MASSACHUSETTS INST TUIE OF TECHNOLOGY
ARTI FI (I AL I NTELLI GENCE LAB ORATORY

Al. Technical Report No. 1224 February, 1990

Fat-Tree Routing for Fansit

André DeHon
andre@ai.mit.edu

Abstract: As an alternative to using a bidelta network topology for large Transit net-
works, I consider the requirements to extend the base Transit network into Leiserson’s
Fat- Tree configuration. Transit will be a high-speed, lowlatency, faul t-tolerant network
interconnection for high performance milti-processor conputers. The initial interconnect
schene pl anned for Transit will use a bidelta styl e net work to support up to 256 processors.
Scaling beyond 256 processors by sinply extending that network topology will result ina
uni formdegradation of networklatency across processors. Afat-tree networkstructure will
allowthe Transit network to be scaled arbitrarily while taking advantage of the locality
and uni versality of fat-trees to minimize the inmpact of scaling upon network latency. 1
consi der the topology and construction issues for integrating the Transit routing net work
component and technology into a fat-tree configuration. I also characterize the resulting
network’s size, locality, and performance and conpare these characteristics with those of
bi delta net works.

Acknowledgements: This report describes research done at the Artificial Intelligence Laboratory of
the Massachnsetts Imstitute of "Bclmol ogy. Support for the Iaboratory’s Atificial Intelligernce Researchis
povidedinpart by the Alvarced Research Projects Agency under Office of Naval Research contracts QR
N0014-88 K-0825 and N)0014- 85- K 0124.

Acknowledgment s

The Transit project was conceived and started by TomKni ght with the hel p of Henry
Mnsky. They are responsible for most of the interestingideas that Transit brings together.
Kni ght originally suggested the concept of using fat-tree structures tointerconnect Transi-
bidelta stacks.

Kni ght and Mnsky’s role in this devel opment cannot be understated. All throughout
the design and anal ysis of these fat-tree networks, they were continually willing to discus:
the devel oping i deas. Their feedback and suggestions were inval uable.

Thanks to Pat Sobal varro for his work on fleshing out the probabilistic nodels for
routing statistics. He was especially helpful in providing the basic tools that nade the
probabilistic anal ysis tractable. He also helped in establishing the anal ytical difficult:
posed by this structure and finding valid nethods for accommmodating them

Thanks to Fred Drenckhahn for providing detail ed i nfornati on on packaging and for
accommwdating many of ny suggestions.

Thanks to AlexIshii for readi ng and proofing the nore theoretical portions of this work.

H s conments on t he proper applicationof several theoretical results hel ped set ne straight
on a nunber of issues.

Thanks are in order to Janes Tetazoo, Jack Florey, Larry, ¢ped, and their nany friends.

They certainly offered no positive support toward conpleting the work necessary for this
thesis; however, they provided valuable di versions fromthesis which allowed me retain
adequate sanity to conplete it in their spite.

Content s

1 Introduction 1
1.1 VeTview i it it e e e e e e e e e e e e e e 1
1.2 Processor Network Interface Mbdel 2
1.3 Routing Component it i 2
1.3.1 Physical Description 4
1.3.2 Routing to more than 256 destinations 5
1.4 Construction Technology. oo, 5
1.5 Fault lerance in Bidelta Routing Stacks 7
1.6 Fat-Trees . . . o i v v i i i e e e e e e e e e e 7
2 Basic Configuration 9
2.1 Hybrid Fat-Tree Approach. 9
2.1.1 Allocation of Bandwi dth to and fromFat-Tree 10
2.1.2 Fault Tolerance e 10
2.2 Fat-Tree Topology o i i e e e e 11
2.2.1 Quaternary Tree @ i i i i i e 11
2.2.2 Separate Upand Down Trees 11
2.2.3 Structure e e e e e 11
2.2.4 UpwardRouting i 12
2.2.5 DownRouting, 14
2.2.6 Desired Capacity GowthRate 14
2.2.7 Channel Capacity Gowth 16
2.3 Wiring Constraints for Efftient Bandwi dth Distribution 18
2.3.1 NoDispersion.t 19
2.3.2 Full Dispersion i, 20
2.3.3 Potential Path Gowth. 21
3 (nstruction 23
3.1 Bidelta Leaf Qusters 23
3.1.1 Connections To Fat-Tree 23
3.1.2 Connections FromFat-Tree 23
3.1.3 Size e e e e e e e 24
3.2 Inter-Stage Details i 24

ii

LW W W ww O W W W Ww w

O W W W W

O W W W w

NN

UpPathDirections i i i it it i, 24

Swallows e 24
Bit Rotations e 25
Thit Tree o o i i e e e e e e e 25
3.1 Unit Tree Structure 26
3.2 TreeRoot o i e 28
3.3 Building a Fat- Tree FromUnit Trees 28
3.4 Alternative Unit Tree, 30
3.5 Wring Details for Unit Trees oo 33
3 Wre Accounting oo oo e 34
GoretTy . . .o e e e e e e e e e e e 35
4. Basic Properties e 35
4.2 Gowth e 36
4.3 HollowCubes e 36
4.4 Convergence SizZe v v v v it ittt e e e 38
4.5 Features e e e e 39
4.6 Optimmlity e 40
HollowCube Construction. 40
5.1 Structure Size e 40
5.2 Structure e e e e e 40
5.3 Wringo o e e 41
5.4 DMiintenance it e e e 42
5.5 Technology Scaling o o 43
Long Wres oo i i i i i e e e e e e e e 43
Strategy . . o o o v e e e 43
3.6.2 Requirementst 44
Processors e e e 45
Routing Computation 45
8.1 DistinguishingaProcessor 46
8.2 Routing i e 46
8.3 Conputing the Routing Sequence 46
8.4 Inplerentationof Conputation 47
8.5 FExanple e 49
50
4.1 Wre Lengths 0 e 50
Wrst Case o . . e e e 50
4.1.2 Distributionof Lengths 50
4.1.3 DistributionbyDelay 52
Large Bidelta Networks oo, 53
2.1 Bidelta Stacks o o 55
2.2 Arranging Bidelta Stacks 55
2.3 WrelLengths i i e 56
2.4 Delay Cycles o o i i e 57

iii

4.3 Network Characterizations i @ i v i v i i i i ittt e e e 57

4.3.1 Full Fat-Tree i i i i i i i i i it e e e e e e e 58
4.3.2 Hybrid Fat-Tree e 60
4.3.3 Bidelta Network i i i e e 62
4.3.4 Latency o i i i i e e e e e e e 63
4.4 ompaTiSons v v i i it e e e e e e e e e e e e e e e 64
4.4.1 Full Fat-Tree i i i i i i it i i e et e e e e 64
4.4.2 Hybrid Fat-Tree e 64
4.4.3 Full Bidelta i i i ittt iieen 65
4.5 Routing Statistics. i i i e 66
4.5.1 Full Fat-Tree i i i i i i i i i it e e e e e e e 67
4.5.2 Hybrid Fat-Tree e 70
4.5.3 Full Bidelta i i ittt 71
(bnel usion 77
5.1 Routing Conponent Requirements 77
5.2 (haracteristics o v v v v v v i i e 77
5.2.1 Constructable i e e e e e e e e e e e 77
5.2.2 Fault Tolerance v i v i i i i e et e e e e 78
5.2.3 Cheap Routing i e 78
5.2.4 Performance i i i i i ittt e e e e e e e e e e 78
5.3 Future o e e e e e e e e e e e e e e e e e 79
5.3.1 Routing Statistic Mbdeling 79
5.3.2 Simulations i v v i it e e e e e e e e e e e e e e e e 79
5.3.3 IntercommectionDetails, 79
5.3.4 GOometTY e e e e e e e e e 80
5.3.5 Packet Switching i e 80
5.3.6 Construct Prototypes 80

iv

List of Fi gures

S
Go

S
(o]

—= e
OU B W N

N DN DNDNDNNDNDNDN

O W W W W W w

S U SO SO S N
B = S B ST R

O 00 =~ & O i W N =

-~ O O = W N

Network Processor Interface 2
RN1 Logical Configurations 3
BNl Package L e 4
Cross-Section of Bidelta Routing Stack. 6
Area- Uni versal Fat- Tree with Constant Size Switches

Bidelta Quster at Leaves of Fat-Tree 9
Logi cal Tbpol ogy of Quaternary Tree 11
Three- Dinensional Viewof Tree Structure 12
Cross-Section Viewof Up and Down Routing Trees 13
Three- Di nensi onal Viewof Connections fromOne Up Routing Stage 14
Horizontal Cross-Sections One Up Routing Stage 15
Hybrid Up Routing Schene with L,dgpg N Stages in Up Routing Tree .. 16
Non- Disperse Exampleo o 19
Disperse Exanple L e 20

First Level HollowCube Geonetry 37
Holl ow Cube with Top and Side Stacks of Different Sizes 37
Second Level Holl ow Cube Geonetry 38
Byte-wide xor Slice. 47
Calculationof aSingle Bit of M. 48
Calculation of aSingle Bitof O. 48
(al cul ation of RU fromMand O 49

Distribution of Nornalized Wre Lengthg fo4 &d 16, Respectively. . 52
Distributionof Delay Cycles, ot aMd 16, respectively Using Beaves. 54
Distributionof Delay Cycl es,fo4 d0d 16, respectively Usi gglBaves. 54
Distributionof Delay Cycl es,fo4 d0d 16, respectively UsinglBaves. 54
Indirect Binary Cube Topology 56
Distribution of Nornmalized Wre Lengthg £d% alid 64, Respectively. . 57
Distribution of Delay Cycles,foB And 64, Respectively usihg 2’

Stacks. L e e e e e 57
Routing Statistics for Full Fat- Tree (64 processors)
Routing Statistics for Full Fat- Tree (4096 processors)

ST O N N S S N N

.10
.11
.12
.13
.14
.15
.16
.17
.18
.19

Routing Statistics for Full Fat- Tree (262144 processors) 69
Normalized Routing Statistics for Full Fat-Trees 69

Routing Statistics for Hybrid Fat- Tree (768 processors) 72
Routing Statistics for Hybrid Fat- Tree (3072 processors) 72
Routing Statistics for Hybrid Fat- Tree (12288 processors) 73
Routing Statistics for Hybrid Fat- Tree (49152 processors) 73
Routing Statistics for Hybrid Fat- Tree (196608 processors) 74
Routing Statistics for Hybrid Fat- Tree (786432 processors) 74
Normalized Routing Statistics for Hybrid Fat-Ttee 75

Routing Statistics for Full Bidelta Networks of Various Sizes. 76

vi

List of Tables

N DN

O W W W W w
SO W N~

T N N Y S Y N S N N N

N

GO = O O i W N =

.9
.10 Locallity Structure of Full Fat- Trees (

.11 Locallity Structure of Full Fat- Trees (4096 Processors) 70
.12 Locallity Structure of Full Fat- Trees (262144 Processors) 70
.13 Locallity Structure of Hybrid Fat- Trees (Single Uhit Tree Stage) 71
.14 Locallity Structure of Full Fat- Trees (Two Unit Tree Stages) 71

RNl Physical Statistics 5

Up Tree Bandwidth Allocation 17
Down Tree Bandwidth Allocation 18

Unit Tree Component Summary 27
w64xg Ba.IldWl dth 27

ess Vertical Through Bandwidth 27
sz Component SUmmary v v v v v v v v e e et et e e o 32

m—’64>2 Bandwidth 32

Unit Tree Wre Bundling for External Connections 35

Expected Wre Lengths Nornalized to Stack Sige, [. 52

Expected Nunber of Delay Cycles 54
Variable Sunmary e 58

Full Fat- Tree Hardware Requirenents 64

Full Fat- Tree Latencies o o i i it 65
Hybird Fat- Tree Hardware Requirenents 65
Hybrid Fat- Tree Latencies 65
Bidelta Network Hardware Requirenents 66
Bidelta Network Latencies 66

64 Processors) 70

1. Introduction

1.1 Overview

Transit [Knight 89] is a high-performance network for large scale MM conputers.
Transit is intended to provide the underlying network support for a wi de range of parallel
processing paradi gns including nmessage passing, shared memory, and dataflow. Tran-
sit provides lowlatency interconnect between processors via anindirect circuit switchec
network. The netwrk is constructed as a bidelta multi-stage shuffle exchange network
[Kruskal 86] utilizing 4 x 4 crosshar routing elenents. The Transit bidelta network all ows
connections between source and destination to be nmade through a fewrouting stages for
moderate size networks. In order to provide fault-tol erance and i nprove network routing
efftiency, redundant paths are provided through the netwrk. Routing switches are kept
sinple, and thus fast, by inpl enenting a source responsible connection protocol; this frees
the indi vi dual routing el ements fromthe conplexity of collision avoi dance.

For noderate sized networks (i.e. 64 to 256 processors), the bidelta network construc-
tion keeps the delay uniformy small between all processors in the network. Additionally,
using three-dinensional wiring strategies, the size and wire l ength can be kept reasonably
stall. This allows the network to be constructedin a single physical package within current
technol ogy limitations.

Scaling tolarger network sizes by sinpl y extending this strategyleads toafewdifltul-
ties. Network delays becone uniformlylarge. The networkitself becomes large enough t hat
it must be di vided into mul tiple parts for packaging. In addition, wire lengths growsuch
that reducing the clock rate of the system due to wire delays, becones a serious concern.

To avoid this uni formperfornance degradation, I propose a schene for constructing
larger networks using Leiserson’s volune- universal fat-tree network [Leiserson 85]. In thi
manner, locality can be exploited to provide short interconnect between closely situated
processors; at the sane tine, interconnecti onbetweenmore distant processors is still possi
bl e wi thout significant performance reducti on fromthat of the bideltanetwork. The fat-tree
netwrk also all ows the network to be deconposedinto constituent el enents for packaging
in a straightforward manner.

The extensionto afat-tree network schene prinarily inpacts interconnection topology
and routing schenes. I describe howthe fat-tree routing network can be realized utilizing
the existing Transit routing elenent and packaging technology. This extension can be
inplenented with minor revisions to the Transit routing conponent.

In the remainder of this chapter, I briefly reviewthe relevant properties of Transit
(Sections 1.2 through 1.5) and fat-trees (Section1.6). In Chapter 2, I develop sone of the
topology issues for building the fat-tree network structure. Chapter 3 follows providing
concrete possibilities for the realization of the fat-tree net work. Chapter 4 then proceeds
quantify some of the properties of the network and conpares it with Transit bidel tanetworks

Processor e _Cache
Controller

i

Memory

—> Cache
Processor Controller Network

i

Memory

Processor e _Cache
Controller

i

Memory

Figure 1.1: Network Processor Interface

of comparable size. Finally, Chapter 5 closes with conclusions and future directions.

1.2 Processor Network Interface Model

The devel oprment provi ded throughout this paper is concerned entirely with the con-
struction of interconnection networks. In order for the network to be useful in the context
of alarge scale parallel computer, it must interface coherently withits set of processor:
The net work processor interface is shownin Figure 1.1. Fach network endpoint is a pro-
cessor with its own local nenory and a cache-controller for maintaining its local cache
and keeping the cache coherent with the rest of the network. Each processor has a pair of
inputs and a pair of outputs to the network. Transit designintends the cache-controller to
serve as the processor’s interface to the net work so that the processor need not explicitly
deal withnetworkinteractions; however, this is a separate architectural issue and need not
necessarily be the case.

The net work i nput and out put connections are pairedfor fault tolerance and i nproved
routing success probabilities. Fault tolerance issues are discussed further in Section 1.
The processor will generally only use one of its two inputs to the netwrk, guaranteeing
that the network will never be 1oaded above 50%.

1.3 PBouting Ghuponent

Basic switching is provided by the routing elenent, BRNl. This is a custom CMB
routing conponent designedto provide sinple highspeedsw tching. RNl has ei ght nine-bit
wi de i nput channel s and ei ght nine-bit wi de out put channels. This provides byte wi de data
transfer withthe ninthbit serving as a signal for the beginning and end of transm ssions.

4, 4x4 crossbar

4x4 crossbar 1 output/direction

gt
e
8, 2 outputs/direction
2
\Z\E

4, 4x4 crossbar
' 1 output/direction

A

Figure 1.2: RN Logical Configurations

RNl can be configured in one of two ways as shown in Figure 1.2. RNl’s prinary
configurationis as a4 x4 crossbar router with 2 equi val ent outputs ineachlogical direction.
Inthis configuration, all 8 input channels are logically equivalent. Alternately, RNL can be
configured as a pair of 4 X4 crossbars, eachwith 4 logically equi valent inputs and a single
output in eachlogical direction.

Sinple routing is performed by using the first two bits of atransmissiontoindicate the
the desired output destination. If an output in the desired directionis available, the dat.
transmissionis routed to one such output. Otherwise, the datais ignored. In either case,
when the transm ssion conpletes, RNl inforns the sender of the connection status so that
the sender will knowwhether or not it is necessary toretry the transmssion.

To allowrapidresponses to network requests, RNl allows connections opened over the
network to be turned around; that is, the direction of the connection can be reversed
all owi ng data to flowback fromt he destinationto the source processor. The ability to turn
anetwrk connection around allows a processor requesting data to get its response quickly
wi thout requiring the processor it is commnicating with to open a separate connection
through the net work.

Since RNl al ways 1 ooks at the most significant two bits of the first byte of atransmssion
to determine switching direction, it is necessary for the bits within this byte to be rotate
between net work stages. This rotation guarantees each network stage a fresh set of bits
fromthe routing byte. The rotation property must be provided by the network wiring
schere in which RNl is used.

Wien configured as a 4 X 4 crossbar with tw outputs in each logical direction, RNI
provides redundant paths through the network since it provides miltiple outputs in each
logical direction. This serves toincrease bothfault tolerance and the probability of routi
success. Wen bothlogicallyequival ent outputs are available, RNl randonl y selects one of
the two for use. Inthis manner, networks built fromRNlL will have alevel of fault tol erance
inthat miltiple attenpts to sendatransmissionthrough the network will nost 1ikel y take
separate paths through the netwrk. The randomselection of the preferred output port
in each direction gives transmissions a good chance of avoi ding any faulty conponent(s)
entirelyin successive connection attenpts.

The alternative configuration for RNl as a pair of 4 X4 crossbars is providedfor further
fault tolerance. As Section 1.2 described, there are tw outputs fromthe network for
each processor. Using only the standard RNl configuration, these two outputs would
have to cone froma single routing conponent naking that routing conmponent critical to

372 contact chip carrier package
1.400

000000000000 0D0O00D0D0O00OD0OO0O
o O00000000000O0D0O0O0O0O00O0OO0
0 0000000000000 0D0D0O0OD0OO0O

oOOOOOOOOOOOOOOOO o o Coolant

00000000000 0O0O0O

%

OO0 000000000000 O0O00O0O0

Capacitors |

00000000 0O0OpPOOOO
olooooooooo0oo00O0O0

all
details

50 mil
pitch

T
o
o

O0000000D0D0O0O0O0O0OO0OO
000000000000 0O0O0O

000000000000 00O00OO0OO
000000000000 0O0O0O0OO0O

o —0 — =
-o%o-O-oooooooooooooooo
Lo—o 0000000000000 O0O0O

000000000000 0OO0OO0O00O00O0O Allgnment
—‘!—oooooooooooooooooooo O——

0000000000000 0O0O0O0OOO Holes

-
%/}\.45" Sq max f
(772 7272 |
w

Heat Sink

Figure 1.3: RNl Package (Diagramcourtesy of Fred Drenckhahn)

the proper functioning of the network [Leighton 89-2]. Wth this alternate configurati on,
the two outputs fromthe netwrk for each processor can come fromtwo different RNL
components so neither conmponent is critical. Section 1.5 explains this fault tolerance issu
in the context of the Transit bidelta networks.

The Transit routing conponent is described further in [Kni ght 89] and [Mnsky 90].

1.3.1 Physical Ikscription

RNl will be packaged as a pad grid array with all signals appearing on pads on both
sides of the package. Figure 1.3 shows a top and side viewof the RNl package. Atotal of
76 periphery pads will provide through routing conduits for signals. Holes in the package
are provided for packaging alignnent and coolant flow. Since RNl is designed to drive
144 signal pins simul taneously at 100MHz, provisions for 1iquid cooling are essential. The
target physical statistics for RNl are summarized in Table 1. 1.

(A ock Rate 100ME

Size 1.4"x 14" x0.11"
Si gnal Pins 150+
Through Routing Pins 76

Total Contacts/Side on RNl packa 372

Q
[¢"]

D

Table 1.1: RNL Physical Statistics

1.3.2 Pouting to nore than 256 destinations

Using the first byte to specify routing destinations as described above becones limit-
ing when attenpting to address a large nunber of destinations. Asingle byte can only
di stinguish 256 distinct destinations.

To address this potential problem RNl has a provision for dropping the leading byte
of a streamof data before looking at it. It then uses the renainder of the streamas if the
first byte never existed. Thus, RNl starts using the newrouting byte, which was originally
the second byte in the nmessage, at the stage where the first was dropped. By properly
designating the stages in the network at which conponents shoul d drop, or swellow the
first byte in this manner, we can specify arbitrarily many di stinct destinations.

Thi s swllavprgety of a network routing stageis astatic property. Inthe sinply case
of bidelta networks, the swall owproperty can be set on a per chip basis, since all inputs
to a netwrk stage will need fresh routing bytes at the sane tine. For full generalityin
the net works considered here, it is beneficial to be able to configure this property on a per
input basis. This allows a single routing conponent to have inputs that connect to paths
of varyinglengths.

1.4 Gnstruction Technol ogy

The basic unit of network packaging for Transit is the stack. A stack is a three-

di nensional interconnect structure constructed by sandwi chinglayers of RNL routing com
ponents bet ween horizontal pc-boardlayers. The pc-boards performinter-stage wiring and
the bit rotations describedin the previous section while the routing stages provide switch-
ing. Figure 1.4 shows a partial cross-section of a stack. The dominant direction of signal
flowis vertical as connections are nade vertically through the stack. At each horizon-
tal routing layer, each path through the network will make a connection through a single
routing conmponent. Between routing layers, the connectionis routed horizontally to the
appropriate routing conponent in the next layer.

Wien the transmni ssionreaches the top of the routing stackit is brought straight down,
back through the stack, to connect to the destination processors. This is necessary because
the set of source and destination processors will nornally be the sane. All routing through
the layers of routing conponents is provided by the through routing pins on the RN
package as described in the previous section.

Aluminum plat(7
I vertical clock driver manifo'd

1 |

[g E—

horizontal clock driver

horizontal board

sma][]

spacer (1v, 5v, gnd)

IjI:|IE| window frame Bus Bar

horizontal board

button I:I
board
\ ' horizontal board

cover D
heatsink debug connector
=
> || || | horizontal board
=

T]
; Aluminum plate/)
manifold

Figure 1.4: Cross-Sectionof Bidelta Routing Stack (Di agramcourtesy of Fred Drenckhahn)

Contact i s nade between the routing conponents and the hori zontal pc-boards through
button board carriers. These carriers are thin boards, roughly the sane size as the routing
chip, withbuttonballs [Stwlley 85] aligned to each pad on the routing chip. These button
balls are 25 micron spun wire conpressedinto 20 nil di aneter by 40 mi1 high holes in the
button board connector. They provide miltiple points of contact between each routing
component and horizontal board when the stack is conpressed together; in this manner
they effect goodelectrical contact without the needfor sol der. This allows ease of packaging
construction and conponent repl acenent.

Channel s are provided bothinthe stack and through each routing conponent for 1iquid
cooling. FCG 77 Fluorinert will be punped through these channels to provi de effei ent heat
renoval during operation.

At the targeted clock rate of 100ME for network operation, wire delay consunes a
significant portion of the clock cycle. Thus, the physical size of the horizontal routing

boards is an inportant consi derati on for network performance. Additionally, with current
technol ogy for fabricating pc-boards, it is not possible fabricate pc-boards any larger tha
2"x 2" withreliable yield.

Using 12 layer pc-boards for the horizontal routing, a stackis expected to have a side
length of roughly: 2 x (chipsidelength) x (nunber of chips across side). Eachlayer, in-
cl udi ng pc boards, routing conponents, and connectors, wi'ltahd.0.76e height of a
stack will be roughly: "0:26nunber of routing layers).

Anore detailed description of Transit packaging technologyis givenin [Knight 89].

1.5 Fault BDlerance in Hdelta Bouting Stacks

The net work interface nodel describedin Section 1.2 along with the properties designed
into RNl all owareasonablelevel of fault tolerance tobe built into Transit bi delta networks.

Two inputs are provided fromthe processor or cache-controller to the network. The
processor is expectedtoutilize onlyone of these twoinputs at a gi venpoint of tine. Leaving
the second i nput unused guarantees that the network will never be congested above the 50%
level (Section 1.2). Allowing the processor to chose which of the two inputs to the network
to actually use at the begi nni ng of eachnetwork transaction, prevents a single link between
the processor and network frombeing critical to the processor’s ability to commnicate
over the net wvork. Wien tw inputs are provided to the network through separate routing
components, we guarantee that no single conponent failure will isolate a set of processors
fromthe net work.

Wthin the network, the standard RNl configurati on provi des nul tipl e outputs in each
logical direction. This allows the nunber of different paths through the network to expand.
No single routing conmponent in the interior of the bidelta network is critical since there
is a conplete path fromeach source to each destination which avoids any gi ven routing
component.

The final routing stage of the bidelta network is constructed with the RNl routing
conponents configured in the al ternative manner in which RNl acts as a pair of single
output 4 X 4 crosshars. In this way, the final switching stage for the pair of outputs
destined to the sane processor can be distributed across two different routing conponents.
Since any connection to a gi venprocessor coul d be routed through either output, and hence
either of the two routing conmponents in this final stage, neither of the routing conponents
is critical.

Anore detailed description of this schene for achieving fault tolerance in mmltistage
networks is givenin [DeHon 90].

1.6 Fat-Tees

Fat- Trees are universal routing networks for interconnecting processors in a nul tipro-
cessor environnent [Leiserson 85]. Fat- Trees interconnect processors using a conplete tree
structure. The processors are located at the leaves of the tree while the tree’s internal node
conpose the interconnection netwrk. Fat-Trees paraneterize the bandwi dth between in-
ternal nodes according to their distance fromthe root node. In general, nodes closer to

s | | Lo¥s

o

Tote o¥.
Tobe | | |o%.

Figure 1.5: Area- Universal Fat- Tree with Constant Size Switches (GeenbergandLeiserson)

the root have greater bandwi dth to acconmwdate additi onal nessage trafft. Connections
between processors within a sub-tree can be nade wi thout consumi ng bandwi dth hi gher

in the tree. This allows locality to be exploited while reserving critical “long distance
bandwi dth for connections between wi dely separated processors. Afat-tree achieves these
properties withonly alinear increase inthe nunber of routingstages that must be traversed
in the worst case over a conparably sized bidelta network.

Fat- Trees are of particular interest because they can be area- or vol une- uni versal when
the bandwi dth growth toward the root is selected properly. Afat-tree is volune- uni versal
if it cansimul ate any other net work constructed fromthe same anount of hardware wi th at
most a pol yl ogarithmic sl owdown. This property guarantees that the hardware dedi cated
to constructing the routing network can be utilized efftiently.

In [Geenberg 85] Greenberg and Leiserson propose the area-universal fat-tree shown
in Figure 1.5. The fat-tree shown denmonstrates a basic construction structure for fat-
trees using constant size switching elenents. The internal node capacity doubles on each
successive level toward the root. This average capacity growth is sufftient to guarantee
area-uni versality for a quaternary fat-tree.

Fat- Tree networks were devel oped by Charles Leiserson. He provides a detailed de-
scriptionin [Leiserson 85] as well as proofs for the universality properties of fat-trees.
[Geenberg 85], Leiserson and Geenberg expand the generality of fat-trees by proving that
the uni versality properties hold for on-line routing al gorithns.

2. hasic Gfiguration

2.1 Hbrid Eat- Tree Approach

The fat-tree network structure will be usedtointerconnect small Transit bidelta routing
networks. That is, the leaf nodes of the fat-tree will thensel ves be bidel ta networks rather
than indi vi dual processors. This allows a nmoderate nunber of processors to be clustered
together and share uniformly short interconnection paths amongst themsel ves. All these
bidelta clusters are then interconnected through the fat-tree network allowing locality tc
be exploited bet ween adjacent clusters while making it possible for any pair of processor to
commini cate in a noderatel y effti ent manner.

The terminal clusters are built in stacks much like the standard Transit bidelta net-
work stacks. The only difference is that a bidelta cluster stack must have sone bandwi dth
between itself and the fat-tree network rather than dedicating all bandwi dth in and out
of the stack to processors. This can be done in a straightforward nanner as shown di a-
grammaticallyin Figure 2.1. The processors connect to the bidelta network, but instead of
consum ng all of the bandwidth into the first stage of the bidelta network, they consune
only three-fourth of the bandwi dth. The first routing stage routes in four logical directions
as before. However, only three of these directions route to further switching stages in the
bideltacluster. One of thelogical destinations out of the first routing stage connects direct
tothe fat-tree network. Thus, the remmi ning routing stages will only be three- quarters the
size of the first routing stage since one- quarter of the interconnect bandwi dth leaves the
stack after the first routing stage.

To Fat-Tree Network
m <\>

m/3

Local
Cluster
Routing

first routing stage

4» m/3
From Fat-Tree Network

—» Processors Local to Cluster

Figure 2.1: Bidelta Quster at Leaves of Fat- Tree

2.1.1 Alocation of Bandwidth to and fromFat- Tee

In the manner described, the fat-tree network consumes one- quarter of the total band-
wi dth into and out of the bidelta routing stack. (Qearly, the one- quarter of the bandwi dth
fromthe first stage of routing to the fat-tree network must corme fromall the routing com
ponents inthe first stage. Naively, it woul d be possible toconnect the bandwi dth back from
the fat-tree network to the bidelta cluster to any of the inputs of the first stage routing
components as all these inputs are logically equi valent; however, it turns out that many
possible configurati ons prove not to be optimal.

(One extrene woul d be to connect all the input to the bidelta cluster fromthe fat-tree
netwrk to all of the inputs of one-quarter of the routing el enents in the first stage. This
woul d be non-optimal in terns of fault-tolerance because an unfortunately placed single
chip failure in this first routing stage could elininate 8 of the inputs fromthe fat-tree
network. In terms of routing, this woul d be wasteful of bandwidth to the fat-tree network.
The outputs fromthe first routing stage to the fat-tree network that come fromthe set of
routing conponents with all their inputs origination fromthe fat-tree network would be
unused. This results because there is no reasonto route a connection through a leaf node.
(Qearly, this extrene is undesirable.

The alternate extrene is to distribute the bandwi dth fromthe fat-tree network to the
cluster over all the routing conponents in the first routing stage. In this schene, each
routing chipin the first stage has 2 of its 8 inputs connected to the fat-tree network. A
single chipfailure will al ways reduce t he bandwi dth fromthe fat-tree netwrk to the bidelta
cluster by tw. Through each routing conmponent at most six of the inputs will need to
be switched in the direction of the fat-tree network. G ven even connection frequency
distributions across all processors of requests requiring the fat-tree network, each pair
outputs to the fat-tree will be equally]l oaded.

Abrief consideration of alternatives between these two extremes makes it clear that
the later extreme is the nost equitable distribution. Any configuration between these
two extrenmes would make it more likely for some processors to be able to make a non-
local connection than others. Similarly, any schene other than the later extrene would
necessarily lose more bandwi dth due to a worst-case single chip failure. Thus, the nost
equitable configurationis the one in which all the bandwi dth bet ween the fat-tree network
and the bidelta cluster is evenly distri buted over all the routing conponents conposing the
first stage of routing inthe bidelta cluster.

2.1.2 Fault B®lerance

The bideltaleaf cluster is configured for fault tolerance in the sane manner as Transit
bidelta networks (Section 1.5). The pair of inputs fromeach processors should be dis-
tributed to different routing conponents. All but the final stage of routingis provided by
RNL components in the standard 4 crossbar configuration with 2 outputs in each logical
direction. The final output stage is constructed with the RNIL conponents configured in
the alternate manner such that each processor receives its pair of network outputs from
two distinct routing conponents.

10

Figure 2.2: Logical Topol ogy of Quaternary Tree

2.2 Fat- Ree Bpology

2.2.1 Quaternary Tee

The appropriate fat-tree to construct using RNLis logically a quaternary fat-tree (Fig-
ure 2.2) as opposed to the binary fat-trees prevalent in the literature. This is the natural
selection since our routing conponent is a4 x4 crossbar switch. Usingless thanfour direc-
tions wouldrequire overspecifying every routing path through the network since t wological
output ports froma routing chip would actually be going in the sane logical direction.
Simlarly, constructing atree with a branching factor greater than four wouldrequire nul -
tiple stages of routing conponents to construct each virtual routing stage. The quaternary
tree, of course, has fewer levels of routing for a gi vennetwork size than a conparabl e binary
tree.

2.2.2 Separate Up and Down Trees

The logical structure of a fat-tree as describedin [Leiserson 85], [Geenberg 85], and
el sewhere integrates upand downroutingintoasingle tree. For constructionpurposes based
on the Transit routing components and technology, it is preferable to actually construct
this logical structure with the up and down routing trees separated. Lateral connections
are provided between the two routing trees at everylevel to allowconnections to cross- over
fromthe up routing to the down routing tree as soon as appropriate.

2.2.3 Structwre

Thre fat-tree structure will be constructedinthree-dinensional space. Aseparate pl ane
is allocated for eachtree level. One way to viewthis, is to take the logical structure showr
inFigures 2.2 andraise eachinternal tree node up to a pl ane equi valent toits height in the
tree. Figure 2.3 shows this three-dinensional napping of the tree structure.

11

Figure 2.3: Three- Dinensional Viewof Tree Structure

2.2.4 Upvard Pouting

RNL is a crossbar switching element. Since RNL has multiple outputs in each logical
direction, it does sone anmbunt of concentration. Its primarystrength, though, is inrouting.
W can take advantage of this by routing in the up tree as well as the down tree. Rather
than actual 1y going througheverylogical treelevel onthe journey up the tree tothe desired
height, sone routing is done to allowthe up routing path to short-cut around sone tree
stages. Wththis short-cutting, we don’t needanuprouting stage for everylevel of the tree.
Using RNI which distingui shes four routing directions, each up routing stage can route a
connection to one of the next three lateral crossovers inthe tree or to the next up routing
stage inthe tree. The next uprouting stage will performsimilarly. Inthis nanner, one up
routing stage is needed for every three levels of the tree. Figure 2.4 shows a cross-sectiona
vi ewof an upward router andits logical connections to components in the up and down
routing trees. This cross-section spans three logical tree levels which are realized as os
physical up routing stage and three physical down routing stages; the cross-section shows
only a single conponent at each up and down routing stage.

Wilizing the routing capability of RNl inthis manner, routing up the fat-treeis accom
plishedinat m)lsg%N stages as opposedto thelMdbhat woul dbe requiredif norouting
were performed in the up tree. At the sane tine, RNl still perforns sone concentration
at each upward routing stage but not full concentBuitons, at each stage in the up
routing tree, all inputs destined for the sanme parent node cannot end up on any wire in

'Teiserson did point out that if the routing component were mdified slightly to allowa specification of
“route to height #” in the fat-tree inadditionto ‘coute indirectiony” it vould be possitle to specify large
heights in the fat-tree ith only a small mwher of hits and offer more freedomin term of concertration
and bandvi dth allocation [Leiserson 89].

12

(from upstream down router)

(to next up router) l

down router

\\\\

(to other down routers as appropriate)

down router

N

(to other down routers as appropriate)

up router down router

N

(to other down routers as appropriate)

(from previous up router or bidelta cluster)

Figure 2.4: Gross-Section Viewof Up and Down Routing Trees

the up the tree connected to that parent node. Fach up routing stage allows a gi ven i nput
wire to be connected to any of two wires in eachlogical direction when wired properly; a
concentration of two is effecti vely achieved at each upward routing stage. The best known
neans of achieving full concentration at each stage will cost Qlog N tine and hardware
[Ajtai 83] [Cornen 86] whereas RNl perforns its limited concentration in constant time
and hardware. In this nanner, the concentrationinthis fat-tree configurationis nmuchlike
the fat-tree with constant size switches of Leiserson and G eenberg [Geenberg 85] shownin
Figure 1.5. The nunber of signals intoeachlevel up the fat-tree does growbecause fan-in
occurs frommnore and nore stages.

Figure 2.5 shows what the uptree connections looklikeinthree dinensions. The routing
components are at the base. The connections tofurther uproutingstages are shownstrai ght
up fromeach routing conponent. Figure 2.6 shows horizontal cross-sections of Figure 2.5
to nake the convergence and routing clear. Layer 0 is the layer of routing conponents.
Layers 1 through 3 showwhere the logical connections fromeachrouting conponent fan-in
to the lateral connection of the next three crossover stages. The fourth logical connection
out of the routing conponents, of course, connects directly upward to the next up routing
stage.

Qii ck Fouting for Very Large System

It is actually possible to do better t%’%ﬁth&ages of up routing just described.
By using a series of routing stages to switch a connection to the maxi rumhei ght up the
tree to whichit needs to be routed, the connection to the appropriate lateral crossover
between the up and down routing tree can be nade ipn dbgunber of levels in tree.
Since there are J(o levels in the tree, this neans ogllpd oy stages are needed

13

2"

= 2
N~
~

S
53
Vo a

Figure 2.5: Three- Dinensional Viewof Connections fromOne Up Routing Stage

to performupwardroutihdn essence, this routing schene builds a bidelta network from
the processors to the various tree levels. Figure 2.7 depicts howan bidel ta network can be
used to reach any height in atree of depth 16 in only 2 stages of routing.

However, this uprouting schene is only of interest when the fat-tree has alarge nunber
of tree stages. In essence, we are already getting the benefit fromthis schene achievable
when the size is on the order of 4 levels. The point where it actually becones interesting
to use this scheme occurs when the nunber of levels is roughly 4 x4 =16. In our schene
however, 16 tree levels inplies a network supptrbidgléa clusters each with 48 to
192 processors. Thus even in the the snmallest case we will fave 3bohit 200
billionprocessors. The capacity analysis and geonetry requirements for this case are not
considered here since this is clearly not a scheme of current practical interest.

2.2.5 Ibwn Bouting

The downrouting pathis sinply the strai ght-forwardtree structure. Fach downrouting
stage switches infour logical directions anong its four sub-trees. The 1ogical down routing
pathlooks just like the logical tree structure shown in Figure 2.3. Mst of the inputs to a
down routing stage cone fromits parent inthe fat-tree. The rest of the inputs cone from
the lateral cross-over fromthe up routing tree as described in the previous section.

2.2.6 Iksired Gpacity Growh Bate

(One of the nice properties whichfat-trees can have is vol une-uni versality. This prop-
erty essentially states that a fat-tree fat-tree can efftiently simml ate any other network o

2N.B. Tt will alvays take this many stages regardless of the height routed by such an up routing tree.

14

(©)0)
(©)0)
4 <
4 <

b & 5 b
o b b b
4 &

4 &

(A) Layer0 (B) Layer1
(C) Layer2 (D) Layer 3

Figure 2.6: Horizontal Cross-Sections One Up Routing Stage

conparabl e volune with at most a pol ylogarithm ¢ slowdown [Leiserson 85]. Additionally,
vol ure- uni versalityinplies that larger fat-trees can be created by sinply adding level s and
scaling the fat-tree structure in the three- di mensional world.

To assure vol une- uni versality, the bisection bandwi dth must be properly correlated
with the vol umes contained within each portion of the network. For three dinensional
structures, bandwidth into a volune is generally proportional to the surface area of the
enclosed volune; this volune will in turn be proportional to the nunber of terminal nodes
or network end points fromwhich the volune is conposed. Thus we assumne:

e Wolume =v x network endpoints.

e Bandwidth « Surface area =a

15

Tree Levels
/O 16
N O I
—— G W
\Q 13
/,O 12

11

O
! —’O 10
O

O

O
— —0

O

Routing to Appropriate Common Height of Fat-Tree

From Processors

Figure 2. 7: Hybrid Up Routing Schene withlog NStages in Up Routing Tree

o Surface area =acx(v)?

Using vas sone neasure of the nunber of netwrk endpoints, and aas sonme neasure of the
network bandwi dth, the inportant relationig/d& (If we assune that the enclosed

volume increases by a factor of, &@dw, 1) at each level, as one might expect for a
quaternary tree, it is clear that vol une uni versallity can be achievedonlyif the bandwi dth
increases no faster than the factor derived in Equation 2. 1.

an o (o) =(Yooy P =(o P(VAP =ans (VAP =ans V16 (21)

Thus, on average, bandwi dth shoul d increase by a f af/fl6radfeach successive level up

the tree to maxinize the bandwi dth avail able in the net work whil e keeping the growthrate
appropriately bounded. Wiether this bandwi dth increase can actual be realized within
the assuned factor of four growth rate is still an open question. A generalization of the
uni versallity proofs in [Leiserson 85] and [Geenberg 85] to this rate of growth may be
possible, but has yet to be demonstrated.

2.2.7 Channel Gpacity Gowh

It is easy to see the average channel capacity, nunber of distinct physical connections
in or out of an internal tree node, growth by looking at the channel capacity growth
across three tree levels. For sinplicity, consider the portion of afat-tree network shown i
Figure 2.6. The channel capacity of eachlogical channel in and out of the bottomof this

16

Layer |’]i'ee Level | Gipacity | Logical Channels |

0 8 64
1 n 8 16
2 n+l 32 4
3 nt2 128 1
0 128 1
1 n+4 128 :

Table 2.1: Up Tree Bandwi dth Allocation

structure is eight. The channel capacity of the single logical channel in and out of the top
of this structure is 128. Thus, the channel capacity has grown by a factor of 16 across 3
tree levels giving the desired average gn6Mh of

Since the up routing and down routing trees are separate, the channel capacity growth
in the up tree differs sonewhat fromthe capacity of the the corresponding netwrk stages
in the down tree.

U Bee

To see howthe up tree routing capacity grows, it is easiest to look at the channel
capacities for the first fewstages of the network. Consider the portionof the uprouting tree
shownin Figures 2.5 and 2. 6. Layer 0 sinply perforns the routing to the next three layers
soit does not correspondtoanactual level inthe tree. Fach base routing conponent inlayer
0is an RNl routing chip. Thus each of the 64 routing conmponents shownin Figure 2. 6(A)
has 8 inputs and outputs. The 8 outputs are divided into four logical directions with tw
going to each of the next three layers and 2 going further up the tree. Thus layer 1 has 64
pairs of outputs converging to 16 di flerent sub-trees (Figure 2.6(B)); theresult is 16 1ogica
channel s of capacity 8. Similarly, layer 2 has 64 pairs of outputs converging in 4 sub-trees
making 4 1ogical channels each of capacity 32 (Figure 2.6(C)). Finally, layer 3 has 64 pairs
of outputs converging to a single sub-tree whichgives asinglelogical channel with capacity
128 (Figure 2.6(D)). This leaves the remnining 64 pairs of outputs which connect to the
next routing stage as a single logical channel with capacity 128. This logical channel will
then encounter another routing stage just like layer 0 and the progression will continue in
this manner. This capacity progressionis summarized in Thble 2.1. The final itens in the
table are the corresponding layer 0 and 1 progressions for the next routing stage. Thus the
progressions of growth factors is 1, 4, 4 giving a capacity growthof 16 in 3 tree stages or
an average growth of/16.

Dovwnvard

The bottomnost downrouting level must provi de 8 outputs in eachlogical destination
to scale properly with input to the up routing tree. This dictates 8- 4 =32 outputs or 4

17

| Tree Level | Gapacity

n 8
n+1 24
n+2 64
n+3 128
n+4 38

Table 2.2: Down Tree Bandwi dth All ocation

routing chips. This inplies that the total fan-in to this level is also 32. 2. 4 =8 of tha
fan-in is consuned by lateral connections leaving 32 — 8 =24 inputs which must fan-in
fromabove. At the next level, there need to be 24 outputs for each logical destination as
just determined. This dictates 24- 4 =96 outputs or 12 routing conponents and a total
fan-in of 96. There are 2- 4. 4 =321ateral fan-insignals tothis level, leaving 96 — 32 =6
inputs for fan-in fromthe previous down routing stage. Sinilarly eachlogical destination
at level three has 64 outputs associated withit. This dictates 64- 4 =256 total outputs
or 32 routing chips. This gives a total fan-in to this level of 256. 'The lateral fan-ini
2- 4. 4. 4=1281leaving 256 — 128 =128 inputs for fan-in fromabove.

Beyond this point, the structure replicates. The next level up 1ooks like the bottom
level scaled so that the input size in each directi on matches the output fromthe previous
stage. progression nay continue in this manner af infintum. The progression of channel
capacities inthe downwardroute are thus as shown in Thble 2.2. Level nt+4 is equival ent
to the level nstage since the series begins to repeat at that point. Thus the progressions
of growth factors i§,32, giving a capacity growth of 16 across 3 tree levels. This again
gives the desired average growtil6f This is identical to the growth in the upward
routing tree, but the growth does not coincide with the upward tree on a stage per stage
basis.

2.8 Wiring Gunstraints for Efficient Bandwidth O stribution

In both the up and down routing portions of the fat-tree netwrk, alogical routingstage
is conposed of many separate routing conponents. The inputs to anylogical routing stage
core fromdifferent 1ogical directions; that is the inputs to the 1ogical routing stage nmay
be lateral crossover connections fromdifferent subtrees or may cone fromthe i mmediate
parent routing stage. The distribution of these inputs to physical routing components
presents a more general case of the i nput bandwi dth all ocation discussedin Section 2.1.1.
In this section, the i ssue of bandwi dth distribution to routing conmponents is exanmined in
more detail inorder to devel op sone constraints for the general probl emof optimally wiring
the fat-tree net work.

Again, we start by examini ng the two extrene cases for bandwidth distribution. I use
the word dsprsionto refer to the degree to which inputs fromdifferent 1ogical directions
are distributed across distinct routing conponents. Dispersion is closely related to the

18

(direction 1) (direction 2) (direction 3) (direction 4) (direction 1) (direction 2) (direction 3) (direction 4)
(direction 1) (direction 2) (direction 3) (direction 4) (direction 1) (direction 2) (direction 3) (direction 4)

Aobofof Ao/ NS A

Routing Chip Routing Chip Routing Chip Routing Chip

) | 3 |
(Lateral Inputs) \T/

24
(Inputs from Parent Routing Stage)

Figure 2. 8: Non- Disperse Exanple

notion of erpwsionin the theoryliterature.

2.3.1 Do HOspersion

In the non-disperse case at each such logical routing stage, the inputs froma given
direction are each routed to their own set of routing conponents. That is, if the inputs
froma gi ven directi on make up a fraction a of the inputs into that level, then these are all
destined for an equi valent fraction of the routing conmponents at that level. Conponents
will be shared between logical input directions only in the case that there is an uneven
di vi si on of conponents anong the input directions.

At any stage, inputs froma given direction can only nmake use of aof the bandwi dth
to each logical destination. This neans the inputs fromthat stage can, at most, reach
aof the routing conmponents at the next level. This effectively minimizes the nunber of
di flerent components, and hence paths, reachable; This is non-optinnl for fault-tolerance
and minimzing routing congestion. On the positive side, at least aof the bandwidthin
a given direction is guaranteed to the inputs fromeach input direction; since the inputs
froma single logical direction do not, in general, share routing conponents with i nputs
fromother directions, those inputs are guaranteed the entire aof the bandwi dth. Non-
di spersion neans that at each level, inputs fromthe sane direction are conpeting only
with each other for the bandwi dth to the next level.

Exanple Consider Figure 2. 8for a concrete exanple of this wiringstrategy. This switch-
ing couldrepresent Level 1 of the fat-tree inthe downwardrouting path. Thelogical routing
stageis thus conposed of four routing conponents as shown. Inthis case, 8 wires enter from
the lateral direction while 24 enter fromthe previous down routing stage in the downward
routing tree. Fight wires leavelevel 1ineachof the 41ogical directions.

Here, the 32 wires are partitioned based ontheir direction of origination. The 8 lateral
wires all gointo asingle routing chip. The 24 wires fromfarther up the tree are connected
to the remnining 3 routing chips. Of the 8 lateral connections through this level, at nost
two connections can be made in each logical output direction; however, if nmore than two

19

(direction 1) (direction 2) (direction 3) (direction 4) (direction 1) (direction 2) (direction 3) (direction 4)
(direction 1) (direction 2) (direction 3) (direction 4) (direction 1) (direction 2) (direction 3) (direction 4)

Aobofo/ Aol Ndofo) Aofof

Routing Chip Routing Chip Routing Chip Routing Chip

(Lateral Inputs) \T/

241
(Inputs from Parent Routing Stage)

Figure 2.9: Disperse Exanple

lateral connections need to be nmade in a particular direction, at least 2 of the connections
will be nmade. Asingle chipfailure at this level woul d either prevent lateral commnication
entirely or cut down the bandwi dth fromfarther up in the tree by 33%

2.3.2 Hill Ilspersion

Full dispersionis achieved whenthe input wires toeachlevel fromagi veninput direction
are spread out anongst as many different routing conponents as possible. The pair of
outputs fromthe sane direction of a single chip at a previous level al ways go to different
routing conponents.

The nunmber of potential paths frompoint to point expand at eachlevel. This results
because each input wire froma logical input direction has the opportunity toleave on any
of two outputs; at the sane tine, when a connectionfromalogical input directiondoes exit
the routing level via aparticul ar output port, it is not di minishing the bandwi dth potential
for any other inputs fromthat sane logical direction. Thus inputs fromall directions
compete for the bandwidth to the next level. Toalimited extent, this all ows averaging of
the load fromseveral input directions across the total available bandwi dth. Similarly, the
effects of component failure is spread evenly over all logical input directions. Wen a chip
fails, it effecti vel y reduces a fraction of the fan-in fromeachlogical direction.

Exanple Figure 2.9 gives the concrete exanple for the full dispersion case. This cor-
responds to the disperse wiring of the sane level 1 downward routing path given in the
exanpl e of the previous section.

Inthis case, the 32 wires are distributed evenly, basedondirection of origination, acros
the 4 routing chips. If all 8lateral connection were destined for the same output direction,
there is a possibility that they could all be routed; there is also the possibility that th
could all be bl ocked because all the bandwidthin that particular directionis consuned by
connections farther up the tree. Asingle chipfailure at this level would effecti vely cut th
bandwi dth out of this level down by 25%

20

2.3.3 DPotential Path Gowh

Fromthe above, we see that full dispersionwi 1l nmaxim ze the nunber of paths available
for a connection through the network. This factor of tw increase at each level in the
nunber of paths over which a given connection can be nade is the best achievable using
RNL. This occurs when each wire on which a connection could potentially be nade by
a commmn source is connected to a different routing conponent. There are then twice as
many potential paths toward the desired destination out of eachroutinglevel as there were
into the level. As long as this property can be maintained, each routing level will be able
to achieve this effecti ve doubling of the nunber of paths between a given source and its
destination.

Certainly, it is possible to wire the network with less potential paths between each
source destination pair. If two or more wires which a gi ven source could have routed a
nessage through are connected to the same routing chip, then the path growth will be
staller.

In order to guarantee that we can achieve the maxinal path growth or path epusion
descri bed above, at each level, it need only be the case that there is not a single set of
wires that can be reached froma single processor that accounts for ;lstrofethhan
total bandwidthinto anylevel. This is not the sane as saying that the inputs froma single
logical direction mst conpose les%to]fatlhe inputs to a given logical routing level.

The inputs froma givenlogical direction are not necessarily fully concentrated when they
enter a routing level. As long as the constraint given above on the fraction of potential
inputs froma single source can be maintained, eachinput wire froma potentially common
source can be routed through a different routing conponent at any level in question. For

the fat-tree routing structure described here, this property is maintained at each logica
routing level conposing the network.

Leight on and Mhggs [Lei ghton 89-2] point out that the above constraint is suffcient
only to guarantee optimal path expansion at the mcro-level; that is when looking at the
nunber of paths between a single source and destinati on. Wien vi ewi ng path expansi on at
the macro-level, additional constraints are necessary to guarantee optinal path expansion;
macro-level path expansion is the growth in the nunber of paths between sets of source
and destination processors rather than sinply individual processors. Leighton and Maggs
demonstrate the advantages of optimal or near- optinal nacro-1evel expansion wiring when
with a schene where the switching elenents can arbitrate with one another concerning
network l oading [Lei ghton 89-1]. RNL, however, selects output paths obliviously. As such,
it is not clear that their macro-level constraints will have any significant affect in practic
on the routing performance of anetworkbuilt using RNl switches. Recent work [DeHon 90]
woul d i ndicate that this kind of expansionis useful to maximizing the fault tolerance of
the net work.

The conplexity of Leighton and Miggs’ switching element [Leighton 89-1] is much
greater than that of RNL. As such, it would certainly represent a much sl ower conpo-
nent. Additionally, their switching scheme requires approximately 4(log N clock cycles to
route a connection as opposed to the (log N clock cyles required by RNI. Both of these
properties make its routing mich slower than RNI. However, if its routing effti ency turns

21

out to be greater than that of the oblivious routing done by RNl by a conparable factor,
then perhaps it woul d be beneficial tolook further into the alternati ve of constructing such
a switching el enent.

22

3. Gbnstruction

This chapter expands on the technical details invol ved in the constructi on of the network
structure describedinthe previous chapter. Section 3.1 discusses afewfurther i ssues about
the construction of the bidelta clusters at the leaves of the fat-tree. Section 3.2 address
a couple of issues inportant to the realization of a such network using RNIL. Section 3.3
introduces the wit treg a stack structure that can serve as the basic building block for this
kind of fat-tree network. Then Section 3.4 describes a possible geonetry for arranging these
unit tree structures in three-dinensions to realize netwrks of reasonable size. Section 3.
follows describing construction issues for this geometry. Section 3.6 then deals with the
long wires that necessarily occur in this structure. Section 3.7 briefly details processc
placenent withrespects to such a network. Finally, Section 3.8 details an efftient schene
for computing routing sequences for this network.

3.1 Hdelta Leaf Qusters

Section 2.1 described the conposition of the bidelta leaf clusters. This section fills i
construction details not readily apparent fromthe previous description.

3.1.1 Gmections © Fat- Tee

For sinplicity, the 11 logical routing direction out of the first stage of routing in the
bidelta cluster is chosentoroute intothe fat-tree network. That is, if the first two routin
bits of the routing sequence are both ones, the connection will be routed out of the bidelta
cluster and into the fat-tree network. The choice of whichlogical directionto use for this
purpose is somewhat arbitrary, but it is useful to settle onasingle direction for referenc
purposes.

3.1.2 Gomnections FromFat- Tee

The first stage routing conponents will be configured to swall owthe first routing byte
they encounter, as describedin Section 1.3.2, for cluster inputs fromthe fat-tree network
This neans the swall ow property must be set only on the two inputs fromthe fat-tree
netwrk to each routing conponent in the first routing stage; the other six inputs to each
routing conponent will cone directly fromprocessors andnot require this swall owproperty
to be set. Inthis manner, a freshrouting bytes is al ways used to route through the bidelta
cluster regardl ess of the source of the connection. This provides alogical separation betwee:
the portion of the routing sequence usedtoroute throughthe fat-tree and that usedtoroute
within the cluster making routing cal cul ati on noderately easy. It also guarantees that a
freshset of routing bits is available to route through the bidelta cluster.

23

3.1.3 Size

The nunber of processors that a single bideltaclusters stack cansupport is constrained
by physical size, bandwi dth, and granul arity. Since the routing component di stinguishes
four distinct directions, each additional routing stage will increase the size, nunber o
processors, by a factor of four. Note, however, that since one logical direction out of the
first stage connects tothe fat-tree rather than the bidelta network, that the first stage only
di stinguishes three directions wi thinthe netwrk. This granul arity constraint al one speci fie
the construction of clusters which suppbpt &cesdors, for any non-negative i. Wen
consi dering physical size we are limted by the size we can construct the horizontal routing
boards (see Section 1.4). Considering the projectedsize of RNl, the largest possible singl.
horizontal routing pl ane we can construct will support 8 x8 =64 routing conponents; this
woul d allow the construction of the 4 stage network supportimg9® processors.

Additionally, the bidelta cluster will have to provi de bandwidth to and fromthe fat-tree
netwrk whichwill match that of the fat-tree network being constructed.

For notational convenience, a bidelta clusters supporting nprocessors will be denoted
by B,. eg. a3 stage bidelta clusters will supfort48 précessors and will thus be
referenced as;sB

3.2 Inter-Stage Details

3.2.1 p PathHOrections

Routing conponents in an up routing stage route in four distinct directions as shown

in Figure 2.4. Here, again, the assi gnnent of actual routing directions to each of the four
logical directions is somewhat arbitrary. It is useful, though, to make this assignnent in a
logical manner for the sake of references androutingsinplicity. The 11 directionis assignec
tothe direction whichroutes further upthe tree. This is consistent with the choice of the 11
directiontoroute out of the bidelta cluster. The 00, 01, and 10 directions eachrespectivel
route to the each of the next three successive downrouting stages. That is the 00 direction
routes to the next downrouting stage, 01 toits parent, and 10 to the next parent.

3.2.2 Swallows

In order to allowrouting to arbitrarily nany destinations, we need to make sure that
the fat-tree network is configured to discard an ol drouting byte whenit is exhausted. Thus
the swllovstages need to be arranged in a functional nanner. This task is conplicated
by the fact that connections can be nade through arbitrary heights in the tree such that
compl ete paths fromsource to destination are not entirel y honogeneous; that is, paths will
differ inlength based on where they entered the down routing tree.

Ideally we woul d1ike each of the swall owstages to be pl aced a a maxi mumdi stance from
each other. This is desirable because eachswallowstage effecti vely costs one clock cycle of
del ay while the old routing byte is being discarded so the newcan take its place. Thus to
mnimze the time to nake a connection, swallowstages should be placed as infrequently
as possible.

24

Since there are 8 bits in each routing byte and each routing stage consunes 2 bits,
swallows are required at least every four routing stages. Swallowstages will certainly be
needed at least every 4 stages on the up path and on t he down path. It is possible to change
fromup routing to down routing at any up stage. In order to be assured that the down
routing stages get fresh routi ng bytes when needed, the old routing byte will be stripped
off as part of the lateral crossover fromthe upward tree to the downward. This routing
byte change will be realized by setting the swallowproperty onall lateral inputs to a down
routing stage. This lateral swallowprovides a clear separation between the up and down
routing portion of a connection.

3.2.3 Ht Botations

Recall fromSection 1.3 that the appropriate bits fromthe data pathare usedto perform
routing. In order to assure that a different pair of bits are used at eachlevel, the data path
is rotated betweenrouting levels. This poses a simlar problemto the swall ow. Wereas,
inabideltanetwork, all paths in the network are of the same length, all paths through the
fat-tree are not. Mre inportantly, all paths are not even of the sane length nodul o four.
Even paths through a gi ven routing conponent can differ inlength. Thus, sone attention
mist be givento assuring that the bits are rotated unifornl y thr ough the tree network.

Fromthe source processor to a given height inthe tree, the ambunt of rotationincurred
will be known. Sinmilarly, fromthat height down to a destination, the nunber of rotations
will be known. Wiat we mmst assure is that the total number of bit rotations nodulo
four through the networkis the sane regardless of the height at whichthe lateral crossover
occurs. Inorder toguarantee this, we rmst use the l ateral crossover between t he up routing
tree and the down routing tree to shufft the bits into a consistent state; that is make sure
that the lateral bits into a gi vendownroutinglevel have the sane rotation applied to them
as those coming into the downrouting level fromabove. This is closelyrelated to need to
swallowon the lateral crossover in order to be synchronized with the point of entry into
the downward routing path and simlarly guarantees that, regardless of the history of a
connection’s path, it nerges consistently into the downward tree.

3.3 Thit Tee

Inbuilding the fat-tree network, we are constrainedinthe size we canreliably fabricate
the conponent stacks. Recall fromSection 1.4 that the horizontal pc-boards are limted
to about two feet square. There are also other difftulties that arise if we attenpt to build
larger stacks. The on-board wire lengths begin to becone a nore serious concern sl owi ng
the clock cycle of eachrouting stage. The already dense wiring on the pc- boards becones
proportionally more severe.

It is clear that the fat-tree network will have to be packaged in mul ti ple conponent
stacks. Fromthis realization, it is necessary to determne howto separate the fat-tree int
stacks and howeach constituent stackis conposed. W wish to avoid buil di ng many stacks
of different geonetries, and hence needing to design and fabricate many di flerent pc- boards
and other conponents. W want as mich as possible to be reusable whenscaling to larger

25

and larger sized fat-trees. Essentially, we need a standard replicable structure that car
serve as a building block for fat-trees i n much the sane way that a set of identical routing
components can be used to construct a routing stack.

3.3.1 Thit Tree Structure

The wit treeis asingle stack structure fromwhicha fat-tree interconnection of a wide
variety of sizes can be built. This basic building block, when replicated and properly
arranged will realize the fat-tree structure described herein.

Size

As noted, current technologylimts the size of asingle horizontal pc-boardroutinglayer
to about 2x 2. G ven the target size of RNl & 44", if we l eave an equal anount
of space between each routing conponent for routing wires, we can place about 8 x 8 =64
routing conponents inasingle routinglayer. As such, aunit treeis constrainedtothis size
for the present tine. As technol ogy i nproves, the nunber of components per layer will, no
doubt, increase; however, this scheme is very scalable and can easil y be nodified to take
advant age of improved technol ogy. For the remainder of this paper, 64 routing conmponents
will be assuned as the maxi mml ayer size.

The basic structure of the fat-tree described in Section 2.2 showed that the fat-tree is
built by replicating a series of one upward routing stage and 3 downward routing stages.
These 4 stages describe the natural structure of the tree. This gives a natural division
between routing levels appropriate for inclusionineachunit tree stack.

The unit treeis thus constructedin4layers as shownin Figures 2.5, 2.6, and 2. 3. The up
routing layer is at the base andis conposed of the nmaxi mum64 routing conponents. It is
followed by the first downrouting stage whichis also conposed of 64 routing conponents in
order to match bandwi dth with the up routing stage. The next downrouting stage provides
input toonly three-fourth of the first downrouting stage since l ateral inputs consune one-
quarter of the input capacity to the first down routing stage. It is thus composed of
only 48 routing conponents. The third, and final down routing stage provides inputs to
the second down routing stage. Since the second down routing stage has one-third of its
inputs dedicated to lateral crossover inputs, the third stage is only two-thirds the size ¢
the second. This nakes it one-half the size of the first down routing stage whichis 32
conmponents. Thus, the conponent count for a unit tree is shown in Tables 3.1. Each
such unit tree thus requires a total of 208 routing conponents. Wth four routing layers,
the stack should be about”1tml]l making the entire stack roughl® 2 1.5”. Since
there are several variations of this basic unit tree worth considering, whenit is necessar
to differentiate them this particular unit tree will be refexgnced as I

Characteristics

Wth this devel opnent, the size and geonetry of a basic unit tree is fully constrained.
As such we can sunmarize the bandwi dth characteristics as givenin Tables 3. 2.

26

| Level | Pout i ng Ghnponent s

0 64
1 64
2 48
3 32

Table 3.1: Unit Tree Conponent Summary

| | Ttal Bandwidth | Total Logical (hannels | Gapacity

Up fromLeaves 512 64 8
Down toward Leaves 512 64 8
Up toward Root 128 1 128
Down fromRoot 128 1 128

Table 3.2: I Bandwi dth

Stack | Ghnponent Available | Required Bandwidth
Layer Gunt Bandwidth | bvn Path | (p Path
0 64 512 512 0
1 64 512 0 384
2 48 384 0 256
3 32 256 0 128

Table 3.3: Wag Vertical Through Bandwi dth

Through Bandwi dth

All of the vertical straight through connections between horizontal boards in the stack
structure are contained on the routing conponents’ package as describedin Section 1.3.1.
This limts the nunber of vertical routing conduits available for up or down routing con-
nections whichsinply pass through alayer wi thout beinginvol vedin the routing occurring
on that layer. Each package provides sufftient through routing conduits for 8 bundl es of
9 wires apiece. No vertical vias are needed for the downward routing path, except when
the entire downward bandwi dth must route thr ough t he upward routing level. The upward
routing path requires through bandwi dth on all the down routing levels. Available and
required bandwidth is summarized in the Tables 3.3. (Qearly, there is adequate vertical
through bandwi dth available for this schene.

27

3.3.2 Tree Boot

Two al ternatives exist for terminating the fat-tree. It is possible sinmply to build the
treeuptoadesiredsize andleave the bandwi dth out of the top of the topnost stage of unit
trees unused. Alternately, we can build a capping level whichutilizes the logical directio
whi ch woul d have routed further up the tree to route laterally to another down routing
level.

The first optionis the conceptually cleanest. All of the unit tree stacks will be i dentical
Routing will be i dentical ontrees of all sizes.

The later optionallows nore size flexibilityinsone cases. Knowing the size of the stack
becones inportant to routing consi derations when the root stackis cappedin this nanner.
Stacks withacaplevel will be slightly different fromother stacks so that not all stacks will
be identical; however, these capped stacks can differ only by the addi tion of an additional
routing layer to the top of a standard unit tree stack.

G Level

(Conceptually, the root 1ayer constructed for a capped unit tree will be for the conver-
gence of four unit trees; however, the conponents that conpose thislayer canbe distributed
across the four stacks. This distributionis necessary since we cannot nmake a single stack
larger. At the top of a standard unit tree there are 128 channels that would go further
toward the root and 128 coning fromthe root. Wth a down bandwi dth of 128 into each
of the 4 stacks and hence logical directions, we need a total of 64 routing conponents to
compose the final level. One-fourth of these conponents can be placed in eachstack. This
appropriately gives 128 outputs fromthis newlevel to the 128 inputs to the down routing
level which was formerly the top of each stack. Each stack will Jt%ﬁe:n:lﬂuc&)n-
nections through the capped root back toitself and 32 connections fromeach of the three
adjacent stacks intoits original top downrouting level. Simlarly, eachstack will connec
to 3 other stacks with 32 connections. Obviously, if the root level of unit trees is conposed
of more than 4 stacks, the 32 connection in each logical direction should be maximally
distri buted over all stacks conposing eachlogical direction.

For the sake of clarity, this capped unit tree will be refeggmced as UI'

3.3.3 Building a Bat- Bee Fomlhit Rees

Each bideltaleaf cluster has abandwi%[—é\%iféfintothe fat-tree, wherg M the
nunber of processors inthe leaf cluster. Asingle unit tree has a bandwidth of 8 in each of
the 64 1ogical directions it distinguishes].\rzﬁ&s smichtrees are required to construct
the smallest fat-tree which has only a single layer of unit trees. The next larger size can
then be constructed by replicating this smallest structure 64 tines and using anot her 1 ayer
of unit trees to interconnect these 64 subtrees. Enough unit trees at this secondlevel will
be needed to nmatch the bandwi dth out of the top of the first stage of unit trees. This
progression can be continued to build fat-trees arbitrarily large.

28

Exanpl es

12K As an initial exanple, consider building a 12K processor machine. W can use a
Bigsleaf cluster for the leaf. The next level is then l}ﬁ-}l:tlcﬁuumfc trees. This

gives 192 64 =12288 processors usinggfibidelta clusters and 16,87 unit tree

bl ocks.

48K Using a capping level at the top of a single layer of unit trees, we can support 48K
processors, four times as many processors as the previous exanple. The nunber of unit
trees sinpl y needs to growbyafactor of four. Similarly, four tines as many bidelta clusters
are needed. Thus, this is constructed fromm2béaB clusters and 644J unit trees.

768K Adding a full second level of unit trees allows us to cédnndd2 64 786K
processors. This requires a bideltaleaf cluster for each 192 processors:
768K

—— =4K
192

The 1owest level of unit trees is conposed of unit trees gi ven by the foll owi ng:

d

768K 192 1
Ak in R) e
192 12 64
— = R~
a b c

(@) is the nunber of bidelta clusters that connect to this level. (b) is the nunber of unit
tree stacks necessary to satisfy the bandwi dth for gsbngkdtB block. (c¢) is the
fractionof the unit trees from(d that are actually used by asingle bideltablock. (d) which
is the product of (¢ and (b) is the ratio of the nunber of bideltaclusters tounit tree stacks
required to build this first 1evel. The bandwi dth out of the top of aunit treeis one-fourth
the bandwidthintoit. Thus the next level will onl yrequire one fourth as many unit trees:

1

E:256

4

This brings the total structure to 4f396iBelta clusters and 128@4&T unit tree

stacks.

Generalizing

W can generalize network sizes and conposition in terns of the nunber of unit tree
layers used for network constructi on. Agajns Nhe nunber of processors conposing
a single bidelta leaf cluster. ¢is a paraneter denoting the total nunber of stack levels,
including the leaf cluster stack; ¢is constrained only to be a non-negative integer greate:
than one. The total nunber of processors supportedbyanetworkwith¢—1 unit treelayers
all of type &g is thus N;y as shownin Equation 3. 1.

Ntotal:64(i_1) :]Maaf (31)

29

This requires one bidelta cluster foy.gaphoNessors.

No;delta= (3.2)

The first 1ayer of unit trees is conpo(év%ﬁf- 6—14> I'g4s unit trees for each bidelta
cluster. Each successive layer requires one-fourth as many unit trees since the bandwi dth
out of the top of each unit tree is one-fourth the bandwi dth i nto the bottom Thus the

total number of {J1g unit trees necessary to construct a network of;gisesMpl y
as gi ven by Equation 3. 3.

13
Ntotal Nleaf 1 1
Nyw: = . .
‘ J:Zl (N,eaf 12 64 4(33)

<Ntotal) 1- G)(H) - <Nt°t"l> (1 - 4(14)> (3.3)

12- 6 1-% 576

Thus a network of N;y processors is constructed with:Meaf clusters angd;dV
Ul g4 unit trees.

Using cappedunit trees at the toplevel, the conpositionis slightly different. The total
nunber of processors is greater by a factor of four because of the extra routing stage.

Ntotal =4- 641_1) .]Maaf (34)
The nunber of bidelta leaf clusters needed is conputed as before.
Noidelta= (3.5)
The nunber of stacks progresses the sane. The difference here is that the top level is

constructed out of djflg. unit trees. Thus the number ofgdf’ unit trees,, /¥ and
' g4 unit trees.d;: are conputed by Equations 3.6 and 3. 7.

12
Ntotal Nleaf 1 1 <Ntotal> ;
Nm — . - —_ =]_—4:(2_%) 3.6
jzzl: (Nleaf 12 64 4(id) 576 () ()
Ntotal
' 768 - 42 (3.7)

3.3.4 Aternative thit Tree

It is also worthwhile to consider an alternative unit tree structure. Inparticular, this
necessary if we wish to construct entirelyfat-tree networks; that is if we wish to construct
networks that have processors as leaves rather thanbideltaclusters. Alone, theunit tree jus
describedis inadequate for this purpose becauseit will al ways provide at least 8 connections
in each logical direction. To match the connections to a single processor, we need a unit

30

tree that provides two logical connections per direction. This unit tree can be used byitsel!
to construct such a conplete fat-tree network, or used only as the bottomnost tree stage

of afat-tree network utilizgpng Wit trees for the construction of the upper portion

of the tree. For distinction, this unit tree will be refgiged to as I

Fult Blerance

To get the desired two outputs, and hence inputs, ineachlogical direction, we essentially
need to scale down the size of the unit tree constructed by a factor of four fromthat of
the g4 unit tree. Innaivelyscaling downthe unit tree size, we encounter one problem
at the final down routing stage. FEach single routing conponent becones critical in order
to provide network connectivity to four processors; that is, unlike the conponent in other
stages, if one of these components fail, four processors will becone unreachable.

Thi s i dentical sort of problemoccurs inthe bideltaclusters. As describedin Sections 1.:
and 1.5, this was the reason for inpl enenting the alternati ve configurati on for RNl as two
separate 4 X 4 crossbars. Wth RNl configured in this manner at the bottommwst down
routing stage, instead of having a singl e conponent that makes the final routing connection
to 4 processors, we have 2 conponents that nake the final connectionto 8 processors. This
way no singl e conmponent is critical to the functionality of the network.

To avoi d having a similar probl emon the i nputs, we al so configure these as inthe bidelta
configuration. Wiile each processor will use only a single connection into the network at
atine to guarantee that the network is not overloaded, each processor has two network
connections. Fach of these network connection should be connected to different routing
conmponents. The processor then guarantees to only use one of the two network connections
at atime. Inthis manner, no single conponent in the first up routi ng stage of the network
is critical since a given processor can al ways originate a connection through the network
through either of the two routi ng conponents to whichit is connected.

Size

The entire Uy ends up being one- quarter the size of ghe Uit tree. AWy
is thus conposed of a total of 52 RNl routing conponents. The stages are each conposed
of one-fourth as many routing conponents as the corresponding stagesgig tulné T’
tree summarized in Table 3.4. The largest routing layer has 16 conponents. These can be
arranged as 4 X4 conponents in the horizontal plane. This makes each si dgsgf the U
roughl y half the size of eachside ofgthedlit tree. Thus eachside of theglinit
tree will be about one foot 1ong. The nunber of stages is the same betwgep the I
and g4 unit trees sothey will be the same height.

Characteristics

This conposition gives thesdf unit tree the characteristics shownin Tables 3. 5.

31

| Level | Pout i ng Ghnponent s

0 16
1 16
2 12
3 8

Table 3.4: Wie Conponent Summary

| | Ttal Bandwidth | Total Logical (hannels | Gapacity

Up fromLeaves 128 64 2
Down toward Leaves 128 64 2
Up toward Root 32 1 32
Down fromRoot 32 1 32

Table 3.5: (f12 Bandwi dth

Through Bandwi dth

As withthe Ulgag unit tree all vertical routing vias betweenroutinglevels inthe stack
structure are containedin the routing conponents. Since thisis onlyascaled down version
of the Ugyg unit tree, we have no newproblemns with vertical through routing bandwi dt h.

Buil di ng FBees

Building fat trees withyfl unit trees is done in much the same nmanner as before.

This unit tree can be used as the only kind of unit tree in constructing the fat-tree. Alter-
nately, it can be used as the leaf node in place of the bidelta clustegss amdtthe UI

tree can be used to build the rest of the structure for the tregsg lanng {¥ees

for the upper tree structure gi ves better routing performance andis hence preferable. This
di fference in routing performance arises fromthe usage of the alternate RNl configurati on
in the final down routing stage of the lTunit tree. This nakes thegfJ ’s routing

performance slightlyless desirable than that qmfgthai#l'tree where the last stage

is configured nornally.

Since there is a performance differential, its reasonable to onlyconsidggpusi ng the U
unit trees at the bottommost 1 ayer of the fat-tree. The fat-trees so constructed are free to
be any power of 64.

Niotag =64° (3.8)

One T 642 unit tree is needed for each 64 processors. Thus the total nunber needed,
Ntuwst, is given by Equation 3.9.

Npyy = —2224 (3.9)

The nunber of gy unit trees in the next level is determined by natching the total
bandwi dth out of the tops of thesd unit tree layer with the bandwi dth into each

' 648 unit tree. As before successiveunit tree levels eachrequire one- quarter the nunber
of the unit trees as the precedinglevel. As such, Equation 3. 10 gi ves t hegpgnber of I

unit trees needed,;N

71 71
3 Niotal < 32> 1 > 3 < Niotal >
N . — . _—] —— = - =
< 64 512) 4(id) 256 - 4

4 NCEDN Nyora .
iz Dtotal _ (1 (1)) Dtotdl
3 (1 <4>) 1024 <1 !) 768 (3.10)

Exanple Wsing two levels of (fig style unit trees on top of one levelyof dfiyle
unit trees, the fat-tree network will si#ppo2i6&brocessors. This requires unit
trees as follows:

643

Nfwit = — =64%=4K

fmit 64 0
643

Nugi: = | =—) (1 -4) =320
(7ag) 0 -9)

3.3.5 Wring Iktails for thit Rees

As describedin Sections 1.3.2 and 3.2.2, inorder tospecifynore than 8 bits of routing
information, the first routing byte mmst be periodically stripped fromthe data stream
Wthinthe unit tree structure, this operati onshouldlogicallybe perforned at three places.

1. everyfourth unit tree up on up the routing path
2. at the lateral crossovers between the up and down routing trees

3. uponentrance of aunit tree at the top downroutinglevel whenthe connectioncrosses
over hi gher upin the fat-tree.

The first case will onl y be necessary whennore than 8 bits are needed to specify up routing.
Thi s becones necessary only when we have more than/V 64 processors so will not be

likely to be necessary in the near future. The need for lateral crossovers is described it
Section 3.2.2. Recall that the wiring constraints of Section 2.3 recommend that inputs from
di fferent logical directions be distributed across as nany diflerent routing conponents as
possible. As such, lateral crossover inputs will only make up a fraction of the inputs to a
gi ven routing conponent and hence be configured differently than the remnaining inputs;
fortunately, RNl all ows the the swall owproperty to be configured i ndependently for each
input. The logical place for stripping bytes in the downward path is at the entrance of
each unit tree fromhigher in the fat-tree. This provides the most regular place for this
function. This is sonewhat non-optimal in that the swallowoccurs betweenevery 3 stages

of down routing, as opposedto every 4; this neans that the routing byte is being changed

33

slightly nore frequently than it could be in best case. As such the lowtwo bits of each
down routing byte are unused.

The rotation of bits between unit tree stages mmst be carefully arranged so that all
paths through the fat-tree network rotate the routing bits equivalently, as described in
Section 3.2.3. Obviously, each byte-wi de routing path must be rotated by 2 bits foll owing
each up routing stage and foll owing each down routing stage. Since there are only three
down routing stages through each unit tree, following the last down routing stage there
mst actually be a four bit rotation so that the bits are correctly aligned to enter the
following unit tree. The lateral crossover connections pose the least straightforward bi+
rotations. Eachlateral crossover mmst guarantee that as the connection enters the down
routing path, the bit rotationis consistent with the point at whi chthe downrouting pathis
entered. Wiile thisis easy enoughto guarantee, this inplies that the anbunt of rotationin
each crossover will differ depending on t he hei ght of the unit tree inthe fat-tree; this resul
fromthe difference in the length of the up routing path traversed before encountering the
crossover. This requirenent unfortunately, forces unit trees to differ slightly depending
upon whi chl ayer of the fat-tree they are inpl enenting. The effect of this difference can be
mnin zed bylocating the necessaryrotationdifference entirelyinthe horizontal pc-routing
board just above the uprouting stage. This localizes the difference inunit trees to asingle
horizontal routing board. (f course, since the four stages of two bit rotations return the
rotation to the original rotation, at most four such distinct boards will be necessary to
build an arbitrarily large fat-tree.

3.3.6 Wre Accounting

There are a large nunber of wires entering and leaving each unit tree stack in order
to properly connect the unit tree in the network. These wires, by necessity mmst go to
a nunber of different locations. Wile each data path of 9 wires could go to a different
destination, actually allowing themto do so woul d unnecessarily conplicate the wiring
pattern. T prevent this, we wouldlike to group together reasonably sized wire bundles to
interconnect unit trees and connect unit trees to leaf nodes.

Il 6458

The bandwi dth entering andleaving the bottomof tghg tlhit tree stackislogically
segregated into 64 directions each of whichis 8 channels wi de. Each channel is conposed
of 9 bits. There are equally many channel s going both into the stack frombel ow and
downward out of the stack. Gouping this together, we have 2 x 8 X9 =144 wires in each
logical direction. It nakes sense touse this is a the standard wire bundle size.

The bandwi dth leaving the top of one of these unit trees is conposes a single logical
direction. However, sinceit will inturn be connecting §gsotinét tFees, it nmakes
most sense touse the sane wire bundl e size. Since there are only one-fourth the bandwi dth
exiting the top of the stack, there will only be 16 such bundl es out of the topof aunit tree.

34

| Thit Tree Type | Nmber of Bundl es | Bundl es Size | Btal Wres |

T 615 Bottom 64 144 9216
Top 16 144 2304
T 648 Bottom 64 144 9216
Top 12 144 1728
I 612 Bottom 64 36 2304
Top 4 144 576

Table 3.6: Unit Tree Wre Bundling for External Connections

U 64

Since the capped unit treegsfl’, is sinply a variation on thagll' it is very
simlar. The bandwidth into the bottomis identical tgagdheabllE. The wires out
of the top are different. Inthis case, eachunit tree will potentially be connecting to 3 or
more others. For consistency, bundles of 144 wires can be used here as well. There are
three logical directions out of the tomed a2 BBch direction has with one-fourth of
the total bandwi dth out of the top of tdugeI'This gives us 4 bundl es of 144 wires for
each of the 3 logical directions.

I 645

The bandwi dth into the bottomof theg{f unit tree is distributed as 64 pairs of
channels. This neans there are 2 X2 x 9 =36 wires in eachlogical direction. Again, the
bandwi dth out of the top of the unit tree is one logical unit. This top bandwi dth needs to
be di vided into bundl es the same size as those out of the bottommf timi fltrees
to which this will be connecting. This neans the top bandwi dth shoul d be broken down
into 4 bundl es of 144 wires each.

Thit Tree External Bundl e Surmary

Table 3.6 surmarizes the bundl es in and out of the unit trees discussedinthis section.

3.4 Geonetry

3.4.1 basic Properties

Fromthe preceding section, we see that the total nunber of unit trees needed to con-
struct eachlevel decreases by a factor of four on eachsuccessivelevel toward the tree root.
Looking at the conposition of eachunit tree, we see a common convergence from64 units
of agivensize at one stage to 16 such units at the next physical stage up the tree. The size
of these units invol vedin the convergence increases froma single stack at the first stage by
afactor of 16 for each successive stage.

35

Example Looking back at the 768Kprocessor exanpl e of Section 3. 3.3, the term nal level
is conposed of 4096143 stacks, the bottomtree level of 1924 LR acks, and the top

tree level of 2564{F stacks. The convergence at the first level is fembdchs to

aset of 16 (g stacks. At the next level, these sets gfglG{#cks formthe basic
logical unit. Sixty-Four of these units, whichis 64 . 1&g Id2dckF, converge to

16 of these sets of 16G4d stacks at the root level. These 16- 16 =56 £Facks

then formthe root structure for the fat-tree.

3.4.2 Gowh

There is no recursively repeatable, three-dinensional structure that keeps inter-stage
interconnection distances constant. This can easily be seen by noting that:

e The nunber of components needing i nterconnect grows exponentially.

o Keeping inter-stage distances constant, the three- dinensional space of candidate 1o-
cations for conmponents is bounded by cubi ¢ growth.

Thus, there is no way to prevent inter-stage del ays fromgrowi ng between successive levels
as the systemis scaledupinsize. At best, we can hope to keep the inter-stage delay growth
dovwn to a reasonable level.

Note, however, that since the number of processors growhe 64stemgrows very
rapidly. As such, we need only accommwdate a fewstages of growth in order to build the
netwrks of interesting size for the near future.

3.4.3 IbllowGibes

Anatural approachto accommwdating this 4:1 convergence inawrldlimtedto three-
dinensions, is to build hollowcubes. If we select one side as the “top” of the cube, the
four sides can accommmdate four tines the surface area of the top, and naturall y four tines
the nunber of routing stacks of a givensize. As such, the “sides” contain the converging
stacks fromone level, and the “top” contains the set of stacks at the next level up the tree
to which the “side” stacks are converging. The remnining side will remain open, free of
stacks. This last side could be used to shortenwires slightly farther, but utilizingit int
nmanner woul d decrease accessibility (see Section 3.4.5 for further discussion of this issue

T start, let us consider the first level of convergence of the fat-tree structure. W want
to connect 64 stacks of a given size to some nunber of others. Particularly, we wish to
connect: 64 leaf nodesziﬁf)— Ul g48 ’s or 64 Uy s to 4 Ubyg ’s. Fach side is nade
of 16 stacks of the leaf size. Fachsideis constructed bylaying out the 16 constituent stacks
intoa4 x4 array. The top will be of conparable size depending on the relative size of
the stacks at each fat-tree level. Figure 3.1 shows a holl ow cube configuration in which
the stacks at each stage are of equivalent size (eg this will be the case when the lower
level isidgleaf clusters and the top ggellinit trees). Figure 3.2 shows a holl owcube
configurati on where the toplevel stacks are four times the size of the lower level (eg this
woul d be case when on the first level of a full fat-tree network in which the top level was

36

Figure 3.2: HollowCube with Top and Si de Stacks of Different Sizes

constructed fromffg unit trees and the bottomnost stage was conposedgfy tini t
trees).

At the next stage of convergence, we treat the unit we just created as the base unit.
These can be arranged such that the tops of these hollowcube units are treated as the
basic unit structure for this next stage. Then we arrange a plane of 4 X4 of these for each
side. Aplane of unit trees of size equal to eachof the sides is thenused for the “top”. This

37

LA
(N5 [5/3]

. 15
% ‘ 2
2o
TN, <
OOO‘QOOQO::' LIS :
L 5

% p:d
s 0 /o 0114
4,

Figure 3.3: Second Level HollowCube Geonetry

next stage is shownin Figure 3.3 as the natural extension of Figure 3.1. This progression
can be continued in this manner alinifiun

3.4.4 (nvergence Size

Beyond the first 1evel, the size progressionis fairly straightforward. The side size wil
growby 4 at each successive stage since the size growth of 16 is accommpdated in two
di mensions.

At the first level, the size of convergence depends on the size of the leaf stacks used
conparedto the Uyg s towhichthey connect. LesgdT s will be required the smaller
the leaf stacksize. In general 64 leaf stacks g@neﬂﬂf@@ stacks. Fromthis we
can determine the side size of the initial convergence square, or “top”, and hence the side
length for the hollowcube. The side size for the cube will be the greater of the side size of
the “t op” and the side size of the “sidesy.bdéhd length of the side of adlstack

38

and [j.qs be the side length for leaf stack; these lengths will be as gi ven by Equations 3. 11
and 3.12, respectively. The length of a cube side,i sashgimgeh i n Equation 3. 13.

le = 2- 8- chip (3.11)
Nea
leaf = 2 ’3 L sepip (3.12)

Nleaf
ls - 4:l ea l
nax leafs \; T it
Nea Nea
= max | 165hp \; i2f s 85chip “% (3.13)

As describedin Section 3. 135 Wil al ways be amultiple of three. For almost all sizes
of interest; . Nwill also be a miltiple of four. As such, the conponent arrangenents
will al ways be a square nunber and the ceiling functions can be dropped. This reduces
the two argunents of the nmax function to sane expression. So Equation 3.13 reduces to

Equation 3. 14.
Nea
Iy =85 chip (\/ 3 f) (3.14)

The fact that the two lengths reduced to essentially the sane expression was predictable
since the bandwi dth out of the top of astackis one-quarter the bandwidthintoits bottom
The four side bandwi dths, whichare all fromthe top of stacks match the bandwi dth of the
bottomof the stacks on the “top”. The surface areais proportional to bandwidthin this
configurati on.

3.4.5 Ratures

Wile this holl owcube structure nmay not be the nost conpact structure, it does exhi bit
a nunber of nice properties.

It exposes the entire surfaces which are interconnected to one other. Since the band-
wi dth of the interconnectionis largely surface arealimted, this all ows maxi mumexposure
of the areas that need to be connected.

Since the structure is “holl ow” the connecti ons can be wired through the free-space in
the center. Wring throughfree-space inthis nanner, the maxi mumwire leng8his only
times the length of a side. This nmaxi muml ength increases by roughly a factor of 4 every
time we increase the nunber of processors by a factor of 64. This factor of four increasein
size is due to the factor of four growthin side size for each successive level of the hollo
cubel

! % this comtimes, it wll also be mecessary to take the size of the “sides” of each square into accout,
making the increase somvhat more than a factor of four; for the sizes of present interest, this is not areal
issue.

39

This structure is highly replicable. The progression described in Section 3.4.3 can be
continued arbitrarily. The growth in wire lengths nay, however, prove to be undesirable
for verylarge structures.

Inthis form the individual stacks are reasonably accessible for repair. Since the cubes
are hollow, it is possible to get at any indi vi dual stack wi thout noving any other stacks.
This should allowrepair and inspection without interfering with the bulk of the network
operation. There may be sone difftulty with accessibility due to the mass of wire inside
the cube, but perhaps this can be minimzed (see Section 3.5.3). The “nissing” sixth wall
of the cube can be used to allowentrance into the center of the structure for mai ntenance
and repair.

3.4.6 ptimlity

This solutionseens practical while givingreasonabl e performance for the sizes of interes
for the next decade. It is not known to be optimal for minimizing the inter-stage wiring
di stances. Finding an optimal solution that retains adequate accessibility to be of practica
interest is still an openissue.

3.5 IbllowCibe (bnstruction

3.5.1 Structure Size

Recall fromSections 3.3.1and 3.3.4that gggehlili't treeis roughlytwo feet square
and one and a half inches tall whilgeUL's roughly one foot square. Arranging these,
or similarly sized bidelta leaf clusters in4 X 4 grids and buil ding cubes as just describe
in Section 3.4, creates structures with sides betwen 4 and 8 feet long. Following this
progression one step further, we see that the side lengths growto between 16 and 32 feet.
(Qearly, netwrks of this size, incurrent technol ogy, are roomand building sizedentities
not sonmethi ng to put on your desk top.

3.5.2 Structure

To achi eve the holl owcube structure of Section3.4, it is necessary to construct “roons”
for net working. The “walls” of these “roons” will be tiledwithstacks inthe 4 X4 arrange-
ment described, as will be the “ceiling”. These stacks whichtile the walls and ceiling will
be arranged such that the tops of the wall stacks face into the room and the bottoms of
the ceiling stacks face intothe room The wall and ceiling thickness will be relatively snal
since the stacks are thin. Current projections are for the stacks t% bli akouknl.5
sorme cases, it will be appropriate for the “ceiling” structure to be sonething other than
the top or actual ceiling of the room areviewof Figure 3.3 will make this point clear. This
shoul d pose no addi ti onal problemns.

To hold these stacks in place, the wall will be a structural grid. It will be simlar to a
raised floor where the stacks are anal ogous to tiles and the wall structure is anal ogous to
the floor grid which supports the tiles. This grid provides sites for each of the stacks. It
will then be possible toslide the stacks in and out of their sites, and “l ock” theminto pl ace.

40

Due to the size and nature of this structure, the wall will al so have to provide structural
support. Adding an additional “real” wall to support the structure would prevent close
packing and require the structure to be muchlarger.

The grid structure supporting the stacks will also need conduits to allowthe fluorinert
whi ch cool s the stacks toflowtothe stacks. Similarly, conduits for power suppl y connections
will also be needed. The actual fluorinert pumps and power supplies can be placed in
adjacent rooms or on the sixth side of the cube.

3.5.3 Wring

Interconnectionsignal wiring will be routed through the free-space in the center of the
room

Wre Franes

Instead of connecting the wire bundles directly to each stack, these will be wiredto a
wiring frane. This wiring frane is a unit attached to the structural grid of the wall and
will serve as a hatch- door on each routing side of a stack. All the wires to a stack are
connected to the wiring frane. Wien the wiring frane is closed and locked i nto position,
it will be conpressed directly against the routing stack. The conpression makes electrical
contact bet ween the stack and the connecting wires establishing signal flow. The wires are
wired to the wiring franes instead of the stack to facilitate repair and ease of access to
each stack. This schene allows a stack to be changed wi thout the need to disconnect and
reconnect wires from80 or nore different sources. Wth the wiring frane, the frane can
sinply be opened to replace a stack.

The wire frame is “l ocked” into place when closed. This all ows fluorinert and power to
flowinto the stack. Wien a frane is “unlocked” to remove a stack, several things should
happen. The power to the stack shoul d be cut. The fluorinert flowto the stack shouldalso
cease, and the fluorinert in the stack should be drained. Additionally, it may be necessary
toterminate the transmssionlines insone well-behaved manner for the sake of the rest of
the network. Wien the frame is “re-1locked”, the fluorinert flowwill need to be resuned.
(Once the systemhas had tine to refill with fluorinert and get adequate power, it shoul d
be go through a reset sequence so that it comes online in a consistent nanner.

otical Cbnnections

Wiile the holl owcube provi des adequate space for the wiringrequired, the wiringwithin
the cube will still be quite formi dable. Keeping track of the large quantity of wires will be
a serious task, especially when problens occur with wiring conductivity.

An alternative that nmany be technically viable by the tine one of these networks is
actually constructed woul dbe to use optical interconnections to provide the wiring through
the cube. The cube is basically free-space so that each 1ight beamneed onl y be ained at
its appropriate receiver inorder to effect interconnect. Since 1ight beans will not interfe:
with eachother, there will be noneedto worry about the three- di nensional wiring probl em
of avoiding interference inthe center of the cube. [Bergnan 86] and [W 87] discuss early

41

work to provide large scale optical interconnect for VLSI systems. Of particular interest is
their use of a hol ographic optical elenent to direct optical beans for interconnections and
the potential for adapti ve and dynami ¢ connection reconfiguration.

Wthoptical interconnect, signal propagationtine across the connectionis less sensitive
to wiring materials. Long electrical connections will have del ay proportional to both wire
length and the permitivity of the mater)i ak @é ven by Equation 3.15 where cis the
speed of 1ight.

I €
bwire= %e\/_r (3.15)

Long optical interconnection, in contrast, cones closer to the fundanental limt posed by
the speed of 1ight as given by Equation 3. 16 [Kiam lev 89].

)

topti cal interconmnec}

(3.16)

Wthout wires occupying volune in the center of the cube, the whole interior of the
cube woul d be much more accessible for repair and nai ntenance.

(ne potential problemthat would arise with optical interconnect is keeping the ml-
lions of laser connections in proper alignment. This could be a very hard task and align-
ment m ght prove very sensitive to repair operations within the cube. Adaptive align-
ment schemes would virtually be a necessity to nmake the fine alignment of a systemof
this size tractable. Adaptive alignment would allowthe systemto self adjust itself into
proper configuration. Perhaps a mature version of the programmable optical interconnect
of [Kamilev 89] woul d provide a potential candidate for such adaptive alignnent.

If utilized, the optical interconnect would, of course, be integrated as part of the wirin
harness.

3.5.4 Mintenance

(One very important i ssue for the hollowcube i s that mai ntenance is possible, and that
it is possible while the machineis inoperation. Wtha systemof this size, and necessarily
expense, extensive downtime will be expensive. Additionally, withasystemthis large, the
nunber of failures per unit tine is necessarily proportionally larger thanin snall systens.
As afirst line of defense against these problens the systemis designed to be fault tolerant.
Wen faults do occur, however, it will be necessary to fix thembefore they accunul ate. It
is very desirable to be able performsuchrepairs without conpletely disabling the nachine.

The “unused” sixth side of the cube provi des access into the interior of the cube. (n
this face a door or hat ch can be placedto allowaccess intothe internal structure. Wth the
indi vi dual stacks laidout contiguouslyalongthe walls and ceiling, eachis readilyaccessib
wi t hout any need to di splace any other stacks.

Asingle stackcanbe removedandreplacedrel ativel yquickly. Wththe wiring attaching
tothe wire frane, the whol e operation of replacing a faulty stack can be noderately short.
The faul ty stack needs first to belocated. Oncelocated, its wiring-frane canbe “unl ocked”.
The stack can then be replaced and the wiring-frane “rel ocked” allowing the network to

42

return to normal operation. The stack which has just been removed can then be taken
el sewhere so that its faults can be i dentified and repaired.

Since there are redundant paths through the network using di flerent i ntervening stacks
for routing, it will be possible to renove an entire stack fromthe network while the rest
of the network remains in operation. The practical effect of this will be that some fraction
of the bandwidth will be “missing” or rather appear faulty; this is howit would looked
anyway if much of the routing stack was faulty. The network should be wired such as to
guarantee t hat each out put fromone 1 evel of the network canroute through several different
stacks at the next level. Wth this property and proper termination of the connections to
the removed stack, the network will sinply fail to route any connecti ons which attenpt
to traverse the stack being replaced. The originating processor will then retry the failec
connections later andeither utilize another path through the network, or the sane one after
the repl acement stack is powered up.

3.5.5 Technology Scaling

These considerations, and the sizes assuned throughout this work, are based mostly on
current, usable technology. Certainly, as interconnect technol ogy increases and packaging
sizes diminishfurther, this structure cansimlarly decreaseinsize. This decreaseinsize:
linearly translate directly to inprovenents in the interconnect speed bet ween conponents
and stages.

(One technol ogy that will perhaps be feasible by the tine systens of this size becomne of
real practical interest is the kind of packagingusedonthe CGray III [Gray 89]. Wtilizing thi
ki nd of technol ogy woul d all owthe size of the conponent structures, and thus the resul ting
structure, to be dimnished by about a factor of four tosix. Similarly, prospects of wafer
scale integrati on offer roughl y the sane size scaling advantages.

3.6 Long Wres

It should be clear fromSection 3.5.1 that long wires will be required for interconnection
between unit tree stacks. Here loywresare any wires whose length mmst be 1onger than
the longest wire withinaunit tree stack.

3.6.1 Strategy

The clock cycle on the unit tree and bidelta stacks will be optim zed to be as short as
possible gi venthe operational speed of the routing conponent and the 1ength of the l ongest
wire in the unit tree. This nmeans it will necessarily take multiple clock cycles for data tc
traverse these long wires betweenunit tree stacks. It is possible to place mmltiple data bit
on a set of wires siml taneously, but we nmust be careful that the data is kept in proper
phase with the clock in order to assure proper behaviour of the routing chip. The proper
phase can be assured in either of a couple of ways. The interconnection wire lengths can
be carefull y chosen such that their delays are al ways integer ml tiples of length of the unit
tree clock cycle. Inthis manner, the phase is preserved by guaranteeing the del ay t hrough

43

the wire interconnectionis sufftiently well behaved. Alternately, tapped delayline buffers
can be used to insure that the data is presented in the proper phase relation with the
unit tree clock. Aschene similar to [Rettberg 87] can be used for this purpose. If optical
interconnect is used (Section 3.5.3), using wires to matchinterconnect delays to the phase
of the data will not be possible. In such a case it would be necessary to use the tapped
delay line al ternati ve.

This schenme will necessarily increase the latency of a connection, but the increased
latencyis inevitable gi venthe geonetric constraints of routing. This schene does manage
to mnimze the effects of scaling on latency by only slowing down those interconnection
stages whichmst be 1 ong.

3.6.2 Requirements

The onl y additional requirenents this schene poses is on RNl, the routing conponent.

In particularly, it only requires different behavi our fromRNl when a connectionis turned
around (see Section 1.3). Currently, RNl expects to get valid data in the newdirection
of flowtwo clock cycles following the reception of a byte indicating it should turn the
connection around. The addition of a single clock cycle’s worth of wire delay causes this
turn around tine to be increased by two clock cycles; that is one additional clock cycle
is required for the turn byte to propagate across the interconnect to the next routing
component, and one additional clock cycle is required for the return data to propagate
back across the connection. Wthno extra clock cycles of wire del ay between RNI routing
components, this turn will occur in two clock cycles. Wth k clock cycles of wire delay
between a pair of successive routing stages, the turn will occur in 2(k+1) clock cycles.
In order for the turn sequence to function properly, the routing conponent at each end of
such a long wire must be capable of dealing with the extra cycles. RNl will need to know
the nunber of delay cycles to expect and be able to deal with themaccordingly.

The delay size will need to be configurable for ever input and output port on the
routing conponent. Wth 8 input ports and 8 output ports, this makes for a total of
16 ports that need to be configured on a single RNl conponent. It is necessary to be
able to configure each input and output port separately as established in Section 2.3 to
allowinput and output ports fromthe same component to connect to interconnections of
di fferi ng del ay lengths. Additionally, to allowfor the large range of del ay val ues that mst
be acconmpdated for reasonabl y1arge net woirhes del ay l ength configurationwill require
mltiple bits to specifythe delay of a single input or output port. Wiile this configuration
infornmation coul d be provided to the chip by configuration pins, it shoul d be obvious that
this would require the addition of quite alarge nunber of signal pins. RNl already has
tight constraints on the nunber of pins that its package will support. Thus, an alternate
neans nust be used to configure an RNl routing conponent with this infornation.

One such alternativeis to use UVprogranmable cells in the routing chipto store this
configuration data. This would require the addition of only a fewsignal pins to facilitate
the programming of the UV configuration cells. Cells would be progranmed by initiat-
ing a programsequence and shifting the configuration data into the UV cells while the

ZSee Section 4.1 for mrojected vire and del ay cycle lengths in systern of various sizes.

44

conponent is exposedto UV1light. [asser 85] describes a techni que for constructing UV
programmabl e cells of this nature whichis applicable to the one m cron CMB process in
which RNl is fabricated. This schene has the drawback that a conponent cannot sinply
be repl aced wi th another one off the shelf. The replacement conponent will first need to
be configured before it can serve as a repl acenent.

Asinple progranming board can easily be built to programthe configuration into a
conponent as necessary.

Wth the additional configurationinformationprovidedto RNL, it mst al so be updated
to deal appropriately with the configured del ays of various lengths. This will required
updating the finite state machine logic in the routing conponent to deal with varying
delay lengths. This will be a minor change, but will necessitate adding additional state
information to the FSMs. During the additional delay cycles, sone reasonable data or
pattern shoul d be sent to the conponent not directly connected to the long wire so that
the systemis guaranteed to be well behaved. After the status and checksumbytes are sent
to this conmponent, the conponent on what was originallythe sendingside of thelong wires,
will needto send this additional data. This additional data could sinply be arepetition of
the status and checksumbytes.

3.7 Processors

Processing el ements can be attachedina straightforwardfashionto this network config-
uredin the geonetry described. Conceptually, eachnetwrk terminal point will consist of a
processor, nenory, and a cache- controller (See Figure 1.1). Agiven nunber of processors
will be associated with eachleaf stack, whether a bideltaleaf chagptemidrta .

As previously noted, each leaf stack is rather thin. The processors and their associated
components for a given leaf can also be arranged in a stack structure. The sides of this
stack structure will be nade the sane size as the relevant routing stack. The processor
stack can then be layered until it accommodates all the necessary conponents. Since the
nunber of processors associated with a leaf routing stackis generally about the sane as
the nunber of routing conponents in the leaf stack, the processor stack structure will be
of a thickness whichis the sane order of nagni tude as that of the leaf routing stack. This
processor stack can then be abutted directly to the l1eaf stack or even directly connected,
making it part of the sane physical stack. Since the stack structure tends to keep vertical
di stances short, this all ows the processors to be within reasonable proximty of the routing
network. Also since the stacks are thin, this will accommdate space for the processors by
only nmaking the “walls” of the hollowcube (Sections 3.4 and 3.5) slightly thicker. This
addi tional thickness shoul dnot be significant enough to change the overall size of the hollow
cube structure appreciably.

3.8 PRouting Ghnputation
The arrangenent of components and structures described so far essentially determnine

the composition of a routing sequence for this network. In this section, this routing is
sumarized incl uding a schene for the proper generati on of the routing sequence.

45

3.8.1 DHstinguishing a Processor

Each leaf processor needs to have a uni que specification so that it can be referenced.
In afat-tree structure, the logical specification for a processor is its “address” or locat
relative tothe root of the fat-tree. Inthe case of afull fat-tree, this will sinply be the p
down the fat-tree to the processor. In a hybridfat-tree with bidelta clusters as leaves of
the fat-tree network rather than i ndivi dual processors, this address will be the path from
the root and the 1 ocation of the processor inthe leaf cluster. Thus, a processor is specifiec
as, L =CoP, where Cis the path fromthe fat-tree root to the leaf, and Pis the location
of the processor within the bidelta cluster. Recall fromSection 3.1.1 that routing out of
the bidelta leaf cluster stackis acconplished when the high tw bits of the initial routing
byte are 1’s; as such, the high two bits of a processor specification will never be 11. It is
easiest for routing if Cis exactly the routing sequence necessary to get fromthe root to
the desired leaf. Recall fromSection 3.3.5 that the lowtwo bits of each byte in a down
routing sequence through unit trees is unusedsince only sixbits of routingis perforned on
the down routing path through eachunit tree. The val ue of these unusedbits is irrel evant,
but for clarity, they shoul d probably be considered zero (0).

3.8.2 Pouting

The routing sequence will be the series of bytes necessary to open a connection to a
desireddestination. Ingeneral this consists of three parts, the uproutingsequence, B the
down routing sequence, H), and the routing withinthe bidelta cluster, & Of course, full
fat-trees will not have the K'conponent. Fach of the components of the routing sequence
will occupy an integral nunber of bytes; a conponent will be padded to byte length when
necessary. This keeps the portions of the routing sequence conceptually separated and is
consistent with the previous specifications for the placenent of swallows (Sections 3.3.5
and 3.1.2). The separation of the conponents of the routing sequence into their own bytes
all ows the routing bytes to be generated wi thout any needto shift bits around wi thin bytes.
Aconplete routing sequence, Bis sinply Ro Hb» K

3.8.3 Gnputing the Routing Sequence

Wth this configuration, we can conpute the necessary routing sequence Hwith noder-
ate ease. Unlike the bidelta case, it is necessary to knowthe source locationin the network
inorder to determne an optimal routing sequence; this additional informationis necessary
inorder toexploitlocalityinthe fat-tree structalfqo Rebbelt he source processor
and Ly =C 30 B be the destination proce? dbe. conputation of the routing sequence
then proceeds as foll ows:

1. I=Ci®Cs; that is Iis the bit-wise logical exclusivendiCof C
2. M=a bit vector with 0’s for all leading zero bytes and 1’s for all bytes fromthe

leading non-zero byte to the end; that is M s a vector which marks all significant
bytes.

3Tis degererates to the specific case of full fat trees vhen P 1 = P> =e¢ (the empty string).

46

C_1N<7:0> 8 8
8 x8 IN<7:0>
C_2N<7:0>

Figure 3.4: Byte-wide xor Slice.

3. j=location of highest-order non-zero bit in M1 based).

10 if bit 6 or 7Tis highest non-zero bit in high non-zero byte of I
4, O=< 01 if bit 4 or 5is highest non-zero bit in high non-zero byte of I
00 if bit 2 or 3is highest non-zero bit in high non-zero byte of I

5. B=(11) 70 (o) o ((ﬂﬁﬁ)m)d‘l); the trailing 0’s sinply suffte to pad R'to an
integral byte quantity.

6. HW=lowjbytes of C5. This will, infact, include unnecessary routing i nfornation.
However, this quantity needs to be padded to anintegral nunber of bytes in any case.
Wen the bit-rotations are wired appropriately in the crossover routing paths, this
allows HXo be generated wi th mi ninal cal cul ations.

7. K=P ,

Note that when Meval uates to all zero, it is the case £lhs &6ild Fand Hare
unnecessary; inthis case, Bfull specifies the routing to the final destination since the tw
processors are inthe same leaf cluster.

3.8.4 Inplenentation of Conputation

It is enlightening to consider possible structures to efftiently inplenent the conpu-
tation just described. In order to talk about individual bytes and bits, let us adopt the
followi ng notation:

e B<n>referstothe thbit of B, withthe lowest bit being bit zero.
o BMefers tothe Nh byte of B, with the lowest bit being bit zero.
o BN<n; thus refers tothe th bit of the Nh byte of B.

The internedi ate quantity I, being an xor, is designed to be cheap to cal cul ate.

The value Mrequires only the knowl edge of which byte is the first to contain non-
zero bits. This allows all the bits in each byte of Ito be or’ed together for conparison.
The result is a small bit vector. Since this quantity is then a small nunber of bits, it is
possible to let the first non-zero bit stiml ate the others so that a vector results with al.
the significant bytes marked witha 1 bit. Figure 3.5 shows this conputation for a single
bitin M

47

M<n+1> [o

2
— = e
5
6
I
IN<7:0>
Figure 3.5: (alculation of a Single Bit of M
7
5
6 :] ON<2>
7 o]
IN<7:0>

Figure 3.6: (alculation of a Single Bit of O

Both of the conputation of Jand Mcan easily be done either conpletely in parallel,
all of and C; at once, or in a byte serial manner as is appropriate to a particul ar
inpl enent ation.

In both cases the conputation of Ocan be cal cul ated on each byte in Isinul taneously
and in parallel with the conputation of M The val ue of Mwill determine which conpu-
tation of Oshould be used. The conputation of Ocan proceedsimlarlyto AMbnly with a
granul arity of pairs of bits instead of bytes. Infact it is necessary tolook only at the hi
two pairs of bits in order to determine O In this case, instead of stimulating the lower
bit(s) in the bit vector, we inhibit so that QN2 : 1 >i s the correct value for use in the
construction of Bl See Figure 3.6 for an exanple of the calculationof O

W can assume for the moment that B/will be a single byte quaitiyan be
comput ed fromMand Oin a coupl e of gate del ays as shownin Figure 3. 7.

Since bytes are sent byte serial into the network, no conmputationis really done for B
M dentifies which byte of;@o start with whenit is tine to start sending Hinto the
network. Similarly, no conputationis done for K

Fromthese sinple constructs, we can see that the conputati on of a routing sequence is
an inexpensive operation and can be done in a reasonabl y small amount of tinme. A quick
simml ation of this inplenentationina 1 mcron CM®S proakssl ates ®and Mn
less than 6ns.

“Pis vill be the case witil more than about 50 million processors are comected in this marmer; this
schem easily gereralizes to the mltiple byte case.
Sthe sam processes in vhich RN is falricated

48

1> 7 wets M<2> M2 s M<3>
M<2> M<3

M<1 M<3>
M<
>
M<g> M<0>| 01<2> M<03 Ol<1> M<1>| 02<2> M<13 O2<1> M<2>|03<2> M<2] 03<1>

-M<1>

M<0>

@ 0 @
% . \ %
- -
g &) RU<T:0>

Figure 3.7: (alculation of WfromMand O

3.8.5 Example

(Consider the fat-tree built wtheBves andtw level s o4 unit trees described
in Section 3.3.3. This gives afat-tree with 786,432 processors; Cwill be 2 bytes long and
Pvwill be one byte long. Let02(0234 and L 5 =0a84267.

1.

2.

6.
7.

I=0x(C02 ¢ 0xD842 =0x1440

M=OHI

j=2

a =10; @ =01; since M=0#3, @is the correct value for O
®=(11) 20 (01) o ((0F11110100 =0aF4

B=02842

=067

Thus the correct routing sequence is Bo Hb K'=044B4267. This will open a

connection out of the bidelta stack, through the first stage unit tree, andinto level 2 of the
next unit tree. At that point, it has crossed over to the down path so the first byte, Ris
swallowed. It routes down through that stack with the rel evant portion of the next byte.
That byte is then swallowed and the next byte, 042, is used to route back through the
appropriate unit tree inthe first stage. This final Hbyte is swall owed and the 0467 byte

is used to route through the bidelta leaf cluster to the final destination.

49

4., Analysis

Chapters 2 and 3 described the construction of Transit fat-tree networks. This chapter
quantifies sone characteristics of the resulting networks. Considering fat-tree networks
with both Ugyy leaves and bidelta clusters leaves, a progression of networks fromfull
bidelta networks to full fat-trees can be conpared and anal yzed. Section 4.1 describes the
distributionof wires bylengthinhollowcube configurations. Section4.2extends the bidelta
netwrk structure beyond the single stack size for the purpose of conparisons. Section 4.3
surmmarizes network size freedoms for the various network configurations. It then uses size
as a paraneter to quantify hardware requirenents and network l atencies. Section 4.4 uses
the devel opment of the previous sections to provided sone concrete network exanpl es for
comparison. Finally, Section 4.5 uses sinpl e probabilistic nodels to provide basic routing
statistics for the networks of Section 4.4.

4.1 Wre Lengths

Wre lengths are a significant concernin building large networks. As the systemgrows,
the nunber of clock cycles required toroute betweenunit trees becomes the domi nant com
ponent of networklatency. The holl owcube structure (Section 3.4) keeps wires moderately
short consi dering the nagnitude of the wire convergence that mmst occur. This section
quantifies the distribution of wires by lengthin hollowcube geonetries.

4.1.1 Wrst CGase

Wtilizing free-space wiring in the hollow cube, the longest wires will be those that
traverse the cube’s diagonal. These wires wBltiles the length of the cube side
long. The length of the cube side depends on the size of convergence for the cube. As
seenin Section 3.4.4, for standard hybrid fat-trees, the sides will be four bideltaleaf st.
side lengths 1ong at the first convergence and increase by a factor of four at each successive
stage. Full fat-trees similarlyprogress fromsides of length egmalsi dd bandfhs
at the first convergence and progress by a factor of four at successive stages. The length
of the side of a stackis determ ned by the naxi mumnunber of routing conponents on a
single routing stage.

4.1.2 DHstribution of Lengths

nlyasmall fractionof the total wires withinahollowcube are of the worst case length.
Perhaps a nore interesting netricis the distribution of wires by their length.

For sinplicity, let us nornmalize wire lengths tothe length of the stacksides. This allows
the derived distributions to be applied generally regardless of stack size. The normnalizin,

50

length, er, will be the 1ength of a side of the conponent stacks at the termnal level of
the fat-tree, WwWll denote the nunmber of stacks al ong the side of cube.

Eachinterconnection withinthe hollowcube connects froma “side” to the “top” of the
cube (See Figures 3.1 and 3.2). Connectionendpoints are evenly distributed across the two
di rensions conposing each the sides of the hollowcube; this results since eachstackin the
sides has the same distribution of interconnection to the top. FEach of the stacks on the
hollowcube sides will connect to endpoints which are evenly distributed across the surface
of the top of the cube. Using this uniformity, we can easily characterize the wire length
di stributions.

W canstart by deconposing the distributioninto separate dimensional conponents, z
y, and z. Since these distributions are independent, we can then formthe total distribution
fromthe product of the di mensional distributions. Tbexpress the dimensional distributions,
a couple of sinple probability distribution are needed.

Thi formUni dinensional Dstribution

(ne case of interest occurs when the distribution is conpletely uniformacross the
possible space of lengths. For such a case, we have a uniformdistribution. Thus the
distributionfunctionis sinply that of Equation 4. 1.

1

N 1<$0<N3
s - - 4.1

otherwise ()

Thi fromIl fference D stribution

The other case of interest occurs when the distributionis that of the difference between
two val ues picked randoml y fromthe same uniformdistribution. In this case, we have a
distributi o m) as inEquation4.1, and we want the distributionfor the gurantfity |z
where @ and z; are described bg.pThis distributionis described by Equation 4. 2.

NLS o =0 SNS
Pdz() = ﬂ%l 0 <z o <N , (4.2)
0 otherwise

IbllowGibe Dstribution

Wth the sinple distributions just described, the total distribution for wire lengths i1
a hollow cube can be derived. The distance the wire nust traverse in the vertical (2
dinension will be described,bgipmce all interconnections connect fromthe top to sone
di stance down the side of the cube. Similarly, the distance the wire nust traverse “into”
the cube, normal to the surface of the side, will be determinedsolely by the location of the
destination on the top surface. This dinensi on, which for the current devel opnent will be
called }can also be described hy n the rennining dinension, which will be referred

! NB Inanabsolute fram of reference, this dimrsion vould be the z dirarsionfor two faces and the
y dinarsion for the tw faces adjacent to those.

51

10 15 20 25

Figure 4.1: Distribution of Nornmalized Wre Lengths=floan& 16, Respectively.

N, | E()
4 3.4
16 | 13.9

Table 4.1: Expected Wre Lengths Normalized to Stack,Si.ge, !

to as ¢ the distance traversed by the wire depends on the relati ve pl acement of both the
source and destination of the wire and thus will be descgj.bed by p

Wth this understanding of the dinensional distance distributions, we can describe the
wire length distribution by Equation 4. 3.

max (! Jmax(!) max(!)
(o) =D, Y D [pe(?: HY &a(D wlbdy?)] (4.3)

z=0 y=0 de=0
nax(1) = [V3N,] (4.4)

The functionuis sinply used to determne whether or not to include the probability for
a given (dyy 2) conbinationin the sumandis described by Equation 4. 5.

= [ETT »

0 otherwise

wl(bacﬁ;:%z) = {

The distribution,ip easily conputed for a given valug afid\gi ves the resul ting

lengths inunits gf.d. Figure 4.1 shows the distributi gnfoof =4 and 16, the

first two side lengths for holl owcubes. The expected, or average, wire l engths deri ved from
this distribution are shownin Table 4.1.

4.1.3 DHOstribution by Dklay

(Once we have the normalized distributions, it is easy to convert these intodelay distri-
butions for a particular leaf stagk,sizdhik, of course, is the inportant performance
netric.

52

The previous distributigngagm be converted into delay distribution when the clock
cycle and stack size are gi ven. Wth cl ock.camd dy;otz, the nunber of delay cycles
between stages is related to the wire del ay by Equations 4. 6.

negted b) = | 28] (4.6)

Using an appropriate nodel for the propagation tine of a signal across a givenlength of
wire, we can relate the nunber of delay cycles directly to the normalizedgwire length !
Equation 4.7 gives this relation assuming the signal is free to propagate at the speed of
light, ¢ as would be the case for optical interconnect.

lo dae
tdelay(b) :0734]6 (47)

C

Wth these relations, the wire length di stribution can be convertedinto a distribution for
the nunber of delay cycles between stages is conputed as FEquation 4. 8.

max(1)

Pa(m) = > o) - w0, b)) (4.8)

Once againa selection functigumyp,dp), is used to select the appropriate lengths which
correspond to a gi ven del ay.

0 otherwise

wn(ma lO) :{ L o = [ncyCZES(b)—| (49)

Current projections makext10ns (Section 1.3). Recall that for 8ar ~ 1’
(Section 3.3.4). Equation 3.12 gives a rough approxination of leaf stack size for bidelta
clusters. Using these values, several distributions for a hybrid and full fat-tree hollowcu
structure are shown in the foll owing figures. Figure 4.2 is the delay cycle distributionin
a hybrid fat-tree holl owcube usigng dhves. Figure 4.3 describes the distribution for
both hybrid fat-trees usispg dhves and full fat-trees usimg [Baves. Figure 4.4
corresponds to the distribution for a hybrid fat-tree holl owgubeawksh HBhese

figures all parallel Figure 4.1, but the distributions here are givenintermns of cycles of dela
Table 4.2 gives the expected nunber of delay cycles for these configurations.

4.2 Ilarge Hdelta Netwvorks

For conparison, it is necessaryto consider bideltanetworks scaledtosizes conmparable to
the fat-tree net works under consideration. However, since we cannot sinplybuildarbitrarily
large stacks (Section1.4), large bidelta networks must be deconposed into multiple stack
structures.

53

Figure 4.4: Distribution of Delay Cycl ¢s=fbonnlN 16, respectively lsinglBaves.

‘ Leaf Stack Type ‘ Lt ack ‘ N, ‘ En ‘

Big2 2 4 1.0
16 | 3.2
Bys 1 4 1.0
16 | 1.8
By 6" 4 1.0
16 | 1.0

Table 4. 2: Expected Nunber

54

of Delay Cycles

4.2.1 Hdelta Stacks

Perhaps, the ideal size for the constituent stacks is four routing stages. Wth four
stages of routing, the stack distinguishes 256 1ogical destination. Thus eachstack perform
a byte’s worth of routing; a freshrouting byte can be used to route through each stack.

The final size of sucha configurationwill then depend on t he nunber of outputs provi ded
in each of the logical directions. The snallest configuration woul d provi de t wo out puts per
logical direction. In general, such a configuration would only be desirable as the final
routing stack conposing alarge bidelta network. Inorder to provide proper fault tolerance
with two outputs in each logical direction, the final stage of the network mmst utilize
the alternate RNL configurati on where each crossbar provides a single output per logical
direction (Section 1.5). Since this routing stage’s performance is inferior to that of tI
other stages, in order to achieve optimal routing performance only the final routing stack
shoul d concentrate the nunber of outputs in eachdirection to two.

Beinglimtedto at most 64 conponents ineachrouting stage (Section3.3.1), we are not
free to consider bidelta stacks that both distinguish 256 diflerent destinati ons and provide
more than t wo out puts ineachlogical direction. Ingeneral if astack distinguishes nlogical
destinations and has [outputs ineachl ogical destimatitamg Nonponents will nake
up each routing stage as gi ven by Equation 4.10. This relation follows trivially fromthe
fact that each RNl conponent has ei ght outputs.

N, = m ! (4.10)
8
As such, we are only free to consider stacks in whichn [<512. For clarity bidelta stacks
with parameters nand I will be referencedpas Hromthis discussion, we can concl ude
that Bsgg , B4z , and Bgy stacks should be used only as the final stage of stacks in
large bidel ta netwrks. The largest stack reasonable for use in forming the earlier network
stages is the,8 .

4.2.2 Arranging Hdelta Stacks

The bidelta stacks are then treated as the standard routing units. They are arranged
into stages inorder to buildlarger bidelta networks. Wthin the bidelta stacks, the clock
cycle can be as fast as a single stack constrains it to be. Additional stage delays will be
incurred between stack stages as is the case with fat-trees because the wires will be long.
However, this extra delay is only incurred between stack stages and at the final recycle
path. The long wires can be dealt with as describedin Section3.6. This configurationwill
gi ve better performance than uniformy slowing the clock rate down everywhere in order
to accommndate the propagation del ay across the 1 ong wire paths.

For replication, it will be necessary to place swallows between the stages of routing
stacks. Inthis manner, a separate byte is used to route through each bidelta stack.

Since the nunber of inter-stage del ays does not affect the total clockrate of the system
it makes sense to inter-wire the stacks in an indirect binary cube network style. This
allows the wires at the first fewstages to be relatively short. Successivelylonger wires ar
used between successive stages of routing stacks. This structure can be laid out in two

55

-
1.

A

Figure 4.5: Indirect Binary Cube Topol ogy

di mensions so that the critical geonetric paraneter at each stage is the square root of the
nunber of stacks invol ved in the convergence; that is the subsets of the routing pl ane that
will be interconnecting between successive levels will be squares of stacks. At the final
stage, the convergence will be one big square; at earlier stages, there will be many smaller
squares of convergence. Figure 4.5 shows the interconnectiontopol ogy of anindirect binary
cube using binary swi tchi ng conponents. Using bideltastacks for switching, eachstackwill
switchin 16, 64, or 256 directions, and the inter-stage wiring will occur in two di nensi ons
rather than one.

4.2.3 Wre Lengths

W can apply the anal ysis of Section 4.1 to anal yze the distribution of wires by length
in this schene as well. Here we have a sequence of routing planes with the interconnect
between pl anes. In this configuration, the wires are distributed with various displacenents
zand ydirection and an essentially constant displ acenent bet ween pl anes. Assuming the
inter-plane displacenent is negligible, we can get afeel for the distribution of wire l engtl

Here the distribution of displacenents necessary in the zand ydirections are, to a
first- order approximation, uniformdifference distributions as described in Section 4.1.2.
Fromthis, we can easily derive the distributionof wirelengbhs.hdéen¥th of the
side of the square of convergence at the stage of interesis agaimlVzed to stack
size.;pill again be our distribution functwohl he the selection function as before.
Equations 4.11 through 4. 13 summmarize these relations.

max(l) max(1)

p(b) = D> Y [Pa(d) m(d) - whdd)] (4.11)

dy=0 dz=0

max() = [V2N,| (4.12)
b= [VET1d (4.13)

0 otherwise

wl(bacb;d/) = {

56

Figure 4.6: Distribution of Nornmalized Wre Lengths=Boan& 64, Respectively.

Figure 4.7: Distribution of Delay Cycles f£8ralNd 64, Respectively usihg 2’
St acks.

Figure 4.6 shows the distributions for nornalizedsidelengths of 8 and 64. If alarge bidelta
netwrk were built with three stack stages, two bui bief mmd Bhe last fromddy ,

N; woul d be 8 between the first and second stage and 64 between the second and third.
Normalized average wire lengths are 4.6 and 33.,94®noM 64, respectively.

4.2.4 Delay Greles

The nunber of delay cycles required can be determined exactly as described in Sec-
tion4.1.3. Mking the sane assunptions as in Section4.1.3, Figure 4. 7 parallels Figure 4.6
in terms of delay cycle units. The side length for bnigh 4hd Brsge stacks is two
feet. For this configuration, the average nunber of del ay cycles for i,s=I8 dnwhen NV
6.9 when Iy =64.

4.3 DNetwvork Characterizations

This sectionsunmarizes a fewquantizations for various network characteristics param
eterized by network size. Quantizations are provided for full fat-tree, hybrid fat-tree, ar
bidelta networks. This allows sone comparison across the range of netwrks between full
fat-tree and full bidelta networks. For each network, characterizations are provided for
required hardware and net work l atency.

Table 4. 3 surmarizes nmost of the variables usedin the remainder of this section.

57

Np nunber of processors

N, nunber of routing conponents
Nieas | nunber of processors supported by a leaf stack
Neyo nunber of routing conponents ina bideltaleaf stack

Np;delta | nunber of bideltaleaf clusters

Ny nunber of I'g4e unit trees

Ntwst | nunmber of gqp unit trees

7 a paraneter describing selection freedom
irepresents the nunber of stack stages in a network
imust be a positive integer

J a paraneter describing selection freedom
jrepresents the nunber of routing stages in a bidelfta stack

h total nunber of routing stages in a bidelta network

Schip | length of a side of the routing chip

te cl ock period

lwire length of 1ongest wire

tuire wire del ay
c speed of 1ight
N(m,o) | stage delays bet ween stage m and o

Lopen, | latency opening connection fromsource to destinatjon

Leomect | latency of an open connection fromsource to destilqati on

N.B. For the following, latency is used to refer to the period of tine between the tine
the nessage enters the network and the tine the nessage arrives at the destination. The
actual latency of a network operation will be a function of this netric and depending
on the end to end protocol used. Connection latempgy ,Idiffers fromthe latency

openi ng a connectiongf due to the need to change routing bytes during the opening of

a connection.

Table 4.3: Variable Summary

4.3.1 Fill Fat- Ree

Recall fromSection 3.3.4 that full fat-tree networks are built entirely fromunit trees
Full fat-trees have processors as the ultimate l eaves of the fat-tree structure.
Size

Full fat-tree networks are built wath Uit trees formng the bottomwst stage
of the fat-tree andg{§ unit trees forming the remninder of the tree structure. Equa-
tion 4.14 characterizes the sizes of constructible full fat-trees.

N, =64° (4.14)

58

Afull fat-tree network of a givensize will have 3itree levels nade fromié stages of unit
trees. The fat-tree will be conposed of 7 up routing stages and 37 down routing stages.

Hirdvare Requirenent s

Each II' g4 unit tree requires 208 RNl routing conponents (Section 3.3.1) while each
Il 642 Tequires 52 RNl components (Section 3.3.4). Equations 4.15 and 4.15 respectively
describe the required nunber ofy$Tand 'g4¢ unit trees necessary to build full fat-
trees of sizg (Bection 3.3.4).

N,
Niwit = —2 4.15
furdt 64 ()
WL/
Nyt = (1-41%) 2 4.16
() 768 ()
Conbining these requirenents, we find the total nunber of routing conmponents required
as expressed in Equation 4. 17.

. 1 — 4(14)
N, =(52) <%> +(208)(1 — 4(1‘*)) <%> = (%6 + %) 13N, (4.17)

Latency

As described in Section 3.6 there will be sone nunber of stage delays between stack
stages. Let(,p, be the nunber of clock cycles of delay between stack stage mand stage
a Between any pair of stages, the valueg, pfiymnd ngpy r) will be distributed as
describedin Section4.1. Since thereis adistributionof possiplgMabateeker n
the sanme stack stages, no single value describes this quantity. The reverse stage delays,
N(k4,k) W1l be distributed simlarly; however, a paghj ¢gplneredinot be related to
the corresponding,ny) utilized as part of the same interconnection.

To route through a gi venlevel of the full fat-tree, a connection must route through one
up routing level for each 3 levels up the tree. The connection will then route through all
the down levels. Between stack stages on both the up and down path, the route will suffer
the additional stage delays due tothe long wires betweenstages. The latency throughlevel
kof tree is given by Equation 4. 18.

k (471 i3
Lcomect(k) = ’75-‘ +k+ Z n(j,j-l-l)—l_ Z (4, 35) Xt (4'18)
7= 7=

In opening a connection through level k§ an additional cycle of delay is incurred between
stacks on the down route in order to swallowthe leading routing byte. Similarly, at least
one up routing byte will need to be dropped in crossing over to the down routing path;
every fourth stage betweenunit trees requires an additional stage of delay for the leading

59

routing byte to be dropped. The latency to open a connectionthroughlevel kof the fat-tree
is summrized in Equation 4. 19.

b = D+ ([5] 1) +[E]) e

3 k ¥+ (412
= [ﬁw +2 [ﬂ th=14 > Gt D nGag)| Xte (4.19)
7= 7=

The best-case routing occurs when the nost locality canbe exploited. This occurs when
a processor connects toits nearest neighbor. Inthis case, the route occurs through level
one of the fat-tree. Thus Equations 4. 20 and 4. 21 describe the best-case performance for a
full fat-tree.
Leormect = 2t. (420)
Lopen = 3t (4.21)
In the worst-case, the only conmon ancestor of the source and destination processors
is the tree root. Inthis case, the connection must travel all istages up to the root of the

fat-tree and then all 3istages back down to the destinationleaf. Equations 4.22 and 4. 23
give the worst-case latencies for the full fat-tree.

73 73
Leormeet = (4’”r > (i)t Z”(mj)) X te (4.22)

. 73 71
1 .
Lopen = (H +5i=1+ > ng it Zn(jﬂ,j)) X e (4.23)

4.3.2 Hbrid EBxt- Ree

Hybrid fat-trees are built with bidelta leaf clusters fornming the 1eaves of the fat-tre
structure.

Size

The leaf stage of the networkis built with the bidelta leaf clusters described in Sec-
tion 3.1. These are interconnected with a fat-tree structure constryesedritomlTl
trees. Fach leaf cluster is built fromjrouting stages and;syppootesdbrs as
described by Equation 4. 24.
Nieag =3+ 473 (4.24)
For technical reasons describedin Section3.1.3, 1 <j< 4. Using :— 1 stages of I
unit trees, the total nunber of processors supportedis thus gi ven by Equation 4. 25.

Np =N 64 =3. 459 . ¢l (4.25)

The fat-tree structure provides 1 — 1 up routing stages and 3(¢i— 1) tree levels and hence
down routing stages.

60

Hirdvare Requirenent s

Fachleaf is constructed frgmp NNl routing conponents as described by Equa-
tion 4. 26.

N,

Cleaf

=40 1(j-1)3. @ =(3j+1)40? (4.26)

The total number of bidelta leaf cluster required is described by Equation 4.27 (Sec-
tion3.3.3).

N, .
Noi gel ta= szf =6402) (4.27)

The nunber of unit trees required for a hybrid fat-tree withi— 1 unit tree stages is given
by Equation 4. 28 (Section 3. 3. 3).

Nt = <%> (1-409) (4.28)

Each I g4 unit tree is constructed from208 RNI conponents (Section 3.3.1). Consoli-
dating these relations, we get Equation 4.29 which described the total nunber of routing
conponents in a hybridfat-tree.

N,

. . N .
; (G2 . g4 P\ (1 _ 4014
(3j+1)4 64%) +208 <576> (1-409)

= [(3j+1)46? 4 <g> 4G (1 - 4(14))] 64012 (4.29)

Latency

The best-case interconnect in the hybrid fat-tree occurs when a connection is nade
within the bideltaleaf cluster. Wien this level of locality can be exploited, the latency f
a connectionis given by Equation 4. 30.

Lconnect =L open :] X1, (430)

Opening and continuing a connection are identical inthis case because jis constrainedto
not exceed four due to current technologylimitations.

Wen commni cations do need to occur between processors in different leaf clusters,
connections mist be made through the fat-tree. As connections are routed between stack
stages, delay cycles will be incurred as described for the full fat-tree (Section 4.3.1).
routing through sone stage of the fat-tree, the connection first requires one cycle toroute
intothe fat-tree net work. The connection traverses one up routing stage every three stages
up the tree it must go. Once the connection reaches the root of the smallest common
sub-tree between the source and destination processor, the connectionmst then be routed
down all the down routing stages to the desired bidelta leaf stack. Once the connection
finally enters the destinationleaf stack, there will be an additional jstages of routing withi
the leaf stack. Equation4.31 surmmarizes the latency of a connection throughlevel kof the

61

fat-tree netwrk.
k (41 (4]
Leomect (B) = | 1 +j+k+ [ﬂ + D0)+ D A, | X e (4.31)
el

ml

Wien opening a connection, additional delay cycles are required due to the need to change
routing bytes. The hybrid fat-tree requires the additional cycles for swallowing bytes on
the up routing path, down routing path, and in the crossovers as described for full fat-
trees (Section4.3.1). Since two bits of routing are required to route into the fat-tree tk
swallowon the up path will occur one stack stage earlier inthis configurati on than in the
full fat-tree configurati on. The hybrid fat-tree will require an additional change of routin
bytes when t he connection enters the destinationleaf cluster. Equation 4. 32 conbines these
additional delays to describe the latency for opening a connection through level kof the
fat-tree portion of a hybridfat-tree.

Lopen (B =L comeet (H) + ([g} T ["T—;’D X t,

ki3 k [$1 (41
Lopen(’@ =11 —I—]—I—k—l— ’VT-‘ +2 ’75-‘ + Z T mymfl) + Z (1, m) X T, (432)
ml ml

Wrst- case connections inthe hybridfat-tree occur wheninterconnecti onnust be nade
through the top level of the top stage of unit trees. Here the connectionis made into the
fat-tree, up the s—1 up routing stages tothe root, downthe 3(i—1) stages toaleaf cluster,
then across the jstages of the leaf cluster to the destinati on processor. Equations 4.33 and
4.34 describe the latency for this worst-case interconnection.

13 13
Leornect = (1 +4(i_ 1) +i+ Z T mmi1) + Z (i, m)) X te (4'33)
ml ml
i 13 13
Lopen = (1 +i+5(i—1) + [ﬂ T M) T Y Nman) X te (4.34)
ml ml

4.3.3 Hdelta Netvork

Section4.2 describedthe constructionof large bideltanetworks. This is a generalizatior
of the Transit bidelta network tomltiple stack sizes.
Size

The constituent stack stages are eachconstructed with jl ayers of routing. istackstages
can then be conbined to construct the large bidelta network. The 7s for each stage in a
singl e network need not be identical across all stack stages. Thus the nunber of processors
in such a network is described by Equation 4. 35.

N,=47. B. .14 (4.35)

62

Recall fromSection 4.2.1 that size and performance constraints linit jas given by Rel a-
tions 4.36 and 4. 37.
for ma: 1 <j5,,<3 (4.36)

2<j <4 (4.37)

The total nunber of routing stages inthis networkis summarized in Equation 4. 38.
h=j 1+j2+ - - +Flog(N,) (4.38)

Hirdvare Requirenent s

The nunber of routing conponents needed can be determ ned by 1 ooking at the entire
network wi thout a need to do individual accounting at each stack stage. Considering the
bandwi dth in and out of the beginning and end of the network, Equation 4.39 gives the
nunber of routing conponents needed at each routing stage.

Np
Neyee = 1 (4.39)
Conbining this with Equation 4. 38, the total nunber of RNl routi ng conponents required
for the bidelta network will be determined by Equation 4. 40.

N
N. = hx -2
o
Nylog(M)
Npl o8l) 4.4
1 (4.40)

4.3.4 Ilatency

Delay stages are incurred between successive stack stages as previously described. Sec-
tion4.2.3 describes the distribution characteristics the extra delay cycles required betwe
stack stages. Since the set of source processors is the sane as the destination set, con-
nections nust loop- back fromthe end of the bidelta network to the beginning. Since this
requires onlytranslationinthe vertical stack dinension, we will assune this l oop- back can
occur in a single clock cyglg).t Note that since routing only occurs in one direction
through the bidelta network, unlike the tree structures, the delays between stack stages is
only incurred once in this structure.

Wth the exception of the nunber of delay cycles incurred between stages due to long
wires, all paths through the bidelta netwrk are the same length. FEach path traverses
the hrouting stages described above. Inter-stage delayis incurred as well as a cycle for
the final 1 oop-back. As such, the connection latency for a bidelta network is descri bed by
Equation 4. 41.

13

Leormect = (h—l— Zn(k,kﬂ) —I-]_) X tstack (441)
k=1

In opening a new connection through the bidelta network, additional latency occurs as a

result of changing routing bytes. Routing bytes will be changed between routing stack

63

Number of Thit Tree Total
Processors St acks Gbnponent s
64 1 w—’64>2 52
4,096| 64 lgay 4 Ul ¢48 4,160
262,144 4096 l'gqn 320 l'gss 279,552

Table 4.4: Full Fat- Tree Hardware Requirenents

stages as describe in Section 4.2.2. Due to the constraints placed on 5, there will never
be a need to change routing bytes within a bidelta stack. Equation 4.42 gives the latency
required to open a connection through the bidelta network.

Lopen =1L comect ‘I’(Z_ 1) X tstack
i3
= (h—|—2‘|- Zn(k,kﬂ)) X Estack (4 42)
k=1

4.4 Conparisons

In order to offer a clearer conparison betwen the various networks described herein,
this section provides sone concrete exanples. Using the equations and assunptions from
Section 4.3 and the geonetric configurations described in Sections 3.4 and 4.2, represen-
tative nunbers are determined for network size, conposition, and latency. All val ues are
characterized as describe in Section 4. 3.

4.4.1 Rl Fat- Ree

Tables 4.4 sunmarizes the hardware requirenents for a fewfull fat-trees of interesting
sizes. Table 4.5 characterizes the extrene latency cases for the full fat-trees described
Table 4.4. The worst-case latency included here uses the worst-case wire delays betwen
unit tree stages on both paths through the fat-tree and assunes the connection must be
nade through the tree root. ReviewSection4.1toget afeel for the distributionof latencies
between the best and worst cases.

4.4.2 Hbrid EBxt- Ree

Table 4.6 describes several sizes of hybrid fat-trees. Thble 4.7 sunmarizes the latency
range for these configurations. Just as for the full fat-trees the worst-case latency showni
for a connection through the tree root with the longest possible wires betweenstack stages
on both the up and down tree traversal. Again, Section 4.1 describes the distributions of
wire del ays for configurations such as these.

64

Nmber of ILatency of CGhnnect ILatency of (Gpen
Processors | Wrst Gase ‘ Best Ghse | Wrst Gase ‘ Best Gase
64 40ns 20ns 50ns 30ns
4,096 100ns 20ns 120ns 30ns
262,144 200mns 20ns 230mns 30ns
Table 4.5: Full Fat- Tree Latencies
Nmber of Hdelta Thit Tee Tot al
Processors St acks St acks Gonponent s
768 64 B, 1 Ul 648 656
3,072 64 Bus 4 U 648 3,392
12,288 64 Bige 16 T g4 16,640
49,152 4096 B, 80 T'gas 45,312
196,608 4096 Bg 320 U'gq 230,400
786,432 4096 Bgs | 1280 gy 1,118,208

Table 4. 6: Hybird Fat- Tree Har dware Requirenents

Nmber of ILatency of CGhnnect ILatency of (Gpen

Processors | Wrst Case | Best Ghse | Wrst Gase | Best Gase

768 90ns 20ns 110ns 20ns

3,072 100ns 30ns 120ns 30ns

12, 288 130ns 40ns 150ns 40ns

49,152 170ns 20ns 200ns 20ns

196,608 200ns 30ns 230ns 30ns

786,432 290ns 40ns 320ns 40ns

4.4.3 Fill Hdelta

Table 4. 7: Hybrid Fat- Tree Latencies

65

Tables 4.8 and 4. 9 summari ze the characteristics for sone bidelta networks of conpa-
rable size to the full fat-tree and hybrid fat-tree configurations listed above. For this cas
the worst-case latencies are for the case in which the wires are maxinal length between
The best-case latencies assune a single cycle of delay due to inter-stage wiring.
Section 4.2.3 describes the delay cycle distributions for this configuration.

Nmber of Hdelta Tot al
Processors St acks Gbnponent s
64 By 48
256 Basez 256
1,024 Bgsg Bigy 1,280
4, 096 B64>3 B64>2 6, 144
16, 384 Bgas Basez 28,672
65, 536 Bgag Beais DBisxz 131, 072
262, 144 B64>3 B64>3 B64>2 589, 824
]., 048, 573B64>3 B64>3 B256>2 2, 621, 440

Table 4.8: Bidelta Network Hardware Requirenents

Nmber of ILatency of CGhnnect ILatency of (Gpen

Processors | Wrst Case | Best Ghse | Wrst Gase | Best Gase

64 30ns 30ns 30ns 30ns

256 40ns 40ns 40ns 40ns

1,024 70ns 70ns 80ns 80ns

4,096 90ns 80ns 100ns 90ns

16, 384 110ns 90ns 120ns 100ns

65,536 160ns 110ns 180mns 130ns

262,144 210ns 120ns 230ns 140ns

1,048,576 310ns 130ns 330ns 150ns

Table 4.9: Bidelta Network Latencies

4.5 Pouting Statistics

Using the sinply probabilistic nodels for routing analysis developed in [Kni ght 90],
this section provides sone basic routing statistics for the network topologies describec
here. Statistics are provided for all of the configurations detailed in the previous sectio
Al statistics surmarized here are based on the netwrk nodel presented in Section 1. 2.
This neans that each processor will use at nost one of its two inputs into to the network
at a given point in tine. The probabilistic models used to derive these statistics sinply
characterize routing probability in terns of network 1 oading. The effect of input queuing
at each source is not nodel ed.

Trafft distribution will have a considerable effect on the actual performance of any
of these networks. The fat-tree structured networks require considerable commnication
localityinorder toperformoptinmally. Eachnetworkis consideredwiththeloadingdistribu-
tions for whichit is nost favorable. Along with the routing statistics, this section provid

66

characterizations for the locality required by each network configurati on to achi eve near
optimal performance.

4.5.1 Rl Fat- Ree

Afull fat-tree networkis optimzed to take advantage of locality. The actual construc-
tion and bandwi dth allocation determne the locality characteristics necessarytoutilize th
netwrk nost effecti vel y. The optimal 1oading case occurs when each connection through an
RNL routing conponent is equallylikely to be nade through each of the conponent’s out-
puts. Wthinaunit tree structure, this neans that a connectionis equallylikelytocrossover
at eachlateral crossover stage. Inaunit tree stage other than the root, the connection fur-
ther up the tree will also be utilized with equal 1ikelihood as eachlateral crossover. Takin
these two considerations together, the distribution of connections through each tree level
in the sanme unit tree is roughly equal; the distribution of connections through unit tree
stages drops off by a factor of four at each successive stage toward the root.

There are two ways of 1ooking at the locality distribution. As described, we can think
of the distribution in terns of the probability of routing through a given height in the
fat-tree. This is the probabilj(tn, Phat a processor will need to commnicate with
ayprocessor a fixed distance, n away fromthe source processor. The probability that the
processor will need to commni cate with a mticlar processor a fixed distance formthe
source processor is analternate way of viewing this locality. This,prohakidity, P
is sinply the previously nmenti oned probability normalized by the nunber of processor that
are located the fixed distance away fromthe source processor. Table 4.10 through 4. 12
summarizes the locality distributions assumed for the full fat-trees considered here interm
of these locality measures.

Wththese localitynodels, Figures 4.8 through 4. 10 showthe routing statistics oneach
of these full fat-trees. Fachgraphincludes aseparate curve for the routingstatistic throu
each level of the fat-tree. The topmost curve characterizes the statistics for a connectio:
through the first level of the fat-tree. Successive curves down the graph gi ve routing statis-
tics for routing through successive tree levels; the bottommwst curve characterizes routi ng
through the tree root.

Figure 4.11 shows the nornalized routing probabilities for these three sizes of full fat
trees. The normalized statistics are roughly identical for the three sizes, so the indi vidu
nornalized curves are indistinguishable. The normalized probabilities give anideaof overal.
network perfornance under the assuned 1 oadi ng condi tions. The nornalized probabilities
are determined by weighting the probability of routing through a gi ven tree level by the
probability that a connection can successfully be nade through that tree level as summa-
rized in Equations 4.43.

max ()

Prorm = 32 Pag (1 Pouse(9) (4.43)

67

Probability of Successful Route

Probability of Successful Route

0.95- i

09+ .

0.851 : : :

0.8+ : .

0.75- : : S

065 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Probability that a Source is Transmitting
Figure 4.8: Routing Statistics for Full Fat- Tree (64 processors)

1

095 |
09 NS ,]
0.85- |

0.75- 1

0.65|-

06 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1

Probability that a Source is Transmitting

Figure 4.9: Routing Statistics for Full Fat- Tree (4096 processors)

68

0.95- .
0.85]

0.75- \\\\\\\ i

Probability of Successful Route

0.65 e

055 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Probability that a Source is Transmitting

Figure 4.10: Routing Statistics for Full Fat- Tree (262144 processors)

1

0.95- - v :

09+ i

0.85- .

0.8+ :

Probability of Successful Route

0.75+ i

07 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1

Probability that a Source is Transmitting

Figure 4.11: Nornmlized Routing Statistics for Full Fat- Trees

69

| n | Paw(@ | Pparticular(”b |

1| 0.333 0.111
2] 0.333 | 2.78 x 107
3] 0.333] 6.94 x 10°

Table 4.10: Locallity Structure of Full Fat- Trees (64 Processors)

‘n‘ Pary (1) ‘Pparticdar(fb ‘
1 0.278 9.27 x 10?
2 0.278 2.32 x 107
3 0.278 5.79 x 10°
41553 x10° | 2.88 x 10*
515.53x 10> | 7.20 x 10°
6 |5.53x 10> | 1.80 x 10°

Table 4.11: Locallity Structure of Full Fat- Trees (4096 Processors)

| n | Paw(@ | Pparticular(”b |
1 0.274 9.13 x 107
2 0.274 2.28 x 10?
3 0.274 5.71 x 10°
43.17x10% | 1.65 x 10*
51(3.17x10° | 4.13 x 10°
6 [3.17x10° | 1.03 x 10°
711.06 x 10 | 8.62 x 107
8 [1.06 x 10> | 2.16 x 107
9 [1.06 x 10* | 5.39 x 10®

Table 4.12: Locallity Structure of Full Fat- Trees (262144 Processors)

4.5.2 Hbrid EBxt- Ree

The hybrid fat-tree also takes advantage of locality much l1ike the full fat-tree. Since
onl y one- quarter of the bandwi dth out of the first stage connects to the fat-tree structure,
optimal performance occurs when three- quarters of the processor initiatedtrafft is local to
the bideltaleaf clusters. Wthinthe leaf, the distribution of trafft is uniform that is, i
equally likely to need to connect to any of the processors within the leaf. For connections
through the tree, the arrangement is identical to that of afull fat-tree so the distributic
of requests by tree level will progress in the sane nanner. Tables 4.13 and 4. 14 sunmarize
the distributions assumed for the hybridfat-tree netwrk traff.

70

n Pa”y (7? Pparticul ar(7?

B, ‘ Byg ‘ B2

0 (leaf) 0.75 | 6.82 x 102 | 1.60 x 102 | 3.93 x 10°
1 8.33 x 107 | 2.31 x 10® | 5.78 x 10* | 1.45 x 10*
2 8.33 x 10?7 | 5.78 x 10* | 1.45 x 10* | 3.62 x 10°
3 8.33 x 107 | 1.45 x 10* | 3.62 x 10° | 9.04 x 10°

Table 4.13: Locallity Structure of Hybrid Fat- Trees (Single Thit Tree Stage)

n Pa”y (7? Pparticul ar(7?
B2 | Bys | B2

0 (leaf) 0.75 6.82 x 10* | 1.60 x 10% | 3.93 x 10°
1 6.95 x 107 | 1.93 x 10® | 4.83 x 10* | 1.21 x 10*
2 6.95 x 107 | 4.83 x 10* [1.21 x 10* | 3.02 x 10°
3 6.95 x 102 | 1.21 x 10* | 3.02 x 10° | 7.54 x 10°
4 6.95 x 10> |3.02 x 10° | 7.54 x 10° | 1.89 x 10°
5 6.95 x 10> | 7.54 x 10° | 1.89 x 10° | 4.71 x 107
6 6.95 x 10° | 1.89 x 10° | 4.71 x 107 | 1.18 x 107

Table 4.14: Locallity Structure of Full Fat- Trees (Two Uhit Tree Stages)

Figures 4.12 through 4. 17 showthe routing statistics for the hybrid fat-trees described
in Section 4.4.2. 'The first three graphs are for the configurations with one stage of unit
trees, while the later three graphs are for the two tree stage configurations. The topmost
curve in each graph represents the routing probabilities within the bidelta cluster. Each
successive curve down a gr aph shows routingstatistics for connecting throughasuccessively
hi gher level inthe tree structure.

Figure 4.18 shows the nornnlized routing probabilities for these six hybrid fat-tree
configurations. The nornalized statistics for hybrid fat-trees with one or two unit tree
stages coincide as long as the size of their bidelta leaf clusters is identical; that is
normalized statistics differ only by the size of the bidelta leaf cluster. The topmost curve
shows statistics for hybrid fat-treegoubidel Ha leaves, the mniddl e fsobi #elta
leaves, and the bottomf s, Beaves.

4.5.3 Fill Hdelta

To a processor on a full bidelta network, all destinations are equally distant. The
routing to all destinations is topologically identical. The bidelta network will provide i
best overall performance when nessage trafft is uniformdy distributed across all processors;
that is, its nmost favorabl e loading condition occurs when eachsource will opena connection
to all destinations with equal likelihood. This flat, randomdistribution of connections i:s

71

0.95+ .
09+ . .
0.85+ . ; i
0.8 : .

0.75- : : .

Probability of Successful Route

065 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Probability that a Source is Transmitting
Figure 4.12: Routing Statistics for Hybrid Fat- Tree (768 processors)

1

0.95- i

09+ .

0.85" : : :

Probability of Successful Route

0.75- : : .

0.7+ :

065 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1

Probability that a Source is Transmitting

Figure 4.13: Routing Statistics for Hybrid Fat- Tree (3072 processors)

72

0.95+ .

09" ~ : :

0.85- i

0.8 ' .

0.75+ 4

Probability of Successful Route

0.65-

06 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Probability that a Source is Transmitting
Figure 4.14: Routing Statistics for Hybrid Fat- Tree (12288 processors)

1

095} b |
0.9+ AN |

Probability of Successful Route

0.75} , LN |

0.7 RO

065 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1

Probability that a Source is Transmitting

Figure 4.15: Routing Statistics for Hybrid Fat- Tree (49152 processors)

73

095" 1
0.9/ N 3 |]
085" N .
0.8- \ |

0.75- L 1

Probability of Successful Route

0.65-

06 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Probability that a Source is Transmitting
Figure 4.16: Routing Statistics for Hybrid Fat- Tree (196608 processors)

1

0.95- 3 -
0.9+ N , |

0.85- N |

Probability of Successful Route
o
(o]

0.751 e d
0.7} .
065 BN
% o1 02 03 04 05 06 07 08 09 1

Probability that a Source is Transmitting

Figure 4.17: Routing Statistics for Hybrid Fat- Tree (786432 processors)

74

0.95+ .

0.85r :

0.8+ :

Probability of Successful Route

0.75+ h

07 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1

Probability that a Source is Transmitting

Figure 4.18: Nornmlized Routing Statistics for Hybrid Fat- Tree

essentially the extreme case in which no locality is exploited. As trafft deviates from
this flat distribution, the performance will deteriorate. Figure 4.19 shows the routing
statistics for the bidelta networks described in Section 4.4.3. The topmost curve in the
figure corresponds to a 3 stage, 64 processor, bidelta network. Each successive curve down
the graph plots statistics for a network with an additional stage of routing, making the
total netwrk size a factor of four large. The bottommwst curve thus corresponds to a 10
stage network supporting 1,048,576 processors.

75

095 | | .
09, |]
0.85} | | 1
081 1

0.75- i

0.7

0.65" NG e

Probability of a Successful Route

0.6

0.55+

05 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Probability that a Source is Transmitting

Figure 4.19: Routing Statistics for Full Bidelta Networks of Various Sizes

76

5. Conclusion

Chapters 2 and 3 presented the topol ogy and construction details for constructing fat-
tree style networks using Transit technol ogy. Chapter 4 then summarized many of the
parameters and characteristics inplied by the network structure in order to provide a basis
for comparison withother architectures. This chapter surmarizes some of the requirenents
and consequents of these fat-tree structures and i dentifies conponents of the design which
m ght merit further study.

5.1 Routing Conponent Requirenents

The manner in which the RNl routing conponent could be utilized as the primitive
routing el ement in network construction was al ways a primary consideration throughout
this work.

In order to build a maximally fault tolerant network structure, two properties of the
RNl component were identified as critical. The ability to separately configure the byte
droppi ng characteristics of each input port was established as necessary for optimal dis-
persion of connections (Section 3.1.2 and 3.3.5). The alternate configuration of RNl as an
independent pair of 4 X4 crossbars with one output ineachlogical directionprovedcritical
to the construction of anetworkresilient against single conponent failures. This also help
mnimze the effects of each conponent failure (Section 2.1.2 and 3.3.4).

For this network structure the only functionality that is 1acking fromthe current RNL
designis the ability to deal withroundtrip delays onlong wires (Section3.6). This abilit
turns out to be necessary for optinmal perfornance when buil di ng any net works of these sizes
regardless of whether the networkis arranged as a bidelta or fat-tree network (Section 3.6
and 4.2). Section 3.6 describes a schene for rectifying this deficiency in future revisions ¢

RNIL.

5.2 Characteristics

The net work design presented overcones the potential problens i dentifiedin Sectionl.1
due to network size, deconposition, and topol ogy. Anunber of interesting structures were
devel oped to surmount these problens. The result is afat-tree network structure that has
a nunber of desirable properties.

5.2.1 (bnstructable

An overriding concernin the devel opment of the physical network structure was estab-
lishing a design which could be physically realized in the real world. Attention was paid
to the real world constraints posed by technology lim tations. Also, some care was taken

(e

tomnimze the construction conpl exity. The intent was to design a structure which could
realistically be fabricated within the next fewyears without relying on any technol ogi cal
breakt hroughs. At the sane tine, attention was paid to technology trends so that the
architecture itself wuldstill prove valuable with inproved technol ogical capabilities.

The unit tree structures (Section 3.3) provide a powerful conponent for dealing with
technol ogical size limitations. They provide a deconposition of the large network into
components that can be reliably fabricated. The unit tree also serves as a buil ding bl ock,
limting design conplexity. Since each unit tree is virtually identical, the conplexity o
configuring a network is reduced to that of configuring a couple of unit trees and then
inter- connecting unit trees accordingly.

The holl owcube geonetry (Section3.4.3) provides asinple and straightforwardnanner
in which to arrange unit trees. Its structure reflects the natural growth characteristics o
the fat-trees constructedwithunit trees. Wthcareful design (Section3.5), the holl owcube
structures can provide a framework for the interconnection of unit trees; in this manner,
they will significantly sinplify the conplexity of configuring and nmaintaining unit tree
interconnections.

5.2.2 Fault Tl erance

Utilizing the properties of RNl and judi cious wiring patterns, the fat-tree network will
be reasonably fault tolerant. All the fat-tree structures describedare resilient against si
conponent failures (Sections 2.1.2 and 3.3.4). Wth the redundant paths through the net-
work, the effects of any conponent failures are minimzed. Sections 2.1.1 and 2. 3 presented
constraints on wiring to naxim ze the fault tolerance of these networks. Additionally, the
accessibility afforded by the hollowcube structure will allowfaults to be repaired while the
networkis in operation (Section 3.5.4).

5.2.83 (Cheap Routing

The network is structured to make routing on the fat-tree both conceptually and prac-
tically sinple. This allows routing to be perforned cheapl y as described in Section 3. 8.

5.2.4 Perfornance

The resulting fat-tree based net works attenpt to minimze the l atency of the intercon-
nect while maximnm zing the probability of performing a successful route.

Latencyis inproved over a naive approachin a nunber of ways. Routing on the upward
tree path(Section2.2.4) reduces byafactor of three the nunber of stages of routingincurred
while traveling up the tree. Utilizing the RNI conponent, whichis a constant sized switch,
keeps the routing del ay at each stage constant at the cost of inconplete concentration
(Section 2.2.4). Mking the routing clock cycle insensitive to the signal delays incurrec
while crossing long wires, allows fast pipelining of data transmissions; a long wire onl;
affect the latency of a connection whichactually traverses it (Section 3.6).

Wien buildi ng networks of the magni tude described here, it is clear that locality will
be necessary to obtain reasonable performance. The fat-trees constructed fromunit trees

78

have a natural architectural locality resul ting fromthe allocation of hardware. This nat-
ural locality is summarized for full fat-trees in Section 4.5.1 and for hybrid fat-trees
Section 4.5.2. Knowing this optinal level of locality may prove useful in designing parallel
al gorithns and software for large systens. Wth proper locality, the routing statistics fo
these fat-tree structures is reasonable; the probability of obtaining a successful route i:
fully loaded network is in the 7T0%to 80%range even for networks with three- quarters of a
mllion processors (Sections 4.5.1 and 4. 5. 2).

5.3 Future

I have attenpted to devel op the construction of these fat-tree structures inreasonable
detail. Suffrient detail was providedto dempnstrate the feasibility of suchnetwrks. Also,
this devel oprment gives enough information about the structure that good estimates of
critical paraneters such as hardware requirements and performance can be obtained. This
devel oprrent, however, is by no neans definitive. Anunber of issues are open for further
study and optim zation while a fewissues require addi tional specification.

5.3.1 PRouting Statistic Mdeling

The routing statistics provided in Section 4.5 nmodel the probability of successfully
finding a route through the network as a function of network loading. As such, it does
not take into account the manner in which the network will nornally used; in general,
when a nessage fails to get routed, the processor will resend it later. This will have a
feedback effect on the netwrk loading. In order to see network performance under this
more realistic model of network traffc, a more detailed statistical nmodel must be utilized
whi ch takes i nput queuing into account. Additionally, this anal ysis woul d provi de a neans
for estimating the amount of tine required, on average, in order to acquire a conplete
connection through the network.

5.3.2 Simulations

As a conplenent to statistical nmodeling, it will be enlightening to simml ate this net-
work structure. This will provide a good neans of checking the validity of the statistical
assunptions under various loading conditions.

5.3.3 Interconmnection Details

Section 2.3 provided a nunber of constraints necessary to obtain good perfornance.
As nentioned there, it is unclear whether or not the expansion properties proposed by
Lei ght on and Maggs shoul d be usedto further dictate the details of interconnection wiring.
Once we have functional simulations, we shoul d be able to establishthe inportance of these
constraints. Once this is known, detailed wiring patterns must be devel oped for the unit
tree structures.

The wiring betweenstack stages nmerits additional attenti onand detail. If optical inter-
connectionis toactually be used, additional study onthe integrationof this technol ogy will

79

be required. Additional work on schenes for adaptive alignnent will be a virtual necessity
inorder toutilize free-space interconnectionon this scale. For maximal efftiency, custom
components nmay need to be designed and fabricated for this purpose.

5.3.4 Geonetry

As statedin Section3. 4.6, the holl owcube geonetryis not knownto be optimal. Its pos-
sible future study may produce a geonetry that provides shorter interconnection distances
for the basic network structure described while retaining the properties of maintainabilit;
and constructibility.

5.3.5 Packet Switching

The basic Transit networking schenme is circuit switched. Circuit switchingis usedto
mnimze the latency inherent ingettingaresponse fromarenote processor on the net work.
Using circuit switching, no buffering is needed wi thin the network. This avoids problens
due to internal buffer overflowor net work congestion by bl ocked packets.

For large networks where the latency fromone end of the network to the other is
greater than the tine required to transmit the standard quanta of data, circuit switching
may inefftientl y utilize network bandwi dth. If suchis the case, it mi ght be worthwhile to
consi der packet routing schemes. The basic fat-tree structure and i nterconnect described
here woul d be applicable to a packet switched network schene. The difference that arise
woul d occur in the routing protocol and policies. Almost all of these differences woul d t hus
be limted to the design of the cache-controller and routing conponent.

5.3.6 Gbnstruct Prototypes

Certainly, the most definitive way to evaluate the worth of this fat-tree netwrk struc-
ture is to actually construct prototypes. The construction exercise will guarantee that no
essential construction details are overlooked. Such construction will, no doubt, uncover
issues and probl ens not yet considered.

80

Bi bl i ography

[Mnsky 90] Mnsky, Henry Q , An Enhanced (rossbar Routing Chip for a Shared Mm
ory Mil tiprocessor, S.M Thesis, MT, forthcomng.

[DeHon 90] Dehon, André M, Knight, T. F., Mnsky, Henry Q , Fault Tolerance Dsign
for Miltistage Routing Networks, MTA I. Lab Mno 1225, April 1990.

[Kni ght 90] Kni ght, T. F. and Sobalvarro, P. G, Routing Statistics for Unqueued
Banyan Networks, MTA 1. Lab Mno 1103, forthcom ng.

[Lei ghton 89- 2] Leighton, F. T. and Mwggs, B.M, Personal Communications, October
1989.

[Leighton 89-1] Leighton, F. T. and Maggs, B. M, Expanders Mght Be Practical: Fast
Al gorithns for Routing Around Faults in Miltibutterflies, 30th Annual
Synposiumon the Foundati ons of Conmputer Science, October 1989.

[Leiserson 89] Leiserson, Charles E, Personal Gonuunications, October 1989.

[Kamilev 89] Koamnilev, F. E, Esener, S. C., Paturi, R, Fainman, Y., Mrcier, P., Guest,
C. C, Lee, S. H, Programmabl e Optoelectrontic Miltiprocessors and their
comparison with Synbolic Substitutionfor Digital Optical Computing, Op-
tical Engineering 28(4), April 1989, pp. 396-408.

[Kni ght 89] Knight, T. F., Technologies for Low Latency Interconnection Switches,
ACMSynposi umon Parallel Algorithns and Architectures, June 1989,
pp. 351- 358.

[Cray 89] Cray, S., Wat’s All This About (alliumArseni de?, Distinguished Lecture

Series, Volune I1: Insustry Leaders In Conputer Science and Flectrical
Engineering, Novenber 1988.

[Rettberg 87] Rettberg, R, and Qasser, L., Digital Phase Adjustment, U. S. Patent No.
4,700,347, October 1987.

[WL 87] W, W H, Bergman, L. A, Johnston, A R, Guest, C C., Esener, S.
C, Yo, P. K, Feldman, M R., and Lee, S. H., Inplenentation of Optical
Interconnections for VLSI, IEEE Transactions on Electron Devi ces 34(3),
Mirch 1987, pp. 706- 714.

81

[Kruskal 86] Kruskal, (Qyde P. and Snir, Mirc, A Unified Theory of Interconnection
Network Structure, Theoretical Conputer Science, 1986.

[Cormen 86] Cornen, Thomas H, Leiserson, Charles E., A Hyperconcentrator Switch
for Routing Bit- Serial Mssages, Proceedings of the 15th Annual Interna-
ti onal Conference on Parallel Processing, August 1986, pp. 721- 728.

[Bergnman 86] Bergman, L. A., Johnston, A. R, Nixon, R, Fsener, S. C, Guest, C. C,
Yo, P. K, Drabik, T. J., Feldman, M R, and Lee, S. H, Holographic
Optical Interconnects for VLSI, Optical Engineering 25(10), October 1986,
pp. 1009-1118.

[Smolley 85] Smolley, R, Button Board, A New Technol ogy Interconnect for 2 and 3
Di mensional Packaging, International Society for Hybrid Mcroelectronics
(Conference, Novenber 1985.

[Geenberg 85] Greenberg, Ronald I. and Leiserson, Charles E , Randomized Routing on
Fat- Trees, I EEE 26th Annual Synposiumon the Foundati ons of Computer
Science, Novenber 1985.

[Leiserson 85] Leiserson, Charles E., Fat Trees: Universal Networks for Hardware Effti ent
Superconputing, IEEEtr. on Conputers, Vol. G 34 No. 10, October 1985,
pp- 892-901.

[@asser 85] A asser, L. A., AUVWi te- Enabl ed PROM Proceedings, 1985 Chapel Hil1l
(Conference on VLSI, Mhy 1985.

[Ajtai 83] Ajtai, M, Komwl 6s, and Szemerédi, E., Sorting in clognParallel Steps,
Conbi natorica, Vol. 3, No. 1, 1983, pp. 1-19.

82

