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Abstract

This report presents a system for generating a stable, feasible, and reachable
grasp of a polyhedral object. A set of contact points on the object is found that
can result in a stable grasp; a feasible grasp is found in which the robot contacts
the object at those contact points; and a path is constructed from the initial
configuration of the robot to the stable, feasible final grasp configuration. The
algorithm described in the report is designed for the Salisbury hand mounted
on a Puma 560 arm, but a similar approach could be used to develop grasping
systems for other robots. Simulations show that the system can generate a wide
range of grasps in difficult situations.
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Chapter 1

Introduction

One goal of much research in robotics today is to develop the truly autonomous
robot, a robot that can be used for undersea exploration, for exploration of
planets, or for making repairs in remote or dangerous locations. Such a robot
needs to have a lot of flexibility, a rich space of possible motions, since it must be
able to perform not only complicated operations but also a variety of operations
without special help.

In the context of manipulation, for example, it might be desirable to have
a single, flexible gripper rather than carrying a specialized gripper for every
operation to be performed. Some mechanisms that begin to satisfy this criterion
have already been built. There are a number of robot hands available that are
capable of performing a wide range of manipulation tasks (see [41], [14], [39]).

To use such a robot effectively, however, we need to be able to program
it at a task level (at least at the level of, say, “get that rock” or “connect
the two beams”), rather than providing it with a specific sequence of motions
to perform. Task-level programming has been a research goal throughout the
history of robotics and artificial intelligence, but we have yet to achieve this
level of abstraction or autonomy.

An example of current state of the art in task-level programming is the
Handey system [31], which can plan the task of picking up and relocating an
object for an arm with a parallel jaw gripper. In this report, we will explore the
problem of extending this system so that we can make use of a hand. Specifi-
cally, we will consider the three finger, three joint per finger Salisbury hand [41]
(Figure 1.1). We will focus on the subtask of grasping, as the replacement of the
parallel jaw gripper by the hand introduces many new potential ways to grasp
an object. Our goal is to produce a relatively fast grasp planner that works in a
variety of situations. We hope that detailed exploration of this specific problem
will provide insight useful in solving more general grasping and manipulation

11



12 CHAPTER 1. INTRODUCTION

joint 1

Figure 1.1: Model of the Salisbury hand.

problems.

1.1 The Problem

The problem addressed in this report is automation of the grasping task. We
want to generate a path for a robot that will take it from a starting position to
a stable grasp of a given object. To make the problem tractable, however, we
consider a particular robot and make several assumptions about the world and
about the types of grasps we want to achieve.

1.1.1 Problem Setting

Our robot consists of a Puma arm with a Salisbury hand mounted at the wrist
(Figure 1.2). The arm has six degrees-of-freedom: the first three joints affect
wrist position and wrist orientation; the other three change only the orientation.
The hand has nine degrees-of-freedom: three joints for each of the three fingers.

Our assumptions about the world and restrictions on the task are as follows:

e Only fingertip grasps are considered.

o The fingertip contacts are modeled as hard finger contacts (that is, point
contacts) with friction. This means that forces normal to and tangential
to the object surface can be applied at the contact point (as long as the
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Figure 1.2: The Puma arm with the Salisbury hand.

resultant force is within the finger-object friction cone), but no torque can
be applied about the contact point (Figure 1.3).

e There is a world model, and all objects in the world are modeled as poly-
hedra.

The restrictions on the grasp type, contact type, and object type give us a
reduced problem domain to explore. The world model is used to detect colli-
sions that would result from a proposed motion. The accuracy of our solutions
depends on the accuracy of the world model.

With all this in mind, our goal becomes to generate a path for the Puma with
the Salisbury hand that takes it from a starting position, through the modeled
world, into a stable, fingertip grasp of a given object.

1.1.2 A Good Grasp

There are three requirements for a given grasp to be valid:
o Stability
o Feasibility
e Reachability

A grasp is stable if the forces on the object are in equilibrium and if small
external disturbance forces do not cause the contacts to slip or separate from



14 CHAPTER 1. INTRODUCTION

Figure 1.3: (left) With hard finger contacts with friction, we can apply forces
normal to and tangential to the object surface at the point of contact. (right)
But the resultant force must be within the friction cone at the contact point.
We assume Coulomb friction, so the tangential force must be less than p times
the normal force, where p is the coefficient of friction at the contact point.

the object. A grasp is feasible if there exists a collision-free configuration of the
robot such that the fingertips are at the chosen contact points. The robot cannot
be occupying the same space as some object in the world. A grasp is reachable
if there exists a collision-free path from the starting position of the robot to the
final grasp configuration. In fact, since we are interested in achieving the grasp,
we not only want to know that such a path exists, but we want to find a path.

The overall plan of attack in this report is to first find a set of fingertip
contact points (each with regions of allowable position error) that can result
in a stable grasp; to then use the remaining degrees-of-freedom to generate a
feasible grasp with the fingertips at those contact points; and then to establish
reachability by identifying a good approach direction and synthesizing a path
into the grasp. We will introduce each of these subproblems below. They will
be discussed in more detail in Chapters 2 through 5.

1.1.3 Stability

Our goal for this subproblem is to find a set of contact points on a given object
that can result in a stable fingertip grasp for a three-fingered hand. This is a six
degree-of-freedom problem, as there are two degrees of freedom in placing each
finger on the surface of the target object.

The first thing to note when considering this problem is that we do not have
to worry explicitly about object stability. It is sufficient to achieve equilibrium
of the contact forces on the object, provided that we have a sufficient number
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Figure 1.4: If we have three contact points, the contact forces must all meet at
a point in the plane of the contact points for the grasp to be in equilibrium.

of contact points. Specifically, Nguyen [37] has shown for a polyhedron that
any non-marginal equilibrium grasp, that is, any equilibrium grasp in which
all contact forces are completely within the friction cones at the contact points
(i.e. not on the friction cone edges) can be made stable by adjusting finger
stiffnesses at the contact points if there are at least three hard finger contacts.
We model the three fingers of our hand as hard finger contacts, so it is sufficient
to synthesize a non-marginal equilibrium grasp for the three fingertips.

Another result drawn from the literature is that, if there are forces applied
at three contact points, a necessary condition for equilibrium of these forces is
that their lines of direction all meet at a point in the plane of the contact points
[3] (see Figure 1.4). This point can be at infinity, which means that the lines of
force direction are all parallel. We will call the point of intersection the grasp
focus (as in [3]).

Since all of the forces applied at the contact points must lie within the plane
of the contact points, it is natural to break the problem into finding this plane

and then placing the contacts within the plane. This is the approach we will
take.

Considerations involved in placing both the plane and the contact points are
to keep the forces within the friction cones at the contact points and to allow for
position error in placement of the fingertips. The need to allow for position error
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might keep us from placing the contact points on vertices or edges, for example,
although they might be otherwise desirable because of their large friction cones.
We will place the contact points on the object faces, and attempt to pursue
Nguyen’s [37] goal of producing maximal independent contact regions for the
fingertips.

Note that the considerations used to determine a good set of contact points
represent an effort to avoid any chance of the object slipping in the grasp, even
if there is some position error in the final placement of the fingertips. It is worth
pointing out that slipping may not be a problem to be avoided at all costs (see
for example Fearing [17] and Brock [3]). We can do a quasistatic analysis of
an initial contact situation that takes slipping into account, and with this, we
can estimate the final positions of the object and the fingertips given a method
of control, the assumption of very slow motion, a good object model, and a
predictable support surface (see Mason [34]). Here we assume that slipping is
not substantial and that such an analysis is not necessary.

Also note that when we find contact forces and a grasp focus, we ignore
known external forces such as gravity. Since we will have a stable grasp of the
object, gravity and other disturbance forces can be counteracted without the
object slipping from the grasp, although the contact forces may have to be large
if the object is heavy or if the coefficient of friction is small.

1.1.4 Feasibility

A second subproblem is to find a collision-free configuration of the robot with
the fingertips at the selected contact points. Since we have already specified
three fingertip contact positions (nine degrees-of-freedom), we have six remain-
ing degrees-of-freedom. We can specify these by picking a wrist position and
orientation.

Our method is to first ignore the objects in the world and choose a wrist
configuration that is kinematically feasible and approximately centered about
the fingers. If the resulting arm/hand configuration does result in collisions
between the robot and objects in the world, we set up a quasistatic spring
model of the joints of the robot and assume that there are forces at the points
of collision that nudge the robot away from the collision points (and hopefully,
into free space).

We use this physical model of the joints and of collision forces in an attempt
to make the resulting behavior somewhat predictable. For other options see [25],

24], [36].
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1.1.5 Reachability

Our goal here is to find a path for the robot from its starting configuration to
a goal configuration. This is a fifteen degree-of-freedom problem, as we need
to find a path for all of the joints of the robot. To cut down on the number of
degrees-of-freedom we need to consider at any one time, we break the problem
into two parts:

e Near reachability.
e Global reachability.

For near reachability, we initially consider potential collisions between the
hand and the target object or nearby objects. That way, we can plan motions
of the hand alone. Furthermore, we assume that the hand is sufficiently close
to the object and that the environment is sufficiently uncluttered that the hand
can make a straight line approach to the target object. Unforseen collisions
between the hand or the arm and objects in the world will be eliminated using
the joint spring control method outlined in the Feasibility section above.

For global reachability we only worry about collisions that might be caused
by making large arm motions. For this, we consider only motions of the first
three joints of the arm, those responsible for the position of the wrist. The hand
can be modeled as a fixed or infrequently varying payload. This will only work
if there is a wide path for the robot to follow.

1.2 Previous Work

In this section, we give an overview of previous work related to the subproblems
of finding a stable, feasible, and reachable grasp. Much of the work is specific
to either two-fingered hands (e.g. parallel jaw grippers) or hands with three or
more fingers.

In the area of stability, much work has been done in the analysis of stable
grasps, both for two-fingered hands (see Barber et al. [2]) and for hands with
three or more fingers (see for example Mishra et al. [35], Jameson [21], Cutkosky
[11], Kerr and Roth [22], Salisbury [41], and Salisbury and Craig [42]).

We are more interested in grasp synthesis, however. Work in this area for
hands with three or more fingers includes that of Hanafusa and Asada [19],
who find a grasp on a two-dimensional object cross-section by minimizing the
energy stored in springs at the contact points; Baker, Fortune, and Grosse [1]
who show that a stable grasp of a polygon can be formed by placing contacts at
points of intersection of the polygon with the maximum radius circle that can
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fit inside it; Markenscoff and Papadimitrious [33], who optimize a stable grasp
of a polygon with respect to the compressive forces required to balance external
forces; Jameson [21], who maximizes a goodness function for grasp stability once
the robot is in contact with an object; and Nguyen [37], who discusses finding
maximal independent contact regions that can produce a stable grasp of an
object.

Another approach to choosing a grasp is to generate a catalogue of grasp
types and to then match these grasp types to the target object or to the task
to be achieved. Examples of this are Tomovic et al. [45], who have a system for
matching grasp types to object types, and Li and Sastry [27], who match grasp
types to task ellipsoids.

In the area of feasibility, most of the work has concentrated on finding free
contact and approach areas around an object for a two-fingered hand. Examples
of this include Pertin-Troccaz [40], Laugier [26], Wingham [46], and Lozano-
Pérez [29, 28|.

In the area of reachability, work has been done for two-fingered hands near
the object, using a potential-field type approach (see Lozano-Pérez et al. [31])
and a configuration-space approach (see Pertin-Troccaz [40]).

Work on reachability that is not specific to hands includes the entire field
of path planning. The standard approach for a global path planner is to first
characterize free space for the robot, and to then perform a search through
the characterization of this space. One might also map free space as the search
proceeds. A goal is to do a fast, yet accurate characterization or mapping of free
space that leads to an easy search (at least for simple problems). Much work
in this area has been devoted to finding some way to characterize free space
in a manner such that the difficulty of the resulting search accurately reflects
the complexity of the task of moving the robot through the given environment.
Examples of exact characterizations of free space include the Voronoi diagram
[9, 38], Canny’s roadmap algorithm (8], Schwartz and Sharir [43]. Examples
of heuristic path planners include Lozano-Pérez [30], who divides configuration
space into slices, Brooks [5, 4], who finds freeways in free space using generalized
cones, and Faverjon [16], who uses an octree representation of free space.

Work on local path planning is also relevent. In this area, Khatib [23] com-
bines an attractive potential toward the goal with repulsive potentials from
nearby objects to move a robot. Faverjon and Tournassoud [15] combine an at-
tractive force toward the goal with constraints imposed by the obstacles. Klein
[25], Kiréanski and Vukobratovi¢ [24], and Nakamura et al. {36] begin with an
underspecified path, which might be, for example, a set of consecutive wrist
or fingertip positions for an arm. They then use some representation of the
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goodness of configurations to find at each point along the path the best config-
uration that corresponds to the given specifications or path requirements. For
all of these methods there is no guarantee that a path will be found.

Concerns that are important, but that will not be dealt with explicitly in
this report are contact dynamics and uncertainty. The first comes up because
we do not start in a stable grasp position, and so we need to think about what
happens when we make contact with the object. In this vein, some work on
analyzing object motion due to pushing and slipping in the grasp has been done
by Mason [34], Brost [6], and Fearing [17].

The second concern is with producing a guarantee that a plan we generate
will work in the presence of uncertainty in knowledge of the world and uncer-
tainty in our ability to follow a given trajectory exactly. Work on guaranteed
motion strategies can be found in Donald [12], Buckley [7], Erdmann [13], and
Lozano-Pérez et al. [32], who develop back projections (7, 13, 32] and error
detection and recovery schemes [12].

Solutions to many of the subproblems that are addressed here have been
pulled together and implemented on a Puma arm with parallel jaw grippers [31].
The primary goal of this report is to address the additional concerns involved
when the robot has a three-fingered hand. Thus, the new problems with respect
to [31] are how to select a grasp and how to approach that grasp when we have
a manipulator with a large number of degrees of freedom.

1.3 Contributions of this Report

In this report:

e We present an algorithm for synthesizing a stable, feasible, and reachable
grasp of an object with an arm and articulated hand.

e In the area of stability we follow up on Nguyen’s goal of generating maxi-
mal independent regions for fingertip contact on the object.

o In the area of feasibility we present an algorithm that first suggests a
kinematically feasible configuration and then modifies it to avoid collisions.

e In the area of a grasp approach we modify a straight line approach to a
final grasp using a potential field model of collision forces. Here and in the
feasibility algorithm we use a quasistatic spring model for the joints of the
robot to produce a somewhat predictable motion away from collisions.
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o In the area of path planning, we present a parallel global path planner
that works in the space of the first three joints of our robot. The path
planner uses a precomputed map from configurations to Cartesian space
regions to compute free configuration space.

1.4 The Rest of the Report

In the chapters that follow, we will first discuss the subproblems involved in
synthesizing a valid grasp. Chapter 2 covers stability, Chapter 3 feasibility,
Chapter 4 near reachability, and Chapter 5 global reachability. In Chapter 6,
we present a summary of the process and discuss some possible extensions. In
Chapter 7 we present conclusions.



Chapter 2

Stability: The Contact Points

In this chapter, we outline an algorithm for generating a stable grasp of a given
object. We want to define three contact regions on the object from which we
can generate a stable, fingertip grasp for our three-fingered hand. Our goal is to
maximize the size of the smallest of these contact regions so as to minimize our
chances for failure due to error in placement of the fingertips. We assume that
we have only polyhedral objects in our world, and that our contact regions will
be on faces of these objects.

The development of our algorithm is based on the fact that the hand we
are using is designed with a finger configuration that consists of the two upper
fingers opposing the thumb. Because of this, we focus on configurations of faces
of our target object in which two faces roughly oppose a third. We seperate
these configurations into four classes, which are treated somewhat differently:

o Three parallel faces. (This includes the case where we have two parallel
faces, one having two contact points.)

o Three nearly parallel faces. (This includes all other configurations with
only two faces.)

e Three faces that can make up a convex object.
e Three faces that must form a concave object.

Examples of each of these configurations are shown in Figures 2.1 through
2.4. The contact faces are highlighted, and a grasp is shown for each object,
with the fingertips contacting the highlighted faces. The two upper fingers of
the hand do not necessarily have to contact the two “upper” faces as in these
examples, although this configuration will often be the best fit to the kinematics

21
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Figure 2.1: Two parallel faces.

Figure 2.2: Three nearly parallel faces.



Figure 2.4: Three faces that form part of a concave objec

23
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of the hand. The Ezamples section below illustrates some grasps with different
finger configurations, such as the left finger and thumb opposing the right finger.

The following definitions are used in describing the algorithm for choosing
contact points:

o Finger-to-face mapping: a mapping that indicates the face that each
finger contacts.

e Grasp plane: the plane defined by the contact points.

e Focus point: the point in the grasp plane at which all the lines of contact
force intersect.

e Contact points: the points at which the fingers contact the target object.

e Contact regions: the regions about the contact points such that if each
finger contacts the object within its contact region, we can generate a
stable grasp of the object.

In this chapter, we assume that a finger-to-face mapping is given (although see
the Stability Eztensions section of the Discussion chapter for ideas on how it
could be selected). Our goal throughout is to maximize the size of the smallest
valid contact region surrounding a contact point. In the sections below we
discuss the algorithm for generating a stable grasp in detail, using the objects
illustrated in Figures 2.1 through 2.4 as representative examples.

2.1 Grasp Plane

We assume that we are given a finger-to-face mapping, and our goal in this
chapter is to find contact points for the fingers on each of their respective faces.
This is a six-dimensional problem, since for each of the three fingers we have a
two-dimensional surface on which we can place the contact point for that finger.
We know, however, that because we have only three contact points, the forces
applied at the contacts must all meet at a point (the focus point) if they are to
be in equilibrium [3]. This point must lie in the plane of the contacts, so we can
easily break our problem down into selecting a grasp plane and then selecting
contact points within that plane. There are three degrees-of-freedom in choosing
a grasp plane, which can be specified as an orientation and offset. This leaves
three remaining degrees-of-freedom with which to place the contact points on
the edges formed from the cross-section of the contact faces in the grasp plane.
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In this section, we discuss choosing an orientation and offset for a grasp plane.
In choosing the plane orientation, we would like to maximize the minimum size
friction-cone, or effective coefficient of friction, in the grasp plane for the three
faces. Having the largest friction-cones possible helps us to achieve the goal of
maximizing the size of the smallest valid contact region for the fingertips. In
choosing the grasp plane offset, we use only a simple heuristic suggested by the
hand kinematics.

2.1.1 Orientation

We know that the fingertip contact forces will lie within the grasp plane we
choose. It is a useful concept, therefore, to define an effective coefficient of
friction for the cross-section of each contact face within the grasp plane (that
is, for each contact edge). This captures the idea that only a slice of the friction
cone of the contact face is seen in the grasp plane. It will allow us to reduce the
problem of finding contact points to a planar problem. The contact faces are
reduced to contact edges, each with an effective coeflicient of friction. Note that
for polyhedra the effective coefficient of friction depends only on the orientation
of the grasp plane, not on its offset, or location in space.

We assume that the real coeflicient of friction is the same for all faces and is
equal to p. If the grasp plane is at angle §; from the face normal, then it slices
the friction cone so that the effective coeflicient of friction is (see Figure 2.5):

p? — tan?6;

(2.1)

The effective coefficient of friction of a contact edge is largest (and equal to )
when the normal of the corresponding face lies in the grasp plane. In choosing
a grasp plane orientation, we wish to maximize the size of the smallest effective
coefficient of friction in the grasp plane. We can say that this defines a natural
plane orientation for any configuration of face normals.

Natural Orientation: To characterize the natural plane orientation for a
given configuration of faces, we look at the rank of the matrix N composed of
the normal vectors of the three faces:

sec

Niz Ny N,
N = N2z N2y N2 (22)
N3e T3y 732

e If rank[N] = 1, then all three faces are parallel, and we have a one degree-
of-freedom range of grasp plane orientations possible in which the grasp
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Grasp plane

Face friction cone (top view) Grasp plane friction cone
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Figure 2.5: The grasp plane cuts the face at an angle of # from the face nor-
mal. The corresponding cut in the friction cone of the face reduces the effective

coeflicient of friction in the plane to \/ p? cos? @ — sin? 4.
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Figure 2.6: All the faces are parallel, so we have a range of possible grasp planes.
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Figure 2.7: The two upper faces are parallel, so we have only two independent
normals. The grasp plane shown is formed using those normals as basis vectors,
and it is the unique plane perpendicular to all three faces.

Figure 2.8: The three faces have linearly independent normals, so we fit a plane
to them that gives us equal angles of deviation of the normals from their pro-
jections onto the grasp plane.

Figure 2.9: This is another grasp plane formed using two independent normals
as basis vectors.
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plane is perpendicular to all three faces and so all three effective coefficients
of friction are at their maximum possible values (x). Figure 2.6 shows some
of the grasp plane orientations possible for one such configuration.

If rank[N] = 2, then only two of the faces have independent normals, and
we can choose a unique grasp plane orientation (using these normals as
basis vectors for the plane) in which the plane is perpendicular to all three
faces, and the effective coefficients of friction are all, again, x. This case
is shown in Figures 2.7 and 2.9.

If rank[N] = 3, then we have three faces with independent normals, so
we cannot find a plane perpendicular to all three faces. We settle here for
finding the unique plane orientation in which the three effective coefficients
of friction will be equal. To do this we define our plane as az + by +cz = 1,
and solve the following matrix equation for [abc]T:

a 1
N|lb|=11 (2.3)
c 1

Vector a ([abc]T) is the normal of the grasp plane (generally not a unit
normal), and n; (row ¢ of N) is the unit normal of face ¢, so equating (n; -
a) to 1 for all faces ensures that the angles of face normals from the grasp
plane will all be equal, and hence that the effective coefficients of friction
in the plane will all be equal. Because all of our contact points cannot be
in the same half of the circle formed from the contact points (we could
not grasp anything without some opposing force), changing the orientation
of the grasp plane in any direction would cause one of the angles of face
normals from the grasp plane to become larger, and thus cause one of
the effective coefficients of friction in the plane to become smaller. This
implies that with our calculated grasp plane, we have achieved our goal of
maximizing the minimum size effective coeflicient of friction. Figure 2.8
shows an example grasp plane for this type of configuration.

Leeway: The above constraints define a natural orientation for the grasp

plane. We can also define another concept, the leeway of a particular orientation.
Intuitively, this is the amount that the orientation of the grasp plane can change
before the contact forces can no longer point into the plane without the grasp
slipping, that is, before one of the effective coefficients of friction would go to
zero. Leeway can be defined as the ranges of valid rotations of the original grasp
plane about axes within that grasp plane. The orientations of the axes, and thus
the leeway, depend on a single parameter. In other words:
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Figure 2.10: Plots of the leeway in orientation of the grasp plane as a function
of the line about which that plane is rotated.

e Define an axis of rotation in the grasp plane. Since we are only concerned
about the orientation of the grasp plane, only the direction of this axis
matters, so it is a function of one parameter, say angle a.

e Leeway(a) is the minimum angle that the grasp plane can rotate about
this axis before the effective coeflicient of friction on some face goes to
zero.

Plots of leeway versus angle a are shown in Figure 2.10. The plots correspond
to the leeway in the grasp planes shown in Figures 2.6 through 2.9. Note that
if the leeway about a particular axis reaches 90 degrees (that is, the plane can
be rotated at least 90 degrees in either direction about the chosen axis), a valid
grasp plane can be placed at any orientation about that axis.

To understand why this concept is useful, refer to Figure 2.7. The natural
grasp plane orientation we found with these three faces is such that it will be
very difficult to grasp the object with the three fingers contacting their respective
faces at the intersection of the object and the plane. The two upper fingers would
be required to grasp at the edges of their faces.

This is a problem, because the example is not so different from that in
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Figure 2.6, in which we have an extra degree-of-freedom in choosing our grasp
plane orientation. For the case in Figure 2.7 we can characterize this similarity
by noting that the grasp plane orientation actually does have a leeway of 90
degrees about the normals of the contact faces (compare the two upper plots
in Figure 2.10). The plots show that we have an extra degree-of-freedom in
choosing a grasp plane orientation here as well, although the effective coefficients
of friction will vary a little as the grasp plane is rotated.

In Figures 2.8 and 2.9, where no qualitatively different grasp plane orienta-
tions will work, a leeway calculation will tell us that there is not much room to
deviate from the natural grasp plane orientation. This is shown in the two lower
plots of Figure 2.10.

Thus, from natural orientation and leeway information, we can come up with
a set of candidate grasp plane orientations for each configuration of contact faces.
In cases where all the faces are nearly parallel, such as in Figures 2.6 and 2.7,
we will have a range of possibilities. In practice, we divide these into four to
eight representative orientations. In other cases, such as in Figures 2.8 and 2.9,
we have only one real orientation, with a small amount of leeway.

When we generate a feasible grasp with a grasp plane in one of these candi-
date orientations, we can use the leeway in the orientation to adjust the grasp
plane and change the grasp. This may be necessary if we need to move the hand
out of the way of obstacles around the target object, or out of the way of other
parts of the object itself.

2.1.2 Offset

We now have a grasp plane orientation, and we need to compute its offset in
space. For any given grasp plane orientation, there are two different approach
directions possible, roughly in the positive and negative directions of the grasp
plane normal. We find an offset (and hence completely define the grasp plane)
for each of these approach directions.

Our primary concern in selecting a grasp plane offset is that the plane inter-
sect each of the faces. If the grasp plane intersects a face too near a face edge,
however, the valid contact regions will be cut off at that face edge. We want an
offset that places the plane a nominal distance into each of the contact faces if
possible. For this, we can simply find the overlapping ranges of offsets for the
three faces and choose an offset at some nominal distance from the approach
end of the overlapping range (see Figure 2.11). The distance we choose should
be large enough that we do not have to worry about the fingers missing the face
in this direction due to position error, and it should be small enough that the
fingertips can reach the plane easily (barring other protrusions of the object into
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Figure 2.11: Choosing an offset for our grasp plane and faces a, b, and c.

the interior of the hand; we check this in the Feasibility chapter).

2.2 Focus Point

For a given grasp plane, we need to find a set of fingertip contact points. We can
achieve this by first choosing a focus point for the grasp plane. This is the point
at which the lines of force at the three contacts will intersect. For any focus
point, we can calculate valid contact segments on each of the contact edges in
our grasp plane from which the contact forces can point toward or away from the
focus point without the object slipping. This is done by projecting the friction
cones of each of the edges (using the effective coeflicient of friction at that edge)
from the focus point back onto the edge (see Figure 2.12). Although we will
be refering to the contact segment of an edge, this can actually be composed of
several disjoint co-linear segments if it is formed by taking a cross-section of a
face that is not a convex polygon. The size of a contact segment is defined as the
size of the largest of its segments. We define a potential contact segment as the
projection of the friction cone of a contact edge from the focus point back onto
the line formed from the edge. The contact segment is the intersection of the
potential contact segment and the contact edge. Our goal here is to maximize
the size of the smallest contact segment.

The method for finding the focus point is slightly different for different con-
figurations of edges:

Nearly parallel: If the edges are parallel or nearly parallel, a focus point at
infinity is chosen. The lines of force for the edges will be parallel and point along
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Figure 2.12: We can find the segments for each contact edge from which our
force can point toward a given focus point without slipping by projecting the
edge friction-cones from the focus point back onto the edges. The sizes of the
friction-cones are calculated using the effective coeflicient of friction of the edge.

the line that is the best fit to the three edge normals. This line can be obtained
by negating the normal that is opposing the other two and then averaging the
three resulting normal vectors (see Figure 2.13). The valid contact segments
span the entire lengths of the edges.

Convex: If the edges can form a convex polygon. A focus point inside
this polygon is chosen. As stated above, the placement of the focus point should
maximize the size of the smallest contact segment. Assume that the edges are all
infinitely long. Then we can achieve this by placing the focus point equidistant
from the three edges. Because the normals of the edges cannot lie in the same
180 degrees of orientation, moving the focus point in any direction decreases its
distance to some edge, and thus decreases the size of the valid contact segment
on that edge.

The problem is more difficult if we take the lengths of the edges into account.
Consider Figure 2.14. This figure shows equations for the size of a valid contact
segment on the edge shown as functions of focus point position in each of six
different regions. The regions are bordered by lines with the slope of the effective
friction cone on that edge. p' is the effective coefficient of friction of the edge,
[ is the length of the edge, and [zy]” represents the focus point position in the
coordinate frame illustrated.

To maximize the size of the smallest contact segment on the three edges,
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Figure 2.13: If the edges are nearly parallel, our focus point is at infinity, and
the line of force is the best fit to the three edge normals.
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Figure 2.14: Characterizing the size of a contact segment as a function of focus
point position for a real edge.



34 CHAPTER 2. STABILITY: THE CONTACT POINTS

Figure 2.15: If our edges are convex, we place the focus point equidistant from
the three edge lines.

we can optimize within each of the non-zero 4 x 4 x 4 regions. In our exam-
ples, however, we use an approximation to this solution, choosing a focus point
equidistant from all edges as if the edges were infinite. Figure 2.15 shows an
example. As indicated above this method does not in general give us the largest
contact segments on the real contact edges. There could even be an edge that
has no valid contact segment.

Concave: If our contact edges must form part of a concave polygon, then
a focus point outside these edges is chosen (Figure 2.16). Again, we would like
to maximize the size of the smallest valid contact segment. In placing the focus
point, only the concave edges are considered. The third, opposing edge will
have a much larger potential contact segment, and we assume that there will be
a sufficiently large intersection between this potential contact segment and the

edge itself.

Again, to solve this problem correctly, we could divide the half planes formed
by the two concave contact edges into six regions and search the resulting 4 x 4
space of non-zero regions to maximize the size of the smaller contact segment.
We would also need to check that the size of the third contact segment is at
least the size of the smaller of the two others, and if not, solve the 4 x 4 x 4
problem as in the convex case above.

In our approximate solution here, we attempt to equalize the two contact
segments by placing the focus point on the bisector of the two concave contact
edges, and we attempt to maximize these segments by choosing our point on
the bisector where one of the contact segments first hits the outer vertex of its
contact edge (that is, when one of the contact segments stops expanding as we
move up the bisector line and begins to shrink, Figure 2.16).
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Figure 2.16: If we have concave edges, we place the focus point on the bisector
of the two concave edges at the point where one of the contact segments first
reaches the outer vertex of its contact edge (when moving up the bisector). The
contact segment of the third, opposing edge should always be large.
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This, of course, is not entirely correct, as the contact segments may not be
equal (the potential contact segment for one or both contact edges may be larger
than the contact segment), and the smaller contact segment will often not be
maximal, since we are constraining the focus point to be on the edge bisector.
This is a reasonable approximation, however, and it is easily computed.

2.2.1 Weighting the Distances

In calculating the focus point for the convex and concave sets of edges, we have
tried to equalize distances from the point we are selecting to the contact edges
involved. This has been in the interest of trying to produce equal valid contact
segments on the edges. If the effective coeflicients of friction on the contact edges
are not equal, however, it does not work to simply equalize the distances to the
contact edges. We need to weight each distance d; by u;, the effective coeflicient
of friction of edge ¢, to produce d;. Then, if we equate the d; (d; = d;, = d} = d'),
the potential contact segments will all have length 2u,d; = 2d’.

2.3 Contact Points

At this point, the grasp plane and focus point have been found. The last step
is to choose the contact points for the grasp.

Nearly parallel edges: If our contact edges are nearly parallel, we can in
theory place the contact points anywhere on the contact edges. The focus point
is at infinity, and the contact forces will be parallel, so we want to produce a
counterbalancing grasp. That is, in the interest of balancing the torques on the
object, we need to ensure that the upper fingers will be on either side of the
lower finger.

Maximizing the size of the smallest valid contact segment is a two degree-
of-freedom optimization problem. Consider Figure 2.17. E;, E;, and E; are the
contact edges in the grasp plane. The placement of dividing lines parallel to
the chosen direction of force determines the sizes of the valid contact segments,
shown in the Figure as a, b, and c. The dividing lines themselves are shown at
distances x and y from the origin shown in the Figure. The Figure also indicates
the sizes of the valid contact segments as a function of the regions in which x
and y are placed. These regions can be described as follows: Region 1 is the
largest region containing edge F, and not containing edge Ej; Region 2, the
largest region containing both edges E; and E,; Region 3, the largest region
containing both edges F; and Ej; and Region 4, the largest region containing
edge E3 and not containing edge F;. Regions 2 and 3 can, of course, overlap.
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Figure 2.17: Finding contact points for nearly parallel edges.

Distances [;, I3, and l3 indicate boundaries of these regions. The equations in
the Figure can be used to find optimal contact segments for the edges and force
direction selected.

Convex or concave edges: If our contact edges are convex or concave, we
place each contact point at the center of the largest region of the valid contact
segment formed by projecting the friction-cone of each edge back onto the edge

(Figure 2.18).

Figures 2.19 through 2.22 show contact points calculated for the four repre-
sentative objects introduced earlier. = Note that the contact points shown are
on the surfaces of the objects. Since the fingertips of the hand are not points
but spheres (although the hand model used does not reflect this), contact points
representing points of placement for the centers of these spheres should be found
on the surfaces of the objects grown by the fingertip radius.
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Figure 2.18:

.

Figure 2.20: Faces, grasp plane, and contact points for a set of nearly parallel
faces.
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Figure 2.21: Faces, grasp plane, and contact points for a set of convex faces.

Figure 2.22: Faces, grasp plane, and contact points for a set of concave faces.
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Figure 2.23: Contact regions for convex edges.

2.4 Contact Regions

A contact region is an area around a contact point where the stability of the
grasp is preserved. It represents the error that can be tolerated in the placement
of the fingertips. We will briefly look at one definition of contact regions within
the grasp plane.

Nearly parallel edges: For a set of nearly parallel edges, we can describe
our contact regions as any set of regions for which the upper finger forces are
guaranteed to point to opposite sides of the lower finger force. Figure 2.17 shows
an example allocation of contact regions in the grasp plane. As long as all the
fingers are within their contact regions, we can apply parallel forces (that we
can equalize), and we can balance the torques on the object (since the upper
finger forces are on opposite sides of the lower finger force).

Convex or concave edges: If we have a set of convex or concave contact
edges, we can form contact regions from the valid contact segments on the edges
(formed by projecting the contact edge friction-cones from the focus point onto
the edges). See Figure 2.23. As long as the contact points are within these
regions, the fingertip forces can be directed through the focus point without the
fingers slipping. This means that the torque on the object can be zero. And as
long as the contact points are not all in the same half of a circle formed by the
contact points (the contact regions can be clipped so that this does not occur),
the forces can also be equalized.

These are both only definitions of contact regions within the grasp plane,
however. A more interesting study of contact regions would be to:
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Figure 2.24: A grasp with the two upper fingers on parallel edges.

o Define the focus point (or focus points in the case of parallel forces) as
fixed in the world.

e Define a control law for finger forces such as f; x +k;Az;, where Az; is
the distance from the fingertip position of finger 7 to the focus point in
world coordinates.

e Then, define contact regions to be independent regions such that contact
in those regions, coupled with quasistatic execution of the control law,
would result in a stable grasp with no slip at the contact points.

2.5 Examples

Figures 2.24 through 2.26 show three additional sets of contact points (and
associated grasps) found using this algorithm. These are less conventional than
the four representative grasps in that the two upper fingers of the hand do not
directly oppose the thumb. Figure 2.26 even has the thumb and left finger on
the same edge. All of these grasps are stable and kinematically feasible.
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Figure 2.25: Another grasp with convex faces.

%

Figure 2.26: A grasp with the thumb and left finger on the same edge.




2.6. SUMMARY 43

2.6 Summary

This chapter presented an algorithm for synthesizing a stable grasp of a given
object. A finger-to-face mapping was given, and contact regions for the fingertips
were produced. The goal of the algorithm was to maximize the size of the
smallest contact region. The steps involved were as follows:

e Calculate a set of grasp planes, using the natural orientations indicated
by the given face normals.

e Find a focus point for each grasp plane.
e Choose contact points for each focus point.

The algorithm is geared to a configuration with two fingers opposing a third,
but, as we have seen in the example figures, there are many interesting finger
configurations that fall within this simple characterization.
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Chapter 3

Feasibility: The Wrist
Configuration

In the previous chapter, we found sets of contact points on the target object that
can be used to generate a stable grasp. In this chapter, we present an algorithm
to generate a feasible grasp with the fingertips at these contact points. We may
have to modify the given contact points to produce a feasible grasp.

For a grasp configuration to be feasible, the links of the robot must lie en-
tirely within free space, and the joints of the robot must all be within their
respective joint limits. We have already specified nine degrees-of-freedom of the
robot in placing the contact points, so we have six degrees-of-freedom remain-
ing. These can be specified by choosing a wrist position and orientation (a wrist
configuration).

We generate a feasible grasp as follows:

Before we attempt to find a good wrist configuration, we eliminate some
contact configurations that are kinematically infeasible.

Then we select a starting configuration for the wrist, based on a definition
of an ideal grasp.

If the starting configuration is not feasible (i.e. there are collisions between
the robot and the world), we impose a quasistatic spring model on the
joints of the robot and use a model of forces at the collision points to push
the robot toward free space.

If the wrist has moved from the starting configuration, we can adjust
the grasp plane (within the leeway available before the grasp will slip) so
that we will have a feasible hand configuration closer to the ideal hand

45
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Figure 3.1: Contact points that are unreachable due to a collision of the object
with the palm of the hand.

configuration. We find a set of contact points for the new grasp plane
and repeat the process of finding a feasible wrist configuration for these
contact points.

Each of these points is discussed in detail below.

3.1 Eliminating Infeasible Configurations

Since some of the steps in this chapter are computationally intensive, it is helpful
to prune contact sets that are not promising. This section presents a method for
eliminating some of the worst candidates. In particular, we want to eliminate
grasps like the one illustrated in Figure 3.1. In this figure, the hand cannot
enclose the object with its fingertips at the indicated contact points, due to
a collision between the object and the palm of the hand. To check for this
situation, we compute the amount that the object extends from the contact
points perpendicular to the grasp plane from the finger approach direction. If
this distance is greater than the distance from the palm of the hand to the
fingertips, it is likely that the grasp will not be successful, and it is discarded.

Other simple kinematic checks could be devised, but this should eliminate
some of the worst candidate sets of contact points.

3.2 Selecting an Initial Wrist Configuration

The initial configuration for the wrist, along with the set of contact points given
for the fingertips, defines a grasp configuration for the robot. We would like this
configuration to be as close as possible to an ideal grasp.
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Figure 3.2: The first joints of the fingers projected onto the grasp plane.

Intuitively, an ideal grasp is one that keeps the joints of the hand far from
their limits, and gives the hand a natural, streamlined profile. More formally,
the following criteria are desired:

e The plane of the contact points (the grasp plane) is parallel to the plane
formed by the first joints of the fingers (see Figure 1.1 for the location of
finger joint one).

o The circle formed by the projection of the first joints of the fingers onto
the grasp plane will be concentric with the circle formed by the contact
points (Figure 3.2).

e A ray from the circle center through a contact point will intersect the
corresponding projected first joint of the finger (Figure 3.2).

o The plane formed by the first joints of the fingers is as far from the grasp
plane as the fingers can reach.

Figure 3.3 shows three ideal grasps for contact point circles of different radii.
A grasp defined in this manner has equal distances from the first joint of each
finger to the fingertip, and it has a streamlined hand profile. If the fingers have
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Figure 3.3: Ideal grasps for three different values of contact point radii.

to reach equal distances, we can more easily keep the finger joints within their
limits. If the hand profile is streamlined, the volume swept out by the hand as
it approaches the grasp will be minimized.

We want to choose a starting wrist configuration that will approximate the

ideal grasp. Thus, we:

1. Place the plane of the first joints of the fingers parallel to the grasp plane.

This constraint fixes two degrees-of-freedom in the orientation of the wrist.

. Place the center of the circle formed by the projection of the first joints

of the fingers onto the grasp plane concentric to the circle formed by the
contact points. This fixes two degrees-of-freedom in the position of the
wrist.

. Orient the wrist so that the rays from the center of the circle through

the contact points come as close as possible to intersecting the projected
points. One definition of this is that the algebraic sum of the angles be-
tween rays through the contact points and the corresponding rays through
the projected points should be zero. This fixes the remaining orientation
degree-of-freedom.

. Place the plane of the first joints of the fingers as far as possible from the

grasp plane. This fixes the remaining position degree-of-freedom.

A grasp constructed in this manner deviates from the ideal grasp only in the

distribution of the contact points about the center of the contact point circle.
Figure 3.4 shows an example of a starting wrist configuration.
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Figure 3.4: A starting wrist configuration for the contact points shown.

3.3 Eliminating Object-Robot Collisions

If the initial wrist configuration is not feasible, we use information on the location
of object-robot collisions along with robot joint-limit information to attempt to
push the robot into a feasible configuration. This is a local, potential field type
method. It is used to eliminate collisions rather than to avoid them, since the
robot begins in an infeasible configuration. In setting up a solution, we:

Fix the fingertips in their current positions;

Create a spring model of the joints with equilibrium at the current joint
position;

Collect points and directions of collision;

Calculate the distances of the joints from their limits;

Model the collisions as forces placed on the links at the collision points;
Add a repulsive torque to any joint near its limit; and

Calculate a new position for each of the joints in response to these forces
and torques.

The new position becomes a new equilibrium point and we iterate until either
there are no collisions or we give up.

In the paragraphs below, we derive the equation that governs the joint be-
havior. We start by noting the following relationship between instantaneous
forces at the tip of the robot and torques at the robot joints:

Trobot = Text + JTftips (3.1)
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where Trobot is the torque applied about the robot joints, Text is the torque
applied about the robot joints by the environment and by its own joint limits,
JT is the transpose of the robot Jacobian, and fiips is the force felt at the
fingertips.

The repulsive force from collisions allows us to calculate Text:

Text = Z Jlel + Tjoint -limit (3.2)
I=links
where J;T is the Jacobian to link I, and fj is the force on link 1.
Joint limit torque is expressed as follows:
do
Tjjoint—limit = Cj(zj)z (3.3)
]

ld;] < do (3.4)

where c; determines the relative weight of joint limit external torques, d; is the
distance of the joint angle j from its joint limit, and d, is the magnitude of the
cutoff distance.

A spring response at each of the joints can be expressed as:

where 7; is the torque at joint j, Af; is the deviation of the joint angle at joint j

from equilibrium, and k is the stiffness of joint j. The equilibrium position for a

joint is the current joint position. This helps eliminate useless internal motion.
Using the above equation, we get:

Trobot = K Abrobot (3.6)
Text = KAfext (3'7)

where K is the diagonal stiffness matrix incorporationg the stiffnesses of all the
joints.

Combining the above equations gives us an expression for incremental joint
motion in terms of the force felt at the fingertips:

Abrobot = Abext + K_IJTftips (38)

To find the force felt at the fingertips, we use the following equations relating
joint velocities (or small joint motions) to cartesian velocities (or small cartesian
motions):

Axi’.ips = JAbrobot (3-9)

AxXext J Afext (310)

I
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This gives us:
Abrobos = Abext + K 1IT(JK 1 JT) 7 (Axtips — AXext) (3.11)

Axyips is used to compensate for any error in fingertip position that resulted
from previous iterations (and our assumption of very small joint motion at each
step). It is initially zero, since the fingertips are fixed. Rearranging, we get:

Abrobot = K_l'rext + K_IJT(JK_IJT)_I(AXﬁps — JK_lText)) (3.12)

and Ab,4.:, the incremental robot joint motion, is just what we want.

It remains to define how we derive forces on the links from collisions. In our
world of polyhedral models, a collision is defined as either a point where an edge
of an object intersects a face of the robot or a point where an edge of the robot
intersects a face of the object. If we have a collision involving an object face,
we use the face normal as the force direction at that collision point. If we have
a collision involving a robot face, we use the negative of the face normal. The
magnitude of the force is assumed constant for all collisions.

3.4 Adjusting the Grasp

If collisions or joint limits have forced the wrist away from the starting configu-
ration, we can attempt to adjust the grasp plane to bring the final grasp closer to
an ideal grasp. We would like to adjust the grasp plane orientation so that it is
parallel to the plane formed by the first joints of the fingers in the feasible grasp
configuration. The leeway of the grasp plane orientation limits the amount that
the grasp plane can be adjusted, however. This step is only appropriate when
the contact faces are nearly parallel and there is a large amount of leeway in the
grasp plane orientation. We calculate a new grasp plane, new contact points,
and a new feasible grasp with a grasp plane orientation that is closest to being
parallel to the plane of the first joints of the fingers while remaining within the
leeway of the grasp.

3.5 An Example

Figure 3.4 shows an example of a starting wrist configuration for a given set of
contact points on an object. Figure 3.5 shows the world, with the robot feasibly
grasping the object.

When the robot is grasping the object in the starting configuration, there are
collisions between the robot wrist and the table, and between the upper fingers
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Figure 3.5: A feasible grasp.

and the block between the target object and the robot base. These collisions
and equation 3.12 are used to push the robot into free space.

Figure 3.6 shows plots of all of the wrist parameters, by iteration, as the
robot moves away from the block and the table. Wrist position (z, y, and z) is
on the left, and wrist orientation («, 3, and ) is on the right. a, 8, and v are
the yaw, pitch, and roll angles of the wrist coordinate system. Starting with the
world coordinate system and rotating 4 about the world z-axis, then 8 about
the world y-axis, then a about the world z-axis gives us the orientation of the
wrist coordinate system.

In the world coordinate system, motion of the wrist in the z direction takes
the robot up from the table, and motion of the wrist in the y direction moves
the fingers away from the block they are hitting. The plots of wrist position in
Figure 3.6 show that the robot first moves up from the table and then moves
out away from the block. The position axes of the plots are drawn to the same
scale to allow comparison of relative motions in the different directions.

The stiffness of the robot joints was set very high to generate extra points
for the plots in Figure 3.6. This implies that the torques on the joints due to
collisions were low, and that the robot only moved a small distance for each
iteration of equation 3.12. In practice, we can use much lower stiffnesses. Fig-
ure 3.7 shows the number of iterations required for several different stiffness
values. The number of collision points that exist between the model fingers and
the block, and between the model wrist and the table before each iteration are
shown. The error in fingertip position after each iteration is also shown. The
fingertips are assumed to be fixed, but since we assume very small joint motions
for equation 3.12, the fingertip positions will not be the same after a motion of
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Figure 3.6: Plots of wrist position and orientation parameters by iterations of
the collision avoidance step.
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| Stiffness factor | 2.5 | 5 | 10 |
Puma collisions: [ 12 | 0 0 12 3 0 12 3 3 0
Right collisions: || 16 | 6 | 11 | 16 8 6 16 | 12 | 12 12
Left collisions: 6 0 0 6 0 0 6 0 0 6
Thumb collisions: || 0 0 0 0 0 0 0 0 0 0

| Fingertip error: [| .17 ].13 .20 [[.043 [ .047 [ .035 [ .011 [ .013 | .014 [.009 ]

l Stiffness factor " 20 ]
Puma collisions: 12 7 3 3 3 0 0
Right collisions: 16 10 12 12 12 12 8

Left collisions: 6 6 0 1 6 6 0
Thumb collisions: 0 0 0 0 0 0 0

[ Fingertip error: [ .0027 | .0029 ] .0034 | .0037 I .0031 | .0022 | .0023 |

Figure 3.7: The table shows collisions, finger error, and the number of iterations
required for different values of joint stiffness.

the robot as they were before the motion. The number given is the square root
of the sum of squares of the individual fingertip errors in inches. Note that the
fingertip error goes down as the square of the increase in joint stiffness (or the
decrease in the size of the motions resulting from collisions at each iteration).
For this example, at a stiffness factor of 2.5 only three iterations are required to
generate a feasible grasp.

Figure 3.8 shows the new grasp plane found by adjusting the plane orienta-
tion to match the feasible hand configuration. This plane is within the orienta-
tion leeway of the faces. The figure also shows the starting wrist configuration
with the contact points in the new grasp plane. This grasp is feasible. The
world is shown in Figure 3.5.

3.6 Summary

In this chapter, we discussed an algorithm for generating a feasible grasp from
a set of contact points. The algorithm is summarized below:

o Perform a quick kinematic feasibility check to eliminate grasps where the
hand cannot enclose the object with the fingertips at the contact points.
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Figure 3.8: The starting wrist configuration for the contact points in the old
grasp plane (top) and the new grasp plane (bottom).

o Find a starting wrist configuration based on a definition of an ideal grasp.

o Adjust that configuration away from collisions by modeling the robot joints
as springs, the collision points as forces, and the joint limits as torques,
and allowing the robot to move in response to the collision forces and joint
limit torques.

o If there is sufficient leeway in the grasp plane orientation, adjust the grasp
plane toward the feasible grasp, find a new set of contact points, and repeat
the process.

The section An Ezxample above showed the algorithm in operation. It works
fairly well in general, but iterating to move the robot away from collisions can be
slow. This example averaged about 10 seconds per iteration on a Symbolics 3650
Lisp Machine. We are in effect performing a directed search of a six-dimensional
space at this step, however, so we can expect to pay in computation time to
obtain a good search direction.
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Chapter 4

Near Reachability: A Hand
Path

In this chapter, we find an approach to a final grasp. A feasible final grasp
configuration is given, and we want to find a clear path for the hand and arm
from a point near the object into this final configuration. This step is impor-
tant because the global path planner, which plans large-scale motions of the
arm, is not accurate enough to guide the hand all the way into the final grasp
configuration due to limitations in computing time and hardware. The grasp
approach planner is an interface between the global path planner and the final
grasp planner.

In planning a grasp approach, we assume that a small, straight-line motion of
the hand will suffice. We initially plan only the hand motion. The corresponding
motions of the arm will be small, and since the arm starts and ends in feasible
configurations, we assume that intermediate collisions between the arm and the
environment can be eliminated using local control.

The assumption of a straight-line approach allows us to approximate the
volume swept out by the hand during the approach as a cylinder. We first find
a free approach direction for that cylinder, and then we construct a straight-line
approach for the hand in that direction, using local control (as in the Feasibility
chapter) to modify the approach when there are collisions between the robot
and the environment.

In the sections below, methods for finding an approach direction and for
constructing an approach are discussed. Two examples are provided to illustrate
the behavior of these methods.

57
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Figure 4.1: The coordinate system used for the grasp approach.

4.1 Finding an Approach Direction

This section is concerned with finding a clear approach direction for the hand.
We assume that a small straight-line motion of the hand will suffice for the
grasp approach, and we define a cylinder to represent the volume swept out by
the hand as it makes this approach. A clear approach direction is defined as a
direction in which this hand cylinder lies entirely in free space.

To set up the problem, we:

Define a wrist coordinate system.

e Compute the swept volume cylinder for the hand.

Grow the objects in the world by the cylinder radius and shrink the cylin-
der to a line.

Define the clear approach distance for the hand as a function of cylinder
orientation.

Then we search the space of cylinder orientations for a good approach direction.

4.1.1 The Method

The wrist coordinate system is based on the orientation of the hand in the final
grasp configuration. It is pictured in Figure 4.1. We call the center of the circle
formed by the first joints of the fingers of the hand the wrist point. This is
the origin of the coordinate system. The z-axis is placed on the line between
the wrist point and the center of the circle formed by the contact points (the
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fingertips). It represents the current orientation of the hand. The placement of
the = and y-axes is arbitrary. The wrist point will be the reference point for
motions of the hand in the grasp approach.

We calculate a cylinder to approximate the volume swept out by the hand
as it approaches the final grasp. One easy way to do this is to use the z-axis of
the coordinate system defined above as the cylinder axis, and then to use the
distance to the axis of the outermost point on the hand as the cylinder radius.
A hand cylinder with this radius can fully enclose the hand in the final grasp
orientation.

We base the hand cylinder at the origin of the wrist coordinate system. Since
this is our reference point on the hand for motion during the approach, it will
move along the approach cylinder axis. We can terminate the cylinder axis at
the location of the point in the final grasp configuration. The cylinder will have
a length representing the distance of the final approach. In practice we have
used a minimum length of 5.5 inches. Finding a clear approach direction for
the hand is approximated as the problem of finding an orientation in which this
hand cylinder lies entirely in free space.

Now we grow all of the objects in the world by the cylinder radius, which
allows the cylinder to be represented as a line. The problem has now been
reduced to finding an orientation for which this line lies in free space in the
world of grown objects.

Cylinder axis orientation can be represented by spherical coordinates # and
¢ (see Figure 4.1). For every possible orientation of the cylinder axis there is an
associated clear distance, which is the distance from the origin to the nearest
intersection of the cylinder axis with a grown object.

Sometimes the origin itself will be inside a grown object. If this is the case,
there is no simple way to directly compute a correct clear approach distance for
the hand. To solve this problem, we move the origin into free space by placing it
at the nearest point on the object surface, and we make this our new reference
point for motion of the hand.

Any orientation in which the clear distance is greater than the minimum
approach length is a good direction within this framework. There is a natural
approach direction for any feasible grasp, however: the direction of the axis of the
hand in that final grasp configuration. This is a good direction for an approach
because the hand can enclose the object with its axis in this direction, and so it
is likely that there will be a path for the fingers around the object. There can
be problems reaching around the object if the approach is at too great an angle
from this axis. The second example below illustrates this problem, which is an
artifact of the straight-line approach requirement.
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Figure 4.2: By growing all the faces outward by r in the direction of their face
normals, we overcompensate.

We begin our search for a good approach line orientation with this natural
orientation, at ¢ = 0. If the clear approach distance is too small in this direction,
we increment ¢ and check the clear approach distances for the entire range of
6 at the new value of ¢. If any of these directions have large enough clear
approach distances, we take the one with the largest clear distance. Otherwise,
we increment ¢ again and continue. The orientation choosen is at the smallest
possible angle from the natural orientation (within the resolution used), and it
is at the orientation that has the largest clear approach distance at this angle.

4.1.2 Innacuracies in the Method

The inaccuracies in the assumptions we have made when finding a clear approach
direction can be summarized as follows:

1. The cylinder radius is not accurate. It varies with the angle of approach.
It is only guaranteed to be sufficiently large when the approach angle is
along the axis of the hand in the final grasp.

2. We grow objects by moving all the faces outward along their normals by
the cylinder radius (r). This results in an overcompensation by r(1 —
cos 8) if the cylinder actually meets the face at angle 6 (Figure 4.2). This
overcompensation is even worse if the cylinder hits a grown object edge,
especially if the faces that meet at that edge form a very acute angle.

3. The cylinder is a very crude approximation to the volume swept out by

the hand.

4. We ignore the arm.
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5. We may move the cylinder origin if it is inside a grown object. This makes
the hand cylinder calculation very inaccurate and generally generates an
approach in which the hand slides along the surface of the object from
which we removed the origin. The first approach example below is such a
case.

Approximations 2 and 3 could cause no path to be found. If this happens,
we could use a smaller cylinder radius and try again. Approximations 1, 4, and
5 could cause us to find a path that results in collisions. If this occurs, we can
attempt to modify this path using local control to produce a clear approach.
This is covered in the section below.

4.2 Constructing an Approach

This section covers the approach itself. We have a clear approach direction, and
we want to execute a straight-line motion in this direction.

The initial hand configuration is identical to the goal hand configuration, but
offset by the approach distance (here 5.5 inches) along the approach direction.
To fully specify motion of the robot along the approach, we specify both the
wrist point position and orientation along the approach path, and the positions
of the fingertips along the approach path. This constrains the full fifteen degrees-
of-freedom of the robot.

4.2.1 Computing Linear Motion

Fingertip motion: Default straight-line motion of the fingertips is defined as
follows:

Axge = %—Wf (4.1)

where Axy is the change in position of fingertip f, wyg is the vector from the
current fingertip position to the goal fingertip position, and ¢ determines the
step size. t steps will bring all the fingertips to their goal contact points.

Wrist motion: The wrist motion depends upon the fingertip motion. We
cannot blindly assign straight-line constant velocity motion to the wrist, because
this does not guarantee that the fingers can reach their current positions from
the wrist point. For any set of fingertip positions, the position of the wrist can
be defined uniquely as the point along the vector from goal wrist point to current
wrist point at which the hand is fully extended. The wrist point is placed as far
out as the fingers can reach.
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Figure 4.3: A straight-line approach for a fingertip may result in the finger
colliding with some part of the target object before it reaches its final location.

To compute the orientation of the wrist, we use straight-line interpolation of
wrist rotation about a fixed axis: w is the vector from the goal wrist point to
the current wrist point.

e Define 6 and k such that rotating the world coordinate system angle 8 about
fixed axis k would produce the current orientation of the wrist coordinate
system. (See Craig [10], for example, for a derivation of # and k from the
rotation matrix taking one coordinate frame to another.)

o If the new wrist position is mw from the goal wrist position, the new wrist
orientation is angle m# about k from the goal wrist orientation.

Default motion of the wrist point is linear in that the wrist moves along a
line from its current position to the goal, and the amount of rotation of the
coordinate system about k is a linear function of the distance travelled along
that line.

4.2.2 Avoiding Collisions

The above procedure does not take into account potential collisions of the robot
with objects in the environment. In general this is a good assumption, because
we assume that we have chosen a clear approach direction for the hand. There
are two types of problems that may occur, however:

o Collisions of the fingertips with some part of the target object before they
reach the contact point (Figure 4.3).
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e Collisions of any other part of the robot with any object in the environ-
ment.

The first occurs when a direct line from a fingertip to its contact point
intersects part of the target object. To avoid a collision, we allow the fingers
to open wider, following an object envelope formed by growing the target object
by some nominal distance. In our implementation, a finger can open in only
one direction, the outward pointing normal to the edge it contacts in the grasp
plane (refer to Figure 2.12 in the Stability chapter). This uniquely defines the
projection of the default, straight-line fingertip path onto the object envelope.
The fingertips will follow this projected path. This fails if the object is long in
the direction in which the fingers can open, as they will not be able to open
wide enough to clear the object.

The second type of collision occurs when some part of the robot other than
the fingertips collides with some object in the world. This can happen due to
inaccuracies in the swept volume cylinder approximations or due to ignoring the
arm motion when finding an approach direction. In this situation, we keep the
fingertips fixed, and use equation 3.12 as in the Feasibility chapter to push the
robot back into free space.

4.3 Examples

In this section, we demonstrate the algorithm for finding an approach with two
examples. In the first, the wrist point shifts to avoid a collision (Figure 4.4). In
the second, the fingers open to avoid a collision (Figure 4.7).

Example 1: Figure 4.4 shows a frame-by-frame summary of the positions
of the hand with respect to the target object and a second block during the
approach. The arm is not shown for reasons of clarity. It is in free space
throughout the approach.

In the second frame, the fingers are about to collide with the block. Local
control equation 3.12 is used to adjust the robot’s configuration to avoid the
collision. Only one iteration of the control equation is required, as the fingers
were going to just skim the object surface.

Figure 4.5 shows wrist position parameters z, y, and z, and wrist angle 6 as
functions of the distance remaining in the approach. The near-collision occurs
with about 3.1 inches remaining in the approach. Note the large motion in the
y-direction (away from the block) due to collision forces. 8 in these plots is
defined to be linear with respect to the distance remaining for the fingertips
in the approach direction (and is plotted against this variable). A smoother
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Figure 4.4: An approach sequence. The wrist moves off the straight line ap-
proach path to avoid a collision between the fingers and the block.
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Figure 4.5: Plots of wrist parameters against distance remaining in the approach.
k is [-.867 -.004 .498]7, z is up from the table, y is away from the block, and the
approach direction is roughly in the z-direction.
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hand motion would result if it were defined as linear with respect to wrist point
distance remaining, as suggested in the discussion above.

Plots of the z, y, and z coordinates against the distance remaining for the
right fingertip are shown on the left side of Figure 4.6. The right finger opens a
little in the y-direction to follow the envelope around the target object.

Example 2: The second example approach is shown in Figure 4.7. Thisis a
straight-line approach with no collisions. It is included to show a more dramatic
example of a finger opening to go around the target object envelope. This is
best illustrated in the second frame of the bottom sequence of Figure 4.7. The
thumb is forced out and around the stem of the “L”. The wrist moves down to
allow the fingers to open.

Plots of thumb position against distance remaining are shown on the right
side of Figure 4.6. Note the large jump in thumb position in the z-direction.
This is the direction along the stem of the “L”. This approach would fail if the
stem of the “L” were long, as the thumb would not be able to reach around it.

4.4 Summary

In defining the grasp approach, we first find a clear approach direction, and
then construct a straight-line approach for the hand. If this approach causes
collisions between any part of the robot and the environment, we modify it using
local control equation 3.12, as we did when finding a feasible grasp.

We find a clear approach direction by approximating the volume swept out
by the hand during the approach as a cylinder, and finding an orientation of
that cylinder for which it lies entirely within free space. We grow the objects
by the cylinder radius so that we can treat the cylinder as a line.

A straight-line approach is defined as follows:

o The fingertips move in a straight line toward their final contact positions,
with constant velocity in the approach direction.

e The wrist point is placed on the line between its current location and goal
location so that the hand is maximally extended.

e The wrist orientation  about axis k is always a linear function of the
distance from the current wrist point to the goal wrist point.

The fingers are capable of opening in one direction to go around the target
object and avoid fingertip collisions. The wrist position and orientation are
modified using local control equation 3.12 to avoid other types of collisions.
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Figure 4.7: The second approach. The sequence on top is one view. The se-
quence on the bottom is another view, with the occluding objects removed for
clarity. The thumb has to open a large amount to clear the object.



Chapter 5

Global Reachability: An Arm
Path

At this stage, we have a grasp approach into a final grasp. This chapter describes
how to find a path for the arm from an initial configuration to a configuration
from which we can execute the grasp approach.

Since we are planning large-scale motions of the arm, we use a global path
planner. To reduce the size of the problem, we will only search the space of
motions of the first three joints of the robot. The positions of these joints
determine the position of the robot wrist. The hand is considered to be a
fixed payload. Since we have no control over the hand, we can only count on
getting it near the target object with this planner. To move it to the final grasp
configuration, we need the help of the grasp approach planner.

We describe a parallel algorithm to find an arm path. It consists of build-
ing a tessellated map of the configuration space of the first three joints of the
robot, and then searching it for a path. Interesting parts of the algorithm are
a precomputed map from configuration space to Cartesian space that we use to
speed up the process of building the configuration space, and a method to speed
up our search by in effect making the search space coarser while retaining low
level connectivity information. The complexity of the algorithm in parallel is
given by:

O[(obstacles in the world) + (volume of arm) + (length of path start to goal)]
(5.1)
It is implemented on a Connection Machine [20], a SIMD (single instruction,
multiple data) machine with 16K processors, each with 64K bits of local memory.
The flow of the algorithm is as follows:

¢ Find free space in the world: Tessellate the world (Cartesian space).
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Each processor is a region. All regions check the world (or world model)
to see whether or not they are occupied.

¢ Find free configuration space: Tessellate configuration space (the first
three joints of the robot). Each processor is a region. All regions decide
whether or not they are occupied by checking the Cartesian space covered
by the arm in their range of configurations.

e Search for a path through configuration free space: Find connected
regions from the starting configuration to the goal configuration.

In the paragraphs below, we discuss the algorithm in detail.

5.1 Finding Cartesian Free Space

For this part of the problem, we want to obtain a characterization of the regions
in the real world (Cartesian space) that are free of obstacles. To do this, we
first tesselate Cartesian space, assigning a region to each processor. We then
loop through the objects in the world. A processor is marked as occupied if its
region overlaps the volume occupied by the object under consideration. We can
grow the obstacles so that we only have to check whether the midpoint of each
region is inside the grown obstacle.

In parallel, this algorithm runs in time O(obstacles in the world). For envi-
ronments with large numbers of objects distributed throughout the workspace, a
speedup could be obtained by dividing space into large sections, each containing
a set of objects, and then having each processor look only at the set of objects
in its section.

Our world model could be replaced by a depth map, generated from a vision
system (as in Brooks [4], for example) or a laser striping system mounted above
the robot’s workspace. In the absence of overhanging obstacles, such a system
should give us enough information to find our path. The point-in-obstacle com-
putation for checking whether a region is free is trivial: just use the region’s zy
coordinate to index into the array and then check whether its z-range lies above
the level of objects measured at that point in the array.

5.2 Finding Configuration Free Space

In the previous section, we created a tessellated map of Cartesian free space.
From this, we can compute a similar map of configuration free space. For every
configuration of the robot, we must determine whether the robot is in free space.
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Figure 5.1: A configuration space element points to a list of Cartesian space
elements that the arm covers in that configuration.

Two methods are presented for building the configuration space. In the first,
each configuration checks corresponding Cartesian space cells for obstacles. In
the second, occupied Cartesian space cells mark forbidden configurations. Both
methods rely upon a mapping between the two spaces. The map is fixed for a
given tessellation, so it can be computed offline.

Method 1: In the first method, we have available a precomputed map from
configuration space regions to Cartesian space regions. This mapping gives
for each configuration space processor the Cartesian space processors that the
robot could overlap if it were in that range of configurations (Figure 5.1). Each
processor goes through its list of Cartesian space processors, asking them if they
are occupied. It stops and marks itself as occupied if it finds that its list includes
an occupied region of Cartesian space. It concludes that it is free if and only if
all of the cells in its coverage list are free. If all the cells in a processor’s list are
free, the arm is in free space over the range of configurations represented by the
processor.

Method 2: If we were to propagate obstacle constraints in the other di-
rection, Cartesian space processors would have a list of configuration processors
that are blocked when there is an object in that Cartesian space region (Fig-
ure 5.2). All occupied Cartesian space regions would mark as prohibited all the
configurations in their list. Free regions of configuration space would be those
cells that remained unmarked.

Each method has advantages and disadvantages. With the first, excess work
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/
/

Cartesian space Configuration space

Figure 5.2: A Cartesian space element points to all configurations in which the
arm intersects that region of Cartesian space.

is done when the configuration regions query unoccupied cells in their lists before
reaching one that is occupied. In the second, work is wasted when Cartesian
cells re-mark configurations that have already been marked prohibited. In the
first, the bottleneck is multiple requests to the same area in Cartesian space.
This occurs when a region of Cartesian space could block many configurations.
If they all query the same cell at the same time, we have to wait for it to reply to
all queries. In the second case, the bottleneck is the length of the lists. Again,
a cell may block many configurations, and we have to wait for it to mark all of
them.

Our implementation uses the first method, because the lists we have to store
are a predictable, small size. If one wanted to work in the other direction,
though, this problem could be minimized by adding a few special configura-
tions. Instead of marking every element, a Cartesian space cell that blocks all
configurations could mark all; or if it blocked the first link of the robot for some
range of 6, the first joint angle of the robot, it could just mark that 6,, instead
of marking all 6,6,0; configurations with that 6;; or, similarly, if it blocked the
second link for some #; at some #,, it could mark that 6,0,. Afterwards, this
information could be propagated to the full configuration space. That way, the
Cartesian space elements could just store the special elements in their list and
not every configuration that those elements affect.

The map we use here is similar to the shadows of Shiller and Dubowsky [44],
and to the links between the obstacle and arm configuration maps of Graf [18].
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(Graf is trying to learn these links.) Shiller and Dubowsky present a different
way of looking at the problem. In their version, there is also a Cartesian space
map, but there are different copies of this map for each type of robot configu-
ration. There are 4 of these for the first three links of the Puma, characterized
as lefty or righty and elbow up or elbow down. Each Cartesian space location
within one of these maps indicates a wrist position for the robot, which means
that the maps are linked at robot singularities (when lefty is identical to righty,
or elbow up is identical to elbow down). Since each wrist location, along with a
configuration type, fully specifies the robot configuration for this three dimen-
sional case, this is the equivalent of configuration space. Every cell in these
maps can either maintain a list of elements that the arm covers when the wrist
is at that point in that map (this corresponds to the configuration space lists
above), or it can maintain a list of elements in its shadow, that is, a list of wrist
locations that become illegal or blocked when it is occupied (this corresponds
to the Cartesian space lists above). The advantage of this scheme is that we
can better visualize the effects of the presence of objects, as we see in Cartesian
space the points where the wrist (and hence the hand) cannot go if a particular
cell is occupied.

Overall, the main limitation of the map procedure is due to the fact that
the map must be precomputed (computing it at run time would be prohibitively
time consuming: on the order of hours on the Connection Machine). There is
only enough space to store a limited number of maps, and it takes much more
space to store high resolution maps than to store low resolution maps. For
example, at four inches of tip motion per division, we need 64K processors and
at one inch of tip motion per division, we need 4 M processors. This means that
our possible resolutions of operation are very limited. Because of this, we cannot
arbitrarily change our focus so that we can look more closely at an area in which
it is difficult to navigate. Therefore, we can only rely on the configuration space
map for coarse path information. In this implementation, we use a 64 x 32 x 32
array, which gives us less than four inches of tip motion per division.

5.3 Searching the Configuration Space

Now that we have a characterization of free regions of configuration space, we
perform a parallel search through connected configuration space from the initial
arm configuration to the goal configuration. The most basic parallel search is
to count distances of free space cells outward from the start until the goal is
reached (Figure 5.3). Tracing the numbers back from the goal to the starting
position gives us the shortest path between the points. The time to execute this
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Figure 5.3: A simple parallel search in 2D.

algorithm (in parallel) is proportional to the length of the path, or O(p).

In practice, we can increase the execution speed of the simple algorithm by a
constant factor. In the two-dimensional example below, where the path is short,
the difference is approximately a factor of 4. The basic idea is simply to group
regions of free space together to form cells, and to find a path through connected
cells. To achieve this, we first plant seeds at evenly spaced intervals among
the configuration space regions. We then proceed to grow cells by counting
outwards from all the seeds at once. If the counts from two different seeds
overlap, a connection is formed between them. This is in some sense equivalent
to increasing the size of our tessellation of the space, but here a cell is free if and
only if its center region is free, and it is only connected to a neighbor if there is
a path through the more finely tessellated space from its center to its neighbor’s
center. This scheme allows us to work at the coarser tessellation for the search
while still finding a path if and only if one exists at the finer tessellation. This
is guaranteed to work if we do not terminate the growing process before all
connections are made, and if there is at least one seed in free space.

After the growing process terminates (either because of a threshold on the
radii of the cells, or because every region in free space now belongs to some
seed), the graph of connections between cell centers can be searched for a path
using the simple algorithm described in the first paragraph above. The path is
now the list of connected seeds.

If we threshold the radius of growth outward from the seeds by g (this enables
us to ignore twisted, narrow paths in which large distances are required to
connect two regions), if the spacing between the seeds is 7, and if the time to
find a path with the simple algorithm is p, the time to find a path with this
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algorithm is:
P
; + g, (5.2)

If the path is long, we can have a speed up of almost a factor of r.

Of course, the path is no longer complete to the resolution of the original
tessellation, so there is a greater chance that the proposed path (a straight line
course from seed to seed) will take the robot through some objects. We can
recover a complete path from the information we have if we just keep track
of distances and locations of collisions while growing the cells. Then, for any
connection, we obtain a complete path between the two seeds by counting back-
wards towards them from the collision point we know. Although this does indeed
give us a complete path at the level of resolution of a cell, it is at the expense
of adding the path length between the seeds to the execution time.

A faster way to solve this problem is to add some local control to the motion
of the arm between seeds to help us avoid the obstacles. This can be done
very simply in configuration space by using a potential field type of algorithm.
Each occupied cell produces a radial repulsive force with a decay factor due to
distance. Since we are working in configuration space, this radial field represents
a force proportional to the distance of the robot from an occupied configuration
in joint space. Forces can be propagated outward indefinitely, if desired, to get
a discreet representation of a potential field over the entire configuration space,
but in practice it has been sufficient to do only two steps of the propagation.
This scheme adds only two steps to the execution of the algorithm, and will work
very well when the distances between seeds are at about the same scale as the
curvature of the objects in the workspace, and when there are not concavities
in the objects at that scale. If this procedure fails, we can always fall back on
obtaining a complete path description as outlined in the paragraph above.

5.4 An Example

Figure 5.4 shows a two-dimensional global path planning example. We have a
two link manipulator with two rotational degrees of freedom: one at the base,
and one at the joint between the two links.

The top left pane of the figure shows this manipulator in the starting con-
figuration (nearly vertical) and the goal configuration (lower and bent). The
corresponding configuration space is displayed on the right. The lower point is
the starting configuration, and the upper point is the goal configuration.

Free space is found by planting seeds at a seperation of 10 divisions, and
growing each cell to a radius of 8 (center left pane). The seeds are displayed as
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]

Figure 5.4: (TL) The manipulator in the initial (nearly vertical) and goal (lower,
bent) configurations. (TR) Configuration space. The lower dot is the initial
configuration; the upper one is the goal configuration. (CL) Free configuration
space found by the growing algorithm. (CR) The path found for the arm. (LL)
The motion sequence for the arm in Cartesian space. (LR) The configuration
space motion sequence.
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small white dots.

A path is found through the seeds, or cell centers (center right pane). Note
that it passes through one of the objects.

The arm travels this path, using local control to avoid colliding with the
corner of the block. The lower left pane shows a trace of the arm motion from
the start to the goal configuration in Cartesian space. The lower right pane
shows the same motion in configuration space.

Configuration space is built and searched, and a path is executed in approx-
imately 5 seconds. The resolutions of the Cartesian and configuration space
maps are 64 x 64.

5.5 Summary

In summary, we first find free space in the world by dividing it into equal regions,
iterating through the objects in the world, and determining which of the regions
are contained within the objects. We then find the configuration space of the
first three joints of the robot by tessellating this space, and checking whether the
Cartesian space regions that are covered by the arm in each configuration space
region are free. We have a precomputed map from regions in configuration space
to lists of regions in Cartesian space that aids us in this step. Once we have a
representation of configuration space, we search through it. We can speed up
the search by inserting seeds at evenly spaced intervals, determining if they are
connected, and searching through the connections.

The main limitation in this step is in our parallel computing power. We are
limited by our hardware as to how large a workspace we can cover at a given
resolution. In particular, the size of the configuration space to Cartesian space
map we can store, and the number of joints of the robot we can map are limited.
We choose to map a three-dimensional configuration space at a resolution of less
than four inches of wrist motion per division. For this we need a 64 x 32 x 32
array of processores, or 64K processors. Since we have a fixed resolution, we
only need to store a single map. There can be problems with this approximation
if there are not wide paths available for the hand, but we assume that this is
generally not the case.
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Chapter 6

Summary and Discussion

6.1 Summary

The previous chapters presented methods for grasping objects with a Salisbury
hand connected to a Puma arm. Grasps generated using these methods are
stable, feasible, and reachable. The assumptions we make include:

e Using only fingertip grasps.
e Modeling fingertip contacts as hard finger contacts with friction.
o Using a world model, and modeling all objects in the world as polyhedra.

To compute the grasp, we first find contact points with their associated
contact regions. Then we find a feasible grasp with the fingertips at those
contact points. The default direction of the grasp is perpendicular to the plane
of the contact points. If necessary, we adjust the contact points to help make
the grasp feasible. Next, we generate a grasp approach. The default direction
of the approach is the direction of hand axis in the final grasp. Finally, we find
a path from the starting position of the robot to a point on the grasp approach
line.

6.2 Extensions

In this section we discuss some possible extensions to the basic algorithm for
grasping that overcome some of the system’s current limitations.
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Figure 6.1: A two-dimensional example of potentially clear approach directions.
We might want to choose to grasp the left and right faces.

6.2.1 Stable Grasp Extensions

Finger-to-face mappings: One step that was left out of the proceedure for
finding a set of contact points on our given object was the selection of a finger-to-
face mapping. We assumed that this information was provided. This is perhaps
the least constrained part of the problem. To solve it correctly, however, we
should take into account which configurations of faces can result in stable grasps,
which of these stable grasps are feasible, and which of the feasible grasps are
reachable; in effect, we would need to solve the entire grasping problem before
we could even start. The worst we could do would be to simply enumerate all
combinations of three fingers on three faces and sort out the good configurations
at some later step.

Obviously, we cannot take all of the requirements for a good finger-to-face
mapping fully into consideration when we pick our faces, but we can try to weed
out some of the more obviously bad sets. (Recall that some weeding was also
done in the feasibility step.)

Some possibilities include:

e To weed out some configurations of faces for which we might not even be
able to find a set of contact points, we can eliminate from consideration
all faces that have very little exposed area. Exposed area of a face can be
determined by projecting all parts of objects very near the face onto the
plane of the face, and then computing the area of the face that is free from
projected obstacles (see Figure 6.1).

e To help ensure kinematic feasibility, we can look first for “preferred” con-
figurations of faces. These are configurations that best fit the kinematics
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of the hand. Here we would look for either two opposing, nearly parallel

faces (as in Figure 2.1) or two nearly parallel faces opposing a third (as in
Figure 2.2).

e To accomodate near reachability considerations, we can check for clear
approach directions. We map out a space of clear approach directions
by generating a cylinder that approximates straight-line motion of the
hand, and finding the directions of motion for which this cylinder is free
from collisions with objects in the world. Configurations of faces that
have no reasonable approach direction can then be discarded. This step
is computationally expensive, since we have to compute collisions between
the hand cylinder and everything else over the two-dimensional space of
cylinder orientations. It is also somewhat inaccurate, since at this stage
we do not really know where to base the cylinder with respect to the target
object. It may be a worthwhile check, however, if our object is complicated
and we can eliminate many possible configurations with this step.

o To help ensure global reachability of a configuration of faces, we might
want to take into account from which directions the Puma will be able to
reach the object. This varies with respect to the position of the object in
the workspace, but does not vary with respect to the environment (since
we are not considering how obstacles affect reachability, only how the
kinematics of the robot affect it). A map of reasonable directions could
be computed once for a given robot, and referenced by object location
to come up with a set of reasonable approach directions to consider (see

Figure 6.2).

Arbitrary Objects: For objects that are not polyhedra, we could try to
find some natural axis, perhaps by fitting a standard shape like a cylinder to
parts of the object. Then we could attempt to place a grasp plane perpendicular
or parallel to this axis (see Figure 6.3), and find contact points with appropriate
normals in the cross-section of the object in this plane.

6.2.2 Feasible Grasp and Grasp Approach Extensions

One of the most computationally intensive parts of the entire system is the
collision avoidance equation 3.12. It would be desirable to have alternative
search procedures based on a simpler analysis of the local environment.
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Figure 6.2: An example of a direction map for a two-degree-of-freedom planar
manipulator.
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OR

Figure 6.3: The handle of the telephone receiver can be modeled as a cylinder.
Two grasp planes that we could generate for this cylinder are illustrated, one
parallel to the cylinder axis, and one perpendicular to the axis. Only the first
one would produce a feasible grasp in this case, because the rest of the receiver
would be in the way of the second grasp.
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6.2.3 Path Planning Extensions

If searching the space of the first three joint angles of our robot does not result
in any possible motion to the goal, or if we have a more complicated robot, we
may need to look for a path in a higher dimensional space. As we have seen
above, there is clearly not enough memory in the current hardware to add even
one more dimension without an unacceptably large increase in the time it takes
to find a path through this space.

An approach that holds promise is to restrict the behavior of our robot, much
as we did with the grasp approach earlier (see the Near Reachability chapter
above). We could pick some limited set of types of global motions that we want
to consider, motions that can be characterized with a few parameters. We could
then search for a path through the space of these parameters.

If our arm is highly redundant, in that many configurations will produce the
same wrist position, we may want to return to the method of first generating
a path just for the hand or wrist through Cartesian space, and then using a
potential field method to keep the rest of the arm away from obstacles. One way
to do this is to model the robot as a simple physical system, reacting to forces
applied to it by nearby objects. We can model the process as one of dragging the
robot along by its endpoint, with the joints of the robot reacting as springs to
potential forces produced on the links by nearby objects. This process would be
similar to that used earlier to modify the wrist configuration in the final grasp to
relieve stress from collision points, and to modify the straight-line approach to
that grasp. Although any valid path for the robot will have a corresponding path
through Cartesian space for the robot endpoint, we may have to try multiple
wrist paths before finding one that works for the whole arm. We are not using
any global information that relates to where the arm might be able to go.

If we do not want to parameterize the space of motions we will consider, we
can include the influence of the hand and fingers in a different way. We can
set up independent controllers of the arm, hand, and fingers. Depending on the
task we are involved in, one of these would have priority, and the others would
just try to keep their links free from collisions.

Some tasks are inherently arm driven. Consider our task of getting the arm
to a point near an object. The main project in most cases will be to find a
path for the arm, and the hand and finger configurations may be relatively
unimportant. We can find the arm path as in this report. As we follow this
path we can monitor the situation of the hand using proximity sensors (or a
world model), changing the hand orientation when necessary and requesting
a deviation in the path of the wrist if the hand is headed for an unavoidable
collision or if it is moving too quickly. At an even finer level, we can seperately
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monitor the fingers, adjusting their configurations as necessary to help them to
avoid collisions and again requesting help from the hand if the job is too difficult.
The usual problem of going down a wrong path due to using only local control
can be partially avoided in this situation, because we know in advance the path
planned for the wrist point of the robot.

A manipulation task, however, might be finger (or fingertip) driven. It might
be defined by motions we want the fingers to make. In this type of situation
we can use local control to guide necessary hand and arm motion. This control
could be designed to keep all joints away from their limits and to keep all links
from colliding with objects. We could also incorporate changes to our planned
fingertip motions if there is a difficult situation (and if these motions are flexible).
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Chapter 7

Conclusions

Grasping is a hard problem, where brute force methods would be too time
consuming on any realizable computer system. Even if we specify the problem
as three-fingered grasping for the Puma with the Salisbury hand, the search
space is still large. The degrees-of-freedom that must be constrained are:

¢ Six for finding contact points.
¢ Six more for finding a feasible grasp.

e Fifteen to determine reachability.

And, of course, these subproblems are not really separate.

In order to cut down these problem spaces we made a large number of as-
sumptions. These assumptions gave the arm and the hand a limited set of
behaviors that we felt would be adequate for solving a wide range of grasping
problems. The assumptions include:

o Using a deterministic algorithm for finding contact points. We attempt
to produce maximal contact regions so that the intended grasp will have
the greatest probability of succeeding, but a single set of contact points
is produced. There is no flexibility in this sort of algorithm. We assume
that there are enough good potential solutions that this method will work
well in most situations.

o Using a deterministic algorithm for finding an initial wrist configuration.
Here we attempt to take into account the kinematics of the hand. Since
this often does not produce a feasible grasp due to collisions, we employ
a directed search for a good configuration that is based on modeling the
robot as a physical system with spring joints under stress due to the col-
lisions. This is the only flexibility we have at this step.
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o Using a straight line approach to the final grasp configuration. When
this is not a good assumption, we use the same directed search as in the
feasibility step to modify the approach.

e Using only three degrees of freedom of the arm joints to plan large scale
motions of the robot through the environment. We have no backup plan for
situations in which this assumption is not valid, although one possibility
would be to incorporate some level of hand control, such as searching
for paths for different ranges of hand orientation or using some sort of
potential field control.

This set of constraints characterizes the space of grasps the robot can per-
form. The robot will successfully grasp the target object in situations where
a grasp can be found in this space. Here we need an uncluttered world where
we can maneuver near the object and make a straight line approach to a con-
figuration of faces that somehow fits the hand geometry. A different set of
constraints, or modifications of the constraints discussed in this report, could
be used to handle a broader range of situations.
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