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Abstract

Techniques, suitable for parallel implementation, for robust two-dimensional model-based ob ject
recognition are studied. Object models and input sensory data are represented as local geometric
features. The thesis concentrates on the hypothesis of model feature to image feature matchings,
and transformations between the matched features. Bounds on the error in image feature extraction
are assumed, allowing the formulation of constraints on possible feature matchings and transfor-
mations. The hypothesis of feature matchings is then formulated as a search through the space of
possible transformations, based on these constraints. Transformation sampling is introduced as a
simple, robust, and highly parallel method of searching this space to hypothesize feature match-
ings. The time complexity and the processor requirements of this procedure are polynomial in the
number of model and image features. A key feature of the approach is that error in image feature
measurement is explicitly accounted for in the hypothesis process. Transformation sampling care-
fully samples the space of model to image feature transformations to determine transformations
consistent with the model, observed data, and known feature measurement error. Three approaches
to matching hypothesis by transformation sampling are developed formally: critical point sampling,
uniform sampling, and probabilistic sampling. The results of simulations and experiments on real
images based on a Connection Machine parallel supercomputer implementation are presented.
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Chapter 1

Introduction

I am interested in enabling a computer or robot to utilize visual sensory data to reason
about, and interact with, its environment. A simple example of this is the use of robots
in the automation of manufacturing and assembly, where the use of visual feedback would
allow greater flexibility in the classes of operations and the complexity of manipulations
performed, by providing the robot with the capability of identifying and locating objects
of interest. It seems clear that this is in general an extremely complex task; many years
of research have only begun to offer understanding of the general problem of interpreting
the environment through visual sensory input. There has, however, been much success in
visual sensing in more restricted domains. An example of this is the area of model-based
object recognition. In this domain, the goal is to identify objects in the environment using
sensory data, assuming that the information relevant to the identification task is captured
by a model of the object of interest. This thesis is focused on the development of a model
based recognition technique that is effective and easily implemented on a multi-processor
computer.

1.1 The Problem

Simply stated, the object recognition problem is as follows. Given as inputs a model of an
object and the output of sensors in the environment of interest, the problem is to determine
if the modeled object is in the environment, and if so its location. Among the many issues
to be addressed are the fact that the object of interest is not isolated, but may be partially
occluded by unknown objects, and that the sensor output is subject to errors. These issues

are described more precisely in Chapter 2.



1.2 Goals

The area of model-based recognition has received considerable attention in recent years,
and several techniques have proven effective in restricted task domains[12][5][16][8] where
particular assumptions are made such as the type and number of objects recognized, and
the nature of the sensory data. Examples include recognition of rigid 2D objects from
2D video images, and 3D rigid objects from 3D range data. In most cases, research has
concentrated on algorithmic approaches intended for single processor computers, although
some of the existing systems are likely to have efficient parallel implementations.

One of the primary goals of this thesis is to explore the issues involved with model-based
recognition and develop a model-based recognition technique suitable for implementation
on a multi-processor parallel computer. To be specific, the domain considered in this work
is that of recognition of two-dimensional objects from two-dimensional sensory data. The

primary goal is to develop a recognition technique satisfying the following general criteria:

¢ Recognize 2D objects from 2D sensory input
¢ Robust under the effects of sensing errors
¢ Robust under the effects of object occlusion

¢ Robust in the presence of unknown objects

Efficiently implemented on a practical parallel machine.

1.3 Motivation

Model-based object recognition itself is obviously useful in tasks already common to robots
such as various aspects of manufacturing and assembly. A more flexible and useful robot
can be achieved by enabling it to interact dynamically with its environment using all
available sensing methods, including visual sensing. But to be generally useful, these
recognition systems must be able to operate at speeds comparable to the rate at which the
robot operates. Because of the complexity of the task, this is not in general possible on
a standard single processor computer. This motivates the study of recognition methods
suitable for efficient and practical parallel implementation: parallel execution can offer
substantial speedup over serial execution, depending on the extent to which an algorithm

can be developed to fully exploit the available processing power.
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I believe the path to developing a parallel procedure for recognition starts with under-
standing the basic operations from which a recognition procedure is built. From this we
can determine the requirements of a recognition system in terms of general purpose parallel
hardware and parallel algorithms. Another important aim of developing an understanding
of the basic components of robot recognition, and finding simple, highly parallel techniques
is that it will then be possible to build special purpose parallel hardware to execute the pro-
cedures extremely quickly. While actual hardware implementation of parallel recognition
may still be out of reach, existing parallel computers provide excellent tools for research in
this area.

Why study 2D recognition? A considerable amount of work has already been done
in the area of recognizing 2D objects from 2D visual images[12]. However, few people
have demonstrated working parallel systems. Ultimately we want to be able to achieve
recognition of 3D objects from 3D and 2D data very fast, as humans can, for applications
in robotics. There are three main reasons why it is interesting to study 2D recognition.
First, 2D recognition is is interesting and useful in its own right, and the fast computation
of 2D recognition would be useful. Second, 2D recognition is a good starting place for
developing needed insights into the issues involved with parallel computation in general,
and in particular parallel computation of object recognition. Lastly, with care in the
direction taken, studying 2D parallel recognition can be a useful step toward understanding
3D parallel recognition. In fact, while I have studied so called 2D from 2D recognition,
some of the techniques developed here appear promising for extensions to $D from 8D
recognition.

1.4 Contributions

This work provides an elegant and simple characterization of a commonly used formulation
of 2D recognition. Based on this characterization, a provably correct algorithm for recog-
nition is developed under a particular definition of recognition and assumptions on the
nature of measurement errors. Two other sub-optimal, but highly parallel, algorithms are
developed and studied. The algorithms are extremely simple in terms of the control struc-
ture and the types of computations that are required, making them easily implemented in

parallel, and candidates for a special hardware implementation of recognition.



Chapter 2

Background

Model-based recognition seeks to exploit knowledge of an object, in the form of a model, to
recognize it. In general, a model of an object captures information sufficient for recognizing
an instance of the object and for distinguishing it from other objects in the domain. There
are a variety of attributes that can be considered such as color, texture, and shape. Many
techniques are based solely on object shape, and this is the approach taken here. Chapter
6 provides a brief overview of model-based recognition techniques, but the following brief
characterization provides some context for the approach to recognition taken here.

The types of techniques can be roughly divided into three categories: those in which
the model does not maintain a representation of the spatial structure of the object, those
that maintain a qualitative representation of the spatial structure of an ob ject, and those
that maintain an explicit quantitative geometrical representation of the spatial structure
of an object. Among the last group are techniques that require that the modeled object is
rigid and unchanging in structure. The system described here relies on this restriction.

This chapter serves to introduce the terminology used throughout this document, and

the concepts central to model-based object recognition.

2.1 Models, Features, and Image Data

The inputs to a model-based recognition system consist of a set of models, and sensory
data derived from the environment. The recognition procedure attempts to interpret and
explain, if possible, the sensory data in terms of one or more of the models. To facilitate
this process, the model and the sensory data must be represented in a compatible manner.

For shape-based recognition of 2D objects, the boundary contour of an object captures
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all the necessary information, and thus logically might form the basis for the object repre-
sentation. In this work, the model forms a representation of the boundary contour in terms
of contour features. These are local features in that they each represent a small portion
of the boundary contour. Very few restrictions are placed on what constitutes a feature,

however the two requirements are:

e A feature has a definite orientation

e A feature has a definite position

The two types of contour features used in this work are point features consisting the
position of a point on the contour and the direction of the contour normal at the point,
and line segments consisting of a straight line approximation of a contour segment. To
facilitate recognition, both the model and the sensory data are represented in exactly the
same manner, as a set of contour features representing the boundary contours of the model
and the sensed objects, respectively.

The sensory data are commonly in the form of video images, sonar or laser range data,
or tactile data. Feature extraction is the process of representing the sensory data in terms of
features for recognition. In the case of a CCD video image, contour features, and 2D objects
as in this work, the feature extraction process is composed of an edge detection phase to
extract the boundary contours, followed by a feature building stage forming features out
of segments of the boundary contour. For convenience, in most of this document I assume
that the sensory data consist of a discrete CCD brightness image, and thus the input data

are in the form of an image brightness array.

2.1.1 Uncertainty, Occlusion, and Spurious Data

Although the features representing the sensory data are defined in terms of a definite
position, and orientation, I assume that noise in the input sensor, spatial distortions in
the sensing device, and approximations in feature extraction result in uncertainty in the
position and orientation of each image feature. This means that the measured position and
orientation of a feature extracted from the sensed data may differ from its actual position
and orientation in the environment. The mechanisms causing uncertainty are beyond the
scope of this work, however I use two simple models of uncertainty. In the first, uncertainty
is modeled as completely unknown but bounded in magnitude by a known constant. In
the second, the uncertainty is characterized by a probability distribution on the range of

possible deviations from the correct pose. This is discussed further in chapter 3.
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In addition to sensing errors there are other factors complicating the sensing of objects
in the environment. First, the data from part of an object may not be available due to
occlusion by other objects or other irregularities in sensing. Occlusion prevents the features
corresponding to the obscured part of the object from being extracted from the input data,
or results in image features which are fragments of the model feature to which they corre-
spond. Second, the object of interest may not be alone in the scene, rather there may be
several unknown objects in the scene. These spurious data may be locally indistinguishable

from the correct data, and serve only to complicate the recognition process.

2.2 Recognition

The simplest definition of object recognition is that it consists of determining the presence
and identity of an object in the sensed environment. For robotics applications, it is natural
to also require the determination of the position and orientation, or pose, of the object in
the environment. In general, any one of several known objects could appear in the scene,
and to be generally useful a system must be able to recognize all instances of any one of
the possible known objects in the image. This problem of recognizing an object out of a
large possible library is very difficult in itself, and beyond the scope of this thesis. Chapter
7 briefly discusses these issues. This thesis focuses on the recognition of objects when it is

known which object to expect in the image. In this thesis, recognition will basically consist

of:
¢ Determining whether the object is in the scene.

e Determining the pose of the object in the environment.

The fundamental assumption of model based vision, and in particular recognition of
rigid objects, is that there exists a correspondence between the model features, and those
image features due to the object. The correct feature correspondence can be sufficient to
determine the identity of the object, and in the case of rigid objects the correct feature
correspondence can be used to derive the object’s pose. Let {m;} describe the set of model
features, and {d;} describe the set of image features, and let m = |{m,}| and n = |{d;}|.
A particular feature match is denoted by < m;,d; >; and S = {< m;, d; >} = {m;} x {d;}
denotes the set of all possible feature matches. We say that a subset M C S is a matching
between model features and data features. A correct matching is a matching in which each

model feature is correctly matched to its corresponding image feature.
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The pose of the model of an object, and the pose of the image of the object can be related
by a transformation. Assume the ideal case where the image features have been extracted
without error. For 2D objects there exists a tran.gformation T = (¢,u,v) consisting of a
rotation ¢ followed by a translation t = [u v] on each of the model features which
exactly aligns the model with its image. Because these are 2D vectors, it is convenient to
represent them as complex numbers. Let the complex numbers p,, and py represent the
position of a model feature and an image feature, respectively. The transformation between

the pose of the model feature and the pose of the image feature is given by
t =ps— e’pn

where ¢ = 0; — 0,,, is the difference in orientation of the image and model feature respec-
tively, and multiplication by e*® rotates 6,, through an angle ¢. Unless specifically stated
otherwise, for convenience all following discussion is of 2D objects and 2D sensory data.
Because the pose of an object in the environment is related to the pose of the image of the
object in sensor coordinates by a known transformation, the determination of the model
object to image object transformation relates the known pose of the model to the pose of
the object in the environment.

The concept of transformation parameter space provides a convenient tool to deal with
transformations, and plays a crucial role in the formal development of the recognition tech-
niques described herein. Each transformation can be represented as a point (¢, u,v) in the
the transformation parameter space TPS = R% x SO; where SO, is the 2D rotation group,
¢ the rotation and u and v the translation in the z and y directions respectively. When
the image features are of unknown scale, the scale factor s becomes a fourth parameter of

the transformation, and TPS = 2 x SO,. Initially I will assume scale is known.

2.2.1 Matchings and Transformations

We can now view the recognition problem as the problem of determining a correct feature
matching and a transformation between the model pose and the image object pose. As
we shall see, when the models and objects are rigid, the problem of constructing a correct
feature match and determining a transformation complement one another.

To illustrate the interaction between constructing a matching and determining a trans-
formation, it is instructive to consider a somewhat ideal case. Assume that scale is known
and that there is no uncertainty in the pose of an image feature; each image feature cor-

responds precisely to the object that gave rise to it. In this case a single correct feature
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match is sufficient to derive the transformation from the model pose to the image pose.
Constructing a matching and determining a transformation are intimately connected. Each
feature match implies a transformation and a matching.

When image feature pose uncertainty is included in the analysis, a correct feature match
no longer necessarily implies a transformation equating the poses of correctly matched
features, and determining a matching becomes much more difficult. Altogether there are
three main factors which make finding a matching difficult:

¢ Due to object occlusion in the scene, some model features may not correspond to any image

feature. These are missing or occluded model features.

¢ Due to spurious image data from unknown objects in the scene, some image features will

not correspond to any model feature.

e There is uncertainty as to the exact pose of an image feature.

In the ideal case just described, there were no more than mn matchings that needed to
be considered, each one being verified in at most mn steps by transforming each of the m
model features according to each of the mn possible transformations, and then comparing it
to each of the n image features to find which one it aligns with exactly, for a total complexity
of m(mn)n = m?n%! When the measured pose of an image feature is allowed to vary from
its actual pose, however, it is not as easy to verify membership in a matching since a match
could be part of the correct matching yet not align exactly at the correct transformation.
Thus, the simple method of constructing a matching may not work. There are (n + 1)™
possible matchings in which each image feature appears once[16], so one possible approach
is to simply consider each of the (n + 1)™ possible matchings, clearly intractable. Even if

we could, however, we would still need some criteria for selecting the best match.

2.2.2 Formalizing Recognition

To make the recognition procedure more formal we require some means of evaluating match-
ings to determine the optimal ones. In particular, this is important when image feature
pose uncertainty is considered because in this case no single transformation is clearly cor-
rect. Let F(M,T) be a metric, F: {(M,T)} — R, where M = {< m;,d; >} is a feature
matching and 7' = (@, u, v) is a transformation. F(M,T') provides a measure of the quality

In practice one might improve upon this bound by using a hashing technique to find the image feature
corresponding to a particular model feature.



of fit between the transformed model and the matched image features. The quality of a
matching M can be evaluated by finding the optimal value of F(M, T') over all transforma-
tions T. Let f(< m,d >,T) be a metric on the difference in the pose of the features for a
particular match. One possible construction of F' is as some function of f(< m,d >,T') over
all matches in the matching, in which case F/(M,T) takes account of how well individual
feature matches match one another after transformation.

In this work, recognition will be formally structured according to the common hypothe-
sis generation and verification paradigm. In the hypothesis generation phase, hypotheses of
matchings M and transformations T' are constructed which optimize the metric F(M,T).
These hypotheses are then verified by comparing the matched, transformed model and im-
age features sets, or by using lower-level representations of the original input image and
modeled object. The results of recognition are those optimal hypotheses which pass the

verification process.

2.3 The Bounded Uncertainty Assumption

The previous sections discussed the construction and evaluation of matches. Spurious and
occluded data as well as image feature pose uncertainty conspire to make determining an
optimal matching difficult. This section introduces the idea of constructing an approxi-
mation to an optimal matching. The basic idea is to allow features to be matched after
transformation only if the distance between their resulting poses, measured by the metric

f, 1s below some bound.

Let D denote an upper bound on the magnitude of the position uncertainty of an im-
age feature, and © denotes an upper bound on the orientation uncertainty of an image
feature. To apply the bounded uncertainty approximation we assume that the position
error 6p, and the orientation error 6., obey |6p] < D and |0.] < O respectively. In this
case we do not allow two features to match unless their position and orientation are within
these bounds of each other. Many investigators have explicitly or implicitly applied this
approximation[16][4][8][24], for example this follows closely the extremely effective con-
straints applied by Grimson and Lozano-Pérez[16].

By assuming uncertainty is bounded, the number of possible matchings is greatly re-
duced. In fact, any transformation defines a matching. This idea, along with metrics for
evaluating matchings will form the basis of the recognition techniques to be developed in

the next chapter.



2.4 Summary

The known objects are represented by models consisting of a set of local contour features
with position and orientation. The image data are abstracted, and the objects in the
image represented in the same way, as a set of contour features. There is uncertainty in
the measurement of the position and orientation of a feature extracted from the image, but
the magnitude of the uncertainty is bounded.

Generally, recognition consists of determining if there is an instance of the modeled
object in the input image. More formally, recognition is defined as hypothesizing a matching
M and transformation T optimizing the metric F(M, T). These hypotheses are verified by

some comparison between the model and some representation of the image data.
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Chapter 3

Recognition as Searching Parameter

Space

Chapter 2 defined model-based recognition for rigid models very generally. Recognition
consists of the hypothesis of matchings M and transformation T, followed by the verification
of these hypotheses. Hypothesis and verification provide an explanation for observed image
features in terms of the model. This chapter outlines how hypotheses are constructed by
searching the set of possible matchings M and transformations T for optima in the function

F(M,T).

3.1 Recognition Strategy

Feasible Matchings

The notion of a feasible matching forms the basis for the strategy for constructing hy-
potheses for M and T'. Under the assumption of bounded image feature pose uncertainty,
a feature match is feasible if for some transformation, 7', on the model feature, the differ-
ence in the position and orientation of the two features is within the uncertainty bounds.
A matching is feasible if there exits some T at which all its component matchings are
feasible. The approach taken here is to divide the hypothesis stage into two steps. First,
hypothesis generation constructs a set of feasible matchings. Second, Hypothesis refinement
determines for each such feasible match, the associated transformation T which optimizes
F(M,T). The verification stage then determines if the hypothesis is correct by utilizing

any available image and model data that is appropriate.
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The key to the hypothesis step is the construction of feasible matchings accounting for
significant portions of the image features. In previous work, considerable computational
effort was placed on this process[16][8]! The approach to constructing feasible matchings
taken here is to search TPS for translations T' associated with large feasible matchings.
The idea is that any transformation T' implies a feasible matching consisting of all matches
feasible at T'. As we shall see, a particular matching may be feasible over a whole range
of transformations 7', corresponding to a region in TPS. Hypothesis generation will be
formulated as a search for these regions. So, to facilitate this strategy, and structure the

search for optima of F(M,T) as a search over all T in the transformation parameter space

TPS, we simplify F(M,T') as follows. Define
F(M,T) = F'(M(T)) = F(T)
and dropping the primes for convenience, define

FT)= Y f(<md;>T)
<m;,d;>eM
where M consists of matches feasible at T' and f(< m;,d; >,T) = ¢;; > 0 for T within
the range of feasible transformations of match < m;,d; >, and 0 outside it; where ¢;; is a
constant depending on the match < m;,d; >.

In this special case, F(T) is a piecewise constant function over TPS changing values
only at the boundary of regions of feasible transformations for particular matches. F(T)
does not depend on M because a transformation T implicitly defines a matching consisting
of all feasible matches at 7T'.

This particular definition of F(T') facilitates the hypothesis generation step: finding
feasible matchings. By appropriate definition of the constants ¢;;, maxima of F(T') are
likely to correspond to largely correct matchings. An example is to define ¢;; to be the
length of the image feature for the match < m;,d; >. In this case a maximum of F(T)
defines a matching for which there exist T' where all matched features satisfy the uncertainty
constraints, and which accounts for a large fraction of the image features in terms of the
model.

The hypothesis generation step can now be viewed as a search of TPS for one of these
piecewise constant regions with an optimal value of F'(T'). Because with this definition

F(T) is piecewise constant, there is a whole range of T which imply the same matching M.

INote that feasible is defined in a slightly different sense in [16]. Here feasible means there exists a 7'
where all matchings satisfy the constraints on uncertainty.
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The purpose of hypothesis refinement step is to refine the hypotheses by utilizing a different
definition of F(T') and determining which 7" are optimal for the matching M. Because the
hypothesis of matchings is the most difficult step, the primary emphasis in this thesis is
placed on hypothesis generation, the hypothesis of matchings. Section 3.6 discusses some
simple methods of hypothesis refinement.

3.2 The Structure of Parameter Space

The first step of recognition, hypothesis generation, is viewed as searching TPS for optimal
values of F'(T'), using the special definition of the previous section. To facilitate this it is
necessary to understand the structure of the transformation parameter space.

Define a feature-match to be the pairing of a model feature with an image feature. The
range of rotations which will bring the orientation of the model feature to within © of the
orientation of the image feature, and the range of translations, after each of these rotations,
which bring the position of the model feature to within D of the image feature correspond
to a region in transform parameter space of feasible transformations called a match-region.

Assume the match-regions for all possible feature matches are constructed. As men-
tioned earlier, the boundaries of these match-regions divide TPS into irregularly shaped
volumes, each bounded by the bounding surfaces of one or more match-regions, or the
curves of intersection of two or more match regions. I call these regions of intersection
of match-regions intersection-volumes. By the assumptions on the character of the pose
uncertainty, the correct transformation is included within the match-region of each cor-
rectly matched image and model feature. Thus, one of the intersection-volumes contains
the correct transformation, and represents a range of transformations consistent with all
correct feature matches. This is the intersection-volume for which we are searching. By
appropriate definition of F(T'), this region will have an optimal value of F(T). Call an

intersection volume with an optimal value of F(T) an optimal intersection-volume.

3.3 Critical Point Sampling

We now have the general goal of hypothesis generation formulated as finding optimal inter-
section volumes. As introduced above, intersection volumes are formed by the intersection
of match regions. Because the shape and position of the match-regions in TPS can be

determined, one approach to finding intersection volumes would be to explicitly calculate
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their shape and position from the intersection of the associated match-regions. Although
the match-regions are easily characterized, calculating the regions of their intersections is
extremely difficult.

In this section I will show that it is not necessary to explicitly calculate the shape of
an intersection volume to find it. The key insight is that there are certain critical points
in TPS which lie on the surface of all intersection volumes. These critical points can
be computed and used to locate the intersection volumes, facilitating the selection of the
optimal intersection-volume, and achieving the hypothesis generation step.

For the following analysis we consider point features consisting of the location of a
point on the contour of an object, and the direction of the curve normal at that point. The
uncertainty in the position of an image feature is bounded by D, and the uncertainty in
its orientation is bounded by O.

Match Regions

The difference in the position of a model feature and an image feature after rotation of the

model feature by any rotation ¢ is given by the complex equation

t= Pd — 6id}pm-
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Figure 3.2: The path followed by a circle of radius D centered at tc

Let 04 and 6, represent the orientation of an image and model feature respectively. The
nominal rotation aligning the orientation of the model feature with that of the image feature
is given by @¢4m = 04 — 0,,. The extent of a match-region in the ¢ dimension of TPS, that
is, the range of rotations of the model feature leaving it within © of the orientation of the
image feature is given by the set ¢ € [¢,, ¢] where ¢, = ¢y, — O and ¢, = ¢y, + O.

For a particular match region, its cross section in a plane of constant ¢ in TPS is just a
circle of radius D corresponding to the region of uncertainty in the translation aligning the
positions of the features. Call this circle a match circle. The position, t, of the center of a
match circle in the u — v plane can be thought of as a function of ¢ given by the equation
above: t = py —e**p,,,. Thus a match circle follows a circular path of radius |p,, |, centered
at pg. We can easily see that the match region is described by the volume swept out by a
horizontal circle of radius D following a helical path in TPS given by t = py — e*p,,[13)].

3.3.1 Critical Points in Parameter Space

I have cast hypothesis generation as a search through TPS for optimal intersection-volumes.

While it is very difficult to explicitly compute the bounding surface of the intersection-
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Figure 3.3: Intersection areas, slices of intersection-volumes.

volumes, there are certain computable points I call critical points which lie on the surface
of each intersection-volume. I begin developing this idea with the following theorem which
will be proved over the subsequent sections.

Theorem 1 There is a set of points in parameter space such that at least one such point
lies on the bounding surface of each intersection volume. The size of this set is polynomial
in the number of match-regions.

3.3.2 The Structure of Intersection Volumes

If we consider a slice of parameter space defined by a plane of constant ¢, the intersection
volumes have cross section consisting of the intersection in this plane of several match
circles. Call the projection of such a slice of an intersection volume onto the u — v plane,
an intersection-area. See figure 3.3. Let the value of an intersection area be the value of

F(T) within the intersection area.

To characterize the structure of intersection volumes it is convenient to study the be-

havior of intersection areas as functions of ¢. This is because as ¢ varies, match areas
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sweep out intersection-volumes, and the boundary contours of match areas sweep out the
bounding surface of intersection-volumes. An important characteristic of intersection areas
is the nature of the points of intersection of the match-circles that form them. Recall that
each match region exists only over a range ¢ € [@a, $s], thus each match circle appears and
disappears as ¢ passes through this range. As this process evolves with ¢, new intersection
areas appear and disappear, and as we observe the evolution of intersection areas in the

(u,v) plane, there are two important patterns of behavior:

e The area of an intersection area may be non-zero over a range of ¢ including at least

one of the end points ¢, and @.

e The intersection area exists with non-zero area somewhere in the open interval ¢ €

(¢a, d5), but not at @, or ¢.

3.3.3 Intersections of Match Circles

We now examine the above two cases in more detail. As we shall see, the points where two
or three match circles intersect will form the critical points sought. The following lemmas
provide the formal basis for this idea, which I subsequently develop.

2-way Intersection

Lemma 1 For a given pair of feature matches, there are at most two values of ¢ where
the two match circles intersect at only one point, unless the two match circles intersect at

only one point for any ¢.

Proof: Two match circles intersect at only one point when their centers t; and t, are

exactly a distance 2D apart. In this case the centers satisfy
(b1 — t2)(t] — t;) = 4D?
where t* denotes the complex conjugate of t. Thus we seek the roots of the equation
tit] + toth — (tity + tit)) —4D? = 0.

Because t = py — €*p,,, and multiplying the above equation by e will not change its
roots, inspection shows that the resulting equation is quadratic in e* and therefore there
are no more than two values of ¢ which satisfy it, or any ¢ will satisfy it when all the

coeflicients are zero. O
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Figure 3.4: When three match circles intersect at a point, their centers fall on a particular
circle of radius D

3-way Intersection

Given three match circles whose centers are described by the complex quantities t,(¢),
t2(¢), and t3(¢), for which ¢ do they all intersect at a point? Note that this is equivalent
to seeking those pairs (¢, to) for which t;, t;, and t; fall on a circle of radius D centered
at some point given by to. See figure 3.4.

Lemma 2 The following system as a function of ¢ has at most six distinct solutions, unless
all ¢ are solutions.

(t1() — to)(ti(¢) — tg) = D?
(t2(¢) — to)(t3(4) — t;) = D?
(ta(8) — to)(t3(¢) — t;) = D?

Corollary 1 For a given triple of feature matches, there are at most 6 values of ¢ where
the three match circles intersect at the same point, unless the three match circles intersect

at one point for all ¢.

Proof:
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A circle of radius D containing the three points t;, t;, and t3 can be found by solving

the following system of non-linear equations for ¢ and to = u + v:

(t:1(¢) — to)(ti(¢) — tg) = D*
(t2(4) — to)(t3(4) — tg) = D*
(ts(¢) — to)(t3(¢) — tg) = D*

By expanding then subtracting any two of the above equations we get
tit] — tit] — [to(t] — t7) + t5(ti —t;)] =0
From this we construct the linear system:

(t3 —t7) (tz“tl)] [to ] _ l:t2t;_tlt;]

(-t5) (ba—ta) | | 6] | tats—tots

The determinant of the above matrix is (t3 — t})(ts — t3) — (t2 — t1)(t5 — t3) which is
non-zero when t;, t2, and t3 are not colinear, thus the solution of this system is the unique
circle of some radius on which t;, t;, and t; fall. The case were the determinant is zero
results when the three points lie on a circle of infinite radius. We can solve this for t, using

Cramer’s rule:
(b2t — tit]) (t2 —ty)
(t3t§ — tzt;) (t3 — tz)

(85 —t) (t2—t1)
(t3—t3) (ta—t2)

which yields

(t2t3 — t1t])(ts — t2) — (tat3 — tat;)(t2 — t1)
(t3 — tox)(ts — t2) — (85 — t3)(t; — t1)

We seek ¢ and t, such that this circle has radius D. So, substitute tq into

to

(t1(9) — to)(t}() — t) = D?
Now

(b2 — t1)(t3 — t1)(t3 — t5)
(3 — t1)(ta — t2) — (t2 — t1)(t3 — t3)

(b1 —to) =
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which leads to the equation

(t2 — t1)(ts — t1)(t5 — t3)(t3 — t7)(t3 — t1)(ts — t2) +
D?[(t5 — t])(ta — ta) — (t2 — t1)(t3 - t3)]* =0

Recalling that t = pg — €*®pn, we seek those ¢ for which the above equation is true.
Multiplying the above equation by e**# will not change its roots, and inspection shows the
result is a 6% degree polynomial in e*. There are at most six distinct solutions to this,
unless any ¢ is a solution when all the coeflicients are zero. Note that since the above
equation is purely real, the coefficients to powers of ¢ and e~*%, respectively, are complex
conjugates; thus, the equation is a 3" degree trigonometric polynomial in cos($) and sin(¢).
O

The previous several lemmas provide the basis to prove the following central lemma.
The intuition is that as we watch a match area evolve with ¢, at some point in its life it
will be bordered by a 2-way or 3-way match-circle intersection. Because the match area
traces out the surface of the intersection volume, these points fall on the bounding surface
of the intersection volume. First, note a simple property of locally maximal intersection

areas that concerns their evolution.

Claim 1 An intersection area of locally mazimal value is a convex region of the (u,v)

plane.

Proof: The boundary of any intersection area is composed piecewise of circular arcs, joined
at the places where two circles intersect. Suppose we have a maximal intersection area that
is not convex, that is, one of the circular segments curves into rather than out of the region.
Then at some point along this curve segment we could step across into a region contained
within the same match circles, but to which we have added f(< m;,d; >,T') corresponding
to the circle just entered and have thus increased the value of F'(T'), a contradiction. O

Lemma 3 A mazimal intersection volume is bordered by a point where the surfaces of

either two or three match regions intersect, unless it is composed of a single match region.

Proof:

Recall that for a particular intersection volume, its extent in ¢ is given by [@4, ¢s] =
Ni,j[#a.;» @,,] for match regions associated with matches < m;, d; > forming the intersection

volume.
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Figure 3.5: At the end of the intersection volume where ¢ = ¢, or ¢ = ¢., we must look at
places where pairs of match circles intersect. This is one of the places where a match circle

appears or disappears.

In the special case the intersection volume is composed of a single match region existing
over a range [¢,, ¢;], then the center points of the match circle at ¢, or ¢, both border the
volume. There are no more than 2(mn) such points.

Next, consider the first case mentioned above where over the range of ¢ € [@,, #], the
area of the intersection area is non-zero, but is composed of the intersection of two or more
match regions. In this case, the intersection points of the match circles at ¢, and ¢, border
the volume. Since there are mn match circles, (";") pairs of match circles, and at most 4
such points per pair of match regions, there are less than 2(mn)? such points. See figure
3.5.

In the second case when the intersection area does not exist at ¢, or ¢,, but exists for
some ¢ € (é,,ds), the above method fails. In this case, because of the fact described in
claim 1, the area evolves from a single point which is the intersection of two match circles,
or three or more match circles. If the area evolves from the intersection of two match circles
there exists a ¢ where the centers of the two match circles are exactly a distance 2D apart.
From the lemma 1 there are no more than two ¢ where this is true. Because there are (";")
pairs of match circles, there are less than (mn)? such points. See figure 3.6. If the area

evolves from the intersection of three match circles there is a point where 3 match circles
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Figure 3.6: Evolution of a new intersection region from the point of intersection of two

0-G

Figure 3.7: Evolution of a new intersection region from the point of intersection of three

match circles.

match circles.
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intersect. From corollary 1 there are no more than six ¢ where this is true. Since there are

(";”) triples of match circles, there are less than (mn)3 such points. See figure 3.7.

Note that the case where the circles intersect for all ¢ is of no importance since in this
case no intersection area evolves from that particular point. O

The last lemma handles the case where the the match-region is locally maximal in value.
The case where match-regions are not locally maximal is exactly the same with the addition
of one special case for the birth and death of a match-area, where two match circles are
superimposed and then move off of one another, or the reverse. In this case there are two
special points that must be considered. Let t; and t; describe the centers of these circles.
Derive the quantity ;’—¢(t1 — t3) at the ¢ where t; = t;. The two points of intersection of
the superimposed match circles with the line through their common center in the direction
perpendicular to this vector are critical points at the birth or death of a match region.
Because there are (";”) paris of match circles, and two such points for each, there are less

than m2n? such points.

3.3.4 An Algorithm for Matching Hypothesis

From the above theorem we see that there are O(m?n?) points that need to be examined to
ensure finding one that borders each maximal intersection volume. Following is an outline

of a brute force algorithm for hypothesis generation.

o Form all feature matches.

Find all points where where two match regions intersect, and where three match regions
intersect. There are O(m3n®) such points.

For each such point, query each match region to find those that contain each point.

Select those points which fall at an intersection region with a maximal value of F(T)

This procedure requires the numerical solution of a 3™ degree trigonometric polynomial
in cos(¢) and sin(¢), or alternatively the solution to a regular 6 degree polynomial with
complex coefficients. A more detailed algorithmic development of this idea is provided in
chapter 4.
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3.4 Uniform Sampling

Overview

Hypothesis generation has been cast as searching TPS for optimal intersection volumes.
The previous section introduced a method of finding optimal intersection volumes based on
computing the location of points lying in the bounding surface of the intersection volumes,
and provided insight into the nature of the search space. This section introduces another
approach to finding optimal intersection volumes, based on sampling TPS to find a point
that lies in an optimal intersection volume.

The basic intuition is that given any point T in TPS, it is simple to determine the
value of F(T) at T by computing f(< m,d >,T) for each match. A systematic approach
would be to sample the entire parameter space on a regular grid, to find some such sample
points which fall inside optimal intersection volumes. This is a finite but extremely large
set of sample points. We can reduce the number of sample points considerably, however,
by noting that for a particular feature match we need only consider those sample points
which actually fall inside its match region. Let K represent the number of uniformly spaced
sample points in TPS which fall inside a match-region. In this case we need only consider
Kmn transformation sample points.

An advantage of sampling on a uniform grid in TPS is that the containment of each
sample point in all the match regions need not be explicitly computed. Instead, for each
match region the set of sample points falling in it is computed, and these sample points
then simply sorted into groups according to the sample point. For each group, F(T) is
computed. If the sampling intervals are fine enough, at least one of the sample points
will fall in each of the optimal intersection volumes, achieving the goal. So the success of
this approach depends on a sample point falling inside the optimal intersection volume,
otherwise we will never find this region. The sampling intervals in rotation and translation
must be small enough to ensure this. As we shall see, there is a fundamental tradeoff
between accuracy and complexity: the finer the sampling interval, the greater the number

of transformations to be evaluated.

3.4.1 An Algorithm for Matching Hypothesis

The basic outline of an algorithm for uniform transformation sampling consists of first
forming all feature matches, and computing the transformation sample points on a the

uniform grid which fall inside each match region. The transformation sample points thus
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constructed are then sorted, and for each particular sample point T', the piecewise constant
metric F(T') is computed for each group of equal transformation sample points, and the
transformation sample points yielding maximal values of F'(T') are taken as initial hypothe-
ses. These hypotheses are then refined to determine the best estimates of the transforma-
tions T for the matchings initially hypothesized, and the refined hypotheses then verified.
The following sections provide a more formal basis for uniform sampling.

3.4.2 A Formal Analysis of Uniform Sampling

The key issue with uniform sampling is to determine lower bounds on the sampling in-
tervals required to ensure sampling within the optimal intersection volume. This section
develops a useful probabilistic model of the structure of TPS under the bounded uncer-
tainty constraint, which will provide a formal basis for the uniform transformation sampling
approach.

The basic intuition is as follows. By definition, each match region in TPS due to cor-
rectly matched features contains the correct rotation and translation. Thus, the optimal
intersection volume is a region contained in all the correct match regions, which also con-
tains the correct transformation. In the following analysis, we will fit a cylinder of radius
r and length 2¢, with axis parallel to the ¢ axis of TPS and centered at the correct trans-
formation, such that it is completely contained in the optimal intersection volume. This
cylinder provides a lower bound on the intersection volume. By choosing the sampling
intervals such that at least one will fall inside such a cylinder, we can be sure to find the
optimal intersection volume. The more the measured pose of a non-spurious image feature
deviates from its correct pose, the more the center of its associated correct match-region
deviates in TPS from the correct transformation, making the region of optimal intersection
smaller. The idea of the following analysis is to formulate a probabilistic lower bound on
the size of the cylinder just described, based on the probabilistic deviations of the measured

pose of non-spurious image features from their correct pose.

The Probabilistic Structure of Parameter Space

As before, I will consider point features. In the following analysis, assume the existence
of to and ¢, representing the correct translation and rotation, respectively. By definition
of pose uncertainty, all correctly matched features define a match-region which contains
the correct rotation ¢o and translation to. As mentioned above, the size of the optimal

intersection volume depends on the extent to which correct match regions overlap each
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other, that is, the extent to which the positions in TPS of correct match-regions deviate
from the correct transformation. If there were no image feature pose error, the correct
transformation would be in the center of the each correct match region match region. The
deviation of a correct match-region from the correct transformation is directly related to

the deviation of the measured pose of the image feature from the correct pose.

Deviation from the Correct Transformation

The probability distribution for a random variable z will be denoted g.(z), and P<;, de-
notes the probability « is less than or equal to some constant zo. Assume that the deviation
of the measured pose of an image feature from the actual pose is characterized by the dis-
tribution gy, (0.) where 8, = 6, — 6, is the difference between the correct orientation of an
image feature and the measured value, respectively. Similarly, assume g,(p) characterizes
the distribution of p = |to — t|, the absolute distance in u — v space between the correct
translation and the translation calculated from the measured feature, and taken in the
plane ¢ = ¢o where ¢, is the correct rotation. The distributions gy, (6.) and g,(p) could
be calculated based on models of the mechanisms producing sensing errors, such as noise
and the effects of feature extraction. An alternative is to calculate them empirically from
actual sensor measurement.

As mentioned above, each correct match-region contains the correct transformation
#0, to. The idea of this analysis is to determine the size of a cylinder centered at ¢,
to, and completely contained inside the optimal intersection volume, thus bounding it
from below. To approach this, first such a cylinder centered at ¢q, to is fit inside each
correct match-region. Call this cylinder a match-cylinder. The size of these match-cylinders
is characterized probabilistically, and then these individual match-cylinders are related

together to form a lower bound on the optimal intersection volume.

The Radius of a Match Cylinder

Again, note that a match cylinder is centered at ¢o, to, and its axis of rotation aligned
with the ¢ axis of TPS. First we will consider lower bounds on the extent of a match
cylinder in the translational dimensions of TPS. Consider the match region defined by a
particular correct feature match, and the match circle formed by a slice through TPS at
¢ = ¢o. Because this match region is due to correctly matched features, it contains the
correct translation to. Note that a circle of radius r = D — p centered at to is completely

contained within the match circle. See figure 3.8. Call this circle C,. We can easily derive
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the probability distribution of the radius r of C, from g,(p): ¢,(r) = g,(D —r), because in
general if = a — y then

d d d a—yo
9y(¥0) = d_y;PySyo = Ey—opa—yosz = T (1 —/ gx(w)dw) = gz(a — yo)

The probability that, for a given correct match region, the circle C, taken at a cross section
¢ = ¢o has radius r < rg is given by:

7o
Pr<ry =/ g-(r)dr.

—0Q

We are aiming toward determining the size of a match-cylinder. Note that the match
cylinder cannot have the circle C, as cross section because this is only true at ¢ = ¢,.
As ¢ moves away from ¢o, the minimum distance from to to the edge of the match circle
can decrease. Recall from section 3.3 that as ¢ varies, the match circle moves according
to t = pg — €p,, for a particular feature match < m,d >. We can view the position
of the match circle in the u — v plane as a function of ¢. The velocity, g—;—, at which a
match circle moves in the u — v plane as ¢ varies is proportional to |p,,|, the distance of its
center from the center of rotation. We can bound this velocity as follows: If the maximum
dimension of the image is I, then we can shift the model features such that |p,,| < 5% for
all model features. In this case the maximum velocity with respect to ¢ of a match circle is
|§£—| <w= @ Thus, the circle C, with radius ro at ¢ = @o may shrink as ¢ varies from
@0, but its radius can change at a rate no faster than w. A lower bound for the radius of
a new circle C, centered at to as ¢ varies from ¢¢ is then given by r’ = ro — w|¢o — 4|, for
|#o — ¢| < 2. So at any position ¢, a circle of radius r’ is within the match region in the

u — v dimensions. The value r’ is the radius of the match-cylinder.

The Length of a Match Cylinder

Next I will characterize the extent of a match cylinder in the ¢ direction of TPS. The
probability distribution gy, (6.) characterizes the distribution of the error in orientation
measurement for an image feature, where 6. = 0;, — 6;. Because the measured relative
rotation ¢ is given by dam = 05 — 0., and by definition ¢o = b4, — 0,,,, we have that

¢dm = (odo - am) - 06 = ¢0 - 0e-

Defining ¢. = ¢o — ¢am to be the error in relative rotation, we see ¢, = 6., thus 9. (P) =

90.(9)-
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The total extent of a match region in the ¢ dimension is 20. Let ¢ = © — | — @ | =
O — |¢e| be the distance from ¢, to the closest edge of a correct match region in the ¢
direction. Let 2 be the length of the match-cylinder, thus the match-cylinder is symmetric
about ¢o, to, and extends to the boundary of the match-region. We now calculate the
distribution g¢(¢) characterizing the length of the match-cylinder.

With § = © — |@e], Pe<g, is the sum of two probabilities: Pgytg,<o for ¢ < ¢ and
Po_4.<0 for ¢ > ¢. Thus,

—(©-¢£o) oo
Peso= [ 0(0)db+ [ au(¢)ds

and

d
9¢(§o) = ‘dgpssso = gs. (€0 — ©) + 94.(© — &)
If g4.(¢) is symmetric, g¢(£) = 2g4,(© — &) The probability that, for a given correct match
region, the length of the match-cylinder is 2¢ < 2, is given by:

Pece, = /_i ge(§)d¢.

The Optimal Intersection Volume

The above results can be combined to provide a probabilistic lower bound on the size of
the optimal intersection volume. For a given match-region, the probability that a match
cylinder has radius ' < rg — wo and length at least 2¢, is given by

Postorsro = [ [~ 9e(€)g.(r)drdg = (1 - gs(f)dﬁ) (1= [* 6)dr) = Pog P

where Prsz, = 1 — Ppcs,, and it is assumed that the uncertainty in orientation is inde-
pendent of the uncertainty in position. Assume there are N correctly matched image and
model features possible, that is, there are N of the model features visible in the image.
Let Pgyro = PesgoPrsro- Assuming the measurement errors are independent, the probability
that k of N match cylinders have length 2¢ > 2¢, and radius r > rq is given by by the

binomial distribution:

N
BPfo'o (k) - (k)Pfli"‘o(l - P{oro)N_k 0< k <N

Let P be the probability of the event that for a single match-region a circular cylinder

of radius r' and length 2£, is completely contained in the match-region. P > P, for a
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match-region since the cylinder is not necessarily symmetric about ¢¢ and can be longer
than 2¢&,.

Construct the cumulative probability Cp(k) that for k or less match-regions a circular
cylinder of radius r’ and length 2, is completely contained in the match regions where

k k

cr) = 3 Ba) = 3 ()Pl - -
i=0 i=o \?

and the probability that this is true for k or more match regions is 1 — Cp(k — 1). Because

P> Pgpyy 1 = Cp(k—1) > 1 - Cp,, (k— 1), providing a lower bound on the probability

the described cylinder is contained in k or more correct match-regions.

We can use the following result to characterize the behavior of the probability as N
grows: It can be shown[19] that Cp(|aN|) < e 2N(@=P)’ o < P which is the case con-
sidered in the example to follow. This means that as N increases, the probability that
(14 [aN]) or more match-regions contain a cylinder of the given size approaches 1.

In summary, this analysis allows us to obtain lower bounds on the probability the
optimal intersection volume will be at least as big as a cylinder of radius r’ and length 2¢,.
As an approximation to finding the optimal intersection volume, the analysis also provides
a bound on the probability of such a cylinder contained in  of the N correct match regions.

Uniform Sampling Intervals

The previous analysis derived a lower bound on the probability that a cylinder of radius
r’ and length 2{, is completely contained in k out of N match regions. The sampling
intervals are chosen so that at least one point will fall in this cylinder. In order to be sure
we sample in the translation dimensions within a circle of radius r’ = ro — wé, we must
have 6§t < v/2r'. In the ¢ dimensions, we must have that é¢ < 2£,. A general strategy for
determining sampling intervals is to first pick an acceptable probability bound on finding
a correct matching of size k or larger. This determines a locus of points (£y,70). The

appropriate sampling intervals are given by these two values.

Discussion

The preceding analysis makes several assumptions. Most importantly, it is assumed that
the uncertainty in image feature pose can be characterized by a probability distribution.

Secondly, it is assumed that the deviations in orientation and position from the correct
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Figure 3.8: A circle of radius r centered at t, fits inside the match circle.

values are independent of one another, characterized by 9,(p) and gy, (0,). Finally, it is
assumed that the deviation for different features is independent.

Assuming that pose uncertainty can be modeled probabilistically is reasonable. There
are many mechanisms which cause uncertainty, and characterizing them deterministically
is probably fairly difficult. The probabilistic model allows the formulation of an analysis
of the system which, while not entirely accurate, lends some justification to the approach.
Even if we allow the characterization of pose uncertainty probabilistically, the problem of
justifying particular probability distributions remains. It is important to note, however,
that the preceding arguments all depend on the integrals of the distributions 9,(p) and
96.(0), and not on the distributions themselves. Thus the effects of the choice of the
particular distributions is lessened.

The assumption that the orientation uncertainty and the position uncertainty are in-
dependent is probably incorrect. If a feature is derived from the boundary contour of an
object, any process which deforms the contour by changing the position of a particular
curve segment will very likely also change the orientation at that point. F inally, the as-
sumption that the individual errors are independent is reasonable for features distant from
one another, but probably unreasonable for nearby features. Any mechanism causing a
feature’s measured position to vary could very likely affect nearby features in the same

way, invalidating the independence assumption for some features.

It is important to note that this analysis provides a simple, extremely loose lower bound
on the sampling intervals 6t and §¢ for three main reasons. First, the region of overlap
of match circles does not have circular cross section, but is actually larger than the cross
section of the cylinder fit inside it. Second, the extent of the overlap of match regions
in the ¢ dimension is asymmetric about the correct rotation ¢o, including more than the

region of length 2£ considered in the analysis. Third, the rate that match circles move,

30



©s

Figure 3.9: As ¢ moves away from the correct value ¢y, the circle C, of radius ro centered

at to shrinks to radius r’.

and that the fitted cylinder shrinks in radius, is usually much less than the upper bound of
w= 3% used in the analysis. For these three reasons, the optimal intersection volume is
in reality much larger than the lower bound provided by the analysis, and thus the bounds
on sampling intervals and on probabilities are very conservative, and in practice we would
expect that near optimal match regions would be found with high probability using coarser
sampling intervals.

The assumptions made are very likely not completely correct, and this analysis is not
intended to be a rigorous justification of the method. Instead, it is intended to make
plausible the idea of uniform transformation sampling.

An Example

Here is an example to give a more concrete sense of the implications of the previous analysis.
Included are two examples with two different distributions for each of g, (6.) and g,(p).
In the first case gy, (6.) is modeled as Gaussian and g,(p) as a Gaussian defined for p > 0.
In the second case, all position deviations and all orientation deviations are taken to be
equally likely.

Assume that for 0 < p < D, g,(p) is proportional to a Gaussian distribution:

9o(p) x e %

and 0 elsewhere. Similarly assume gy, (6.) is proportional to a Gaussian for -0 < 6, < ©
and 0 elsewhere.

Let the standard deviation of the Gaussians for g, (6.) and g,(p) be 2 and L respec-

tively. The following table shows an example of the parameters and probabilities for this

case.
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(C] D 6¢ ot Poegw | w | N k Ck(k)
12 deg | 5 pix | .3323 deg | .7425 pix | .8660 2752 56 | 42 | .0140

Thus we see that with probability 99%, 43 or more of 56 correct match regions will be
found when using sampling intervals of .3323 degrees and .7425 pixels, for a 256% image.

As a second example, assume that any error within the uncertainty bounds is equally
likely. In this case we have that

pPo 7rp2
PpSpo = /0 gp(P) = ;r—l—)%

SO 5
p
gp(P) = ﬁ
thus
To T0(2D - 7‘0)
Py = /0 9o(D = r)dr = ——F5—
also

éo
Pe<eo =/0 ge(€) = %0

considering a specific example:

R D 5¢ 5t Proes | w | N | & [ Ci(k)
12 deg | 5 pix | .0717 deg | .1603 pix | .8660 | Z£ |56 | 42 | .0140

Thus we see that with probability 99%, 43 or more of 56 correct match regions will be
found when using sampling intervals of .0717 degrees and .1603 pixels, for a 256 image.
The Gaussian distributions are probably more realistic because we might expect the devi-
ations of position and orientation to be distributed near zero, rather than being uniformly
distributed.

The equation introduced above, Cp(|aN|) < e NP o < P provides a simple
bound on the probability that more than [a/N| match-cylinders are above a given size.
For example, defining 8 to be the probability that more than |a/N | of the correct match

regions contain the a match-cylinder of the given size, and given N and P, « is given by:

[lg(1 — B)~
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Taking a specific example, say N = 56 and P = .8660 as above, and we want § > .99,
then a > .66, and thus with probability 99%, over 66% of the correct match regions will
completely contain the given cylinder. These bounds improve as N or P grows, providing

a loose lower bound.

Extended Features

The previous analysis using point features provides a lower bound for the case of extended
features such as line segments. For a particular feature match at a particular rotation there
is a region of possible translations. The length of this region is a function of the position
uncertainty and the difference in the lengths of the model and image features. An equivalent
situation is given when we subtract the length of the image feature from both the model
and the image features. Assuming the image feature is less than or equal in length to the
model feature, we then have an image feature which is a point paired with a model feature
which is either a point or a line. In the point-point feature case, the intersections of match
regions had cross sections that were intersections of circles. In this case the cross section
of intersections will be intersections of circles or circles and rectangles with hemispherical
ends. It is easy to see that in this case the amount of overlap of match regions is equal to
or greater than the case where only point features are involved. Thus, the point feature
analysis provides a very loose lower bound on the performance of the technique when using

extended features.

Handling Unknown Scale

In the formal analysis above we saw that as the rotation component, ¢, of the transforma-
tion varies from the correct rotation ¢q, the region in u — v space where the correct match
circles overlap gets smaller. If the amount ¢ varies is small enough we can determine a
lower bound on the size of this region. Appropriate choice of the rotation sampling interval
limits the amount ¢ varies, and appropriate choice of the translational sampling interval
then ensures that some sample point will fall in the region of optimal intersection. The
situation is analogous when scale is unknown, and the range of possible scales is sampled.

When scaling is part of the transformation, the transformation between an image feature
and a model feature consist of a rotation, followed by a scaling and a translation. The
translation required to align two features is given by t = ps — se*®p,, were s is the scale

factor. The overlap of the match regions in the ¢ dimension is unchanged by variations in
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s, but the correct match circles will move relative to one another at a rate given by
ot
= = <
|52l = Il < w

where w again provides a bound on the velocity of the match circles as before. The previous
analysis provided a cylindrical region of radius r’ and length 2§, as a lower bound on the
optimal intersection volume. If the scale parameter, s, is allowed to vary from the correct
value sg, the radius of this cylinder will shrink at the same rate as is the case when ¢ varies.
So the radius of the new cylinder used as a lower bound to the optimal intersection volume
as s varies from sg is given by r” = r’' — w|sg — s|. When the sampling interval in the scale

whs
2

choose 6t as before so that we are sure to sample in a cylinder of radius r”.

dimension is és, we have that r” > r’ — 22, Once a scale sampling interval is chosen, we

Adding the sampling in the scale dimension significantly increases the number of sample
points we consider per match region. Unlike the case for translation and rotation samples,
a single feature match does not constrain the possible scale samples. Without an a priori
bound on the range of the scale s, we may have to consider a large number of scale samples.
Recognition techniques which consider pairs of feature matches do not have this problem,
because a pair of matches greatly constrains the range of possible scales to consider for
those matches. Thus while asymptotically faster, scale sampling may be more complex in
practice than an algorithm of O(m?n?) that considers all pairs of feature matches in order

to handle scale.

3.5 Probabilistic Sampling

A third technique for finding the optimal intersection volume is to sample TPS at randomly
selected points. The idea behind probabilistic sampling is that if ¥ random sample points
are chosen within each of the N correct match regions, with some probability, at least
one of the random points chosen will fall in the optimal intersection volume. This section

develops a lower bound to this probability.

3.5.1 An Algorithm for Matching Hypothesis

Hypothesizing matchings basically consists of first forming all feature matches, and com-
puting k random transformation sample points falling inside each match region. For each
such sample point, the number of match regions which contain it is computed. From this

the value of the piecewise constant definition of F(T) can be computed at each sample
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point. The straightforward approach is to form all pairs of sample points with match
regions, compute the value of f(< m,d >,T) for each sample point T' and all matches
< m,d >, then organize the results according to T', and compute the value of F(T). The
optimal values of F(T') are taken, accomplishing hypothesis generation. These hypotheses
are then refined to determine the best estimates of the transformations T for each matching
initially hypothesized. These form the refined hypotheses which are then verified.

3.5.2 A Formal Analysis of Probabilistic Sampling

Recall from the analysis of the uniform sampling technique that for a correct match region,
there is a circle of radius ro in the plane ¢ = ¢o, centered at to, which is exactly contained
within the match region. As ¢ varies from ¢o, this circle maintains radius at least r' =
ro — w|¢ — Po|- Thus as ¢ varies, this circle traces out a circular cone, providing a lower
bound on the volume of an area centered at the correct transformation and contained
within the match region. For convenience, call this region a match-cone. Depending on the
quantity £, defined earlier as the distance between ¢o and the edge of the match region in
the ¢ dimension, the match-cone may not be a complete cone on one side.

The first step in the analysis is to derive the probability distribution for the quantity
V, the volume of a match-cone. From this we can derive the probability distribution
for the minimum of V over all N correct match regions. This then, is the distribution

characterizing a lower bound on the volume of the optimal intersection volume.

The Volume of Match-Cones

For convenience we will make the gross approximation that the match-cone is symmetric
about ¢, to. Let & = |do — @], and £ = O — |¢pp — dam| = © — |¢.| as before. The cross
section of the match-cone has radius r’ = ro — w¢’ as ¢ moves away from ¢o. So the volume
of the match-cone is given by

4 ¢
Ving =2 [l mdg =2 [ nto-wefde = (- (r—wl)), €T
and 0
™ T
V( ag) = 557' ) é > ;

Now, gv(Vo) = :{%PVSVO’ and to compute Py<y, we must integrate the combined distri-

bution g(r,¢) over the region V < V,. Inspection of the two partial derivatives V¢ and V;
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shows that V(r,¢) is monotonic in each of these variables, and some algebra shows that

P Uk LA
w w
s0,
3 3wV %{
3 r—(r®- S
st ¥ o -
PVSVo = L( g,,(r)dr + ./,-:(‘L‘"XD.)Q' A=0 g,‘g(r,f)dédr

and assuming that gne(r,€) = g.(r)ge(£),

- 3w\ ¥
() = - Prar, = 5 ((322) 2 (320) g(l— [ ge(ﬁ)df).

The Volume of the Optimal Intersection Volume

Let V,,: denote the volume of the smallest of the match-cones, which is the cone contained
in all correct match regions, and let V;, V5, ... Vi be the volumes of the individual match-
cones for each of the N correct match regions. Then V,,; = min(V;,V,,...Vx) , and as

before p p
W (Vo) = mpvomsvo = (1= Prpow)

Now,

[e o] o

Pyp>vo = ' /VN=VO gv(V1) -+ gv(Vw)dVi - - dViy = (Pysvp)Y

Vl = Vo V2 = Vo

Finally,
gVopt(V) = N(]‘ - PVSVo)N_lgV(V)

Probabilistic Sampling

We now have a probability distribution characterizing a lower bound on the volume of the
optimal intersection volume. Let @ be the event that, for a given match region, a sample
point chosen at random within the match region falls in the optimal intersection volume.
The probability of @ given V,p: is P(Q|Vopt) = K}“’f- where M is the volume of the match
region. Then

o o] e ‘/;
Po=PQ) = [ ovnPQIVer)dV = [ v 2 dV.
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The probability that no such random sample point falls in the optimal intersection
volume is (1 — Pg)". The probability that none of ¥ random points per match region falls
in the optimal region is (1 — Pg)*N. So, the probability that none of the sample points falls

in the optimal intersection volume can be made arbitrarily small by increasing k.

3.6 Hypothesis Refinement

The hypothesis generation step constructs feasible matchings by searching TPS for optimal
intersection volumes. Because a particular matching may be feasible over a wide range of
transformations, some transformations will not align the model as well as others, and a
means of determining the optimal T is needed. In the case of uniform sampling, one
approach is to pick the sample point, from among those in the optimal intersection volume,
which minimizes some error metric such as a simple least sum squares error function of the
distance between matched features. Then, starting at this point, a second stage of finer
sampling could be done to improve the guess.

In all three approaches to hypothesis generation, a parallel gradient-based search tech-
nique could also be used to optimize F(T') = ¥ ¢m, 4,5eM f(< mi,d; >, T') using a definition
of f(< my,d; >,T) which yields a smooth function F(T).
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Chapter 4

Transformation Sampling

Algorithms and Implementations

Chapter 3 introduced the idea of transformation sampling as a basis for 2D model-based
recognition. Three methods were introduced: critical point sampling, probabilistic sam-
pling, and uniform sampling. A formal analysis of these was given along with a sketch
of a transformation sampling algorithm based on each of them. This chapter outlines in
detail algorithms for these techniques, and describes an implementation of uniform sam-
pling. First, a particular model of parallel computation is introduced which facilitates the
description and analysis of the algorithms.

4.1 The Vector Model of Parallel Computation

For parallel algorithm design we require a model of parallel computation. The model does
not precisely represent a specific parallel architecture, but provides a conceptual frame-
work for algorithmic development and analysis. By their nature, many of the parallel
operations that I discuss here are described very naturally in the vector model of parallel
computation[6][7].

A vector is a set of indexed data objects. A vector model of computation is defined in
terms of primitive operations on vectors which return vectors as results. Thus, conceptually
we can think of the processors of our parallel architecture as being organized as elements
of an indexed vector, where a processor can operate on the elements of data vectors with
the same index.

Parallel operations can be grouped into two classes: primitive operations and common
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routines built from primitive operations. There are three main classes of vector machine
primitive operations we will use here: elementwise arithmetic, logical, and symbolic oper-
ations, permutation operations, and scan operations. From these a variety of useful higher

level operations are constructed.

4.1.1 Primitive Parallel Operations
Elementwise Operations

Consider a set of data vectors Ao,...A; each of length K. Elementwise operations are
simply procedures which take as arguments the elements of the A, with the same index,
Aolé], . .. A[4], and operate on them to produce some result R[:]. Thus the computation at
each index is identical except for the data, and takes place in parallel. For example, after
examples by Blelloch[7):

Ao - 313 43 9 2 -3
A - 1 7321 3 6 35
Ag+ A, = [4 8 6 6 4 12 8 2
Agx A, = [3 7 9 8 3 27 12 -15]

Permutation Operations

The permutation primitive takes a data vector A and an index vector I as inputs. The
result is a vector R where R[I[j]] = A[j]. There are two varieties of permutations, either
the mapping defined by the vector I is one-to-one, that is, the elements of I are unique, or
it is many-to-one. I only consider the former type where the mapping is a true permutation.
The latter type requires some rules for combining elements mapped to the same index in
the result.

A data vector can be interpreted as a multi-dimensional grid, much as a linear segment
of memory in a serial computer can be interpreted in row or column major order to be a
multi-dimensional array. An important special case for vision is a two-dimensional mesh.
In many early vision computations, functions over local regions of the mesh are common.
A special case of a permutation is a grid permutation where the elements of a data vector,
interpreted as a grid, are mapped onto a new grid by a simple shift operation. Since many
parallel machines have special hardware support for this type of mesh permutation to make
it more efficient than general permutation, it might be considered a separate permutation

operation.
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Scan Operation

An extremely useful class of parallel operations are the scan and segmented scan operations[7][6].
These are based on parallel prefix computations which take a binary associative operator
@, and a vector [ag, @1, ..., Gn—1] as input, and return the vector [ag, (ao ® a1), ..., (a0 ® a1 @
... ® ap_1)] as the result. Examples of the operator & include +, maximum, minimum, and
or. Blelloch[6] has termed the more common scan operations +-scan, max-scan, min-scan,

or-scan, and-scan and first-scan. Examples include:

A - 513 4 3 9 2 6
4-scan(A) = [5 6 9 13 16 25 27 33
max-scan(A) = [5 5 5 5 5 9 9 9
first-scan(A) = [5 5 5 5 5 5 5 3]

An important specialization of the scan operations are the segmented scan operations,
where disjoint, contiguous segments of contiguous vector elements are considered subvec-

tors. A vector of boolean values specifies the beginning of new segments. For example:

Segment-Flags = [T F T F F F T F
A - [5 1 3 4 3 9 2 6

=[5 1 B 4 3 9] [2 6]
B =1 0 [2 0 3 1 [0 1]
f-scan A =[5 6 [3 7 10 19 [2 8]
max-scan A =[5 5 3 4 4 9] [2 6]
first-scan A =[5 5 3 3 3 3 [2 2
permute A, B = [1 5 4 9 3 3] [2 6]

The segmented scan operations enable separate parallel operations on data sets repre-
sented as vectors.

4.1.2 Common Parallel Routines

Outer Product

The outer product is analogous to the Cartesian product of two sets {< a;,b; >} = {a;} x
{b;}. This procedure takes two vectors as input and returns a vector whose elements consist
of all possible pairs of elements in the original two vectors. This is an example of a vector

operation which returns a result vector of different size than the input vectors. Outer
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product is used, for example, to form the vector of all feature matches from the set of

image and model features. This procedure is described in more detail in appendix A. For

example:
Model = [mo my |
Image = [do di]
outer-product(Model,Image) = [mg,dy mo,di my,dy my,d]

Generalized Histogram

The standard histogram maps a vector of keys, K, to a new vector H, where any two
elements of K, k; and k;, are mapped to the same element of H iff k; = k;. This equivalence
relation defines a partition of the elements of K. Let A be an arbitrary data vector where
the elements of A and K are in one-to-one correspondence, thus |A| = |K|. The same
mapping of K to H also defines a partition of the elements a; of A. Let a; represent the
equivalence class of element a;. Further, let ¢(a;) be a function ¢ : {a;} — R on the
set {a;} € a@;. The generalized histogram takes as inputs K and A. The result vector,
G, is defined as follows. G[i] = ¢(a;) where a; is the equivalence class of the element a;
corresponding to element k; of K. The generalized histogram is described in more detail
in appendix A. For example, let ¢(d;) = |@;|, a; € G;, and let A = K. Then the generalized
histogram is similar to a standard histogram H, except associated with each element of K

is the number of elements in its equivalence class, i.e. with the same value.

A [5 1 3 4 3 9 5 5
K [5 1 3 4 3 9 5 5
G = [3 1 2 1 2 1 3 9
H [(5:3) (3,9 (9,1) (4,1) (1,1)]

Expand Vector

The expand-vector(A,K) function takes a vector A of data objects, and an equal sized
vector of integers K, and returns a new vector where each element A[i] is represented in
Ki] contiguous vector elements of the result. Note that the new vector has length Y K[¢].
The function expand-vector-index is a complimentary function which returns a vector of
integers assigning a zero-based index to each copy of a particular element A[i] determining
its position in the segment of copies. These operations are described in more detail in

appendix A. For example:
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A = [a b ¢ d]
K = 2 3 2 1]
expand-vector(A,K) = [a a b b b c ¢ d
expand-vector-index(K) = [0 1 0 1 2 0 1 1]

Sorting

Sorting is conveniently decomposed into two operations: rank[1], and permute. For a vector
A, rank(A) returns a vector of equal length of unique indices indicating the sorted rank
of each element in A. A sort is then accomplished by permuting the appropriate data
elements according to the rank vector. Sorting requires O(lg N) time for a vector of length
N in the vector model, and O(lg? N) time on N processors for a typical machine[25][7].

4.2 Transformation Sampling Algorithms

The parallel operations just introduced form the basic algorithmic building blocks from
which the algorithms are constructed. This section provides a detailed development and
complexity analysis of hypothesis generation algorithms based on transformation sampling.

4.2.1 Uniform Sampling
An Algorithm

The following outlines the basic steps of an algorithm for uniform sampling.

¢ Extract image features from input image

e Form all matches < m,d > of model and image features

¢ Compute the range of feasible relative rotations for each match

e Determine the set of rotation sample points in this range of rotations

o For each rotation sample point, compute the range of feasible relative translations
¢ Determine the set of translation sample points in this range of translations

e For each complete parameter space sample point T thus constructed, compute the value of
F(T)=3% f(<m,d >,T) at the sample point

e Select the transformation sample points with optimal values of F(T)
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¢ Determine the object’s pose in the image from the optimal transformation sample points

Complexity of the Algorithm

The algorithm for hypothesis generation by uniform sampling consists of two main steps:
computing the set of transformation sample points in the match-region of each feature
match; and evaluating F(M,T) = F(T') for each one, and picking the transformation with
the optimal values of this function. This forms hypotheses as to the object’s pose.

The complexity of the feature matching stage depends on the number of feature matches
mn and on the number of transformation sample points, K, per feature match. Let é6¢
radians be the sampling interval in the rotational dimension, and 6t be the sampling interval
in each of the translational dimensions. The number of sample points that fall inside a
match-region depends roughly on its volume.

I consider point features and line segment features. For both these types of features the
number of distinct rotation sample points falling in the match region is given approximately
by r < [%1 . See figure 4.1. For any given rotation, the number of translation sample points
falling in the match-region at that rotation is different for point features and line segment
features. In the case of point features, the range of valid translations defines a circle of
radius D, and there are approximately a = -’%%3- translation samples falling in this region.
So for any point feature match there are approximately ar sample points falling in its match
region and (mn)(ar) total transformation sample points to consider.

In the case of line segment features the range of relative translations depends on D,
and also on the difference in length between the matched model and image line segments,
because one feature can slide relative to the other. I approximate the region of valid
translations by a rectangle with major axis aligned with the image segment, and of length
2D + L;; and width 2D, where L;; denotes the difference in length between the features
of match < m;,d; >. The number of sample points falling in this region is given by wl;;
where w < [22], and I;; < [L;'f“'l-'l So for match < m;,d; >, the number of discrete
transformation sample points considered is defined to be K;; = rwl;;.

If we represent each transformation sample point as the element of a vector, we require
>_,,; Kij vector elements to represent all the sample points in the case of line segment fea-
tures, and (mn)(ar) in the case of point features. Note that the number of transformation
samples per match depends on the maximum dimension, I, of the image in two ways. First,
as was shown in chapter 3, lower bounds on the size of the sampling intervals 64 and 6t

depend on I. The actual length of a line segment feature is also bounded above by Iv/2, so
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li; <1 V2; and so K;; < rwl V2 for any match region. In practice however, line segments
are much shorter, and an average case value of [ is reasonable, taken over many different
pairs model and data feature sets. Defining by such an average K = rwl or K = ar, the
total number of different transformations that need be considered is approximately Kmn.

Procedurally, the algorithm is quite simple. Starting with the vector of feature matches,
each match is replicated once for each feasible rotation sample point as shown in figure 4.1.
The copies of each match are arranged as a segment of contiguous vector elements. This is
simply the expand-vector operation mentioned earlier. From each copy, the lowest feasible
rotation sample can be computed, so based on a match-copy’s position in the segment, the
particular rotation sample associated with each copy can be computed. For each replicated
match associated with a particular rotation sample, the model feature is rotated according
to the rotation, forming a set of rotated-matches. In the following example, for convenience
let m;d; represents the match < m;,d; > and m/d; represents the match after rotation of

the model feature.

Matches = [modo mody mude mid;]

Copies = [modo modo ’modl mod1 ma do my do my d1 mi dl]
Rotation-Samples = [¢20 $21 13 Pue 1 b2 2 $22]
Rotated-Matches = [m{do m{do medi mudy mide mido midy midy]
Segment-flags = [T F T F T F T F]

The next step is to determine the valid translation sample points for each such rotation
sample point. The same type of operation is performed on each of the rotated-matches,
replicating each of them once for each valid translation sample point. The associated
translation sample for each copy is determined and each copy is translated accordingly. The
result at this point is that each original feature match is replicated once for each feasible
transformation sample point, and for each copy the model feature has been transformed
according to its associated transformation sample point. In the following example, for
convenience m;d; represents the match < m;d; >, and m!d; represents the match after
transformation of the model feature. This shows the result of replicating each feature

match once for each feasible transformation sample point, represented by the T}.

Transformed-matches

[mf)’do m(,’do m{)’do mg’dm mgdm mgdzl m’7’d3 m'7'd3 mf,'d3]
Segment-flags [T F F T F F T F F]
Segment-flags = [Ta4 Ty Ts7 Tho T34 Tie Ty Ts T34)

Il

The final step is to organize the transformed matches according to the transformation

applied to them, and compute F(T') over each set of matches with the same transformation
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sample point T. This is done by sorting the matches according to the T}, into contiguous
vector segments. At this point the function f(< m,d >,T) is computed for each match,

and F(T) is computed by scan operations over each segment. For example:

Transformed-matches = [midy mYds mlidyy m{dn mids midy m¥ds mgdy mgdo]
Sample-points = [T Ts Tho The Ths T34 T34 T34 Ts7)
Segment-flags = [T F T T T T F F T]
f(«m,d>T) = [f(mido,Ts) f(m%ds, Ts) f(mgda1,Tio) -..]
F(T) = [F(Ty) * F(To) -]

The algorithm described in terms of vector primitives and routines is as follows. Most
of the functions in this pseudo code program are fairly obvious in function; they are all

described below.

;3; Copy feature matches once for each rotation sample point

Feature-Matches = outer-product(Model-Features,Image-Features)

Rotation-Count = rotation-samples-per-region(Feature-Matches,0)

Expanded-Matches-1 = expand-vector(Feature-Matches,Rotation-Count)

Segment-Index-1 = expand-vector-index(Rotation-Count)

Rotation-Sample-Points = segment-index->rotation-index(Expanded-Matches-1,Segment-Index-1)
Rotated-Matches = rotate-model-feature(Expanded-Matches-1, Rotation-Sample-Points)

;;; Copy rotated feature matches once for each translation sample point

Translation-Count = translation-samples-per-rotated-match(Rotated-Matches, D)
Expanded-Matches-2 = expand-vector(Rotated-Matches, Translation-Count)

Segment-index-2 = expand-vector-index(Translation-Count)

Expanded-Rotation-Sample-Points = expand-vector(Rotation-Sample-Point, Translation-Count)

;3; Select the optimal transformation sample point by computing F(T")

Translation-Sample-Point = segment-index->translation-index(Expanded-Matches-2,Segment-Index-2)
Transformed-Matches = translate-model-feature(Expanded-Matches, Translation-Sample-Point)

Sample-Point = transformation-sample-point (Translation-Sample-Points, Expanded-Rotation-Sample-Points)
Permutation-Index = rank(Sample-Point)

Transformed-Matches = permute(Transformed-Matches, Permutation-Index)

Sample-Point = permute(Translation-Sample-Points, Permutation-Index)

Segment-Marker = segment(Transformation-Point)

f = f(Transformed-Matches)

F = segmented-F(f, Segment-Marker)
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Model Feature

Figure 4.1: An illustration of the uncertainty bound ©, the sampling interval 6¢, and the

set of possible rotation samples for a particular match.

The outer-product, expand-vector, and expand-vector-index functions have already been
described, and require permutation and scan primitive operations. The segment, rank, and
permute operations have also been described. The rotation-samples-per-match function is
an elementwise function calculating the number of rotation samples falling in the range
of feasible relative rotations for each feature match. Segment-index->rotation-index is an
elementwise operation computing the actual rotation sample point associated with a given
copy of a feature match depending on the index assigned by expand-vector-index in the copy-
ing operation. The rotate-model-feature function is an elementwise operation computing a
new feature match where the model feature has been rotated according to the specified rota-
tion sample point. The functions translation-samples-per-match, segment-index->translation-
index, and translate-model-feature are analogous to the above operations for rotations. The
function transformation-sample-point simply combines the rotation and translation sample
points into a complete transformation sample point. Finally, f(< m,d >,T) computes,
elementwise, the distance metric on each transformed feature match, and this result is
combined for each set of match copies associated with the same transformation sample
point by computing F(T') over the results of f(< m,d >,T) for each such set. The sets of
matches with the same transformation sample point are arranged in a contiguous segment
of vector elements, and F'(T') is assumed to be computable by scan operations; thus the last
few operation perform a generalized histogram. The histogram keys are the transformation

sample points, and the accumulated values are the results of f(< m,d >,T) for matches
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at that sample point.

To determine the complexity of this uniform sampling algorithm we must simply de-
termine the complexity of each of the above steps. In the vector model, scan and permute
operations take O(1) time, however sorting takes O(lg N) for a vector of length N, and
O(lg? N) time on a typical N processor machine.

. Thus, because there are Kmn transformation sample points considered, the above
algorithm requires Kmn processors and O(lg? Kmn) time.

4.2.2 Probabilistic Sampling

The probabilistic sampling approach is in many ways the simplest of the three methods
for transformation sampling. The algorithm starts by forming all feature matches. For
each match, k¥ random sample points, T, are generated such that they fall anywhere within
the match region, according to some predetermined distribution. For each of these kmn
sample points, the set of match regions containing it is determined, and f(< m,d >,T) is
computed for each match and each random sample point. This corresponds to computing
the piecewise constant definition of the metric F(T') for each random sample point T'.
These sample points are ranked according to the value of F(T'), and the best are taken as
initial matching and pose hypotheses. We next consider in detail this hypothesis generation

process. The following is a sub-optimal but simple algorithm for probabilistic sampling.

We begin with a vector S of all model and image feature matches. The first step is to
associate with each feature match < m,d > a copy of the entire set of matches S. This is
done by creating a vector, P, where each feature match < m;, d; > is the first and principle
match in a contiguous segment of vector elements. The remainder of the segment consists
of a copy of the vector S. There is such a segment with each feature match as principle
match, forming the vector P. Construction of this vector is done by permutation and scan

operations. For example, let m;, d; represent the match < m;,d; >:
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S = [m07 dy mo,di my,do ml’dl]

P = [mo,do mo,do Mo, dy ™my,do My, d;
mo,dy  mo,do mo,di My, do ma,dy
my,do mo,do mo,di my,do M, dy
my,d; mo,do mo,di  m1,do My, d1]

Principle-match = [T F F F F
T F F F F
T F F F F
T F F F F]

Each principle processor generates a random sample point, T, and scans a copy out to
the remainder of the segment. Each secondary match in the segment computes the value of
f(< m,d >,T) for the random sample point, and the result F(T') is accumulated by scan
operations back in the principle processor. This procedure is repeated k times, forming
kmn transformation hypotheses, ranked by the value of F(T') for each one. This forms an
entire set of hypotheses.

To determine the complexity of this approach we simply examine the complexity of the
component routines. The algorithm uses O(m?n?) processors mn for principle processors
and m2n? for copies of S. Because all the operations consist of permutation and scan
operations, the algorithm requires time O(1) in the vector model, and O(lg kmn) time on
a typical machine.

A more careful approach would be to use a Hough transform-like procedure to hash the
locations of the match regions in TPS. In this way, a random sample point finds the match

regions which hash to the same place, and in practice much less that m?n® processors are
needed.

4.2.3 Critical Point Sampling

Critical point sampling is the most complex of the three techniques, however it is guaranteed
to find an optimal feasible matching. Similar to the probabilistic algorithm, the critical
point algorithm first computes transformation sample points, T', and then simply computes
the function F(T') for each of these. The sample points are constructed by considering the
O(m3n?) critical points described in chapter 3. A simple procedure for computing F/(T') is to
use the same technique as in the case of probabilistic sampling, organizing each sample point
as a principle element in a segment consisting of all matches. The functions f(<m,d >,T)

and F(T) are computed using elementwise and scan computations as before. Because
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there are O(m®n?) transformation samples, this requires O(m*n*) processing elements.
Alternatively a hashing scheme as mentioned in the previous section could be used.

The computation of critical points can be done in parallel using m3n3 processing el-
ements. This involves finding the roots of 6"* degree polynomials. There are numerous
numerical methods for finding the roots of polynomials[29]. Forming all triples of matches
requires permutations and scans, and can be performed in O(1) time in the vector model
or O(lgmn) time on typical parallel machines. Computing the critical points is an elemen-
twise computation independent of m or n. One subtlety of the approach is that the critical
points all lie on the boundaries of the match regions from which they were constructed.
Considering the critical points computed from two or three correct match regions, it is
likely that the critical points are contained in the interior of the other correct match re-
gions, although it is possible that they also lie in the boundary of some of them. F(T) is
simply computed using any matches with match regions containing a critical point in its
interior or bounding surface.

So, we see that the sample points with an optimal value of F(T') can be computed in
O(lgmn) time using O(m*n*) processing elements.

4.3 Implementation

4.3.1 The Parallel Nature of This Formulation

In the ideal case, a computation running in time O(f(n)) on a single processor can be
done in time O(f(n)/N) on an O(N) processor machine. The key is to divide up the
computation into pieces on which each processor can operate in parallel. In practice this is
not always so easy, since at the very least it is often necessary to combine the results of the
computations, and possibly information must be exchanged between the processors during
the individual computations. This adds to the complexity of the procedure, reducing the
optimal O(N) speedup.

Transformation sampling is highly parallel in nature. The basic data elements used in
all of the computations are model and image features and feature matches. The operations
which we perform on these data are of two basic classes: local operations on the feature
or match whose results are only pertinent to the particular feature or match, and global
operations where information is accumulated from or distributed over a number of data
elements. The parts of the algorithm requiring local computations allow an optimal speedup

over a single processor. These include the operations on features and feature matches such
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as feature transformation. This type of operation on the set of feature matches requires
O(mn) time for a single processor, or O(1) time on mn processors.

The required computations of a non-local nature are limited to reorganizing the data
elements, and relatively simple accumulation and distribution operations. These operations
are sorting of transformation sample points which can be done in O(lg2 Kmn) on a typ-
ical machine, for K'mn transformation sample points, and accumulating and distributing
results of local computations which is done in O(1) time in the vector model, and typically
O(lg Kmn) time on a typical machine using scan operations.

Scan Computations

One of the main reasons for the parallel nature of these algorithms is that most of the
non-local computations can be computed with scan operations. Scan-based computations
are extremely fast, requiring O(1) time in the vector model and O(lg N) time on typical
parallel machines, for N elements.

In particular, I have defined in general terms the metric F(M,T) used to evaluate
hypotheses. The interesting feature of this computation is that it involves data that are
spread out over many processing elements, and is not simply an elementwise computation.
A broad class of functions F(M,T'), however, can be computed by using scan operations.
An example is the particular definition of F(T') used here, where

F(T) = Zf(< mi,dj >,T)
4
and f(< m;,d; >,T) is an elementwise computation. Exploiting the speed of scan opera-
tions is key to the parallel nature of the formulation.

Optimal Speedup

It is interesting to consider the speedup achieved by the parallel implementation of the
transformation sampling algorithms considered here. One way to do this is to look at the
complexity of an algorithm to do the same thing on a single processor machine. Consider a
serial algorithm for uniform transformation sampling. For each of mn features matches, we
generate K uniform transformation samples. Because there are mn matches, this requires
time O(Kmn). For each distinct sample point, we want to compute the value of F(T).
If this is an associative combination of f(< m,d >,T), then the value of F(T') can be

accumulated as each new sample point is constructed by organizing the sample points in
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a balanced tree structure. As the place of each new sample point is found in the tree, the
value of f(< m,d >,T) is combined with the partial result of F(T') there. If there are
O(Kmn) elements in the tree, each tree operation takes O(lg Kmn) time, and computing
F(T) for all sample points requires O(Kmnlg Kmn) time. The resulting sample points
can be sorted by the value of F(T') in O(Kmn lg Kmn) time, yielding the best hypotheses.

Determining the best hypothesis thus requires O(Kmn lg Kmn) time on a single proces-
sor. In contrast, the parallel algorithm using K'mn processors requires takes O(lg? Kmn)
time, and thus the speedup is a factor O(lg Kmn) slower than optimal. It is interesting to
note, however, that special parallel sorting networks exist that can sort N items in O(lg N)
time, and thus in principle this algorithm offers optimal speedup over a single processor
implementation[25].

In the case of a serial algorithm for probabilistic sampling, each of kmn random sample
points is compared with mn match regions to compute F(T') for each of the points. This
takes O(km?n?) time on a single processor. The results can be organized by sorting by
F(T), requiring O(kmnlgkmn) time, for total complexity of O(km?n?). The parallel
algorithm achieves a speedup a factor of O(lgkmn) slower than optimal. The procedure
for critical point sampling is exactly similar except O(m*n*) processors are required in the

simple algorithm and again the speedup is a factor O(lg kmn) slower than optimal.

4.3.2 Data Representation

There are basically two data types to be represented: features and transformation sample
points. A point feature is represented by five values: the z and y coordinates of its posi-
tion, the two components of the unit vector characterizing its orientation, and a number
representing the object or image data set to which it belongs.

I use lisp-like structure for representing a feature in each processing element:

(def-pvarstruct (point-feature)

(position-x :signed)
(position-y :signed)
(normal-x :signed)
(normal-y :signed)
(number :field))

A line segment feature is represented in an exactly similar fashion:
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(def-pvarstruct (feature)

(center-x :signed)
(center-y :signed)
(length :field)
(normal-x :signed)
(normal-y :signed)
(number :field))

A transformation sample point consists of the sample index for the v and v components
of the transformation, and the sample index for the rotation ¢. The product of a sample
index with the appropriate sampling interval gives the actual transformation (¢, u,v) repre-
sented. A unique number is associated with each sample point—feature match combination
depending on the model from which the model feature came. This keeps the computation

for different models orthogonal.

(def-pvarstruct (transformation-sample-point)

(u-index :signed)
(v-index :signed)
(phi-index :signed)
(model :field))

These form the basic data elements. The model and image features consist respectively
of vectors of model features, m and data features d.

4.3.3 The Connection Machine Implementation

The Connection Machine is a data parallel[18][2] computing system based on a parallel
processing unit of 64K, 32K, or 16K processors, interfaced with a front end computer such
as a Symbolics 3600 series lisp machine. The work in this thesis was done on a 16K processor
CM-1. The processors are logically organized as a 16 dimensional hypercube network, are
capable of general computation, and each has 4K bits of local memory. The CM-2 has 64K
bits of memory per processor as well as hardware support for floating point operations.
The microcode supports the idea of virtual processors, in which each processor simulates
two or more processors, dividing the available memory equally. In practice, a 16K CM-1

can simulate a 64K machine for the implementation considered here.
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The Connection Machine is programmed through language extensions to the language
used on the front end computer, and program execution is controlled by the front end
computer. The Connection Machine can be programmed in C* or *Lisp!, extensions to
the C and Common Lisp languages respectively. The work in this thesis was based on a
*Lisp implementation. *Lisp is an extension to Common Lisp, allowing programming of
the Connection Machine processors, with a Lisp-like syntax, although it does not actually
implement Lisp operations. On the CM-1, data is loaded into the Connection Machine
through the front end computer, and all data are initially stored on the front end computer.

Images are obtained from a CCD camera using a frame buffer attached directly to the
Symbolics front end machine, thus the bandwidth of image i/o transfers is limited to that
of the control link between the front end and the Connection Machine.

4.4 The Recognition System

Chapter 2 defined the recognition process as the hypothesis of a feature matching and a
transformation, followed by the verification of this hypothesis. Transformation sampling
was proposed as a method of generating matching and transformation hypotheses. This
section describes in some detail the recognition system implemented on the Connection
Machine, based on uniform transformation sampling.

Acquiring Models

Models are built using exactly the same feature extraction procedure as for image data.
Building a model simply consists of running the feature extraction portion of the recogni-
tion algorithm on the image of an isolated object. In principle, the model could be built
more carefully using a higher resolution image and multiple views to reduce the effect of
inaccuracies in imaging. This has the advantage that any mismatch between the object in
the input image and the stored model could be attributed to the image features. In fact
this does not appear to be necessary in practice. When acquired, models are stored as
arrays of the components of the features on the front end computer, and are loaded into

Connection Machine memory prior to the recognition procedure.

1 Pronounced ’Starlisp’
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Feature Extraction

As mentioned, the feature extraction process is identical for the formation of the model and
the input data features. The first phase of feature extraction consists of the extraction of
edges from the original input image. The images used in this implementation are 2562 x 8
bit CCD video brightness arrays. The edge detector developed by Canny[10][27] is used for
edge detection.

The result of edge extraction is a discrete bit map registered with the pixels of the
original image corresponding to edges. This edge representation is processed to reduce
the edges to single chains of 8-connected edge pixels where each edge pixel has at most
two adjacent edge pixels. Each such edge segment is approximated by a set of straight line
segments. The segments are fitted to the curve fragments by a recursive splitting algorithm,
where each curve segment is recursively split into smaller segments and fitted to lines until
an error bound on the distance from an edge pixel to the approximating straight line is
achieved.

Once the original image has been loaded into the Connection Machine, the entire feature
extraction process is performed on the Connection Machine. The result is a set of straight
line segment features representing the object boundaries in the input image, one feature

per processor.

Recognition

Recognition has been structured as hypothesis and verification, where the hypothesis step
consists of hypothesis generation and hypothesis refinement. Hypothesis generation pro-
duces likely candidate matchings utilizing the special definition of the metric on matches,
where f(< m,d >,T) = ¢ > 0 inside a match region and 0 outside it. Intersection vol-
umes where many feature matches have feasible transformations are indicated by maxi-
mal values of F(T) = Y f(< mi,d; >,T). Hypothesis refinement takes these matchings,
and selects transformations 7' optimizing F(T') using an appropriate different definition
of f(<m,d >,T). These two steps produce hypotheses for M and T. The final step is
verification of the hypotheses.

In the implementation described here, only the hypothesis generation step was utilized.
Hypothesis refinement was not performed and hypotheses consisted of matchings defined
by maxima in the piecewise constant definition of F(T') where

F(T) = Z f(< mi,dj >7T),
<mq,d;>eM
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f(<m;,d; >, T) = ¢;; > 0, and ¢;; is defined to be the length of the image segment
for < m;,d; >. In this way intersection volumes with large values of F(T') correspond to
matchings and transformations which explain a large part of the image data in terms of
the model.

This hypothesis generation stage was so accurate that it was used as the entire recogni-
tion engine. The only verification that is performed is to require that the optimal value of
F(T) exceeds a quality threshold. In this case the fraction of the model perimeter accounted
for by the matching must exceed a lower bound of say 15% or 20%. No further verification
was performed. In a sense, this hypothesis generation method performs verification at the
level of model and image features by ensuring that at the chosen transformation, all feature
matchings are feasible.

Stepping Outside the Abstraction

The vector model of parallel computation provides a convenient abstraction for developing
and analyzing parallel algorithms. Indeed, it makes the description of the recognition algo-
rithm quite simple in terms of vector primitives and simple routines such as permutations,
scans, outer product and so on. Unfortunately, at this time, a programming language sup-
porting this type of abstraction is not available on the Connection Machine?, and we must
deal more intimately with the architecture of the Connection Machine, programming in
*Lisp and Paris[1].

Of primary concern is the fact that we have at our disposal a fixed number of process-
ing elements (on a 16K CM-1, realistically 64K processors) on which we must represent
vectors which often exceed this number in length. This requires breaking the problem into
smaller vectors which map directly onto the available processors. Much of the complexity
of the current implementation of the algorithm is the result of the need to perform this
manipulation.

Pre-Pruning of Parameter Space

Although this method requires O(Kmn) processors, in practice K can be large, and we
almost always have more transformation sample points to consider than the 64K available
processors. As mentioned above, an implementational solution to this problem in general
is to simply divide, if possible, the problem up into smaller pieces and operate on as much
of the data at a given time as possible. This is the approach taken here.

2An interesting lisp-based parallel programming language has been developed by Sabot[30].
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In the case of transformation sampling it is possible to reduce the number of transforma-
tion sample points considered without actually computing them. First, part of verification
is that no hypothesized matching and transformation will be verified if the fraction of the
model perimeter explained by the matching is below a verification threshold. This can be
exploited to reduce the number of samples considered. Because there are many incorrect
matches, there are many feature matches which define match regions which intersect with
very few other match regions, and thus any possible matchings including them will fall
below the verification threshold. The idea is that there are many regions of transformation
parameter space in which only a few matches fall, and any transformation sample point
representing such a region can be ignored.

To implement this, a coarse translational Hough transform is computed for each match,
at each of its associated rotation sample points. This is much faster than full translation
sampling and allows the elimination of unpopular transformations before we consider them
further. First, the vector of all feature matches is formed. This vector will most likely fit
entirely in the machine since typically mn < 64K. After the set of rotation sample points
for each match is computed, the matches are sorted by rotation index. These rotation
sample points cannot be instantiated at once for all feature matches. Instead they are
considered in sorted order. Once all matches associated with a certain rotation sample
have been instantiated, a separate translational Hough transform for the matches at each
rotation point is computed. This Hough transform is computed such that each match votes
for any Hough bin with which its match region intersects, at the given rotation. Any match
which falls in a bucket which does not contain matches which together meet the minimum
verification threshold are eliminated from further consideration. This Hough transform
is done in parallel for many matches at different rotation sample points. If the Hough
transform is done carefully, the perimeter accounted for by matches in the bucket is an
upper bound for the perimeter accounted for by any matching at a transformation sample
point within the bucket. Thus if a rotation sample point and a particular match fall in
no bucket above the verification threshold, this rotation need not be considered at the
possible translation samples. In practice this procedure considerably reduces the number
of transformation sample points that must be explored, as is demonstrated experimentally

in chapter 5.
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Chapter 5

Experiments

Chapter 3 introduced the idea of searching TPS for regions of transformations feasible for
large feature matchings. Three methods were proposed to accomplish this: critical point
sampling, probabilistic sampling, and uniform sampling. This chapter presents the results
of experiments conducted to explore the effectiveness of two of these methods, probabilistic
sampling and uniform sampling. The critical point sampling technique provides insight into
the structure of TPS and provide theoretical bounds on a provably correct search technique,
however the technique has not been implemented. The experimentation for uniform and
probabilistic sampling takes two forms: simulations using synthetic data, and experiments

with real image data.

5.1 Goals of Experimentation

Of primary interest is determining the effectiveness of the techniques, and the compu-
tational resources required by them. It is also important to explore the limitation of a
technique by determining in what cases it fails, and why it fails. In the case of uniform
sampling, of primary interest are the sampling intervals required for acceptable recognition
performance, and their effect on the complexity of the algorithm. Recall that K'mn pro-
cessors are required for this procedure where K is the number of transformation sample
points per feature match. Asymptotically, the complexity in terms of the input data set
and the model is O(mn). To be useful in practice, however, K must be of reasonable size,
and this is one of the things we must consider. In the case of probabilistic sampling, the
main issue is whether the optimal intersection volume can be found with high probability

by taking k random sample points per match region, and what value of k is required for
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accurate recognition with high probability.

5.2 Simulations with Synthetic Data

In order to carefully control the experimental parameters, experiments were conducted
with synthetic data consisting of point features. Data sets were constructed to represent
the model of the object, as well as to simulate image data derived from a scene. In order
to produce natural structural configurations of the data features, they were constructed by
sampling points along the boundary contours of real images of objects. Procedurally, the
data are constructed as follows. Starting with an image of scene objects, edge detection is
performed to extract object boundary contours. Next, the resulting edges are sampled at
regularly spaced points and the position and the contour normal at each sample point form
a point feature. Two types of images were considered: images with one isolated, known
object, and images with several unknown objects, but none of the known objects. The
former is used to construct synthetic models, the latter to construct purely spurious data.

To simulate image features due to the object of interest, the model features are indi-
vidually randomly perturbed in position and orientation, and then the whole set randomly
rotated and translated. The position of each feature is perturbed by generating an error
vector §7 of length p and orientation a such that the position of the image feature py
is given by ps = 6P + Pm. The value p is chosen from the distribution g,(p) = 2 for
0 < p < D and similarly o is characterized by the distribution go(c) = 51; for 0 < a < 27.
The synthetic deviation 6. in the orientation of the image feature from the model feature
is characterized by g4, (8) = 2% for —© < 6 < O. The random transformation applied
to the entire perturbed model set is chosen from a uniform distribution of rotations and
translations.

To form a complete simulated image, the perturbed model set just described is combined
with the simulated spurious data to form a complete image feature set. Figures 5.1, 5.2,
and 5.3 show the synthetic model, perturbed and transformed model, and spurious data

sets, respectively.

5.2.1 Uniform Sampling

The first battery of experiments were conducted to determine the effect of the sampling
intervals, 6¢ and 6t, on the fraction of the model features correctly matched by uniform
sampling. The experiments were conducted on the model and perturbed, transformed

58



Figure 5.1: Samples of the contour of a real object forming the synthetic model.

model without adding spurious data to test the efficacy of uniform sampling in finding the

correct matches.

To minimize the effects of a particular random perturbation or random transformation,
for each different combination of sampling intervals, the experiment was run 10 times with
a new data set generated each time. The metric F(T) was defined to be the number of
image features matched within the uncertainty bounds for each particular transformation
sample point 7. The sample points were ranked by this value, and the maximal one taken
as the result. Figure 5.4 summarizes the results of this experiment. The columns and
rows correspond to different rotation and translation sampling intervals respectively. Each
table entry displays the average over 10 different runs of the fraction of the model correctly
matched, for the sample point with the most feasible matches. The various parameters for

data synthesis and the recognition procedure are shown.

The second battery of experiments is similar to the first except that spurious data were
also included in the data set along with the randomly perturbed and transformed model.
This was to simulate the effects of spurious data arising from unknown objects in the image.
The results of these experiments are shown in the tables below. Figure 5.5 displays the
fraction of the model correctly matched for the transformation sample point with the largest
number of feasible matches. A smaller set of experimental parameters was considered here

simply to indicate the general trends. For the sample point with the most feasible matches,
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Figure 5.2: The randomly perturbed, randomly transformed model forming the synthetic
image features of the object.

figure 5.6 displays the fraction of the matches feasible at the transformation that were
actually correctly matched. Figure 5.7 displays the dual of this, the fraction of the feasible
matches that were incorrectly matched at the sample point with the most feasible matches.

To demonstrate the effectiveness of the rough Hough transform at pruning out poor
sample points before they are considered, figure 5.8 shows the fraction of the total trans-
formation samples that were actually considered after Hough filtering.

5.2.2 Probabilistic Sampling

Experiments were conducted testing the probabilistic sampling approach using synthetic
model and image features. The model used was the same as that of the simulations of
uniform sampling, and the image features consisted of the same randomly perturbed model
without spurious data.

Figure 5.9 displays the results of the experiment, where for each k, 1 < k < 8, the
average over 10 experiments of the percentage of the features correctly matched for the
hypothesis with the largest feasible matching is shown.

As a control experiment, an average over 10 runs of a simple alignment technique

were done, where instead of a random transformation being chosen, the single, nominal
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Figure 5.3: Samples of the contour of real, unknown objects, forming the synthetic spurious
data.

transformation exactly aligning the measured features was chosen as the transformation
sample point for each match region. The average fraction of the model features correctly
matched for the hypothesis with the largest feasible matching was 0.74.

5.3 Experiments with Real Image Data

A second class of experiments were conducted using models and objects derived from real
images. These experiments were much more qualitative in nature because fewer of the
experimental parameters could be controlled.

In the first battery of experiments, different images were considered, each containing
the instance of a model as well as many unknown objects partially occluding the known
object. For each image, the effects of different sampling intervals were studied as in the
synthetic data experiments.

Over the following several pages are displayed the results for several experiments using
different data images and three different models. The three models used are shown in figure
5.26. In each case the image and the recognized object are displayed, along with a plot of the
extracted image features. The images have been histogram equalized to enhance contrast

and reproducibility. In each experiment, the sample points, or hypotheses, were ranked
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Figure 5.4: Average over 10 runs of the fraction of model correctly matched at the sample

point with the most feasible matches. There were 56 model features, no spurious data,

D =5 pixels, O = 12 degrees.

Figure 5.5: Average fraction of model correctly matched for the sample point with the
largest feasible matching, over 10 random trials at each table entry. m = 56 model features,
and n = 220 total data features, including the perturbed model features. D = 5 pixels,

© = 12 degrees.
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Figure 5.9: Each entry is the average over 10 trials, using new perturbed image data each
time, of the percentage of the model correctly matched for the sample point with the largest
feasible matching.

according to F(T'), which was defined to be the sum of the lengths of the image features
for matches feasible at T'. For each image, three tables summarize the experimental results.
The first table for each image displays the rank of the qualitatively different hypothesis
that was judged by the author to be correct. Qualitatively different means that, because
there are many hypotheses that differ only by a few degrees of rotation and pixels of
translation, only one hypothesis from each group of similar hypotheses was considered
in the ranking, and this was chosen arbitrarily. A hypothesis was judged correct if the
approximately correct transformation had been hypothesized, even if part of the model
was not exactly aligned. In these cases, it is likely hypothesis refinement would have
improved the approximation to the actual transformation. The first table with each image
displays the rank of the hypothesis that was judged correct. The second table displays, for
this hypothesis, the percentage of the model perimeter accounted for by the image features,
for the hypothesis judged correct. The third table displays the average number of sample
Ki;

points considered per feature match, that is, the quantity K,,. = ~—2.
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Figure 5.10: The image data, a correct hypothesis, and the image features.
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6 | 22.46 | 15.0 11.17 | 8.97 7.5 3.73 3.73 3.76 3.76 3.74 3.73
7 116.67 | 11.12 8.3 6.65 5.57 2.77 277 | 2.79 2.78 2.79 2.77
8 | 1283 | 854 6.37 5.12 4.28 2.12 2.13 2.15 2.14 | 2.13 2.12
9 110.13 | 6.74 5.04 4.05 3.37 1.68 1.68 1.69 1.69 1.69 1.67
10 | 8.20 5.46 4.08 3.28 2.74 1.37 1.37 1.37 | 1.37 1.36 1.36

Figure 5.11: Top: The rank, among qualitatively different hypotheses, of the transformation
sample point judged correct. Middle: For the transformation sample point judged correct,
the fraction of the model perimeter explained by the image features for matches feasible at
this sample point. Bottom: For the transformation sample point judged correct, the average

number, K,,., of transformation sample points considered per feature match. m

n =181, D =5 pixels, and © = 6 degrees. The image is shown in figure 5.10.
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Figure 5.12: The image data, a correct hypothesis, and the image features.




6¢deg
iz 213|4|(5(6[7|8|9(|10]11 |12
2111111 |711}j11]1 1 1
3j1]1j1]1j1}16|1)1(1 1 1
4 (11111 |7j1]1]1 1 1
S51f{1]1|1]1|6]|2(2]|1 1 1
61111111 }16]3]|3]1 2 1
7111111171412} 1 1 1
(1|11 |1|1|7f{111]1 1 1
91111 |1]1]7|4]|]6]1 4 1
101 |1f1{1}f1]16]|3]4]1]5 1
6Bdeq
Stpiz 2 3 4 5 6 7 8 9 10 11 12
21033033 (033033 (033](0.12]0.210.21]0.27|0.210.33
310303 }03])]03]031}012]0.19(0.21(025]0.21] 0.3
410303 }103)]03]031]011)021]021(025]0.21] 0.3
51033]033}1033]033(033}0.12]0.180.18 (0.27 | 0.18 | 0.33
6028|028 {028 )]028]0.281)0.12]0.15(0.16 [ 0.22 | 0.16 | 0.28
71033]033;033|033]0331}0.11]0.15(0.19|0.27|0.19 | 0.33
81029]029)029]029 0291} 01 |0.21]0.2110.23]0.21{(0.29
9021020 |0.20)]020020(011]0.14(0.13 (0.18|0.13 ] 0.2
10 | 0.25 [ 0.25 | 0.25 | 0.25 | 0.25 | 0.12 | 0.14 | 0.13 | 0.19 | 0.13 | 0.25
6¢deg
Stpiz 2 3 4 S 6 7 8 9 10 11 12
2 | 239.59 | 160.4 | 118.89 | 95.8 | 80.29 | 39.62 | 39.77 | 39.97 | 39.85 | 39.84 | 39.65
3 | 105.09 | 70.41 | 52.12 | 41.99 | 35.26 | 17.4 | 1747 | 176 | 1749 | 1749 | 174
4| 59.98 | 40.15 | 29.74 | 23.94 | 20.09 | 9.92 | 9.95 | 10.01 | 9.96 | 9.97 9.9
5| 36.89 | 24.69 | 18.32 |14.75 | 1237 | 6.1 6.15 | 6.16 | 6.15 | 6.15 | 6.11
6| 263 |1762 | 13.05 | 1052 | 8.81 | 4.35 | 437 4.4 437 | 437 | 435
7| 19566 | 13.11 9.7 783 | 656 | 3.25 | 3.24 | 3.27 | 3.25 | 3.26 | 3.24
8 | 15.02 | 10.06 | 7.44 6.01 | 503 | 2.48 | 2.49 2.5 2.5 2.5 2.47
9| 11.85 | 7.93 5.88 473 | 397 | 195 | 1.97 | 1.98 | 197 | 197 | 1.96
10 9.6 6.42 4.77 3.84 | 3.21 | 158 | 1.59 1.6 1.6 1.6 1.58

Figure 5.13: Top: The rank, among qualitatively different hypotheses, of the transformation

sample point judged correct. Middle: For the transformation sample point judged correct,

the fraction of the model perimeter explained by the image features for matches feasible at

this sample point. Bottom: For the transformation sample point judged correct, the average

number, K,,., of transformation sample points considered per feature match. m = 35,

n = 223, D =5 pixels, and © = 6 degrees. The image is shown in figure 5.12.
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Figure 5.14: The image data, a correct hypothesis, and the image features.
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6¢deg
Stpiz 2|13 (4(5]6|7|8|9]|10 |11 |12
2 11 15 * * 9 * %* * * * *
3 15 14 * %* * * * * * * *
4 14 14 * * * * * * * * *
5 15 14 * * * * * * * * *
6 12 11 * * * * * * * * *
7 15 14 * * * * % * * 8 *
8 * * * * 7 * %* * * * *
9 11 10 * * * * * * * * *
10 13 13 * * * * * * * * *
6¢deg
btpiz 2 3 415 6 71819(10] 11 |12
2016|012 [ * | * 016 | *|*|*]| * * *
3 0.12 0.12 * * * * * * * * *
4 0.12 0.12 * * * * * * * * *
5 0.12 0.12 * * * * * * * * *
6 0.12 0.12 * * * * * * * * *
71012 (012 | * | * * **|*] * [012] *
8 * * * * 0.13 * * * * * *
9 0.12 0.12 * * * * * * * %* *
10 {012 (012 | * | * * Rl L B * *
6¢dey
St pig 2 3 415 6 71819110 ] 11 |12
2123399 [ 156.67 | * | * [ 7832 [ *¥ | * [ * | * * *
3 [10268 | 68.78 | * | * * Gl B B * *
4| 5849 | 39.18 | * | * * Sl B B * *
5| 3599 241 [ * | * * Sl T I * *
6 2567 | 1722 | * | * * Sl L L * *
71 19.08 [ 1278 | * | * * QR x ] x]3AT | *
8 * %* * * 4.88 * * * * * *
9 11.6 7.76 * * * * * * * * *
10 | 937 6.27 | * | * * Sl IR B * *

Figure 5.15: Top: The rank, among qualitatively different hypotheses, of the transformation

sample point judged correct. Middle: For the transformation sample point judged correct,

the fraction of the model perimeter explained by the image features for matches feasible at

this sample point. Bottom: For the transformation sample point judged correct, the average .
number, K., of transformation sample points considered per feature match. m = 35,

n = 189, D = 5 pixels, and © = 6 degrees. The *’s indicate that the correct hypothesis

was not in the top 30 qualitatively different hypotheses, or accounted for less that 7% of

the model perimeter. The image is shown in figure 5.14.
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Figure 5.16: The image data, a correct hypothesis, and the image features.
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6¢deg
0tpis 2|3)14|5]6|7|8]9]|10|11 |12
211|121 |1 |2|15*f1]13} 2 1
32|21 )1 |21 |*]1]|13] 2 1
42|21 1|21 (*1]11] 2 1
5123|3121 |*|3|11] 2 1
6|212|5|1[3]|6|*|4]12]1 3
Ti1 (11111 |*}1)13]| * 1
8|1 |1j1f{2j1]*]|*|1|11]1 1
943|535 |*|*|4|* |5 |5
1033|242 ]|8|*|1]10] 6 1
6¢dcg
Ot piz 2 3 4 5 6 7 8 9 10 11 12
21020 (020(020)0.23)020/[0.16}*]0.19} 0.1 |0.18 | 0.2
31020020020 {023]020]016]*[019] 0.1 |0.18} 0.2
41020020 (020(021]020]016|*[019] 0.1 |0.16{ 0.2
5(020]0.18 018|023 (0.18)0.16|* {017 0.1 |0.18 |0.18
610.1810.18 (0.15|0.20 | 0.15|0.13 | * | 0.14 | 0.08 | 0.18 | 0.15
7 (020 ]0.20}0.20}022)]020|0.14|*|0.19 | 0.07 * 0.2
8019019019 (016 019} * [* [0.18] 0.1 |0.16 | 0.19
910.16 { 0.17 | 0.15 [ 0.16 | 0.15 * *10.14 * 0.13 | 0.15
10 | 0.17 { 0.17 [ 0.17 | 0.16 | 0.17 | 0.09 | * | 0.16 | 0.1 | 0.12 | 0.17
6bdeg
Stpiz 2 3 4 5 6 7 8 9 10 11 12
2 | 231.52 | 155.05 | 114.85 | 92.58 | 77.68 | 38.36 | * | 38.6 | 38.58 | 38.55 | 38.31
3| 101.6 | 68.09 | 50.41 | 40.67 | 34.08 | 16.85 | * | 16.99 | 16.97 | 16.91 | 16.82
4| 5783 | 38.71 | 2869 |23.14| 194 | 956 | * | 9.63 | 9.64 | 9.62 | 9.59
5| 35.7 23.9 17.71 | 1427 {1197 | 591 | * | 595 | 595 | 5.94 5.9
6| 2537 | 17.01 | 1261 | 10.16 | 852 | 420 | * | 425 | 4.24 | 424 | 4.21
7| 18.86 | 12.66 9.35 754 | 634 | 313 | * | 3.16 | 3.14 * 3.12
8 | 14.45 9.67 7.16 5.78 | 4.84 * *| 24 2.4 2.4 2.39
9| 11.44 7.68 5.68 458 | 3.84 * * | 1.91 * 192 | 1.89
10 9.3 6.22 4.62 372 | 312 | 154 | * | 154 | 1.55 | 1.55 | 1.53

Figure 5.17: Top: The rank, among qualitatively different hypotheses, of the transformation

sample point judged correct. Middle: For the transformation sample point judged correct,
the fraction of the model perimeter explained by the image features for matches feasible at
this sample point. Bottom: For the transformation sample point judged correct, the average

number, K., of transformation sample points considered per feature match. m = 35,
n = 234, D = 5 pixels, and © = 6 degrees. The *’s indicate that the correct hypothesis

was not in the top 10 qualitatively different hypotheses, or accounted for less that 10% of

the model perimeter. The image is shown in figure 5.16.
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Figure 5.18: The image data, a correct hypothesis, and the image features.
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6¢deg
Otpiz 2|13|4|5]6]7|8|9(|10]11]12
211 )1 )11 (1]1]1f1(1 1 1
J(r1|1jJ1j1J1f1f111]1 1 1
4|1 )11 |1 |(1]1)]1)1]1 1 1
S{1 11111 f1]1]1 1 1
6|1 (1]1f1)]1]1]1(1]1 1 1
7111111111} 1 1 1
8|1 11|11 ]1]1]1]1 1 1
9111 y1 )1 )1 (1}1(|1]1 1 2
10 (1|11 )1f1|1)2)1{1 1 1
8Pdeg
Ot piz 2 3 4 5 6 7 8 9 10 11 12
2{029 [0.28 1029 | 0.27 | 0.27 | 0.17 | 0.22 [ 0.23 | 0.26 | 0.28 | 0.25
31029 [{0.27 ]0.29 | 0.28 | 0.27 | 0.17 [ 0.20 [ 0.23 [ 0.26 | 0.27 [ 0.21
41029 028 |0.29 027 | 027 |0.17 | 0.20 [ 0.23 [ 0.25 | 0.27 | 0.21
5 10.26 [ 0.26 | 0.26 | 0.25 | 0.25 | 0.17 [ 0.20 [ 0.21 [ 0.23 | 0.26 | 0.24
6 {029 026029 )024(024]0.17 (020 [0.21]024]0277] 02
71026 |0.27 [0.26 [ 0.26 | 0.22 | 0.17 | 0.20 | 0.23 | 0.24 | 0.26 [ 0.22
81027 [ 0.27 { 0.26 | 0.22 | 0.27 | 0.16 | 0.20 | 0.21 | 0.20 [ 0.26 | 0.2
910.29 [0.26 | 0.29 | 0.24 | 0.24 | 0.17 | 0.20 | 0.21 [ 0.24 [ 0.27 [ 0.13
10 [ 0.21 1 0.20 [ 0.21 | 0.19 [ 0.20 | 0.16 | 0.15 [ 0.19 | 0.19 [ 0.19 [ 0.2
§¢dey
Ot piz 2 3 4 5 6 7 8 9 10 11 12
2] 213.35 | 142.04 | 105.69 | 84.36 | 71.21 | 35.17 { 35.24 | 35.3 | 35.32 | 35.31 | 35.17
319385 | 6244 | 46.46 | 37.1 | 31.29 | 1548 | 155 | 1553 | 15.52 | 15.54 | 15.43
4| 53.3 3548 | 26.38 | 21.07 | 17.77 | 8.78 | 881 | 881 | 882 | 8.83 | 8.79
5) 3281 | 21.86 | 16.26 | 12.98 [ 1094 | 5.4 543 | 544 | 544 | 5.44 5.4
6| 2346 | 1561 | 11.62 | 925 | 782 | 3.88 [ 3.86 | 3.86 | 3.86 | 3.89 | 3.85
7| 174 11.59 8.62 6.87 5.8 2.87 | 2.88 | 2.88 | 2.87 | 2.89 | 2.87
8 | 13.34 8.87 6.6 5.28 | 445 | 220 | 220 | 2.21 | 2.21 | 2.21 22
9 | 10.57 7.03 5.23 418 | 352 | 1.74 | 1.74 | 1.75 | 1.75 | 1.75 | 1.73
10 | 8.53 5.69 4.23 3.38 | 2.85 14 1.41 1.41 1.42 | 141 141

Figure5.19: Top: The rank, among qualitatively different hypotheses, of the transformation
sample point judged correct. Middle: For the transformation sample point judged correct,
the fraction of the model perimeter explained by the image features for matches feasible at
this sample point. Bottom: For the transformation sample point judged correct, the average

number, K,,., of transformation sample points considered per feature match. m = 43,

n =224, D = 5 pixels, and © = 6 degrees. The image is shown in figure 5.18.
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AT

Figure 5.20: The image data, a correct hypothesis, and the image features.
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OB deg
Otpic 2|13}4|5|6|7 89|10 |11|12
212121211213 [*|4] * 1 *
31212121127 1|5]|3] 2 1 *
41123 |1|*|*]3]* 1 *
51323327 |6]|3]* 1 *
6|24 ]|*|5|4|10}*]2]|1 2 5
711121111 ]5)3]* 1 *
8 4 * * * 6 * * 3 1 3 *
gl* 70> |7 |*]|* |*]|*] * * *
1011313 |1|*]6]|5]1 1 *
6@dey
Otpix 2 3 4 5 6 7 8 9 10 11 12
210190191017 | 019 | 0.19 | 0.12 * 0.14 * 0.19 *
31019 (0.17 {0.17 1 0.18 1 0.19 | 0.11 | 0.11 | 0.14 | 0.12 | 0.19 *
41019019 {016 |0.16 | 0.19 * * 0.14 * 0.19 *
51016 ]0.18 10.15|0.16 {0.18 | 0.1 | 0.11 | 0.13 * 0.18 *
61015 | 0.14 * 0.14 1 0.14 | 0.09 * 0.12 1012 | 0.14 | 0.14
71018 | 0.18 | 0.17 | 0.18 | 0.18 | 0.12 | 0.11 | 0.14 * 0.18 *
8 1 0.15 * * * 0.14 * * 0.1210.12 | 0.14 *
9 * 0.12 * 0.12 * * * * * * *
10 | 0.18 | 0.18 | 0.15 | 0.16 | 0.18 * 0.09 ] 0.1 [0.13 }0.18 *
6¢deg
St piz 2 3 4 5 6 7 8 9 10 11 12
2} 209.58 | 139.73 | 103.83 | 83.02 | 69.97 | 34.62 * 34.81 * 34.75 *
3| 92.24 | 6152 | 45.66 | 36.54 | 30.79 | 15.25 | 15.26 | 15.32 | 15.29 | 15.29 *
4| 52.37 | 3492 | 25.96 | 20.75 | 17.48 * * 8.69 * 8.69 *
51 3233 | 21.55 16.02 12.8 108 | 535 | 537 | 5.38 * 5.37 *
6 | 23.04 15.37 * 9.11 7.68 3.81 * 3.83 3.81 3.82 |3.79
7| 17.06 11.37 8.45 6.78 | 5.69 2.83 | 283 | 2.83 * 2.83 *
8 | 13.09 * * * 4.37 * * 217 | 2.16 | 2.17 *
9 * 6.9 * 4.1 * * * * * * *
10 | 8.36 5.57 4.14 332 | 2.79 * 1.39 1.39 1.38 1.39 *

Figure 5.21: Top: The rank, among qualitatively different hypotheses, of the transformation
sample point judged correct. Middle: For the transformation sample point judged correct,
the fraction of the model perimeter explained by the image features for matches feasible at
this sample point. Bottom: For the transformation sample point judged correct, the average
number, K,,., of transformation sample points considered per feature match. m = 43,
n = 237, D = 5 pixels, and © = 6 degrees. The *’s indicate that the correct hypothesis
was not in the top 10 qualitatively different hypotheses, or accounted for less that 10% of
the model perimeter. The image is shown in figure 5.20.
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Figure 5.22: The image data, a correct hypothesis, and the image features.
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6¢deg
btpiz 2|3|4|(5|6|7!8[9{10] 11|12
211 )11 f1|1)2]1]1]1 1 5
31111112111 1 3
4|1 |1f11(1}1]2]|]1]1]1 1 2
S|1|1]1)1|1|1f1]1]1 1 5
6|11 ]111f112]12(1]1 2 3
71111111111 1 1
8|11 ]j1f11{1¢2(1}1 1 3
912|514 |*[5]|*|4]8] * 5 2
10 [ 7|6 |7 )*[*[*]2]*]| * 7 *
‘5¢deg
bt pig 2 3 4 5 6 7 8 9 10 11 12
2]1032] 03 [029]029]0.29]0.15]0.24 (029029 [0.24 [0.18
31029]0.29(029]029|0.290.15]0.24 [0.29 [0.29 [ 0.24 [0.18
41032]029 1029 029|029 |0.14 [0.24 | 029 | 0.29 | 0.24 [ 0.18
51029]029 (029029 |0.29]0.14]0.20 (029 ]0.29 [0.20 [0.17
6102910291029 029029014 ]0.18 [0.29]0.29 [0.18 [0.18
71029 10.29 [0.26 | 029 | 0.29 | 0.14 | 0.24 [ 0.29 | 0.29 | 0.24 [ 0.18
81029 ]0.29 (023029029014 ]0.19 {029 029 ]0.19 [0.16
91019 [{0.16 | 0.16 * 0.16 * 0.13 ] 0.12 * 0.13 ] 0.16
10 | 0.15 | 0.15 ] 0.15 * * * 0.13 * * 0.13 *
6Pdeq
Ot piz 2 3 4 5 6 7 8 9 10 11 12
2 | 190.81 | 127.72 | 94.59 | 76.37 | 64.14 [ 31.49 | 316 | 31.6 [ 31.68 | 31.68 | 316
3 | 8428 | 56.41 | 41.8 | 33.73 [ 28.35 [ 13.92 | 13.97 [ 13.95 | 13.99 | 13.98 | 13.96
4| 4774 | 31.98 | 23.67 | 19.09 | 16.08 | 7.87 7.9 791 | 794 | 796 | 7.92
5 | 29.58 19.8 1466 | 11.82 | 9.95 | 4.89 49 492 | 492 | 491 4.9
6] 2102 | 1406 | 1042 | 841 | 7.07 | 3.46 | 3.48 | 3.48 [ 3.49 3.5 3.48
7] 1554 ] 1041 | 7.71 | 6.23 | 5.23 | 2.56 | 2.58 | 257 | 2.58 | 2.58 | 2.58
8| 11.91 7.99 5.9 4.77 4.0 197 | 1.98 | 1.97 | 1.98 | 1.99 | 1.97
9| 941 6.3 4.66 * 3.16 * 1.56 | 1.55 * 1.56 { 1.55
10 | 7.64 5.11 3.79 * * * 1.27 * * 1.27 *

Figure 5.23: Top: The rank, among qualitatively different hypotheses, of the transformation
sample point judged correct. Middle: For the transformation sample point judged correct,
the fraction of the model perimeter explained by the image features for matches feasible at
this sample point. Bottom: For the transformation sample point judged correct, the average
number, K,,., of transformation sample points considered per feature match. m = 27,
n = 258, D = 5 pixels, and © = 6 degrees. The *’s indicate that the correct hypothesis
was not in the top 10 qualitatively different hypotheses, or accounted for less that 10% of

the model perimeter. The image is shown in figure 5.22.
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Figure 5.24: The image data, a correct hypothesis, and the image features.



8ddeg
Stpiz 2|13|4|5|6|7|8)9|10 )11 (12
211 (1111311111 1 1
3|1f(1j1}11}11)111]1 1 1
4|1 |11 (1111 ]1f1]1 1 1
5|1 (1111111 (f1] 2 1 1
6|1 |11 1|11 f1]1]* 1 1
711111111112} 1 * 1
8212|2111 11(2]1 1 1
9(1f|1{1}j1f{1f1]1]1]|1 1 1
101111111 ]1]|* 1 1
6¢dey
Stpiz 2 3 4 5 6 7 8 9 10 11 12
21028]029 (0281026 )028/(022]0.25)0.29]|0.23]0.251]0.28
310281029028 0.26]028]022]0.23]0291]0.231]0.231}0.28
40281028 028 )0.26]028]022]0.23]0271]0.20]0.23 |j0.28
510281029 (0281026 )0.28(022]0.25]0.29|0.180.20}|0.28
6 1028|029 028 |0.26]0281]0.22]0.1810.29 * 0.21 { 0.28
71028028 }0.28|0.26 028 1}0.22|0.17]0.20 { 0.17 * 0.28
810231020 (023020 )0231]0.17]0.20 |10.20|0.20|0.20 | 0.23
91023023 (02310201)023]0.1710.20]0.19 {0.20 | 0.20 | 0.23
10 | 0.23 | 0.23 | 0.23 | 0.20 | 0.23 | 0.17 | 0.19 | 0.22 * 0.19 | 0.23
6¢deg
Stpiz 2 3 4 5 6 7 8 9 10 11 12
2 1193.09 | 129.49 | 95.44 | 77.27 | 64.96 | 31.7 | 31.8 | 31.93 | 31.93 | 31.98 | 31.85
3| 85.32 | 57.24 | 42.18 | 34.14 | 28.74 | 14.02 | 14.08 | 14.13 | 141 | 14.12 | 14.1
4| 48.25 | 32.34 | 2382|1929 11623 | 7.9 794 | 797 | 7.96 8.0 7.94
51 2991 20.07 | 14.78 | 11.98 | 10.08 | 4.9 492 | 496 | 496 | 4.95 4.94
6 | 21.31 1429 | 1054 | 852 | 7.17 | 3.49 | 3.52 | 3.54 * 3.54 | 3.52
71 15.75 1056 | 7.77 | 6.33 | 5.29 | 2.59 2.6 261 2.61 * 2.59
8| 12.04 8.07 595 | 4.82 4.04 | 1.98 1.98 2.0 1.99 | 2.01 1.97
9| 9.57 6.42 4.74 | 3.83 | 3.21 1.57 1.58 1.59 1.59 1.59 1.57
10 | 7.76 5.20 3.83 | 3.11 2.61 1.27 1.27 1.28 * 1.28 1.27

Figure 5.25: Top: The rank, among qualitatively different hypotheses, of the transformation

sample point judged correct. Middle: For the transformation sample point judged correct,

the fraction of the model perimeter explained by the image features for matches feasible at

this sample point. Bottom: For the transformation sample point judged correct, the average

number, K,,., of transformation sample points considered per feature match. m = 27,
n = 270, D = 5 pixels, and © = 6 degrees. The *’s indicate that the correct hypothesis
was not in the top 10 qualitatively different hypotheses, or accounted for less that 10% of
the model perimeter. The image is shown in figure 5.24.
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Figure 5.26: The modeled objects.
5.4 Analysis and Discussion

5.4.1 Uniform Sampling

Uniform transformation sampling was remarkably effective in hypothesizing the correct fea-
ture matching and transformation. The results of simulation of the technique on synthetic
data are shown in figure 5.4. With sampling intervals of 1 pixel and 1 degrees an average
of 95% of the features were correctly matched. As the sampling intervals were increased,
the technique displayed very graceful degradation in effectiveness. For over half of the sam-
pling intervals shown, more that 50% of the model features were correctly matched. Figure
5.5 displays the result of the same experiment when a total of 164 spurious data points
were included, in realistic structural configurations, to make a total of 220 data features.
The results are in close agreement with those of figure 5.4, indicating that spurious data
have very little effect on the performance of the technique. This is because only matchings
that are mutually consistent within the uncertainty bounds at some transformation are
hypothesized. Because the correct matchings and transformations due to the model are
usually found, it is unlikely that an accidental alignment will produce as large a feasible
matching as the correct matching. This breaks down under heavy occlusion when a smaller
fraction of the model is visible. In this case, verification is necessary to distinguish between

similarly ranked incorrect and correct hypotheses.
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Several experiments were conducted on real images, using 3 different objects in several
different images. In all the scenes the object of interest was extremely heavily occluded,
however, uniform sampling was very effective at computing a correct hypothesis. Typical
examples are shown in figures 5.10 and 5.12. In these examples, the transformation sample
point with the maximal value of F(T'), which in this case is the sum of the image feature
perimeter in the largest feasible matching, was the correct hypothesis. In some cases,
even at sampling intervals as coarse as every 12 degrees and 10 pixels, the highest ranked
hypothesis was the correct one. In all the cases where the occlusion was not too severe,
the optimal transformation bucket was in fact the correct hypothesis. Thus this technique
can function as an entire recognition engine in cases where occlusion is not too severe. If
we are willing to set a threshold on the amount of perimeter that must be accounted for
by a hypothesis in order to accept it as a verified recognition result, then the experiments
suggest that uniform sampling works extremely well as an entire recognition engine when
reasonably fine sampling intervals are used.

In the case where there is severe occlusion, the highest ranked hypothesis is not the
correct one, but rather it is typically in the top 10 or 20 hypotheses. It is these cases where
verification is necessary, because the best hypothesis cannot be taken as the recognition
result. Even so, in cases of extreme occlusion, the correct hypotheses was among one of
10 or 20 hypotheses, and combined with a verification step, uniform sampling provides an
hypothesis generator that is extremely robust under occlusion.

It is interesting to consider the times when the correct hypothesis was not the top, or
near the top of the hypotheses. Even in successful cases where the top ranked hypothesis
was correct such as figure 5.10, inspection of the image seems to indicate that much more
than the 33% of the contour found in the best hypothesis is actually visible. This indicates
that the feature extraction procedure is failing to provide adequate features for all the
visible contour, accounting for the poor performance in heavily occluded cases.

A notable failure of the system to hypothesize correctly is shown in 5.14. Close in-
spection of the image shows that in fact, very little of the contour is actually visible, and

inspection of 5.14 shows that very few features were available for recognition.

5.4.2 Probabilistic Sampling

It is very interesting to compare the performance of the probabilistic sampling technique to
that of the simple alignment technique. The results of the experiment indicate that align-

ment is reasonably effective at determining a reasonable sized matching. Here, alignment
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is relying on the distribution of measurement error in position and orientation to find a
correct transformation. There is some probability that at least one of the image features
will be close enough to the correct pose that the nominal transformation computed from
it falls in the match region for many of the correct matches. The interesting thing about
the probabilistic approach is that the quality of the transformation found can be improved
arbitrarily by considering more probabilistic samples. In the experiments, the effectiveness
of the alignment technique compared to the probabilistic technique was similar for k = 1,
but probabilistic sampling was much better as k£ was increased. Thus probabilistic sam-
pling accounts more carefully for uncertainty in pose measurement, rather than relying in

a simple fashion on the uncertainty distribution.
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Chapter 6

Related Work

6.1 Model Based Recognition

The fundamental idea behind model-based object recognition is that objects can be rec-
ognized and distinguished based on attributes that capture the information relevant to
this task. These attributes, or features, form an abstract model of the object. Key to the
approach is the idea that it is possible to determine the correspondences between features
represented in the model and features abstracted from input sensory data.

There are many attributes of an object which might be exploited for recognition such
as color, texture, characteristic motion, and shape. Most of the recognition work in the
field of machine vision has focused on recognition by object shape, and this is the focus
of this thesis. The approaches to model-based recognition based on shape can be grouped
into three broad classes:

1. Techniques which abstract almost completely away from the spatial structure of the
object and exploit features of this nature.

2. Techniques which maintain qualitative abstractions of the spatial structure of the

object to facilitate recognition.

3. Techniques which maintain explicit quantitative representations of the spatial struc-

ture of the object to facilitate recognition.

Techniques belonging to the first group above fall in the domain of classic pattern
recognition based on feature spaces. Examples of these types of recognition techniques

include the work in recognizing isolated objects from binary images[20] based on global
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features such as area, perimeter, Euler numbers, and moments of inertia. The use of
extended Gaussian images for object recognition is another example among systems dealing
with 3D objects. In these types of systems the abstraction process does not maintain
information on the spatial structure of the object represented, and an infinite number of
qualitatively different objects map to the same representation as abstract features. The
features forming the object model are global in the sense that changes in the shape of the
object in a local region have an effect on the entire object representation.

The second class above contains those systems which maintain a qualitative represen-
tation of the spatial structure of the object. In these techniques, features take the form
of primitive structural elements, possibly of only local spatial extent, such as descriptions
of boundary curve segments. The spatial structure of the objects is maintained in the
form of qualitative spatial relations such as adjacent, above, and symmetric. These spatial
relations can be represented in the form of relational graphs, in which case feature corre-
spondences are determined through graph matching techniques[11]. The primitive elements
may also represent symbols in a formal grammar, in which case feature correspondences
are determined by syntactic analysis of feature strings.

Most of the demonstrably effective techniques, robust under object occlusion and in
the presence of unknown spurious objects, belong to the third category. These techniques
maintain in the model and exploit explicit quantitative representations of the spatial struc-
ture of the object. Most popular among these is the subclass of techniques dealing with
rigid objects and models, in which the geometrical structure is exploited in determining
correspondences between the model and the input data.

The recognition technique described here based on transformation sampling belongs to
the class of techniques exploiting an explicit geometrical representation of rigid objects.

This chapter compares the present work to other studies involving techniques of this type.

6.2 Rigid Geometric Representation Based Techniques

A useful definition of object recognition in robotics includes both pure recognition, that is,
determining the presence and identity of an object, and the determination of its position
and orientation for manipulation. When rigid geometric models are used to represent
objects, the solution to these two tasks complement one another. Again, the fundamental
assumption is that it is possible to determine a correspondence between model features

and features abstracted from the input data. A suitable correspondence achieves the task
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of pure recognition and, in the case of rigid geometric objects and models, facilitates the
determination of object pose.

The existing techniques vary in their methods for accomplishing these tasks. A common
paradigm for recognition in this class is hypothesize and test, in which an hypothesis as to
the identity and pose of an object in the environment is constructed, followed by a careful
verification of the hypothesis. To some degree almost all systems in this class can be cast
in this form. Clemens[13] explored the tradeoffs between various formulations of this basic
paradigm.

For this class of recognition techniques, both the model and the sensory data are rep-
resented in the same manner. Features are generally primitive elements representing local
sections of the surface or boundary contour of the object. The basic idea is that the transfor-
mation between the pose of a model feature and the pose of a data feature is approximately
the same for all corresponding model and data features. This fact is exploited to accomplish
recognition using a variety of strategies. Common to all approaches is the construction of
a feature matching or mapping identifying mutually consistent feature matches. Because
the object is rigid, a matching defines an hypothesis as to the object’s identity as well as
a range of transformations indicating the object’s pose. The method for constructing the

feature matching is the main difference between different systems.

6.2.1 Hough Transform Methods

Clustering and variations of the Hough transform applied to object recognition have been
studied as recognition techniques[32](31][13][26][14][23]. The basic idea of this variation of
the Hough transform is that, in the two dimensional case with known scale for example,
any pair of model and data features implies a relative transformation which will align their
poses, so each match defines a point in TPS. Call these match-points. Since the model is
rigid, correctly matched features will yield approximately the same relative transformation,
when rotation precedes translation, and thus a cluster of match-points will be formed in
parameter space. Good candidates for the correct transformation are found by searching
parameter space for such a cluster. In principle, this is an excellent approach. In the
ideal case there would be a sharp peak in parameter space corresponding to the correct
transformation. In practice, there are two main factors which make identifying the cor-
rect transformation difficult: error in the measurement of the pose of image features, and
spurious points in parameter space due to incorrect matches.

There is a strong coupling between the rotation component and the translation com-
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ponent of the transformation aligning a model feature with an image feature. An error in
the estimate of the orientation of an image feature results in an incorrect relative rotation,
which in turn results in an incorrect relative translation. This has the effect of spreading
out the cluster in space, so that although features are correctly matched, they do not all
correspond to the same point in parameter space. Thus pose uncertainty causes dilution
of clusters making finding the clusters difficult.

The match-points in parameter space due to incorrectly matched features contribute
to what might be called the overall background noise of the parameter space. As the level
of this background noise increases, that is, as the number of points in parameter space
due to incorrect matches increases, peaks or clusters in parameter space become harder to
distinguish.

These clustering techniques are commonly implemented by tessellating parameter space
into cells or bins. The bins with many points in them determine clusters. The simplest
approach is to simply divide the space into cells, compute the nominal transformation
aligning each of the feature matches, and place a vote in the bin containing that transfor-
mation. Choosing the bin size is difficult for the following reasons. Because the cluster
of match-points from correctly matched features will be spread out due to pose error, the
bins must be made large enough to include all of a cluster. There is still the problem that
a cluster may be split over several buckets. One solution to this problem is to overlap the
buckets. The main problem with large buckets, however, is that they integrate the space of
transformations over a large region, and accumulate contributions from matches that may
not be mutually feasible at any transformation. The bin with the most matches falling
in it may not be associated with the optimal transformation because it is quite possible
that no single transformation will simultaneously align all, or even most, matches in the
bin. We can see this by noting that the regions of feasible transformations for two different
matches may intersect the same bin, but not intersect one another, creating a false peak
in the tessalated parameter space. See figure 6.1.

Simply making the bucket size smaller will not suffice, because in this case any one bin
may only contain a fraction of the cluster of match-points from correct matches, and thus
the peak may not be detected. The discussion on the structure of parameter space earlier
suggests an approach that will work properly. First, make the bin size small enough so
that it is likely that most match-points in them are feasible at a common transformation.
Second, consider a given feature match at all the possible transformations possible under the
effects of pose measurement error, and place a vote in all possible buckets. In the framework

of chapter 3, place a vote in all the buckets intersected by the match region[13]. Unless
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Figure 6.1: The squares represent slices of Hough bins, the circles represent regions of valid

N\

transformations for matches. Although a Hough bin may have several members, they are

not necessarily mutually consistent.

great care is taken in filling the bins, the clustering technique alone is not adequate for
recognition, although it has been used as a coarse filter of potential matches before a more
detailed procedure. For example, Grimson and Lozano-Pérez[16] simply use the Hough
transform to roughly order the matches they will consider in a subsequent constraint-based

search procedure.

6.2.2 Transformation Sampling is not a Hough Transform

The idea of uniform transformation sampling was first introduced in response to the dif-
ficulties involved with correctly implementing the Hough transform. Both transformation
sampling and Hough transform are techniques set out to accomplish the same task, identify
transformations which are feasible for a large number of feature matches. Uniform trans-
formation sampling in particular is very close to the idea of a Hough transform, although
there are some important differences.

The primary difference between Hough transform clustering techniques and uniform
transformation sampling is that in Hough transform methods an integration of information
is performed over finite sized regions of TPS, while in uniform sampling, information is
taken only at a point. From one viewpoint, uniform sampling can be related to the Hough

transform by considering the size of the cells to be infinitesimal, and the spacing of the
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cells in each dimension to be equal to the the transformation sampling intervals. The
distinction between finite regions and points in TPS is an important one, only true peaks
are found with uniform sampling, corresponding to matchings which satisfy the constraints
on uncertainty at a given transformation. With the Hough transform, depending on the
size of the bucket, false peaks can exist where no globally consistent matching exists for
any transformation.

While in principle the Hough transform can account for pose uncertainty in the same
way done in this work, by carefully considering match-regions, most existing implementa-
tions do not. In contrast, transformation sampling explicitly and accurately accounts for
pose uncertainty due to sensing errors and feature fragmentation, and accounts for any

amount of uncertainty.

False Positives versus False Negatives

We can characterize the main differences between uniform transformation sampling and
Hough transforms by noting that transformation sampling in a sense trades false negatives
for false positives. We have argued that the Hough transform may indicate a popular
transformation which in fact is not globally consistent. On the other hand, uniform trans-
formation sampling will never indicate anything but a globally consistent transformation.
Because we are sampling parameter space, however, it is possible that we could miss a peak
in parameter space, and thus miss a transformation which the Hough transform may have
found. It was shown in 3 that under assumptions as to the nature of measurement errors,
it is possible to sample within the optimal region of TPS with high probability. The pos-
sibility of missing the optimal region is only true for uniform transformation sampling and
probabilistic transformation sampling. Critical point sampling will always find the optimal
regions of parameter space.

One of the techniques studied by Clemens[13] has many similarities to the two proba-
bilistic techniques developed here. He associates with each point in parameter space a prob-
ability density characterizing the probability that, for a given matching at the particular
transformation, the observed image would have occurred. This is based on the conjunction
of the probabilities of the observed difference in pose between matched features after trans-
formation. In principle the probability should be computed for all transformations and all
matchings, but he makes use of the bounded uncertainty assumption to exclude matches
from matchings in which the two features do not align well enough after transformation.

He noted that due to errors, the region of possible transformations for a given match is a
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helical cloud, and his technique filled all buckets intersecting this cloud with a pointer to
the match and an indication of the probability of that particular transform.

6.2.3 Constraint Satisfaction

Many approaches make the assumption that the error or uncertainty in feature pose mea-
surement is bounded. This provides great constraint on what matchings are possible. One
approach to hypothesis generation is to construct maximal sets of mutually consistent fea-
ture matches under the uncertainty constraints. This provides a matching and possibly
a range of transformations which can then be verified. Examples of this are RAF due to
Grimson and Lozano-Pérez[16], LFF due to Bolles and Cain[8], the approach by Baird[4],
and the system by Koch and Kashyap[24]. All these systems build sets of pairwise con-
sistent feature matches to compute very careful hypotheses as to the identity and pose of
an object from the sensed data, which are then carefully verified. These might be viewed
as constraint satisfaction techniques. All of these systems make the assumption that the
uncertainty in feature pose is bounded, and thus depending on a given range of trans-
formations, certain matches are impossible. The constraints applied by RAF, LFF, and
Koch and Kashyap are pairwise consistency constraints, while those by Baird are global
consistency constraints.

The goal of the RAF system is to find a matching that is feasible, in the sense of global
consistency, that has a maximal value of a quality measure, which in their case is the
amount of model perimeter accounted for by the matching. The tree search procedure which
builds matches only relies on pairwise consistency constraints, however, in constructing
matchings, although Grimson and Lozano-Pérez found that these constraints capture most
of the constraint provided by the global consistency constraint. Search limiting heuristics
are employed to reduce the system’s tendency to thrash making small changes to essentially
similar matchings.

The transformation sampling approach and RAF have much in common in the assump-
tions and goals. The main difference is the technique for constructing optimal matchings.
Critical point sampling is provably correct under the same assumptions and goals and has
polynomial complexity in terms of features. RAF has exponential expected complexity in
terms of model and image features in the case with spurious image features, but expected
polynomial complexity in the case of isolated objects[15]. RAF may not find the optimal
solution, however, due to search limiting heuristics. One important difference between crit-

ical point sampling and RAF is that the latter utilizes extended features, as well as point
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features, while the extension of the former to this case has not yet been investigated.

While transformation sampling is highly parallel in nature, it appears the sequential
nature of the constrained search is what makes it effective, and parallel implementation
without exploding a large part of the search space may not offer substantial speedup in
parallel. Finally, it must be noted that RAF does work with 3D data and 3D objects.
While it appears that transformation sampling will extend to 3D, this must be investigated
further.

The LFF approach and the approach of Koch and Kashyap are similar to RAF in that
they utilize pairwise constraints based on uncertainty bounds to build matchings. These
three systems solve constraint satisfaction, or consistent labeling problems to build consis-
tent matchings, however consistency constraints are pairwise rather than global. Transfor-
mation sampling is also solving a constraint satisfaction or consistent labeling problem to
determine matchings. In this case however the consistency constraints exploited are global
in nature rather than simply pairwise.

The system by Baird formalizes the matching problem as a constraint satisfaction prob-
lem using a linear programming approach. He shows that in expected O(n?) time, where
n is the number of features, all feasible (consistent with the constraints) matchings can
be found. An important and extremely limiting restriction he applies is that there are no
spurious or missing data. In contrast, critical point sampling handles spurious and missing
data, and offers an optimal solution in polynomial time, under the given formulation of the
goals and measures of optimality.

6.2.4 Alignment Techniques

There is a class of recognition techniques which makes a different tradeoff between the
hypothesis generation and verification steps, placing less emphasis on the generation of
careful hypotheses and more emphasis on the verification step. Ullman has called these
techniques recognition by alignment[33][22]. Other examples of alignment related tech-
niques are found in [3][13][28]. Rather than build a complete matching between model and
data features as transformation sampling and the two systems above do, the idea is to
determine a partial matching which is sufficient to solve for a transformation. Because the
model is rigid, this transformation serves to construct a hypothesis of the object’s pose.
Again assuming bounded uncertainty in data feature pose measurement, after transforma-
tion the hypothesis can be strengthened by finding more feature matches, where matches

are only possible between features that are sufficiently close, measured as a function of the
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uncertainty bounds. When the strength of a hypothesis is sufficient it can be passed to a
verification procedure.

In 2D, with known scale, only a single match between oriented features is required for
alignment. If scale is unknown, a pair of matches is required. For 3D objects using 3D
features, a pair of matches is require. For 3D objects from 2D features, Huttenlocher and
Ullman[22] have shown that only three feature points are required for orthographic projec-
tion and scaling. For the 2D case with oriented features, known scale, and m and n model
and data features respectively, all possible feature matches provide O(mn) hypothesis. For
each hypothesis we must in the most naive method do O(mn) work to check for support of
the hypothesis. If the data features are organized in some sort of spatial hash table, then
only O(m) work need be done for each hypothesis in typical cases, resulting in an overall
complexity of O(m?n). Huttenlocher has shown that in the 3D from 2D case, hypothesis
generation and evaluation requires O(m®n?) when the data features are spatially hashed.
Thus the complexity of alignment approaches is quite favorable. Because many of the op-
erations performed are on 2 or 3 features and are highly local, much of the computations
required appear to be naturally parallel, although no parallel implementation has been
demonstrated.

In one sense, alignment and transformation sampling are very similar. Both take trans-
formations as hypotheses and then verify them for recognition. Alignment takes the nomi-
nal transformation which aligns the measured pose of a small number of feature matches as
the hypothesis. The transformation sampling techniques allow for the fact that the correct
transformation could fall anywhere in the match region. Thus, one difference between the
transformation sampling approach and the alignment approach is that the former explicitly
accounts for error in feature position, while the latter does not. With alignment, even if
an initial hypothesis is composed of correctly matched features, if the error in some of the
data features is great enough, the nominal transformation could be far enough off that the
hypothesis will be incorrectly rejected since other features do not align adequately. This
is especially true in the case of fragmented features, and matching point image features to
extended model features, where the nominal transformation may be considerably different
from the correct transformation.

Nonetheless, the same type of probabilistic analysis applied to transformation sampling
can be applied to alignment. If the error in the measurement of image feature pose is
characterized by a probability distribution, it should be easy to characterize the probability
that one of the nominal transformations derived from correct feature matches is close

enough to the correct transformation that it falls in the match region of many other correct
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matches, and applying this transformation adequately aligns the model with the image. In
this view, in the limit as the number of visible model features in the image goes to infinity,
the probability that the correct transformation is not found goes to zero; in the limit
alignment will always work. Alignment implicitly relies on the probability distribution of
image feature pose error. From this point of view, probabilistic sampling and alignment are
very close, however probabilistic sampling allows the probability that the correct hypothesis
is found to be increased arbitrarily.
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Chapter 7

Extensions and Future Work

7.1 Three-Dimensional Object Recognition

Of interest in the study of the techniques for 2D recognition described here, is their exten-
sibility to the case of 3D object recognition from 3D or 2D sensory data. It appears that
the techniques of uniform sampling and probabilistic sampling can be extended to the case
of 3D objects using 3D data. The extension of the critical point analysis to the 3D case,

however, is not as clear.

3D Transformation and Uncertainty

Analogous to the case of 2D model and image features, we can define 3D features to have
3 positional, and 3 orientational degrees of freedom. Of fundamental importance in the
case of 2D recognition is that a feature match defines a unique transformation which aligns
the poses of the two features. This is not true for 3D features, as can easily be seen by
considering the unit vectors representing the orientations in 3-space of a model and image
feature. The rotation about some origin which aligns the model feature’s orientation with
that of the image feature is parameterized by 2 angles, but any third rotation about an axis
parallel to the image feature leaves their relative orientation unchanged. A pair of feature
matches, however, provides enough constraint to derive a unique rotation.

Define rotation of vectors in &2 by rotation of # about an axis defined by a unit vector &.
This formulation of rotation in three dimensions is easily represented by unit quaternions
r=ro+rs+ ryjrzlzr = cos( g) + sin(g)&:, see for example [21]. Using quaternion product,
the result of rotating a vector ¢ is given by ¢’ = ror*, where r* is the conjugate of the

quaternion r, formed by negating @.
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Consider two model features and another pair of features derived by rotating and trans-
lating these, which can be considered image features. As can easily be shown, any two
vectors vy, v € R3 can be aligned in orientation by rotating by an angle § about an axis
& lying in the plane bisecting the angle between the two vectors. The unique (up to sign)
vector & about which both model features are rotated by some angle 8 to align their orien-
tations is given by intersecting two such planes due to the two different pairs of model and
image orientation vectors. Let 7, and fq represent the orientation of the normal vectors
describing the orientation of a model and image feature respectively. Then from the above

argument it is easily shown that

(f"ml — ﬁdl) X (ﬁnw — ﬁ‘dz)
I(ﬁml - ﬁ’dl) X (f"mz - ﬁ’dz)l

W=

Given @, fip,,, and fi4,, the rotation 6 can then be determined, see for example [17].

Thus, given a pair of 3D feature matches, where one pair is a rotated, translated version
of the other, it is possible to solve for the quaternion representing the rotation which will
align their orientations. The translation can then simply be solved for by the difference
in the feature positions. When error in feature extraction is considered, however, this
becomes more difficult. Assume that we are dealing with 3D point features. Let the
correct orientation of an image feature be given by ny, and its measured orientation by 7.
To bound the error, assume that fg, - g > cos(©), thus the measured orientation 74 lies in
a cone centered at the correct orientation 74, or equivalently the correct orientation 74, lies
in a cone centered at the measured orientation 7n4. This error model was used by Grimson
and Lozano-Pérez[16]. Let the correct and measured positions of the image feature be given
by Pm, and p,,, respectively. Assume that |pn, — Pm| < D. Thus the measured position of
the features falls in a sphere centered at the correct position.

To account for the uncertainty in orientation, any rotation satisfying |fg4 - rii,r*| >
cos(0@) is possible. Thus there is a set of vectors & which are possible, and for each vector
@ there is a range of rotations # possible. Then, for any feasible rotation there is a range
of translations T, after rotation, such that |p; — Trp,,r*| < D.

As in the case with 2D recognition, the range of feasible transformations for a given pair
of matches corresponds to a region in a 6 dimensional parameter space. The intersection of
these match-regions are 6 dimensional intersection-volumes analogous to those defined in
chapter 3. We can now consider the idea of hypothesizing a feature matching by searching

parameter space for intersection volumes consistent with large numbers of pairs of feature

matches.
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Uniform Sampling

For any pair of feature matches, the set of feasible rotation vectors & corresponds to a
region on the unit sphere. This region can be sampled at points on the sphere. For each
sample vector &, the range of feasible rotations 6 about & can also be sampled. Finally,
for each complete rotation sample, after rotation, the range of possible translation can be
sampled on a 3D grid. Brou explored related issues involved with sampling the space of
3D orientations in matching object Extended Gaussian Images[9].

Following the construction of transformation sample points, the algorithm for hypothesis
generation is exactly similar to that of the 2D case. Chapter 5 has shown in the 2D case
that the number of transformation sample points that need to be considered per feature
match is reasonable. In the 3D case, however, the complexity increases considerably. First,
instead of considering K,p sample points for each of mn feature matches, in 3D we must
consider K5p sample points for each of m?n? pairs of feature matches. Second, because
there are 6 parameters instead of 3, it is likely that K3p is considerably larger than Kp. If,
however, as in the 2D case, reasonable matching hypotheses can be constructed by sampling
quite coarsely, this approach may be feasible in practice. The asymptotic complexity in
terms of the input feature sets is quite favorable, of O(m?n?).

Probabilistic Sampling

The probabilistic sampling approach should extend easily to the 3D case. Generating a
random point in the 6 dimensional match-region is easily done by perturbing the parameters
of the nominal transformation within the uncertainty bounds. The important thing to be
determined is how to sample points according to the appropriate probability distribution.
The attractive aspect of probabilistic sampling in 3D is that it is much simpler than even
the uniform sampling technique.

Critical Point Sampling

Unfortunately, in 3D there are no critical points falling on the boundaries of intersection-
volumes as there were in the 2D case. Their analogues are likely to be hypersurfaces.
Nonetheless, the idea of not attempting characterization of the whole intersection-volume,
but rather places in the space where the character of the space changes at their boundaries,

is a very intriguing research direction.
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7.2 Hypothesis Refinement and Verification

The recognition strategy formalized in chapter 3 is composed of hypothesis generation,
refinement, and verification. In the experiments, however, the system only utilized the
hypotheses generation step by transformation sampling. In fact the hypotheses were so
good that no further refinement or verification was performed.

In the case of many similar objects, simple objects, or heavy occlusion, the hypothesis
generation step alone will not suffice for the entire recognition engine, and hypothesis
refinement and verification will be required, although the transformation will still generate
relatively few high quality hypotheses. Further investigation into methods of hypothesis

refinement and parallel verification is needed.

7.3 Critical Point Sampling

There are a number of obvious refinements of the 2D critical point sampling method that
would increase its flexibility and power. First, it should be possible to deal with unknown
scale by introducing a scale parameter s in the transformation with the rotation: se'.
The same ideas of search for critical points may still work. Second, the analysis of the
behavior of match-circles in determination of the location of critical points should apply
in a similar fashion to match-region with non-circular cross section. In particular, the use
of line segments as features would lead to match regions with approximately rectangular

cross sections. It would be interesting to apply the same analysis in these cases.

7.4 Other Extensions

Large Model Libraries

Any recognition technique is extendable to large libraries at a cost linear in the size of the
object library. The techniques studied here do not extend to the case of large libraries,
unless the models are considered in this way, serially. It is possible, however, to consider
a small number of different models simultaneously. Several such computations could take
place in parallel if the computations were kept orthogonal, by labeling features due to

different models as such, and treating them completely separately from one another.
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Multiple Instances

All of the techniques are directly extendable to include any number of multiple instances
of the same model. In fact, all the work done to find one instance finds all instances. All

that is necessary to do is to pick all optimal hypotheses which pass verification.

7.5 Special Hardware Implementations

It seems that parallel computation is necessary for the fast computation of recognition.
Investigating parallel algorithms and implementing them on existing general purpose par-
allel machines is the first step in understanding the issues involved. It is likely that even
greater performance can be achieved through special hardware implementations, and so
special hardware implementations of the algorithms are intriguing.

The three transformation sampling techniques described here are simple and highly
parallel in nature. For these reasons a special hardware implementation of the algorithms
may be possible, allowing very fast recognition times. In particular, probabilistic sampling
simply requires the generation of a random point inside a match region, and the related
containment computation. These are simple, local operations. The accumulation and
ranking of the best sample points, however, is a more global operation, and the requirements
of special hardware for this is not clear.

98



Chapter 8

Conclusions

8.1 Summary

Recognition was defined as hypothesizing a feature matching M, and a transformation T
that optimizes a metric F(M,T) over all possible M and T, followed by verification of
these hypotheses. To make this tractable, the assumption of bounded image feature pose
uncertainty was introduced, requiring that, after some transformation T', the pose of the
the model and image feature must be less than the bounds of pose uncertainty in position

and orientation.

By intersecting the constraints on feasible matches for all possible matches, sets of
feasible matches are constructed based on regions of transformation parameter space, TPS.
Hypotheses of feature matchings can be constructed by defining a particular metric F(T)
which facilitates evaluation of these regions of consistent matchings, and then searching

TPS for optimal values of this metric.

Once found these matchings can be refined to determine the transformation optimally
aligning the matched features. The transformation and matching thus hypothesized is then
verified using whatever data appropriate to the verification method, such as the model and
image data, extracted intensity edges, or the original brightness images.

The technique of transformation sampling was introduced as a method for searching
TPS for optimal values of F/(T'). Three methods of transformation sampling were discussed:

uniform sampling, probabilistic sampling, and critical point sampling.
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8.2 Conclusions

The critical point sampling analysis provides an elegant and simple solution to the partic-
ular formulation of the matching problem where uncertainty has fixed known bounds and
the goal is to find maximal feasible matchings. In past work, computationally complex
methods involving graph search and tree search have been used for this problem, and while
they are quite effective in practice, have unacceptable worst case bounds. In contrast, the
complexity of the critical point sampling technique is polynomial in the size of the inputs,
and provably correct. Furthermore, the critical point sampling technique is highly parallel
in nature and particularly well suited to parallel implementation. At this point, however,
the critical point sampling analysis serves only as a theoretical discussion of the complexity
of this formulation, and has not been implemented.

The two sub-optimal, but simple and highly parallel techniques of uniform and proba-
bilistic transformation sampling are approximate methods to finding regions of TPS defin-
ing large feasible matchings. Experiments indicate that these techniques are effective in
finding correct matching and transformation hypotheses. In particular, the uniform sam-
pling technique produces correct hypotheses sufficient for recognition even with coarse
sampling intervals. Thus the computational resources required are reasonable, and the

algorithm is practically realizable on existing parallel machines.
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Appendix A

The expand-vector, outer-product, and generalized-histogram operations illustrate some
interesting and powerful parallel operations. It is interesting to consider their implemen-

tations in terms of elementwise, scan, permute, and sort primitive operations.

Expand Vector

The expand-vector(A,K) function takes a vector A of data objects, and an equal sized
vector of integers K, and returns a new vector where each element A[i] is represented in
K[i] contiguous vector elements of the result. The new vector has length 3°; K[i]. The
complimentary function expand-vector-index returns a vector of integers assigning a zero-
based index to each copy of a particular element A[i] determining its position in the segment
of copies. The first step is to form a vector A; where each element A[i] of A is represented
with K[7] — 1 empty elements after it. This is done by perfoming a +-scan on the vector K
to determine the total number vector elements that will be below A[i] in the new expanded
vector, then dispersing A by permuting according to this cumulative sum. The K[i] — 1
empty elements after each permuted element A[] are filled in by perfoming a segmented
first-scan on the segments thus defined. The first-scan function simply copies the first
element in a segment to all the others in a segment. In the following example, A, forms

the result of expand-vector, and Index the result of expand-vector-index.

A = [a0 a1 a2 a3
K = [2 3 2 1]
Ay = [ao ai as aa]
S = [T F T F F T F T]
A; = first-scan(A4,S) = [a0 a a1 a1 a ay ay ag
Index = [0 1 0 1 2 0 1 0
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Outer Product

The outer product is analogous to the Cartesian product of two sets {< aib; >} =
{a;} x {b;}, taking two vectors as input and returning a vector whose elements consist
of all possible pairs of elements in the original two vectors. As an example, if A represents
a vector of length m of model features, and B represents a vector of length n of image
features, the outer product is a vector of length mn whose elements are all pairs of the
elements of A and B. The outer product is implemented using a constant number of
permutation and scan operations. The first step is to perform expa nd-vector(A, N), and
expand-vector(B, M), where N is a vector whose elements are all n, of length equal to A,
and M is a vector of length equal to that of B whose elments are all m. This forms two
vectors consisting of n copies of each element of A, and m copies of each element of B. The
last step is to permute the elements of B to align all pairs of elements at the same index.
To do this B[é] is permuted to index j = n(i mod m) + |£] to form Bas.

A = [ao a1 a2

N = 4 4 4

A, = expand-vector(A,N) = [ao a @ @ a a1 a1 G a3 G a as)
B = [bo b b2 b3

<
I

3 3 3 3
.82 = expand-vector(B, M) [bo bo bo bl bl bl b2 b2 b2 b3 b3 b3]
B3 = permute Bg = [bo b1 bg b3 bo bl bg b3 bo b1 b2 b3]

As = [ao a a @ a1 a1 a a ax ax a as)

Generalized Histogram

The histogram maps a vector of keys, K, to a new vector H, where any two elements of
K, k; and k;, are mapped to the same element of H iff k; = k;. This equivalence relation
defines a partition of the elements of K. Let A be an arbitrary data vector where the
elements of A and K are in one-to-one correspondence, thus |A| = |K|. The same mapping
of K to H also defines a partition of the elements a; of A. Let a; represent the equivalence
class of element a;. Further, let ¢(&;) be a function ¢ : {@;} — R on the set {a;} € a..
The generalized histogram takes as inputs K and A. The result vector, G, is defined as
follows. G[i] = #(a;) where @; is the equivalence class of the element a; corresponding to
element k; of K.

When ¢ is a binary associative operator, the generalized histogram can be implemented

efficiently using scans and permutations. First, the vector K is sorted, and equal elements
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arranged in contiguous vector elements. The vector A is permuted exactly as K was in
sorting, so elements of A and K remain in correspondence. A vector of segment flags is
constructed delineating each contiguous segment of equal elements of K. A segmented
scan of the elements of the permuted A, using these segments, is computed using scan
functions to compute ¢ for each segment with another first scan. The result accumulates
in the last element of the segment, and is copied back over the segment. The final result is
formed by taking the result of these scans and permuting back to the original ordering of

K, completing the generalized histogram.
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