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A Modern Differential Geometric Approach to Shape from Shading
‘ by
Bror V. H. Saxberg

Abstract

Our visual system is a remarkably flexible and reliable source of information
about the world. One of the major challenges for appreciating how vision contributes
to our understanding of the world is understanding how it copes with the wide
variety of lighting conditions, surfaces, and surface markings to provide accurate
representations of the surfaces around us. The goal of the research reported here is
to gain a better theoretical understanding of what lies behind the visual system’s
ability to generate robust surface interpretations from single grey scale images of
smooth surfaces. In the course of doing this, a new robust shape from shading
method is developed.

The image irradiance equation is written using coordinate independent notation
and concepts from modern differential geometry and global analysis. This is done
to help make explicit the assumptions about the image formation process, and to
delay making these assumptions as long as possible. The method of characteristic
strips used by Horn (Horn, 1975) can be interpreted as a dynamical system on the
five-dimensional space of tangent planes, C(IR3, 2). Modern methods for analyzing
the behavior of dynamical systems are used to show that solution surfaces for the
shape from shading problem are invariant manifolds of the flow generated by the
image dynamical system. The rest of the analysis assumes orthographic projection
of the image and a space-invariant reflectance function, but does not assume any
particular form or symmetry for the reflectance function.

Near critical points in the image dynamical system due to certain critical points in
a smooth image, in general (i.e. in the absence of special symmetries) the dynamical
system approach implies there will only be four possible smooth solution surfaces for
the shape from shading problem. Two of these are the stable and unstable manifolds
associated with the image dynamical system critical point. Two implementations
for finding the unstable (or stable) manifold in this dynamical system are developed
using the image dynamical system directly.

The shading information in a patch containing a piece of the bounding contour
is also examined, and it appears to contribute more to an assessment of a reflectance
function choice than to the determination of patches of solution surfaces consistent
with the image.

Finally directions for future work are suggested, and some guidelines and caveats
are provided for the development of image analysis systems based on these ideas.
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Chapter 1

Introduction and Background

Our visual system is a remarkably flexible and reliable source of information
about the world. A major challenge is understanding how vision copes with the wide
variety of lighting conditions, surfaces, and surface markings to provide accurate
representations of the surfaces around us.

The goal of the research reported here is to gain a better theoretical understand-
ing of the visual system’s ability to generate robust surface interpretations from
single grey scale images. In the course of doing this, we also suggest a new type
of shape from shading method. We will write the image irradiance equation using
notation and concepts from modern differential geometry and global analysis. The
method of characteristic strips used by Horn (Horn, 1975) can be interpreted as
a dynamical system on the five-dimensional space of tangent planes, C(IR3,2). We
will make use of modern methods for analyzing the behavior of dynamical systems.
Some of these tools have already been brought to bear on knotty research areas such
as quantum mechanics, relativity, and cosmology (Hawking and Ellis, 1973, Edelen,
1985, Abraham and Marsden, 1985). We show that solution surfaces for the shape
from shading problem are invariant manifolds of the flow generated by the image dy-
namical system, and that the stable and unstable manifolds associated with certain
critical points in the image play an important role in determining solution surfaces.

We will show two implementations for finding the unstable (or stable) manifolds in
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Chapter 1 Introduction and Background

this dynamical system using the image dynamical system directly. We also analyze
the shading information in a patch containing a piece of the bounding contour, and
conclude that it contributes more to an assessment of a reflectance function choice
than to the determination of solution surfaces consistent with the correct reflectance
function and image. Finally we suggest directions for future work, and provide some
guidelines and caveats for the development of image analysis systems based on these

ideas.

1.1 Introduction

Although there are a variety of sources of information available to the human
visual system including stereo, color, motion, and shading, we get very clear im-
pressions of the three-dimensional character of a scene from a single grey-level still
picture, even of scenes or objects that are not recognized as previously having been
seen. This suggests that there is enough information in monocular grey-level images
without motion for the visual system to arrive at a three-dimensional interpretation
that is very convincing. The visual system is not always correct or even unambiguous
in its interpretations: a picture can be interpreted “correctly” as a flat surface with
shading variations or a clear window onto a scene; much of the cosmetic industry is
dedicated to shape “enhancement” through shading.

Operationally, we get information from our visual system about positions and
surfaces allowing us to navigate and interact with the environment. We are also able
to combine the sense of touch with images of an object, allowing us to recognize
a handled object blindfolded even if we have previously only seen pictures of it.
This suggests some common information structure concerning shapes and surfaces
accessible by touch, vision, and coordination. It is not clear, however, how accurately
the visual system estimates shape considered as the exact location in space of each
point on a surface or as the exact orientation of the surface at each point. It is
difficult to create psychophysical experiments to test this because it is difficult to

quantitatively probe a subject’s internal information about surface shape. There
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Chapter 1 Introduction and Background

have been a few experiments along these lines recently (Mingolla and Todd, 1986,
Bilthoff and Mallot, 1987) which suggest that our impressions of surface orientation
are far more qualitative than we might like to believe. Nonetheless, we are interested
in how much information about shape is contained in an image of a surface; answers
to questions like these at least provide upper bounds on what the visual system can
do in the absence of other information or assumptions.

One approach to studying what we get out of an image through vision is to try to
understand what it is possible to discover from an image under different assumptions.
Without any assumptions about lighting conditions or surface properties, there is no
hope for recovering any information about surfaces in space: one can take a nearly
arbitrary smooth surface and paint it to give the same image as another smooth
surface without paint. The human visual system is apparently capable of using more
than one set of assumptions: consider again the dichotomy between a picture as
shaded surface and as window onto a scene. At the same time, it is difficult for us to
entertain a continuum of possible interpretations: without extra cues, it is hard for us
to interpret a flat picture of a scene as a different, curved, carefully painted surface.
Some of Escher’s delightfully bewildering works take advantage of such confusions in

the visual system (Figure 1.1).

1.2 Background

Berthold Horn’s early work on the shape from shading problem (Horn, 1975)
examined it as a problem of physics, looking at the process of image formation and
how light is reflected from objects and concentrated to form images. He defined
a summary function, the reflectance function, that contained all the relevant local
information about lighting conditions and surface reflecting properties under the as-
sumption that reflecting properties of a surface patch were dependent solely on the
orientation of the surface, and were constant with rotations of the surface around
its normal. With additional assumptions of no cast shadows and no mutual illumi-

nations, the brightness of a point in an image depends on the location of the point
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Chapter 1 Introduction and Background

Figure 1.1. “Drawing Hands” by M. C. Escher (lithograph, 1948).

in space, the orientation of the surface in space at that point, and the reflectance
function for the lighting conditions and surface material.

Assuming a known reflectance function, Horn was able to characterize the shape
from shading problem as a nonlinear first order partial differential equation, the
image irradiance equation. Classically, such an equation is solved by the method
of characteristics, and Horn used this technique to develop a method for solving
for the surface given some initial curve lying on the surface with known surface
normals. Essentially, this is a Cauchy problem, and the solution proceeds along
adjacent characteristic curves beginning at the known curve of data. These curves
together with the surface orientations for the solution surface along them are known

as characteristic strips.
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Chapter 1 Introduction and Background

Horn used tools from partial differential equations: calculations were generally
done in a particular coordinate system, and all derivatives were partial derivatives
with respect to the coordinates of that system. Horn assumed orthographic projec-
tion onto the image surface, and used orthogonal coordinates z, y, z with z-axis in
the direction of assumed parallel projection. He used “gradient space” to represent
surface normal directions: the normal to the surface z = f(z,y) in the (z,y, z) coor-
dinate system is given by (p,q,—1), where p = f;, and ¢ = f,. Unfortunately, these
coordinates for the surface normal become unbounded when the visual boundary, or
bounding contour, of an object is reached, where the tangent plane of the surface
becomes parallel to the projection direction. This was later handled by using a differ-
ent coordinate system based on stereographic projection of the unit sphere (Ikeuchi
and Horn, 1981) at the cost of increased complexity of the coordinate expressions.

Horn recognized the importance of the critical points in the image. Given the
reflectance function, these could be taken as points in the image with known orienta-
tion. As he noted, the characteristic trajectories could not be used to draw out the
surface from the critical point, so he constructed a spherical cap consistent with the
critical point orientation and used a small closed contour on this cap as his initial
condition curve.

Direct integration of the characteristic equations to find the characteristic strips
suffers from noise sensitivity in practical implementations. As the solution proceeds
along constructed curves from the initial condition curve, these curves can deviate
as a result of quantization error and other noise influences. Horn and Brooks (Horn
and Brooks, 1986) review and compare a number of related methods by different
researchers for making the solution of the shape from shading problem a global one,
allowing data from the full image to contribute to finding stable, relatively robust
solution surfaces. They provide a recipe for generating shape from shading methods.
These are relaxation methods based on minimizing a certain measure, typically the

integral over the image region of some combination of the error in the image irradiance
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Chapter 1 Introduction and Background

equation and a penalty term for departure from smoothness. In some cases, these
methods have been derived using gradient space coordinates; in others, stereographic
coordinates. Horn and Brooks derive methods based on direct calculations with the
unit normal vector to the surface as well.

Various smoothness, integrability, or regularization terms have been tried by
various researchers. Horn and Brooks indicate that enforcing the correct integrability
constraint, p, — ¢, = 0 in gradient space coordinates, does not immediately yield
a convergent relaxation scheme. However, as Frankot and Chellappa (Frankot and
Chellappa, 1987) point out, using a different penalty term instead may yield a non-
integrable set of surface normals. The resulting set of normals may be a smoothly
chosen set of unit vectors, but may not be surface normals for any possible two-
dimensional surface.

Pentland takes a different approach (Pentland, 1982, 1984). Rather than assum-
ing full knowledge of the reflectance function, which is not available for human vision,
he makes slightly less restrictive assumptions about the reflectance function (e.g. it
is Lambertian, but with unspecified direction), and makes more assumptions about
the surface structure. Pentland shows that if one assumes that the surface at a point
is spherical, i.e. can be fitted by a spherical patch, then Lambertian reflectance gives
a unique solution for the surface at that point.

As one might expect and as Pentland points out, not all local image intensity
patterns can be accounted for by a spherical patch. If z,y are image coordinates
and I is the image intensity, then, according to Pentland, patches where I,;/I,, < 0
cannot be fit by spherical surfaces. If we consider the image as a graph of image
intensities over the image coordinates, such patches correspond to saddles in the
graph considered as a two—dimensional surface. A solution can still be found where
the principal curvatures have equal magnitude, but it is no longer a unique solution.

Pentland recognizes that some spherical patch solutions for certain kinds of image

data are less likely to be reasonable than others. If one of the second derivatives of
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the image intensity is zero, for example, the spherical patch solution involves very
special placement of the light source or the surface patch. A more likely solution
would have unequal principal curvatures with one of the principal curvatures zero.
In a man-made environment of cones, planes and other ruled surfaces, these points
would form regions, but it is not clear that the visual system evolved to be specially
adapted to these unusual surfaces. On a general smooth surface, these points will
occur on one-dimensional curves and so are sparse. !

One problem with this approach is that it is an extremely local analysis. In
general, the only non-planar surfaces composed completely of equal curvature points
(i.e. umbilic points) are pieces of spheres. Although one may be able to generate
a spherical solution patch locally consistent with the image for many points in an
image, it is not clear that the surface normals of these patches will be able to form
a smooth surface. Nor is it clear that such a surface would have much to do with
the original surface imaged. To compensate for the lack of generality of this sur-
face structure assumption, Pentland is led to statistical methods to estimate surface
orientation based on correlations in natural images: heuristic estimators for surface
orientation are proposed.

Pentland’s tools are again those of partial differential equations. A coordinate
system is chosen, and derivatives are partial derivatives taken with respect to these
coordinates. Pentland in places changes to a coordinate system parallel to the prin-
cipal curvature directions, and indicates the change in coordinates with matrices
when needed. To simplify the expressions, he assumes the surfaces of interest are
exactly second order, an approach which may lose significant contributions to surface

derivatives from higher order terms.

! It must be said that the natural environment in which we evolved is not smooth either. Recently,
Pentland (Pentland, 1986) has suggested making use of fractal models of surfaces to help understand how
a visual system might handle images of rough or textured images. To do such analyses carefully requires
even more geometrical sophistication than the smooth approach: problems of differentiability and definition
loom large. Perhaps because of our own visual experience which seems to give us smooth models of surfaces
in our world in spite of its true complicated nature, most theoretical vision research has shied away from
grappling with the complexities involved.
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Chapter 1 Introduction and Background

Frankot and Chellappa (Frankot and Chellappa, 1987) suggest a way of taking a
set of non-integrable surface normals and producing an integrable set by projecting
the surface normals onto the nearest set of integrable normals, where “nearest” is
defined by a global integral distance measure defined in the gradient space coordinate
system (and dependent on that coordinate system). Together with a method derived
from Horn and Brooks, 1986, they construct a more quickly convergent algorithm
guaranteed to form an integral set of normal vectors, and suggest their method could
be applied to Pentland’s normals to generate an integrable surface. Here too all the
development is done in a single coordinate system, the gradient space coordinate
system.

Pentland suggests classifying points based on the image derivatives (Pentland,
1984). Haralick and co-workers (Haralick et al, 1983) have carried this out more
fully, looking at the surface formed by the graph of image intensities versus image
coordinates. They define a set of features—peaks, pits, ridges, ravines, saddles, flats,
and hillsides—in terms of the first and second derivatives of the image intensity that
can describe each point on the image surface. Hillsides are defined as points that
are not any of the other features, and will be the label that most points in an image
receive.

Haralick et al consider the notion of invariance to various transformations as
important. They point out that one of the advantages of this set of labels is that
the labeling is independent of monotonic transformations of image intensity values:
pits stay pits, and so forth. In addition the features are defined in terms of the
gradient of the image intensity and the second derivative of the image intensity,
both of which can be considered as tensors with invariant definitions with respect
to changes in the image coordinate systems. Although hillsides could be further
classified, these subclassifications do not remain invariant under monotonic image
brightness transformations.

Haralick et al show a procedure for deriving these labels from an image using

cubic polynomial patches fitted to the image and then analyzed for features. Pong
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et al (Pong et al, 1985) begin analytical work on this representation by applying it
to synthetic images of simple solids, calculating theoretically where features should
lie on the image and comparing this to the features derived directly from the image.

Koenderink and van Doorn (Koenderink and van Doorn, 1980) have looked at
the field of isophotes, or constant brightness contours, of an image and discussed
some of their geometric features. They note that the Weingarten map, which maps
the surface in space to the Gaussian sphere of unit surface normals, maps constant
brightness contours on the surface to level sets of the reflectance function on the
Gaussian sphere. In order to make sense of the infinity of possible arrangements
of constant brightness contours potentially created by a given reflectance function,
they restrict themselves to Weingarten maps that are “stable,” or generic, meaning
their fundamental geometry is not changed by small perturbations. This still leaves
the wide class of Weingarten maps that are mostly one to one, with one-dimensional
curves of points that are fold singularities of the Weingarten map, and isolated points
that are cusps of the Weingarten map.

They classify various regions of such a surface using parabolic lines (folds in the
Weingarten map), and discuss different causes for critical points in the image: spec-
ularities, certain points on the parabolic lines, and critical points of the reflectance
function itself. These latter two cases will be discussed in more detail in Chapter 5.

Blicher (Blicher, 1983, Blicher, 1985) has used some of the modern language of
differential topology to discuss stereo matching and other correspondance problems
and their limitations as well as examining invariant features of a grey-level image.
Chen and Penna (Chen and Penna, 1986) have used some language from modern
differential geometry to state certain ideas about the study of photometric stereo
and non-rigid objects.

Several difficulties and issues are common to the motivation and execution of
shape from shading methods. One problem is the attention focused on representa-

tion. In order to test methods for deriving shape from shading, some coordinate
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Chapter 1 Introduction and Background

system must be chosen in which to represent various parameters of the surface. The
computer must work with numbers, and numbers for surface calculations come from
coordinate systems. The researcher typically uses this same coordinate system to
derive and reason about methods. A single coordinate system is typically not able
to cover an entire surface, and so there are problems with orientations that happen
to fall outside the span of the major coordinate system. Algebraic tractability be-
comes a major factor in looking at results: with some coordinate systems, certain
expressions become very complicated and are discarded as infeasible.

Modern differential geometry and global analysis provide tools for studying sur-
faces directly and independently of coordinate systems. This is not to say coordinate
systems are not useful; rather, much of the geometrical background may be defined
using properties intrinsic to the surfaces involved, and a coordinate system chosen
to exploit other particular features of the problem at hand.

Enforcement of integrability is another issue common to different shape from
shading methods. Most of the methods struggle to ensure that the surface normals
produced are from a true two-dimensional surface, recognizing that not all collec-
tions of surface normals can be considered as coming from a surface. Frankot and
Chellappa (Frankot and Chellappa, 1987) make the most explicit separation between
the two groups of surface normal distributions, those that are integrable and those
that are not, projecting one group onto the other. In other methods, some “integra-
bility constraint” is frequently added in as a “regularization” term that is supposed
to roughly deal with getting a smooth surface as a solution. Unfortunately, solutions
derived without strictly enforcing integrability may still not be integrable.

As we shall discuss in Chapter 5, our results suggest integrability of a solution
surface containing a critical point comes from the fact that it is an invariant smooth
manifold containing the critical point. The algorithms proposed in Chapter 5 based
on the image dynamical system attempt to find these invariant manifolds directly.

Integrability of the corresponding surface normals comes for free in the noise-free case,
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Chapter 1 Introduction and Background

and can be used to monitor the progress of the algorithm in locating a reasonable
solution when the image is noisy.

The question of uniqueness of solution for the different methods has also proved
difficult. One would like some knowledge about how many interpretations of an
image are possible given the information in the scene. Bruss (Bruss, 1980) found
a uniqueness result for Horn’s method in the case of a reflectance function of a
particular form: essentially those with level surfaces that are concentric ellipses in the
gradient space coordinate system. Many reflectance functions do not have this form,
however. Deift and Sylvester (Deift and Sylvester, 1981) investigated in some detail
uniqueness results for the degenerate case of an image of a Lambertian hemisphere
lit from the viewing direction. They found different classes of non-spherical, even
non-symmetrical, local solutions which are C? almost everywhere. If the solution
surface is required to be C? everywhere, the expected spherical solutions are unique.
They used methods of functional analysis, working in a polar coordinate system
to analyze this specific case, and did not address questions about stability of the
unusual solutions. General results on uniqueness and properties of solutions are
lacking from the literature. Brooks (Brooks, 1982) discusses the general problem of
ambiguity of solutions surfaces in images, and shows families of solutions for certain
degenerate cases, e.g. a plane and hemisphere lit from the viewing direction. He
also briefly examines the relationship between uniqueness of solution and the kind of
image patch in the case of a hemisphere: certain patches of the image provide much
more constraint than others.

Our results in Chapter 5 indicate that generically there will be at most four and
at least two smooth solution surfaces through a patch of a smooth image containing
a certain type of critical point due to a known reflectance function. These solutions
correspond to the different invariant manifolds of the critical point seen as a critical
point of the image dynamical system: the stable and unstable manifolds on which

the image dynamical system has source and sink behavior, and potentially two other
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invariant manifolds on which the image dynamical system has saddle behavior. The
critical points in the image for which this result holds are those due to local reflectance
function maxima (the usual case) or minima; we call these very good critical points
of the image.

The stability of scene interpretation to variations in assumptions has not been
fully explored. lkeuchi and Horn (Ikeuchi and Horn, 1981) did a number of ex-
perimental tests of the performance of their shape from shading algorithm under
violations of the assumed conditions, but this seems rare in the published literature.

In Chapter 5 we test our algorithms with noise and against errors in the re-
flectance function by looking at the effect of incorrect light source directions. In
Chapter 7 we suggest some routes for future theoretical exploration of stablity of
solution surfaces under variations in assumptions. In Section 5.3 we discuss the fun-
damental instability of the global image dynamical system: generically, the invariant
manifolds of various critical points in a dynamical system do not flow smoothly to-
gether; however, an image due to a physical surface and a known reflectance function
generates an image dynamical system which has the physical surface as an invariant
manifold through all the critical points of the system. This creates a potential prob-
lem for computational solutions, since non-generic dynamical systems can be very
difficult to simulate. However, this also suggests a potential answer to the problem
of determining the reflectance function (or a number of parameters of it): the wrong
choice of reflectance function is almost certain to prevent invariant manifolds from

flowing smoothly into one another, and so may be rejectable on these grounds.

1.3 Overview of the Thesis

In the rest of this thesis, we explore in more detail the first order partial dif-
ferential equation used by Horn for the shape from shading problem. As indicated
above, one can classically solve such a problem by solving a related set of ordinary
differential equations, the characteristic equations. For a typical space-invariant re-

flectance function such as the Lambertian, the one-dimensional curves which solve
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Chapter 1 Introduction and Background

the characteristic equations are trajectories through (z,y, p, ¢) space, where p and ¢
are gradient space coordinates giving the orientation of the surface. These are the
characteristic trajectories or strips.

In Chapters 2 and 3 the shape from shading problem and the image irradiance
equation are placed in a coordinate-independent and geometrically inspired setting.
Coordinate independent definitions of the bounding contour (edges of the image due
to the surface rolling away from the viewer) and the behavior of the image at the
bounding contour are discussed. In Chapter 4 we show a somewhat dauntingly alge-
braic but coordinate-independent approach to deriving the characteristic equations.

A modern approach to the study of nonlinear ordinary differential equations
like the characteristic equations considers them as a dynamical system. A dynamical
system is essentially a vector field on some space; trajectories of the dynamical system
are parameterized paths in the space that have derivatives equal to the vector field
everywhere along them. For example, if the vector field represents the velocity at
each point of fluid flowing in a pipe, the trajectories will be the time-dependent
paths of points flowing along with the fluid. We can speak of the flow of a vector
field as the collection of all the trajectories together. In Chapter 4 we consider the
characteristic equations of the shape from shading problem as a vector field defining
an image dynamical system.

In Chapter 5 we examine critical points of the image and the image dynamical
system. The qualitative study of dynamical systems emphasizes the role of critical
points, places where the vector field is zero, in determining the overall structure
of the flow lines. If the critical point is not “degenerate” in some sense, then the
behavior of the nonlinear dynamical system will be quite close to the behavior of a
linear approximation to the dynamical system near the critical point. It turns out
that critical points of the image intensities due to critical points in the reflectance
function give rise to critical points in the image dynamical system.

Another important tool in the modern study of dynamical systems discussed in

Chapter 5 is the idea of invariant surfaces for the system. For any point on such a
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surface, the trajectory of that point (perhaps for a small time interval) also lies on
the surface. Smooth solution surfaces for the shape from shading problem must be
invariant surfaces of the image dynamical system: they are two-dimensional surfaces
made up entirely of segments of characteristic trajectories.

The two ideas of critical point and invariant surface come together quite literally
at a critical point. The set of all points whose trajectories end up at a particular
critical point as time goes to infinity form an invariant manifold called the stable
manifold of that critical point; the set of points which end up at the critical point as
time goes to negative infinity form an invariant manifold called the unstable manifold.
Both the stable and unstable manifolds contain the critical point. There may also
be other invariant manifolds containing the critical point. For hyperbolic critical
points (defined in Chapter 5), for example those generically caused by maxima and
minima of the reflectance function, near the critical point all these invariant manifolds
are quite close to the invariant manifolds of the linearized dynamical system—in
particular, the number of invariant manifolds and their tangents at the critical points
are determined by the linearized system, as well as the type of flow restricted to the
invariant manifold. As discussed in Chapter 5, in the shape from shading problem
we can use the fact that there are usually only a finite number of invariant manifolds
around very good critical points to get existence and uniqueness results on patches
of the image around the critical points.

In Section 5.3 we discuss how we can use the dynamical system itself to help
find certain of the invariant manifolds around a critical point. Essentially we float
an infinitely distensible surface in the flow of the vector field. If we are assured that
some point on this surface will flow to the critical point (i.e. the initial surface cuts
the stable manifold), and the rest of the points on the initial surface are allowed to
follow the trajectories through them, then the surface will be stretched and deformed
over time to approximate the unstable manifold near the critical point.

In Section 5.3 we give a couple of examples of highly parallel algorithms based

on this idea, and analyze their performance in the presence of noise and mistaken
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reflectance functions by implementing the algorithms on a 16K CM-1 Connection
Machine. The methods turn out to be stable in the presence of noise, and robust in
handling errors in the reflectance function.

Chapter 6 discusses the role of the bounding contour in constraining shape from
shading solutions. The results suggest that the bounding contour does not provide
“patch” constraints of the kind given by critical points, but does provide constraints
on the reflectance function.

Finally, Chapter 7 summarizes the results, and discusses future extensions, in-
cluding caveats and suggestions for implementing a system to connect the patches
of solutions generated by the local analyses made here.

We begin looking at the shape from shading problem with global analytic tools

by discussing the image projection map in the next chapter.
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Chapter 2

Image Projection

In this chapter we look at how the image projection takes points in space and
maps them to points in an image, and some of the consequences of this mapping. We
begin with a discussion of some of the foundations of modern differential geometry,
the concept of a manifold and a tangent bundle, and follow with an analysis of the
image projection map, the bounding contour, and suggest possible extensions to time

varying images.
2.1 Mathematical Preliminaries

2.1.1 Manifolds

In this section a few of the basic tools and ideas from modern differential geometry
are presented. A good introduction to the modern approach to differential geometry
can be found in (Spivak, 1979); a brisker introductory approach with connections to
dynamical systems and other areas of modern physics can be found in (Abraham,
Marsden, and Ratiu, 1983). The reader is referred to either of these for the technical
details omitted here.

In both classical and modern differential geometry, the notion of coordinate in-
variance plays an important role. In the classical view still adopted by many physics
textbooks, a formula that maintains its character after a coordinate change is in some

sense an intrinsically defined object: if we replace a coordinate system (z, y, z) with a
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Figure 2.1. Equivalence classes as the partition of a set.

coordinate system (z', 3, '), a formula written with coordinates z, y, z becomes a for-
mula in the functions z(z',y’, 2'), y(z',y', 2'), 2(2', ¢, 2'); if, after simplification, the
resulting formula looks exactly the same as the original, replacing the symbols x, v, 2

with z', ¢/, 2/, then the formula is considered invariant to this coordinate change.

2.1.1.1 Equivalence Class Approach

A modern way to approach coordinate invariance is to use equivalence classes.
A set X is partitioned into equivalence classes when it can be divided up into a
group of non-overlapping sets, X;, such that UX; = X, X;N X; = 0 if { # j (Figure
2.1). This gives rise to a number of useful properties. Note that every element of
X is in one of the equivalence classes; we can refer to the set containing = as [z]. If
[z] = [y], and [y] = [z], then we must have [z] = [2], since the two equivalence classes
[z] and [2] share an element, y, so their intersection is non-empty; since the partition
is non-overlapping, this must mean [z] = [2]. Clearly, if [z] = [y] then [y] = [z]; also
[2] = [=].

These last three properties are those of an equivalence relation: an equivalence

relation on a set X is a predicate ~ acting on two elements of the set with the
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properties that £ ~ z is true; z ~ y true implies y ~ z; and finally 2 ~ y and
y ~ z imply z ~ z. Equivalence classes and equivalence relations are essentially the
same idea: given an equivalence relation, we can define the set [z] to be the set of
all y € X such that y ~ z. The equivalence relation properties make the collection
of sets {[z]} so defined into a collection of equivalence classes on X. Similarly, given
an equivalence class partition of X we can define the equivalence relation z ~ y as
true if and only if [x] = [y], and can refer to the collection of equivalence classes as
X/ ~ or as X.

Why are equivalence classes useful? They become very useful when properties
or operations on the individual elements give rise to properties or operations on the
equivalence classes considered as elements of the collection of equivalence classes.
Essentially, the properties and operations that stick around after moving to equiv-
alence classes can be considered as invariant under the equivalence relation defined
by the equivalence classes. Consider a function f : X — X. ! If we can define a

map f : X — X such that the functional diagram

¥ L x
T"fT”
x 5

commutes,? where 7 : X — X is just the equivalence class map z +— [z], then in
some intuitive way we can consider f as “really” acting on the equivalence classes
of X. The equivalence classes provide a way of looking at some of the behavior of
f, how it moves elements between equivalence classes, while ignoring other parts,

how it moves elements within an equivalence class. An extreme example might be if

! The notation f: A— B means that f takes elements of the set A and gives values in the set B; thus,
for a € A we have f(a) € B.

ZA diagram like that above defines composition functlons between the different domains. For example,
7 is a map from X to X, fisa map from X to itself, and f o 7 defines a map from X to X whose value
at pis f(x(p)). The diagram is said to commute when following two sets of arrows from the same starting
set to the same finishing set gives the same function: ie., for =70 f.
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Figure 2.2. The modern manifold: charts of an atlas. ¢; and ¢ are charts mapping open sets Uy and Uy
on M into IRZ,

f =id, that is f([z]) = [z] for all [2] € X. This means that f does not move elements
of X outside of their equivalence classes under ~ at all; in this case the equivalence

classes of X are actually invariant sets of f.

2.1.1.2 Manifolds

The modern definition of a surface, or manifold, essentially relies on equivalence
class definitions to get away from individual coordinate representations. First let us
look at features of the modern definition of a manifold.

The idea is to model the local behavior of the surface by coordinate charts (maps
from the manifold to IR") which behave “reasonably” on pieces of the surface that
are acted on by more than one chart (Figure 2.2). We start by requiring the manifold
M to have an atlas of charts, meaning that there is a set of open neighborhoods U, of
M that cover M and a corresponding set of invertible maps ¢, : M — IR" mapping
each patch onto IR".® These coordinate patches and coordinate maps give us local

windows onto the surface. One analogy is a collection of television cameras covering

3 This is for an n-dimensional manifold. One can use other kinds of linear spaces as so-called model
spaces in place of IR" to define infinite dimensional manifolds. This can be used to make the calculus of
variations into a true calculus with derivatives, etc. (Marsden and Hughes, 1983)
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Figure 2.3, The sphere and two charts, ¢ and .

a sporting event: when you look at the wall of television images at the studio,
you are seeing different views of the same event.* We do need some assurance of
consistency between the images: someone might have changed a channel. In the
mathematical realm, we can require the charts to be consistent on their overlap: if
we have ¢; : U3 — IR" and ¢, : U; — IR™ as coordinate charts on M, we can define
a new map ¢2o¢1‘1 : V1 = Vo, where Vi = ¢1(U1NU2) and Vo = ¢2(U1 NU2) are both
sets in IR". For consistency, we can require this overlap map between two real spaces
to be continuous with continuous inverse, or C*¥ with C* inverse, or smooth (C*)
with smooth inverse—whatever degree of smoothness we are interested in using to
define and work with the manifold.

As an example, consider the two dimensional sphere embedded in IR3 (Figure
2.3). One coordinate chart we might use is the map ¢ : {(z,y,2) € S%|z > 0} — IR?
given by ¢(z,y,2) = (x,y): this is orthogonal projection onto the z—y plane. A point

4 Marshall McLuhan would approve of our approach: our perception of an event is often defined these
days by the different views provided by different television cameras.
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on the sphere is given by (z,y, m) € TIR? within the domain of this chart;

in fact, ¢71(z,y) = (z, v, m) since ¢ 0 ¢! = id using these definitions.
We could also take the chart ¢ : {(z,y,2z) € S|z > 0} — IR? given by

¥(z,y,2) = (y,2). Are ¢ and ¢ compatible on their overlap? We look at 1 0 ¢~ on

the appropriate domain of IR?: we have

Yo ¢ (r,s) =v(r,s,V1—r2—s?)
Y

Is the map (r,s) = (s,V1 — 2 — s%) smooth? Here we have to be careful to include
the domain on which we are working: we are interested in the smoothness of this
map not on all of IR?, but only on ¢(U; N Us) where Uy = {(z,y,2) € S2|z > 0} and
Uy = {(z,y,2) € S%|lz > 0}. We have ¢(U3 NUs) = {(r,s)|r > 0,72 +s%2 < 1}. We
can now look at the smoothness of the overlap map (r,s) — (s,v/1 — 72 — s2) on the

overlap: the Jacobian of this map is

0 1
—r[V1—r2—3s? —s/V1—r2—-3s2]’

and indeed for r > 0, r?2 +s2 < 1, this Jacobian is smooth and is smoothly invertible;
hence the overlap map is smooth and smoothly invertible, and the coordinate charts
are smoothly compatible.

Given one such atlas of charts for a manifold, we can now throw into the atlas
all other charts that are compatible with it to create a maximal atlas. We include
any other open neighborhood U on M with associated invertible map ¢ : U — IR"
which is compatible with all the original charts. If we have two of these new charts,
¢ and 1, they will then be compatible with each other: on appropriate subdomains,

we have

pogl=(bod;l)o(giod™)
for each ¢, where ¢; are the original charts for the manifold; since the original atlas
has neighborhoods covering the whole manifold, we can decompose the intersection
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TS

Figure 2.4. The geometric tangent space TS is a plane in IR3 tangent to the surface at p.

of the domains of ¢ and 3 completely into patches within different U;. Since 3 and
¢ are compatible with all the ¢; by definition, and the compositions above have the
same degree of smoothness, we have 1 and ¢ also compatible.

A manifold is defined as a set of points with an atlas of charts compatible on
their overlaps. The modern way to work with a manifold M is to always be thinking
about this potentially quite abstract object while working with useful views of it
provided by the coordinate charts in an atlas. The same manifold M may look quite
different using different coordinate charts. Formulas in the two coordinate systems
may look very different but refer to the same operations or points on the manifold.
For example consider a plane parameterized using polar coordinates (r,0) or cartesian
coordinates (z,y). An arc of a circle can be given by r = ¢ or by y = V& — 22,
depending on the coordinate system. The choice of a particular coordinate system
can be made solely to simplify a particular calculation involving the arc. The arc is

a geometric object independent of the charts used to view it.
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2.1.2 Tangent Spaces

We have defined a manifold intrinsically, that is without requiring the manifold
to sit “inside” a larger space.’ We can define the tangent space at a point on the
manifold intrinsically as well. At first glance this seems unreasonable: our intuition
about what a tangent space is typically comes from the embedded picture of a two-
dimensional manifold in three dimensions (Figure 2.4): we think of it as a plane
just tangent to a point on the surface, and this plane clearly sits in the full three-
dimensional space. However, using equivalence classes we can dispense with the
embedding space and still maintain the idea of the tangent space as a kind of linear
approximation to the original surface.

As with many good ideas in mathematics, there is more than one way to define
the tangent space intrinsically, and all of these are equivalent. One can define it as
equivalence classes of curves on the surface M, or as equivalence classes of derivative
operators on real-valued functions of the manifold M, for example. Here we will
discuss another approach tied more closely to the coordinate charts themselves.

Let us consider two charts in an (assumed) smooth atlas for a manifold M, ¢; and
¢2, with a non-empty overlap on M. The overlap map B12 = ¢20 qﬁi‘l on ¢1(U1NUs)
is smooth by assumption. The derivative of B12, Dfi2, at a point ¢1(p) € IR™ defines
a linear map from IR" to IR".¢ If we pick v, as a vector in IR", then we can consider
vy = Dpya(v1) as related to vy through the overlap map B12. We can make this
into an equivalence relation in the following way: consider all ordered pairs (&5, v;)

of charts” and vectors in IR". We define the equivalence relation ~ on this set as

5 Whitney’s theorem (Guilleman and Pollack, 1974) says that any manifold can be modeled as a sub-
manifold of a higher dimensional space; it is not always conveniant or reasonable to do this, however; e.g,
curved space-time does not necessarily sit “inside” some other larger “hyperspace”.

© The differential Dfz of a function f : IR™ — IR" at a point z € IR™ is the unique linear map such
that || f(z + k) — f(z) — Dfz(h)|| is O(|}h?||) for all k € IR™. See (Abraham, Marsden, and Ratiu, 1983) or
the more introductory (Lang, 1968) for details: it is essentially the Jacobian without a particular coordinate
choice.

7 Including domains, although we don’t write them for clarity of notation.
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(,v) ~ (3, w) if and only if w = D(p 0 ¢~1)v at p € M; i.e. w and v are related
by the derivative of the overlap map. To see that this is an equivalence relation, we
have to verify the equivalence relation properties:

1) (¢,v) ~ (¢,v): we havethe simple overlap map po¢~! = id, sov = D(id)(v) =
td(v).

2) (¢,v) ~ (¥, w) implies (¥, w) ~ (¢,v): from the first relation we have w =
D(%) 0 $~1)(v). Using the inverse function theorem and the smooth invertibility of
¥ 0 ¢~1, this means that D(¢ 0¥ ~1)w = v, so that (¥,w) ~ (4, v).

3) If (¢1,v1) ~ (¢p2,v2) and (¢2,v2) ~ (¢3,v3), then (é1,v1) ~ (#3,v3): we have

vy = D(¢2 0 7" )01
v = D(¢3 0 43" )vs.

We can compose the overlap maps and use the chain rule to get

v3 = D(¢3 0 ¢5") 0 D($2 0 ¢7)(v1)
= D(¢3 0 ¢71)(v1),
so (¢1,v1) ~ (¢3,v3).

We can now define a tangent vector for M as an equivalence class [(¢,v)] under
the above relation. We think of (¢,v) or just v as the coordinate representation by
¢ of the tangent vector. Why is this a reasonable thing to do? Again we can think
about the charts as windows onto the real object we are looking at. If a tangent
vector v of M is to be reasonably defined, we expect that the “snapshots” of v in
different charts should be nicely related; what could be nicer than to have them
related directly by the overlap maps that connect the different pictures?

We can see how this works by looking at tangent vectors to curves on an n
dimensional surface embedded in IR™ (Figure 2.5). A curve on the surface is given
by a map a : IR — M from an interval of the real line to the manifold. Since

M C IR™, a describes a curve in IR™, and we can define its derivative at any
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Y

B

Figure 2.5. Connection between modern and geometric definition of tangent vectors. Here a(s) is a curve
in S with tangent vector v at p. It is mapped by the chart ¢ to a curve in IR with tangent vector

Dép(v) = (9/8t)¢(cx(t))1=0.

The set of image vectors D¢p(v) for all charts ¢ is the equivalence class definition of the tangent vector.

point along the curve in space by the usual time derivative o/(¢).® Now let us use
a coordinate chart ¢ for M containing a piece of the curve a: we can look at the
image of the curve under the coordinate chart, ¢ o a(t); this is a curve in the real
space IR". The time derivative of this combined map gives a vector f;(¢ o a)(t) in
IR™ which can be thought of as the image of the tangent vector o (t) under the map

¢; indeed we would like to write

d ,
=($0a)(t) = Dpoa(t)

using the chain rule if we could make sense of D¢ on the manifold M.

8 Note that in terms of the derivative operation, D, a'(2) S Day(1).
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If we have another chart 1 on the same area of M, we have a different image of
the tangent vector '(t): we have f?(gboa)(t). How are these two projected coordinate

vectors related? Let us look at ¢ = 0. We define
ai(t) = ¢oalt)
az(t) = ¥ o a(t)

vy = a1'(0)

vy = ay'(0).

We can use the overlap map to relate the two curves a; and as: we have

po¢™! oan(t) = an(t)
(ignoring domain details), so taking the time derivative at ¢ = 0 we have

%(1/) o lo a1)(0) = vy
D(’(/) ¢] (25—1)('01) = V2.

Since po 4! : IR™ — IR™ is a map between vector spaces, D(% o0 ¢~1) makes sense,
and we have used the usual real vector space chain rule on the composition of real
vector space maps () 0 $71) o (a1). From the definition of the vector equivalence
relation given earlier, we have (¢, v1) ~ (¥, v2), or [(¢, v1)] = [(¥,v2)]. The members
of the equivalence class [(¢, v)] are indeed views of the geometric tangent vector in
different coordinate systems.?

From this we see that when the manifold is embedded in a vector space, the
equivalence class definition of a tangent vector puts together all the coordinate im-
ages of a “true” tangent vector into one equivalence class. We avoid the need for an
embedding space in general by defining a tangent vector to be the set of all possi-
ble related image vectors under all possible consistent charts where the relation is

through the overlap map. This is a bit like defining a tennis player’s stroke as all

® For technical details see (Spivak, 1979).
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possible television images of it: we do not need to postulate the existence of Rod
Laver in order to admire the stroke and analyze it in detail; all we need are all pos-
sible different views of it. Vision can be considered as giving us two time-varying
charts of the two-dimensional surfaces around us; judging our reaction to animated
artificial figures, the available views alone can be very powerful in determining our
perception of reality.!°

We can do more with the equivalence class definition of tangent vectors at a
point on the manifold. The equivalence classes themselves form a vector space: for

a a scalar we can define

a[(¢,v)] £ [(¢, av)]
[(¢,0)] + [(%,w)] £ [(¢, 0+ D(¢ 0 = 1)w)),

where the slightly complicated expression for the sum just reflects the need to move
the representative vectors into the same chart before adding them; we have [(¢,v)] +
[(¢,w)] = [(#,v + w)] when the representative vectors are in the same coordinate
chart. The chain rule and linearity of the derivative map on vector spaces can be
used to show that these definitions make sense; for example, if (f1,v1) ~ (b2, v2)

then we know
vy = D(¢2 0 ¢71)(v1),
SO

avy = D(¢3 0 ¢7 ) (avy),

where a is a scalar, and hence (41, av1) ~ (62, avz) so that the definition of a[(¢,v)]
does not depend on the choice of representative (4, v) for the equivalence class. Es-
sentially, the basic vector space structure of IR" is preserved by the mapping from
representatives to equivalence classes even though individual identities of represen-

tatives are (usefully) confused by the mapping.

10 Jan Koenderink has recently proposed a representation scheme for the human visual system based on
coordinate independent objects (Koenderink, 1988).

34



Chapter 2 Image Projection

We will call the vector space of all equivalence classes of representatives the
tangent space T,M at p of M. Given a map f : M — N taking elements of the
manifold M over to the manifold N, we can define a linear derivative map Df, :
TpyM — TyM taking elements of the tangent space of M at p to elements of the
tangent space of N at ¢ = f(p):

Dfyv = Dfy([$,]) = [16, D( 0 f 0 $~1)(v)],

where ¢ is a coordinate chart on NV and ¢ is a coordinate chart on M. Essentially, we
are “writing the map f in coordinates” when we look at Yo fop~l: we use the chart
¢ to examine a piece of the domain and the chart ¥ to examine a piece of the range.
Note that o fo¢™! is a map from IR" to IR™ (assuming N has dimension IR™), and
so the derivative of this real vector function is the standard vector space derivative.
The definition of D f as an equivalence class mapping makes sense because the chain
rule connects different representatives for the same equivalence classes: if ¢ is another
coordinate chart on N, ¢ another coordinate chart on M , and [((5, 9)] = [(¢,v)], we

have

[, D($o fop™)(v)]=[h, D oyp™) o D(po fos)(v)]
= [, D($ o f o ¢71)(v)]
using the definition of equivalence, and
[, D($ o fod™)(v)] = [, Do fod)oD(¢o¢)(v)]

= Dfp([($, D(¢ 0 $)(v)]

= Df,([(¢, %)),
using the definition of Df, and using the definition of equivalence between [(¢, )]
and [(4,v)]. Thus the definition of D f, makes sense. We can consider the derivative
D(po fop™!) as the coordinatized view of D fp in just the way we considered v € IR™
as the coordinatized version of v = [(¢,v)].

If we take the simplest case where M is the space IR", then the identity map on
the open “subset” IR" of IR™ makes a perfectly good chart. T »IR" at a point p € IR"
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Figure 2.6. The tangent bundle to a curve: by turning the 1-d tangent spaces on their sides, we can see
how TS ~ IR x IR.

can now be identified with IR" at each p, since we have a single global chart. Even
if we add other charts to the atlas (e.g. polar coordinates or other things), we can
still consider this as the canonical coordinate system, and in general we can identify
n-vectors IR" as elements of T,IR" at some p € IR. The full collection of tangent
vectors for all p € IR3, TIR3, is equivalent to IR® x IR3: we consider a tangent vector
vp € Tp]R3 to be just (p,v) € IR® x IR®.

On a general manifold M, given a coordinate chart ¢ : U C M — IR" there
are certain vector fields often labeled as special. These are the vector fields whose
representatives in IR™ under the chart are the standard orthonormal basis vectors. If
we label the components of the chart as ¢(p) = (z!(p),...,z"(p)), then the associated
vector fields are called 3/9z*. Using the idea of the derivative of a mapping between

manifolds, we can define the vectors 8/dz; by

0
D¢p (%) = €4,

where e; = (0,...,0,1,0,...,0)T where the 1 appears in the i-th position.!!

11 The notation 3/31‘ comes about because if f : M — IR is a real function on the manifold M, then
Df (8/61:’) in coordinates is given by D(f o ¢)(e;) = 8f/8%;, where in the last expression f is assumed
written in coordinates with respect to the chart ¢. In fact, there is another definition of the tangent space
that considers tangent vectors as real-valued linear operators on real-valued functions of the manifold.
(Warner, 1971).
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In general we can collect all the tangent spaces Tp,M together and make the
collection TM = UT,M itself into a manifold. To do this, we need to find an atlas
for TM: we can construct one from an atlas for M. We take a chart for M, (U, ¢)
(remember U is the open set of M on which the chart map ¢ is defined), and consider
the derivative map D¢, for all p in the open set U: since ¢ : U — IR" and both U
and IR" are manifolds, we can define D¢, as an equivalence class mapping as we did

above. We can use the map

iv.) 2

¢(vp) = (8(p), Dép(vyp)) : TU —» IR™ x IR"

as our new coordinate chart on the new open set TU = [ oy T,M of TM; note
that we have identified D¢,(v,) € T,IR" with the appropriate n-vector in IR®. An

overlap map for this new chart would look like

Bra(z,v) = (¢2 0 7 (2), D(¢2 0 671)2(v)),

which has the usual overlap map as the first component, and the derivative of the
overlap map as the second component; assuming the charts are smooth, for example,
this combined overlap map is also smooth.!? Essentially, every tangent bundle of
an m-dimensional manifold locally (i.e. viewed through a chart) looks equivalent
to IR™ x IR™. Globally this is not the case: for example, there is a result which
says there can be no completely non-zero vector field on the two-dimensional sphere
(the so-called Hairy Ball Theorem (Abraham, Marsden, and Ratiu, 1983)); this is
certainly not true of IR?, and so 7'S? and IR? x IR? are not equivalent, even though
pieces of T'S? are equivalent to pieces of IR? x IR2.

Basically, we can reason about the tangent vectors defined as equivalence classes

as if they were the familiar tangent vectors in space on which our intuition is based.

12 One can define the tangent space in yet another way through overlap maps alone, considering them
as “glue” between patches of IR™.
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Modern differential geometry provides a bag of tools and techniques defined intrin-
sically (via the equivalence class definitions of tangent space, etc.). One reason for
using these tools is to ensure that constructions do not depend on a particular co-
ordinate system; instead, they can be thought of as part of the intrinsic geometry
of a situation. In practice, in the early examination of a physical problem it is very
hard to reason usefully without eventually picking coordinates. From a pragmatic
point of view, the intrinsic definitions of the tools and constructions of differential
geometry and global analysis means that they are available even if we decide to pick

bizarre coordinates to exploit special features of the problem under consideration.

2.2 The Image Projection Map

As suggested by the previous pictures used to help explain some of the ideas
of modern differential geometry, vision and geometry have very close ties. It might
be said that vision provides us with a pair of time-varying charts of the surfaces
around us, together with brightness information at each point of the image. Par-
ticular coordinate systems do not have such a close relationship with vision: we
are not aware of some pre-existing coordinate system in reasoning about surfaces or
interpreting an image. It seems to make sense to try to use some of the invariant
language and notation of the modern approach to describe features of the image
formation and interpretation process. Often coordinate representations of things can
look complicated and messy even though the underlying geometric idea may not be
so complicated. If we begin with invariant definitions of some of the fundamental
ideas, we can move to various coordinates suited for particular analyses of details
with (hopefully) a minimum of confusion.

Let us begin by looking at the image projection map. A projection system can
be thought of as a way of mapping points in IR? to points on some two dimensional

imaging surface I. 12 (See Figure 2.7.) We can call this map 7! : R® — I, and will

13 Really we map from some large open set of IR3. We will mostly ignore this technical detail. (Blicher,
1985) tries to keep track of all the different open sets in his definitions, and it can be confusing.
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Figure 2.7. Image projection from IR? to the image I.

\WI(P)

Projection fibre

Figure 2.8. Image projection as a fibre map

assume it is a smooth map. Typical projection maps used are orthogonal projection
onto a plane, central projection onto a plane, or central projection onto a sphere
centered at the projection center. Although central projection onto a sphere perhaps
best models the physical projection of light onto the retina while central projection

onto a plane best models projection of light onto film in a camera, it is not clear what
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Figure 2.9. Embedding a two dimensional surface in IR3,

the “right” projection for vision should be: do we attempt to include the inhomo-
geneities of the retinal neural distribution in the projection by centrally projecting
onto some distorted surface? Ideally we would like results that are insensitive to
variations in the projection system; we will try to work in that direction in what
follows. 4

The distinction between images made at a large distance (compared to the focal
distance) under central projection to a plane or orthogonal (scaled) projection to a

plane is quite small, so orthogonal projection is often used because its coordinate

representation is much simpler. We will do the same as soon as the going gets rough.

14 One abstract way of viewing projection is to eliminate the imaging surface altogether. We can usually
imagine the projection situation to be as follows: we have a collection of non-intersecting rays running from
IR to the imaging surface. The point at which a ray hits the imaging surface defines the image projection
of all the points on the ray. (See Figure 2.8) The projection can be thought of as a projection from IR3 to
the set of rays; the imaging surface just provides us with a convenient way to coordinatize the set of rays,
since each point on the imaging surface corresponds to a unique projection ray. This perspective suggests
that the shape of the imaging surface is of secondary importance in understanding the image projection:
given the projection of IR® onto the projection rays, or fibres, we can generate the values of any image
projection formed by intersecting the bundle of rays with an arbitrary surface. Note that this is not true
of brightness values at each point on the image: the brightness of a point on the image does depend on the
orientation of the imaging surface.
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A two dimensional surface S in IR® can be thought of as a two-dimensional
manifold N embedded in IR? by a map i : N — IR3.15 In the case of a non-moving
scene or a still photograph, we can consider ¢ to be the inclusion map, so that N = S,
and i(p) = p. However, in the case of a moving scene, we may want to model the
motion as a time varying embedding of some “fixed” surface N, so that we have
i: N x IR — IR? with i4(N) = S; giving the position of the embedded surface in
space at time . For various purposes, we might try to specify what ¢ can be: e.g. an
isometry, a rigid rotation, or a general embedding. We can speak about the velocity
field in space of each point p € N as (d/dt)::(p).

As a two-dimensional manifold on its own, N has an intrinsic tangent bundle T'N.
This is related to the usual tangent planes in IR? of the embedded surface S = #(N)
by the embedding map: Di : TN — TIR3? takes the two dimensional tangent space
TpN to the two-dimensional tangent space Tj,)i(N) = Tj(,)S. One way to see this is
to think of paths on the surfaces: a path o : IR — N becomes a pathioo : IR — IR?
in space on the embedded surface S. Di then carries the tangent vector o/(t) to the
appropriate tangent vector on the surface embedded in IR?.

When we view a surface in IR?, we can consider how the image projection, x!,
maps the surface to the image. If we consider the two-dimensional surface N as
embedded in IR® by i : N — IR?, with 7(V) = S, then we can consider the map

7l 0 4. This is the map that takes points on the surface, IV, to points on the image,

I.16

15 An immersion is often defined as a map from a lower dimensional space to an equal or higher dimen-
sional space with the derivative having maximal rank everywhere; an embedding is an immersion with the
additional property that distinct pieces of the immersed surface are always well separated. Technical details
can be found in (Abraham, Marsden, and Ratiu, 1983).

16 Another notation for this is i*x! 2 #% 0 i which is called the “pull-back” of #! by i because * pulls

the projection map xf : IR® — I back to the surface N.
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If we allow time-varying surface embeddings, the image of a point on the imaging

I

surface (assuming a time invariant projection system) is w oZ4(p), and so the motion

field of the image is given by

d ) d.
oo = De' o (L))
thus, Dx{ plays the crucial role of mapping velocity vectors in space to motion field
vectors in the image.

Our interest here will mostly be with still images, so that in general we can assume
that the embedding 7 is the inclusion map: N is a surface in IR3, and i(p) = p, so

N = S and we can interchangeably refer to i(S) and S.

2.2.1 The Bounding Contour

We can use the general image projection map to define the bounding contour of a
surface and image. We have a smooth map 7f0i : N — I from the two-dimensional
surface to the two-dimensional image. The image consists of an interior where two-
dimensional patches of the surface are connected to two-dimensional patches of the
image, and a bounding contour where the relationship between the surface and the
image must be more complicated. It seems reasonable that most of the interior of the
image corresponds to a region of the surface where the map 7/ o7 is a diffeomorphism;
at pieces of the bounding contour (which may include curves in the interior of the
image), this is not the case.

T 64 is a diffeomorphism, we assume ¢ and 7! are smooth (as we

To see where 7
shall do for the duration). Using the inverse function theorem,!” we know that 7f o

is a diffeomorphism on a neighborhood of p € N if D(x! o) is invertible at p.

17 As with many results in modern differential geometry, the inverse function theorem for manifolds is
analagous to the inverse function theorem for real vector functions, and can be proved by coordinatizing the
manifolds and applying the real result. Knowing theorems in the real case usually gives the right intuition
for the manifold case.
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How likely is it that D(#f o0 i) is invertible? Sard’s theorem says that almost
all points of 71(.8) will be regular values for 7 o i, meaning D(7! 0 4) will have full
rank and so will be invertible. What can happen to make D(x! o i) not invertible?
We can use the chain rule to take this derivative apart: D(r! o) = Dx! o Di. By
assumption, ¢ is an embedding so that Di always has maximal rank, i.e. rank two.
Similarly, by assumption we can insist that the image projection 7! have full rank at
all points of its domain in IR3, again rank two. The only way that the composition
of the two linear maps Dx! and Di can have rank less than two is if the range of
Di intersects non-trivially the null space!® of Dx!; i.e. if there is a non-zero vector
u € TpN such that for v = Dip(u) we have D7rI,~(p)(v) =0.1°

We can interpret this in another way using projection fibres (Figure 2.10). A
projection fibre is a set of points in space all of which project to the same image

point. If we consider a curve o : I — IR3 running along a projection fibre, so that

71(a(t)) = 71((0)), we have

d ,
0= E(”l oa)(t) = Dl od(t).

Since D’ has rank two at each point of IR?, we can consider a unit vector k(a(t))
parallel to ¢/(t) as determining the one-dimensional null space for Dn’ at each point
p = a(t). We can do this smoothly over the whole projection domain using a flow
down all the fibres simultaneously. At each point p € IR?, k(p) essentially represents
the local projection direction; in the usual case of projection rays, k(p) will actually
point towards (or away from) the true image point. If v = Diy(u) is in the null
space of Dr!, as required for 7! 0 ¢ to not be a diffeomorphism, then we must have

v parallel to k(¢(p)). Put another way, in this case the local projection direction is

18 The null space of a linear map A consists of all vectors v such that Av = 0.

19 One of the reasons for having tangent spaces around is to make liberal use of linear algebra results
on the tangent space at each point of the manifold. The tangent bundle acts like a theoretical Connection
Machine for linear algebra.
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m1(s)

O ~

/I

Bounding contour Projection fibre

Bounding contour
in image

Figure 2.10. The bounding contour and projection fibres. The projection fibres are tangent to the surface
at the bounding contour.

parallel to the tangent plane of the surface in IR®; this is what is usually meant
by the bounding contour, also called the self-occlusion locus, or extremal contour.
At such points, the projection direction just grazes the surface in space (see Figure
2.10).

We now have invariant characterizations of the surface in IR3, the image pro-
jection from IR? to the image I, and the bounding contour of the projection. In
the next chapter we discuss the reflectance function and an invariant version of the

image irradiance equation.
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The Image Irradiance Equation

In this chapter we will discuss what the image irradiance equation looks like when
written in invariant language. Assuming fixed lighting conditions and uniformity of
surface material, Horn (Horn, 1975) modeled the shading of an image of a surface
as dependent on the locations and local orientations of points on the surface. This
suggests that the surface tangent planes are important objects for understanding
shape from shading.

We begin the mathematical preliminaries section with a discussion of the space
C(IR3,2) of all two-dimensional tangent planes in IR? and a useful class of coordinate
charts for it; C(IR?,2) is the space of surface orientations on which the reflectance
map acts. We discuss how two-dimensional surfaces embedded in IR3 can be “lifted”
to be two-dimensional surfaces in the space C(IR?,2). We discuss contact 1-forms,
which are linear functionals on the space C(IR3,2) useful for detecting when a two-
dimensional surface in C(IR?,2) is lifted from IR3. In Section 3.2 we discuss the
reflectance map and the image formation process. We write the invariant image
irradiance equation, and show that it is the same as Horn’s equation given a certain
set of coordinates. Finally, we state an invariant version of the shape from shading
problem. In the next chapter, we tackle how this invariant description of the image
irradiance equation can be used to generate an invariant vector field on C(IR?,2);

this is essentially the classical characteristic strip method used by Horn.
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Possible tangent spaces at p

L/
>

3
| R
Figure 3.1. Set of all tangent planes in space, C(lR3, 2). At each point there is a collection of 2-dimensional
planes, each of which could be a tangent space to a 2-d surface.

3.1 Mathematical Preliminaries

3.1.1 C(IR?,2)

Consider the surface, S, embedded in IR by the embedding ¢ : § — IR3. As
discussed in the last chapter, associated with each point p of S there is a tangent
plane to S denoted T,S. This can be considered as a two-dimensional subspace of
the three-dimensional tangent space T, pIR3. The orientation of the surface S at the
point p is determined by the tangent plane.

To discuss orientations of surfaces, it is useful to consider the set C(IR?,2) of
all possible two-dimensional tangent planes in IR3. As discussed in the last chapter,
the tangent bundle for IR?, TIR?, is defined as the collection of all tangent vectors
to IR®. TIR? is equivalent to the Cartesian product of IR® with itself, IR? x IR?,
so that a tangent vector v, € TIR? is equivalent to a point (p,v) € IR} x IR
We can think of p x IR? as a vector space in its own right isomorphic to IR? by
doing vector operations only on the second component. A tangent plane at p is

then equivalent to a two-dimensional subspace p x W of p x IR®, where W is a
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two-dimensional subspace of IR®. If we define G(2,3) as the set of two dimensional
subspaces of IR®, we have C (]R3, 2) equivalent to the Cartesian product of IR3 with
G(2,3), C(IR3,2) ~ IR? x G(2,3). G(2,3) is itself a manifold, where each subspace
is considered a point of the set; it can be given coordinates by picking a coordinate
chart for the Gaussian sphere of normal vectors, and then identifying two-dimensional

subspaces of IR® with their normal vectors.!

3.1.2 ¢(IR%,2) and a useful coordinate system

Since both G(2,3) and IR® are manifolds, the manifold C(IR?,2) ~ IR® x G(2,3)
is as well. If (V1, ¢1) is a chart on G(2,3), and (V4, ¢2) is a chart on IR3, then we can
create a chart (V4 x Vz, ¢1 x ¢2) for C(IR3?,2) >~ IR® x G(2,3). The usual (z,y, 2, p,q)
gradient coordinate chart based on rectilinear coordinates for IR? can be thought of
this way: it splits into the chart (z,y,2) on IR® and a chart (p,q) for orientations,
where the (p,q) chart does not depend on the point (z,y, z) in space to determine
the coordinates for orientation.

We can generalize the (z,y, z, p, q) coordinates for C(IR3,2) to include nonlinear
coordinates on IR®. Consider (V,z) a coordinate chart for IR?, so that V is an
open set of IR® and z is a chart map defined on V. Pick one of the coordinates,
say °, as “special.” We will construct a coordinate chart for G(2,3) at each p in
V. We have tangent vectors 5%—]}), a%y'p, 5%3!? to IR® at each point p defined using
the coordinate chart x. These span TpIRS. We will define a linear map L,* which
connects a pair of numbers, a = (a1, az2), to a two-dimensional subspace of T,,IR3
by mapping elements of the subspace spanned by {Tgf|p’ %;lp} to elements of a

two-dimensional subspace uniquely determined by a. We define

0

3
» oz p}

a 0
Ly® : span { Ersy

! A manifold made up of linear subspaces of a vector space is called a Grassman manifold. (Abraham,
Marsden, and Ratiu, 1983)
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1 0 v
w(2)-(5 1))
V2 a as V2

where (v1,v;) are the coordinates of a vector v € Span { Tgflp’ Tzflp} with respect

in coordinates by

to the basis vectors B%Tlp and 3%-[?, and the coordinates of the range vector in TpIR3
are given with respect to the basis 5%—|p, T‘Z;Ip, Engp' Each choice of a = (a1, a2)
gives a different linear map L,%, and the range of L, is always two dimensional.?
We can consider the map L,® as defining a map £ : IR® x IR? — C(IR?,2)
given by L : (p,a) — Range(Lp*). If W, is a two-dimensional subspace of T,IR?
such that 8/9z% is not a member of W), then there is an a € IR? such £L(p,a) = Wo.
3If a and & are two vectors in IR? with a # &, then L(p,a) # L(p,a), since the

matrix columns of the two L, span different subspaces.

2 As often happens, there is a trade-off between writing things invariantly and writing things in coor-
dinates; to write this map invariantly requires the use of inner products with the basis vectors, etc, and
would not add materially to our discussion.

3 To see this, pick two vectorsin Wp that span it. Using r coordinates, put these column vectors together
into a 3 x 2 matrix, A, so that
C
A = ( d ) ’

where C is 2 x 2 and d is 1 x 2. We have Range(A) = W}, in coordinates. C must have rank 2; if not, then
the columns of C are dependent, and there is a 2-vector v = (v, Uz)T such that

(2)-(:)

implying that 8/ dz2 is in the range of A, contrary to our assumption. Since C has rank 2, there are
independent 2-vectors 1 and v such that

1 0
Auuv)=10 1 |:
ay a2

multiplying A on the right by a column vector takes linear combinations of the columns of A and hence
of the columns of C, so we can pick u and v to give this combination of the columns of C since C is
invertible. The vectors (1,0, al)T and (0,1, az)T span the same subspace as the columns of A do, namely
Wp. Defining a = (a1, a2), we have

L(p,a) = Range(A) = Wp.
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Figure 3.2. Local view of generalized (z, y, z, p, ¢) coordinates: planes at (0,0,—1) perpendicular to local
d/8z direction. The local (p,¢) coordinates for the direction of a vector v at p is given by the coordinates
of the intersection of the line parallel to v through p with the appropriate plane.

Given the base chart (V,z) we can define a local chart (U, (x,a)) on C(IR?,2),
where U is the open set of subspaces W), in C(IR?,2) such that 8/9z% ¢ W, and
p € V. We define the chart (z,a) : U C C(IR?,2) — IR? x IR? as the map
(2,0) : Wy s L7H(Wy).5

If the base chart z is the standard orthonormal one, this is essentially the usual
(z,y, 2, p, q) chart of gradient space, where the special coordinate 22 is 2z, and (p, q) =
(a1,az). Typically, we would write a surface S in coordinates as (z,y, 2(z,y)). By
looking at velocities of the paths (¢,y, 2(¢,y) and (z,t,2(z,t)) in S, we see that the
two-dimensional tangent subspace to S would be the subspace spanned by the vectors
(1,0,2,)T = (1,0, p)T and (0,1,2,)T = (0,1,¢)T. This subspace is (in coordinates)

the range of the matrix

1 0
0o 1],
exactly in the form of the matrix for L,%; taking p = z,, and ¢ = 2, makes

L((z,y,2),(p,q)) = TpS.

4 To avoid a Greek explosion, we use the standard (admittedly confusing) convention of giving the chart
the same name as the coordinates we are going to use, e.g. = : M — IR™ is a coordinate chart whose values
are z(p) = ¢ = (z1, T2,73). This works because a chart ¢ : M — IR™ does divide into m real functions
¢; : M — IR such that ¢(p) = (¢1(p),...,¢m(p)). This useful confusion is also the source of the proper
definition of dz, dy,dz, etc.; dz is the derivative map of the coordinate function z : M — IR, and so is a
differential one-form on the manifold.
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A graphic picture of the standard orthonormal (z,y, 2z, p, ¢) coordinate system
comes from looking at normal directions to the tangent planes of S at (z,y, z(z,y)) €
S. A normal vector to the surface is parallel to the vector (1,0, 2,)T x (0,1,2,)T =

(—25, —2y, 1)T. The intersection of this direction with the plane
P = {v|v-(0,0,-1)T =1}

(perpendicular to (0,0,1)T and located a distance 1 down the z-axis) is (zz, 24, —1)7,
so the coordinates (p, ¢) are the first two coordinates of this point on the plane (Figure
3.2).

What we have done is to localize this construction: using the local vector space
coordinates defined by {9/0z,0/dy,0/dz}, at each point (z,y,z) € IR® we can
construct a plane perpendicular to the 8/0z direction at the point (0,0, —1) (where
the origin is now at (z,y,z)). A two-dimensional tangent subspace at p has a normal
direction through p which intersects this plane with (local) coordinates (p, g, —1).

In the Appendix to this chapter, we show that two charts (V, ) and ( Vv, #) on IR®
generate two charts (U, (z,a)) and (U, (%,a)) on C(IR?,2) which smoothly overlap
as required to form an atlas for C(IR3, 2).

3.1.3 Lifting of surfaces

We can now look at how surfaces in IR® become surfaces in C(IR%,2). We have
a natural map I1¢ : C(IR?,2) — IR? defined as II°(W,) = p. If i : S — IR® is an
embedded two-dimensional surface in IR?, we can “lift” i to be a related embedded
2-surface i : S —s C(IR?,2) in C(IR?,2) so that I 0 i = .

We define the lifted map i: S — C(IR3,2) by

i(p) = Ti(p)i(S) ~ TPS.

We will not distinguish between Tj,,)i(S) and TS unless it is necessary. Essentially

this new surface in C(IR3,2) includes explicitly the information about the surface
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orientation: if p € #(S) is a point on the original embedded surface, then the related
point on the lifted surface sitting in C(IR?,2) is defined to be i(p) = T},S, the tangent
plane to S at p.

We can look at the coordinate view of this map in the (z,a) chart discussed in
the previous section. If we take s = (s!,s%) as local coordinates® on S and z as local
coordinates on IR?, we have in local coordinates i(s) = (z1(s),z2(s), z3(s)).® Since
is an embedding, we know that the rank of D3 is two; without loss of generality (we
may have to relabel the « coordinates), let us assume that Di has full rank on the first
two coordinates of z. By the inverse function theorem, we know that 7 : (s!, s%) —»
(z1(s),z%(s)) is an isomorphism, and we can effectively change local coordinates on
S so that our embedding locally looks like ¢ : (2!, 2%) — (2, 22, 23(!, 22)).

Using this coordinate system for S and the coordinate system « for IR3, we know

that

1 0
Di = 0 1
0z3/9x'  923/02?
in coordinates, so
1 0
Range(Di) = Range 0 1 =TS

923 /8z'  9x3 [0z

5 Meaning we have a chart s : § — IR? given by s(p) = (s}, s%)

6 The charts have become almost invisible here. We have maps arranged as follows:

i

S = R3

Jos L
(s s*) €R? — (z'(s),2%(s),2%(s)) € IR
Essentially, we have defined (confusingly, but in keeping with common practice) functions z* of the coordi-

nates (s, s%) as the coordinates in IR® of the embedded surface S. The rationale for this naming abuse is

that the function z?(s) is really defined as 2*(i(s)), where in the latter expression z° is a coordinate function
3
on IR".

51



Chapter 3 The Image Irradiance Equation

and so from the previous section we see that in the coordinate system (z,a) for
C(IR3,2) we have
dz® 023
(xl, 2%, 2% (a!, 2?), SRl
as the coordinates for 7),S. Note that 2 does not have to be an orthogonal set of
coordinates for this to be true. If we write (z!,2?% 2% a1,a2) = (2,y,2,p,q) as is

conventional, then the coordinates for the tangent plane to the surface, T}, consid-

ered as a point in C(IR3,2) are just (z,y, 2, 2z, zy).

3.1.4 Contact 1-forms

We would like to be able to detect when a two dimensional manifold S in C(IR3, 2)
is really a lifted two-dimensional surface S from IR?. Since C(IR?,2) ~ IR? x G(2, 3),
we can project any two-dimensional subspace W, C T,,IR3 in C(IR3, 2) onto its base

point p just by taking the first part of the Cartesian product: we have as before?
° : ¢(IR?%,2) — IR®
°: (p,W) € IR® x G(2,3) — p.

Clearly we must have I1¢(S) as a two-dimensional surface in IR?® in order for S to
be a lifted surface.

There is another constraint as well: consider the lifted surface given by i :
S — C(IR?,2) where we have assumed the original embedded surface is 7 : § —
IR®. Let a : IR — S bea path on the original surface; the lifted path will be
ioa : IR — C(IR%2). Taking a coordinate system (z,y,z) for IR® and lifting
it to a coordinate system (z,y,z,p,q) for C(IR® 2), we can consider the surface
to be given locally as i(r,s) = (r,s, f(r,s)) and the lifted surface to be i(r,s) =
(rys, f(ry8), fe(r,8), fs(r,8)). The curve a(t) is (r(t),s(t)) in coordinates, so using

7 C(IR3,2) is a so-called trivial bundle over IR3.
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the chart (z,y, z, p, ¢) we can write z(ioa(t)) = f(r(¢), s(t)). Taking the time deriva-

tive, using the chain rule, and using the chart (z,y, 2, p, ¢), we can write
d . d . d
&Z(l oa(t)) = frazx(l oa(t)) + fsa (ioaf(t))
. d . . d .
= plio at) (i o a(t)) + gfi 0 o)) Ty(io a(t)).
Using differentials® of the coordinate functions (z,y, z) on IR® we can write this as
dzo(ioa)(t) = p(io@)[dr o (ioa)'(t)] + q(ic a)[dy o (io a)'(t))]

Since we can generate any vector v € 7,5 by picking an appropriate path « such

that o/(t) = v, we must have the 1-form condition®
(dz — pdz — ¢gdy) o (Diov) =0

for all v € T,S. We can define a contact 1-form # in the coordinate system
(z,9,2,p,q) (ie. on the open set V C C(IR?2) on which the chart is defined)

as

0(0,9,2,p,q) = (dz — pdz — 99Y)|(z,9,2,p,0)-

Thus, if i is the lift of ¢, then for all u € Tj(,)i(S) we have 6(u) = 0.

The contact 1-forms are defined within particular coordinate systems, and as
such are not defined on the whole space C(]R3, 2). However, we can construct the
differential ideal, I, generated by a set of contact forms defined for a set of charts

covering the manifold. A differential ideal, I, of differential forms is a vector subspace

8 A differential is the derivative of a map from a manifold to the real numbers, in this case the coordinate
functions.

9 For the moment, we are mostly interested in 1-forms, which are just linear maps from 7S to IR:
derivatives of scalar maps from a manifold are 1-forms, for example. If f is a real function on the manifold
M and § is a 1-form, we define f8(vp) = f(p)8(vp) so that f8 is also a 1-form on M. The differentials of
the coordinate functions form a basis for the linear space of 1-forms at a point p. A differential k-form in
general is the generalization of a linear idea: at each point p € M we stick a multilinear (with k arguments)
alternating map acting on the vector space T, M; if the choice is made smoothly, the result is a differential
k-form.
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of differential forms such that for any form @ € I and any other differential form p not
necessarily in I, p A 0 is also in 1.'® We use a partition of unity to force the contact
forms to be defined over the whole manifold, and the partition of unity assures that
at any point on the manifold C(IR?, 2), some of the contact forms will be non-zero.
(See Appendix Section A3.2 at the end of this chapter.) It turns out that any contact
1-form 0 defined by any coordinate chart (z, y, 2, p, ¢) on C(IR?,2) constructed from a
chart (z,y, z) on IR? is a member of this ideal, so that the ideal itself is a coordinate
independent object.

Ifi: S — C(IR?2) is a two-dimensional embedding of S in C(IR,2) with
Rank(II€ o i) = 2, then it turns out a contact 1-form @ restricted to i(S) is 0 if and
only if i is a lifted embedding. The condition that the rank of IIC 0 i be two is quite
reasonable: if i is the lift of a two-dimensional surface in IR?, then the associated
embedding into IR?, i, must have rank two, and from the definition of a lift we must
have ; = II€ o i.

We have already shown in coordinates that 0 restricted to i(S) is 0 if i is a lifted
embedding. We can show this in a slightly different way by using the notion of the
pull-back of a differential form: if § is a differential k-form on M (so that by is a
multi-linear map from T, M to the real numbers), and we havei: N — M as a map

between manifolds N and M, then we can define a differential form i*0 on N as
.k A . )
({70)p(v1,...,vi) = H(i(p))(Dl oVviy,...,Diovg)

where the k-form i*4 acts on vectors vi,...,v; € TyN. If i : § — C(IR3,2) :
p > TS is a lifted embedding of a two-dimensional surface S and 0 € I is a

contact 1-form, we can compute i*6 in 0’s defining coordinate system. We will use

the coordinate system (U, ((2!,2?,2%), (a!,a?))) = (U,(z,a)) where 8/8z3 ¢ TpS

10 The wedge product is an operation on differential forms directly connected to the alternating multipli-
cation of multilinear alternating maps on a vector space. It is something like a generalized cross product.
For details and definitions, see (Abraham, Marsden, and Ratiu, 1983).
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for all p in the neighborhood U: wusing an argument similar to one used in the
definition of coordinate charts for C(IR3,2), we can take coordinates for S so that
: S — C(IR3,2) is given by i : (z!,2%) — (2!, 22, 23(z!, 22), 023/ 0=, 0x% [ 02?)
in coordinates. We have
i*6 = i*(dz® — ayda! — apda?)

=d(z30i) — (a; 0 i)d(ml 0i) — (az 0 1)d(z? 0i)
dz3

=d(z 3(:v .7:2)) — —da: — éx—dw

85133 1 ax 2 0.’173 1 a.’l: 2
= gard® tgzde — 5ade - g5de
—_ 0,

so on a lifted embedding a contact 1-form is pulled back to 0, i.e. the contact form
restricted to a lifted embedded surface is 0.1!

On the other hand consider ifi : § — C(IR3,2) is a two-dimensional embedding
with i 2 TIC 0 also of rank two and i*§ = 0 for some contact 1-form 6. Because
II€ 01 is of rank two, on 8’s defining coordinate system we can put local coordinates

l,xz,x3(ml,z2), al(xl,x2),a2(xl, mz)), and

(%6) (g 0) = 0
i* (dar:3 — aydz! — azde) =0

9% . 92
5aT0% + 502

on S so that i: (z!,2?) — (z

dz? — a;da! — aydz? = 0.

Equating coefficients of the cotangent basis {dz!,dz?, dz®} we must have

oz3 oz3

a = Esy and ag = 922’

indicating that i is the lift of 7 = II€ o i.

11 For details on rules for calculating with differential forms, see (Abraham, Marsden, and Ratiu, 1983).
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3.2 The Reflectance Function and Image Forma-
tion

Horn (Horn, 1975) makes use of the reflectance function to summarize the influ-
ences of light source properties, surface reflection properties, and image formation
physics on the formation of an image from a surface. At each point in space, an
orientation of the surface tangent plane will give rise to a particular brightness in
the image defined by the reflectance function R. The reflectance map as described
by Horn (Horn, 1975) can be considered to act on C(IR?,2): a surface patch with
tangent plane W at point p in space will generate a brightness in the image given by
R(p,W),ie. R:C(IR? 2) — IR. We will often assume that the reflectance function
does not depend on the location in space: essentially, this removes the dependence of
image brightness on viewpoint, and is accurate in the limit of long lighting distances
and long viewing distances. Full generality of the map R includes the projection
of slides onto surfaces: we do not expect that a visual system is able to deal cor-
rectly with a completely arbitrary R. Understanding restrictions on comprehensible
reflectance functions for human shape from shading is an open area.

An image is a combination of the reflectance function and the image projection.
From the discussion in the last chapter about the image projection map, we have a
map 7/ : IR — I which generates a map 7/ 0i : § — I from points on the surface
to image points. The brightness at a point 7/(i(p)) in the image is given by R(i(p)),
where i : S — C(IR?,2) is the lifted embedding of the two-dimensional surface S
in the space of possible tangent spaces C(IR?,2). If we define E : ] —> IR as the
brightness of the image at a point in the image, then we have the image irradiance

equation:

Eonloi=Roi.
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a. b. a.

Figure 3.3. Curves on the surface through the bounding contour: a. Usual case. b. Curve parallel to
projection direction at the bounding contour.

If we can use local coordinates such that
i:(z,y) € S (2,9,2(z,y))
i:(z,y) € S+ (2,5, 2(,9), z(2,), %(2,y)) € C(IR?,2)
i (2,9,2) € R® v (a,y) € 1,
R: (z,y,2,p,9) € C(IR?,2) — R(z,y,2,p,9) € IR,
and

E:(z,y) € I— E(z,y) € R,

then we can write the image irradiance equation in coordinate form as

E((L‘, y) = R(III, Y,2, D Q)a
where p = z; and ¢ = z,. This is the image irradiance equation of Horn.

3.2.1 Cut vs. Rolled Edges

We can use the reflectance function and the image irradiance equation to under-
stand the difference between image brightnesses at a cut edge and a rolled edge in an
image. As we discussed in Section 2.2 the bounding contour of an image consists of
those points that are the images of points on the surface where the projection rays
just graze the surface. As discussed in Section 2.2, if i : § — IR?® describes how the
surface is embedded in space, and 7! : IR? — T gives the image projection map,
the bounding contour consists of points where Dx! o Di has rank one, even though
both Dr! and Di have rank two. What happens to the image constant brightness

contours and the values of image brightness at such points in the image?
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a.
Constant brightness contours

Figure 3.4. a. Rolled constant brightness contours: they are almost always tangent to the bounding
contour. b. Cut constant brightness contours: they are almost always not tangent to the bounding contour.

We can consider the fate of the projection of an arbitrary smooth curve 8 : IR —
S onto the image if 3(0) occurs on a bounding contour element. The projected
curve is a(t) = 71 04 o B(t), so the tangent vector to the curve in the image is
o' (t) = D(x! o i) o B'(t). At a bounding contour element, D(x! o 4) has rank one;
this means the range of D (7 o) falls in a one dimensional subspace at the image
bounding contour point—this is the direction tangent to the bounding contour in
the image. Thus, o/(0) is parallel to the bounding contour, and so the projection
of B is tangent to the bounding contour (Figure 3.3a). This hides one potential
complexity: consider a path # : IR — S which itself is parallel to the projection
direction at the bounding contour at ¢ = 0: we have D(x! 04) 0 '(0) = 0. In this
special case, the image of the path 3(t) can approach the bounding contour at a non-
zero angle because the image curve a(t) has a critical point at ¢ = 0: the tangent to
the geometrical path drawn out in the image is not constrained (Figure 3.3b).

Let us take 8 : IR — S as a curve on the surface S which yields a constant
brightness: this means R(3) = ¢, where 3 : IR — C(IR3,2) is the corresponding curve
B =10 on the lifted surface i : S — C(IR?,2). The image contour corresponding
to B will be @ = 71 0 i o B; this is now a constant brightness contour in the image.

The constant brightness contours on the surface, determined by the reflectance
map and orientation of the surface’s tangent planes, intersect the bounding contour
on the surface at varying angles. As a result, almost all the image projections

of the constant brightness contours will be parallel to the bounding contour if the
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discontinuity in the image is indeed due to the surface rolling away from the observer
(Figure 3.4a). If the image discontinuity is due to the surface being cut along some
curve, the projections of the constant brightness contours will almost all hit this
curve at an angle (Figure 3.4b). This provides a clue about whether a boundary of
image brightnesses is due to a bounding contour or to a discontinuity in the surface.

The image brightnesses themselves behave badly near the bounding contour.
Although the image brightness at the bounding contour in the image is defined by
the reflectance function and the tangent plane orientation at the corresponding point
on the surface, the derivatives of the image brightness explode as we approach the

bounding contour. The image irradiance equation can be written as
Eo(x%o0i)=Roj,

where we define 7€ = 1 o IIC, where II€ takes a subspace Wy € C(]R3, 2) and maps
it to the base point p, and 7! is the usual image projection from IR?® to the image.

Taking the derivative of this we have
DE o D(x€ 0i) = DRo Di
DE = DRo Dio (D(x¢01))7},

using the inverse function theorem and the chain rule at image points away from
the bounding contour so that D(x€ o) is invertible. As we approach the bounding
contour, D(7€ o i) has an inverse that becomes larger and larger.!? As a result, the
magnitude of DF will also almost always increase without limit as the bounding
contour is approached, even though the value of E is bounded. This is very like the
behavior of \/z as = approaches 0, and in Chapter 6 we shall make this similarity

quite explicit for generic surfaces.

12 1f A is an invertible matrix, we have det(4~1) = 1/ det(A). As det(A) approaches zero the magnitude
of A™! must explode, since the determinant function is a smooth function on the space of matrices.
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3.2.2 The Invariant Image Irradiance Problem

We can state the image irradiance problem in a form that makes an invariant
approach to characteristic strips possible. We can define the image projection map
as a map on C(IR?,2): as before, we define 7€ : C(IR?,2) — I by 7€ = 71 o 11€ as
the map Wy — 71(p), where TIC is the standard projection of C(IR3, 2) to the base
space IR? and =/ is the image projection. Since II¢ o i = ={ o4, where i is the lifted
version of the embedding ¢, we can write the generalized image irradiance equation

above as

Eor%0i=Roi.
Using the notation for the pullback of a function by a map, we can write this as
i*(Eon%) =i*R,

where for a real-valued function f : M — R, and map ¢ : N — M, the pullback,
¢* f, of the map f is defined as the map ¢* f £ fo¢: N — R. Note that if ¢ is an
embedding of N in M, the effect of pulling back the function f defined on all of M
1s to restrict it to the embedded N.

By subtracting, we can write

i*(Eor® —R) =0.

We define the image dynamical system function

H:C(R3 2 — IR

H=FEon®—R.
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The shape from shading problem can be stated in an invariant form as follows:
given an image and the reflectance function, we are interested in all possible lifted

embeddings of two-dimensional surfaces, i: S — C(IR3, 2), such that
i*H =0,

since these will correspond to two-dimensional surfaces embedded in IR® which satisfy
Horn’s image irradiance equation.

As described in section 3.1.4, this means we are interested in all two-dimensional
submanifolds of C(IR?,2) that restrict to two-dimensional surfaces in IR® and that
satisfy both i*H = Hoi = 0 and i*¢ = 0, where 6 is a contact 1-form. This is now in
a form that can be converted using differential forms to a vector field on C(IR?,2):
solution surfaces are drawn out by curves in C(IR?,2) which are the characteristic

strips. We pursue this in the next chapter.
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A3.1 Smooth overlapping of generalized (z,y,z,p,q)
charts on c(R3,2)

~

To see that two local diffeomorphisms (U, (z, a)) and (U, (&, a)) really are charts
for C(IR?,2), we need to see that their overlap is smooth. We want to know that for
points (z!,2%, 23, a1,a3) € (2,a)(U N U) the map (Z,)(z,a)~! is a smooth map.

To make this calculation, we will look at the coordinates a in a different way by

using the space of linear functionals on tangent vectors, also called the cotangent

vector bundle, T*IR3. Consider the map a : IR? — T*IR? : ¢ — o* given by
a® = qyda! + apdz? — da®.

a defines a 1-form on our coordinate neighborhood. With this definition, and defining

Null(a*) as the null space of ¢, we have
1 0
Null(a®) = Range| 0 1 |,
ay a

since the null space of « is two dimensional and the 1-form « annihilates the columns
of the matrix. If we use a different chart, (U, (&,&)) for C (IR3,2), we have a similarly
defined 1-form &® for each &. If (z,a) and (Z,a) refer to the same subspace W), €

C(]R.3,2), then we must have

W, = Null(a®), = Null(&?),.
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But with 1-forms this occurs only if the forms are linearly related on each T, p]R3;
thus we must have
a® = arda! 4 apda? — dz® = AM(p, a)(@1d& + @pd&® — d3%)

= \(p,a)&"

at p, where A(p,a) is a real number, and hence ) is a function on C(IR?, 2).

We can now express a® in (&,d) coordinates so that we can compare the co-
efficients of the cotangent basis {d#!,d#?,d#}. One way to do this is to use the
algebraic rules for expanding the differential form a®; another way is to observe that

using the = coordinate bases for T,IR%, {8/dz!|,, 8/ 022 |y, 8/82%|,}, we have

V1
aa(V) = (al,ag,—l) V2
U3

in coordinates. If we change the basis for T,IR® to {8/8%!|,, 8/0%%|p, 0/02%|,} we

have
(V) = (ay,a0,-1)X | 92 |,
where X = [0x/0%] is the change of basis matrix for the tangent space. Let
(b,¢,d) = (a1, a2,—1)X,
then we must have
a® = bdz! + cd#? + dd#® = A(p, a)(@1d% + a2d3% — dz%),

and, comparing coefficients of d#!,d#?%, and d#® we must have A\(p,a) = —d # 0,
a1 = —b/d, 4y = —c/d. Since the operations used to get @; and @ in terms of z and
a are locally smooth in nature, and the transition function z +— % is smooth, the

whole transition function (z,a) — (%,&) is locally smooth as well.
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A3.2 Contact 1-forms

The definition of a contact 1-form in a lifted coordinate neighborhood (U, (z, a))
of C(IR?,2) is closely connected to the coordinate work in Section A3.1 above. We

define a contact 1-form on this neighborhood as

0(z,0) = ardz! + apdz® — do?

in coordinates. @ is related to a* defined in Appendix Section A3.1:
0(z,0) = (HC) *(a®) a0 DIIC,

where 1€ : C(IR3,2) — IR3 : W, — p is the standard projection of C(IR?,2), and
a® is the 1-form defined earlier on IR3. This is clearly dependent on the local chart
used; note also that 4 is a 1-form on C(IR3,2), not on IR® — the coefficients of da;
and daz happen to be 0.

At a point p € UNU C C(IR?,2) with coordinates (z,a) and (%, &) in the different

coordinate charts, we have from Appendix Section A3.1 that
&% = \a?,

SO

~

6= (%) *(a%) = (1) *(Aa®) = A6,

where X is a real-valued function on C(IR?,2) as before. Thus if 6 and § are two
contact 1-forms defined on overlapping regions of coordinate charts (U, (z,a)) and

(U, (%,@)) respectively, then on the overlap, the 1-forms are linearly related in the

sense that there is a function f: UNU C C(IR?,2) — IR such that
0= f0

on the overlapping set.

64



Appendiz to Chapter 3

Assume we have an atlas of charts, {(Uy, (2,a)s)} for C(IR?,2) with a corre-
sponding partition of unity p,. We can define the differential ideal I generated
by all pafs, where each 8y is the contact 1-form defined on the coordinate chart
(U (z,a)q). A differential ideal I generated by differential forms {wi,wa, ..., wi} of

a manifold is the graded subalgebra of differential forms

k
I= {Z pi A wi| pi are any differential forms on the manifold} .

1=1
I is a graded vector space of differential forms with the additional A operation; it also
has the property that for any differential form p on the manifold and any differential
form v in I, p A v is also in I. This is the property that makes I an ideal in the
algebraic sense.!
If 6 is another contact 1-form defined using another coordinate chart (U, (z,a)),

then from above we know that on every non-empty U N U, we have

0= faam

where fq is a function defined on U N Uy. Multiplying by the partition of unity we
generate forms pof and pq fob, that are defined (although often zero) on all of U.

Summing over a we have

Zpaa =0= Zpafaaa
o o

on U, since ), po = 1 as {pa} is a partition of unity. Thus any contact 1-form 6
defined on an open set U C C(IR?,2) is in the ideal I in the sense that there exist
functions g4 : U — IR such that § = 3 g8, on U.

! For details, try (Edelen, 1985).
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The Image Dynamical System

We now make the transition from the image irradiance equation to the image
dynamical system. The image dynamical system is essentially the characteristic
vector field defining the characteristic strips in the classical solution of first order
partial differential equations. If F(z,y,z,p,q) = 0 defines a classical first order
partial differential equation for the function z(z,y) with z; = p and 2z, = ¢, then the

method of characteristics is to solve the system of ordinary differential equations

z=Fp

y=1F,

z = pFy, + qF,
p=—(F: + pF)
g=—(F; +qF;)

A solution to this system starting from some point is called a characteristic strip,
where p(t) and ¢() give the orientation of the surface at each point (z(t), y(¢), 2(t))
of the curve. Solutions to the partial differential equation are made up of these char-
acteristic strips; for example, if one chooses an initial strip (i.e. points on a curve
together with surface orientations consistent with this curve) crossing the charac-
teristic strips, the characteristics will draw out a solution surface for the partial

differential equation beginning at the initial curve.
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Systems of ordinary differential equations like the characteristic strip equations
can be thought of as vector fields. Solution curves for the system of ordinary differ-
ential equations are trajectories that are tangent to the vector field everywhere along
their length.

The first part of the mathematical preliminaries section in this chapter shows how
the characteristic vector field can be described invariantly; we can then use different
coordinate systems depending on the task we are trying to accomplish. The material
is more technical than what has come before, relying on ideals of differential forms
and the Frobenius theorem,; it is based on (Edelen, 1985). The main reason for going
through the derivation this way is to allow the vector field to be easily computed using
differential forms in very unusual coordinate systems. We will need this for Chapter
6, where we study the image information at the bounding contour by choosing a
very special coordinate system in which to write the image irradiance equation. The
results of Chapter 5 and Chapter 6 do not depend on understanding the derivation
in Section 4.1.1 in detail. The important idea, that the image irradiance equation
can be analyzed by integrating a vector field, was used by Horn (Horn, 1975) and is
at the heart of all the work reported here.

In the second part of the mathematical preliminaries section, we discuss some of
the concepts behind the study of dynamical systems, essentially the study of vector
fields and the trajectories that are integral curves for them. We define the image
dynamical system as the dynamical system associated with the invariant character-
istic vector field of the image irradiance equation. We also show that in the case
of orthographic projection with space invariant reflectance function and the usual
(2,9, 2, p,q) coordinate system on C(IR3,2), the invariant image dynamical system
is the same as Horn’s characteristic strip equations. In the next chapter we will be-
gin examining the image dynamical system with a technique from dynamical systems

analysis, looking at the behavior near critical points.

68



Chapter 4 The Image Dynamical System

4.1 Mathematical Preliminaries

4.1.1 From First Order PDE to Vector Field

We begin by looking at some abstract results on ideals of differential forms and
vector fields. The approach taken here is algebraic, relying on certain operations
defined to act on differential forms, such as the Lie derivative, the contraction (also
called the interior product), and the wedge product. For details of definition and
properties of these operations which give differential form analysis its peculiar effec-
tiveness, we refer to (Abraham, Marsden, and Ratiu, 1983) and to (Edelen, 1985)

from which much of this material was adapted.

4.1.1.1 Differential Ideals and the Frobenius Theorem

In the last chapter we discussed the notion of a differential ideal of differential
forms as a vector space of differential forms which is also an ideal under the wedge
product of differential forms. We define a characteristic vector field v for an ideal T
on the manifold M to be a vector field such that for all w in I, the contraction iyw
is also in I; this is written as iyJ C I.!

The set of all characteristic vector fields, V, for an ideal I is a module (essentially
a vector space) over the set of real-valued functions on the manifold: that is, if v is a
characteristic vector field, so is fv, where f is a function: this is because i fv = fiv.
There is an operation called the Lie bracket on pairs of vector fields which generates

another vector field: [u,v] is defined as L,v, where L is the Lie derivative with

! The differential form ivw is the contraction of the differential form w by the vector field v, defined as

. A
ivw(ve,...,vm) = w(v,va,...,vm),
so that ivw is a differential form of one degree lower than w. By useful convention, ivf is taken to be 0

where f is a 0-form, i.e. a function. The contraction operation takes a k-form and generates a (k-1)-form
by plugging in a vector field into the first position of the k-form.
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respect to the vector field u.Z The Lie algebra of vector fields over the real numbers
is defined as the vector space of vector fields together with the Lie bracket as a
product operation on vector fields. If T is a closed ideal, meaning for all 8 € I we
have d@ € I® (also written dI C I), then the space of characteristic vector fields V
is a Lie subalgebra of the Lie algebra of vector fields over the real numbers.? To see
this, we first use one of Cartan’s “magic formulas”: for any differential form w, and
vector field v,

Lyw = iydw + diyw,

where Lyw is the Lie derivative of w with respect to the vector field v.5 If v € V is

a characteristic vector field for the closed ideal I and w is in I, this says that Lyw is

2 The Lie derivative operation, L, can be invariantly defined to operate on tensors, including vector
fields, functions, and differential forms. It represents a kind of derivative along the flow of the vector field:
one definition is that

d
Lvw= a[(Ft)*w]lmo,

where F} is the flow of the vector field v (flows of vector fields are discussed in more detail in Section 4.1.2):
since D(Fy) maps T, M to Ty M where ¢ = Fi(p), the pullback, (F¢)* takes structures on TyM and pulls
them back to Tp M for all t. Thus, (Ft)*w is a curve of (linear) structures on the vector space TpM for all
time, and its time derivative will also be a linear structure on T, M. By pulling elements along the flow line
of v back to Tp M we can take a derivative without having to move to a new and more complicated tangent
space: we take advantage of the linear structure of T, M.

SHfwisa k-form, then dw is a (k+1)-form which is in some sense a derivative of w. The operation d
can be invariantly defined; however, it may be easiest to think of it in coordinates: if

W= Z fi‘,...,a‘,,d-"?u /\.../\Iik
<. <8

is the coordinatized version of w in the chart (zl, ...,z"), then we define

dw = Z dfiy i Az AL AL
011<. . <y

where dg 2 %ﬁ-dzl + ..+ ﬁ%dm" is defined as the differential of the function g. The operator d has
various useful properties in combination with the contraction operation, the Lie derivative, and pull-backs:
for example, d(¢*w) = ¢* (dw), so that d commutes with pullback. See (Abraham, Marsden, and Ratiu,
1983) and (Edelen, 1985) for more details.

4 This means that V as a linear subspace of the vector fields turns out to be a Lie algebra on its own if
I is closed: if u and v are vector fields in V, then so is the Lie product [u, v] defined as Lyv.

5 For this and other properties, see (Abraham, Marsden, and Ratiu, 1983).
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also in the ideal I: because v is a characteristic vector field, iyw is in I; because [ is
closed, dw and diyw are also in I, and finally I is a vector space. If we have v and u

as vector fields on the manifold, and w a differential form, we also have the identity
Lu(ivw) = i(p,v)w + iv(Luw);

essentially, the Lie derivative treats iyvw as a product, and iyw is sometimes referred
to as the interior product of v and w. Rearranging this identity, for u and v both

characteristic vector fields of the closed ideal I, we have
i(Luv)w = i[u,v]w = Lu(ivw) - iv(Luw) €l

and so [u, v] is also a characteristic vector field.

The Frobenius theorem for vector fields asserts that a Lie subalgebra of vector
fields is integrable; i.e., through each point p of M there are submanifolds : : N — M
of the same dimension as the Lie subalgebra, V, such that the Lie subalgebra V spans
the tangent space to ¢(IV) at each point p of N. In our case, V is the space spanned by
the characteristic vector fields. Let us assume the characteristic vector fields for the
closed ideal I span a space of dimension r at each point; then an integral manifold
N of the Lie subalgebra of characteristic vectors V has dimension r as well.

The integral submanifold : : N — M solves the ideal I in the sense that for all
win I, i*w = 0. To see this, assume w is a k-form. If uj,uy,...,u; are in T,N, we

have

(i*w)(ug, vy, ..., u;) = w(Di(uy), Di(uy),. .., Di(uy))
= w(V1,V2,..., Vk),
where v; = Di(u;) must be characteristic vectors for I since they are in the tangent
space of the integral submanifold N for V. We know that iyw € I for any w € I,
and since

iy oAyl w = w(Ve, Vo, ..., V),
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we know that this 0-form (or real-valued function) must be in I. The only 0-form in
I is the 0 function, since I is assumed to be generated by forms of degree 1 or higher;
hence, i*w = 0.

If we begin with a differential ideal I that is not closed, we can augment I by
adding in all the differential forms dI to make a new ideal . Since I C I, solution
surfaces for I will be solution surfaces for I. Solution surfaces for I are also solution
surfaces for I. If 7 : N — M is a solution suface for I, then we know i*8 = 0 for
any § € I. This means d(:*0) = :*(df) = 0, and as a result, i*¢ = 0 for any § € I.
Hence, N is a solution surface for I as well.

In our case, the base manifold M is really C (IRS, 2), a five-dimensional manifold.
We begin with the ideal T generated by the connection 1-form ideal I and the 1-form
dH, where H is a real function, H : C(IR%,2) — IR, the image dynamical system
function. We find the closure, I, of this ideal by including all the forms d6, where
0 € I is a connection 1-form. A solution surface for our shape from shading problem
will be a submanifold that solves this ideal and on which H has value 0: solving
the ideal means finding submanifolds i : N — C(IR?®,2) such that i*dH = 0 and
i*0 = 0, so that i*H is a constant (we are interested only in those with i*H = 0).
The submanifolds are potentially lifted surfaces from IR3. Note that if just one point
p on such a solution submanifold has H(p) = 0, then the whole surface obeys this
constraint.

This ideal for the shape from shading problem has a characteristic vector space of
dimension one in general. This is a result of the constraints on a characteristic vector
field: if v is a characteristic vector for I, then from the definition of a characteristic
vector iy# must be a 0-form, or real-valued function, in I. The only 0-form in I is the
zero function, so iy@ = 0 for all connection 1-forms #. We must also have iy,dH =0
for the same reason. Finally, we must have iydf = af + bd H, since these are the only
possible 1-forms in I (up to function multiplication). We can look at the tangent

space TpC(IRa, 2) at a point p and see how these three constraints on a characteristic

72



Chapter 4 The Image Dynamical System

vector restrict the possible space of characteristic vectors at p to a one-dimensional
space. We do this in the Appendix to this chapter. Since V has dimension 1, we have
one-dimensional submanifolds i : N — C(IR?,2) on which i*¢ = 0 and i*dH = 0.

These are the characteristic strips of the classical method.

4.1.1.2 Isovector fields and extension of solutions

Another kind of vector field associated with an ideal is the set of isovector fields
of the ideal. A vector field v is an isovector field for an ideal I if for all  in I the
differential form L8, the Lie derivative of # with respect to v, is also in I. This is
also written LI C I.

For a closed ideal I, i.e. dI C I, the characteristic vector fields of I are also
isovector fields: this was essentially shown above, since for a characteristic vector
field v

L0 =iydd+div6 eI

because I is closed and iyI C I by definition. Isovector fields of an ideal provide a
way of extending solutions to the ideal: if i : N — M is a solution surface (not
parallel to any of the characteristic vectors along it) for the ideal I so that :*I =0,
and v is an isovector field for I, then we have a new solution for the ideal of one

higher dimension given by

j:NxIR—M

j:(pys) — Fs0i(p),
where Fy : M — M is the flow on M generated by the vector field v (see Section

4.1.2 for more on flows due to vector fields):

L F@)lamo = v(p)

Fo(p) = p.
We show this in the Appendix to this chapter. Essentially, we use the flow lines
generated by the isovector field to take points on a lower dimensional solution and

extend them to a higher dimensional solution.
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Given an isovector field for an ideal and a solution surface for the ideal, we can
generate higher dimensional solutions for the ideal if the lower-dimensional solution
does not contain the isovector field in its tangent space. In the case of characteristic
vectors for the closed ideal generated by the contact 1-form 6 and the function
H : C(IR?,2) — IR, this is exactly the classical method of characteristics for finding
solution surfaces of the first order partial differential equation H = 0 given a curve of
initial data; we use the flow due to the characteristic vector field to extend an initial
solution curve. Using differential forms the method is extended beyond the range of

a single coordinate chart. ©

4.1.2 Vector Fields and Flows as Dynamical Systems

As we saw in Chapter 2, every point p on a manifold M has a vector space
associated with it, T, M, and these vector spaces can be bundled together into a new
manifold called the tangent bundle, TM.” If we choose an element v(p) € T,M in

each vector space for each point p on the manifold we have a vector field on the

S There is another approach to this kind of problem: instead of focusing on the space C (IRa, 2) of tangent
planes, we can look at the space of orientation vectors for tangent planes. It turns out to be conveniant to
use the dual space to the tangent bundle for this purpose, where the dual space T*IR? consists of all possible
linear functionals acting on the tangent spaces Tpl'Ra. We can generate a Hamiltonian problem on T*IR3
corresponding to the characteristic problem on C(IR3, 2) using the symplectic 2-form w = dz Adp+dyAdg
on T*IR3; the contact 1-form on C(IR.a, 2) essentially becomes the canonical 1-form on T* IR3. Trajectories
of this Hamiltonian dynamical system are again related to characteristic trajectories; note that the problem
is now set in a six dimensional space.

7 We can generalize the idea of the tangent bundle to the notion of a vector bundle: we have two
manifolds related by a map 7 : E — M, such that w—l(p) is a vector space (isomorphic to some constant
vector space V for all the different p). We then speak about a map v : M — E as a section of E if
wov(p) = p; in other words v picks out a vector in the vector space connected to p. In our case of a tangent
bundle, we have the map 7 : TM — M which takes any vector v € TyM C TM to its base point p € M,
and TpM = 7r'1(p), so the tangent bundle is a vector bundle, and a vector field is a section of this bundle.
The idea of a vector bundle can be used to construct lots of linear structures and tools for working with
tangent bundles: typically tools from linear algebra form vector spaces, so we can put a copy of each such
vector space “above” each point on the manifold to help work on the tangent space at each point.
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manifold. Another way to think of this is as a map v : M — TM taking a point p
to a vector v(p) e T,M C TM. ®

We can pick coordinates to examine the detailed behavior of a vector field: if
we take a chart (U, ¢) for M around a point p € M, then at p the intrinsic vector
v(p) = [(¢,v)] has a coordinate representative v € IR™ using the chart ¢. As
discussed in Chapter 2, one way to find this coordinate representative is by using
paths: say v(p) can be thought of as the tangent vector at time ¢ of the path
«: JR — M. The coordinate view of this path, ¢ o a, will have v as its derivative at

t = 0: using the derivative map, we have D(¢ o a)¢(1) 2 (¢ o a)(t),so
D(¢o0a)i(l) = Do Day(1) = D¢ o v(p).

It turns out that for a vector field X : M — TM we can find paths a(t) such
that o'(f) = X(a(t)) for an entire interval of t’s; in other words, at each point
along the path, the time derivative of o is the same as the value of the vector
field at the point on the path. In fact, we can find an entire family of such paths,
F(z,t) : M x IR —» M such that %F(z,t) = X(F(=z,t)), and with the following
additional properties: F(z,0) = z, so that the path F(z,t) can be thought of as
starting from z at ¢t = 0, Fy(Fs(z)) = Fit+s(z), where Fy(z) = F(t,z), F is smooth,
and under certain mild conditions, F' is unique. F' is called the flow of the vector
field X, and the properties about it are proved using the fundamental existence
theorem for ordinary differential equations on IR": essentially, we can use charts to

convert the problem into problems on patches of IR® and tie these together.® If the

8 Note that even though we are actually making statements about mappings from the manifold to a set
of equivalence classes, we can quite happily ignore this formal “complication” and reason as if we were still
at home in IR™. Even cleaning up the details does not make much reference to the underlying equivalence
classes; one speaks about taking coordinate charts and applying them to vectors and points.

¥ Again, for technical details see (Abraham, Marsden, and Ratiu, 1983).
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g=1 &/\/\

Figure 4.1. The pendulum dynamical system: a. The physical system. b. The flow lines; the vector field
is tangent to the flow line at each point.

vector field is thought of as a field of velocity vectors for a fluid, the flow tells how
a lightweight particle in the fluid would move over time.

A vector field on a manifold is called a dynamical system. The flow lines Fy(z)
considered as a function of ¢ are the trajectories of the system. As an example
of such a dynamical system, consider the simplified equation for a two-dimensional

pendulum:
d2

@0 = —sin 0

If wetakez =0 and y = é, we can write this second order equation as a pair of first

order equations:
T=y

y = —sinz.

We can package z and y together and consider the vector field

—sinz

X(w,y)=[ ’ ]

as a vector field on IR%.19 A flow for this vector field will be a map F : IR?xIR — IR?

10 We could be more careful and consider it as a vector field on the manifold T'S ! the tangent bundle
of the unit circle; the angle 8 is a chart for the circle, and the angle and angular velocity together give a
tangent vector to the circle, i.e. a point of T'S!. The vector field tells the time derivative of the position
and velocity at each point of T'S!,
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such that
d
g P)le=0 = X(p);

if we consider (z(t), y(t)) = Fy(x(0),y(0)) to be a path along the vector field starting
at (2(0),y(0)), then we get solutions to the first order differential equation (Figure
4.1).

Part of the task of studying a dynamical system is to connect features of the
vector field with features of the flow. An important feature of a vector field is a
critical point, a point p € M where the vector field is the 0 vector of T, M. p is then
a fixed point of the flow F, that is F((p,t) = p for all ¢: the flow “line” Fy(p) = p is
consistent with the vector field, since adT(Ft(p)) = 0. For example, in the pendulum
case, both the origin (0,0) and the point (7,0) are critical points: X = 0 at these
points. The behavior of the flow lines around these two points is quite different: at
the origin, the flow lines form circles around the critical point describing how the
pendulum oscillates back and forth around the origin, with velocity about ninety
degrees out of phase with position. At (7,0) we have a very different picture: we
seem to have two flow lines intersecting at the critical point. In fact there are
four trajectories that approach infinitely close to the critical point at (7,0). One
pair of these are trajectories for the pendulum that become infinitely slow at the
top of the pendulum’s arc (§ = 7), and the other pair are trajectories which begin
infinitely close to the top of the arc with near zero speed and begin to move away with
increasing speed. Other flow lines run near these four trajectories without touching
the critical point. We shall have much more to say about critical points and their
classification in the next chapter.

One of the questions that comes up in the study of a dynamical system is that
of stability: what features of a particular dynamical system remain even if the sys-
tem is slightly perturbed, e.g., the vector field is changed a bit? There are several
ways to define what is meant by a dynamical system remaining substantially “un-

changed”: we shall consider two dynamical systems to be related if the flow lines are
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topologically equivalent in the two systems, i.e. there is a homeomorphism from one
dynamical system to the other which maps flow lines to flow lines.

Part of the difficulty in answering questions about stability is in defining what
sorts of perturbations we are interested in. For example, if we are studying a partic-
ular class of vector fields (Hamiltonian vector fields, for example) we have to decide
if we are interested in questions of stability in the set of all Hamiltonian vector fields,
or stability in the set of all smooth vector fields: the difference can be important. In
the pendulum example, if we modify the vector field by adding an arbitrary small
smooth vector field to all the points, it turns out that the circular closed orbits around
the origin will in all likelihood disappear and become trajectories that spiral in or
spiral out from the critical point (friction will make the trajectories spiral inwards,
for example); the character of the trajectories near (0,7) will be unaffected. On
the other hand, if we restrict ourselves to perturbations that give energy conserving
Hamiltonian dynamical systems “near” the original, it turns out the closed orbits
near the origin are a stable feature of the vector field.

A perturbation approach can be useful in understanding the computational feasi-
bility of a particular dynamical system. If one actually tries to implement a dynam-
ical system on a computer, one has to face the difficulties of discretizing a smooth
theoretical construction. One way to model this is as a (presumably small) per-
turbation from the original problem to the discretized one. Unless special care is
taken, this discretization perturbation will not be very forgiving of restrictions on
the class of dynamical systems in which a feature is stable: it may be quite dif-
ficult to accurately study features that are unstable under relatively general small
perturbations.

The computational problem is one kind of perturbation stability to be concerned
about. Another comes from the lack of exact knowledge about the dynamical system
itself. In the image dynamical system we will construct, we assume we know the

reflectance function. It is of interest to know how features of the dynamical system
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change if we have made a small mistake in this regard. This is different from the
computational perturbation in that the perturbation of the reflectance function may
generate a quite restricted perturbation of the vector field due to the special form of
the vector field. This sort of perturbation study is an open question for the image

dynamical system.

4.2 The Image Irradiance Dynamical System

As indicated last chapter, we can summarize the image solution problem as the

question of finding lifted solution surfaces i: S — C(IR3,2) such that
i*H =0.

We can consider this problem to be that of finding all two-dimensional submanifolds
projecting to two-dimensional manifolds in IR® and such that i* H = 0 and i*0 = 0,
where 6 is any contact 1-form.

The function H = E o 7% — R defined in Chapter 3 essentially determines a first
order partial differential equation. As described above, we can use contact 1-forms
and the calculus of differential forms together with the Frobenius theorem to convert
the above problem into a vector field integration problem. The characteristic vector
field derived in the last section is the same as the characteristic vector field of Horn,
but is not tied to a particular coordinate representation.

We can show that the characteristic vector field is the same as Horn’s charac-
teristic strip equations in a particular coordinate system. We will work within the
following framework: we assume orthogonal projection and global rectilinear coordi-

nates for IR® and the image plane such that in coordinates we have

wl(z,y,2) = (z,y).

We also assume a space invariant reflectance function so that R(z,y, z,p, ¢) = R(p, q).

We want to find the components of a characteristic vector field X. We have the
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constraint ixdé = a6 + bdH. In coordinates, we have § = dz — pdz — ¢dy, df =
dz Adp+dy A dg, and dH = E,dz + E,dy — R,dp — R,dq. Using the definition of
contraction acting on the wedge product,!! the constraint ixdd = af + bdH on the
characteristic vector field X = (X;, Xy, X, X,, X,) in coordinates becomes:
Xzdp — Xpdz+Xydg — X,dy
= a(dz — pdz — ¢dy) + b(E,dz + Eydy — Rydp — R,dq).

Gathering together coefficients of the basis 1-forms dz, dy, dz, dp, dg, we have

a=0
Xy = —bR,
Xy = —bR,
Xp = —bE,
Xq = —bR,.

We also haveixf = 0; evaluated in coordinates this contraction becomes X, — pXg—

gXy = 0. Thus, in coordinates our vector field X looks like

R,
Ry
X =—b| pRy+qR,

x

E,
where b is an arbitrary constant. An integral path for such a vector field with b = —1

would have
Ry
Ry
= | pRp+qRy | ;
T

q Ey

these are the characteristic strip equations as derived by Horn (Horn, 1975).

d

d¢

W w8

11 1t can be shown that
iv(0A W) = (iv8) A w+ (=1)FI A (ivw),

where 6 is a k-form: see (Abraham, Marsden, and Ratiu, 1983).
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We can view the shape from shading problem as a dynamics problem on C(IR?, 2),
where the dynamics are defined by the characteristic vector field. The dynamical tra-
jectories of the system essentially draw out characteristic strips on possible solution
surfaces. A possible solution surface is therefore an invariant surface of the char-
acteristic flow, in the sense that points on the surface move to other points on the
surface under the characteristic flow.

As Horn recognized, some way to choose a subset of the characteristic trajectory
strips is needed: they fill a volume of C(]R.3,2). One way might be the specifica-
tion of an initial non-characteristic trajectory from which to draw the rest of the
surface using characteristic trajectories: this is the classical Cauchy problem of first
order partial differential equations. Unfortunately, we do not usually have such an
initial strip given. How can we reduce the ambiguity in the choice of characteristic
trajectories that will make up a solution surface?

One way to look at the ambiguity of solution surfaces is to consider how many
solution surface patches are consistent with a small image patch and the given re-
flectance function. We can examine patches without critical points or bounding con-
tour points, patches with just critical points, or patches with just bounding contour
points, for example.

If the image patch does not contain critical points of the image intensity or any
bounding contour elements, then we can take a curve (z(t),y(t)) in the image patch
and specify depth values z(¢) along it. The image irradiance equation E(z,y) =
R(p, q) and the contact 1-form integrability condition z’ = pz'+qy’ will almost always
lift this curve in IR? to a curve in C(IR%,2) by determining p and ¢. If this curve is
not tangent to any of the characteristic curves (this is one reason critical points have
to be excluded), then a solution patch will be drawn out by the characteristic curves
from this initial curve in C(IR? 2). The ambiguity of smooth solution surfaces for
such an image patch can be summed up by the smooth specification of depth values

along a given path in the image.
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There may be problems with such solutions as they are extended beyond the
bounds of a small patch. One kind of problem that may arise is the folding of
the surface “unnaturally” in C(IR?,2) in such a way that no possible space surface
could have generated it without self-intersections or other strange behavior we do
not expect for a surface consistent with a smooth image. This is an open area for
exploration.

We look at ambiguities of an image patch which contains a critical point in
the next chapter. The use of critical points to help determine solution surfaces
was first explored by Horn (Horn 1975) who used the critical point to generate an
approximate initial contour on the surface from which to draw the rest of the surface
with characteristics. Bruss (Bruss 1980) made further theoretical progress for a
particular class of reflectance functions.

Critical points in the image due solely to critical points in the reflectance function
determine critical points of the characteristic vector field on C(]Rs, 2). The key idea
exploited in the next chapter is that a possible solution surface for a smooth region
of an image containing a critical point should be a smooth, invariant manifold of
the image dynamical system containing the corresponding critical point of the image
dynamical system. As we shall see, in general this provides strong constraints on
what the behavior of the surface can be, since most characteristic curves near a
critical point will not actually approach the critical point.

In Chapter 6 we look at ambiguities in solution surfaces for an image patch
containing a piece of bounding contour. As indicated in Chapter 2, the bounding
contour is a curve in the image for which we actually know the surface normal
direction at each point. We will suggest that local patches of bounding contour
image data provide more of a constraint on the reflectance function than on the local
behavior of the surface near the bounding contour: given the correct reflectance
function, we hypothesize (and show to third order) that the surface is determined
only up to a choice of depth values along the bounding contour in.the image, very

similar to an image patch in the interior without critical points.
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By examining the task of extracting shape information from shading in an image
of an image. :




Appendix to Chapter 4

A4.1 The dimension of the characteristic subspace

We show here that the characteristic subspace of the closed ideal generated by
the contact ideal and the function H : C(IR?,2) — IR is in general one dimensional.
One way to do this is to look at the coordinate representation of these constraints
using matrix notation. Pick a coordinate neighborhood (U, (z, a)) for C(IR?,2) used
to define a connection 1-form 4. In this coordinate system we can write the 1-forms

0 and dH as
0 = dz® — a1da’! — apda?
dH = Hydz! + Hydz? + Hydz® + Hyda; + Hsdas.
The 2-form d# is an antisymmetric 2-tensor at p, and so can be represented as an

antisymmetric 5 x 5 matrix, A. In this coordinate system we have df = dz! A da; +

dz? A das, so in matrix form we can write

OO O
SO O = O

where
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using the coordinate vector representations for u and v. As row vectors in this

coordinate system we can write
0= [_ala —az, 170a0]
dH = [H., H,, H3, Hy, H3].

Two conditions for a characteristic vector v, §(v) = 0 and dH(v) = 0, can be

combined and rewritten in matrix form as

Al=-ay —az, 1 0 0
WV_[Hl H; H3; H, Hs]

[ B S N
Il
==l

v
v
v
v
v

The condition ivdd = af+bd H can also be written in vector form in the following
way: there exists a 2-vector u € IR? such that

Ta _.T|—@1 =—-a2, 1 0 0} T
viA=u [Hl H, H, H, HS]—uW.

Notice that the rows of the matrix on the right are the representations of § and dH.
The assertion of the matrix statement is that the 1-form iydé (represented by the row
vector vI'A) is a linear combination of § and dH (represented as row vectors) with
coefficients given by the 2-vector u. By making an augmented row vector [v7,u”],

we can write this condition as

(vT, uT] [ﬁv} — 0.

We can add the two 1-form conditions to this expression by augmenting the

matrix:

(v, uT] [_““N VXT] — [0,0].

If we find an augmented non-zero vector [v1,u”] such that this condition is obeyed,

then the v part obeys the conditions for a characteristic vector.
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Since the augmented 7 x 7 matrix

~al A WT
A=l_w o
[ 0 0 0 1 0 —al Hl_
0 0 0 0 1 —ay Hy
0 0 0 0 0 1 Hj
=1 -1 0 0 0 0 0 Hy
0 -1 0 0 0 0 Hy
a as -1 0 0 0 0
|-Hy —-H; —-H3 —-Hy —Hs| 0 0

is antisymmetric, it has maximum possible rank 6 (an antisymmetric matrix always
has even rank); by examining the columns of the matrix, one can see that the matrix
always has rank 6. There is always a one dimensional subspace of augmented vectors
[vT,uT] such that [vT,uT]A = 0. If the v part of an augmented vector in this
subspace is non-zero, then it is a characteristic vector, since by the above construction
ivd = 0 € I for connection 1-forms 0, ivdH =0 € I, and i,df = ab + bdH € I, so
iICI
When will the null space of A have a v component that is zero? For this to

happen we must have uZ W = 0, which means the two 1-forms § and dH are a
dependent set. This could happen either because they are linear multiples of each
other, or when dH = 0. Assuming the coordinate representation used previously for
image projection 7! : R® — T : (21, 2%, 2%) — (2!, 2?), and using the definition
of H, dH = 0 describes a kind of picture function extremum which occurs when

E,ax =R,

E,: =R,

Rys =Ry, = R,, =0.

In the space invariant reflectance function case where R;1 = R,2 = R,s = 0, this
means that an extremum has occured in both the image brightnesses and the image
reflectance function. The case where dH and 6 are dependent also reduces to this

case if the reflectance function is space-invariant.
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For the most part, the v component of the augmented vector will be non-zero
and therefore there will be a one-dimensional set of characteristic vectors for the
ideal 1.

A4.2 Extension of solutions by isovector field flow

We show here that if F; is the flow of an isovector field v of a differential ideal
I, then the embedding j : N x IR — M given by j(p, s) = Fs(:(p) extends a solution
surface 2 : N — M for the ideal I by one dimension.

To see that j is a solution to the ideal, we observe that
§*0 = i*F,*0.

It turns out that F;*I C I : one way to see this is to observe that

d d
a;(Fs*a)ls=s' = E(Fs’+t*0)|t=0
d
= I (Fe0)limo
= Lv(Fg'*a),

since (d/dt)F*w|i=o = Lyw, the Lie derivative of w with respect to v, for any

differential form w. At s = 0 we have
F*0|,=0 = 0.

If we consider these two as a first order differential equation on the vector space

(here thought of as over the real numbers) of differential forms, i.e.

L (s) = Lupls)

p(0) =0,
where Ly is now a linear operator on the real vector space of differential forms, we

have the operator series solution given as
A > . .
p(s) = exp(sLy) o0 8 = (Z s'L'v> 6.
1=0
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By uniqueness of the solution p(s) to the differential equation with initial condition,

we must have

F,*0 = exp(sLy) 0 0.

We have assumed that Ly C I since v is an isovector field; thus, the series expression

o0

Z s'Li | 0

1=0

must also remain in I for all  in I, and so F,*1 C I.!

Since 1 is a solution for I we have i*I = 0; since F;*I C I, we have :*F,*I =0,
and hence j(s,p) 2F s(2(p)) is a new solution for the ideal I. In order for j to be an
embedding Dj must have full rank. To calculate Dj we observe that if we consider

the flow F; of the vector field vasamap F: IRx M — M : (s,p) — Fs(p), then

DF:TRxTM —TM

r
u

or- [} ~o0(]

1 Another way to see this is to consider the space of all differential k-forms on M as an infinite

dimensional manifold, M, with individual forms § being points on the manifold. It so happens that this
space is a vector space: we can add points in the space, and multiply by scalars (real numbers here).
The tangent space, Ty M, to a point # in this manifold is therefore equivalent to the original space itself,
Ty M = M, and at each point Ty M will also be infinite dimensional. A tangent vector can be considered
as an ordered pair of k-forms, e.g. (4, p) € Ty M, with @ being the base point, and p giving the tangent
vector representative in M. A vector field on this new manifold consists of a choice of tangent vector for
each base point in M. We can consider Lv to be a vector field: for each point # in M, we consider Ly
to pick out the tangent vector (#,Lv8). We can now properly consider the flow of this vector field on the
manifold M, F; : M — M where

7Oz = (Lu)(0) = (0, L9)
Fo(8) =6

defines the flow for the vector field Ly on the infinite dimensional manifold M. If the vector field L+
restricted to a submanifold I of M lies completely in the tangent space to I, then we know that the
induced flow of a point on the submanifold 7 must also lie in this submanifold. In our case, I is the set of
k-forms in the ideal I, and is in fact a subspace of M. The vector field Ly at a point 8 € I is also in I when
v is an isovector field, since Lv8 € I. The flow is the flow F,, and so F;(#) € I. By uniqueness of solution,
we know F,(8) = F;*9, and so F,*I C I.

88



Appendiz to Chapter 4

where we have split the derivative DF into two components, the first with respect
to flow time and the second with respect to location on the manifold. From the flow

equation we know that

DlF(s,p) = V(F(S,p)),

where (s,p) € IR x M. At (s,p) we have
d d
V(Fs(p)) = (Fro Fy)li=o = - (Fs 0 Fr)lt=0 = D2F(s,p) 0 V(p).
Since j(s,p) = F o (s,i(p)), we have

. r [ 1 0 r
pien[i] - oo 2] 3 32

= |DF DgFoDi] [";]

_ :V<F(s,i(p)>) DzFoDiP] [u]

- :DzFov(i(p)) DzFoDz'p] []’;]

and so the rank of j is full if and only if v(:(p)) and Di, span independent spaces
for all p € N. Note that this condition needs only to be verified along the lower
dimensional submanifold : : N — M, not along the flow lines: the flow of v is a
diffeomorphism so that Dy F' is full rank, and this makes j an embedding throughout

the range of definition of the flow if it is an embedding along the initial submanifold.
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Chapter 5

Critical Points of the Image Dy-
namical System

In this chapter we discuss the role of critical points in the image in determining
solution surfaces for the shape from shading problem. The main result is that in
general (i.e. generically, in the absence of special symmetries) near certain kinds of
critical points in the image there are at least two and at most four possible solution
surfaces. These critical points are due to critical points in the reflectance function,
and are either the result of local maxima (the usual case) or minima in the reflectance
function. More complicated behavior may occur with saddles in the reflectance
function; more work is needed to understand this case completely.

We use the image dynamical system developed in the last chapter and apply a
technique from dynamical systems theory called linearization to study the behavior
of the dynamical system near the critical points. Linearization essentially involves
looking at the first order behavior of the characteristic equations around the critical
point to get a linear dynamical system with behavior similar to the nonlinear system.
A linear dynamical system X = A - x can be analyzed by looking at eigenvalues and
eigenvectors of the matrix A, and in general invariant subspaces of linear dynamical
systems are vector spaces spanned by sets of eigenvectors. If the eigenvalues of the
nonlinear system do not have zero real parts, the invariant manifolds of the nonlinear

system are topologically isomorphic to those of the linear system on a neighborhood
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of the critical point. We analyze the image dynamical system in this way to get
results.

We look to see when critical points in the image are “good” critical points to
which this analysis can be applied, and we look at the connection between the re-
flectance function critical point type, the surface type at the critical point, and the
type of the two-dimensional image dynamical system restricted to the correct solution
surface.

Two of the invariant manifolds that are possible solution surfaces are the stable
and unstable manifold. Simply reversing time interchanges the labels, so it is of in-
terest to have ways to find, say, unstable manifolds for the image dynamical system.
In Section 5.3 of this chapter, we show a method based on a mathematical theorem
called the Lambda Lemma: we take an initial surface that cuts the stable mani-
fold, and allow it to flow forward using the image dynamical system. The Lambda
Lemma says that as ¢ goes to infinity, the deformed surface will C* approach the
unstable manifold (Palis and de Melo, 1982). We show some experiments using the
Connection Machine, a highly parallel computer, on implementing this idea. The
resulting methods seem to have good noise tolerance and robustness in the face of

wrong information about reflectance functions.

5.1 Mathematical Preliminaries

Modern dynamics has emphasized the study of the local behavior of trajectories
near critical elements of a system. There are three types of critical elements to
consider: one type is the closed orbit with a finite period; another type is a critical
point of the vector field, i.e. a point p where X (p) = 0; this can be considered as
a trajectory with infinitely short period. Finally, there are other critical elements
which can be described as chaotic. We will concern ourselves exclusively with critical
points; existence and properties of the other critical elements for an image dynamical

system is an open area for research.
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Dynamicists have been very interested in the stable and unstable manifolds, S+
and ST, associated with a critical element in a vector field as a way of classifying
the critical point and studying its interaction with other critical points. The stable
manifold contains those trajectories that wind towards the critical element as time
along the trajectory proceeds in the positive direction; the unstable manifold con-
sists of the trajectories that wind towards the critical element with decreasing time.
“Wind toward” means that the critical elements are approached in the limit as time
runs to infinity, positive or negative in the stable and unstable cases respectively.
In our situation, “time” is just a parameter along the trajectories of interest, so the
stable and unstable manifolds are quite similar in character: they are sets that are
invariant under the flow of the vector field, they include the critical element, and

they contain trajectories that all approach the critical element asymptotically.

5.1.1 Critical Points and Invariant Manifolds

Much of the methodology comes from (Abraham and Marsden, 1985). To ex-
amine in more detail the trajectories near a critical point, we can use the linearized
version of the vector field. If p is a critical point for the vector field X on a manifold
M, we define the linearized vector field X' on the vector space T,M around p as a

linear map R
oM — T,M

d
! —
X (’U) - d\ (DGA('U)) IA:O)
where G is the flow for X. This definition makes sense, as G)\(p) = p since p is a

critical point for X, so

DGy : T,M — T, M,

for all A. The curve A +— DG (v) for fixed v is a curve in the fixed vector space T,M
and so we can sensibly take the derivative with respect to A and still get a value in

the vector space Tp M.
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In a coordinate system z on M, it can be shown that the matrix of X' is simply
given by ‘
i
-3
(Abraham and Marsden, 1985). We consider T, M to be an approximation to the
manifold near p: a small vector v in T, M represents a point near p. X'(v) is the
first order linear approximation to the vector field at this approximate location.
This is also suggested by a Taylor series argument in IR*: we have X(z + h) =
X(z) + DXg(h)+--+; our X' in coordinates is essentially the derivative DX. At a
critical point z., X(x.) = 0, so the derivative approximates the vector field near z..
What is the behavior of X’ on the tangent space to an invariant manifold through

the critical point? Let S be the invariant manifold containing the critical point p.

We must have

GA(S)C S

by definition, and since G is a diffeomorphism, G)\(S) is also two-dimensional. Thus,
D(Gy)p (TpS) = TS

for all A and hence X'(TpS) C TpS. Thus, the tangent space TpS to the invariant
manifold of the vector field X at the critical point is an invariant linear subspace of
X'. If X'(TS) is one-dimensional, then T,S contains a zero-eigenvalue eigenvector
for X'.

If we have a linear operator on a vector space, A : V — V, what are the
invariant linear subspaces of it? Linear algebra provides some information about
this: if A is diagonalizable, every two-dimensional invariant subspace is the span

of two eigenvectors of A.! If A has eigenvalues with multiplicity 1, the number of

! Concepts from (Hoffman and Kunze, 1971): if W is an invariant subspace of A so that AW C W, we
can define Alyy : W — W as the restriction of A to W. The minimal and characteristic polynomials for
Alw divide the minimal and characteristic polynomials of A. The characteristic polynomial is defined as
det(A — AT), while the minimal polynomial is the unique polynomial g()) of lowest degree which annhilates
A (i.e. g(A) = 0) with 1 as the coefficient of the highest power of A\. The Cayley-Hamilton theorem says
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possible W is quite constrained: the finite number of pairs of different eigenvectors.
If A has an eigenvalue with multiplicity greater than 1, and hence an eigenspace of
dimension 2 or more, then any combination of an eigenvector from this eigenspace and
another eigenvector from another eigenspace can give rise to an invariant subspace:
the number of possible invariant subspaces is now infinite (but there is still constraint
on the orientations.)

Returning to the dynamical system, if X' is diagonalizable with eigenvalues of
multiplicity 1, then there are a finite number of invariant linear subspace in T, M.
There are only a finite number of possible solution surface tangent planes through
the critical point that are consistent with the dynamical system.

The local stable manifold theorem (Abraham and Marsden, 1985) indicates that
the invariant subspace spanned by the set of eigenvectors of X’ with negative eigen-
values gives rise to a unique invariant manifold of X near the critical point, called
the stable manifold, S¥; the set associated with positive eigenvalues gives rise to the
unique unstable manifold, S~. Points on S* will move asymptotically close to p in
the limit of increasing time; points on §~ will do the same in the limit of decreasing
time. The dynamical system restricted to the stable/unstable manifold looks like a

sink or a source near the critical point.

5.1.2 Hyperbolic Critical Points
To be able to easily examine other invariant manifolds of the flow near a critical
point, we restrict our attention to a certain class of critical points. If a critical

point has no eigenvalue with real part equal to zero, it is called a hyperbolic critical

that the characteristic polynomial of A annihilates A, so the minimal polynomial divides the characteristic
polynomial. The roots of the characteristic polynomial give the eigenvalues of A, and the multiplicity of
the roots gives the necessary dimensions of the eigenspaces if A is to have a basis of characteristic vectors,
i-e., if A is to be diagonalizable. It turns out that A is diagonalizable if and only if the minimal polynomial
has linear factors. Assuming A is diagonalizable, then the minimal polynomial of Al must also be the
product of linear factors, since it divides the minimal polynomial of A. Hence, A|w is diagonalizable as
well. The eigenvalues of Aly are a subset of the eigenvalues of A. A characteristic vector of Alyy in W is
also a characteristic vector of A in V, so W is spanned by a pair of characteristic vectors of A.
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Unstable
Manifold —~ Stable
Manifold

Figure 5.1. Pendulum hyperbolic critical point at (=, 0).

point. Such a critical point is stable under generic perturbations of the vector field:
that is, nearby vector fields in the space of all vector fields also have a hyperbolic
critical point near this one, with the same number of eigenvalues with positive and
negative real parts (Abraham and Marsden, 1985). This reflects the generic nature
of matrices (corresponding to various possible X') with eigenvalues that are non-zero
and not purely imaginary. In addition, the Grobman-Hartman theorem (Palis and
de Melo, 1982) asserts that there is a neighborhood of a hyperbolic critical point in
which the nonlinear flow lines are homeomorphic to the flow lines of the linearized
dynamical system X' on T,M. Thus, in a neighborhood of a hyperbolic critical
point, the invariant (linear) subspaces of the dynamical system X' generated by
pairs of eigenvectors of X’ are homeomorphic to invariant manifolds of the nonlinear
dynamical system X on M. Not only are we assured of the existence of the stable
and unstable manifolds in this case, but any pair of eigenvectors, e.g. one associated
with a positive real part eigenvalue and one associated with a negative real part
eigenvalue, generate an invariant manifold in the neighborhood of the critical point.

In the latter case, the flow restricted to the two-dimensional invariant manifold will

be a saddle flow.
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Figure 5.2. Hyperbolic critical point of a dynamical system in IR3.

A simple example of a hyperbolic critical point is given by the pendulum example
from Chapter 4 at (7,0), the top of the pendulum’s arc. The stable and unstable
manifolds are indicated in Figure 5.1—they are the unique manifolds containing only
trajectories that all approach the critical point, either with positive time (unstable
manifold) or negative time (stable manifold).

We can see this behavior in IR?® as well. In Fig. 5.2 a hyperbolic critical point
of a dynamical system (reminiscent of the wash from helicopter blades) is shown
with two-dimensional unstable manifold (the ground) and one-dimensional stable
manifold (vertical axis). The dynamical system restricted to the stable manifold is a
source. There is another invariant manifold: a “saddle” invariant manifold consisting
of the plane spanned by one eigenvector with a negative eigenvalue and one with a
positive eigenvalue.

As we shall discuss in Section 5.2.3, critical points in C(IR3,2) in the space-
invariant reflectance function case are not isolated: there will be a one parameter
family of critical points as one moves along the projection direction due to the space
invariant symmetry of the problem. This is a reflection of the well-known depth
ambiguity. It makes sense in this case to reduce the dimensionality of the problem,
effectively by ignoring the depth coordinate, to make the critical point an isolated

hyperbolic point.
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5.2 Image Critical Points

Both Horn (Horn, 1975) and Bruss (Bruss, 1980) recognized the potential im-
portance of critical points in the image intensities. As Horn pointed out, isolated
image intensity critical points are likely to be due to critical points in the reflectance
function; if these are also isolated, then the potential surface normal directions are
limited to just these critical points on the reflectance function. As he indicated, one
cannot draw out a solution surface from this known point in C(IR3,2) with char-
acteristic trajectories because the vector field is stationary there. His solution was
to make a spherical cap through the critical point with an arbitrarily (large) cho-
sen radius and consistent with the presumed normal. Solution curves could then be
extended from this cap. He showed empirical evidence that these solution curves
did not change much as the radius was changed, suggesting a certain stability of the
solution trajectories.

Bruss, although working towards uniqueness of solutions in a very restricted
domain of reflectance functions, those with elliptical constant brightness contours in
P, q space, made mention and use of the ideas of the stable and unstable manifolds
associated with a critical point to demonstrate existence of solutions for her particular

problem. We expand upon this.

5.2.1 Location of Critical Points

When are critical points of the image actually due to critical points in the re-
flectance function? In the case of a space invariant reflectance function, R depends
only on the orientation part of i : § — C(IRz, 2). The orientation part of i is effec-
tively the map from points on the surface to the normal directions in space and so
is related to the Gauss map, N.

In the study of surface shape, one examines the Gauss map N : i(§) — 5% C
IR? which maps points on the surface embedded in IR® to unit normals representing

the orientation of the surface (Figure 5.3). The Weingarten map or shape operator
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’IR3
n

Y

i(9)

Figure 5.3. Gauss map. It maps surface normals of i(S) to S? ¢ IR

is the derivative DN of this map. Since both the tangent plane to the embedded
surface and the tangent plane to the embedded sphere are perpendicular to the
surface normal, we can consider DN : Ti(S) — T4i(S).2 If we examine DN at
a point on the surface in IR?, it tells us how the orientation of the surface begins
to change as we begin to move in different directions on the surface; for example
the eigenvalues and eigenvectors of DN are the principal curvatures and principal
directions along the surface. Here again, the tangent plane to S at z (in IR®) is used
as an approximation for the surface, and the value of DN tells approximately how the
orientation has changed as one moves approximately to a nearby point on the surface.
Thus we expect the characteristic vector field X on C(IR?,2) to give us information
consistent with DN in the direction of the characteristic trajectories: the orientation
component of X is related to DN(X,,), where X, is the space component of X.
Let us assume we have the embedding 7 : S — IR®. We also have the lifted
embedding i : § — C(IR?,2) which takes p € S to the tangent plane 7,5 C T,IR®.
Since C(IR%,2) ~ IR® x G(2,3), where G(2,3) is the set of all two-dimensional
subspaces of IR?, we can divide i into two components: i(p) = (i(p), n(p)), where
i(p) € IR? is the space component of the embedding and n(p) € G(2,3) is the

orientation component. We have a natural map x : $? — G(2,3) given by mapping

2 A modern view of the shape map can be found in (Thorpe, 1979).
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a normal vector to the plane perpendicular to it. We can now write yoNoi(p) = n(p),

and if we define R = R o x, we can write the image irradiance equation as
Eorloi=RoNoi.
Taking the derivative and looking for critical points in the image, we have
DE o D(x'0i)=DRo DN o Ds,

where DN is the Weingarten map. If we assume we are on the interior of the image,
then D(w{ 04) is an invertible linear map, and so the image will have a critical point,
that is DE = 0, if and only if

0=DRoDN,

since ¢ is a diffeomorphism between S and ¢(S). When does this condition occur?

This condition certainly occurs when DN = 0 at a point. This is a locally flat
point, a point where both principle curvatures are zero.

The condition can also occur when DN has rank one, i.e. when DN has just
one non-zero eigenvalue. This occurs at parabolic points that are not locally flat.
We get a critical point in the brightness if the principle direction, spanning the one-
dimensional range of DN, is in the null space of DR; otherwise phrased, the principle
direction must be perpendicular to the gradient of R.

If this latter situation occurs, is it a stable occurrence? Could a small perturba-
tion of the reflectance function remove this occurrence? Since in general parabolic
points form curves on the surface, there will be a one dimensional curve of non-zero
eigenvalue principle directions on S parameterized by the parabolic curve, one at
each point of the curve. There is also a one dimensional set of null directions for DR
parameterized by the parabolic curve on S. At each point on the parabolic curve,
there is only a two-dimensional vector space of possible tangent vectors since TS
has dimension two, and hence only a one-dimensional space of tangent orientations

(parameterized, for example, by angle). We can locally model this one dimensional
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[

Figure 5.4. Tube of possible orientations of principle direction for DN (T1) and null direction for DR
(T2) along a parabolic line, a(t). An orientation at time ¢ is defined as a point on the unit circle with ¢ as
its center; this picks an angle, 6, for the orientation of the direction vector. The intersection, pe, of the two
curves gives a critical point of the image on the parabolic line.

set of orientations as a circle, and consider the parabolic line together with the pos-
sible orientation directions as a two dimensional tube IR x S!: one coordinate gives
distance along the parabolic curve, the other coordinate (around the circle) gives
an orientation (Figure 5.4). The null directions of DR and the non-zero eigenvalue
principle directions form curves that sit on the tube: at each point of the parabolic
curve, they pick out two orientations on the circle. If there is a point on the surface
where these two coincide, we can consider the curves on the tube to have intersected.
This will be a point where the principle direction falls in the null space of the gra-
dient of R, and hence is the critical point of interest. Since this is an intersection of
one dimensional curves on a two dimensional surface, the intersection at a point is
transversal, i.e. stable to small smooth changes in the parabolic line location or the
principal directions or the reflectance function.

Koenderink and Van Doorn (Koenderink and Van Doorn, 1979) have also de-
scribed this kind of point on the surface where the image has critical points. If we

consider the Gauss map, NV, as laying the surface i(S) onto the unit sphere, then the
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Parabolic point

Parabolic point Constant brightness contour

. for reflectance map
Section through Gauss map of S

a. b.

Figure 5.5. The surface S mapped to the Gaussian sphere: parabolic lines (dashed lines) are folds in this
map. a. An exploded section through the Gauss map of a surface onto the sphere—the fold lines are lines
of parabolic points, and there is a triple thickness of surface mapped between the folds. b. Relationship
between the Gauss map and reflectance function constant brightness contours (solid lines on the sphere).
The dashed lines are folds with a triple thickness of surface mapped between them; p. is a parabolic point
with maximum brightness on a fold, and so will be a saddle critical point for the image.

parabolic lines on the surface are the lines of the folds for the image of the surface
(Figure 5.5 a). If we overlay the reflectance function on top of the Gaussian sphere,
then a maximum in brightness along the parabolic line, or fold, will correspond to a
critical point in the image even though the local maxima of the reflectance function
will be elsewhere: effectively, the fold has trapped the brightness values (Figure 5.5
b). If we consider a curve o : IR — S on the surface crossing a parabolic curve and
consider the corresponding path on the Gaussian sphere which connects the surface
normals along a, this path on the Gaussian sphere touches the parabolic fold and
does not cross it. If the path runs in a certain direction, the path will actually double
back on itself, providing one critical direction for the brightness values. This will
be true at any parabolic point. If there is a maximum or minimum of the bright-
ness along the parabolic fold, this will provide the other critical direction to make

a critical point for brightness on the fold. Depending on the relationship between
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the constant brightness contours on the Gaussian sphere and the parabolic line, this
critical point in the image can be a maximum, a minimum, or a saddle.

Since the characteristic vector field in the usual coordinates has the form
Ry
R,
X = | pRy + qR,

E,

E,
these parabolic image critical points will not be critical points in the image dynamical
system, since DR is not zero and so the vector field is not zero. From the form of the
vector field X, the space part of X is non-zero at these points while the orientation
part goes through a zero; there is only a minor influence of these points on the flow
picture in space.

Finally, if DN is of full rank, then necessarily a critical point in the image must
be due to a critical point in R, since DN spans the effective domain of DR, and so
DRo DN =0 implies DE = 0.

In summary, we have several kinds of critical points: 1) due to DN = 0, i.e.
locally flat points; 2) at certain locations on parabolic lines; and 3) at points where
the reflectance function has a critical point. Critical points in the image that are due
solely to critical points in the reflectance function will be called good critical points;
all others will be called bad. Note also that the bad critical points in the image are
almost always not due to reflectance function critical points, and so the brightness of
these image critical points will not be the same as those due to reflectance function
critical points. In the simplest case of a reflectance function with single maximum
(e.g. a Lambertian reflectance function) generically only the good critical points
have the brightest value of the reflectance function.

We also ignore in this analysis the role of shadows and shadow boundaries. The
most egregious omission is the role of the self-shadow boundary which can be con-

sidered to be due to the reflectance function: usually there is an extended set of
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orientations for which the reflectance is at a minimum because patches of the sur-
face are turned completely away from the light source. We will focus exclusively on

images (or portions of images) without self-shadows.?

5.2.2 Good Critical Points

If we are at a good critical point, what kind of critical point can it be? We
can look at the second derivative of the image irradiance equation to get some ideas
about this.

We will implicitly assume a coordinate system for the calculations—this will allow
expressions like D? f to make sense on their own, as the matrix of second derivatives
with respect to the coordinates.*

For conveniance, we define N = N os. Taking derivatives of the image irradiance
equation as originally expressed, we have

Eox!oi(p)= Ro N(p)
DEr1oi(p) 0 D(n' 0d)p(v) = DRy, 0 DNp(v)
D?E(D(x! 0 §)(u), D(x! 03)(v)) + DE o D*(x 0 i)(u,v) =
D?*R(DN(u), DN(v))+ DR o D?N(u, v).

At a good critical point both DE and DR are 0, so we have

D?*E(D(x" 0 i)(u), D(x! 0 i)(v)) = D2R(DN(u), DN(v))

3 Note that the self-shadow line is a constant brightness contour; it is the “dark side” of the self-shadow
line that is not included here.

One could define second derivatives independently of coordinates in two ways: one way is to consider
derivative maps of real functions as maps from the tangent bundle TM to IR. The second derivative is
essentially the derivative of this map. In coordinates, the most interesting component ends up being a
linear combination of the second derivative in coordinates and the first derivative in coordinates. Another
way to deal with second derivatives on surfaces is to specify a particular way of tying the tangent planes
together: this is called a connection, and effectively tells how to take derivatives of arbitrary tensors on the
surface. For our purposes we do not need either construction.
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T'6 ¢ will be a local diffeomorphism; if we are not on

In the interior of the image, =
a parabolic line, DN = D(N o) will also be a local diffeomorphism, and hence
D?E and D?R will be of the same rank and type (i.e. same numbers of positive and
negative eigenvalues).

To see this, we can consider the different derivatives in this last expression as
matrices. “D?E” is a bilinear function of its arguments, so if we use a matrix

representation and let A = D?E, B= D?R, P = D(xfo 1), and Q) = DN, then we

have for all u and v in the tangent space to S at p:
ul PTAPv = uTQTBQv,

and hence

PTAP =QTBQ.

We can write

A= (QPHTBQP™).

In Appendix A5.1 to this chapter, we show that this means A and B have the
same number of positive and negative eigenvalues, so that D2E is positive (negative)
definite if and only if D2R is. We will assume from here on that D2R is full rank,
the usual and generic case.

If we are at a good critical point which is a maximum of the reflectance function
so that D?R is negative definite, D?E will also be negative definite, and hence
the critical point in the image will be a local maximum. Such a critical point is
surrounded by closed constant brightness contours, and the presence of such a critical
point in a region can be strongly suspected if there are closed constant brightness
contours in the region which are increasing in value towards the inside. In a sense, a
maximum brightness point has an image “signature” that extends around the point.
We suspect that such a signature without the actual presence of the critical point

(e.g. the critical point is obscured) may be sufficient to get strong limits on possible
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solution surfaces. (Brooks (Brooks, 1982) discusses an example of an annular image
of a hemisphere lit from the viewing direction with the hole of the annulus placed
over the critical point.)

If the reflectance function has a single maximum point (e.g. the Lambertian
case) this will be the only critical point in the reflectance function, and will generate
the only good critical points in the image. In this case, any saddles in the image will
be due to parabolic points. With more general reflectance functions, saddles in the

reflectance function can lead to saddles in the image at good critical points.

5.2.3 The Linearized and Reduced Image Dynamical Sys-

tem

The good critical points generate critical points of the image dynamical system.
A solution surface consistent with a smooth image patch containing a good critical
point should be a smooth surface made up of characteristic trajectories; this means
we are interested in locally invariant manifolds of the image dynamical system which
include the critical point. As indicated in Section 5.1.1, an important technique for
studying the behavior of a dynamical system around a critical point is to look at the
linearization of the dynamical system at the critical point.

We can examine in detail the behavior of an image dynamical system under the
conditions used to derive a coordinate expression for X in Chapter 4: we assume
orthographic projection and a space-invariant reflectance function. As derived in

Chapter 4, this leads to a characteristic vector field on the image interior of the form

RP
R‘I
X = | pR, +qR,
E;
Ey

using the standard rectilinear (z,v, z, p, q) coordinate system on IR® and C(IR3,2),

with image projection given by 7/(z,y, z) = (z,y). We can calculate the linearization
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of this vector field at a critical point p. where 0 = R, = R, = E; = E, as

0 0 0 R,, Ry,

0 0 0 Ryp Ry,
X'=10 0 0 pRy+qRyp pRpg+qRyg |,
Eyz Egy 0 0 0
E, E, 0 0 0

where we use the notation E,; to mean (E o7®),,, where 7€ is the image projection
from C(IR3,2),5 and we have substituted the values R, = Ry = 0 after taking the
derivative.

By inspection we can see that the matrix X’ is singular, meaning X' has at least
one zero eigenvector. It is the vector (0,0, 1,0, O)T and reflects the translation invari-
ance along the projection direction. This means we are not at a hyperbolic critical
point, which would require non-zero eigenvalues for the linearized system. Although
there are some results on the existence and uniqueness of invariant manifolds for
non-hyperbolic critical points, the Grobman-Hartman theorem mentioned in Section
5.1.2 suggests it would be convenient to make the problem into a dynamical system
with a hyperbolic critical point. Among other difficulties, a non-hyperbolic critical
point is not generic: a small perturbation can radically change the character of the
dynamical system.

We can convert our image dynamical system by focusing on the (z, y, p, ¢) coordi-
nates and leaving out the z coordinate. Effectively, the ordinary differential equation

defining the dynamical system,

x = X,

5 This small confusion in notation turns out to be correct here because the image projection, x! (z,9,2) =
(z,9), in coordinates makes E;; = (E o HC)M,, where the first set of derivatives are with respect to the
image coordinates and the second set are with respect to coordinates on C(]Rs, 2).
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does not depend on z on the right hand side; we can solve for (z,y,p,q) first, and
then integrate the # equation to find the solution for 2.6 In coordinates the reduced

dynamical system is

&

Sy
I
SISEY

<@

with
0 0 Ry Ry
0 0 Rgp Ry
By Esy 0 0
Eyp Ey 0O 0

We will call the new space on which X is a vector field C(IR3,2).

X' =

5.2.4 Eigenvalues of X’
What are the eigenvalues and eigenvectors of X'? Examining the matrix form of
X' we have:
"
X=1pE o
where D?E (shorthand here for D?(E o #€)) and D2R are both 2 x 2 matrices

o [0 DzR]

representing second derivatives of E o€ and R with respect to space and orientation

coordinates respectively. We can consider the eigenvalues of

- D?Ro D’E 0
) r _ I2__ R
XX =(X) “[ 0 Donsz]

we have
0 = det((X')?> — 4I) = det(D*R o D?E — 4I) det(D*E o D*R — +I)
= (det(D*E o D*R — 7])))2 ,

6 It is also possible to do this in an invariant manner by using the symmetry group corresponding to
flow down the projection direction: the dynamical system is invariant to this symmetry, and so the order
of the system can be reduced by one. We have a new dynamical system defined on the space I x G(2,3)
where G(2,3) is the space of two-dimensional subspaces of a three-dimensional vector space, and I can be
considered either as the space of projection fibres or as the image.
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so the eigenvalues of (X’)? are the same as the eigenvalues of D?E o D?R. We also

have

det((X')? — 4T) = det(X' — AI)det(X' + AI),

where A\? = +. If 4 is a characteristic value for (X")2, then £\ are possible char-
acteristic values for X’; one of them must be a characteristic value. It turns out
(see below) that both actually are characteristic values of X’. The 2 x 2 submatrix
A = D?Ro D?E has a quadratic characteristic polynomial, and the characteristic
equation for (X')? is

0 = (y* + trace(A)y + det(A4))2.

This means the characteristic values for X’ must be the four roots of
0 = A + trace(A)A? + det(A),

and so come in pairs as the two square roots of each characteristic eigenvalue for A.”

As discussed in Section 5.2.2, D?R and D?E have the same number of positive
and negative eigenvalues. In the case where both matrices are definite, we show in
Appendix A 5.3 that A = D?R o D?E will have positive real eigenvalues, and hence
X' will have real eigenvalues, generically distinct. In the case where D2R is indefinite,
we may generically have negative roots for A, yielding purely imaginary eigenvalues
for X' and the critical point may therefore not be hyperbolic. We will focus our
attention on very good critical points, those due only to definite critical points of
the reflectance function: the usual case of the maximum of reflectance function is a
very good critical point. The analysis of invariant manifolds of the image dynamical

system at indefinite critical points of the reflectance function is an area of future

research.

7 The coordinate form of X suggests a four-dimensional Hamiltonian dynamical system with (z,9,p,9)
coordinates as Darboux coordinates for the 2-form w = dz A dp + dy A dg and the image function H as
Hamiltonian (Abraham and Marsden, 1985). The distribution of eigenvalues is the result of the matrix X’
being infinitessimally symplectic.
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In general (i.e. generically in some sense) at a very good critical point there will
be four distinct eigenvalues of X’ with four associated independent eigenvectors. Us-
ing the results os Section 5.11, pairs of these eigenvectors generate possible invariant
tangent planes, six in all. If there are symmetries in the system (for example the
image of an object symmetric around the viewing axis lit from the viewing direc-
tion) we can get eigenvalues with multiplicity two, which potentially means a two
dimensional space of eigenvectors. From the stable manifold theorem there will still
be unique stable and unstable manifolds, but now there may be an infinite number
of possible saddle manifolds and hence solution surfaces because there may be an
infinite number of subspaces spanned by pairs of eigenvectors. We will concentrate
on the generic case without symmetries.

Not all possible pairs of eigenvectors will generate tangent planes in C(IR3,2)
that could possibly correspond to a real two dimensional surface embedded in three
dimensions. We know that X' has the form

s [ 0 D2R]
D*E 0 |°
where D?R and D?F are essentially the second derivative matrices of the reflectance

and image at the critical points. If u is an eigenvector for X', we have
X'u = u
0 D?R|Jugl| _
D:E 0 Uor |
D?Ru,, _ | Augp
D?Eugy |~ | Augr |-
Now let u’ = (—ugp, u,, )7

~ D2Ru
o or
Xu' = [—D2Eu3,,}

_ | Augp
| =Au,,

= —u’,
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so that —\ is also an eigenvalue, and u’ is its associated eigenvector.

Although u and u' may be independent as eigenvectors associated with distinct
eigenvalues in the four-dimensional reduced space C(IR?,2), the space parts of the
eigenvectors u and u’ do not project to independent vectors in IR and hence the
subspace spanned by u and u’ does not correspond to a two dimensional surface in
IR®. This eliminates two of the six pairings of eigenvectors.

By the Grobman-Hartman theorem, the remaining four possible invariant tan-
gent spaces correspond to four possible invariant manifolds of X through the critical
point that could correspond to solution surfaces. One will be the stable manifold
with sink flow type when restricted to the invariant surface; another will be the un-
stable manifold, with source flow type on the invariant manifold; the two remaining
invariant manifolds will have flows that are of saddle type.

There is one other possible constraint that may eliminate the saddle invariant
manifolds as candidates. For a solution surface S C C(IR?,2) to solve the shape from
shading problem at hand, we must have R(p,q) = E(z,y) everywhere on it; this can
be written using the image dynamical system function as H(p) = 0 for all p € S.
The characteristic trajectories are curves on which H is constant, but not necessarily
zero. In the case of the stable and unstable manifolds, all the trajectories in them
approach the critical point p. asymptotically, and H(p;) = 0 if we have matched the
critical point of the image to the correct critical point of the reflectance function.
This means H = 0 automatically on the unstable and stable manifolds. However,
there are only four trajectories in the saddle case (referring to the image dynamical
system type restricted to the invariant manifold) that actually approach the critical
point; it is conceivable that the other characteristic trajectories making up the saddle
invariant solution surface have H non-zero along their lengths. If this were the case,
these invariant solution surface candidates could be rejected as possible solutions to
the shape from shading problem.

However, dynamical saddle invariant solutions do occur and cannot be discarded

out of hand as possible solutions. As we shall see in the next section, for very
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good critical points at which the true surface is saddle-shaped in space, the image
dynamical system restricted to the true surface is of saddle type. If, as in this case,
the image dynamical system restricted to the true solution surface is of saddle type at
the critical point, then H must be 0 on all the constituent characteristic trajectories

even though they do not all approach the critical point.

5.2.5 Solution Surfaces Near a Good Critical Point

Given a solution surface with a particular Weingarten map DN describing the
local surface behavior near a critical point, what is the relationship between the sur-
face shape, the reflectance function critical point type, and the type of characteristic
flow generated on the surface? The characteristic vector field restricted to the two-
dimensional invariant solution surface defines a two-dimensional dynamical system
on the surface. We are interested in the two-dimensional flow on the solution surface
near critical points of the system: is it a source, sink, or saddle?

As in Section 5.2.4, we can decompose the vector field X into two pieces,

w= 3],

where X, is the space component and X,, is the orientation component. We can
similarly divide X', the linear approximation to the vector field at a critical point
into space and orientation components

! Xsp'
= [X |

From the form of X' derived in Section 5.2.1, we get
Xsp,(uszn uor) = DZR O Upr.

This represents the linear approximation to the space part of the vector field X at

an approximate displacement (ugp, Uor) from the critical point p in é(IR3, 2).
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In Section 5.2.1 we looked at the relationship between the Gauss map N and the
orientation component of the lifted embedding i : § — C(IR?,2): we saw that i(p) =
(i(p), n(p)) € IR?® x G(2,3) and x(N(i(p))) = n(p) is the map relating the surface
normal N (z(p)) to the tangent plane n(p) at p. We must have Dy o DN o Di = Dn.
If we assume the embedding i : § — IR? is the inclusion and let i : S — C(IR?,2)
instead of C(IR%,2) (effectively we drop the depth coordinate), then we can write

Di(usp) = (uspaDn(usp)) = (usp, uor), 80
Uor = Dn(usp) = Dx o DN(ugp).

The u,r component tells how the orientation direction changes on the surface while
moving on the surface in the u,, direction—this is very nearly what the Weingarten

map tells us too. Combining this with the previous expression for X,,’ we get
Xsp'(Usp, Uor) = D*Ro Dx o DN o u,,.

Considering u,, as essentially determined by the Gauss map N for the fixed embed-

ded surface S and u,yp, as a vector field on the surface S we have
Xsp'(usp) =D’Ro Dx o DN o ug,.

This tells us that the approximate space component of the characteristic vector field
restricted to a solution surface near a critical point is determined by the derivative
map D?R o Dy o DN. We are interested in finding the type of the two-dimensional
dynamical system on S determined by X, p -

By picking local coordinates on the Grassman manifold of two-dimensional planes
in three dimensions, G(2, 3), to match coordinates on the two-dimensional sphere 2
(e.g. both using central projection onto the same plane z = —1 to give standard
(z,¥,2,p,q) coordinates), we can make Dx become the identity matrix in these

coordinates; we will let B be the matrix for D?R, C be the matrix for DN, and
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A = BC be the matrix for D2R o Dy o DN. The eigenvalues for A will tell us the
type of the dynamical system on S.

A is the product of two symmetric matrices but itself need not be symmetric.
For an asymmetric matrix, eigenvalues may be complex; when does this happen to
A? In Appendix A5.2 to this chapter we show that if either B or C is definite, then
A has real eigenvalues and has a full set of eigenvectors. The only case in which
A = D?R o DN will not always have real eigenvalues is the case where we have a
saddle in the reflectance function and a saddle in the surface.

Assume A has real eigenvalues. If 7; and 7, are the eigenvalues of B = D?R,

and k1 and &y are the eigenvalues (curvatures) of C = DN, then
det(A) = 1yek1k2 = a2,

where a; and «y are eigenvalues for A. If 414, > 0, then the sign of det(A) equals
the sign of kyx3. Thus, if R has a maximum at the critical point so that D2R is
negative definite, and the shape of the solution surface is either convex or concave,
giving same sign principle curvatures, then the space part of the characteristic flow
restricted to the two dimensional spatial solution surface is either a source or sink
since the eigenvalues of A will have the same sign. Similarly if the solution surface
Is a saddle at the critical point, then the space part of the characteristic flow will be
a saddle flow.

We also have
trace(A) = trace(BC) = trace(BPAPT) = trace(PTBPA),

where P is an orthonormal matrix of eigenvectors for C = DN and A is a diagonal
matrix of eigenvalues for C, so P diagonalizes C. Let us assume the diagonal entries
of PTBP are dy; and da2; the eigenvalues of C are the principle curvatures x; and
k2. Then

trace(A) = a1 + a2 = k1d11 + kadaa.
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P\ B

a. b.

Figure 5.6. Patches of surfaces lit from above. In the middle of each patch we have a critical point due to
a maximum in the reflectance function; the space part of the dynamical system restricted to the (invariant)
surface patch is shown. a. Convex surface patch. b. Saddle shaped surface patch.

If D°R = B is negative definite so is PTBP, and hence dy; and dyo are both less

than zero: we have

(1 O)PTBP (3) =dj; <0,

and similarly for ds2. In this case, if DN = C is negative (positive) definite, then
we know that trace(A) is greater than (less than) zero. The eigenvalues oy and
a2, having the same sign by the previous argument, are positive (negative) and the
characteristic flow must be a source (sink). We get similar results if D2R is positive
definite at the critical point, suggesting a minimum in the reflectance function.

Assuming A has real eigenvalues (for example, if DN is definite), a saddle in
the reflectance function determines a saddle flow on the invariant manifold by the
sign of the product of the eigenvalues of A. However, in the case where DN is not
definite we are not assured that the eigenvalues of A are real, and the flow type is
undetermined by these simple arguments.

Figure 5.6 gives two examples for surfaces lit from above with very good critical
points due to reflectance function maxima: Figure 5.6a shows a convex surface, on
which the image dynamical system restricts to a sink, and Figure 5.6b shows a saddle
shaped surface, on which the image dynamical system restricts to a saddle dynamical

system.

115



Chapter 5 Critical Points of the Image Dynamical System

We can summarize the results in the following table. Entries in the table give
the flow type of the two-dimensional characteristic system restricted to the two-

dimensional surface.

Form of DN
Positive Definite Negative Definite Saddle
Form of Positive Definite Source Sink Saddle
D2R Negative Definite Sink Source Saddle
Saddle Saddle Saddle Undetermined

Given an image due to a generic real surface and a known very good critical
point (i.e. due to a definite (positive or negative) reflectance function critical point),
there are at least two and at most four smooth surfaces consistent with an image
patch containing a good critical point. In the usual case of a very good critical point
due to a maximum in the reflectance function, the invariant solution surface will be
the stable (sink type flow) or unstable (source type flow) manifold of the dynamical
system if the surface is convex or concave; the invariant solution will be a saddle-flow

invariant solution if the surface is saddle shaped.

5.2.6 The Fundamental Instability of a True Image Irra-

diance Equation

A true solution surface should consist of a single two-dimensional invariant man-
ifold which is the unstable manifold for some critical points, the stable manifold for
others, and a saddle invariant manifold for the rest. It turns out that this is very
unusual behavior for a dynamical system. Generically, two two-dimensional invari-
ant manifolds will only intersect (if they intersect) along a one-dimensional curve
rather than merging (Abraham and Marsden, 1985). An intuitive explanation for
this is that two generically transverse two-dimensional surfaces in a four dimensional
space have a 0-dimensional intersection, i.e. a point; if both the surfaces are invari-

ant under a flow, however, the flow of this point forward and backward in time will
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Figure 5.7. Two critical points of a two dimensional dynamical system: a. Non-intersecting stable and
unstable manifolds. b. Intersecting stable and unstable manifolds. c. Non-intersecting stable and unstable
manifolds.

also be in the intersection of the two invariant surfaces, leading to a one-dimensional
intersection.

We can gain some insight into the situation by looking at two dimensions. In
Figure 5.7, we show a piece of a two-dimensional dynamical system with two critical
points, each of which has both a stable and an unstable manifold. In Figure 5.7 a
and 5.7 c, these manifolds do not intersect; the unstable manifold for one critical
point is just another trajectory for the other critical point. The case where they
intersect is shown in Figure 5.7 b. If Figure 5.7 b is perturbed generically, it will fall
apart to be either like Figure 5.7 a or 5.7 c.

The image dynamical system due to a real surface is therefore a very delicate
thing seen from a generic perspective. This has two consequences, one bad, one
potentially good. The bad news is that as we numerically try to find the stable
or unstable manifold of a critical point (by directly drawing out trajectories or by
the methods in the next section), errors will occur as if we had randomly perturbed

the dynamical system. It is very unlikely that the perturbed unstable manifold will
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merge with the perturbed invariant manifold coming from another critical point and
create a single, smooth, two-dimensional surface. The good news is that that this
may provide a way to tell a bad reflectance function choice from a good one: if
the invariant manifolds do not “nearly” match up, we must be on the wrong track.
Either the reflectance function is bad, or there is no surface corresponding to the
image.

Note one other theoretical hope for optimism: although generically the two-
dimensional invariant manifolds intersect in a manifold of dimension at most one (and
may not intersect at all), we may get better results if we look at a one- (or many-)
parameter family of vector fields, e.g. by examining a one-parameter family of re-
flectance functions. A result with a catastrophe theoretic flavor about generic vectors
fields (Abraham and Marsden, 1985) indicates that if we have a one-parameter fam-
ily of vector fields X on a four dimensional space controlled by the real parameter
c such that at ¢ = 0 a pair of two-dimensional invariant manifolds actually com-
pletely merge, then perturbing this entire family does not destroy this occurrence:
in the perturbed family, there will still be a value of the new control parameter such
that the matching occurs. For example, if we know that the reflectance function
comes from a one-parameter family of reflectance functions and the image of the
real surface contains two critical points, then the perturbations of the system due
to numerical errors or slight errors in the reflectance function will not remove the
theoretical occurrence of a parameter value such that the invariant manifolds merge.

In our case, we may need to match more than two invariant manifolds, and we
may have more parameters in the reflectance function, so the task is harder than the
above. The generic theory for more than two parameters of control is not well worked
out, but it may be that adding more parameters of control allows one generically to
match more invariant surfaces together and thereby determine more parameters of

the reflectance function.
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5.3 Invariant Manifold Shape from Shading Algo-
rithms

From Section 5.2, we can conclude that good critical points of the image dy-
namical system provide constraints on reasonable solutions. Given a smooth image
interior, we expect corresponding solution surfaces also to be smooth. In a neigh-
borhood of a critical point in the image caused by a critical point of the reflectance
function, a correct solution surface must be a smooth surface drawn out by character-
istic curves (and can be considered locally invariant to flow along these curves), and
must contain the critial point. Thus, a consistent solution surface passing through
all the critical points of a smooth image interior should be an invariant manifold
containing all these critical points. In some sense, this is quite special behavior for
an invariant manifold, as we mention in Section 5.2.6.

In the space invariant case, we can consider the image dynamical system near
the critical point to live in the four dimensional space C(IR3,2) which can be given
the coordinates (z,y,p,q), where z and y are image coordinates, and p and ¢ are
the “gradient” coordinates for orientation of the surface. The typical (i.e. generic)
image critical point due to a maximum in the reflectance function will be an isolated,
hyperbolic critical point of the dynamical system. The Grobman-Hartman theorem
lets us conclude that the nonlinear image dynamical system near the critical point
will be topologocally isomorphic to the linearized dynamical system near the critical
point; as a result, there are in general at least two possible invariant manifolds
through the usual maximum critical point, the stable and unstable manifolds of the
critical point, and in the generic case (e.g. no symmetries in the dynamical system)
at most four.

These theoretical results indicate that one can find possible solution surfaces for
an image in the neighborhood of a critical point by finding invariant manifolds of the
critical point. One technique is to pick a curve in C(IR3,2) (an initial strip) that lies

approximately close to the invariant manifold of interest, and then use the flow to
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stretch this curve out to cover a larger region. This is the essence of Horn’s original
attempt (Horn, 1975) to find solution surfaces around a critical point. As he pointed
out, there are integration problems as one gets far from the original curve due to
the build-up of quantization and integration errors. As a result Horn and Brooks
(Horn and Brooks, 1986) examined various regularization techniques designed to use
more of the image data at once to generate a solution surface, but did not use the
characteristic curves.

There is another method for finding some of the invariant solution surfaces corre-
sponding to solutions of the shape from shading problem. In this section we discuss
the intuition behind a theorem called the Lambda Lemma, or the Inclination Theo-
rem. If we take an initial manifold of the same dimension as the unstable manifold
and transverse to the stable manifold of a critical point and deform the initial mani-
fold using the flow of the dynamical system, then in the limit as time goes to infinity
the Lambda Lemma asserts that the deformed surface will approach the unstable
manifold in a C' manner (Palis and de Melo, 1982). We discuss two different im-
plementations of this intuition to find the unstable manifold of an image dynamical
system near a critical point, and show how these methods are affected by noise in

the image and errors in the reflectance function: they turn out to be fairly robust.

5.3.1 The Intuition

The unstable manifold of the critical point of a dynamical system consists of
trajectories that seem to emerge from the critical point at ¢t = —co and continue
away from the critical point. Figure 5.8 gives an example of a hyperbolic critical
point (i.e. a critical point whose linearization has only real eigenvalues) in two
dimensions; the unstable manifold consists of the two trajectories that approach the
critical point with decreasing time.

Other trajectories starting near the unstable manifold and near the critical point
approach the unstable manifold for some time within some neighborhood of the

critical point. If we take an initial manifold S° which crosses the stable manifold
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Figure 5.8. Two dimensional hyperbolic critical point.

L
w

Figure 5.9. Initial manifold is $; S* are the deformations of S° by the flow of the dynamical system.

(Figure 5.9), we can watch what happens as the initial surface is deformed by moving
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each point of the surface along the flow of the dynamical system, as a stream of water
might move particles suspended in it. Since the surface intersects the stable manifold,
at least one point on the deformed surface begins to approach the critical point. In
addition, the behavior of trajectories near the unstable manifold is an exponential
approach to the unstable manifold within a certain neighborhood of the critical point;
as the initial surface is stretched and deformed by the flow, more and more of it will
be stretched and pushed down towards the unstable manifold by the flow lines. In
the limit, this deformed surface will become the unstable manifold. Although the
example shown is in two dimensions, the intuition holds more generally. A proof
of the Lambda Lemma comes by looking at the deformation of an initial surface
carefully and taking limits (Palis and de Melo, 1982).

The basic intuition behind the example and the theorem is to begin with an initial
surface that cuts the stable manifold transversely, and then deform it through time
using the flow of the dynamical system. We have implemented this as an algorithm
on a highly parallel computer called the Connection Machine in two different ways:
in the first case, we look mathematically at how the surface is deformed by the flow
without following points on the surface; in the second case, we actually follow a grid

of points on the initial surface as the flow moves them around.

5.3.2 Fixed Grid Algorithm

The Connection Machine is a highly parallel computer consisting of thousands
of simple processors and a very fast disk drive system which can emulate a grid of
processors. We used a 16k CM-1, which has 4k of memory for each of 16k processors.
The kind of algorithms we will propose are extremely well suited to this kind of
architecture with a SIMD language called *LISP as interface, since each processor
can be assigned to a pixel and operates in a neighborhood of that pixel in parallel
with all the other processors.

We configured the processors as a 128 x 128 grid. For the fixed grid algorithm,

each processor can be thought of as stuck to an unmoving (z,y) coordinate plane
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parallel to the image plane. A two-dimensional surface in the four-dimensional space

C(IR3?,2) is defined above the plane by specifying (p, ¢) coordinates at each (z,y).

5.3.2.1 Theory

In determining how the initial surface is deformed by the image dynamical flow,
we are interested in how the surface is deformed as a set, not necessarily in where
each point is mapped by the flow. Knowing how the deformation process affects the
heights of the surface above each mesh point is sufficient: it is a two-dimensional
surface in a four-dimensional space, so we have both p(z,y) and ¢(x,y) as heights
above the point (z,y). Assuming the initial surface and the flow are smooth, we can
theoretically compute the small change in surface height above a fixed point due to a
short flow along the vector field. We can use this to iterate the surface height above
each mesh point and find how the surface deforms.

To do this, we consider a slightly more general situation: say we have a time-

dependent deforming surface S! defined by

St = {p|Gy(p) = 0}

for some G(t, p) where G : IR x C(IR?,2) — IR? is smooth, with Gy(p) 2 G(t,p)
having the maximal rank of two as a function of p for all #: the surface S* is the level
set at 0 of the function G;. Assume we also have a surface P = {p|F(p) = 0}, where
F is also smooth and of maximal rank. In our case, P = {(a,b,p, q)|p,q € IR} is the
plane of possible (p, q) values for a fixed (z,y) = (a,b) in the usual coordinate chart.
We are interested in the intersection of S* with P as time proceeds; this will give us
(P, q) as a function of ¢ above a fixed (z,y) = (a, b).

What happens to points in S*N P as a function of time? Let us consider a path
a: IR — S'N P that stays in the intersection of the two surfaces for some time

interval around ¢ = 0, with «(0) = pg. This means that for all valid ¢, we have
F(a(t))=0
Gi(a(t)) = 0.
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We can look at the time derivatives to get some constraint on the time derivative of

a,d(0)=v,at t=0:

DF(v) =0 (1)

d
(59),, +P@m=0 )

In our case, we can write
Gi(p) = g0 é-4(p),

where ¢; is the flow due to the characteristic vector field X, and S° = {p|g(p) = 0}
is the initial surface we started with.® We have, using the chain rule and the fact

that ¢, is the flow for X,

d .
—G) = —Dgo X(p)
(dt (0.9)

and

D(Go)(v) = Dyg(v),

since Go = g o ¢o(p) = g(p). Substituting in to the second constraint (1) on v we

have

~

Dg(X) = Dg(v).

In our case, F, G4, and g all have rank 2. If we assume that F and G; are
maximally independent (i.e. the respective surfaces are transversal) at intersection
points, then we should only have isolated intersection points at each t: we are inter-
secting two two-dimensional surfaces in a four-dimensional space. This means the
curve a(t) in the intersection of the two surfaces is, in fact, a unique path, and it
has tangent vector at t = 0 given by v = (vg, vy, vp,vq), where v € Null(dF) and

Dg(X) = Dg(v).

8 So pisin S? if and only if Gi(p) = 0, ie., if and only if go ¢_;(p) = 0, i.e., the point at ¢ = 0 that
flows to p at time ¢ is in SO = {p|g(p) = 0}.
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With our particular coordinate choice, this is an easy system to solve: we have
F(z,y,p,q) = (z,y), so the first condition () on v, DF(v) = 0, means that v, =
vy = 0. If we write

9(z,y,p,9) = (b(z,y) — p,c(z,y) — q)

which lets us think of the initial surface S? in é(IR.3, 2) as parameterized by
(r,8) — (r,8,b(r,s),c(r,s)),

then we have

s0 the second condition on v, Dg(X) = Dg(v), can be written as
by Xy + 0y Xy — Xp = —v,
ce Xz + cy Xy — Xg = —vg.

In the usual (z,y,p, ¢) coordinate system used for the critical point analysis, we can

replace in for the values of the characteristic vector field components to get:

vp=E; — bRy — by R,
vg = Ey —ceRp — ¢y Ry.
vp and v, are the infinitessimal displacements at ¢ = 0 of the surface above a fixed
(z,y) due to the dynamical flow deformation. We recalculate the partial derivatives
bz, by, cz, ¢y where b(z,y) = p(z,y), c(z,y) = q(z,y) at each step of the iteration.
We can perhaps view v, and v, as defining a vector field on the space of smooth
two-dimensional surfaces in é(IR3,2): at each ¢, we have a smooth surface which
defines the derivatives of p and ¢ (the derivatives of b and ¢ respectively) with respect
to the coordinate chart we have picked. These derivatives are combined together to
give a smooth vector field which is, in some sense, the infinitessimal displacement of

the entire surface.
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5.3.2.2 Experiments

We have implemented this as a discrete iterative method on the Connection
Machine. We essentially tie the grid of processors to the (z,y) coordinate plane,
with a processor at each integer crossing. At each processor we can keep values for
the image gradients E, and E, as well as current estimates of the deformed surface
heights p and ¢ for each (2, y). We use an initial surface given by p(z,y) = ¢(z,y) = 0.

We need to compute the “surface vector field” components vy and v, at each

iteration:

vp = Ez — prRp — py Ry
vg = By — @z Rp — gy Ry,
where p;, py, ¢z, and ¢, are derivatives of the current p and ¢ iterates.

For both image intensities and p and ¢ values, we use a simple first order method
to compute the derivatives on the interior of the 128 x 128 square of processors with
integer (z,y) coordinates for the processors: for example, if f is the function for which
we want a partial derivative, we take f:(z,y) ~ (1/2)(f(z + 1,y) — f(z — 1,y)). At
the four boundaries of the square grid, we cannot use this; we use the unbalanced
estimates given by subtracting nearest neighbors where we have to. For example,
at the left edge we take f2(0,y) = f(1,y) — £(0,y); at the top we take fy(z,0) ~
f(z,1) — f(z,0); at the corners of the grid, both f, and fy are approximated this
way.® We use this to estimate p;, py, gy, qy, Ez, and E,.

For the reflectance derivatives, we use an analytic model to give us exact values

for the derivatives. In our case, we assume a Lambertian reflectance function,

pli+qlo— 13

VPP + @ +1,/B+ 1%+ 12

® When we discuss the deforming grid algorithm in the next section, we must treat the border differently:
we effectively interpolate the values found for the derivative from the interior of the image to the borders.
Using the interpolating method in the fixed-grid algorithm does not change the performance substantially;
noise immunity seems slightly worse.

R(p,q) =
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where (I3, 12,13) gives the orientation of the light source and « is an albedo factor;

for our purposes, we take o = 1.0. From this, we have

Ry(p,q) = o h? + 1 —(gla—I)p
o iz (P+E+1
o lzp2 + lz - (pll — lg)q

Ry(p,q) = ;
’ JeEre+g PHe+D)

and we compute R, and R, at each processor using the current values of p and q.
To approximately deform the surface to match the dynamical system flow, we

update the p and ¢ values at each processor to ppew and gpew as follows:

Pnew = P+ hvp
Gnew = ¢ + tha

where h is a kind of integration step size if we consider the procedure as a parallel
integration of a vector field. In the simple examples with which we have worked, we
have left A constant over all processors.

If we run just this algorithm we find that it does not converge. We have found
it necessary to do a small amount of smoothing of the values of p and ¢ to avoid
“checkerboard” instabilities: small amounts of noise can explode into large alternat-
ing sections of values if the p’s and ¢’s are not smoothed between iterations. This
was also found by Ikeuchi and Horn (Ikeuchi and Horn, 1981), and we find good

results by performing the simple averaging operation

Jrew(z,y) = (f(z+ Ly)+ f(z — L,y) + f(z,y + 1) + f(z,y — 1)) /4

twice in succession on the p and ¢ arrays.

This internal smoothing operation can be a source of convergence errors, however.
If we run the algorithm on a sphere centered in the image with radius 100 and light
source located in direction (0,.5,—1), we can see what happens to the value of ¢

at a particular point (64, 104) near the maximum brightness of the image. (Figure
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5.10 shows constant brightness contours for such an image.) The correct ¢ is —.4365
and we take A = 1.0 as step size. Over the first 500 iterations, we see the value of
g decreasing from its initial value of 0 towards the correct value; as we expect, the
value of vq is negative, but with decreasing absolute value during this approach. At
around iteration 600, however, the value of ¢ overshoots the correct value: we have
g = —.4390, and, as we expect, v, turns slightly positive, trying to push ¢ towards
the correct value. However, the value of ¢ continues to move negatively, converging
to a value of about —.4505 at iteration 1600 with v, = 1.21 x 10~* still pointing
towards the correct solution.

If at this stage we change the algorithm to have just one internal averaging
operation instead of two, we see ¢ begin to move towards the correct solution again,
but by iteration 800 with this new method, ¢ has stalled at ¢ = —.444 with v, =
.626 x 10~%; we have made up some of the distance to the true solution, but not all.

Another way to see the effects of the internal smoothing operation is to begin
with the correct solution surface and see where the algorithm takes it: by definition,
the dynamical flow should leave an invariant manifold completely unmoved. If we do
this with two internal smoothing operations, we see convergence to very nearly the
same surface as for the (p, ¢) = (0, 0) initial surface: for example, after 800 iterations,
q at (64,104) appears to be converging to —.450 rather than staying at the original
q = —.4365. If we do this with one internal smoothing operation, the solution starting
from the invariant manifold is again consistent with that for the (p, ¢) = (0,0) initial
surface: again the value of ¢ converged to at (64,104) is ¢ = —.444 rather than the
original ¢ = —.4365.

From this we can conclude that the internal smoothing operation, although nu-
merically useful, does slightly distort the final solution away from the true invariant
manifold. With one internal smoothing operation, the errors in the converged p and
q are less than 5% almost everywhere, and less than 2% in the image interior. Even

with two internal smoothing operations, the errors are less than 4% through almost
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Figure 5.10. Constant brightness contours for sphere. Each stripe is 15 grey-levels wide.
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Figure 5.11. Iterates for fixed grid shape from shading algorithm: a. 100 iterations. b. 200 iterations.
c. 400 iterations; d. 800 iterations. e. p error image (255 * 10 * |p — pirue|). For 800 iterations: f. ¢ error
image (255 * 10 * |¢ — gtruel)-

all the image—where true p and ¢ values are very near 0, of course, the relative errors
are higher, and right at the borders of the image the relative errors are also higher
(but never more than about 15%). We will stick with the double smoothing because
of the noise immunity it seems to give later on.

In Figure 5.10, we show the constant brightness contours for a noise-free 128 x 128

simulated image of a sphere with radius 100, Lambertian reflectance function, and
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Figure 5.12. Noisy sphere image: Noise maximum is =+.02.

light source located at (0,.5,—1). In Figure 5.11 we show images from the approxi-
mate solutions as the iterations proceed (step size h = 1.0): after 100 iterations, we
use the current p and ¢ values and the reflectance function to generate an image. As
one can see, the images generated by the p and ¢ estimates do show convergence to
the original image through almost all of the interior of the image as expected. We
have also generated images representing the errors in the p and ¢ values: we take
25510 * |p — pirue| and 255 * 10 * |g — grye| and treat these as grey levels for an error
image. A region that is just barely completely white (a grey level just reaching 255)
would represent errors of .10 in p or g, corresponding to an error of about 6° in the
surface normal at pirue = 0, girue = 0, and less as p and ¢ increase.

If we add noise to the original image, we can degrade the performance of the
algorithm. With the reflectance function we are using, the maximum brightness of
the image is 1.0. If we add uncorrelated uniformly distributed noise to the image
with maximum value .02 (meaning the noise is uniformly distributed between +.02),
we usually still get convergence; if we add noise with maximum value .12, we do not
get convergence to a possible solution. Figure 5.12 shows a noisy image (via constant
brightness contours) with .02 noise maximum; Figure 5.13a shows the image formed

from the p and ¢ arrays after 800 iterations with .02 noise, and Figure 5.13b and ¢
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Figure 5.13. a. Estimated image from noisy images (£.02) after 800 iterations. b. p error image. c. ¢
error image. d. Unconverged image for noise maximum .12 after 800 iterations.

show the p and g error images. Figure 5.13d shows a failed effort with noise maximum
12,

We can deal with more noise by reducing the step size, h. For example, with
noise maximum .04, a step size of A = 1.0 converges only about half the time to a
solution,'® while a step size of h = .25 almost always converges. This is consistent
with the view of this procedure as a parallel Euler integration of sorts: decreasing
the step size makes the algorithm more likely to converge.

Another way to deal with the uncorrelated noise we have added to the image is
to pre-filter the image to remove some of the discontinuous influence of the noise.
For example, with » = 1.0 we get convergent solutions about half the time with noise
maximum .04; however, if we smooth the image four times with the simple averaging
operation used to smooth the p and g arrays, we get convergence almost always.

If we combine filtering and a smaller step size we can deal with even more noise.

If we set the step size to h = .25, and pre-filter with one averaging operation, the

10 That is, if we run the algorithm twenty times it converges on about ten of the trials.
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brightness image on the left looks very chaotic because the noise is large compared
to the constant brightness intervals even after pre-filtering. To the eye, the original
image itself looks fuzzy, but is clearly interpretable as a smoothly curving object.

Note that in general the algorithm does not converge to p and g values that
could have given rise to the pre-filtered noisy image, e.g. some complicated faceted
figure whose noise-free image would be the pre-filtered noisy image we are working
with. Instead, due to the internal smoothing operations done on the p and ¢ arrays
within the algorithm, the algorithm appears to converge to a surface that is smooth
compared to the image data.

With this much noise, the converged p and ¢ arrays do show considerable differ-
ences from the original noise-free p and g values used to generate the images. For
example, although the image in Figure 5.15a appears to be an adequate match for
the original image, the p’s and ¢’s that generate that image vary randomly from the
original image by a fair bit, as seen in the image of p and ¢ errors in Figure 5.15 b
and c. Indeed, one would be rightly suspicious that the p and ¢ values converged to
for noisy images are not an integrable set of normal vectors. We would need some
kind of constrained method like Horn and Ikeuchi’s or Frankot and Chellapa’s to
reconstruct the depth values from the more or less noisy p and ¢ values. Note that
the amount of noise in the p and g values is directly related to the amount of noise
in the image.

In fact, one of the interesting aspects of this algorithm is the lack of dependence
on an explicit integrability constraint to find a solution surface. If we actually con-
verge to the theoretical unstable manifold of a smooth image dynamical system, that
unstable manifold is an integrable collection of normal vectors because it is made up
of characteristic trajectories. When we add noise to the image and include numerical
effects, we are effectively adding noise to the dynamical system, and the unstable
manifold of the new dynamical system is no longer exactly integrable; however, if

the noise is small, the normals will be very nearly integrable.

133



Chapter 5 C'ritical Points of the Image Dynamical System

a. b. c.

Figure 5.16. Integrability pictures for iterations of the noise-free image of a sphere. a. 200 iterations. b.
400 iterations. c. 800 iterations.

We can use an integrability measure to monitor the progress of the algorithm.
In order for the collection of normal vectors to be normal vectors for a real 'surface
in space, we must have p, = ¢;; we can use |py — ¢;| as a measure of the integrability
of the iterated surface and therefore as a measure of how close we might be to the
correct unstable manifold of the image dynamical system.

In Figure 5.16 we have tried to give a pictoral representation of this integrability
measure (IM) in the noise-free case (Figure 5.11). The brightness values run from 0 to
255; these images are images of 10| Py—qz| with truncation at values greater than 255,
so that the white area area represents IM values of larger than 2.5 x 10™%. The nearly
black region (represented here as having very few white dots) have p, — ¢; values a
small fraction (< 1%) of most of the p, values in the region. As iterations proceed,
the regions of good integrability increase, although the edges of the image,where the
converged constant brightness contours do not match the original (compare Figure
5.10 with Figure 5.11d), remain with relatively high IM values.

Adding noise to the image degrades the integrability measure of the iterated
solutions. In Figure 5.17 we show some examples of integrability measure pictures
under noisy conditions: we look at the IM pictures for a particular image with .02
maximum uniformly distributed noise added, with step size of A = 1.0 and four

pre-filterings of the image: as the iterations proceed, the results become more and
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o _ ; d.

Figure 5.17. Integrability measures in the case of noise: noise maximum .02, h= 1.0, 4 smoothings of the
image. a. 800 iterations. b. IM image after 800 iterations. c. 1600 iterations. d. IM image after 1600
iterations.

more integrable. This is consistent with the theoretical view that we are approach-
ing the unstable manifold of the image dynamical system which should be perfectly
integrable; in fact, however, progress is essentially halted after 1600 iterations: nu-
merically, almost no more changes in the solutions or in the IM image occur. Figure
5.15d shows the integrability picture for noise maximum of .25; clearly, more noise
leads to worse integrability.

We can also examine the sensitivity of the algorithm to changes in the reflectance
function. In Figures 5.18 to 5.20, we explore what happens if we make errors in the
direction of the light source assumed to have generated the image. We assume differ-
ent values for Iy, where (I1,05,13) = (0,.5,~1) is the original light source direction.
As the error gets worse, the convergence of the algorithm after 800 iterations is
not as complete; this can also be seen in the integrability pictures in Figure 5.20.
Nonetheless, the arrays of p and ¢ reached do generate images that correspond to
the original over large areas with the assumed reflectance function (Figure 5.18);

however, the surfaces themselves are increasingly different from the correct surface,
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a. b.

Figure 5.18. Incorrect reflectance function: images of p and ¢ arrays with assumed reflectance function.
Noise-free, 800 iterations, h = 1.0, correct I; = 0.0. a. I =.10. b. Iy = .5.

a. b.

Figure 5.19. Incorrect reflectance function: images of p and ¢ arrays with correct reflectance function.
Noise-free, 800 iterations, b = 1.0, correct I; = 0.0. a. I; =.10. b. I = .5. Compare with original image,
Figure 5.10.

as can be seen from the images generated by the converged surface and the correct
reflectance function (Figure 5.19).

The fixed grid method appears to generate good solutions even in the presence of
noise and seems to degrade gracefully if assumptions about the light source direction
are incorrect. This is consistent with the theoretical underpinnings of the method:
noise in the image or a poor choice of reflectance function represent perturbations

of the original image dynamical system. Since the usual good critical point we deal
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a. b.

Figure 5.20. Incorrect reflectance function: Integrability measure pictures. Noise-free, 800 iterations,
h =1.0, correct I} =0.0. a. §; =.10. b. I} = .5.

with is hyperbolic and therefore generic, perturbing the dynamical system a small
amount moves the critical point a small amount and changes the invariant manifolds
a small amount: the unstable manifold of the critical point is a stable feature (in
this sense) of the dynamical system.

This particular implementation shares difficulties with the simple Euler method
of integrating a vector field, which sequentially adds a scalar multiple of the vector
field to a point on the developing trajectory to generate the next point. For example,
if the step size here is too big, the method may bounce around and not converge
at all. Smaller step sizes avoid this problem, but too small a step makes for slow
progress; some kind of adaptive step size setting would be useful. Note that because
of the smoothing of the p and g arrays as part of each iteration step, taking an
exceptionally small step size effectively allows more smoothing and less deforming
along the dynamical flow. There may be analogs to the Runge-Kutta methods that
make efficient use of several evaluations of the vector field to improve the estimate
of the next point on the trajectory.

A feature that may be exploited is the fact that we are really interested in the
characteristic paths, not the trajectories. This suggests we could use a different

(positive) h(z,y) to multiply the vector components vp and v, for each point (z,y);
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Figure 5.21. Stretching of the mesh around a critical point p.. a. Before flowing. b. After flowing.

this would change how the initial surface is deformed, but would not change the
surface that is converged to in the limit. The limit is determined by the characteristic
paths and the directions they are traversed, not by how fast the paths are traversed
through time; changing the magnitudes of v, and v, by a (positive) scalar at each
point of the image should not change the theoretical limiting behavior, and may be
useful in dealing with difficult regions.

The integrability measure provides a way to judge the progress of the conver-
gence; changing the step size within regions that are having difficulty may improve
convergence; and pre-filtering the image with appropriately sized filters can reduce
the effects of noise. These all contribute to finding the unstable manifold of an image
dynamical system critical point in a noisy environment. More work needs to be done
to integrate these different features of the algorithm into a system for finding the

unstable manifolds of image critical points.

5.3.3 Deforming Grid Algorithm

5.3.3.1 Theory

We have also implemented a more direct version of the theoretical idea. The

basic idea is to place the mesh of Connection Machine processors on the estimated
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surface in C (IR3, 2), and move each mesh point with the flow of the image dynamical
system. As can be seen from Figure 5.21, we will have an increasingly less dense
concentration of processors near the critical point as time progresses. We need to
continually fill in this region in some manner to maintain accuracy.

We have chosen to use a very short flow duration so that the distortion of the
mesh is fairly minor. After this flow, we reset the mesh on the new surface: the
original mesh is located at integer (z,y) coordinate pairs (the p and ¢ values are
not restricted). After the short flow, the mesh is located at various slightly altered
non-integer (z,y) positions. We compute affine approximations to the surface near
integer (z,y) positions using this distorted mesh, and then fill in the p(z,y) and
q(z,y) values in the new integer mesh. This new mesh sits on the deformed surface
and is uniformly distributed around the critical point; we can now flow this mesh
and repeat.

To accomplish the flow, we use the image dynamical system vector field:

ve =Ry
vy = Ry
vp = Fy
vg = Ey,

and update the values of z,y, p, and ¢ in each processor as follows:

Tpew = T + hvy

Ynew = ¥ + hvy
Prew = P+ h'vp
dnew = q + th:

where again h is a kind of integration step size for the flow. We compute Ry, Ry

analytically as in the fixed grid algorithm; E,, and E, we compute in the interior of
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the image using a slightly different gradient operator than in the fixed grid case: as

before, on the interior we take

fo(z,y) = (1/2)(f(z + 1,y) — f(z — L,3))

and similarly for fy; however, the previous method does not yield satisfactory results
at the borders. Instead, we interpolate the values of the gradients at the border from

the values in the interior:
f2(0,y) = 2fa(L,y) — f2(2,y)
fo(2,0) = 2f2(z,1) — fz(,2)
f2(127,y) = 2f5(126,y) — f,(125,y)
Fo(2,127) = 2£5(2,126) — f.(,125).

To find the new mesh values and reset the grid on the deformed surface, we use
a nine-member neighborhood of each deformed point to estimate a tangent plane
through that point. To do this, we use a standard least squares approximation
technique. We normalize the neighborhood to have 0 average z, y, p and ¢ values,
so that effectively we are working a least squares approximation near the origin. We
solve for p’s and ¢’s separately. Letting f represent either p or ¢, we set

* . =
.’I),=£II,—.’IZ

Yi =yi— 7§
f z* =I;— f 3
where z;, y;, and f; are the coordinates of the nine different data points in the

neighborhood, and z, §, f are the average values of those coordinates over the neigh-

borhood. We can define T
x = (z],...,25)
y=@ )7

f=(ff, fs)"
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to be column vectors of the data coordinates. We seek a fixed column vector of

coefficients 8 = (B1, f2)T such that we minimize

I x, ¥1 8 - £IP%,

where [x, y] is the 9 x 2 matrix of z; and y; values. This is the least squares problem
of finding B; and B2 to approximately fit the linear function f(:c,y) = fiz + Py
to the (normalized) data we have. The usual vector derivative condition on § for

finding the minimum of this expression is
T T
0=2[X1Y] [x,y]ﬂ—2[X,y] f;

this can be rearranged to give
§= [xTx xTy]_1 [fo]
yIx yTy] |yt
as the least squares estimate of the coefficients. Writing this in the usual summation

notation, we have

f= [ LD w:yz]‘l [2:.- x:f.-*]
DRV SRl B DO i

For each nine-point neighborhood of deformed points, we find 8 = (81, 52)7 this
way. We then find the closest (z,y) integer coordinates to (Z, §); say these are (m,n).
We set

f(m,n) = i(m — &) + Bo(n — §) + f.
If there is more than one neighborhood with the same (m, n) coordinate, we take the
average of these values.

If we do not flow by very much, we will have found values for most of the integer
coordinates in the new mesh in this way. There may still be some isolated curves of
integer coordinates without new values: these are filled in using another least squares
fit over the neighboring filled-in values. As we shall see, this gives us some difficulties
in the integrability picture.

Again the edges of the grid pose special problems: in this case, we constrain the
neighborhoods around a point to be just those points of the theoretical nine-point
neighborhood that still actually lie on the grid. This gives us at worst four points

(in the corners) from which to determine the tangent plane to the surface.
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d. e. f

Figure 5.22. Deforming grid algorithm, no noise: a. 200 iterations. b. 400 iterations. c. 800 iterations.
d. p error image after 800 iterations. e. g error image after 800 iterations. f. IM picture for 800 iterations.

5.3.3.2 Experiments

Because of the intensive least squares computations, this method is considerably
slower than the fixed-grid method: it requires about 13 minutes on a 16K CM-1 to
perform 100 iterations; this is in contrast with around 30 seconds for 100 iterations of
the fixed-grid algorithm. In the noise-free case, the results are improved. In Figure
5.22 we see the results of the deforming grid algorithm over 400 iterations: the edges
are much cleaner than with the fixed grid algorithm. We also see the IM picture
at 400 iterations: most of the interior has very low |p, — ¢, | values (relative values
around 1% or less) except for the two moustaches of white in the upper half of the
image; these correspond to slight “cracks” in the solution (smoothed somewhat by
the least squares filtering) due to the method of computing the integer coordinates:
on either side of these cracks, the neighborhoods used to compute the tangent to the
surface are very different, e.g. on one side of the crack the integer coordinates might
be towards the upper left of the patch while on the other side of the crack the integer

coordinates might be towards the lower right.
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d. e. f

Figure 5.23. Deforming grid algorithm, noise with .01 max: a. 200 iterations. b. 400 iterations. c. 800
iterations. d. p error image after 800 iterations. e. g error image after 800 iterations. f IM picture for 800
iterations.

Note that this result is achieved without separate internal smoothing steps: the
least squares method itself provides some smoothing. If we add internal smoothing
in the form of two averaging operations on the p and ¢ values as we did in the fixed
grid case, we get the slightly distorted border edges that we saw in the fixed-grid
case (e.g. Figure 5.11), and the moustaches in the integrability picture fade but do
not disappear.

If we add noise to the image without smoothing the image, we do not get good
convergence. However, if we add internal smoothing of the p and ¢ arrays at each
iterations, we do get convergence: Figure 5.23 shows such a result, and the rest of
the trials were done with the internal smoothing in place. With noise maximum
values of .01, the deforming grid algorithm converges very well about 80% of the
time;!! results look quite acceptable after 600-800 iterations. The errors in the p and

g values on the interior of the image seem to be running less than 5% for the p values

11 That is, after ten attempted runs, about eight will have converged to a solution.
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b. c. d.

Figure 5.24. Deforming grid algorithm, noise with .04 max, h=.25: a. Generated image after 1200
iterations. b. p error image. c. ¢ error image. d. IM picture.

and less than 15% for the ¢ values on the interior of the image, and as we move away
from the center of the image where small p, and ¢, values magnify errors (and the
moustaches make their presence felt), |p, — ¢;| stays mostly below 10% of the value
of py. To properly find a depth surface consistent with the p and ¢ values we will
have to use a method that can deal with the lack of integrability, but the values are
not badly non-integrable. Note that the IM picture shares some resemblances with
that for the fixed grid algorithm: the edges of the image again show poor IM values,
and low IM values are associated with good matches between the original image data
and the image generated from the estimated p and ¢ values. If we increase the noise
maximum to .02, we find convergence only about 20% of the time.

Smoothing of the image is useful in the deforming grid algorithm as well. With
noise maximum of .02, smoothing the image changes the convergence rate from about
20% to just over half. Much more useful is a reduction in step size: all the above
results were achieved using h = 1.0; if we drop to h = .25, we get dramatic improve-
ments in noise immunity: with noise maximum of .04, for example, we get good
convergence of the image all the time, as well as quite good integrability results 80%
of the time without smoothing the image, and all the time with image smoothing.
Even for noise maximum .08 the image appears to converge correctly 80% of the time
without image smoothing; now, however, the IM pictures generally look completely
white, meaning the p and ¢ arrays converged to after 1200 iterations are much less

integrable than in the lower noise conditions. In Figure 5.24 we show an example
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a. b.

Figure 5.25. Distorting grid algorithm: incorrect reflectance function: images of p and ¢ arrays with
assumed reflectance function. Noise-free, 400 iterations, h = 1.0, correct {; = 0.0. a. I; =.10. b. }; = .5.

a. b.

Figure 5.26. Deforming grid algorithm: incorrect reflectance function: images of p ¢ arrays with correct
reflectance function. Noise-free, 400 iterations, b = 1.0, correct I = 0.0. a. {; = .10. b. lh =.5.

of the convergence of the algorithm for step size h = .25 after 1200 iterations on an
image with noise maximum of .04.

If we begin with the wrong reflectance function, we get very similar behavior to
the fixed grid algorithm: Figures 5.25 to 5.27 show essentially the same performance
with the distorting grid algorithm as Figures 5.18 to 5.20 show for the fixed grid
algorithm. As before, Figure 5.25 is formed from the converging p and ¢ values with
the assumed, incorrect reflectance function: as the error in the reflectance function

increases, the convergence becomes slower, but even with I; set to .5 instead of the
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a. b.

Figure 5.27. Deforming grid algorithm: incorrect reflectance function: Integrability measure pictures.
Noise-free, 400 iterations, k = 1.0, correct Iy = 0.0. a. {; =.10. b. I} = .5.

true 0.0 much of the image is reconstructed. Figure 5.26 is formed using the true
reflectance function, and shows how different the solution surface is from the correct
one. Figure 5.27 shows the IM pictures; as the error in the reflectance function
increases, the integrability measure becomes higher over certain edges of the image;
however, much of the center of the image stays integrable. This algorithm as well
seems robust to errors in the reflectance function.

The deforming grid algorithm is considerably slower in our implementation than
the fixed grid algorithm discussed in the last section. It does appear to converge to
somewhat more integrable sets of normal vectors than the fixed grid method except
for the occurrence of “cracks” in the integrability picture due to a sudden shift in
the neighborhoods used to calculate tangent planes. It also seems quite robust in
the face of noise and distortions in the reflectance function.

The difficult part of doing a direct implementation of the Lambda Lemma, intu-
ition is filling in the parts of the deforming surface that are vacated by processors
flowing away from the critical point. The deforming grid algorithm we implemented
flows for a short distance, and then fills in a new rectangular grid consistent with
the deformed grid; we have used a local least squares linear approximation to do

the filling in using neighborhoods of the integer grid points. One might try to fit a
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splined surface of higher order to the data points given by the distorted grid, and

then get the rectangular grid values from this.

5.3.4 Conclusions on Implementation

The successful implementation of the Lambda Lemma intuition provides em-
pirical support for the theoretical approach taken in the first two sections of this
chapter. Convex/concave solution surfaces around a maximum critical point in the
image due to a critical point maximum of the reflectance function correspond to
stable/unstable invariant manifolds of the corresponding critical point in the image
dynamical system.

The algorithms derived from the Lambda Lemma intuition appear to be relatively
stable both with respect to noise and with respect to errors in the reflectance function.
In addition, there are several potentially useful properties of these algorithms. One
feature is that they do not require the imposition of integrability at each iteration to
find a solution. Integrability is a side-effect of a successful convergence: the unstable
manifold of a critical point must obey both E = R everywhere on the surface (it is
true at the critical point; all the trajectories of the unstable manifold approach this
point as ¢ goes to —oo; and H = E — R is constant on each trajectory), and the
integrability condition, since the integrability condition is true on all characteristic
trajectories and the invariant manifold is made up of these. One can use integrability
of the evolving p and ¢ values to monitor the progress of the algorithm, particularly
in the presence of noise. Another feature is that we can pick step sizes for the
iterations that are different at each point of the grid because the limiting behavior of
the convergence is not dependent on the particular time-evolution. This may allow
careful handling of tricky sections in an image.

If an image critical point is on the stable manifold, we can reverse time and
use the same techniques. If an image critical point is a saddle critical point (for
example, at a maximum of the reflectance function and with saddle surface structure

at that point), then the invariant manifold is neither a stable or unstable manifold
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- %—/

=

Figure 5.28. 2-d dynamical system restricted to the invariant manifold: in general, most points will be in
the stable or unstable manifold of either a source or sink critical point.

for the dynamical system, and the methods described here fail. On the other hand,
this saddle invariant manifold has to come from somewhere. A true solution surface
will have a two-dimensional restricted image dynamical system defined on its interior.
This system will have critical points, and will (probably) be a generic two-dimensional
system: this means that almost all the points on the surface will either be in the stable
or unstable manifold of a source or sink of the two-dimensional system (Figure 5.28).
Almost all the points near the saddle critical point in theory should be reachable by
finding the stable and unstable manifolds of other critical points.

The methods described in Sections 5.3.2 and 5.3.3 will only work on some (pos-
sibly quite extended) neighborhood of a single critical point. If two critical points
are contained in a neighborhood on which these algorithms are applied and the true
solution surface is the stable manifold for one of the critical points and the unstable
manifold for the other, it is not clear what solution (if any) will be converged to. The
Lambda Lemma algorithms will seek simultaneously to find the unstable manifold

for both critical points; this will most likely lead to non-convergence.
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This suggests dividing the image into regions each centered on a single critical
point. We then find the stable and unstable manifolds of each critical point out to
the (artificial) boundary of its region, and look to see whether or not these surfaces
can be seamlessly merged together.

Treating the shape from shading problem as an image dynamical system leads
to new ideas for shape from shading algorithms. These algorithms are very parallel
in character, and converge robustly to integrable solution surfaces near the critical

points without an externally imposed integrability condition.
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Appendix to Chapter 5

A5.1 Similar signatures for B and 4= pPTBp.

We are interested in the signs of the eigenvalues oy, ag for the 2 x 2 matrix
A = PTBP, where B and P are 2 x 2 matrices, B is symmetric and P is invertible.
Since A is symmetric, we know it has real eigenvalues oy, ap. We are interested in

the roots of the polynomial
det(I — AA) = det(I — A\PTBP).

Pre-multiplying by P and post-multiplying by P~! does not change the determinant,

so we are interested in the roots of the polynomial
det(I — APPTB).
Since P is invertible, PPT is positive definite: we have
ulPPTu = (PTu)T(PTu) > 0,

and equality only occurs if PTu =0, i.e. if u = 0.
We can now use an argument similar to the one in Section 5.2.5: we let Q be a
matrix of orthonormal eigenvectors for PPT, so that QAQ~! = PPT where A is a

diagonal matrix of the eigenvalues 41 > 0 and v > 0 for PPT. We have
det(PPTB) = ajay = det(QAQ™'B) = det(AQ'BQ).
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B and Q~'BQ, being similar, have the same eigenvalues 81 and #;. We have ajay =
71728152; the signs of «; and s are the same if and only if the signs of 8; and 3
are the same.

We can also look at
trace(A) = a1 + ag = trace(PT BP) = trace(PPT B)
= trace(QAQ ! B) = trace(AQ ' BQ).

If @ and b are the diagonal entries of Q~! BQ, then we have oy + ag = via + 1b.
If B is positive definite (i.e. both 8; and B, posistive), then so is Q~' BQ and hence
a and b are both positive (e.g., @ = (1,0)QTBQ(1,0)T > 0). This means the sum
a1 + a2 is also positive, and since a; and a3 are of the same sign, they must both be
positive. Similarly, if 3; and B, are both negative, so are both o and a5. Finally, if

B1 and 2 are of opposite sign, so are a; and .

A5.2 Eigenvalues of 4= Bc When B and ¢ Are Sym-
metric

This is a pictorial look at the following problem (taken in large measure from
(Norton, 1988)): say B and C are real 2 x 2 symmetric matrices. When does their
product, A = BC, have real eigenvalues?

If A has one complex eigenvalue, then it has two, and det A > 0; thus if A has
one real eigenvalue, all its eigenvalues are real. If either B or C is singular, then so
is A, and hence A has one real eigenvalue, 0.

Assume both B and C are invertible. We will demonstrate that if either B or C
is definite, then A has real eigenvalues. Let us assume that B is definite. If C is not
definite, then det A = det B det C is negative, and A must have real eigenvalues.

Assume both B and C are definite. We can look at how B behaves by considering
how B acts on the set of straight lines through the origin in the plane: this is
also called the projective plane, IP. We can identify lines through the origin with

points on the circle: essentially, we draw a half circle in the plane and look at the
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]PI
[p]

v

P
[p]
W )
—>
v

Figure A5.1. a. Lines through the origin. b. S! is diffeomorphic to IPL.

intersection of each line through the origin with the circle; we identify the endpoints
of the half circle (since the lines through these two points are the same), and this
defines topologically a circle (Fig. A5.1). If p € IR?\0, let us define [p] to be the line
through the origin containing the point p. B can be considered to act on IP? since
BAp = ABp, so [Bp] = [BAp]p and we can define B[p] = [Bp]. If v is an eigenvector
for B, then Bv = Av, so B[v] = [v], and B leaves the line containing v unchanged.
The line through the origin and v is a fixed point of B’s action on IP!.

If we take a line [p] € IP! we can find out where B¥[p] goes as k goes to infinity.

Assuming B is definite, we can pick an orthogonal basis of eigenvectors {v1,v2} such
that in this basis
A0
B = [ 0 /\2] ’

where Ay and A, are the eigenvalues of B with |\1| > |Az]. (If A; = Ay, then B is a

multiple of the identity, and A has real eigenvalues immediately as a scalar multiple
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[vi]
[Vl] Bp| B[
Nl
[v,] 1
P
[v,]
a. b.

Figure A5.2. Action of symmetric, definite B: a. Lines picture. b. S1 ~ IP1
picture. B leaves the eigenspaces [v;] and [v2] alone; if [A1| > |Az], then for p # vo,
limg o0 B¥[p] = [v1].

of C.) If B is definite, then A\; and ), are the same sign; we can multiply B by —1
if necessary to get them positive without affecting the action on lines. In fact, the
action of B on lines through the origin is unaffected by scaling B by any constant,

so we can look at the action of

~ 1 0 )
B = [o Ag/Al]’
we have
= 1 0
Bf = .
[0 (Az/ )\l)k]
From this we see that if p # vy,

lim B*[p] = lim B*[p] = [v]
k—o0 k—o0

since B* will squash the vy component of p while leaving the vy component fixed.
Since v is an eigenvector for B, limg_,o, B¥[vs] = [v3]. Looking at how B acts on
lines, we see that it moves all of them except [v2] monotonically towards [v;] along
the half-circle between [v1] and [v3] containing p (Figure A5.2a). In Figure A5.2b,

we show this on the circle representation of IP! by putting arrows along the circular
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[Vz ]

Figure A5.3. Combined action of definite B and C: circle representation. [v1] and
[v2] are at opposite sides of the circle, and the dynamics of iterations of B is shown
again by arrows. The eigenspaces [w;] and [ws] for C are placed on the same circle.
The combined map A = BC acts as follows: C leaves [w;] alone, and B moves [w;]
towards [v1]. A must have a fixed point between Afw;] and Alwa].

arcs. In a sense, the point [v;] on the circle $1 ~ TP is a sink for the iterations of
B on IP!, while [vs] acts as a source.

Now we look at the composition BC. C is symmetric, so it also has orthogonal
eigenspaces [w;] and [w;]. Let us assume these are different from [v1] and [v] (oth-
erwise B and C are simultaneously diagonalizeable; hence they commute; hence A
is symmetric and has real eigenvalues). In Figure A5.3 we show how the combined
action A = BC moves the points [w;] and [ws]: it moves them both towards the
point on the circle [v1]. Since B and C are both definite, they preserve the order
of points around the circle, and so does A = BC. As a result, A must map the
arc between [w)] and [ws] containing [v1] into the smaller arc between Alw;] and
Afws]. This means A has a fixed point on this interval. To see this, pick a coordi-
nate chart for the circle containing the interval, and say 0; is the coordinate on the
circle for [w;] and 6, is the coordinate on the circle for [wy]. If we define the function

9(0) = A(f) — 0 (where we think of A(6) as the coordinatized version of A), then
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g(01) and g(02) are of opposite sign. By the intermediate value theorem, there must
be a 8 € [61, 02] such that g(#) = 0, so there must be a [p] between Afwi] and A[w,)
such that A[p] = [p]; i.e., A has a fixed point. A fixed point for A = BC acting on
lines means that A has a real eigenspace, and hence real eigenvalues.

If B and C' are both not definite, then this argument does not work. For example,

if
[1 0
5=y
[0 1
c=|1 3]
then
r_[1 0
B —|o —1k]

so that B¥[v] will never converge. In this case

_ _ 10 1
amno= [0 ]

is a rotation matrix which does have complex eigenvalues.

A5.3 Eigenvalues of 4= 8¢, ¢=QTBQ, B symmetric.

In Section 5.2.4 we are interested in the case where B = D?R, and C = D?E;
from Section 5.2.2, we know that C = QTBQ and hence (Appendix A5.1) has the
same signature as B. We want to know when A has positive eigenvalues. We can
once again use an argument similar to that in Section 5.2.5.

From Appendix A5.2, we know that if B (and therefore C) is definite, A has real

roots. Assume B is definite. We have
det(A) = ajap = det(BC) = p1 827172,

where B; and f; are the eigenvalues for B and 4; and 4, are the eigenvalues for C.
Since B and C have the same signature, ajay is poistive, so oy and o have the

same sign. Picking coordinates to diagonalize B, we can write

trace(A) = a1 + ap = trace BC = B1a + B2b,
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where a and b are the diagonal entries of C in this coordinate system. If B (and
hence () is positive definite, then all the values f1, 52, a, b are positive, and so a3
and oz must both be positive; if B is negative definite, all the values 31, 82, a, b are
negative, and a; and ay are again both positive. Thus, if B is definite, A has positive
real roots.

If B is indefinite, this result does not hold. The example at the end of Appendix

A5.2 shows that if B and C are both indefinite, BC can have complex eigenvalues.

If )
2 0
5=15 |
[—1 0
c=3 3
then
[-2 o

has negative eigenvalues.
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Chapter 6

Image Data at the Bounding Con-
tour

In Chapter 5 we discussed the contribution of critical points to the determination
of shape from shading. This chapter discusses the contribution of the image data
near and at the bounding contour. A motivating example is presented, followed by
two different analyses, the first a linearization analysis of the characteristic vector
field at the bounding contour, the second a power series approach. These suggest
that given a known reflectance function, a patch of bounding contour image data is
no more useful than a patch of data from the interior of the image not containing a
critical point: different solution surfaces can be determined by the choice of depth
values along a curve in the image, in particular the bounding contour. This reinforces
the theoretical importance of the critical points on the interior of the image as the

major determinants of solution surfaces.

6.1 Introduction

There are two problems with working (either theoretically or practically) with
the bounding contour image information: the II€ : (z,y, z, p, q) — (z,y) rectilinear
coordinate representation for the surface, the image, and the image projection does

not have p and ¢ well-defined at the bounding contour; and, although the image
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Figure 6.1. The turned standard coordinate system for viewing the bounding contour. The image plane
is now the y — z plane.

intensity is theoretically well-defined at the bounding contour, the image brightness
derivatives explode.

The first problem is surmountable: our approach has been to try to think in
a coordinate-free way and choose coordinates to answer particular questions. In
this case, we can turn the coordinates sideways. We use an (z,y, z,p, q) coordinate

system as before, with tangent spaces coordinatized by p and g, where

1 0
01
P q

spans a tangent space of interest at the point (z,y,z) in space, and the matrix
is written using vectors %, %, % as a basis. However, now we take the image

projection to be

(2, y,2) — (v, 2).
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Effectively, we are projecting down the z direction, and points in C(]R3, 2) on the
bounding contour all have coordinate p = 0 since by definition the 3% direction is
contained in a surface tangent plane at the bounding contour.

We need to recalculate the coordinate expression for the vector field X defining
the characteristic dynamical system. In Chapter 4 we defined the image dynamical

C is the projection from the five

system function as H = E o ¢ — R, where =
dimensional space C (]R3, 2) to the image, and R is the reflectance function defined
on C(IR?,2). We discussed how finding solution surfaces for the first order partial
differential image irradiance equation can be viewed as finding a solution surface for
a differential ideal generated by dH and 6, where 6 is the contact 1-form defined
in our coordinate system as § = dz — pdz — ¢dy. This in turn gave rise to a closed
ideal with the same solution surfaces, generated by dH,#, and df. This ideal has
one-dimensional solution curves, the characteristics, that can be assembled together
to make up solution surfaces for the original first order equation. These characteristic
curves can be defined by a characteristic vector field X. A characteristic vector field

for an ideal of differential forms is one that preserves the ideal under contraction:

i.e., if p is a differential form in the ideal, then ixp is in the ideal as well. Thus

ixdd = af + BdH,

since these last two generate all the 1-forms in the image ideal. We can expand both
sides with our new coordinate system: we have H = FE(y,z) — R(z,y, z,p,q) and

collecting terms we get

Xzdp — Xpdz + Xydg — X dy =
(—ap— BRy)dz + (—aq + BEy — BRy)dy + (a + BE, — BR,)dz
— BRydp — BR,dg,
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where we have allowed R to be space varying, as we will need the results later on. We
can collect coeflicients of the basis 1-forms dz,dy,dz,dp,dq to get « = —3(E, — R.),
and hence (using ixf = X, — pX; — ¢X, =0 to get the components of X,):

Ry
Rq
X=-p PRy + qR,
—R; + p(E; - R;)
Ey - Ry + Q(Ez - RZ)

Even in the space invariant case, R = R, = R, = 0, this vector field “looks”
different from the characteristic vector field used to analyze the critical point case in
Chapter 5; this is because the coordinates have been turned to allow the bounding
contour to be contained in the coordinate chart.

The other problem with working at the bounding contour, the fact that deriva-
tives of the image intensities explode as shown in Section 3.2.1, is more difficult to
handle. Infinities keep cropping up when dealing with the bounding contour. Qur
analysis in Chapter 5 of the critical point case depended on the dynamical system
generated by a vector field defined on C(IR3,2). This vector field depends on the
image derivatives no matter what the coordinate system, as can be seen from the ex-
pression derived in our new coordinate system in the previous paragraph, and these
image derivatives blow up in general at the bounding contour. The analogy with the

behavior of \/z as = goes to zero is very strong, as we shall see.

6.2 A Motivating Example

To begin to get an understanding of what might happen at the bounding contour,

we can work through an example. Consider a surface defined by
1
z= 5((1:172 + byz)a
a paraboloid. (Figure 6.2) At each point (z,y,2) on the surface, we will have
P=2zy =ax

q=zy=by.
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w1(8)

Figure 6.2. Example of bounding contour analysis: a paraboloid. The y — z plane is the projection plane.

Consider also a very simple reflectance function,

R(p,q) = pli + qla.

The image in our turned coordinate system will be

E(y,z) = lhaz(y, z) + lLby;

note that we must express z as a function of the image coordinates (y, z) in order to

define the image. Since

1
%\/ 2z — byZ’

assuming we are interested only in the view of the positive z sheet of the surface

T =+

(remember that we are projecting along the z direction), we have

la
E(y,z) = %\/22 — by? + Iyby.
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The bounding contour in the image will be places in the image (the y—z plane)

where the surface has p = 0; i.e. places where z(y,2z) = (1/v/a)v/2z — by? = 0.

These points lie on the parabola z = %by2 in the image.
We can find the components of the characteristic vector field using the expressions

developed last section and taking 8 = —1:

h
l;
; ph +qlo
x= 3] = p( l1va )
p ;;2Z—by2
g — l1\/aby L Lb4 hva
| V22 — by? 2 -\-;22—by2 |

As the bounding contour is approached, both p and \/m approach 0; thus, the
vector field is undefined at the bounding contour.

The behavior is similar to the behavior of the vector field X = (z/y,1)T on IR%:
this two dimensional vector field is also undefined at the origin. In this case, we
can get out of difficulty by multiplying the vector field by the scalar y to get a new
vector field parallel everywhere (except at the origin) to the old one and given by
X = (z,y)T. This is well behaved on the plane, but has a critical point at the origin.

We can multiply the characteristic vector field of our image dynamical system

by v = 4/2z — by? and consider instead the o.d.e

liv
lz’v
v(ph + ql2) ;
pliva
q labv + l1v/a(q — by)

Since p =0, v = 0, and ¢ — by = 0 at the bounding contour, from the expression

i~ TER S TR~

for our vector field we see that the bounding contour is a curve of critical points.
The multiplication by v has made the vector field more tractable. If we replace the

#z equation with one for 9, and substitute z = (1/2)(v? + by?), we will have made a
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new related vector field that is actually Lipschitz at the bounding contour. We have
z = (1/2)(v? + by?), so
v(pli + ql2) = 2 = vi + byy.

Using the vector field for g, we can solve for v to get the vector field

x llv

:l) lz’v

v| =| pli+qly—bly
P pliva

q l2bv + l1\/a(q — by)

We can solve for p(t) = py exp(l14/at). We also note that
q = hbv + l}Va(q — by) = by + liv/a(g — by),

SO

(g~ by) = halg — by),

and we have

g — by = co exp(l1v/at).
We also have v? = 2z — by?, so
vo =2 — byy
= v(ply + qla) — Lbyv
v = ply + l2(q — by)
= lipo exp(l1vat) + lrco exp(l1V/at)
= (lipo + l2co) exp(l1V/at);

hence

{ l
0=+ l—p;—li\/aéc—"(exp(hﬁt) —1).

From this and the vector field we can solve for z and y:
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lipo + lac (exp(ll\/at) _ t)
hva hva
_ llpo + Iy exp(ll\/Et) >
y(t) = eo + volat + I e ( ha t).

z(t) = dp + volit +

Finally, we can solve for
q(t) = (g — by)(t) + by(2)
= ¢p exp(l1v/at) + beg + bvot +

2(t) = (1/2)(v? + by?).

b(lipo + baco) (exp(hﬁt) _ t)
hva hy/a

We can also find the implicit equations of the characteristic curves from the above

parameterized equations: we have p(t) = pg exp(l1+/at), so

t= 111/5 ln(p/pg),

and therefore

g=ty+ L
po

_ llpo -+ 1260
v =1y + T\/a—'((P/Po) -1)

= do + oo g—=l(p/p0) + h “22EEL (o)~ 10(p/p0))

liva I%a
y = eo + lyvo—r=In(p/po) + L P2 () In(p/po).
ll\/c_l lfa

We can rearrange and write these equations in a different way. We can define
functions 73, ...,n74 as real functions on C(IR3,2) that have a constant value on a
trajectory: they are called integral invariants of the flow defined by the vector field.
Each equation 7;(z,y, v, p,q) = &; defines a hypersurface in C (]R3, 2); on the interior
of the image (i.e. away from py = 0) these will be transverse to each other, so that
the intersection of all four hypersurfaces in the five dimensional C(IR3, 2) will be a
one dimensional curve, the path of the characteristic trajectory.

We begin by defining
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771=q_by
p b

and we see from the above implicit equations that on a characteristic curve, we have

€0
771 i fgl,
po

From the implicit equation for v, we have

o=y AP0t ho (P
° hiva Do

Lhp+1l(g—by) hpo+ e
hiva hva ’

where we have used the fact that ¢ — by = cop/py. We can define

= vy +

— v lhp+ (g —by)
liva ’

and we have 72 = k3 along a characteristic curve. If this is compared with the

expressions for E(y,z) and R(p,q) early in the example, it can be seen that 5, =
H/(li\/a), where H = E(y, z) — R(p, q) is the coordinate representation of the func-
tion H : C(IR?,2) — IR that defines the image dynamical system. We know that H
must be a constant on trajectories of the system; in this example, it has explicitly
emerged.

We can simplify the coordinate representation of 7, by explicitly using the defi-

nition of n;:
_ . Pitbm)
72 —_—ll\/c_t .

We can perform the same kind of rearrangement and substitution on the implicit

equation for z to get

ns =z —1 (v_ 11P+12(q—by)) Inp , hp+Dh(g—by)
' hva hva T Ba
Inp I

—z—1] .
x 177211\/(-1- ll\/a(v n2),
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with, again, 73 = k3 along a characteristic curve. Finally, rather than using the
equation for y to generate a fourth invariant, we can observe (either from the original

differential equation or from the implicit solutions themselves) that
ne = bz —liy

is a constant along the characteristic trajectories; this and the previous implicit
equation defining n3 give the implicit equation for y.

We write these four invariants here for reference:

q—by
P
_p(li+bm)
liva

Ny =z — %(lnpﬂ)—

na = lax — l1y.

m=

72
v

7

Given p # 0, and the constants «;, we can solve sequentially for the other values

m7y7v’q:

lrc +l2:v
y= 114 I
q = by + pry.

For p # 0, the four invariants ; = x; describe the one dimensional characteristic
curves,

These equations define the characteristic curves for this image dynamical system.
We are interested in behavior near the bounding contour, places where p = 0 in
our coordinate system. We can, for example, find out which contours will actually

approach the bounding contour by examining what happens with the invariants as
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p approaches 0. From the definition of 7, assuming a finite k3, we must have
g — by — 0 too. From the definition of 5; we also see that v — k9. From the
definition of 53, in order for k3 to be finite, we must have x; = 0; since 77 is an
invariant of our characteristics, it is not a question of 72 approaching zero along a
characteristic; we must have 73 = &2 identically equal to 0 along the characteristic
in order for 3 to be finite. This forces v — 0 and z — &3 as p — 0. Finally, we have
y — (ka/l1) ~ (I2/l1)K3

The assumption that the bounding contour of the image in this example is due
to the projection of finite points on characteristic trajectories has forced 5, = 0 on
trajectories that satisfy this. Since gy = H, the image dynamical system function,
this geometrical assumption has restricted us precisely to the characteristics that are
consistent with the image: those with H = 0, i.e. with E o II® = R along them.

Consider a curve in space parameterized as
0 1 2
s— (2°(s),s, 59 ,0,bs),

with 2°(s) an arbitrary function. This curve will project to the image of the bounding
contour of our simple surface, and also has the same normal along the bounding
contour in space as our original surface. Which characteristics will approach this
curve? We can parameterize the set of characteristics by s where (ky, ..., k4)(s) for
a fixed s describes a characteristic that approaches the point (2°(s), s, (1/2)s2,0, bs)

on the bounding contour. From the above calculation as p — 0, we see that

k3(s) = 2°(s)
ka(s) = Lz"(s) — Iis
k2(s) =0
and apparently arbitrary x1(s) will give characteristic contours that approach the
given bounding contour in C(IR?,2).
The degeneracy of the image at the bounding contour is shown again by the
fact that x; appears to be arbitrary in determining characteristics that approach
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a point on the bounding contour. There appears to be a one-parameter family of
characteristic contours (with x1 as parameter) that approach a given point on the
contour.

However, from the equations (}) giving z,y,v, and ¢ in terms of p for a given
choice of the «;, we see that the space coordinates z, y, and v (and hence z) are
determined solely by k2 = 0, k3, and «4; the “ambiguous” x; does not appear to enter
in the determination of the space part of any of the characteristic curves approaching
the bounding contour. This leads one to suspect that in this example x; must in
some way be determined by the integrability condition dz = pdx + qdy.

In the interior of the image, the choice of an initial strip determines the values
of both H and the contact 1-form @ at each initial point along the strip; these values
are constant along each (unique) characteristic emanating from that initial point. In
our example, at the bounding contour we have a more degenerate situation: we have
a one-parameter family of characteristics emanating (in the limit) from each point on
the bounding contour. Using z = (1/2)(v? + 3?), the integrability constraint along
the bounding contour is

2 =vv' + byy' = pa' + gy
byy' = byy',
where z', etc. are derivatives with respect to s along the bounding contour, and we
use the fact that v = p = 0 and ¢ = by along the bounding contour to get the second
equation. Thus, the integrability condition 2’ = pz’ + qy’ is apparently satisfied for
the whole 1-parameter family of different trajectories emanating from a single point
on the bounding contour. This gives us the apparent ambiguity in «;.

The calculation of the integrabilty equation z' = pz’ + gy’ at the bounding
contour is not quite justified, however, since at the bounding contour our invariant
characterization 7; = k; of the characteristic trajectories breaks down. We have to

be more careful with the limiting behavior of the integrability condition.
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We can examine the integrability condition on the interior of the image near the
bounding contour along a curve (z,y,v, p,¢)(s) that runs transverse to the character-
istics. We have functions «;(s) defined as the characteristics are crossed. We know
that in order for these characteristics to approach the bounding contour in the limit
we must have xz(s) = 0 for all s. We can write the integrability condition using the
flow invariants 7; = «; and substituting for v, v’, and y' using different equations

from (1):

2 = v +byy' = pz’ + qy’
v’ = pa' + (¢ — by)y' = p(z' + k1y')

p(l1 + lax1) ' no_ ' I , k4
e (Vaz' —ars) =p (2’ + &1 llx—T .
Solving for «1,

, 1

SRR GV T Py Dy P

Thus, 1 is determined by the integrability condition on the interior of the image
together with derivatives of the curves x3(s) and k4(s). We can take the limit of this
as our transverse contour approaches the bounding contour: in this case, we have

z(s) = z°(s), k3(s) = 2%(s), and k4(s) = l,2%(s) — Iy s, and so we see that
k1(s) = ——:col(s).

This is another sign of the degeneracy at the bounding contour: we need to pass to
the derivative of the bounding contour data to actually tie down x4(s), in contrast
to the image interior where «1(s) is determined just by the values on the initial strip
at each s.

Note that a large family of solution surfaces gives the same image as our original
paraboloid: we can pick any initial depth curve 2%(s) along the bounding contour
and find a solution surface containing it. The equation for the solution surface can

be found from the equations () relating z and y to v and the invariant coefficients
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Ki. Since v = m, by squaring and solving we can find an expression for z
as a function of z and y along the characteristic trajectory fixed by s. From the
equation relating y and z we can solve for s as a function of y and z (except perhaps
where 20(s) has zero derivative) and substitute this into the preceding equation to
get the general equation of the surface. This surface will not fold over itself (except
where z° does), and so describes a solution surface consistent with the image data
and reflectance function assumed.

For example, we can assume z°(s) = as. Then

k1(s) = —a
K:2(S) =0
k3(s) = as

k4(s) = (ba —1y)s,

and
_ p(li — ha)

 h+a
z = as+ (v/Va)
_ lg (lgas has lls)
A
q =by - pa.
We can solve for s:

s =

z—(v/va)

and we can write
_ e (boa—1h)(x—v/Va)
=7 I p
I by l
lhy = —=— e —
1Y \/a_v + aw a\/a_v
o= Ly —3)va

(- Ly
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The depth for this new surface is given by z = %(v2 + by?). We can look directly
at the image of the new surface to see if it is the same as the image of the original

surface: we have z, = vv; and z, = vv, + by, so

E(y,2) = lize + lzy = v(live + lavy) + Lby
VL () + oty

T k-H\e
= hvva + l2by

= 11\/5\/ 2z — by2 + Iy by,

which is the same as the image of the original paraboloid. .

How does this motivating example connect with the critical point theory worked
out in Chapter 57 It turns out that there is no “good” critical point on the interior
of the image: our reflectance function does not have a critical point, and indeed
the image does not have a critical point anywhere either (e.g. no “bad” critical
points caused by parabolic lines as discussed in Section 5.2.1). Thus there are no
stable/unstable or saddle manifolds to constrain the possible solution surfaces, and
so it is quite possible to have a large class of globally consistent solutions.

Several features of this example will be important in the more general work to
follow. The simple geometry of the original surface considerably helped the analysis:
we were able easily to calculate the actual image intensities and find the derivatives.
The extra function v appears in the denominator of the original vector field and is
useful in analyzing it. v contains a square root responsible for the finite limit of the
image intensities as the bounding contour is approached while giving infinite image
derivatives. We multiplied the whole vector field by v and effectively replaced the z
coordinate with v to generate a Lipschitz vector field which has a curve of critical
points along the bounding contour; including the depth coordinate z, we actually
have a plane of critical points for the new vector field. We will try to follow this

spirit of analysis for the more general case.
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<
tly

projection fibers

bounding contour

Figure 6.3. Surface, bounding contour, and twisted coordinate system.

6.3 The General Case: Linearization Approach

From Whitney’s theorem (Golubitsky and Guillemin, 1973) about the generic
nature of singularities of maps between two dimensional smooth surfaces, we know
that there are two kinds of singularities generically: a fold and a cusp. The bounding
contour points on the image are curves of fold points except where they appear to
end in the image interior: these are cusp points (which we will not be examining).

Here we look at the image near generic fold points of the surface z = flz,y).
We will assume that there is a smooth bounding contour visible in the neighborhood
of the origin, that the surface does not extend in the negative z direction from the
bounding contour (the surface runs to the “left” of the bounding contour), and that
we see the image only of the more positive z sheet of the surface.

We will generate a new local set of coordinates for space and the image in which
the surface near and at the bounding contour has a particularly simple coordinate
representation (this is essentially what Whitney proved to be possible): z = %xz. This

new (z,y, z) coordinate system generates a new (p, ) system for the surface normals
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at each point (in Section 3.1.2 we saw that the (z,y, z,p,q) coordinates for C(IR3,2)
works for curvilinear (z,y, z) coordinates as well). In the new (z,y, 2, p, ¢) coordinate
representation, the reflectance function will no longer be (z,y, z)-invariant, and so
the characteristic vector field will include terms involving space derivatives.

The required coordinate change can more intuitively be thought of as a transfor-
mation of the original surface near the origin from a surface z = f(z,y) to a surface
z= %w2. We assume that our original surface contains the origin and has a fold point
bounding contour element at the origin. We want to maintain the image projection
as simple orthographic projection along the z coordinate direction. This restricts
the transformations we can use to ones which map the null fibres {(A,y, z) for all A}

of the image projection to themselves. Thus, if ¢ is such a transformation with

¢(w,y,z) = (‘%,ga 2), we have
rl(8(2,y,2)) = (§,2) = 71 ($()\, ¥, 2)),

for all A € IR, and so in the new coordinate system (Z, 9, 2) the image projection
still is projection down the & direction.

We can transform the surface in stages: first, we straighten out the bounding
contour. Say the bounding contour of the original surface is (z°(s), s,2%(s)) param-
eterized with respect to the y coordinate (we may need a rotation around the z axis

to make this possible). Consider the map

'Q/J(.’E, y,z) = (m - .’Bo(y),y,z - zo(y))'

For fixed y and z, this takes points (A, y, z) to points (A — z%(y), ¥,z — 2°(y)), so as
required it maps fibres of the orthogonal image projection to other such fibres. It also
maps the curve in space (z°(s),s,y%(s)) to the curve (0, s,0), so we have succeeded
in straightening out the bounding contour.

We now want to transform the surface near this straightened bounding contour

into parabolic form. Let us say that we currently have z = f(z,y), with straight
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bounding contour (0,y, 0). Let us fix the level y = ¢, and restrict our attention to the
(z,z) plane at this level. Suppressing the y coordinate, we seek a transformation ¢ :
(z,2) — (¢1(z, 2), ¢2(z, z)) that takes the curve (i.e. the slice of the surface at y =
¢) z = f(z) to the curve z = 122, and that takes projection fibres {(),z)| for all A €
IR} to other projection fibres. The latter condition means that ¢(z,z) = @2(z), i.e.

¢2 is independent of x. We can take ¢2(z,2) = z for example. We now want
(1@, (@) = H(f@) = £(z)
on the surface, so ¢1(z, f(z)) = \/2f(z). We can take ¢1(z,2) = ¢1(z) = \/2f(z),

and our full transformation is:
¢(z,y,2) = (V2f(2,9),y,2).
Looking at the positive z sheet of f, is this transformation smooth at the origin?

We can look at a power series expansion near the origin:
f(z,y) = a1z + azy + asz’® + aszy + asy’ + - -

Since f(0,y) = 0 and p(0,y) = f(0,y) = 0 for all y in the region of interest, we must
have f(z,y) = z%g(z,y) for some analytic g(z,y): the coefficients of terms involving
y' or zy' must be 0. We assume that a3 = ¢(0,0) # 0 so that f does have second

order behavior and ¢ = a3 + h(z,y), where h(z,y) is first order in z and y. We can

VI, y) = |2|(as + h(z,y))"/?
= |z|(v/as + (1/2v/a3)h(z,y)) + -,

using the power series expansion for the square root. Looking only at the positive

(visible) sheet, z > 0, v/ f(z,y) will have (one-sided) derivatives of all orders if f is

write

smooth.
Looking at the diffeomorphism ¢ on the visible sheet of the surface, if a3 is not

0 the ¢ component of the vector ;%(ﬁ is not zero either, and

0 0
D= £¢ 1 0
0 1
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will have full rank at the origin; thus, by the inverse function theorem, ¢ is a diffeo-
morphism of the visible sheet at the origin.

This transformation will take the visible part of a surface z = f(z,y) with
bounding contour (0,s,0) and map it to a surface z = %xz. By composing the
first bounding contour straightening map i with ¢, we have a smooth map that
takes our original surface with bounding contour (z°(s),s, 2%(s)) to the surface z =

2, mapping bounding contours to bounding contours, and preserving the image

.
projection fibres. If we think of this combined map as a coordinate change, how are
the (p, ¢) coordinates affected?

Here is one way to think of the effect: say we start with some other surface
z = g(z,y) with p = g, and ¢ = g, at some point (z,y, z). Say we transform space
coordinates with some diffeomorphism ®(z, y, 2) = (#,, 2). In the new coordinates,
we will have 2 = §(2, ) defining the transformed surface, assuming that in the new
coordinates the % direction is not contained in the new surface. We must have

p= %f}, qg= %g. We can write the surface points in the new coordinate system as

®(z,y,9(z,y)) = ® o (I x g)(x,y), where I(z,y) = (z,y) is the identity map. Thus

where ®; gives the first two coordinates and @, gives the last coordinate of ®. We

can solve for §:

9(2,§) = @20 (I x g)o (P10 (I x g))7'(&,9).

We can now use the chain rule to get expressions for p = §; and § = 9y

Let us do this for each of the two diffeomorphisms defined above, ¥ and ¢. We

have ¥(z,y,2) = (z — 2%(y),y, z — 2%(y)), so

P10 (I x g)(z,y) = (z — 2%(y),y)

Diro(rxg)=[3 ~*]

175



Chapter 6 Image Data at the Bounding Contour

Do) = [} o]
P20 (I x g)(z,y) = g(z,y) — 2°(y)
D(3 0 (I x ¢)) = (gar 9y — 2"
Dg=D(p20(Ix g))(D(10(I xg))™
(82, 83) = (9o> 922° + gy — 2%
hence

A A ! 1
(5,9) = (p, pe° +q—2°).

In the second case, we assume we have an image due to a surface z = f(z,¥)

with bounding contour (0,y,0). We have ¢(z,y, z) = (1/2f(z,¥),y, 2), so

¢10 (I x g)(z,y) = (V2f(z,y),9)
s fy
D(¢y0 (I x g)) = \/Ta:,y) \/2f1(:v,y)

[V2f(@=y) _f
(D(gro(Ixg))) ' = z ﬁ

0 1

$20(I x g)(z,y) = g_(w, y)
D(¢20 (I x g)) = (92, gy)
Dg=D(¢20(I x g))(D(¢10(I x g)))”"
(92, 95) = (g’i\/2f(w D, —E g )
Ty JY fx ’ ’ f:l: ()

.o [ pV2f(=,y) —pfy

hence

The composition of these two transformations gives the actual transformation of
p and ¢ after the two diffeomorphisms ¢ and ¢. Notice that a bounding contour
element (i.e., a point with coordinate p = 0) is mapped to a bounding contour

element, as expected; ¢ = 2% is then taken to ¢ = 0 after both transformations,
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again as expected. Both transformations of p and ¢ are independent of z, so the
total transformation is as well. Also, when p = 0, the transformation of ¢ to § is
independent of the = coordinate; this means that along the projection fibre at the
bounding contour, if p = 0 the transformation of § back to ¢ depends only on y = §.

The reflectance function in these new coordinate is B = Ro <i>‘1, where & = q@oz/;
is the total transformation of the coordinates (z,y, z, p, q) to (2, §, 2, p, §) induced by
¢ and ¢. The fact that R is space invariant and that & is z invariant acting on p
and ¢ means that R is 2 invariant, but does depend on z and y in general. How-
ever, at a point (X, ,0,0,§) in C(IR.3,2) projecting to a bounding contour element
(0,,0,0,9), the observation at the end of the last paragraph means that we will
have R(O, 4,0,0,4) = R(), 4,0,0, ), so that

Ri[(o’ 4,0,0, (}) = Rz}("‘, ¥,0,0, é)

and

0= RQ(O, g,oy 07 é) = Ri()"gaoa Oa Q)

We will need this a little further on.

In this new coordinate system (we will omit the “"”), the surface is given as
z= %xz. This means that p(z,y) = z, ¢(z,y) = 0 for this surface, and the image of
the surface will be E(y,z) = R(z,y, %xz,w, 0) where now & = v/2z is a function of

the image coordinates. We can write
E(y,z) = R(V2z,y,2,v22,0)

for the image, and so

~

+ fy =
= ———+ R,
2z +

where we write R to indicate the evaluation is at (V2z,y,2,V/2z,0). After substitut-

Ey = Ry

ing into the calculation of the characteristic vector field in our turned coordinates at
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the end of Section 6.1, the characteristic vector field for this image and reflectance
function is ) .
R,
R,
PRy + qR,

X= R:c'l‘R 5
_R P RZ_'RZ
z+p( 7=2z + )

Ry—Ry+Q(&_\/-£T!%E+Rz—Rz)

We now proceed in the same spirit as in the motivating example: we define a new

coordinate function v = /22, notice that vo = 2, replace z by %vz, and multiply

through by v; we also note that R, = R, = 0 by space-invariance as discussed above:

Ryv
Ryv
PRp + gRq . 9
~—R,,-v + p(R, + Rp)~
v(Ry — Ry) + q(R: + Rp)

where the old functions R;, ¢ = z,y, etc. are now evaluated at (z,y, %v2, p,q) and

QRS SR B
I

similarly for R;. This new vector field is Lipschitz at all potential bounding contour
points (z,y,0,0,0), and clearly has a zero there as well (note that the vector field is
really only defined on a half space v > 0.)

We can attempt to analyze this bounding contour critical point using the lin-
earization methods used on “good” critical points in the image interior: the linearized
version of the vector field looks almost like the vector field itself at the bounding con-
tour point because many terms are of the form kR;, where k is one of the coordinates
v, P, ¢, all of which are zero at the bounding contour; hence, the linear part of such a
term is just kR;. We can write the linearization at the bounding contour as a matrix

as we did in the interior critical point analysis:

00 R 0 0
0 0 R, 0 0
X'=[0 0 0 R, R, |,
0 0 -R, R.+R, 0
0 0 R,—R, 0 R, + R,
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A point projecting to the bounding contour is of the form (z,y,0,0,0), so R
indicates evaluation at (0,y,0,0,0). From the analysis two pages back we have
Ry = R, and R, = R, = 0 along the projection fibre through the origin.!

Thus, our linearized vector field is given by

00 Rb 0 0
00 R,k 0 0
X'=|0 0 0 R, R,
00 0 R, O
00 0 0 R,

For convenience we will work at the origin, so that R, = Rp. We can see by inspection
that the characteristic polynomial of this matrix is A3(A — R,)2. We can look for
eigenvectors associated with the eigenvalues: for A = 0, we see that the matrix
has rank 3, and so the 0 eigenspace is defective, having only two eigenvectors in it,
(1,0,0,0,0)T and (O,I,O,O,O)T. For A = R,, we get two eigenvectors for X' from

looking at the null space of

-R, 0O R, 0 0
0 -R, R, 0 0
0 ©0 -R, R, R,
0o 0 0 0 0
0 0 0 0 0

we get (1, Rq/RP’ 1’ 1, O)T and (la RQ/RPa 1’ Ov RP/RG)T°
Because the matrix is defective, i.e. its eigenvectors do not form a basis, we need

to expand our earlier analysis of the allowable two dimensional invariant subspaces.

! We can also argue directly that Ry = Ry = 0 along the projection fibre through the origin: we know
that in the original space invariant problem from which this one comes, there are multiple solutions: we
Jjust move the correct solution surface back and forth in depth. After transforming all of these solution
surfaces (or at least patches of them near the origin), these will again be a stack of solution patches
along the projection direction. Consider the question of finding a possible bounding contour curve in
space: we seek a curve (z(s),s,0,0, 0) in C(IRS, 2) that is consistent with the image. We must have
E(s,0) = R(z%(s), 5,0,0,0) along the bounding contour. If Ry at any point on the origin’s projection fibre
is not zero, then by the implicit function theorem we can solve for = as a function of s in the equation
E(s,0) = R(z,s,0,0,0) at least in some neighborhood of the point. This would imply a unique curve £%(s)
as the bounding contour solution; in fact, we have a dense stack of consistent solution surface patches at
different depths along the origin’s projection fibre; thus there cannot be a unique local bounding contour
solution, and so we must have Rz = 0 along the origin’s (or any bounding contour point’s) projection fibre.
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In the case of a critical point on the interior of the image discussed in Chapter
5, we were able to focus on a diagonalizable matrix, for which all two-dimensional
invariant subspaces are spanned by pairs of eigenvectors. Pairs of eigenvectors still
span invariant spaces in the defective case, but there may be others. To begin this
analysis, we put the matrix into canonical form by using the basis

f1=1(0,0,1,0,0)T

f2=X'f1 = (Rp, Ry,0,0,0)T

f3=1(0,1,0,0,0)T

fi=(1,Rg/Rp,1,1,0)T

f5 = (1, Ry/Ryp, 1,0, R,/ R,)T.

In this basis, the matrix becomes

000 0 0
100 0 0
X'={0 00 0 0
000 R, 0
000 0 R,

X' has the characteristic polynomial z3(z — Rp)%. As this matrix is not diago-
nalizable, the minimal polynomial (the polynomial of least degree that annhilates
X') cannot be just the product of the linear factors; by calculation it can be seen
that the minimal polynomial is %(z — R,). If W is an invariant subspace of a linear
transformation T' on a finite vector space, then T|w, the restriction of T' to W, has
a minimal polynomial that must divide the minimal polynomial of T' on the whole
vector space (concepts from (Hoffman and Kunzie, 1971)). If W has dimension two,
then the degree of the minimal polynomial of T| must be two or less. We can
classify the invariant two-dimensional subspaces of 7' by their minimal polynomial,
and hence by the factors of degree two or less of the minimal polynomial of T = X'.

Consider the minimal polynomial z. If a two dimensional invariant subspace is to

have this as the minimal polynomial for 7|y, we must have T(W) = 0. Looking at
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the canonical matrix for T = X', there is only a two dimensional null space for T, and
so the only invariant two-dimensional subspace with z as the minimal polynomial is
Span(f, f3). This is the zero eigenvalue eigenspace, W0,

Consider the minimal polynomial (x — R,). We have

-R, 0 0 00
1 —-R, 0 0 0
T—-RJ=| 0 0 =—R, 0 0],
0 0 0 00
6 0 0 0 0

and again this matrix only has a null space of dimension two, so the only invariant
two-dimensional subspace with z — R, as minimal polynomial is Span(fy, fs). This
is the non-zero eigenvalue eigenspace, WE.

Consider now the minimal polynomial 22. We seek invariant subspaces such that

T(W) # 0, but T*>(W) = 0. We have

T? =

o ocooco
cocooo
ococoococo
o,ﬁ?ﬁi}ooo

cooco

=~

In order for the above conditions to be true, there must be some vector v € W such
that Tv # 0, T?>v = 0. If v = (v1,v2,v3,v4,v5)T, then the first condition implies
at least one of v,v4,v5 must not be 0; the second condition implies in general
(assuming we are at a generic point for R so that R, and R, are non-zero) that
vg = vy = 0. Thus, we must have fi € W. Since W is invariant, we must also
have T'f1 = f; € W as well, and since these are independent, the only 7' invariant
two dimensional subspace with minimal polynomial z2 is Span(fi1, f2). As we shall
see later, this is not an allowable invariant subspace: it violates an integrability
constraint.

For the last potential minimal polynomial z(z — Rp), any pair of eigenvectors,

one from the zero eigenvalue eigenspace W° and one from the non-zero eigenvalue
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eigenspace W2, spans a subspace with this as its minimal polynomial. Say u; €
WO u; € WE. Then (T — Rp)ur = —Rpu1 # 0, Tuz = Rpuz # 0, but T(T — Rp)u; =
0, so W = Span(uy, uz) has minimal polynomial z(z — Rp). Is there any other vector
Vv =vfi+u +u u € WO uy € WR, that could possibly be in an invariant

subspace with z(z — Rp) as the minimal polynomial for T'|y?
(T — Ry)(v) = v1f2 + Rpug — Ryv1 fi — Rpuy — Ryus

=v1(f2 — Rpf1) — Rpuy
T(T - Rp)V = —lepf2 = 0,

so we must have vy = 0. Thus, the only invariant subspaces with z(z— R,) as minimal
polynomial are those spanned by a pair of eigenvectors, one from W? and one from
WE,

This exhausts the possibilities for two-dimensional invariant subspaces of this
linear transformation. The subspace W2 can be rejected as deriving from a surface in
space because its space projection is one-dimensional. The zero eigenvalue eigenspace
WY is more of a problem: it expresses the potential complication due to higher order
solution surfaces, i.e., surfaces that are third and higher order flat along the bounding
contour. In this analysis we concentrate on truly second order solution surfaces if for
no other reason than that these are generically the ones we expect to have images
of; we will not consider W? a possible invariant tangent space for a solution surface.
The unusual invariant subspace spanned by f; and f, will be disallowed when we
introduce an integrability 2-tensor constraint which needs to hold at the bounding
contour. As we shall see, this will leave only subspaces formed from a choice of
eigenvector from W? and a choice of eigenvector from W2 as candidates for solution
surfaces’ tangent spaces.

As suggested above, there is one more constraint that needs to be taken into

account. We recall that the linearization is in (z,y,v,p,q) coordinates: we have
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replaced z by v. Consider the integrability constraint as expressed by the contact
1-form @ written with v instead of z:
0 = 6(h) = (dz — pdz — ¢dy)(h)
= (vdv ~ pdz — ¢dy)(h),

where h is any tangent vector to an allowable solution surface: a two-dimensional
surface in C(IR.3,2) whose orientation part as specified by the p and ¢ coordinates
is consistent with the space part. Written with the v coordinate, we see that this
condition is identically satisfied at the bounding contour: any surface (now in the
z,Y,v,p, q topology) containing the bounding contour will satisfy this condition at
the bounding contour, since v = p = ¢ = 0 there. This is another reflection of the
degeneracy of the bounding contour.

As in the motivating example, another way to view this is to consider a path
(z,¥,v,p,9)(s) in a possible solution surface. The integrability condition applied to

the tangent of this curve gives
w' = pa’ + gy,

and again this provides no constraint on the curve at the bounding contour. However,
we can consider the limit of this constraint as the bounding contour is approached

by looking at the derivative of the constraint with respect to s:

(,Ul)2 + ’U’U” = p'a:' + p:L'" n qul + qyll;
at the bounding contour where v = p = ¢ = 0, this becomes
(’U,)2 — p'l', + qul‘

In a sense, the degeneracy of the integrability condition at the bounding contour
allows the next highest order of the integrability condition to appear as the major
constraint. This integrability condition must be true for all tangent vectors lying in

a potential integrable solution surface.
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We can write this condition as a bilinear form or 2-tensor on the tangent space

at the bounding contour:

(dpRdz +dg®dy — dv®dv)(h,h) =0

or as

h‘Ah =0,

where A can be thought of as the symmetric matrix representation of this 2-tensor

in the coordinate system (z,y, v, p, q),

00 0 10
00 0 01
A=(00 -2 0 O
10 0 00O
01 0 00O

Which of our invariant subspaces will satisfy this 2-tensor integrability condition?
fi = (0,0,1,0,0) fails the condition, and so the invariant subspace Span(fi, f2)
does not correspond to a real surface. Applying the 2-tensor to the basis vectors
f2 = (Rp, Rg,0,0,0)T, f3 =(0,1,0,0,0)7, we have

TAfs=0-R,40-R;,—0-0=0
fFAfs=0-040-1-0-0=0,
so both these basis vectors satisfy the 2-tensor integrability constraint. Applying

the 2-tensor to the basis vectors fy = (1,5,1,1,0)T, fs = (1,4,1,0,1/8)T where we
define 8 = R,/ Ry, we have

ngf4=1°1+O-ﬂ_1.1=O
FTAfs=0-1+4(1/8)-B—-1-1=0,

so both of these basis vectors satisfy the 2-tensor integrability condition as well.
This leads us to ask what happens to the 2-tensor integrability constraint acting

on linear combinations of vectors. Assume h; and hy are two vectors satisfying
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the 2-tensor constraint 0 = h;-FAh,'. Any scalar multiple Ah; will also satisfy the

constraint. Also,

(hy + hy)TA(h; + hy) = hTAh; + hTAh; + 2hTAh,
= 2h{ Ah,,

so that a linear combination of hy and h; satisfies the 2-tensor integrability constraint
if and only if hy and hy are A-orthogonal, i.e. h"erhz = 0. If h; and hj span a two-
dimensional space all of whose vectors satisfy the 2-tensor integrability constraint,
we must have h; and hy A-orthogonal to each other. Correspondingly, given hj, we
can only choose a possible h; from the set of A-perpendicular vectors to it, thJ').
Since A has full rank, thJ“) will have dimension four.

Looking at the zero eigenvalue eigenspace W°, we have
fTAfs=0-0+1R,-0+0-1+R,-0—2(0-0) =0,

so the subspace spanned by f, and f3 satisfies the integrability constraint. For the

non-zero eigenvalue eigenspace WE,
fAAfs=1-141-040-8+(1/8)-B—2(1-1) =0,

so the subspace spanned by e4 and es also satisfies the integrability constraint. Thus,
both eigenspaces W0 and W satisfy the integrability constraint.

Consider now the mixed invariant subspace case, with one basis vector, h; chosen
from W? and another to be chosen from W to make the resulting subspace obey
the integrability constraint. Given h; € W9, we seek an eigenvector from the inter-
section of the non-zero eigenvalue eigenspace W2 with thJ'). Since C(IR?,2) only
has dimension five, the minimum dimension of the intersection of a two dimensional
subspace and a four dimensional subspace is one. The intersection has dimension
two if and only if the entire non-zero eigenvalue eigenspace W% is A perpendicular

to hy. This does not happen in general.
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To see this, begin with a vector h; from the zero eigenvalue eigenspace W79,
h; = (a,5,0,0,0)T. We seek an eigenvector hs of the non-zero eigenvalue eigenspace
WE. From the coordinates of the basis vectors (1,5,1,1,0) and (1,86,1,0,1/8) for
W, h, has the form hy = (c+d, B(c+d),c+d,c,d/B)T where ¢ and d are constants,
and B8 = Ry/ R, as before. We want hs and h; to violate the integrability constraint;
i.e., we want

0% hTAh,
#0-(c+d)+(c+d)-a+0-B(c+d)+(d/B)-b—2(0-(c+ d))
—db # B(c + d)a.
We can clearly choose ¢ and d not both zero so that this latter condition is satisfied
when not both a and b are zero. Thus, the non-zero eigenvalue eigenspace W £ is not
completely contained in th'L) for any non-zero hj, and the intersection W&n hEA'L)
has dimension one: for each choice of h; € W9 there will be only a one-dimensional
subspace of possible hy € W& that makes the subspace spanned by h; and h, satisfy
the integrability constraint.

Note that the space parts of tangent spaces spanned by one vector from W? and
one from W% are the same; this reflects the fact that the tangent plane in IR® is
fixed by the surface normal which is known at the bounding contour. The difference
between different eigenvector pairs is in the curvature information contained in the
orientation part of the eigenvectors.

For surfaces with non-zero second order behavior (i.e. surfaces that have at most
one tangent vector from W?), this suggests there is always a one parameter family of
tangent spaces consistent with the image data at the bounding contour point. This
is consistent with the results of the motivating example, which indicated solution
surfaces were determined only up to a choice of depth values along the bounding
contour. This is similar to the case of an image patch in the interior without critical
points: by picking different depth curves z°(s) along a fixed curve in the image

(y(s),2(s)), we can generate a one-parameter family of tangent planes consistent
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with the image at that point: this family is determined by the constant brightness
contour of the reflectance map with brightness value equal to that at the image
point. This is not similar to the case with image patches containing a critical point:
as discussed in Chapter 5, the very good critical points almost always determine a
small number of possible solution surfaces consistent with the patch, and therefore
there are only a finite number of tangent planes consistent with a given point in the
image patch.

How does the original surface, z = %xz, fit into all of this? This surface is

parameterized in (z,y,v,p, q) space as

Ji(r,s) —

O =N 3 v 3

using v = v/2z. The invariant tangent space in C(IR3,2) corresponding to this
surface is the subspace spanned by the vectors dj/ dr|r=0s=0 = (1,0,1, 1,0)T and
dj/ds|r=0,s=0 = (0,1,0,0,0)T. This subspace is the same as the invariant subspace
spanned by the eigenvectors (1, Rp/Ry,1,1,0) and (0,1,0,0,0) of X, so our original
surface has a tangent plane spanned by eigenvectors of X', one from W?° and one
from W, consistent with our analysis.

The presence of the zero-eigenvalue eigenspaces for X' is important in allowing
our hypothesis to be possible. As we discussed last chapter, the Grobman-Hartman
theorem says that a critical point which has no eigenvalues with zero real part has
the non-linearized local picture diffeomorphic to the linearized picture, as in the very
good image critical point case: an invariant manifold in the linearized picture corre-
sponds uniquely to a local invariant manifold of the non-linearized picture. We are
positing more flexibility than that: we are saying that we may have the lineariza-
tion xo'(O) the same for two different depth curves z°(s) through the same point

(2°(0),0,0) and still get different solution surfaces in the general case, matching the
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motivating example, but contradicting the result of the Grobman-Hartman theo-
rem. The Grobman-Hartman theorem does not apply here because of the presence
of zero-eigenvalue eigenspaces.

Note that we have not proved this assertion about solution surfaces near the
bounding contour; we are saying that the assertion is consistent with the degeneracy
of the critical point at the bounding contour. Unfortunately, invariant manifolds of
a linearized system with zero eigenvalues may disappear once the second-order terms
are put back in. One can construct simple examples (e.g. the system & = 22,y = y)
where the linearized picture does not completely capture the actual behavior or
the uniqueness of invariant manifolds through a point. There are some results on
existence of invariant surfaces in the presence of non-hyperbolic critical points, but
they do not seem useful to our problem.

Nonetheless, the motivating example suggests that the above interpretation of the
linearized picture may be correct in general. We will pursue the question in a different
way using the technique of power series analysis: here too one is hampered by the
restriction that the power series analysis only tells about analytic solution surfaces,
and unfortunately when zero-eigenvalue eigenspaces of a critical point are present,
non-analytic behavior is not uncommon. In addition, a typical difficulty is proving
convergence of a derived power series: we have not done this in our case. Nonetheless,
the power series analysis in the next section shows the one-parameter ambiguity
extending into the third order behavior of analytic solution surfaces, consistent with
the hypothesis that generic solution surfaces at the bounding contour are determined

only up to a smooth choice of depths along the bounding contour.

6.4 General Case: Power Series Analysis

We begin again with our transformed problem: a surface z = %:1:2 with a space-
varying reflectance function. We seek other surfaces z = f(z,y) that could have

given rise to the image. We could begin from a general surface and a space-invariant
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reflectance function, but the additional complexity of the surface structure makes
the calculations even longer than they are here.

We can begin by analyzing the restrictions placed on the first few orders of
behavior by the existence of the image bounding contour (0,s,0); we assume (as
before) that this contour in the image is due to a curve in space with C(IR3,2)
coordinates (z%(s), s,0,0,0) that is contained in the surface. We will assume we are
looking at behavior in a neighborhood of the origin.

We begin by expanding both f and z°:

f(z,y) = bz + by + @12 + 2020y + agy®
+ aqz® + 3aszly + 3agzy® + a7yd + - - -
2%(y) = cny + oy’ + asy® + -+
Assuming both f(z,y) and 2%(z,y) are analytic, then we have
7@),9) = 0
fo(z°(y),y) = 0
fy(:co(y), y)=0
since (z%(y),y, 0) lies on the surface and is the bounding contour for the surface. By
thinking of f as a function of z only with y as a parameter, these conditions mean
that we can write

f(m’y) = (x - xO(y))ZQ(x,y),

where @ is also analytic, since for fixed y the power series for f in z around z = z%(y)

has a zero and a zero in the derivative at z = z%(y). If we write
Q(z,y)=q + qaz + gy + qg:l:2 + 2q4zy + q5y2 4.,

then we can take the product (z — 2%(y))2Q(z,y) term by term as a power series:
we get
f(z,9) = q02® — 201902y + ofqoy® + 12° + (g2 — 201q1)2%y
+ (odq1 — 20290 — 201q2)7y? + (2010290 + ol q2)y® + - -
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Taking the derivatives with respect to z and y we get

fo(2,y) = 2q0z — 2a1q0y + 3q12” + 2(g2 — 200q1)zy
+ (ofq1 — 20290 — 2a192)y% + - - -
fy(2,y) = ~201902 + 203 g0y + (g2 — 201q1)a?
+2(afq1 — 2a2g0 — 20192)zy + 320290 + ol g2)y® + - -
The decomposition f(z,y) = (z — 2°(y)?Q(z,y) takes care of the geometric
information available to us: that (z%(y),v,0) is the bounding contour for the surface

defined parametrically as (z,y, f(z,y)). Now let us add in the image data. We know

the image is due to the surface z = %xz, so, as before, we have

p(y,2) = z(y,2) = V22
q(y,2) =0

E(y,z) = R(\/2—z—, y,z,V2z, 0)

Replacing z = f(z,y) to find the new surface, the image irradiance equation can be

written as

E(y,f(:c,y)) = R(.’Z?, Y, f(xay)’ fz(x,y)7 fy(-’r, y))
R(V2f(z,y),y, f(2,y), V2f(z,9),0) = R(z,y, f(z,9), fu(2,y), fu(z,)). ()

The next step is to expand this equation in powers of = and y.2

We need an expansion for 1/2f(z,y). After gathering terms, we have

2f(z,y) = Iz — 2°(y)|v/2Q(z, y)
=29z — /2901y + (1/v/200)q12* + (1//290) (02 — qron)zy
— V2q0(02 + (192/290))y* + - -,

2 If we had worked with a general initial surface z = g(z,y) instead of z = ,}zz, we would have had a fair
bit more trouble writing this equation-—effectively, we would be simultaneously solving for z9(y, z), where
for a given y and z denoting a point in the image, £9(y, z) is the value of z such that z = g(z9,y) = f(=, ).
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using the Taylor series expansion va + & = +/a(1+ (1/2)(k/a)+---. We will assume
that go # 0 so that f(z,y) does have second order behavior at the bounding contour.
As we are interested in the positive z sheet, we have also taken (z — z%(y)) > 0,
as this defines (locally) the region of the surface f(z,y) which is more z positive.
As expected, \/m on this sheet is first order in z and y; this suggests some
care in expanding the image irradiance equation () in powers of z and y to get the
coeflicients correctly matched.

For convenience, we will assume that R has an expansion of the form3
R("E’y’zapaq) = R0+sz+Ryy+ +qu+sz$2+Rzy$y+ .--+quq2+

After substituting into the image irradiance equation the series for \/2f(z,v), f(z,y),

fz(z,y), and fy(z,y), we can examine the terms that are linear in = and y:

(Bp + Bz)(v/2902 — /2q000y) + Ryy
= Ryz + Ryy + Bp(2g0z — 2a190y) + Ry(—2a1 907 + 2a%qoy)

Equating coeflicients of  and y we have

(Rs + Rp)\/% = Ry + 2(Rpq0 — Rye190)
—(Ry + Rp)\/ 2900 + Ry = Ry — 2(Rya190 — Ry3qp).
At first glance, this appears to yield two equations in the two unknowns ¢ and oy;
however, after canceling the R, terms in the second equation, noting that R, = 0,
and multiplying the first by —a; the second equation is seen to be identical to the
first. We can use the first equation to determine a; as a function of go, but we see

the one-parameter second order ambiguity in f arising early in the analysis. We have

«a —ﬂ(l———l—)
1_Rq V2/

3 For bookkeeping conveniance the coefficients Rzz, Rey, ..., Ryq are here just coefficients for the terms
of the expansion. Rz = (1/2)32/322R, etc. relates these coefficients to actual derivatives of R.
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[Note that we are assuming in general that R, and R, are non-zero.]

The second order terms of the image irradiance equation are more of a book-
keeping challenge. Rather than write out all the second order terms at once, we will
focus on the coefficients for each term 22, zy, y? individually.

Coeficients for z2:

R
(Rzz + R:tp + Rpp)2q0 + R.q0 + \%QI

= Rye + 2R:cpq0 - 2qualq0 + quo + 3qu1 + 4Rppq§ - 4qua1qg

+ Ry(g2 — 201q1) + 4Rgg0lq}
Coeflicients for zy:

R
— 4(Rgg + Rap + Rpp)gocn + (Rey + Ryp)v/2q0 + \/2‘;—0(% —qio1) — 2R, 0190

= Ry — 2R5p0190 + 2Rzq0390 + 2Rypgo0 — 2Ryq0190

—2R,a190 + 2Rp(Q2 - 200q1) — SRppalqg + SquOl%qg

+2Ry(eiq1 — 20290 — 201¢2) — 8Rygalq

Coefficients for y?2:

2(Rzz + Rap + Ryp)g0a? — (Ruy + Ryp)\/2q001 + Ryy
+ R,a2qp — Ry+/2q0 (az + 9——)
= Ryy — 2Rypa190 + 2Ry0iqo + R.alqo
+ Ry(afqr — 20290 — 2012) + 4Rppalql
— ARpgoigs + 3Ry(2c102q0 + og2) + 4Rgq0ltq
These are also a system of linear equations in ¢, g2, and az. These last three

equations together define a linear system of three equations in three unknowns. The

equations for this system are
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R
(\/2% — 3Ry + 2aqu) a1 — Ry =c;

R R
(— ’32_‘;; + 4Rpoy — 2Rqa§) a1+ <_’2%E — 2R, + 4Rqa1) g2 + 4Ryq002 = o

—_ Rpa%QI + (—qu + 2Rpa1 - 3Rqa%) q2

+ (_Rp\/ 290 + 2Rpq0 — GRthl%) ay = c3

We can show that these three equations form a linear system of rank two, so
that there is another one-parameter ambiguity arising at the second order. First, we
recall that along the bounding contour, R, = 0. Second, we make use of the first

order solution for o :

a—&(l— 1 )
1_Rqr \/2‘]0 )

We can substitute this in to the equations and simplify. The system of three equations

becomes
R
(-=-8) - Am=a ()
R? 1 )( 1 3
=L1- 2+ ) +R (2——-—) + 4R q0as = c3 (¥
7 (- 7m) (2 g ) o (2= 3 ) smemen = o
R? 1 )2 R? 1 2
=) B k) (o )
R?:’( w) " TR, 0 )"

1
—4R,q0 (1 — ) ay = c3
g qu

If g = %, then 1 — (1/4/2¢0) = 0, and the last equation is identically zero. In
this case the three linear homogenous equations (i.e., setting the ¢; = 0) form a
dependent, rank 2 system. If g9 # %, we can factor out 1 — (1/4/2¢q) from the last

equation to get

R3 R2
__,,_(1__1_ @+ S @2 —4Rpaz =ds  (x%%)
Rg V2q0 R, V2q0 P
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We can now show that a linear combination of the homogenous versions of equations
(#+) and (+*x) will give us a linear multiple of the homogenous version of equation (%),
showing that the system is dependent in general. We take (R,/R,) times equation
(* x *) and add it to equation () to get

R3(1 L )(1+ L )q+R (1 L )q
—— ] — - — ] g2,
Rq \/QQO \/7(10 ! P VEQO

which is just —(R,/Rq)(1—(1/+/2g0)) times the homogenous version of equation ().
In this case as well the system has rank 2.

In general the fact that the homogenous system has rank two means either that
the system of linear equations including the original ¢; has no solution, or it has a
one-dimensional family of solutions. In the Appendix to this chapter we show that
for this singular system written as Az = b, we do have b in the row space of A;
thus there is a one-dimensional family of solutions for z, i.e. for q1, g2, and a. As
a result, the third derivatives of an analytic solution surface with non-zero second
order behavior also possesses a one-parameter ambiguity, again consistent with the

suggestion that every depth curve z%(s) generates a different solution curve.

6.5 Bounding Contour Conclusions

This analysis suggests (up to third order) that an analytic potential solution
surface f with non-zero second order behavior is determined by the image data
and the bounding contour in the image up to a choice of depth function z%(s) along
the bounding contour. This corresponds with our linearized analysis and carries that
analysis one order further; however, the problems discussed earlier about convergence
of power series derived this way, and the potential existence of non-analytic solutions
(or solutions with only third order behavior and above) prevents us from concluding
with certainty that the general mathematical problem admits solutions unique up to
a choice of z%(s). It is not clear how to extend the power series analysis beyond the

third order without a prohibitive notational burden.
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This analysis of the bounding contour again emphasizes the theoretical impor-
tance of the critical points on the interior of the image as the determinants of actual
surface shape. Even if solution surfaces are determined up to a choice of z%(s), it
still suggests that the bounding contour shading information in isolation is of limited
value in determining shape. We would expect from this analysis that if subjects are
shown bounding contours (not closing on themselves) with image data near them,
subjects should be relatively poor at determining the true solution surface even if
they know the position of the light source.

If true, our hypothesis says the ambiguity at the bounding contour is about as
bad as the ambiguity in the interior of the image on a patch not including a critical
point: there as well we can determine surface shape up to the choice of a depth curve
by picking a curve on the image, choosing a depth curve along it, and generating a
solution surface (locally) using the characteristics.

However, this does not mean the bounding contour image data is useless: the
bounding contour may be very important for determining whether a particular re-
flectance function could have given rise to the image. The image values at the
bounding contour (in so far as they can be reliably determined) are the result of
known surface orientations; they provide a curve of data from the reflectance func-
tion which may quite tightly constrain choices within the class of possible reflectance
functions. There may also be global effects of having an entire bounding contour
available. For example, in the degenerate case of an image of a sphere lit from the
viewing direction, the saddle shaped solutions valid near the critical point at the
center of the image cannot be extended out to the bounding contour. More work

needs to be done to understand such global effects in general.
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A6.1 Linear Dependence of the Power Series Con-
stants

If we have a linear equation Az = b and A is singular, the equation has solutions
if and only if b is in the range of A. In discussing the bounding contour case, we wound
up with such a linear equation: the matrix A consisted of the constants attached to
the unknown power series coefficients ¢, 2, a2, while b is a complicated expression
containing second derivatives of R and the coefficients gp, ;. It is our aim in this
appendix to organize the pieces of b and show that it is indeed in the column range
of A.

We will collect the various terms in b and factor out the different R;; second
derivatives for each row of . This will make b the sum of a set of column vectors,
each of which is multiplied by some R;;. Note that R;; = Ryy = Ryg = 0 at
the bounding contour: we have from the chapter R(},0,y,0,q9) = R(0,0,y,0,q), so
R.(X,0,y,0,9) = 0 after taking the derivative with respect to A\. Taking further
derivatives with respect to A, y, and ¢ gives the result.

We will arrange the columns in two tables: the top row gives the R;; to which
the column is associated; the bottom three rows give the values of the column of

entries of b that have R;; as a factor.
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290 -1 0 0 2a1 9 0 0
—4qoa1  v2g0 —1 —4go0q + 20199 —Qa%qo 0 V2q0 — 2q0
2002 —2q00 2q0a? 0 0 —v2goa1 + 20190
Ry, Rpp Ry, Ryq
0 2q0 — 443 darg? ——4a%q(2,
20090  —4qo0n + 801110 —8a2g?  8algd
~2a2q0 200} —4adg 4@  —4aig?

We can see that the Ry,, Rp; and Ry columns are all multiples of the vector
(1,—201,0})T. The Ry, Ryp, and R,p are all multiples of the vector (0,1,—cq)T.
Since Ryz, Rzy, and R;p are all zero here, these are the only non-zero columns in
whose span b lies.

Are the columns (0,1,—a1)T and (1,204, a%)T contained in the column range

of the matrix A? A has the form

) ( Rpm_Rp) _Rq‘H 0
% (1- o) (2+ o) Ry (2- ) 4R,
~#(-gg) B0 () 1R (1- )

From the chapter we know that

R, ( q 1 )
a) = - —,
Rq V290
so the last column of A is a multiple of (0,1,—~a;). We also want to see that

(1,—201,02)T is in the column space of A: we add —1 /Ry times the second col-

umn of A to —R,/ (4quo\/2qo) times the last column of A:

140 R R ! 1
2 -7 (2~ ) - - _2755(1—7%2
2 (- 7)1+ ) om0 de) | LB (- 4p)

this, using the expression for a1, is just (1, —2a1,a?)T. Thus, the range of A does

include the vector b as required for there to be any solutions of Az = b.
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Chapter 7

Conclusions and Pointers

7.1 Conclusions

An image of a surface is the result of the interaction of a number of processes:
how points in space are mapped to the image, how light is reflected from a surface
and concentrated to form the image, the location and nature of light sources in the
environment, and the geometry of the surface sitting in space. In trying to find out
the constraints that an image and an assumed reflectance function put on potential
solution surfaces, we have examined several local and global sources of information
in the image.

We have examined three different sorts of small patches in the image. The first
kind of patch contains neither good critical points nor any part of a bounding contour.
In this case, the image dynamical system described in Chapter 4 will take any initial
strip (positions in space with surface orientations) consistent with the image and
not parallel to characteristic trajectories, and extend it to a solution surface patch
consistent with the image patch. If we specify a path on the image patch, then
the ambiguity of the solution surfaces can be summarized as the choice of a depth
function along this curve; the reflectance function and contact 1-form will provide
the orientation data needed to make an initial strip, and the characteristic strips will

draw out a solution from this patch.
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A second kind of patch we have analyzed contains a piece of the bounding con-
tour. In this case we suggest (but have not completely proved) that the ambiguity
of solution surfaces is of the same type as for an image interior patch, except that
the initial path in the image is the bounding contour. A choice of depths along the
bounding contour in the patch should lead to characteristics that draw out a solution
surface consistent with the data on this patch. The bounding contour image data
does provide extra data about the space-invariant reflectance function that might
have generated the image: since we know the surface orientations along the bound-
ing contour, and (theoretically) we know the brightness values along the bounding
contour, our assumed reflectance map must match these values.

The third kind of patch is one on the image interior containing a critical point
of both the image and the reflectance function. Given a general space invariant
reflectance function, we showed in Chapter 5 that critical points of both the image
and the reflectance function (“good” critical points) theoretically provide a great deal
of information about surfaces that may have given rise to the image. We considered
a good critical point as a critical point in a dynamical system on C(IR3,2), the
space of all possible two-dimensional tangent spaces at each point in IR®. Possible
solution surfaces are surfaces that are invariant manifolds of the image dynamical
system and contain the critical point. For very good critical points (those due to
local maxima or minima of the reflectance function), this limits the possible solution
surface patches consistent with the image of a generic surface to at most four. Two
of these will be the unstable and stable manifolds of the dynamical system, and the
local surface patch around the critical point can be expanded by following (either
in positive or negative time) the trajectories away from the critical point. In the
usual case of a maximum in brightness due to a reflectance function maximum, the
stable and unstable manifold correspond to the convex and concave concave solution
surface shapes. The two remaining possible invariant solution surfaces give rise to

a saddle dynamical system on the solution surface, and so the surface cannot be
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fully extended just by following the trajectories. In the case of a reflectance function
maximum, these solution surfaces are saddle shaped in space at the critical point.
In the case when symmetry is present (for example, a sphere lit from the viewing
direction) the stable and unstable manifolds (concave and convex solution surfaces)
will still be unique, but there may be an infinite number of solution surfaces with
saddle dynamics consistent with the image data near the critical point.

In summary, for an interior image patch of a generic surface containing a very
good critical point, the surface in general is theoretically determined up to a finite
number of possible solutions. For a small image patch from the image interior not
containing a critical point, we only determine the surface up to an arbitrary space
curve (locally). For a small image patch containing a piece of the bounding contour,
the solution surface also appears to be determined only up to an arbitrary space
curve.

As described in Chapter 5, we have implemented two related techniques for
finding the unstable manifold of an image dynamical system in a region near a
critical point, and have seen that they provide robust solutions for the local shape
from shading problem. We use the image dynamical flow to deform an initial surface
over time; the Lambda Lemma says that as ¢ goes to infinity, the deformed surface
should C! approach the unstable manifold near the critical point. In one case we

used an iterative scheme based on the equations

vp = M Ez — ps Rp — pyRy)

vg = MEy — ¢z Rp — gy Ry)
where p(z,y) and ¢(z,y) are the orientation coordinates of the current estimated
surface, and vp(z,y) and vy(z,y) represent the change in p(z,y) and q(z,y) to get
new surface orientation coordinates. ) is a step size parameter, and can be a function

of (z,y). In the other case, we used the dynamical system flow to move a mesh of

points (i, yj, p(zi, ¥5), ¢(zi,y;)) on the solution surface a small amount; we then
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reset the mesh using a least squares estimate of the new mesh values p(zi,y;) and
q(zi,y;) at the original (z;,y;) sites.

Several constraints on a space invariant reflectance function are also available
from the image dynamical system. First, there are the constraints from the brightness
at “good” critical points and brightnesses along the bounding contour, where the
surface orientations are known. Second, if the image is assumed to come from a
single, smooth surface, then this surface is a smooth invariant manifold of the image
dynamical system. In order for the image dynamical system defined by the image
and an assumed reflectance function to have a solution surface, some subset of the
invariant manifolds (including stable and unstable manifolds of convex and concave
critical points) must merge rather than intersect in a one-dimensional curve. This
is unstable behavior for generic dynamical systems, and so may provide a constraint
on the choice of reflectance functions: although numerical errors will prevent exact
matching of the invariant manifolds even with exact knowledge of the reflectance
function, a wrong choice is likely to prevent the invariant manifolds from being even
close together.

The modern methods of differential geometry provide a set of tools for reasoning
about geometry and shape without always being tied to coordinate system expres-
sions. They allow one to look at all the information available from the image and
reflectance function in the image irradiance problem and see how properties of the
dynamical system influence choices of possible solution surfaces; they can provide
constraints on reflectance function choices as well. The theoretical view of the image
irradiance problem as a dynamical system also suggests computational approaches

to finding solution surfaces that are theoretically tractable.

7.2 Future Work

As reported in Chapter 5, we have not considered in detail the case of a good
critical point caused by a saddle in the reflectance function. The critical point in

this case may no longer be hyperbolic, and the study of the invariant manifolds
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may be considerably more complicated. With pure imaginary eigenvalues, it may
be possible for the characteristic trajectories to be closed orbits around the critical
point. Neither closed orbits nor chaotic critical elements are considered here—it may
of interest to find and study generic examples where these actually occur in an image
dynamical system.

As discussed in previous Chapters, the image dynamical system provides con-
straints to restrict the choice of reflectance function based on the image data alone.
Some kind of constraint is necessary: a slide projector on a flat white screen can give
the impression of any possible three-dimensional scene. A vexing problem in under-
standing human image understanding is how we tell the difference between painted
and unpainted surfaces (consider again Figure 1.1). We can clearly be “fooled”;
indeed, we choose to be fooled when we interpret a photograph as a window onto
a scene. We also do often have an opinion about whether a surface in an image is
painted, or is lit in an unusual way.

What are reasonable reflectance functions to use in the absence of prior informa-
tion? One might try to work through the physics of image formation as described
by Horn and put the different constructions used (bidirectional reflectance map, ra-
diance, and irradiance) into an invariant form connected to the geometry of the
surfaces and lighting source distributions: for example, image irradiance becomes a
two-form on the image. It would be interesting if reasonable properties of reflectance
functions could be phrased in geometrical terms: e.g., symmetries, or other conser-
vation principles, which might be applied to restrict the class of possible reflectance
functions.

Another approach to studying the reflectance function question is to set the
entire image irradiance problem in an infinite dimensional context instead of the
finite dimensional one we have used. In this case, we might consider the image to
be a map from the space of possible surfaces and possible reflectance functions to

brightness functions on the image. There has been considerable work in looking at
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fluid mechanics and the calculus of variations from this perspective (Marsden and
Hughes, 1983); it may be useful to try this here as well.

The results of perturbing the image dynamical system with changes in reflectance
functions should be examined: what else can go wrong globally if the wrong re-
flectance function is used, even if the bounding contour and the critical point bright-
nesses are matched? If there are no additional global inconsistencies, then how
different are perturbed solution surfaces from the correct ones? Other global con-
straints that could be provided by the dynamical system should be explored, e.g.,
the possibility of trajectories folding over or the possibility of self-intersections of the
solution surface in IR3; these are not likely to be correct or stable solutions (unless
perhaps for semi-transparent surfaces) given a smooth image.

We have focused on critical points and small patches containing the bounding
contour. A critical point in an image can often be inferred from the brightness
contours near it even if the critical point itself is obscured. A fuller exploration
of the role of brightness contour configurations in determining solution surfaces is
needed. One suspicion is that an annular region which “guarantees” a critical point
on its missing interior might alone be sufficient to give invariant manifold results
like those for critical points themselves, or perhaps provide limits on the behavior of
possible invariant manifolds.

In footnote 7 of Chapter 5 (p. 109) we mention that the image dynamical system
can be considered as a Hamiltonian dynamical system; this could be explored either
on the six dimensional dual space T*IR? where the null-space of a 1-form in T*IR?
at a point p can be used to identify a tangent space at p, or in the space invariant case
this could be explored on the four dimensional reduced space C(IR?,2). As such, the
behavior of “nearby” Hamiltonian systems as opposed to nearby generic dynamical
systems is of interest: changing reflectance functions really corresponds to changing
the Hamiltonian. Other standard features of Hamiltonian systems which we have

not studied are closed orbits and chaotic orbits (Abraham and Marsden, 1985) as
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mentioned earlier: under what conditions do these occur in an image dynamical
system? Probably chaotic critical elements are evidence that we are far from the
right track in choosing a reflectance function.

The work reported here examines in detail the image interpretation problem
defined as exact recovery of the orientation at each point of the image. It is not
clear that this is what the human perceptual system is concerned with. What are
properties of a solution surface under reflectance function changes that people think
remain constant and connected to the shape? How do alterations in the theoretical
solution surface under changes in the reflectance function consistent with bounding
contour and critical point data compare with human perceptual accuracy from the
same image?

In Chapter 5 we suggested a couple of computational methods for finding invari-
ant manifolds. From the theoretical description we have given, invariant manifolds
of the dynamical system containing the critical points are important features to look
for: better, more efficient ways of finding them would be of interest. We explored
first order methods; as suggested in Chapter 5, perhaps higher-order methods similar
to the Runge-Kutta vector field integration methods would give more effective re-
sults. We used a Connection Machine to explore the methods; other kinds of parallel
architectures or neural network techniques could be explored.

The development of a system to actually solve shape from shading using these
methods would be very interesting, even if the reflectance function must be provided
beforehand. First, some reliable method of finding the stable and unstable manifolds
of critical points drawn out as far as possible would be needed, perhaps including
adaptive determination of the convergence region. Second, some comparison proce-
dure to decide whether two such manifolds are the same or different would be needed:
as discussed in Chapter 5, because of computational errors, exact matching cannot
be expected even if the reflectance function is chosen exactly right. One way to

accomplish the matching could be to tesselate the image into regions centered over
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what one hopes are good critical points; for a typical smooth gently curved surface,
there should be few such points (although in theory there could be many). At each
critical point, the stable and unstable manifold could be computed; if a region con-
tains bounding contour elements, this may be used to discard certain solutions if the
invariant manifold does not come “close enough” to the bounding contour within
a feasible distance from the observer. Choices from the remaining sets of invariant
manifolds would have to be stitched together along the boundaries of regions: choices
that were not “close enough” to each other would be discarded. There is one addi-
tional complexity: certain regions will not be either the stable or unstable manifold
because the critical point is actually a saddle point on the surface; the surface solu-
tion here will have to be drawn out by extending other consistent stable or unstable
manifolds to include this region. Some measure of goodness of fit of the solution
would be needed based on how difficult it is to stitch the solution surfaces together.

With a system like this in hand, one could try to handle unknown reflectance
functions as well: postulate a reflectance function consistent with the bounding con-
tour and the critical points and see how bad the solution surface is. Note that
there is a fair bit of specification already involved: a typical parameterized family
of reflectance functions might very well be completely determined by the bound-
ing contour data and the reflectance function maxima data. As suggested above, it
would be interesting to explore the changes in both the qualitative behavior and the
quantitative badness (in the sense of trouble stitching together the segments) as a
result of changing the reflectance functions without changing the critical points or
the bounding contour data.

This geometric method of analysis can be extended to include other cues. Perhaps
the most natural extension is to include time: how do we make use of all the visual
information available from a black and white television? As discussed in Chapter
2, one could consider theoretically a time-dependent embedding of a surface S, 7 :

S x R — IR?; depending on the choice of class for 7, we could study rigid motions of
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the object or observer or various kinds of distortions of the object. This generates a
time-dependent image dynamical system, and it would be interesting to study this
to see how the time dimension affected features of the dynamical system.

One could also extend the analysis and methods to the case of flat surfaces or
zero Gaussian curvature surfaces. An extended region in the image with constant
brightness is not necessarily the image of a planar surface; it could be a carefully
shaped and positioned curved surface (with zero Gaussian curvature), one whose
normals all lie on a single constant brightness contour of a reflectance function.
((Brooks, 1982) discusses this in some detail.) The image is very unstable: a slight
shift in position and the image will probably no longer have an open region of constant
brightness, in contrast to the image of a planar surface which will still give a region
of constant brightness if it is rigidly shifted. Perhaps by itself this sort of instability
justifies a visual system labeling as planar an open region of constant brightness?

Extending this last idea, if issues of “stability” can be connected to the “likeli-
hood” of a particular interpretation of an image being correct, then it is of interest to
look at the class of transformations allowed in the definition of stability. If non-rigid
transformations of surfaces are considered in deciding on stability of an interpre-
tation, then the plane does not provide a stable constant brightness image either.
Our experience that rigid motions of objects are important (ubiquitous because they
correspond to the effects of observer motion) may lead us first to interpret images
consistent with stability in the class of rigid motions; perhaps there is a hierarchy
of object transformations, from rigid motion through area preserving distortions to
general diffeomorphisms, which are involved in analyzing an image or moving im-
age using stability. A more careful use of catastrophe theory to study the effects of
transformations on the structure of the image dynamical system may be useful.

The ideas and methods of modern differential geometry suggest avenues both for
theoretical and computational research in understanding human and machine vision.

A visual problem formulated with most of the available information can be examined
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both globally and locally with these techniques, as we have done with the image
dynamical system for the shape from shading problem. The coordinate independent
approach to geometric ideas allows coordinate choices to be made specifically to
explore a particular feature of the problem.

There is an entire literature on dynamical systems developed over the last twenty
years to study features of complicated dynamical systems. The mathematical tools
were developed to help analyze geometric visualizations of complicated physical prob-
lems. It is also worthwhile to use these tools to study the principles behind vision

itself.
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Block 20 (cont'd)

Our visual system is a remarkably flexible and reliable source of information
about the world. One of the major challenges for appreciating how vision contributes
to our understanding of the world is understanding how it copes with the wide
variety of lighting conditions, surfaces, and surface markings to provide accurate
representations of the surfaces around us. The goal of the research reported here is
to gain a better theoretical understanding of what lies behind the visual system’s
ability to generate robust surface interpretations from single grey scale images of
smooth surfaces. In the course of doing this, a new robust shape from shading
method is developed. e A . ‘ :

The image irradiance equation is written using coordinate independent notation
and concepts from modern differential geometry and global analysis. This is done
to help make explicit the assumptions about the image formation process, and to
delay making these assumptions as long as possible. The method of characteristic
strips used by Horn (Horn, 1975) can be interpreted as a dynamical system on the
five-dimensional space of tangent planes, C(IR?,2). Modern methods for analyzing
the behavior of dynamical systems are used to show that solution surfaces for the
shape from shading problem are invariant manifolds of the flow generated by the
image dynamical system. The rest of the analysis assumes orthographic projection
of the image and a space-invariant reflectance function, but does not assume any
particular form or symmetry for the reflectance function.

Near critical points in the image dynamical system due to certain critical points in
a smooth image, in general (i.e. in the absence of special symmetries) the dynamical
system approach implies there will only be four possible smooth solution surfaces for
the shape from shading problem. Two of these are the stable and unstable manifolds
associated with the image dynamical system critical point. Two implementations
for finding the unstable (or stable) manifold in this dynamical system are developed
using the image dynamical system directly.

The shading information in a patch containing a piece of the bounding contour
is also examined, and it appears to contribute more to an assessment of a reflectance
function choice than to the determination of patches of solution surfaces consistent
with the image.

Finally directions for future work are suggested, and some guidelines and caveats
are provided for the development of image analysis systems based on these ideas.
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