

This empty page was substituted for a
blank page in the original document.

Derivation of an Efficient Rule System Pattern Matcher
by
Jeremy M. Wertheimer

Submitted to the Department of Electrical Engineering and Computer Science
on February 28, 1989, in partial fulfillment of the
requirements for the degree of
Master of Science

Abstract

This thesis presents a derivation of an efficient rule system pattern matcher. The matcher
efficiently computes all matches between a set of rules and a database. The rules may
have multiple patterns. The matcher incrementally updates the set of matches as changes
are made to the database. This matcher is modeled on the Rete matcher used in the
popular OPS5 production system.

The representations used in the matcher are modeled on the structures used in the
model-theoretic semantics of first-order logic. This thesis demonstrates the correspon-
dence between these structures and the data structures used in the Rete matcher. A new
structure, the lattice of disjunctive substitutions, is introduced to capture the semantics
of the rule-system matching computation. An element of this lattice represents the set
of all matches between a rule and the terms in a database.

The derivation is implemented using program transformations. F irst, a formal spec-
ification is developed. Then transformations are applied to this specification to derive
an initial implementation. Finally, other transformations are applied to derive more ef-
ficient implementations from the initial implementation. The main technique used for
improving efficiency is finite differencing. This optimization can be shown to arise from
distributive laws involving operations on the disjunctive substitution lattice.

The derivation has been implemented using a wide-spectrum language and an inter-
active program transformation system.

This work is presented as a contribution towards the construction of a library of
programming knowledge to facilitate software reuse and automatic programming. In
particular, future directions are described for research towards a library of programming
knowledge for implementing rule systems.

Thesis Supervisor: Charles Rich
Title: Principal Research Scientist

This empty page was substituted for a
blank page in the original document.

This empty page was substituted for a
blank page in the original document.

This empty page was substituted for a
blank page in the original document.

Contents

1 Introduction
1.1 Background
1.2 Thesis Roadmap

2 Rule Systems and Rete

2.1 Rule System Introduction
2.2 Rule System Finite Differencing
2.3 Rete Description
2.4 Simplifications L

3 Specification and Derivation

3.1 Formal Specification,
3.2 The Representation Problem
3.3 Representation using Maximal Elements
3.4 Representation using Sets of Maximal Elements

4 Correspondence to Rete and Optimization
4.1 Correspondence to the Rete Matcher
4.2 Optimization

5 Implementation using Transformations

5.1 Transformation Systems

3.2 Types and Operations

3.3 Inmitial Derivation,
5.4 Optimization
5.4.1 Finite Differencing
5.4.2 Partial Evaluation
5.5 Future Work
5.5.1 Automatic Synthesis of Primitive Functions
5.5.2 Automatic Control of Transformations
Discussion
6.1 Correspondence to Model Theory
6.2 Future Work
6.2.1 Coverage of Featuresin Rete
6.2.2 Implementation
6.2.3 Program Design Spaces
6.3 Related Work
6.3.1 The Rete Matcher
6.3.2 Matching and Unification
6.3.3 Automatic Programming and Transformations
6.3.4 Formal Methods in Deriving Programs
6.4 Conclusions

Mathematical Definitions

A.l Lattice Theory
A.1.1 Sets, Relations, Posets
A.1.2 Semilattices and Lattices
A.1.3 Distributive Lattices and Boolean Algebras
Ald4 Filtersand Ideals

A.2 Model-Theoretic Semantics

This empty page was substituted for a
blank page in the original document.

List of Figures

2-1
2-2

3-1
3-2
3-3
3-4
3-5

5-2

Rule System Specification. 16
AReteNetwork. 18
Venn diagram illustrating Conjunctive Pattern Matching. 27
Semi-Lattice of Substitutions. 28
A Principal Ideal in the Substitution Semi-Lattice. 29
Intersection of two Ideals in the Substitution Semi-Lattice. 30
Lattice of Disjunctive Substitutions. 32
Match-Rule Implementation. 36
Correspondence between Match-Rule and the Rete Network. 37
Rule System for a Single Rule. 41
Incremental Rule System. 42
Rule System after Partial Evaluation. 43
Implementation Data Types. 47
Instantiate Implementation. 48
Match Implementation. 48
Substitution Semi-Lattice Meet. 49
Disjunctive Substitution Lattice Operations. 49
Rule System Specification (Iterative Version). 50
Rule System Specification (Tail Recursive Version). 50
Transformations for Initial Implementation. 51

5-9 ImtxalImpl«neatatxonofMatch—-Rnle R S
5-10 Match-Rule after Folding Match-Elt-Set. PR :
5-11 Specification for Optimized Matcher. | |
5-12 Finite Dxmmmm
5-13 Partial Ewlw:on'rr

ooooooooooooooooooooo

oooooooooooooooooo

5-14 Final Ma.tch—mﬂe Imﬁmahtm

6-1 Rulespmwsm_. oy

Chapter 1

Introduction

The first section of this chapter presents background and motivation for this research.

The second section presents a brief overview of the thesis.

1.1 Background

Programs are still written, and rewritten, in a manual, ad-hoc manner. A goal of auto-
matic programming research is to foster an alternative approach to programming. This
approach involves gathering, organizing, formalizing and implementing programming
knowledge. Researchers have begun to use this approach to automate the development
of small programs.!

We would like to build a library of programming knowledge that embodies the com-
mon collection of algorithms, data structures, and techniques that are the basis of pro-
gramming. Our main objective is to use this library to build automatic programming
systems. A second benefit that accrues from this approach is that we develop sharper
understandings of current algorithms and techniques. This thesis is intended as a con-

tribution towards both of these goals. As such, it should be of interest both to readers

11 emphasize that this approach currently works with small programs because it does not directly ad-
dress the complexity management issues that arise, and dominate, programming-in—the-large. However,
automating programming-in-the-small could be of enormous value to all programmers.

10

interested in automatic programming, and to readers interested in the particular appli-
cation domain that I have studied.

The application domain that I have focused on is Artificial Intelligence programming.
Specifically, I have focused on rule systems, which are one of the most important types
of programs in AL I use the term rule system to encompass all systems derived from
the paradigm of logical inference. These include production systems, theorem proving
systems, and deductive databases.

I consider the basic task of efficiently implementing a rule system. The core of this
task involves efficiently finding all matches between the rules and the data. The algo-
rithm derived is modeled on the Rete matcher [11] used in the OPS5 Production System
[5]. This matcher efficiently finds all matches for a rulebase and a database, and then
incrementally updates this set of matches as the database is modified.

The heart of the derivation is a mathematical model of the information computed and
manipulated in performing this task. The representations used in the final program are
derived directly from this model. The structures in this model are similar to the structures
used in the model-theoretic semantics of first—order logic. One of the contributions of
this thesis is an explicit description of this connection between the structures computed
in the Rete network and the valuation structures of model theory.

There have been several papers published on formal models of rule systems, e.g.
[27]. However, my attempt to formalize the structures in the Rete matcher has led
me to introduce an extension to the published formal models. Specifically, I introduce
disjunctive substitutions to represent the information obtained from matching a pattern
against several possible data in a database. The formal derivation of the matcher is
based on a homomorphism from the matcher specification to a lattice formed from these
disjunctive substitutions.

This mathematical model leads to an initial algorithm that satisfies the functional
specification for the matcher, but does not satisfy the performance requirements. How-

ever, by application of the general purpose techniques of finite differencing [19] and partial

11

evaluation [15], this initial implementation can be transformed into an algorithm similar

to the Rete matcher. The result of this work can therefore be expressed schematically as

Rete = Formal Specification
Lattice Construction based on Homomorphism to Specification

Finite Differencing based on Distributive Laws

+ + +

Partial Evaluation.

Though the heart of this thesis is a formal derivation, I also present an implemen-
tation of the derivation. The technology used for this implementation consists of a
wide-spectrum specification language, and an interactive transformational development
system. Specifically, I have used the Refine? language[21], and the Kestrel Interactive De-
velopment System (KIDS)[31]. However, the derivation is independent of these systems,
and could easily be re-implemented in another system.

This thesis also discusses some future directions for program transformation systems,
and some future directions towards implementing a comprehensive library of program-

ming knowledge for implementing rule systems.

1.2 Thesis Roadmap

This section outlines the contents of each of the remaining chapters.

Chapter 2 introduces rule systems, and describes the Rete algorithm in detail. It also
describes the simplifications made in this thesis, i.e. the differences between the Rete
matcher and the matcher derived in this thesis.

Chapter 3 presents the derivation of the initial (unoptimized) version of the matcher.
The core of this derivation involves an algebraic construction of a lattice of sets of sub-

stitutions representing the matches between patterns and sets of data.

2Refine is a trademark of Reasoning Systems, Inc., Palo Alto, CA

12

Chapter 4 describes the correspondence between the matcher derived in Chapter 3
and the Rete matcher, and describes the optimizations that improve the efficiency of the
initial matcher so that it is comparable to the Rete matcher.

Chabter 5 describes the (partial) implementation of this derivation using the Refine
wide-spectrum language and the KIDS transformational development system.

Chapter 6 presents a discussion of the derivation. It explores the relationship between
the structures used in the derivation and the structures used in model-theoretic seman-
tics, discusses the status of the implementation, outlines directions for future research,
surveys the related literature and explains the contribution of this thesis to the literature,
and summarizes the conclusions of the thesis.

The appendix contains brief tutorial material on algebraic structures, lattice theory,

and model-theoretic semantics.

13

Chapter 2

Rule Systems and Rete

This chapter presents an informal description of rule systems in general, and of the Rete
algorithm in particular. It also describes the simplifications that have been made in
this thesis, i.e. the features of the Rete matcher that have been left out of the matcher
derived in Chapters 3 and 4. Chapter 3 begins by formalizing the rule system description,
and proceeds with the formal derivation. Chapter 4 returns to this description of the
Rete algorithm in order to show the correspondence between the algorithm derived in

Chapters 3 and 4, and the Rete algorithm.

2.1 Rule System Introduction

A rule system contains two main data structures: a database (db), and a rulebase (rb).
For our purposes, the data in the database can be considered to be arbitrary Lisp s-
expressions. The rules in the rulebase are structures consisting of two fields: the Left
Hand Side (LHS), and the Right Hand Side (RHS). The rules are modeled on the inference
rules in a logical system. The LHS of a rule consists of a set of patterns, which are s-
expressions containing variables. A pattern from an LHS can be matched against a datum
in the database by finding a substitution that replaces the variables in the pattern by

terms so that the resulting pattern is equal to the datum. The LHS of a rule can

14

be matched against the database by finding a single substitution under which each of
the patterns in the LHS matches some datum in the database. If such a substitution
exists, the rule is applicable to the database. For a given database and rulebase, several
rules might be applicable, and the same rule might be applicable with several different
substitutions. The set of pairs of applicable rules and corresponding substitutions is
called the conflict set.!

A rule can be applied in the forward direction by matching the LHS of the rule
against the database, and then instantiating the RHS of the rule with the substitution
that resulted from the matching, and adding the result to the database. On each cycle
of a rule system, the system computes the conflict set, invokes the conflict resolution
procedure to select a single rule-substitution pair from the conflict set, and applies that
rule to the database. The interpreter repeats this cycle of operations until a specified
termination condition is satisfied. In this thesis I am not concerned with the termination
condition, so I will simply assume that the rule system continues until the conflict set is
empty.

This rule-system operation is summarized by the code in Figure 2-1. This specifica-
tion describes the operation of a forward—chaining rule system. It is written in an informal
notation that is intended to combine the features of an Algol-like high level programming
language, with additional mathematical notation not usually present in a programming
language. (One example of the added notation is a set—former, e.g. {z | P(z)}, which
represents the set of all elements z that satisfy the predicate P.) In Chapter 5 this
specification is implemented in the Refine wide-spectrum language.

In this specification there are three data structures: db (the database), rb (the rule-
base), and cs (the conflict set). Lines 2 and 6 specify that the code on lines 3-5 are

repeated on each cycle of the interpreter. Lines 3 and 9 state that cs is assigned the

1The terms conflict set and conflict resolution are taken from the domain of production systems.
(The Rete algorithm was first implemented in the OPS5 production system.) In these systems the order
in which rules are run is critical to the proper operation of the system. If several rules are applicable in
a given state, the rules are said to be in conflict, and a special procedure is called to resolve this conflict
and select which rule to run.

15

1 function rule-system(db,rb) =

2 repeat

3 cs — {(r,o) | r € rb A o € match-rule(r,db)}
4 (r,o) « conflict-resolution(cs)

5 db — dbU {(rhs(r))’}

6 until cs = 0

7 return(db)

s end function

o function match-rule(r,db) = Rep[{ | Vpe ths(r) Jaeas p° = d}]
10 end function

Figure 2-1: Rule System Specification.

set of all rule-and-substitution tuples, such that the rule is in the rulebase, and, for all
patterns in the LHS of the rule, there exists some datum in the database such that the
pattern, when instantiated with the substitution, is equal to the datum. That is, the
conflict set contains all rules that match against the database, with the corresponding
substitutions. (Note that a rule can appear in the conflict set several times, with several
different substitutions.) On line 4 the conflict-resolution procedure is used to select one
rule-and-substitution tuple from the conflict set. Line 5 instantiates the RHS of the
selected rule with the selected substitution, and adds the result to the database.

Since the set of substitutions in line 9 is an infinite set, a representation function
(Rep) is used to denote a concrete representation of this set. Chapter 3 contains a more

detailed discussion of the formal model underlying this specification.

2.2 Rule System Finite Differencing

A direct implementation of the interpreter shown in Figure 2-1 would be correct, but
inefficient. The major inefficiency arises from the recomputation of the conflict set on

each cycle of the rule interpreter. The computation of the conflict set involves examining

16

all of the data in the database and all of the rules in the rulebase. It is usually the case
that the database is relatively large and, since only one new element is added to it on
each cycle, the recomputation of the conflict set on each cycle is mostly unnecessary. A
more efficient approach would be to compute the conflict set for the initial database and
rulebase, and thereafter to incrementally update the conflict set as changes are made
to the database.® This is the approach followed in the Rete algorithm [11] [5]. The
central feature of this algorithm is that it maps incremental changes to the database into

incremental changes to the conflict set.

2.3 Rete Description

The main idea behind the Rete network is to compile the rulebase into a token-passing
dataflow network that incrementally accepts changes to the database, and produces cor-
responding changes to the conflict set. This section describes the simplified Rete network
that we will be considering. The simplifications are described in Section 2.4.

Since the parts of the Rete network generated by different rules are basically inde-
pendent we will concentrate on the Rete network for a single rule.

Figure 2-2 shows a Rete network for the rule

({(f 72),(g), (h 22 ?y)} = (p 7z 7y)).
A Rete network is composed of three types of nodes:
¢ Match nodes (called 1-input nodes in Rete),
¢ Combine nodes (called 2-input nodes in Rete), and

* Rule nodes (called Terminal nodes in Rete).

*We assume the rulebase remains fixed during the operation of the rule system.

17

Changes to Database

.y

1

(£ ?x)

Changes to Conflict Set

<
-

(g ?y)

(b ?x ?y)

match node

combine node

< > rule node
g memory

Figure 2-2: A Rete Network.

18

There are three types of tokens passed between the nodes:
¢ Database-Change Tokens,

e Substitution Tokens, and

¢ Rule-Substitution Match Tokens.

The rest of this section is a description of the operation of the Rete network. This
description is organized by tracing the progression of a token in the network. (Please
refer to Figure 2-2.)

The task of the matcher is to accept database-change tokens, and to output the
corresponding changes to the conflict set. The changes to the database are input to the

network on the bus at the top of the figure.

Match Nodes

The nodes at the top of the figure, labelled (f ?x), (g ?y), and (h ?x ?y), represent
matching nodes for the various patterns in the rule. There is one matching node for each
pattern in the rule. (In the full Rete network there would be one matching node for each
pattern in the rulebase.) A match node has a single input port and a single output port.

Copies of all new data tokens entering on the top bus are distributed to all match
nodes in the network. A match node processes a new data token by matching it against
the node’s pattern. If the datum and the pattern match, a token containing the resulting
substitution is passed out of the output node of the match node. If the datum and

pattern do not match, no token is passed out of the match node.

Combine Nodes

Tokens passed from the output ports of match nodes are sent to the input ports of

combine nodes. A combine node has two input ports referred to as the left input and the

19

right input.®> Each of the input ports of a combine node has a memory associated with
it. This memory holds all of the tokens that have been received at that port since the
network was initialized. A combine node has a single output port.

The role of a combine node is to combine the substitution tokens from its left and right
parent nodes and to generate a stream of substitution tokens the contain substitution
that are consistent with the substitutions received at its left and right input nodes. Each
output substitution must be consistent with some substitution received at the left input,
and with some substitution received at the right input.

The combine node functions as follows. When a new token is received at the left
input port of a combine node, it is inserted into the left input memory, and combined
with all of the elements in the right input memory of the node. If the results of any
of these combinations are valid substitutions, these results are passed out of the output
port of the combine node.

The corresponding process is performed when a token is received at the right input
port of a combine node. The token is inserted into the right input memory, and combined
with all of the tokens in the left input memory. Any valid combinations are passed out

the output port.

Rule Nodes

A fan-in tree of combine nodes is built up for all of the patterns in the LHS of a rule,
as shown in Figure 2-2. The output port of the final combine node is connected to a
rule node. This node accumulates all matches for this rule in the current database. The
collection of all of the substitution tokens stored in all of the rule nodes in a network,
with each substitution token paired with the corresponding rule, constitutes the conflict

set for the current database and rulebase.

3The ports are functionally symmetrical; these terms are introduced for explanatory purposes.

20

2.4 Simplifications

In this thesis I am interested in concentrating on the central feature of the Rete algorithm:
the computation of the conflict set, and the incremental recomputation of this set as the
database is modified. The matcher derived in this thesis has the same basic structure
as the Rete algorithm, and performs the same incremental update of the conflict set as
does the Rete algorithm. However, it is a much simplified version of the Rete algorithm.

The following features of Rete are not addressed in the derivation:

¢ In Rete rules can have negated patterns which match if the corresponding positive
pattern does not match against a datum in the database. The matcher developed

in this thesis does not handle negated patterns.

* In Rete rules can delete data from the database, as well as adding data. In this

thesis we only consider rules that add data to the database.

¢ In Rete, the matching for a pattern that appears in several rules is shared between

rules. This capability is not implemented in this thesis.

This section briefly discusses these features.

The Rete algorithm allows rules to have patterns marked with negative signs. A rule
containing a negative pattern can only run if none of the data in the database match
against that pattern. These patterns are usually taken to represent negation. This
technique of interpreting an absence of data matching a pattern as a “match” for the
negation of the pattern is known as the closed world assumption [22].

In logical deduction, the only result of applying an inference rule is to deduce a
new statement. In formalization of commonsense reasoning and the engineering of rule
systems, it has been found useful to also allow rules to retract deductions, and to remove
terms from the database. The OPS5 system provides this facility. When a term is
removed from the database, the Rete network removes all entries from the conflict set

that involved matching against that term. This facility is not present in the matcher

21

derived in this thesis. It could be added to the matcher, within the framework developed
here.

In most rule systems, there are likely to be a number of patterns that appear in
several rules. It is inefficient to repeat, for each rule, the computations of the matches
to these patterns. A better scheme is to share results of matching a pattern among all
of the rules that include that pattern. The Rete network performs this sharing.

In this thesis I focus on deriving the central architecture and features of the Rete
matcher: the division of the matching work among a network of nodes, and the incre-
mental update of the conflict set as changes are made to the database. For consideration
and illustration of these features, it suffices to analyze the matching network for a single
rule (that itself contains several patterns). This network can easily be extended to a
Rete network for a set of rules. Chapter 6 discusses future directions for extending the

derivation to include these features.

22

Chapter 3

Specification and Derivation

This chapter presents a derivation of an implementation for the rule matcher. Section 1

formalizes the abstract specification
ma'tCh-rule(r, db) = Rep[{a ’ VPG lhs(r) 3dedb pa = d}]

presented in Chapter 2. In Section 2 the conjunction and disjunction in this specifica-
tion are expressed as operations on infinite sets of substitutions. In Section 3 a natural
ordering on substitutions is used to implement these infinite sets. In Section 4 this imple-
mentation is generalized to properly handle disjunctions of substitututions. This chapter
concludes with an initial implementation for the rule matcher. Chapter 4 deals with
optimizing this implementation, and showing its correspondence to the Rete matcher.
The derivation in this chapter involves the construction of lattices and semilattices.
The reader may wish to review Appendix A.l1 which briefly summarizes some standard

algebraic definitions.

3.1 Formal Specification

In this section we develop a formal specification for the rule system pattern matcher.
For our mathematical model of a rule system, we consider the ob jects in the database

to be terms in a first-order language, and the rules in the rulebase to be inference rules

23

in a first-order language.!

First we need a formal model for the objects in the database. Let V, the set of
variables, and C, the set of constants, be two disjoint sets. Let T, the set of terms, be
the free semigroup generated by V U C. (If the operation for this semigroup is thought
of as the cons function, T can be thought of as the set of s—expressions that can be
constructed from the atoms in V U C.) Let G, the set of ground terms, be the set of all
elements in T that do not contain any variables. Using these definitions, the database in
a rule system, db, is represented as a subset of G.

Next we need a formal model for the rules in the rulebase, and for the process of
applying rules to data. A rule contains two components: a Left Hand Side (LHS), and a
Right Hand Side (RHS). The LHS contains a set of terms that can be matched against
data in the database.? The RHS contains a term that can be instantiated and added to
the database. The set of rules, R, is therefore the set 27 x T, and the rulebase in a rule
system, rb, is a subset of R.

A substitution is a partial function from V to G.3 Let E denote the set of all substi-
tutions. We will use the Greek letters o, 7 and v to denote substitutions.

A term p can be instantiated with a substitution o by replacing all of the variables
in p with their images in 0. If any of the variables in p are not in the domain of o, the
result is undefined. We use the notation p” to denote this instantiation, and refer to the
term p as a pattern. The inverse of instantiation is matching. The result of matching
a pattern p and a datum d is a substitution o such that p? = d. A full description of
instantiation and matching is given in Section 5.2.

The matching computation performed by match-rule is the central part of the rule

In Chapter 5 we present a concrete implementation in terms of Lisp data types.

*In many rule systems implemented and used in real-world applications, the order of the patterns in
the LHS’s of the rules have been carefully hand~tuned by the programmers, in an attempt to improve
the performance of the system [29]. To accurately model these systems we would need to represent the
LHS of a rule as a sequence. We choose to retain the semantics of logic, where the elements in a conjunct
are unordered.

3If f is a function, we will use the notation f(z) to denote the value of the function f at z, and
dom(f) to denote the domain of f.

24

system. The rest of this chapter concentrates on implementing this specification. Chap-
ter 4 focuses on incrementally updating the value of match-rule as changes are made to

the database.

3.2 The Representation Problem

This section motivates the representation design carried out in Sections 3.3 and 3.4. In

order to synthesize code for the specification
match-rule(r, db) = Rep[{o | Ype ms(r) Jaeas p° = d}], (3.1)

we first put this expression into a form where it can be decomposed into several subparts.
This can be accomplished by rephrasing the specification in terms of operations on sets,

iet

match-rule(r,db) = Rep[[|J {o|p° =d}]. (3.3)
p€ lhs(r) dedb

This expression can be progressively constructed from the following subexpressions:

match(p,d) = Rep[{c | p” = d}] (3.4)
match-elt-set(p,db) = Rep[| | {0 | p° = d}] (3.5)

dedb
match-rule(r,db) = Rep[(] (J {o|p° =d}]. (3.6)

p€ lhs(r) dedb
To aid in understanding this specification and its decomposition, let us analyze a

small example. Consider matching a rule r, with a LHS given by

lhs(r) = {p1, p2} = {(f ?2), (g 7y)},

*The correspondence might be easier to see if we write the quantifiers as logical conjunction and
disjunction, i.e.

match-rule(r, db) = Rep[{c | /\ \/ p° =d}] (3.2)
p€ lhs(r) dedbd

25

against the database given by

db = {dlad% dB’ d4} = {(f 1)7 (f 2),(9 3)7(9 4)}

A diagram of the values of the subexpressions in Equations 3.4 to 3.6 is shown in Figure 3-
1.

This figure demonstrates the key idea in the thesis: the explicit representations of
sets of substitutions for the conjunctive match problem that arises from matching all of
the patterns in a rule, and for the disjunctive match problem that arises from matching
a pattern against all of the terms in a database.

It is important to note that the sets of substitutions in Equations 3.1-3.6 and Figure 3-
1 are infinite sets. For example, if a substitution o is in one of these sets, than any
extension of o (i.e. any substitution 7 such that ¥, (o(z) = 7(z) V o(z) = w))?
is also in that set. If o = { z + 1 } is in one of these sets of substitutions, then
7={z— 1,y 2} is also in the set. The unboundedness of these sets is necessary in
order for the set representing a conjunctive match of two patterns p and ¢ to be equal to
the intersection of the sets representing the matches to p and q.

These infinite sets of substitutions cannot be directly stored in an implementation.
What is needed to implement this scheme is a finite representation that captures the
information in these sets. The next two sections present the derivation of such a repre-

sentation.

3.3 Representation using Maximal Elements
We might implement the infinite set of substitutions given by
S={olzi =y Az =y A... Azl =y}

by the single substitution

5The symbol w is used for undefined, since the symbol L is used for the bottom element in the lattice
introduced in Section 3.3.

26

E
A
;
C D
B

lhs(r) = {p1, 2} = {(f 2), (g ?y)}

db={dy,dy,d3,ds} = {(f 1),(f 2),(g 3), (g 4)}

Abs{match(py, di)] = {0 | pf =di} = {0 | (f 72)" = (f 1)} = {0 727 =1} =4
Abs[match(py, da)] = {0 | p{ = do} = {0 | (f 72)° = (2)} = {0 |72° = 2}=18
Abslmatch(py, ds)] = {0 | p§ = ds} = {0 | (g 7)° = (9 3)} = {o|7y"=3}=C
Abs{mateh(py, dy)] = {0 | p§ = du} = {0 | (¢ 79)" = (g 4)} = {0 7" = 4} =D

Abs[match-elt-set(py, db)] = Ufolpf=d=AUB
dedb

Abs[match-elt-set(p,, db)] = Uf{elp=dl=cCcubp
dedb

JI]DE

] Abs[match-rule(r, db)] = N Ulelp = d} =(AUB)N(CuUD)
p€ Ihs(r) dEdb

Note. Abs[match(p,d3)) = Abs[match(p ,d4)] = Abs[match(p,)] = Abs[match(p,.d,)]=0.

Figure 3-1: Venn diagram illustrating Conjunctive Pattern Matching.

27

{72 > 1) {7y~ 3} {7z = 2}

{?z—1,7% 3} {7z 2,7y = 3}

Figure 3-2: Semi-Lattice of Substitutions.

RGP[S] = {1'1 = Y1, T2 Y, y Lk ylc}

That is, represent the set of all mappings that take z, to y;, and T3 to y,, etc., by the
mapping that takes z, to y;, and T, to y,, etc.

To formalize this representation, we can order the set £ using the ordering®
2T o Vv (27 =2V =w) (3.7)

and then represent a set by its maximal element under this ordering.
In this ordering, a substititution o is < a substitution 7 iff it agrees with 7 on all of
the variables on which 7 is defined, and is defined on some additional variables.
- The structure consisting of the set of substitutions £ with the ordering given in
Equation 3.7 forms a semi-lattice. See Figure 3-2. To complete this semi-lattice, we can
introduce a bottom element L, such that V,eg L < 0. We will refer to this semi-lattice

as the Substitution Semi-Lattice (SSL).”

®Note that this derivation will involve two different lattices. The ordering in this first lattice, SSL,
will be denoted by ¢ < . The ordering in the second lattice, DSL (introduced in the next section), will
be denoted by T C &.

"The ordering defined for SSL in Equation 3.7 is based on the considering the substitutions as map-
ping. Alternatively, this ordering could be expressed in terms of the operation of the substitutions in
instantiating patterns. The alternative expression is

d-_(r«—»‘v’pvd(p7=d—>p°=d). (3.8)

28

Figure 3-3: A Principal Ideal in the Substitution Semi-Lattice.

The greatest lower bound of two elements in this semi-lattice is given by ®

Az.(if 2° = w then z7 else 27) fo =7
oM’ r = (3.9)
4 otherwise.

To be precise about the representation and the object being represented, we can define

the following representation and abstraction functions®

Rep[SCE] = o|VesoT

Absj[r € E] = {o|o 21}

A portion of SSL, with a set of substitutions marked, is shown in Figure 3-3. In this
diagram we can see that Abs(o) is the “cone” of elements below o in the semi-lattice.
That is, Abs(o) is the principal ideal in SSL generated by o.

In this representation, the result of matching a single pattern and datum can be

represented by
match(p,d) = Rep[{c | p° = d}]. (3.10)

This allows us to implement the specification of Equation 3.4 which denotes the result

of matching a pattern and a datum. In order to use this representation to implement the

8The symbol = denotes weak equality,ie. ¢ =7 =V, (0(z) = 7(z) Vo(z) =w V r(z) = w).
9For a description of the use of abstraction functions, see [16].

29

Figure 3-4: Intersection of two Ideals in the Substitution Semi-Lattice.

match-rule specification, we must also be able to represent the unions and intersections
of sets of substitutions, as specified in Equations 3.5 and 3.6.
We can represent intersection of substitution sets, as required by Equation 3.6, by

the greatest lower bound operation in the lattice:1°

Rep[Abs[o] N Abs[r]] = Repl{v|v=o}n{v|v =<7}
= Rep[{v|v=<oAv=r}
= Rep[{v|v Zon"r}]
= Rep[Abs[o 1" 1]]

= on*r

This is illustrated in Figure 3-4 by the intersection of the two ideals generated by the
elements {z + 1} and {y — 3}.

The fact that the greatest lower bound in the lattice corresponds to intersection of
the sets of substitutions can be stated algebraically as: the representation function is a
(lattice) homomorphism from (2%, G,N) to (£, <,M1*). (Since, as stated in Appendix

A.2, any powerset forms a lattice under the subset relation.)

%assuming that these sets are principal ideals generated by some element. This limitation is removed

in the representation introduced in Section 3.4.
*'again, restricting the elements in 2£ to principal ideals.

30

Unfortunately, this representation cannot represent unions of sets of substitutions as
required by Equation 3.5. For example, the set of substitutions that represents all of
the matches between the pattern (f ?z) and the database {(f 1),(f 2)}, is given by
{e |27 =1 v 2% = 2}. This set does not have a greatest element, and therefore
it does not have a representation in the above semi-lattice. Stated algebraically, this
structure is a semi-lattice, and not a lattice, because there is no operation L* such that

the Representaton function is a homomorphism from (28, C,U) to (E, <,U").

3.4 Representation using Sets of Maximal Elements

This problem can be remedied by changing the representation. Instead of representing
a set of substitutions S by a single maximal element, we can represent it by a set of
maximal elements Rep[S], so that for every element o in §, there is some element 7 in
Rep[S], such that & < 7. We will use the capital Greek letters T, &, ¥ and T to denote
sets of maximal elements in E.

These sets of maximal elements can be ordered by the following extension to the
ordering used in Section 3.3. Let a set of substitutions YT be less than (C) a set of

substitutions @, iff every substitution in T is less than (<) some substitution in &, i.e.
T ; L I VOGT 31-€§ g j T. (3-11)

The result of this set and ordering is a new lattice (see Figure 3-5), which will be referred
to as the Disjunctive Substitution Lattice (DSL).»
Unlike the semi-lattice described in Section 3.3, DSL is a lattice, with both a greatest

13The ordering given in Equation 3.11 can also be expressed, as we did for < in the previous section,
in terms of the operation of the substitutions in instantiating patterns. This alternative definition is
given by

TE® oV, Yi[(3vexrp”"=d)— (3reap” = d)). (3.12)

31

{{7x —1} {?7x — 2}}

{{?z— 2}}

Yy =3} {72 2, 7y 3}}

{7z 1,79 — 3}} {7z — 2,7y — 3}}

Figure 3-5: Lattice of Disjunctive Substitutions.

lower bound and a least upper bound. These operations are given by!3

TU® = TUS (3.13)
TN

I

{0' l BTGT BUEQ oc=7M" 'U}. (314)
For this representation, the representation and abstraction functions are given by

Rep[SCE] = []s

13Equation 3.13 is a slight oversimplification. In cases where
Joex 3rea((c <)V (r < 0)],
the value of T U & can be simplified using identities. For example,
{z»—vl}U{zv—»l,yr—»?}:{le}.

These cases do not arise in any of the programs in this thesis, since we only apply U to sets of disjunctive
substitutions that represent alternative matches for the same pattern. Consequently, these disjunctive

substitutions have the same domains, and their least upper bounds cannot be reduced using identitities.
In these cases, Equation 3.13 holds.

32

Abs[T] = {o|Jrexr o X7}

Note that whereas elements in SSL could only represent principal ideals of elements
in SSL (i.e. “cones” of elements in the diagrams), any ideal of elements in SSL can
be represented by an element in DSL (even those that are represented by sets of cones
in the diagram). It can therefore be shown that all unions and intersections of sets of
substitutions can be represented in DSL, as required by the specifications in Equations 3.5

and 3.6. These values are given by

Rep[S1 U 52] = Rep[S1] U Rep[S2] (3.15)
and Rep[51 N S2] = Rep[S1] M Rep[S2). (3.16)

The specification for match-rule in Equation 3.3 can now be implemented by using
representations in DSL. This implementation is given by
match-rule(r,db) = [] || {o|p° = d}. (3.17)
p€ lhs(r) dedb
Note that this implementation is isomorphic to the specifications shown in Equations 3.1
and 3.3. That is, the specification in Equation 3.3 and the implementation in Equa-
tion 3.17 represent equivalent expressions in two homomorphic lattices: the set algebra
of the specification, and the Disjunctive Substitution Lattice (DSL) of the implementa-
tion.
Finally, we can finish the implementation by replacing the expression for the result
of matching a single pattern and datum with the match function. To be consistent with
the format of the elements in DSL, the specification for match given in Equation 3.10

can be slightly modified so that it returns a (singleton) set of substitutions, i.e.

match(p,d) = {[7] {o | p” = d}}. (3.18)
Substituting this equation into equation 3.17 and simplifying yields

match-rule(r,db) = [] L] {o|p°=d}
p€ lhs(r) dedb

33

= 1 Un{elyr=d

p€ lhs(r) d€db

[T || match(p,d). (3.19)

pE lhs(r) dedb

Equation 3.19 is the final form of our initial implementation of match-rule. Note
that this equation constitutes an executable program. For example, in Lisp this equation
could be implemented as

(defun match-rule (r db)
(reduce #’
(mapcar (lambda (p) (reduce #’||
(mapcar (lambda (d) (match p d))
db)))
(1hs 1))))

with M and U as defined above. (Note that the definitions presented above for M, U, and
U” also constitute executable programs, as shown in Figures 5-4 and 5-5.)

The next chapter starts with this program, optimizes it, and show its correspondence

to the Rete algorithm. Chapter 5 presents an implementation, using program transfor-

mations, of this derivation, and of the optimizations presented in Chapter 4.

34

Chapter 4

Correspondence to Rete and

Optimization

This chapter demonstrates the correspondence between the matcher developed in Chapter
3 and the Rete network, and optimizes this matcher using finite differencing and partial

evaluation.

4.1 Correspondence to the Rete Matcher

In the last chapter we derived the following program for match-rule (Equation 3.19):
match-rule(r,db) = [] || match(p,d)
pelhs(r) dedb

We can now show the correspondence between this formulation of match-rule, and
a Rete network (for a single rule). Let us consider a decomposition of this program
analogous to the decomposition of the specification in Equations 3.4 to 3.6. Assume
that a rule r has & patterns, and label them P1, P2, ..., k- If we define a vector R
(corresponding to the right memories of the nodes in a Rete network) as

Ri= | | match(p,d) for 1<i<k (4.1)
dedb

then this expression for match-rule in can be written as

35

1 function match-rule(r, db)

2 let k& = length(lhs(r))

3 fori=1,%

4 R; — |J4cap match((lhs(r));, d)

5 Ly —ifi=1 then R,

6 else L;_; M R; end if
7 end for

8 return L,

9 end function

Figure 4-1: Match-Rule Implementation.

match-rule(r,db) = Ry MR, M R3M...MN Ry. (4.2)

Since M is associative, this expression can be parenthesized as
match-rule(r,db) = (... ((Ri M Ry) M R3)...) M Ry. (4.3)

If we label these parenthesized expressions as elements of a vector L (corresponding

to the left memories of nodes in a Rete network), i.e.

Ll = Rl (4.4)
and L,' = L,»_IFIR,-forQ SZS k

then the expression for match rule can be written as
match-rule(db,r) = L. (4.5)

The formulation in Equations 4.1, 4.4 and 4.5 is collected in Figure 4-1 into an imple-
mentation of match-rule.

The correspondence between the implementation of match-rule in Figure 4-1, and
the Rete network described in Chapter 2, is illustrated in Figure 4-2. We can see the
correspondence by identifying the L; and R; values in match-rule with the contents of

the Left and Right input memories of the combine nodes in the Rete network.

36

Changes to Database

>

(f ?x) (g ?y) (b 7x ?y)

Changes to Conflict Set

<

-

match node < > rule node
combine node g memeory

Figure 4-2: Correspondence between Match-Rule and the Rete Network.

37

Note that this correspondence holds for the topology of the network, but not for its
behavior over time. Whereas match-rule is a functional program!, the Rete network in-
crementally updates the contents of the node memories. The correspondence between the
derived program and the Rete network will be extended to include the incremental be-

havior in the next section, and the remaining differences will be discussed in Sections 5.4

and 6.2.

4.2 Optimization

The major source of efficiency in the Rete matcher is its incremental update of the conflict
set as the database is modified. This section will present a derivation of this optimization,
and apply it to the program under development.

Let us assume that the database is large, and therefore changes relatively slowly, since
only one element is added to it on each cycle. Let us further assume that the computation
of match-rule is expensive. This situation suggests that the performance of the system
could be improved by finite differencing [19] the computation of match-rule with respect
to the updates to the database.

This finite-differencing can be carried out as follows. Consider the operation of the
rule system interpreter over two cycles. Let db be the input data to the first cycle; let R;
and L; be the values computed during this first cycle; let db be the new data generated
during this cycle, and let

b=dbUdb

be the resulting database carried over to the next cycle of the interpreter. Let the values
of R; and I; be the values computed during the second cycle, and let R,' and Li be the
changes to R and L from the first cycle to the second, i.e.

R, =R,UR;

1The program in Figure 4-1 is a single-assignment program.

38

E =L;U L,
Now, using the associative law? for U

U {olp"=d}= [J{o]|p"=d}

dedbludb2 dedbl

Ul A{olp’=d}

dedb2

and the distributive law® for M over U

(Tue)n(wur)
= (TNY)u(rNnyu(@nwv)u(enr)

we can derive that

R = | {clp’=4d}
dedbudb
= Ulelp=diu | {o|p" =d}
dedb dedb
= Riu[|{o]p"=d}
dedb

and (for ¢ > 2)

2Let A= {ai,...,a,} and B = {b;,...,b,}. Then

|| £

I

fla)U...u flan) U f(br) U ... U f(bm)

r€AUB
(fla)U...u flan)) U (f(br)U... U f(bm))
= (I r@)uc] | f)).
TEA T€B

3Since YU ® = Y U &, therefore

(TU®)NY = {o|3,evus Joew 0 =7M* v}

{e]3rexue Jvep o =rN* v}

(TNe)u(enw).

39

{o]3rer Fvew o =1 v} U{o|3req Joeg o = 11" v}
{o13rer Juew o=7M" v} U {0 |3rep Juew 0 = 7 N" v}

(4.6)

(4.9)

&~

i = LionNER;

= (LimULio) N (R:UR)) (4.10)
= (Lict MR)U(Licy MR U (Lisy N R) U (Liy M RY)

= LiU(Lioy MR)U(Lisy NR) U (Li_ O RY). (4.11)

If we assume that
| db > db |,

then the computations in Equations 4.9 and 4.11 are less expensive than the computations
in Equations 4.8 and 4.10, since the sets being manipulated are much smaller.

Figure 4-3 incorporates the match-rule code from Figure 4-1 into the original inter-
preter of Figure 2-1, and Figure 4-4 transforms this interpreter, using the optimizations
presented in this section, into an incremental interpreter.

Lines 3-6 in Figure 4-4 perform the initial computation of the L and R values. Line
8 generates the conflict-set from L. Lines 10-12 select a rule and substitution from
the conflict set, instantiate the rule with the substitution to obtain a new datum, and
add the new datum to the conflict set. Line 14 computes the update to the R values
resulting from the addition of the new data, and lines 15-16 compute the updates to the
L values that result from the updates to the R values. Lines 18-20 add the new elements
computed in lines 14-16 to the L and R values.

Figure 4-5 presents the rule interpreter after partial evaluation. The partial evalua-
tion consists of unrolling the loops in Figure 4-4 into the single assignment statements
in Figure 4-5. Each of the expressions in Figure 4-5 represents (according to the corre-
spondence shown in Figure 4-2) a value computed by a node in the Rete network, and
the variable references and assignments represent the dataflow between the nodes.

This concludes the formal algorithm derivation. The next chapter will present an

implementation of this derivation using a program transformation system.

40

1 function single-rule-system (r, db)

2 let k = size(lhs(r))

3 repeat

4 for:=1,%

5 R; — yeqp match((lhs(r));, d)
6 L, — if 1 =1 then R,

7 else L,_; M R; end if
8 end for

9 cs — {(r,o) | o € L}

10 if cs = 0 then return db end if
11 (r,o) « conflict-resolution(cs)

12 db — {rhs(r)°}

13 db — dbU db

14 end repeat

15 end function

Figure 4-3: Rule System for a Single Rule.

41

1 function single-rule-system (r, db)

2 let k = size(lhs(r))

3 for:=1,k

4 R; — Uyeqp match((lhs(r));, d)
5 Ly —ifi=1 then R,

6 else L;_; M R; end if
7 end for

8 cs — {(r,o) | o € L}

9 while cs # 0

10 {r,o) « conflict-resolution(cs)
11 db {rhs(r)?}

12 db — dbU db

13 for:=1,%
14 R; — Ugedy match(pi, d)

15 Li «— if 2 = 1 then Rl
16 else (Li_; MR;) U (Liey MR U (Li_; N Ry)end if
17 end for

18 fori=1,k

19 R; — R; U R,'

20 L;—L;U l:/,'

21 end for

22 end while

23 return db

24 end function

Figure 4-4: Incremental Rule System.

42

1 function single-rule-system (r, db)
2 let lhs(r) = (p1, P2, P3)

3 Ry « geap match(py, d)

4 R; « Ugeay match(p,,d)

3 Ry « Ujeq match(ps, d)

6 Ll — R1

7 Lg — L1 M Rg

8 L3 — Lg N R3

9 repeat

10 cs — {(r,0) | 0 € L3}

1 (r,0) « conflict-resolution(cs)
12 db — ths(r)°}

13 db — dbU db

14 1?1 — Ugeg, match(py, d)

15 R; «— |y 4 match(p;, d)

16 R — Llcg match(ps, d)

17 I;l — Rl

18 Ly — (Ly M Ry) U (Ly N R) U (Ly N Ry)
19 1;3 — (Lg n R3) U (Lg n R3) U (L'g M Rg)
20 R1 — R1 U Rl

21 Rz — Rg U Rz

22 R3 — R3 U R3

23 Ll — Ll U El
24 Lg — Lg U Eg

25 Lye— LyUL,

26 until cs =0
27 return db

28 end function

Figure 4-5: Rule System after Partial Evaluation.

43

Chapter 5

Implementation using

Transformations

This chapter describes an implementation, using a program transformation system, of
the derivations described in Chapters 3 and 4. A first set of transformations is used
to transform the specification into an initial implementation by transforming the uni-
versal and existential quantifiers in the specification, first into set operations, and then
into lattice operations. A second set of transformations is used to optimize the initial
implementation by performing finite differencing and partial evaluation.

Sections 5.1 and 5.2 introduce transformation systems in general, and specifically
the Refine language used in this implementation. The next three sections describe the
implementation. Section 5.3 presents the preliminaries for the development. These in-
clude the types used in system, some sample data and rules, the match and instantiate
functions, and the lattice operations. Section 5.4 presents the rule system specifications,
the transformations used in the initial implementation, and the resulting code. Section
5.5 presents the transformations used for finite differencing and partial evaluation, and
presents the resulting optimized code. Section 5.6 describes the current status of the
implementation, and describes further work to be done, such as automatically synthe-

sizing the match, instantiate, and lattice operations, and automating the control of the

44

transformation applications.

5.1 Transformation Systems

This section describes transformation systems in general, and the Refine language in
particular.

A transformational development begins with a complete formal specification for the
target program. Correctness—preserving tranformations are then applied to this specifi-
cation to derive the program. These transformations embody fragments of programming
knowledge. Specifically, a transformation is a rewrite rule that replaces a fragment of
source text with an equivalent fragment (that hopefully represents a step towards the
final implementation).

Note that transformations are local, i.e. they apply to a local piece of the specification
and generate a local piece of code. The paradigm of transformational programming relies
on the specification and the resulting program having the same locality. Some attempts
have been made to remove this restriction by having transformation systems gather
information from other parts of the specification, e.g. from the contexts of a source
expression within the syntax tree [31].

Note also that transformational programing can be either semi-automatic, where the
user specifies which transformations to run and which nodes of the syntax tree to run
them on, or fully automatic, where the system makes these decisions. The implementation
presented in this chapter is semi—automatic. The final section of this chapter discusses
possibilities for completely automating the derivation.

A transformation system requires a language for specifications and a language for
implementations. A wide-spectrum language is a single language that can be used for
expressing both specifications and implementations. Its constructs range from high-
level, and possibly non-executable constructs such as unbounded quantifers, to the usual

low-level constructs found in programming languages.

45

Refine [21] is a strongly-typed language, containing Algol-like program constructs,
e.g. if...then...else, along with higher-level mathematical constructs, e.g. set—formers
such as {z | (z)z € S Az > 1}. Refine is built on an object database. All objects in the
system—types, variables, functions, transformation rules—are stored in a single database.

Refine has the standard primitive data types such as numbers, symbols, etc., similar to
the datatypes in Lisp. Refine allows the definition of compound data types. The following
are the type declarations, syntax for literal values, and syntax for general expressions, for

the data types used in this derivation. Note that both the set-former and the map—-former

contain, after the “|”, a list of variables local to the expression.
datatype | type declaration literal expression | former expression
set set(T) {1,2,3} {z | (=) p(z)}
map map(T1, T2) {I1-3,2-5[} | {lz—>vy](z,v) p(z,9) |}
sequence | seq(T) [1,2,3]
tuple tuple(f1:T1, £2:T2) | (1,2, 3)

The set operations that we will use are union (U), intersection (N), adjoin an element
to a set (S with z), construct the image of a function on a set (image(f, $)), and reduce a
set using a binary operation (reduce(op, S)). For maps we will use dom(m) which returns

the domain of the map m, and m(z) which returns the image of z in map m.

5.2 Types and Operations

This section will present preliminaries for the development, including type declarations
and sample data, the match and instantiate functions, and the lattice operations. In
this implementation these primitive functions have been written manually. Section 5.5
describes how these functions might be automatically synthesized.

Figure 5-1 shows the declarations of the types used in the system.! Variables and

!Note that for the implementation, the prefix character for variables has been changed from “?” to

46

constants are both symbols, and they are differentiated by the variablep and constantp
predicates shown. Database terms are s—expressions containing variables and constants.
This type should be a union of variables, constants, and, recursively, pairs of terms. Since
Refine lacks union types, an escape from the type system, any-type, was used. Rules
are represented as tuples of the LHS and RHS. The lattice elements are represented as
described in Chapter 3. A substitution (SUBST) is a map from variables to terms, and a
disjunctive substitution (DSUBST) is a set of substitutions. Finally, the figure includes a

sample database and rulebase.

(defobject TERM* type = any-type)

(defobject VARIABLE* type = symbol)

(defobject CONSTANT* type = symbol)

(defobject RULE* type = tuple(lhs:set(term*), rhs:termx))
(defobject SUBST* type = map(variable*, term*))
(defobject DSUBST* type = set(subst*))

(defobject VARIABLEP* function (p: terms)
: boolean =
if symbolp(p)
then (symbol-to-string(p))(1) = #\-
else false)

(defobject CONSTANTP* function (p: terms)
: boolean =
if symbolp(p) then -variablep*(p) else false)

(defobject *DB* var:set(term) = {[’f,’al, [’f,’bl, ['f, ’c], [’g, ’al,
[’g, 'v], [’h, ’a, ’b],
0if, ’q, ’1], ’q})

(defobject *RB* var:set(rulex) =
<{lf, ’-x1, [’g, ’-y], [’h, ’-x, ’-y1},
Up, 7-x, ’-y]>,
<{[,if, "X, ,_YJ: "X}»
’-y>})

Figure 5-1: Implementation Data Types.

“~”. This was necessary because the Refine grammar does not allow symbols to begin with “?”. Also,
to avoid conflicting with predefined types in Refine, an asterisk was appended to the names of all types
defined in this derivation.

47

The code for instantiate and for match is shown in Figures 5-2 and 5-3.

(defobject INSTANTIATE function (p: term*, s: substx)
¢ termx =
if constantpx(p)
then p
else if variablepx(p)
then if p € domain(s)
then s(p)
else undefined
else cons(instantiate(car(p), s), instantiate(cdr(p), s)))

Figure 5-2: Instantiate Implementation.

(defobject MATCH function (p: termx, d: term*)

: dsubstx =
if constantp*(p)
then if p=d
then { {| [} }
else {}

else if variablep#(p)
then { {| p—~ d |} }
else if constantp*(d)
then {}
else dsubst-meet(match(car(p), car(d)),
match(cdr(p), cdr(d))))

Figure 5-3: Match Implementation.

Instantiate takes as arguments a term and a substitution, and returns the term that
results from replacing all of the variables in the term with their images in the substitution.
It is implemented using structural (“car-cdr”) recursion on the term. Match takes as
arguments two terms, a pattern and a datum, and returns a disjunctive substitution
(DSUBST*) under which the two are equivalent. Match recurses down the two structures
in parallel. If a variable is encountered in the pattern, it creates a substitution binding
that variable to the corresponding stfucture in the datum. If the corresponding parts of

the pattern and datum differ in any other way, it returns failure (an empty DSUBST*).

48

The code for the lattice operations is shown in Figures 5-4 and 5-5. These operations

are straightforward translations of the definitions in Chapter 3.

(defobject SUBST-MEET function (s1: substx,
s2: subst*)
: subst*
let (dom = domain(s1) U domain(s2))
if 3(x) (x € dom A d1 = s1(x) A d2 = s2(x)
A defined?(d1) A defined?(d2)
A dl # d2)
then undefined
else
{] x = if defined?(s1(x)) then s1(x) else s2(x)
| (x) x € dom |})

Figure 5-4: Substitution Semi-Lattice Meet.

(defobject DSUBST-MEET function (dst: dsubst*, ds2: dsubstx)
: dsubst* =
{s | (s1, 82, 5) s1 € ds1 A s2 € ds2
A s = subst-meet(si, s2)
A defined?(s) })

(defobject DSUBST-JOIN function (dsl: dsubst*, ds2: dsubstk)
: dsubstx =
dsi U ds2)

Figure 5-5: Disjunctive Substitution Lattice Operations.

5.3 Initial Derivation

This section presents the rule system specifications. The specification shown in Figure 5-
6 is a straightforward Refine translation of the specification in Figure 2-1. Since we are
only concerned with the matching part of the rule system, a stub has been inserted for

the conflict-resolution procedure.?

?A stub has also been inserted for the representation operation (Rep), to satisfy the requirement of
the Refine/KIDS system that all portions of the specification syntax tree be defined.

49

(defobject FC-SPEC function (db:set(term%), rb:set(rulex)) : set(termx) =
for* (cs, db = db, cs-elt, r, e)
cs — {<r, e | (r, e) TETDA e € match-rule(r, db) }
while cs # {},
cs-elt — conflict-resolution(cs),
r « cs-elt.1, e «— cs-elt.2,
db « db with instantiate(r.rhs, e)
returns db)

(defobject MATCH-RULE function (db:set(term*), r:rulex) : dsubst* =
rep({e | (o) V(p) (p € r.1hs =>
(3(d) (d € db A instantiate(p, e) = d)))}))

(defobject CONFLICT-RESOLUTION function (cs: set(any-type)) : any-type =
arb(cs))

(defobject REP function (es:set(subst*)) : dsubst*)

Figure 5-6: Rule System Specification (Iterative Version).

The iterative “for*” construct used in Figure 5-6 is part of the language used in
KIDS, but is not currently implemented in Refine. Therefore, I have reformulated the
specification tail recursively. See Figure 5-7.

As in Chapters 3 and 4, this chapter will focus on the implementation of match-rule.
(This is also the only portion of the specification in Figure 5-7 that cannot be simply
translated into Lisp by the Refine compiler.)

The transformations used in the initial implementation are shown in Figure 5-8. A

(defobject FC-SPEC function (db:set(termx), rb:set(rule*)) : set(term*) =
let (cs = {<r, & | (r, @) TETh A e € match-rule(r, db) })
if cs # {3}
then let (cs-elt = conflict-resolution(cs))
let (r = cs-elt.1, e = cs-elt.2)
fc-spec(db with instantiate(r.rhs, e), rb)
else db)

Figure 5-7: Rule System Specification (Tail Recursive Version).

50

(defobject UNIVERSAL-TO-INTERSECTION* rule (a)
a = ‘{ Qexpr | ($varsi) V(y) (y € @S => Qformula) }’
—-—>
a = ‘Intersection*({ {Qexpr | ($vars1) (@formula)} | (y) y € @S })’)

(defobject EXISTENTIAL-TO-UNION* rule (a)
a = ‘{ Qexpr | ($vars1) 3(y) (y € @S A $other-cjs) }’
-->
a = ‘Union*({ {Qexpr | ($varsil) A($other-cjs)} | (y) y € @S })’)

(defobject INTERSECTION*-TO-REDUCE-INTERSECTION rule (a)
a = ‘Intersection*(@S)’
-~>
a = ‘Reduce(’n, @S)°’)

(defob_‘ject UNION*-TO-REDUCE-UNION rule (a)
a = ‘Union*(@S)’
—-——>
A = ‘Reduce(’U, @S)?)

(defobject INSTANTIATE-TO-MATCH rule (a)
a = ‘rep({ e | (e) instantiate(Qp, e) = @d })°’
-=>
a = ‘match(@p, @d)’)

(defobject REP-UNION-TO-DSUBST-JOIN-REP rule (a)
a = ‘rep(0S1 U @s2)°
-=>
a = ‘DSUBST-JOIN(rep(@S1), rep(@S2)))
(defobject REP-INTERSECTION-TO-DSUBST-MEET-REP rule (a)
a = ‘rep(@S1 N @S2)°
-=>
a = ‘DSUBST-MEET(rep(@S1), rep(@S2)))

Figure 5-8: Transformations for Initial Implementation.

transformation is implemented as an object of type rule.® Its single argument is a node
in a Refine syntax tree. The syntax ... --> ... specifies that if the value on the left
side of the arrow is true, then the expression on the situation described on the right side

of the arrow is actualized.* In Refine’s rule pattern syntax, symbols beginning with “@”

3Refine’s rule, not the rule* used in the program being derived here

“Obviously this can only be accomplished for a restricted set of right side conditions. Refine can
handle conditions that require modifying a stored value, e.g. destructively modifying a structure in
memory to contain a specified value. Here the condition a = ... is achieved by destructively modifying
the portion of the syntax tree on which the rule was invoked.

51

are variables that match a single program term, and symbols beginning with “$” are
variables that match a sequence of program terms.

The first two rules in this figure transform expressions involving universal and ex-
istential quantifiers into equivalent expressions involving unary intersection and union.
(These transformations can be viewed as homomorphisms from Boolean algebra to set
algebra.) The next two rules implement unary intersection and union using reductions of
the corresponding binary operations. These first four rules are domain independent. The
next three rules are specific for this problem domain. The first expresses the specification
for the primitive match function. The last two rules express the homomorphism of the
representation, from unions and intersection of sets of substitutions, to operations in the
disjunctive substitution lattice.

The result of applying these transformations to the match-rule specification in Fig-
ure 5-6 is the implementation shown in Figure 5-9, which corresponds to the implemen-
tation derived in Chapter 3.

In the next section this initial implementation will be optimized using finite difference
and partial evaluation transformations. Before performing these transformations, it will
be convenient to perform a program folding step.® The rest of this section describes this
step.

One problem that arises in many symbol manipulation systems, such as program

transformation systems and computer algebra systems, is intermediate—expression blow-

5The transformation that replaces a call to a function by the inline expansion of the program body
is known as unfolding. The inverse transformation is known as folding.

(defobject MATCH-RULE function (db: set(term*), r: rule)
: dsubst* =
reduce(’dsubst-meet,
image((A(p) reduce(’dsubst-join, image((A(d) match(p,d)),
db))),
r.1lhs)))

Figure 5-9: Initial Implementation of Match-Rule.

52

up. The intermediate results that arise in these systems, though correct, can become
overly complex, taxing the resources of both the computer and the user. Ideally, symbol
manipulation systems might be designed to help minimize this problem. For now, manual
methods will be used.

A small example of expression blow-up that occurs here can be solved by manual
program folding. The initial implementation in Figure 5-9 consists of calls to dsubst-join
nested inside of calls to dsubst-meet. It turns out to be convenient to fold the sections
of the code containing the calls to dsubst-join. This will simplify the transformations
needed in the next section. The result of this folding is shown in Figure 5-10. The new
function is called match-elt-set because it matches a pattern against all of the elements

of a set and returns a disjunctive substitution summarizing the results.

5.4 Optimization

This section presents transformations to (partially) implement the optimizations de-
scribed in Chapter 4. Note that whereas the programs in Chapter 4 explicitly manipulate
the vectors L and R element by element, the functional programs in this section are re-
stricted to manipulating entire sets and sequences. The next two subsections describe

the finite differencing and partial evaluation optimizations.

(defobject MATCH-RULE function (db: set(term*), r: rule)
: dsubst* =
reduce(’dsubst-mest,
image((A(p) match-elt-set(p, db)),

r.lhs)))
(defobject MATCH-ELT-SET function (p: term*, s: set(term*))
: dsubst* =
reduce(’dsubst-join, image((A(d) match(p,d)),

s)))

Figure 5-10: Match-Rule after Folding Match-Elt-Set.

33

5.4.1 Finite Differencing

The main optimization involves incrementally updating the conflict set as changes are
made to the database. Assume that the system has just modified the database by adding
a new datum, and is now computing the new conflict set by matching all of the rules
against the new database. Incremental updating involves reusing the intermediate results
from the previous cycle in generating this new conflict set.

The key to this optimization lies in factoring the expression for the new value of the
conflict set into (1) terms involving the previous conflict set computation, and (2) terms
involving the newly added datum. In addition to this factoring, “bookkeeping” code is
needed to store the results from the previous cycle for use in the next cycle. This can
be seen in the use of the L(eft) and R(ight) vectors in lines 13-20 in the program in
Figure 4-4. In the current implementation, only the first of these tasks, the factoring,
has been carried out.®

This factoring is accomplished as follows. Assume that the system has just added
some new data (db) to the previous contents of the database (db).” The task is now to
compute the conflict set for this new database. For a given rule this can be expressed as
computing match-rule(db U db). (See Figure 5-11.) The requirement that the program
be incremental involves separating, as much as possible, the computations involving db
from the computations involving db. In the final program all computations involving
dbU db will be separated into computations involving db, and computations involving db.
The motivation is that the values involving db will be saved from the previous cycle of
the interpreter, and the computations involving db will be relatively fast since the sets
manipulated will be small (compared with the sets generated in matching db, which is

assumed to be much larger than db).

SCompare this division to the separation of functional portions of code from portions of code involving
state in [1].

"Though the rule system specification that we have been using only requires adding a single datum
to the database at a time, in actuality it is more efficient to add several new data at a time. Therefore,
the formulation here has been generalized to deal with adding a set of new data to the database.

54

(defobject FD-PE-SPEC function (db-old:set(term*), db-delta:set(termx))
: dsubst* =
match-rule(< { [’f, *-x], [’g, ’-y], ['h, ’-x, ’-y] },
[:p’ ’_x’ :_y] >’
db-old U db-delta))

Figure 5-11: Specification for Optimized Matcher.

The rules needed for finite differencing involve the distribution of U over the union of
db and db, and of M over L8 Some of these rules are shown in Figure 5-12.

Performing the source-to-source transformations, from initial implementation to finite—
differenced code, requires several low-level rules similar to REP-REDUCE-UNION-TO-REDUCE--

DSUBST-JOIN-REP in Figure 5-12. In general, any mathematical property, such as a homo-

8Corresponding, respectively, to the Right memories and the Left memories in Chapter 4.

(defobject LEMMA-DISTRIBUTE-MATCH-ELT-SET-OVER-UNION rule (a)
a = ‘match-elt-set(@p, @S1 U @S2)°’
A p2 = c-t(p)
-=>
a = ‘match-elt-set(Qp, 0S1) U match-elt-set(Qp2, @S2)’)

(defobject DISTRIBUTE-DSUBST-MEET-OVER-DSUBST-JOIN rule (a)
a = ‘dsubst-meet(QS1, dsubst-join(@S2, 0S3))°’
-=>
a = ‘dsubst-join(dsubst-meet(@S1, ©S2), dsubst-meet(@S1, @S3))’)

(defobject DISTRIBUTE-SETFORMER-OVER-UNION-OF-DOMAINS rule (a)
a = ‘{ @expr | (y, $vars1) y € @S U @R A $other-cjs }’
A expr2 = c-t(expr)
-->
a = ‘{ Qexpr | (y, $varsi) y € @S A $other-cjs }
U { Cexpr2 | (y, $vars1) y € @R A $other-cjs }’)

(defobject REP-REDUCE-UNION-TO-REDUCE-DSUBST-JOIN-REP rule (a)
a = ‘rep(reduce(’U, image((\ ($varsi) Qexpr), @S)))’
-->

a = ‘reduce(’dsubst-join, image((\ ($varsi) rep(Qexpr)), @S))’)

Figure 5-12: Finite Differencing Transformations.

35

morphism or a distributive law, can be used to generate several different syntactic rules.
Ideally, we would like to be able to enter the mathematical properties —the homomor-
phisms and distributive laws—directly, and have a simple automated theorem proving
component synthesize the specific low-level rules needed. For example, the REP-REDUCE--
UNION-TO-REDUCE-DSUBST-JOIN-REP rule in Figure 5-12 should be easily derivable from the
REP-UNION-TO-DSUBST-JOIN-REP rule in Figure 5-8.° For now, we will enter these rules
manually. (And, in the current status of the implementation, some of the transformations
have been performed manually.)

As mentioned above, the development can be simplified by folding match-elt-set
(see Figure 5-10), and expressing the transformations in terms of this function. For
example, the distributive property of dsubst-join over union, can be expressed as a
lemma involving distributing match-elt-set over union (shown in F igure 5-12). This
greatly reduces the number of steps required in the derivation, and makes the final code

(shown in Figure 5-14) more concise.

5.4.2 Partial Evaluation

The Rete matcher involves a dataflow network of matching nodes, as described in Chap-
ters 2 and 4. This network can be automatically generated by partially evaluating the
initial implementation in Figure 5-10. This partial evaluation replaces the run—time it-
eration of the lattice operations over the elements in the left hand side of the rule, with
a compile-time expansion of the call tree for each rule.

The partial evaluation is conducted by substituting the fixed value for the LHS of the
rule into the call to match rule, and simplifying the resulting program. These simplifica-
tions are performed by propagating constant values up through the code. For example,

the expression

®The automated generation of transformations required here might not be too difficult. For example,
the transformation needed here could have been provided if for every rule involving a homomorphisms
on associative binary operations, a rule generalizing this homorphism to reductions of these operation
on sets of values could be automatically generated.

56

(defobject PARTIAL-EVALUATE-IMAGE-OF-LAMBDA-ON-LITERAL-SET rule (a)
a = ‘image(@f, {$elts})’
-->
a = ‘{ $(image((A (elt) make-term(c-t(f),[elt])), elts)) }’)

(defobject REDUCE-BINOP-OF-LITERAL-SET rule (a)
a = ‘reduce(@binary-op, {@x, $y})’
-->
replace a by make-term(c-t(binary-op), [c-t(x),
‘reduce(@(c-t(binary-op)),
{$(c-tset(y))1)’IN

(defobject REDUCE-SINGLETON rule (a)
a = ‘reduce(@f, @s)’ A singleton-literalformer(s)
A x = the-literal-expr(s)
--> replace a by c-t(x))

Figure 5-13: Partial Evaluation Transformations.

image((A(p) match-elt-set(p, db)), [pt, p2, p31)

can be simplified to

[match-elt-set(pl, db), match-elt-set(p2, db), match-elt-set(p3, db)]

using the partial evaluation rules shown in Figure 5-13. These rules, along with many

other simplification rules, are provided by the simplification facility in the KIDS system.

The effect of both finite differencing and partial evaluation is demonstrated by the

transformation of the specification shown in Figure 5-11. This specification represents
matching a particular rule against a database db with an incremental update db-delta.

The result of applying the finite differencing rules and the partial evaluation rules to this

specification is shown in Figure 5-14.

This resulting code corresponds to an expansion, for a 3—pattern rule, of the incre-

mental matcher described in Equation 4.11. The correspondence between the calls to

match-elt-set in this program and the values of the Right memory vector in Chapter 4

1s as follows:

R3 = match-elt-set([’f, ’-x], db),

57

(defobject MATCH-RULE function (db: set(term*), db-delta: set(term*))
: set(subst*) =
dsubst-meet(match-elt-set([’f, ’-x], db),
dsubst-meet(match-elt-set([’g, ’-y], db),
match-elt-set([’h, ’-x, ’-y], db)))
U dsubst-meet(match-elt-set([’f, ’-x], db),
dsubst-meet(match-elt-set([’g, ’-y], db-delta),
match-elt-set([’h, ’~x, ’-y], db))
U dsubst-meet(match-elt-set([’g, ’-y], db),
match-elt-set([’h, ’-x, ’-y], db-delta))
U dsubst-meet(match-elt-set([’g, ’-y], db-delta),
match-elt-set([’h, ’-x, ’-y], db-delta)))
U dsubst-meet(match-elt-set([’f, ’-x], db-delta),
dsubst-meet(match-elt-set([’g, ’-y], db),
match-elt-set([’h, ’~-x, ’-y], db)))
U dsubst-meet(match-elt-set([’f, ’-x], db-delta),
dsubst-meet(match-elt-set([’g, ’-y], db-delta),
match-elt-set([’h, ’-x, ’~-y], db))
U dsubst-meet(match-elt-set([’g, ’-yl, db),
match-elt-set([’h, ’-x, ’-y], db-delta))
U dsubst-meet(match-elt-set([’g, ’-y], db-delta),
match-elt-set([’h, ’-x, ’-y], db-delta))))

Figure 5-14: Final Match-Rule Implementation.

38

R3 = match-elt-set([’f, ’-x], db-delta),

R, = match-elt-set([’g, ’-y], db),

R, = match-elt-set({’g, ’-y], db-delta),

R, = match-elt-set([’h, ’-x, ’-y], db),

Rl = match-elt-set([’h, ’-x, ’~-y], db-delta).

Using this correspondence, the program in Figure 5-14 can be rewritten as

L3 = Raﬂ(Rgan)

U R3ﬂ[(RQHR])U(RQ[—IRl)U(R‘ZHRl)]

(
(

U (R3 n (R2 n Rl)
(

U (RsM[(R2N Ry)U (RN Ry) U (R, N Ry),

which is the same expression obtained by expanding Equation 4.11 for : = 3.
The remaining step for converting this program into a Rete network is the addition

of the bookkeeping code alluded to above.

5.5 Future Work

This section briefly discusses two directions for extending this implementation.

5.5.1 Automatic Synthesis of Primitive Functions

One possible future direction for this implementation is the automatic synthesis of the
primitive functions described in Section 5.2. Simple recursive functions, similar to match
and instantiate, have been automatically synthesized using the synthesis component of
KIDS [30]. Structural recursions such as these can be fully characterized by their re-
cursive and base cases, as described in Section 5.2. These descriptions contain most of
the information necessary to automatically derive these functions. Unfortunately, it was

not possible to perform this synthesis in the current version of KIDS, since, at present,

59

the synthesis component can only handle recursions that terminate in a single base case,
whereas the structural recursions for match and instantiate have two base cases: con-
stants, and variables.

The remaining primitive functions are the lattice operations subst-meet, dsubst-meet,
and dsubst-join. In Chapter 3, all of the information required to describe these functions
1s derived from the descriptions of the Substiutution Semi-Lattice and the Disjunctive
Substitution Lattice. One possibility for automatically synthesizing is to automatically
verify the derivation in Chapter 3 using a symbolic algebra system, perhaps using alge-

braic techniques similar to those in [4].

5.5.2 Anutomatic Control of Transformations

Another future direction for this implementation is in the area of automatic control of
transformation application. The application of the transformations in this chapter has,
for the most part, been manually directed. Though even manually directed transfor-
mational programming has advantages over manual program writing—e.g. correctness
assurances—ultimately we would like the system to direct the use of the transforma-
tions. For example, KIDS currently has tactics to direct the synthesis of simple divide
and conquer algorithms and simple global search algorithms.

One technique for automating the use of transformations is to design a set of trans-
formations that when exhaustively applied!® to a given source text will derive the desired
result. This should be possible for the transformations in Section 5.3 since the derivation
proceeds in a straight progression from terms involving compound logical expressions in
set—formers, to terms involving set union and intersection, and finally to terms involving
the lattice operations.

Finally, work is currently being conducted on general-purpose finite-differencing and
partial-evaluation facilities to enable the automation of the optimizations performed in

Section 5.4,

10 e. repeatedly applied until none are applicable

60

Chapter 6

Discussion

This chapter discusses the lessons learned from this work, describes the progress made,
identifies future directions to pursvue, and describes the place of this thesis in the context
of the related literature.

Section 6.1 discusses the relationship between the structures introduced in the deriva-
tion and the structures used in the model-theoretic semantics of first-order logic. This
section briefly mentions some advantages of using algebraic techniques for software de-
velopment. Section 6.2 discusses possible future directions for this research. Section 6.2.1
discusses short-range directions, such as addressing the simplifications in the derivation
and implementation. Section 6.2.2 discusses long-range prospects, such as building a
comprehensive library of programming knowledge. Section 6.3 discusses the related liter-
ature, and describes how this thesis contributes to this literature. Section 6.4 summarizes

the conclusions of this thesis.

6.1 Correspondence to Model Theory

This section discusses the correspondence between the structures used in the derivation
described in Chapter 3 and the structures used in the model-theoretic semantics of first-

order logic. (Appendix A.2 presents a very brief review of basic model theory.)

61

This direct relationship between the domain structures and the implementation struc-
tures yields many advantages. It enables us to explain and (in principle) to verify the
features implemented so far, and provides clear directions for implementing extensions.

Let us consider the analogy between a rule system with database db and rulebase rb,
and a first order language L with a model structure whose universe is U. Identify the
database db with the universe U, and consider the LHS of the rule to be a conjunction
of terms in L. In this view, the set of matches for the LHS in db consists of the set of
valuations o, with universe U, such that LHS® = T. (Where T denotes truth.) That is,
the problem of finding all matches for a rule in a database can be seen as the problem of
finding all possible assignments to the variables in a conjunctive term under which the
term has an interpretation in a given universe.

Interpreting the rule system in this way, the following interpretations can be given to

the structures used in Chapter 3:

e The semi-lattice SSL consists of valuations; < is an ordering on valuations; and M*

is a binary operation on valuations.

e The lattice DSL consists of sets of valuations; C is an ordering on sets of valuations;

and M and U are binary operations on sets of valuations.

e The procedure match-rule takes a LHS, and a universe db, and returns the maximal

valuation, under X, from the set {o | LHS? = T}.

This correspondence provides us with a clear semantics for the Rete algorithm in
terms of the usual model-theoretic semantics of first—order logic.

This correspondence also provides a directions for implementing the extensions out-
lined in Section 2.4. For example, the facility for handling negated patterns in the Left
Hand Side of a rule can be obtained by directly implementing the interpretation for nega-
tion in the semantic definition shown in Appendix A.2. In this definition, a predication
P(t1,...,t,) is true under a valuation o iff the tuple of its arguments, under the valuation

o, is an element of the relation P7, i.e.

62

i T if (¢,...,t) € P°
(P(t1,...,tn))° = '
1 otherwise

The semantic definition also indicates that a negation of a term « is true if and only if

the term is false, i.e.

., T e=1
(—|a) =

1 otherwise

Therefore, a negated predication is true iff the tuple of its arguments is not an element

in the corresponding relation in the model, i.e.

T if (t,...,1°) & P°

(mP(t1,.. ., tn)) = .
1 otherwise

The direct implementation of this specification consists in matching a negated pattern
=P(t1,...,ts) (which represents a negated predication) iff there does not exist a valuation
under which the pattern P(¢,,...,1,) is true, i.e., iff there does not exits a binding to the
variables in P(%y,...,t,) under which P(#,...,t,) matches an element in the database.

This corresponds exactly to the closed world assumption described in (22].

6.2 Future Work

This section describes possible directions for future research. The first two subsections
decribe relatively short-range directions based on extending the derivation to include
more of Rete’s features, and completing the implementation. The second section describes

some longer-range prospects.

6.2.1 Coverage of Features in Rete

Section 2.4 discussed several features of Rete that were not covered in the derivation

in this thesis. Section 6.1 has already discussed incorporating one of these features,

63

matching for negated patterns, into the derivation. This section considers incorporating
the remaining features into the derivation.

Updating the conflict set as data are removed from the database could be accom-
plished by distributing the match computation over set—difference, as well as over set—
union. Distributive laws for set—difference could easily be added to the distributive laws
for set~union used in the optimizations in Chapter 4.

The complexity in updating the conflict set as data are removed from the database
arises from the difference between adding an item to a collection and removing an item
previously added to a collection. Adding the matches for new data to the conflict set
does not require reference to any past information about the database or conflict set. All
of the information required is contained in the Left and Right memories. These encode
the information from matches between component patterns and objects currently in the
database, and are used to compute resulting conjunctive matches that include the new
data being added to the database. When a new datum is added to the database, new
substitutions can simply be added to these memories. (Assuming that the set-adjoin
function can avoid adding duplicate elements, if the programmer chooses to represent
sets as irredundant sequences.)

However, removing an element previously added to a collection requires either (1)
maintaining a reference to that object, or (2) searching through the entire collection
to remove all elements that match a given description. The second approach is very
inefficient, and would cancel the benefits of having an incremental matcher. Therefore,
the technique of choice is to maintain information, for each substitution in the network,
about which data were matched in the derivation of that substitution. This information
can be used by the system to update the network when a datum is retracted. This
update is performed by removing from the network all substitutions that were derived
using the datum being removed. In Rete, this is implemented by storing, with each
token in the network, references to the data used in its generation. This could also be

implemented using a dependency maintenance system. This dependency technique is

64

used in the AMORD rule system [9].
The sharing of computations between rules could be handled by performing straight-
forward common subexpression removal between the matching code generated for the

separate rules.

6.2.2 Implementation

The derivation described in Chapters 3 and 4 was only partially implemented in the KIDS
system. This section briefly discusses some future possibilities for this implementation.

It should be possible to synthesize match and instantiate using Smith’s Divide-
and-Conquer tactic. This is not possible at present because the tactic can only handle
recursions with one base case, whereas the recursions on s—expressions in match and
instantiate have two base cases (variables and constants). If KIDS were extended to
handle recursions with multiple base cases, this synthesis could be performed. The two
base cases in the representation of s—expressions also proved a problem for Refine, since
it does not currently support union types.

The finite-differencing in Chapter 5 was performed using explicit transformations.
Work is currently underway to expand the KIDS finite-differencing facility. This may
enable the system to perform the finite differencing in Chapter 5, and to handle the finite
differencing over deletions to the database that is required to implement retraction.

Many of the transformations used in the derivation could be implemented as the-
orems in the Rainbow theorem prover[31)], (rather than being represented as syntactic
transformations). This would allow for more flexible use of these rules.

Finally, the performance of the matcher could be improved by some simple data
structure improvements. For example, the performance of subst-meet could be vastly
improved if it were possible to quickly determine when two substitutions had disjoint
domains. This could be achieved by including, in the implementation of a substitution,
a bit-vector representation of the substitiution’s domain. This would allow determining,

in constant time, if two substitutions had any variables in common.

65

foo =t~

Forward OPS5
| Chaining |
| ——N _ _ _ _J
Backward Means-Ends
Chaining Subgoaling
Prolog GPS

Figure 6-1: Rule System Design Space.

6.2.3 Program Design Spaces

The origin of this thesis was in a more ambitious plan by the author to formalize all
the programming knowledge used in implementing rule systems. This thesis represents
a detailed formalization of a small part of this design space.

The overall approach involves the following steps: (1) Examine several programs from
the literature that belong to a particular application domain, e.g. rule systems. (2) Con-
struct a taxonomy of these programs, based on the different design decisions that they
embody. (3) Rederive these programs (or simplified versions of them) using formal spec-
ifications, domain models, formally-defined representations, and transformation rules.

The goal of this work is to build up libraries containing: formal domain models,
mathematical structures for use in building domain models, and common programming
techniques for efficiently implementing these structures.

This work involves an attempt to map out the design space of rule systems, i.e. the
various design decisions that differentiate the programs in this domain. Figure 6-1 shows
a portion of the rule system design space.

The programs in this space share a common domain model, but differ in various

66

design decisions made. For example, the AMORD system is a forward chaining system
like OPS5, and also implements an incremental matching scheme. However, the AMORD
system differs from OPS5 in the technique for maintaining the partial matches. AMORD
rules cannot directly contain conjunctive patterns in their LHS’s. The LHS’s are limited
to containing a single pattern. To obtain the effect of conjunctive patterns, a technique is
used that is isomorphic to the technique of Currying in mathematical logic. To represent
a conjunct of patterns, a rule is specified that matches the first pattern of the conjunct,
and, as a RHS action, adds a new rule to the rulebase that handles the matching of the
remaining patterns. This is repeated recursively until all of the patterns in the conjunct

have been matched. For example, the OPS5 rule

({(f72),(97y),(h 7z ?y)} = (p Tz 7))

would be translated into the AMORD rule

(f?2) = ((97y) = ((R Tz 7y) = (p 7z 7y)))).

Another example of differing design decisions involves indexing the patterns in the
rulebase. Instead of matching a new datum against all of the rule patterns, the system
can first use a quick approximate matcher to filter out rule patterns that cannot possibly
match the datum. Alternatives for this quick matcher include testing if the predicate
symbols in the pattern and datum are identical, testing if the length, or nesting, of the
pattern and datum are identical, or testing if the constant portions of the pattern and
datum are identical.

A third example of design decisions involves mechanisms for handling assumptions
and retraction. Mechanisms that have been used for this function indude context systems
and truth-maintenance systems.

Achieving the ultimate goal of this project requires both the high-level mapping of the
design space described above, and the detailed formalization and implementation of the
pieces of this design space. This thesis presents a portion of this detailed formalization:

a beginning for the section dealing with the formal derivation of OPS5.

67

Though it is very time-consuming, filling in these design spaces with formal pieces
such as the one in this thesis appears to be a promising direction towards building up
the library of programming knowledge that will allow us to progress to the next level of

programming tools.

6.3 Related Work

This section describes work related to this thesis. This includes include references for
the Rete network; research on formalizing matching and unification; research on program
synthesis, transformations, and automatic programming; and general work on utilizing

formal approaches in (manual) software development.

>6.3.1 The Rete Matcher

The Rete network was developed by Forgy in 1974, and reported on in [11]. A more
complete presentation can be found in Forgy’s PhD thesis [12]. The Rete algorithm is
used in the widely—used OPS5 Production System language. A textbook for the OPS5
system [5] contains a chapter on the Rete algorithm. However, these sources do not
provide a concise formal description of the algorithm, a formal derivation of the algorithm,
or a correctness proof,

This thesis has presented a formal derivation of the algorithm, and a partial imple-
mentation of this derivation, using correctness-preserving transformations. However, this
thesis has dealt with a simplified version of the Rete algorithm, as described in Chapter
2 and Sections 6.2.1. It has focused on the core feature of Rete: the incremental update
of the conflict set as the database is modified. The derivation and structures presented

here can serve as a framework for a derivation of the complete Rete system.

68

6.3.2 Matching and Unification

This thesis has studied the problem of determining all possible matches between a set of
conjunctive patterns (the LHS of a rule) and a database, and of incrementally updating
this information as the database is modified. In this work, the relatively simple function
for matching a single pattern and a single datum, shown in Figure 5-3, has been taken
as a primitive. An approach for automating the derivation of this single-pattern single-
datum matcher has been mentioned in Section 5.5. This section will discuss research on
formalizing the single-pattern single-datum matching problem, and a generalization of
this problem, unification, that allows both pattern and datum to contain variables.

Unification is a generalization of matching. In matching, only the pattern can contain
variables; the datum must be a ground term. Matching requires finding a substitution
for the variables in the pattern that make it equivalent to the datum. Unification is the
analogous computation for two patterns that both contain variables. As in matching,
the goal is to find a single substitution under which both terms are equivalent.

There is a body of literature about techniques for implementing unification. One of
the earliest references to unification in the computer science literature was in Robinson’s
description of resolution theorem proving [26]. A recent summary of the formalization of
unification and resolution can be found in [27]. A formalization somewhat similar to the
formalization in this thesis, but only covering the single-pattern single-datum case, can
be found in [10].

Manna and Waldinger [17] have presented a detailed formal derivation of the unifica-
tion algorithm. Another derivation of the unification algorithm, published by Rydeheard
and Burstall [28], is based on concepts from Category theory.

Recent work on unification has centered on the problem of constructing unification
procedures that incorporate certain equational theories. For example, in a rule system
dealing with arithmetic, representing each fact about addition requires two rules, due to
the commutativity of addition. For example, the identity z + 0 = z would be represented

as the two rules

69

(+7?20) =7z
(+07%z) = 7z.

[t would be preferable to program the matcher to treat “+” as a commutative operator,
and to allow (4+ ?z 0) to match, for example, against (+ 0 (f 1)). The specific problem of
incorporating commutativity and associativity into a matcher, known as AC Unification
(Associative-Commutative Unification), has received much attention in the literature
[34]. The general problem of adding equational theories to unification algorithms has

also been addressed [20].

6.3.3 Automatic Programming and Transformations

The field of automatic programming, and the subfield of program transformations, are
well served by survey articles and compilations [24, 13, 14].

Two pioneering efforts in codifying programming knowledge are the PhD theses of
Barstow [2] and Rich [23]. Both of these codifications focused on the domain of common
data structures and operations.

The derivation in Chapter 3 of this thesis is most closely related to the work on
program synthesis, for example Smith’s derivations of divide-and-conquer algorithms [30]
and global-search algorithms [32].

The early section of the derivation in Chapter 3 is concerned with translating a
logical specification into an executable form. The general problem of implementing such
logical specifications has been addressed in several systems, for example, the AP5 system
developed at ISI [7], and the CHI system developed at Stanford [35]. (The CHI system
was a predecessor of the Refine system used in the implementation in Chapter 5.)

The optimization in Chapter 4 is related to the work on program optimization using
finite differencing begun in the SETL project at New York University [19]. This technique
has also been used in the KIDS system used in the implementation in Chapter 5 [31] [33].

70

This thesis was conducted as part of the Programmer’s Apprentice project at the MIT
Artificial Intelligence Laboratory [25]. The goal of this project is to build an intelligent
apprentice system to aid programmers in all phases of their activity. I have focused on
the problem of creating the library of programming knowledge that is fundamental to
the operation of any such system. In order to achieve the level of detail and precision
necessary for formalization and automation, this thesis has focused on a single narrow
program domain. Hopefully the ideas presented here will be applicable to other efforts

in the overall task of building the “complete library of programming knowledge.”

6.3.4 Formal Methods in Deriving Programs

In addition to the work in automatic programming, there is a large effort in computer
science to increase the use of formal methods in manual software development. This work
is often associated with the pioneering work of Dijkstra, Hoare, and many others.

One approach to developing a formal theory of programs is to concentrate on func-
tional programs. In his ACM Turing lecture[l], Backus discussed constructing an algebra
of programs using the functional language FP. Functional programs have the advantage
of being much easier to reason about than programs with state, since, like mathematical
objects, functional expressions have the same value in any context. However, efficiency
considerations have dictated that most real-world programming has been done using im-
perative languages. In [1], Backus presents some thoughts about combining the benefits
of functional programming with the efficiency of imperative programming.

An example of current work on formalizing an algebra of (functional) programs is the
work by Meertens [18] and Bird [4]. The aim of their work is to produce mathematical
theories of common data structures and their operations. For example, [4] presents a
portion of a theory of lists. Both the work in [4], and the FP work described in [1],
deal with formalizations of common data structures such as lists and sequences. The
derivation in Chapters 3 and 4 is offered as an example of applying these algebraic

techniques to new compound data structures (SSL and DSL) derived for a particular

71

application domain.

The derivation in this thesis belongs to a tradition of formal derivations of algorithms,
such as those published in the journal Science of Computer Programming. It is impor-
tant to note that almost all of these formal derivations, including the one in this thesis,
have been done after the fact. The preliminary state of our knowledge, and the exigen-
cies of programming in the real world, do not usually allow the luxury of using formal
derivation for writing new and innovative programs. Perhaps this situation will change
as we progress in our experience with formal methods. Then we will be able to bring the
clarity and precision of our best presentations of programs to our development of new

programs. I hope that this thesis has contributed towards this goal.

6.4 Conclusions

This thesis has analyzed the rule system matching problem, and has derived a simple, but
efficient, implementation. The core of the development is a mathematical model of the
information computed and manipulated in performing this task. The representations used
in the implementation are directly derived from this mathematical model. The structures
in this model are similar to the valuation structures used in the model-theoretic semantics
of first-order logic.

My attempt to formalize this model has led me to introduce disjunctive substitutions
to represent the information obtained from matching the patterns of a rule against sev-
eral possible data in a database. The formal derivation of the matcher is based on a
homomorphism from the matcher specification to a lattice formed from these disjunctive
substitutions.

The initial implementation has been optimized based on distributive properties of the
representation. Further optimization has been performed using partial evaluation. The

resulting program has been shown to be isomorphic to a simplified Rete network.

72

This derivation can be summarized schematically as:

Rete = Formal Specification

+ Lattice Construction based on Homomorphism to Specification
+ Finite Differencing based on Distributive Laws
+

Partial Evaluation.

Both the initial derivation and the optimizations have been (partially) implemented
using program transformations in the Refine wide-spectrum language and the Kestrel
Interactive Development System.

The structures introduced in the above program derivation have been shown to corre-
spond to structures used in developing the model-theoretic semantics of first order logic.
This connection provides an explanation and verification of the algorithm, and provides
directions for extending it into a more complete implementation.

Though the type of formal derivation and implementation described in this thesis
can be extremely time-consuming, I feel that it has the potential for automating a
significant portion of programming-in-the-small. Though it does not directly address
the complexity management issues that dominate programming-in-the-large, perhaps
after rationalizing the development of small software components, we will be in a better

position to address the large—scale issues.

73

Appendix A

Mathematical Definitions

A.1 Lattice Theory

This section presents some standard mathematical definitions for lattices and related
structures. Some of these definitions are used in the derivation in Chapter 3. Discussion

of this material can be found in many algebra, universal algebra, and model theory texts,

e.g. [3] [6] [8].

A.1.1 Sets, Relations, Posets

Given a set A, the power set of A, denoted by 24, is the set of all subsets of A (including
the empty set, and A itself).

The Cartesian Product of a finite sequence of sets Ay, ..., An, denoted by A; x...xA,,
is the collection of all n-tuples (a,, ... ,an) with a; € A,,...,a, € A,. If each of the 4;
is identical with a fixed set A, we write A” = A, ... , An.

An n-ary relation on a set A is a subset of A™.

A partial function from S to T is a binary relation R such that (z,y) € R and
(z,2) € R implies y = 2.

The domain of a function f, denoted by dom(f), is {z | (Jy € T)(x,y) € R}.

A function from S to T is a partial function with domain S.

74

An n-ary operation on a set S is a function f: S x...x S — S.
An algebra is a finite collection of n-ary relations and n-ary operations.

A poset (partially ordered set) is a set A with a binary relation < such that
(Ve)z <z
(Vz,y) (z<y&y<z)=>z=y
(Vz,y,2) (zr <y&y <z) =z < 2.

These equations state that the relation is reflexive, antisymmetric, and transitive.

A.1.2 Semilattices and Lattices

A semilattice is a poset (A, <) with a binary operation A (greatest lower bound) on the

set A such that
(Ve,y) zAy <z
(Vz,y) z Ay <y
Vz,y,2) (< 2) & (2 <y) = z<z Ay,

The first two equations state that z A y is a lower bound. The third equation states

that z A y is the greatest lower bound.

A lattice is a poset (A, <) with two binary operations A (greatest lower bound) and

V (least upper bound) on the set A such that
(Vz,y) Ay <z
(Ve,y) z Ay <y
(V2,9,2) (:S2) & (2 <y) = z2< 2 Ay
(Vz,y)zVy >z

75

(Vz,y)zVy >y
(Vz,9,2) (22 2) & (22 y) = 22 2 Vy.

The first three equations state that z Ay is the greatest lower bound. The fourth and
fifth equations state that z V y is an upper bound. The sixth equation states that z V y
is the least upper bound.

A.1.3 Distributive Lattices and Boolean Algebras
A distributive lattice is a lattice in which
(Vz,y,2)c A(yVz)=(zAy) V(z A2).

This equation states that A distributes over V. It can be shown that A distributes
over V iff V distributes over A.

An element z in a lattice L is a least element if
(Vy € L)z < y;
it is a greatest element if
(Vye L)y <=z.

Let the least element in a lattice be denoted by L, and the greatest element by T (if
they exist).
A complemented lattice is a lattice which has a least element and a greatest element,

and in which
(VzeeL)3yeL)(eAy=L &zVy=T).

A Boolean algebra is a complemented, distributive lattice.
Any powerset, such as 24, with the subset ordering C, forms a power set algebra,

which is a Boolean algebra. In the power set algebra 24:

76

(Vx,ye?‘)z/\y::zﬂy,»

.(Vz,yG?‘)sz:zUy,,

A.1.4 Filters and Ideals

A subset S of a lattice L is a filter if the following conditions hold:

-(Vz,yeS)z/\ryGS
(VzeS)Vyel)lz<y=>yeS |
1L¢gs

S#0.

A subset S of a lattice L is an ideal if the following conditions hold:

(Vz,ye S)avye s
(VzeS)(VWwelly<sz=pyes

TgSs.

Let L be a lattice or semi-lattice, and let z be an element in L. The principal ideal
in L generated by z is the subset '

{vlyeLAy<z).

A.2 Model-Theoretic Semantics

This appendix presents a very brief description of the basic semantic definition used in
model-theory. Discussion of this material can be found in most texts on logic and model
theory, e.g. [3, Ch. 2].

Consider a first order language L consisting of variable symbols, function symbols
(consider constants to be 0-ary functions), predicate symbols, and quantifiers.! Consider
a model for this language, called a structure, consisting of a Universe U, and a mapping
from each n-ary function symbol in L to an n-ary operation on U , and from each n-ary
predicate symbol in L to an n-ary relation on U.

A valuation o is a structure together with an assignment of a value 27 € U to each
variable z. Given a valuation o, a value can be assigned to any term in L using the

following rules:

L(f(te, ..o ta)) = f(15, ..., t9).
T if (t9,...,8) € P°
2.(P(ty,...,t,))° = i)

1 otherwise

T if a®=TandpB°=T

3.(anp) =
1 otherwise
Tif a”=Torf =T
L@V) = if a or
1 otherwise
T if =1
5.(~a)? =
L otherwise
Tif a"=LorB =T
6.(a = B)° = i

1 otherwise
This definition is known as Tarski’s truth definition, and forms the basis of the model-

theoretic semantics of first-order logic.

'For the purposes of this thesis, we will only consider quantifier-free formula.

78

Bibliography

1]

[4]

[3]

(6]

[7]

John Backus. Can Programming Be Liberated from the von Neumann Style?
A Functional Style and Its Algebra of Programs. Communications of the ACM,
21(8):613-641, 1978.

David R. Barstow. Knowledge-Based Program Construction. North-Holland, 1979.

Daniel Bell and Moshe Machover. A Course in Mathematical Logic. North Holland,
1977.

Richard S. Bird. An Introduction to the Theory of Lists. In Manfred Broy, editor,
Logic of Programming and Calculi of Discrete Design, pages 5-42. Springer-Verlag,
NATO Advanced Science Institutes Series, Series F, Number 36, 1987.

Lee Brownston, Robert Farrell, Elaine Kant, and Nancy Martin. Programming

Expert Systems in OPS5. Addison-Wesley, 1985.

Stanley Burris and H. P. Sankappanavar. A Course in Universal Algebra. Springer—
Verlag, Graduate Texts in Mathematics, 1981.

Donald Cohen. Automatic Compilation of Logical Specifications into Efficient Pro-
grams. In Proceedings of the Fifth National Conference on Artificial Intelligence,

pages 20-25, 1986.

Haskell Curry. Foundations of Mathematical Logic. Dover, 1977. (Corrected reprint
of the 1963 McGraw-Hill edition).

79

[9] Johan de Kleer, Jon Doyle, Charles Rich, Guy L. Steele Jr., and Gerald Jay Sussman.
AMORD: A Deductive Procedure System. Memo 435, Massachusetts Institute of
Technology, Artificial Intelligence Laboratory, January 1978.

(10] Elmar Eder. Properties of Substitutions and Unifications. Journal of Symbolic
Computation, 1:31-46, 1985.

[11] Charles Forgy. Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern
Match Problem. Artificial Intelligence, 19:17-37, 1982.

[12] Charles L. Forgy. On the Efficient Implementation of Production Systems. PhD
thesis, Carnegie-Mellon University, 1979.

[13] Special Section on Program Transformations. IEEE Transactions on Software En-

gineering, SE-7 (1), January 1981.

[14] Special Issue on Artificial Intelligence and Software Engineering. IEEE Transactions
on Software Engineering, SE-11 (11), November 1985.

[15] K. Kahn. A Partial Evaluator of Lisp Written in Prolog. Technical Report 17,
Uppsala University, The Programming Methodology and Artificial Intelligence Lab-
oratory, Uppsala, Sweden, February 1983.

[16] Barbara Liskov and John Guttag. Abstraction and S pecification in Program Devel-
opment. MIT Press, 1986.

[17] Zohar Manna and Richard Waldinger. Deductive Synthesis of the Unification Algo-

rithm. Science of Computer Programming, 1:5-48, 1981.

[18] L. G. L. T. Meertens. An Abstracto Reader prepared for IFIP WG 2.1. Note
CS-N8702, Centrum voor Wiskunde en Informatica (Centre for Mathematics and
Computer Science), Amsterdam, April 1987.

80

[19] Robert Paige and Shaye Koenig. Finite Differencing of Computable Expression.
ACM Transactions on Programming Languages and Systems, 4(3):402-454, July
1982.

[20] G. Plotkin. Building in Equational Theories. Machine Intelligence, 7:73-90, 1972.
[21] Reasoning Systems, Inc., Palo Alto, CA. Refine User’s Manual, 1985.

[22] Raymond Reiter. On Closed World Data Bases. In Herve Gallaire and Jack Minker,
editors, Logic and Data Bases, pages 55-76. Plenum, 1978.

[23] Charles Rich. Inspection Methods in Programming. Technical Report 604, Mas-
sachusetts Institute of Technology, Artificial Intelligence Laboratory, June 1981.

[24] Charles Rich and Richard C. Waters, editors. Readings in Artificial Intelligence and
Software Engineering. Morgan Kaufmann, 1986.

[25] Charles Rich and Richard C. Waters. The Programmer’s Apprentice: A Research
Overview. Computer, 21(11):10-25, November 1988.

[26] J. A. Robinson. A Machine-Oriented Logic Based on the Resolution Principle. Jour-
nal of the ACM, 12(1):23-41, January 1965.

[27] J. A. Robinson. Notes on Logic Programming. In Manfred Broy, editor, Logic
of Programming and Calculi of Discrete Design, pages 109-144. Springer-Verlag,
NATO Advanced Science Institutes Series, Series F, Number 36, 1987.

[28] D. E. Rydeheard and R. M. Burstall. A Categorical Unification Algorithm. In Cate-
gory Theory and Computer Programming, pages 493-505. S pringer—Verlag, Lecture
Notes in Computer Science, Volume 240, 1985.

[29] David E. Smith and Michael R. Genesereth. Ordering Conjunctive Queries. Artificial
Intelligence, 26(2):171-215, 1985.

81

[30] Douglas R. Smith. Top-Down Synthesis of Divide-and-Conquer Algorithms. Arti-
ficial Intelligence, 27(1):43-96, 1985.

[31] Douglas R. Smith. KIDS — A Knowledge-Based Software Development System.
Technical Report KES.U.88.7, Kestrel Institute, Palo Alto, CA, October 1988.

[32] Douglas R. Smith. The Structure and Design of Global Search Algorithms. Technical
Report KES.U.87.12, Kestrel Institute, Palo Alto, CA, July 1988.

[33] Douglas R. Smith and Thomas T. Pressburger. Knowledge-Based Software Devel-
opment Tools. In P. Brereton, editor, Software Engineering Environments, pages

79-103. Ellis Horwood Ltd., Chichester, 1988.

[34] M. Stickel. A Unification Algorithm for Associative Commutative Functions. Journal

of the ACM, 28:423-434, 1981.

[35] Stephen Westfold. Logic Specifications for Compiling. PhD thesis, Stanford Univer-
sity, 1984.

82

Tius blank page was inserted to preserve pagination.

CS-TR Scanning Project

Document Control Form Date:_8/IP 195
Report# AT=TR-~1109

Each of the following should be identified by a checkmark:

Originating Department:

N Artificial Intellegence Laboratory (Al)
O Laboratory for Computer Science (LCS)

Document Type:

k[Technical Report (MR) [Technical Memo (TM)
O Other:

Document Information Number of pages: §7(53-inagxs)
- mummooom.mwmm..awdmow

Originals are: intended to be printed as :
Single-sided or [0 Single-sided or
O Double-sided X Double-sided
Print type:
O Typewriter [J Oftest Press K Laser Print
[J wisetPrinter [] Uninown [other:

Check each if included with document:

x pop Form (&) O Funding Agent Form O cover Page
O spine 3 Printers Notes O Photo negatives
O Other:
Page Data:
Blank PageSey segs mmsen:

Photographs/Tonal Material ey sge memben:

Other yow sescrpsonseags rmmber
Description Page Number: (\3t)q) |
e mae (1< 2) UV s ToTLE, BLANK 2 uMEXD Grawk 3 unirGLAnK

(137) PAGes T - 31

(57 -93) SsamonTmot, D00 (%), TRETS (2)

Scanning Agent Signoff: _ .
Date Received: 3 /{7 /G5 Date Scanned: _8 /I3 /35~ Date Retumed: T 124195

\
Scanning Agent smnmuwr_M.L)Sr‘m«_Em:?a_ e o4 155 Dot CorFm el

UNCLASS IFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
Y. REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
AI-TR 1109 AD -Az(680/
4. TITLE (and Subtitie) _ S. TYPE OF REPORT 8 PERIOD COVERED
. R . . echnical report
Derivation of an Efficient Rule System t P
Pattern Matcher . §. PERFORMING ORG. REFPORT NUMBER
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
Jeremy Wertheimer NO0O14--85-K-0487
9. PERFORMING ORGANIZATION NAME AND AODRESS 10. ::E(A;R.AzoﬁaLEME:lTT. PROJEFCsT, TASK
. K UN NUMBER
Artificial Intelligence Laboratory
545 Technology Square
Cambridge, MA 02139
1. CONTROLLING OFFICE NAME ANP ADDRESS 12. MEPORT DATE
Advanced Research Projects Agency February 1989
1400 Wilson Blvd. 13, NUMBER OF PAGES
Arlington, VA 22209 . 84
14, MONITPRING AGENCY NAME & ADORESS(If difterent from Controlling Ollice) 18. SECURITY CLASS. (of this report)
Office of Naval Research UNCLASSIFIED
Information Systems
. 15a,
Arlington, VA 22217 s 3g§é$5f:1cnnou/oowuanmuc
16. DISTRIBUTION STATEMENT (of this Report)
Distribution is unlimited
17. DISTRIBUTION STATEMENT (of (He abstract entered In Block 20, I difterent from Report)
18. SUPPLEMENTARY NOTES
None
19. KEY WORDS (Continue on reverse side Il necessary and identily dy block number)
automatic programming program derivaiion

Rete

prograa transformation

pattern matching

rule system

20. ABSTRACT (Continue on teverss alde Il necessary and identify by block number)

"This thesis presents a derivation of an efficient rule system pattern matcher. The matcher
efficiently computes all matches between a set of rules and a database. The rules may
thave multiple patterns. The matcher incrementally updates the set of matches as changes,
‘are made to the database. This matcher is modeled on the Rete matcher used in the

popular OPS5 production system.

The representations used in the matcher are modeled on the structures used in the
CoIne., vui vac

DD , :2:";’ 1473 EoiTion OF 1 NOV €315 ORSOLETE UNCLASSIFIED
S/N 0:02-014- 6601 |

SECURITY CLASSIFICATION OF THIS PAGE (When Dsta Bnterec

Block 20 cont.

model-theoretic semantics of first—order logic. This thesis demonstrates the correspon-
" dence between these structures and the data structures used in the Rete matcher. A new:
structure, the lattice of disjunctive substitutions, is introduced to capture the semantics\
of the rule-system matching computation. An element of this lattice represents the set’
of all matches between a rule and the terms in a database. ¢

The derivation is implemented using program transformations. First, a formal spec-
ification is developed. Then transformations are applied to this specification to derive’
an initial implementation. Finally, other transformations are applied to derive more ei-
ficient implementations from the initial implementation. The main technique used fo:
improving efficiency is finite differencing. This optimization can be shown to arise from.
distributive laws involving operations on the disjunctive substitution lattice.

‘ The derivation has been implemented using a wide-spectrum language and an inter-
active program transformation system.

This work is presented as a contribution towards the construction of a library of
programming knowledge to facilitate software reuse and automatic programming. In
particular, future directions are described for research towards a library of programming
knowledge for implementing rule systems. '

Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.L.T
Libraries. Technical support for this project was
also provided by the M.L.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94

