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A central goal of mathematical linguistics is to precisely determine the power of a
linguistic theory. Traditionally, formal language theory (the Chomsky hierarchy)
and its generative power analyses have translated this question into the narrower
question of how unrestricted the rule format of a theory is. Modern computational
complexity theory offers another, more useful, translation: how much of what com-
putational resources does a theory consume? Complexity theory also offers a new
perspective on descriptive adequacy. In a descriptively adequate linguistic theory,
the structural descriptions and computational power of the theory match those of
an ideal speaker-hearer.

The primary goal of this essay is to demonstrate how considerations from com-
putational complexity theory can inform grammatical theorizing. To this end,
the essay revises generalized phrase structure grammar (GPSG) linguistic theory
so that its computational power more closely matches the limited computational
ability of an ideal speaker-hearer. A second goal is to provide a theoretical frame-
work within which to better understand the wide range of GPSG models that have
appeared in the theoretical and computational linguistics literature, embodied in
formal definitions as well as in implemented computer programs.

The essay begins with an outline and intuitive complexity analysis of the GPSG
formal system of Gazdar, Klein, Pullum, and Sag (1985). Subsequently, revisions
to the formal system are motivated by complexity and generative concerns. The
revised system is presented along with a detailed account of topicalization, expletive
pronouns, and parasitic gaps. An extensive RGPSG for English is included in
an appendix. This work falls within the GPSG approach to linguistics. Revised
GPSG is, however, less opaque, more tractable, and more linguistically constrained
than standard GPSG theory: GPSG Recognition is EXP-POLY time hard, while
RGPSG Recognition is NP-complete.
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1 Introduction and Motivation

A linguistic theory specifies a computational process that assigns structural
descriptions to utterances. This process requires certain computational re-
sources, such as time or space. In a descriptively adequate linguistic the-
ory, the computational resources used by the theory match those used by
an ideal speaker-hearer. In this essay, I explain exactly how computational
complexity analysis can be used to revise generalized phrase structure gram-
mar (GPSG) so that its computational power more closely corresponds to
the limited ability of an ideal speaker-hearer. This work falls within the
GPSG approach to linguistics, as presented in Gazdar, Klein, Pullum, and
Sag (1985), GKPS hereafter. Revised GPSG is, however, less opaque, more
tractable, and more linguistically constrained than GPSG: GPSG Recogni-
tion is EXP-POLY time hard, while RGPSG Recognition is NP-complete.

Computational complexity theory measures the intrinsic lower-bound
difficulty of obtaining the solution to a problem no matter how the solution
is obtained. It classifies problems according to the amount of computa-
tional resources (for example, time, space, electricity) needed to solve them
on some abstract machine model, typically a deterministic Turing machine.
Complexity classifications are invariant across a wide range of primitive
machine models, all choices of representation, algorithm, and actual imple-
mentation, and even the resource measure itself. For linguists, complexity
analysis provides a new answer to the central question of formal linguistics:
how powerful is a linguistic theory? For computational linguists, it provides
a precise implementation-independent cost measure necessary for informed
parser engineering.

The bulk of this essay is devoted to informally identifying what com-
putational resources are used by GPSG theory, and determining whether
they are linguistically necessary. GPSG contains five formal devices, each
of which is used to model some linguistic phenomenon or ability, and each
of which requires certain computational resources. I identify those aspects
of each device that cause intractability and then restrict the computational
power of each device to more closely match the (inherent) complexity of the
phenomenon or ability it models. This method reveals the tension between
descriptive adequacy and explanatory power that, when precisely focused by
complexity analysis, I find fascinating. The remainder of the essay presents
the new formal system and exercises it in the domain of topicalization, ex-



pletive pronouns, and parasitic gaps. The conclusion places this work in
perspective in mathematical linguistics.

In my opinion, the primary value of this work lies in the result (revised
GPSG, or RGPSG) as well as in its use of complexity analysis to under-
stand and improve a major linguistic theory. RGPSG is of value both to
linguists and computational linguists because it is more tractable and easier
to understand, use, and implement. It can be efficiently implemented and
appears to have better empirical coverage that its GPSG ancestor, in addi-
tion to fixing some errors in GKPS. It would be informative for the reader
to compare this work to other “revised GPSGs,” such as the head-driven
phrase structure grammar of Pollard (1984) and the unification categorial
grammar of Zeevat, Klein, and Calder (1987).



2 The GPSG Formal System

A GPSG is a formal model of linguistic competence. As a linguistic model,
it must encode linguistically significant relations, such as domination and
predication, and it must constrain their distribution. And, as it is formal, the
model must be perfectly explicit. This section outlines the GPSG formal
system, as presented in Gazdar, Klein, Pullum, and Sag (1985), GKPS
hereafter, and explains how abstract linguistic relations are formally encoded
in GPSG, and how these relations are formally constrained.

2.1 Overview of GPSG Formalisms

From the perspective of classic formal language theory, a GPSG may be
thought of as a grammar for generating a context-free grammar. The genera-
tion process begins with inmediate dominance (ID) rules, which are context-
free productions with unordered right-hand sides. An important feature of
ID rules is that nonterminals in the rules are not atomic symbols (for ex-
ample, §P). Rather, GPSG nonterminals are sets of [feature feature-valuel
pairs. For example, [¥ +] is a [feature feature-value] pair, and the set
{[N +1,[v -1, [BAR 2]} is the GPSG representation of a noun phrase.!
Next, metarules apply to the ID rules, resulting in an enlarged set of ID
rules. Metarules have fixed input and output patterns containing a distin-
guished multiset variable W in addition to constants. If an ID rule matches
the input pattern under some specialization of the variable W, then the
metarule generates an ID rule corresponding to the metarule’s output pat-
tern under the same specialization of W. For example, the passive metarule

VP - W, NP
]} (1)
VP[PAS] — W,(PPIbyl)

says that “for every ID rule in the grammar which permits a VP to dominate
an NP and some other material, there is also a rule in the grammar which
permits the passive category VP [PAS] to dominate just the other material
from the original rule, together (optionally) with a PP[by]” (GKPS:59).

! Although syntactic categories in GPSG are not atomic symbols, they are traditionally
abbreviated (up to ambiguity) by atomic symbols such as “NP” (as explained below),
which has confused some readers.



Below we use the finite closure problem to determine the cost of applying
metarules in this manner. Principles of universal feature instantiation (UFI)
apply to the resulting enlarged set of ID rules, defining a still larger set of
phrase structure trees of depth one (local trees). One principle of UFI is
the head feature convention, which ensures that phrases are projected from
lexical heads. Informally, the head feature convention is GPSG’s X'-theory.
We will use the category projection problem to determine, in part, the cost
of mapping ID rules to local trees. Finally, linear precedence statements are
applied to the instantiated local trees. LP statements order the unordered
daughters in the instantiated local trees. The ultimate result, therefore,
is a set of ordered local trees, and these are equivalent to the context-free
productions in a context-free grammar. The resulting context-free grammar
derives the language of the GPSG.

From the perspective of a linguist, GPSG theory contains five language-
particular components: immediate dominance rules, metarules, linear prece-
dence constraints, feature co-occurrence restrictions (FCRs), and feature
specification defaults (FSDs).2 GPSG theory also provides four language-
universal components: a theory of syntactic features, principles of universal
feature instantiation, principles of semantic interpretation, and formal re-
lationships among various components of the grammar. In this section, I
provide a brief and linguistically motivated overview of the theory.

2.2 Syntactic categories

In current GPSG theory, syntactic categories (nonterminals) encode ab-
stract linguistic relations and properties as feature-value pairs. Categories
encode subcategorization, agreement, unbounded dependency, predication,
and other syntactically significant relations. If a relation is true of two
categories in a phrase structure tree, then the relation will be encoded in
every category on the unique path between the two categories. For example,
the feature SLASH encodes the gap—filler (unbounded dependency) relation.
Therefore, every category on the path from a gap to its filler will have a
SLASH feature whose value is the category of the filler. Similarly, categories
that are assigned nominative case by a sister category in a local tree will
have a CASE feature whose value is NOM.

2The following description of the GPSG formal system is taken with substantive mod-
ifications from Barton, Berwick, and Ristad (1987).



More formally, GPSG categories are partial functions that map features
to atomic feature values or to syntactic categories. Categories may also
be thought of as sets of feature specifications. A feature specification is a
pair [feature feature-valuel where feature is an atomic symbol and feature-
value is either an atomic symbol or a syntactic category. Thus, [N +] indi-
cates that the atomic-valued “nominal” feature has the “+” value, while
[sLasH {[BAR 2]}] indicates that the “slash” feature has the category
{[BAR 2]} asits value. In the GPSG system, the feature set {[§ +]1, [V -], [BAR 2]}
represents a noun phrase, { [N -], [V +], [BAR 2], [SUBJ -]} is a verb phrase,
and {[N -1, [V +], [BAR 2], [SUBJ +]} is a verb phrase with a subject, or
a clause. Some features are morphologically realized; for example, in the
GKPS grammar for English, a category bearing the feature specification
[PFORM with] is a prepositional category headed by the preposition with.

I adopt the abbreviatory conventions found in the GPSG literature: syn-
tactic categories may be abbreviated up to ambiguity. Thus, a noun phrase
containing the additional feature specifications [CASE NOM] and [POSS +]
might written NP[CASE NOM,P0SS +] or even as NP[NOM,+P0SS] because
the atomic feature-value NOM may only be associated with the CASE feature.
The category-valued SLASH feature is abbreviated with a trailing slash (‘/?)
character: VP[VFORM PAS,SLASH NPF] is usually written VP[PAS]/NP. A
numerical value appearing inside square brackets ([32], for example) de-
notes a SUBCAT value, while a numerical value that precedes a set of square
brackets is a BAR value. For example, the category V0[2] abbreviates the
category {[¥ -1, [V +], [BAR 0], [SUBCAT 2]}.

The set K of syntactic categories is specified inductively by listing a set
Feat of features, a set Atom of atomic-valued features, a set A of atomic fea-
ture values, a function p that defines the range of each atomic-valued feature,
and a set R of restrictive predicates on categories (feature co-occurrence re-
strictions). The category-valued features in (Feat — Atom) allow categories
to be freely contained within other categories, subject to FCRs (below) and
the restrictive principle of finite feature closure, which prevents a category-
valued feature f from taking categories in which f already appears. That
is, the feature specification [f C] is legal only “if f is not in the domain
of C, or in the domain of any C' contained in C, at any level of embed-
ding” (GKPS:36).

A category C) eztends a category C; (written C; 1 C;) if and only
if two conditions hold. For every atomic feature specification f in C,



it must be true that Cy(f) = C:2(f), and for every category-valued fea-
ture specification f in C3, it must be true that C1(f) 2 Ca(f). For ex-
ample, {[¥ +],[V -], [BAR 2],[P0SS +]} O NP, and VP 2 S because
VP([suBJ]) # S([suBJl).

2.3 Marking Conventions

As one might imagine, not every set of feature specifications that satisfies
finite feature closure is a possible syntactic category. For example, there
are no passive prepositional phrases, and a noun phrase cannot bear the
[PFORM with] specification, which is reserved for prepositional categories.
These constraints are expressed through feature co-occurrence restrictions
(FCRs) and feature specification defaults (FSDs), which are marking con-
ventions used in the GPSG system both to express language-particular facts
and to restrict the overgeneration of other formal devices (both metarule and
feature closure). FCRs and FSDs are restrictive predicates on categories,
constructed by Boolean combination of feature specifications. All legal cate-
gories must unconditionally satisfy all FCRs. All categories must also satisfy
all FSDs, if it is possible to do so without violating an FCR or a principle
of universal feature instantiation. For example,

FCR 1: [I8V +] D (TAUX +] A [VFORM FIN])

requires any category that bears the [INV +] feature specification to also
bear the specifications [AUX +] and [VFORM FIN].

2.4 Immediate Dominance/Linear Precedence

GPSG’s immediate dominance/linear precedence format factors out two in-
dependent relations that compose phrase structure. An ID rule is a context-
free production

Co — C1,C3,...,Cp

whose left-hand side (LHS) is the mother category and whose right-hand
side (RHS) is an unordered multiset of daughter categories, some of which
may be designated as head daughters. The LHS immediately dominates the
unordered RHS in a tree of depth one (a local tree).



An LP statement is a pair of category predicates
P, < Py

that requires a category C; in a local tree to precede it’s sister C; if C; sat-
isfies P; and C} satisfies P;. A predicate is a Boolean combination (&, v, )
of truth-values and feature specifications such that if a category C bears or
extends a given feature specification, that feature specification is true of C,
else false. For example, the LP statement

[SUBCAT] < ~[SUBCAT]

requires categories bearing a SUBCAT specification to precede categories un-
specified for SUBCAT (that is, lexical categories must precede nonlexical cat-
egories). This LP statement requires lexical heads to precede their com-
plements, and thereby represents the setting of the “head” parameter for
English.

The primary advantage of the ID/LP format stems from its partial de-
coupling of two independent linguistic relations (see McCawley 1982 for
arguments that these relations are in fact independent): by decoupling the
two relations, GPSG can express the head parameter and capture some
free-word order facts.

2.5 Metarules

Metarules are lexical redundancy rules. Formally, they are functions that
take lezical ID rules—ID rules with a lexical head-—to sets of lexical ID rules.
Metarules have a fixed input ID rule pattern containing a mother category,
at most one daughter category, and a distinguished multiset variable W.
W ranges over multisets of daughter categories. If an ID rule matches the
input pattern under some extension of the two pattern categories and some
specialization of the variable W, then the metarule generates an ID rule
corresponding to the metarule’s fixed ID rule output pattern under the same
extension of pattern categories and same specialization of W. See the GKPS
passive metarule above. The GKPS grammar for English includes metarules
for subject-aux inversion, extraposition, and transitivity alternations.

The complete set of ID rules in a GPSG is the maximal set that can
be arrived at by taking each metarule and applying it to the set of rules
that did not themselves arise from the application of that metarule. This



maximal set is called the finite closure FC(M,R) of a set R of lexical ID
rules under a set M of metarules.

2.6 Local trees

The ID rules obtained by taking the finite closure of the metarules on the
_ID rules are projected to local phrase structure trees. Abstractly, this pro-
cess establishes the connection between those relations encoded in ID rules
(for example, domination, subcategorization, case, modification, and predi-
cation) and the nonlocal linguistic relations (for example, gap—filler, agree-
ment, and wh-element scope). Local trees are projected from ID rules by
mapping the categories in a rule into legal extensions of those categories in
the projected local tree.

Co—C1,C2,...,Ch

projects to the local tree
Co

4 (4 !
a1 2 k

where for all 7 from 0 to k, C} extends C;. Because the RHS of an ID rule is
unordered, the C! could appear in any order (subject to linear precedence
constraints).

Principles of universal feature instantiation (UFI) constrain this projec-
tion by requiring categories in a local tree to agree in certain feature specifi-
cations when it is possible for them to do so. For example, the head feature
convention (HFC) requires the mother to agree with all head features that
the head daughters agree on, if agreement is possible. The HFC expresses
X'-theory in part, requiring a phrase to be the projection of its head. It also
plays a central role in the GPSG account of coordination phenomena, re-
quiring the conjuncts in a coordinate structure to all participate in the same
linguistic relations with the rest of the sentence. The two other principles
of UFI are the control agreement principle and the foot feature principle.
The control agreement principle represents the GPSG theory of predicate—
argument relations. Informally, it requires predicates to agree with their



arguments (for example, verb phrases must agree with their subject NPs in
English). The foot feature principle provides a partial account of gap—filler
relations in the GPSG system, including parasitic gaps and the binding facts
of reflexive and reciprocal pronouns; it plays a role strikingly similar to that
of Pesetsky’s (1982) path theory and Chomsky’s (1986) binding and chain
theories.> The foot feature principle requires foot features instantiated on
the mother to be instantiated on at least one of the daughters, and vice
versa. Thus the FFP ensures that certain syntactic information is not lost.
“Exceptional” feature specifications are those feature specifications in an ID
rule that should agree by virtue of a principle of UFI, but are unable to
without changing a feature specification inherited from the ID rule.

Local trees are further constrained by FSDs, FCRs, and LP statements.
Finally, local trees are assembled to form phrase structure trees, which are
terminated by lexical elements.

Let the features {N,V,BAR} and {NEG,P0SS} be head features and non-
head features, respectively. Let the symbol H mark head daughters. Then
the ID rule

{n -1,Cv +1, [BAR 2]} — H[BAR 0], NP

can project to this local tree:

{(x -1,[v +1, [BAR 2], [NEG -]}

H[N -,V +,BAR 0] NP[POSS +]

In this example, BAR is considered an exceptional feature specification be-
cause the mother’s BAR value (2) conflicts with the head daughter’s BAR value
(0), and it is impossible to resolve the conflict without changing an existing
feature specification.

3The possibility of expressing the control agreement and foot feature principles as
local constraints on nonlocal relations falls out from the central role of c-command, or
equivalently unambiguous paths, in binding theory. Similarly, the possibility of encoding
multiple gap—filler relations in one feature specification of one category, as in the GPSG
analysis of parasitic gaps, corresponds to the “no crossing” constraint of path theory.
Pesetsky (1982:556) compares the predictions of path theory and principles of UFI when
the two diverge in cases of double extraction (for example, a problem that; I know who;
to [o talk to e; about ¢]) from coordinate structures. He concludes that “the apparent
simplicity of the slash category solution fades when more complex cases are considered.”
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3 Classifications of Complexity Theory

This section introduces the powerful tool of modern computational complex-
ity analysis in order to apply it to GPSG theory in the next section. Recall
that computational complexity theory measures the intrinsic lower-bound
difficulty of obtaining the solution to a problem no matter how the solution
is obtained. It classifies problems according to the amount of computational
resources (in our case, time and space) needed to solve them on a given
abstract machine (for example, a deterministic Turing machine).

This paper refers to four complexity classes: P, NP, PSPACE, and EXP-
POLY. Below I provide an intuitive geometric characterization of these four
classes through their equivalence class representatives (computation trees).
The classes are defined algebraically as follows.

3.1 Four Important Complexity Classes

P is the natural and important class of problems solvable in deterministic
Polynomial time, that is, on a deterministic Turing machine in time n’ for
some integer j, where n denotes the size of the problem to be solved.t* P
is considered to be the class of problems that can be solved efficiently. For
example, sorting takes n - logn time in the worst case using a variety of
algorithms, and therefore is efficiently solvable.

NP is the class of all problems solvable in A ondeterministic Polynomial
time. Informally, a problem is in AP if one can guess an answer to the
problem and then verify its correctness, all in polynomial time. For example,
the problem of deciding whether a whole number i is composite is in NP
because it can be solved by quickly guessing a pair of potential divisors, each
less than |'\/?| , and then quickly checking if their product equals 7.

PSPACE is the class of problems solvable in deterministic polynomial
space. PSPACE contains AP because polynomial space allows us to simu-
late an entire AP computation, but it is not known if the inclusion is proper.
Intuitively, PSPACE is the class of combinatorial two-person games: it in-
cludes the problems of winning generalized versions of Checkers, Go, and
Parker Brothers’ Instant Insanity(TM). Many problems in formal language

*Problems must be encoded in a “reasonable” way for a size measure to make sense;
for discussion, see Garey and Johnson (1979).
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theory are known to be PSPACE-complete, such as context-sensitive lan-
guage recognition and finite state automaton inequivalence and intersection.

Finally, EXP-POLY is the class of problems solvable in deterministic
time O(cf(™) for any constant ¢ and polynomial f(n) in n. This class
includes PSPACE, and all exponential time problems, and so includes prob-
lems that are provably intractable. No natural problems are known to
be EXP-POLY-complete, although the universal recognition problem for
GPSGs may be.

We say a problem T is C-hard (with respect to polynomial time reduc-
tions) if T is at least as hard computationally as any problem in the com-
plexity class C: if we had a subroutine that solved T in polynomial time,
then we could write a program to solve any problem in C in polynomial time
on a deterministic Turing machine (essentially by efficiently transforming
the problem in C to T and then solving T with the fast subroutine). Note
that T need not be in C to be C-hard. A problem is C-complete if it is both
C-hard and included in C.

NP-complete problems can be solved only by methods too slow for even
the fastest computers. Since it is widely believed, though not proved, that
no faster methods of solution can ever be found for these problems, NP-
complete problems are considered the easiest hard problems.® However,
some NP-complete problems have highly efficient near-optimal solution tech-
niques, and some have good average-time behavior, that is, the instances
that occur most often can be efficiently solved. Exponential time-hard prob-
lems, on the other hand, do not succumb to these clever methods. As an
anonymous reviewer noted, this apparent gap between theoretical and prac-
tical intractability does not invalidate complexity analysis. Rather, it makes
complexity analysis all the more valuable as a necessary first step on the path
to efficient solution techniques. And, as is the case here, the only way to
eliminate unnecessarily powerful aspects of a formal system such as GPSG
is to use complexity theory.

Complexity classifications are established with the proof technique of re-
duction. A reduction converts instances of a problem T of known complexity
into instances of a problem § whose complexity we wish to determine. The
reduction operates in polynomial time (and in logarithmic space if T is in

For additional details, the reader may refer to Lewis and Papadimitriou (1978); Garey
and Johnson (1979); or Barton, Berwick, and Ristad (1987). This last work concentrates
on the relationship between computational complexity and natural language.
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P). Therefore, if we had a polynomial time algorithm for solving S, then
we could also solve T in polynomial time, simply by converting instances
of T into S. (This follows because the composition of two polynomial time
functions is also polynomial time.) For instance, if we choose T to be NP-
complete, then the polynomial time reduction from T to S shows that § is
at least as hard as T, or NP-hard. If we were also to prove that § was in
NP, then § would be NP-complete.

3.2 Four Classes of Computation Trees

In this paper, the problems of known complexity are based on a class of
bounded computation trees. A computation tree is a possibly infinite tree
of OR-nodes and AND-nodes, each of which contains a Turing machine
configuration. That is, each node contains a state, tape contents, and a head
position. A configuration C' immediately dominates its successors—those
configurations reachable in one machine step from C. Each computation
tree completely represents the actions of a given alternating Turing machine
on a given input, as explained in appendix A.1l.

We are particularly interested in the four classes of computation trees
that correspond to the complexity classes P, AP, PSPACE, and EXP-
POLY. These four classes of computation trees are defined by restrictions
on space (that is, configuration size), tree depth (depth is a proxy for time),
and the type of branching allowed (see figures 1-4). By providing this con-
ceptual typology, I hope to provide the reader with an intuitive, functional
understanding of complexity classification.

Computation Tree for P. The computation tree for P is simply a
straight line containing a polynomial number of configurations (see figure 2).
To see why, consider the sequence of configurations a deterministic Turing
machine moves through on its way to successfully recognizing an input string
z within a polynomial time bound p(|z|). The machine starts in some ini-
tial configuration Co (read head at some starting position, blank read/write
work tape, input z written on read-only input tape, and finite-state con-
trol in an initial state). Then, because it is deterministic, it moves through
configurations Cy, C3, and so forth until it reaches a final (accepting) config-
uration. We may therefore picture the configuration sequence as a straight
line. The machine recognizes the input string z if and only if such a deriva-

13



Complexity Computation Tree Restrictions
Class

Depth | Space | Branching
P polynomial | polynomial none
NP polynomial | polynomial OR
PSPACE polynomial | polynomial | AND/OR
EXP-POLY unbounded | polynomial | AND/OR

Figure 1: The complexity classes P, AP, PSPACE, EXP-POLY are characterized
by computation trees with restricted depth, space, and branching.

tion sequence exists.

A polynomial time DTM computation can use at most polynomial space,
and therefore the configurations themselves may require polynomial space
to represent their tape contents.

Computation Tree for /P. The computation tree for NP is an OR-
tree of polynomial depth (see figure 3). This is so because an accepting
computation sequence for a polynomial-time-bounded nondeterministic TM
looks like an OR-tree of polynomial depth that is rooted at the initial con-
figuration Cy. At any step, the machine can take one of a finite number of
nondeterministic branches, leading to new next-state configurations; these
configurations in turn may branch. A computation succeeds if there is any
path from the root Cy to a final (accepting) configuration somewhere on the
fringe of the tree. It is possible that some of these paths may fail or never
terminate, but for the machine to recognize an input, only one sequence
needs to reach an accepting configuration after some finite number of steps.
There is another way of saying the same thing. We may imagine that a final
configuration labels itself true, while any other node propagates the value
true upward if any daughter has it. Then the computation succeeds if the
root somehow ever becomes labeled true. In this picture, all the tree nodes
are OR-nodes because a node gets labeled true if any of its daughters is
labeled true. Again, each configuration requires no more than polynomial
space to write down.

14



Figure 2: The computation tree for P is simply a straight line containing a poly-
nomial number p(n) + 1 of configurations.

Computation Trees for PSPACE and EXP-POLY. The computa-
tion tree for PSPACE is an AND/OR tree of polynomial depth, while the
computation tree for EXP-POLY is an AND/OR tree of unbounded depth
and polynomial size. Levels of AND-nodes and OR-nodes alternate in an
AND/OR tree. (As before, an OR-node is labeled true if any of its daugh-
ters are labeled true, but an AND-node is labeled true only if all of its
daughters are labeled true.)

These equivalences are due to a famous theorem of Chandra, Kozen and
Stockmeyer (1981) which relates space and depth in AND/OR computation
trees to depth and space in nonbranching computation trees.® Their the-
orem states (i) that unbounded depth AND/OR computation trees using
space s(n) are equivalent to nonbranching computation trees of depth ¢*(*),
for some constant ¢, and (ii) that depth d(n) AND/OR computation trees
are equivalent to nonbranching computation trees using space d(n). An
earlier result is that OR computation trees are equivalent to nonbranching
computation trees when both are allowed unbounded depth and polynomial
space.

It is important to realize that restrictions on size, depth, breadth, and
branching interact: the beauty of the Chandra-Kozen—Stockmeyer result

$The theorem was first published in 1976, in Proceedings of the 17th Annual Symposium
on Foundations of Computer Science, on pages 89-108.
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Figure 3: A computation tree for AP is an OR-tree of polynomial depth. The
computation succeeds if any accepting state can be reached, as indicated by the
OR-symbols (V) in the tree nodes. Here, the accepting state is symbolized by a
large dot and the accepting path is marked by a dark line. There could be more
than one accepting state.

is that it relates these seemingly independent restrictions. For example, a
depth d(n) computation tree cannot use more than space d(n) because a
Turing machine can access at most one tape square per move; and a depth
d(n) bounded AND/OR computation tree can have breadth proportional to
¢¥™) for some constant c.

In the next section, we define four problems that give insight into the
computational structure of GPSG theory. To determine the complexity of
these problems, we will try to find a structural equivalence between one of
our four classes of computation trees and the GPSG problem §. Without
loss of generality, we restrict our attention to binary branching computation
trees. For our purposes, a structural equivalence is a polynomial time reduc-
tion, that is, an efficient algorithm for converting a class T of computation
trees into our problem S. By finding such an equivalence between a class T
of computation trees and our problem, we will have efficiently reduced T to
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Figure 4: PSPACE and EXP-POLY computation trees are polynomial space
bounded AND/OR trees. PSPACE computation trees have polynomial depth,
while EXP-POLY trees have no depth bound. The subcalculation at an OR-level
(V) succeeds if any of its daughters succeed just as in figure 3, but the subcal-
culation at an AND-level (A) does not succeed unless all of its daughters do. In
this tree, accepting states are symbolized by large dots and the essential branches
of the computation—making up a pruned computation tree—are marked by dark
lines. Note that the rightmost daughter of Cy is an AND-node, which requires
every daughter to succeed.







4 Sources of Intractability in GPSG

This section applies our newly minted reduction technique based on compu-
tation trees to the GPSG formal system, and thereby aspires to reveal the
essential intuitive character of GPSG’s complexity.

We begin by examining the computational complexity of two components
of the GPSG formal system (metarules and the feature system) and show
how each of these systems can lead to computational intractability. Then we
prove that the universal recognition problem for GPSGs is EXP-POLY hard,
and hence assuredly intractable. In another words, the fastest recognition
algorithm for GPSGs can take more than exponential time.

These results may appear surprising, given GPSG’s weak context-free
generative power. The goal of this section is to resolve this apparent para-
dox and answer the important computational and linguistic questions raised
by the proofs: why GPSG-Recognition is so difficult, what aspects of the
GPSG formalisms cause intractability, and whether they are linguistically
necessary.

4.1 Introduction to GPSG Complexity

The GPSG’s intractability is rooted in its formal attack on the very real
problem of descriptive adequacy. In GPSG, formal devices overgenerate
in order to capture the vast array of cross-linguistic phenomenon, and then
constrain the overgeneration to capture exactly the phenomenon of a chosen
natural language. Thus, one might almost be able to write one GPSG that
simultaneously generated all natural languages. Furthermore, the compo-
nents of GPSG theory can interact with each other in very powerful ways.
For example, one can write ID rules that can access the same linguistic
relations that UFI does, and thereby affect the operation of UFI.

The final issue I touch on before launching into a complexity analysis
of the GPSG formal system is how we might best choose computational
problems with which to study the GPSG formal system.

The power of a linguistic theory must be known precisely in order to meet
the competing demands of descriptive adequacy and explanatory power, and
to fully understand the theory. This fundamental question in mathematical
linguistics is answered by measuring the power of the grammars licensed by a
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linguistic theory. The power of a grammar is the difficulty of characterizing
its output. The corresponding formal problem is the recognition problem
(RP): Is a given string in a given language or not? Alternately, defining
the output of a grammar to be a set of structural descriptions results in
the parsing problem: what structural descriptions are assigned by a given
grammar to a given string?

A language may be characterized in extension, by all the grammars that
generate it, or constructively, by a particular grammar that generates it. In
the first case, the fized language RP (FLRP) is posed: Given an input string
z, is z in L for some fixed language L? It does not matter what grammar
generates L: both grammar and langauge are fixed (that is, ignored) in the
problem statement. In the second case, the grammar is of interest, and the
universal RP (URP) is posed: Given a grammar G and an input string z,
is z in L(G)? Because the URP determines membership with respect to
a particular grammar, it more closely models the parsing problem, which
must use a grammar to assign structural descriptions.

A central goal of this work is to expose the structure of the computations
specified by GPSG models. In scientific analysis, we strive to make the
assumptions and generalizations that give the best insights, and hence chose
our computational problems by the same criterion. The FLRP does not lead
to any insights, and therefore we choose to study the gross power of the
GPSG formal system using the URP. Barton, Berwick, and Ristad (1987),
hereafter BBR, defends the a priori desirability of this choice.

In order to obtain still sharper insights, we must pose computational
problems that capture the detailed internal organization of the GPSG for-
mal system,; for these insights to be relevant, our problems must be problems
that GPSG was “designed” to solve. Recall that the process of assign-
ing structural descriptions to utterances consists of two conceptual steps in
GPSG: the projection of ID rules to local trees and the derivation of ut-
terances from nonterminals, using the local trees. For these reasons, our
complexity analysis begins by analyzing the complexity of two subproblems
of GPSG projection (category projection and metarule finite closure) and

one subproblem of derivation (unordered local tree recognition), and ends
by analyzing the URP for GPSGs.

The complexity results are established by first exhibiting a structural
equivalence between a computation tree and a GPSG formal object (for
example, a category or parse tree) and then showing how the GPSG object
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can be specified in polynomial time by the reduction. For each reduction, I
attempt to explain the complexity results in terms of excesses in the GPSG
formalisms, and motivate computational restrictions on those formal devices.
The success of the next section’s attempt to improve GPSG’s computational
and linguistic properties depends crucially on this section’s success in tracing
the complexity results directly back to fine details of the structure of the
formal system.

Three caveats are in order. First, it is difficult to translate a precise
mathematical proof into a more easily understood conceptual argument
without introducing ambiguity and apparent inconsistency. Although I have
strived to minimize such contagion, it surely exists, and the alert disgruntled
reader is urged to seek out the formal proofs, some of which may be found
in the appendices to this essay, and others in chapters 6-8 of BBR.

Second, in the GKPS grammar for English, syntactic categories are based
on fixed sets and a fixed function p given in an appendix to their work. As
such, the set K of permissible categories specified in GKPS is finite, and
a large table containing K could, in principle, be given. This suggestion is
of no practical significance because the GKPS category system contains at
least 107" categories (Ristad 1986:31). In order to better understand the
computational structure of GPSGs, we must prevent such an uninformative
solution. To do this, we must generalize the system of GKPS to an infinite
class of GPSGs where each GPSG in the class is of finite size, containing
a fixed set of ID rules, a fixed set K of syntactic categories, and so forth.
Every GPSG constructed by a reduction is finite with fixed set K—none
have an infinite or unbounded number of features or feature values. These
generalizations are uncontroversial in theoretical computer science.

Third, for each of the four problems discussed below, many other for-
mal restrictions would suffice to eliminate the intractability they pinpoint.
For example, all parts of the GPSG projection operation can be arbitrarily
bounded by (large) constants, in which case the projection operation could
in principle be performed in constant time, although the constant could
be large enough to prevent any physically realizable computer from ever
calculating the projection operation. I focus on linguistically plausible re-
strictions with practical consequences, and defend the anointed restrictions
in the next section.
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4.2 Category Projection

To understand how FCRs and FSDs affect the cost of projecting ID rules
to local trees, we define the category projection problem as follows. Let
Feat be a set of feature-names, Atom a set of atomic-valued feature-names,
A a set of atomic feature-values, and p a function from Atom to A. In the
category projection problem, we are given a category C, a set R of FCRs,
and a 4-tuple (Feat, Atom, A, p) that specifies a set K of syntactic categories.
The problem is to decide if the category C or any legal extension of C is in
the set K. This problem will help us understand the effects of FCRs on the
GPSG projection operation.

Alternately, if we were not interested in ID rule projection or about how
FCRs interact with the rest of the GPSG formal system, we might study the
trivial category verification problem, which is to decide if a given category
C satisfies a given set of FCRS, as Gazdar et.al. (1988) have done.

Theorem 1 Category Projection is PSPACE-hard.

Proof. GPSG categories can easily be understood as trees. The atomic-
valued features in a category represent a node in the tree, and a category C
dominates its embedded categories—that is, C immediately dominates all
categories C' such that for some category-valued feature f, C(f) = C'. For
example, the GPSG category

V2[AGRS/ NP[3p])/ NP[3s]

corresponds to the tree

{BAR 2,SLASHe—— NP[3p]

/ V+,N-,SUBJ+}
{AGR

SLASH e———— NP[3s]
V+,N-,BAR 2}

In our reduction, then, we can use categories to represent a binary
branching AND/OR computation tree. 0-level categories represent the nodes
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of the computation tree: atomic-valued features f;, fa,..., fn encode the ma-
chine state, tape contents, head position, branching type, and truth value.
Category-valued features encode domination in the computation tree: the
two category-valued features LEFT: and RIGHT: represent the left and right
branches of the computation tree at level i. For example, in the entire
category Cj constructed by our reduction, the top-level 0-category encodes
the root node of the computation tree, and the the values Cy(LEFT1) and
C1(RIGHT1) encode the left and right branches, respectively, of the root node
(initial configuration). Although the category C; is undefined for any other
category-valued features, the immediately embedded categories Cy(LEFT1)
and C1(RIGHT1) are each defined for exactly two category-valued features:
LEFT2 and RIGHT2. Continuing in this manner, we will need exactly two
category-valued features for each level, to represent the two of subtrees im-
mediately dominated by each node at a given level:

{fla f2"- -9fn’
[LEFT1 {fla f2’ oo ’fn,
[LEFT2 {...}],
[RIGHT2 {...}]}],

[RIGHT1 {f1, f2s-++ s s
[LEFT2 {...}],

[RIGHT2 {...}]}]}

FCRs maintain the next-move relation between an embedded category C;
at level ¢ and the two categories it immediately contains C;(LEFTi) and
C;(RIGHT:) and calculate the truth labelings of internal nodes according to
branching type.

In order for such a reduction to be polynomial time, we must be able to
write down a a set of FCRs and to specify the set K of syntactic categories in
polynomial time. To specify K, we write down a function p and the sets Feat
of features, Atom of atomic-valued features and A of atomic feature values.
The restriction to polynomial time reductions means we can only construct
a polynomial number of features: because atomic features represent configu-
ration size, we can only represent polynomially-sized configurations; because
category-valued features represent depth and the finite feature closure re-
striction prevents a category-valued feature from dominating itself, we can
only represent polynomially deep computation trees. Therefore, we can use
category projection to simulate any polynomial size and depth AND/OR
computation tree: the category projection problem is PSPACE-hard. []
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Let us now restrict our attention to 0-level categories.
Theorem 2 0-Level Category Projection is NP-hard.

Proof. In order to prove this theorem 2, we must hide an entire depth d(n)
OR computation tree in a 0-level category. Rather than use the entire set
Atom to encode one node of the computation tree (a Turing machine config-
uration) as above, we will use the set Atom to encode the entire pruned OR
computation tree. To do this, we partition the set Atom into d(n) subsets
Atom;, Atoms, ..., Atomy,,), each of size d(n). (Recall that the nodes of a
computation tree can be no larger than the depth of that tree.) The atomic
features in Atom; will encode the i* node of the computation tree. Each fully
specified 0-level category represents a polynomial number of polynomial size
Turing machine configurations, instead of merely one such configuration as
in the preceeding proof. This can be done in polynomial time because a
polynomial times a polynomial is also a polynomial. Finally, a polynomial
number of disjunctive consequence FCRs relate the features Atom; repre-
senting node i to the features Atom;,; representing the successor node i + 1
according to the next-move relation of the OR computation tree.

In such a manner it is possible to hide an entire pruned OR computation

tree in a 0-level category, and prove that the 0-level category projection
problem is NP-hard. []

Note, however, that the proof of this theorem is much clearer when
the NP-complete Satisfiability problem is used instead of a node-bounded
computation tree. Ristad (1986) contains such a proof.

Restricting the Theory of Syntactic Features. As we just saw, the
primary computational resource provided by the theory of syntactic features
is polynomial space. This arises from finite feature closure, which generates
a surprisingly large number of possible syntactic categories. Ristad (1986)
observes that even if all atomic-valued features are restricted to be binary-
valued, finite feature closure admits (3*%) GPSG categories where a is
the number of atomic-valued features and b the number of category-valued
features. In fact, there are more that 107"® categories in the GKPS system.

Fortunately, the full power of embedded categories does not appear to be
linguistically necessary because no category-valued feature need ever contain
another in an ID rule. To be precise, although a category-valued feature f
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may appear inside another category-valued feature g in the parse tree of
some utterance in some language, f will never be required to appear inside
g in a rule of any natural language grammar. In GPSG, there are four
category-valued features: SLASH, which marks the path between a gap and
its filler with the category of the filler; AGR, which marks the path between
an argument and the functor that syntactically agrees with it (between the
subject and matrix verb, for example); WH, which marks the path between
a wh-word and the minimal clause that contains it with the morphological
type of the wh-word; and RE, which marks the path between an anaphor and
its antecedent with the category of the anaphor.

No category-valued feature f need ever contain a category-valued fea-
ture g because (i) for foot features, the path that g marks need never be
extended by the path that f marks: g could just as well cover a longer path
containing both it’s former path and the path of f, and (ii) for the head
feature AGR, the path that f marks need never be dependent on the path a
foot feature g marks. Specifically, RE will not contain a category-valued fea-
ture, because the value of RE is the category of an anaphor and anaphors are
nominals without internal phrase structure. AGR will never contain SLASH
or RE because a functor (verb or predicate) will never select a gap, a con-
stituent containing a gap, or a category that must be an antecedent to some
unknown anaphor as its argument. SLASH need never contain RE because the
path between a gap and it’s filler is never dependent on the path between
an anaphor and its antecedent; SLASH will never be required to contain AGR
because such a category corresponds to “the following imaginary (and rather
weird) case: Suppose we found a language in which finite verb phrases could
be fronted over an unbounded domain provided that they were in the agree-
ment form associated with third-person-singular NP controllers” (Pullum,
personal communication). Finally, because the value of WH is the category
of a wh- noun phrase, and because wh- nominals are never required to con-
tain gaps, WH need never contain SLASH or AGR. In point of fact, no category
embeddings appear in the GKPS grammar for English, and it is difficult to
see why they would be necessary for any other natural language.’

"The central apparent counterexample to these arguments is cases of multiple extrac-
tions (see footnote 3 above). Both GPSG and RGPSG must be modified in order to handle
this phenomenon. One way is to abandon closure constraints on category embeddings, in
order to allow SLASH to take as its value a category specified for SLASH (so-called “recursive
SLASH”). Such a change would, in my opinion, be disastrous because it abrogates feature
closure, a central descriptive and computational constraint in the GPSG category system.
The revised principles of UFI needed to constrain recursive SLASH would, I suspect, be
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Let us now explicitly adopt the strategy of restricting computational
costly devices in the absence of direct linguistic counterevidence. This strat-
egy will result in the most constrained and falsifiable theory. The obvious
revision, then, is unit feature closure: to limit category-valued features to
containing only 0-level categories. This revision makes categories and 0-
categories equivalent for the polynomial time reductions of computational
complexity theory.

Restricting Marking Conventions. Satisfying FCRs and FSDs in the
GPSG category projection process requires significant computational re-
sources. First, each device allows the projection process to reuse the poly-
nomial space provided by the theory of syntactic features, because each can
establish equivalences between the features in a category C and the features
in a category embedded in C. This ability to apply across embedded cate-
gories vastly increases the complexity of the rule-to-tree projection. To see
why it is linguistically unnecessary, consider the role of embedded categories.
A category-valued feature f expresses a nonlocal linguistic relation between
a category C and the one or more connected categories that bear the feature
specification [f CJ. Thus, in the linguistically relevant cases, every embed-
ded category eventually “surfaces” in phrase structure, where the marking
conventions are free to apply. The one exception to this argument is FCR
13 in the GKPS grammar for English, which applies ‘across’ an embedded
category.

FCR 13: [FIN, AGR NP] D [AGR NP[NOM]]
In RGPSG, marking conventions may not apply to or across embedded cat-

egories. The effect of FCR 13 is achieved in RGPSG by a combination of
carefully written ID rules and the simple default SD 2 in section 6.2 below.

very tricky to state. A simpler approach is to allow SLASH to take a strictly bounded
sequence of values, where a category preceeds all categories in the sequence if and only if
its extraction path properly contains their extraction paths. Then the revised FFP might
enforce the path containment condition by limiting ID rules to only affecting (adding or
removing) the last category in the SLASH sequence on a local tree. (That is, feature instan-
tiation in ID rule projection can only add categories to the front of the SLASH sequence.)
A still simpler, although seemingly less elegant, approach is to add a new foot feature, say
SUBSLASH, to encode an extraction path contained inside the extraction path marked by
SLASH.
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Second, FCRs and FSDs of the “disjunctive consequence” form [f v] D
[fi 11V ---V [fn v,] allow us to simulate the next-move relation of an
OR computation tree; from another perspective they compute the direct
analog of the NP-complete Satisfiability problem: when several such FCRs
are used together, the GPSG must nondeterministically try all n feature-
value combinations.

Third, the process of applying feature specification defaults to local
trees is very complex, in part because it is not informationally encapsu-
lated. Rather than simply considering the (existing) feature specifications
in each target category separately, FSD application is affected by the other
categories in the ID rule, all principles of universal feature instantiation, and
even FCRs.

There is no reason to believe that marking conventions need be as pow-
erful and unconstrained as FCRs and FSDs. The approach RGPSG takes
is to virtually eliminate marking conventions. Rather than stating the in-
ternal constraints on categories explicitly (and redundantly), as FCRs do,
RGPSG eliminates FCRs altogether. Instead, the constraints FCRs express
are implicitly stated in the rest of the grammar — in the way ID rules and
metarules are written, for example.

Reducing the power of marking conventions and other grammatical de-
vices might appear to hinder the grammar writer. But we help the grammar
writer understand the consequences of a grammar by reducing the complex-
ity of grammatical derivations: if a supercomputer cannot possibly deter-
mine membership in the language of an intractable grammar, then surely no
human grammar writer can—see appendix A.3 for empirical confirmation.
Evans (1985:213) observes exactly this practical consequence of GPSG’s the-
oretical intractability: “The GPSG theory is complex enough that ensuring
that any but a small grammar behaves as expected is a difficult task.”

4.3 Metarule Finite Closure

In the finite closure membership problem for GPSG metarules, we are given
an ID rule r, a set M of metarules, and a set R of ID rules. The problem is
to decide whether r is in FC(M, R). This subproblem of GPSG projection
will allow us to pinpoint the contribution of metarules to the complexity of
ID rule projection.
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Theorem 3 Metarule Finite Closure Membership is NP-hard.

Proof. The insight underlying the following reduction is that the finite
closure operation specifies an OR computation tree whose nodes are ID
rules, where metarules enforce the next-move relation between adjacent
nodes. The polynomial-time reduction restriction limits us to construct-
ing at most a polynomial number of metarules, while metarule finite closure
restricts each metarule to at most one application in a given computation
tree: metarules by themselves are only capable of simulating a polynomial
depth computation tree. The finite closure operation on metarules gives
the GPSG formal system the power of nondeterminism (OR branching) be-
cause all possible permutations of metarules are applied; using this power,
we can use a metarule system to simulate any polynomial depth OR com-

putation tree. Therefore, the metarule finite closure membership problem is
NP-hard. []

Restricting Metarules. Metarule finite closure generates many linguisti-
cally incorrect ID rules that must be excluded by other GPSG devices, such
as FCRs. For example, the result of applying the Extraposition, Passive,
and Subject-Aux Inversion metarules in order to the lexical ID rule 2

VP[AGR S] — H[20], NP (2)
is the lexical ID rule 3,
S[+INV, PAS, AGR NP[itl]l — H[20],S,NP,(PP[byl) (3)

which does not generate sentences in the English language and (thankfully)
is excluded by FCR 1.

The GKPS grammar for English contains six metarules; out of approxi-
mately 1944 possible metarule interactions in principle, only two such inter-
actions appear to be productive (passive followed by subject-aux inversion
or slash termination metarule 1).8 Therefore, the second metarule restric-
tion adopted by RGPSG is biclosure, instead of finite closure. Alternately,

$Given a set of n metarules, the number of possible metarule interactions is the number
of ways to pick n or less metarules from the set, where order matters and repetitions are
not allowed. That number is given by the total number of possible k-selections from the
n metarules, where k varies from 0 (no metarules apply) to n (any combination of all
metarules apply). Thus, the number of possible interactions f(n) is: Y oreo o = ble).

Note that this is not the size of metarule finite closure, because it does not consider the
possibility of a metarule matching an ID rule in more than one way.
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we might restrict metarules to unit closure, or follow Pollard (1985) in elim-
inating metarules altogether.

Lacking an alternate theory of lexical redundancy rules, honesty compels
us to include metarules in RGPSG in some form. How then can we choose
between unit closure and biclosure on principled grounds? Metarule biclo-
sure does not overgenerate as badly as finite closure, and thereby promotes
descriptive adequacy at the expense of some explanatory power. Biclosure
has an edge in descriptive economy over unit closure because simpler (and
fewer) metarules are needed with biclosure than with unit closure. Thus,
although the length of metarule derivations is not subject to direct empirical
evidence, it is not entirely ad hoc because it is subject to the scientific crite-
rion of descriptive economy, descriptive adequacy, and explanatory power.

4.4 Unordered Local Tree Recognition

The universal recognition problem for unordered local trees is to decide if
a given string z can be derived from a set of unordered local trees P. This
is equivalent to the unordered context-free grammar recognition problem
considered by E. Barton in BBR.

Theorem 4 Unordered Local Tree Recognition is NP-complete.

This is the only theorem we will not prove here using our typology of
computation trees. Barton shows how the multiset RHS of an ID rule con-
tributes to an exponentially large space of local phrase structure trees: an ID
rule with a a RHS of cardinality b can, if unconstrained by LP statements,
correspond to b! ordered productions. In parsing practice, this can cause a
combinatorial explosion in a context-free parser’s state space. In addition
to causing nondeterminism in any GPSG-based parser, the multiset RHS
confers on GPSG the ability to count nonterminals. The apparent artificial-
ity of this device, as discussed in BBR (pp.260-261), will motivate RGPSG
to adopt a substantive constraint of short ID rules (binary branching, for
example).?

*The binary branching constraint is independently motivated by the linguistic argu-
ments of Kayne (1981) and others. In that work, Kayne argues that the path from a
governed category to its governor (for example, from an anaphor to its antecedent) must
be unambiguous—informally put, “an unambiguous path is a path such that, in tracing
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4.5 GPSG Recognition

The ultimate problem we analyze is the universal recognition problem for
GPSGs: given a GPSG and a string, is the string in the language of the
GPSG? (Recall that the URP was chosen as the problem statement that
best characterized the overall power of a grammar.)

Theorem 5 GPSG Recognition is EXP-POLY-hard.

Proof. The idea of this reduction is to transparently encode a pruned
polynomial space AND/OR computation tree in a GPSG parse tree. Every
node in the computation tree will be represented by a category in the GPSG
parse tree. The reduction preserves the invariant that a GPSG category can
be terminated if and only if the configuration that it represents can be
labeled true in the pruned computation tree.

As before, 0-level categories encode nodes of the computation tree, which
are Turing machine configurations. Local trees represent the pruned next-
move relation between nodes: a local tree with one daughter represents a
pruned OR node, while a local tree with two daughters represents a pruned
binary-branching AND node. The leaves of the pruned computation tree
have halted, accepting configurations; these accepting nodes are represented
by a local tree with no daughters. There are no lexical entries in this GPSG,
and therefore the only way to terminate a category in this GPSG is with
such a “null transition.” Thus, the GPSG parse tree will terminate in a very
long empty string.

Now we must show how such an exponentially large parse tree can be
specified in polynomial time. The reduction must first list enough atomic
features to represent the largest node in the computation tree; this is pos-
sible because the size of each node is bounded by a polynomial, as is the
reduction. We will not be able to write down all the local trees required in
polynomial time, because there are an exponential number of them. (In fact,
approximately ¢ local trees are needed, where ¢ is the number of possible

it out, one is never forced to make a choice between two (or more) unused branches, both
pointing in the same direction” (Kayne 1981:146). The unambiguous path requirement
sharply constrains fan-out in phrase structure trees because n-ary branching, for n > 2, is
only possible when none of the n sister nodes must govern any other nodes in the phrase
structure tree.

30



configurations, which we know to be exponential in the polynomial size of
the configurations.)

Instead, we will use ID rules to encode the alternating Turing machine
transition relation §, which is infinitely smaller than the corresponding next-
move relation. Recall that § is a relation between a tuple and a triple: the
tuple contains a machine state and currently scanned tape symbol, while
the triple contains a new machine state, a new symbol to write on the
tape, and a direction to move the read/write head. The next-move relation
is a relation between two configurations that obey the § relation. Each
transition in § licenses infinitely many next-move relations between nodes of
the computation tree because § does not care about tape squares that the
machine is not currently scanning. For every binary OR transition licensed
by 8, we will build two nonbranching ID rules C — Cy and C — C;, one
for each of the two possible pruned OR transitions (recall that a pruned
OR branch is a straight line). For every binary AND transition found in §,
we will build a branching ID rule C — Cy,C3. Therefore, an OR category
can be terminated iff one of it’s possible daughters can be, while an AND
category can be terminated iff all of its daughters can be. This corresponds
exactly to the labeling rules for an AND/OR computation tree: an OR
node is labled true iff one of its possible daughters is, while an AND node
is labelled true iff all of its daughters are.

Next, we add an lone ID rule Cy.cept — € to terminate nodes representing
halted, accepting configurations with the empty string. Because there are no
lexical entries in this GPSG, the only categories that can be terminated are
those that represent nodes that have been labeled true in the computation
tree.

The final step is to make the atomic features that represent the tape
contents be head features, and insist all daughters be heads. An ID rule
that encodes a §-transition will then project into the local trees that rep-
resent all possible next-moves licensed by that §-transition. The head fea-
ture convention, which governs the projection of ID rules into local trees,
will ensure that tape squares not altered by the tape-writing activity spec-
ified by the é-transition will be identical on the mother and all daughters
in the projected local trees. In this fashion we can use a GPSG to simu-
late any unbounded depth polynomial space AND/OR computation tree.
Therefore, GPSG Recognition is EXP-POLY time-hard (details are in ap-
pendix A.1).[]
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What are the implications of this result for GPSG and natural language?
At first glance, it is unclear whether we have exposed an oversight in the
way GPSG was formalized (and if so, how easily may it be remedied?) or an
inherent property of natural language grammars. Equally unclear is whether
the intractability arises in practice or is merely an artifact of the complexity-
theoretic idealization to unbounded inputs. But first we reconcile this result
with the fact that context-free languages may be recognized in polynomial
time.

4.5.1 Interpreting the Result

At first glance, a proof that GPSG Recognition is EXP-POLY hard appears
to contradict the fact that context-free languages can be recognized in O(n3)
time by a wide range of algorithms. To see why there is no contradiction, we
must first explicitly state the argument from weak context-free generative
power, which we will call the efficient processability (EP) argument.

The Efficient Processability Argument. The main thrust of the EP
argument runs as follows:

¢ Any GPSG can be converted into a weakly equivalent context-free
grammar (CFG).

e CFG recognition can be accomplished in polynomial time.

o Therefore, GPSG recognition can also be accomplished in polynomial
time.

The argument continues:

e If the conversion is fast, then GPSG recognition is fast. However, even
if the conversion is slow, recognition with the “compiled” CFG will still

be fast; we may justifiably lose interest in doing recognition with the
original, slow GPSG.

The EP argument is misleading because it ignores both the effect con-
version has on grammar size and the effect grammar size has on recognition
speed. Crucially, grammar size affects recognition time in all known CFG
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recognition algorithms. The only grammars directly usable by context-free
parsers—hence the only grammars for which rapid parsing results carry
over—are those composed of contezt-free productions with atomic nonter-
minal symbols. For GPSG, this corresponds to the set of admissible local
trees, and this set is astronomical. Ignoring the effects of ID/LP format, it
is

o(gmim™™) (4

in a GPSG G containing m symbols (see BBR for details).

This worst-case formula for the size of the “expanded” grammar is vin-
dicated in practice. Phillips and Thompson (1985:252) observe that in their
parser based on the GPSGs of Gazdar (1982), “To expand the [GPSG] gram-
mar completely ... would be ridiculously wasteful of space and time. (The
toy grammar of English we use with GPSGP [their parser], of 29 phrase-
structure rules and four metarules, which expands to 85 rules, is equivalent to
several tens of millions of context-free rules.)” Similarly, Shieber (1983:137)
notes that typical post-Gazdar (1982) GPSG systems contain “literally tril-
lions” of derived rules. In appendix A.2, I estimate that the GKPS grammar
for English projects to more than 103® admissible local trees.

Consequences for GPSG Parsing. The Earley recognizer for context-
free grammars runs in time 8(|G’|* - n3) where |G’ is the size of the CFG G’
and n the input string length, so a GPSG G of size m will be recognized in
time

0(32-'";!"1,2"""1 . n3) (5)

The hyperexponential term will dominate the Earley algorithm complexity
in the reduction above because m is a function of the size of the ATM we
are simulating. Even if the GPSG is held constant, the stunning derived
grammar size in formula (4) turns up as an equally stunning “constant”
multiplicative factor in (5), which in turn will dominate the real-world per-
formance of the Earley algorithm for all expected inputs (that is, any that
can be written down in the universe), every time we use the derived gram-
mar. This class of hyperexponential functions ¢* grows at a frightening
rate—in the mathematical worst case, if a GPSG with 2 symbols recognized
a given sentence in .001 second, a grammar with 3 symbols would recognize
the same sentence in 2.5 hours, and a grammar with a mere 4 symbols could
take at least 1093 centuries.

33



GPSG’s intractability appears in GPSG-based parsers in two ways, strongly
suggesting that the GPSG’s intractability is not an artifact of complexity
theory. First, many GPSG-based parsers appear to be infamously slow.
For example, Evans (1985:237) experiences the real-world intractability of
GPSG-Recognition first hand in his GPSG-based parser, and proposes to
manage it by eliminating lexical ambiguity and by keeping both grammar
and input string size as small as possible: “The attempts to overcome the
time and space problems have only been partially successful .... The only
remedies seem to be, keep phrases as short as possible (for example, do not
try to test large noun phrases inside complex sentences if it can be avoided—
use proper nouns instead), make sure no words are duplicated in the lexicon,
keep the number of ID rules currently loaded down where possible ....”

Second, I know of no faithful implementation of GKPS. As we just saw,
there are too many possible local trees for any computer to explicitly cal-
culate GPSG projection, which means that parsers must project ID rules
on the fly. But we know from theorems 1-4 that the GKPS projection
operation cannot even be computed in practice, due to the complexity of
metarules, marking conventions, embedded categories, ID rules, and ex-
ceptional feature specifications. Thus it will not be possible to faithfully
project ID rules on the fly, in part because not all extensions of ID rule
categories are legal. For example, the categories VP[INV +,VFORM PAS]
and VP[INV +,VFORM FIN] are not legal extensions of VP in English due
to FCR 1, while VP[INV +,AUX +,VFORM FIN] is. But even if we ignore
the significant computational complexity introduced by syntactic features,
marking conventions, ID/LP format, null-transitions, and metarules, the
GPSG recognition and projection problems will still be intractable. This is
because the head feature convention alone allows GPSG parse trees to sim-
ulate unbounded depth polynomial space nonbranching computation trees:
the recognition problem for these impoverished GPSGs would be PSPACE-
hard and still thought to be intractable. (This result should not surprising,
because the HFC in current GPSG theory replaces some metarules in earlier
versions of GPSG and metarules are known to cause intractability.) Because
no faithful implementation of GKPS is even possible in practice, computa-
tional linguists have no choice but to in effect invent their own version of
GPSG theory to implement.1®

1%One such parser for English derived from GPSG is described in Harrison and Maxwell
(1986), who claim that “parser response time has been adequate for our development
purposes.”(p.10) However, they note that “in the presence of significant ambiguity, an
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I am not impugning any of these GPSG-based parsing systems. Rather,
I am arguing that GPSG’s theoretical intractability is not an artifact of
complexity theory because it appears in the real world, in natural language
parsers based on GPSG theory, which will be as slow as they are faithful to
GKPS.

As we shall see below, GPSG’s intractability appears to be due partly
to oversights in it’s formalization and partly to an inherent property of
natural language grammars. The fact that revised GPSG has the empirical
coverage of GPSG, and is only NP-complete, argues that GPSG’s EXP-
POLY-hardness arises from the particular formal choices GKPS made. But
the fact that intractability in both GPSG and RGPSG arises from the need
to account for the very real linguistic phenomenon of nonlocal syntactic
agreement and ambiguity suggests that all natural language grammars may
be intractable (more below).

4.5.2 Restricting the GPSG formal system

The proof of theorem 5 tells us that we must further restrict the GPSG
formal system, in both projection and derivation, in order to achieve com-
putational tractability. Let us now consider how that might be done without
curtailing GPSG’s descriptive economy too much.

Restricting ID/LP. ID rules significantly increase the time resources re-
quired by the GPSG derivation process in three related ways. First, a deriva-
tion step is nondeterministic because a category may immediately dominate
more than one RHS. Second, the derivation process may alternate between
a derivation step involving the ID rules C' — Cy | ... | C} that corresponds
to an OR-transition (only one of k possible successors must yield a termi-
nal string) and a derivation step involving an ID rule C — C4,C3,...,Ct
that corresponds to an AND-transition (all k successors must yield terminal
strings). These two devices introduce lexical and structural ambiguity. As is

all-paths parser such as this one can experience a significant degradation [in] response
time.”(p.10) Their parser projects local trees on the fly, and fails to implement FCRs,
FSDs, metarules, ID/LP format, and the CAP in any form. They disallow exceptional
feature specifications; feature instantiation is ad hoc, and not faithful to the HFC and FFP
of GKPS. Harrison (personal communication) attributes the parser’s adequate response
times to clever programming and it’s departure from the specifics and generality of the
GKPS formal system in order to avoid the formal excesses of GKPS.
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well-known, ambiguity is a central property of natural languages. Therefore,
this aspect of ID rules is linguistically essential, and it will be retained in
RGPSG.

Third, unrestricted null transitions in ID rules are a source of intractabil-
ity because they allow GPSGs to generate enormous phrase structure trees
whose yield is the empty string. If there were no null transitions in ID rules,
then the GPSG formal system could only simulate polynomial breadth com-
putation trees. This is so because the polynomial time reduction can only
write down polynomial length input strings z, and in a grammar free of null
transitions, the length of a string is equal to the breadth of its parse tree.
Unrestricted null transitions are also undesirable according to classic lin-
guistic arguments, because GPSG theory with unrestricted null transitions
need not obey recoverability of deletions (ROD). A parser that used such a
grammar must nondeterministically postulate elaborate phrase structure in
between its input tokens.

Although unrestricted null-transitions violate ROD and cause unnatural
computational difficulties, they are absolutely needed for gaps: the RGPSG
solution is to greatly restrict null-transitions by strengthening the X’-theory
embodied in ID rules.

Restricting Universal Feature Instantiation. The three principles of
UFI all cause intractability because they allow the derivation process to in
effect reuse space resources.

First, each principle of UFI can enforce nonlocal feature agreement in
phrase structure. Appendix B.1 shows how this causes NP-hardness, when
coupled with lexical ambiguity or null transitions. A related source of in-
tractability is that the projection of ID rules to local trees can create an as-
tronomical space of local trees, which in turn increases parser search space.
These two sources of intractability cannot be eliminated because they are
essential to GPSG’s account of linguistic agreement among conjuncts and
between predicates and their arguments, gaps and their fillers, anaphors and
their antecedents, and phrases and their lexical heads.

The use of exceptional feature specifications in these principles allows a
derivation to reuse the space resources provided by the ID rules and theory of
syntactic features. In the EXP-POLY reduction above, head features encode
nodes of the computation tree. The HFC is used to transfer the tape contents
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of a configuration Cp (represented by the mother) to its immediate successors
C1,C3,...,C (the head daughters). The configurations Co, Cy,...,C have
identical tapes, with the critical exception of one tape square. If the HFC
enforced absolute agreement between the head features of the mother and
head daughters, the polynomial space AND/OR computation tree could not
be simulated in this manner.

Restricting Metarules. Although no metarules are involved in the EXP-
POLY reduction, they can indirectly increase the time and space resources
needed by the derivation process by introducing null transitions and ambi-
guity in ID rules.

As we noted, unrestricted null transitions are both linguistically and
computationally undesirable. Moreover, the ability of metarules to affect
lexical head daughters is in direct conflict with their linguistic purpose: “to
express generalizations about the subcategorization possibilities of lexical
heads.” (GKPS:59) Unrestricted metarules can destroy the relation between
a phrase and its lexical head, and thereby violate X'-theory. The first step in
revising metarules is to restrict them to only affect the mother and nonhead
daughters in lexical ID rules. Because of this change, metarules cannot alter
the [NULL -] specification that appears on all head daughters in RGPSG
ID rules. Therefore, once a category is expanded in an RGPSG derivation,
it must be lexically realized in the derived string. This formal constraint
ensures that the empty string does not have elaborate phrase structure in

RGPSG.

4.6 Sources of Intractability Summary

Figure 5 summarizes the sources of intractability we have uncovered by ap-
plying complexity analysis to four carefully selected computational problems
posed within the GPSG formal system. In the next section, I present re-
vised GPSG. Of the more than ten sources of intractability lurking in GPSG,
only two remain in RGPSG — lexical ambiguity and nonlocal feature agree-
ment. Critically, these two sources of intractability in RGPSG appear to be
linguistically essential (see Ristad and Berwick, 1989).

37



Syntactic Categories < Finite feature closure

ID Rules < Unrestricted nulls (gaps)
< Alternating derivations
(lexical & structural ambiguity)
4 Unbounded multiset RHS

Metarules < Introduce nulls & alternation
< Finite closure

UFI < Nonlocal agreement
1 Exceptional feature specification
Marking Conventions < Disjunctive consequence
(FCRs, FSDs) < Apply across embedded categories

Figure 5: Sources of Intractability in GPSG
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5 The RGPSG Formal System

The revision of the GPSG formal system is driven by the desire to strengthen
linguistic principles embodied in it and reduce the computational resources
it uses in both projection and derivation. The common theme of the pro-
posed restrictions is to reduce the range and interaction of RGPSG’s formal
devices. Specifically, RGPSG obeys stricter notions of X’-theory, recov-
erability of deletions, and permissible extraction domains than standard
GPSG does. The computational restrictions on RGPSG focus on bounding
the size, depth, breadth, and branching type of the computation trees that
can be found in RGPSG’s formal devices.

Recall that our strategy is to restrict the computational power of a for-
mal device in the absence of linguistic counterevidence. As we shall see, our
goal of an efficient, maximally restricted, descriptively adequate formal sys-
tem is frequently at odds with the goal of a simple and notationally elegant
formal system. Systems with the simplest rule format are often the least
restrictive—rewriting rules, for example, are the most intractable (undecid-
able) when they are notationally simplest (unrestricted). We are interested
in natural restrictions that eliminate unnatural grammars and result in the
most efficient formal system, not ones that result in a simpler rule format.
As Chomsky (1965:61-2) observed, “the critical factor in the development
of a fully adequate theory is the limitation of the class of possible grammars.

. we should like to accept the least *powerful’ theory that is empirically
adequate.”

5.1 Overview

The RGPSG process of assigning structural descriptions to utterances differs
slightly from the GKPS conception. Figure 6 shows the internal organization
of RGPSG projection. First, metarules and marking conventions are applied
to ID rules, resulting in an enlarged set of ID rules R'. Then the rules in
R' are used to derive the utterances in the language of the RGPSG. Unlike
GPSG, the RGPSG derivation operation includes UFI and LP because both
devices are informationally encapsulated and functionally independent. The
lack of FCRs, FSDs, and exceptional feature specifications means that ID
rule extension is monotonic, unlike in GPSG: every legal ID rule has an
easily-computed legal extension, unlike in GPSG.
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ID Rules B | O(|R|)

Metarule BC

BO(MR) | O(|R|-|M[)

UFI

valid ID Raules| O(|R|-|M|*-|S|)

SDs and UFI

ID rules R’ O(|G|6)

Figure 6: This diagram shows the projection of an RGPSG G with ID rules R,
metarules M, and simple defaults §. The O-bounds show the effect of various
formal devices on derived grammar symbol size.

5.2 Theory of Syntactic Features

The set K of RGPSG syntactic categories is specified by listing a set Feat
of features, a set Atom of atomic-valued features, a set A of atomic feature
values, and a function p that defines the range of each atomic-valued feature,
as in GPSG. The major change is is unit feature closure instead of finite
feature closure: category-valued features may only contain 0-level categories.
(0-level categories do not contain any category-valued features). RGPSG
adopts this strongly falsifiable constraint; the linguistic justification may be
found above. The depth of category-embedding is purely an empirical issue,
and hence unit closure is not ad hoc.

The other revision is primarily notational: any RGPSG feature f may
assume the distinguished values noBind or unBound in addition to those
values determined by p(f). A noBind value indicates that the feature may
not receive a value in any extension of the given category, while unBound
indicates that the feature does not currently have a value, and may receive
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one in extension (having a unBound value is the same as being unspecified
in a unification grammar).

5.3 Immediate Dominance/Linear Precedence

According to the simplest version of X’-theory, all phrases must have heads.
Although GPSG lacks a formal constraint to this effect, in point of fact
every ID rule in the GKPS grammar for English has a head. For these
reasons, RGPSG ID rules must have exactly one mother and at least one
head daughter. The heads are separated notationally from the nonheads
by a colon, and appear to the left of the colon. The mother and all head
daughters are implicitly specified for [NULL -]. For example, the RGPSG
headed ID rule 6 corresponds to the GPSG ID rule 7.

V2 — [SUBCAT 2] : N2 (6)

V2[NULL -] — H[SUBCAT 2,NULL -], N2 (7)

There is only one lexical element for the null string, and it is universal across
all grammars:
X2[SLASH X2;,NULL +1, — ¢ (8)

Co-subscripting indicates that the two X2 categories must be identical in
any legal projection of the rule, with the exception of the [NULL +] and
SLASH specifications. This restricted ID rule format, when coupled with a
restriction on metarules that prevents them from affecting head daughters,
prevents head daughters from ever being erased in a RGPSG derivation.
Thus, null transitions are effectively eliminated from RGPSG.

An ordered production is an ID rule whose daughters are completely
linearly ordered, that is, a string of daughter categories rather than multisets
of head and nonhead daughters. An ordered production is LP-acceptable if
all LP statements in the RGPSG are true of it.

The RGPSG ID/LP formalism by itself does not contain formal con-
straints sufficient to guarantee polynomial-time recognition, although the
linguistically justified use of short ID rules can render ID rules tractable,
because ID/LP grammars with bounded rules can be parsed in time poly-
nomial in the grammar size.!!

'If the length bound for natural language grammars is the constant b, then any ID /LP
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5.4 Metarules

An RGPSG metarule may only affect the mother and at most one nonhead
daughter in a lexical ID rules. Thus, the only way a metarule can affect a
head daughter is to introduce a new head feature on the mother, which will
appear on the head daughter by virtue of the HFC if and only if the head
daughter is unspecified for the new head feature. This is how the passive
metarule operates in RGPSG:

VP — W, NP
¢ 9
VP[+PAS] — W, (PP[byl)

The complete set of ID rules in a RGPSG is the maximal set that can be
arrived at by taking each metarule and applying it to the set of rules that
did not themselves arise from the application of that metarule or from the
application of one or more other metarules. This maximal set is called the
biclosure BC(M,R) of a set R of headed lexical ID rules under a set M of
metarules.

Recall that a metarule may determine more than one ID rule per input
ID rule because a metarule pattern may match an ID rule in more than
one way. Given a set of ID rules R whose size is n symbols, and given a
set of metarules M whose size is m symbols, the symbol-size of the unit
closure UC(M,R) is 6(n + n - m?) = (|G|®). Each symbol in M can, in
the worst case, match each symbol in R, resulting in at most §(m) new
symbols per match. Therefore, the symbol-size of the biclosure BC(M, R)
is 8(n - m*) = 6(|GJ°).

5.5 Principles of Universal Feature Instantiation
Principles of universal feature instantiation in RGPSG all preserve a sim-

ple invariant across all ID rules. They are monotonic; that is, they never
delete or alter existing feature specifications. The head feature convention,

grammar G can be converted into a strongly-equivalent CFG G’, of sise 6(|G| - b!) =
6(|G'|) by simply expanding out the constant number of linear precedence possibilities.
In the GKPS and RGPSG grammars for English, b = 4 for the result of the Subject-Aux-
Inversion metarule applying to a [SUBCAT 44] rule headed by the auxiliary be. (I ignore
the iterating coordination schema, which licenses rules with unbounded right-hand sides.)
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for example, strengthens X'-theory by ensuring that the mother agrees ex-
actly with all head feature specifications that the head daughters agree on,
regardless of where the specifications come from.

Principles of UFI govern the well-formedness of the ID rule extension
relation. They may be thought of as first applying to the ID rule output
of metarule biclosure and then forever afterwards in RGPSG derivation. As
we shall see, the lack of exceptional feature specifications in RGPSG means
that ID rules that abrogate the constraints of UFI cannot be written.

Head feature convention. The head feature convention enforces the in-
variant that the mother is in absolute agreement with all head features on
which the head daughters agree. It also requires the BAR value on a head
daughter to be less than or equal to the BAR value on the mother. HEAD
contains exactly those features that must be equivalent on the mother and
head daughters of every ID rule.!?

HEAD = {AGR,ADV,AUX,INV,LOC, N, NFORM,PAS, PAST,
PER, PFORM, PLU, PRD, V, VFORM}

Control agreement principle. The control agreement principle (CAP)
differs from the HFC in that it establishes equivalences (links) between the
categories in an ID rule: when two categories are linked in an ID rule, the
two categories must be identical in any legal extension of that rule. Links
are calculated immediately after the HFC has applied to the ID rules for
the first time; once a link is established in an ID rule, it cannot be changed
or undone.!® The first part of the CAP calculates control relations between
categories, while the second part of the CAP establishes links using the
control relations. In all cases, linking is indicated by co-subscripting.

?In order to properly account for feature instantiation in the binary and iterating
coordination schemata, the binary head (BHEA D) features BAR, SUBJ, SUBCAT, and SLASH
are considered to be head features for the purposes of the HFC in all nonlexical, multiply-
headed ID rules.

3In GKPS, only head feature specifications and inherited foot feature specifications
determine the semantic types relevant to the definition of control. RGPSG simplifies this
by considering inherited feature specifications and only some head feature specifications.
Alternatively, control relations could be calculated every time the HFC instantiates a
feature specification, although this would violate monotonicity. In fact, the RGPSG CAP
uses links solely to preserve monotonicity of feature instantion in ID rule projection, which
makes it easier to understand the consequences of a grammar.
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CONTROL = {SLASH, AGR}

RGPSG control relations are calculated as follows. A predicate is a VP
or an instantiation of XP[+PRD] such as a predicate nominal or adjective
phrase. The control feature of a category C, where C(BAR) # 0, is SLASH if
C is specified for SLASH; otherwise, it is AGR. Control is calculated once and
for all immediately after the HFC has applied to the ID rules resulting from
metarule biclosure.

Let f be the control feature of a category C;. Then C; is controlled by
C: in a rule if and only if Cyi(f) = C3, C2 J X2, and either the rule is
Co — C1: C; (recall that C is the head daughter), or the rule is Co — C3 :
Cl, Cg, and Co, 01 Q VP,

The RGPSG control agreement principle states: In an ID rule
Co - Cl,... ,Cj H Cj+1,...,0n

o If C; controls Cj and f; is the control feature of Cj, then Ci(fi) and
C; are linked.

o If there is a nonhead predicate C; with no controller, then link C;(f;)
and Cy(fo), where f; and fo are the control features of C; and Cy,
respectively.

In the theory of GKPS, the control agreement principle performs subject-
verb agreement by enforcing a control relation between the two daughters
of the rule

S — BE[-SUBJ], X2

In RGPSG, this rule must be stated as
S — X2[-SUBJ,AGR X2] : X2

if we wish to enforce the control relation between the two daughters. Be-
cause control relations in RGPSG are static (never recalculated), this control
relation exists even if, say, X2 = PP. Fortunately, verbs will only be spec-
ified for legal X2 values in the lexicon, and therefore any “questionable”
control relations involving an X2 other than NP or § are ignored at the
lexical insertion level.
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Foot feature principle. The foot feature principle (FFP) requires any
foot feature specification instantiated on a daughter category to also be
instantiated on the mother. The value assigned to an instantiated foot
feature is identical to every instantiation of the same foot feature on other
daughter categories. The FFP ensures that (i) the existence of inherited
foot features on any category of an ID rule blocks instantiation of those
foot features on any other component category of the rule, and (ii) inherited
foot features are equivalent across all component categories of the rule (this
second condition may be too strong). Both conditions are designed to fix an
error in the foot feature principle (FFP) of GKPS, which permits material
to be topicalized from inside a topicalized constituent.4

FOOT = {RE,SLASH,WH}

Because the empty string can be dominated only by a category of the form
a[NULL +, SLASH al in RGPSG, the FFP tries to ensure that every gap
will have a unique filler. Unfortunately, it is impossible to truly guarantee
recoverability of deletions in RGPSG, because the FFP can only locally
constrain the rule-to-tree projection, and not the ID rules or the parse trees
themselves. This situation is unavoidable in the GPSG framework, simply
because SLASH does not always mark the complete path between a gap and
its filler in accepted GPSG analyses. The classic example is the GPSG
analysis of subject dependencies, where an S/NP is reanalyzed as a VP,
effectively deleting an NP gap in subject position. In GKPS, this operation is
performed by slash termination metarule 2 (pp.160-162): [SLASH NP] only
marks the path from the filler to the mother of the reanalyzed VP. Another
example is the GKPS (pp. 150-152) analysis of missing-object constructions

1*ID rule 10 introduces topicalization constructions in English:
§S—- X,H/X (10)

The control agreement principle (CAP) ensures that the two X categories in the rule agree
with each other. It is possible to instantiate [SLASH X] on the S mother and X nonhead
daughter without violating the GKPS CAP or FFP as in 11, provided all occurrences of
X are identical:

S/X - X/X,H/X (11)

The structure 11 satisfies the GKPS CAP because the ,-features on the nonhead daughter
agree with the slash category on the head daughter; the GKPS FFP is met because the
foot feature specifications instantiated on the mother are also instantiated on a daughter.
Revised GPSG prevents such extractions. The permissibility of the local tree 11 means
that every topicalization structure is infinitely ambiguous in GKPS, because the X/X
nonhead daughter can be terminated with e. See appendix A.3 for more details.
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such as John is easy to please. In missing-object constructions, [SLASH NP]
only marks the path from the embedded NP object gap to the V2[INF]1/NP
dominating to please, failing to continue through the AP easy to please to
the filler John. Many sweeping changes would be necessary before the FFP
would be able to strictly enforce recoverability of deletions in RGPSG.

Definition: Free Features

A feature f is free in the ID rule r = Cy — Cy,...,C; :
Cit+1y...,Cn iff Vi, 0 < i< n, f¢&DOM(C;).

The foot feature principle states:

1. When first applying to an ID rule r, if a foot feature f is not free
in r, then instantiate [f noBind] on all categories in r that are not
specified for f.

2. When SLASH is instantiated on the mother, instantiate it on all non-
lexical head daughters.!®

3. When a foot feature f is instantiated on a daughter, instantiate it on
the mother.

15 This condition springs from the necessity of accounting for certain parasitic gap facts
according to the traditional GPSG analysis of clausal structure. The problem arises in
sentences of the form

Kim wondered [s which authors [s,yp reviewers of e always detested wm]]  (12)
where the parasitic gap is introduced by a binary nonlexical rule 13
S — X2[-SUBJ,AGR X2] : X2 (13)

rather than a ternary lexical rule like other parasitic gaps. Instantiating SLASH on the X2
nonhead daughter must force the identical SLASH specification on the mother and head
daughter. SLASH isn’t a head feature in RGPSG, so there is no other way to accomplish
this. A possible solution is to replace 13 with rules to introduce clauses with and without
parasitic gaps:

S — X2[-SUBJ,AGR XZ] : X2
S/NP — X2([-SUBJ,AGR X2]1/NP : X2[-NULL1/NP

We would then need to ensure that AGR was transferred from the head daughter to the
nonhead daughter by the CAP, despite the presence of the SLASH feature.
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4. When a foot feature f is instantiated on a mother, instantiate it on
one or more nonhead daughters.!®

5.6 Marking Conventions

The sole explicit marking convention in RGPSG is the simple default (SD).
Unlike FCRs and FSDs, SDs are constructive, easy to understand and com-
putationally tractable. Each SD is applied to each category (and may be
understood) independent of all other categories and RGPSG formal devices.
SDs are applied in order to ID rules immediately after the initial application
of principles of UFIL.

An SD contains a predicate and a consequent. The consequent is a
list of feature specifications. The predicate is a Boolean combination of
truth-values and feature specifications such that if a category C' bears or
extends a given feature specification, that feature specification is true of C,
else false. If the predicate is true of a given category C in a rule and the
consequent includes only unbound and unlinked features, then the feature
specifications listed in the consequent are instantiated on C. Each SD is
applied simultaneously to every top-level category in every rule exactly once,
in the order specified by the grammar. Consider the following SD:

SD 1: if [SUBCAT] then [BAR 0]

If the target category C in a ID rule is specified for the SUBCAT feature, but
unspecified for the BAR feature, then the SD will force the feature specifica-
tion [BAR 0] on C.

Given a list of simple defaults whose symbol size is p, and given a set of
ID rules whose symbol size is n, the resultant set of ID rules can at most
contain #(n - p) symbols (attained if every SD were true of every category
and every category consisted of a lone symbol).

The elimination of FCRs does not appreciably reduce the descriptive
elegance of RGPSG grammars: see appendix C for an RGPSG describing
English, roughly equivalent in symbol count and descriptive adequacy to
the English GPSG provided by GKPS. This is true because the constraints
expressed by FCRs are, for the most part, already expressed in the way
ID rules and metarules are written. Conflicts between FCRs and existing

1Note that this condition will only affect the foot features RE and WH, and never SLASH.
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categories typically either indicate an error on the grammar writer’s part,
overgeneration of possible structures, or the lack of inviolable constraint
in GPSG. These conflicts are less likely to occur in RGPSG because the
RGPSG’s formal devices are more constrained than those in GPSG. More
generally, although the computational weakening of the formal theory has
decreased the descriptive power available to the grammar writer, the linguis-
tic strengthening of the formal model has increased the descriptive elegance
of the theory as a whole: more is described in RGPSG by the formal theory
than by the grammar writer. Simply put, it is harder to write unnatural
grammars in RGPSG. But if the elimination of FCRs proves unacceptable,
then the complex symbol rules of Chomsky (1965:79-83) may be used to
specify possible syntactic categories. Complex symbol rules could increase
descriptive elegance, linguistic universalism, and empirical coverage without
causing intractability. For example, complex symbol rules can make the
NFORM, PFORM, and VFORM features universally mutually exclusive.

5.7 Derivation and projection in RGPSG

To conclude, we must determine how the formal subsystems described above
fit together, beginning by formally specifying the class of RGPSGs and the
languages they generate. A subsequent section translates the GKPS analy-
sis of topicalization, expletive pronouns, and parasitic gaps to the RGPSG
formal system.

The set of ID rules R’ resulting from metarule biclosure, UFI, and SD
application generates the language of the RGPSG as follows. If R contains a
rule A — v with an extension A’ — 4’ that satisfies all principles of UFI and
is an LP-acceptable ordered production, then for any string of terminals a
and nonterminals 3, we write aA’'8 => ay'B. This is a derivation step. The
language of an RGPSG contains all terminal strings that can be derived,
using the ID rules, from any extension of the distinguished start category.
Let = be the reflexive transitive closure of =. Then the language L(G)
generated by G is

L(G)={z |2 € V5 and 3C € K[(C O Start)AC = z]}
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5.8 Complexity of RGPSG Recognition

The universal recognition problem for RGPSG is NP-complete. Recall
that a problem is NP-complete iff it is NP-hard and in AP. Informally,
RGPSG-Recognition is in AP because the restricted ID rule format (no
null-transitions) ensures a polynomial bound on the length of the shortest
derivation. In the worst case a branching ID rule can be converted to a non-
branching ordered local tree in a derivation (this happens when all nonhead
daughters are erased, either by a metarule or by the universal ID rule (8),
leaving behind at least one head daughter, which can never be erased). Once
a category is expanded in a derivation, it must be lexically realized in the
derived string. Therefore a terminal string of length n can be derived with
at most p. n productions in an RGPSG with p productions. Appendix B.1
contains a formal proof.

Unfortunately, it is difficult to use our conceptual typology of computa-
tion trees to establish the NP-hardness of RGPSG Recognition. Although
an RGPSG parse tree may appear structurally equivalent to a polynomial
depth pruned OR computation tree, we must be careful. As in the reduction
for GPSG Recognition, RGPSG categories can encode nodes in the compu-
tation tree, and ID rules can represent the Turing machine OR transitions.
But the extension relation in the RGPSG derivation step is governed by the
the RGPSG head feature convention, which ensures that all heads domi-
nated by a common head will have the same head features. This means we
cannot use the HFC to transfer unaltered tape squares from a configuration
to its successors, which blocks the most obvious reduction. The trick is to
encode the entire pruned computation tree in an RGPSG category and use
ID rules to enforce the next-move relation between subsets of the category—
see the proof in appendix B.2. The actual reduction is so complicated, we
loose the conceptual advantage of the uniform class of computation trees.
Terminal ambiguity and nonlocal agreement (via universal feature instantia-
tion) in RGPSG permit a considerably simpler reduction from Satisfiability,
a known NP-complete problem, as shown in appendix B.1.

The restrictions motivated above have resulted in a substantial decrease
in complexity from the EXP-POLY time hardness of GPSG-Recognition. In
fact, only two sources of intractability remain in RGPSG — lexical ambigu-
ity and nonlocal feature agreement (compare figures 4 and 7).

This decrease in complexity is significant from both theoretical and prac-
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Syntactic Categories

ID Rules

Metarules

UFI

Marking Conventions
(Simple Default)

4 Unit feature closure

< At least one head daughter
4a Mother & heads [NULL -]
< Bounded branching (4)

< Cannot directly affect heads
< Biclosure

4 No exceptional feature specifications
(UFI preserves simple invariant)

< More restricted linguistically

< Monotonic

4 No disjunctive consequences
< Cannot interfere with UFI
< No FCRs

Figure 7: RGPSG Major Changes
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tical perspectives. First, NP-complete problems typically have good average
time algorithms and highly efficient near-optimal solution techniques, while
EXP-POLY problems do not. Next, the fastest recognizer known for GPSGs
can require double-exponential time in the worst case, while RGPSG has a
simple exponential time recognizer. Finally, NP-complete problems have ef-
ficient witnesses, while EXP-POLY hard problems do not. This means that
RGPSG parses can always be verified efficiently, while GPSG parses cannot,
in general.

51



6 Linguistic Analysis of English in RGPSG

This section reproduces three of the more intricate linguistic analyses of
GKPS in order to illustrate RGPSG’s formalisms. To reproduce their com-
prehensive analysis of English in toto would be a disservice to that work and
is beyond the scope of this paper. Instead, a RGPSG roughly equivalent in
symbol count and descriptive adequacy to their GPSG for English may be
found in appendix C; the reader should consult GKPS for the accompany-
ing linguistic exposition. In all cases, co-subscripting indicates the linking
performed by the CAP.

The RGPSG grammar for English serves to demonstrate the empirical
adequacy of the restricted RGPSG formal system. RGPSG is empirically
superior to GPSG not because its English grammar is better, but because
it achieves descriptive adequacy within a vastly more restricted class of
gramimars.

6.1 Topicalization

The rule (14a) expands clauses and rule (14b) introduces unbounded depen-
dency constructions (UDCs) in English.

a. S — X2[SUBJ -,AGR X2] : X2

b. S — X2[SUBJ +,SLASH X2]: X2 (14)

In both cases the X2 nonhead daughter controls the head daughter, and the
control agreement principle links the value of the head daughter’s control
feature with the X2 daughter, creating the ID rules in (15).

a. S — VPIAGR X2;]: X2,

b. S[SLASH noBind] — S[SLASH X2,] : X2 [SLASH noBind], (15)

In the following discussion, [3s] and [3p] abbreviate [PER 3,-PLU] and
[PER 3,+PLU], respectively. Consider the topicalization structure in fig-
ure 8, taken from GKPS, p. 145.

Note that it is impossible to extract any constituent out of the X2 daughter
in (15b) because the foot feature principle has forced [SLASE noBind] on
the X2 daughter and its mother. This explains the unacceptability of (16)
in RGPSG, which is permissible in the theory of GKPS (see figure 9 in
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NP[3sl, S/NP[3s];

Sandy NP[3pl. VP[+NP[3pl,]/NP[3s]

\

we VO[17] VP
I NP[+NULL,3s]3/NP[3s]3

want

to Voli1]

succeed

Figure 8: This is a typical topicalization structure in RGPSG. Co-subscripted
categories are linked by the control agreement principle (a principle of universal
feature instantiation), and therefore share all absent feature specifications. The
foot feature principle and the CAP combine to ensure that all instances of the
topicalized category (NP[3s8]) agree. A dark line marks the extraction path.
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appendix A.3).

* Boston [[ a man from — ] [ we want — to succeed ]] (16)

6.2 Expletive pronouns

This section accounts for the distribution of the expletive pronouns it and
there in infinitival constructions on the basis of postulated ID rules and prin-
ciples of universal feature instantiation (see GKPS, pp.115-121). The feature
specification [AGR NP[NFORM a]] is abbreviated as +a below, where a is
it, there, or NORM.

The RGPSG for English includes the ID rules (17),

.S — X2[-SUBJ,AGR X2 : X2

VP — [13] : VP[INF]

VP — [16] : (PP[to]), VP [INF] (17)
. VP — [17] : NP, VP [INF]

. VP[AGR S§] — [20] : NP

aun s

A

the simple defaults (18),

a. SD 1: if [SUBCAT] then [BAR 0]

b. SD 2: if [+V,-N,-SUBJ] then [+NORM] (18)

the extraposition metarule (19),

X2[AGR S] - W

4 (19)
X2[+itl - W,8

and the lexical entries (20). All other nouns are specified for [RFORM NORM]
by their lexical entries.

(it, NP[PRO, -PLU,NFORN it])

(there, NP[PRO,NFORM there]) (20)

From the ID rules in (17), RGPSG generates the following ID rules.

a.VP[AGR,] — VO[13,AGR;] : VP[INF,AGR;] (21)
b.VPIAGR;1 — VO[16,4GR,] : (PP [to]), VP INF,AGR]
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The absence of a controlling category allows the CAP to link the AGR values
of the mother and VP[INF] predicate daughter. The HFC then links the
AGR values of the mother and lexical head daughter. SD 1 specifies the head
daughter for [BAR 0], while SD 2 cannot affect the linked AGR values.

VP[AGR; NP[NORM]] — V0[14,AGR, NP[NORM]]:
V2 [INF, AGR; NP[NORM]]

The CAP and HFC operate identically as in (21), except that the [+NORM]
specification is inherited from the ID rule (17b) and propagated through the
rule by the CAP and HFC.

VP[AGR, NP[NORM]] — VO[17,AGR, NP[NORM]]:
NP,, VP[INF, AGR; NP]

The NP daughter controls its VP[INF] sister, and the CAP links the AGR
value of the VP to its sister NP. SD 2 specifies the mother for [+NORM], and
the HFC forces this specification on the head daughter.

(22)

The rules in (23) introduce [+it] and [+there] specifications. Note
that (23a) is the result of the extraposition metarule on the ID rule (17e).

a. VP[+it] — [20] : NP, S
b. VP[+it] — [21] : (PP[to]), S[FIN] (23)
c¢. VP[AGR NP[+there,PLU al]] — [22] : NP[PLU al

The rules in (23) may only expand the VP daughters of the ID rules (21)
and (22) in a derivation (compare their AGR values). Thus, the grammar
claims that expletive pronouns only occur in utterances generated using the
rules in (23), in combination with the “extending” rules (21) and (22). This
describes the following facts from GKPS, p. 120.17

It
{ *There } [ continues [ to bother [ Lou ] [ that Robin was chosen ]]] (24)
*Kim

*Tt
{ There } [ appeared (to us) [ to be [ nothing in the park ]]] (25)
*Kim

"In order to better understand these examples, associate each constituent with the ID
rule that generated it. To help with this task, the main verbs and their SUBCAT values are:
(continue, 13}, (appear, 16), (believe, 17), (bother, 20), {be, 22).
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it
Leslie [ believed *there [ to bother [ us ] [ that Lee lied ]]] (26)
*Kim
*it
We [ believed there [ to be [ no flaws in the argument J]] (27
*Kim

6.3 Parasitic gaps

Simple parasitic gaps, that is, those introduced in verb phrases by lexical
rules, present no problem for RGPSG because the FFP demands all instan-
tiations of SLASH on daughters to be equal to each other and equal to the
SLASH instantiation on the mother.

VP/NP
V0o [13]
NP/NP (28)
PP[%0]/NP
Kim wondered which models
[ had sent [ pictures of m— ] [ to — ] (29)

Sandy [ had sent [ pictures of — ] [ to Bill ]]
[ had sent [ pictures of Bill ] [ to —= ]]

The FFP insists nonlexical heads be instantiated for SLASH if any nonhead

daughter is, thereby explaining the unacceptability of (30) and the accept-
ability of (31).

a.xS/NP

NP/NP

VP (30)
b. * Kim wondered which authors

[ reviewers of mm | [ always detested sushi ]]

a.S/NP
NP/NP
VP/NP (31)
b. Kim wondered which authors
[ reviewers of we | [ always detested )]
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7 A Change in Perspective

This work is similar to that of Shieber (1986) in its attempt to recon-
struct GPSG theory. Shieber, however, is concerned solely with creating
a more easily implementable and understandable description of GPSG the-
ory, rather than with changing the theory’s generative or computational
power.

A central goal of mathematical linguistics is to precisely determine the
power of a linguistic theory. Traditionally, formal language theory (the
Chomsky hierarchy) and its generative power analyses have translated this
question into the narrower question of how unrestricted the rule format of
a theory is. We have seen that modern computational complexity theory
offers another, more useful, translation: how much of what computational
resources does a theory consume? Complexity theory also offers a new per-
spective on descriptive adequacy. Descriptive adequacy, as commonly under-
stood, refers to a theory’s ability to assign the same structural descriptions
to utterances that humans do. This is the perspective of formal language
theory and E-language. But from a computational complexity perspective,
descriptive adequacy refers to how faithfully the internal structure of a lin-
guistic theory — its representations and internal operations — corresponds
to the internal structure of our language facility. In a descriptively adequate
linguistic theory, the structural descriptions and computational power of the
theory match those of an ideal speaker-hearer.
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A Complexity of GPSG reconsidered

In this section the universal recognition problem for GPSGs is proved for-
mally to be EXP-POLY time-hard, the number of local trees in the GKPS
grammar for English is underestimated, and the consequences of GPSG’s
theoretical intractability are considered from the perspective of a grammar
writer.

A.1 GPSG Recognition is EXP-POLY time-hard

This section provides a formal proof of the URP for GPSGs. It begins by
providing a formal definition of alternating Turing machines, based on the
definition in Chandra, Kozen, and Stockmeyer (1981). We have taken the
work tapes to be one-way infinite instead of two-way infinite, in addition to
making some other minor changes.

Definition. A k-tape alternating Turing machine is an 11-tuple:

M=<Q,%,T,$,#,k,0,9, Final, U, E >

where
Q, qo, Final = set of states, initial state, set of accepting states
T = input, tape alphabets, X C T
$,# = endmarker, blank symbol, $,# T - %
U = set of universal states,
U C @Q, U disjoint from Final and E
E = set of existential states,
E C @, F disjoint from Final and U
k = number of read-write tapes, k > 1
Q' = UUE
é = next-move relation, where
§ C(Q' x T*+1) x (Q x T* x {Left, Right}*+1)
Left = -1
Right = +1

The ATM has a read-only input tape, with the input w € £* written as $w$
and the reading head initialized to the first symbol of w. The k work tapes
are one-way infinite and are initially blank. A configuration of the ATM
consists of the state together with the head positions and contents of the
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k + 1 tapes. A move of the ATM consists of reading one symbol from the
input tape and moving the heads left/right as allowed by §, in addition to
changing the state of the machine. The directions Left and Right have the
numerical values +1 and —1 for convenience in proofs. § does not include any
transitions from accepting states. We say a configuration of M is ezistential,
universal, or acceptingif the state of the TM in that configuration is; in this
formalization, an accepting configuration does not need any special tape
contents, but only an accepting machine state.

For configurations C' of M, let the sequence Neztp(C) = (Co,...,Cr_1)
enumerate the possible successor configurations of C' according to é. % is

bounded above by the number of pairs in the relation §, which we may write
as |8|.

The computation of an alternating TM M on an input w is a possibly
infinite tree where the nodes correspond to ATM configurations, that is,
an AND/OR computation tree whose outdegree is |§|. Each node of the
computation contains a machine configuration that is reachable from the
configuration above it, according to the next-move relation. However, to
build a possibly infinite tree the nodes must be made mathematically dis-
tinct. This is accomplished by defining each node as a pair (z,C) where C
is the machine configuration and z is a tree position. Technically, the tree
position is a string of numbers that identify a position in the tree by listing
which branch to take at each node; the numbers are all between 0 and || —1.
The root position is the empty string, so the root node of the tree is {¢,Co)
where Co is the initial configuration. The daughters of any node (z,C) are
given by NeztNodepr(z,C) where

NeztNodepy(z,C) = {(2i,C;) : Neaxtpyr(C) = (...,Ciy...)}
The concatenation zi identifies a unique daughter of the position z by adding

another branch number at the end.

The criterion for acceptance in an ATM computation tree is as follows.
Let N be the set of nodes in the computation tree of ATM M on input w.
We label the nodes of the tree either true or false as follows. A labeling
L : N — {true,false} is said to be acceptable if the labeling of each node
(z,C) satisfies the following conditions:

1. C is an accepting configuration and L(z,C) = true.
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2. C is an existential configuration and

L(z,C) = V L(zi,C")
(zi,C"Ye NeztNodey (=,C)

3. C is a universal configuration and

L(z,C) = A L(zi,C").
(zi,C"ye Next Nodeps(=,C)

To simplify matters, we also require that NeztNodepr(z,C) be nonempty
in this case.

By definition, \/ of an empty set is false. M is defined to accept the input
w if and only if L(e,Co) = true for all acceptable labelings L. Note that
ATMs without universal states operate exactly as nondeterministic TMs do.

Chandra, Kozen, and Stockmeyer (1981) prove that

ASPACE(S(n)) = | J DTIME(S™)
c>0

where ASPACE(S(n)) is the class of problems solvable in space S(n) on an
ATM and DTIME(F(n)) is the class of problems solvable in time F(n) on
a deterministic Turing machine. In particular, when f(n) is the class of all
polynomial functions, the formula tells us that polynomial space on an ATM
is equivalent to exponential-polynomial time on a deterministic TM.

The following proof of theorem 5 reduces instances of polynomial space-
bounded alternating Turing machines to instances of GPSG Recognition.

Proof. By direct simulation of ATM M on input w.'® Let M be a 1-tape
ATM with polynomial space bound S(n); let w be its input. Given these

18Without loss of generality, we use a 1-tape ATM, so
8§ C(Q' xT xT) x (Q xT x {Left, Right} x {Left, Right}).

Also, in the reduction, note that the word input refers to three completely distinct objects.
The ATM input string w is the string which may or may not be in the language generated
by the ATM. The GPSG input siring z is the string which may or may not be in the
language generated by the GPSG; z and w are never the same. The reduction input is
the problem instance (M, w), i.e., the ATM M and its input string w. It is important not
to confuse the three distinct uses by believing, for example, that the GPSG accepts the
same language as the ATM. They cannot accept the same language in principle.
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reduction inputs, we will construct a GPSG G in polynomial time such that
M accepts w iff

$0w1ws2... wa(n)$(n + 1) € L(G).

By Chandra-Kozen—Stockmeyer (1981), the class of problems solvable in
polynomial space $(n) on an ATM is exactly equivalent to the class of prob-
lems solvable in exponential polynomial time on a DTM. Therefore, given
our following proof, we have the immediate result that GPSG-Recognition
is DTIME(c5()-hard, for all constants ¢, or EXP-POLY time-hard.

The basic plan of the reduction is to reproduce a pruned computation
tree of the ATM as the parse tree of the GPSG. The GPSG will assign
this elaborate structure to the empty string and not to the machine input.
However, before the ATM simulation starts there will be some auxiliary
structure that copies the machine input w into the features that represent
the ATM input tape. The actual input that is presented to the grammar
will therefore include an encoded version of w in addition to the "very long
empty string” over which the computation tree is built.

Configurations of the ATM will be encoded as zero-level syntactic cate-
gories. Because the amount of tape the machine can use is bounded by the
known quantity §(|w|), we can use a separate feature to record the contents
of each tape square. We also need three features to encode the ATM head
position and current state. In a polynomial-time reduction, we are limited to
specifying a polynomial number of features (for tape squares) and feature-
values (for head positions), and that is why the reduction will be limited to
polynomial space bounded ATM computations (§(n) a polynomial).

The immediate domination (ID) rules of the GPSG will encode the §
relation of the ATM. The category corresponding to any configuration C
can dominate the category corresponding to C' in a local tree iff § licenses
the transition (C,C’). (The exact details depend on whether the configu-
ration C is universal or existential.) The reduction preserves the invariant
that a nonterminal in the grammar can be terminated iff the configuration
that it represents must be labeled true in the ATM computation. Con-
sequently, the local tree for a universal configuration must include every
successor configuration as a daughter. In contrast, the local tree for an ex-
istential configuration must merely include some successor configuration as
a daughter. Nonterminals corresponding to halted, accepting configurations
are terminated by the empty string,.
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Let Neztyr(C) = (Co,...,Cp). If C is a universal configuration, we would
like to include the ID rule C — Co,...,Cp; if C is an existential configura-
tion, we would like to include & + 1 rules of the form C' — C;. However, we
cannot use such rules directly in a polynomial-time reduction; there are far
too many possible configurations, and we would need at least one rule for
each. Instead, we must set up the features that encode the configurations in
such a way that the ID rules only have to encode the finite § relation, which
is much smaller than the infinite Neztps(-) relation. Each §-transition of the
ATM licenses infinitely many transitions between configurations because §
does not care about the tape squares in a configuration that the machine is
not currently scanning. In the same way, each ID rule of the constructed
GPSG will project into a large number of local trees. The unchanged por-
tion of a tape will not be transferred from a configuration to its successor by
the ID rule, but will be transferred by the head feature convention (HFC,
a principle of universal feature instantiation). All features that represent
tape squares are declared to be head features and all daughters are head
daughters. Consequently, the HFC will transfer the tape contents of the
mother to the daughters except when prevented by the tape-writing activity
specified by the next-move relation.

Proceeding to the details of the reduction, the following features are used
to represent M-configurations:

STATE: the state of the machine

INPUTPOS: the head position of the read-only input tape
WORKPOS:  the head position of the read-write work tape
INPUT;: the contents of the i** square of the input tape
WORK;: the contents of the i** square of the work tape

In addition, the feature PHASE will be used to separate functionally distinct
regions of the parse tree. [PHASE READ] categories are involved in read-
ing the input string, [PHASE RUN] categories participate in the direct ATM
simulation, and the [PHASE START] category links the READ and RUN phases.

As we have mentioned, the input string that is presented to the GPSG
has the form
$0w1lwa2... wp(n)$(n + 1)

where the w; are the characters of the machine input, the “$” characters are
endmarkers, and 0,...,(n + 1) are regarded as additional characters. We
must copy $w$ onto the input tape of the simulated machine. For every
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character index i, 1 < 7 < |w|, and for every possible character a € I,
include the following lexical rule for the lexical item ai:

(a3, { [PHASE READ], [INPUT; al})

In addition, for every index over a wider range, 0 < i < |w|+ 1, include this
lexical rule for the endmarker:

($i, { [PHASE READ], [INPUT; $1})

Once these rules are constructed, they will work for other inputs w’ of length
|w'| < |w| as well as for w. That is why endmarkers in the middle of w have
been allowed in the copying rules.

Together with the specially formatted grammar input, these rules set up
the input tape of the simulated ATM. We must also initialize the features
that encode the work tape contents, the machine state, and the tape head
positions. The initialization is completed by defining the distinquished start
category START correctly:

START = {[INPUTPOS 1], [WORKPOS 1]}
U{[STATE go], [PHASE START]}
U{[WORK; #]:1<j < §(|w|)}

The following two ID rules are used to join the two subtrees together:

START — {[PHASE RUN]},{[PHASE READ]}
{[PHASE READ]} — {[PEASE READ], [PHASE READ]}

(Here all daughters are head daughters.) The [PHASE READ] rule allows the
input-reading portion of the tree to branch as many times as necessary to
cover the input characters.

In our formal model of ATMs, the machine halts and accepts if it ever
enters an accepting state ¢ € Final. Thus, for every such state we need a
null-transition ID rule that will terminate the simulated computation tree.
For every q € Final, the following ID rule should be included:

{[STATE q], [PHASE RUN]} — ¢

However, the most important ID rules are still to come; they encode the
next-move relation § of the machine. Recall that

6§ C(Q xT xT)x (Q x T x {Left, Right} x {Left, Right})
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is a relation between tuples
(state, input tape symbol, work tape symbol)
on the one hand and tuples

(new state,new work tape symbol,
input head movement, work head movement)

on the other hand. We describe § as

6(q’ a"b) - {<q,’ b, ds, dW) :
<(9sa» b)v (Q', b',dh dW)) € 6}'

With this notation, we may specify the ID rules that encode §. A set of
rules will be specified for every state ¢ € Q' and all tape symbols a and b,
thus covering all of §. No rules are to be constructed when &(g,a,b) = 0.
For ¢ € Q' with §(q,a,b) # @ there are two cases depending on whether ¢
is existential or universal. In either case, the construction must be carried
out for all possible input-head positions 7 (0 < ¢ < |w| + 1) and work-head
positions j (1 < j < S(Jw))):

1. If ¢ is in E (an existential state), include an instance of the following
ID rule for every (¢',V',dr,dw) € 6(q,a,bd):

{[INPUTPOS ¢], [INPUT; al,
[WORKPOS j], [WORK; b],
[STATE ¢], [PHASE RUN]} —
{[INPUTPOS ¢ + d;], [INPUT; al,
[WORKPOS j + dw], [WORK; b'],
[STATE ¢'], [PEASE RUN]}

Each of these rules propagates the value on the input tape, changes the
value on the work tape, moves the heads, and changes the automaton
state; note that all have the same left-hand side. Because several such
rules are included, only one daughter computation has to succeed. The
lone daughter in each such rule is a head daughter.

2. If ¢ was not in E, it must be in U instead (a universal state). For
this case, let L — R;,...,L — R, be the rules that would have been
constructed according to case (a) if ¢ had been an existential state.
Then include the rule

L— Rl, csey Rp
instead of those rules. Again, every daughter is a head daughter.
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With these rules, the construction is almost finished; only a few loose
ends remain. The syntactic categories used in our GPSG are formally spec-
ified as follows:

Feat = {STATE, IKPUTPOS,WORKPOS,PHASE}
U{INPUT; : 0 < i < |w| + 1}
U{WORK; : 1 < j < §(jw|)}
Atom = Feat
( Q,if f = STATE
the set {i:0 <7 < |w| + 1}, if f = INPUTPOS
the set {j:j < j < S(|w)}, if f = WORKPOS
Pf) = SU{s},if f = INPUT, for some i
the ATM tape alphabet T', if f = WORK; for some j
| the set {START,READ,RUN}, if f = PHASE

The set of head features is defined to consist of the INPUT; features and
the WORK; features. In addition, we need feature co-occurrence restrictions

to ensure full specification of all non-null categories. For every f € Atom,
include the FCR [STATE] D [f].

Inspection of the construction steps shows that the reduction may be
performed in polynomial time in the size of the simulated ATM. (Note that
the grammar we construct encodes only the description of the machine that
produces the computation tree—not the potentially infinite computation
tree itself.)

No metarules or LP statements are needed, although metarules could
have been used instead of the head feature convention. Both devices are
capable of transferring the contents of the ATM tape from the mother to
the daughter(s). One metarule would be needed for each tape square/tape
symbol combination in the ATM.

GKPS definition 5.14 of admissibility (p.104) guarantees that admissi-
ble trees must be terminated. By the construction above, a [PHASE RUN]
node can be terminated only if it represents an accepting configuration. In
particular, a [PHASE RUN] node cannot be terminated by a lexical rule, be-
cause all constructed lexical rules are [PHASE READ]. This means the only
admissible trees are accepting ones whose yield is the input string followed
by a very long empty string. []
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A.2 Number of CF English Productions

For GPSG and all its variants, the only grammar directly usable by the Ear-
ley algorithm, that is, with the same complexity as a context-free grammar,
is the set of admissible local trees. I estimate the number of local trees in
the following “typical” RGPSG for English and show, in accordance with
earlier estimates (see Shieber 1983:137), that this set is astronomical. Any
recognition procedure that explicitly calculates or uses the set of admissible
local trees can only result in a slower recognition time than one that does
not.

Consider the simplest ID rule 32 in the RGPSG for English.
VP - [1]: (32)

The VP mother may receive multiple values (or remain unspecified) for
the atomic-valued features CASE, GER, NEG, POSS, REMOR, WHMOR, AUX,
INV, LOC, PAST, PER, PLU, PRD, or VFORM. Assume that each feature is
binary. Then 3!* possible extensions of the VP are licensed, since each fea-
ture may be +, —, or unspecified. VP may also receive many AGR specifica-
tions in which the atomic-valued features CASE, COMP, GER, NEG, aFORM,
POSS, REMOR, WHMOR, ADV, AUX, INV, LOC, N, PAST, PER, PLU, SUBJ,
V may receive multiple values or be undefined. The daughter’s feature values
are fixed by the lexicon and the HFC, so the ID rule (32) corresponds to
314.31° — 333 ynanalyzable context-free productions. The GPSG equivalent
of (32) corresponds to significantly more context-free productions due to the
combinatorial possibilities of embedded categories in GPSG.

The ID rule (33) is slightly more complicated.
VP —[2]: NP (33)

The VP mother in (33) may bear all of the features of the VP mother in
the rule 32, plus it may also bear the category-valued features SLASH or WH,
or RE, because these foot features can be instantiated on the NP daughter.
ID rule (33) therefore corresponds to approximately 314 . (319)3 = 371 >
1033 unanalyzable context-free productions. We would expect that only
some of these 103 context-free productions are really legitimate rules of an
English RGPSG. Even if we were able to exclude the invalid extensions from
consideration, the RGPSG for English would still contain an astronomical
number of context-free productions, and the GPSG for English still more.
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Significantly underspecified ID rules such as the binary coordination
schema correspond to an even greater number of context-free productions.
In the following estimate, I count the three mutually-exclusive atomic head
features NFORM, PFORM, VFORM as one feature, and ignore the features NULL,
CONJ, COMP since their distribution is extremely limited. I must also ignore
the positive Kleene star categories of the iterating coordination schema, be-
cause any ID rule containing them corresponds to an infinite number of
context-free productions.

The 12 atomic head features can receive any value on either head daugh-
ter (= (3'2)%) and the 9 non-head atomic features can receive any value on
any of the three categories in the rule (= (3%)%). Because the foot features
WH and SLASH are mutually exclusive, there are effectively 3 category-valued
features: the head feature AGR may take 312+? values on either head daugh-
ter (= (3%!)?), while the two foot feature may each take 32! possible values
on only one category (= (3?!)?). Thus, the BCS corresponds to

(312)2 . (39)3 . (321)2 . (321)2 — 3135 2 1064

context-free rules. In short, even the more constrained RGPSG framework
licenses an astronomical number of context-free productions.

A.3 Practical Consequences of GPSG’s Complexity

Here I argue that the GPSG theory of GKPS is difficult to understand and
prone to massive overgeneration. The exclusive use of extensional (i.e. non-
constructive) definitions, when coupled with the vast array of extensional
possibilities and incompletely specified relationships among formal devices
means that knowledge of principles does not translate into an ability to
determine the consequences of that knowledge. It is difficult, if not impos-
sible, for the linguist to understand the consequences of a particular GPSG
system, in part because the formal system is so intractable.

Not only are there an extra-astronomical number of syntactic categories
in GPSG, but the computations performed on them are extremely intri-
cate. Head features are, in principle, those features that must agree on the
mother and head daughters in a local tree. Consider the head features SUBJ R
SUBCAT, SLASH, and BAR, which are actually required to disagree in nearly
all cases. SUBCAT, for example, must never be equivalently specified on the
mother and head daughters, except when it remains unspecified on both.
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ID rules with lexical heads predominate, and in those rules BAR, SUBJ,
and SLASH features must never agree. The GKPS solution to this problem
is to make feature instantiation operate only on those (non-problematic)
features that may be freely equated: absolute feature specification iden-
tity is not possible to enforce, either “because the ‘problematic’ feature
specification is stipulated in the rule, or because its presence or absence is
required by the FCRs, or because its presence or absence is required by
the FFP or CAP.”(p.95) In short, principles of universal feature instantia-
tion can only be understood relative to all other formal devices. The dy-
namic nature of feature instantiation, when compounded with extensional
(i.e. non-constructive) definitions of the foot feature principle (FFP), con-
trol agreement principle (CAP), and head feature convention (HFC), results
in a linguistic theory that is extremely difficult to understand.

As shown above, the ‘problematic feature specification’ solution intro-
duces significant additional complexity in the theory of syntactic categories:
universal feature instantiation plays a central role in the EXP-POLY time-
hard reduction. The additional complexity is concealed by extensional defi-
nitions — admissible local trees are defined in terms of all projections of an
ID rule that meet the FFP, CAP, and HFC. The interactions of these three
grammatical components remain unspecified, and the actual role of FCRs
is similarly never explained. If FCRs apply after the HFC, all lexical heads
would first be specified for [BAR 2] and then eliminated; if FCRs apply
before the HFC, all lexical heads would be specified for [BAR 2] and then
admitted. The GKPS solution to this dilemma is to apply FCRs and the
HFC simultaneously to the ID rule projections, along with the FSDs and
other principles of universal feature instantiation.

One might think from these extensional definitions that the FFP, CAP,
HFC, FCRs, and FSDs apply relatively independently. Even worse, one
might associate order of presentation (FFP, then CAP, then HFC, and finally
FSDs) with formal dependence. In fact, their interactions are intricate and
highly structured. For example, the CAP depends heavily on the HFC
because head feature specifications in part determine the semantic types
relevant to the definition of control. One of the goals of Revised GPSG, as
presented here, is to unravel these dependencies and expose the underlying
structure of feature instantiation in natural language grammars.

A major caveat regarding the following examples is in order. The major
empirical support for the claim that the interactions among GPSG’s formal
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devices are unpredictable is the theory’s computational intractability, as
shown above in section 4. I in no way consider errors in GKPS to be a
ma jor source of empirical evidence for this claim. The errors are anecdotal,
circumstantial, and probably unavoidable in any system as complex as a
descriptively adequate linguistic theory — at best these errors constitute
auxiliary support for this claim, and for this reason appear in the appendix.

These interactions manifest themselves in extremely subtle ways. A
case in point is the GKPS analysis of unbounded dependency constructions
(UDC’s). These constructions are said to have a top, middle, and bottom.
The top of topicalization and wh-movement constructions is supplied by the
ID rule (34),

S— X2,H/X2 (34)

which is repeatedly assumed in GKPS—throughout chapter 5 and in the
elucidation of the CAP, e.g. local tree (25¢) on p.90—to result in local trees
of the form

S
NP[PER 3, -PLU]
S[SLASH NP[PER 3, -PLU]]

where the CAP requires the value of SLASH on the head to be identical to
the controller X2 (that is, the two X2 categories of the ID rule (34) must
agree). This local tree is an egregious violation of the HFC, because the
non-problematic head feature SLASH is present on the head daughter but
not the mother.

A tree compatible with the HFC, CAP, and FFP follows imnmediately.
Note that this is the most general tree, because the FFP requires identical
instantiation of SLASH values on the mother and daughters.

S[SLASH NP[PER 3, -PLU]]

NP[PER 3, -PLU, SLASH NP[PER 3, -PLU]]
S[SLASH NP[PER 3, -PLU]]

An immediate consequence of the HFC, then, is that UDC constructions
are topless, consisting of an infinite iteration of NP’s missing NP’s internally
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(FSD 3 prevents +NULL from being instantiated on the NP /NP daughter).
A UDC cannot terminate without introducing another UDC. The obvious
solution is to remove SLASH from the set of head features — it was unclear
why SLASH should be a head feature from the start, since most heads are pre-
vented from being specified with SLASH by FCR 6 (and by FSD 3, indirectly
through FCR 19). The strongest argument for including SLASH in HEAD
arises from the GKPS account of parasitic gap facts. Removing SLASH from
HEAD also simplifies the definition of the control relation to only consider
HEAD and inherited FOOT feature specifications, rather than non-FOOT
HEAD features and inherited FOOT features, when determining the seman-
tic types relevant to the definition of control (see GKPS p.87).

Unfortunately, our troubles are not over yet. It is perfectly admissible
to instantiate a SLASH feature on the mother, provided we satisfy the FFP
and instantiate it on at least one daughter. Since SLASH cannot be instan-
tiated twice on the daughter head, it must be instantiated identically on the
daughter NP.

S[SLASH NP[PER 3, -PLU]]
NPIPER 3, -PLU, SLASH NP[PER 3, -PLU]]
S[SLASHE NP[PER 3, -PLU]]

The CAP is satisfied: the value of the SLASH feature on the agreement target
(i.e. the head daughter) is identical to the ,-specifications of the controller
unified with the value of the SLASH feature on the controller. (In plainer
English, the ,-specifications are the head but not foot specifications, plus
any inherited foot specifications. In this instance, the ,-specifications of the
controller are the features {[+N,-V,BAR 2,PER 3,-PLU]}.)

In conclusion, the only permissible local tree in the entire preceding
discussion is:

S[SLASH NP[PER 3, -PLU]]
NP[PER 3, -PLU, SLASH NP[PER 3, -PLU]]
S[SLASH NP[PER 3, -PLU]]

Therefore, even if we remove SLASH from the set of head features, the GKPS
grammar for English will allow an infinite class of ungrammatical utterances,
such as that shown in figure (9).
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NP[3s] S/NP[3s]

NP[3s] /NP[3s] S/NP[3s]

Boston
NP[3p] VP[+NP[3pl]1/NP[3s]
a man from € |
we VOIL1T7] VP
I NP[+NULL,3s] /NP[3s]
iy /\VP
€
to VoIi]
succeed

Figure 9: This is a problematic topicalization structure in GPSG, where
[SLASE NP[3s]1] has been instantiated on both the mother S and its NP[3s]
nonhead daughter, in accordance with the FFP. The bad extraction is marked by
a dark line.

Other examples of unexpected interactions among the principles of uni-
versal feature instantiation can be found in GKPS. An example is the def-
inition of the FFP given in GKPS. Consider the ID rules generated by the
STM2 metarule, which are of the form:

A/B - C,D
Local trees of the class
A/B

C/F
D/G

75



meet the FFP because the unification of instantiated foot features on the
daughter categories is undefined for SLASH (the unification of F' and G is
undefined), and ¢(4/B) | FOOT ~ A/B is also undefined because FOOT ~
A/B is the empty set.

The RGPSG FFP fixes this problem as follows. Any foot feature spec-
ification that is instantiated on a daughter category in an RGPSG local
tree must also be instantiated in the mother category, and that specification
must be identical to an instantiation of the same feature on other daughter
categories. This revised FFP also ensures that inherited foot features on the
mother prevent an instantiation of those foot features on any daughters.
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B Complexity of RGPSG Recognition

This appendix contains a formal proof that the universal recognition problem
for R-GPSG’s is NP-complete. That is, the problem of determining for an
arbitrary RGPSG G and input string w whether w is in the language L(G)
generated by G, is NP-complete.

B.1 RGPSG Recognition is NP-complete

Let P be the set of ID rules resulting from applying metarule biclosure, UFI,
and simple defaults to the set of ID rules given in the RGPSG G. Recall
that P contains O(|G|*) symbols.

Lemma B.1 Let (¢q,...,¢) be a shortest leftmost derivation of ¢, from
@0 in an RGPSG G containing at least one branching production.)® Ifk >
|P|, then |ok| > |pol.

Proof. In the derivation step ¢; = i1, where p; = aA’f and ;11 = ay'B
for a € V3, B € (Vr U K)*, one of the following cases must hold:

1. The production A — 4 with extension 4’ — <4’ is nonbranching
(l7] = 1). In the worst case, we could cycle through every possible
nonbranching production (without using a branching production), af-
ter which we would begin to reuse them. Any extension of a production
that has already been used in this run of nonbranching productions
could have been guessed previously, and the length of the shortest
nonbranching run must be less than |P|.

2. The production A — v with extension A’ — 4’ is branching (|y| > 1).
Then |@i] > |piy1].

A total of at most n—1 branching productions derives an utterance of length
n, because there are no null-transitions in an RGPSG.?° Each branching

19Tf the RGPSG G does not contain a branching production, then L(G) contains only
strings of length one and all shortest derivations are shorter than |P|: membership for
such a grammar is clearly in NP.

?The only null-transition is the lexical element for the category X2[+NULL], /X2, as
shown in 8. Null-transitions may, at the worst, convert the extension of a branching
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production can be separated from the closest other branching production in
the derivation by a run of at most |P| nonbranching productions, and the
shortest derivation of z will be of length 8(|P| - |z|) = 6(|G|® - |2|). (]

Theorem 8 RGPSG Recognition is in N'P.

Proof. On input RGPSG G and input string 2 € V7 *, guess a derivation
of z in nondeterministic polynomial time as follows.?!

1. Compute the set P of ID rules resulting from applying the simple de-
faults (while respecting the principles of UFI) to the output of metarule
biclosure BC(M,R). This can be done in deterministic polynomial time
(see above).

2. Guess an extension S’ of the start category S, and let §’ be the deriva-
tion string.

3. For a derivation string a 4’8, where a € V7,8 € (Vr U K)*, guess a
production 4 — ¥ and extension A’ — ' of it. Let ay’'8 be the new
derivation string.

4. If oy’ = =z, accept.
5. If |ay'B| > |z|, reject.

6. Loop to step 3 (at most |P| - |z| times).

Every loop of the nondeterministic algorithm performs one step in the
derivation. By lemma B.1, the shortest derivation of 2 is at most of length
O(|P| - |z|), so we need to loop through the algorithm at most that many
times. Guessing an extension of a category may be performed in time
6(|cat| - |Atom|), and an extension of a production may be guessed in time
6(|cat| - |Atom| - |P|). This nondeterministic algorithm runs in polynomial
time and accepts exactly L(G); hence RGPSG Recognition is in N'P. []

The idea of the following hardness proof arose during a discussion with
Ed Barton and Robert Berwick.

production to a nonbranching one in the derivation because no head daughter may bear
the [+NULL] specification, and therefore null-transitions may in effect be compiled out of
the derivation when we choose an ordered extension to expand the nonterminal 4’.

21 Again, we assume P contains at least one branching production. If not, then we
should only loop as many times as there are productions, and then halt.
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Theorem 7 RGPSG Recognition is NP-hard.

Proof. Wereduce 3SAT to RGPSG Recognition in polynomial time. Given
a 3CNF formula f of length m using the n variables ¢, ... g,, we construct an
RGPSG Gy such that the string w is an element of L(G) iff f is satisfiable,
where w is the string of formula literals in f. G is constructed as follows:

1. Gy includes the set Atom of atomic feature {STAGE,LITERAL, ¢1,...,qn}
with values defined by the function p:

p(STAGE) = {1,...,n+3}
p(LITERAL) = {+,-}
pla:) = {o,1}

The set of head features HEAD is {q1,¢2,...,9n}. The grammar will
assign truth-values to the variables and check satisfaction in n + 3
stages as synchronized by the feature STAGE. The start category is
{[STAGE 1]}.

2. At each of the first n stages, a value is chosen for one variable; because
the ¢; are head features, the values that are chosen will be maintained
throughout the derivation tree by the HFC. The following 2n non-
branching rules are needed, constructed for all 7, 1 < ¢ < n. All
daughters are heads.

{[STAGE 4],[¢; 01} — {[STAGE i+ 1],([g; 01}:
{[STAGE i1,[¢; 11} — {[STAGE i+ 1],[g; 11}:

3. At stage n + 1, the grammar has guessed truth assignments for all
variables; all that remains is to use the truth assignments to generate
satisfied three-literal clauses. The following two rules generate enough
clauses to match the number of clauses in w:

{[STAGE n+ 11} — {[STAGE n+21}:
{[STAGE n+ 1]} — {[STAGE n + 11} {[STAGE n+21}:

4. At stage n + 2, the grammar generates satisfied three-literal clauses—
clauses containing at least one true literal. Let Cp and C; be the
following categories:

Co = {[STAGE n + 3], [LITERAL -]}
C1 = {[STAGE n + 3], [LITERAL +]}
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Then the following 7 ternary-branching rules are needed; any set of
three literals makes the clause true, provided at least one literal is

true:
{[STAGE n+ 2]} nd Co Co C]_ H
{[STAGE n -+ 2]} — CoC1Cy:
{[STAGE n+ 2]} — C1CoCo:
{[STAGE n -+ 2]} — Co C1 Cq:
{[STAGE n+ 2]} - C1CoCy:
{[STAGE n+ 2]} — CyC Cyp:
{[ST‘GE n+ 2]} —+ C1 C1 Cq:

5. Finally, lexical insertion at stage n + 3 ties together the truth-values
chosen for the variables and the literals. For every g, 1 <i< n, we

need the following four lexical entries, bringing us to a total of 6n + 9

rules:
(¢, {[STAGE n + 3], [LITERAL +], [¢; 1]1})

(%, {[STAGE = + 3], [LITERAL -], [g; 01})
(3;, {[STAGE n + 31, [LITERAL +1,[g; 01})
(3;, {[STAGE n + 3], [LITERAL -1, [¢; 11})

There are no category-valued features, LP statements, metarules, or simple
defaults in the RGPSG G constructed by the reduction.

If some extension of the start category § = {[STAGE 1]} can be gener-
ated, then the formula f is satisfiable; each extension of the start category
that generates a string must encode a satisfying truth assignment. For ex-
ample, the category

{[STAGE 1], [q; 11,[g; 01,...,[g, 11}

generates 3-CNF formulas f with the satisfying truth assignment ¢ =
1,¢2 = 0,...,¢, = 1. Note that the RGPSG constructed in the reduc-
tion generates all satisfiable 3CNF Boolean formulas, of any length, using n
or fewer variables. []

B.2 Computation Tree Reduction for RGPSG

We may prove theorem 7 using computation trees as follows.

Proof. To establish the result, we will hide a polynomial depth pruned OR
computation tree in an polynomial depth branching RGPSG parse tree. The
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major obstacle to our success is the RGPSG head feature convention, which
ensures that all heads dominated by a common head will have the same
head features. This means we cannot use the HFC to transfer unaltered
tape squares from a configuration to its successors as we did for GPSG
recognition.

The trick is that each RGPSG category will encode a polynomial depth
pruned OR computation tree! Assume, without loss of generality, that our
target computation tree has polynomial depth d and uses space s. We
create s atomic features g; ...g, to encode the tape squares, as before, and
d category-valued head features f; ... f; to represent a path in the unpruned
OR computation tree, which is merely a pruned OR tree or a straight line.
We will need the atomic features state and head to represent the machine
state and head position, respectively.

We will use the ID rules to transfer the tape contents encoded in the
O-level categories from one embedded category to another. Thus, in the
parse tree, embedded categories will obey the next-move relation. The head
feature convention serves no useful role in this reduction—it merely ensures
that all categories in the resultant parse tree are identical.

For each transition ¢ found in § we will create s-d(1+2(s—1))+1 = 0(d-s?)
ID rules as follows. Assume wolg that ¢ changes a tape square from o to
o' and state from g to ¢’, and moves the tape head right. For each possible
tape square ¢ altered by £, 1 < i < s, and each f; other than f; representing
a configuration ¢ could apply to, create the ID rule

{[f; {[state q], [head il,[g; al}l} —
{[fj-l-l {CState q,]’ [head i+ 11, [gi aI]}]} : ‘jil,

and the 2(s — 1) ID rules for all tape squares k, k # 4

{[f; {[state q], [head il,[g: 1]}]} —
{{fi+1 {[state ¢'1,[head i+ 11,[gs 1]}]} : 5k

{[f; {[state ¢1, [head il,[gs 0]}} -
{[fj+1 {[state ¢'], [head i+ 11,[g, O]}]} : Gk’

We need one more ID rule to terminate accepting configurations, which are
in a special accept state ¢,:

{[fa {[state ¢,1}]} — accept
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The distinguished start category will encode the root node of the compu-
tation tree embedded in the category-valued feature f;.

Note that the parse tree successfully simulates the target computation
tree iff it yields a string containing every possible pair ji for 1 < j < d
and 1 < i < s. The ‘ji|’ substring in the terminal string indicates that any
successful derivation of the terminal string has transferred the contents of
the ** tape square from the jth configuration to it’s successor (the j + 1th
configuration) in accordance with the next-move relation. These terminal
strings look like ‘11]12|13]...]21|22|23|...]|ji|...|(d — 1)s|accept’. []
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C An RGPSG for English

Before presenting the English RGPSG in its entirety, we discuss some of the
more tricky aspects of converting the FCRs and FSDs of the GKPS English
grammar into RGPSG.

We must stop +P0SS from getting forced on everything, perhaps with
an SD If true Then [P0SS noBind]. What does +P0SS mean in GKPS
anyway? Their analysis of NP [+P0SS] and PP [+P0SS] must be clarified.

We duplicate FSD 7: [BAR 0] D - [VFORM PAS], which prevents ran-
dom lexical categories from assuming a passive alternate, in a complicated
and obtuse manner. We introduce a new head feature +PAS to indicate
passive sentences and verb phrases, and no longer allow the VFORM feature
to take PAS as a value. We also include four SDs to ensure that VFORM and
PAS are mutually exclusive, and that PAS only appears in [+V,-N] cate-
gories. While this solution allows us to avoid both the implicit disjunctive
consequence of FSD 7 and morass of problematic feature specifications, it is
linguistically dubious. RGPSG (incorrectly) claims that human languages
can have passive categories that are also finite, infinitival, and so on. On
the other hand, this is just as offensive as the GPSG/RGPSG claim that
some human languages can specify a category for the three features VFORM,
NFORM, and PFORM simultaneously. The proper solution to this problem is to
introduce finer internal structure in feature specifications. A more intricate
version of the tree-like theory of features proposed in Gazdar and Pullum
(1982) or the complex-symbol rules of Chomsky (1965) appear to be more
linguistically and computationally desirable for these reasons.

FCR 10: [+INV,BAR 2] O [+SUBJ] prevents +INV from “dripping through”
the VP by the HFC. Note that +INV is only introduced on the mother
V2[+SUBJ] category of lexical ID rules, and that the only instance of V2[+SUBJ]
as the head daughter of a (potential) VP is in the ID rule 35

V2 — X2: X2[+ADV] (35)

We include the simple default SD: If [-SUBJ] Then [-INV] to prevent
+INV from rising through any daughter VP’s. Alternately, we could re-
place 35 with 36, which could be linguistically incorrect.

V2[-INV] — X2: X2[+ADV] (36)

83



Lastly, GKPS fn.2 on page 73 says that the category S[VFORM PAS] is
invalid in English, yet GKPS fail to enforce this constraint in their GPSG
for English. If it is actually desirable to rule out the suspect category, then
include SD: If [+SUBJ] Then [-PAS].

Without further ado, the following RGPSG is the result of translating
the GKPS grammar for English into the RGPSG formal system.

H SYNTACTIC FEATURES

CASE {Acc,NOM}

COMP {for,that,vhether,if,noBind}

CONJ {and,both,but ,neither,either,nor,or}
GER {+,-}

NEG {+,-}

NULL {+,-}

POSS {RECP,REFL}

REMOR {RECP,REFL}

WHMOR {R,Q,FR,EX}

; HEAD features

AGR {}

ADV {+,-}

AUX {+,-}

INV {+,-}

LoC {+,-}

N {+,-}

NFORM  {there,it,NORM}
PAS {+,-}

PAST {+,-}

PER {1,2,3}

PFORM  {to,by,for,about,of,with,....}
PLU {+,-}

PRD {+,-}

v {+,-}

VFORM {BSE,FIN,INF,PRP,PSP}
; BHEAD features

BAR {0,1,2,n0Bind}
SUBCAT {1,...,48,for,that,vhether,if,
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and,both,either,neither,but,nor,or ,not}
SUBJ {+,-}

; FOOT features

RE {3

SLASH {}

WH {

; ABBREVIATIONS
S ::= [+V,-N,+SUBJ,BAR 2]

VP ::= [+V,-N,-SUBJ,BAR 2]

NP ::= [-V,+N,BAR 2]

AP ::= [+V,+N,BAR 2]

PP ::= [-V,-N,BAR 2]

vV ::= [+V,-N]

N ::= [+N,-V]

A ::= [+N,+V]

P ::= [-¥,-V]

+it ::= [AGR NP[NFORM it]]
+there ::= [AGR NP[NFORM there]]
+NORM ::= [AGR NPI[NFORM RORM]]
+Q ::= [WH NP[WHMOR Q]]

+R ::= [WH NP[WHMOR R]]

Deg ::= {[SUBCAT 23,BAR noBindl}

[T

“F ::= [F noBind]

SIMPLE DEFAULTS

e

If [SUBCAT] Then [BAR 0]

If [SUBCAT] Then [SLASH noBind]

It (-[+PAS] & “[PRP] & [+V,-N] Then [PRD noBind]
It [+SUBJ,WH] Then [COMP noBind]

If [+SUBJ,INF] Then [COMP fox]

It [+V,-N,-SUBJ] Then [AGR NP[NFORM NORM]]
If [SLASH] Then [WH noBind]

If [WH] Then [SLASH noBind]

If A1 Then [WH noBind]

If VP then [WH noBindl

If true Then [NULL noBind]
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If true Then [CONJ noBind]

It [-SUBJ] Then [-INV]

It [VFORM] Then [-PAS]

It [+PAS] Then [VFORM noBind]

If [SUBCAT] & [+V,-N] Then [-PAS]
If [-v] | [+N] Then [PAS noBind]

; to duplicate FCR 5, which appears to be useless .
It [+sUBJ] | (-[FIN] & [VFORM]) Then [PAST noBind]

; these four are all questionable

If true Then [-INV] ; means extraposed S’s must be matrix S’s

If true Then [CASE NOM] ;BUT no case defaults should be allowed

If [+N,-V,BAR 2] Then [CASE ACC] ; no case defaults should be allowed
It [+SUBJ] Then [-PAS] ; GKPS p.73 fn2 implies this is needed

: ID RULES

VP -> [1] : %(die eat sing run succeed weep occur
dine elapse grow look)

VP > ([2] : ®P %(sing love close prove succeed
abandon enlighten castigate slap eat devour grow bring trade)

VP -> [3] : NP, PP[to] %(give sing throw hand trade)

VP -> [4] : NP, PP[for] %(buy cook reserve save trade)

VP -> [B] : NP, NP %(spare hand give buy trade)

VP -> [6] : NP, PP[+LOC] %(put place stand)

VP -> [7] : X2[+PRD] %(be)

; Sells p.130 claims this should be VP[+AUX] -> [7] : X2[+PRD]

VP -> [8] : NP, S[FIN] %(persuade convince tell)

VP -> [9] : (PP[tol), SLFIN] %(concede admit)

VP -> [10] : S[BSE] %(prefer desire insist)

VP -> [11] : (PPlof]l), SIBSE]l Y%(xequire)

VP[INF,+AUX, AGR NP] -> [12] : VP[BSE] %(%o)

VP -> [13] : VP[INF] %(continue tend seem want)

vP -> [14] : V2[INF,+NORM] %(prefer intend)

VP -> [15] : VP[INF,+NORM] %(try attempt want)

VP -> [16] : (PP[to}), VP[INF] %(seem appear)

VP -> [17] : NP, VP[LINF] %(believe expect)

VP -> [18] : NP, VP[INF,+NORM] %(persuade force)

VP -> [19] : (NP), VP[LINF,+KORM] %(promise)

VP[AGR S] -> [20] : NP %(bother amuse)

VP[+it] -> [21] : (PP[%o]), S[FIN] %(seem appear)

VP[AGR NP[there,PLU_1]] -> [22] : NP[PLU_1] %(be)

VP -> [40] : S[FIN] %“(believe say regret)
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VP -> [43]

VP -> [45]

: s{+Q]

%(wonder ask inquire)

VP[+it] -> [44] : NP, S[+R] %(be)
VP[+it] -> [44] : x2, S[FIN]1/X2 %(be)

: PPLot] %(approve)
VP -> [48], X2[-SUBJ,CONJ and] %(come go)
VP -> X2[-SUBJ] : AP[+ADV] % ;is this too constrained?
VP -> X2[-SUBJ] : X2[+4DV] % ;adverbial adjuncts to VP
S -> X2[+suBJ] : x2[+ADV] % ;adverbial adjuncts to S
VO[+NEG] -> Xo[+AUX] [SUBCAT not,“BAR] % ; “"was not"

%

%

%(angry glad curious)
%(apparent obvious certain)
%(afraid aware amazed)
%(insistent adamant determined)
%(likely certain sure)
%(anxious eager)

%(easy)

::= determiners, possessive phrases, limited set of quantifying

%

A2 -> X1 : (Deg)

AP[-ADV] -> X1 : (AP[+aDV])

A1 -> [24] : PP[about]

A1[aGR S]1 -> [26] : PP[to]

A1 -> [26] : S[FIN]

A1 -> [27] : s[BSE]

A1 -> [28] : VPLINF]

A1 > [290] : V2[INF,+NORM]

A1 -> [42] : v2[INF]/nP[-NOM]
; Spec

: APs (e.g. many, few)
; N1 -> X1 : Modifier by Andrews(1983)
NP > X1 : Spec

NP[+SUBJ] -> X1 : NP[+POSS]
; [+SUBJ] says i have a subject, allowing refl/recip

i to work properly. Multiple-possesives must be allowed.
NP[+P0OSS] -> X1 ; “ign

N1 > X1

N1
Ni
N1
Ni
N1
N1
N1
N1
N1
N1
N1

X1
X1
X1
[30]
[31]
[32]
[33]
[34]
{3s5]
[36]
[37]

: PP
: PP
: S[
: NO

[+PosS]

+R]

%

%
%
%
%
%

; X1 prevents multi-DET or -gerunds

;for noun-noun modification
%“(death disappearance laughter)

: PP[with], PP[about] %(argument consultation conversation)
: S[COMP that]

: S[BSE,COMP that]
: V2[INF]

: PPlof]

: PPlof], PP[to]

: PP[of,+GER]

%(belief implication proof notion idea)
%(request insistence proposal)
%(plan wish desire)
%(king sister inside love seduction criticism)
%(gift announcement surrender)
%(dislike admission memory habit prospect idea)

; depending on how LP statements are enforced, N-N mod rule might have to be
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; ¥4 -> X1 : NO[SUBCAT {30,31,32,33,34,36,36,37}], i.e. heinous.
; because LP says SUBCAT always comes first.

;Mod ::= almost, totally, immediately, right, three feet, nearly
iMod bears the SUBCAT feature and therefore precedes X1 in the first PP rule.
; maybe P1[+P0SS] should be PP[+P0SS] or the grammar crashes

PP -> Xt : Mod %
P1 -> [38] : NP %(to underneath in beside)
P1 -> [39] : PP[of] %(out forward in_front in_back)

P1[+P0SS] -> [41] : NP[+P0OSS)  ¥%(of)

S[COMP noBind] -> X2[-SUBJ,AGR X2] : X2 %
S[COMP noBind] -> X2[+SUBJ}/Xx2 : X2 %
S[COMP that,FIN] -> S[COMP noBind] : [SUBCAT that] %
S[COMP that ,BSE] -> S[COMP noBind] : [SUBCAT that] %
S[COMP whether] -> S[COMP noBind] : [SUBCAT whetherl %
S[COMP if] -> S[COMP noBind] : [SUBCAT if] %
S[COMP for,INF] -> S[COMP noBind] : [SUBCAT for] %

; iterating coordination schema, * means positive transitive closure +
X -> [CONJ and], X* : %
X -> [CONJ noBind], [CONJ and]+* : %
X -> [CONJ neither], [COXJ norl* : %
X -> [CONJ ox], X* : %
X -> X, [CONJ ox]l* : %
; binary coordination schema

X -> [CONJ both], [CONJ and] : %
X -> [CONJ either], [CONJ or] : %
X -> X, [CONJ but] : %
H LP STATEMENTS

[SUBCAT] << [SUBCAT {unbound,noBind}]
[+N] << P2 << V2
[CONJ {both,either,neither,noBind}] << [CONJ {and,but,nor,or}]

’ METARULES
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; passive metarule
'YP —> W, NP! => !VYP[+PAS] > W, (PP[byl)!

; subject—aux inversion metarule
'V2[-SUBJ] -> W! => !V2[+INV,+AUX,+SUBJ,FIN] -> W, NP!

; extraposition metarule
'X2[AGR S] -> W! => 1X2[+it] -> W, S!

;jcomplement omission metarule
*[+N,BAR 1] -> W! => ![+N,BAR 1] -> !

; slash termination metarule 1
X -> W, X2! => 1X -> W, X2[+NULL]!

; slash termination metarule 2
'X -> W, V2[+SUBJ,FIN]! => 1X/NP -> W, V2[-SUBJ]!

; SOME LEXICAL RULES

; universal lexical rule,
; where two X2’s are linked for all features but NULL
<, X2[+NULL]_1/X2_1>

<"quickly”, A[+ADV]>
<"excessively", A[+ADV]>
<"aren’t", V[+AUX,+NEG,PER 1,-PLU,+INV]>

<"that", [SUBCAT that,“BAR]>
<"whether'", [SUBCAT whether,“BAR]>
<"if", [SUBCAT if,“BAR]>

<'"for", [SUBCAT for,”BAR]>
<"both", [SUBCAT both,“BAR]>
<"either", [SUBCAT either,“BAR]>
<"neither", [SUBCAT neither, “BAR]
<"and", [SUBCAT and, “BAR]>
<"but", [SUBCAT but,*BAR]>
<"nor", [SUBCAT nor,“BAR]>

<"or", [SUBCAT or,“BAR]>

<"it", NP{PRO,-PLU,NFORNM it]>
<'"there", NP[PRO,NFORM there]>
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;lexical rules to discharge PFORM
<"of', PO[PFORM of]>

<"to", PO[PFORM to]>

<"with", PO[PFORM with]>
<"about", PO[PFORM about]>

<"by'", PO[PFORM byl>

<"“for', PO[PFORM for]>

<"what", NP[+Q]>
<"which", NP[+Q]>
<"ghich", NP[+R]>
<"which", Det[+Q]>
<"which", Det[+R]>
<"whose", Det[+P0OSS,+Q]>
<"whose", Det[+P0SS,+R]>

<''go", Deg>

<"too", Deg>
<"very", Deg>

D Syntactic features in GPSG and RGPSG

These notes contain an informal description of the GPSG/RGPSG feature
system: what each feature means, and how it is used. A typical entry is of
the form:

#<feature> {<permissible-feature-values>}

[<feature-specification-1>]: what <feature-specification-1> means.
[<feature-specification-2>]: what <feature-specification-2> means.

#BAR {0,1,2,n0Bind}

[BAR 0]: for pure lexical entries, i.e. words.
(nouns, verbs, prepositions, adjectives, adverbs). Almost
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all preterminals will have the [BAR 0] feature.

[BAR 1]: for lexical entries and their complements
(e.g. for ‘[man [that I knew]]l’ because it is missing its specifier)

[BAR 2]: for complete phrases (NP, VP, PP, AdjP), including both
complements and specifiers. The only [BAR 2] lexical categories are
for "there" and "it".

#CASE {NOM,0BL,0BJ} ; this feature is in BHEAD.

[CASE NOM]: nominative case is assigned by a VP to its subject
"I", "who", "he" are all NP[CASE NOM].

[CASE OBJ]: objective case is assigned by a verb to its NP complements
"him", "me' are NP[CASE OBJ,0BL]. The GPSG specification [CASE ACC]

(accusative case) includes both the objective and oblique cases of
RGPSG.

[CASE OBL]: oblique case is assigned by a preposition to its NP.
"whom" is NP[CASE OBL], although this is a weak distinction.

#COMP {for,that ,whether,if ,noBind}

This feature labels a clause with the lexical item appearing in its
complementizer position. The value of COMP is morphologically realized.
For example, "whether John is a fool'" is S[COMP whether].

#CONJ {and,both,but ,neither,either,nor,or,noBind}

This feature labels a conjunct with the conjunction word that is
associated with it. For example, in the coordinate structure "Either
Bill or Bob died", the first conjunct would be NP[CONJ either], and
the second conjunct would be NP[CONJ or].

#GENDER {M,F,N} "gender"

[GENDER M]: for masculine gender

[GENDER F]: for feminine gender

[GENDER N]: for neuter gender

#GER {+,-} "gerund"

[GER +]: for gerunds (verbs functioning as nouns with an "-ing'" ending)
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[GER -]: for nouns that may not be gerunds.
#NEG {+,-} "negation"

[NEG +]: for all negated categories (“not") and categories in the
scope of negation. Contractions ("wasn’t") should be separated into
"was not", and "not" should be replaced by the [NEG +] preterminal.

[NEG -]: for elements that may not be negated. No lexical entry is
[NEG -].

#NULL {+,-}

[NULL +]: for phonologically empty elements, such as traces and gaps.
[NULL -]: for phonologically overt elements. All lexical entries
are [NULL -].

#PER {1,2,3} "person"

[PER 1]: for first person nouns "I", “me"
[PER 2]: for second person nouns "you"
[PER 3]: for third person nouns “he', "she', "it"

#Po0ss  {+,-}
[POSS +]: for possessives, i.e. nouns with genetive case such as "his".

#SUBCAT {1...48,for,that,whether,if,
and,both,either,neither,but,nor,or,not} "subcategorization"

All words have at least one value for their SUBCAT feature. In the
feature specification [SUBCAT nl, n is a subcategorization index.

[SUBCAT 1]: intransitive verbs (die, eat, sing, run)

[SUBCAT 2]: verbs appearing in the VP [V NP] (e.g., SING a song)
[SUBCAT 3]: verbs appearing in the VP [V NP to NP] (GIVE John a book)
[SUBCAT 4]: [V NP for NP] verbs (BUY a book for John)

[SUBCAT 6]: [V NP NP] verbs (GIVE Bill the book)

[SUBCAT 6]: [V NP PP[+LOC]] verbs (PUT the disk in the water)

The meaning of numerical SUBCAT values is determined by the ID rules
they appear in; see the GKPS or RGPSG grammars for English. The
nonnumerical SUBCAT values (for example, "for" or "that") represent
themselves: the terminal "for" is associated with the [SUBCAT forl]
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feature specification, "that" is associated with [SUBCAT that], and so
on. Note that there are (at least) two lexical entries for "for":
<"for", [SUBCAT for,BAR noBind]>

<“for", [-N,-V,BAR 0,PFORM forl>

#SUBJ {+,-} ""subject"

[SUBJ +]: for categories with subjects (clauses, for example).
[SUBJ -]: for categories missing a subject (verb phrases, for example).

#REMOR  {RECP,REFL} ‘"REciprocal/REflexive morphology"

[REMOR RECP]: for reciprocals (“themselves").
[REMOR REFL]: for reflexives ("each other").

#WHMOR  {R,Q,FR,EX} "WH- morphology"

For wh- nouns, pronouns, and phrases, e.g. what, who, whom, where.

The entries for these words are highly ideosyncratic: see the lexicon
fragment in the RGPSG for English given below.

[WHMOR R]: for relative wh- pronouns (whom, which, whose) in relative clauses.
[WHMOR Q]: for interrogative pronouns (what, which, whose) in questions.
[WHMOR FR]: ?

[WHMOR EX]: ?

#AGR {3 ; {} indicates category-valued feature

AGR appears only on verbs in English. Its value is the type of subject
that the verb selects. "frighten" can only take —ABSTRACT noun phrase
subjects, so its lexical entry might be

<"frighten", VO[SUBCAT 2, AGR NP[+PLU,-ABSTRACT]]>

#ADV {+,-} "adverbial"

[ADV +]: for adverbial adjectives (i.e. adverbs).
[ADV -]: for nonadverbial adjectives.

#AUX {+,-} "auxiliary"

[AUX +]: for auxiliary verbs ("is").
[AUX -]: for verbs that are not auxiliaries.

#INV {+,-} "invertable"
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[INV +]: for invertable verbs, typically the finite auxiliaries. Items
that must invert (first-singular "aren’t", "need") are labeled [INV +].
Examples: Aren’t you cold? Need we die?

[INV unBound]: for verbs that optionally invert (some finite auxiliaries).
[INV -]: for everything else, e.g. for the auxiliary "better" because

it can’t invert.

#L0OC {+,~} "locative"

[LOC +]: for all categories that are locations (wvater, Egypt, in the house).
[LOC -]: for categories that aren’t locations (John, virtue).

#N {+,-} "nominal"

[N +]: for nouns and adjectives/adverbs.
[N -]: for verbs and prepositions.

#NFORM  {there,it,NORM}

[NFORM there]: only for the Pleonastic noun phrase "there"
<"there", NP[PRO,NFORM there]>

[NFORM it]: only for the pleonastic noun phrase "it"
<"it¢", NP[PRO,-PLU,NFORM it]>

[NFORM NORM]: for all other nouns. Note that "it" may appear
in a non-pleonastic reading as a pronoun.

#PAS {+,-} ‘“passive"

[PAS +]: for verbs with passive morphology (given, kissed, known, believed).
[PAS -]: for nonpassive verbs.

#PAST {+,-} "past tense"

[PAST +]: for past tense verbs (gave, knew).
[PAST -]: for present tense verbs (give, know).

#PFORM  {to,by,for,about,of,with,. . .}

A1l prepositions will have a PFORM specification whose value is
the preposition itself, e.g. <"about", PO[PFORM about]>.
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#PLU {+,-} "plural"

[PLU +]: for plural categories (e.g. plural nouns and verbs).
[PLU -]: for singular categories.

#PRD {+,-} "predicate"

[PRD +]: for predicates. This includes adjectives ("happy") and
pPredicate nominals (anything that denotes a set of things, e.g.
"doctor'" because it denotes the set of all doctors).

[PRD -]: for words that camnnot be predicates (e.g. determiners).

#V {+,-} "verbal"

[V +]1: for verbs and adjectives/adverbs.
[V -1: for nouns and prepositions.

#VFORM  {BSE,FIN,INF,PRP,PSP}

This feature labels a verb and its projections (VO, V1, VP, and S)

with the morphological class of the verb. In GPSG, [VFORM PAS] labels
passive verbs and their projections. In RGPSG, [PAS +] performs that

function.

[VFORM BSE]: uninflected, untensed base verb form
[VFORM FIN]: inflected, tensed finite verb form

[VFORM INF]: infinitival verb form. Signifies inflection w/o AGR plus VO,

e.g. "to be" or "to VO".

[VFORM PRP]: purposive verb foxm, e.g. "cleaning a bone". (not implemented)

[VFORM PSP]: past participle. (not implemented)
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Block 20 cont'd

A central goal of mathematical linguistics is to precisely determine the power ofa
linguistic theory. Traditionally, formal language theory (the Chomsky hierarchy)
and its generative power analyses have translated this question into the narrower
question of how unrestricted the rule format of a theory is. Modern computational
complexity theory offers another, more useful, translation: how much of what com-
putational resources does a theory consume? Complexity theory also offers a new
perspective on descriptive adequacy. In a descriptively adequate linguistic theory,
the structural descriptions and computational power of the theory match those of
an ideal speaker-hearer.

The primary goal of this paper is to demonstrate how considerations from com-
putational complexity theory can inform grammatical theorizing. To this end,
the paper revises generalized phrase structure grammar (GPSG) linguistic theory
so that its computational power more closely matches the limited computational
ability of an ideal speaker-hearer. A second goal is to provide a theoretical frame-
work within which to better understand the wide range of GPSG models that have
appeared in the theoretical and computational linguistics literature, embodied in
formal definitions as well as in implemented computer programs.

The paper begins with an outline and intuitive complexity analysis of the GPSG
formal system of Gazdar, Klein, Pullum, and Sag (1985). Subsequently, revisions
to the formal system are motivated by complexity and generative concerns. The
revised system is presented along with an account of topicalization, expletive pro-
nouns, and parasitic gaps. This work falls within the GPSG approach to linguistics.
Revised GPSG is, however, less opaque, more tractable, and more linguistically con-
strained than standard GPSG theory: GPSG Recognition is EXP-POLY time hard,
while RGPSG Recognition is NP-complete.
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