Technical Report 1233

Dataflow

Computation for
the J-Machine

Ellen Spertus

MIT Artificial Intelligence Laboratory

Tius blank page was inserted to preserve pagination.

Dataflow Computation for the J-Machine

Ellen Spertus

Abstract

The dataflow model of computation exposes and exploits parallelism in programs without
requiring programmer annotation; however, instruction-level dataflow is too fine-grained to be
efficient on general-purpose processors. A popular solution is to develop a “hybrid” model of
computation where regions of dataflow graphs are combined into sequential blocks of code. I
have implemented such a system to allow the J-Machine to run Id programs, leaving exposed
a high amount of parallelism — such as among loop iterations. I describe this system and
provide an analysis of its strengths and weaknesses and those of the J-Machine, along with

ideas for improvement.

This report describes research done at the Artificial Intelligence Laboratory of the Mas-
sachussets Institute of Technology. Support was provided in part by the Advanced Research
Projects Agency of the Department of Defense under contracts N00014-88K-0738 and N00014-
87K-0825, in part by a National Science Foundation Presidential Young Investigator Award,
grant MIP-8657531, with matching funds from General Electric Corporation and IBM Corpo-
ration, and in part by the Advanced Research Projects Agency of the Department of Defense
under Office of Naval Research contract N00014-85K-0124.

Submitted to the Department of Electrical Engineering and Computer Science in May,

1990, in partial fulfillment of the requirements for the Degree of Bachelor of Science.

Acknowledgments

I have received help and encouragement from many people. First, I would like to thank the
members of the MIT Concurrent VLSI Architecture group for their help. Julia Bernard,
Andrew Chien, Stuart Fiske, Waldemar Horwat, John Keen, Richard Lethin, Mike Noakes,
Peter Nuth, Lucien Van Elsen, Debby Wallach, and Scotty Wills have all helped me directly
or indirectly in my work. They are all a great bunch of people. I am especially grateful
to Scotty for getting Id World up on our machines, Mike for his all-around helpfulness, and
Debby and Lucien for helping me with text and graphics formatting.

The members of the Computation Structures Group provided crucial help, generously
sharing their equipment and expertise. I want to specifically thank Jonathan Young for his
general helpfulness and Bradley Kuszmaul for describing his P-RISC research to me. I am
especially grateful to Robert Iannucci, for developing his hybrid system and being willing to
answer my questions, and Jamey Hicks, who got the hybrid system up on the current release
of Id World.

Thanks are also due to Arvind, one of the major forces behind the dataflow group and also
my academic advisor. He has been providing me with encouragement and advice for years, as
well as teaching me about dataflow in 6.847.

I am very grateful to my thesis supervisor and head of the CVA group, Bill Dally. If it
weren’t for his faith in me, his encouragement and advice, his willingness to spend time and
resources on me, and the wonderful working environment he provides, none of this would have
been possible.

I am also grateful to my friend Nate Osgood for letting me bounce ideas off him and
brainstorming with me, as well as for moral support.

Finally, I would like to thank my family. My parents, siblings, and grandparents have
been wonderful role models, and they have unceasingly providing me with love and support.
I am especially grateful to my father, who has given me encouragement he has given me since

as far back as I can remember.

ii

Contents

1 Introduction
1.1 Background vt it it et
17 0 A I
1.1.2 Iannucci’s Hybrid Architecture
1.1.3 TheJ-Machine« o v i i i i i it et et e et et o e ve e
1.2 OVEIVIEW & v v i i v vttt e e e oo e m s it e e e e e e

2 Executing Hybrid Code on the J-Machine
2.1 OVeIVIEW .« v v v i i i i e e e e e e e et e e e e e e e e e
2.2 Data Structures . .« v o v v« v v v v o s e e e e e e e e e e e e e e e e e e
221 Codeblocks . . . v v v v vt i e e e e e e e e e e e e e
222 TheDataStack. ¢ v v v vt i it i et e e et et e oo e e
2.2.3 Frames i i i i i i i e e e e
224 ContinuUations & v v v v o v v ot v it e e e e e e
2.2.5 I-StTuctures . . . v v v v v v v o v v vt e e e e e e e e e e
23 Control Structure & o v v i i e e e e e e e e e e e e s e e e e
2.3.1 Execution Withina Codeblock
232 Procedure Calls. o i i i i i it i e e e e
2.3.3 Loops . . v v it e e e e e e e e e e e e e e e e e
2.4 Conclusion . . . v v i i i e e e e e e e e e e e e e e e e e e e

3 Compilation

3.1 Changes to Machine Code Generation

iii

10
11
11
12
12
13
15
16
16
19
20
26

27

311 LOOPS .« v v v v v vt e e e e e e e e e e e e e e e e e e 30

31.2 Procedure Calls v v v v vttt v e it e e e 30
3.2 Assembling Hybrid Codeo i iii i 31
3.3 Convert Hybrid to ComplexJ v v 33
3.3.1 Labellnstruction« i v v v i ittt 34
3.3.2 Simple Arithmetic Instructions oo 34
3.3.3 Complicated Arithmetic Instructions 35
3.3.4 Movelnstructions ¢ o o v v v v it it e e 35
3.35 TestInstructions - « vt v v v i v ot o it e e e e 37
3.3.6 Continuation Instructions v v o v v v vt vt oo 37
3.3.7 Procedure Linkage Instructionso oo 38
3.3.8 Conclusion c i ittt i e e e e e e 39
3.4 Convert ComplexJtoSimpleJ v ittt i i 42
3.4.1 Converting Literals to Tagged Literals 42
3.4.2 Generating Suspensive Code o i 42
3.4.3 Allocating MDP Registers oo v, 44
3.4.4 Converting to Legal MDP Operandso 44
3.5 Convert Simpleto ASM i 46
3.6 Conclusion v v v v i i e e e e e e e e e e e e e e 47
Analysis 48
4.1 Detailed Benchmark: Factorial 0o 48
41.1 TheDataflow Graph v vttt i i i vttt ee oo v 48
41.2 TheHybrid Code. i ittt v it vt 50
41.3 The MDP Code ¢ i it i i v it e vt aas e oe e a s e 55
414 LoadBalancing ¢t ittt vttt 55
4.1.5 Dynamic Countsttt oot vttt 55
41,6 Throughput« .0 it i e e 57
4.1.7 Conclusion o vt i it it e e e e e e e e e 57
4.2 Fibonaccl . . v v v v v v i e e e e e e e e e e e e e e e e e e e 58
4.3 Loop Parallelization 59

iv

A4 ConclusSion . « v v vttt e et e e e e e e e e e e e e e e e e e e 62

Conclusion 63
5.1 Improving MDP Codettt 64
5.2 Improving Hybrid Code 64
5.3 Strengths and Weaknesses of the J-Machine 65
5.4 Synchronizationon Tokens 66
5.5 Conclusion v it it i e e e e e e e e e e e e e 68
MDP Program Examples 70
Al MDP Codefor Factorial ¢ vt v v v v v it e it et e et e e e e 70
A2 MDP Codefor Fibonacci v v v v v v v vt it v et v ot ot o e e o 76
A3 MDP CodeforLoop Example v v v vt i v v v v v vt i oo oo 84
MDP Library Code 94
B.l GeneralLibrary« c i v i it e e e e e e e e e 94
B.2 I-Structure Routinesottt ettt 101
B3 Loop SUPPOTE - . & o v v vt i et e e e e e e e e e e e e e 104
Source Code 106
C.1 Convert Hybridto Complex J oo v v v vt i i oo 106
C.2 Convert ComplexJtoSimpleJ v 113
C.3 Convert Simple Jto Assembly. oo 124

List of Figures

1-1 A FSM Description of an I-Structure Location 5
2-1 Run-Time Data Structures« ottt it v it v i oo o v 11
2-2 A Pointertoa Codeblock 12
2-3 A Non-Loop Procedure Frameo 13
2-4 An I-Structure Descriptor and Storage 0o 15
2-5 AnI-Structure i i i it e e e e e e 16
2-6 A Statically Unschedulable Codeblock 17
2-7 Scheduling Quanta for Codeblock Example 18
2-8 Snapshots for Codeblock Example 18
2-9 Procedure Linkage Example v e oo 19
2-10 Possible Implementation of an Iteration Descriptor 21
2-11 A Loop Procedure Frame 0ot i i 22
2-12 Tteration Areasand Pointers. i i 23
2-13 Loop Program Example it 23
2-14 Pseudo-Code Produced for Loop Exampleo 24
2-15 Snapshots for Loop Example 25
3-1 Structure of the Id-to-MDP Compiler 28
3-2 New and Modified Compiler Stages oo 29
3-3 A Non-Optimal J-Machine Calling Convention 32
3-4 The Ordering Specified by Successive Function Calls 33
3-5 The Hybrid-to-Complex-J Conversion of an Addition 35
3-6 The Template for Converting Absolute Value. 36

vi

3-7
3-8
3-9
3-10
3-11

4-7
4-8

5-1
5-2
5-3

The Hybrid-to-Complex-J Conversionof a Test-1 37

Transformation of Get-Context v v v v v v v v e e it v v oo oo 40
Transformation of Index-Current-Context 41
Intermediate Code Produced for Suspensive Pseudo-Operands 43
Compiler Register Allocation 45
Id Codefor Factorial v o v v i i it it i i et e e s e e e 49
A Dataflow Graph for Factorial ooy 49
Hybrid Code for Factorial i it it v 52
Scheduling Quanta of Factorial Code 53
Frame Slots Used by Factorial Code 54
Id Codefor Fibonacci v v v v v v v vt i e i e e e e et e et 58
Plot of Ticks for Fibonacci v v v v v v v v i it ettt e e e e e 60
Id Codefor Loop Example. o v v vt ittt i it 61
A Monadic Node Using ETS it 67
A DyadicNode Using ETS o oo v it i i it i e ittt e 67
The Cfuture Handler for ETS o 0 v v vt i i vi i oo 68

vii

41 System Callafor (Saes €).
43 Throughput for Poctottsl

Chapter 1

Introduction

If you can look into the seeds of time,

And say which grain will grow and which will not,

Speak.

— William Shakespeare, Macbeth, Act I, Scene iii, line 58.

This thesis describes a system I designed and implemented to allow programs written
in the dataflow language Id to run on the J-Machine, a massively-parallel general-purpose

computer. The system is functional and includes:

¢ A compiler that recognizes a significant portion of Id and produces J-Machine assembly

code.

e Library routines to provide operating system functions, fault handlers, and language-

specific features like I-structure storage.
e A strategy for aggressive loop parallelization.

I do not directly address the question of how to sequentialize portions of dataflow graphs. For
this, I took advantage of the work done by Ken Traub on program partitioning [Traub 1988]
and Robert Iannucci for his “dataflow / von Neumann hybrid” architecture and compiler
[Tannucci 1988]. With some optimizations, my system simulates Iannucci’s hybrid architec-

ture on the J-Machine. In this document, I describe and justify my approach, detail my

transformations, analyze the results, and present my conclusions about the project and future

research on dataflow computation for the J-Machine.

1.1 Background

A large amount of research has gone into developing and implementing the dataflow model
of parallel computation. In order to exploit the parallelism revealed by dataflow techniques,
special-purpose dataflow machines have been built that are unlike traditional von Neumann
processors, using parallel machine languages and having token and I-structure memory. Be-
cause individual instructions are scheduled dynamically on dataflow processors, this leads
to unnecessarily high run-time overhead. On the other hand, dataflow architectures, with
their per instruction synchronization, are more tolerant than von Neumann machines at tol-
erating latency: If the data dependences allow some computation to be performed while the
previously-executing task is waiting for data, the processor will be kept busy. The motivation
for a hybrid architecture is to combine the latency toleration of a dataflow processor with the
efficiency of a von Neumann processor. Often, enough is known at compile-time to specify a
full ordering of a set of instructions, reducing the amount of run-time scheduling necessary.
Hybrid architectures attempt to take advantage of this knowledge by delineating sequences of
instructions whose order can be pre-determined, combining the exposed parallelism of dataflow
with the efficiency of von Neumann computation.!

While combining instructions into sequential threads theoretically lessens the amount of
run-time parallelism available, it can be more practical in that it minimizes scheduling over-
head and allows the code to run on computers not dedicated to dataflow processing. Ad-
ditionally, even dataflow computers do not attempt to exploit the maximum possible par-
allelism. For example, on Monsoon, a specific invocation of a procedure is generally not
divided among processors but takes place on a single one. Instead, the parallelism comes
from pipelining and from running iterations of one loop concurrently on separate processors
[Papadopoulos and Culler 1990], a feature that is retained by hybrid architectures. In order

to ensure that grouping instructions into threads does not lessen the ability to tolerate latency,

LThis justification of hybrid architectures based on latency toleration is due to ideas in [lannucci 1988,
Chapters 1 and 2}.

we obey “Iannucci’s Injunction” that instructions within a thread may not have unbounded
latency. Instructions with unbounded latency — such as procedure calls and global memory
accesses — cause a thread to suspend, allowing another to execute.

My work includes a compiler back-end to allow dataflow programs to run on the J-Machine,
a general-purpose massively-parallel computer. Although closer to the von Neumann model
than dataflow architectures, the J-Machine has many of the necessary communication and
naming primitives needed for dataflow computation. I built my back-end on top of the Id
compiler developed by the Computation Structures Group at the MIT Laboratory for Com-
puter Science [Traub 1986a), as augmented by Robert Iannucci to produce code for his hybrid

architecture [[annucci 1988]. My system transforms his hybrid code to run on the J-Machine.

1.1.1 Id

Id is a primarily functional language developed in the Computation Structures Group of the
MIT Laboratory for Computer Science for programming dataflow and other parallel comput-
ers. [Nikhil 1988] is a reference for the latest version. All of its features are supported by my
transformations, except for algebraic types, as they postdate Iannucci’s compiler on which

mine is based. A quick overview of pertinent features of the language is presented here.

Types

The only primitive types in Id are booleans, characters, numbers, character strings, and
symbols.2 Additionally, there are four pre-defined type constructors that take one or more

types and create new types:
e array types: (1D_array t), (2D.array t), ...
o list types: (list ¢)
o tuple types: (fo,...,tn)

o function types: (o — t1)

2In the latest version of Id, booleans are not primitive but are defined with algebraic types, which we were
unable to support, as described above.

Id is strongly-typed in that extensive compile-time and run-time type-checking is per-
formed, but users rarely explicitly provide type information. Additionally, Id allows polymor-
phism.

Function Application

The application of function f with arguments ay,...,a, is written:

fa..a,

Id also supports currying: If function f “expects” two arguments, fa, instead of being illegal
as in most languages, returns a function that takes one argument. For example, if plus is
defined as a function that takes two numbers and adds them, plus 3 returns a function that
takes one number as an argument and adds 3 to it. As will be seen later, currying causes

additional overhead in run-time procedure linkage.

I-Structures

One major argument against purely functional languages is their suboptimal efficiency with
arrays. Specifically, it is unnecessarily wasteful to copy an entire array when modifying one
element. Filling in the n elements of a previously-empty array can take O(n?) time and space,
as the entire array is recopied when each element is written. This problem was partially
solved with I-structures, arrays with elements that can only be written to once. After being
written to, reads take place as expected; subsequent writes are a run-time error. Because no
copying is done, filling an array of I-structures takes O(n) time. If a read takes place before
a write, the read is silently deferred until the data is available. This process is illustrated in
Figure 1-1. Out-of-bound accesses to I-structures cause run-time errors. The properties of
I-structures guarantee deterministic behavior in legal programs®. While keeping Id from being
purely functional, they greatly improve its efficiency without harming abstraction. Tuples and
arrays, described above, are implemented as I-structures.

In addition to supporting user types, I-structures are used to create closures for currying

3Here and elsewhere, a legal program is one in which no compile-time or run-time errors occur.

4

Figure 1-1: A FSM Description of an I-structure Location. Originally, an I-structure location
is empty. Reads are silently deferred until data has arrived. Once data has been written,
pending and subsequent read requests can be fulfilled. Writing a location more than once is
a run-time error.

procedure calls. Whenever an argument is applied to a procedure, a check is made whether
the argument supplied is the last one. If so, the procedure is invoked; otherwise, the argument

is added to the I-structure list of arguments and saved into a closure.

Blocks

Blocks in Id provide a mechanism to bind names to values within the block’s body. It is
analogous to Lisp’s let construct, except that, as in all Id constructs, the textual order of the
statements is ignored. A block to compute the surface area of a cylinder, given its radius r
and height h, could be written:

{ face
body
in
2 * face + body }

Pi *x r * 1;
2% Pi*xr=*h

Note that it is not always possible to statically determine the order in which statements
in the “declaration” section of a block will execute. Consider the following example from

[Traub 1989, page 2):

{p=x>0;
a = if p then bb else 3;
b = if p then 4 eolse aa;

aa = a + 5;
bb =b + 6;
c=a+hb

in
c};

If z > 0, the only possible order of evaluation is: p, b, bb, a, aa, ¢. If z < 0, the
expressions must be evaluated in a different order: p, a, aa, b, c. This provides an example of
an Id fragment in which the order of execution of statements cannot be determined at compile-
time. This provides a theoretical limit on compile-time scheduling, beyond any practical limits

based on insufficiently sophisticated compilers, because no compile-time scheduling exists.

Loops

The format of a loop statement is:

{for x <- eIndex do
<statement> ;

<statement>
finally e}

The keyword nezt is provided to refer to the next value of a loop iteration. For example, a

loop to add the first n integers would be written:

{ sum = 0
in
{ for count <- 1 to n do
next sum = sum + count
finally sum }}

The semantics of Id are such that it is possible for multiple iterations of a loop to execute
in parallel. Iannucci’s compiler for the hybrid architecture has loops execute in “parallel”
on a single processor, i.e. statements in the ith iteration may execute before statements in
the jth iteration, as long as data dependences are respected. Inner loops are put in separate
codeblocks and can be spawned to separate processors.

Many years have been spent developing and optimizing an Id compiler for the Tagged-
Token Dataflow Architecture [Traub 1986a], a paper dataflow architecture. This compiler was

the base of Iannucci’s and of my research.

1.1.2 Iannucci’s Hybrid Architecture

Development of hybrid architectures is an active area of research. See [Gaudiot and Bic 1989]
for a summary of recent research in the area. One of the best known hybrid architectures is
the EM-4 being developed at the Electrotechnical Laboratory in Japan [Sakai et al 1989]. I
chose to base my work on Iannucci’s system because of the ease with which I could access his
compiler, developed at MIT, as well as its quality.

Iannucci’s extensions to the Id compiler make use of information available at compile-time
to create scheduling quanta (SQs), sequences of code within which the order is specified at
compile-time. Invocation of a codeblock or procedure takes place on a single processor and
generally consists of many SQs.* When a procedure is invoked, the instructions in the first 5Q
are executed sequentially, suspending at the end of the SQ or if a fault occurs, signifying that
needed data is not ready. The execution of other SQs results from explicit forks.® The length
of scheduling quanta is limited by the level of the compiler’s analysis and by the requirements
of Id. Arguments, local variables, and all but the most ephemeral of temporaries are stored
within a frame allocated when the codeblock is invoked. My implementation for the J-Machine
includes all of these characteristics. Further details about Iannucci’s implementation and
architecture will be provided as needed throughout the document. Henceforth, when I write

“the hybrid architecture,” I mean to refer to Iannucci’s architecture.

1.1.3 The J-Machine

The target of my system is the J-Machine, a massively-parallel MIMD computer based on
the Message-Driven Processor (MDP). Each processor has 260K (4K on chip) of 32-bit-word
memory augmented with 4-bit tags. Tag types include booleans, integers, symbols, and cfu-
tures. Cfutures generate faults on most operations. The MDPs communicate with each other

through a low-latency network by sending messages. When a message arrives at a processor,

*To be exact, it is not always true that a procedure invocation executes on a single processor. More
precisely, a codeblock invocation executes on a single processor. A procedure is usually one codeblock, but
there are exceptions. When interior procedures are lambda-lifted out of a procedure definition, they constitute
separate codeblocks, as do inner loops, so that they can be spawned among processors. Occasionally in the
document, I provide simplified explanations whose exact details are fleshed out later.

8Throughout this document, I use “fork” to mean enabling a continuation on the current processor and
“spawn” for enabling a continuation on another processor.

it is written into the message queue. When the message gets to the head of the queue, its first
word is loaded into the instruction pointer, and a pointer to the base of the message is loaded
into an address register so that subsequent words may be accessed. Execution continues se-
quentially until an explicit suspend instruction. The first J-Machine is expected to be built
within a year and will have thousands of processors. For my research, I used a simulator of
a 32-node J-Machine [Horwat and Totty 1987]. See [Dally et al 1988b] for a more complete

description of the Message-Driven Processor.

1.2 Overview

In Chapter 2, I provide an overview of how the code is executed on the J-Machine, describ-
ing the run-time structures and control structure transformations. Chapter 3 describes my
compiler and how it fits on top of the Id-to-hybrid compiler, as well as showing the code
production templates. Chapter 4 provides benchmarks, including an extended example of
the transformation and execution of a simple factorial program. Chapter 5 is the conclusion,
presenting my retrospective opinions on the project and describing ways in which it could be

improved. The appendices include program examples and source code.

Chapter 2

Executing Hybrid Code on the
J-Machine

The villainy you teach me I will ezecute,
and it shall go hard,
but I will better the instruction.

— William Shakespeare, The Merchant of Venice, Act IIl, scene i, line 76.

Because Id is designed for dataflow processors — its name stands for Irvine Dataflow —
its Tun-time demands are different from those of traditional imperative languages designed
for von Neumann processors. On dataflow architectures, such as the Tagged-Token Dataflow
Architecture and Monsoon, instructions are scheduled individually as soon as the data de-
pendences have been satisfied. It would not be reasonable to attempt to imitate this on a
non-dataflow architecture: When I hand-compiled Id programs onto the J-Machine with such
a strategy, overhead was extremely high. For a typical dataflow instruction, such as plus, with
two sources and two sinks, 20 MDP instructions were executed [Spertus 1989].

One of the major goals of compiling any language is to do as much work as possible at
compile-time, leaving a minimum of work for run-time. Thus before running dataflow code
on a von Neumann processor, the compiler should sequentialize sequences of instructions as
much as possible. In [Traub 1988], a method of sequentializing regions of code into threads,

or scheduling quanta (SQs), is presented. This lessens the amount of run-time overhead

9

considerably; however, it does not reduce it to zero. Because it cannot be determined statically
what order the $Qs must run in — if it were known, the $Qs would already have been combined
— some run-time scheduling is necessary. Specifically, SQs are explicitly forked as soon as
the necessary data might be present. They may begin executing any time thereafter. Within
a SQ, checks are performed to see if necessary data is present. If it is not, the SQ suspends,
to try again once the data is received. Run-time support is necessary for these operations.
In this chapter, I describe the run-time behavior of the programs at a detailed but relatively

high level. I go into lower level detail in the following chapters.

2.1 Overview

Program execution on the J-Machine is based on the same ideas as on the hybrid architecture:

Instructions are grouped into scheduling quanta subject to the following constraints:
1. The program yields the same results as pure dataflow computation.
2. No deadlocks are introduced.
3. An instruction with unbounded latency must not be within a SQ.

Because I work with the scheduling quanta produced by Iannucci’s compiler, I inherit the
assurance that the partitioning yields correct and terminating results [Iannucci 1988, Chapter
4].1 As Iannucci did, I divide all unbounded-latency tasks into multiple phases so that other
tasks can execute between initiation and fulfillment of a request.

When a codeblock is invoked, a contiguous region of memory called a frame is allocated
for its arguments and scratch variables. The frame is given a unique global name. Because
each invocation has its own data area, the same procedure can execute multiple times on one
processor, with execution of the invocations interleaved. After a codeblock starts executing,
it will probably fault on a slot in its frame — i.e. it will look for a value in a specific slot of
the frame, but the data will not be present. In this case, a continuation is created encoding

the code address and is stored into the offending slot. When the data arrives, the data will be

11t is not entirely true that I use the SQ divisions unchanged. As will be discussed in the next chapter,
there are a few cases in which I tweak SQs.

10

Frame of Caller
-]

Frame of Caliee °
0:
1: {empty) b
2: 5
3: true
4: (empty) Continuation List
e

Codeblock

Figure 2-1: Run-Time Data Structures. Slots 1 and 4 of the callee’s frame are empty, signifying
that the corresponding data values have not arrived yet and have not been requested. The
data for slots 0, 2, and 3 have arrived. Slot 0 points to the caller’s frame so that the return
value can be sent there. The data for slot 5 has not arrived. The presence of a continuation
list indicates that instructions in the codeblock have tried to access slot 5. When the data
arrives, the SQs indicated in the codeblock will be restarted.

written into the frame slot and the continuation will be re-enabled. When all of the 5Qs in a
codeblock have successfully completed and any return values have been sent to the caller, the
frame can be freed. These structures are shown in Figure 2-1. The following sections describe

them in more detail.

2.2 Data Structures

2.2.1 Codeblocks

A codeblock consists of one or more scheduling quanta stored contiguously on each processor
on which the procedure might be invoked. Unlike [Horwat 1989], code is distributed at load-
time. The format of a pointer to a codeblock is shown in Figure 2-2. A user-defined tag value,

CB, is used to indicate a pointer to a codeblock.? The low sixteen bits of the descriptor hold

21n this context, “user-defined” means defined by my dataflow system, as opposed to the hardware-specified
tag types on the MDP. The MDP has 9 pre-defined tag types and 4 user-defined types.

11

Codeblock pointer CB | Local address | Frame sizel

Codeblock | SQ1
sQ2

SQN

Figure 2-2: A Pointer to a Codeblock. The user-defined tag CB denotes a pointer to a
codeblock. The low sixteen bits tell how large a frame must be allocated for the codeblock to
execute. The high sixteen bits tell where the codeblock can be found.

the number of words of storage required for each invocation, and the high sixteen bits hold

the address of the first SQ in the codeblock.

2.2.2 The Data Stack

Memory is allocated from a stack, initialized to null cfutures. A cfuture is a MDP data type
on which most instructions fault. Thus, slots are pre-initialized to “empty”. A heap would
be a more efficient representation because memory could be freed and reused, but not enough
time was available to implement one. The three run-time data structures allocated from the

stack are frames, continuations, and I-structures, described in the following sections.

2.2.3 Frames

For a codeblock to execute, it needs a frame, a contiguous block of storage initialized to
null cfutures (i.e. to empty). A pointer to the base of a frame is called a frame descriptor.
Figure 2-3 shows a frame descriptor and a procedure frame. A user-defined tag value, FD,
is used to indicate a pointer to a frame. The low sixteen bits of the descriptor hold the
node number, and the high sixteen bits hold the local address, combining to provide a global
address. Storing the node number in the low sixteen bits provides an efficiency bonus on the

J-Machine as first described in [Horwat 1989, page 68].

12

Local address

FD of caller

I1SD of Argument Chain
unused

wn e

L.ast Argument
[J

[]
First Argument
First Sc:ratch Slot

[]
Last Scratch Slot

Figure 2-3: A Non-Loop Procedure Frame. A user-defined tag, FD, denotes a frame descriptor.
It encodes the unique global address of a frame. The first slot of a frame holds a frame
descriptor indicating where to send return values. The next slot holds the address of the I-
structure chain of arguments. In some cases, the arguments can be passed directly in argument
slots. The remaining slots are used for scratch values during the procedure’s execution.

Slot 0 of the frame holds a frame descriptor telling where to send any return values.
Some subtleties are involved in whether the arguments are passed in argument slots or as
an I-structure chain. I retain Iannucci’s conventions, and the interested reader is referred to
[Tannucci 1988, pages 111-113]. The additional slots present in codeblocks with loops will be
discussed in Section 2.3.3. Except for how I handle loops, my frames are identical to those
used by Iannucci. The base of the frame currently executing is always kept in MDP address
register A2. Taking all frame accesses relative to A2 allows multiple invocations of a procedure

to run on the same processor.

2.2.4 Continuations

When an attempt is made to read an empty frame slot (i.e. a cfuture), a fault occurs whose

handler does the following:

1. Stores a request to restart the SQ when the data arrives.

2. Suspends, in order to let another SQ execute.

13

In producing code, I ensure that at the time of a cfuture fault, the MDP register RO holds a
message indicating where execution should restart. I also take advantage of the MDP’s always
storing the absolute address of the last memory access in the MAR register. This allows the
fault handler to determine which piece of data was missing. The handler allocates a triple

(i.e. three words) from the stack and sets them to the following:

1. A message indicating where execution should restart (taken from RO).
2. The base of the current frame (taken from A2).

3. A pointer to the next continuation (if any) waiting on the faulted location. This is the

old value of the slot.

The address of the triple is tagged as a cfuture and is written into the data location for which
the fault occurred.®> When the data arrives, the slot is checked just before the data is written.
For every continuation present, the indicated message is sent and the continuation freed.t
Because codeblocks execute within one processor, the message is sent from the processor to
itself. J-Machine routing is done in such a manner that this is a cheap operation. Allocating
and filling a continuation after a fault takes 18 cycles. Writing to a frame slot takes 7 cycles

if no continuations are waiting and 8 + 6 x w, if w continuations are waiting.

An Alternate Method for Continuations

I considered an alternate method of keeping track of suspended continuations. Instead of
storing the continuation in a tuple allocated from the stack, the system could immediately
send the message indicating where execution should restart, effectively putting it at the end
of the local message queue. When the message reaches the head of the queue, it is tried again.
If the data has arrived, it executes successfully (or at least until the next fault); otherwise, it
will throw itself on the queue again.

This method has several advantages:

1. It seems to fit more elegantly on top of the J-Machine, taking advantage of the message

queue provided.

3To be precise, a quadruple is sometimes needed instead of a triple, as will be explained in Section 2.3.3.
*Due to the primitive memory management of my system, the locations are freed in concept only.

14

ITAG] Local address

Lower bound

Upper bound
First datum

Second datum
L J
L J
9

Figure 2-4: An I-Structure Descriptor and Storage. An I-structure descriptor includes its type
and a global address that points to a block of storage, holding the bounds and the data.

2. Message suspension executes more quickly.

3. There is no need to check a frame location before writing a value to it.

The disadvantages, however, are major: A SQ could restart and fail many times, using an
unbounded number of machine cycles. Additionally, the MDP message queue could overflow.

For these reasons, I decided not to use this method.

2.2.5 I-Structures

I-structures are defined in Section 1.1.1. To review, they are array-like data structures whose
entries can be written once. Reads before writes are silently deferred. (This shows one of the
reasons high latency toleration is necessary.) I-structures are allocated explicitly by the user
and implicitly for argument chains for procedure calls. Due to time constraints, I-structures
are not handled by my compiler; however, I did develop and test the translation methods that
would be used.

Figure 2-4 shows how I-structure descriptors and storage are implemented. I-structure
descriptors are built analogously to frame descriptors, using the user-defined tag name ITAG.
The low and high bounds of the I-structure are stored at the base of the region of storage,
after which the data appear sequentially.

For a given cell of I-structure storage, there are three possible states, corresponding to the

non-error states in Figure 1-1. The possibilities, and how they are indicated, are:

1. Empty, indicated by a null cfuture.

15

I—/™™_5

——t ot /]

Figure 2-5: An I-Structure. The lower and upper bounds of this I-structure are 5 and 8,
respectively. When a read or write request arrives, a run-time error occurs if the passed-in
offset is out of bounds. If not, the lower bound is subtracted from the passed-in offset, and
the corresponding cell is examined. In this example, data has been written to I[5] and I[7],
there have been no attempts to read or write I[6], and there have been two reads to I[8] that
will be satisfied when the data arrives. Writing to a slot more than once is a run-time error.

2. Waiting for data, indicated by a cfuture whose value points to a local linked list of

continuations needing the data.
3. Full, indicated by a non-future (i.e. the data itself).

The continuations are of the same form as described in Section 2.2.4. An example of an
I-structure is shown in Figure 2-5.

Writing an element of an I-structure takes 20 + 6 x » instructions, where r is the number
of pending requests. The read handler takes 19 instructions if the data is present and 30
if it is not. These times include comparing against the bounds, subtracting off the lower
bound, ensuring that no more than one write is done, and allocating any memory needed for

continuations.

2.3 Control Structure

2.3.1 Execution Within a Codeblock

To see how execution proceeds within a codeblock, let us review the example block from

Section 1.1.1. It is reproduced in Figure 2-6. Consider the possible orders of evaluation:
e Ifz2>0,b—-bboa—aa—ec.
e Ifz<0,a—aa—b—-bb—c

16

def abc x =
{p=x>0;
a = if p then bb else 3;
b = if p then 4 else aa;
aa = a + 5;

bb=b + 6;
c=a+b;
in

c};

Figure 2-6: A Statically Unschedulable Codeblock. It is impossible to determine the order in
which a, b, aa, and bb must be computed without knowing whether z > 0.

Observe that in both cases, b precedes bb, a precedes aa, p is the first calculation, and c is the
last. Using these static dependences, we partition the code into three scheduling quanta, as
shown in Figure 2-7.°

Let us consider the case where z > 0. P is the first SQ to execute. As shown in Figure 2-8,
it computes p then forks A, B, and C, in that order, and suspends. A begins, then suspends,
because bb is needed but not available. B, next in the queue, begins and executes to completion.
When it stores bb, it sees that A is waiting on the value and sends a message to restart A. C
then begins executing and faults on a, suspending. The second attempt to execute A is now
at the head of the message queue and completes, sending a request to restart C. C executes,
performing the addition and whatever else follows (such as returning the resulting value).

The astute reader will have noticed that the sample procedure could be reduced to

def abc x =
if x > 0 then
14
else
11;

Despite this possible compile-time reduction, the example is still relevant for two reasons:
First, the early stages of the compiler are not sophisticated enough to perform the reduction;

second, examples exist for which no such reduction is possible. For example, if in the original

8 Throughout the text, partitions are simplified to provide a more intuitive understanding than would be
gained by going into the exact details on how a SQ is produced.

17

P;! pP<-x>0 !

A:| ifpthen B:| ifp then
a<-bb <-4
else else
a<-3 b <- aa
aa<-a+b bb <-b +6

Y

C:I c<a+b |

Figure 2-7: Scheduling Quanta for Unschedulable Example: The code in Figure 2-6 is divided
into four scheduling quanta. The calculations for b and bb appear in the same quantum because
bb depends only on b. It is impossible to determine statically whether SQ A or B executes
first. Arrows indicate that one SQ forks another.

aa

bb

Queue: P

a
aa
b
bb
c

Queue: PA B,C A

true

10

x |5 x |5
p |true P |true
a a
aa aa
b b
bb bb| e—f={A]
c c
Queue: PA B C Queue: PA B C
x| s x|s
p |true p |tue
a [—{d a |10
aa aal 15
b4 b |4
bb] 10 bb| 10
c c

}

Queue: PA B C, A

f

Queve: PA B CA,C

}

Figure 2-8: Snapshots for Codeblock Example. This shows snapshots of the message queue
and frame before each SQ for the program in Figure 2-6.

18

Processor A Network Processor B

Allocate a local context

context value

Start executing procedure

. Send argument argument vauo %////////////%

Resume procedure execution

return valu

Figure 2-9: Procedure Linkage Example. Processor A requests a context on processor B. As
soon as the frame is allocated, execution of the procedure call begins on B. When A receives
the context value, it can send the argument(s), after which B can complete. Shaded rectangles
indicate time that could be spent on other tasks. Note that those tasks are not interrupted
when data arrives.

program (Figure 2-6), the bindings for a and b were changed to a = £ x bband b = g x
aa, where f and g are passed in as parameters, no compile-time reductions would be possible

[Traub 1989, page 2].

2.3.2 Procedure Calls

Figure 2-9 shows how procedure linkage is done without tying up either processor. When
processor A wants to call a procedure on processor B, A must allocate a context (frame) on
B for the codeblock’s arguments and scratch area. Allocating a context has the side effect of
starting execution of the first SQ in the procedure. After the address of the frame is returned
to A, it sends the arguments to B, which will have faulted if the data was already needed.
When the data arrives on B, suspended SQs are restarted. After B completes, it sends the
return value (if any) and a signal to A, and it frees its frame. Note that other processes can
execute while A and B are waiting for data.

While it would be more efficient in most cases for a caller to be able to send arguments at

the same time as requesting the context, there was no clean way to do this. An interesting

19

effect of this policy is that (as in other Id implementations) a procedure can conceivably
do substantial calculation or even return a value before receiving any arguments! This is
necessary because procedure calls in Id are non-strict.

Currently, the system does not do any load-balancing, and it always spawns procedures
to the same processor. The user must adjust the compiled code to provide a distribution

appropriate to the problem.

2.3.3 Loops

As in all other implementations of Id, I provide a way for different iterations of a given loop
to execute at a time. Because iterations of an outer loop execute on the same processor, they
do not execute concurrently; instead, the SQs of up to K iterations of a loop are enabled at
a time, where K is the loop-unfolding constant. When a calculation within one iteration is
waiting for something, such as the result of a procedure call to another processor, instructions
from other iterations may execute, subject to data dependences. Because up to K iterations
may execute at once, there must be K places to store each intermediate value, so this method
requires allocating K iteration areas. In [Iannucci 1988, Section 4.3.5], Iannucci presents and
proves the correctness of a method for dynamically unfolding loops which guarantees the same

results as sequential execution. I use his method, although I implement it differently.

Concepts

In Tannucci’s method, an iteration includes the evaluation of the predicate and subsequent
execution of either the loop body or the loop termination code. He observes that for iteration

i to begin, three conditions must hold:
1. The predicate for iteration (i — 1) has been evaluated to “true”.
2. The (i — K)t* iteration has terminated, allowing us to reuse its iteration area.
3. The (i + 1 — K)* iteration must have already consumed its loop variables.

The third condition is the most subtle. It exists because iteration i will write the values of
loop variables into the slots of iteration i + 1. Hence, iteration ¢ cannot execute until iteration

i+ 1 — K is done with the values currently stored in these slots.

20

1 26 25 24 2 16 15 8 7 0
4 ;Next Iter | Curlter | Prev lter

Import Flag
[PC Flag |

Figure 2-10: Possible Implementation of an Iteration Descriptor. The iteration fields hold the
offsets from the frame base of the next, current, and previous iteration areas. The Import and
PC flags tell whether this iteration may begin. Bits 26 through 31 are unused. This format
was not used.

These rules are enforced with two flags, PC and import. Iteration i’s PC flag is set when
the first condition, that the predicate for iteration # — 1 is true, has been established. The
import flag is based on condition three; it is set when the next iteration area is ready to
import new loop variables. In [Iannucci 1988, pages 129-131], Iannucci proves that the rules
for the two flags cover all three conditions. When both of an iteration’s flags are true, its first

SQ (presumably to compute the predicate) may be enabled.

Implementation

Iannucci’s hybrid architecture supports loops with several special-purpose instructions and
hardware support. Specifically, iteration descriptors, containing the two flags and pointers
to the previous, current, and next iteration areas, can be stored in one machine word. As
Figure 2-10 shows, it was possible to store all these quantities into the MDP’s shorter (32-bit)
words, but, lacking hardware support for accessing these fields, shifting and masking were too
slow. Additionally, in the small amount of space available for each iteration pointer, it was
only possible to store offsets relative to the current frame, not absolute addresses, which would
be more convenient. Hence, I decided not to mimic the hybrid architecture’s implementation,
and I developed my own data structures.

Figure 2-11 shows a frame for a procedure with a loop. In addition to the slots found in

non-loop frames (see Figure 2-3), it has slots for the loop-unfolding constant, loop constants,

21

FD of calier
ISD of Argument Chain
K (loop unfolding constant)

Last Argument
.

First Ar‘gurnent
First Lt:op Constant

L]
Last Loop Constant
First Sc.ratoh Slot

L]
Last Scratch Slot
Pointer. to lter Area -1

Pointer. to lter Area K

Area for lters 0 mod K
®
o

Area for lters K-1 mod K

Figure 2-11: A Loop Procedure Frame. Loop procedure frames have several sets of slots in
addition to those present in non-loop frames. Slot 2 holds K, the loop-unfolding constant. K
specifies how many iterations may be unrolled. There is space for loop constants, values that
could be hoisted out of the procedure’s loop. Iteration areas are used for circulating variables
and each iteration’s temporaries. The pointers allow quick access to each iteration area.

iterations areas, and pointers to the iteration areas. Each iteration area’s flags are stored
within its pointer. The pointers to iteration areas can be viewed in a more conceptual way in
Figure 2-12. In order to support iterations, an additional piece of data, an iteration number
between 0 and K — 1 must be included in every continuation. When a loop SQ begins, the
iteration number is used to find the pointer to the current iteration area. This pointer is
stored in MDP address register Al. Slots relative to the current iteration area can then be
indexed off A1. If it is necessary to access a slot in the previous or next iteration’s area, the
iteration number is decremented or incremented to find the appropriate pointer from the table
of pointers within the frame. This is why there are K + 2 pointers to the K areas; i.e., if
iteration 0 is active and wants to set the previous iteration’s import flag, the pointer can be
retrieved without providing a special check for the boundary condition. The import and PC
flags are stored within the pointers.

As an example, consider the procedure in Figure 2-13 to sum the results of a function

evaluated on the first n positive integers. The circulating loop variables are count and total.

22

Pointer to lter Area -1 o

/

»| lter Area 0

Pointer to Iter Area 0

Pointer to lter Area 1 e

Pointer to tter Area K-1
Pointer to lter Area K L4

lter Area 1

= Iter Area K-1 |

J

Figure 2-12: Iteration Areas and Pointers. Pointers to the iteration areas are stored con-
tiguously from a known offset within the frame. Having K + 2 pointers to the K iteration
areas is an optimization: If the current iteration number is 0 and the need arises to access the
previous iteration area, the pointer can be found in a straightforward manner, i.e. by looking
one slot earlier than the pointer to the current iteration area. This eliminates costly boundary
condition checks. The PC and import flags, not shown, are packed into the high bits

def combine n f =
{ total = 0
in
{ for count <- 1 to n do
next total = (f count) + total
finally total }}

Figure 2-13: Loop Program Example. Procedure combine applies function f to the first n
positive integers, summing the results. For example, (combine 10 square) would return the
sum of the squares of the numbers from 1 to 10.

23

1. Initialize the K iteration pointers.
2. Set the import flag of each iteration area.

3. Set count to 1 and total to 0 in iteration area zero and reset area K — 1’s import flag to
ensure that area zero gets to read count and total before they are written over.

4. Set area zero’s PC flag, which will enable it, as the import flag is already set.
5. For each enabled iteration,

(a) Compare count to n.
(b) If count < n then
i. Write count +1 into the first slot of the next iteration area and set its PC flag.
ii. Spawn (f count).
iii. Add the result of the previous step to total, writing the result to the total slot
in the next iteration area.
iv. Now done with all incoming circulating variables, set the previous iteration
area’s import flag.

(c) If count > n then write the current value of total to a frame slot outside the iteration
areas.

6. Once the final result has been written to the outside frame slot designated for the finally
value, pass it up to the caller.

Figure 2-14: Pseudo-Code Produced for Loop Example

Pseudo-code corresponding to the code that would be produced is shown in Figure 2-14.
Figure 2-15 illustrates how this scheme reveals possible parallelism. Up to K invocations of
f will execute at once. If f is slow, this is a big win.

The reader will observe that this scheme does not address nested loops. Those are pulled
out of procedures at compile-time and form new codeblocks that will be called by the original
procedure. Thus inner loops can execute in parallel on separate processors.

Because of a bug in the Id compiler’s interaction with Iannucci’s code, I was unable to
have my compiler support loops. (The version of the Id compiler currently used is different
from the one Iannucci wrote his system to interface with.) For my research, I hand-compiled

loop procedures to explore the different methods of implementation.

24

Area0 Areai1 Area2

count

total 0

context for f call

result of f call

count 1 2
total 0

context for f call *

result of f call

count 1 2 ™3
total 0

context for f call * *
result of f call

Figure 2-15: Snapshots for Loop Example. The snapshots show how the contents of the first
three iteration areas for the program in Figure 2-13 change over time. The first snapshot shows
the values in the iteration areas after they are initialized. The only non-empty locations are
the initial values for count and total in iteration area 0, which has been enabled, as indicated
by the darkened border. In the second snapshot, the first iteration has tested the predicate,
written an incremented count into the next iteration area, and has made the function call. In
the third snapshot, the second iteration does the same. Note that the function calls execute
in parallel.

25

2.4 Conclusion

Conventions were found to allow Id code to run on the J-Machine in the same style used by

Iannucci on the hybrid architecture. The benefits of this strategy are:
1. Frames allow dynamic dataflow, i.e. every invocation has its own data area.
2. SQs reduce the amount of necessary run-time scheduling.

3. Using multiple phases for instructions with unbounded latency frees the processor for

useful work.
4. Loop unrolling exposes and exploits parallelism.

These powerful techniques are supported at run-time by special data structures, fault handlers,
and library routines. The next chapter describes the compile-time work necessary to convert

from hybrid format to MDP format.

26

Chapter 3

Compilation

I have heard of your paintings too, well enough;
God has given you one face,

and you make yourselves another.

You jig, you amble, you lisp...

— William Shakespeare, Hamlet, Act III, Scene i, line 150.

Because the MDP architecture is so different from the hybrid architecture, substantial
work must be done to create MDP code from hybrid code. Keeping with the philosophy of
the original ID compiler, described below, I perform my transformations in several stages.

The intermediate forms my compiler recognizes or produces are:
o Hybrid code.

e Complex MDP code, machine instructions whose opcodes are the same as those on the

MDP (with a few extensions) but whose addressing modes, etc., are not legal.
e Simple MDP code, s-expressions of legal MDP instructions.

¢ MDP assembly code.

My back-end converts from the first form to the last. The rest of the chapter describes this

process.

27

U

File —M}—— Scope |- Lambda |-l Program
Parser Analysis Litting Graph Parse
Generation Trees
I-— Call —=d Fetch = Common = Dead Code 7
Substitution Elimination Subexpression Elimination
Elimination
and Hoisting
Program
— - Graphs
Inlining Constant - Codeblock |—wt Signals and
Propagation Partitioning Triggers _I
I—— Macroinstruction |—wf Frame Slot |-» Machine Code }—
Expansion Assignment Generation

I_.[sQ OptimizationH Assembly I__I] g%greld

I—— Hybrid to |—» Complex J |— Simple J
Complax J to Simple J to Asm

WV

Figure 3-1: Structure of the Id-to-MDP Compiler: Plain roman text indicates modules of the
original Id-to-hybrid compiler, italics indicate modules I changed, and bold indicates modules
I added. Program graphs are a form of dataflow graph. This picture is modeled after one in
[Iannucci 1988, page 97].

The original Id compiler is written in Common Lisp and is based on the Dataflow Compiler
Substrate [Traub 1986b], a set of abstractions for building modular compilers. Each module
inputs and outputs a stream of Lisp objects (except for the first and last modules which only
emit or collect, respectively). Figure 3-1 shows how my modules fit on top of the Id compiler.
Figure 3-2 shows the formats of instructions flowing through all of the new or changed stages.
They will be explained in more detail below. The appendices contain complete listings of the
files I created. .

28

Type of Stream Description

Program Graph » Dataflow Graph Nodes

| Machine Code Generation |
|

VND H
| Assembler |

Hybrid A stream of hybrid instructions

lannucci's internal hybrid format

/
| Hybrid to Complex J |

Instructions with MDP operators (or one of a
Complex MDP few pseudo-ops) but illegal operands

w
| Complex to Simple J |

Simple MDP Legal MDP instructions in s-expression form
Y
| Simple J to ASM |

MDP Assembly Legal MDP assembly code

Figure 3-2: New and Modified Compiler Stages: Dataflow code flows through several stages
in order to become MDP assembly code. The term “VND” is used to distinguish Iannucci’s
internal representation of code from my “hybrid” format. The ellipses between the first two
stages indicate that other stages go between them.

29

3.1 Changes to Machine Code Generation

The machine code generation module, called generate-vnd-instructions and written by Ian-
nucci, takes program graph instructions and converts them to hybrid instructions. In some
cases, such as for arithmetic instructions, the transformation is trivial. For conditionals, loops,
and procedure calls, however, a single program graph instruction expands into many hybrid
instructions. Because my control structure transformations for loops and procedure linkage
differ from Iannucci’s, I wrote a file changes.lisp that replaced his templates for loops and

procedure calls with my own.

3.1.1 Loops

Originally, for the loop program graph instruction, instructions were generated to support the
hybrid architecture’s implementation of loops. Section 2.3.3 describes how my implementation
differs. I emit different hybrid instructions for the loop set-up instruction to initialize the
iteration area pointers. Code within loop SQs is passed through unchanged, to be converted

in later stages of the compiler, as only structural changes are made in this module.

3.1.2 Procedure Calls

Section 2.3.2 described my multi-phase convention for procedure linkage, but it glossed over
a few details. Specifically, my implementation differs from the hybrid one in an important
way: On the hybrid architecture, the get-contezt instruction calls a local manager that selects
a frame on another processor where the procedure can be spawned [lannucci 1988, page 174].
This requires a processor to know memory usage on other processors. When designing the
system for the J-Machine, I decided each processor should know as little as possible about the
other processors, particularly because the J-Machine is massively parallel. One consequence
was that I rejected this scheme. Instead, I changed the protocol so that get-contezt is a two-
phase instruction, where the calling node, A, asks the called node, B, for a frame address.

The complete calling protocol is:

1. Execute a get-contezt instruction on A. This sends a request to processor B to allocate a

frame and start execution of the appropriate procedure, and to send the frame descriptor

30

F back to processor A.

2. Compute the return location for the procedure call (an offset into the current frame)
and send it to B, attached to F. Because F is the frame descriptor, B will know where

to put the return location.

3. Send each of the arguments to B, attached to F.

If get-contezt were merely local, no data faults would occur during the first three steps; hence,
the value for the return location could be written into a register instead of a more permanent
place like a frame slot. In my strategy, a fault will occur during step 2 because F is not locally
available yet. Hence, I must insert a suspensive check for F before the second step. This way,
it will be safe to store the return location into a register. There will be no danger that a fault
will occur on F between the time the register is written and when the register is accessed to
send its value to B. (The values in registers are not guaranteed between suspensions, and it
would have been too difficult for me to change the hybrid compiler’s frame allocation.)

Even this is not the whole story. Consider a doubly-recursive procedure like a naive
implementation of Fibonacci. Figure 3-3 shows the code that would be produced by the J-
Machine strategy just described. The problem with this code is that the second get-contezt
request would not be made until after the first one returns. This introduces unnecessary
dependences, as it implies that steps 5-8 in the figure cannot occur until steps 1-4 are finished.
This was not a problem on the hybrid architecture, where it was known that steps 1-4 would
not suspend. Because step 2 will suspend, steps 5-8 will be delayed unnecessarily. This is
illustrated in Figure 3-4. The arrow indicates the short-cut that exists: The second request
can be started immediately after the first. Hence, before the suspensive check, we add an
instruction to fork a continuation corresponding to whatever follows the procedure call —

essentially splitting the SQ.

3.2 Assembling Hybrid Code

The last stage of Iannucci’s compiler is an assembler that converts his internal representation
of hybrid code into one suitable for his interpreter. I modified this stage to produce a stream

of hybrid instructions suitable for my stages.

31

1. Execute get-contezt for the first recursive call. The value for the frame FI will be
returned at some unknown time.

2. Make a suspensive reference to F1, so that we can’t get to the next step unless it has
arrived.

3. Compute the return location for the first procedure call and send it to B1 attached to
F1.

4. Send the arguments to B! attached to F1.

5. Execute get-context for the second recursive call. The value for the frame F2 will be
returned at some unknown time.

6. Make a suspensive reference to F2, so that we can’t get to the next step unless it has
arrived.

7. Compute the return location for the second procedure call and send it to B2 attached
to F2.

8. Send the arguments to B2 attached to F2.

Figure 3-3: A Non-Optimal J-Machine Calling Convention. B! and B2 represent the two
processors on which the subprocedures are spawned. The code is non-optimal, because F2
would not be requested until after F1 had been received.

32

Request F1.

| Perform a suspensive check on F1.]

I Send the return location with F1. |

I

| Send the arguments with F1. |

Request F2.

[Perform a suspensive check on F2. |

I Send the return location with F2.]

| Send the arguments with F2. I

Figure 3-4: The Ordering Specified by Successive Function Calls. Unless the first instruction
explicitly forks the second request, as show by the arrow, code will execute sequentially as
indicated by the plain lines. This unnecessarily lessens the amount of exploited parallelism.

3.3 Convert Hybrid to Complex J

“Complex J” code is an intermediate format that is relatively easy to produce from hybrid

code. The steps for converting an instruction are:
1. If any operand is suspensive,

(a) Emit: (suspensive-instruction)

(b) For every possibly-suspensive operand s, emit: (suspensive-operand s)

(c) Emit: (suspensive-check-done)

2. Convert all references to hybrid general-purpose registers to references to temporary

storage on the MDP.

3. Emit code specified by the template corresponding to the hybrid instruction.

Below, I describe the different templates for classes of hybrid instructions, in order to provide

a deeper understanding of the hybrid instruction set as well as of the transformation process.

33

In this section, I go into considerable detail. Readers are prewarned, lest they fall off the
bottom of this depth-first search. Casual readers may wish to read the first few templates

and then skip to the conclusion of this section on page 39.

3.3.1 Label Instruction

The template for converting a label instruction is:

(defconversion label :label (label-name)
*((label ,label-name)
(move (:message (:base 1)) (:j-register 42))))

The first line generates a MDP label with the same name as the hybrid label. The second line
says to move the value at offset one from the current message, i.e. the frame address, into
MDP address register A2.! That line is there because execution can begin at any label, and
A2 is always assumed to hold the base of frame pointer.

This example illustrates one of the differences between complex and simple MDP code:
On the J-Machine, one of the operands of a move must be a general-purpose register. The
above move will be broken into two moves in the next stage, convert-cj-to-sj. At this stage,

we do not have to concern ourselves with such details.

3.3.2 Simple Arithmetic Instructions

The template for converting an arithmetic instruction such as add is:

(defconversion j-add :+ (s1 s2 d)
(append (lookup-into d)
‘((add ,s1 ,s2 ,d))))

The lookup-into routine generates code to restart any continuations waiting for a value to
be written to location d, as described in Section 2.2.4. First, the slot number is copied into
R1, then the library routine lookup-vector is called.? Figure 3-5 shows the conversion of an

addition instruction.

'In the hybrid and MDP assembly formats, (move 4 B) moves the contents of 4 into B, not vice versa.
?In retrospect, explicitly mentioning the register to pass the argument in at this stage is an unnecessary
violation of abstraction.

34

(:add (.frame (:base 6) :suspensive)
(cliteral (:integer 1))
(:frame (:base 7)))

s

(suspensive-instruction)
(suspensive-operand (:frame (:base 6)))
(suspensive-check-done)

(move 7 (:j-register R1))

(call lookup-vector)

(add (:frame (:base 6))
(:literal (tinteger 1))
(:frame (:base 7)))

Figure 3-5: The Hybrid-to-Complex-J Conversion of an Addition. Execution will only get
past the suspensive-operand virtual instruction if slot 6 of the current frame is present.

3.83.3 Complicated Arithmetic Instructions

Some arithmetic instructions are more complicated, such as abs, min, and maz, because they
are machine instructions on the hybrid architecture but not on the J-Machine. Thus they have
larger templates that use temporary registers. Figure 3-6 shows the template for abs. The
reserve and free pseudo-ops tell the next stage of the compiler where MDP registers should
be allocated. Without this facility, the conversion of templates requiring temporary storage
would be much less efficient. They will be discussed in more detail in the section on the next

stage of the compiler.

3.3.4 Move Instructions

The template for converting a move instruction is:

(defconversion move :move (source dest)
(append (lookup-into dest)
‘((move ,source ,dest))))

If the destination is a frame slot, this generates code to restart any continuations waiting on

35

(defconversion j-abs :abs (s d)

(append (lookup-into d)

‘((reserve (:register scratchi))
(reserve (:register scratch2))
(ash ,s -31 (:register scratchil))
(xor ,s (:register scratchl) (:register scratch2))
(sub (:register scratch2) (:register scratchi) ,d)
(free (:register scratchl))
(free (:register scratch2)))))

Figure 3-6: The Template for Converting Absolute Value. Two scratch registers must be
reserved for the optimal absolute value strategy. They are used for temporary values and are
freed at the end of the template. The reserve and free are instructions to later stages of the
compiler and do not directly produce any code.

the value and then performs the move.

The move-remote instruction moves a value into a slot of another frame. Its template is:

(defconversion movr :move-remote (frame-ptr offset value)
‘((send0 ,frame-ptr) ; Node number
(send0 (:ref local_movr)) ; MSG word
(send0 ,frame-ptr) ; First argument: frame descriptor
(send0 ,offset) ; Second argument: offset within frame
(sende0 ,value))) ; Third argument: value to wWrite

On the J-Machine, the first word of a send sequence is a number specifying the destination
node. The second word, the message header, specifies both how long the message is and the
address of the handler to receive it. The meaning of subsequent words is determined by the
handler.

To understand the above template, recall from Section 2.2.3 that the node number is
stored in the low sixteen bits of the frame descriptor. Because the router only looks at the
low sixteen bits, sending the frame descriptor specifies the correct destination node. When
the message reaches that node, execution will begin at the local_movr library routine, which
writes the passed value into the specified slot after checking if any continuations are waiting.

The move-remote instruction is typically used for passing arguments and return values.

36

(:test-1 (:frame (:base 6) :suspensive) (suspensive-instruction)
(rame (:base 8))) (suspensive-operand (:frame (:base 6)))
(suspensive-check-done)
(move 8 (:j-register R1))
(call lookup-vector)
(move true (:frame (:base 8)))

Figure 3-7: The Hybrid-to-Complex-J Conversion of a Test-1. Despite the template’s appar-
ently ignoring the source, the instruction is converted correctly. Before the template is even
considered, code is emitted to check for the suspensive operand.

3.3.5 Test Instructions

The hybrid architecture includes the test-1 and test-2 instructions to write true into the
destination if the source(s) are present. Execution should suspend if any source is unavailable.

The template for test-1 is simply:
(defconversion tstl :test-1 (si dest)

(append (lookup-into dest)

‘((move (:tagged-literal ,boolean-tag 1) ,dest))))
The transformation for test-2 is identical. The simplicity lies in how the converter handles
suspensive arguments: Before the template stage is even reached, code will have been emitted
to check suspensive operands and to suspend if they are not present. Figure 3-7 shows the

conversion of a test-1 instruction.

3.3.6 Continuation Instructions

Two hybrid instructions exist to fork continuations. They are used to start SQs within a

codeblock. The template for the continue instruction is:

(defconversion cntn :continue (cont)
‘((send0 (:j-register NER))
; Convert it from (:literal (:symbol :5Q-1)) to (:ref :SQ-1)
(send0 (:ref ,(second (second cont))))
(sende0 (:j-register 42))))

This sends a message from a processor to itself (the NNR register holds a processor’s own

37

node number), along with the specified SQ base and the current frame pointer, kept in A2.
While the continue instruction is sufficient, it is non-optimal, in that the new continuation
is likely to immediately suspend on the first value it checks for. With this observation,
Tannucci designed the continue-test instruction which tests the first slot accessed by the new
SQ. It the value is there, the continuation is forked as above; otherwise, a local continuation
is immediately created and stored in the appropriate slot. This saves a message send in the

worst — and most common — case. The conversion template is:

(defconversion cntt :continue-test (check-slot cont)
; Convert it from (:literal (:symbol :SQ-1)) to (:ref :SQ-1)
‘((move (:ref ,(second (second cont))) (:j-register RO))
(move (:literal ,(frame-base-offset check-slot)) (:j-register R1))
(call (:literal ,cntt-vector))))

This calls a local library routine, cntt, that does the check and, depending on whether or not
the data is present, either sends the message or stores the continuation. The cnit routine

expects RO to hold the SQ address and R1 to hold the number of the needed slot.

3.8.7 Procedure Linkage Instructions
The procedure linkage convention was described in great detail in Sections 2.3.2 and 3.1.2.

Briefly, there are three steps to spawning a procedure:

1. Initiate a get-contezt request, sending the codeblock descriptor and the address of where

to write the new context pointer.

2. Use indez-current-contezt to create a new global address for return values to be sent to.
For example, if the first return value should be sent to slot 8, index the current context

by 8.

3. Perform remote moves to transfer the indexed context and the arguments into the newly-

allocated frame.

The third step uses the move-remote instruction described earlier. The transformations for

get-contezt and indez-current-contezt for the first two steps are described here.

38

Get-Context The transformation for the get-contezt instruction appears in Figure 3-8.
Rather than try to explain it here, I have added detailed comments to the code. As mentioned
earlier, no attempt at load balancing is made by the compiler. A library routine, get-contezt,
resides on every processor to use the information sent and to perform the callee’s half of the

protocol.

Index-Current-Context The Indez-Current-Contezt instruction is slightly more compli-
cated. By convention, the n return values of a procedure are sent to the first n slots of the
calling frame. Because we really never want the return values sent to the start of the cur-
rent frame, we increment the current context and send that value to the callee instead. The

template is shown in Figure 3-9.

3.3.8 Conclusion

In the convert-hybrid-to-cj stage of the compiler, hybrid instructions are transformed into com-
plex J-Machine code. The transformations ignore the intricacies of MDP addressing modes,
making the transformation process simpler and more conceptual. Several pseudo-operators

for handling suspensive instructions and register allocation are used.

39

(defconversion getc :get-context (context-slot return-slot)
The first scratch register will be used to hold the global
frame descriptor of the calling frame, so that the callee
knows where to send the context value back to. Recall that
the format of a FD is that the local address is in the high
sixteen bits, and the node number is in the low sixteen.
reserve (:register scratch))
; Take the local address of the current frame from A2,
(move (:j-register A2) (:register scratch))
; Tag it as an integer (instead of an address) so We can munge it.
(wtag (:register scratch)

(:literal ,int-tag)

(:register scratch))
; Shift it over 16, to fit into FD format.
(1sh (:register scratch)

(:literal ,(- 16 *sys-len-bits*))

(:register scratch))
; Add in the local node number (i.e. put it in low 16 bits).
(add (:register scratch) (:j-register NNR) (:register scratch))
; Tag it as a FD.
(wtag (:register scratch) (:literal ,fd-tag) (:register scratch))

.
’
.
’
.
’
.
’
.
?
‘(

¢ P we we we we we

(send0 (:literal 1)) ; Send to node 1 always
(send0 (:ref local_getc)) ; Handler is the local_getc 1lib routine
(send0 ,context-slot) ; Send the codeblock descriptor.

(send0 (:register scratch)) ; Send the current FD, so it knows
(free (:register scratch)) ; where to send the context back to.
(sende0 ,(frame-base-offset return-slot)))) ; Send the return offset.

Figure 3-8: Transformation the Get-Context Instruction to MDP Code. The purpose of the
get-context instruction is to send off a request to allocate a context and return its value.

40

(defconversion ixcc :index-current-context (frame-base dest)
(append (lookup-into dest)
; A scratch register is needed
‘((reserve (:register scratch))
; Move the local frame address into the scratch register
(move (:j-register A2) (:register scratch))
; Tag it as an integer so we can adjust it
(wtag (:register scratch)
(:literal ,int-tag)
(:register scratch))
; Add in the new base, shifted over into the address
; portion of the instruction
(add (:register scratch)
(:literal ,(* (literal-base-offset frame-base)
(expt 2 *sys-len-bits*)))
(:register scratch))
; Shift the sum into the top half of the word
(1sh (:register scratch)
(:literal ,(- 16 *sys-len-bits*))
(:register scratch))
; Add the local node number into the low half of the word
(add (:register scratch)
(:j-register NNR)
(:register scratch))
; Tag it as a frame descriptor
(wtag (:register scratch)
(:literal ,fd-tag)
(:register scratch))
; Move it into the specified destination.
(move (:register scratch) ,dest)
; Free the scratch register.
(free (:register scratch)))))

Figure 3-9: Transformation of Index-Current-Context. The purpose of indez-current-contezt
is to take the address of the current frame, conceptually add a constant offset to it, and
convert it to file descriptor format. It can then be sent to a spawned procedure as the frame
to return results to.

41

3.4 Convert Complex J to Simple J

This section is the most complex of the new modules. Its tasks include:
1. Converting literal operands into tagged literals.

2. Converting the suspensive-instruction, suspensive-operand, and suspensive-check-done

pseudo-ops into MDP code.

3. Allocating and substituting MDP registers where they were requested with the reserve

and free pseudo-ops.
4. Adjusting instructions to use legal MDP addressing modes.

We will examine each of these stages.

3.4.1 Converting Literals to Tagged Literals

Because all values on the MDP are tagged, references to literals must be changed to tagged
literals. The integer literal operands from the addition example in Figure 3-5 would both be

converted:

7 — (:tagged-literal int-tag 7)

(:literal (:integer 1)) — (:tagged-literal int-tag 1)

Booleans and labels are similarly transformed.

The other type of “literal” used is a reference — a constant whose value is determined
at assemble-time [Horwat and Totty 1987, page 9]. References are used to denote codeblock
pointer values, addresses of suspensive instructions, and branch destinations. These are de-
noted with the imaginary tag name, “special-tag”. These operands are converted to MDP

reference format in the last stage of the compiler.

3.4.2 Generating Suspensive Code
Before a suspensive instruction, several things must be done to ensure proper behavior:

1. Store the current instruction pointer location into R0, so if a fault occurs, the handler

will know where execution should resume.

42

(suspensive-instruction)
(suspensive-operand (:frame (:base 6)))
(suspensive-check-done)

v

(label (:tagged-literal special-tag (:label suspensive19)))
(dc (:tagged-literal special-tag :suspensive19))

(move (:message (:base 1)) (:j-register A2))

(rtag (:frame (:base 6)) (:j-register R3))

Figure 3-10: Intermediate Code Produced for Suspensive Pseudo-Operands. The DC (“data
constant™) instruction loads its assemble-time constant operand into R0. If the rtag (“read
tag”) instruction faults, the handler can use the RO value to know where execution should
restart, as described in Section 2.2.4.

2. Because execution could be resumed here, SQ setup code must be emitted to load
the base of frame address into MDP register A2, i.e. (move (:message (:base 1))

(:j-register 42)).

3. Check whether each suspensive operand is present, faulting if not.

For the rationale behind these rules, refer back to Section 2.2.4, where the continuation format
was described. Figure 3-10 shows the conversion of the suspensive pseudo-ops in the add
instruction introduced in Figure 3-5. First, a unique label, created with the Lisp procedure
gensym, is emitted. A reference to it is loaded into RO with the DC (“data constant™)
instruction. The frame base is loaded into A2, after which the tag of the suspensive operand
is read. If it faults, the run-time handler described in Section 2.2.4 will set up a continuation.

Although it would be more efficient not to explicitly read the tags of the suspensive
operands, it is necessary if the hybrid instruction has side effects. For example, a desti-
nation might be written or a message might be sent before a specific suspensive operand was
accessed. A later version of this compiler would optimize out the “read tag” instructions in

cases where the explicit check would suffice.

43

3.4.3 Allocating MDP Registers

MDP registers have two uses: passing arguments to system calls and holding temporary values
within hybrid instructions. When used for system calls, they are explicitly referred to as in
Figure 3-5 earlier. When they are used as temporaries, generally it does not matter which of
the four MDP general-purpose registers is used. The reserve and free pseudo-ops generated
by the templates in convert-hybrid-to-cj are used to create and destroy bindings of symbols

to MDP registers. For example,

(reserve (:register scratch))

binds scratch to a free MDP register. Until a
(free (:register scratch))

is encountered, all occurrences of (:register scratch) are converted to (:j-register Rn),
where 7 is the register bound to scratch. Because no more than four temporary registers are
ever needed, no spilling needs to be done.

The only conflict arises because R0 is different from the other GPRs. The MDP instruction
DCloads a 32-bit quantity into R0.3 Except for a few special values, only 7-bit quantities can
be specified as constants to move directly into the other registers. Thus there is an internal
compiler routine, request-appropriate-register that takes an argument specifying what will go
in the register and returns a binding to an appropriate register — i.e. R0 if the argument is
a big value, another register otherwise. If R0 has already been allocated, an instruction to
move the old contents of R0 into another register is generated, and the previous binding to

RO is changed. This process is illustrated in Figure 3-11.4

8.4.4 Converting to Legal MDP Operands

Instructions on the MDP are only 17 bits long. While this permits tight packing and quick

loading, it limits the operand space. Specifically, general-purpose registers are required as

3DC is more accurately an assembler pseudo-op. It must have a constant value for its operand which is
then put directly into the instruction stream. During execution, if the instruction pointer is at something that
is not tagged instruction, it is loaded into R0. This allows 32-bit values to be directly loaded into a register,
despite the normal 17-bit instruction length.

4Nate Osgood helped me develop this one-pass register allocation scheme.

44

Request Bindings Code Emitted

(request-appropriate-register 100)

reg91 -> RO

reg91 *0
(request-appropriate-register 11) reg91 -> RO
reg92 reg92 -> R3

(request-appropriate-register 500) regot -> R2 (move ézj-register Egg)

reg93 reg92 -> R3 J-register
reg93 -> RO

Figure 3-11: Compiler Register Allocation. Requests for registers and the return values
are shown in the leftmost column. The binding names are generated by the Lisp gensym
procedure. The middle column shows the internal set of bindings after each instruction. A
conflict arises on the third request where R0 is needed but is already part of another binding,
reg91. The register allocator emits code to move whatever has been placed in R0 into a
previously-free register, R2. The binding for reg9! is then changed to R2, and the new
request can get RO.

operands to certain instructions, and only very short constants can be encoded in instructions.
Consider the following hybrid instruction:

(:add (:frame (:base 6))
(:literal (:integer 30))
(:frame (:base 7)))

There are two reasons why it cannot be encoded into one MDP three-operand instruction:
1. The first and last operands must be general-purpose registers.
2. If the second operand is a constant, it must be in the range [15...-16).

The above add instruction would be translated into four MDP instructions:

(move (:frame (:base 6))
(:j-register R3))
(move (:tagged-literal int 30)
(:j-register R2))
(add (:j-register R3)
(:j-register R2)

45

(:j-register R3))
(move (:j-register R3)
(:frame (:base 7)))

The astute reader will have observed that if the order of the source operands were changed,
they could be encoded into one less MDP instruction. I did not have time to incorporate this
optimization for commutative instructions.

As another example, consider a hybrid instruction to move an immediate into a frame slot:

(:move (:literal (:integer 500))
(:frame (:base 20)))

Because 500 is more than seven bits long, it must be loaded into R0 through the DC instruc-

tion:

(dc (tagged-literal int 500))
(move (:j-register RO)
(:frame (:base 20)))

Like immediates, offsets from the frame base can only be five bits in three-operand instructions
and seven bits in two-operand instructions. If the destination of the above move had an offset

of 100 instead of 20, the code would be:

; (:move (:literal (:integer 500)) (:frame (:base 100)))
(dc (tagged-literal int 500))
(move (:j-register RO)
(:j-register R3))
(dc (tagged-literal int 100))
(move (:j-register R3)
(:frame (:base (:j-register R0))))

This illustrates the R0 conflict maneuver described in Section 3.4.3.

3.5 Convert Simple to ASM

This last stage converts the code to a format suitable for the MDP assembler. This involves
converting from s-expressions into plain text and translating the operands into a suitable

format. Offsets are converted:

46

(:register (:base X)) — [X,40]
(:frame (:base X)) — [X,A2]
(:message (:base X)) — [X,A3]

The first transformation is to convert hybrid registers to temporary storage. On the J-
Machine, accesses off of A0 are absolute addresses. The first twenty words of MDP memory
are devoted to temporary storage, so hybrid register n is stored at absolute address n on the
J-Machine. As on the hybrid architecture, the value is not guaranteed to be the same between
suspensions.

Additionally, assemble-time references must be output properly. When a reference is

encountered as an operand, it is converted:
(:tagged-literal special-tag X) — {Xmsg ref}

Additionally, X is added to a list of references. At the end of compilation, for each reference

X in the list, the following is output:
ref Xmsg_ref = MSG:(((X+N_1loc)<<10))+2

where N is the name of the procedure. This creates a reference whose value includes the
absolute address of the associated label (labels are usually relative addresses), as well as
specifying that it will be used as a header of a message with two words. (The two words will

be the message itself and the frame value.)

3.6 Conclusion

In order to convert hybrid code to MDP assembly code, I created intermediate formats and
routines to convert from more complex formats to simpler ones. These are useful not only for
this compiler but as a general-purpose J-Machine utility. A MDP assembly coder or compiler
writer could produce complex J-Machine code and be spared the trouble of remembering how
many bits of operand are available for each instruction. While my register allocation is still
too primitive to give optimal results — for example, the same value could be stored in two
different registers — it is still good enough to provide a new dialect of MDP assembly language

that a programmer might choose for its greater abstraction and simplicity.

47

Chapter 4

Analysis

“A slow sort of country!” said the Queen. “Now, here, you see, it takes all the
running you can do, to keep in the same place. If you want to go somewhere else,
you must run at least twice as fast as that.”

— Lewis Carroll, Through the Looking-Glass.

I am pleased with the system, in that it works and reasonable solutions were found for
every problem. However, while some of the mechanisms worked out well, not all turned out to
be as efficient as I would like. In this chapter, I provide a detailed example of code produced
and executed for an Id routine, several benchmark results, and analysis of both my system

and the J-Machine.

4.1 Detailed Benchmark: Factorial

In this section, I will go into great detail by providing listings and statistics for a sample Id
procedure. Specifically, I will describe the composition and execution of the simple recursive

factorial program shown in Figure 4-1.

4.1.1 The Dataflow Graph

First, the initial stages of the compiler convert the program into a dataflow graph, such as the
one shown in Figure 4-2. I have abstracted away some of the details in order to highlight the

essential parts of the graph. First, the input arrives at node 1. It is passed through unchanged

48

fact n =
if n <= 1 then
n
else
n * fact (n-1);

Figure 4-1: Id Code for Factorial

Y

-

-
o

-

Figure 4-2: A Dataflow Graph for Factorial. If an integer n is input to the top identity node,
n! will be computed. The switch node uses its left input as a control signal and its right input
as data. If the control signal is true, data goes to the left output arc; otherwise, to the right.
The identity node copies its inputs to its output arcs. The dotted line from the call node
to the mul node indicates that the connection is indirect. The numbers are for expository
purpose only.

49

by the identity instruction to nodes 2 and 3. Node 2, the predicate, passes a boolean value to
node 3, a switch instruction. The semantics of the switch instruction are such that it passes
its data input to the left output arc if the control input is true, and to the right arc if the
control input is false. Thus, if the predicate is true — i.e. if the argument is less than or
equal to one — the argument itself will be sent to node 9 and returned. In the inductive case,
the argument is sent to identity node 4. Node 7, call fact, makes the recursive call, specifying
that the return value should be sent to node 8, mul. When it arrives, the multiplication is
performed, and a value is sent to node 9 to be returned.

The purpose of showing and describing the graph is to give an idea of how the compiler
looks at a procedure. Iannucci’s stages of the compiler can only see the dataflow graph, not

the source code.

4.1.2 The Hybrid Code

The hybrid code produced by the factorial example is shown in Figure 4-3. I have added
comments, lines headed with semicolons, to describe the process. Readers uninterested in
such technical detail should skip to Figure 4-4 which shows the SQs’ composition at a higher

level. Figure 4-5 shows frame usage.

50

:; SQ-1 does initialization, forks local SQs, and tries to return
;33 the result.

((:LABEL (:LITERAL (:SYMBOL :5Q-1))))

;; Put the codeblock pointer to FACT into [12].

((:MOVE (:LITERAL (:CODE-BLOCK :FACT)) (:FRAME (:BASE 12))))

;3 Fork SQ 2, immediately suspending it if [3], mn, is empty.

((:CONTINUE-TEST (:FRAME (:BASE 3) :SUSPENSIVE) (:LITERAL (:SYMBOL :5Q-2))))
:; Fork SQ 11, immediately suspending it if [0], the return locationm,

i3 is empty.

((:CONTINUE-TEST (:FRAME (:BASE 0) :SUSPENSIVE) (:LITERAL (:SYMBOL :5Q-11))))

((:LABEL (:LITERAL (:SYMBOL :SEND-RESULT-0))))
;; Pass [6], the return value, up to offset 1 from the calling frame.
((:MOVE-REMOTE (:FRAME (:BASE 0) :SUSPENSIVE)

(:LITERAL (:INTEGER 1))

(:FRAME (:BASE 6) :SUSPENSIVE)))
;; Pass [6], a signal ("true"), up to offset 0 from the calling frame.
((:MOVE-REMOTE (:FRAME (:BASE 0))

(:LITERAL (:INTEGER 0))

(:FRAME (:BASE 5) :SUSPENSIVE)))
((: TERMINATE))

333 SQ-11 sets [5], the signal, when locations [0] and [7] have data.
((:LABEL (:LITERAL (:SYMBOL :5Q-11))))
((:TEST-2 (:FRAME (:BASE 0) :SUSPENSIVE)
(:FRAME (:BASE 7) :SUSPENSIVE)
(:FRAME (:BASE 5))))
((: TERMINATE))

;3; SQ-2 evaluates the predicate and runs appropriate code.
((:LABEL (:LITERAL (:SYMBOL :SQ-2))))
;; Put in [4] the result of checking if [3], the argument, is <= 1.
((:<= (;FRAME (:BASE 3) :SUSPENSIVE)

(:LITERAL (:INTEGER 1))

(:FRAME (:BASE 4))))
3; If not, branch to ELSE-4.
((:BRANCH-FALSE (:FRAME (:BASE 4)) (:LITERAL (:SYMBOL :ELSE-4))))
;; Copy [3], the argument, into [6], the slot for the result.
((:MOVE-IDENTITY (:FRAME (:BASE 3) :SUSPENSIVE) (:FRAME (:BASE 6))))
;3 Copy [4], the predicate result ("true") into [7].
((:MOVE-IDENTITY (:FRAME (:BASE 4)) (:FRAME (:BASE 7))))
;; Branch past inductive case code.
((:BRANCH (:LITERAL (:SYMBOL :END-IF-4))))

;; Continued on next page.

51

;; Continuing from previous page.

;; This code gets executed for the inductive case.
((:LABEL (:LITERAL (:SYMBOL :ELSE-4))))
;; Subtract 1 from [3], the argument, and put the result in [14].
((:~ (:FRAME (:BASE 3) :SUSPENSIVE)
(:LITERAL (:INTEGER 1))
(:FRAME (:BASE 14))))
;; Spawn the codeblock whose name is in [12] (fact), putting the context
;; value into [10].
((:GET-CONTEXT (:FRAME (:BASE 12)) (:FRAME (:BASE 10))))
;; Specify [8] as the base location for return values for the
;; spawned procedure.
((: INDEX-CURRENT-CONTEXT (:LITERAL (:BASE 8)) (:REGISTER 0)))
;; Send this adjusted context (i.e. the return location) to slot zero
;3 in the spawned procedure.
((:MOVE-REMOTE (:FRAME (:BASE 10))
(:LITERAL (:INTEGER 0))
(:REGISTER 0)))
;; Send [10], the argument minus 1, to slot three in the spawned procedure.
((:MOVE-REMOTE (:FRAME (:BASE 10))
(:LITERAL (:INTEGER 3))
(:FRAME (:BASE 14))))
;:; Fork SQ-5, immediately suspending it if [3], the argument, isn’t here.
((:CONTINUE-TEST (:FRAME (:BASE 3) :SUSPENSIVE) (:LITERAL (:SYMBOL :SQ-5))))
L)

((:CONTINUE-TEST (:FRAME (:BASE 8) :SUSPENSIVE) (:LITERAL (:SYMBOL :5Q-8))))
((:LABEL (:LITERAL (:SYMBOL :END-IF-4))))
((:TERMINATE))

;3 SQ-8 frees the context of the spawned procedure if it’s not needed

$; any more.

((:LABEL (:LITERAL (:SYMBOL :SQ-8))))

;; Suspend if [8], the signal that the spawned procedure is done, is present.
((:TEST-1 (:FRAME (:BASE 8) :SUSPENSIVE) (:REGISTER 0)))

;; Return [10], the context of the spawned procedure, writing true into [11].
((:RETURN-CONTEXT (:FRAME (:BASE 10) :SUSPENSIVE) (:FRAME (:BASE 11))))

;3 Copy [11], the true signal, into [7], a signal that all work is done.
((:MOVE-IDENTITY (:FRAME (:BASE 11)) (:FRAME (:BASE 7))))

((: TERMINATE))

;3 SQ-5 is spawned only for the inductive case.
((:LABEL (:LITERAL (:SYMBOL :SQ-5))))
;3 Multiply [3], the argument, by [9], the value returned by the recursive
;; call, putting the result into [13].
((:+ (:FRAME (:BASE 3) :SUSPENSIVE) (:FRAME (:BASE 9) :SUSPENSIVE)
(:FRAME (:BASE 13))))
;; Move this value into [6], the slot for the return value.
((:MOVE-IDENTITY (:FRAME (:BASE 13)) (:FRAME (:BASE 6))))
((: TERMINATE))

Figure 4-3: Hybrid Code for Factorial.

52

-t

Initialize frame
Spawn SQs 2 and 11

Return results “5]
and [6]) to caller

\

2] Evaluate predicate 11:| 1f (caller's FD present)
and (all work done),
If base case,

copy argument to [6] write true to [5].

El_ss_: if recursive_ case,
initiate recursive call

spawn SQs 5 and 8
51 Multiply argument by 8] If recursive call done,
result of recursive call, free its context

writing it to [6]

Figure 4-4: There are five scheduling quanta in factorial. The numbers in the SQ names have
no significance, except that the first is always named SQ-1. Arrows indicate where 5Qs may
be forked and can be thought of as a subset of data dependences. SQs 5 and 11 are only
spawned in the recursive case. Observe that on its first execution, SQ-1 will fault midway
through, because the return results will not be ready. Execution will restart in the middle of

the SQ.

53

Base Case Recursive Case

0: [FD of return location 0: | FD of return location

1: | unused 1: | unused

2: | unused 2. | unused

3: | argument (n) 3: | argument (n)

4: 1 n<=17 4: | n<=17?

5: | signal, [0] & [7] full 5: | signal, [0] & [7] full

6: | result 6: | result

7. | signal, [4] true 7: | signal, [11]full
8: | signal, rec call done
9: | result of rec. call
10:} context of rec. call
11:] signal, [10] freed
12:| fact_codeblock
13:] [3]+[9]
14| n-1

Figure 4-5: Frame Slots Used by Factorial Code. The left frame shows slot usage in the base
case, and the right frame shows slot usage in the recursive case. Signals are flags that are set
to indicate that the described condition has been met; i.e. [5] is explicitly set to true after
values are written to [0] and [7]. Note that the same slot, such as [7], can have a different
meaning for the two mutually exclusive cases.

54

4.1.83 The MDP Code

The MDP code is included in Appendix A.1. It has all of the same characteristics as the hybrid
code, i.e. the same frame slot assignments and SQs (modulo my slightly different calling
convention). The hybrid code had 28 instructions; the MDP code has 180, not counting code
in library routines. Thus there are an average of 6.4 MDP instructions per hybrid instruction.
This blow-up is not as bad as it seems because a MDP instruction word is roughly one-fourth
the size of a hybrid instruction word.! Part of the growth is thus the accepted expansion factor
between CISCy and RISCy architectures. As the reader will recall, there are two reasons that
one hybrid word expands into many instruction words: First, hybrid instructions are more
powerful and suited to the special purpose than the J-Machine; second, an expansion occurs

to fit the code into the more restrictive MDP addressing modes.

4.1.4 Load Balancing

As mentioned in Section 2.3.2, my compiler does no load balancing. The user must modify the
code produced by the get-contezt instruction to spawn procedures to an appropriate processor,
usually a function of the argument(s); otherwise, all calls will go to the same node. Because
factorial is singly recursive, it makes sense to spawn (fact n) onto processor n, because no
task will already be running there. I changed one line of the compiled routine to implement
this. If n were potentially larger than p, the number of processors, we would take its value

modulo p. This would guarantee an even distribution.

4.1.5 Dynamic Counts

When I ran (fact 4) on the MDP simulator, it took 1263 ticks for the result to be written
to the original calling frame. A tick is the time unit used by the simulator: One tick equals
one instruction, even though not all instructions on the J-Machine will take the same time.
The simulator also ignores network latency. Four processors were enabled, and utilization was

37% — i.e. on average, a processor did useful work a little over a third of the time. Fault

] cannot give an exact length for hybrid words, because the compiler I used was for a paper version of the
architecture where word lengths were essentially unlimited. According to Iannucci in private correspondence,
the word size can be roughly thought of as 64 bits.

55

Handler Name | Times Called | Ticks/Call | Total Ticks
Lookup 25 5 or 6 4 6w 212
CFUT 21 18 378
Move-Remote 16 13+ Tw 264
Continue-Test 14 7 or 20 189
Get-Context 3 24 72
Allocate 3 12 36
Total 136 n/a 1061

Table 4.1: System Calls for (fact 4). Ranges are specified for the ticks/call column because
the time may depend on the data. For lookup and move-remote, w specifies the number of
waiting continuations. An estimated average number is used (with w = %) to approximate
the total ticks.

Instruction Type | Times Used | Percent | Comments
Move 882 47.8 Both reg-reg and reg-frame
Field 247 13.3 | Operations on tags
Network 237 12.8 | Sending messages
DC 159 8.6 Loading constants into R0
Branch 125 6.7 Does not include busy-looping
Fault 87 4.7 Entering and leaving system calls
ALU 61 3.3 ALU ops for program and libraries
NOP 46 24 NOPs used as padding to align instructions

Table 4.2: Dynamic Instruction Usage for (fact 4).

and library usage is shown in Table 4.1. As the totals show, 84% of the time was spent in
the libraries. The routine that consumed the most time was the cfuture fault handler. It
was called 21 times, and each time took 18 ticks. As described in Section 2.2.4, the cfuture
handler must allocate space to store a continuation and fill in the necessary data. Dynamic
instruction usage (not counting idle cycles) is shown by category in Table 4.2.

The average number of instructions executed per message is 92.6, which is larger than
the 55 instructions per message empirically found by Horwat in [Horwat 1989, page 104]. His
Concurrent Smalltalk version of the same factorial program takes only 315 ticks to complete

[Horwat 1989, page 110], compared to my 1263.

56

Argument || Ticks/Call | Ticks/Skewed Calls | Ticks/Nonskewed Calls
1% Result 279 Result | 1** Result 2"¢ Result

4 1263 1864 2163 1992 2271
8 2691 4204 4590 4332 4611
12 4119 6544 6846 6672 6951

Table 4.3: Throughput for Factorial. This table compares the number of ticks required to
compute one and two calls of factorial. For each case, the number of processors used is the
same as the argument. The first data column shows how long it takes for one call executing
alone to complete. The second set of columns shows how long it takes to complete two factorial
calls made at the same time, skewed among the enabled processors. The last set of columns
shows the completion times when the two calls are not skewed among the processors.

4.1.6 Throughput

One reason for the high latency is that, at every design decision, throughput was favored over
latency. This is due to the decision to break apart any transaction of unbounded latency, which
increased the latency of tasks but improved throughput. Table 4.3 shows that computing two
invocations of factorial concurrently on the J-Machine takes significantly less than twice as

much time as computing a single call. This is true for two reasons:
1. Each task suspends itself when it is waiting for a result from another processor.
2. The factorial calls can be skewed among the processors.

The table isolates these factors by including results for when the procedure calls are skewed
and when they are not. Even when two factorial calls execute on the same processors, in the
same order, throughput is increased over the single call case. This is because subtasks of the
second factorial call can execute when no work can be done on a given processor toward the

first factorial call.

4.1.7 Conclusion

Although I was pleased that the throughput of the system was better than the reciprocal
of the latency, I was disappointed by the high latency, although it was predictable. One of
my purposes in following the factorial program through each step was to show where all the

57

£fib n =
if n <= 1 then
n
else
£ib (n-1) + £ib (n-2);

Figure 4-6: Id Code for Fibonacci

overhead was added. I should have expected the traditional costs of simulating one archi-
tecture on another. Almost half the time was spent on the “cfuture” and “lookup” handlers
which store suspended continuations and revive them, respectively. It would be impossible
to simulate these features with high efficiency. The problem can be summarized succinctly:
Because almost all the synchronization is handled in software, it is impractical to synchronize
on individual frame slots. While the costs incurred to synchronize on arguments and return
values would be reasonable, synchronizing on temporary values is excessively expensive. This
is exacerbated by the hybrid compiler’s lavish creation of frame slots, which make sense on
its architecture but not when synchronization is done in software.

While I was initially optimistic after the 6.4:1 code expansion because of the normal
CISC/RISC trade-offs, we see now that this number is actually irrelevant, as the vast majority
of time is spent in library routines that the hybrid architecture would have in hardware.
Simulating the hybrid architecture was thus not an optimal choice for implementing dataflow

on the J-Machine. A better choice is described in the next chapter.

4.2 Fibonacci

Another program I benchmarked was the doubly-recursive Fibonacci routine shown in Fig-
ure 4-6. The corresponding MDP code is in Appendix A.2. There are 46 lines of hybrid code,
which translate to 271 lines of MDP code, yielding a ratio of 5.9:1. Because its transformation
is so similar to factorial’s, I will not go into detail, except to mention that I added a distribu-
tion function to load balance. Empirically, I found the function (((p and n)+(p or n)) and 31),
where p is the current processor number and n the new argument. In runs with more than

one processor, I used this function to map calls to processors.

58

[Argument | # Processors | Number of Ticks |

1 1 166
4 1 4353
4 6 2105
6 1 13760
6 13 3473
8 22 5628
10 32 9566
12 32 67641

Table 4.4: Timings for Fibonacci. Note that, until the argument gets very large, the growth in
number of ticks is not exponential when many processors are used. Computing Fib(n) takes

roughly (1—?@)” procedure calls, which can be distributed among the processors.

The times and statistics for execution with different arguments is shown in Table 4.4. Note
that for low arguments using multiple processors, growth is closer to linear than exponential.
This is illustrated in Figure 4-7.2

While the number of ticks was higher than I would have liked for Fibonacci, the change
in its order of growth was just the sort of thing one hopes to see on a parallel computer. I
was only able to simulate 32 processors. The results should be fantastic when a 4096-node

J-Machine comes on-line.

4.3 Loop Parallelization

In the Fibonacci example, the parallelism was due to a function distribution strategy that I
added by hand, thus it cannot really be counted as part of the system. This is in contrast to
loop parallelization, for which it is straightforward for the compiler to provide parallelism: If
there are K iteration areas, each need only be assigned unique processors to send subcalls to;
for example, iteration area 7 could spawn its subcalls to processors i, i + K, etc. Because K
would be available at run-time (and optionally at compile-time), this could easily be computed.

Because the compiler did not handle loops, as explained in Section 2.3.3, I compiled simple

loop programs by hand and did not have the time or compute-power for a large example. The

2Unfortunately, I was unable to get a Concurrent Smalltalk timing to compare it to.

59

0 2 4] 8§ 1

def loop n =
{sum =0
in
{ for i <- 1 to n do
sum_increment = sum + i;
next sum = sum_increment
finally sum }};

Figure 4-8: Id Code for Loop Example

loop program I used is shown in Figure 4-8. The program returns the sum of the first n
integers.?

The produced code may be seen in Appendix A.3. There are 48 lines of hybrid code which
were translated to 188 lines of MDP code, for a 3.9:1 ratio. The better instruction ratio is
due to my hand-compiling the code rather than using my non-optimizing compiler. While I
purposely did not generate top-quality code, I still used better register allocation than the
compiler, saving reloads. Another factor was the reliance on additional library routines.

This program is a useful benchmark in that it shows the overhead to set up iteration areas
and to launch iterations of a loop in parallel. The number of ticks, as a function of K, the
number of iterations to unroll, and n, the argument, is 50+ 5% K +135*n. The three addends

of the formula can be interpreted:

1. The constant term, 50, indicates that the additional cost for a procedure to use loop

parallelization is low. There is thus no inhibition against parallelizing loops.

2. The 5 x K term is a pleasant surprise: Once the base cost for loop parallelization has
been paid, it only costs 5 ticks to add and support each iteration area. This makes it

reasonable to unroll many iterations of a loop.

3. The 135 * n term shows that each dynamic iteration of the loop is costly. However, this
also can be thought of in terms of constant overhead: If each iteration of the loop spawns

a long subroutine, as in the example in Figure 2-13, the only additional code that will

3The body of the loop could have been written more succinctly as next sum = sum + i. I work with this
version because the hacked-up version of Iannucci’s compiler could not compile new loop programs, and the
hybrid code for this example was the only available.

61

execute on the loop processor is that to spawn a procedure call. This means that each
iteration of the loop will use fewer than 200 ticks on its home processor, regardless of
how big a computation it performs. As described above, it is trivial to distribute its

procedure calls so that they do not interfere with those of other iterations.

I thus consider the loop parallelization strategy a success, although I am still dissatisfied
with the overhead. A primary reason for the high overhead is the small number of registers
on the MDP. There are only four general-purpose registers and four address registers. Two
of the address registers are special-purpose and cannot be used by my system, and one, A2,
is dedicated to holding the base of frame. This only leaves one address register, Al, to use
as an iteration area pointer, which is inadequate. Because hybrid addressing modes exist to
directly access slots of the previous, current, and next iteration areas, as well as offsets from
the current frame, it would be useful to have spare address registers for each of these pointers.
As things are now, the value in A1 keeps getting clobbered as references are made to the other
iteration areas, requiring the addresses to be recomputed frequently. Because of the shortage

of general-purpose registers, I cannot use them to cache frequently-needed values.

4.4 Conclusion

For simple programs like factorial and Fibonacci, the code performed several times worse
than Concurrent Smalltalk code. While this is disappointing, it is to be expected, as one
architecture is being used to simulate another. Loop parallelization provided very promising
results, particularly because the semantics of Id and the state of its compiler are such the
programmer need never be aware of possible parallelization. Any gain in parallelization and

efficiency that occurs without any programmer effort is a big win.

62

Chapter 5

Conclusion

And oftentimes, to win us to our harm,
The instruments of darkness tell us truths,
Win us with honest trifles, to betray ’s

In deepest consequence.

— William Shakespeare, Macbeth, Act I, Scene iii, line 123.

The current system has several strengths and weaknesses. I consider its primary strengths

to be:

e It successfully simulates the hybrid architecture within an acceptable factor of code

expansion.

o It includes a powerful loop parallelization strategy that shows the feasibility of concur-

rent execution of iterations of a loop.

o The observed throughput of the system implies that it succeeds to some extent at latency
toleration — something more important in real systems and big programs than in toy

benchmarks.

o By taking advantage of the Id language and compiler, it is possible for to write parallel

programs for the J-Machine without explicit mention of parallelism.

The only disappointment is that the costs of going through the hybrid architecture may

outweigh the benefits. There are three incremental approaches that can be taken in future

63

efforts: improving MDP code generation, improving hybrid code generation, and eliminating
weaknesses of the J-Machine. I discuss each of these and then propose taking a different

approach.

5.1 Improving MDP Code

As mentioned in appropriate sections throughout the document, the MDP code I produce is
not optimal. Specifically, register assignment is primitive, and various peephole optimizations
could be performed. In contrast, the libraries (see Appendix B) are tightly hand-coded, as
I wrote them directly in MDP assembly language. Because roughly 80% of execution time
is spent in the libraries, local optimizations of compiled code are unimportant. Even if I
could double the speed of the compiled code produced, the total execution time would only
increase by 10%. Therefore, it is not feasible to drastically improve the code through local

optimization.

5.2 Improving Hybrid Code

One problem with my system is that the hybrid code I begin with is non-optimal, particu-
larly in terms of the J-Machine, where cfuture faults, lookup calls, etc., are costly. I think
optimizations to the hybrid compiler would go much further than ones in my back-end for the
MDP. For several reasons, however, it seems that modifying the hybrid compiler would be a

poor idea:

1. The hybrid compiler does not fit quite properly on top of the current version of the base

Id compiler, and work would be required to bring them into synch.

2. Particularly because the code was written by someone else, writing new code might be
easier than modifying it. This is meant not to criticize Iannucci’s excellent and very
readable coding style but as a general comment on the difficulty of one programmer’s

modifying another’s code.

3. If extensive modification or a re-write is necessary, there is no reason for the extra costs

added by going through an intermediate architecture.

64

Because the hybrid architecture is too different for the J-Machine to execute its code as
efficiently as code generated specifically for the J-Machine, it makes little sense to put effort
into generating hybrid code that would be better for the J-Machine.

5.3 Strengths and Weaknesses of the J-Machine

Several features of the J-Machine make it excellent for running dataflow code; it was designed
to support fine-grained computation as described in [Dally 1988a). The features not found on

most computers that proved most beneficial were:
1. Hardware support for cfutures.

2. The low-latency network which gives the freedom to send frequent messages encouraging

the division of tasks.
3. User-defined tag types, which aided debugging.
4. The large number of processors that will be available.

There were some things I did not like about the J-Machine. Suggestions for alleviating two of

the worst problems are:

1. Increase the number of address and general-purpose registers. Four of each, particularly

when some have special purposes, is inadequate, as described in Section 4.3.

2. Hardware support for cfuture suspensions would make frequent synchronization much

more affordable. The 18 ticks for each call of the cfuture fault handler is too expensive.

At arecent Concurrent VLSI Architecture group meeting, I was pleased to find that others felt
the same needs and that such changes might be made for the next version of the J-Machine.

In several instances, however, of imperfect fits between hybrid code and the J-Machine, it
is impossible to blame either architecture. From this observation and the above descriptions
of rejected ideas for incremental changes, I would like to propose a different approach that

does not rely on trying to fit the two architectures together.

65

5.4 Synchronization on Tokens

After reading this document based on Traub and Iannucci’s method of partially sequentializing
dataflow programs, it is difficult to step back and imagine a different method that does
not use frames and continuation lists. Such a method exists, based more directly on Greg
Papadopoulos’ ezplicit token store (ETS) [Papadopoulos 1988]. The basic idea, used on
Monsoon, is that each cycle, a token is removed from the queue. Its context value, ¢, is added
to the destination instruction offset, s, and that location is checked. If the location is empty,
the value, v, is stored there. If the location is not empty, the value stored there must be the
other argument, so the instruction is executed. It is not obvious why this method is better
for the J-Machine, but empirical results suggest it is.

Last year, as a UROP, I designed a method to use the explicit token store on the MDP

[Spertus 1989]. Its only similarity to my new system is that the message words are:

1. Instruction address, s.
2. Context value, c.

3. Data value, v.

Figures 5-1 and 5-2 show code for the -1 and multiply nodes, respectively, from the dataflow
graph in Figure 4-2 provide examples of monadic and dyadic nodes. The cfuture fault handler
is only two lines long and is shown in Figure 5-3. Bill Dally played a major role in developing
these templates. For further details, such as the calling convention, see [Spertus 1989].

The only benchmark for this system is factorial. It took 431 ticks to compute 4!, compared
to the new system’s 1263. The comparison is fair even though it is between hand-compiled
and machine-generated code, as transforming dataflow nodes is straightforward. Actually,
the comparison is unfair in the other direction, because so much intelligent effort has been
put into the hybrid system. If I had spent the past year studying how to improve the ETS
code, such as by discovering how to combine a few instructions with known orderings into a
single macro-dataflow node, this technique would surely surpass the performance of the hybrid

system, especially because it is already better.

!'While Iannucci’s method uses an explicit token store also, the schema I am presenting is more trivially
based on Papadopoulos’ ideas.

66

; Subtract 1 node
factli_node5:
move [2,A3], Rt
sub Ri, 1, R1
DC MSG:(factl_node7_left<<sys_len_bits)+3
send?2 3, RO, O
send2e [1,A3], R1, O
suspend

Figure 5-1: A Monadic Node Using ETS. The data value is taken from offset two in the
message, and the constant 1 is subtracted. The result is sent to the left input of node 7 on
processor 3.

; Multiply node
factl_node8:

move [1,A3], RO ; Put data_addr in A2
move RO, A2
move [2,4A3], R1 ; Get new argument

; This line may fault
mul Ri, [0, A2], R1

DC MSG: (factl_node9_right<<sys_len_bits)+3
send?2 6, RO, O
send2e [1,43], R1, O

;3 Clean up

wtag RO, CFUT, RO
move RO, [0,A2]
suspend

Figure 5-2: A Dyadic Node Using ETS. If the other argument has not arrived yet, a fault
occurs instead of a multiply. The fault handler will write the new argument to the faulted
slot. If the other argument is already there, the multiply precedes, and a token is sent to node
9, after which the slot must be emptied if the frame is to be reused.

67

; cfuture handler
fault_cfut_loc:
move R1, [0,42]
suspend

Figure 5-3: The Cfuture Handler for ETS. It simply moves the new argument, guaranteed to
be in R1, into the slot reserved for the argument.

5.5 Conclusion

Even though I do not think the system good enough to justify continuing dataflow research
on the J-Machine by building on it, I consider the experiment with the hybrid architecture to
be a success. In addition to the successful results described in the analysis, there were several

other successful aspects to the project:

e By working with both the Computation Structures Group and the Concurrent VLSI
Architecture group, I was able to help cross-fertilize two groups that have very different
outlooks on the same problem, parallel computation. MIT has been criticized for not

having enough communication between groups.

e By stretching on the J-Machine in ways its designers never imagined, I have found some
of its limits. While this does not mean the J-Machine is flawed or necessarily should
be changed, its architects should keep aware of what trade-offs they have made and

reconsider them.

e In the process of building my compiler, I have built utilities that will convert among
different formats of MDP code. This should aid other J-Machine programmers in future

work.

o There have still been few enough MDP coders that I have significantly increased the
number of hours spent MDP hacking. I have helped contribute to the set of known neat
hacks for the J-Machine (such as with the code in Figure 3-6).

¢ By proving the feasibility of parallelizing iterations of a loop and presenting ideas on

how “straight-line” Id code could be better converted, I have made a powerful case for

68

Appendix A

MDP Program Examples

A.1 MDP Code for Factorial

module FACT

s ((:LABEL (:LITERAL (:SYMBOL :5Q-1))))
sqQ_1:

MOVE [1,43], R3

MOVE R3, A2

s ((:MOVE (:LITERAL (:CODE-BLOCK :FACT)) (:FRAME (:BASE 12))))
MOVE 12, R1
CALL LOOKUP_VECTOR
DC {FACT_codeblock_ref}
MOVE RO, [12,42]

; ((:CONTINUE-TEST (:FRAME (:BASE 3) :SUSPENSIVE) (:LITERAL (:SYMBOL :5Q-2))))
DC {SQ_2_msg_ref}
MOVE 3, R1
CALL CNTT_VECTOR

; ((:CONTINUE-TEST (:FRAME (:BASE 0) :SUSPENSIVE) (:LITERAL (:SYMBOL :SQ-11))))
DC {SQ.11_msg_ref}
MOVE O, R1
CALL CNTT_VECTOR

; ((:LABEL (:LITERAL (:SYMBOL :SEND-RESULT-0))))
SEND_RESULT_O:
MOVE [1,43], R3

MOVE R3, A2
; ((:MOVE-REMOTE (:FRAME (:BASE 0) :SUSPENSIVE)
3 (:LITERAL (:INTEGER 1))
; (:FRAME (:BASE 8) :SUSPENSIVE)))
SUSPENSIVE4683:

MOVE [1,43], R3

MOVE R3, A2

DC {SUSPENSIVE4683_msg_ref}
RTAG [0,42], R3

70

RTAG [6,42], R3

SENDO [0,42]

DC {LOCAL_MOVR_msg_ref}
SENDO RO

SENDO [0,42]

SENDO 1

SENDEO [6,42]

; ((:MOVE-REMOTE (:FRAME (:BASE 0)) (:LITERAL (:INTEGER 0))
; (:FRAME (:BASE 6) :SUSPENSIVE)))
SUSPENSIVE4689:

MOVE [1,A3], R3

MOVE R3, A2

DC {SUSPENSIVE4689_msg_ref}

RTAG [5,12], R3

SEEDO [0,42]

DC {LOCAL_MOVR_msg_ref}

SENDO RO

SE¥NDO [0,42]

SENDO O

SENDEO [5,42]

; ((: TERMINATE))
SUSPERD

3 (C:LABEL (:LITERAL (:SYMBOL :5Q-11))))

sqQ_11:
MOVE [1,43], R3
MOVE R3, A2
s ((:TEST-2 (:FRAME (:BASE 0) :SUSPENSIVE) (:FRAME (:BASE 7) :SUSPENSIVE)
3 (:FRAME (:BASE 5))))
SUSPENSIVE4696 :
MOVE {1,43], R3
MOVE R3, A2

DC {SUSPENSIVE4695_msg_ref}
RTAG [0,42], R3

RTAG [7,42], R3

MOVE 6, R1

CALL LOOKUP_VECTOR

MOVE true, R3

MOVE R3, [5,42]

; (C: TERMINATE))
SUSPEND

3 ((:LABEL (:LITERAL (:SYMBOL :5Q-2))))

SQ_2:
MOVE [1,43], R3
MOVE R3, A2
3((:<= (:FRAME (:BASE 3) :SUSPENSIVE) (:LITERAL (:INTEGER 1))
; (:FRAME (:BASE 4))))
SUSPENSIVE4T02:
MOVE ([1,43], R3
MOVE R3, A2

DC {SUSPENSIVE4702_msg_ref}
RTAG [3,42], B3

MOVE 4, R1

CALL LOOKUP,VECTOR

MOVE [3,42], R3

LE R3, 1, R2

MOVE R2, [4,A42]

71

i ((:BRANCH-FALSE (:FRAME (:BASE 4)) (:LITERAL (:SYMBOL :ELSE-4))))
MOVE [4,42], R3
BT R3, 2
DC {ELSE_4_ip_ref}
MOVE RO, IP

; ((:MOVE-IDENTITY (:FRAME (:BASE 3) :SUSPENSIVE) (:FRAME (:BASE 6))))
SUSPENSIVE4710:

MOVE [1,A3], R3

NOVE R3, A2

DC {SUSPENSIVE4710_msg_ref}

RTAG [3,42], R3

MOVE 6, Ri

CALL LODOKUP_VECTOR

MOVE [3,A2], R3

MOVE R3, [6,42)

; ((:MOVE-IDENTITY (:FRAME (:BASE 4)) (:FRAME (:BASE 7))))
MOVE 7, R1
CALL LOOKUP_VECTOR
MOVE [4,42], R3
MOVE R3, [7,42]

; ((:BRANCH (:LITERAL (:SYMBOL :END-IF-4))))
DC {EED_IF_4_ip_ref}
MOVE RO, IP

s ((:LABEL (:LITERAL (:SYMBOL :ELSE-4))))
ELSE_4:

MOVE [1,A3], R3

MOVE R3, A2

;((:- (:FRAME (:BASE 3) :SUSPENSIVE) (:LITERAL (:INTEGER 1))
; (:FRAME (:BASE 14))))
SUSPENSIVE4718:

MOVE [1,43], R3

MOVE R3, 42

DC {SUSPENSIVE4718 _msg_ref}

RTAG [3,42], R3

MOVE 14, R1

CALL LOOKUP_VECTOR

MOVE [3,A2], R3

SUB R3, 1, R2

MOVE R2, [14,42]

; ((:CONTINUE (:LITERAL (:SYMBOL #:5Q4674))))
MOVE NER, R3
SENDO R3
DC {SQ4674_msg_ref}
SENDO RO
SENDEO 42

; ((:GET-CONTEXT (:FRAME (:BASE 12)) (:FRAME (:BASE 10))))
MOVE A2, R3
WTAG R3, INT, R3
LSHE R3, 6, R3
MOVE NER, R2
ADD R3, R2, R3
WTAG R3, FD, R3
send0 [14,42] ; argument
DC {LOCAL_GETC_msg_ref}
SENDO RO
SENDO [12,42]

72

SENDO R3
SENDEO 10

; ((:SPECIAL-TEST-1 (:FRAME (:BASE 10))))
SUSPENSIVE4729:
MOVE [1,A3], R3
MOVE R3, A2
DC {SUSPENSIVEA729_msg_ref}
RTAG [10,42], R3

3 ((: INDEX-CURRENT~-CONTEXT (:LITERAL (:BASE 8)) (:REGISTER 0)))
MOVE A2, R3
WTAG R3, INT, R3
MOVE RO, R2
DC 8192
ADD R3, RO, R3
LSH R3, 6, R3
MOVE NER, R1
ADD R3, Ri, R3
WTAG R3, FD, R3
MOVE R3, [0,40)

MOVE-REMOTE (:FRAME (:BASE 10)) (:LITERAL (:INTEGER 0))
REGISTER 0)))

SE¥DO [10,42]

DC {LOCAL_MOVR_msg_ref}

SENDO RO

SENDO [10,42]

SEXNDO O

SEXDEO [0,40]

~ o~
o e

((:MOVE-REMOTE (:FRAME (:BASE 10)) (:LITERAL (:IETEGER 3))
(:FRAME (:BASE 14))))
SENDO [10,42]
DC {LOCAL_MOVR_msg_ref}
SEEDO RO
SERNDO [10,42]
SENDO 3
SENDEO [14,42]

- we

3 ((: TERNINATE))
SUSPEND

s ((:LABEL (:LITERAL (:SYMBOL #:5Q4674))))
5Q4674:

MOVE [1,43], R3

MOVE R3, A2

; ((:CONTINUE-TEST (:FRAME (:BASE 3) :SUSPENSIVE) (:LITERAL (:SYMBOL :5Q-5))))
DC {SQ_5_msg_ref}
MOVE 3, R1
CALL CETT_VECTOR

; ((:CONTINUB-TEST (:FRAME (:BASE 8) :SUSPENSIVE) (:LITERAL (:SYMBOL :5Q-8))))
DC {SQ_8_msg_ret}
MOVE 8, R1
CALL CNTT_VECTOR

; (C:LABEL (:LITERAL (:SYMBOL :END-IF-4))))
EED_IF_4:

MOVE [1,43], R3

MOVE R3, 42

; ((: TERMINATE))

73

SUSPEND

3 C(:LABEL (:LITERAL (:SYMBOL :SQ-8))))
SQ_8:

MOVE [1,43], R3

MOVE R3, A2

s ((:TEST-1 (:FRAME (:BASE 8) :SUSPENSIVE) (:REGISTER 0)))
SUSPENSIVE4741:

MOVE [1,43], R3

MOVE R3, A2

DC {SUSPENSIVE4741 _msg_ref}

RTAG [8,42], R3

MOVE true, R3

MOVE R3, [0,40]

3 ((:RETURN-CONTEXT (:FRAME (:BASE 10) :SUSPENSIVE) (:FRAME (:BASE 11))))
SUSPENSIVE4746:

MOVE [1,43], R3

MOVE R3, A2

DC {SUSPENSIVE4746_msg_ref}

RTAG [10,42], R3

MOVE 11, R1

CALL LOOKUP_VECTOR

MOVE true, R3

MOVE R3, [11,42]

; ((:MOVE-IDENTITY (:FRAME (:BASE 11)) (:FRAME (:BASE 7))))
MOVE 7, Ri
CALL LOOKUP_VECTOR
MOVE [11,A2], R3
MOVE R3, [7,42]

; (C: TERMINATE))
SUSPEND

; ((:LABEL (:LITERAL (:SYMBOL :SQ-5))))

SQ._6:
MOVE [1,43], R3
MOVE R3, A2
;((:* (:FRAME (:BASE 3) :SUSPENSIVE) (:FRAME (:BASE 9) :SUSPEESIVE)
H (:FRAME (:BASE 13))))
SUSPENSIVE4753:
MOVE [1,43], R3
MOVE R3, A2

DC {SUSPENSIVE4753_msg_ref}
RTAG [3,42], R3

RTAG [9,A2], R3

MOVE 13, R1

CALL LOOKUP_VECTOR

MOVE [3,A2], R3

MUL R3, [9,42], R1

MOVE R1, [13,42]

; ((:MOVE-IDENTITY (:FRAME (:BASE 13)) (:FRAME (:BASE 6))))
MOVE 6, R1
CALL LOOXUP_VECTOR
MOVE [13,42], R3
MOVE R3, [6,42]

; ((: TERMINATE))

SUSPEND
end

74

reof
reof
rof
ref
ref
ref
reof
ref
ref
reof
Tol
Tof
ref
ref
reof
rof
rof
Tof

MSG: (((SUSPENSIVE47B3+FACT_loc)<<10))+2
SUSPENSIVE4746_msg_ref = MSG: (((SUSPENSIVE4T46+FACT_loc)<<10))+2
SUSPENSIVE4741_msg_ref = MSG: (((SUSPENSIVE4741+FACT_loc)<<10))+2
SQ_8_msg_ref = MSG: (((SQ_8+FACT_loc)<<10))+2

SQ_6_msg_ref = MSG:(((SQ_5+FACT_loc)<<10))+2
SUSPENSIVE4729_msg_ref = MSG: (((SUSPENSIVE4729+FACT_loc)<<i0))+2
$Q4674_msg_ref = MSG:(((SQ4674+FACT_loc)<<10))+2
SUSPENSIVE4718_msg_ref = MSG: (((SUSPENSIVE4718+FACT_loc)<<10))+2
SUSPENSIVE4710_msg_ref = MSG: (((SUSPENSIVE4710+FACT_loc)<<10))+2
SUSPENSIVE4702_msg._ref = MSG: (((SUSPENSIVE4702+FACT_loc)<<10))+2
SUSPEESIVE4696_msg_ref = MSG: (((SUSPENSIVE4695+FACT loc)<<10))+2
SUSPENSIVE4689_msg_ref = MSG: (((SUSPENSIVE4689+FACT_loc)<<10))+2
SUSPENSIVE4683_msg_ref = MSG: (((SUSPENSIVE4683+FACT_loc)<<10))+2
SQ_11_msg_ref = MSG: (((SQ_11+FACT_loc)<<10))+2

SQ_2_msg_xef = MSG: (((SQ_2+FACT_loc)<<10))+2

END_IF_4_ip_ref = IP:(((END.IF_4+FACT_loc)<<10))+ABSOLUTE
ELSE_4_ip_ref = IP:(((ELSE_4+FACT _loc)<<10))+ABSOLUTE

FACT _codeblock_ref = CB:(FACT_loc<<16)+15

SUSPENSIVE4753 _msg_ref

75

A.2 MDP Code for Fibonacci

module FIB

; (C:LABEL (:LITERAL (:SYMBOL :SQ-1))))
sQ_1:

MOVE [1,43], R3

MOVE R3, A2

; ((:MOVE (:LITERAL (:CODE-BLOCK :FIB)) (:FRAME (:BASE 18))))
MOVE 18, R1
CALL LOOKUP_VECTOR
DC {FIB_codeblock_ref}
MOVE RO, [18,42]

; ((:CONTINUE-TEST (:FRAME (:BASE 3) :SUSPENSIVE) (:LITERAL (:SYMBOL :5Q-2))))
DC {SQ.2_msg_ref}
MOVE 3, R1
CALL CNTT_VECTOR

; ((:CONTINUE-TEST (:FRAME (:BASE O) :SUSPENSIVE) (:LITERAL (:SYMBOL :5Q-17))))
DC {SQ_17_msg_ref}
MOVE 0, Ri
CALL CETT_VECTOR

; ((:LABEL (:LITERAL (:SYMBOL :SEED-RESULT-0))))
SEND_RESULT_O:
MOVE [1,43], R3

MOVE R3, A2
; ((:MOVE-REMOTE (:FRAME (:BASE 0) :SUSPENSIVE)
; (:LITERAL (:INTEGER 1))
; (:FRAME (:BASE 6) :SUSPENSIVE)))
SUSPENSIVE2503:
MOVE [1,43], R3
MOVE R3, 42

DC {SUSPEISIVE2503_m55_rot}
RTAG [0,A2], R3

RTAG [6,42], R3

SENDO [0,42]

DC {LOCAL_MOVR_msg_ref}
SENDO RO

SENDO [0,42]

SENDO 1

SENDEO [6,42]

; ((:MOVE-REMOTE (:FRAME (:BASE 0)) (:LITERAL (:INTEGER 0)) (:FRAME (:BASE §) :SUSPENSIVE)))
SUSPENSIVE2509:
MOVE [1,43], R3
MOVE R3, A2
DC {SUSPENSIVE2509_msg_ref}
RTAG [6,42], R3
SENDO [0,42]
DC {LOCAL_MOVR_msg_ref}
SENDO RO
SEEDO [0,42]
SENDO 0
SENDEO [5,42]

; ((: TERMINATE))

76

SUSPEND

; ((:LABEL (:LITERAL (:SYMBOL :5Q-17))))
sQ_17:

MOVE [1,43], R3

MOVE R3, A2

s ((:TEST-2 (:FRAME (:BASE 0) :SUSPENSIVE) (:FRAME (:BASE 7) :SUSPENSIVE) (:FRAME (:BASE 5))))
SUSPENSIVE25165:

MOVE [1,43], R3

MOVE R3, A2

DC {SUSPEESIVE2615_msg_ref}

RTAG [0,42], R3

RTAG [7,42], R3

MOVE 5, R1

CALL LOOKUP_VECTOR

MOVE true, R3

MOVE R3, [6,42]

; ((: TERMINATE))
SUSPEND

s ((:LABEL (:LITERAL (:SYMBOL :5Q-2))))
sQ.2:

MOVE [1,43], R3

MOVE R3, A2

3 ((:<= (:FRAME (:BASE 3) :SUSPENSIVE) (:LITERAL (:INTEGER 1)) (:FRAME (:BASE 4))))
SUSPENSIVE2622:

MOVE [1,43], R3

MOVE R3, A2

DC {SUSPENSIVE2522_msg_ref}

RTAG [3,42], R3

MOVE 4, R1

CALL LOOKUP_VECTOR

MOVE [3,42], R3

LE R3, 1, R2

MOVE R2, [4,42]

; ((:BRANCH-FALSE (:FRAME (:BASE 4)) (:LITERAL (:SYMBOL :ELSE-4))))
MOVE [4,42], R3
BT R3, 2
DC {ELSE_4_ip_ref}
MOVE RO, IP

; ((:MOVE-IDENTITY (:FRAME (:BASE 3) :SUSPENSIVE) (:FRAME (:BASE 6))))
SUSPENSIVE2530:

MOVE [1,43], R3

MOVE R3, A2

DC {SUSPENSIVE2530_msg_ref}

RTAG (3,421, R3

MOVE 6, R1

CALL LDOKUP_VECTOR

MOVE [3,A42], R3

MOVE R3, [6,42]

s ((:MOVE-IDENTITY (:FRAME (:BASE 4)) (:FRAME (:BASE 7))))
MOVE 7, R1
CALL LOOKUP_VECTOR
MOVE [4,42], R3
MOVE R3, [7,42]

; ((:BRANCH (:LITERAL (:SYMBOL :END-IF-4))))

77

DC {END_IF_4_ip_ref}
MOVE RO, IP

; ((:LABEL (:LITERAL (:SYMBOL :ELSE-4))))
ELSE_4:

MOVE [1,43], R3

MOVE R3, A2

;((:- (:FRAME (:BASE 3) :SUSPENSIVE) (:LITERAL (:INTEGER 1)) (:FRAME (:BASE 20))))
SUSPENSIVE2538:

MOVE [1,43], R3

MOVE R3, A2

DC {SUSPENSIVE2638_msg_ref}

RTAG [3,42], R3

MOVE 20, R1

CALL LOOKUP_VECTOR

MOVE [3,42], R3

SUB R3, 1, R2

MOVE R2, [20,A2]

;((:- (:FRAME (:BASE 3) :SUSPENSIVE) (:LITERAL (:INTEGER 2)) (:FRAME (:BASE 19))))
SUSPENSIVE2544:

MOVE [1,A3], R3

MOVE R3, A2

DC {SUSPENSIVE2544 _msg_ref}

RTAG [3,42], R3

MOVE 19, R1

CALL LOOKUP_VECTOR

MOVE [3,42], R3

SUB R3, 2, R2

MOVE R2, [19,42]

; ((:CONTINUE (:LITERAL (:SYMBOL #:5Q2490))))
MOVE ¥NR, R3
SERDO R3
DC {SQ2490_msg_ref}
SEEDO RO
SENDEO A2

; ((:GET-CONTEXT (:FRAME (:BASE 18)) (:FRAME (:BASE 12))))
MOVE A2, R3
WTAG R3, INT, R3
LSH R3, 6, R3
MOVE ENR, R2
ADD R3, R2, R3
WTAG R3, FD, R3
; make up destination
move [19,42],R1
or R1, R2, RO
and R1, R2, R2
add RO, R2, Ri
move 31, RO
and Ri, RO, Ri
send0 R1
; send0 1
DC {LOCAL_GETC_msg_ref}
SENDO RO
SENDO [18,A2]
SENDO R3
SENDEO 12

; ((:SPECIAL-TEST-1 (:FRAME (:BASE 12))))

SUSPENSIVE26566:
MOVE [1,43], R3

78

MOVE R3, A2
DC {SUSPENSIVE2555_msg_ref}
RTAG [12,42], R3

; ((: INDEX-CURRENT-CONTEXT (:LITERAL (:BASE 10)) (:REGISTER 0)))
MOVE A2, R3
WTAG R3, INT, R3
MOVE RO, R2
DC 10240
ADD R3, RO, R3
LSH R3, 6, R3
MOVE NER, R1
ADD R3, Ri, R3
WTAG R3, FD, R3
MOVE R3, [0,40]

; ((:MOVE-REMOTE (:FRAME (:BASE 12)) (:LITERAL (:INTEGER 0)) (:REGISTER 0)))
SENDO [12,42]
DC {LOCAL_MOVR_msg_ref}
SEEDO RO
SENDO [12,42]
SENDO ©
SENDEO [0,40]

; ((:MOVE-REMOTE (:FRAME (:BASE 12)) (:LITERAL (:INTEGER 3)) (:FRAME (:BASE 19))))
SENDO [12,42]
DC {LOCAL_MOVR_msg_ref}
SEEDO RO
SENDO [12,42]
SENDO 3
SENDEO [19,42]

; ((: TERMINATE))
SUSPEND

; ((:LABEL (:LITERAL (:SYMBOL #:5Q2490))))
5Q2490:

MOVE [1,43], R3

MOVE R3, 42

; ((:CONTINUE-TEST (:FRAME (:BASE 10) :SUSPENSIVE) (:LITERAL (:SYMBOL :5SQ-8))))
DC {SQ.8_msg_ref}
MOVE 10, Ri
CALL CETT_VECTOR

; ((:CONTINUE (:LITERAL (:SYMBOL #:5Q2494))))
MOVE NNR, R3
SENDO R3
DC {5Q2494_msg_ref}
SEEDO RO
SENDEO A2

; ((:GET-CONTEXT (:FRAME (:BASE 18)) (:FRAME (:BASE 16))))
MOVE A2, R3
WTAG R3, INT, R3
LSH R3, 6, R3
MOVE NER, R2
ADD R3, R2, R3
WTAG R3, FD, R3
; make up destination
move [20,42],R1
ox R1, R2, RO
and R1, R2, R2
add RO, R2, R1

79

move 31, RO
and R1, RO, R1
send0 R1
; SENDO 1
DC {LOCAL_GETC.msg_ref}
SENDO RO
SE¥DO [18,42]
SENDO R3
SENDEO 15

; ((:SPECIAL-TEST-1 (:FRAME (:BASE 15))))
SUSPENSIVE2570:
MOVE [1,A3], R3
MOVE R3, A2
DC {SUSPEESIVE2570_msg_ref}
RTAG [15,42], R3

; ((: INDEX-CURRENT-CONTEXT (:LITERAL (:BASE 13)) (:REGISTER 0)))
MOVE A2, R3
WTAG R3, INT, R3
MOVE RO, Ri
DC 13312
ADD R3, RO, R3
LSH R3, 6, R3
MOVE NER, RO
ADD R3, RO, R3
WTAG R3, FD, R3
MOVE R3, [0,40]

;+ ((:MOVE-REMOTE (:FRAME (:BASE 15)) (:LITERAL (:INTEGER 0)) (:REGISTER 0)))
SENDO [15,42)
DC {LOCAL_MOVR_msg_ref}
SENDO RO
SENDO [15,42]
SEXDO 0
SE¥DEO [0,40]

; ((:MOVE-REMOTE (:FRAME (:BASE 15)) (:LITERAL (:INTEGER 3)) (:FRAME (:BASE 20))))
SENDO [15,42]
DC {LOCAL_MOVR_msg_ref}
SENDO RO
SENDO [15,A42]
SENDO 3
SENDEO [20,42]

; ((: TERMINATE))
SUSPEND

s ((:LABEL (:LITERAL (:SYMBOL #:5Q2494))))
$Q2494:

MOVE [1,43], R3

MOVE R3, A2

; ((:CONTINUE-TEST (:FRAME (:BASE 14) :SUSPENSIVE) (:LITERAL (:SYMBOL :5Q-12))))
DC {SQ_12_msg_ref}
MOVE 14, R1
CALL CETT_VECTOR

; ((:CONTINUE-TEST (:FRAME (:BASE 13) :SUSPENSIVE) (:LITERAL (:SYMBOL :5Q-13))))
DC {SQ_13_msg_ref}
MOVE 13, R1
CALL CNTT_VECTOR

; ((:CONTINUE-TEST (:FRAME (:BASE 8) :SUSPENSIVE) (:LITERAL (:SYMBOL :SQ-14))))

80

DC {SQ_14_msg_ref}
MOVE 8, R1
CALL CNTT_VECTOR

; ((:LABEL (:LITERAL (:SYMBOL :END-IF-4))))
END_IF_4:

MOVE [1,43], R3

MOVE R3, A2

; ((: TERMINATE))
SUSPEED

; C((:LABEL (:LITERAL (:SYMBOL :5Q-14))))
SQ_14:

MOVE [1,43], R3

MOVE R3, A2

; ((:TEST-2 (:FRAME (:BASE 8) :SUSPENSIVE) (:FRAME (:BASE 9) :SUSPENSIVE) (:FRAME (:BASE 16))))
SUSPENSIVE2582:

MOVE [1,A43], R3

MOVE R3, A2

DC {SUSPENSIVE2582_msg_ref}

RTAG [8,42], B3

RTAG [9,42], R3

MOVE 16, R1

CALL LOOKUP_VECTOR

MOVE true, R3

MOVE R3, [16,42]

s ((:MOVE-IDENTITY (:FRAME (:BASE 18)) (:FRAME (:BASE 7))))
MOVE 7, R1
CALL LOOKUP_VECTOR
MOVE [16,42], R3
MOVE R3, [7,42]

3 ((: TERMINATE))
SUSPERD

s CC:LABEL (:LITERAL (:SYMBOL :5Q-13))))
sQ_13:

MOVE [1,43], R3

MOVE R3, A2

s ((:TEST-1 (:FRAME (:BASE 13) :SUSPENSIVE) (:REGISTER 0)))
SUSPENSIVE25690: .

MOVE [1,43], R3

MOVE R3, 42

DC {SUSPENSIVE2590_msg_ref}

RTAG [13,42], R3

MOVE true, R3

MOVE R3, [0,40]

; (C:RETURN-CONTEXT (:FRAME (:BASE 15) :SUSPENSIVE) (:FRAME (:BASE 8))))
SUSPEESIVE25956:

MOVE {1,43], R3

MOVE R3, A2

DC {SUSPENSIVE2695_msg_ref}

RTAG [15,42], R3

MOVE 8, R1

CALL LOOKUP_VECTOR

MOVE true, R3

MOVE R3, [8,A2]

; ((: TERMINATE))

81

SUSPEND

s ((:LABEL (:LITERAL (:SYMBOL :5Q-12))))
SQ_12:

MOVE [1,43], R3

MOVE R3, A2

;((:+ (:FRAME (:BASE 14) :SUSPEESIVE) (:FRAME (:BASE 11) :SUSPENSIVE) (:FRAME (:BASE 17))))
SUSPENSIVE2601:

MOVE [1,43], R3

MOVE R3, 42

DC {SUSPENSIVE2601_msg_ref}

RTAG [14,42], R3

RTAG [11,42], R3

MOVE 17, R1

CALL LOOKUP_VECTOR

MOVE [14,42], R3

ADD R3, [11,42], RO

MOVE RO, [17,42]

; ((:MOVE-IDENTITY (:FRAME (:BASE 17)) (:FRAME (:BASE 6))))
MOVE 6, Ri
CALL LDOKUP_VECTOR
MOVE [17,42], R3
MOVE R3, [6,A2]

; ((: TERMINATE))
SUSPEND

s ((:LABEL (:LITERAL (:SYMBOL :5Q-8))))
sQ_8:

MOVE [1,43], R3

MOVE R3, A2

; ((:TEST-1 (:FRAME (:BASE 10) :SUSPENSIVE) (:REGISTER 0)))
SUSPENSIVE2610:

MOVE [1,43], R3

MOVE R3, A2

DC {SUSPENSIVE2610_msg_ref}

RTAG [10,22], R3

MOVE true, R3

MOVE R3, [0,40]

; (C:RETURN-CONTEXT (:FRAME (:BASE 12) :SUSPENSIVE) (:FRAME (:BASE 9))))
SUSPENSIVE2615:

MOVE (1,43], R3

MOVE R3, 12

DC {SUSPEESIVE2616_msg._ref}

RTAG [12,42], R3

MOVE 9, R1

CALL LOOKUP_VECTCR

MOVE true, R3

MOVE R3, [9,42]

; ((: TERMINATE))
SUSPERD
end
ref SUSPENSIVE2615_msg_ref
ref SUSPENSIVE2610_msg_ref

MSG: (((SUSPEESIVE2615+FIB_loc)<<10))+2
MSG: (((SUSPENSIVE2610+FIB_loc)<<10))+2
ref SUSPENSIVE2601_msg_ref = MSG: (((SUSPENSIVE2601+FIB_loc)<<10))+2
ref SUSPENSIVE2596_msg_ref = MSG: (((SUSPENSIVE2595+FIB_loc)<<10))+2
ref SUSPENSIVE2690_msg_ref = MSG: (((SUSPENSIVE2590+FIB_loc)<<10))+2
ref SUSPENSIVE2582_msg_ref = MSG: (((SUSPENSIVE2582+FIB_loc)<<10))+2
ref SQ_14_msg_ref = MSG:(((SQ_14+FIB_loc)<<10))+2

82

ref
rof
ref
ref
ref
ref
rof
rof
rof
rof
ref
rof
reof
rof
Tof
Teof
Tof
Tof
ol

SQ_13_msg_ref = MSG: (((SQ_13+FIB_loc)<<10))+2

$Q.12_msg_ref = MSG: (((SQ_12+FIB_loc)<<10))+2
SUSPENSIVE2E70_msg_ref = MSG: (((SUSPENSIVE2570+FIB_loc)<<10))+2
$Q2494_msg_ref = MSG: (((SQ2494+FIB_loc)<<10))+2

SQ_8_msg_ref = MSG:(((SQ_8+FIB_loc)<<10))+2
SUSPENSIVE2666_msg_ref = MSG: (((SUSPENSIVE2565+FIB_loc)<<10))+2
$Q2490_msg_ref = MSG: (((SQ2490+FIB_loc)<<10))+2
SUSPENSIVE2644_msg_ref = MSG: (((SUSPENSIVE2544+FIB_loc)<<10))+2
SUSPENSIVE2538_msg_ref = MSG: (((SUSPENSIVE2638+FIB_loc)<<10))+2
SUSPENSIVE2530_msg_ref = MSG: (((SUSPENSIVE2530+FIB_loc)<<10))+2
SUSPEESIVE2522_msg.ref = MSG:(((SUSPENSIVE2522+FIB_loc)<<10))+2
SUSPENSIVE2515_msg_ref = MSG: (((SUSPENSIVE25154FIB_1l0c)<<10))+2
SUSPENSIVE2509_msg_ref = MSG: (((SUSPENSIVE2509+FIB_loc)<<10))+2
SUSPENSIVE2503 _msg_ref = MSG:(((SUSPEFSIVE2603+FIB_loc)<<10))+2
SQ_17_msg_ref = MSG:{(((SQ_17+FIB_loc)<<10))+2

SQ_2_msg.ref = MSG:(((SQ_2+FIB_loc)<<10))+2

END_IF_4_ip_ref = IP:(((EED_IF_4+FIB_loc)<<10))+ABSOLUTE
ELSE_4_ip_ref = IP:(((ELSE_4+FIB_loc)<<10))+ABSOLUTE
FIB_codeblock_ref = CB: (FIB_loc<<16)+21

83

A.3 MDP Code for Loop Example

This is a rewrite of the loop program with non-Iannucci structures.
Instead of having:

/>0 1<=>1 1<=>) 1<====\

| |

\ /

use a setup where different iterations iteration pointers are
contiguous:

lptr to it. K-1| (Think of as "-1")
to it. 0 |
Iptr to dt. 1 |
| !
|ptr to it. K-1]
|ptr to it. 0 | (Think of as "K")

Mo We e e e s We We Wi ME W We We We WE We We We W W We W We We ws we e

The message format will be:
MSG:location of code
ADDR:frame base
ADDR:location of iteration pointer
42 will be loaded with the frame base.
41 will be loaded with the base of the subframe

e ws ws ws we ws we ws wa

; Times (including proc call overhead)

H arg } 3 time

: — - —

H o 2 328

H 1 2 460

H 10 2 1675

H § 2 325+136+%4
H

; [3 330

H

H 10 3 1690

H

H A K 325+136*A+5+K

label LIBRARY_PLACE=$180

label frame_size = 9

label frame_n_iteration_slots = 6
label argument = 10

label k = 6

84

label total_frame_size = frame_size + k * (frame_n_iteration_slots + 1) + 2
label slotID = total_frame_size - 1
label slotk = 2
include "1ib3.mdp"
;3 Program code
label CODE_PLACE=$400
module program_code
H ((:LABEL (:LITERAL (:SYMBOL :SQ-1)))
sq.1:
move {1,43], RO
move RO, A2

; Altered order is a temporary kludge

(:CHNTT (:FRAME (:BASE 3)

’

H :SUSPENSIVE)

; (:LITERAL (:SYMBOL :5Q-4)))
DC {sq_4_msg_ref}
move 3, Rt
call CETT

(:CNTT (:FRAME (:BASE 0)

’

H : SUSPENSIVE)

3 (:LITERAL (:SYMBOL :5Q-3)))
DC {sq_3_msg_ref}
move 0, R1
call CNTT

H move ip, RO

move RO, [0,43]

H (:LABEL (:LITERAL (:SYMBOL :SEND-RESULT-0)))
send_result_O:

move [1,43], RO

move RO, A2

(:MOVR (:FRAME (:BASE 0)
:SUSPENSIVE)
(:LITERAL (:INTEGER 1))
(:FRAME (:BASE 7)
:SUSPENSIVE))
DC {local_movr_msg_ref}
move [7,42], Rt
send2 [0,42], RO, O
send [o0,a2], O
send2e 1, R1, O

e owe we we we

: move ip, r0
move r0, [0,43)]

move [1,A3], RO
move RO, 42

(:MOVR (:FRAME (:BASE 0))
(:LITERAL (:IETEGER 0))
(:FRAME (:BASE 5)
:SUSPENSIVE))
DC {local _movr_msg_ref}
move [5,42], Rt

ws we we we

85

e

sq_4:

we we we

.. we e we we

- we we

.. we we ws we

e we we

send2 [0,12], RO, O
send [0,a2], O
send2e O, R1, O

(: TERMINATE)
suspend

(:LABEL (:LITERAL (:SYMBOL :SQ-4)))

move [1,43], RO
move RO, A2

(:MOVE (:FRAME (:BASE 3)
:SUSPENSIVE)
(:FRAME (:BASE 4)))
move 4, R1
call LOOKUP
move [3,42], Rt
move R1, [4,A2]

(:SUB (:FRAME (:BASE 2))
(:LITERAL (:INTEGER 2))
(:REGISTER 0))

(:MOVE (:LITERAL (:INTEGER 9))
(:REGISTER 1))

(:SUB (:REGISTER 1)
(:LITERAL (:INTEGER 8))
(:REGISTER 2))

(:ADD (:REGISTER 1)
(:LITERAL (:INTEGER 6))
(:REGISTER 3))

(:STPR (:REGISTER 2))
(:STCR (:REGISTER 1))
(:STNX (:REGISTER 3))

; Put base of ID memory into A1l

DC INT:frame_size<<sys_len_bits
move 42, R2

vtag R2, INT, R2

add R2, RO, R2

vtag R2, ADDR, R2

move R2, Al

; Put k into R1
move [slotK,42], R1
sub Ri, 1, R1

; Put base offset into R2
move 2+frame_size, R2

add R2, [2,42], R2

; In this setup, O through k-2 get IM
H -1, k-1, k do not.

; Loop through

DC INT :maskIM
or R2, RO, R2
move 1, R3

86

loop._setup_loop:
move R2, [R3,41]

1t R3, R1, RO

add R2, frame_n_iteration_slots, R2
add R3, 1, R3

bt RO, “loop_setup_loop

; Store k-1 slot, etc.

DC INT:” (maskI¥ | maskPC)

and R2, RO, R2

move RrR2, [R3,A1] s k=1 slot

move R2, [0,A1]

move {1,41], R2
and R2, RO, R2
add R3, 1, R3

move R2, [R3,41]

HH (:LABEL (:LITERAL (:SYMBOL :SETUP-LOOP-5)))
setup_loop_B:

(:BRZ (:REGISTER 0)
(:LITERAL (:SYMBOL :END-SETUP-LOOP-6)))

- we
e e

(:IXID (:LITERAL (:INTEGER 8))
(:FRAME (:NEXT-ITERATION 0)))

(:SUB (:REGISTER 0)
(:LITERAL (:INTEGER 1))
(:REGISTER 0))

- we we
e we we

HH (:BR (:LITERAL (:SYMBOL :SETUP-LOOP-5)))

HH (:LABEL (:LITERAL (:SYMBOL :END-SETUP-LOOP-5)))
end_setup_loop_b:

i (:STBX (:REGISTER 2))

(:IXID (:LITERAL (:INTEGER 6))
(:REGISTER 4))

(:IXID (:LITERAL (:INTEGER 0))
(:FRAME (:ITERATION 0)))

(:STIM (:FRAME (:ITERATION 0))
(:LITERAL (:BOOLEAN :FALSE))
(:FRAME (:ITERATICN 0)))
In new scheme, this means set -1’s to zero. Done above.

(:IXID (:LITERAL (:INTEGER 6))
(:REGISTER 4))

- ws
- ws

i (:IXID (:LITERAL (:INTEGER 0))
(:FRAME (:ITERATION 0)))

(:STHX (:REGISTER 1))

(:STPC (:FRAME (:NEXT-ITERATION 0))
(:LITERAL (:SYMBOL :ITERATE-5))
(:FRAME (:NEXT-ITERATION 0)))
DC INT :maskPC

- owe we

87

move 1, R1
call CHECK_ITER

H (: TERMINATE)

suspend
H (:LABEL (:LITERAL (:SYMBOL :ITERATE-E)))
iterate_5:

move [1,43], Rt
move R1, A2
vtag R1, INT, R1

move [2,43], R2

add R2, frame_size+1, R2

move {R2,42], R2 ; Offset to base of cur loop subframe now in R2
1sh R2, sys_len_bits, R2

add R1, R2, R1

vtag R1, ADDR, R1

move Ri, A1 ; Base of cur loop subframe in A1

(:MOVE (:FRAME (:ITERATION 1)
:NONSTICKY :SUSPEESIVE)
(:FRAME (:ITERATION 6)))
; offset 5 is intermal to loop and need not be checked
move {1,A1], RO
move RO, [5,41]

DC CFUT: $0
move RO, [1,A41]

(:LE (:FRAME (:ITERATION 5))
(:FRAME (:BASE 4))
(:FRAME (:ITERATION 4)))

move (5,411, RO
le RO, [4,A2], RO
move RO, [4,A1]

. we we

(:BRF (:FRAME (:ITERATION 4))
(:LITERAL (:SYMBOL :END-LOOP-5)))
move [4,41], RO
bt RO, “end_loop_b

(:STPC (:FRAME (:NEXT-ITERATION 0))
(:LITERAL (:SYMBOL :ITERATE-§))
(:FRAME (:NEXT-ITERATION 0)))
DC INT :maskPC
move i, R1
call CHECK_ITER

s we we

(:ADD (:FRAME (:ITERATION 6))
(:LITERAL (:INTEGER 1))
(:FRAME (:NEXT-ITERATION 1)))

move [2,43], Rt

- we we

add Ri, frame_size+i+1, R1 ; next
move [R1,42], R1

add Rt, 1, R1 ; offset 1

DC INT:“(maskIM | maskPC)

and Ri, RO, R1

call LOOKUP
move [6,41], RO

add RO, 1, RO ; integer 1
move RO, [R1,A2]

88

(:ADD (:FRAME (:ITERATION 2)
:NONSTICKY :SUSPENSIVE)
(:FRAME (:ITERATION 5))
(:FRAME (:NEXT-ITERATION 2)))
rtag [2,41], RO

- we ws we

add R1, 2-1, R1
call LOOXUP

move [2,A1], RO

add RO, [5,A1], RO
move RO, [R1,42]

DC CFUT: $0

move RO, [2,A1]

move ip, RO
move RO, [0,43]

move [1,43], R1
move R1, A2
wtag Ri, INT, R1

move [2,43], R2

add R2, frame_size+1l, R2

move [R2,42], R2 ; Offset to base of cur loop subframe now in R2
lsh R2, sys_len_bits, R2

add R1, R2, Rt

vtag R1, ADDR, Ri

move R1, A1 ; Base of cur loop subframe in A1

(:TST1 (:FRAME (:ITERATION 3)
:BONSTICKY :SUSPENSIVE)
(:FRAME (:NEXT-ITERATION 3)))
rtag [3,41], RO
DC CFUT: $0
move RO, [3,41]

we we we

move [2,43], Rt

add R1, frame_size+i+1, R1 ; next
move [R1,42], Rt

add R1i, 3, R1 ; offset 3

DC INT: " (maskIM | maskPC)

and R1, RO, R1
call LOOKUP

move true, RO
move RO, [R1,42]

(:STIM (:FRAME (:PREVIOUS-ITERATION 0))
(:LITERAL (:BOOLEA¥ :TRUE))
(:FRAME (:PREVIOUS-ITERATION 0)))
DC INT :maskIM
move -1, R1
call CHECK_ITER

.o we we

H (: TERMINATE)

suspend
; (:LABEL (:LITERAL (:SYMBOL :END-LOOP-5)))
end_loop_b:

move {1,43], R1
move R1, A2

89

wtag Ri, INT, R1i

move [2,43], R2

add R2, frame_sixze+1, R2

move [R2,42], R2 ; Offset to base of cur loop subframe nov in R2
1sh R2, sys_len_bits, R2

add Ri, R2, Rt

vtag Ri, ADDR, R

mnove R1, Al ; Base of cur loop subframe in Al

(:CETT (:FRAME (:ITERATION 2)
:SUSPENSIVE)
(:LITERAL (:SYMBOL :COPY-LOOP-VARIABLE-1)))
DC {copy_loop_variable_1_msg_ref}
nove 2, R1
call CBTT_LOOP

- we we

(:MOVE (:FRAME (:ITERATION 6))
(:FRAME (:BASE 6)))
move 6, R1
call LOOKUP

e we

move [6,41], RO
move RO, [6,42]

(: TERMINATE)
suspend

e

H (:LABEL (:LITERAL (:SYMBOL :COPY-LOOP-VARIABLE-1)))
copy.loop_variable_1:

move [1,43], Rt

move R1i, A2

vtag Ri, INT, R1

move [2,43], R2

add R2, frame_size+1, R2
move [R2,42], R2 ; Offset to base of cur loop subframe now in R2
1sh R2, sys_len_bits, R2

add R1, R2, R1
wtag R1, ADDR, R1
move R1, A1 ; Base of cur loop subframe in A1

(:CNTT (:FRAME (:ITERATION 3)
:SUSPENSIVE)
(:LITERAL (:SYMBOL :COPY-LOOP-VARIABLE-2)))
DC {copy_loop_variable_2_msg_ref}
move 3, R1
call CETT_LOOP

move ip, RO
move RO, [0,43)

move [1,43], Rt
nove R1, A2
wtag R1, INT, R1

move [2,43], R2

add R2, frame_size+l, R2

move [R2,42], R2 ; Offset to base of cur loop subframe now in R2
1sh R2, sys_len_bits, R2

add R1, R2, Rt

vtag R1, ADDR, R1

move R1, A1 ; Base of cur loop subframe in A1

90

(:MOVE (:FRAME (:ITERATION 2)
:NONSTICKY :SUSPENSIVE)
(:FRAME (:BASE 7)))
rtag [2,41]), RO

we we we

move 7, R1
call LOOKUP

move [2,41], RO
move RO, [7,A2]
DC CFUT: $0

move RO, [2,A1]

(:TERMINATE)
suspend

-

; (:LABEL (:LITERAL (:SYMBOL :COPY-LOOP-VARIABLE-2)))
copy.loop_variable_2:

move [1,43], R1

move R1, A2

vtag R1, INT, R1

move [2,43], R2

add R2, frame_size+1, R2

move [(rR2,42], R2 ; Offset to base of cur loop subframe now in R2
1sh R2, sys_len_bits, R2

add R1, R2, Rt

wtag R1, ADDR, R1

move R1, Al ; Base of cur loop subframe in A1

(:MOVE (:FRAME (:ITERATION 3)
:NONSTICKY :SUSPENSIVE)
(:FRAME (:BASE 8)))
rtag [3,42], RO

e we we

move 8, R1
call LOOKUP

move [3,41], RO
move RO, [8,42]
DC CFUT: $0

move RO, [3,41]

(:MOVE (:LITERAL (:SYMBOL :SIGNAL))
(:FRAME (:BASE §)))
move true, RO
move RO, [5,42]

.. we

(:TERMINATE)
suspend

we

H (:LABEL (:LITERAL (:SYMBOL :5Q-3)))
s8q_3:

move [1,43], RO

move RO, A2

(:MOVE (:FRAME (:BASE 0)
:SUSPENSIVE)
(:FRAME (:NEXT-ITERATION 3)))
rtag [0,42], RO ; Check if value there

e we we

move [2,43], R2

91

add R2, frame_size+i+i, R2
move [R2,A2], R2

add R2, 3, R
DC INT:” (maskIN | maskPC)
and R1, RO, Bi

call LOOKUP

move [0,42], R2
move R2, [R1,42]

(:MOVE (:LITERAL (:INTEGER 1))
(:FRAME (:NEXT-ITERATION 1)))
sub Ri, 3-1, R1
call LOOKUP

e we

move 1, RO
move RO, [R1,42]

H (:MOVE (:LITERAL (:INTEGER 0))

H (:FRAME (:NEXT-ITERATION 2)))
add R1, 2-1, R1
call LOOKXUP

move 0, RO
move RO, [R1,42]
H (:TERMINATE))
suspend
end

ref sq.3_msg_ref = MSG: ((sq_3+CODE_PLACE) << sys_len_bits) + 3

ref s5q_4_msg_ref = MSG: ((sq_4+CODE_PLACE) << sys_len_bits) + 3

ref copy_loop_variable_1_msg_ref=MSG:((copy_loop_variable_1+CODE_PLACE) << sys_len_bits) + 3
ref copy_loop_variable_2_msg_ref=MSG: ((copy.loop_variable_2+CODE_PLACE) << sys_len_bits) + 3
ref iterate_b_msg_ref = MSG:((iterate_S+CODE_PLACE) << sys_len_ bits) + 3

rof loop._msg._ref = MSG:((iterate_G+CODE_PLACE) << sys_len_bits) + 3

ref LOOP_CB = CB:((sq_1+CODE_PLACE)<<18) + total_frame_size

place program_code, CODE_PLACE
label TOP_PLACE = $500
00

33 Top level code
module top_code

33 Create the frame
; First ve must allocate a frame

DC {topi_ret}
move RO, R3
DC {loop_cb}

move RO, Ri
call ALLOCATE

top_1:
move R2, A2
DC FD:$600<<16 ; Where to put result
move RO, [0,42]
move argument, R1 ; Argument

move R1, [3,A2]
move k, R1
move R1, [slotK, A2] ; K

pC MSG: ((SQ.1+CODE_PLACE)<<sys_len_bits)+3

92

nave -1, A2
send2 O, M, o
sendbe 43, 23, ¢

ad_of_oode:

oad

zof Sopi_rvet = IP: ((Sap .1 +T0P JLACE) CCayu.ion bite) ¢ ADORANR

plase lideary eede, LINDAEY JLACE

ip = iz (TP PLAORC<ayn len Dits) ¢ ANSQLUTE
jonteh fotah ald '

joubeh vood wpite 20..99

19aveh soud swive 0. .00

sonteh srite §£00. 152 t quene
jonteh Sl a3l

joopanite 48

Seenk fauls fanle. Sype

baeuk fauls & ; dremexe

93

Appendix B

MDP Library Code

B.1 General Library

; This file holds the library for VEDI program execution on the J-machine.
; It puts it all in a module library_code.
; It includes and defines as necessary and loads the system call vector
; with the following (i for input, o for output):
; ALLOCATE (0) - Allocate a frame on the current node given a codeblock
B Ri (i) holds CB. Addr result will be in R2 (o).
H LOOKUP (1) - Check a location in a frame before writing to it
H in order to start any waiting processes.
H [R1,22] (i) holds data.
B CNTT (2) - Same as VEDI CETT. Ri (i) holds test location,
H RO (i) holds MSG to be spawned.
B CALLOC (3) - Allocate the number of words in R1 (i) and
B return the result as an ADDR in R2 (o).
H LOOKUP_ITER (4) - Like LOOKUP, but takes its offset from A1;
3 thus it takes a base in A1 (i) and an offset in R1 (i).
H CHECK_ITER (5) - A new value for an ID in R1 (i) is put in the
H first spot of A1 (i) and starts up the loop if
the import and PC flags are set. For mnow, no
PC field included in ID. This must be fixed up.

Various fault handlers are also defined:
CFUT - Replace accessed location with info about current continuation
then suspend.
SEED - Continue after unavoidable delay.
Additionally, some methods accessed by non-local MSGs are supplied:
H LOCAL_MOVR - Take a MSG of the form:
H FD
B INT:offsetl
H ANY:valuel
H Eventually, one will be able to send any number
3 of INT,ANY pairs. This stores the values into
H the offsets of the specified frame.
3 LOCAL_GETC - Takes a MSG of the form:
H CB to allocate frame for
H FD to send new FD to
H INT offset in desination FD
H Locally allocate a frame and send it back

94

- ws

to requesting node. Also start up code block
on current node.

label FREE_PTR = $400
label STACK_BASE = $A01

; stack space will be from $a01 up. $a00
s will hold the first free location (not last used).

We We W we Ws We We W Vs W W we W we we

IXCC creates (from an ADDR) a frame descriptor FD:

31 ... 1616 .. 0
<addr> NER

where <addr> should be right-shifted four to be properly placed.

Similarly, a codeblock is typed CB and is:

31 ... 16 15 e o
<addr> <frame sixze>

To summarixe:

GETC: CB -> ADDR (allocate_loc)

IXCC: ADDR -> FD

MOVR: FD x (INT x ANY)=*

CETT: ADDR -> ADDR (becsuse it stays on some processor)

;3 J-machine constants
include "/home/gn/ellens/Id/hv.mdp"
include "/home/gn/ellens/Id/nevq.mdp"

label
label
label

sys_len_bits = 10
ABSOLUTE = (1<<8)
UNCHECKED = (1<<31)

;; Constants for loops

label

posPrevious = 0

label maskPrevious = $0000ff

label

posCurrent = 8

label maskCurrent = $££00

label

posNext = 16

label maskNext = $££0000

label

posIM = 24

label maskIM = 1<<posIM

label

posPC = 25

label maskPC = 1<<posPC

;3 User-defined tags
tagname 8 "CB"
tagname 9 “FD"
tagname 10 "ISA"

; System calls

label
label
label
label
label
label
label
label
label
label
label
label

ALLOCATE = 0O
ALLOCATE_VECTOR = 0
LOOKUP = 1
LOOKUP_VECTOR
CENTT = 2
CETT_VECTOR = 2
CALLOC = 3
CALLOC_VECTOR = 3
LOOKUP_ITER = 4
LOOKUP_ITER_VECTOR = 4
CHECK_ITER = §
CHECK_ITER_VECTOR = B

1

namevector ALLOCATE+32, "Allocate"

95

namevector LOOKUP+32, "Lookup"
namevector CNIT+32, "CNTT"
namevector CALLOC+32, "Calloc"

; Constants for calloc

; For best efficiency, (ISTRUCT_Q_SIZE - 1) % ISTRUCT_Q_ENTRY_SIZE = O
label ISTRUCT_Q_SIZE = 8

label ISTRUCT_Q_ENTRY_SIZE = 2

module library_code

terrible:
halt [}
br “texrrible

In case of cfut fault, replace CFUT with continuation info.
Type checking is *turned off* vhen this interrupt is entered!
When we get here, [0,43] either contains a valid MSG, or
it contains a IP with p=1, a=1
ault_cfut_loc:

mnove RO, IDO HIE AL 2]

move MAR, R

Hh s e v e

; At this point, R1 holds address to store pointer in
fault_cfut_none_allocated:

; allocate a triple from stack

DC addr :FREE_PTR<<sys_len_bits

move RO, Al

move [0,41], R2

DC INT:3<<sys_len_bits
add R2, RO, R3

move R3, [0,41]

move R2, A1

; R2 and A1 now point to empty triple
move IDO, R3 § kR

fault_cfut_msg_okay:
move R3, [0,A41]
move A2, RO
move RO, [1,a1]
move [Rr1,40], RO
move RO, [2,41]

wtag R2, CFUT, R2 ; Write the triple to where R1 points
move R2, [R1,40]

suspend

; R1 is a CB with input info.
; Tesult will be an ADDR in R2. Clobbers registers (except 42).
allocate_loc:

check R1, CB, R2

bt R2, “terrible

vtag R1, INT, R1 ; Bot strictly needed

and R1, $££f£f, R1 ; Get size

rlo} ADDR:FREE_PTR<<sys_len_bits

move RO, A1

move [o,A1], R2

1sh Ri, sys_len_bits, R1 ; Shift size count into place

add R2, R1, R1

96

move R1, [0,41]

vtag R2, ADDR, R2
move fip, ip

We need support for MOVR. The format of the message should be:
FD
INT:offsetl
ANY:valuei
The number of items can be determined from the message header.
It must be 1 (for now) This also runs in unchecked mode.
ocal_movr:

= we ws we ws we we

move [1,A3], R1 ; Put frame descriptor into Ri
check R1, FD, RO
bt RO, “terrible

wtag Ri, INT, R1

1sh R1, -16, R1

1sh Ri, sys_len_bits, R1
vtag R1, ADDR, R1

move R1, Al

Shift out node number
Shift it into address position

e

; First (and only) word
move [2,43], R1
move [3,A3], R3

move [R1,41], RO ; Save to see if anything waiting
move R3, [R1,a1]
bx RO, “local_movr_done

; We must restart a continuation because RO <> 0.

local _movr_next_triple:
move RO, A1
move EER, R1
send Ri, O
send [0,41], 0
sende [1,21]), O
; We would deallocate the triple around here
move [2,41], RO
bnz RO, “local_movr_next_triple

local _movr_done:
suspend

When a getc is done, it initiates a split-phase transaction
(according to Iannucci’s injuction). It sends a message to the
desired node of the form:

<header> [0,43]
CB to allocate frame for [1,43]
FD to send result new FD to [2,43]
0ffset within FD [3,43]

The job of local_getc, after allocating space, is to notify the
caller and to set the frame in motion. For obvious reasons, it
does the two subtasks in that order.

s ws We we we we wo we we wo

local_getc:
; set up for ALLOCATE call
DC IP:(local_getc_1<<sys_len_bits)+ABSOLUTE

move RO, R3
move [1,A3], R1
call ALLOCATE

local_getc_1:

; Built up the FD and send it back
DC {local_movr_msg_ref}

97

vtag R2, INT, R3

1sh R3, 16-sys_len_bits, R3
move NER, R

add R3, R1, R3

vtag R3, FD, R3

send2 [2,43], RO, O

send [2,43], O

send2e [3,A3), R3, O

; Set up for method specified by code block
move [1,A3], R1
vtag R1, INT, R1

1sh R1, -16, R1 ; Shift off low bits
1sh R1, sys_len_bits, R1
add R1, 2, R1 ; Put in length bits

vtag R1, MSG, R1

; The ADDR is still in R2
move ¥NR, RO

send RO, O

send2e Ri, R2, O
suspend

; fault_send_loc is used to wait, vhen ve send messages too fast.
; This routine is lifted, verbatim, from Waldemar’s MS thesis.
; It requires type checking to be disabled.
fault_send_loc:
move fip, RO

rot RO, -9, RO
sub RO, 1, RO
rot RO, 9, RO

move RO, fip
move fopO, RO
move fip, ip

; This expects R1 to hold the offset from A2.
; Only R1, 42, and A3 are guaranteed. Checking must be off.
lookup_loc:

move [R1,22], RO

check RO, CFUT, R2

bt R2, “terrible ; Double write
bz RO, “lookup_done

move TNR, R3
lookup_next:
move RO, A1

send R3, O
send [0,A1], O
; sende [1,21], ©
sende 42, O
; Deallocate triple
move [2,A1], RO
bnz RO, “lookup_next

lookup_dene:
move fip, ip

;s For CENTT, R1 should hold the offset of the test locationm,
; and RO should hold the message name. At least for now,

; the continuation vill be spawned to the same node.

; Checking should be off (to avoid CFUT faults).

entt_loc:

98

move [R1,A2], R2 ; Check test location
check R2, CFUT, R3 ; Is it a CFUT?

bt R3, “cntt_send_it ;s If not, we can send
; Instead, key it on [R1,42]

move RO, IDO ; Save MSG

; allocate a triple from stack

DC addr :FREE_PTR<<sys_len_bits
move RO, Al

move [0,A1], R2

DC INT:3<<sys_len_bits
add B2, RO, R3
move R3, [0,A1]

; R2 holds base of triple
move R2, At

; Fill in triple

move IDO, RO ; Restore it

move RO, [0,A1]

move 42, RO

move RO, [1,a1]

move [R1,42], RO ; Take old pointer

move RO, [2,41] ; Put it at end of triple

; Store pointer to new triple
wtag R2, CFUT, R2 ; <
move R2, [R1,42]

move fip, ip

cntt_send_it:
move NER, R1
send2 R1, RO, O
sende A2, O
move fip, ip

;s R1 holds the number of words requested.
; Result will be an ADDR in R2.
; Preserves A1 through Ai3.
calloc_loc:
DC ADDR:FREE_PTR<<sys_len_bits
move A1, R3
move RO, Al
move [0,41], R2

1sh R1, sys_len_bits, R1 ; Shift size count into place
add R2, R1, R1
move R1, [0,41]

vtag R2, ADDR, R2
move R3, A1

move fip, ip

; This expects Rl to hold the offset from Al.

; Only R1, A1, A2, and A3 are guaranteed. Checking must be off.
lookup_iter_loc:

move [R1,41], RO

check RO, CFUT, R2

bt R2, “terrible

bz RO, “lookup_iter_done

99

move 41, R3

move R3, A0 ; Save it

move ENER, R3
lookup_iter_next:

move RO, A1

send R3, O

send [0,41), O

sende [1,41]), 0

; Deallocate triple

move [2,41], RO

bnz RO, “lookup_iter_next
move A0, R3

move R3, i1

lookup_iter_done:
move £ip, ip

; Check_iter_loc expects Rl to have the value to put imto ID [0,41].
; It moves it there and starts the loop if both flags are set.

; It saves the address registers.

check_iter_loc:

DC INT:maskIN + maskPC
move R1, [0,41]

and R1i, RO, R1

oq Ri, RO, R2

bt R2, “check_iter_start
move fip, ip

check_iter_start:
DC {loop_msg_ref}
move NNR, R1
send2 Ri, RO, O
send A1, O
sende [slotID,A2], ©
move £ip, ip

end

fault_vec_addr_pO + fault_cfut = IP: ((LIBRARY_PLACE+fault_cfut_loc)<<sys_len_bits) + ABSOLUTE+UNCHECKED
fault_vec_addr_pO + fault_send = IP: ((LIBRARY_PLACE+fault_send_loc)<<sys_len_bits) + ABSOLUTE+UNCEECKED
syscall_vec_addr + ALLOCATE = IP:((LIBRARY_PLACE+allocate_loc)<<sys_len_bits) + ABSOLUTE
syscall_vec_addr + LOOKUP = IP:((LIBRARY_PLACE+lookup_loc)<<sys_len_bits) + ABSOLUTE+UNCHECKED
syscall_vec_addr + CNTT = IP:((LIBRARY_PLACE+cntt_loc)<<sys_len_bits) + ABSOLUTE+UNCHECKED
syscall_vec_addr + CALLOC = IP:((LIBRARY_PLACE+calloc_loc)<<sys_len_bits) + ABSOLUTE

ref local_movr_msg_ref = MSG: ((LIBRARY_PLACE+local_movr)<<sys_len_bits)+UNCHECKED+4

ref local_getc_msg_ref = MSG: ((LIBRARY_PLACE+local_getc)<<sys_len_ bits)+4

ref local_fetch msg_ref = MSG: ((LIBRARY_PLACE+local_fetch)<<sys_len_bits)+UNCHECKED+4

ref local_store_msg_ref = MSG:((LIBRARY_PLACE+local_store)<<sys_len_bits)+UNCHECKED+3

syscall_vec_addr + LOOKUP_ITER = IP:((LIBRARY_PLACE+loockup_iter_loc)<<sys_len_bits) + ABSOLUTE+UNCHECKED
syscall_vec_addr + CBECK_ITER = IP:((LIBRARY_PLACE+check_iter_loc)<<sys_len_bits) + ABSOLUTE

include "lotsozots.mdp" ; CFUTUREs for stack
FREE_PTR=INT:STACK_BASE<<sys_len_bits

100

B.2 I-Structure Routines

This is a changed version of istruct2.mdp that uses different
representations:

EMPTY - null CFUT

WAITING - non-null CFUT

DATA - non-CFUT
It also goes through local_movr.

e ws we we we we

The format of i-structure addresses are:

The low 16 bits hold the node number

The high 18 bits hold the address on that node
I-structure addresses are typed TAG8, which will be defined
to ITAG.

e Wi we we ws we

; This is vhat code to fetch an I-structure cell looks like:

With the pointer (tagged int) in R1 and the I-struct offset in R2,
d the frame offset in R3.

_fetch_code:

He ws we we

dc {system_fetch_msg_ref}

send20 R1, RO ; Send node number, header
send20 R1, R3 ; Send ISA

send20e 42, R3 ; Send frame, offset
suspend

System fetch gets:
[0,43]: MSG:<system-fetch>
[1,43]: INT:<i-structure address>
[2,43): INT:<offset from i-structure>
[3,43]: FD:<frame of dest>
[4,43): INT:<offset from frame>

ws ws we we

WARNING: SENSITIVE TO BIT CHANGES:
Specifically, assumes SYS_LEN_BITS = 10,
MAX_NODES = 2-16

.
’

wo we ws

’
H
.
»

- we

system_fetch:
move [1,43], R1 Put ISA in R1
1sh R1, -16, R1 Slide over address portion to del node ¥
1lsh R1, 10, R1 ; Slide into address position
move R1, A1
move [2,43], R2

e we

Put offset into R2

- ws

gt R2, [1,21], R3 If it’s greater than upper bound...
bt R3, “i_err ; ...it?s an error.

move [0,41], RO ; Put lower bound in RO

sub R2, RO, R2 ; Subtract off base

1t R2, O, R3 ; If it?s lover than base...

bt R3, ~i_err ; +..then it’s an error

add R2, 2, R2 ; Point past two bounds words

move [R2,41], R1 ; Take item in i-structure spot

check Ri, CFUT, RO
bt RO, “data_not_present

; If ve get here, we have the data and can retura it.

send0 [3,43] ; Node number of destination
send0 [4,A3] ; MSG header of destination
send20e [1,43], RO ; context, value

suspend

;3; This case handles both a first and subsequent store.

101

333 It allocates a triple for a linked-list.

data_not_present:
; If we get here, [R2,A1], the reference, Ri, holds a cfuture.

- ws we

; Get triple
ADDR:FREE_PTR<<sys_len_bits

DC
move
DC
move
move
add
move

; Store
move

move

Store

suspend

RO, A2
3<<sys_len_bits
[0,22], R3

R3, A2

R3, RO, R3

R3, [0,42]

.
tl
H
H
i

Put start location in R2

A2 now holds a ptr to a new triple
Put next free location inm R3...
...and then back into free ptr

A2 into i-structure location

A2, RO
RO, [R2,41]

in the following order:
Frame number of destination

0ffset w/in frame

Next ptr

{3,43], RO
RO, [0,42]
[4,43], RO
RO, [1,42])
R1, [2,42]

System-store gets:
(0,43]: MSG:<system-store>
[1,43]): INT:<i-structure address>

[2,43]:
[3,43]:

system_store:

.
’
.
’

move
1sh
1sh
move
move
gt
bt
move
sub
1t
bt
add

move
check
bt

move
move

DC
bz

INT:<offset>
<data>

[1,43], R1
R1, -16, Rt
R1, 10, R1
R1, Al
[2,43], R2
R2, [1,A1], R3
R3, “i_err
[0,a1], RO
R2, RO, R2
R2, O, R3
R3, ~i_err
R2, 2, R2

[R2,41], R1
Ri, CFUT, RO
RO, “i_err

[3,43], R3
R3, [R2,41]

.
s

’

.
H

e ws we

.

Frame number
Frame offset

Next ptr

Put ISA in R1

Slide over address portion to del node #
Slide into address position

A1 now holds abs address of base
Put offset into R2

If it’s greater than upper bound...
...it’s an error.

Put lower bound in RO

Subtract off base

If it’s lower than base...

...then it’s an error

Point past two bounds words

Take item in i-structure spot
It had better be a cfuture.
If not, it’s a write-twice error.

Put data value into R3
Store it into i-structure

{local_movr_msg_ref}

R1, “sends_done

At this point, R1 holds base of next linked-list entry.

RO holds the local movr_msg ref.

send_loop:

102

15 Ous. of Sueunih ow doublo-aulte suver.

f.eom
ols 3
ond

B.3 Loop Support

;; Constants for loops
label posPrevious = 0
label maskPrevious = $0000ff
label posCurrent = 8
label maskCurrent = $££00
label posNext = 16

label maskNext = $££0000
label posINM = 24

label maskIM = 1<<posINM
label posPC = 25

label maskPC = 1<<posPC

; System calls
label CHECK_ITER = &

Expects RO to have the value (maskIM or maskPC) to be or’d into
the ID R1 (+/-1) off from the current iteration.

It moves it there and starts the loop if both flags are set.

It saves the address registers.

For now only, ignore wraparound

check_iter_loc:

move [2,43], R2

add R2, Ri, R2

we we ws wi we

; This sequence converts a value of k to 0. Trust me.
ge R2, [2,A2], R3

vtag R3, INT, R3

neg R3, R3

and R3, [2,42], R3

sub R2, R3, R2

e we we we we

; Yo! I can do even better:

H 1t R2, [2,42], R3
H wtag R3, INT, R3

H neg R3, R3

H

and R2, R3, R2

; Whoops, must also convert -1 to k-1
sub R2, [slotK,A2], R1

ge R1, -1, R1

vtag R1, INT, Rt

neg R1, R1

and R1, [slotkK,A2], R1

sudb R2, R1, R2

e we we wr we we

; Oops: above converted k-1 to 1, not v.v.
1t R2, [slotk,A2], R3

vtag R3, INT, R3

neg R3, R3

and R2, R3, R2

1t R2, 0, R3

vtag R3, INT, R3

neg R3, R3

and R3, [slotk,i2], R3
add R2, R3, R2

add R2, frame_size+1, R2
move [R2,42], Rt

or R1, RO, R1

104

S478% 2481 M44?
Riddid _dddi dhddd
sieshh Javke o440

{

108

Appendix C

Source Code

C.1 Convert Hybrid to Complex J

-#- Mode:Common-Lisp; Package:ID-COMPILER; Base:10 -»-
hybrid-to-c¢j converts hybrid code to complex J-machine code.
The next step is to send it through cj-to-sj to change it to
J-machine s-expressions.

we we ws we
we we we we

(in-package ’id-compiler)

(defcompiler-module convert-hybrid-to-complex-j id-compiler

(:input vnd-instructions code-block)

(:function convert-hybrid-to-cj)

(:output vnd-instructions code-block) ; This is a lie
(:before-function procedurs file-asm-before-def)
(:after-function procedure asm-after-def)

(:wrapper-macro vnd-file-assembler-wrapper)
(:options input-file vnd-output-file wvnd-output-file-format)

)

we we wo we

3+ J-machine constants
; Originally, these vere numbers. They are more readable as symbols and
;

HH

33

HH

(defconstant *sys-len-bits* 10)
(defconstant sym-tag ’sym)
(defconstant sym 0)

(defconstant int-tag ’int)
(defconstant int 1)

(defconstant fd-tag ’£d)
(defconstant £d 9)

(defconstant boolean-tag ’bool)
(defconstant bool 2)

(defconstant addr-tag ’addr)
(defconstant addr 3)

106

can be replaced by MDPSim. The constants are needed to know if they’re okay literals.

; For REFs and SYMBOLs (7)

(defconstant
(defconstant

(defconstant
(defconstant

(defconstant
(defconstant

(defconstant
(defconstant

(defconstant
(defconstant

(defconstant
(defconstant

(defconstant
(defconstant

(defconstant
(defconstant
(defconstant
(defconstant

special-tag ’special_tag)
special_tag 33)

allocate-vector ’allocate_vector)
allocate_vector 0)

lookup-vector ’lookup_vector)
lookup_vector 1)

cntt-vector ?cntt_vector)
cntt_vector 2)

cntt-loop-vector ’cntt_loop-vector)
cntt_loop-vector 3)

calloc-vector ’calloc_vector)
calloc_vector 4)

check-iter-vector ’check_iter-vector)
check_iter-vector 5)

*posIN+ 24)
posPC 2B)
*maskIN+ (expt 1 *posIM+))
maskPC (expt 1 *posPC*))

(defun convert-hybrid-to-cj (cb)

(let* ((cj-instructions (convert-hybrid-to-cj-inner (dataflov-graph-root-set cb)
(dataflov-graph-get cb :frame-descriptor))))
(setf (dataflow-graph-root-set cb) cj-instructions))
cb)

(defun convert-hybrid-to-cj-inner (instructions frame-desc)
(if (aull instructions)
nil
(let* ((instruction (car instructions))
(opcode (car instructiomn))
; Get rid of hybrid register references -- ouch
(operands (mapcar #’transform-hybrid-register (copy-list (cdr instruction))))
(suspensive-code (mutate-suspensive-operands opcode operands))
(fn (convert-opcode-to-fn opcode)))
(if (null fn)
(my-error :fatal nil (format nil "No opcode for function “S" opcode)))
(append
¢ ((hybrid-instruction ,instruction))
suspensive-code
(apply fn frame-desc operands)
(convert-hybrid-to-cj-inner (cdr instructions) frame-desc)))))

(defvar *conversion-lists)

(defun convert-opcode-to-fn (op)
(cdr (assoc op *conversion-list#*)))

;; Very inefficient
(defun transform-hybrid-register (op)
(it (and (listp op)
(eq (car op) :register)
(numberp (second op)))
¢(:temporary (:base ,(second op)))
op))

107

(defmacro suspensivep (operand)
¢ (momber :suspensive ,operand))

A fev hours with this section could yield some major optimizations,
not to mention wvhat could be done with register allocation.

(defun mutate-suspensive-operands (opcode operands)
(let ((suspensive-code (mutate-suspensive-operands-inner operands)))
; special
(if (not (eq opcode :continue-test))
(if suspensive-code
(cons ?(suspensive-instruction)
; remove-duplicates to ensure only one
; check for (:add (:suspensive X) (:suspensive X) Y)
(append (remove-duplicates suspensive-code :test #’equal)
?((suspensive-check-done))))))))

(defun mutate-suspensive-operands-inner (operands)
(if (null operands)
nil
(append
(it (suspensivep (car operands))
(progn
(setf (car operands) (remove :suspensive (car operands)))
¢((suspensive-operand ,(car operands)))))
(mutate-suspensive—cperands-inner (cdr operands)))))

(defvar *conversion-lists)
(setqg *conversion-list#* nil)

(defmacro defconversion (hybrid-name hybrid-symbol operands body)
(progn

(setq *conversion-lists

(cons (cons hybrid-symbol hybrid-name)
#*conversion-list+))
(let ((full-op-list (cons ’frame-desc operands)))
¢(defun ,hybrid-name ,full-op-list

’frame-desc
»body))))

(defun frame-base-offset (operand)
(if (eq (car operand) :frame)
(base-offset operand)
(error :fatal nil "Illegal operand supplied vhen frame-base value expected.")))

;; Used by cj-to-sj
(defun message-base-offset (operand)
(if (eq (car operand) :message)
(base-offset operand)
(error :fatal nil "Illegal operand supplied when message-base value expected.”)))

(defun base-offset (operand)
(it (eq (car (second operand)) :base)
(second (second operand))
(error :fatal nil "Illegal operand supplied when base-offset value expected.")))

(defun literal-base-offset (operand)
(if (and (eq (car operand) :literal)
(eq (car (second operand)) :base))
(second (second operand))
(error :fatal nil "Illegal operand supplied when literal-base value expected.")))

(defconversion getc :get-context (context-slot return-slot)
¢((reserve (:register scratch))

108

(move (:j-register 42) (:register scratch))
(wtag (:register scratch) (:literal ,int-tag) (:register scratch))
(1sh (:register scratch) (:literal ,(- 16 *sys-len-bits+)) (:register scratch))
(reserve (:register scratch2))
(move (:j-register NER) (:register scratch2))
(add (:register scratch)
(:register scratch2)
(:register scratch))
(free (:register scratch2))
(wtag (:register scratch) (:literal ,fd-tag) (:register scratch))

(send0 (:literal 1))

(send0 (:ref local_getc))

(send0 ,context-slot)

(sendO (:register scratch))

(free (:register scratch))

(sende0 , (frame-base-offset return-slot))))

;33 Something should be done to handle falling into a loop
(defconversion label :label (label-name)
¢((label ,label-name)
(move (:message (:base 1)) (:j-zregister A2))))

(defun lookup-into (dest)
(if (eq (car dest) :frame)
¢((move (:literal ,(frame-base-offset dest)) (:j-register R1))
(call (:literal ,lookup-vector)))))

;3 For mow, mo loops
(defconversion move :move (source dest)
(append (lookup-into dest)
¢((move ,source ,dest))))

(defconversion move-identity :move-identity (source dest)
(append (lookup-into dest)
¢((move ,source ,dest))))

(defconversion cntt :continue-test (check-slot cont)
; Convert it from (:literal (:symbol :SQ-1)) to (:ref :SQ-1)
¢((move (:ref ,(second (second cont))) (:j-register RO))
(move (:literal ,(frame-base-offset check-slot)) (:j-register R1))
(call (:literal ,cntt-vector))))

(defconversion cntn :continue (cont)
¢((send0 (:j-register NNR))
; Convert it from (:literal (:symbol :5Q-1)) to (:ref :SQ-1)
(send0 (:ref ,(second (second cont))))
(sende0 (:j-register 42))))

(defconversion movr :move-remote (frame-ptr offset value)
¢((send0 ,frame-ptr)
(sendO (:ref local_movr))
(send0 ,frame-ptr)
(send0 ,offset)
(sende0 ,value)))

;33 This should set a flag
(defconversion terminate :terminate ()
¢ ((suspend)))

(defconversion le :<= (s1 s2 d)

(append (lookup-into d)
‘((le ,s1 ,82 ,d))))

109

(defconversion 1t :< (s1 s2 d)
(append (lookup-into d)
(1% ,s1 ,82 ,d))))

(defconversion gt :> (s1 82 d)
(append (lookup-inte d)
‘((st s81 ,82)d))))

(defconversion ge :>= (si 82 d)
(append (lookup-into d)
¢((ge ,s1 ,82 ,d))))

(defconversion j-eq := (s1 52 d)
(append (lookup-inte d)
¢((eq ,s1 ,s2 ,d))))

(defconversion j-neq :<> (s1 82 d)
(append (lookup-into d)
¢((neq ,51 ,52 ,d))))

(defconversion j-neq2 :/= (si s2 d)
(append (lookup-into d)
¢((neq ,s1 ,s2 ,d))))

(defconversion j-and :and (s1 52 d)
(append (lookup-into d)
¢((and ,s1 ,s2 ,d))))

(defconversion j-or :or (si s2 d)
(append (lookup-into d)
¢((or ,s1 ,82 ,d))))

(defconversion j-sub :- (s1 82 d)
(append (lookup-into d)
¢((sub ,s1 ,82 ,d))))

(defconversion j-add :+ (s1 s2 d)
(append (lookup-into d)
¢((add ,s1 ,s2 ,d))))

(defconversion j-mul :* (s1 82 d)
(append (lookup-into d)
¢((mul ,s1 ,82 ,d))))

(defconversion j-not :mot (s d)
(append (lookup-into d)
¢((not ,s ,d))))

(defconversion j-abs :abs (s d)
(append (lookup-into d)

¢((reserve (:register scratchi))
(reserve (:register scratch2))
(ash ,s -31 (:register scratchl))
(xor ,s (:register scratchl) (:register scratch2))
(sub (:register scratch2) (:register scratchl) ,d)
(free (:register scratchi))
(free (:register scratch2)))))

(defconversion j-max :max (a b d)
¢((reserve (:register scratchi))
(append (lookup-into d)
(reserve (:register scratchl))
(ge ,a ,b (:register scratchi))

(vtag (:register scratchi) ,int-tag (:register scratchi))

110

; a>=b
;s R1: T
; Ri: 1

(neg (:register scratchl) (:register scratchi)) ; Rt: -1 | R1: 0
(and (:register scratchi) ,a (:register scratch2)) ; R2: = | R2: 0
(not (:register scratchi) (:register scratchi)) ; Ri: | Ri: -1
(and (:register scratchi) ,b (:register scratchi)) : R1: 0 | R2: b
(or (:register scratch2) (:register scratchl) ,d) ;a I »
(free (:register scratchi))
(free (:register scratch2)))))
(defconversion j-mim :min (a b d)
(append (lookup-into d)

¢((reserve (:register scratchl))
(reserve (:register scratch2)) ;a>b | a<bd
(ge ,a ,b (:register scratchl)) ; R: T | Ri: F
(wtag (:register scratchl) ,int-tag (:register scratch1)) ; R1: 1 | R1: O
(neg (:register scratchi) (:register scratchl)) ; Rt: =1 | Ri: ©
(and (:register scratchi) ,b (:register scratch2)) ; R2:d | R2: 0
(not (:register scratchi) (:register scratchi)) ; Ri: O | R1i: -1
(and (:register scratchi) ,a (:register scratchi)) ; R1: O | R2: a
(or (:register scratch2) (:register scratchi) ,d) i b | a

(£ree (:register scratchi))
(free (:register scratch2)))))

;; Not used
(defconversion loop-setup :loop-setup (label-name)
¢(let (frame~size (frame-descriptor-frame-size frame-desc)
(k-slot (compute-slot-offset t :maximum-iterations))
(slots-per-iteration (frame-descriptor-next-available-iteration-slot frame-desc))
(loop-setup-label (gensym ’loop-loop)))
¢((dc (:literal ,(* frame-size (expt 2 *sys-len-bits«))))
(move (:j-register 42) (:j-register R2))
(wtag (:j-register R2) ,int-tag (:j-register R2))
(add (:j-register R2) (:j-register RO) (:j-register R2))
(vtag (:j-register R2) ,addr-tag (:j-register R2))
(move (:j-register R2) (:j-register 41))

(move (:frame (:base ,k-slot)) (:j-register R1))
(sub (:j-register R1) (:literal 1) (:j-register R1))

(move ,(+ 2 frame-size) (:j-register R2))
(add (:j-register R2) (:frame (:base ,k-slot)) (:j-register R2))

(de (:literal *maskIM+))
(or (:j-register R2) (:j-register RO) (:j-register R2))
(move (:literal 1) (:j-register R3))

(label ,loop-setup-label)

(move (:j-register R2) (:frame (:loop 41)))

(1t (:j-register R3) (:j-register R1) (:j-register RO))

(add (:j-register R2) (:literal ,frame-n-iterations) (:j-register R2))
(add (:j-register R3) 1 (:j-register R3))

(bt (:j-register RO) ,loop-setup-label)

(dec ,(lognot (logior *maskIM* *maskPCx)))
(and (:j-register R2) (:j-register RO) (:j-register R2))

(move (:j-register R2) (:frame (:loop (:j-register R3))))
(move (:j-register R2) (frame (:loop 0)))

(move (:frame (:loop 1)) (:j-register R2))

(and (:j-register R2) (:j-register RO) (:j-register R2))
(add (:j-register R3) 1 (:j-register R3))

(move (:j-register R2) (:frame (:loop (:j-register R3)))))))

;3 from (:literal (:symbol :5Q-1)) to (:label :5Q-1)

111

(defun convert-label (1)
¢(:tagged-literal ,special-tag (:label ,(second (second 1)))))

(defconversion brf :branch-false (s1 s2)
¢((bf ,s1 ,(convert-label s52))))

(defconversion brt :branch-true (s1 s2)
¢((bt ,s1 ,(convert-label s2))))

(defconversion brz :branch-zero (s1 s2)
¢((bx ,s1 ,(convert-label s2))))

(defconversion brnz :branch-not-zero (s1 s2)
¢((bnz ,s1 ,(convert-label s52))))

(defconversion br :branch (s1)
¢((br ,(convert-label s1))))

(defconversion ixcc :index-current-context (frame-base dest)
(append (lookup-into dest)
¢((reserve (:register scratch))
(move (:j-register A2) (:register scratch))
(vtag (:register scratch) (:literal ,int-tag) (:register scratch))
(add (:register scratch)
(:literal ,(* (literal-base-offset frame-base)
(expt 2 *sys-len-bitse)))
(:register scratch))
(1sh (:register scratch) (:literal ,(- 18 *sys-len-bits+)) (:register scratch))
(add (:register scratch) (:j-register BNR) (:register scratch))
(vtag (:register scratch) (:literal ,fd-tag) (:register scratch))
(move (:register scratch) ,dest)
(free (:register scratch)))))

;; These are okay because the operands will be suspensive
;; and caught by mutate-suspensive-operand.
(defconversion tst2 :test-2 (s1 s2 dest)
(append (lookup-into dest)
¢((move (:tagged-literal ,boolean-tag 1) ,dest))))

(defconversion tstl :test-1 (s1 dest)
(append (lookup-into dest)
¢((move (:tagged-literal ,boolean-tag 1) ,dest))))

(defconversion ststl :special-test-1 (s1)
¢((suspensive~instruction)
(suspensive-operand ,s1)))

(defconversion retc :return-context (source dest)

(eppend (lookup-into dest)
¢((move (:tagged-literal ,boolean-tag 1) ,dest))))

112

C.2 Convert Complex J to Simple J

333 —%- Mode:Common-Lisp; Package:ID-COMPILER; Base:10 -#-

cj-to-sj converts complex J-machine code (as produced by hybrid-to-cj)
into J-machine s-expressions. The s-expressions will correspond on an
exact one-to-one basis with J-machine instructions. The final step is
to send it through sj-to-j, in the file of that name.

e we we we
. we we we
we ws we we

Complex J-machine code differs from J-machine code in several ways:

We ws We We We We s we We Wi We We WO Wi W We We We wWe Wi Wi We We We We we we we

I At the beginning of every possibly suspensive instruction,
(:suspensive-instruction)
appears. For each possibly suspensive operand,
(:suspensive-operand <operand>)
These must be converted to appropriate code.

e we we we we we

we we we we we

X (:reserve <symbol>) and (:free <symbol>) are used to bind the value
of the symbol so that (:register <symbol>) is meaningful. The
usage is of the form:

(:reserve (:register scratch))

- we we we we we we

(:move (:j-register A2) (:register scratch))

(:free (:register scratch))
The usage is purposely verbose, to allow a change of representation,
as well as error-checking. (Reserving a second register of the same
name, using a nonreserved register, and freeing a nonreserved register
are all errors.)

we we we

- we we we

X Specific register names are denoted with :j-register, i.e. (:j-register ’12).
The only time specific GPRs are used is to set up for CALLs. This is
almost certainly a violation of abstraction. This is a source of potential
bugs as vell if this module trashes those registers.

e e Wi we We Me Wi we we We We wa W we ws wa

. -

I No consideration is made whether the operation can fit in one J-instruction.
In many cases, it camnot. For example, this is a legal c¢j instruction:
(:add (:frame (:base 6))
(:literal 82932)
(:frame (:base 9)))

e we we we we we
e we we we we

. we we w
we we we
e we we we ws

- -
. we

X There are both :literal and :tagged-literal operands.

The register allocation is correct and stable, to the best of my knowledge.
It is non-optimal but acceptable.

.o we
. we
we ws

(in-package ’id-compiler)
;3; For some reason that I can’t figure out, I’m having trouble getting neq.

(defmacro neq (a b)
¢(not (eq ,a ,b)))

(defcompiler-module convert-complex-j-to-simple-j id-compiler
(:input vnd-instructions code-block) ; 4 lie
(:before-function procedure reset-cj-to-sj-system)
(:function convert-cj-to-sj)
(:output vnd-instructions code-block)) ; Yuck! I’ve got to fix these abstractions

(defun reset-cj-to-sj-system ()

(setq *j-instructions+* nil)
(setq *virtual-registerss nil)

113

(setq *free-register-list* genl-purpose-regs))

(defun my-error (a d ¢)
(print ¢)
(break)
(error a b ¢))

;3; These are functions to specify basic J-machine characteristics.
(defun make-tagged-literal (1)
(cond ((numberp 1) ¢(:tagged-literal ,int-tag ,1))

((referencep 1) ¢(:tagged-literal ,special-tag ,1))

((eq (car 1) :tagged-literal) 1)

; Converts from (:label (:literal (:symbol :foobar))) to

; (:tagged-literal special-tag (:label (:symbol :foobar)))

({eq (car 1) :label)

(list :tagged-literal special-tag (list :label 1)))
H (list :tagged-literal special-tag (list :label (second (second (second 1))))))

((eq (car 1) :literal)

(if (1istp (second 1))

(if (eq (car (second 1)) :integer)
¢ (:tagged-literal ,int-tag ,(second (second 1)))
(list :tagged-literal special-tag (second 1)))
(list :tagged-literal int-tag
(if (listp (second 1))
(if (eq (car (second 1)) :integer)
(second (second 1))
(my-error :fatal nil "Illegal format of literal"))
(second 1)))))
(¢t nil)))

;; Only converts if appropriate
(defun make-tagged-literal-if-appropriate (1)
(let ((result (make-tagged-literal 1)))
(if result
result
1)

(defun hex-value (h)
(cond ((and (>= h #\0) (<= h #\9)) (- h #\0))
((and (>= h #\4) (<= h #\F)) (+ 10 (- h #\1)))
((and (>= h #\a) (<= h #\f)) (+ 10 (- h #\a)))))

(defmacro hex-to-dec (h-string)
(do ((count (- (length h-string) 1) (- count 1))
(value O (+ (» value 16)
(hex-value (char h-string count)))))
((< count 0)
value)))

(defconstant opO-literals (list

(cons sym-tag 0) ; mil
(cons boolean-tag 0) ; false
(cons boolean-tag 1) ; true

(cons int-tag (hex-to-dec "80000000"))
(cons int-tag (hex-to-dec “f£f£"))

(cons int-tag (hex-to-dec "3££"))
(cons int-tag (hex-to-dec "ffff"))
(cons int-tag (hex-to-dec "f£fff"))))

(defun opO-literal-p (1)
(op0-literal-p-inner 1 nil))

114

(defun opO-extended-literal-p (1)
(opO-literal-p~inner 1 %))

(defun tagged-literal-p (op)
(eq (car op) :tagged-literal))

(defun j-register-p (op)
(or (eq (car op) :j-register)
(eq (car (translate-operand op)) :j-register)))

;3 To distinguish it from dfcs frames.
(defun j-framep (op)
(eq (car op) :frame))

(defun j-offset-p (op)
(or (j-framep op)
(j-messagep op)
(j-temporary op)))

(defun j-temporary (op)
(eq (car op) :temporary))

(defun j-messagep (op)
(eq (car op) :message))

(defun labelp (op)
(eq (car op) :label))

(defun j-symbolp ()
(eq (car op) :symbol))

(defun referencep (op)
(eq (car op) :ref))

(defun bindingp (op)
(eq (car op) :binding))

; (print (output-tagged-literal (make-tagged-literal ’(:literal int))))

(defun opO-literal-p-inner (1 extendedp)
(if (tagged-literal-p 1)
(let* ((tag (second 1))
(value (if (eq tag int-tag)
(eval (third 1)) ; To allow us to use symbols instead of ints
(thizrd 1))))
(cond ((numberp value)
(if (member (cons tag value) opO-literals :test #’equal)
t
(if extendedp
(and (eq tag int-tag)
(>= value -64)
(<= value 83))
(and (eq tag int-tag)
(>= value -16)
(<= value 15)))))
((labelp value) nil) ; Safe assumption
(t nil)))))

(defun opO-operand-p (op)
(op0-operand-p-inner op nil))

(defun opO-extended-operand-p (op)
(opO-operand-p-inner op t))

115

(defun opO-operand-p-inner (op extendedp)
(cond ((j-register-p op)
(let* ((actual (translate-operand op))
(value (second actual)))
(or (genl-purpose-reg-p op)
(eq value ’40) (eq value ’A1) (eq value ?42) (eq value ’43))))
((tagged-literal-p op)
(op0-literal-p-inner op extendedp))
((j-offset-p op)
(let ((offset (base-offset op)))
(cond ((numberp offset)
(if extendedp
(and (< offset 63) (>= offset 0))
(and (< offset 16) (>= offset 0))))
((genl-purpose-reg-p offset)
t)3))))

;; Register-oriented op0 mode
(defun ropO-operand-p (op)
(let* ((operand (translate-operand op))
(value (second operand)))
(and (j-register-p operand)
(or {(genl-purpose-reg-p op)
(member value *(40 A1 A2 43 NNR IP)))))) ; More exist, but these only ones used

(defconstant genl-purpose-regs ’(R3 R2 R1 RO))

(defun genl-purpose-reg-p (operand)
(et ((op (translate-operand operand)))
(or (bindingp op)
(and (j-register-p op)
(member (second op) genl-purpose-regs)))))

(defun basic-add (argl krest args)
(+ (if argl 1 0)
(count t args)))

;33 Current register scheme due in part to Nate.

533 This system is still primitive. Some notable omissions:
HHEH - It might reload a register with a value already in it.

(defvar *free-register-lists+)
(setq *free-register-list* genl-purpose-regs)

(defvar symbols-bound-to-regs)
(setq symbols-bound-to-regs nil)

(defun request-register-inner ()
(if (null *free-register-listx)
(my-error :fatal nil "No registers available in request-register-inner")
(let* ((temp (remove RO *free-register-lists))
(rog (if (null temp) *RO (car temp))))
(setq *free-register-list* (remove reg *free-register-list«))
reg)))

(defun request-appropriate-register (item)
(if (genl-purpose-reg-p item)
(my~error :fatal nil "Reg-reg move requested!"))
(if (and (tagged-literal-p item)
(not (opO-extended-literal-p item)))
(if (member ’RO *free-register-list+)
(progn (setf *free-register-list* (remove ’RO *free-register-list+*))
(set? symbols-bound-to-regs (cons (cons (gensym ’zeg) ’RO) symbols-bound-to-regs))

116

¢(:binding ,(caar symbols-bound-to-regs)))
;; If ve got here, ve need to slide RO into another register
(let* ((xO-pair (rassoc RO symbols-bound-to-regs))
(nev-reg (request-register-inner)) ; Get another register
(cur-name (gensym))) ; Hame to return with new register
; Emit the move -- to a global??
(if (null rO-pair)
(my-error :fatal mil "RO invariant violated"))
(emit-j-instruction ¢(move (:j-register RO) (:j-register ,new-reg)))
(setf (cdr rO-pair) new-reg)
(setq symbols-bound-to-regs
(cons (cons cur-name ’RO)
symbols-bound-to-regs))
¢(:binding ,cur-name)))
(request-any-register)))

(defun request-any-register ()
(let ((reg (request-register-inner)))
(setq symbols-bound-to-regs (cons (cons (gensym ’reg) reg) symbols-bound-to-regs))
¢(:binding , (caar symbols-bound-to-regs))))

(defun return-register (reg)
(if (eq (car reg) :binding)
(let ((pair (assoc (second reg) symbols-bound-to-regs)))
(if (null pair)
(my-error :fatal nil "Illegal binding freed in return-register")
(et ((actual (cdr pair)))
(setf *free-register-list* (cons actual *free-register-list*))
(setq symbols-bound-to-regs (remove pair symbols-bound-to-regs)))))
(my-error :fatal nil "Illegal register return")))

(defun binding-to-register (symbol)
(if (and (1istp symbol)
(eq (car symbol) :binding))
(let ((pair (assoc (second symbol) symbols-bound-to-regs)))
(if (null pair)
(my-error :fatal nil “Binding not found")
¢(:j-register ,(cdr pair))))))

333 Emit commands

;; This "forces" register assigments when the code is emitted.
(defun translate-operand (op)
(if (listp op)
(cond ((null op) mnil)
((eq (car op) :binding) (binding-to-register op))
((eq (car op) :register) (translate-virtual-register op))
(¢t (cons (translate-operand (car op))
(translate-operand (cdr op)))))

op))

(defvar *j-instructions* nil)
(setq *j-instructions* nil)

(defun emit-j-instruction (inst &key (pass-through nil))
(let* ((opcode (car inst))
(operands (if pass-through
(cdr inst)
(mapcar #’translate-operand (cdr inst))))
(instruction (cons opcode operands)))
(setq *j-instructions* (append *j-instructions*
(list instruction)))

; For trace purposes, just return latest new instruction

117

instruction))

(defun emit-j-instructions (ilist)
(mapcar #’emit-j-instruction ilist))

;;; Movement routines

(defun make-legal-move (source dest)
(it (or (genl-purpose-reg-p source)
(genl-purpose~reg-p dest))
; At least one is a register
(make-legal-move-with-register source dest)
(let ((register (request-appropriate-register source)))
(make-legal-move source register)
(make-legal-move register dest)
(return-register register))))

Possible operands include:
(:register ..)
(:j-register ..)
(:binding ..)

(:frame (:base #))
(:tagged-literal % %)

e we we we we we

.
H
H
.
H
.
H
.
H
.
H

e we ws we we we

(defun make-legal-move-with-register (source dest)
(if (genl-purpose-reg-p source)
(if (or (ropO-operand-p dest)
(opO-extended-operand-p dest))
(emit-j-instruction ‘(move ,source ,dest))
;; If ve get here, source is a register, but dest is too big
(make-legal-big-move source dest))
(if (genl-purpose-reg-p dest)
(if (or (ropO-operand-p source)
(opO-extended-operand-p source))
(emit-j-instruction ¢(move ,source ,dest))
(make-legal-big-move source dest)))))

make-legal-big-move called vhen one operand is a register and the

iid

;33 other is something that can’t be represented in opO or register-oriented
i3; opO mode, such as a big literal or a frame value with a large offset.
(defun make-legal-big-move (source dest)

(if (genl-purpose-reg-p source)
;; destination must be frame (or equiv.) (i.e. can’t be literal)
(let* ((offset (base-offset dest))
(tagged-offset (make-tagged-literal offset))
(reg (request-appropriate-register tagged-offset))
(nev-operand (replace-offset reg dest)))
(make-legal-move tagged-offset reg)
(make-legal-move source new-operand)
(return-register reg))
;3 If ve get here, dest must be a gpr
(cond ((tagged-literal-p source)
(if (opO-literal-p source)
(emit-j-instruction (list ’move source dest))
(let ((actual-dest (translate-operand dest)))
(if (equal actual-dest ’(:j-register RO))
(emit~j-instruction ¢(dc ,source))
(message :fatal nil "RO not reserved whemn required")))))
(t (my-error :fatal nil “Unhandled case in make-legal-big-move")))))

(defstruct code-bundle
operand-list

118

regs-to-be-freed)

(defun bundle-return-registers (bundle)
(mapcan #’return-register (code-bundle-regs-to-be-freed bundle))
(setf (code-bundle-regs-to-be-freed bundle) nil)
bundle)

(defun convert-cj-to-sj (cb)
(mapc #’make-legal (dataflou-graph-root-set cb))
(setf (dataflov-graph-root-set cb) #*j-instructionss)
cb)

(defun make-legal (instruction)
(let* ((opcode (car imstructiom))

(operands (if (eq opcode ’hybrid-instruction)
(cdr instruction)
(mapcar #’make-tagged-literal-if-appropriate (cdr imstruction))))

(num-ops (length operands))

(instruction (cons opcode operands)))

(it (pseudo-op-p opcode)
(process-pseudo-op opcode operands)

(cond ((= num-ops 0) ; Typically, suspend
(emit-j-instruction instruction))
((= num-ops 1) ; Typically, send or branch

(if (eq opcode ’br)
(make-branch opcode operands)
(make-into-form opcode
operands
(cons #’ext-op0 ’source))))
;3 Shouldn’t something for branches be here?
((= num-ops 2) ; Typically move, unary op, or bcc
(cond ((equal opcode ’move)
(make-legal-move (first operands) (second operands)))
(Cor (equal opcode ’neg) (equal opcode ’not) (equal opcode ’rtag))
(make-into-form opcode
operands
(cons #’ext-op0 ’source)
(cons #’gpr ’dest)))
((member opcode ’(bf bt bz bnz))
(make-branch opcode operands))

(t
(message :fatal nil "Illegal opcode in make-legal))))
((= num-ops 3) ; Typically binary op (all have same format)

;; It should try exchanging the first tve operands to execute more cheaply
(make-into-form opcode

operands

(cons #’gpr ’source)

(cons ?0p0 ?source)

(cons ’gpr ’dest)))))))

Some conditional branches can’t be encoded into one instruction; additionally, in

s

;3 my simple one-pass assembler, I can’t determine displacements, etc. Hence, all
3; jumps vill be converted in a pessimistic way, e.g.

HH bz R1, labell

] bnz R1i, new_label

HH br labell

H new_label:

;3 The types of branches are: bf, bt, bz, baz, bnil, banil.

;; (The last two aren’t used by hybrid stuff but are in for completeness.)

(defvar branch-opposites ?((bf . bt) (bz . bnz) (bmnil . bnil)
(bt . bf) (bnz . bz) (bnil . bmnil)))

(defun make-branch (opcode operands)

119

(iz (eq opcode ’br) ; Absolute branch
(make-legal ‘(move ,(car operands) (:j-register ip)))
(Lot (;(new-label (gensym ’jog))
(opposite-opcode (cdr (assoc opcode branch-opposites)))
(condition (first operands))
(original-label (second operands)))
The folloving line would give us an infinite loop!
(make-legal ¢(,opposite-opcode ,condition (:label ,new-label)))
Instead, do a violation of abstraction:
(make-into-form opposite-opcode ¢(,condition (:tagged-literal ,int-tag 2))
(cons #’gpr ’source) (cons #’ext-op0 ’source))
(make-legal ¢(br ,original-label))
(make-legal ‘(align))
(make-legal ¢(label (:literal (:symbol ,new-label))))
N

we

(defun replace-offset (reg operand)
(1ist (car operand)
(list
(caadr operand)
reg)))

(defun gpr (arg dir bundle)
(if (genl-purpose-reg-p arg)
(make-code-bundle
soperand-list (append (code-bundle-operand-list bundle) (list arg))
:Tegs~to-be-freed (code-bundle-regs-to-be-freed bundle))
(make-move-vith-register arg dir bundle)))

(defun make-move-with-register (arg dir bundle)
(let ((reg (Tequest-appropriate-register arg)))
(if (eq dir ?source)
(progn
(make-legal-move arg reg)
(make-code-bundle
:operand-list (append (code-bundle-operand-list bundle) (list reg))
:regs-to-be-freed (append (code-bundle-regs-to-be-freed bundle) (list reg))))
;; dest
(progn
(make-legal-move reg arg)
(make-code-bundle
:operand-list (append (code-bundle-operand-list bundle) (list reg))
:regs-to-be-freed (append (code-bundle-regs-to-be-freed bundle) (list reg)))))))

(defmacro base-tagged-offset (a)
¢ (make-tagged-literal (base-offset ,a)))

(defun op0 (arg dir bundle)
(it (opO-operand-p arg)
(make-code-bundle
:operand-list (append (code-bundle-operand-list bundle) (list arg))
:regs-to-be-freed (code-bundle-regs-to-be-freed bundle))
(make-big-item-into-gpr arg dir bundle)))

(defun make-big-item-into-gpr (arg dir bundle)
;; There are tvo possibilities:
;3 (1) it is a frame reference that we could convert (in which case direction is irrelevant)
(it (eq (car arg) :frame)
(let* ((value (base-tagged-offset arg))
(reg (request-appropriate-register value)))
(make-legal-move value reg)
(make-code-bundle
:operand-list (append (code-bundle-operand-list bundle) (list (replace-offset reg arg)))
:regs-to-be-freed (append (code-bundle-regs-to-be-freed bundle) (list reg))))

120

33 (2) it must be stored into a separate register
(make-move-with-register arg dir bundle)))

(defun ext-op0 (arg dir bundle)
(if (opO-extended-operand-p arg)
(make-code-bundle
:operand-list (append (code-bundle~operand-list bundle) (1list arg))
:Togs-to-be-freed (code-bundle-regs-to-be-freed bundle))
(make-big-item-into-gpr arg dir bundle)))

(defun guaranteed-ok (arg dir bundle)
bundle)

(defun process-operand-if-source (operands patterns count bundle)
(if (>= count (length operands))
bundle
(et ((op (nth count operands))
(pat (nth count patterns)))
(if (eq (cdr pat) ’source)
(apply (car pat) (list op ’source bundle))
bundle))))

(defun symbol> (x y)
(string> (string x) (string y)))

(defun process-operand-if-dest (op pat bundle)
;; Process only if destination
(if (neq (cdr pat) ?dest)
nil
(list
(if (genl-purpose-reg-p op)
op
(let ((reg (request-any-register)))
(setf (code-bundle-regs-to-be-freed bundle)
(cons reg (code-bundle-regs-to-be-freed bundle)))
reg)))))

;; Unfortunately, it seems we have to code in some specifics to keep
;; the code from being too complex. The assumptions are:

i

;3 - An instruction has up to two sources.

)
H
; - The last operand is the only one that can be a destination.
H If it is a destination, it is alsoc a gpr (except for moves,
; which are handled specially).
(defun make-into-form (opcode operande &krest pattern)
; First, check that same # of operands as patterns
(it (/= (length operands)
(length pattern))
(my-error :fatal nil "Not enough operands for pattern”)
; Generate the code for up to two sources and up to one dest
(let* ((step-one (process-operand-if-source operands pattern O (make-code-bundle)))
(bundle (process-operand-if-source operands pattern 1 step-one))
(dest-reg (process-operand-if-dest (car (last operands))
(car (last pattern))
bundle))) ;¢ Bundle mutated !
; Emit instruction
(emit-j-instruction (cons opcode (append (code-bundle-operand-list bundle)
dest-reg)))
; Emit the code (if any) to put result into destination
(if (and dest-reg
(not (equal dest-reg (last operands)))) ; eq and eql too strong for lists
(make-legal-move (car dest-reg) (car (last operands))))

121

; Free registers
(mapcar #’return-register (code-bundle-regs-to-be-freed bundle)))))

;33 Pseudo-op functions, for :reserve and :free, :suspensive*, and :label

- (:reserve <symbol>) and (:free <symbol>) are used to bind the value
of the symbol so that (:register <symbol>) is meaningful. The
usage is of the form:

(:reserve (:register scratch))

e ws we we

(:move (:j-register 42) (:register scratch))

(:free (:register scratch))
The usage is purposely verbose, to allov a change of representation,
as well as error-checking. (Reserving a second register of the same
name, using a nonreserved register, and freeing a nonreserved register
are all errors.)

e We we Wi W we We we we ws we we

e Wwe we we wr we we we
e We we we we Ws Wi W we we we we

(defvar svirtual-registerss*)
(defvar *pseudo-op-lists)

(defun pseundo-op-p (op)
(assoc op *pseudo-op-list*))

(defun process-pseudo-op (opcode operands)
(apply (cdr (assoc opcode *pseudo-op-list*)) (1list operands)))

(defun reserve-virtual-register (operands)
(let* ((operand (first (car operands)))
(name (second (car operands))))
(if (neq operand :register)
(my-error :fatal nil "Illegal :reserve syntax")
; Check if it’s already allocated
(if (assoc name *virtual-registers+)
(my-error :fatal nil "An attempt was made to re-allocate a virtual registex'")
(let ((reg (request-any-register))) ; This is a TEMPORARY measure -- it might need RO
(setq *virtual-registers+
(cons (cons name reg)
#virtual-registers+))))))
nil)

(defun free-virtual-register (operands)
(let ((operand (first (car operands)))
(name (second (car operands))))
(if (neq operand :register)
(my-error :fatal nil "Illegal :free syntax")
; Check if it’s already allocated
(if (assoc name *virtual-registerss)
(progn
(return-register (cdr (assoc name *virtual-registers*)))
(setq *virtual-registerss
(remove (assoc name *virtual-registerss*)
s*virtual-registerss)))
(my-error :fatal nil "An attempt was made to free an unallocated virtual register"))))
nil)

;; There are two things this could be called for:

HH (:register <name>)

iy or

H (:register #)

; The meanings are very different. The first wvas a temporary assigned by (my) hybrid-to-cj.
; The latter vas a temporary assigned by Iannucci’s generate-vnd-instruction. Both map to

; the same thing hovever. For now, use [#,40] for the latter. Inefficient, but correct.

122

I implement this in hybrid-to-cj but describe it here, because the real fix should be here.
A solution I considered but which is NOT implemented:

Because reserve & free are emitted for the first type and *omitteds*

for the second, we have to assume a little: A first access is an implicit reserve, and a
second is an implicit free. This matches how Iannucci uses registers (I think!) for
non-loop-setup.

e wa we ws we we
e we we we we we

(defun translate-virtual-zregister (ref)
(let ((name (second ref)))
(translate-operand (cdr (assoc name #virtual-registers*)))))

;; Originating J-machine code here might be something of a violation of abstraction.
(defvar suspensive-binding)

(defun make-suspensive-instruction-code (dummy)
(Let* ((name (gensym ’suspensive))
(label ¢(:literal (:symbol ,name)))
(ref (make-tagged-literal ¢(:zef ,name))))
(make-legal ¢(label ,label))
(setq suspensive-binding (request-appropriate-register ref)) ; RO
(make-legal ‘(move (:message (:base 1)) (:j-register 42)))
(make-legal-move ref suspensive-binding)))
; (align)
; (make-legal ‘(move (:j-register ip) (:message (:base 0))))
; (make-legal ‘(move (:message (:base 1)) (:j-register 42))))

;3 This is inefficient.
(defun make-presence-check (operands)
(let ((op (car operands))
(reg (request-any-register)))
(make-legal ‘(rtag ,op ,reg))
(return-register reg)))

(defun end-suspensive-part (dummy)
(return-register suspensive-binding)
(setq suspensive-binding nil))

(defun handle-label (operands)
(emit-j~instruction (list ’label (car operands))))

(defun pass-through-hybrid-instruction (operands)
(emit-j-instruction ¢(hybrid-instruction ,Coperands) :pass-through t))

(setq *pseudo-op-list* (list (cons ’reserve ¥’reserve-virtual-register)
(cons ’free #’free-virtual-register)
(cons ’suspensive-instruction #’make-suspensive-instruction-code)
(cons ’suspensive-operand ¥’make-presence-check)
(cons ’suspensive-check-done #’end-suspensive-part)
(cons ’label #’handle-label)
(cons ’hybrid-instruction #’pass-through-hybrid-instruction)))

123

C.3 Convert Simple J to Assembly

333 —%— Mode:Common-Lisp; Package:ID-COMPILER; Base:10 -»-

i sj-to-asm.lisp converts MDP code from s-expressions into format suitable for MDPSim.
A - Convert from s-expressions to strings,

HH which includes putting in commas and nevlines

HA - Replacing characters like ":" and "-" with "_" to

i make legal MDP identifiers.

HH - Handles references, labels, and symbols.

(in-package ’id-compiler)

(defcompiler-module convert-sexp-j-to-asm id-compiler
(:input vnd-instructions code-block) ; A lie
(:before-function procedure reset-sj-to-asm-system)

3 (:options vnd-output-file)

(:function convert-sj-to-asm))

(defmacro cat (&krest args)
¢(concatenate ’string ,0args))

(defvar *output-string*)
(defvar smsg-ref-list+)
(defvar *ip-ref-lists)
(defvar operand-list)

(defun reset-sj~to-asm-system ()
(setq *ip-ref-list* nil)
(setq *msg-ref-list* nil)
(setq *output-string* ""))

(defun make-j-string (sym)
(et ((s (copy-seq (my-string sym))))
(meke-j-string-inner s 0)

s))

(defun make-j-string-inner (s index)
(if (< index (length s))
(let ((c (char s index)))
(if (or (eql c #\:)
(eql ¢ #\-))
(set? (char s index) #\.))
(make-j-string-inner s (1+ index)))))

(defun asm-output-opcode (opcode)
(setq operand-list nil)
(if opcode
(setq *output-string* (cat *output-string* (format nil "-%-T“A“T" (string opcode))))
(setq *output-string* (cat *output-string* (format nil “-%")))))

(defun asm-output-label (1)
(asm-output-opcode nil)
(asm-output-operand (cat (make-j-string (second (third 1))) ":"))
(asm-output-end-line))

(defun asm-output-align ()
(asm-output-opcode nil)
(asm-output-operand ":")

(asm-output-end-line))

(defun asm-output-comment (text)

124

(setq *output-string* (cat *output-string+ (format nil "~%-%;~S" text))))

(defun asm-output-operand (operand)
(setq operand-list (nconc operand-list (list operand))))

(defun asm-output-end-line ()
(asm-output-end-line-inner (length operand-list) operand-list))

(defun asm-output-end-line~inner (len ops)
(if (> len 0)
(progn
(setq *output-string* (cat *output-string* (first ops)))
(if (> len 1)
(setq *output-string* (cat *output-string* ", ")))
(asm-output-end-line-inner (- len 1) (cdr ops)))))

(defvar *current-frame-descriptors)

(defun convert-sj-to-asm (cb)
(Lot ((name (dataflow-graph-get cb :procedure-name))
(instructions (dataflow-graph-root-set cb)))
; Yuck: Do this right. On second thought, don’t bother.
(setq *current-frame-descriptor* (dataflow-graph-get cb :frame-descriptor))
(mapc #’convert-sj-instruction-to~asm instructions)
(let ((filename (open (make-pathname :type "MDP"
:defaults (cat "o:>ellens>" (string name)))
:direction :output)))
(princ *output-strings)
; Output the module
(format filename "module “a”%" name)
(princ *output-string* filename)
(format filename "~%end~%")
; Output the references
(loop for ref in (set-difference *msg-ref-list* ’(local_movr local_getc))
doing (format filename "ref “a_msg_ref = MSG: (((“a+“s_loc)<<~d))+2"%"
(make-j-string ref)
(make-j-string ref)
name
#sys-len-bits*))
(loop for label in *ip-ref-list#
doing (format filename "ref ~a_ip_ref = IP:(((~a+"a_loc)<<~d))+ABSOLUTE~%"
(make-j-string label)
(make-j-string label)
name
sys-len-bits))
; Bogus for loops
(format filename ''ref “a_codeblock_ref = CB:("a_loc<<18)+*D"%"
(dataflov-graph-get cb :procedure-name)
(dataflow-graph-get cb :procedure-name)
(frame-descriptor-next-available-scratch-slot #current-frame-descriptor*))
(close filenams))))

(defun convert-sj-instruction-to-asm (instruction)
(let ((operator (car instruction)))
(cond ((eq operator ’label) ; special cases
(asm-output-label (cadr instruction)))
((eq operator ’align)
(asm-output-align))
((eq operator ’hybrid-instruction)
(begin-hybrid-instruction-conversion (cdr instruction)))
(t
(asm-output-opcode operator)
(mapc #’convert-sj-operand-to-asm (cdr instruction))
(asm-output-end-line)))))

125

(defun begin-hybrid-instruction-conversion (text)
(asm-output~coument text))

(defun convert-sj-operand-to-asm (operand)
(asm-output-operand

(case (car operand)
((:tagged-literal) (output-tagged-literal operand))
((:j-register) (my-string (second operand)))
((:frame) (format nil "[-S,A2]" (cadadr operand)))
((:message) (format nil "[-S,43]" (cadadr operand)))
((:temporary) (format nil "[~S,40]" (cadadr operand)))

)

(defun output-tagged-litersl (operand)
(et ((tag (second operand)))
(if (eq tag special-tag)
; Everything as REFs not labels (labels would be more appropriate for branches)
(cond ((eq (car (third operand)) :code-block)
; It goes without saying that the code-block ref will be output
(cat "{" (make-j-string (second (third operand))) "_codeblock_ref}"))
((eq (car (third operand)) :zef)
(setq *msg-ref-list* (remove-duplicates (cons (second (third operand))
smsg-ref-list*)))
(cat "{" (make-j-string (second (third operand))) "_msg_ref}"))
((eq (car (third operand)) :label)
(setq *ip-ref-list* (remove-duplicates (cons (second (third operand)) *ip-ref-list+)))
(cat "{" (make~j-string (second (third operand))) "_ip_ref}"))
(t
(break)))
(cond ((eq tag int-tag)
(format nil "~D" (third operand)))
((and (eq tag boolean-tag) (numberp (third operand)))
(if (= 0 (third operand))
'lf‘ls."
“true"))
(t
(format nil "“4:“D" (string tag) (third operand)))))))

(defun my-string (x)
(if (numberp x)
(format nil "“D" x)
(string x)))

126

Bibliography

[Arvind and Nikhil 1988] Arvind and Rishiyur S. Nikhil. Executing a Program on the MIT
Tagged-Token Dataflow Architecture. Computation Structures Group Memo
271. MIT Laboratory for Computer Science, Cambridge, MA, 1988.

[Dally 1988a] Dally, William J. The J-Machine: System Support for Actors. In Hewitt, Carl,
and Agha Gul, editors, Concurrent Object Programming for Knowledge Pro-
cessing: An Actor Perspective, MIT Press, Cambridge, MA, 1989.

[Dally et al 1988b] Dally, William, et al. Message-Driven Processor Architecture. MIT Ar-
tificial Intelligence Lab Memo 1069, MIT Artificial Intelligence Laboratory,
Cambridge, MA, 1988.

[Gaudiot and Bic 1989] Gaudiot, Jean-Luc and Lubomir Bic. Data-Flow: A Status Report.
Computer Architecture News, December 1989, pages 111-118.

[Horwat 1989] Horwat, Waldemar. Concurrent Smalltalk on the Message-Driven Processor.
Master’s Thesis, Department of EECS, MIT, 1989.

[Horwat and Totty 1987] Horwat, Waldemar and Brian Totty. Message-Driven Processor Sim-
ulator. MIT Concurrent VLSI Architecture Memo 5, MIT Artificial Intelligence
Laboratory, Cambridge, MA, 1987.

[Tannucci 1988] Iannucci, Robert Alan, A Dataflow / von Neumann Hybrid Architecture.
Technical Report MIT/LCS/TR-228, MIT Laboratory for Computer Science,
Cambridge, MA, 1988. (PhD Thesis, Department of EECS, MIT.)

127

[Nikhil 1988] Nikhil, Rishiyur S., ID Version 88.1 Reference Manual. Technical Report Com-
putation Structures Group Memo 284, MIT Laboratory for Computer Science,
Cambridge, MA, 1988.

[Papadopoulos 1988] Papadopoulos, Gregory Michael. Implementation of a General Purpose
Dataflow Multiprocessor. Technical Report MIT/LCS/TR-432, MIT Labora-
tory for Computer Science, Cambridge, MA, 1989. (PhD Thesis, Department
of EECS, MIT.)

[Papadopoulos and Culler 1990] Papadopoulos, Gregory M., and David E. Culler, Monsoon:
An Explicit Token Store Architecture. In Proceedings of the 17t* International

Symposium on Computer Architecture, Seattle, Washington, May 1990.

[Sakai et al 1989] Sakai, Shuichi; Yamaguchi, Yoshinori; Hiraki, Kei; Kodama, Yuetsu; and
Yuba, Toshitsugu. An Architecture of a Dataflow Single Chip Processor. Pro-
ceedings of the 16" Annual International Symposium on Computer Architec-

ture, Jerusalem, Israel, 1989, pages 46-53.

[Spertus 1989] Spertus, Ellen. Preliminary Dataflow on the MDP. MIT Concurrent VLSI
Archtiecture Memo 21, MIT Artificial Intelligence Laborary, Cambridge, MA,
1989.

[Traub 1986a] Traub, Kenneth R. A Compiler for the MIT Tagged-token Dataflow Archi-
tecture. Technical Report MIT/LCS/TR-370, MIT Laboratory for Computer
Science, Cambridge, MA, 1986.

[Traub 1989] Traub, Kenneth R., Compilation at Partitioning: A New Approach to Com-
piling Non-Strict Functional Languages. In Proceedings of the Conference
on Functional Programming Languages and Computer Architecture, London,

September 1989.

[Traub 1986b] Traub, Kenneth R. A Dataflow Compiler Substrate. Computation Structures
Group Memo 261, MIT Laboratory for Computer Science, Cambridge, MA,
1986. (Master’s Thesis, Department of EECS, MIT.)

128

[Traub 1988]

MIT.)

12%

Tius blank page was inserted to preserve pagination.

CS-TR Scanning Project |
Document Control Form Date: &/ JX/9S

Report# AT TR -1337

Each of the following should be identified by a checkmark:
Originating Department:

X Astificial Intellegence Laboratory (Al)
[0 Laboratory for Computer Science (LCS)

Document Type:

]&Teennical Report MR) [0 Technical Memo (TM)
O other:

Document Information Number of pages: 137(i4s-imAces)

Not to include DOD forms, printer intstructions, olc... original pages only.
Originals are: intended to be printed as :

p~{ Single-sided or O Single-sided or

O Double-sided X Double-sided

Print type:
[0 Twewitsr [Oftest Press J&"“"’"‘
[inketPrinter [] Unknown [other.

Check each if included with document:

x\ DoD Fom() [0 Funding Agent Form X Cover Page
Spine O Printers Notes 3 Photo negatives

O other:
Page Data:

Blank PageSey sege numbes:

Photographs/Tonal Material eypege wmbe:

Other (o sescigsonpege mmben.:
Description : Page Number:

‘mace Mep (1-3) Pages XD |- Vii [jyeunine MTLE PacE)
(a-1372) Paces KD |12
(;3?' Hl) Jwnwegriingl ;(’n.'/E'P\JSPo‘IJ&J DOD él)
(143- 45) TRGYS (3) .

Scanning Agent Signoff: o
Date Received: _{ /2%./35 Date Scanned: i 1J919S Date Retumed: _6 /37 / TS

- 0
Scanning Agent slgnature:__rbﬁﬁéu,g_m_ Rev /04 DSACS Document Control Form cstriorm.vad

UNCLASSIFIED

SECURITY CLASSIFICATION OF TH§ PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
'. REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
AI-TR 1233 AD-A2 284612
4. TITLE (end Subtitie) . S. TYPE OF REPORT & PERIOD COVERED
Dataflow Computation for the J-Machine technical report

§. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
N0O0014-87-K-0825
Ellen Spertus NO0014-88-K-0738
N00014-85-K~0124 MIP-865753]
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

Artificial Intelligence'Laboratory AREA € wORK UNIT humBERs

545 Technology Square
Cambridge, MA 02139

1. CONTROLLING OFFICE NAME AND ADORESS 12. MEPORT DATE
Advanced Research Projects Agency June 1990
1400 Wilson Blvd. 13, NUMBER OF PAGES
Arlington, VA 22209 . 129

14. MONITPRING AGENCY NAME & ADORESS(If difterent from Controlling Oflice) 18. SECURITY CLASS. rof thie roport)
Office of Naval Research UNCLASSIFIED
Information Systems
Arlington, VA 22217 iSa. gggéégigwcanou/oownanmuc

16. DISTRIBUTION STATEMENT (eof this Report)

Distribution is unlimited

17. DISTRIBUTION STATEMENT (of tNe abatract entered In Block 20, i ditlerent trom Report)

18. SUPPLEMENTARY NOTES

None

19. KEY WORDS (Continue on reveree eide i1 necessary and identily by block number)

parallel processing .
compilation
dataflow

20. ABSTRACT (Continue on reverae alde (f necesssry and Identify by block manber)

The dataflow model of computation exposes and exploits parallelism in programs without
requiring programmer annotation; however, instruction-level dataflow is too fine-grained to be
efficient on general-purpose processors. A popular solution is to develop a “hybrid” model of

computation where regions of dataflow graphs are combined into sequential blocks of code. I
(continued on back)

DD, on'ss 1473 EorTion oF 1 nov 63 1s omsoLeTE UNCLASSIFIED
S/N 0:02-014- 6601 |

SECURITY CLASSIFICATION OF THIS PAGE (When Data Bnterec

ideas for improvement.

P

pow,

N

e e,

g AR AR 1

P

SRR e SRR RIS

TIEXIG A DR BRA ¢
viciniodsd supsgll
b

L

ZREAGOA "'ht Eish

YHES

eane{o¥3 doin
]

by i

o

et mattiguteall e ey HWRIZSA0G A

o AR TG SN £LT0 s

v

B .

< e

fuais Ty ki

(Rl TR

et vt

Iyegemem ARl @ BNl Une PEARERER 1 tede BurEYET |

Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.L.T
Libraries. Technical support for this project was
also provided by the M.L.'T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94

