (or proportionally closer
to the smaller arc 'if the arcs are of different sze). Find the points of perpendicular
projection to each arc. P lies midway between these points. So constructed, P lies
at approximately the intersection between two arcs, or else at the point of neaxest
approach."

Short contour segments found by Step I.1 are compared with others in their spa-

tial vicinity, and those whose Mutual Similarity Cost falls below a preset threshold are

merged 'into a laxger contour segment whose location, orientation, and curvature axe com-

puted based on the union of the PRIMITIVE-EDGES supporting the merged short contour

segments.

I.3 Assign shape tokens of type EXTENDED-EDGE to these longer contour seg-

ments: For each larger contour segment created by mer 'ng short contour segments,

write a new token into the Scale-Space Blackboard of type, EXTENDED-EDGE. The lo-

cation and oentation of this token axe set according to the centroid and orientation

of the arc contour segment, and the token's scale is set according to the arc's chord

length. The scale-normalized curvature of the extended-edge token 'is set by normalizing

the arc's curvature according to the token's scale, as described 'in equation 6-1), and the

EXTENDED-EDGE's smoothness is assigned based on the token's scale and the scale of the
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Figure 69: All EXTENDED-EDGE tokens resulting from step I.1 of the EXTENDED-
EDGE grouping procedure.

PRIMITIVE-EDGES pporting the curved arc, as described in equation (6-5).

Step IL Prune less salient EXTENDED-EDGE tokens

Figure 69 presents the results of Step I Of EXTENDED-EDGE token grouping for an example

fish shape profile. Two points are worth noting. First, some contours are named by more

than one EXTENDED-EDGE token. This 'is because EXTENDED-EDGES are computed 'in

Step I based on PRIMITIVE-EDGEs at each scale independently, so every contour segment

is actually "seen' by collections Of PRIMITIVE-EDGES at several scales. Second, some of the

EXTENDED-EDGE contours in figure 69 appear to terminate in the n'ddle of a smoothly

arcing contour. This is observed mainly for EXTENDED-EDGE tokens supported by finer

scale PRIMITIVE-EDGES, and is due 'in part to the fact that at the finest scales of support

EXTENDED-EDGE arcs axe required to fit the pri'mitive-edge data extremely accurately.

The purpose of Step II of the EXTENDED-EDGE grouping procedure is twofold: First,

simplify the EXTENDED-EDGE description by pruning any EXTENDED-EDGE token that
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covers the same section of boundaxy contour as another EXTENDED-EDGE token, butis sup-

ported by PRIMITIVE-EDGE tokens of a coarser scale. In other words, keep the smoothest

poss'ble EXTENDED-EDGES for each fragment of contour. Second, prune EXTENDED-EDGE

tokens that describe less salient contour fragments. The "salience" of a contour fragment

refers to the degree to which the ends of the contour fragment mark a discontinuity 'in the

contour's orientation or curvature.

IIJ: Characterize EXTENDED-EDGE salience: The salience of each end of an XTEND-

ED-EDGE is estimated independently by computing the Mutual Smilarity Cost between

the EXTENDED-EDGE and other neighboring EXTENDED-EDGES found on each end, as

shown 'in figure 610. For pairs Of EXTENDED-EDGES with high Mutual Similarity Cost,

more salient less salient

Figure 610: The more salient EXTENDED-EDGE contours axe those whose neighbor-
ing EXTENDED-EDGES differ markedly 'in orientation or curvature, as 'Indicated by
the Mutual imilarity Cost.
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their junction can be further characterized by whether the segments differ primarily 'in

orientation or in curvature. The salience of an EXTENDED-EDGE token is taken to be the

salience of the least salient end.

H.2: Prune less smooth and less salient EXTENDED-EDGE tokens. First, EXTEND-

ED-EDGE tokens are separated into two groups: very high salience and moderate salience.

The former are EXTENDED-EDGES whose salience falls above a very high threshold; these

are tokens that span a contour segment bounded by sharp comers. Moderate salience

EXTENDED-EDGES are segments whose neighbors differ moderately in orientation and/or

curvature. Of the very salient EXTENDED-EDGES, the smoothest EXTENDED-EDGE for

each contour segment 'is accepted. Redundant less smooth EXTENDED-EDGE tokens, that

is, EXTENDED-EDGE tokens supported by coarser scale PRIMITIVE-EDGES, are discarded.

The moderate salience EXTENDED-EDGEs are then sorted in order of decreasing salience.

These EXTENDED-EDGEs are examinedin order, and either accepted, if no other previously

accepted EXTENDED-EDGE spans its fragment of the shape contour, or discarded, if another

spatially redundant (and more salient) EXTENDED-EDGE has already been accepted.

6.1.3 Result of EXTENDED-EDGE Identification

The result of EXTENDED-EDGE identification is a collection Of EXTENDED-EDGE tokens

that name salient extended gently curving fragments of a shape's bounding contour

rather like what a person might draw 'if asked to sketch the contour 'in a few strokes.

See figure 6.11. Each contour segment is of roughly uform curvature, and 'is bounded

on each end by another contour segment of at least moderately different curvature or

orientation at their junction (or in some cases, bounded by no other EXTENDED-EDGE).

Note that in some cases the contours found axe quite snificant to the human eye, but

are very subtle in terms of the magnitude of the difference in orientation or curvature

among neighboring contours. The sensitivity of this procedure for 'Identifying EXTENDED-

EDGES derives larizely from the fact that the essential computations are in terms of the two
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Figure 611: The result of EXTENDED-EDGE grouping. At topire shown the poses

of the EXTENDED-EDGE tokens, and at bottom axe the crcular arcs they represent.
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dimensional spatial relations among events on the two-dimensional plane, that is, in terms

of two-dimensional spatial configurations of shape tokens, and not based on attempts

to segment one-dimensional data such as contour orientation or contour curvature as a

function of arc length.

6.2 Partial-Circular-Regions (pcregions)

6.2.1 Rationale for Pcregions

The Type 1, or PRIMITIVE-PARTIAL-REGION type of descriptive shape token introduced

in Chapter 4 marks co-circular pairs of PRIMITIVE-EDGES that form a simple curved-

contour-segment," "primitive-corner or "bar" configuration, depending upon the relative

orientation of the component PRIMITIVE-EDGES. This degree of freedom is named by an

internal attribute Of PRIMITIVE-PARTIAL-REGION tokens called the T1 parameter). This

section and the following define procedures for grouping collections of PRIMITIVE-PARTIAL-

REGION tokens that form configurations reflecting more complex spatial structures.

Figure 6.12a. presents the underlying model for an important class of geometrical con-

figurations that can be called the partial-circular-region (pcregion). These occur when

a shape's bounding contour partially encloses a region roughly circular in form. Figure

6.12b depicts the character of PRIMITIVE-PARTIAL-REGION tokens that typically obtain

from a partial-circular-region encountered in an observed shape. Relatively large scale

PRIMITIVE-PARTIAL-REGION tokens lying neax the center of the region take T1 parame-

ter values corresponding to a 'bar," while the PRIMITIVE-PARTIAL-REGIONs decrease in

scale, and the angle between their component PRIMITIVE-EDGEs becomes more obtuse,

toward the periphery of the region. These structural characteristics of the PRIMITIVE-

PARTIAL-REGION description of a partial-circular-region make it possible to devise token

grouping strate 'es for identifying partial-circulax-regions in shape data on the basis of

PRIMITIVE-PARTIAL-REGION tokens.

A partial-circular-region is named by a token of type, PC-REGION, having two internal
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Figure 612: (a) The PCREGION token makes explicit instances of partial-circular-
regions in shape data. (b) Partial-circular-regions typically gve rise to a charac-
teristic pattern P'RIMITIVE-PARTIAL-REGION (Type 1) tokens. At the center of the
partial-circular-region, PIMITIVE-PARTIAL-REGIONS are large in scale and have an
internal parameter (T1 parameter) value corresponding to a "bar.' Nearer the pe-
riphery of the partial-circular-region, PRIMITIVE-PARTIAL-REGIONS tokens decrease
in scale and become more "comer-like." (c) An internal parameter of PCREGION
tokens describes the region's angular extent.

parameters in addition to location, orientation, and scale. The first parameter describes

the region's angular extent, as shown in figure 6.12c. In addition, one additional bit of

information is required to specify the figure/ground relation (whether the region 'is a round

part or a hole).

The PC-REGION shape descriptor is related to the EXTENDED-EDGE because they are

both based on a circulax arc model. However, they differ in the ranges of shape fragments

they are designed to identify. EXTENDED-EDGES bsed on groupings of PRIMITIVE-EDGES
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that align with one another, are intended to capture relatively smooth and shallow arcs,

while PCREGIONS, based on groupings Of PRIMITIVE-PARTIAL-REGIONS, 'Identify regions

that are deeper (span a greater angular extent) and tolerably less precisely crcular. In-

termediate depth curved contours may be identified by both descriptors.

6.2.2 Grouping Rules for Peregions

A procedure for grouping PRIMITIVE-PARTIAL-REGION tokens residing in the Scale-Space

Blackboaxd 'Into PCREGIONS operates in four steps:

I Link Neighboring PRIMITIVE-PARTIAL-REGION tokens.

II Partition the set of PRIMITIVE-PARTIAL-REGION tokens 'into groups of tokens all de-

scribing the same paxtial-circular-region.

III Name these groups with tokens of type PCREGION.

IV Prune inadequately supported and redundant PCREGION tokens.

These steps are described in turn:

Step 1: Link neighboring PRIMITIVE-PARTIAL-REGION tokens

The first step of the PCREGION grouping procedure is to establish links among related

PRIMITIVE-PARTIAL-REGION, or Type tokens. Each link will contain information as to

the degree to which a pair of PRIMITIVE-PARTIAL-REGIONs describes the same PCREGION.

This 'information 'is needed in order to find clusters of PRIMITIVE-PARTIAL-REGION tokens

that all describe the same PCREGION.

Every PRIMITIVE-PARTIAL-REGION token defines a circle, as figure 6.12b 'Indicates. A

suitable measure of the degree to which two PRIMITIVE-PARTIAL-REMON tokens describe

the same PCREGION i 'ven by the following expression assessing the degree to which two

circles, C1 and C2, are different-

Ccircledif ference (Cl, C2) = 8Dcjc2 + snDpc2 + snDclp (6-8)
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Figure 613: Examples of the Circledifference Cost measure. Circles are considered
more similar when their centers axe nearer, and when they are of more equal size.
Because 'it employs the scale-normalized distance, the Cirdedifference cost measure
is invariant wth respect to magnification of a circle pair.

Ccircledifference is a cost (called the Circledifference Cost) which is when the circles C,

and C2 are identical. The first term in the expression is the scale-normalized distance

between the centers of the circles. The scale of a circle, that 'is, a cirtle's placement along

the Scale-Space Blackboaxd's scale dimension, is that of the PRIMITIVE-PARTIAL-REGION

token spanning 'its diameter. The second two terms of equation 6-8) are the normalized

distance from each of the crcles, respectively, to the point, P, midway between the two

circles. If the circles intersect, then these two terms axe zero. Figure 613 presents exaxaples

of the Circledifference cost for a number of circle pairs.

For each PRIMITIVE-PARTIAL-PLEGION token in the Scale-Space Blackboard, a link 'is

established with a other PRIMITIVE-PARTIAL-PLEGION tokens for which the Circlediffer-

ence Cost faUs below a threshold value. By equation 6-8), the size of the neighborhood

within which below-threshold PRIMITIVE-PARTIAL-REGION tokens might be found is lim-

ited. Therefore, the computational cost of establishing links is improved substantially by

exploiting the spatial indexing properties of the Scale-Space Blackboard data structure.
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Step I Partition PRIMITIVE-PARTIAL-REGION tokens 'nto clusters

PRIMITIVE-PARTIAL-REGION tokens are next partitioned into groups of tokens that are

likely to identify fragments of a common PCREGION. These groups are characterized by

low Circledifference Cost links among pairs of tokens wthin the group. A straightforward

hierarchical clustering algorithm is used to isolate these groups of related PRIMITIVE-

PARTIAL- REGION tokens from other tokens associated wth unrelated portions of the shape

object. The clustering method is described 'in [Anderberg, 1983] and is presented for refer-

ence in Appendix B. Figure 614 shows the PARTIAL-PRIMITIVE-REGiON clusters extracted

for an example fish shape.

Step III: Assert PCREGION tokens

For each group, or cluster, of PRIMITIVE-PARTIAL-REGION tokens, assert a new token of

type, PCREGION, naming the partial-circular-region. The pose of this token is computed

based on the data contained in the supporting PRIMITIVE-PARTIAL-REGION tokens, as

follows..

First, the weighted averages of the x-location, y-location, and scale, respectively of

each of the circles associated with the PRIMITIVE-PARTIAL-REGION tokens are computed.

Each token's strength parameter serves as its weighting factor (see Chapter 4 pg. 118).

This fixes the location and scale of the new PCREGION token.

Next, the orientation and arc extent parameter are determined based on the set of

PRIMITIVE-EDGE tokens supporting the PRIMITIVE-PARTIAL-REGIONS. The orientation of

each supporting PRIMITIVE-EDGE is ex ned, and the most clockwise and most counter-

clockwise PRIMITIVE-EDGES extracted. The orientation of the PCREGION token is taken

simply as the mean of these two orientations, and the arc extent as the difference of

these orientations. The PCREGION's figure/ground polarity bit 'is set as the sign of the T1

parameter of the supporting PRIMITIVE-PARTIAL-REGIONS.
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Figure 614: PRIMITIVE-PARTIAL-REGION clusters supporting prinlItive-partial-

regions. At top are shown just the tokens denoting each PRIMITIVE-PARTIAL-

REGION, and at bottom axe shown the PRIMITIVE-PARTIAL-REGiON tokens along

with their supporting PRIMITIVE-EDGE tokens. As usual, the length of a token

indicates is location along the scale dmension of the Scale-Space Blackboard.
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Figure 615: PCREGION tokens asserted on the basis of PRIMITIVE-PARTIAL-REGION

clusters of figure 614. A pruning step is required to remove spurious PCREGION

tokens, as described in the text.

Step IV.- Prune inadequately supported and redundant PCREGION tokens

Figure 615 presents PCREGIONS found for the example fish shape at the completion of

the three steps above. Note that some spurious or unlikely PCREGIONS are present. These

occur when the PCREGION's arc expanse is too small, or when supporting PRIMITIVE-

EDGES span the ends of the axc but axe absent 'in the middle sections. In order to prune

these invalid PCREGION aSSertions7 each PCREGION token is tested and retained only 'if its

arc expanse parameter falls above a minimum threshold, and if its supporting PRIMITIVE-

PARTIAL-REGION tokens contain supporting PRIMITIVE-EDGE tokens spanning the entire

arc extent, 'Including sections midway between the endpoints of the circular arc model.

Figure 615 also iustrates a stuation commonly occurring when PCREGIONs are com-

puted in the vicinity of a rounded comer. Two PCREGIONS are found, one describing the

rounded co rn'er axc, and another based primarily on the bounding edges of the corner.
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In this type of situation we elect to discard the larger PCREGION token because only the

smaller token accurately describes the rounded nature of the corner's vertex.

6.2.3 Result of PCREGION Identification

The final result of PCREGION identificationi's shown for two fish shapes in figure 616. The

PCREGION tokens themselves are shown at top, while the PRIMITIVE-EDGE and PRIMITIVE-

PARTIAL-REGION tokens supporting them are shown at bottom. PCREGION tokens as

introduced in this chapter contain no smoothness parameter analogous to that belonging to

EXTENDED-EDGES. Consequently, partial-circular-regions can beidentified whose contours

are only very roughly circular, as weU as regions whose boundary is weU approximated by

a circular arc. Obviously, the PCREGION token definition could be extended to 'include a

smoothness prameter. In practice, this has proven possible to accomplish by dentifying

and maintaining a list of EXTENDED-EDGES lying along the arc's contour.

The PCREGION description is comparable to the shape description delivered by Fleck's

[1985] Local Rotational Symmetries (LRS) computation. Fleck achieves self-similarity

across scales for the LRS computation of partial-circulax-regions by controlling the degree

of smoothing of a two-dimensional grey-scale image. The LRS computation 'is pixel-based

and requires exhaustive evaluation of evidence for a partial circulax region centered at

essentially every pixel. In contrast, the token grouping basis for PCREGION 'identification

lends 'Itself to speedy execution even in implementation on a serial computer (on the order

of minutes instead of hours).

6.3 Full-Corners (fcorners)

6.3.1 Rationale for Fcorners

A third useful intermediate level shape descriptor elaborates on the "primitive-corner"

and "bar' nterpretations of the PRIMITIVE-PARTIAL-REGION token (see figure 432). Two

shape fragments that fall under the domain of full-corner, or forner configurations are
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shown in figure 61. These shapes are composed of two contours roughly forming a wedge.

Full-corner configurations are named by tokens Of type, FCORNER, possessing 'four 'in-

ternal prameters 'in addition to location, orientation, and scale. These are taper, flare,

skew, and n1ength; the deformations in an FCORNER's form that these parameters reflect

are shown 'in figure 617. Taper refers to the orientation between the two contours bound-

ing the FCORNER'S interior. Flare refers to the degree to which the contours are curved

outward or curved inward. Skew reflects the degree to which the form bends leftward or

taper skew flare n1ength

Figure 617: The FcoRNER (full-corner) shape descriptor identifies shape fragments
consisting of two boundary contours in a "wedge" configuration. Four iternal
parameters name the taper, skew, flare, and relative length of the wedge.
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rightward. Finally, n1ength (scale-normalized length) describes the length or depth of the

wedge, relative to its scale. Note that nlength varies independently from the scale parame-

ter, which may be thought of as naming the distance between the bounding contours. The

taper, flare, and skew degrees of freedom as described here are alluded to by the Smoothed

Local Symmetries representation [Brady and Asada, 1984; Connell, 1985], which is based

on the pairing of boundary contours roughly forming a wedge configuration. These pa-

rameters of a wedge-based shape model are sufficient to permit close approximation to a

laxge number of the corner and bar configurations encountered 'in natural shapes.

6.3.2 Grouping Rules for Fcorners

Because they span a broad continuum of spatial configurations, FCORNFR assertions can

be founded on several types of supporting data. By and large, FCORNERs describing

extended bars axei'dentified by grouping PRIMITIVE-PAP.TIAL-REGION tokens aligning with

one another, while FCORNERs describing wide, shallow comers are sought by identifying

pairs of EXTENDED-EDGES that form shallow corners. FCORNERs describing wedge-like

contour configurations whose taper is in the 90' range are supported by both types of

information. In addition, under some circumstances it is appropriate to assert an FCORNER

descriptor supported by a single EXTENDED-EDGE.

A procedure for identifying FCORNER configurations 'in shape data operates in four

steps:

I Identify full-comer configurations byindependently: (1) grouping collections of aligning

PRIMITIVE-PARTIAL-REGION tokens, 2) grouping pairs of EXTENDED-EDGE tokens

forming shaow comers, 3) identifying situations under which a single EXTENDED-

EDGE gives rise to a full corner.

II Name these candidate full-comer configurations with tokens of type, FCORNER.

III Combine or else remove redundant FCORNER tokens.

IV Determine the internal parameter values of surviving FCORNER tokens.r
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These steps are described 'in turn:

I: Identify fcorner configurations 'in shape data

Li: Grouping Collections of Aligning PRIMITIVE-PARTIAL-REGION Tokens

Section 62.2 showed how PRIMITIVE-PARTIAL-REGION tokens can be grouped into

clusters corresponding to shape fragments forming partial-circular-regions. A similar pro-

cedure 'is used to extract groups of PRIMITIVE-PARTIAL-REGION tokens corresponding to

extended bars by lnking related PRIMITIVE-PARTIAL-REGION tokens and performing hier-

archical clustering to 'Isolate groups. The determinant as to what sort of structure will be

identified by the clustering procedure lies in the measure of pairwise ilarity between

PRIMITIVE-PARTIAL-REGIONS. n section 62.2, the PRIMITIVE-PARTIAL-REGION linking

algorithm used a measure of similarity corresponding to the degree to which a pair of

PRIMITIVE-PARTIAL-REGIONS corresponded to the same circle model. Here, in order to

detect extended bar configurations, we employ a dfferent measure, called Misalignrnent

Cost, ssentially assessing the degree to which the supporting PRIMITIVE-EDGES of two

PRIMITIVE-PARTIAL-REGIONs are misaligned wth one another:

EMisalignment " Tright + Tlef t + C, snD (6-9)

T is a measure of the alignment of two PRIMITIVE-EDGE tokens, and right and left refer

to those PRIMITIVE-EDGES on either the rght or left sides of the PRIMITIVE-PARTfAL-

REGION tokens being linked. The "D term, weighted by the positive constant cl causes

the Msalignment Cost between two PRIMITIVE-PARTIAL-REGIONS to 'increase with their

scale-normalized distance Section 43.3).

The PRIMITIVE-EDGE alignment measure, , is given by:

T = 2 snDO + 2 (6-10)

where here snD is the scale-normahzed distance between the two PRIMITIVE-EDGE to-

kens, is the direction parameter illustrated 'in figure 6.18a, is the difference n their
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Figure 618: (a) The PRIMITIVE-PARTIAL-REGION Msalignment Cost measure in-
volves assessing the degree to which a pair of PRIMITIVE-EDGE tokens axe aligned
with one another. (b) Examples of the Misalignment Cost for pairs of PRIMITIVE-
PARTIAL-REGIONS in vaxious spatial relationships to one another. The Misalignment
Cost is used 'in clustering PRIMITIVE-PARTIAL-REGIONS tokens into groups of tokens
belonging to the same FCORNER.
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orientations, and C2 is a constants Examples of the misalignment cost for a number of

PRIMITIVE-PARTIAL-REGION token pairs are shown n figure 6.18b.

Using the Nfisalignment Cost measure, a pairs Of PRIMITIVE-PARTIAL-REGION tokens

whose spatial relationship is such that they could describe the same FCORNER axe linked,

and each link 'is labeled with the value of the Nlisalignment Cost. The hierarchical clus-

tering algorithm of Appendix 'is then invoked to isolate groups of PRIMITIVE-PARTIAL-

REGION tokens describing a common FCORNER shape fragment.

I.2: Grouping Pairs of EXTENDED-EDGE Tokens Forming a Shallow Corner

Shallow FCORNERS are detected by finding pairs Of EXTENDED-EDGE tokens joined

roughly end-to-end and forming a shallow corner at their junction. In order for two

EXTENDED-EDGES to assert an FCORNER, certain geometric conditions must hold involv-

ing the relative orientation at their junction, their curvatures, and their relative scales.

Figure 619 illustrates these conditions through examples of EXTENDED-EDGE pairs that

are qualified or unqualified to support an FCORNER assertion. The Scale-Space Black-

board facilitates the search for qualified pairs Of EXTENDED-EDGEs because 'it permits the

computationtoneglectconsiderationofthelaxgema' 'tyofEXTFNDFD-FDGEtokenpairs

that are a priori too remote (with respect to their scales) to possibly form an FCORNER.

I.3: Sngle EXTENDED-EDGE Tokens Supporting an FcORNER

Figure 6.20a presents a number of shape situations in which observation suggests that

a (rather rounded) corner is present, but in' which this corner will be detected by neither

PRIMITIVE-PARTIAL-REGION token grouping nor paarwise EXTENDED-EDGE token group-

ing. The section of contour in question is described by a single EXTENDED-EDGE, however

and it 'is possible to devise a rule for recognizing spatial configurations of thi's sort. The

prototype configuration i's ustrated 'in figure 6.20b, and the rule 'Involves a requirement

for a candidate EXTENDED-EDGE to form a smooth junction with another EXTENDED-EDGE

on one end, and the presence of a PRIMITIVE-EDGE oriented roughly perpendicularly at

the other end. Once again, the spatial indexing power of the Scale-Space Blackboaxd

facilitates the search for qualified two-dimensional spatial configurations of shape tokens.
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Figure 619: Pairs of EXTENDED-EDGE arcs some of which are qualified and some
of which are unqualified to support an FCORNEIt assertion. An EXTENDED-EDGE
pair must meet approximately end-to-end, have sufficiently great Mutual Similarity
Cost, and have sufficiently different orientation at their junction in order to assert
an FCORNER.
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a

b

Figure 620: (a) Arrows show contour segments desirable to classify under the
FCORNER descriptor and described by a single EXTENDED-EDGE. (b) The proto-
type configuration forming the basis for devising a rule dentifying this class of
FCORNER. The EXTENDED-EDGE must be of sufficiently high scale-normalized cur-
vature, 'it must join smoothly with a low curvature EXTENDED-EDGE on one end,
and it must make a sharp angle wth a PRIMITIVE-EDGE on the other end.

II: Assign FCORNER tokens

A shape token of type FCORNER i asserted for every PRIMITIVE-PARTIAL-REGION IUS-

ter, EXTENDED-EDGE pair, or single EXTENDED-EDGE token for which Step I determines

that a full-comer shape fragment is present. The placement of the FCORNER token 'in

the Scale-Space Blackboard is determined by the supporting shape data in the following

manner: First, the PRIMITIVE-EDGE tokens giving rise to the FCORNER are dentified, and

new EXTENDED-EDGES tokens axe generated describing the FCORNER's bounding sdes as

220



n(

IO/ la I I

Figure 621: The pose of an FCORNER is dete ned by first extracting the finest
scale PPLIMITIVE-EDGES identifiable a supporting each of the wedge's sides, then con-
structing new EXTENDED-EDGE tokens approximating each sde, and finally placing
the FCORNER at the cent roid and mean orientation of the sides.

shown in figure 621. Next, the location of the new FCORNER token is set at the center of

the region bounded by the EXTENDED-EDGES, 'Its orientation taken as the mean orienta-

tion of the bounding EXTENDED-EDGE sides, and its scale is set according to the dstance

between these EXTENDED-EDGES.

HL Combine or remove redundant FCORNER tokens

Because FCORNER tokens axe generated by multiple grouping paths, that is, through

both PIMITIVE-PARTIAL-REGION token grouping and EXTENDED-EDGE token grouping,

on many occasions more than one FCORNE. token will be created for a given qualified

shape fragment. Therefore, a consolidation step is needed to combine and remove redun-

dant FCORNER tokens. This step 'Involves searching in the vicinity of each FCOP.NEP. token

toidentify others With whichit might be combined, grouping together all FCO.NERS which

can be combined, mer 'ng these FCORNERS' support data, and asserting a new FCORNER

token encompassing all of the supporting data according to Step IL
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IV: Determine FCORNER tokens' 'Internal parameters

Finally, the taper, skew, flare, and nlength parameters are asserted for each FCORNER

token. Taper 'is taken to be the relative orientation of the FCORNER'S side contours. Skew

is the sum of their curvatures, and flare 'is the difference of their curvatures. In other words,

skew measures the amount that the FCORNER bends and flare measures the amount that

the FCORNER bows in or bows out, by reference to the curvatures of the bounding sdes.

Nlength is the length of the fcorner region, normalized with respect to the scale of the

FCORNER token.

6.3.3 Result of PCORNER Grouping

The results of FCOPLNER identification for two test fish shapes are presented in figure 622.

The top half of this figure shows the poses of the tokens themselves, while the bottom half

offers a reconstruction of the original shapes based on the nformation present purely 'in

the FCORNER tokens. The reconstruction is generated by drawing the bounding sides for

each FCORNER based on the FCORNER'S pose and internal taper, skew, flare, and nlength

parameters.

The FCORNER description is similarin many ways to the Smoothed Local Symmetries

representation. Both involve dentifying pairs of contour boundaries fo ng a wedge-like

spatial configuration. Because FCORNERs are based on grouping of shape tokens residing in

a Scale-Space Blackboard, self-siMI'larity with respect to magnification 'is achieved without

effort, and spurious contour pairs arising from boundary contours distant with respect to

their sizes are not generated.

Unlike Smoothed Local Symmetries, the identification of FCORNERs does not 'incor-

porate a conscious attempt to perform part segmentation or to build a structural shape

description based on part connectivity. While it 'is true that the spatial configurations

named by FCORNERS may in some cases indeed correspond to natural parts, we adopt

the position that concern for "segmentation," "objects," "parts," and "function,' may be

postponed until later stages when more domain knowledge can come into play.
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6.4 Summary and Discussion

This chapter has presented three shape descriptors identifying spatial structure occur-

ring in arrangements of edge and region shape primitives. The configurations labeled,

EXTENDED-EDGES, PCREGIONS, and FCORNERS, lie at an intermediate level of abstrac-

tion; they are common in natural shapes, yet are constrained enough that useful specific

information is obtained by their identification. We have presented procedures for com-

puting EXTENDED-EDGES, PCREGIONS, and FCORNERS under the framework of grouping

symbolic shape tokens residing in the Scale-Space Blackboard.

The grouping of pimitive level shape tokens 'into intermediate level shape descriptors

is a form of abstraction and data compression. A laxge number Of PRIMITIVE-EDGE (Type

0) or PRIMITIVE-PARTIAL-REGION (Type 1) tokens are collected under each intermediate

level token. While many degrees of freedom chaxacterize the universe of possible spatial

relations among the primitives, intermediate level tokens capture structure by defining

constrained classes of aowable configurations. In the cases of EXTENDED-EDGEs and

FCORNERS, these allowable configurations axe generated by deformationin the primitives'

spatial arangements. The parameters of deformation are made explicit by internal at-

tributes given to each token. In this way, grouping 'Into intermediate level shape descriptors

is an instance of dimensionality-reduction, as discussed in Chapter .

Many more types of intermediate level shape descriptors could be devised, and bet-

ter procedures than the ones offered here can certainly be developed for computing

EXTENDED-EDGES, PCREGIONS, and FCORNERS. The PCREGION token, for example, is

based on a circular region model, when perhaps an elliptical model would be better be-

cause it would provide an eccentricity parameter naming a region's elongation. The present

procedures do not adequately exploit shape tokens' strength parameters. Not only do

the token grouping operations not take into sufficient account the strength parameters

Of PRIMITIVE-EDGE and PRIMITIVE-PARTIAL-REGION tokens, but the intermediate level

shape descriptors themselves do not assert their own "goodness' by means of the strength

parameter. Much work is left to be done.
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The purpose for intermediate level shape description is to identify and name 'Instances

of important classes of spatial configurations of pri 't've edges and regions occurring in

shape data. It is no accident that these chunks often reflect meaningful physical events,

but in our view, the business of attempting to extract this meaning in 'its own right is

a separate issue. In this regaxd the motivation for EXTENDED-EDGE .S PCREGIONS, and

FCORNERS is more modest than that of building block approaches to shape representation,

which tpically aim for part segmentation at an early stage. Whereas building block

representations usually demand that no fragment of an object's shape fall within the

domain of more than one building block, our intermediate level shape description abounds

with overlapping tokens and tokens shaxing primitive level support.

I Continuing within the framework of grouping shape tokens residing in the Scale-Space

Blackboaxd, the next chapter shows how increasingly complex structures can be 'Identi-

fied and specific classes of object shapes delineated 'in terms of spatial arangements of

intermediate level shape tokens.
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C hapt er 7

A Shape Vocabulary for Fh Dorsal Fins

This chapter shows how a vocabulary of shape descriptors can be built supporting the

interpretation of a natural class of shapes-the dorsal fins of fishes.' This domain is

well suited for illustrating the role of knowledge in the representation of visual shape.

Dorsal fins exhibit geometric regularity, and dorsal fins exhibit geometric variation. As is

evident in figure 71, dorsal fin shapes share a common basic configuration, protruding

from the fish's body, swept backward slightly. Within this common plan ests a great

deal of variation. Some fins are rounded, others are sharply pointed; some fins are tall,

others axe squat; some fins stand up more or less straight, others sweep backward a' great

deal. And wthin these variations, there is again structure. Fins that are tall tend also

to sweep backward in a certain way, fins that axe rounded usually have a notch at the

base; categories of fins can be identified within which the fins more or less "look like"

one another; and fins fall in families related by deformations of their parts. In Chapter

2, through the performance of human volunteers we saw that shapes can be perceived

and interpreted 'in many different ways. Depending upon the aspects of spatial structure

emphasized, any number of valid perceptual vewpoints can be found organizing dorsal

fins 'Into related fa es or partitioning fins into categories.

Our shape vocabulary supports the construction of a variety of shape es and

categories, including those identified by human volunteers, and including partitionings we

argue to be sufficient for robust shape recognition. The vocabulary achieves descriptive

power because, although it may be applied to any shape world, it is tailored to the drsal

fin domain, that is, it makes explicit the geometric properties and relations that are

important to distinguishing and differentiating among dorsal fins. In this sense we say

'The class of dorsal fins considered is limited to single fins projecting outward from the fish's body; we

do not attempt to deal with multiple dorsal fins, nor fins extending along the entire length of the body.
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Figure 7 : Dorsal fin shape test set.
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that a vocabulary of shape descriptors can possess knowledge of a particular shape domain.

2Computation of dorsal fin shape descriptors s based on grouping of intermediate

level shape tokens (EXTENDED-EDGES, PCREGIONS, and FCORNERS) residing in the Scale-

Space Blackboard. Because these tokens make explicit important 'Intermediate results-

natural chunks or groupings of the 'image level shape data such as edges and corners-

they smplify the present job which involves identifying spatial relations among a fin's

component substructures. It would be difficult to characterize geometric configurations

of extended edges, full corners and partial crcular regions by sorting through directly a

multitude'of PRIMITIVE-EDGE (Type 0) and PRIMITIVE-PARTIAL-REGION (Type 1) tokens

which do not in themselves make explicit this 'Information. In a few cases a new token is

added to the Scale-Space Blackboaxd when a high level assertionis made. Usually, though,

at this level of abstraction a shape descriptor refers to spatial location by reference to its

supporting intermediate level tokens.

For the purpose of iustrating our aguments about building knowledge into a shape

representation, the vocabulary constructed for the dorsal fin domain consists of approxi-

mately thirty-one high level shape descriptors. Although the vocabulary is idiosyncratic

and subject to changes and improvements of many kinds, 'it proves adequate to capture

most important geometrical aspects in the range of dorsal fins spanned by the 43-fin test

set. The set of high level descriptors can be roughly divided 'into approximately nine fam-

ilies based on the types and configurations of 'intermediate level descriptors used in their

support. We begin by ex ning one family of descriptor 'in some detail to see how high

level shape descriptors are defined and computed from shape data.

7. FcORNERs Aligning Across a Protrusion

Dorsal fins share the property that they protrude from a fish's body. As shown in figure

7.2, the base of a protrusion characteristically includes a pair of corners oriented such

that two of their edges roughly align wth one another along the contour of the body. A

2For convenience we will refer to these as 'high level" descriptors.
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Figure 72. A protrusion is characterized by two corners whose respective left-hand
and rght-hand edges align with one another.

great deal of variability exists within the class of spatial configurations of corner pairs

that might correspond to the base of a protrusion 'in this way. The ability to identify such

configurations in shape data is a useful step toward locating and interpreting significant

shape features such as fins on fishes.

The spatial relationship between a pair of shape tokens consists of four degrees of

freedom, as shown in figure 73. One set of parameters spanru"ng these degrees of freedom

is: the scale-normalized distance between the tokens, "I'D (see Section 43.3), their relative

orientation, , the "direction" between the tokens, 0, and their relative size or distance

along the scale dimension a. It is straightforward to define a class of spatial relationships

between tokens, called a configuration class, as a rectangular volume in a four-dimensional

space created by specifying minimum and maximurn limits on each of these parameters.

This is the basis for the approach we use to specify useful classes of spatial relationships

between intermediate level tokens naming shape fragments such as corners and extended-

edges.

In most cases it becomes useful to extend the repertoire of parameters used to define

such volumes. For example, suppose one wished to define a class of spatial relationships

such that one token lies within a predetermined distance of the ams of the other. See

figure 7.3b. Then the projected distance to this axis, yproj, can become a new feature

230



D

= VI - 2

= - 2

I

a/

I
xPr I

a
Y1

b

Figure 73: (a) Four degrees of freedom completely characterize the spatial relation-
ship between a pair of shape tokens.- distance, D, relative orientation, , "direction

and relative scale, a. (b) It 'is useful to devise additional, redundant parameter-
izations of the spatial relationship between tokens such as the projected distances
xproj and yproj. Setting a window on the absolute value of yproj dstinguishes al
points wthin a gven distance of a shape token's ams.

J

dimension upon which 'mmum. and maximum limits may be placed. The variety and

sophistication of these additional explicit parameterizations of the spatial relationship

between a pair of shape tokens is open ended. In practice we have found adequate the six

parameters, snD 0 01 47, xproj, and yproj, plus occasional smple athmetic functions

of these variables (for example the product of snD and , as used in equation 6.9)).

In addition to these parameterizations of the spatial relationship between shape tokens,

the 'internal parameters of the tokens can themselves impose additional constraints on the

classification of shape fragments. It 'is not uncommon for the "qualification volumes' to

consist of rectangles 'in fifteen dimensional parameter spaces. AU this means is that it
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becomes at t' eful to establish rather circumscribed classes of spatial configurations.

A case in point 'is the class of configurations of corner pairs forming the base of a pro-

trusion. We define a class of configurations of FCORNER token pairs called the ALIGNING-

FCORNERS configuration. The qualification for membership in this class includes the

requirement that a pair of FCORNER tokens falls within a prescribed volume 'in a 4 dimen-

sional parameter space. (See also [Jacobs, 1988]). Figure 74 'Illustrates how the collection

of parameters describing the spatial relationship between to CORNER tokens plus their

internal parameters are used to define this volume so that an FCOrtNE, pair 'is accepted as

• member of the ALIGNING-FCORNERS configuration class only if 'it does indeed represent

• shape fragment conforming to the base of a protrusion. In addition to spatial require-

ments on the FCORNER tokens themselves, requirements are imposed upon the spatial

relationships 'among the bounding sdes of the fcorners. A symbolic shape token mn-

tains pointers to the more primitive data that supported its assertion, and each FCORNER

token maintains pointers to EXTENDED-EDGE type tokens representing its bounding sides.

'In order for a pair of FCORNER tokens to be included under the ALIGNING-FCORNERS

classification, two of their sides must align wth one another, and two of the sides must

be roughly parallel to one another, within some substantial tolerance.

Figure 7.5b presents a of the ALIGNING-FCORNER pairs found on a test fish shape.

When several protrusions occur next to one another along the same baseline, the ALIGNING-

FCORNERS grouping rules above will atually 'Identify all pairs of aligning left-hand/right-

hand F CO RN E RS regardless of whether they belong to the same protrusion or not, as shown

in figure 7.5c. Therefore, for the purpose of locating protrusions corresponding to dorsal

fins on fish shapes, a processing step is added to exclude from the ALIGNING-FCORNERS

classification any FCORNER pair jumping across another, naxrower protrusion.

Once a collection of intermediate level tokens has been classified as belonging to a

given configuration class, it becomes useful to measure metric properties on aspects of

that configuration. The ALIGNING-FCORNERS shape fragment, for example, provides the

basis for a number of geometric assessments that are particularly useful for interpreting
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11/

Figure 74: A rectangular volume in parameter space distinguishes pairs Of FCORNE.
shape tokens qualifying for membership 'in the ALIGNING-FCORNERS configuration
class. A qualified pair lies within a certain window of relative orientation, , direc-
tion, , normalized .distance, D, and relative scale, a. In addition, the FCORNERS'
internal parameters of taper, skew, and flare must each fall within a certain window,
and the appropriate EXTENDED-EDGE tokens representing the CORNERS' bounding
sides must align with one another, as determined by their spatial configuration and
internal (edge curvature) parameters.

233



a

b

c

Figure 7: (a) A test fish shape (Trout-Perches). (b) All ALIGNI'NG-FCORNERS

configurations identified on the Trout-Perches shape. (c) Spurious FCORNEP. pairs
can occur when an FCORNER aligns with several other FCORNERS. AR but the
nearest aligned FCORNER pairs are therefore excluded from the ALIGNING-FCORNERS
configuration class.
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Figure 76: The ALIGNING-FCORSERS configuration class gives rise to the high level
shape descriptor, LEADING-EDGE-ANGLE.

dorsal fin shapes. One of these, called LEADING-EDGE-ANGLE, 'is shown in figure 7.6.

LEADISG-EDGE-ANGLE is a measure of the relative orientation of the two bounding sides

of the left-hand FCORNER Of an ALIGNING-FCORNER-PAIR, at their meeting point. With

this measurement we have the ingredients for a high level shape descriptor.

.k high level shape descriptor consists of a pair of the following kind: (1 a configura-

tion class maintaining geometric qualifications on the spatial arrangement of a collection

of intermediate-level shape tokens (often a pair or triple), and 2) a scalar measure pa-

rameterizing some aspect of the spatial geometry of the shape fragment dentified by the

intermediate level tokens.

Whereas the scalar measure occurs simply in terms of the descriptive prameters of in-

termediate level shape tokens, the configuration class establishes a framework determining

among which intermediate level tokens the measurement should be made. The ALIGNING-

FCORNER-PAIR configuration effectively contains slots labeled, "left-hand FCORNER" and

right-hand FCORNER,' and it is these labels that ensure that the edges forming the an-

gle measured do indeed belong to the leading edge and not, say, the trailing edge of the

protruding dorsal fin.
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7.2 Hgh Level Shape Description 'in the Dorsal Fin Domain

Our high level shape vocabulary for the dorsal fin domain consists of approximately thirty-

one scalax measures on the 'internal parameters of or spatial relationships among inter-

mediate level shape descriptors. Each of these measures is situated within the framework

provided by one of approximately nine spatial configuration classes. These classes of

spatial configurations of intermediate level shape descriptors, plus the scalar measures

completing the vocabulary, are presented 'in full in figure 77.

Each of the high level shape descriptors is specialized for n ng a certain aspect of

spatial geometry important to distinguishing among dorsal fins. For example, because, as

many volunteers pointed out, dorsal fins can be differentiated by the degree of sharpness or

roundedness of the corners, a FIN-ROUNDEDNESS shape descriptor is provided measuring

this property by evaluating the flare of certain of the fins' constituent FCORNERs and the

scale of PCREGIONS associated with these FCORNERS. Or, because fins can be tall or squat,

it is useful to provide descriptors making explicit the vertex angle of the top corner (TOP-

CORNER-VERTEX-ANGLE), and the relative height of this corner above the fin's baseline

(CONFIG-11-HEIGHT-BASE-WIDTH-RATIO).

Note that while the shape fragments identified by the nine configuration classes are

tailored for dorsal fins, these configurations are not found exclusively wthin dorsal fins. In

fact, the very shape fragments that collectively comprise a dorsal fin are each in themselves

so elementary that they axe actually encountered a over a complete fish shape. Figure

7.8 illustrates this point. For several of the configuration classes contributing to the dorsal

fin shape vocabulary, the figure displays all instances of this spatial configuration found on

a test fish. Dorsal fins are distinguished from other structures on the fish shape because

it is only at the dorsal fin that the vaxious component shape fragments all converge to

collectively 've definition to a complete protrusion form. As with intermediate level shape

descriptors, and in complete contrast to building block approaches to shape representation,

high level shape descriptors spatially overlap one another as a matter of course, and they

regularly share support at the level of less abstract tokens. In these regards the style
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Figure 77: The complete high level shape vocabulary of shape descriptors developed
for dstinguishing dorsal fins Nne configuration classes give rise to thirty-one scalar
parameters. Each configuration class dentifies a class of arrangements of intermedi-
ate level shape tokens. Here, EXTENDED-EDGES axe depicted as a single curved line,
and FCORNERs are depicted as a pair of slightly curved lines meeting at a corner.
For each configuration class', the "prototypical" or median configuration is pictured,
with paxticipating intermediate level tokens connected by a dashed line. Below each
configuration class 'is presented the set of highlevel descriptive parameters which
it spawns. The names of these high level descriptors are mostly self-explanatory,
and for each an accompanying illustration 'Indicates the spatial event(s) to which
it refers. In some cases, the descriptive parameter refers to an internal parameter
such as a curvature or skew of an 'Intermediate level descriptor. Note that some
descriptive parameters are shared between configuration classes, that is, they make
use Of FCORNERs and EXTENDED-EDGES identified by more than one configuration-
class, so require both to be present. Configuration class PARALLEL-SIDES spawns
no descriptive parameters itself, but participates 'in the definition of the CONFIG-1
configuration class. Configuration classes CONFIG-11 and coNFIG-11I axe built on top
of the ALIGNING-FCORNERS configuration class.
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configuration-class: LECPE

LECPE-BACK-EDGE-ORIENTATION

LECPE-BACK-EDGE-CURVATURE

configuration-class: PICLE

PICLE-POSTERIOR-CORNER-VERTEX-ANGLE

NOTCH-DEPTH-PICLE-WIDTH-RATIO

(with NOTCHSTUFF)
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configuration-class: ALIGNING-FCORNERS

LEADING-EDGE-ANGLE

also
NOTCH-DEPTH-BASE-WIDTH-RATIO

(with NOTCHSTUFF)

configuration-class: PARALLEL-SIDES

configuration-class: CONFIG-I

(ALIGNING-FCORNERS plus PARALLEL-SIDES)

PARALLEL-SMES-RELATIVE-SCALE

44�PARALLEL-SIDES-NDISTANCE

PARALLEL-SMES-SWEEPBACK-ANGLE

PARALLEL-SMES-RELATIVE-ORIENTATION
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CONFIG-II-TOP-CORNER-ROUNDEDNESS

CONFIG-II-VERTEX-PROJ-ONTO-BASE-PROPORTION

CONFIG-11-TOP-CORNER-VERTEX-ANGLE

CONFIG-II-HEIGHT-BASE-WIDTH-RATIO

CONFIG-II-TOP-CORNER-SKEW

CONFIG-II-TOP-CORNER-BASE-DORIENTATION

.Ae

"-J/

CONFIG-II-TOP-CORNER-FLARE

CONFIG-II-TOP-CORNER-ROUNDFLARE

also

CONFIG-II-HEIGHT-PICLE-WIDTH-RATIO (with NOTCHSTUFF)
LEADING-EDGE-REL-LENGTH2 with PECLE)
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CONFIG-111-TOPARC-CURVATURE

CONFIG-III-TOPARC-ORIENTATION

CONFIG-111-TOPARC-SIZE-BASE-WMTH-RATIO

CONFIG-Ill-TOPARC-HEIGHT-BASE-WIDTH-RATIO
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configuration-class: NOTCHSTUFF

NOTCH-FW-EDGE-CURVATURE

NOTCH-VERTEX-ANGLE

NOTCH-PI-VERTEX-ANGLE-SUM

NOTCH-PI-VERTEX-ANGLE-DIFFERENCE

NOTCH-SIZE

I/

I.-,

-J..-

NOTCH-DEPTH-BASE-WIDTH-RATIO

(with ALIGNING-FCORNERS)

also
NOTCH-DEPTH-PICLE-WIDTH-RATIO with PICLE)
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Figure 78: Instances of six 'configuration classes 'Identified on a test fish shape
(Trout-Perches). These are hown individually for each configuration class, and
together (upper right). The configuration classes overlap and share support at
the level Of EXTENDED-EDG'ES and FCORNERS. Each FCORNER is depicted by a
shape token plus arcs denoting its bounding sides. For the CONFIG-1i configuration
class, a shape token denotes the imaginary line ining the ALIGNING-FCORNERS
participating in the shape fragment.
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of shape representation we offer resembles the distributed representations of recent work

in Connectionist networks [Rumelhart et al., 1986; Hnton, 1986; Touretzky and Hinton,

1985].

The shape vocabulary of figure 77 was chosen completely "by hand," on the basis of

intuition. In other words, the decisions as to exactly what spatial relationships within a

dorsal fin's shape are sufficiently important to warrant devoting' a high level shape de-

scriptor were made as a result of human observation and experience, not by any machine

learning program or other automated procedure. A methodology for going about this pro-

cess is not formalized. Roughly, however, it consisted 'in identifying collections of dorsal

fin shapes that appeared obviously similar or different in some regard, and analyzing the

geometric relationships among intermediate level shape fragments that contributed to the

similaxities or differences in appearance. For example, the distin 'shed protruberant ap-

pearance of "flaglike" fins led to the development of the high-level descriptors, CONFIG-11-

HEIGHT-BASE-WIDTH-RATio and CONFIG-11-TOP-CORNER-BASE-DORIENTATION. An im-

portant -part of the task was simply to become thoroughly familiar with the spatial re-

lationships and geometrical regularities that structure the dorsal fin shape domain. The

contributions of human volunteers n the "arrange the shapes' task were helpful in iden-

tifying properties by which vious collections of dorsal fins could be viewed as mutually

similar or different. It is not unlikely that another investigator would rrive at a dorsal fin

vocabulary differing from the present one in at least some regards. Although 'it would be

nice to be able to bng formal tools or even an automatic machine learning program to

bear on the problem of dstilling the structure inherent in a given shape world, the issues

are formidable and lie beyond the scope of this work.
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7.3 Using The Vocabulary

7.3.1 High Level Descriptors and Feature Spaces

Because each hgh level shape descriptor makes explicit a scalar valued measurement on a

spatial relationship or geometric parameter, the set of vocabulary elements could be viewed

as a single huge "feature sace.' This view can be misleading, however, and caution must

be used before attempts are made to import computations conventionally carried out 'in

feature space representations.

Since each high level assertion adds one coordinate dimension to a hypothetical feature

space, the number of feature dimensions varies from fin to fin or from scene to scene. High

level shape descriptors employ a type/token relationship 'in the same way as primitive and

intermediate level shape descriptors. Although high level descriptors usually do not give

rise to new symbolic tokens placed into the Scale-Space Blackboard, a given high level

descriptor could still be asserted at several poses differing in location, orientation, and/or

scale; the pose information resides in the poses of the supporting 'intermediate level tokens.

Moreover, most high level descriptors do not apply to most dorsal fin shapes. In order

to achieve sensitivity to particular spatial relationships important to differentiated subsets

of dorsal fins, a hgh level shape descriptor typically sacrifices entirely any relevance to

the remaining fins. In fact, this is the purpose fulfilled by configuration classes which

identify specific narrowly defined arrangements of intermediate level tokens. For example,

as shown 'in figure 77, the CONFIG-11I configuration class selects for a shape fragment

present on only those dorsal fins squat and rounded in shape. This fragment gives rse

to a whole host of high level scalar paxameters, whose meanings can only be interpreted

wi"th respect to this class of fins.

T.3-2 Naming Shape Subspaces and Categories

The space of dorsal fin shapes is not populated uniformly. Many human volunteers in the

44 arrange the shapes' exercise discover subsets of dorsal fins that share similar properties,
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that "look like" one another. These subsets emerge as subspaces and regions in a feature

space view of dorsal fin representation. The subspaces are corrections of high level shape

descriptors, or feature dimensions, that all apply to a particular class of shapes. For

example, rounded fins all reside in a subspace consisting in part of the high level descriptors

generated under the CONFIG-111 configuration class. Flaglike fins have no existence in this

subspace. Populated regions in feature space are locations in certain subspaces around

which the parameter values for a set of dorsal fins are found to cluster. Fins wthin such

a region look like one another in some regard: since a change in the value of a high level

shape descriptor reflects a deformation in some aspect of spatial geometry, fins that appear

similar n shape may be expected to differ little in many of the dimensions of deformation

along which they could vary.

As discussed in Chapter 2 valid shape categories can be established 'in a multitude

of ways depending upon the spatial properties chosen to define the categories. This is to

say, there is more than one way in which one dorsal fin can be said to look like another.

Depending upon the subspace of high level descriptive parameters examined, a set of fins

might all be considered similar in shape, or different. For example, 'in figure 7.9b, the

Mudminnows, Sleepers, and illifishes2 dorsal fins cluster 'in one region of a subspace

evaluating the orientation and height of the back of a fin (CONFIG-M-TOPARC-HEIGHT-

BASE-WIDTH-RATio and CONFIG-III-TOPA.C-ORIENTATION), while they disperse from one

another and cluster with other fins 'in a subspace evaluating the relative orientation of the

leading and trailing edges and the vertex angle of the posterior notch (PARALLEL-Mm-

RELATIVE-ORIENTATION and NOTCH-VERTEX-ANGLE). -1

Despite the fact that different valid clusterings of dorsal fins may be found, certain

groups or categories of dorsal fins tend to recur in volunteers' organizations of fins. In

our representation, these groups consist of fins that tend to lie in rather laxge common

subspaces (subspaces consisting of many hgh level descriptors) and share similar values

along several high level descriptor coordinate dmensions. For example, figure 79a presents

several two-dimensional slices of a five-dimensional subspace 'in which a certain group of
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-few a*-

NOTCH-DEPTH-PICLE-WIDTH-RATIO

a

Figure 79: (a) Five two-dimensional slices of a five-dimensional subspace 'in which
a group of "flaglike" dorsal fins become segregated from the remaining fins. Flaglike
fins protrude from the body 'in a way that 'is chaxacterized by a top comer that is
very narrow in vertex angle and placed far rearward and high with respect to the
base, a nearly vertical back edge, and a relatively deep posterior notch. (b) Wide,
squat fins (Mudminnows, Sleepers, and Killifishes2) cluster in a subspace measuring
the curvature and relative height of the back edge, but disperse and form clusters
with other fins in a subspace examining notch vertex angle and relative orientation
of leading and trailing edges.
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dorsal fins tends to cluster or become segregated from the remaining shapes. This group of

fins is one that many human volunteers called, flaglike." As an exercise of our high level

shape vocabulary for dorsal fins, we have fabricated criteria for classifying the corpus of

test dorsal fin shapes according to six prominent categories.3 These categories are shown

in figure 710, and are seen to correspond wth groupings generated by human volunteers

presented 'in Chapter 2 (most of the categories axe actually named after labels gven to

their shape types by volunteers).
41

A dorsal fin's membership 'in a given category is decided by virtue of 'its high level

parameter values in relation to those establishing the category. Our classification mech-

anism computes a cost, IC, (called the Category Incompatibility Cost) that accumulates

according to incompatibilities 'in hgh level parameters, according to the following rule:

Min(Pcostmax) WpPerror) 'if E PF
Ic (F = E (7.1)

pEPc Packing otherwise

P - Pmax f P > Pmax

Perror Pmin - P i P < Pmin

0 otherwise,

where PC is the set of high level parameters comprising the category feature subspace,

PF is the set of high level parameters computable for fin F, Pcostm=7 Plackin97 Pmax7 and

Pmin are constants associated with paxameter p for this category, and wp 'is a weighting

factor discussed below. The rule for computing Category Incompatibility Cost given by

this expression can be summarized as follows: The category is defined a a rectangle in

a subspace, PC, whose coordinate dimensions are high level descriptive parameters; an

ideally qualified dorsal fin falls wthin some minimum and mximum limitsi Pmin and
41Pmax, along each of the dimensions of this subspace. When a novel shape is viewed, its

description 'is computed 'in terms of the high level parameters. For each parameter in

Pc, some cost is incurredif the novel shape possesses a value of this paxaxaeter falling

3For convenience we refer to these as "basic' categories of the fin domain. This nomenclature is

unrelated to the "basic level categories' of the Cognitive Sence literature.
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CATEGORY-BROOMSTICK

8.9 0 .3889 4 1. 1

5 1.512 2 1 2.126 2.232 3

CATEGORY-FLAGLIKE

0.9 9.9 9.9 .1397

3.322

Joan,

Figure 710: Six prominent categories (we call, basic categories") of dorsal fins.
A number below each fin within the category gives the Category Incompatibility
Cost. Higher cost 'indicates that the fin lies on the outskirts of the volume defining
the category in the parameter space of high level shape descriptors. Fins in the
test set excluded from the category (because their Category Incompatibility Cost
lies above a preset threshold) axe shown reduced in size below the included fins.
These categories will be seen as corresponding to many of the groupings dentified
by human volunteers in the "arrange the shapes' task of Chapter 2.
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outside the ideal window. In addition, some (usually greater) costi Placking i incurred 'if

the dorsal fin under evaluation lacks a value of this high level parameter altogether (that

is, that the fin does not qualify under the configuration class required for measuring that

high level parameter).

Under this scheme, membership in a category 'is a graded value. Degree of category

membership may be interpreted in terms of Category Incompatibility Cost. Furthermore,

because the high level parameters correspond to deformations tuned specifically for dorsal

fin domain, 'it is possible not only to assess degree of category membership, but also to

ascertain, 'in some meaningful geometrical sense, the way 'in which a vewed dorsal fin

shape fails to fall under any given category's qualifications (see (Smith and Medin, 1981]).

This is illustrated in figure 711. Here a number of fins are evaluated with respect to

two of the basic fin categories. The sources of Incompatibility Cost are listed; these are

the descriptive parameters whose values fall outside the category's limits, and they reflect

the inappropriateness of one or another geometrical feature comprising the shape of the

excluded fin.

Some of the six dorsal fin categories overlap. That is, they include some dorsal fins 'in

common. This is the case, for example, for the EQUILATERAL-TRIANGLE and TRIANGULAR-

NOTCHED fin categories. Human volunteers included many of the same dorsal fins 'into

either of these categories.

7.3.3 Descript've Perspectives

Subspaces of high level shape descriptors are a way of formalizing the notion of descriptive

perspective introduced in Chapter 2 A descriptive perspective is a subset of features

or properties wth regard to which shape is evaluated or 'Interpreted. The hgh level

descriptive vocabulary we have presented for the dorsal fin domain constitutes a rich

and appropriate resource from which to construct descriptive perspectives. The six shape

categories discussed above are examples of descriptive perspectives at work. Each category

attends to some significant subset of properties made explicit by the vocabulary, and
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(compute-Classificat'jon-cost-for-me *pqI-fla9Iik** IcavOishes)
CO"FIG-II-HEIGHT-MIE-WIDTH-RRTIO value .879 cost 1.09
LECPE-MK-EDGE-CURVATURE value .962 cost .6910
COhFIG-II -T OP-CORWR-SASE-DOOI ENTATIO" value -1.6 cast .452
CONFIG-Il,-TOP-CORKR-VERTEX-R"CLE ve We -1.1 cost .410
LECPE-BACK-EDGE-ORIENTATION VOW* -. " cost M.
COMFIG-II-HEIGHT-PICLE-WIDTH-RATTO value 1.2 cost 9.2
PICLE-PO-gTeRIOR-COR"ER-VEOYER-�RWILE value IJ9 cost NS
LEADIM-EDGE-0EL-LEMIW2 value 1.54 cost .00
NOTCH-DEOTH-PiCU-WIDTH-"TIO value .449 cost 0.0
COMFIG-jj,-VERTER-�MJ-6MtO-BASE-PKPMTIM va I U'e -9.6 cost 9.0
NOTCH-PI-VERttk-A"GLE-SUM value' 1.13 cost 9.9
3.3219117

(compute-classification-cost-for-no *pq1-f1&q1ike* Istwelts)
COMFIG-II-VERTEM-PROJ-0"70-SME-PROPORTIO" value -9.3 cost 3.19
CO"FIG-11-HEIGHT-OffiE-WIDTH-RATIO value .9S3 cost 1.32
"OTCH-DEPTH-PICLE-WIDTH-RATIO value .152 cost 1.19
CO"FIG-11-TOP-COR"ER-ORSE-DORIE"TATIO" value -1.6 cost S43
LERDI"G-EDGE-REL-LE"GIH2 value 1.21 cost 9.39
COWIG-II-HEIrMT-PICL-E-WIDTH-RATIO value IM cost .313
CCWIG-1 I -T OP-COR"ER-VERTEX-AtIGLE value -1.0 cost .192
LECK-BACK-EDGE-OR19"IRTION value -1.1 cost .147
PICLE-PW E40100-COROEO-VERTEH-ANGLE value 1.15 cost 9
LECPE-BKK-EDGE-CURVATURE value 9.9 cost 9.9
MOTCH-PI-VERTEX-FOME-SUM value 1.16 cost 9.9
7.276589

(conpute-classification-cout-for-no *pqj-fja9j4ke* larwhovies)
COWIG-11-VERTEM-PROJ-OMTO-BASE-PROPORTIOh value -. 15 cost 4.0
CDhFIG-11-HEIGHT- WS E-WIDTH-RATIO value 9.49 coat 3.9
NOTCH-DEPTH-PICLE-WIDTH-RATIO value .112 cost 1.51
COWIG-II-TOP-CORt$ER-OM-DORIEMTRTIO" Volvo -1.6 cost 1.97
COMFIG-11-TOP-COR"ER-VERTEM-A"CLE value -1.3 cost .?54
COMFIG-11-HEIGHT-PICLE-WIDTH-RATIO value M? cost .643
LECPE-BACK-EDGE-ORIE"TATIO" value -. 67 cost .534
LEADING-EDGE-REL-LE"GTH2 value 1.14 cost 9.46
"OTCH-01-VERTEM-AM;LE-SIM value .715 cost M
PICLE-POSTERIOR-COR"EA-VERTER-R"GLE Volvo 1.59 cost 0.10
LECPE-BMK-EDGE-CLNMTURE value -. 01 cost 9.9
12.2S5958

(compute-clessification-cost-for-no *pq1-brocmsticks porcupinefistme)
CO"FIG-111-TOPf*C-SIZE-BASE-WIDTH-RRTIO value 3.59 cost 1.9
CO"FIG-111-TOPARC-CURVATURE value .966 cost .334
PRRRLLEL-SIDES-RELATIVE-ORIE"TRTIOM value .425 cost US
LECPE-BACK-EDGE-CURVATURE value M cint 0.0
LECPE-SACK-EDG9-ORIE"TATION value -. 68 cost 9.9
PRRRLLEL-SIDES-"DISTR"CE value 19.9 cost 0.0
PARALLEL-SIDES-RELRTIVE-SCALE value 3.97 cost 0.0
MOTCH-DEPTH-ME-WIDTH-RAtIO value .90? cost 0.0
CONFIG-111-TOPARC-ORIE"TATIO" value -2.3 cost 0.0
1.3591274

(cormute-classification-cest-for-no *pql-broonstick* puffers)
COWIG-III-TOPAKIC-ORIE"TATIO" value "IL cost 1.9
COWIG-111-TOPFRC-CURVRTURE vs, I ue MI L cost 1.9
LECPE-OFICK-EDGE-CURVATURE value 11.93 cost 9.9
LEVE-OU-EDGE-ORIENTRTIO" value -1.2 cost .633
MALLEL-SIDES4DISTAMI value 6. " cost .616
Pf*ftLEL-SIDES-RELATiVE-MIE14TATIO" value .212 coat 9.9
PF#WLEL-SIDES'RELATIVE-SCALE value 4.34 cost 9.9
MTCH-DEPTH-SM-MIDTH-RATIO value 1.64 cost 9.9
COWIC-111-TOPIWC-SIZE-�� -WIDTH-RRTIO value NIL cost O.' a
4.040603

(conoute-classification-cost-for-no proonatick* Ithre"-shorks)
LECPIE-OFICK-EDGE-CUR"TURE value -. 92 cost 4.9
"OTCH-DEPTH-04SE-MIDTH-MID value "IL cost 1.0
COMFIG-111-TOPARC-MUNTATION value NIL cost 1.9
CO"FIG-111-T -CUR"TURE value NIL cost 1.8
LECPE-OFICK-EDGE-MIE"TATIO" value -1.2 cost .502
PMALLEL-SI eS-MATIVE-00UPITRTIC)" value "IL cost 9.9
PARALLEL-81 DES HOISTA"CE value "IL cost 9.0
PWRLLEL-Sl DES-OELRT tUt-SCRLE value "IL cost 9.0
CONFIG-III-T -4I2t-9FAE-MIDTH-RAT;O value NIL 'cost 4. 
7.5919455

Figure 7.11.- Computer output of the evaluation of several shapes with respect to
the "flaglike' and "broomstick" dorsal fin shape categories. The components of the
high level descriptive subspace in which each category is defined are listed in order
of their contribution to Category Incompatibility Cost. For example, the Cavefishes
dorsal fin takes a value of 878 on the descriptive parameter, CONFIG-11-HEIGHT-

BASE-WIDTH-RATIO, and this falls outside of the aowable window for the "flaglike"
category such that this contributes a Category Incompatibility Cost of 109. The
total Category Incompatibility Cost for Cavefishes with respect to the flaglike"
category is 332. 256



ignores others.

The concept of descriptive perspective is useful not only for evaluating shapes in terms

of category membership, but also for considering families of shapes related by geomet-

ric deformation. Several volunteers organized dorsal fin shapes according to continuous

properties, such as relative sze of the notch or degree of sweepback. By selecting appro-

priate high level descriptors, descriptive perspectives can be built that reflect these ways

of structuring an interpretation of the dorsal fin shape domain. Figure 712 iustrates.

Instead of a descriptive perspective consisting simply of a subset of shape descrip-

tors, the construct can be elaborated by aowing different degrees of emphasis on one or

another component dimension. This is accomplished by assigning a weighting factor to

each contributing hgh level parameter. The technique 'is especially useful for purposes

of defining shape categories, as 'it adds flexibility 'in tailoring the contours of a category's

boundaries. The terms, Wp, in equation (7.1)indicate how this deviceis used in computing

membership in the basic shape categories as discussed above.

By adjusting the relative weights of the component parameter dimensions of descrip-

tive perspectives, assessments of similarity and differences between shapes can be cast

in different ways, yielding a diversity of similarity metric's analogous those displayed by

human volunteers on the "arrange the shapes" task. For example, the question posed 'in

figure 215 and again in figure 713 is: To which fin 'is the Mooneyes dorsal fin more sim-

ilar? Because the Mooneyes fin 'is more similar to the Silversides fin in one regard (corner

roundedness) and more similar to the Trout-Perches fin 'in another regard aspect ratio),

the answer to this question is indeterminate at this stage of perceptual interpretation.

However, the tools provided for choosing among descriptive perspectives offer elements

of a language wth which the perceptual system may communicate wth other stages of

a perceptual/cognitive system. We can effectively make available a "knob' adjusting the

relative significance accorded the various aspects by which these dorsal fins may be con-

sidered smilar or different. This knob asks which aspect of shape do you care more

about and its meaning" maps though the dorsal fin descriptive vocabulary directly to

257



LECPE-BACK-EDGE-ORIENTATION

a

Figure 712: Three subspaces reflecting descriptive perspectives along which inter-
esting continuously varying shape properties become appaxent. In (a), (b), and
(c), the principle axis may be said to roughly correspond to "sweepback angle,"
"hardness" or "roundedness," and "tip rearward angle," respectively.
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Figure 713: Computer output assessing the similarity of the Trout-Perches and
Silversides dorsal fins to the Mooneyes dorsal fin under two different descriptive
perspectives. This figure illustrates the representation's ability to interpret shape
similarity according to differing criteria, in a manner analogous to that observed
in the performance of human volunteers on the "arrange the shapes" task. The
two drawn pictures show in each case the three fins 'in order of increasing Shape
Dissimilarity Cost to the Mooneyes dorsal fin. The leftmost fin drawn is always
the Mooneyes fin because 'Its dissimilarity to itself 'is zero. Under the drawings, are
shown a decomposition of the Shape Dissimilarity Cost for the Trout-Perches and
Silversides fins with respect to the Mooneyes fin, 'in terms of component high level
shape descriptors. The two different descriptive perspectives weight these compo-
nents differently. For example, the difference 'in LECPE-BACK-EDGE-ORIENTATION
between the Mooneyes and Trout,-Perches dorsal fins is 0191. Under the descrip-
tive perspective operating in the top half of the figure, this contributes a Shape
Dissimilarity Cost of 286, but under the descriptive perspective operating 'in the
bottom half of the figure, this contributes a Shape Dissimilarity Cost of only 191.
The top descriptive perspective places emphasis on a fin's aspect ratio, while the
bottom descriptive perspective places emphasis on the curvatures of a fin's edges
and roundedness of its corners.
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(OISPLRV-SlNILM-SHRPES-OITNI*-CATEOM moorwo*s (list mooro"s trout-Perchiss silversides) *pql-trlan9ul4r-rsOtchwd-dp2*)

9.9 39.76
MIL
(COMM-YUG-SHAPES-MITHIN CRITEGM *pql-tr1an9uler-notch*d-dp2* noneves trout-Wches)

LEADING-EDGE-A"GLE error-9.5 cost -5.9
LECPE-BACK-EDGE-ORIENTATION arror.191 cost 2.96
COWIG-N'-TOP-��� MFLARE w-ror-.07 cost -2.9
LECK-BACX-EDGE-CUMPATURE arror.962 cost 2.46
COWIC_IIL-VERTER-POOJ-OKTO-OW-PROPORTIO" err-orG.47 cost 2.35
COWIC-11-TOP-CORMER-om-omiEHTRTIOH arror.233 cost 2.33
COWIG-II-TOP-COR!"-SKEM w-ror.943 cost 2.23
hOTN-VERTER-A"CLE error-.21 cost -2.1
LERDI NOIEDOE-OtL-LENGTH2 error-.17 cost -1.7
MOTC14-fW-EDW-CURVATURE w-ror-. 91 cost -1.4
COWIG-ft-414"T -WIDTH-RATIO error.M cost 1.4

wrarS 12 cost 1.2

COhFIG-11-HEIGHT-PICLE-WIDTH-fMTIO: -. 75 LERBING-EDGE-CURVATUREt .5?9 COWIG-11-TOP-CORMER-VERTEX-At�KU: -. 38
NOTCH-DEPTH-PICLE-MIDTH-RRTIO 029

39. MI n
(COWfM-TUG-SWWES-VITHIN-R-MTEGORT *pq1-tri*nqu1ar-notch*d-dp21* noon*yes silv*rsides)

COWIG-II-TOP-CORPOER-VERTEX-A"GLE w-rw.593 cost 11.9
COWIG-11-HEIGHT-SM-WIDTH-RATIO error-.39 cost -5.7
LECPE-BACK-EDGE-MIENTATIO" wlrw.361 cost 5.41
COWIG-11-KIGHT-PICLE-MIDTH-OTIO error-.25 cost -3.8
LEADING-EDGE-06" w1ror- -" cost -3.1
"OTCH-FM--fDM-C~ TU*E w-rar-. 03 cost -2.9

MTCH-DEPTH-SM-WIDTH-IMTIC: -. 92 LEADIN-EDGE-REL-LENCT142t -. 96 COWIG-II-WRTEM-PROJ-OMTO-SM-PR" TIori: .0
COWIG-11-TOP-MWW.R-OM-WRIEIMTATIO"t 646 LECPE-OACK-EDW-CUWATURE 5 NH-V901"Ek-A"CLE: .30'-I RE T W RAtO-.'-.84COWIG-11-TOP-CORKR-FLFRE -. 3 LERBING-EDK-CUMATU i 129 M Cl� 0
COWIC-11-TOP-CORMER-SKEN: .913

37.29696

(DISPLRY-SIMILRR-SORFIES-UITNI"-CRTECONT moorwryes (list mocray" trout pwch*o silvtrsides) pql-trian9ular-notch*d*)

36.85
MIL
(CONPFWE-TUO-W*VMES-MITHIN-0-CATEOM sO-triangular-notcha& nrmy*s trout-perches)

COWIG-11-TOP-CORWR-FLFARE error-. 97 cost -6.9
LECPE-BACK-EDGE-CLWATURE erro .62 cost 6.15
LEADI"G-EDGE-RhGLE error-G. 5 cost -5.9
COW14-tI-TOP-CORMR-SM w-rar-943 cost 4.47
COWIC-11-VERTgk-PROJ-WO-OPM-PROPORTION errors. 47 cost 2.35
COWIC-II-TOP-CORM-&OM-MIENTATtC" w-rar.239 cost 2.33
MOTCH-MTEM-A"GLE error-.21 cost -2.1
LECPF.-&VX-EDGE-(*IE"TRTIO" error. 191 cost 1.91
LEADING-EDW-ML-LEMTH2 error-.17 met -1 ?
LEADVO-EDGE-CL"YURE error. 91 4 cost I.;s
"OTCN-fq-'-l:DM-CL4MTURE error-.91 cost -1.4
MOTCN-ttPTN-MWi9-4tDTN-RATIO errorG.12 cat 1.2

COWIC-II-HEIGHT-9ASE-WIDTH-RRTIO: 94 COWIG�-II-MIOW-PICLE-WDTH-MTID-. -. 5 "OTCH-DEPTH-PICLE-WIDTH-RRTIO: .29
COWIC-11-TOP-COR"ER-WATEX-A"GLE: 19

36.951654
(C0"MM-Tu0-w*wS-vlTNlN-*-"T6 *Pq]-trianoular-notchuM noonev*s s i I var I des)

COWIC-II-TOP-CORM-YOTEX-AMGLE error.393 -cat 5.93
COWIC-II-HEIGHT -WIDTH-RATIO error-.341 cost -3.11
LECPE-W=-EDM-QQIE"TATIO" error-361 cost 3.61
MOTCH-A-�-EM-Ct" TUK w-ror-.93 cost -2-.9
LEADIMC-EDGE-A"OLE w-rar-.25 cost -2.5
COWIC,��ti-MEtGWt4tCLE-WIBTH-MTIO o .25 coat -2.5
LECPE-BACK-EDW-OAMTURE arrar.1014 cost 1.43

"OTCH-DEPTH-OM-MIDTH-RATIOt -. 92 LEADlhg-EDGE-REL-LEMTN2: -. 96 CWIC-II-TOP-CORhER-FLAM: -. ?6
COWIC-II-VERTEX-PRCJ-MtTD-BM-PROPORT10h: .48 CWIC-11-TOP-CWMR-6'46E-DORIE"YATZC": 646 OTCH-VERTEX-FVIGLE: 367
LERDIM-EDGE-CURVRTUREt 21 NOTCH-DEPTH-PICLE-MIOTW-OTIOs -. 94 C-It-TOP-CORMR-SKEWs .5

27.395376
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the geometries of dorsal fins' shapes.

The technique of adjusting the relative weightings of component feature dimensions

serves a related purpose in a shape recognition task. Suppose we are shown a novel dorsal

fin and axe asked to decide what kind of fin it 'is (what fish 'it is from). Within the current

framework, we recast this question as follows.- To which known type of fin is the viewed fin

most similar? In comparing high level shape descriptions, we employ a strategy similar to

that used 'in classifying dorsal fins according to the s basic categories. Two fins' Shape

Dissimilarity Cost, R, 'is accrued based on the fins' relative measures along a subset of

component high level feature dmensions:

R(F1 7 F2 = 1: wpperror if E P A E P2 (7.2)

PEPc Placking otherwise,

where PC is the set of high level parameters comprising a category feature subspace, PF,

and T2 are the high level descriptors computed for the two fins, respectively, Placking is

a constant associated with parameter p, for che category containing the two fins, and wp

is the weighting factor for parameter p. See [Tversky, 1977] and [Krumhansl 178] for

related approaches to interpreting perceptual/cognitive smilarity.

In carrying out shape recognition under this scheme, the basic categories come into

play in two 'important ways. First, a novel fin is nitially classified according to the basic

categories. This serves as a pruning step limiting the set of known dorsal fins against

which it need be compared. The Shape Dissimilarity Cost between the novel fin and

known fins is only computed for known fins sufficiently similar to the novel fin as to

fall within the same basic category. Second, the Dssimilarity Cost computation can be

tailored ndividually for each basic fin category. The Shape Dssimilarity Cost employs a

descriptive perspective consisting of a set of high level shape descriptors, plus a weighting

of each of these descriptive parameters. Many times a given high level descriptor win play

relatively greater significance to fins' identities within one category than Within others.

For example, the NOTCH-VERTEX-ANGLE parameter 'is useful 'in distinguishing among fins

in the Flaglike shape category, but 'is of no value in the Equilateral-Triangle category which
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evaluates dorsal fins in terms of their properties viewed as triangles, regardless of whether

they possess a posterior notch or not. Thus this parameter is given a relatively large weight

in computing Shape Dissimilarity Cost among Flaglike dorsal fins, but negligible weight in

comparing Equilateral-Triangle dorsal fins. In other words, the equipment provided makes

it possible for a shape descriptor to assume greater or lesser significance as appropriate,

as one travels through the space of dorsal fin shapes.

As with evaluation of a fin's Category Incompatibility Cost, the Shape Dissimilarity

Cost not only offers an assertion of the degree to which two dorsal fin shapes are similax,

but it can also be decomposed according to the spatial properties by which two fins dffer

in shape, and this 'is reflected in Rgure 713. Figures 714 further 'illustrates the role

of shape comparison in dorsal fin recognition. In figure 714, fins are arranged 'in order

of dissimilarity to the target fin. With suitable normalization, a novel fin may be said

to be recognized" by the known fin to which the Shape Dissimilaxity Cost is least (and

perhaps as long as it falls below a certain threshold). The reasons why a target fin may or

may not be recognized as a given known fin axe drectly available because the descriptive

components of Shape Dissimilarity Cost declaxe the ways in which to shapes differ 'in

geometry.

7.3.4 The Deformations by which Shapes are Related

Because our specialized dorsal fin shape vocabulary makes explicit classes of spatial con-

figurations reflecting spatial deformations common to the dorsal fin world, the vocabulary

is well-suited for describing the ways in which one dorsal fin must be deformed 'in order

to make 'it more smilar to another. As shown in 713 the comparison of two dorsal fins

is delivered in terms of a subset of hgh level shape descriptors meaningful to compute

for both fins. For each such descriptor, the difference in its scalar parameter measure

indicates how a particular aspect of dorsal fin geometry differs between the two fins.

Since high level shape descriptors refer directly to internal parameters of, and spa-

tial relations among, intermediate level shape tokens, in many cases it becomes a fairly
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target: Lizardfishes category: unnotched

9. 7.289

18.1 19.95

target: Thresher-Sharks

0.0 10.4

29.39

12.62 15.12 15.81

I 1---,
27-91 28.44 33.882

category: unnotched

23.47 29.99 29.3618.1

34.79 3 42.55 46.63

Figure 714: Shape Recognition 'in the dorsal domain. Within the context provided
by the hgh level shape vocabulary, the principle computation 'in the task of shape
recogm'tion is an assessment of the Shape Dissimilarity Cost between known fins and
an unknown target fin. In a two step process, a target fin is first classified according
to the basic dorsal fin categories, then its Shape Diss' Rarity Cost is computed with
respect to known members of the category (or categories) to which it belongs. This
figure presents rankings of dorsal fins by similarity to taxget fins. In each instance,
the target fin is shown at the upper left. Its Shape Dissimilarity Cost wth respect
to itself is 0. The other members of its category are displayed in order of 'increasing
Shape Dissimilaxity Cost. For each category, a descriptive perspective was used that
was judged to balance the vious component high level shape descriptors more or
less equally. Because different numbers of component high level shape descriptors
enter into the Shape Dissinn'larity calculation for different shape categories, the
values of Shape Dissimilarity Cost can be compaxed only within a category, but
not between categories. This figure illustrates that the dorsal fin shape vocabulary
supports assessments of similarity among these shapes that might be considered
subjectively agreeable to human observers. In other words, the description of a
known dorsal fin generalizes well under the shape viations that occur within the
dorsal fin domain.
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target: Anchovies cateizor triangular-notched

0.9 16.9 22.09 2 2 5 31.98

32.27 37.87 39.1 39.3 42.28

44. 45.11 49.97 55.91

target: Trout-Perches category: triangular- notched

0.0 24.64 .4 33.9 34-12

34.92 38.29 39.95 4 45.59

46. 49.97 52.56 56.9 62.65

target: Mullets categor triangular-notched

22.65 29.42 39.99 31.57 34.51

35.89 39.39 39.53 44.67 46.93

51.75 .4 53.66 64.23 67.6

target: Sea-catfishes category: flaglike

9.9 39.?2 42.3 4.

71.67
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target: Mudnunnows category: rounded

22.81 5 . 62. 96

68.52 6 �35��

target: Kilfifishesl - category: rounded

a 44. 59.9

6. 65.18 8.

target: Cars category: rounded

14. "

61.

target: ars category: broomstick

14.96

38.39 V. 

.-Il
4.32

5< �8��

67-62

N'53 39
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41.
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N

Trout-Perches

a

Anchovies

b

4

Puffers Cavefishes

c

PuffersPorcupinefishes

I

Mullets Carps-and-Minnows

Figure 715: The comparison of two dorsa fins can be decomposed to make explicit
various aspects of geometry by which the fins axe found to der in shape. These
may be understood drectly in terms of the deformations that would be required to
transform one fin into the other. Here, for a number of dorsal fin pairs, on the basis of
the high level shape descriptions a computer program automatically generated arcs,
lines, and arrows dsplaying a few aspects of deformation that are easily visualized.
For example, in (a) these markers show that to transform a Trout-Perches fin into
an Anchovies fin, the top corner would be moved downward and to the rght, the
top comer vertex angle would be expanded, the curvatures of the leading edge and
back edge would be reduced, the leading edge angle would be reduced, the back edge
would be rotated to a more horizontal orientation, and the posterior comer (above
the notch) would be expanded.
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straightforward matter to diagrammatically display the spatial deformations to which they

correspond. Figure 715 presents a number of pairs of dorsal fin shapes, along With arcs,

lines, and arrows showing the deformations relating the two shapes. For example, the

parameter, LECPE-BACK-EDGE-CURVATURE of the Trout-Perches dorsal fin 'is greater than

the value of this parameter for the Anchovies dorsal fin. To iustrate the "bend" required

to straighten out the Trout-Perches back edge, an arrow is drawn next to the location

of the back edge's EXTENDED-EDGE token, pointing 'in the direction of the bend, and

with a size proportional to the requisite degree of bend. Similarly, the two descriptors,

CONFIG-II-VERTEX-PROJ-ONTO-BASE-PROPORTION and CONFIG-11-HEIGHT-BASE-WIDTH-

RATIO, collectively indicate that the top comer of the Trout-Perches dorsal fin 'is relatively

higher, and more forward with respect to the base than 'is the top corner of the Anchovies

fin. The amounts of these relative displacements determine the vertical and horizontal

components, respectively, of an arrow showing how the top corner of one fin would have

to be displaced in order to put it in the same relative location as it occurs on the other

fin.

In a restricted sense, this exercise of our shape vocabulary amounts to a form of shape

comparison by analogy. The problem of reasoning by analogy decomposes into two parts:

(1) identify mappings between corresponding paxts" of ifferent situations 2) describe

similarities and differences in terms of properties and relations of those parts [Winston,

1980; Gentner, 1983]. In the case of our world of fish dorsal fins, the problem of finding

corresponding parts-top corner, back edge, posterior notch, etc.-between pairs of shapes

is greatly simplified by the fact that a dorsal fins share a similar basic form. Our shape

vocabulary is attuned to this basic form so that corresponding parts on two fins w be

named by the- same type of high level descriptor, e.g. CONFIG-11-TOP-CORNER-VERTE-X-

ANGLE (see figure 77). The problem of identifying corresponding parts between two fins

therefore amounts to one of identifying abstract level vocabulary elements appearing in the

descriptions of both fins. Smilarities and differences among analogous parts are described

in terms of the values of the scalar parameters belonging to these descriptors.
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The geometric properties and spatial relations that may be used to describe and com-

pare shapes 'is limited to the set of shape descriptors supplied by our vocabulary. The

shape recognition and shape comparison tasks highlight the significance in the fact that

our high level shape vocabulary is not arbitrary, but is tuned to the dorsal fin domain.

A collection of 31 arbitrarily chosen measures, for example Walsh transform components

or some sort of hashing of the chain coded bounding contour eeman, 1974], might be

able to differentiate one dorsal fin instance from another, but would have no descriptive

basis for generalizing classes of shapes defined in terms of important structural properties

common to dorsal fins, nor for delivering comparisons of dorsal fin shapes in terms readily

'Identifiable as salient aspects of these shapes' geometries.

The representation 'is designed to be easily extensible as useful new constraints or

regularities are encountered. An 'Important goal for future research is to expand the

vocabulary to new domains, so that shape comparison and other forms of Later Visual

reasoning might take place among very different shapes as well as within ircumscribed

classes such as fish dorsal fins. In addition, a general purpose shape representation would

likely be able to generate new descriptors 'on the fly,' a important similarities among

shapes are encountered and analogous spatial configurations are noticed.

7.4 S ummary

This chapter has shown how it is possible to build a vocabulary of shape descriptors re-

flecting the geometrical regularities and spatial relationships important to a specific shape

domain. The vocabulary elements sometimes denote abstract properties of shape such as

ratios of sizes and sums of curvatures, yet, they are strongly grounded in two-dimensional

spatial configuration. Because high level shape descriptors arise from groupings of inter-

mediate level shape tokens based on their spatial arrangements in the Scale-Space Black-

board Iit is possible to construct descriptors sensitive to very subtle aspects of spatial

geometry that may be inherent to limited classes of shapes.

The character of this vocabulary differs markedly from that of -generalized cylinders
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or other building block approaches to shape representation. Instead of -attempting to

approximate the shape of an entire part with a single parameterized model, our shape

descriptors each name a lmited shape fragment, for example a pair of comers whose sdes

align in a certain way across the base of a protrusion. The fragments named overlap one

another and share support extensively at the level of primitive edges and re 'ons. The

resulting description of a shape is purposefully redundant because this makes 'it rich.- a

great many spatial properties are named explicitly and are therefore made immediately

available for later stages of computation.

We have shown how this vocabulary can be used in defining categories of smilar shapes

based not only on the values of measured properties, but also on whether or not a viewed

shape may be 'Interpreted as even possessing a property at all. The representational tools

offer flexibility in interpreting shape information with respect to a variety of descriptive

perspectives, or subspaces of the complete descriptive vocabulary. This flexibility accords

with the diversity of interpretations of shape sinuflarity observed in human performance.

By manipulating the relative significance accorded (fifferent properties, shapes may be

assigned measures of similarity to one another according to criteria specified outside the

immediate perceptual system. Although we have demonstrated these capabilities through

implementation of smple shape recognition and shape comparison tasks, we view the

specific algorithms presented as less significant than the more fundamental ideas about

the. role of knowledge in shape representation-in the form of the vocabulary of shape

descriptors-that they are intended to support.
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Chapter 

Conclusion

8.1 What Has Been Accomplished?

This work has explored an approach to visual shape representation intended to support the

flexible task requirements of Later Visual processing. In the context of two-dimensional

shape, we have presented an alternative to the building block model for shape representa-

tion and have demonstrated how a large, extensible, domain-specific.vocabulary of shape

descriptors may be used to perform flexible shape comparison and shape recognition based

on subtle differences in object geometry. Along the way, we have extended and developed

a number of computational devices:

* We have brought a scale dimension to Marr's 1976] Primal Sketch 'in the form of

the Scale-Space Blackboard.

* We have demonstrated rules for grouping shape tokens in order to build shape de-

scriptions at multiple scales and at multiple levels of abstraction.

* Through the example of the dorsal fins of fishes, we have illuminated the ways in

which classes of naturally occurring shapes can be viewed as related by deformation

of their geometric features. We have adopted the tool of dimensionality-reduction in

order to explicitly name important classes of deformation over spatial arrangements

of shape tokens.

* We have shown how energy minimization techniques can be incorporated in order

for shape descriptors to communicate with one another, through imensionality-

reducers, about geometric constraints on objects' shapes.

* We have presented an example descriptive vocabulary and demonstrated its utility

for distinguishing one class of natural shapes-that of fish dorsal fins. The vocabu-
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lary is easily extensible to other shape domains.

NVATI.3 have formalized the notion of descriptive perspective 'in terms of the domain

specific shape vocabulary. Through selection and weighting of the parameters de-

scribing shapes at an abstract level, different aspects of spatial geometries can be

emphasized in evaluating and comparing objects' shapes.

All of these tools have been implemented as parts of a computer program.

8.2 Th e Rle of Knowledge in Visual Shape Representation

.This thesis began by asking, "What is the vsual knowledge that we use in perceiving,

analyzing, and understanding the shapes of objects?" We have built an argument on

computational grounds in favor of one answer to this question: Knowledge resides 'in the

descriptive vocabulary used to make explicit the spatial events and spatial relationships

comprising an object's geometry.

To consider the implications of this statement, it 'is worth comparing the role of vsual

knowledge within several contrasting views of shape representation.

First knowledge about shape could reside primarily in the libraxy of object models

built from a fixed, predetermined, set of parameterized building blocks. We have asserted

(see especially Chapter 3 that the 'Information made explicit in a structural building block

representation is 'Inadequate to capture many of the important spatial properties estab-

lishing objects' identities, similarities, and distinguishing chaxacteristics. By attempting

to span every shape domain, representations based on a generic set of primitive building

blocks sacrifice the ability to name the especially relevant properties inherent to particular

shape domains. If domain-specific knowledge can be maintained only at the level of ob'ect

models, the scope of this knowledge is limited by the paucity of information that can be

made explicit in terms of the itial vocabulary of pimitives. The approach to shape

representation advocat ed in this thesis may be viewed as "filling in" the space between

the iitial primitive level of shape description, and the level of full symbolic object models.
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The filling," or shape descriptors at 'Intermediate levels of abstraction, constitute a place
to put dom c'fic knowledge of regularity and structure occurr'

ain-spe i ing over configurations

of shape primitives, below the level of complete ob .ects or ob'ect parts.

Second, knowledge about objects' shapes could be said to reside primarily in the def-

initions of prototypical shapes represented as points wthin large feature spaces whose

dimensions are properties measured on objects n visual scenes. The facility with which

such representations can be used to compare ob'ects' shapes, define regions in feature

space corresponding to shape categories, and focus on selected task-specified aspects of

shape geometry is governed by (1) the operations provided for manipulating the feature

space representation (for example by defining similarity measures and regions over feature

space) and by 2) the set of features offered. While a great deal of attention has been de-

voted to manipulation of feature space representations [e.g. Tversky, 1977; Shepard, 1962;

Sattah and Tversky, 1987- Ashb and Perrin, 1988; Krumhansl, 1978], the present work

may be viewed as emphasizing the central significance of the latter factor. What should

be the features or properties measured for the purpose of perceiving and understanding

the shapes of ob'ects? In essence, we advocate devoting new feature dimensions fiber-

ally: we have shown how to build in knowledge about particular shape domains or classes

of shapes by explicitly nanung as new coordinate dimensions the particular geometric

properties important to dstinguishing these shapes.

Third knowledge about the spatial configurations comprising objects' shapes could be

said to reside in stored memories of patterns of co-occurances among shape primitives.

This formulation 'is typically cast in terms of a graph or network whose links store pairwise

or higher order associations- incoming data 'Interacts wth this knowledge via an ativity'

propagation or relaxation scheme that settles on patterns compatible with the a priori

domain constraints [e.g. Smolensky, 1986; Anderson and Mozer, 1981- Feldman and Bal-

lard, 1982] A central difficulty of this general approach lies 'in the need to find consistent

global interpretations on the basis of large numbers of very local constralnts-namely, con-

figurations of primitives. While the present work 'in Energy-Minimizing Dimensionality-
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Reducers borrows from the technique of constraint satisfaction through relaxation, our

crucial pint derives by taking seriously Marr's Principle of Explicit Naming [Marr, 1976].

Specifically, 'if a pattern or class of configurations of shape primitives's found to recur over

samples from a given shape domain, do not merely encode knowledge of this regularity

in terms of links among primitives, but gve it a name by building a new, more abstract

descriptor (or node) encoding this pattern. This chunking strategy diminishes the cost

of 'integrating, over an entire scene, data arising at a small scale or primitive level. The

ability to name recurring patterns is actually the goal behind connectionist network learn-

ing algorithms employing "hidden" units. While our work has not addressed the learning

issue, we have demonstrated that, at least in a limited-but natural-shape domain, it is

possible to bild an effective shape vocabulary "by hand." Some connectionist work has

followed Marr's Explicit Naming prescription by building by hand networks employing

abstraction hierarchies for smple artificial worlds [Mjolsness et al, 1988; Sabbah, 1985].

However, by adopting a token grouping framework that avoids the encumberances of the

activity propagation paradigm, the present work has taken a irect route to demonstrating

the value of placing knowledge in the vocabulary of shape descriptors themselves.

One general computational model that does align with this thesis work 'is the produc-

tion system Newell and Simon, 1972]. Our vocabulary of shape descriptors comprises a

"knowledge base" from which descriptive elements axe selected and written onto the Scale-

Space Blackboard. The Blackboard serves as a scratchpad or working memory, and pattern

matching (token grouping) rules operate on the contents of the Blackboard to build an

increasingly rch shape description as tokens are drawn from increasingly domain-specific

"knowledge sources."

However, to state merely that one is using a blackboard computing achitecture is to

leave a great deal unspecified. Chapter rsed three probing questions concerning the

nature of a vocabulary of shape descriptors embodying knowledge about a shape domain:

(1) What 'is the form of the vocabulary? 2 What is the content of the vocabulary? 3)

How 'is the vocabulary used 'in performing specific visual tasks? This work has presented
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a specific answer to the first of these questions, and has shed some light on the second

question and to a limited extent the third.

To recapitulate, the form of our approach to vsual shape representation retains both

propositional and pctorial qualities. Through the computational model of symbolic tokens

placed on the Scale-Space Blackboard, abstractly defined shape events may be,-indexed by

spatial location and size, they may take 'Internal parameters specifying the type and spe-

cific characteristics of shape events, and they may refer to other tokens through pointers.

Through the device of dimensionality-reduction, tokens are able to refer to classes of de-

formations over configurations of other (more primitive) tokens, and their 'Internal param-

eters may specify degree of deformation. In addition, the technique of Energy-Minimizing

Dimensionality-Reducers permits tokens to push one another around on the Scale-Space

Blackboaxd according to bottom-up and top-down constraints. This conception of the

form of a shape representation 'is roughly comparable to the notion in Computational

Linguistics that a child is predisposed to learn human language by virtue of a genetically

endowed complement of principles and parameters which axe set or tuned according to

the linguistic environment [Chomsky, 1986].

As for the content of a shape vocabulary, we -have submitted an example hierarchy

of shape descriptors displaying several sgnificant characteristics First, the vocabulary

elements name coherent chunks or fragments of shape in space. These may refer to con-

tours, regions, or configurations of contours and/or regions; tokens' internal parameters

may describe properties of these fragments such as the curvature of an edge or the span of

re 'on. Second, the shape vocabulary proceeds from the primitive image, level to more

abstract levels rather gradually, 'in relatively small steps, and accordingly, the domain-

specific character of the vocabulary becomes more pronounced at more abstract levels.

The configurations and geometric regularities named at the level of PRIMITIVE-EDGEs and

PRIMITIVE-PARTIAL-REGIONS are nearly universal; at an intermediate level, EXTENDED-

EDGES, PCREGIONS, and FCORNERs are common to many but not all classes of shapes-,

and, at an abstract level, the specific dorsal fin vocabulary names shape fragments that are

275



-l--------- ----

found occasionally on other shapes, but are so tailored that they respond collectively only

to shapes fitting the basic plan of a fish dorsal fin. Third, the elements of the descriptive

vocabulary are of relatively small "grain size." Their descriptions of shape fragments are

limited in scope, extending 'in some cases over substantial distance or area, and in other

cases over several scales, but rarely over both. Consequently, the complete description of

a shape is delivered 'in terms of many fragments that overlap one another, each making

explicit some limited aspect of the shape's geometry. In this regard our hand-bw'lt shape

representation resembles the distributed style of representation 'Introduced by research

in connectionist networks [Rumelhart et al., 1986- Hinton, 1986; Touretzky and Hinton,
1986- Sejnowski and Rosenberg, 1987]. Finall the geometrical regularities on which our

I y

dorsal fin vocabulary is based are 'in some cases rather subtle and obscure to the casual

observer of one or a few of these shapes. While we do not mean to imply that we have in

any sense found The correct and complete set of dorsal fin descriptors, we do suggest that

the task of building a descriptive shape vocabulary---or a descriptive vocabulary for any

kind of visual representation-demands, substantial analysis and effort 'in order to discover

the constraints and regularities operating in the paxticulax domain 'in question.

With regard to the question of how a shape description of the present sort is to be

computed and used for performing specific tasks within a full scale general purpose visual

system, this thesis professes limited ambitions. Nonetheless, we have presented demon-

strations of ways 'in which the dorsal fin shape vocabulary supports (1) the construction

of significant shape categories, 2) comparison among shapes according to geometrically

salient properties of the dorsal fin shape domadn, and 3) basic similarity 'udgments un-

derlying shape recognition. Further, the ability of the representation to support shape

interpretation with respect to different perceptual vantage points, or descriptive perspec-

tives, offers a handle for other stages of perceptual processing to specify task-dependent

parameters for the evaluation of shape information. While a great deal of work would

remain 'in order to develop, say, an efficient shape recognition engine we believe that

the work presented illustrates the value gained, both to shape recognition and to other
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tasks, from a descriptive vocabulary reflecting knowledge about the geometrical properties

important to distinguishing objects within particular shape domains.

8.3 Issues for Future Research

This thesis has emphasized representation-the data structures and operations provided

for expressin- and manipulating information-as opposed to control-how these opera-

tions, are applied during the course of visual processing. We have presented operations for

building hierarchical shape descriptions using shape tokens, mechanisms for propagating

geometric constraints among shape tokens, and formalisms contributing to the interpreta-

tion of similarities and differences among shapes. But it would be premature to attempt

at this tme to place these components 'Into a comprehensive picture of human or machine

visual perception; many open questions loom large.

One set of questions concerns the locus of 'information processing. Is computation

spatially uniform or spatially focused? Is computation carried out in parallel or serially?

Thanks to the spatial indexing propertie s of the Scale-Space Blackboaxd data structure,

the token grouping operations we have presented for the primitive and intermediate levels

of shape description axe spatially local and axe amenable to implementation in parallel

hardware. In this thesis the computations are expressed mathematically, and while they

are easy to program in software, formulating them in terms of simple hard wiring stands

as a challenging (but rewarding) task. At higher levels of abstraction, however, grouping

operations are introduced that combine tokens at 'increasing scale-normalized distances.

The wiring) cost of carrying out these computations in simple parallel hardware may

become prohibitive. An interesting line of future work would 'Involve integrating the token

grouping procedures wth mechanisms for spatial focus [Ullman, 1983- Mahoney, 19871.

A related issue concerns residence for domain-specific "knowledge sources." How does

a given location in the visual field, or in the Scale-Space Blackboard, obtain access to

the entire corpus of shape tokens that could possibly be placed there? It may be sensible

for the entire vsual field to have immediate and direct access to the grouping operations
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asserting primitive level, uiversally applicable shape descriptors. However, to replicate

the entire knowledge base of abstract level shape escriptors over the complete visual field

seems impractical, and suggests a motivation for incorporating some capacity for directed

visual attention.

Another control issue concerns the procedure for ndexing 'Into domain specific knowl-

edge sources. Is the entire descriptive vocabulary available at once, or does the system gain

access to, say, dorsal fin descriptors, only after it has computed a more generic protrusion

description?

Although we have cast the token grouping operations of Chapters 4 6 and 7 in the

same computational framework as the token shoving operations of. Energy-Minimizing

Dimensionality-Reducers introduced in Chapter 5, the presentation reflects only limited

integration of these devices. Therefore, an immediate objective of future research would

be to fold the abstraction and constraint satisfaction mechanisms of Energy-Miru'mizing

Dimensionality-Reducers more directly into the high level shape vocabulary. One could

then determine, by tracking "forces," what aspects of a dorsal fin's geometry must change

if, say, the angle of the leading edge were made more vertical.

More attention is certainly due the range of later visual tasks that could be supported

by the apparatus of the Scale-Space Blackboard, symbolic shape tokens, and Eer 'y-

Minimizing Dimensionality-Reducers. For example, it seems likely that physical reason-

ing may be facilitated by the spatial indexing inherent to the Scale-Space Blackboard-'is

something supporting this ob'ect? Just "look" below it-and by the condensed repre-

sentations for meaningful chunks of shape afforded by shape tokens [Saund, 1987b]. For

another example, we have auded to the ways 'in which later, more cognitive, stages can

interact with and give direction to shape interpretation through choices among different

descriptive perspectives. Protocol for this potential interaction is left to be understood,

perhaps as further reseaxch in Later sion yelds 'Insight into the precise ways in which

the perceptual system serves an organism as a whole.

Finally, this thesis has dealt with purely binary two-dimensional shapes. Two obvious
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directions for extending this work would be to (1) develop an analogous shape vocabulary

for three-dimensional objects, and 2) develop analogous grouping operations for grey level

images. With regard to the former, it would be nteresting to explore not only primitive

and 'Intermediate level shape tokens for surfaces and three-dimensional volumes, but also

the possibilities for a 2 dimensional serrli-iconic representation with symbolic tokens'2

internal parameters referring to vewpoint dependent depth, slant, and tilt, in analogy to

the 2 -D sketch [Marr, 1978).2

To develop token grouping operations for grey level images was the intent of the Primal

Sketch [Marr, 1976]. Snce the ntroduction of this 'Idea, a great deal has been learned

about Early visual processing. A rich description of important events in the visual world

will incorporate information from many sources, ncluding stereo disparity, motion, color,

and texture. We axe closer to the day when a comprehensive array of perceptual grouping

processes may unite the insights of Gestalt Perceptual Psychology with the analytical

machinery of modem Computational Vision. This thesis work endorses the viability of

the token based approach to proceeding from the image level to more abstract symbolic

representations for vsual 'information. By placing emphasis on the descriptive vocabulary

for making explicit shape or other information, this approach acknowledges the central

role that knowledge of the vsual world must play in visual perception.
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Appendix A

Linear-Tabular Dimensional-Reduction

A number of computational mechanisms are available for performing dimensionality-
reduction. Among the most straightforward is one cled Linear- Tabular Dimensionality-
Reduction. This technique amounts to augmenting a linear model of a constraint surface

'th a lookup table describing deviations of the actual constraint surface from the linear
model. This method is useful when the constraint surface does not double back on itself
(see figure A.1).

A.1 Constructing a Linear-Tabular Dimensionality-Reducer

A Lineax-Tabular Dimensionality-Reducer is constructed from an unordered sample of
n-dimensional data points drawn from an m-dimensional constraint surface embedded in
the n-dimensional space. First, a linear model of the constraint surface 'is constructed by
fitting an m-dimensional hyperplane passing through the centroid of the data. Convenient
coordinate axes are the eigenvectors, h, corresponding to the m largest eigenvalues of
the covarience matrix; the origin 'is the centroid of the data. The linear model is then
augmented wth an m-dimensional lookup table. The lookup table is quantized to, say,

a

Figure AJ: (a) The Linear-Tabulax Dimensionality-Reducer augments a lineax
model of a constraint curve with a lookup table that partitions the linear model
into bins. (b) This scheme does not work 'if the constraint surface oubles back on
'Itself.
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10 divisions per coordinate dimension. Thus, for m = 2 the lookup table wl have 00
bins. Each entry 'in the table is a vector of length n describing the error between the linear
model and the average of ai data samples failing within that table bn. If no data sample
happens to fall within a particular bin, this entry 'in the table may be 'Interpolated fr6m
surrounding entries for which data samples were available.

A.2 Top-down and Bottom-up Mapping Using a Linear-Tabular Dimensionality-
Reducer

Given a specification of a data point in terms of an m-dimensional vector, a, describing
a point on the constraint surface, the n-dimensional coordinates of this data point 'in the
embedding feature space axe given by:

= Scentroid + E aih + LT(ce), (A.1)
i=1'M

where hi 'is the ith coordinate axis of the linear model, and LT(a) is the lookup table
entry for the coordinates of a. If desired, the lookup table contribution to may be
interpolated across neighboring bins according to the proximity between a and the bin
boundaries.

Given an n-dimensional point, S, in the embedding feature spaces its coordinates a,
,on the m-dimensional constraint surface, C, may be estimated by taking the orthogonal
projection of onto the m-dimensional. hyperplane estimation of C:

Criestimate = S - Scentroid) hi (A..2)

The estimated coordinates of a can be used straightaway, or, if desired a hill-climbing
search can be conducted to find the a corresponding to the point on the constraint surface
which 'is a local mimum 'in distance to S. In certain cases this method can of course
return as which are not optimal, as shown in figure A2b. The limitations of the Linear-
Tabular Dimensionality-Reducer axe purchased along with their simplicity and efficiency
in implementation on conventional computers as compared to more general associative
memory [Kohonen, 1984] or network propagation [Saund, 1987a] methods.
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Figure A.2: (a) The linear model consists of a statement of the centroid of a sample
of "training" data, plus the first m egenvectors, h, of the covariance matrix. (b)
In estimating the point on the constraint surface which is the minimum distance
projection of a 'ven data point, A, sometimes the strategy of hill-climbing from the
point, B, corresponding to the perpendicular projection of A onto the linear model
of the constraint surface can give the wrong result. Here, this method returns the
point, C, when 'in fact D is the point on the constraint surface closest to A.
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AppendiX B

Hierarchical Clustering Algorithm

A straightforward hierarchical clustering algorithm is used in Chapter 6 to correct PRIM-

ITIVE-PARTIAL-REGION (Type 1) tokens 'Into groups reflecting rounded partial regions or
extended bars. The algorithm we use is called by Anderberg 1983 a Centroid Method
variant on the Central Agglomerative Procedure.

Individual data elements are initially provided as a set of points 'in some feature space.
Each point is assigned weight, 1.0 A measure is defined assigning a scalar similarity"
value between any two points 'in the space. For example, a smple smilarity measure is
Euclidian distance between points. In Chapter 6 the data elements correspond to shape
tokens, and the dmensions of the feature space describe tokens' geometric proximities
such as relative location, orientation and scale. The text of Chapter 6 discusses how we
modulate the grouping of shape tokens by choosing the similarity measure.

A cluster of data elements 'is represented 'in the feature space by a point whose location
is the centroid of the elements' locations. The weight of the point representing the cluster
is equal to the number of data elements contributing to the cluster. Note therefore that a
point in feature space can represent either an individual data element or a cluster of data
elements. I

The clustering procedure builds a hierarchy of clusters by successively grouping nearby
data elements or clusters into larger' clusters. The algorithm proceeds as follows:

1. Examinedata points pairwise and dentify the pair that 'is most similar.

2. Combine these into a cluster by replacing the two data points wth a new point in the
feature space. Assign this point a location 'in the feature space which is a weighted
average of the locations of the two contributing data points their centroid). Assign
the cluster a weight which is the sum of the weights of the two contributing data
points.

3. Iterate steps 1 and 2 until all points have been combined 'Into a single cluster.

The result is a tree whose leaves are the original data elements and whose nodes
represent clusters of these elements. An 'Important question 'is, which nodes represent the
most salient clusters, that is, groups of data elements that are all similar to one another
in relation to their similarities to data elements assigned to other groups. This issue. is
addressed 'in depth by Bobick 19871 in terms of selecting the level or depth 'in the tree at
which 'Important clusters are deemed to occur. For the present purposes, we find a simple
method satisfactory. Along with the centroid and weight of each cluster, we maintain

A measure of tightness of the grouping 'in terms of the variance of the distribution of
contributing data elements. A simple threshold on the variance serves to segregate groups
of shape tokens corresponding to different geometrical structures on dorsal fin shapes.

283



Appendix 

Implementation Details

This Appendix contains implementation details of the grouping procedures described 'in
the text, including thresholds, weights, and the settings of free parameters of the compu-
tations.

C.1 Multiscale Primitive Token Grouping (Chapter 4)

The constant A, which relates spatial magnification to translation in the scale dimension
(equation 4.3), page 123) -

sigmarange - I
A =

(log max log Imin)

In the current 'Implementation, sigmarange = 10.0, max -- 20.0, min = 20, therefore
A = 390865 Uits of absolute distance axe in pxels. The size of a shape token 'is defined
such that the length of a shape token whose scale = 'is pixels. By equation 4.4) the
length of a shape token has scale-normalized dstance, snD = .0.

C.1.1 Fine-to-Coarse Aggregation Procedure

Step I. Identify seed poses for coarser scale tokens (page 132)

Condition on two Type tokens in order for them to gve rse to a gap-'umping" seed:
8. < nD < 16-01 < 30', < 301 (see figure 2.18b). Condition on a third token
filling in the gap and therefore vetoing the gap-jumping seed: scale-normalized distance
to the midpoint of the two bounding tokens must be < 40, difference in "filling token's"
orientation and mean.orientation of bounding tokens must be < 30'.

Step IL Reflne the placement of coarser scale tokens (page 132)

In expression (4.7)- Major and minor axes of Gaussian ellipsoid, G(D, 0- aaj,,,
20.0, 5.0 (where 'in this case, refers to the standard deviation of the Gaussian);
the constants, and p: B = 00016,p = 4.

Step III. Determine coarser scale token strength (page 136)

In expression 4.11), C = 30, E = 40. In equation 4.13), p = 2 q = 4.

Step IV. Subsample the coarser scale description (page 138)

In step II (page 139), Type tokens are removed that are redundant with other, stronger,
Type tokens. Three psses axe taken though the entire set of Type tokens, each
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I -I Condition (1) Condition 2)
1 Pass_ I D 9 snD 0

1
1 0.5 200 1.0 300
2 1.0 200 2.0 300

11 3 11 1.5 200 2.5 30

pass wth a more lenient test for whether: (1) a token is considered very near to any
stronger token or 2) it is considered to be sandwiched between two stronger tokens. (In
the following table the bounds on Condition 2) apply to both of the sandwiching tokens.)

C-1.2 Pairwise Grouping of Edge Primitives

Definition of Type Configurations

Diminishing of the strength parameter, ST,, of a Type token as its component Type 
tokens deviate from symmetrical placement (page 146):

Or a nge -- 71 + 1�2 Ir

ST, 1.0 Tange )STOIef t STOright'

771 �- 8 0,772 � r / 3. STOI e f t an d , are the internal strength parameters of the two
Type tokens supporting the Type token. Note that when the Type tokens are

symmetrically placed V = and STI = STOeftSTOright'
In equation 4.16), snDtarget = 80.

C-2 Intermediate Level Shape Descriptors (Chapter 6)

C-2.1 Extended-Edges

Step IA: Identify short contour segments at se d locations

In equation 6.6), b = 1.5,thresholdforE 075.

Step I.2: Merge short contour segments lying along circular arc

In equation (6-7)(Mutual Similarity), the relative weights of the distance, cotangency, and

curvature difference terms are assigned by the following multiplicative factors, respectively:

0.29 507 200.0. These factors arise from the fact that information expressed in three

different sorts of units (length, angle, and curvature) all enter into the same equation.

The Mutual Smilarity Cost threshold for merging short contour segments (page 199 is

0.2.
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Step II.2- Prune less smooth and less salient EXTENDED-EDGE tokens (page 201)

Sepaxating EXTENDED-EDGE tokens into very high salience and moderate salience groups.-
The salience of an EXTENDED-EDGE token is determined by the Mutual Smilarity Cost
between thi's token and its neighbors on each end as described n the text, under the
following condition: the Mutual Smilarity Cost between two EXTENDED-EDGE tokens is
only computed if the tokens roughly 'oin end-to-end. The conditions for two tokens to
be considered as joining end-to-end axe as follows: () The tokens must not overlap to
such a degree that an end of either token extends beyond the center of the other token 2)
the scale-normalized distance between the nearest two endpoints of the EXTENDED-EDGES
must be < 32. 3 the scale-normalized dstance between the the nearest two endpoints
of each EXTENDED-EDGE, and the EXTENDED-EDGES' meeting point (see figure 68), must
b e < 25.

The threshold for moderate salience EXTENDED-EDGES- 20.0. Threshold for very hgh
salience extended-edges: 1000-0. Very high salience EXTENDED-EDGEs are those that form
sharp corners with other EXTENDED-EDGES on both ends. In cases where two EXTENDED-
EDGES meet at an angle sharper than 40' the Mutual Similarity computation ceases to give
a useful differentiation between different degrees of salience and the unction is assigned
the salience, 1001.0.

C.2.2 Pcregions

Step I: Link neighboring PRIMITIVE-PARTIAL-REGION tokens (page 207)

PRIMITIVE-PARTIAL-REGION tokens are linked pairwise when their Circledifference falls
below the threshold value, 20. A number of isolated networks of PRIMITIVE-PARTIAL-
REGION tokens are formed by this step.

Step II: Partition PRIMITIVE-PARTIAL-REGION tokens into clusters (page 209)

The herarchical clustering algorithm of Appendix forms a tree of clusters of PRIMITIVE-
PARTIAL-REGION tokens based on Circledifference Cost. (Actually, hierarchical clustering
is performed 'Independently for each of the networks of PRIMITIVE-PARTIAL-REGION tokens
formed in step I.) Clusters for forming PCREGION tokens are extracted by slicing the tree
at a depth such that the the maximum Circledifference between components of a cluster
is 0.5 (see concluding paragraph of Appendix B).

Step IV: Prune 'Inadequately supported and redundant PCREGION tokens

The minimum axc expanse for the PRIMITIVE-EDGES supporting a PCREGION is 400 In
order for the PRIMITIVF,-EDGES supporting a PCREGION token to be accepted as spanning
the entire arc, at leas i one PRIMITIVE-EDGE must occur every 600 between the most
clockwise and most counterclockwise PRIMITIVE-EDGE of the arc.
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(page 211]) The larger of two PCLEGION tokens is discarded if 'it subsumes a smaller
PCPEGION tokens under the following conditions: (relative-orientation < 10' a relative
scale) < 20, scale-normalized distance between the forward end of the two tokens < 20.

C.2.3 Fcorners

Step IA: Grouping collections of aligning PUMITIVE-PArtTIAL-REGION tokens

In equation 6-9) the value of the constant cl is 0.05.'In equation 6.10) the value of the con-
stant C2 is 0.1. The threshold on Misalignment Cost below which two PRIMITIVE-PARTIAL-

REGION tokens may be linked is 20 A number of networks of PRIMITIVE-PARTIAL-PEGION
tokens are formed by this step (see A.2.2, above). The herarchical clustering algorithm
is invoked for each such network, and clusters for forming CORNER tokens are extracted
by slicing the tree at a depth such that the the maximum Misalignment Cost between
components of a cluster is 20.

Step I.2: Grouping pairs of EXTENDED-EDGE tokens forming a shallow corner

(page 2 8)

Two EXTENDED-EDGE tokens may be grouped 'Into an FCORNER under the following con-

ditions: (1) The two EXTENDED-EDGE tokens must join end-to-end, as described above.

(2) Each EXTENDED-EDGE must have smoothness > 30. 3 the Mutual Smilarity be-

tween the to EXTENDED-EDGES must be > 30-0 4 Their dfference in scales must be

< 20. In addition, one of conditions, (5), 6), or 7) must also hold: (5) Their relative

orientation is > 30' AND both tokens have scale-normalized curvature (absolute value)

< 0011 OR their relative orientation 'is > 45'. 6 Their relative orientation is > 10'

AND both tokens have scale-normalized curvature (absolute value) < 003 AND both to-

kens have smoothness > 5.0 AND the tokens 7 curvatures are 'in the same direction as their

relative orientation. 7 Their relative orientation is > 20' AND the absolute value of the

difference of the tokens' scale-normahzed curvatures is < 0.05 AND no other, EXTENDED-

EDGE forms asmooth "seam" between these two extended-edges. The conditions for such

a seam are that (a) The scale of the "seaming" EXTENDED-EDGE must be no greater

than the scale of either joining EXTENDED-EDGE. (b) The Mutual Similarity between

the seaming EXTENDED-EDGE and each of the joining EXTENDED-EDGES must be < .0.

(c) The seaming EXTENDED-EDGE must not extend beyond the center of either joining

EXTENDED-EDGE.

Step 13 Sngle EXTENDED-EDGE tokens supporting an FCORNER (page 218)

Conditions for a sngle EXTENDED-EDGE to support an CORNER.- (1) The scale-normahzed

curvature of the candidate extended-edge must be < 004 2 Another EXTENDED-EDGE

token must occur on one end (call this the "forward" end) of the candidate EXTENDED-

EDGE token (note that this' can be ether end, however) such that: (2a) The absolute

value of its curvature, transformed to the scale of the candidate EXTENDED-EDGE token,
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is at least 04 less than the absolute value of the candidate EXTENDED-EDGE token's scale-
normalized curvature AND (2b) the tokens must be considered as joining end-to-end as
described above AND (2c) their dfference 'in orientation at their point of intersection must
be < 200. 3 A PRIMITIVE-EDGE token must occur at the other end of the candidate
EXTENDED-EDGE token (call this the the "rearward" end) such that: (3a) Its scale is 27±
3.0 less than the scale of the candidate EXTENDED-EDGE token AND (3b) 'Its orientation
is within 90' ± 600 from the orientation of the rearward end of the candidate EXTENDED-
EDGE token AND (3c) its location, is within 8.0 (scale-normalized dstance) of a target
location situated at a distance of half the length of the candidate EXTENDED-EDGE token
from the rearward end 7 in a direction perpendicular to the axis of the EXTENDED-EDGE
token.

Step III. Combine or remove redundant FCORNER tokens (page 221)

FcORNER tokens describing the same shape fragment are consolidatedinto a sngle FCORNER
token according to their Misalignment Cost. Misalignment Cost is computed by treating
this FCORNER tokens as if they were PRIMITIVE-PARTIAL-REGION tokens: the bounding
EXTENDED-EDGES of an FCORNER token fills the role of the constituent PRIMITIVE-EDGE
tokens of a PRIMITIVE-PARTIAL-REGION token. A linking and clustering procedure is car-
ried out for the FCORNER tokens in a manner dentical to the procedure for clustering
PRIMITIVE-PARTIAL-REGION tokens as described above and in the text. The Misalign-
ment Cost threshold for linking is 20 and the Misalignment Cost value for slicing the
hierarchical cluster tree is 12.

C.3 Dorsal Fin Vocabulary (Chapter 7)

C.3.1 Definitions for Configuration Classes

Qualifications for configuration class LECPE. The configuration class, LECPE, defines
a class of configurations of an EXTENDED-EDGE token and FCORNER token as follows: (1)
The FCORNER must have concave taper (taper < 00)(in other words the enclosed interior
must be ground, not figure). 2 The FCORNER must be larger 'in scale (a) than 25.
(3) The absolute-value of the scale-normalized curvature of the EXTENDED-EDGE token
must be > 008. 4 The salience of the EXTENDED-EDGE token must be > 30. ()
The scale-normalized distance between the tip of the FCORNER token and the EXTENDED-
EDGE token must be > 25 and < 30-0. In addition, certain conditions apply on the
spatial relationship between the EXTENDED-EDGE token and one of the bounding sides
of the FCORNER token. Call the EXTENDED-EDGE token, "EE." The FCORNER token has
two bounding sides which axe themselves represented by EXTENDED-EDGE type tokens.
One of these may be considered "in front" of the other, as determined by their spatial
arrangement. For example, in figure 7.3a the left hand shape token is "'in front" of the
right hand shape token whenever i�2 + 11 < r. For an FCORNER token, call 'Its frontward
EXTENDED-EDGE token, "FE." For a candidate pair of an EXTENDED-EDGE (EE) and
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FCORNER to flfi,11 the qualifications for a LECPE configuration, the following conditions
must hold between the tokens, EE and FE: 6 200 < < 1300 7 155 < 7 < 250.

(8) 5 < q2 < 950.

Qualifications for configuration class PICLEO The configuration class, PICLE, defines
a class of configurations of an EXTENDED-EDGE token and FCORNER token as follows: (1)
The FCORNER must have convex taper (taper > 00)(in other words the enclosed interior
must be figure, not ground). 2 The FCORNER must be larger in scale (a) than 30 3)
The absolute-value of the scale-normahzed curvature of the EXTENDED-EDGE token must
be > 0.09 4 The salience of the EXTENDED-EDGE token must be > 35-0. () The angle
spanned by the FCORNER token must be at least 20'. In addition, the following conditions
must hold between the FCORNER and EXTENDED-EDGE tokens: 6 60 < < 160' 7)
-55 < < 1450. (8) 400 < 2 < 400 9 25 < nD < 25.0.

Qualifications, for configuration class ALIGNING-FCORNERS. The configuration class,
ALIGNING-FCORNERS, defines a class of configurations of a paur of FCORNER type tokens
as follows: (1) The FCORNERS must both have concave taper (taper < 00)(the enclosed
interior must be ground, not figure). 2 The CORNERS must be wthin scale-normalized
distance 35.0. In addition, the forward boundary edge of one FCORNER must align wth
the rearward boundary edge of the other FCORNER as follows (call these "Fw" and "RW,"
respectively)-. 3) FW must lie 'in front of RW, as measured by 77, and q2 (see figure 7.3a or
as determined by xproj (figure 7.3b) 4 The Mutual Similarity measure (assessing the
degree to which two EXTENDED-EDGES lie on the same rcular arc) of Fw and Rw must
be < 35.0. (5) The other two boundary edges of the FCORNER tokens must be oriented in
roughly opposite drections: h < 0 AND 72 < 00-

Qualifications for configuration class PARALLEL-SIDES. The configuration class,
PARALLEL-SIDES, defines a class of configurations of a pair of EXTENDED-EDGE type tokens
as follows: (1) The EXTENDED-EDGES must both have salience > 35-0 2 The EXTENDED-
EDGES must both have absolute value of scale-normalized curvature < 009. The spatial
relationship between the EXTENDED-EDGES in the Scale-Space Blackboard must also obey
the following constraints: 3 1200 < < 1200 4 600 < 90 - 1 < 1200. (5)
600 < (goo i72 < 1200 6 40 < sD < 25-0 7 7-003 < a < 7003 (the relative sizes
of the two EXTENDED-EDGES must be wthin a distance 7003 along the scale dmension,
which by equation 4.3) translates to a factor of 6 'in magnification).

Qualiflcations for configuration class CONFIG-i: The configuration class, CONFIG-I,
is comprised of an ALIGNING-FCORNERS configuration and a PARALLEL-SIDES configuration
that shaxe EXTENDED-EDGE tokens in common as shown in figure 77.

Qualifications for configuration class CONFIG-ii: The configuration class, CONFIG-1,
defines a class of configurations of a single FCORNER token and an ALIGNING-FCORNERS
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configuration. In order to facilitate the computation, a shape token is created whose
location, orientation, and scale are such that 'it bridges the tps of the aligningFCORNERS

of the ALIGNING-FCORNERS configuration (that is, it marks the base of the fin). Call
this token, the "BASE token." An FCORNERtoken qualified to participate in a CONFIG-H

configuration must (1) be convex, so that the interior of the fcorner is figure, not ground.

(2) have a taper such that the corner's vertex angle 'is > 20'. In order to satisfy the

qualifications for a CONFIG-H configuration, the FCORNER and the BASE token must have

a spatial relationship satisfying the following conditions. 3 140 < < 601 4)

650 < , < 1450. (5) 300 < q2 < 300 6 20 < nD < 20.0 7) 7.0 < a < .0.

Qualifleations for conflguration class PECLE.- The configuration class, PECLE, defines

a class of configurations of an EXTENDED-EDGE token and FCORNER token as follows: (1)

The CORNER must have concave taper (taper < 00)(the enclosed interior must be ground,

not figure). 2 The FCORNER must be larger 'in scale (a) than 35. 3 The absolute-

value of the scale-normalized curvature of the EXTENDED-EDGE token must be > 009.

(4) The salience of the EXTENDED-EDGE token must be > 35-0. (5) The angle spanned

by the FCORNER token must be at least 500. In addition, the following conditions must

hold between the FCORNER and EXTENDED-EDGE tokens: 6 100 < < 200 7)

-150 < < 300. (8) 105 < 2 < 1950 9 25 < snD < 20.0.

Qualiflcations for conflguration class CONFIG-iii: The configuration class, CONFIG-

ill, defines a class of configurations of an EXTENDED-EDGE token and an ALIGNING-

FCORNERS configuration. As with the CONFIG-11 configuration class, a BASE toke -n bridging

the two agning FCORNERS smplifies the definition. An EXTENDED-EDGE token quah-

fied to participate 'in a CONFIG-Iii configuration must have (1) scale-normalized curvature

> .055. In order to satisfy the, qualifications for a CONFIG-Il configuration, the EXTENDED-

EDGE and the BASE token must have a spatial relationship satisfying the following con-

ditions 2 600 < < 200. 3 600 < r1i < 1400 4 1400 < � < 600. (5)

2.0 < nD < 20.0 7) 3.0 < or < 30.

Qualiflcations for conflguration class NOTCHSTUFF: The configuration class, NOTCH-

STUFF, defines a class of configurations of a pair of FCORNER tokens. Let us refer to the

two candidate FCORNERS as "PE" and "Pill (for posterior internal" and "posterior exter-

nal," respectively). In order for a pair of candidate FCORNERS to satisfy the NOTCHSTUFF

critena, (1) The PE FCORNER must be concave (taper < 0) 2 The PI FCORNER Must

be convex (taper > 0) 3 The PI FCORNER must span at least 5' 4 The rearward

EXTENDED-EDGE of the PI FCORNER must have an orientation aligned wthin 400 of the for-

ward EXTENDED-EDGE of the PE FCORNER. In addition, the spatial relationship between

PE and Pi must obey the following conditions: (5) 600 < < 00 6 0 < r/ < 1700.

(7) 700 < q2 < 1800- (8) 20 < snD < 14.0.
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category: BROOMSTICK

high level descriptor Pmin Pmax Wpj Placking Pcostmax

LECPE-BACK- EDGE-CU RVATU RE 0.04 1 so 0 4

LECPE-BACK-EDGE-ORIENTATION -1.1 -0.5 8 0 4

PARAL LEL-SIDES- RELATIVE-ORIENTATION .1 0.4 1 0 1

PARAL LEL-SIDES-N DISTANCE 8 20 0.5 0 1
PA RAL LE LSID ES-RELATIVE-SCAL E 2.0 7 0.5 0 1

NOTCH-DEPTH-BASE-WIDTH-RATIO 0.6 2.0 1 1 1

CONFIG-III-TOPARC-SIZE-BASE-WIDTH-RATIO -0.8 2.0 1.5 0 1

CONFIG-III-TOPARC-ORIENTATION -2.5 -1.5 1 1 1

CONFIG-III-TOPARC-CURVATURE __1.3 4.0 1 1 1

category: FLAGLIKE

high level descriptor Pmin Pmax Placking Pcostmaxwp
PICLE-POSTERIOR-CO.NFR-VERTEX-�A'N-GI LE 0.9 1.7 1 1 1
CONFIG-11-HEIGHT-BASE-WIDTH-RATIO 1.0 2.0 9 3 3
CON FIG-11-TOP-CORN ER-BASE- DORIENTATION -1.7 8 2 2

CONFIG-11-HEIGHT-PICLE-WIDTH-RAT10 1.4 2.0 1 1 1

LEADING-EDGE-REL-LENGTia2 1.6 �.2 1 1 1
CONFIG-11-TOP-CORNER-VERTEX-ANGLE -2.7 -2.1 1 1

LECPE-BACK-EDGE-CURVATURE -0.02 0.04 32 8 8
LECPE-BACK-EDGE-ORIENTATION -1.8 -1.2 1 1 1

NOTCH-DEPTH-PICLE-WIDTH-RATIO 0.3 0.6 8 2 2
CONFIG-11-VERTEX-PROJ-ONTO-BASE-PROPORTION -2.0 -0.5 16 4 4
NOTCH-PI-VERTEX-ANGLE-SUIM. 1.0 2.1 1 I I

C.3.2 Parameters of the Basic Categories

The following tables contain specifications for the six basic" categories of dorsal fins
described 'in the text. For every category we list the parameters associated wth each of
the high level descriptors in the set PC defining the category's boundaries (see equation
(7-1). Note that other descriptors not listed in the table axe used for distinguishing among
fin shapes within each category, even though they are not used in determining category
membership.
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category: UNNOTCHED,

high level descriptor Pmin Pmax wpT Pqq��] Pcostmax
CH-SIZE -0.1 0 1 0

category: TRIANGULAR-NOTCIIED

high level descriptor Pmin j Pmax Wp Placking] Pcostmax

NOTCH-PI-VERTEX-ANGLE-SUM 0.25 1.7 1 1 1
CONFIG-11-TOP-CORNER-BASE-DORIENTATION -1-.8 -1.3 1 1 1
CONFIG-II-TOP-CORNER-SKEW -0-05 0.04 1 1 1
CONFIG-II-HEIGHT-PICLE-WIDTH-RATIO 0.7 1.1 I 1
LEADING-EDGE-REL-LENGTH2 _-0.9 1.3 1- 1
CONFIG-11-TOP-CORNER-VtRTEX-ANGLE -2.1 -1.0 1 1
L EC P E- BAC K- EDG E-0 RIENTATION -1.2 -0.4 1 1

L EC P E- BACK- EDG E-C U RVATU RE -0-03 0.05 1 I
CON FIG-11-VERTEX-PROJ-ONTO-BASE-PROPORTION -0.6 0.2 1 1
NOTCH-DEPTH-PICLE-WIDTH-RATIO 0.09 0.33 1 1 1
NOTCH-DEPTH-BASE-WIDTH-RATIO 0.04 0.7 1 1 1

category: EQUILATERAL-TRIANGLE

high level descriptor pmi. Pmaxi WE Placking Pcost

NOTCH-SIZE 0 1530 0.01 0 1
PARALLEL-SIDES-RELATIVE-SCALE 4.0 1000 1 0 1
NOTCH-DEPTH-PICLE--WIDTH-P.ATIO 0 0.35 1 0
CONFIG-11-VERTEX-PROJ-ONTO-BASE-'PROPORTION -0.5 0.2 1 1
CONFIG-11-TOP-CORNER-BASE-DORIENTATION -1.8 -1.3 1 1
LEADING-EDGE-REL-LENGTH2 0.921 1.4 1 1

PE-BACK-EDGE-ORIENTATION -1.2. -0.4

category: ROUNDED

high level descriptor Pmin Pmax wp Placking Pcostm

NOTCH-DEPTH-BASE-WIDTH !'RATIO 0.5 2.0 1 1 1
CONFIG-111-TOPARC-ORIENTATIO'N -2.0 -1.0 1 1 1
CONFIG-111-TOPAR C CURVATURE 1.1 4.0 8 4 4
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