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all power and processing onboard. All experimental data were gathered in
unaltered office environments with static and dynamic obstacles.

Toto is an example of incremental design methodology. The robot was
programmed in the Behavior Language, based on the subsumption architec-
ture. Its behavior consists of three real-time, reactive layers of competence:
collision-free boundary tracing, landmark detection, and environment learn-
ing and path planning.

Low-level navigation consists of a collection of simple reflex-like rules
which, when acting in parallel, result in an emergent boundary-tracing be-
havior. This behavior is used by the landmark detector which dynamically
extracts features from the environment using the way the robot is moving as
it is moving. The landmarks are used to construct a distributed map of the
environment. The map is represented as a graph of landmarks. The links in
the graph are used to indicate topological adjacency, and are assigned dy-
namically. The structure of the environment is used to bound the outdegree
of the graph nodes resulting in linear graph connectivity.

The graph is distributed in that, like biological neurons, the nodes are
concurrently acting behaviors: all receive sensor and landmark inputs and
communicate by sending messages to their nearest neighbors. Using the
parallel distributed implementation of the graph the robot can localize in
constant time regardless of the size of the graph.

An adaptation of spreading of activation is used for path finding and
optimization. It is equivalent to parallel graph search which computes both
the topological and physical shortest path in time linear in the size of the
graph. A simple algorithm for local motion decisions is introduced which
utilizes a greedy strategy. The robot uses only local information to execute
a globally optimal path to the goal. The need for replanning is minimized.

The main issues discussed in the thesis are: distributed v. global represen-
tation, qualitative v. quantitative computation qualitative v. quantitative
representation, procedural v. declarative representation, design of emergent

- behaviors, dynamic v. static landmark matching, minimizing and simplifying
_communication.
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Abstract

This thesis presents a method for robust mobile robot navigation, large
space learning, and path planning, based on a totally distributed architecture.
The described methods were implemented and tested on a physical robot.
The robot, Toto, consists of an omnidirectional base supplied with a ring of
twelve ultrasonic ranging sensors and a compass. It is fully autonomous with
all power and processing onboard. All experimental data were gathered in
unaltered office environments with static and dynamic obstacles.

Toto is an example of incremental design methodology. The robot was
programmed in the Behavior Language, based on the subsumption architec-
ture. Its behavior consists of three real-time, reactive layers of competence:
collision-free boundary tracing, landmark detection, and environment learn-
ing and path planning.

Low-level navigation consists of a collection of simple reflex-like rules
which, when acting in parallel, result in an emergent boundary-tracing be-
havior. This behavior is used by the landmark detector which dynamically
extracts features from the environment using the way the robot is moving as
it is moving. The landmarks are used to construct a distributed map of the
environment. The map is represented as a graph of landmarks. The links in
the graph are used to indicate topological adjacency, and are assigned dy-
namically. The structure of the environment is used to bound the outdegree
of the graph nodes resulting in linear graph connectivity.

The graph is distributed in that, like biological neurons, the nodes are
concurrently acting behaviors: all receive sensor and landmark inputs and
communicate by sending messages to their nearest neighbors. Using the
parallel distributed implementation of the graph the robot can localize in
constant time regardless of the size of the graph.

An adaptation of spreading of activation is used for path finding and
optimization. It is equivalent to parallel graph search which computes both
the topological and physical shortest path in time linear in the size of the
graph. A simple algorithm for local motion decisions is introduced which
utilizes a greedy strategy. The robot uses only local information to execute
a globally optimal path to the goal. The need for replanning is minimized.

The main issues discussed in the thesis are: distributed v. global represen-
tation, qualitative v. quantitative computation qualitative v. quantitative
representation, procedural v. declarative representation, design of emergent



behaviors, dynamic v. static landmark matching, minimizing and simplifying
communication.
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Chapter 1

Introduction

1.1 The Challenge

The work in this thesis was motivated by a classical problem in mobile
robotics: goal-directed navigation. The research presented here provides
an approach to the problem from a perspective different from that which is
well entrenched in the philosophy of the field.

The MIT AI Lab Mobile Robot group has adopted a philosophy which
was once considered radical. It was inspired by Brooks’ introduction of the
subsumption architecture as a method of building layered control systems for
mobile robots. The method embodies a set of fundamental principles about
the way the problem of robot control is handled. These principles address the
issues of reactivity, real-time response, onboard processing, computational
complexity, state maintenance, world modeling, and planning.

The subsumption approach presents an alternative to the classical plan-
ning paradigm in the way it decomposes the problem. Successful subsump-
tion programs are effective combinations of heuristics and adjustments based
on empirical data, rather than applications of a formalized method. Con-
sequently, the subsumption approach has gained respect gradually, based
on empirical support. It was, and continues to be, defended, tested, and
debugged through the process of building physical robots.

The robots built in the group have demonstrated novel solutions to obsta-
cle avoidance, wall following, object tracking [Viola 90] and object following
[Horswill and Brooks 88], room recognition and door-finding [Sarachik
89), six-legged locomotion [Angle 89] [Brooks 89], etc. The robots were
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successfully endowed with abilities to perform a variety of apparently com-
plex tasks such as soda can collection [Connell 89], and people and sound
following [Flynn, Brooks, Wells, and Barrett 89].

The robots implemented by the group tested the feasibility of the sub-
sumption method. Still, the question that remains asked by the critics is
“How far will it scale?” Are there some fundamental limitations of the ap-
proach? What is the class of systems which can be implemented with the
subsumption approach? What kinds of systems are outside that class?

Goal-directed navigation is commonly divided into a group of classical
problems: obstacle avoidance, local navigation, and global path planning.
Path planning is an example of what is considered to be a classical planning
problem, which is possibly not solvable with a distributed, reactive approach
such as that of the subsumption architecture.

Previous to this work, subsumption-based robots relied on random walk,
directed by the stimuli in the environment. They wandered until their sensors
alerted them to a specific condition which triggered task-related response
behavior. The natural next step was to explore possibilities for deterministic
navigation.

Goal-directed navigation necessarily involves the use of a world repre-
sentation, which opens up a philosophical can of worms. Joined with the
representation issue was the need to solve the path planning problem with-
out the conventional notion of a path, or the use of a conventional planner.

1.2 The Response

This thesis describes a mobile robot which has the task of exploring the envi-
ronment, learning its structure, storing it into an appropriate representation,
and using that representation to find and follow shortest paths to arbitrary
known locations.

The system was implemented on a physical robot which uses sonar sensors
and a compass, and was designed to work in unaltered office environments
with static and dynamic obstacles. All data shown in the thesis were obtained
in real runs of the robot in such an environment. The implementation of the
robot software and hardware was a process of mutual constraint satisfaction:
the high-level task (goal-oriented navigation) imposed top-down constraints
and influenced the choice of hardware and software for the robot. At the
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Figure 1.1: The three layers of the robot, a typical performance of the
boundary tracing algorithm, and an example graph representing the ex-

plored environment.
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same time, the bottom-up constraints imposed by the physical hardware,
sensors, and actuators (described in chapter 4), influenced the design of the
software and the approach taken in defining the entire task. Designing both
bottom-up and top-down resulted in a fully integrated system in which the
function of each part is well motivated. This helped simplify the debugging
of the system, as well as increased its robustness and reliability. Although
designed for a specific physical system, the methodology employed in the
thesis generalizes to other sensor types and mobile robot architectures.

The work described in this thesis combines the often-segregated problems
in goal-oriented navigation into a single system. The robot performs obstacle
avoidance, local navigation, and path planning, but not through centralized
control of separate modules. Instead, the system performs the task as a result
of the combination of many simple, concurrently acting behaviors.

The robot, Toto, either explores the environment and builds and con-
firms-its environmental map, or purses a goal. The system is designed as a
hierarchy of competence layers. In the lowest layer, simple reflex-like rules
combine into emergent collision-free navigation behavior with the property
of tracing boundaries of objects. The middle layer uses the motion of the
robot while tracing boundaries to dynamically extract landmarks in the en-
vironment. The top layer uses those landmarks to construct a distributed
map of the world and use it to find paths. Figure 1.1 illustrates Toto’s three
layers of competence and chapter 3 describes the underlying philosophy and
motivation.

Each of the competence layers was implemented with a novel approach
in order to introduce and study alternative methods to solving the problems
on all levels of robot control.

In the implementation of the low-level navigation layer the concept of
emergent behavior was used for of developing a robust, collision-free object-
tracing performance. The goal was to design a collection of intuitive, reflex-
like rules which, when combined, result in the desired emergent behavior. A
simple but sufficiently functional sensor characterization was developed in a
form of a guiding heuristic for constructing navigation rules. The rules were
designed to be as simple as possible. They are triggered by mutually exclusive
environmental conditions so as to completely circumvent the need for explicit
arbitration. They were added to the system incrementally, thus keeping its
preformance and analysis tractable. The middle diagram in figure 1.1 shows
a real run demonstrating the object tracing behavior and chapter 5 describes
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it in detail.

The landmark detection layer uses a dynamic method for procedurally
extracting features from the environment from the way the robot is moving
while it is moving. Instead of selecting landmarks as sonar signatures cor-
responding to particular locations in the world, they were defined as large,
permanent structures such as walls and corridors. These landmark types
were are selected because they could by robustly detected with the available
sensors. The advantage of this approach is in not having to rely on sensor
precision and repeatability, or position control.

Landmark detection corresponds to continuous adjustment of confidence
levels correlated with environmental features. A sufficiently high confidence
level for a feature denotes a landmark. The landmarks are defined qualita-
tively, and their representation is implicit in that it results from the proce-
dure a robot executes rather than form a static, declarative model. Another
impertant advantage of dynamic landmarks is their generality. Like the low-
level navigation behaviors, the landmark detection behavior generalizes to
any sensor system providing proximity information, and is independent of
its exact physical properties or configuration. Finally, the landmark detec-
tion layer utilizes the layer below it thus minimizing the amount of added
reasoning. Chapter 6 describes this layer in detail.

Using purely qualitative descriptions of locations and a sparse landmark
set results in ambiguities, so landmark descriptors are augmented with com-
pass bearings and an estimated size. The latter is derived from using the
notion of time as distance, which gives an implicit representation of time in
the system. Assuming constant velocity of the robot, the compass bearing
is integrated to provide a coarse cartesian position. This value is used for
rough position comparisons in map localization. Details of landmark disam-
biguation are given in chapter 8.

The third layer of competence uses the landmarks provided by the layer
below to construct a topological representation of the environment. A va-
riety of graph topologies was explored (see chapter 9) before choosing the
simplest yet powerful topology - a linear list. The list is augmented with
dynamic links resulting in an undirected acyclic graph capable of embedding
any 2D physically feasible topology (see chapter 10). The choice of topology
is important since the graph structure is fixed at compile time. To avoid
implementing a full crossbar between the graph nodes, a static switchboard
mechanism is employed to simulate dynamic links. A method is presented
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for a direct embedding of any world topology in the simple augmented list
topology.

An analysis of the structure of the office environment, combined with the
boundary tracing navigation behavior, yielded a simplifying definition of the
topology of space (see chapter 10). This property allowed for bounding the
outdegree of the nodes in the graph to an empirically determined constant.
The resulting was a graph with linear connectivity.

The distributed nature of the spatial representation presented in thlS the-
sis comes from the implementation of the graph as a collection of concurrently
acting behaviors. Each behavior corresponds to a unique landmark in the
world. It receives inputs from the landmark detector, as well as from the
sensors, and can communicate by sending and receiving messages from its
neighbors in the graph. The robot’s location in the world is indicated by
a single active graph node corresponding to that location. The active node
performs lateral inhibition by spreading deactivation. It also spreads expec-
tation to its neighbor in the direction of travel. Expectation is a method of
preserving minimal context to be used for graph verification and landmark
disambiguation (see chapter 7 for details).

Localization within the graph consists of comparing the broadcast land-
mark to all of the graph nodes. The use of a parallel implementation allows
for localization in constant time regardless of the size of the graph.

The process of environment learning consists of storing the landmarks in
the graph for future use in path planning. The process of constructing a
simple, linear graph, its use and its limitations are discussed in chapter 7.
An augmented, more powerful graph representation is presented in chapter
10. An example of such a graph is shown in the third diagram in figure 1.1.

One of the challenges of the distributed approach was the implementation
of path planning within a decentralized map, devoid of a global view of the
relationship between the start and goal. The solution was implemented with
a variation of spreading of activation [Quillian 69] approach. The goal
node sends a call to its neighbors, which propagate it on through the graph.
When a call reaches a node, its direction specifies the direction in which the
robot should travel next from that landmark. Regardless of where the robot
is located, it knows the optimal direction to pursue toward the goal (see
chapters 8 and 10 for details). This eliminates the need for replanning if the
robot strays from the desired path or becomes lost. The boundary-tracing
algorithm simplifies the motion decision to a binary choice in most cases, at
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times augmented with the compass bearing for decision points with a higher
fanout (see chapter 10). Consequently, the edges in the graph need not carry
any extra information. More importantly, there is no separate reasoning
engine outside the graph; all spatial reasoning used for learning and path
finding is in the graph itself.

Finding shortest paths consists of a parallel graph search. Finding the
shortest topological path is equivalent to a search in a graph with edges of
unit weight. This runs in worst case linear time in the size of the graph.
Augmenting the nodes with an estimated length of each landmark weighs
the edges properly in order to compute the physically shortest path in worst
case linear time.

1.3 Summary and Outline
The —ﬁxain i1ssues addressed in this thesis include:

e distributed versus global representation,

e qualitative versus quantitative computation

e qualitative versus quantitative representation,
e procedural versus declarative representation,
e design of emergent behaviors,

¢ dynamic versus static landmark matching,

e minimizing and simplifying communication.

The organization of the thesis proceeds chronologically through the re-
search process, addressing each of the relevant issues as they are encountered.

Chapter 2 reviews related work in robot planning and goal-directed nav-
igation. It describes the classes of existing approaches and gives examples of
each.

Chapter 3 discusses the motivation behind the ideas implemented in this
thesis, as well as the guiding philosophy.

Chapter 4 gives a detailed description of the physical robot which was
used to test all the ideas.

16



Chapter 5 describes the navigation algorithms. Chapter 6 presents the
landmark detection scheme. Both contain data from many test runs. Chapter
7 explains the learning algorithms, and the initial, simple graph structure.
Chapter 8 gives the goal-oriented navigation scheme within the simple graph
structure, and its performance.

Chapter 9 describes the limitations of the simple graph representations,
and gives an overview of possible alternatives. Chapter 10 describes the
improved, more general graph representation, and its performance.

Chapter 11 is an overview of related biological systems and neurophysio-
logical data. It speculates possible correlations with biology, and presents a
number of questions for future investigations.

Chapter 12 reviews the main results of the thesis, and suggests areas for
future research.
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Chapter 2
A Review of Related Work

The purpose of goal-oriented navigation is to enable a robot to reach some
previously visited or otherwise known point in the world. If the goal is within
the range of the robot’s sensors, the task is usually trivial. Otherwise, the
robot must know its position relative to the goal, in order to select its next
action. Consequently, it needs a representation of the world.

In the classical literature, the task of goal-oriented navigation is usually
presented as a path planning problem. The system is provided with a map
of the environment, which it uses in conjunction with its sensors, to reach a
goal location. Unless the robot’s collision avoidance implementation involves
a reactive scheme, all motions of the robot are preplanned.

Classical path planning has been used in both robot manipulators and
mobile robots. The methods can be divided into two basic groups: local
and global. Local methods, such as potential fields [Khatib 86], are most
commonly used for fine motion planning employed in manipulator control.
Local methods compute a function using the parameters obtained from the
external and proprioceptive sensors on the robot. The result is a direction
vector for the robot’s next move.

In contrast, global methods are based on searching through free space.
These methods usually employ a cartesian world map containing information
about the known obstacles. The map can be used to explicitly compute free
space areas, such as through the use of configuration space obstacle growth
[Lozano-Pérez 81]. Given some representation of free space, all classical
planning algorithms are variations of search in that space. They rely on
a representation of the world which, for each resolution point in the map,
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determines if the robot is inside or outside an obstacle. The map is divided
into regions based on this information, and a search for a path through the
regions is performed. Such algorithms include Voronoi diagrams [Canny
and Donald 87], visibility graphs [Lozano-Pérez and Wesley 79], quad
trees [Faverjon 84], and generalized cones [Brooks 83].

Given that generating a path is usually reduced to search, the most
difficult problem in goal-oriented navigation is the choice of representation
that will optimize the search process. The following section gives a partial
overview of some approaches to world modeling and path planning.

2.1 HILARE

The work of Raja Chatila, Georges Giralt, Marc Vaisset, and Jean-Paul Lau-
mond on HILARE is an excellent example of a functioning application of the
classical mobile robot control approach. Acknowledging that the environ-
ment of mobile robots is complex, they stress the importance of constructing
and maintaining an accurate environment model and localizing within it [Gi-
ralt, Chatila, and Vaisset 83].

HILARE is equipped with a number of different sensors: 14 ultrasonic
range sensors, a camera with a laser range-finder, and an infrared beacon-
based triangulation system. Recognizing the difficulty in maintaining differ-
ent types of information within a single world model, their approach involves
three levels of representation [Chatila and Laumond 85].

o On the first level, the perceptual data are translated into a two-dimensional
geometric world model employing polygonal approximations of the per-
ceived obstacles. Gaussian error estimation is used in model matching.

¢ On the second level, the geometric model is used to deduce the topolog-
ical properties of the environment. Space structuring is performed by
constructing convex polygons corresponding to related obstacle edges
and vertices from the geometric model. These polygons are called
“cells” and their adjacency relationships reflect the topology of the
explored space.

e On the third level, a semantic model can be constructed by object
labeling in the topological graph. The performance of this level was
not explored.
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The advantage of the multi-level world model is that it offers different
types of information which can be accessed by different parts of the robot’s
control system and checked for consistency. The disadvantage of the approach
is the increased complexity of updating the models, as well as the decreased
fault-tolerance.

Chatila and Laumond recognize the position problem as the key issue
in world model maintenance. They suggest three methods for maximizing
the accuracy of this process: absolute position referencing using known bea-
cons, trajectory integration using odometry or inertial guidance, and relative
position referencing using local features in the environment. Calibration is
performed repeatedly in order to minimize cumulative position error and
maintain the necessary accuracy of the models. Updating and correcting the
world models is performed with a set of uncertainty functions applied to the
sensor data.

2.2 Elfes

Another example of multiple levels of world modeling is offered by [Elfes 86].
The levels are viewed as separate mapping dimensions along the abstraction
axis, the geographical axis, and the resolution axis.

o The abstraction axis maps the transition from data-intensive represen-
tations to higher levels of abstraction. This process is illustrated in the
transition from the initial cartesian map to a geometrical representa-
tion. Sonar data from the sensor level map are used at the geometric
level to group occupied cells into unique objects to be approximated
polygonally. Finally, at the symbolic level, topological information is
extracted from the geometric data, and represented explicitly.

o The geographical axis starts with views (locally visible areas), which
are integrated into local maps, which, in turn, combine to form a global
map.

o The resolution axis abstracts the data to a decreasing level of detail in
order to speed up its processing. It allows for “zooming” in and out of
regions of interest.
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The work provides a clear formalism for grouping tasks involving world
model construction and maintenance. The actual implementation, however,
presupposes precise position and orientation data and claims that cumulative
error only results in a topological distortion of the produced map. It claims
that perfect position control is necessary and can be obtained through dead-
reckoning combined with a stereo matcher for motion estimation.

2.3 Moravec

Moravec employed a simple yet functional representation of space in his path
planning algorithm used on the Stanford Cart [Moravec 83]. The vision
system on the robot modeled objects as clouds of features which were ap-
proximated as uncertainty ellipsoids, and eventually simplified to spheres.
The spheres were projected to circles in a two-dimensional representation.
A path consisted of a series of tangent segments between the circles. To
generate the shortest path to the goal, the circles served as graph nodes in
the path planning search.

In more recent work, Moravec addressed the specific problem of dealing
with uncertainty in world model construction and maintenance. [Moravec
and Elfes 85] introduced a grid-mapping method for representing the envi-
ronment based on range sensor data. The entries in each grid cell correspond
to the confidence in the cell’s occupancy based on multiple sonar readings,
as well as single transducer readings gathered from different locations over
time. [Moravec and Cho 89] describes a less ad hoc analysis of the same
approach using probabilistic occupancy maps based on Bayesian statistical
analysis.

The certainty grid based cell occupancy representation is convenient be-
cause of its independence of the sensors used. This feature also makes it
a good representation choice for sensor fusion into a single world model
[Moravec 88]. The approach offers a simple but consistent formalism of
~ uncertainty for world model maintenance. Assuming the path planner has
some method for using the certainty levels, it can be viewed as a basic carte-
sian representation of free space.
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2.4 Drumbheller

Drumbheller addressed the specific problem of map localization based on
matching actual sonar data to an a priori world model [Drumbheller 87).
His approach used an analytical characterization of the sonar sensor in or-
der to estimate measurement error. After error correction and smoothing,
he performed line fitting in order to obtain a line-segment representation of
the robot’s current position. The line segments were matched to a stored
model library through the construction of an interpretation tree [Grimson
and Lozano-Pérez 87].The search space of the matcher was pruned with
the use of local geometric constraints.

This work shows that localization is feasible based on noisy sonar data,
given a reliable world model and a sophisticated matcher. The disadvantage
of the combinatorial blowup could be partially remedied if other sensors are
used to further prune the search space (for instance compass data). The
method does however rely on a static environment and was not tested on a
physical robot.

2.5 Crowley

An approach similar to Drumbheller’s is described in [Crowley 85]. He
proposes a method for updating a world representation by integrating local
information into a global model as the robot is executing a path to the
goal. The global model is previously learned or provided, while the local
information is obtained with a rotating sonar and a touch sensor. Sonar
data are recursively line-fitted to form line segments which are matched to
a model base. The matcher updates the global model by subtracting the
computed average error in the local position estimate from the global model.

As with Drumbheller’s approach, this method depends on a static envi-
ronment and an efficient matching algorithm. An accurate position estimate
is assumed based on wheel shaft encoders. Any errors in this estimate must
be handled by the model matcher. The method was not tested on a physical
robot.
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2.6 Kuipers

[Kuipers 79] describes the TOUR model as a method of simulating some
aspects of the human cognitive map. (The concept of a cognitive map is
described in more detail in chapter 11 of this thesis). Kuipers’ model of the
spatial environment is constructed over time based on a number of egocentric
inputs from the sensors. The model consists of sensory inputs called views
and motions which cause a state change, called actions. The cognitive map
is constructed from the sensorimotor input, which is modeled as a sequence
of alternating views and actions.

Following a previously known route in the TOUR model corresponds
to executing a procedural map. Such a map is a production-like schema
consisting of a description of the goal, the current situation, the action to
perform next, and the result to expect.

The model also uses a topological map. The map has two levels, one
providing a topological network of places and paths between them, the other
supplying the boundary and containment relations of places and paths.

A quantitative description of the environment can be introduced in the
model, through adding metric components to each action, such as distance
to traverse, and angle to turn.

The topological map ideas of the TOUR model were implemented in a
simulation described in [Kuipers and Byun 88] and [Kuipers 87]. A
qualitative graph representation of the environment is used in which nodes
in the graph are locally distinctive features based on geometric criteria. The
nodes are connected by directives such as “travel” and “turn.” Traveling to a
location in the graph consists of searching to localize the starting node, and
following the arcs to the destination, with repeated hill-climbing whenever
necessary.

The described topological model is appealing in its possible relation to
the notion of the cognitive map. Additionally, it presents a simple method of
representing the environment. The main disadvantage lies in the assumptions
made in the simulation. The sensory system is modeled as a point-source
range sensor with unrealistic characteristics. It would be interesting to test
the method on a real system and evaluate its performance.
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2.7 Payton

One common disadvantage of the path-generating methods described previ-
ously is that replanning is necessary if the robot strays from the planned
path. Clearly, it is desirable that the robot know the proper direction to
pursue regardless of its position within the map. [Payton 88] suggests an
approach in which plans are represented as action resources. In his method,
the world is represented with a cartesian grid of cells, and a goal is selected
a priori. A full breadth-first search is performed from every possible start
position to the goal based on a cost function utilizing the cell distance to the
goal. The search generates the cost for each grid cell. Finding a path from
any cell to the goal, then, is equivalent to gradient descent along the path of
lowest cost.

The method was successfully tested on the Autonomous Land Vehicle.
Its flexibility relies on the robot’s ability to localize itself accurately. The
limiting factor is the selection of a static goal; whenever the goal changes,
the entire search must be repeated. In that respect the method has the same
disadvantages as planning approaches.

2.8 Arkin

The work described in [Arkin 87] is an excellent example of a hybrid ap-
proach combining global and local classical path planning techniques. The
system is divided into three hierarchical levels: the planner, navigator, and
pilot. The mission planner interprets high-level commands and sets the cri-
teria for the mission. The middle level, the navigator, performs the classical
path planning task of producing a meadow-map-based free space represen-
tation and finding a piece-wise linear path within it. The path is based on
an a priori map. The pilot is responsible for executing each segment of the
path.

The behavior of the robot is determined by the interaction of perceptual
and motor schemas, which are special-purpose computational elements. The
pilot selects a set of appropriate schemas to be executed in a parallel, dis-
tributed manner. Each schema uses the appropriate input from the sensor
and the world model to generate a generalized potential field. Arbitration
between concurrent schemas is resolved through vector addition.
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[Arkin 89] offers a detailed justification of such a hybrid approach to
robot control. He cites neurophysiological evidence supporting this view in
biological systems.

2.9 Connell

[Connell 89] introduced an entirely distributed, behavior-based control sys-
tem for a mobile robot. Herbert navigates in office environments, finds and
picks up soda cans, and returns them to a home location. The work stressed
the issue of minimal representation and limited use of state. It also forced
decentralization through the use of 24 loosely connected processors rather
than a central processing unit.

Herbert does not construct any type of spatial representation, nor keep
a history of the traversed path. In finding the way home, he employs a
simple navigation scheme based on global orientation referencing. The robot
is capable of recognizing doorways, which it uses as landmarks. Doorways
are assumed to be the only choice points on the robot’s path. Herbert relies
on a simple heuristic: if on the way home, go south at each doorway. This
scheme has an appealing simplicity, but depends on a convenient positioning
of the home location, as well as a simple layout of the environment. In spite
of its limitations, the approach is the first attempt at implementing global
navigation in a fully distributed, reactive system.

2.10 Summary

There are many other relevant works, including [Braunegg 90], [Stew-
art 88], [Durrant-Whyte and Leonard 89], etc. This review selected a
few representative examples of the types of approaches being explored. An
overview of the field yields leads to the conclusion that the majority of goal-
directed navigation methods are based on search through some representation
of free space. The selection, construction, and update of this representation
is the crux of the problem.

One of the goals of the work presented in this thesis is to bypass repre-
senting free space explicitly. As an alternative, the method to be presented
deduces the structure of the environment from the robot’s motion. It relies
on the heuristic that motion must by definition be through free space. The
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environment is described as a series of contiguous landmarks which are stored
in a topological, distributed graph. "

All actions of the robot are designed as real-time concurrent behaviors.
The method is reactive but performs a classical planning task. The results of
this research demonstrate that a hybrid approach which combines low-level
reactivity with a high-level classical planner, may not be the only effective
solution to goal-directed navigation.
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Chapter 3

Philosophy and Motivation

3.1 The Subsumption Approach

The classical planning approach imposes what can be viewed as a horizontal
or sequential decomposition of the task into processing modules [Brooks
86]. The typical sequence is as follows: a snapshot of the world is taken by
the sensors; the sensor data are converted into a format understandable by
the planner; a plan is generated; finally, the plan is translated into actuator
commands. Figure 3.1 illustrates such a task decomposition. This orga-
nization is appealing from the point of view of the software designer as it
appears natural and modular. It is often viewed as the “divide and conquer”
approach to the problem. However, it suffers from several flaws resulting
from its inherently sequential nature. Since the input of each module in the

Sensors Actuators

Figure 3.1: An example of a typical horizontal task decomposition into
a set of serial computational modules.
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Sensors > Actuators

Figure 3.2: An example of a vertical task decomposition into a set of
parallel, concurrently-executing computational modules.

process is the output of the previous step, the resulting process in necessarily
serial. Thus it is susceptible to failure due to a malfunction in any module.
Additionally, it imposes a time delay between sensing and action which may
be too long for sufficiently reactive responses required by real world environ-
ments. Finally, the system complexity is built into the sequence and cannot
be easily simplified. Computational complexity is a particular concern in
autonomous robots where all processing must be performed on board.

[Brooks 86] suggests an alternative, vertical approach to decompos-
ing the task in terms of task achieving behaviors. An example of such a
subsumption-based vertical decomposition is shown in figure 3.2. The ap-
proach creates tight couplings between the sensors and actuators on the
robot, separated only by very limited amounts of reasoning in the form of
simple rules. The approach is embodied in the subsumption architecture
which uses finite state machines augmented with timing elements (AFSMs)
to construct simple rules [Brooks and Connell 86]. The AFSMs commu-
nicate through message passing, mutual suppression (one AFSM stops all
inputs to another for a fixed time period), and inhibition (one AFSM stops
all outputs of another for a fixed time period).

Combinations of AFSMs form behaviors, the building blocks of the new
subsumption architecture [Brooks 90]. Behaviors are combined into lev-
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els of competence corresponding to the robot’s abilities. This approach is
more fault-tolerant since failure of any layer does not affect the layers below.
Additionally, this organization allows for modular addition and removal of
behaviors and thus for incremental design and debugging. Most importantly,
it allows for a tight loop between sensing and action which can be performed
quickly and with much less computation.

The subsumption architecture approach was demonstrated on a number of
robots at the MIT Al Lab. Allen used it for obstacle avoidance and wandering
based on sonar data [Brooks 86]. Tom and Jerry were a demonstration
of minimizing the subsumption code complexity and compiling it down to
programmable array logic gates [Connell 87). Herbert was an excellent
illustration of an apparently complex system (one which navigates in an
unknown environment, picks up soda cans, and takes them home) constructed
with minimal state [Connell 89]. Genghis is an example of incremental
behavior design applied to a six-legged walking robot [Brooks 89]. Squirt
was a challenge in physical miniaturization in implementing intelligence with
minimal hardware and sensor sophistication [Flynn, Brooks, Wells, and
Barrett 89). '

A question often posed is: “How is subsumption better than other ap-
proaches?” or more simply: “What does subsumption buy us?” The sub-
sumption approach does not offer any capabilities which cannot be imple-
mented through one of the classical methods of robot control. Instead, it
provides a different approach to the problem. Rather than a recipe for pro-
gramming robots, it is a set of philosophical concepts about robot behavior
design. It stresses the issues of reactivity, concurrency, and real-time control.
The set of principles that subsumption condones can certainly be imple-
mented with any other programming language. The behavior language is
simply a programming tool which attempts to make the implementation of
subsumption-based programs easier, as well as to force a careful consideration
of the relevant issues.

The simplicity of the AFSM-based programming environment is not a
limiting factor on the complexity of the programs it can generate. Conse-
quently, classical planning could be implemented in subsumption, but that
would completely violate the benefits of the concept. The objective is rather
to obtain the functionality of a classical planning task, without the use of
classical planning. Goal-directed navigation is such a task.
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3.2 Choosing a Functional Representation

Goal-directed navigation demands some type of a world representation. A
goal is by definition a special location specified relative to other known loca-
tions in the world. The robot must know its position relative to the goal in
order to decide in which direction to move next, i.e. it must localize within
the world model.

The complexity of the world representation influences the efficiency of
localization. Any localization algorithm must take into account cumulative
position error, sensor error and noise, as well as the incompleteness and
inaccuracy of the representation itself. Additionally, the more detailed and
analytical the representation, the more complicated it will be to keep it
accurate and up to date.

The goal of this thesis is to use a functional representation, one that
contains only the information necessary for the task. A common pitfall of
classical planning approaches is that they rely on known algorithms applied
to traditional representations. For example, they employ cartesian models
for representing two-dimensional space. Although these models are well un-
derstood and are the default choice of most approaches, they are certainly
not the most appropriate for all navigation tasks.

Instead of choosing a familiar representation method and building a nav-
igation system around it, it is crucial to develop the world model after the
task of the robot is well understood. The task should determine the model,
rather than the model constraining the task.

One of the prime motivations behind using the subsumption architecture
is the fact that its framework forces a careful consideration of the issue of
representation. Using the reactive, behavior based model properly demands a
different approach to world modeling. Subsumption-based robots have been
shown to be capable of robustly performing various tasks which require little
representation, such as collision-free navigation, wall-following, even soda-
can collection. One of the main contributions of the subsumption approach
was to show that such tasks required little representation.

The goal of this thesis was to explore a distributed, subsumption-based
implementation for what is considered to be a representation-intensive task.
Map building or spatial learning is a classical example of such a centralized
task. This thesis explores a qualitative, distributed method for spatial mod-
eling as a beginning of introducing representation-intensive tasks into the
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subsumption repertoire.
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Chapter 4
The Robot Toto

4.1 The Simulation Alternative

Simulations are not well suited for generating conclusive test data and results.
While they are quite useful for the proof-of-concept stage of research, when
the feasibility of algorithms needs to be tested, they do not suffice as proof of
algorithm functionality in the real world. A simulation generating successful
data tells us much less than a simulation that fails. If an algorithm fails in
simulation it will certainly not work in the real world, but the opposite is not
necessarily true. A trustworthy simulation requires accurate modeling of the
physical processes involved. For mobile robots this means accurate modeling
of the robot itself as well as its environment.

Modeling physical sensors has proven to be a difficult task. [Kuc and
Siegel 87],[Kuc and Di 86], and [Letovsky 84] provide analytical meth-
ods for modeling and interpreting sonar data, with varying degrees of com-
plexity. In general, the more physically sound the sensor characterization,
the more complex and computationally intensive it is to simulate it. Not
only do the simulations not run in real-time, but their failure to do so is due
to reasons unrelated to the algorithm they are testing. Very often, the speed
of the simulation is limited by a variety of expensive modeling computation
required in computational geometry, etc. Since writing a realistic simulator
is a difficult task, many compromises are made to simplify it. Unfortunately,
each such compromise acts to decrease the value of the simulation. For in-
stance, many simulations use a simple gaussian to characterize sensory error
and noise. This generates a sensor behavior often entirely different from that
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Figure 4.1: The robot: an omnidirectional three-wheeled base equipped
with a ring of 12 sonars and a compass.

which would be observed in the real world.

In order to avoid both the difficulties and pitfalls of simulation, a physical
robot, Toto, was constructed for testing and debugging all algorithms (Fig-
ure 4.1). All data gathering was done on the physical system, in real time,
and in unaltered office environments.
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4.2 Toto

Toto’s only actuator is a Real World Interface three-wheeled circular robot
base, 12 inches in diameter, 7 inches high. The wheels and the top platform
of the base are connected so as to preserve a forward pointing vector. Since
the robot can turn in place by an arbitrary angle, it can continuously follow
any trajectory with discontinuous velocity. The built-in motor control pro-
cessor in the base accepts rotational and translational position, velocity, and
acceleration commands.

4.2.1 Sensors

Toto has three basic sensors: current sensors on the base motor, a ring of 12
Polaroid ultrasonic ranging sensors, and a flux-gate compass.

The current sensors on the base motor can detect stalling. This informa-
tion is used to prevent Toto from pushing helplessly against various environ-
mental barriers.

The sonar sensors are arranged in a ring and mounted on a cylinder, 8
inches in diameter, centered on the base. With the 30-degree cone of each
transducer, the ring covers the entire 360-degree area around the robot. Ad-
ditionally, the small diameter of the cylinder, placing the transducers within
an inch of each other, eliminates blind zones in the immediate proximity of
the transducers where the cone is not yet widened. The height of the sonar
ring (17 inches from the ground) constrains the types of objects the robot
can detect. Toto can easily detect all structures relevant to its task, such
as walls and furniture. Shelves and any other high-mounted objects remain
undetectable.

4.2.2 Sonar Hardware and Software Drivers

The Polaroid Ranging Sensor can be used to measure the distance to the
nearest point within the range of 0.9 to 35 feet. The sensor consists of
a transducer and a controller board. Upon receiving the signal (VSW) to
activate the transducer, the board returns an acknowledgement of the signal
(XLG), and sends a 300 Volt, 2.5 amp signal to the transducer [Polaroid 87].
The high-voltage pulse in the transducer generates a single-frequence ping.
The transducer acts as both a transmitter and receiver; the necessary settling
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time of the transducer membrane prevents instantaneous pulse detection.
Consequently, the minimum detectable range for the sensor is 0.9 feet. The
first echo it receives triggers a flag (FLG) from the controller board.

The twelve transducers used on the robot are driven by two Polaroid
controller boards. This allows for simultaneous activation of two sonars.
Only the diametrically-opposed transducers are activated to minimize the
probability of echo interference. Sonar travels at the speed of sound (331.4
meters/second) which is the limiting factor of the sampling rate. Each trans-
ducer must wait an interval appropriate to the transducer’s range for the
receipt of the return echo. Due to the physical proximity of the transducers,
the echos of neighboring sonars would easily interfere. This forces serialized
activation once every 200 milliseconds, resulting in the sampling rate of 1.2
seconds for the entire ring.

The sampling rate of the sonar ring is the limiting factor of the robot’s
velocity. While the base can move at 2 meters/second, its safe velocity is
limited to 20 centimeters/second due to the slow data refresh rate.

Sonar data acquisition is performed by a dedicated Hitachi 6301 micro-
processor. The processor generates a trigger signal which is simultaneously
sent to both sonar controller boards, resulting in near-concurrent transducer
activation. The XLG and FLG signals are connected to different ports on
the 6301, and signal timing and distance computation are performed in 6301
assembler software. The distances computed from the echo delays are sent
to the main processor via a serial line.

The selection of the transducers to be activated is performed with a
switching mechanism constructed with a set of ten mercury wetted reed re-
lays. The mechanism, shown in appendix A, selects the relays according to a
three-bit input pattern sent by the microprocessor. The hardware allows for
choosing an arbitrary ordering of transducer activation, but the final system
does not utilize this ability. For Toto’s purposes, it is sufficient to continu-
ally obtain information about the distances in all directions surrounding the
robot. Both the compass and the sonar ring provide continuous data streams
which are sampled when needed. Due to its low data rate, the sonar data
are sampled as quickly as they are available. Each new packet is sent to the
central processor via a 9600 baud serial line.

The final sensor on the robot is a flux-gate compass. The compass is
mounted on top of the robot to isolate it from magnetic interferences from
the rest of Toto’s hardware. It provides an analog signal which is discretized
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with a special-purpose processor board to provide four bits of bearing. The
compass is connected to the central processor via a serial line transmitting
bearing information at 9600 baud.

4.2.3 The Power Supply

The power for the base and all the electronics on board the robot is provided
by rechargeable silver-zinc batteries mounted under the base. The batteries
provide +12 Volts, which are regulated to +5 Volts for the electronics, and
+6 Volts for the sonar controllers. The power supply for the sonar circuitry
is isolated from the rest of the electronics through the use of DC-to-DC
converters. This is necessary due to the sonars’ high current requirements
and voltage spikes.

4.2:4 The Central Processor

Toto’s computational hardware is located inside its cylindrical body. It con-
sists of a half-height VME backplane, mounted horizontally on the base plate.
The bus contains the sonar driver/relay selector board, the main processor
board, and the extension memory/serial port board. All processor boards
were developed at the MIT Mobile Robot Lab. The sonar driver and relay
selector boards were custom developed for Toto. Their component diagrams
and schematics are shown in appendix B. The processor boards can be used
as a sensing subsystem for future robots using sonar.

All of Toto’s processing is performed by a Hitachi CMOS 68000 micro-
processor with 64K bytes each of RAM, ROM, and NVRAM [Ciholas 88].
Several 68000 assembler routines are used to interface the sonar controller
board and the compass with the main processor board, using the extra se-
rial ports provided by the serial port board. The serial ports on the 68000
bus are used for debugging. Figure 4.2 is a schematic showing the physi-
cal organization of the boards and communication lines constituting Toto’s
computational hardware.

A Toshiba liquid crystal display (LCD) is mounted on top of the robot’s
body and used for debugging purposes. Unfortunately, it produces magnetic
fields which interfere with the compass resulting in the need to elevate the
compass 10 inches above the top of the robot’s body. The robot’s effective
height is increased by 28%, but its sonar semnsors provide no information
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Figure 4.2: Toto’s computational hardware: the relay switching board
which selects the sonar transducers, the sonar processing board which
performs signal timing, the main processor board executing the robot’s
behaviors, the auxiliary serial port board, the compass board, and the
liquid crystal display used for debugging. The arrow indicate communi-
cation lines between the processor boards, the sensors, and the outputs.
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Figure 4.3: Toto’s three layers of competence.

about the added area. Therefore, the robot may attempt to wander under
high tabletops unaware of its telescoping high-mounted compass, which has a
decapitating effect. This problem can easily be eliminated with an additional
range sensor or a limit switch, but has not presented cause for concern in
experiments up to date.

4.3 The Programming Environment

Toto’s software was written in the Behavior Language, which compiles to the
subsumption architecture language which, in turn, compiles to 68000 assem-
bler code. The Behavior Language is a real-time rule-based parallel program-
ming language [Brooks 89b), an extension of the subsumption architecture
[Brooks 86] [Brooks and Connell 86). In contrast to the subsumption ar-
chitecture language, which was programmed with interconnected augmented
finite state machines (AFSMs), the Behavior Language groups AFSMs into
behaviors. Each behavior is a coherent collection of related real-time rules
producing a desired set of responses. A collection of interrelated behaviors
defines a layer of competence of the robot. For example, Toto’s interaction
with the world is governed by three such layers of competence: collision-free
boundary tracing, landmark detection, and map-learning and goal-directed
navigation (figure 4.3).

38



Toto’s software is a collection of behaviors which receive inputs from the
sonars and the compass, as well as from other behaviors. Behaviors can
output commands to actuators and other behaviors. Since the base is the
only actuator on the robot, it is controlled by a dedicated low level behavior
[Brooks and Flynn 89]. Any commands to the base are sent to this be-
havior. The rest of the communication on the robot is accomplished through
message passing among behaviors. Explicit suppression and inhibition is min-
imized, as is communication between different layers of competence. Most
communication occurs among the concurrently acting behaviors within a sin-
gle layer of competence.

Minimizing inter-layer communication makes the system modular, and
therefore more generally applicable. Each layer is independent from those
above, and its dependence on the layers below is simplified as much as possi-
ble. Landmark detection, which is the second layer of Toto’s system, relies on
the first layer, collision-free object-tracing, only to the extent that it assumes
its function. The second layer receives its inputs directly from the sensors.
The third layer of the system builds maps based on landmark information
received from the second layer. It expects landmarks as input, but is inde-
pendent of the type of system which provides that information. In general,
each layer assumes the functionality of those below, but does not depend on
the way that functionality is realized.

4.4 Summary

In order to avoid the difficulties and pitfalls of simulation, all algorithms were
implemented and tested on a physical robot. Toto is equipped with a ring
of twelve ultrasonic ranging sensors and a compass, mounted on a 12-inch
circular, omnidirectional base. All computation is performed onboard by
a CMOS 68000 microprocessor. The robot is programmed in the Behavior

Language.
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Chapter 5

Navigation

5.1 Motivation

The motivation behind the presented approach was to implement an intuitive
navigation method, in contrast to some more analytical approaches, such as
potential fields. While potential fields are a simple way of processing radial
sonar data, they do not map naturally to our understanding of reflexive
behaviors in the biological systems we use as our models.

The goal is to implement navigation as a result of a collection of inter-
acting behaviors. Each behavior consists of a set of rules associating some
conditions in the world with appropriate actions. The rules are designed to
be intuitive, and are of the form: “If approaching an obstacle on the right,
turn to the left.”

A set of important states of the world is selected and defined as a set of
sensory patterns. Some states are defined as the absence of certain emergency
patterns; they generate default actions. Each pattern triggers the appropri-
ate reflex behavior. Since the world provides continual stimuli, some set of
reflexes is activated at all times, resulting in a continuous stream of actions.
The combinations of these actions results in the desired emergent behaviors.

5.2 Sensor Characterization

The navigation algorithm is strongly determined by the sensors available on
the robot. Ultrasonic ranging sensors are an inexpensive means of obtaining
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Figure 5.1: A typical set of radial sonar signatures plotted from real
data. Since the incident angle determines the accuracy of the reading,
near-perpendicular head-on transducers are more accurate than the lat-
eral transducers.

directional distance information. Consequently, they have been used exten-
sively in mobile robot applications. Much literature exists formalizing the
limitations of ultrasonic ranging sensors and suggesting various analytical
approaches to their application [Kuc and Siegel 87) [Kuc and Di 86]
[Letovsky 84].

After analyzing the task for which the sensor is to be used, a single
crucial property of the sonar emerges as its sufficient characterization. The
ultrasonic ranging sensor has high accuracy (near 95%) when the incident
angle of the beam is less than 15 degrees from the normal [Polaroid 87].
At larger angles the sensor often suffers from specular reflection [Flynn 88).
The farther from perpendicular the incident angle, the higher the probability
of specular reflection, resulting in a falsely long reading. Consequently, long
readings have a higher probability of being inaccurate than short readings.
This characteristic leads directly to the guiding heuristic of the functional
sensor characterization: short readings are reliable, while long ones are not.

Figure 5.1 shows a set of three typical radial signatures. It illustrates the
high accuracy in transducers near-perpendicular incidence angles, and spec-
ularities in the rest. Figure 5.2 tabulates the signatures varied over the entire
ring. The data are consistent for each direction regardless of the transducer
used. Consistent readings in a particular direction remain invariant for all
transducers, as illustrated in columns 3, 5, 6, 8, 10, 11 and 12 of the table.
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Trans Distance

0 80 300 95 85 115 200 2S5 400 165 80 120 120
1 80 130 95 85 115 205 25 390 165 80 120 120
2 80 120 95 80 115 205 40 400 165 80 120 120
3 80 440 95 85 115 205 45 400 165 80 120 120
4 175 405 95 80 115 205 S5 400 175 80 120 120
S 185 290 95 85 115 205 25 400 175 80 115 120
6 80 130 95 85 115 20S 30 400 175 80 120 120
7 80 140 95 85 115 205 30 400 125 80 120 120
8 80 290 95 85 115 205 30 400 165 80 120 120
9 80 280 95 85 115 205 25 400 185 80 120 120
ig 80 265 95 80 115 205 25 400 170 80 120 120

80 120 95 80 115 205 25 400 175 80 120 120

Figure 5.2: A test configuration of the robot in the environment is shown.
The robot is rotated clockwise in place by 30 degrees in order to show
the consistency in performance between the 12 transducers. The table
plots the results. The columns with consistent readings correspond to
transducers with near-perpendicular angles of incidence. More variation
is found in columns representing transducers with oblique angles. The
data show reliable repeatability among different transducers

42




Danger Zone

o

Minimum Safe Distance

Edging Distance
- >

Figure 5.3: A schematic of the distance circles defining the three re-
gions around the robot. These regions are used to implement low-level
navigation rules which combine to produce boundary tracing behavior.

In contrast, the readings in column 2 vary as a result of specular effects due
to the transducer’s position relative to the objects.

5.3 The Navigation Rules

Figure 4.3 shows collision-free navigation as the robot’s lowest competence
level. The goal of the navigation behavior is to follow along the boundaries
of the objects in the world while avoiding both dynamic and static obsta-
cles. The avoiding behavior is simply a survival mechanism while boundary
following is the basis of the robot’s perception of the world.

The navigation rules rely on three distance regions or circles around the
robot. In order of increasing radii, those are: the danger zone (1 foot),
the minimum safe distance (2 feet), and the edging distance (2.3 feet, see
figure 5.3. These boundaries utilize the short distance accuracy of the sensors
to keep the robot neither too close nor too far from the objects in the world.
The robot avoids any objects within the danger zone, attempts to stay near
the minimum safe distance of the object it is following, and avoids getting out
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of the edging distance region from the object whose boundary it is tracing.

The choice of these distances is empirical, based on the robot’s velocity
which, in turn, is determined by its sonar sampling rate. Given the sam-
pling rate of 1.2 seconds per full sonar scan, the safe velocity of 20 centime-
ters/second allows Toto to prevent collision with all static and most dynamic
obstacles within 0.3 meters. This defines the danger zone. Any dynamic ob-
stacle which unexpectedly appears in the danger zone and moves toward the
robot at a velocity nearly equal or higher than the robot’s, will cause a col-
lision. An obstacle in the minimum safe distance or farther can be avoided
once detected. Finally, the edging distance is chosen so that the robot does
not veer too far from the object but still allows it a buffer area within which
to move. Since there is no attempt at position control, the algorithm does
not aim to keep the robot at a constant radius away from objects, merely
within a desirable range. That range is defined between the danger zone and
the edging distance, optimally around the minimum safe distance.

As mentioned previously, these threshold radii were selected empirically,
but could also be learned by the robot, through trial and error. While opti-
mized for Toto’s parameters, they can easily be adapted to fit a robot with
a different geometry or velocity constraints.

An important feature of the wandering algorithm is that it involves no
explicit arbitration among the constituent behaviors. Each of the rules is
triggered by discrete and mutually-exclusive sensory characteristics, based
on the three threshold radii around the robot. Consequently, arbitration is
implicit.

The desired object-tracing behavior is the emergent result of the interac-
tion of the following four simple navigational rules [Mataric 89]:

Stroll:

(defbehavior stroll
(cond
((and (<= shortest-sonar danger-zone)
(not stopped))
(stop))

((and (>= front-sonars min-safe-distance)
(not stopped))
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(move forward 3 meters))

((and stopped
(or (> left-distance min-safe-distance)
(> right-distance min-safe-distance)))
(if (> left-distance right-distance)
(turn left 30 degrees)
(turn right 30 degrees)))

(¢
(move backward 0.4 meters)))

This behavior sends stop, go, and backup commands to the base, depend-
ing on Toto’s distance from the danger zone. It allows the robot to move
safely forward.

If there is no obstacle in the minimum safe distance range of the front
two sonars, the robot continuously moves forward. It is repeatedly given a
target distance to traverse, which serves like a carrot on a stick. Rather than
getting discrete instructions to move forward to a certain location, the robot
constantly receives “encouragement” to keep moving toward a perpetually
escaping goal, which results in smooth, continuous motion.

If any of the transducers in the front detect an obstacle within the danger
zone, the robot stops.

If stopped and within the danger zone of the obstacle, the robot backs up.
This is another defensive behavior which allows the robot to get out of tight
spots and away from unexpected obstacles. Consequently, if the obstacle
is moving (e.g. a person walking close by) the robot will stop briefly. By
the time it receives its next sensory reading the moving obstacle will have
disappeared, and the robot will resume in its original direction. If the obstacle
is still detected, the robot backs up. This strategy allows for minimization
of course changes due to transient obstacles.

Stroll alone provides the robot with the basic safe straight-line motion.
It allows it to move forward and stop and back up whenever necessary.

Avoid:

(defbehavior avoid
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(if (>= minimum-of-the-two-sides min-safe-distance)
(if (and (<= front-left-sonars min-safe-distance)
(<= front-right-sonars min-safe-distance))
(if (< left-side right-side)
(turn right 30 degrees)
(turn left 30 degrees)))

(if (= minimum-of-the-two-sides front-left-sonars)
(turn right 30 degrees)
(turn left 30 degrees))))

If an obstacle is detected within the edging distance of the front sonars,
the robot turns away from it. If it appears on the left, it turns to the
right, and vice versa. If the obstacle is straight ahead, the robot consults
its side sonars to determine the safe direction in which to turn. It turns in
the direction which is not occluded by close obstacles. Appropriate heading
changes are sent to the base behavior. In conjunction with stroll these rules
result in an emergent collision-free wandering behavior. An example of this
behavior is illustrated in figure 5.4. All figures show real data obtained from
physical runs of the robot.

The robot moves freely around the world and is only forced to stop if an
unexpected obstacle appears in its way. Any static object is detected and
avoided by veering. Stopping is a defense-mechanism which is useful with
dynamic obstacles, and rarely gets activated in static environments.

Align:

(defbehavior align

(if (and (<= minimum-of-all-directions edging-distance)
(>= left-side edging-distance)
(>= right-side edging-distance))

(if (= minimum-of-all-directions rear-right-two-sonars)
(turn right 30 degrees)

(turn left 30 degrees))))

This behavior simply but effectively implements “stage fright”: it keeps
the robot from meandering away from the object boundary it is following.
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Figure 5.4: The performance of the combined stroll and avoid behav-
iors. Stroll produces straight-line path segments shown with dashed lines.
Path segments generated by avoid are shown with continuous lines.
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Figure 5.5: The performance of the boundary-tracing behavior as a com-
bination of avoid, stroll and align. These three low-level behaviors allow
the robot to follow any convex boundary.
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If the robot turns away from the object and is getting out of the edging
distance, it turns back towards it. The process of returning to the desired
alignment is incremental. The rule simply states that if the distance behind
the robot is shorter than that in the front, that it should turn by a small
angle in the appropriate direction. This rule will be activated as long as the
robot is not aligned with an object on either of its sides.

As the robot moves away from the wall, its side sonars detect the loss
of a boundary on its right side, and make it turn slightly to the right. The
process is repeated until the robot is aligned to the wall again.

The combination of avoid, stroll, and align allows the robot to follow
convex, straight, and curving boundaries. The schematic of the behavior is
shown in figure 5.5. The robot remains oblivious to doorways, sharp turns,
and T-junctions.

Correct:

(defbehavior correct
(if (> minimum-of-the-front-quadrant edging-distance)
(if (and (>= side-right-first edging-distance)
(<= side-right-second edging-distance))
(turn right 30 degrees))
(if (and (>= side-left-first edging-distance)
(<= side-left-second edging-distance))
(turn left 30 degrees))))

This behavior allows the robot to turn around sharp corners. It keeps a
single bit of history in order to compare a previous sonar reading with the
current one. It uses the values of the two adjacent side sonars on the side
of the robot next to the boundary that is being traced. (The robot decides
which side to turn toward based on which is closer to an object. In a narrow
space it may alternate between the two sides but continues to follow one of
them. See next section for an example of such corridor following.)

If one of the two lateral sonars on the side of the robot next to the
object loses sight of the boundary, the robot compensates by turning in the
direction closer to that boundary. This, too, is an incremental process; the
robot makes a series of small heading changes until the desired heading is
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Figure 5.6: The performance of the complete boundary-tracing behavior.
This behavior emerges as the result of the interaction of avoid, stroll,
align, and correct, which combine to allow the robot to follow any concave
or convex boundary.
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Figure 5.7: A schematic showing the incremental interaction of the
low-level navigation behaviors resulting in emergent boundary tracing.
The addition of each new behavior adds to the overall competence of the

robot.

M— Correct
heading
- Avoid
——— Stroll stop, go
backup

Figure 5.8: A schematic illustrating the implicit arbitration among the
low-level navigation behaviors. Since the conditions triggering each of the
four low-level behaviors are mutually exclusive, no explicit arbitration is

needed.
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reached. A universal 30 degree angle of rotation used for all heading changes
sent to the base. The angle is equivalent to the width of the sonar cone.
This choice guarantees a new, non-overlapping sonar cone direction for each
transducer after a single turn. At the same time, the angle is small enough
to avoid overcompensation past the desired range.

With this simple correcting rule the robot is able to follow sharp corners
with arbitrary degree. Figure 5.6 illustrates an example of the robot turning
around a sharp corner. As one of the pair of sonars on the left side loses
sight of the wall, it makes the robot turn to the left. The rule is activated
until both transducers detect the wall within the correct range.

The four behaviors interact to produce a robust boundary-following be-
havior. Figure 5.8 illustrates the interaction of the low-level behaviors result-
ing in the desired boundary-tracing. Figure 5.7 shows the implicit arbitration
among those behaviors.

The use of gradual heading correction is an example of the qualitative
approach of our method. The robot is controlled through the world rather
than from an internal set of desired configurations. Rather than moving
an exact distance or turning by an exact angle, it uses the world as its
feedback to decide both when it needs to change its direction, and by how
much. The approach consists of continuous execution of small, incremental
improvements for which the conditions are met, rather than a sequential
execution of a series of discrete, precise steps.

It is worth noting that, with the exception of the range boundary values,
no metric information is used for navigation. Distances are compared and
their relative sizes are used to make heading change decisions. The only other
metric information is provided by the compass. Its four bits of bearing are
used only as a reference to be compared against a broad range.

5.4 Emergent Properties

The four simple behaviors described in the previous section result in several
useful emergent properties. The most important behavior which results is
that of reliable tracing of the boundaries of the object in the world (Fig-
ure 5.7). This behavior is the basis of both landmark detection and goal-
directed navigation algorithms. Figure 5.9 shows a cumulative plot of four
independent runs of the robot in a large room with irregular boundaries con-
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Figure 5.9: A plot of four independent real robot runs manifesting con-
sistent object tracing. The room used for the experiment is the ninth
floor playroom of the MIT AI Lab. The data were gathered by attaching
a marker on the base of the robot and recording its path on the tiled
floor.
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Figure 5.10: A plot of five independent runs showing convergence to the
middle of a corridor on the ninth floor of the MIT AI Lab. The plot
shows three consecutive sections of the same corridor, going left-to-right
and bottom-up. The same technique for data gathering was used as
previously described. The scale shown is in feet.

sisting of walls, chairs, tables, and retired robots. The data show reliable
edge following in all trials.

Corridor following is also an emergent behavior. Figure 5.10 is a plot of
five independent runs showing the robot’s convergence to the middle of the
corridor. The robot was started in different positions in each of the trials.
The convergence to the middle of the corridor is an artifact of its width as
related to the maintained distance thresholds. Any corridor with a width
smaller than twice the edging distance will be followed in the middle. The
shown corridor falls in that category. In a wider corridor the robot will follow
one of the walls.

All data were gathered by attaching a marker to the robot base and
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recording its motion on a tiled floor. The 1’X1’ tiles provided an accurate
grid for plotting the data.

5.5 Summary

The described navigation algorithm demonstrates successful object tracing
as an emergent property of a set of interacting behaviors. Each behavior
in the collection is a combination of simple rules relating specific sensory
patterns with velocity and heading changes. This approach takes advantage
of intuitive pairings between stimuli from the world and actions from the
robot.

An important feature of this navigation algorithm is its independence of
the type of range sensor used. Since the algorithm does not utilize sensor
signatures but rather independent readings, it works with any type of sensor
providing range in the desired direction. For example, the algorithms would
work with a single range sensor as well (sonar or infrared), rotating to provide
data from appropriate directions.

A useful feature of this approach to low-level navigation is the implicit
arbitration among its constituent behaviors. This property keeps their inter-
action tractable which greatly helps in the debugging process, as well as in
the analysis of the robot’s performance. The simplicity of the inter-module
interactions allows for purely incremental design which also keeps the system
tractable since its behavior can be tested by cleanly separating the vari-
ous competence levels. Finally, the dynamic approach resembles intuitive
stimulus-response reflex couplings which most likely control navigation in
simple biological systems.
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Chapter 6

Landmark Detection

6.1 About Landmarks

The concept of a landmark is used extensively in navigational studies ranging
from insects to humans and robots. Although intuitively clear, the concept
is difficult to define. A landmark is any element (object or feature) which
can serve as a point of reference [Presson and Montello 88]. According
to Piaget, a landmark is a spatial primitive, and thus a basic building block
of spatial representations [Piaget and Inhelder 67]. Three distinct land-
marks are necessary and sufficient to localize any point in two-dimensional
space [Pick, Montello and Somerville 88]. In addition to localizing
within a single reference frame, landmarks are used as registration marks
for aligning multiple frames. This role is useful in integrating local spatial
information into a global representation.

Most landmark studies rely on visual cues. However, the notion of a
landmark generalizes to any reference feature, as perceived by the available
sensors. Auditory cues are ubiquitous as temporal landmarks (e.g. the school
bell). Olfactory cues are used extensively by insects and animals, and play
a prominent role in human memory [Gould 82}.

The use of landmarks by the blind is a good example of non-visual cue use
for spatial orientation. The stimuli used include aural, tactile, and olfactory
information. The blind tend to build lists of landmarks as paths between
known locations in the world. A typical list is of the form: “Go straight
until A, then turn left, keep going until reaching B, then turn right...” These
paths are essentially topological. They rely on some method of recognizing
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the landmarks in geographic space, and on the properties of the egocentric
reference frame (front-back, left-right). Studies also show that people con-
fronted with new, unknown environments (such as new cities), prefer the
qualitative list of directions for reaching a goal, rather than a geometric map
[Kender and Leff 89].

Since the notion of a landmark is so vague, the process of landmark selec-
tion remains difficult. Psychological literature cites examples of landmarks
selected on the basis of their distinctiveness value, or the saliency within the
given context [Anooshian 88].

In humans, the abundance of available sensory information makes the
analysis of the selection and representation of landmarks difficult. In robotics,
the problem of landmark selection is simplified by the limitations of the
sensors. A landmark should be a feature or location which is robustly and
reliably recognizable by the sensors. Consequently, a landmark is an extreme
point in sensor space. This is the basis of the approach proposed by [Kuipers
87].

The intuitive notion that larger objects serve as better landmarks for peo-
ple has been confirmed in experiments [Lockman 88)]. The rule especially
applies to learning large space, which is one of the thrusts of this research.

A natural bias is to select landmarks which are meaningful to the robot de-
signer. Unfortunately, those correspond to salient features in human sensory
and semantic space, and usually not that of the robot. Often, much effort
is spent in designing sensors to detect such features. This thesis presents an
orthogonal approach; it utilizes the features in the environment which are
easily and reliably detectable by the robot’s sensors as a basis for defining
landmarks. It is not surprising that those landmarks seem unusual to human
observers. They correspond to what is usually thought of as connections be-
tween landmarks in the world, rather than actual landmarks. It is interesting
is that they serve as effective landmarks as well. This stresses the difficulty
and variability, as well as context dependence, of landmark selection.

6.2 Dynamic Versus Static Landmark Match-
ing

A common approach to landmark detection is matching a received sensory
pattern or signature to the stored model of a landmark. This approach
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is commonly used with sonar data. For instance, [Drumbheller 87] used
real time sonar data for static localization, using a model-based matching
algorithm (see chapter 2). [Kuipers 87] modeled sonar as a point-source
sensor. He used a hill climbing algorithm for matching such idealized sensor
data in simulation. While the simplicity of the approach is appealing and may
work in simulation, using a physical sonar introduces a variety of difficulties
which may make this model unrealistic.

Given the characteristics of the sensor (see chapter 5), it is improbable
that identical sonar signatures will be generated in different trials on a phys-
ical robot. Additionally, static matching schemes often rely on positional
control, whose accuracy is difficult to maintain due to wheel slipping, fric-
tion, and other factors resulting in cumulative errors. Consequently, static
approaches to landmark recognition require a sophisticated matching pro-
cess. The matcher must take into account sensor error and noise, as well as
positional inaccuracy.

In contrast to static matching, the algorithm described here defines and
detects landmarks dynamically. The constant motion of the robot is utilized,
in conjunction with its boundary-following behavior. The robot monitors its
proprioceptors, and communicates with itself through the world [Connell
88]. Rather than taking a snapshot of the world and executing a series of
planned actions, it continuously senses and acts incrementally.

We can view this dynamic approach as utilizing a procedural represen-
tation of landmarks as compared to declarative models usually used. The
advantage of the dynamic approach is its generality: it is independent of
the specific sensory system on the robot. It will work with any sensor which
provides proximity data regardless of its exact modality or physical structure.

Another advantage of dynamic landmark detection is its computational
simplicity. It does not require an analytical model of the sensors, or a so-
phisticated matcher for recognizing the landmarks.

6.3 The Dynamic Landmark-Matching Al-
gorithm

Toto’s navigation algorithm (see chapter 4) produces a path around the
boundaries of objects. The landmark detection algorithm uses this path
dynamically to extract environmental features from the way the robot is
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moving while it is moving. The approach utilizes the robot’s motion to per-
form dynamic landmark detection.

One of the most important stages of robot design is matching sensors to
the task. The primary concern in designing a landmark detecting algorithm
is the selection of landmarks which can be robustly and repeatedly detected
with the given sensors. This led to the choice of walls and corridors as fre-
quent landmarks in the office building environment. They are large enough
to be reliably detected dynamically, as well as static and unlikely to disap-
pear during the robot’s traversal of the environment. In contrast to detailed
environmental mapping [Chatila and Laumond 85] [Moravec 88], the
purpose of this robot is to explore and learn the large-scale structure of its
environment.

The patterns traced by the robot correspond to the basic set of environ-
mental features or detectable landmarks: walls, corridors, and messy areas.
These are detectable through continuous monitoring of the compass and the
lateral sonar transducers. The following simple heuristics are sufficient:

o If the robot is moving in the same direction for a while, it is probably
following a straight boundary.

o If the robot is following a boundary, one (or both) of its side sonars will
be receiving consistent returns within the edging distance threshold.

o If the robot is moving in a nearly straight line, its compass will remain
constant.

These heuristics translate directly into simple rules for feature detection.
A behavior is dedicated to constant monitoring of the compass direction
for consistency. Since the data rate of the sonar is low, gathering multiple
readings would be overly time consuming. Instead, the algorithm utilizes all
of the gathered data and filters out the bad data through dynamic averaging.
Consistent compass readings result in increased compass confidence. The
sonar returns of the two sides of the robot are monitored simultaneously. If
either is consistently within the edging distance, its confidence is increased
as well. Finally, if the confidence measures fall below a minimum threshold,
the confidence counters are reset.

Whenever sufficient compass confidence has accrued, left or right side
consistency is checked. If both have grown simultaneously, a corridor is
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detected, otherwise it is a wall. It is necessary to couple the compass data
with the sonar instances. A consistent compass bearing can mean that the
robot is moving in a straight line through the middle of a room, as it does if is
started away from any objects in search of a boundary to trace. Conversely,
a consistent object-following behavior without a constant compass bearing
is merely detecting irregular boundaries. Detection of irregular, messy areas
as landmarks is useful as it provides a link between the “real” landmarks.
Any traversed path can be represented as a continuous sequence of the given
landmark types. Path continuity is an important quality which is utilized in
goal-directed navigation. While they are not necessarily a useful destination
point, the messy area landmarks ensure that the robot’s list of consecutive
landmarks is continuous in space. This, in turn, allows it to optimize paths
based on physical rather than only topological distance (see chapter 8).

In this scheme, a landmark corresponds to a hypothesis which has gained
a high level of confidence. Toto forms hypotheses based on simple rules which
rely on the side sonar readings and the compass values.

Consistent sensor readings appropriately increase and decrease the land-
mark confidence levels. When a confidence level for a landmark grows enough
to reach a preset threshold, a landmark is acknowledged. The threshold lev-
els were empirically chosen to be 10 for a wall, 8 for a corridor, and 15 for a
messy area (lack of landmark). The corridor threshold is carefully chosen to
be lower than the wall threshold in order to minimize the number of instances
in which the confidence into one of the walls builds up much faster than the
confidence in the other. Finally, the threshold for a messy area is selected to
be comparatively high to minimize possibly overlooked walls and corridors.
The confidence levels for individual types of landmarks are maintained in
parallel, with independently active monitors.

Assuming constant velocity (20 centimeters/sec) and the data update
rate of 0.83Hz (a full sonar ring every 1.2 seconds), we can approximate the
distance required for each of the landmarks to be detected. Specifically, the
minimum distance required for a wall is 2.4 meters, for a corridor 1.9 meters,
and for a “junk” landmark 3.6 meters. Given frequent spurious errors in
the sensor data, the confidence counter is often decremented to compensate,
which results in an actual longer distance threshold for each landmark.
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6.4 Performance

The robustness of the dynamic landmark detection scheme lies in its qualita-
tive nature. Feature detection does not rely on exact positioning of the robot,
nor on the accuracy of its sensors. The algorithm uses a running average to
eliminate spurious errors due to sonar specularities or inconsistent compass
shifts. It also allows for averaging out quick dynamic obstacles, such as peo-
ple walking by; they appear as transient noise. Spurious errors have a very
small effect since they only temporarily decrease the related confidence mea-
surement, but do not reset it completely. The landmark detector does not
expect either the world or the sensors to be perfect. The robot can recognize
a landmark regardless of where along its length it may be. Additionally, it
can recognize a landmark in spite of noise or changes in the smaller features
in the environment. For instance, adding small and medium-sized furniture
or clutter along a wall will not prevent Toto from recognizing it. Landmarks
are detected with repeatable accuracy independent of the robot’s starting
position or the exact path followed.

Figures 6.1 and 6.2 illustrate Toto’s landmark detection performance in
a room and a corridor, respectively. Landmark labels (LW for left wall, RW
for right wall, C for corridor, and J for junk or messy area) with compass
bearings (0 through 15) indicate the location where each of the landmarks
was detected. In the room environment the algorithm manifests a desirable
clustering of landmarks and a consistency of the detected compass directions
although the robot is not started at identical locations nor does it follow the
same path in each of the trials. In the corridor the robot reliably detects
the type of the landmark and its compass bearing, but the positions of exact
detection vary over different trials. The mapping algorithms (see chapter 7)
is designed to take advantage of landmark reliability and does not rely on its
exact position of detection.

The robustness and reliability of the robot’s lowest level boundary tracing
behaviors allow for this simple, dynamic landmark detecting scheme which
circumvents the need for explicit landmark models and matching algorithms.
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Figure 6.1: Toto’s landmark detection performance over three trials in the
same room. Each landmark consists of the type (e.g. RW = right wall)
and the associated compass bearing. The indicated landmark locations
correspond to the exact position of detection. The data show landmark
clustering in spite of the lack of position control.
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Figure 6.2: An example of Toto’s landmark detection performance in
four independent trials in a corridor. Even without position control,
some clustering of landmarks is observed.
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Chapter 7

Environment Learning

7.1 The Goals

In this project, the robot’s task is to learn the large-space structure of the
environment by recording its permanent features. The approach differs fun-
damentally from building a detailed map of the world which includes features
of smaller size and higher probability of impermanence. Instead, the objec-
tive is to design both space-learning and goal-directed navigation algorithms
which allow the robot to get within the sensing range of the goal. Its reper-
toire of behaviors can then be augmented with special purpose fine motion
planning appropriate for the specific task and sensors used. This approach
of large-scale navigation for approaching the goal with fine corrections when
the goal can be sensed is also used by bees, homing pigeons, and even beach
fleas [Schone 84].

In order to build a map of the environment, the robot must store the
detected landmarks in some type of a representation which can be used for
goal-directed navigation. Both the collision-free object-tracing and landmark
detection algorithms described so far are qualitative. In the same vein, and
for the same benefits, the map representation of the environment should
be qualitative as well. Graphs provide a natural means for representing
qualitative, topological relations, in contrast to metric-based, cartesian maps.
Their structure implicitly contains adjacency properties between the nodes,
information necessary for goal-directed navigation. As such, graphs have
been used by [Kuipers 79], [Brooks 85], [Chatila and Laumond 85],
[Elfes 86], etc. All of these applications use graphs as centralized data
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Figure 7.1: A schematic showing the communication links between the
behaviors in the system. Each node receives expectation, deactivation
and call inputs from both of its neighbors. Each node sends out bilateral
expectation and call messages, and one-directional wakeup messages.

structures. In contrast, the approach presented in this thesis, utilizes fully
distributed graphs.

Instead of a global data structure, the decentralized nature of the sub-
sumption architecture itself is used to implement a distributed graph. Brooks
suggested the use of behaviors (collections of AFSMs) as nodes in the graph.
Equivalent to any other of the robot’s behaviors (such as obstacle avoidance
and object-tracing behaviors), each node is an independent process in the
graph, which responds to certain inputs and generates appropriate outputs.
Each node is a behavior which receives input from the landmark detector,
the sonars, the compass, and the neighboring nodes in the graph. It out-
puts messages to its neighbors, as well as occasional directives to the base.
Figure 7.1 illustrates the communication links between the behaviors in the
system.

The behavior-based distributed world representation is a natural exten-
sion of the subsumption architecture. In contrast to global world models,
the graph itself is not accessible as a whole, since each of its nodes is an
independently acting behavior.

Due to the nature of the Behavior Language compiler, the topology of the
graph must be statically determined at compile time. It is important that
such a static topology be chosen properly so as to be as flexible as possible in
order to accommodate the topology of the physical world (see chapter 9 for
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Figure 7.2: The structure of the graph connectivity. The landmark de-
tector broadcasts the landmark to all nodes in the list. Each node has
access to sonar and compass data.

a detailed discussion). The robot is initially given an underlying graph with
“empty” nodes which are “filled” sequentially, as it explores its environment.
The nodes are interconnected by message wires which allow communication
between nearest neighbors in the graph. The graph connectivity is a space
consideration. Arbitrary dynamically assignable connections between nodes
can escalate to O(n?) connectivity and thus do not scale well. The presented
approach employs only a few global broadcasting connections, in addition
to nearest-neighbor connections between adjacent graph nodes (figure 7.2).
The total number of connections is linear in the size of the graph.

The chosen graph topology should be capable of accommodating the space
structure encountered in the physical world. Since the environment is not
known a priori, the graph topology must be capable of embedding any pos-
sible physical organization. The first underlying graph topology which was
explored was a linear list. It was chosen for its simplicity, but showed sur-
prising functionality.
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7.2 Spatial Learning Through Graph Con-
struction

As the robot explores its environment, the landmarks it detects are broadcast
to all the nodes in the graph. Initially, the graph is empty, and the first
detected landmark is automatically stored in the first node. This node is
special in that it knows it is the first. This is necessary since there is no
global data structure which controls node allocation. Instead, each node
“wakes up” its next unallocated neighbor in the list. The newly allocated
node corresponds to the robot’s current position in the graph. The qualitative
descriptor of the landmark is saved, consisting of its type (left wall, right wall,
corridor) and its associated averaged compass bearing. The newly added
node receives a wake up call, and is activated.

Whenever a landmark is detected it is broadcast to all the nodes in the
graph. When a node receives a landmark it compares it to itself. The match-
ing is a simple process of comparing the landmark type and the compass
bearing. Its simplicity is a result of the low-level navigation algorithm which
guarantees that the robot will follow the outside edges of objects. This be-
havior generates only two possible directions along a single object boundary.
The matching takes into account the duality of each landmark depending on
the compass direction (e.g. a left wall going north is equivalent to a right wall
going south). Since all graph nodes are matched in parallel, map localization
effectively takes constant time, regardless of the size of the graph.

Given the sparse landmark set, more than one landmark may have the
same label (type and bearing). The next section introduces a method for
using context to disambiguate between similar landmarks in order to produce
only a single match in every case.

After a landmark is broadcast if no graph node reports a match, the
landmark is assumed to be new, and is to be added to the graph. This is ac-
complished by assigning the new landmark to the graph node adjacent to the
currently active position. Thus the topological adjacency of the landmarks
in the world is reflected in the graph. The active node sends a wake-up
call to the neighbor who, upon receiving it becomes activated and spreads
deactivation to its predecessor.

Figure 7.3 shows a sample environment with the indicated positions of
landmark detection. The trace in figure 7.4 illustrates the process of path
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Figure 7.3: The large-space version of the ninth-floor area of the Lab. The
landmark detection areas are marked with landmark types and compass
bearings. The assumed exploration direction is arbitrarily chosen to be
clockwise.
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Figure 7.4: A trace of node allocation as the robot explores the shown
environment. The left-hand column shows the node number, the right
shows its activity.

start

Figure 7.5: The distributed graph or map resulting from the robot’s
exploration of the shown environment.
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learning through node allocation. The resulting graph is shown in figure 7.5.

A new node is allocated only when the landmark label changes. A physi-
cally long landmark will be detected repeatedly along its length, but will be
prepresented by a single node in the graph. The advantages of this choice,
along with possible alternatives, are discussed in the next chapter.

It is important to note that there is no guarantee that the active node is
the last one in the graph having an unallocated neighbor on its right in the
list. This situation requires a graph with higher than linear connectivity. A
more flexible representation capable of handling any 2D physical topology is
discussed in chapter 10.

Another more complicated scenario is one in which the path loops back
on itself. Proceeding in either of the possible directions would lead the robot
to another already discovered landmark. With a fixed linear-list topology,
this forces a termination of the particular path. This is an inherent limitation
of the topology. This issue is addressed in chapter 9, in which an augmented
graph topology is described.

The process of learning unique landmarks is limited by the size of the
graph. Once all of the nodes are allocated, the robot is forced to return to
known territory.

An alternative approach to learning the environment is to supply the
robot with a preconstructed graph representing the reachable world, or some
portion thereof. The robot can localize within such a graph, verify it, and
augment it through independent exploration. Many path planning systems
rely on an a priori world map, while others employ a wandering, exploratory
phase allowing the robot to construct a map based on its sensory information.
While such a map is necessarily less accurate, it may provide a higher model
matching probability since it is based on the input from the robot’s own sen-
sors. The difference between the two approaches may give rise to a somewhat
different set of design concerns (e.g. accuracy in model construction versus
the accuracy of localization), but they are fundamentally equivalent.

7.2.1 Using Expectation

Whenever a node in the graph is active, it spreads ezpectation to its neighbor
in the direction of travel, thus alerting it to expect potentially upcoming acti-
vation. Whenever a landmark is matched to a node, and that node is expect-
ing, the match is considered accurate. In a given environment (figure 7.6),
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Figure 7.6: The ninth floor test environment with a blocked corridor.
The areas of landmark detection are indicated, as is the position of the

robot.

expectation

Figure 7.7: The graph of the explored environment showing the active
(shaded) node corresponding to the robot’s current location. The arrow
indicated the direction of propagated expectation, based on the robot’s
current direction of travel along the landmark path.
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without expectation the robot may match either of its adjacent landmarks
(figure 7.7). Matching the correct one of those confirms the robot’s position
hypothesis as well as its confidence in the map’s accuracy.

If a match occurs without expectation, it could either be false, or an in-
dication that the path contains a loop. A simple linear list cannot handle
loops in the graph. A more powerful graph representation is described in
chapter 10. The algorithm deals implicitly with false positive and false nega-
tive matches by attempting to maximize the accuracy of each match through
the use of context (expectation) as well as a rough position estimate.

7.2.2 Using Position Estimation

Given the small number of landmark types, it is necessary to employ an ad-
ditional method of landmark disambiguation. In general, no totally position-
independent method will be able to distinguish between two landmarks of the
same qualitative type and compass bearing. Figure 7.9 shows an example of
such a scenario. Brooks suggested obtaining a very coarse position estimate
by integrating the compass bearing over time [Mataric and Brooks 90].
This estimate assumes constant velocity of the robot. Although extremely
rough, it helps in disambiguating otherwise identical landmarks. Figure 7.8
shows the variation in the position estimate as the robot moves through the
environment. The landmark matcher takes into account cumulative error, as
well as the length of the particular landmark in setting the error margins.
The method relies on the heuristic that two landmarks of the same type are
unlikely to appear in close physical proximity; for example, two qualitatively
identical left walls must be separated by a detectable space.

If a landmark matches, but is not expecting, its estimated position is
compared to the robot’s current rough position estimate. If the estimates
match within some error margin, the path is assumed to have looped.

Finally, if the position estimate does not indicate a match, the match is
assumed to be an error, and the robot proceeds with its exploration without
updating its position.

Figure 7.10 shows an example of an ambiguous environment. Figure 7.11
is a trace of the code execution without the use of position referencing. The
robot fails to recognize a previously known location due to the lack of expec-
tation. Instead, it adds a new node to the graph, as shown in figure 7.12.

Figure 7.13 is a trace of the execution utilizing position information. Al-
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Figure 7.8: The position data shown here illustrate the roughness of
the position estimate, and its cumulative error over time. The data were
gathered by running the robot continuously through the environment and
sampling the position estimate at the marked location. The (x,y) coor-
dinate pairs are indicated in 0.5-meter units, but are only used relative
to each other, rather than as absolute distances.
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Figure 7.9: Given the small number of distinct landmark types, many
locations appear indistinguishable, and necessitate the use of context or
history, as well as position, in order to disambiguate. In the environments
shown above, the robot must use the position estimate in order to localize
correctly.
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Figure 7.10: In the environment shown above, the robot must disam-
biguate between similar landmarks. The path it takes eventually leads it
to the third corridor, marked as the end location, which appears identi-
cal to the second. Without the use of position information, the context
alone results in an incorrect localization.
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Figure 7.11: The execution trace shows the robot localizing incorrectly
based only on contextual information. Without position information, it

cannot distinguish between the previously learned and newly discovered
landmark.

o . e

expectation

Figure 7.12: The graph showing illustrates how contextual information
in the form of expectation leads the robot to localize incorrectly. The

expecting node happens to be identical to the newly discovered landmark,
so the robot cannot distinguish them.
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0 deactivated
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Figure 7.13: Execution trace illustrating correct localization after po-
sition information is taken into account. Although the two landmarks
still appear identical, and the context clue is incorrect, the position es-
timate differentiates them. The robot recognizes the location as a new
landmark, and adds it to the graph.

Figure 7.14: After using the position information to differentiate between

two otherwise identical landmarks, the robot adds the new node to the
graph.
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though there is no expectation, the position match is close enough, and the
robot localizes properly. Figure 7.14 shows the updated location of activa-
tion.

7.3 Summary

The described environment-learning algorithm uses a qualitative, topologi-
cal representation of the world. It stores detected landmarks into a graph
consisting of concurrently active behaviors as nodes. Topologically adjacent
nodes in the graph communicate through message passing, which allows for
spreading activation and deactivation through the graph. The landmark cor-
responding to the robot’s current position is active and laterally inhibits the
others by propagating deactivation to its predecessor.

Upon discovery, landmarks are broadcast to all nodes in the list in par-
allel. Concurrently active locations allow for graph localization in constant
time. The notion of expectation and a rough position estimate are used
for landmark disambiguation in order to facilitate localization. If no node
matches, the location is assumed to be new. The currently active node sends
a wake-up call to its neighbor which becomes activated and associated with
the newly discovered landmark.

The orthogonality of the office environment structure, coupled with the
chosen landmark set proved empirically robust. The incremental method
for landmark detection using dynamic averaging limited large sensory errors
which would have caused false positive landmark matches. The matching
accuracy was further enhanced through the use of expectation and the rough
position estimate. False negatives occurred if the robot failed to recognize a
landmark as it was exploring. If the length of the landmark was sufficiently
large, most matches eventually occurred. Otherwise, the robot failed to up-
date its position estimate. While it never matched two landmarks incorrectly,
it occasionally failed to detect a landmark. Such an occurrence during a dis-
covery phase resulted in a sparser map which would later get augmented if the
robot was allowed repeated runs through the same environment. Skipping
a landmark on the way to the goal did not affect the goal-finding behavior.
This resulted from the design of the path finding algorithm, described in the
next section.
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Chapter 8

Goal-Oriented Navigation

The existence of the world model allows the robot to return to an arbitrary
landmark in the known world. On Toto, the goal landmarks is selected
by pressing a combination of three buttons on the top of the robot. The
buttons allow for selecting a particular landmark type (e.g. the nearest wall
or corridor), the first discovered landmark (the first node in the graph), or
an arbitrary landmark in the graph.

Since the graph structure is distributed, there is no notion of a global
path to the goal. Global path planning in a decentralized graph must be
accomplished with only local communication. The approach described here
is based on the same process of message passing as that used for all commu-
nication within the graph [Mataric 90].

The algorithm is based on the concept of spreading of activation as used
in semantic nets [Quillian 69]. In a semantic network, finding the relation
between two concepts is accomplished by spreading activation from the two
nodes in the network, and waiting for the two waves to intersect. This is
equivalent to graph search.

In the algorithm used for locating a path in the spatial network, activa-
tion is spread in one direction only, starting from the goal. It propagates
through the graph and eventually reaches the node corresponding to the
robot’s current position.

The node in the graph matching the goal landmark location repeatedly
sends out a call which is propagated until it reaches the currently active node.
The direction from which the incoming call arrives is the desired direction
of motion. Pursuing it will lead the robot toward the next landmark on the
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goal bearing = 4

Figure 8.1: The lightly-shaded node indicates the robot’s current po-
sition. The darkly-shaded node is the goal. The arrow indicates the
robot’s direction of travel along the landmark path. The shown graph is
an example of a position which forces the robot to change direction in
order to pursue the path to the goal node.

goal bearing =12

Figure 8.2: The lightly-shaded node indicates the robot’s current po-
sition. The darkly-shaded node is the goal. The arrow indicates the
robot’s direction of travel along the landmark path. The shown graph
is an example of a position from which the robot is already heading the
proper direction in order to reach the goal node.
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path to the goal.

Due to the design of the object-tracing behavior, the robot is always
moving in one of two possible directions along the list of landmarks: left-
to-right, or right-to-left. Each new landmark is added to the end of list,
so left-to-right is the direction of initial exploration, by definition. This
ordering implicitly preserves the direction of original exploration. If the
robot is moving in the exploration direction, and it receives a call from the
left, it must turn around, as illustrated in figure 8.1. A call from the right
requires no turn.

Analogously, if the robot is moving right-to-left, and it receives a call
from the right, it must turn around. No turn is required from a left call
(figure 8.2).

Since the goal node emits the call repeatedly, the robot receives it at
each of the landmarks it reaches. Consequently, it can chose the proper
direction to pursue from any point in the graph. If it veers away from the
path and arrives at an arbitrary node, it will resume its mission from that
point in the graph, until it reaches the goal. When the currently recognized
landmark matches the goal landmark, the goal node is reached and the call
is terminated.

8.1 Finding the Shortest Topological Path

Once a node is selected as a destination, it begins to send out a call to both
of its neighbors. The call is sent out continuously until the robot reaches
the goal. Whenever a call is received by an active node in the graph, it is
propagated on to its neighbors in the appropriate direction. If a call was
received from the left it is passed on to the right, and vice versa. Eventually,
the call must reach the currently active node in the graph.

Since there is no global data structure, there is also no global notion of
a continuous path. Instead, the robot knows the locally correct direction
to pursue. Since the destination emits its call continuously, all locations in
the graph receive it and are provided with the correct direction toward the
current goal. In this scheme there is no need for replanning if the robot strays
off the desired path or becomes lost.

If the robot follows the landmarks in the direction of the incoming call,
it is guaranteed to proceed on a shortest topological path to the goal. If the
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calls are sent from two or more different nodes in the graph, the one closest to
the current position will reach it first, given uniform activation dissipation.

Since calls are emanated continuously, some method must be employed in
order to disambiguate between previous calls from distant locations reaching
a node at the same time as more current calls from closer locations. This can
be accomplished by time-stamping each call and always choosing the newest
one.

8.2 Finding the Shortest Physical Path

Since spreading of activation is equivalent to graph search, the algorithm
produces the shortest topological path in time linear in the size of the graph.
However, the topological path is not necessarily the shortest known physical
path. To obtain the shortest path in terms of physical distance, the notion
of time-as-distance is used. As the robot traverses the world, it builds up
confidences in certain landmarks. Confidences are thresholds which corre-
spond to time periods (assuming constant velocity). This length can be used
to estimate the size of each landmark.

Each landmark is detected continuously, and the number of consecutive
times the same landmark label is matched corresponds to its rough physical
size. For example, a corridor has an implicit length imposed by its detection
threshold. Assume the threshold for detecting a corridor takes m seconds.
Assuming continuous velocity v, the approximate length of a once-detected
corridor is mv feet. If some corridor is detected c times consecutively, it is
estimated to be about cmv feet long.

In the actual implementation, the length descriptor is represented in the
confidence units since they are equivalent to distance. Analogously, these
are also units of time, so the map thus contains an implicit representation of
time as well.

The rough length estimate is stored in each node as an additional land-
mark descriptor. To compute the length of a path, the goal-call originating
from a node grows from unit length into an estimate of the path’s physical
length. Whenever the call reaches a node in the graph, its length is added to
its value. As the call is propagated along the wires, its size grows gradually.
When it reaches the node corresponding to the robot’s current position, its
value represents the length of the path it traversed.
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Depending on the fanout of the node, the robot can receive a number
of calls from different directions. The call with the smallest length estimate
corresponds to the direction on the physically shortest path. The direction
of the incoming shortest path is the direction the robot pursues. Since the
call-propagation process is continuous, the process of selecting the shortest
path is repeated at each node the robot traverses. A greedy choice at each
step guarantees the optimal solution. This can also be viewed as gradient
descent on path length at each node.

In addition to providing the path length, the value of the call serves as its
name as well, and distinguishes it from other incoming calls. This obviates
the need for time-stamps. The length is not a unique path identifier, however,
since two paths with equal length are indistinguishable. This issues does not
arise in a linear list, but does in the more general cyclic graph representation
described in chapter 10. However, it is not a problem since one is not more
optimal than the other. The algorithm uses a greedy strategy of always
choosing the shortest path, thus eliminating any circuitous routes resulting
from undistinguished calls.

If we view the path planning process as graph search, then topological
shortest path is a parallel search in a graph where all links have unit length.
Physical shortest path uses a graph with weighted edges where the weights
correspond to the length of each landmark on the path. In both cases we can
obtain the shortest path in O(n) where n is the number of landmarks in the
graph.

Chapter 10 shows performance examples of the path optimization algo-
rithm in a variety of trials.

8.3 Summary

Spreading of activation through the distributed graph provides a linear-time
path planning algorithm. Equivalent to graph search, the process yields the
shortest topological path to the goal, from any node in the graph. Accumu-
lating landmark lengths produces a true shortest path. The robot receives
motion directives at each landmark, and traverses the optimal path without
a global view of the world or a notion of a global goal.
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Chapter 9

Choosing the Right Network
Topology

9.1 A Review of Related Network Topolo-
gies

The purpose of the world representation is to provide a means for storing
and accessing learned facts about the world. Ideally, the map representa-
tion should be able to represent any possible real world configuration, i.e.
accommodate all possible worlds.

The difficulty arises from the fact that the representation is fixed a priori,
instead of being generated at run time to match the world topology. Lim-
iting the connectivity of the graph to linear growth is valuable for silicon
implementations [Brooks 87]. If the number of connections is squared, or,
worse yet, exponential, its physical implementation is not realistic. The key
question then is to select a network topology which will allow for embedding
the physical world topology, without knowing the latter a priori.

Having implemented and tested a linear list graph representation, we
can easily assess its limitations. While suitable for continuous paths, it is
insufficient for sequences which loop back on themselves. In the general case,
when viewed as a undirected graph, a linear list limits the outdegree of each
node to 2.

A natural extension of such a one-dimensional list is a two-dimensional
grid of nodes. Such a grid can be viewed as a Cartesian map, especially
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Figure 9.1: An example of an environment which cannot be properly
represented on a two-dimensional grid without the use of metric infor-
mation.

if distance and direction information is incorporated into the grid cells. In
a 2-D grid, the outdegree of each node is 4, and the directions of the arcs
can be naturally associated with four compass directions. Such a mapping
appears attractive at first sight. It allows for simple node allocation through
the use of compass bearing. For simple environments this results in graphs
neatly matching the topology of the world. However, the rigid organization
of the grid imposes several limitations.

o The outdegree of each node is limited to 4, and if additional connections
are required, the same problem of fixed connectivity arises as in the
one-dimensional case.

o If the grid is preserving purely qualitative information, i.e. the nodes
are delimited by topological distance rather than geometric or tempo-
ral distance, then many possible physical arrangements will result in
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Figure 9.2: A straightforward but incorrect grid embedding of the ex-
ample environment. The relative lengths of the landmarks result in an
incorrect cycle in the graph. Two landmarks which are not topologically
adjacent are allocated as neighbors due to the geometrical restrictions of
the non-metric grid.

a contorted map. Consider, for instance, the environment shown in
figure 9.1. The topological organization of landmarks is not represen-
tative of their physical organization. Consequently, our simple method
of node allocation results in an unbalanced graph, as illustrated in fig-
ure 9.2.

o A simple solution to the topologically-limited information is to allocate
a new node whenever a landmark is detected. In this way, the num-
ber of identical, adjacent nodes representing one landmark would also
represent its length through time of discovery. Such a map correspond-
ing to the environment shown in figure 9.1 is shown in figure 9.3. This
scheme is undesirable because it requires a large network. Additionally,
it is equivalent to a cartesian map with very rough metric information,
but is less effective due to the limited outdegree of each node.

Assuming a sufficiently large outdegree, especially when coupled with
arbitrary compass direction assignments, makes the two-dimensional grid a
sufficient representation. The problem of topologically-limited information
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Figure 9.3: Utilizing metric information about the relative lengths of the
detected landmarks allows for generating a more correct grid representa-
tion. Each node corresponds to a specific landmark length, thus resulting
an a near-cartesian mapping of the explored space.
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Figure 9.4: A fixed two-dimensional grid imposes an unnaturally rigid
spatial mapping. Topologically adjacent landmarks may not be physi-
cally adjacent in the grid. Connecting them may involve going through
many intermediate nodes. This results in a segmented graph with wasted
nodes. In this figure, the intermediate nodes are shaded, and the white
nodes constitute a now-isolated segment of the graph.

remains. Clearly, it is necessary to find a way to efficiently route connec-
tions between non-adjacent nodes in the grid. A simple activation spreading
search, analogous to the technique used for goal-directed navigation, can be
employed here as well. The resulting path will connect the two nodes, but
will divide the graph into two regions. Figure 9.4 illustrates such a scenario.
Subsequent connections between nodes in the different regions will be difficult
if not impossible.

We can conclude that routing connections and “true” network connections
should be isolated. A possible solution is a 2.5-dimensional grid. In such a
grid the substrate, or the bottom layer, contains the landmark nodes and
adjacent-neighbor links, while the top layer is used for routing. The two
layers are connected with vertical links. Figure 9.5 shows an example of such
a topology.

Recall that the purpose of the network is to propagate goal-directed nav-
igation activation and expectation. The algorithm utilizes the number of the
traversed nodes, as well as the distances they contain (represented in terms
of traversal time), to compute the path. The search time in the described
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Figure 9.5: A example of a 2.5-dimensional grid: the bottom layer con-
sists of landmark nodes, while the top layer is used for routing in order
to avoid graph segmentation.
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Figure 9.6: A butterfly network.

network would still be linear, but would require a delay period in order to
allow all the possible paths to reach the destination node.

Unfortunately, this network topology does not provide a better solution
to graph segmentation. The graph gets equally segmented, but the process
is moved to the second, routing layer of the grid. It simply provides a larger
space in which to lay down the routing links.

Other possible topologies include hypercubes and various higher dimen-
sional alternatives. While the increased dimensionality decreases the graph
segmentation problem, it also increases the routing algorithm complexity.
Additionally, the number of nodes quickly becomes prohibitively large for
higher dimensions.

9.1.1 Network Theory

We now consider a related problem in graph theory. In computer networks of
interconnected processors, it is important to be able to route signals between
arbitrary nodes so as to minimize the number of wire conflicts. The network
topology, together with the routing algorithm, attempts to maximize the
number of possible parallel connections. The butterfly is an example of such
an architecture (figure 9.6). The routing algorithm is proven to provide a
non-conflicting path from any node to any other in the list. Other examples
of routing topologies include trees and tree meshes (figure 9.7). The latter
two are not suitable for the routing purposes since they do not optimize the
number of arbitrary parallel connections between nodes. Once a routing wire

89



Figure 9.7: A tree-based network.

is chosen, it invalidates the entire parent tree.

While some of these data structures may appear appropriate, they at-
tempt to optimize a different metric than that being explored for the purpose
of map construction. The goal of the data structure is to avoid having to
reuse links connecting the nodes, thus allowing for different signals to prop-
agate between nodes in the graph at the same time. In contrast to map
building purposes, they are not concerned with the number of reused nodes
in the network.

The number of nodes in the butterfly grows as the log of the size of the
basic list. The same is true for grid meshes. The butterfly is an example
of a network topology which, combined with a clever routing algorithm, can
produce a provably high inter-node connectivity. Unfortunately, it requires a
large number of nodes and connections as overhead. The problem of having
too many nodes can be simplified by using dummy routing nodes (as in 2.5
dimensional grids), but the approach is still not suitable for the task. The
objective is to use a clever topology so that the routing algorithm can be very
simple. This is important since the routing is executed continuously during
the algorithm execution.
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9.2 The Return to Linearity

Having considered various higher-dimensional topologies, as well as a few
network theory solutions to routing, we return to the actual constraints of
the problem. What the map-graph really consists of is a collection of paths,
with occasional higher-outdegree junction nodes. The two main problems
are: 1) the unknown outdegree of the junction nodes, 2) the inability to
make arbitrary connections between nodes.

A simple solution uses an undirected, cyclic graph representation which
provides a universal embedding for any physically feasible 2D topology. Given
the structured nature of the office environment, dense junctions are expected
to be sparse, and the environment is easily represented as a collection of lin-
ear path segments with occasional higher degree junctions. A series of paths
can be represented with a single linear list in which path segments are ap-
pended to each other consecutively as they are discovered, with appropriate
topological connections. Consequently, we can always represent a graph as a
list with cycles and some inactive connections. Figure 9.8 shows an example
of this embedding with an environment and its graph representation. The
inactive links are represented with dashed lines.

What is needed next is a way to make connections between arbitrary
nodes, as their topological adjacency is discovered in the world. The most
difficult problem is that of dynamic node linking. A possible solution is
setting up a fully connected graph at the time of compilation, and selectively
activating the appropriate links. However, this solution is unrealistic for
large networks, as the number or links grows as the square of the number
of nodes. What is needed is a method of implementing a static topology,
with fewer connections, which is capable of simulating dynamic links at run
time. This can be implemented with a table-lookup method which serves as
a switchboard between nodes. It learns which nodes to connect, and routes
signals appropriately. The next chapter describes such an implementation.
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Figure 9.8: An example of an environment and the associated graph rep-
resentation. The basis of the graph is still a list, but arbitrary internode
connections are possible. This dynamic graph allows for embedding any
two-dimensional physical topology. In order to preserve a continuous
list structure, paths are appended together. Active topological links are
indicated with full lines, inactive ones are dashed.
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Chapter 10

The Dynamic Graph Topology

In the context of the task of landmark-based graph construction, the most
desirable graph topology is a linear list with dynamic links (see chapter 9 for
a detailed analysis). It is well suited for representing sets of interconnected
linear lists, which is the defining topology of our environments (see chapter
7). This solution guarantees that any physically possible topology can be
embedded into the given graph representation. Additionally, it eliminates the
need for having two or more types of nodes in the graph, such as landmark
nodes and routing nodes. The homogeneity of the graph can be preserved
at no added cost since the graph nodes do not need to have any additional
routing information. (Recall that adding complex routing information into
each node is costly in terms of both space and computation.) Finally, this
dynamic list-based network organization does not require much modification
of the map-learning and goal-directed navigation algorithms described in the
earlier sections.

10.1 The Graph Structure

The desired graph structure is an adaptation of the previously described
linear list. A switching mechanism is added which allows connections between
any two nodes in the graph. At compile time, each of the nodes in the
list is bidirectionally linked to the switchboard (figure 10.1). These links
allow for direct message passing between each node and the switchboard.
Consequently, any two nodes can communicate with each other through the
switch.
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Figure 10.1: A schematic of switchboard interconnections. Each node in
the graph has a bidirectional link with the switchboard. Consequently,
and two nodes can communicate by sending and receiving messages
through the switchboard. This obviates the need for linear links, but
they are preserved for speed of processing, as well as for eliminating
some side effects of cycles.

A crucial property of the chosen landmark set is that it represents the
office environment (or any environment with orthogonal wall and corridor
structures) as a set of linear paths with few intersections with higher degree
nodes. Cross-connections between nodes in the graph are expected to be
sparse. We exploit this property by preventing the switchboard from provid-
ing a full crossbar. Instead, we limit the connectivity to O(n) by bounding
the outdegree of each graph node.

The topology of the office environment coupled with the robot’s boundary
tracing behavior results in no more than four possible directions from any
decision point. Consequently, the fanout of each node was fixed to four in all
experimental trials by allowing each slot in the switchboard to accommodate
up to 4 inputs. This bound was empirically proven to be sufficient.

Switchboard connections are established in the following way: as a con-
nection is discovered between two non-adjacent nodes, an “entry” is made in
its switch slot denoting a new connection. Subsequently, whenever a node
sends out a message to its left and right neighbors, it also sends it to the
switchboard. The switchboard then consults the table of slots to determine
if there are any “jumper” links between the source node and any other nodes
in the graph. If so, it passes the message on to all such nodes.

The process of establishing jumper links is facilitated by alerting the

94




O

Figure 10.2: The process of generating a jumper: the two nodes to be
connected send messages to the switchboard, which establishes a new
link. The resulting graph has a virtual jumper link through the switch-
board.

-OC

switchboard which nodes to connect. The switchboard keeps track of the
currently active node. (This is easily implemented by sending a “named”
message to the switchboard as a node becomes activated.) When a jumper
is to be established, the new “neighbor” sends a message to the switchboard,
which connects it to the currently active node by making slot entries for both
the new node and the currently active node. Each such jumper link is bidi-
rectional, allowing message propagation as if the two nodes were physically
adjacent in the list. Figure 10.2 illustrates the process of setting up a jumper,
and the resulting graph.

The presence of the switchboard obviates the need for nearest neighbor
connections. However, preserving those connections serves as a method of
more efficient message passing, considering that the map consists of inter-
connected sequences of paths, which are linear lists.

Additionally, taking advantage of the linear list organization of the graph
eliminates some undesirable side effects of cycles, as described below. Instead
of using the switchboard to make links between all nodes, it serves as a special
router for jumper links only.
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10.2 The Switchboard Algorithm

The switchboard introduces some interesting issues into the map-learning
and goal-oriented navigation algorithms. Its effects on each of the types of
network communication message are examined in turn:

Deactivation

The purpose of deactivation is to provide lateral inhibition throughout
the network. The ordering of nodes affected by the spreading wave of deac-
tivation is not critical, so it can be performed linearly, without utilizing the
switchboard.

A convenient side effect of spreading information linearly is the guarantee
that it will not return to the sender. This is particularly useful in the case
of deactivation which could turn off the current node by propagating along
a cycle through the switchboard.

In general, using linear propagation is useful due to its simplicity. The
timing of linear message passing is not critical since the period required for
detecting another landmark is orders of magnitude longer than linear mes-
sage propagation for all but extremely large networks.

Goal-Calls

Goal-calls are the method of spreading direction information for goal-
directed navigation, as well as for propagation of traversed path length. Calls
utilize the topological properties of the graph by relying on message prop-
agation in the order of topological adjacency, so as to preserve the correct
metric of path length. To facilitate this process, they are routed through the
switchboard.

Expectation

Expectation is used to alert the neighboring nodes of the possible upcom-
ing activation. This method is used for map verification, as well as intelligent
matching. Like the call, expectation utilizes the topological adjacency rela-
tions in the graph, and is therefore routed through the switchboard as well.

Wake-up Calls

In the simple linear representation, wake-up calls determined which node
is to learn the currently discovered landmark. Since the switchboard allows
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Switchboard

wakeup

Figure 10.3: A sample scenario showing the start of a new branch in a
path. The leftmost node has found another topological neighbor, and
its fanout must be increased through the switchboard. It sends out a
wakeup, which is propagated linearly to the first free node in the list.

Switchboard

Figure 10.4: When the wakeup call reaches a node it uses its value to
determine who to connect to. If the wakeup is a unit value, then it
arrived from the nearest neighbor. Otherwise, it originated from farther
away and indicates a jumper link through the switchboard. The new
node sends a message to the switchboard, which makes the appropriate
between the node and the wakeup originator.
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for higher outdegree junctions at each node, wake-up calls will need to be
sent farther than just to the nearest neighbor. More specifically, the wake-up
call which marks the beginning of a new path will have to be propagated
to the end of the list, until the first unallocated node is found (figure 10.3).
That node will be awaken, but it will not have an active connection to its
nearest neighbor on the left. Instead, it will have a jumper to its predecessor
node which appears earlier in the graph (figure 10.4).

Consequently, propagation of wake-ups does not require the use of a
switchboard. However, establishing a jumper between the new node and
its predecessor does.

This demonstrates the two uses of the switchboard. The first is estab-
lishing contacts between two nodes, or growing a link. The second is using
such links to propagate calls and expectation.

10.3 Direction Preservation in Path Plan-
ning

Part of the appeal of the simple linear list representation was its straight-
forward direction determination algorithm: a binary choice based on the
direction of the incoming goal-call (see chapter 8). Depending on the robot’s
current direction, at most decision points it must only decide whether to pro-
ceed (it is already going in the correct direction) or to turn around by 180
degrees and go back. Once dynamic jumper links are added, the locations in
the graph connected with such links now present a more challenging decision
point for the robot. In these cases the robot uses the compass direction of
the incoming call as the directive in choosing the correct direction to move
in.

In the acyclic linear list representation classified all incoming calls into
a node into “left calls” and “right calls.” This division was useful since
it kept the motion decision simple. The following algorithm makes use of
simple graph theory to apply the two-directional motion decision to nodes
with higher fanout as well. Therefore, even at junctions with higher fanout,
the motion decision for the robot remains a simple choice.

The nodes in the graph are numbered consecutively in an increasing order
as they are added to the list. If a node is numbered n then its immediate left
neighbor is numbered n — 1, and its immediate right neighbor is numbered
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Figure 10.5: An illustration of the goal-call arbitration rule. Node allo-
cation time, which serves as the node id number, is implicit in the node
ordering in the list. A call arriving from a node with a “newer” node to
an “older” node is a left call. Conversely, a call arriving from an “older”
node to a “newer” node is a right call.

n + 1. Consequently, the nodes are ordered by discovery time. Any node on
the left is “older” than all nodes on the right of it in the list. (Note that the
sense in which a node is “old” is reversed from chronological age as reflected
in its id number.)

A simple division of all calls can be made based on the ordinality of the
call originator. If the recipient of a call has a smaller id than the immediate
source of the call (i.e. an “older” node receives a call from a “newer” node)
than the arriving call is necessarily a right call. Conversely, if the recipient
of a call has a larger id than the immediate source of the call (i.e. a “newer”
node receives a call from an “older” node) than the arriving call is necessarily
a left call. Put simply:

If the ordinality of the recipient node is greater than that of the sender,
it is a call from the left. Otherwise it is a call from the right.

As each node propagates a call, it sends in it its id number as well as
the compass bearing. At most simple decision points the above described
rule uses the id number to select the direction to move in. If the robot is
at a node with a high fanout, and the call with the associated shortest path
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lert call right call rignt call

Figure 10.6: An example of goal-call propagation. The goal node, number
6, is shaded. It sends calls through all active linear and jumper links.
The arrows indicate the direction of the call as it reaches a node.

requires a more complex turn, it uses the received compass bearing.

Figure 10.5 illustrates the goal-call arbitration rule as applied to the graph
of the environment shown in figure 9.8. A specific example of goal-call prop-
agation is shown in figure 10.6.

The introduction of cycles into the graph could result in a call to be
propagated around the cycle indefinitely. However, this condition is remedied
by the following:

1) Upon receiving a call each node in the graph stores it.

2) If the node is active, i.e. it corresponds to the robot’s current posi-
tion, it compares it to other received calls and takes the minimum looking
for the physically shortest path. An active node does not propagate calls
further since it is the destination. Therefore, all calls that reach the goal are
terminated.

3) If the node is not active, it passes the call on in all directions (to the
left and right if it is a simple path, and also to all jumper neighbors, if it is
a higher fanout decision point). Since the weights on all edges are positive,
going through a cycle necessarily increases the value of a call. Since the
active node takes the minimal incoming call, it will never opt for a suboptimal
choice. However, a call could continue to loop through a cycle and to increase
monotonically. This condition is prevented by imposing an upper bound on
the length of any call. Such a realistic bound can be chosen since the size of
the graph is specified at compile time. Consequently, the cycle propagation
problem is solved by terminating any calls longer than O(n).
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Figure 10.7: The ninth floor environment augmented with strategic clut-
ter (indicated by landmark type J for “junk” or messy area) used for
testing the robot’s ability to optimize paths. The topologically shortest
path (indicated with a dashed line) is longer than the physically shortest
path (solid line). This situation tests the robot’s ability to use the proper
measure of optimality.

10.4 An Example of the Switchboard Per-
formance

Integrating the switchboard mechanism into the system consisted of adding
the switching behavior, as well as appropriate calls to it. No changes were
made to any of the already existing software.

Figure 10.7 shows an environment used for testing path finding and opti-
mization. After having explored the environment and learned its structure,
the robot is told to return to the start location. As is illustrated in fig-
ure 10.8, the shortest topological path does not correspond to the shortest
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Figure 10.8: The map of the shown environment constructed by the
robot. The arrow indicates the robot’s current position.

physical one. Figure 10.9 shows the main parts of the trace of the robots path
as it progresses toward the goal. The complete trace is shown in Appendix
C. Using the estimated landmark length (see chapter 8) the robot correctly
chooses the topologically longer but physically shorter path to the goal.

In testing the robustness of goal-oriented navigation, the robot was pre-
sented with various obstacles while on its mission to the selected goal. If the
robot’s path was blocked, its low-level navigation layer would assure that no
collision occurred by turning the robot away from the obstacle. Simultane-
ously, the continuously emitted call from the goal forced the robot to turn in
the direction of the desired path. The conflict of the two motivations results
in taking the first free turn toward the desired direction. If the path to the
goal is completely blocked, the robot abandons it after a certain time period
in order to prevent endless oscillation.

10.5 Summary

The addition of the switchboard allows for implementing a general graph
with dynamic links using a linear number of connections established at com-
pilation time. The graph is capable of representing any physical topology the
robot might encounter. Previously described localization and goal-directed
navigation algorithms apply directly to this augmented graph structure.
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Figure 10.9: A trace of execution of the shortest path to the nearest
corridor. Two paths are available from the robot’s starting position, one
of which is shorter topologically, the other physically. Through the use
of landmark length summation, the robot properly chooses the shortest
physical path, rather than the topologically shorter but physically longer

path.
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Chapter 11

Related Biology

The issues of navigation and spatial modeling in insects, animals, and people
have long been studied by biologists  and psychologists. A large body of
experimental results and associated theories exists in those fields. A review
of the related literature reveals a number of findings which are potentially
applicable to the related navigation and representation problem in robotics.
This chapter presents a brief review of such biological data.

11.1 The Topological Versus Metric Dilemma
in Biology

A cognitive map is a generic term used by psychologists for the represen-
tation of spatial information. The psychological literature is divided on the
issue of topological versus metric spatial representations. Studies presenting
a variety of objects and testing response time show that adults are certainly
capable of reconstructing Euclidian distance and constructing metric maps.
However, these processes seem to take time and are more costly than topo-
logically based tasks. It is certain that sufficient information is gathered
and recorded to make metric inference possible. The computation does not
seem to be performed routinely, though, but rather based on need. One hy-
pothesis supposed that metric properties are results of inferential procedures
[McNamara 89]. Other data show that roughly metric representations
tend to be distorted based on local feature density and importance. Using
a qualitative representation allows for a simplified matching algorithm for
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localization within the world. Additionally, a convenient choice of a repre-
sentation, such as a graph, will yield some of the topological information at
no cost (e.g. adjacency and containment).

The nature of the representation determines the type and number of
landmarks required for localizing. In a qualitative representation, an object
can be remembered as being proximate to a landmark, which defines it within
a rough circle around that landmark. On the other end of the spectrum, the
position of the object can be computed precisely from the known locations of
three landmarks. The question, as before, is “How much metric information
is recorded?” A body of psychological test data points toward topological
spatial representations in infants. These studies are especially interesting for
testing the limits of qualitative representations. If it is indeed found that
most spatial information in infants is qualitative, the belief in the necessity
of analytical information will be weakened.

[Piaget and Inhelder 67] proposed, and later research supported, the
hypothesis that early spatial knowledge (preschool years) is topological in
nature. While spatial knowledge of that period is believed to be fundamen-
tally non-metric, it relies on the presence of landmarks. More specifically,
the landmarks must be close, so that the child can form relative distance
relations among them [Newcombe 88]. This introduces a paradox: while
children do not seem to record metric information, they must be using it to
form relations between landmarks.

A possible solution lies in an abundance of landmarks, which allows for
increased accuracy of localization even if fuzzy, rough metric relations are
used. Given a large number of landmarks, a point can be found based on its
relative rather and absolute distance. What results is a relational network.
Psychological studies show that human spatial memory may be organized in
this way [Sadalla 88].

The qualitative versus quantitative dilemma is ubiquitous in both biology
and robotics. The advantages and disadvantages of using one approach over
the other are common to both fields. A compromise utilizing the benefits of
both representations appears to be the most optimal solution. A topological
model containing relevant quantitative information is the favored hypothesis
of biological studies, as well as the representation of choice in many path
planning mobile robot systems. The approach described in this thesis used
such a representation.
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11.2 Bats, Bees, Birds, and Rats

11.2.1 Bats

Bats are known for their extremely accurate ability to navigate and avoid
obstacles using echolocation with multiple-frequency sonar data. Considering
that bat habitats are very crowded, their ability to extract useful information
from a multitude of available echoes indicates very clever, if not complex,
sensory apparati.

Studies have shown that bats construct cognitive maps of the known en-
vironment. The existence of these maps was tested by allowing bats to learn
a particular environment containing suspended wires. If the wires are unex-
pectedly removed, the bats continue to navigate around, as if they continue
to be present [Gallistel 89)].

This behavior indicates the maintenance of some sort of an environment
representation. Additionally, it shows the animal’s dependence on the repre-
sentation over the stimuli in the environment. Analogous experiments were
performed in monkeys. When a treat is hidden in one of many available
boxes, the monkey retrieves it readily if he witnessed the hiding process.
Next, if the boxes are shuffled around, the monkey still tries the location of
the original box, rather than the box itself [Gallistel 80].

11.2.2 Bees

The behavior of bees has been intriguing biologists, behaviorists, and ethol-
ogists for centuries. Bee hives represent by far the most complex animal
social organization, second only to human societies [Gould 82]. As such,
they have been objects of many controlled studies.

The largest portion of a hive consists of nectar gatherers. These bees
employ what appear to be sophisticated navigational techniques which allow
them to depart far from the hive, search for and gather food, and then return
home on the most direct available path. This behavior has coined the term
“beeline.”

Experiments have shown that bees use a relatively simple mechanism for
locating goals, based on proximal landmarks, coupled with global references,
such as the compass bearing and the polarization of sunlight. It appears
that bees are capable of utilizing both route-specific information, such as
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sequences of landmarks, as well as cognitive maps [Gould 87]. They tend
to prefer absolute references, such as the position of the sun, but in the
absence of those will successfully utilize relative landmarks [Winston 87].
Bees are able find a direct path home from an arbitrary location within a
known terrain. This is exactly to be expected if they utilize internal maps
of the environment. They are capable of utilizing polarized light, color,
patterns, olfactory and magnetic information for navigation.

11.2.3 Birds

Birds provide interesting examples of redundant systems of simple naviga-
tional mechanisms. Studies of migratory birds show that they are equipped
with innate maps of star patterns and seasonal directional preferences [Kre-
ithen 83]. Homing pigeons use an entire repertoire of navigational tech-
niques. In order of preference, they have at their disposal strategies using
the polarization patterns of the sun, the magnetic field of the earth, wind di-
rection, olfactory cues, and possibly ultrasound and other as yet unexplored
sensory modalities.

11.2.4 Rats

Most interesting data have been gathered from rat experiments. Internal
representations have been tested on rats in maze-running experiments. After
allowing rats to familiarize themselves with a maze, the length of some corri-
dors was altered. The rats ignored their sensory input and ran into the walls
of the shortened corridors, and stopped before the end of the lengthened
ones, at locations corresponding to their previous length [Gallistel 80].

In experiments with rotated radial mazes, rats enter already sampled arms
without realizing the redundancy of their actions. This evidence points to-
ward a metric representation of space, utilizing absolute angles and distances,
as opposed to a topological representation relying on adjacency relations. In
order to establish global references, the rats used external landmarks avail-
able in the environment.

A more challenging experiment allowed the rats to learn a maze and then
tested the rats in a forced detour experiment. The rats were able to find
alternate as well as short cut routes to the goal. Most . interestingly, they
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succeeded in doing so in the dark, when they could not rely on any visible
landmarks.

One of the most famous rat navigation experiments showed that even
when given perceptible sensory features, animals seem to prefer to find the
goal using the cognitive maps they have developed [Morris, Garrud, Rawl-
ins, and O’Keefe 82]. The experiment involved placing a rat into a circular
vat of opaque liquid and allowing it to locate a submerged platform. In sub-
sequent trials, even if the platform was moved to a new but visible location,
the rat preferred to locate it based on previously established landmarks.

Previously thought of as primitive, insect and animal spatial representa-
tions have proven to be very well adapted to their navigational tasks. Elabo-
rate sensory systems are designed for functional redundancy. Special-purpose
computational hardware appears to exist for various routine tasks, such as
position and angular displacement from a reference point. Both topological
and metric information is represented and accessible.

11.3 Models of Spatial Memory
11.3.1 Hierarchical Models

The impressive efficiency observed in the navigation performance of biologi-
cal systems has lead to various speculations about the way spatial memory is
organized. Many proposed models of spatial memory share features in com-
mon with models of semantic memory [Sadalla 88]. The main similarity
is their hierarchical nature. In a model of semantic memory proposed by
[Quillian 67] concepts are organized along ascending levels of a hierarchical
graph. Each level in the representation corresponds to appropriate semantic
attributes. Analogous models of spatial memory were proposed, in which
locations (based on their position relative to known landmarks) are clustered
based on regions. Relations between regions are established on higher levels
of the spatial hierarchy. Again analogous to semantic networks, the models
of hierarchical spatial networks were tested by measuring a person’s response
time in establishing relationships between members of equal or different lev-
els. Experiments have included tests on spatial layouts of objects, as well
as locations of objects on maps [McNamara, Hardy and Hirtle 89]. In
spite of the absence of any physical and perceptual boundaries in the spatial
stimuli, region boundaries were assigned by the viewer. The reported latency
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in object and location recall correlated positively with the assumed spatial
hierarchy.

11.3.2 Deutsch’s Topological Model

Based on rat navigation experiments, Deutsch proposed a purely topological
model of spatial representation [Gallistel 80]. The method represents loca-
tions in the world as nodes in the graph connected by appropriate adjacency
links. The animal is assumed to be localized by always having several such
locations in view. Each perceived location can serve as a reference point. The
rat is assumed to align with and head toward the most desirable location.
The desirability of location is determined by motivation which is propagated
throughout the graph. The motivation is the highest at the goal, and the rat
performs gradient descent search to reach it.

The weakness of the approach lies in its purely topological nature. Bi-
ological studies have shown that the rat’s representation of familiar spaces
are more Euclidian or metric, than topological. More specifically, rats seem
to utilize the metric qualities (such as distances and angles) of their internal
representations over topological ones, when the two are in conflict.

11.3.3 Zipser’s Model

The hippocampus is the area of the brain strongly associated with memory
and spatial learning. It has been shown to contain so-called “place cells”
or neurons which fire in relation to the location of the animal in the known
environment [Zipser 86]. Conversely, the area of the environment that
corresponds to the firing cell is called the “place field” of that neuron. If a
place field is altered through reorganizing landmarks or removing them, the
neuron no longer responds to it. Hippocampal lesions dramatically impair
learning and memory.

Zipser presents a computational model of hippocampal place fields with
the goal of biological plausibility. His model relates the configuration of distal
landmarks in the environment to the location, size and shape of place fields
[Zipser 86]. A model of a location is analogous to a radial proximity sensor
signature. The purpose of the model is to match locations in the world
with an internal representation of landmarks. A two-layer neural network
is used for this task. Zipser acknowledges that purely metric signatures do

109



not correspond to the way landmarks are truly selected, at least as shown
in studies with rats. In his model, landmarks can consist of both distance
relations between perceived objects, and relations between the observer and
the objects.

Zipser suggests incorporating direction information into place fields to aid
goal-oriented navigation. Such oriented view fields have been found in rat
hippocampuses.

The problem that arises with this type of spatial model is that of reso-
lution. It is clearly impossible to have a unique field view for every place
in the environment. Consequently, some process of abstraction takes place,
which is equally difficult to analyze as the landmark selection process. Hav-
ing selected particular locations as salient, the navigating individual or robot
is almost never at the exact location of the corresponding place field. This
further complicates the matching scheme. Without an absolute direction
reference, the process becomes quite complex.

11.3.4 Global Versus Distributed Neural Models

The representational dichotomy carries into the neural model community as
well. A direct translation of landmark locations to specific neurons corre-
sponds to many models of spatial maps. Such representation directly pre-
serves the spatial topological layout in the structure of the neuronal network.

Neurophysiological data gathered from rats seems to indicate a distributed
representation on a still lower level. Even the individual landmarks are dis-
tributed. Rather than having specific neurons or network patches correspond
to particular locations, the entire hippocampal network participates in rep-
resenting various aspects of the mapped region [Eichenbaum and Cohen
88]. Place fields appear to be distributed evenly around the mapped envi-
ronment. Often, a single neuron was found to have multiple place fields.

The neurophysiological findings indicate that while locations of external
stimuli are mapped topographically onto the primary sensory areas (i.e. the
retina), egocentric maps are not projected onto the hippocampus.

The distributed neuronal evidence is in accordance with parallel dis-
tributed models of neural processing [McClelland and Rumelhart 86).
[Eichenbaum and Cohen 88] point out their advantage: such a distributed
representation of space lends the system additional generality. Such a sys-
tem can store a variety of relationships, rather than being limited to spatial
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modeling.

11.4 Summary

Most animals, including humans, spend much of their waking time in transit
[Waterman 89] from one place to another. It comes as no surprise that
biological systems for spatial modeling and goal-oriented navigation have
evolved to perform with impressive robustness.

A review of biological data shows that insects, animals, and people use
cognitive maps as internal representations of spatial information. The maps
have been shown to contain both topological and metric information. Most
studies agree on a similar model of landmark-based spatial layouts augmented
with distance and rotational angle information. The cognitive maps corre-
spond to the environmental maps constructed and used by mobile robots.
Like many biological and robotic systems, the robot described in this work
utilizes a combination of qualitative and quantitative information in order to
optimize various forms of task-specific computation.

Within the goal of neural feasibility, spatial representation models have
been mapped to networks of neurons. The models vary in the level of dis-
tributedness, but they all share a common, neurally-inspired decentralized
nature. It is precisely this distributed nature that is being explored in the
navigation approach described in this thesis.
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Chapter 12

Conclusion and Future Work

12.1 Directions for Future Work

A variety of possible improvements as well as direction for future study are
described. Some relate to the details of the algorithm, while others address
more global issues of the approach.

12.1.1 Fine Tuning the Representation

The map learning algorithm can be further improved by the addition of a
“usefulness” measure for each node in the graph. The usefulness would be
increased with each traversal through the node, and would decay with time.
Assuming the robot is used for a task which requires repeated traversals of
many different locations in the environment (such as a delivery task or plant
watering), the usefulness measure will isolate the most commonly traversed
areas of the graph. Nodes which decay past a certain threshold can be
assumed to be either on circuitous paths, or incorrectly allocated in the first
place.

A garbage collection algorithm can then be added to the network, which
would continuously scan the graph for “useless” nodes. These would be
removed from the graph through a process of deallocation and graph com-
paction.
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12.1.2 Testing Generality

Generality is one of the strengths of the map-learning and path planning ap-
proach presented in this thesis. The algorithm expects landmarks as inputs,
regardless of their type. It is designed for robust functionality in spite of an
impoverished as well as an inaccurate sensory system. A possible direction of
future research would be to apply the algorithm on a system with a greater
sensor variety. In a system with a wealth of sensory data the landmarks can
be characterized with more attributes. Increased landmark descriptors would
generate more landmark types which would, in turn, simplify or eliminate
many localization ambiguities.

12.1.3 Adding Reasoning

The method described here is based on distributed topological information.
However, with the use of the available geometric information, in the form
of rough position estimates, new topological data can be obtained through
making geometric inferences. This is precisely the idea behind short cuts.
If each landmark in the graph has some geometric range of absolute po-
sitions associated with it, a rough comparison can be performed between
unconnected nodes in the graph. Discovering physical proximity yields new
neighborhood information. A full maze-searching algorithm, which is what
the boundary-tracing approach is based on, is guaranteed to find all topolog-
ically connected locations. Alternative, the information can be inferred, and
then confirmed through physical trials.

12.1.4 Optimizations

The object code controlling the robot is notably small. A network of 10
nodes took up 51K bytes. The division between code and data is blurred
since the graph representation, which comprises most of the code, is actually
data. It is important to note that there is not separate environment learning
and path finding engine. All of the reasoning is contained in the graph itself.

It would be interesting to test the system in a variety of typical office
environments in order to obtain an estimate of the average generated graph
size. Next it would be beneficial to compare the size of the produced code to
that of traditional systems with similar applications.
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12.1.5 Achieving True Parallelism

A natural extension to this work in transferring the distributed system into
truly distributed hardware, in order to properly measure its parallel perfor-
mance. An extreme case of distributedness would be to implement a system
of interacting physical agents which, as a collective, represent the global world
model. Each agent can store a piece of the network, or even a single land-
mark. This would allow for simple, computationally light robots, to learn
large, complex spaces, and navigate within them. Communication is the
main problem in such a system. Given a method for message-passing among
agents, it would be possible to test the map construction and goal-directed
navigation on a fully distributed system.

12.2 The Contribution

This thesis has addressed a number of issues relevant to mobile robot navi-
gation and path planning. Emphasis was placed on the following:

e distributed versus global representation,

e qualitative versus quantitative computation

qualitative versus quantitative representation,
e procedural versus declarative representation,
o design of emergent behaviors,

¢ dynamic versus static landmark matching,

¢ minimizing and simplifying communication.

The primary goal of this research was to explore a parallel distributed ap-
proach to spatial learning and navigation. The approach emphasized qualita-
tive computation and representation as an alternative to cartesian or metric
data manipulation. Rather than focusing on a portion of the goal-oriented
navigation problem, such as path planning, a complete system was imple-
mented which combines interrelated solutions to collision-free navigation,

114



landmark detection, map building, and path planning. The system is con-
structed as a hierarchy of three layers of competence.

The lowest layer combines simple, intuitive rules to obtain robust emer-
gent collision-free boundary-tracing behavior. As an alternative to less intu-
itive approaches, this method employed a combination of cooperating reflex-
like rules. The rules were designed based on a simple but sufficient functional
sensor characterization. They were added to the system incrementally thus
preserving tractability. Each of the rules was triggered by mutually exclusive
environmental conditions which eliminated the need for explicit arbitration
among behaviors. Such a simple interaction scheme was useful for incremen-
tal testing of the robot’s performance.

The middle layer in the competency hierarchy utilizes the boundary-
tracing feature of the low-level navigation level to extract features in the
environment. The robot monitors its own motion to find landmarks in the
environment. Landmark types were selected as large, permanent, robustly-
detectable environmental features such as walls and corridors. Since the land-
mark set is very sparse, landmark disambiguation is accomplished through a
limited use of context (expectation) and a very rough position estimate.

In contrast to static landmark detection approaches which use model
matching, this method employed an implicit, procedural representation of
landmarks. The method is based on continuous updating of confidence lev-
els associated with features detected as the robot is moving. The landmark
detection layer utilizes the nature of the boundary-tracting layer bellow, but
does not explicitly communicate with it. Both of the procedural methods
employed for low-level navigation and landmark detection are sensor inde-
pendent and are easily portable to other proximity sensor systems.

The top layer in the hierarchy uses the detected landmarks to construct a
distributed map. The approach utilizes an undirected cyclic graph as a uni-
versal embedding for any physical topology the robot might encounter. Since
the topology of the graph is fixed at compilation, a method for embedding
the graph into a linear list was presented. The structure of the environment,
coupled with the nature of the navigation algorithm, were used to simplify
the necessary connectivity of the graph, which was effectively bounded to be
linear in the number of nodes.

The graph is distributed in that each node in it is a concurrently acting
behavior representing a particular landmark in the world. The reasoning en-
gine is embedded into the spatial representation. The parallel representation
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allows for constant time localization and linear time shortest path finding.
Communication and goal-orientation is performed through message broad-
casting and spreading of activation through the graph. This method propa-
gates globally optimal direction information to every node in the graph. Con-
sequently, the robot uses only local information for a globally optimal path
selection. Additionally, replanning is only required when the goal changes.
The method scales well, due to the parallel localization and path finding
algorithms, as well as the overall small implementation.

Working with a physical robot provided a variety of unexpected challenges
which firmly grounded the emphasis of the research. It required the project
to proceed by constantly satisfying both the top-down constraints of the top-
level goal, and the bottom-up limitations of the physical implementation.

The research described in this thesis explored an alternative approach
to goal-oriented navigation and showed a possible direction of research or-
thogonal to what is considered to be the classical method. The described
approach may have biological implications and be better suited for certain
mobile robot applications.

116






Bibliography

[Angle 89] “Genghis, a Six Legged Autonomous Walking Robot”, Colin M.
Angle, MIT S.B. Thesis in Electrical Engineering and Computer Science,
March 1989.

[Anooshian 88] “Places Versus Procedures in Spatial Cognition: Alter-
native Approaches to Defining and Remembering Landmarks”, Linda J.
Anooshian, British Journal of Developmental Psychology, 1988: 6, 389-390,
The British Psychological Society.

[Arkin 89] “Towards the Unification of Navigational Planning and Reactive
Control”, Ronald C. Arkin, AAAI Spring Symposium on Robot Navigation
Working Notes, March 1989, 1-5.

[Arkin 87] “Motor Schema Based Navigation for a Mobile Robot: An Ap-
proach to Programming by Behavior”, R. C. Arkin, Proceedings of the 1987
IEEE International Conference on Robotics and Automation, 264-271.

[Braunegg 90] “MARVEL: A System for Recognizing World Locations with
Stereo Vision”, David J. Braunegg, MIT Artificial Intelligence Lab Technical
Report 1229, April 90.

[Brooks 90] “The Behavior Language; User’s Guide”, Rodney A. Brooks,
MIT Artificial Intelligence Lab Memo, to appear, 1990.

[Brooks 89] “A Robot that Walks; Emergent Behavior from a Carefully
Evolved Network”, Rodney A. Brooks, Neural Computation, 1:2.

[Brooks 87] “A Hardware Retargetable Distributed Layered Architecture
for Mobile Robot Control”, Rodney A. Brooks, Proceedings 1987 IEEE Inter-
national Conference on Robotics and Automation, Raleigh, NC, April 1987,
106-110.

117



[Brooks 86] “A Robust Layered Control System for a Mobile Robot”, Rod-
ney A. Brooks, IEEE Journal of Robotics and Automation, RA-2, April 1986,
14-23.

[Brooks 85] “Visual Map Making for a Mobile Robot”, Rodney A. Brooks,
Proceedings of the 1985 IEEFE International Conference on Robotics and Au-
tomation, March 1985, 824-829.

[Brooks 83] “Solving the Find-Path Problem by Good Representation of
Free Space”, Rodney A. Brooks, IEEE Transactions on Systems, Man and
Cybernetics, Vol. SMC-13, No. 3, April 1983.

[Brooks and Connell 86] “Asynchronous Distributed Control System for
a Mobile Robot”, R. A. Brooks and J. H. Connell, SPIE’s Cambridge Sym-
posium on Optical and Opto-Electronic Engineering Proceedings, Vol. 727,
October 1986.

[Brooks and Flynn 89] “Robot Being”, Rodney A. Brooks and Anita M.
Flynn, NATO Workshop on Robotics and Biological Systems, Tuscany, Italy,
July 1989.

[Canny and Donald 87] “Simplified Voronoi diagrams”, John F. Canny
and Bruce Donald, Proceedings of the 28th IEEE Symp. FOCS, October
1987.

[Chatila and Laumond 85] “Position Referencing and Consistent World
Modeling for Mobile Robots”, R. Chatila and J. Laumond, Proceedings of the
1986 IEEE International Conference on Robotics and Automation, March
1985.

[Ciholas 88] “A Dual-Processor Vision System for Real-Time Stereo and
Motion”, Michel E. Ciholas, MIT S.M. Thesis in Electrical Engineering and
Computer Science, June 1988.

[Connell 89] “A Colony Architecture for an Artificial Creature”, J. H. Con-
nell, MIT Artificial Intelligence Lab Technical Report 1151, October 1989.

118



[Connell 88] “Navigation by Path Remembering”, J. H. Connell, SPIE 1988
Mobile Robots III Proceedings, November 1988.

[Connell 87] “Creature Design with the Subsumption Architecture”, J. H.
Connell, IJCAI-87 Proceedings, Vol. 727, October 1987, 77-84.

[Crowley 85] “Dynamic World Modeling for an Intelligent Mobile Robot
Using a Rotating Ultra-Sonic Ranging Device”, J. L. Crowley, Proceedings
of the 1985 IEEFE International Conference on Robotics and Automation, St.
Louis, MO, March 1985.

[Drumbheller 87] “Mobile Robot Localization Using Sonar”, M. Drumbeller,
IEEE Transactions on PAMI, Vol. PAMI-9, No. 2, March 1987.

[Durrant-Whyte and Leonard 89] “Navigation by Correlating Geometric
Sensor Data”, Hugh F. Durrant-Whyte and John J. Leonard, IEEE/RSJ
International Workshop on Intelligent Robots and Systems, Tsukuba, Japan,
September 4, 1989, 440-447.

[Eichenbaum and Cohen 88] “Representation in the Hippocampus: What
Do Hippocampal Neurons Code?”, Howard Eichenbaum and Neal J. Cohen,
Trends in Neuroscience, Vol 11, No. 6, 1988.

[Eichenbaum, Wiener, Shapiro, and Cohen 89] “The Organization of
Spatial Coding in the Hippocampus: A Study of Neural Ensemble Activity”,
H. Eichenbaum, S. I. Wiener, M. L. Shapiro, and N. H. Cohen, The Journal
of Neuroscience, 9(8):2764-2775.

[Elfes 86] “A Sonar-Based Mapping and Navigation System”, Alberto Elfes,
Proceedings of the 1986 IEEFE International Conference on Robotics and Au-
tomation, February 1986.

[Everett, Gilbreath, and Bianchini 88] “Environmental Modeling for a

Mobile Sentry Robot”, H. R. Everett, G. A. Gilbreath, and G. L. Bianchini,
NOSC Technical Document 1230, January 1988.

119



[Faverjon 84] “Obstacle Avoidance Using an Octree in the Configuration
Space of a Manipulator”, Bernard Faverjon, Proceedings of IEEE Conference
on Robotics and Automation, 504-512, March 1984.

[Flynn 88] “Combining Sonar and Infrared Sensors for Mobile Robot Nav-
igation”, Anita M. Flynn, International Journal of Robotics Research, De-
cember 1988.

[Flynn 85] “Redundant Sensors for Mobile Robot Navigation”, A. M. Flynn,
Massachusetts Institute of Technology AI Lab Technical Report 859, Septem-
ber 1985.

[Flynn, Brooks, Wells, and Barrett 89] “Squirt: The Prototypical Mo-
bile Robot for Autonomous Graduate Students”, Anita M. F lynn, Rodney
A. Brooks, William M. Wells, and David S. Barrett, MIT AI Memo 1 120,
July 1989.

[Gallistel 89] “Animal Cognition: The Representation of Space, Time and
Number”, C. R. Gallistel, Annual Review of Psychology 1989, Vol 40, Palo
Alto, California, 155-189.

[Gallistel 80] “The Organization of Action: A New Synthesis”, C. R. Gal-
listel, Lawrence Erlbaum Associates, Hillsdale, New Jersey.

[Giralt, Chatila and Vaisset 83] “An Integrated Navigation and Motion
Control System for Autonomous Multisensory Mobile Robots”, G. Giralt, R.

Chatila and M. Vaisset, First International Symposium on Robotics Research,
M. Brady and R. Paul (eds.), MIT Press, Cambridge, MA, 1983.

[Gould 87] “Flower-shape, Landmark, and Locale Memory in Honeybees”,
James L. Gould, Neurobiology and Behavior of Honeybees, R. Menzel and A.
Mercer, eds., Springer Verlag, 1987.

[Gould 82] “Ethology: The Mechanisms and Evolution of Behavior”, James
L. Gould, W. W. Norton and Company, New York, 1982.

120



[Grimson and Lozano-Pérez 87)] “Localizing Overlapping Parts by Search-
ing the Interpretation Tree”, W. E. L. Grimson and T. Lozano-Pérez, IEEE
Transactions on PAMI, Vol. PAMI-9, No. 4, July 1987.

[Horswill and Brooks 88] “Situated Vision in a Dynamic World: Chasing
Objects”, AAAI-88, St. Paul, MN, August 1988, 796-800.

[Kender and Leff 89] “Why Direction-Giving is Hard: The Complexity
of Linear Navigation by Landmarks”, John R. Kender and Avraham Leff,
AAAI Spring Symposium on Robot Navigation Working Notes, March 1989,
38-42.

[Khatib 86] “Real-Time Obstacle Avoidance for Manipulators and Mobile
Robots”, Oussama Khatib, The Internation Journal on Robotics Research,
Vol. 5, No. 1, Spring 1986.

[Kreithen 83] “Orientational Strategies in Birds”, Melvin L. Kreithen, Be-
havioral Energetics: The Cost of Survival in Vertebrates, Aspey and Lustick,
eds., Ohio State University Press, 1983.

[Kuc and Di 86] “Intelligent Sensor Approach to Differentiating Sonar
Reflections From Corners and Planes”, R. Kuc and Y. Di, International
Congress on Intelligent Autonomous Systems Proceedings, Amsterdam, The

Netherlands, 1986.

[Kuc and Siegel 87] “Physically Based Simulation Model for Acoustic
Sensor Robot Navigation”, R. Kuc and Y. Di, IEEE Transactions on PAMI,
1987.

[Kuipers 87] “A Qualitative Approach To Robot Exploration and Map
Learning”, Benjamin J. Kuipers, AAAI Workshop on Spatial Reasoning and
Multi-Sensor Fusion, October 1987.

[Kuipers 79] “Commonsense Knowledge of Space: Learning from Experi-
ence”, Benjamin J. Kuipers, IJCAI-79 Proceedings, Tokyo, Japan, August
1979, 499-501.

121



[Kuipers and Byun 88] “A Robust, Qualitative Approach to a Spatial
Learning Mobile Robot”, Benjamin J. Kuipers and Yung-Tai Byun, SPIE
Advances in Intelligent Robotics Systems Proceedings, November 1988.

[Letovsky 84] “Interpreting Range Data For a Mobile Robot”, S. Letovsky,
CSCSI-SCEIO Proceedings, London, Ontario, 1984.

[Lockman 88] “Toward an Ecological Conception of Landmarks: A Devel-
opmental Perspective”, Jeffrey J. Lockman, British Journal of Developmental
Psychology, 1988: 6, The British Psychological Society, 381-383.

[Lozano-Pérez 87] “A Simple Motion-Planning Algorithm for General Robot
Manipulation”, Tomaés Lozano-Pérez, IEEE Journal of Robotics and Automa-
tion, Vol. RA-3, Mo. 3, June 1987.

[Lozano-Pérez and Wesley 79] “An Algorithm for Planning Collision-
Free Paths Among Polyhedral Obstacles”, Tomds Lozano-Pérez and Michael
A. Wesley, Communications of the ACM October 1979, Volume 22 No. 10.

[Lozano-Pérez 81] “Automatic Planning of Manipulator Transfer Move-
ments”, Tomdas Lozano-Pérez, IEEE Transactions on Systems, Man, and
Cybernetics, Vol. SMC-11, No. 10, October 1981.

[Mataric 90] “Environment Learning Using a Distributed Representation”,
Maja J Mataric, Proceedings of 1990 IEEE International Conference on
Robotics and Automation, May 1990.

[Mataric 89] “Qualitative Sonar Based Environment Learning for Mobile
Robots”, Maja J Mataric, SPIE Mobile Robots IV Proceedings, November
1989.

[Mataric and Brooks 90] “Learning a Distributed Map Representation
Based on navigation Behaviors”, Maja J Mataric and Rodney A. Brooks,
Proceedings of 1990 USA-Japan Symposium on Flezible Automation, June
1990.

122



[McClelland and Rumelhart 86] “Parallel Distributed Processing”, James
L. McClelland and David E. Rumelhart, eds., MIT Press, Cambridge, Mas-

sachusetts.

[McNamara 89] “Mental Representations of Spatial and Nonspatial Rela-
tions”, Timothy P. McNamara, AAAI Spring Symposium on Robot Naviga-
tion Working Notes, March 1989, 51-52.

[McNamara, Hardy and Hirtle 89] “Subjective Hierarchies in Spatial
Memory”, Timothy P. McNamara, James K. Hardy and Stephen C. Hir-
tle, Journal of Ezperimental Psychology: Learning, Memory, and Cognition
1989, Vol. 15 No. 2, 211-227.

[Moravec 88] “Sensor Fusion in Certainty Grids for Mobile Robots”, Hans
P. Moravec, AI Magazine, 9:2, Summer 1988, 61-74.

[Moravec 83] “The Stanford Cart and the CMU Rover”, IEEE Proceedings,
Hans P. Moravec, Vol. 71, No. 7, July 1983, 872-884.

[Moravec 81] “Rover Visual Obstacle Avoidance”, IJCAI-7 Proceedings,
Hans P. Moravec, 1981.

[Moravec and Cho 89] “A Bayesian Method for Certainty Grids”, Hans P.
Moravec and Dong Woo Cho, AAAI Spring Symposium on Robot Navigation
Working Notes, March 1989, 57-60.

[Moravec and Elfes 85] “High Resolution Maps From Wide Angle Sonar”,
Proceedings of the 1985 IEEE International Conference on Robotics and
Automation, Hans P. Moravec and Alberto Elfes, St. Louis, MO, March
1985.

[Miiller and Wehner 88] “Path Integration in Desert Ants, Cataglyphis
Fortis”, Martin Miiller and Riidiger Wehner, Proceedings Natural Academy
of Sciences, 1988.

[Newcombe 88] “The Paradox of Proximity in Early Spatial Representa-
tion”, Nora Newcombe, British Journal of Developmental Psychology, 1988:

123



6, The British Psychological Society, 376-378.

[Payton 88] “Internalized Plans: a representation for action resources”,

Workshop on Representation and Learning in an Autonomous Agent, Novem-
ber, 1988.

[Piaget and Inhelder 67] “The Child’s Conception of Space”, J. Piaget
and B. Inhelder, New York, Norton.

[Pick, Montello and Somerville 88] “Landmarks and the Coordination
and Integration of Spatial Information”, Herbert L. Pick, Jr., Daniel R. Mon-

tello, and Susan C. Somerville, British Journal of Developmental Psychology,
1988: 6, The British Psychological Society, 372-375.

[Polaroid 87] “Polaroid Ultrasonic Ranging System Handbook”, Polaroid
Corporation, Application Notes and Technical Papers, 1987.

[Presson and Montello 88] “Points of Reference in Spatial Cognition:
Stalking the Elusive Landmark”, Clark C. Presson and Daniel R. Montello,
British Journal of Developmental Psychology, 1988: 6, The British Psycho-
logical Society, 378-381.

[Sadalla 88] “Landmarks in Memory”, Edward K. Sadalla, British Journal
of Developmental Psychology, 1988: 6, The British Psychological Society,
386-388.

[Sarachik 89] “Visual Navigation: Constructing and Utilizing Simple Maps
of an Indoor Environment”, Karen B. Sarachik, MIT Artificial Intelligence
Lab Technical Report 1113, March 1989.

[Schone 84] “Spatial Orientation; The Spatial Control of Behavior in An-
imals and Man”, Hermann Schone, Princeton University Press, Princeton,
New Jersey, 1984.

[Stewart 88] “Multisensor Modeling Underwater with Uncertain Informa-
tion”, W. Kenneth Stewart, Jr., MIT Artificial Intelligence Lab Technical
Report 1143, July 1988.

124



[Viola 90] “Neurally Inspired Plasticity in Oculomotor Processes”, Paul
Viola, Proceedings of the 1990 IEEE Conference on Neural Information Pro-
cessing Systems-Natural and Synthetic, Denver, CO, April 1990.

[Quillian 69] “Semantic Memroy”, M. Ross Quillian, Semantic Information
Processing, Marvin Minsky, ed., MIT Press, Cambridge, MA, 1969, 227-270.

[Waterman 89] “Animal Navigation”, Talbot H. Waterman, Scientific Amer-
tcan Library, New York, 1989.

[Winston 87] “The Biology of the Honey Bee”, Mark Winston, Harvard
University Press, 1987.

[Zipser 86] “Biologically Plausible Models of Place Recognition and Goal
Location”, D. Zipser, Parallel Distributed Processing, Vol 2: Psychological
and Biological Models, Chapter 43, McClelland and Rumelhart, eds., MIT
Press, Cambridge, MA, 433-470.

125






Appendix A: The Relay Switching Mecha-
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Appendix B: The Schematic of the Sonar Pro-

cessor Board
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Ap endix C: A Trace of Shortest-Path Goal-
Dlrected Navigation
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