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Abstract

Existing parallel architectures are constructed monolithically, with no well defined
boundaries separating model and machine issues. This makes it difficult to evaluate
the effect of a single component of an architecture, or compare it with the correspond-
ing components of other architectures. Machine hardware is specialized to support a
single programming model, even though similar but more general mechanisms could
support a variety of models. Often details of an implementation become visible in the
programming environment, restricting future implementation improvements because
of compatibility. The lack of an interface between model and machine issues also com-
plicates the translation of a machine improvement into a performance improvement
for model applications.

This thesis defines Pi, a parallel architecture interface that separates model and ma-
chine issues, allowing them to be addressed independently. This provides greater
flexibility for both the model and machine builder. Pi addresses a set of common par-
allel model requirements including low latency communication, fast task switching,
low cost synchronization, efficient storage management, the ability to exploit locality,
and efficient support for sequential code. Since Pi provides generic parallel opera-
tions, it can efficiently support many parallel programming models including hybrids
of existing models. Pi also forms a basis of comparison for architectural components.

Pi is evaluated in two ways. First, several mechanisms required by existing parallel
models are constructed on the interface. These examples are executed and evalu-
ated using a Pi simulation environment. Then a machine substrate that supports the
interface is specified. It is designed to efficiently support the generic parallel opera-
tions provided in Pi. The feasibility of gate array implementation is considered. The
effectiveness of this machine substrate at supporting Pi is evaluated. The role of a
machine compiler below the interface is also discussed.

This thesis demonstrates a parallel architecture interface. Pi efficiently supports
several model mechanisms. A machine substrate which effectively implements Pi is
presented.

Thesis Supervisor: William J. Dally
Title: Associate Professor, EECS
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Chapter 1

Introduction

The von Neumann model of sequential computers was a milestone in computer evo-
lution because it defined an interface between programming models and machine
implementations. Both models and machines have advanced considerably since then,
but the interface, the way each side sees the other, has remained relatively unchanged.
This separation of concerns is responsible in part for a key capability of today’s com-
puters: the ability to support a variety of programming languages and applications
using the latest machine design techniques and technology.

Wanted: A Parallel Interface

A similar interface can provide the same beneficial effects for parallel computers. This
type of interface is sorely needed. Currently, parallel architectures are constructed
monolithically, as shown in Figure 1.1. An architecture is a composition of model
and machine features with no well-defined boundaries separating different aspects of
the design. This makes it difficult to evaluate the effect of a single component, or
compare it with the corresponding components of other architectures.

Sometimes details of an implementation become visible in the programming environ-
ment, restricting future implementation improvements because of compatibility. The
lack of an interface between model and machine issues also complicates the trans-
lation of a machine improvement (e.g., an improved communication network) into a
performance improvement for model applications.

Despite the benefit of a parallel interface, it has not been possible to specify one. Ad-
equate experience with model and machine issues in parallel architectures is required.
It is first necessary to identify what parallel architectural features and mechanisms
are needed, and obtainable.

Parallel Architecture Requirements

Recently, a consensus on requirements has begun to surface in parallel architecture
research. The following capabilities have been identified:

9
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Figure 1.1: The Problem: Architectural Monoliths

¢ low latency communication

o fast task switching

e low cost synchronization

e efficient storage management

o the ability to exploit all types of locality

o the ability to efficiently support sequential code segments in a parallel environ-
ment

These requirements are common to most existing parallel models. With them, it is
now possible to specify an interface.

Introducing Pi

This thesis introduces Pi, a parallel architecture interface. Pi is based on the generic
parallel model requirements described above, so a machine substrate that supports
Pi can implement multiple parallel models. Pi provides an abstraction that separates
model and machine issues !, allowing them to be addressed independently. It forms
a basis of comparison for architectural features and it provides greater flexibility for
both the model and machine builder.

1Model issues are related to the problem solving style. Machine issues are related to the physical
realization of a problem solving system

10
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Figure 1.2: Pi Overview

Figure 1.2 presents an overview of Pi. Each box above the interface represents the
mechanisms required for a model, constructed with Pi operations. For example, the
data parallelism model includes a mechanism for supporting set synchronization (a
synchronization tree, for example). In addition to existing parallel models, Pi also
supports hybrids of mechanisms from different models. Below the interface, each
box represents a different Pi machine substrate. All of these machines are designed
specifically to support Pi (i.e., they are not specialized for a particular model). The
estimated number of nodes and machine cost is listed for each substrate. As new
machine building techniques and technologies are incorporated into future substrates,
the performance improvements can be realized by all models above the interface.

Pi does not eliminate the interrelationship of models and machines. The costs of Pi
operations on a particular machine affect how model mechanisms are best constructed.
They also have an influence on which model provides the most effective solution to
a problem. The interface attempts to provide the functionality of the underlying
machine in a way that does not unnecessarily bias a solution towards a particular
model. An advance in machine design may lower the cost of an interface operation,
requiring changes in a model’s implementation or the solution to a problem. But since
only cost, not functionality, has changed, a major reimplementation is not expected.

A system incorporating an architectural interface is shown in Figure 1.3. A problem
solving style is supported by a machine independent compiler. This compiler produces
a “program” of basic parallel operations from Pi. The interface is supported below
by a combination of a machine dependent compiler and machine hardware.

Pi serves as an image of what lies on the other side. It must accurately represent the
requirements and constraints, while abstracting away unnecessary details. It must
be expressive enough to allow efficient interaction across the interface, but not overly
constrain the design freedom of either side. These interface issues are embodied in
the following design criteria, used in the development of Pi:

o Interface Abstractness: Does the abstractness of the interface provide a reason-
able balance of flexibility between the model and machine implementation?

o Presentation Accuracy: Are the functionality and requirements of each side of
the interface accurately presented?

11
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Figure 1.3: Pi: An Architectural Interface Between Model and Machine

o Functionality Match: Does the functionality provided in the interface match
(a) the requirements of model mechanisms, and (b) the capabilities of machine
implementations?

o Implementation Bias: Do interface operations minimize bias towards particular
implementations of models and machines?

These criteria, together with the parallel model requirements, formed the basis of the
design of Pi.

Thesis Contributions

o Pi Interface: A parallel architecture interface based on generic parallel model
requirements is defined.

e Model Mechanisms in Pi: Several model mechanisms (a shared memory
protocol, set synchronization, object name translation, and non-resident han-
dlers) and two parallel applications (n-body and relaxation) are implemented
and evaluated on a parallel architectural interface.

e A Pi Substrate: A machine architecture that efficiently supports generic par-
allel operations is defined. The feasibility of one implementation is demon-
strated.

12



Related Work

Other research has studied parallel architecture interfaces at different levels of ab-
stractness. Related work falls into three classes: language interfaces, machine inter-
faces, and theoretical models.

The first class of related work assumes a “language-centered” view of the problem
(e.g., Paralation LISP [49], dataflow languages [1], AFL-1 [10], and Nial [41]). They
provide a convenient programming environment, often supporting multiple execution
model mechanisms (e.g., data parallelism and MIMD fork/joins). However, this ap-
proach often poses a large “semantic gap” between the interface and the machine
implementation. As a result, an efficient implementation of the language interface is
often difficult. In addition, they often provide no separation of model and machine
issues.

The second class of related work assumes a “machine-centered” view of the problem
(e.g., HEP [34], MPP [7], Cosmic Cube [51], the NON-VON [52], the Transputer [31],
the Connection Machine [56], WARP [4], the NCUBE 2 [43], RP3 [46], J-Machine
[18], the BBN Butterfly [8], and the BBN Monarch [48]). In this class, novel machine
organizations and new technological advances are combined in a machine design.
The machines often sport impressive raw performance. Unfortunately, programming
model considerations are often neglected, resulting in a large semantic gap between the
machine and the programming environment. This often restricts the use of these high
performance machines to only specialized classes of applications and programming
models.

The last class of related work includes theoretical models of parallel computation
(e.g., Communicating Sequential Processors {26], PRAM [50], Actors [3], Type Archi-
tectures [55], Bulk-Synchronous Parallel Computers [58]). These models are valuable
for studying the theoretical capabilities and limits of parallel computation. However,
they usually pursue mathematical clarity, rather than being sullied with the practical
details of solving real-world problems with real-world machines. They typically pro-
vide poor architectural interfaces. In the worst case, they produce two semantic gaps
(programming language < model, and model < implemented machine). However,
because of their clarity, theoretical models often provide inspiration for more practical
interfaces. The relationship of these models to the desired interface is analogous to
the relationship of the Turing machine model to von Neumann’s interface.

Thesis Outline

This thesis begins with the definition of Pi, presented in Chapter 2. A discussion of
interface design choices is presented.

An architectural interface cannot be examined in isolation. This thesis also stud-
ies how model mechanisms are built on Pi. In Chapter 3, several mechanisms from
parallel models are constructed including: shared memory (with caches), set synchro-
nization, object name translation, non-resident handler support, n-body simulation,
and relaxation simulation.

13



In Chapter 4, these examples are evaluated using the Pi source code, and execution
statistics from a Pi simulation environment.

Since Pi is to be supported by a specially designed hardware substrate, an example of a
Pi machine architecture is presented in Chapter 5. This substrate design incorporates
the generic parallel model requirements described earlier, as well as the results from
the evaluation of the examples. This chapter also includes a discussion of gate array
implementation.

Chapter 6 examines how the requirements of Pi are supported on this machine ar-
chitecture. It also provides some cost estimates for Pi operations supported on the
described hardware architecture.

Finally, Chapter 7 summarizes the conclusions of the thesis and describes future
directions for the work.

14



Chapter 2

The Pi1 Interface

This chapter presents Pi, a parallel architecture interface. Pi is defined in the form
of an abstract machine, although a specific machine implementation is not implied.
Structurally, the Pi abstract machine has a familiar form: a collection of nodes con-
nected by a communication network. However its behavior embodies a broad class of
machine mechanisms.

The Pi abstract machine is fine-grain (i.e., thousands of nodes, small task sizes). It
can also support the requirements of coarse-grain models and machines (i.e., tens
of nodes, large task sizes). Mixing the grain size of models and machines produces
varying results. It is difficult to efficiently execute small tasks on a machine designed
for large tasks, since the task overhead is unacceptable high. However, large tasks are
efficiently executed on a small task machine with its low task overhead. Unfortunately,
larger task models have less potential for parallelism.

The Pi abstract machine is message driven, although other choices are possible (e.g.,
communication by shared memory, task invocation by remote procedure calls). Mes-
sage passing was selected because it provides a convenient and efficient casting of
most machine mechanisms.

This chapter examines several aspects of the abstract machine, including storage,
synchronization, communication, task management, locality, and sequential operation
support.

2.1 Storage

In Pi, storage is represented as logical collections of data or segments. A segment
contains a number of related pieces of information. It is uniquely named on the node
where the storage resides. A segment name is used to reference the stored data.
Each location in a segment, referenced by an offset, contains a value which can be a
number, symbol or boolean. Pi does not specify how these data types are supported.
However, a few special values (e.g., UNBOUND) are referred to in this definition.
Segments are distributed across all nodes of the abstract machine.

15



Each segment is named by a segment ID. Pi does not specify how segment IDs are
supported in an implementation. An machine implementation can use the physical
address of the segment base for this purpose. If this technique is employed, storage
compaction is problematic if segment IDs are copied outside the node. An alter-
nate implementation separates segment naming and storage allocation by providing
a translation between names and absolute pointers. This technique does not require
the restriction mentioned above for storage compaction. However a translation mech-
anism (albeit a simple one) is necessary.

Although a storage hierarchy is not part of the abstract machine, it is not precluded
from implementations of Pi. Normally, storage access costs reflect the benefit of
reference locality.

There are many alternatives to representing storage as segments. On a abstract node,
memory could be addressed as a single linear array. However, this erodes the model
machine abstraction and restricts the implementation of memory in a Pi substrate.
Memory could be separated from the processing component of an abstract node (i.e.,
separate memory and processing nodes). This approach restricts the exploitation of
spatial locality above the interface. It also couples communication and storage access
operations, preventing explicit control of communication above the interface.

Two type of segments are supported in Pi: read-write and associative

2.1.1 Read-Write Segments

Read-Write segments are finite blocks of linearly addressed storage locations. They
are accessed through familiar read and write operations:

(read segment offset)
This operation returns the value in the specified segment at the specified

offset.

(write segment offset new-value)

This operation writes the new value into the specified segment and offset.
Read-Write segments are created using the create-read-write-segment operation:

(create-read-write-segment size)

This operation allocates a read-write segment of the requested size (in

words), and returns a segment name.

Segment names are only created through segment allocation operations. Once gen-
erated, they are immutable. Address arithmetic is only possible on segment offsets,

16



and offsets must fall within the segment boundaries. Once a read-write segment is
created, its size cannot be changed.

Read-Write segments support the basic storage naming mechanism in Pi: the tu-
ple <Node, Segment, Offset> or NSO. NSOs are referred to throughout this
document as handles to storage locations. More general naming mechanisms (which
support segment migration for example) can be supported by Pi, but are not explicitly
part of the interface.

2.1.2 Associative Segments

Associative segments are a second type of storage supported in Pi. They are provided
in addition to read-write segments because they constitute a different access model
of storage. Associative segments could be supported on top of the interface using
read-write segments. But then the purpose of the storage would be obscured or lost,
preventing the machine builder from providing the best implementation of associative
segments on the available hardware. Pi attempts to capture the intent of the model
builder without specifying all the details.

Associative segments provide access to segment data via the following operations:

(insert segment key new-value)

This operation inserts the value into the segment with the specified key.
If the new entry cannot be inserted into the segment (because of size
bounds), the key of the existing entry (which caused the collision) is re-
turned. Otherwise the key of the inserted entry is returned. If the new
value is specified as UNBOUND, the appropriate key is returned, but the
segment is unmodified.

(match segment key)

This operation returns the value associated with the key in the segment.
The symbol UNBOUND is returned if the key is not found in the segment.

(remove segment key)

This operation removes the key and associated value from the segment.
The old value is returned if the entry existed in the segment. Otherwise

UNBOUND is returned.

(clear segment)

This operation clears all entries from an associative segment.

17



Associative segments have two important parameters that are specified when the
segment is created: Size and Safety. The size parameter indicates whether the segment
size is fixed or not. It is either BOUNDED (fixed at some value), or UNBOUNDED'
(able to grow to some relatively large size, with respect to the system storage). The
safety parameter indicates whether segment entries can be lost, usually as a result of
another insertion. An associative segment is either SAFE (entries cannot be lost), or
UNSAFE (entries can be discarded without notice).

These parameters are orthogonal. Here are the behaviors of the four combinations:

BOUNDED-SAFE

This segment type guarantees that the segment size is not increased and
that existing entries are not overwritten. This is accomplished only by
refusing new insertions. When an insertion collision occurs, the insertion
operation returns the key of the existing entry. This key can be used to
safely remove the entry before retrying the insertion. This segment type
requires the implementation to use a repeatable replacement policy.

UNBOUNDED-SAFE

This segment type guarantees safe acceptance of all insertions, by increas-
ing the size of the segment. An insert operation is normally not rejected,
nor is an existing entry overwritten.

BOUNDED-UNSAFE

This segment type accepts all insertions without increasing the segment
size. It may unsafely overwrite an existing entry. This behavior is similar
to that of hardware caches.

UNBOUNDED-UNSAFE

This segment type behavior is underspecified, since an insertion collision
can be resolved either by increasing the segment size, or by overwriting an
existing entry. This affords the machine dependent compiler and runtime
system flexibility to better optimize behavior.

Pi places no restrictions on how entries are mapped into or replaced in an associative
segment beyond those described above. As a consequence, a segment of size N does
not consider size and safety issues at the (N + 1)th insertion. A collision can occur
as early as the second insertion.

Also, UNBOUNDED segments only guarantee safe acceptance of insertions within
the bounds of specific machine limitations. If this limit is exceeded, an exception
results. This error is similar in nature to a divide by zero exception; it is not normally
expected.

An associative segment size is specified even for UNBOUNDED types, to give the
machine specific compiler an estimate of the expected size.

1An UNBOUND size parameter is different than an UNBOUND value. The latter means the
value is unknown or uninitialized.
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Associative segments are created using the Create- Associative-Segment operation.

(create-associative-segment size type)

This operation creates an associative segment. The size parameter speci-
fies the desired initial size (number of key-value bindings). The type pa-
rameter specifies the boundedness and safety of the segment. The segment
type is one of the following: BOUNDED-SAFE, UNBOUNDED-SAFE,
BOUNDED-UNSAFE, and UNBOUNDED-UNSAFE.

2.1.3 Storage Reclamation
Explicit storage deallocation is supported in Pi via the Destroy-Segment operation:

(destroy-segment segment)

This operation frees the storage in the specified segment. Any segment
type can be freed using this operation.

Pi neither requires nor precludes automatic storage reclamation (garbage collection).
This decision is left to the machine compiler. However certain applications expressed
in some programming models perform poorly, or not at all without automatic storage
reclamation.

It is often necessary to determine the size of a read-write or associative segment. The
Segment-Size operation supports this need.

(segment-size segment)

This operation returns the size of a read-write or associative segment.

2.1.4 Nodals

A segment can be accessed only if the segment name is known. However there are
many applications where it is expedient to have globally “named” segments and
values. This is supported via node variables or nodals. They are analogous to global
variables in sequential computing, except a copy of each variable exists on each node.
Nodals are globally named but locally consistent (i.e., a nodal’s value is not consistent
across nodes). When a nodal is defined, an independent copy of that named storage
location is created on every node. They are maintained in a special nodal segment
on each node.

(nodals)

This operation returns the name of the segment containing the nodals
for the current node. When a nodal is defined, it is assigned a location
in the nodal segment. Nodals can then be accessed via read-write seg-
ment accessor operations, using this operation to access the node’s nodal
segment.
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2.2 Synchronization

Synchronization in parallel system is composed of two components: a piece of named
synchronization state, and an inter-node communication mechanism to allow access
of that state. In Pi, communication is provided by the message passing operation
which is presented later in Section 2.3.

The named state, which indicates the status of synchronization events (both data
and control), is maintained in specially annotated storage locations (locations are
annotated using the attribute operation described in Section 2.2.4). In this way,
synchronization event naming is supported via the existing storage naming facility

(NSO).

As an alternative to this approach, the naming, storage, and communication require-
ments of synchronization could be combined in a single synchronization operation.
However, synchronization communication patterns vary. Sometimes hundreds of tasks
are involved, sometimes only two. Synchronizing tasks may be located on different
nodes, or they may be on one node. It is difficult capture these different communica-
tion patterns in a general operation. By separating the communication component,
it can be handled using the same techniques as general communications. By main-
taining synchronization state in read-write storage locations, synchronization naming
and access is simplified.

Several forms of synchronization are explicitly supported in Pi. Three forms are
considered in detail: data, barrier, and producer-consumer synchronization.

2.2.1 Data Synchronization

Data synchronization is supported by storage locations annotated as d-syncs. This
is similar to other data synchronization mechanisms such as futures in Multilisp [33],
context futures in CST [19], I-Structures in Id [6], and full/empty bits in HEP [53].
When a data synchronization is created, it is marked as not yet containing valid
data. Any attempt to read it results in the suspension of the active task. A d-sync
maintains a ordered set of suspended tasks, waiting for the location to be written.
When a d-sync is written, the read lock is cleared, permitting read accesses of the
location. Suspended tasks waiting to read the location are requeued for execution
in the order they suspended. All locations in newly created read-write segments are
annotated as d-syncs by default.

2.2.2 Barrier Synchronization

A barrier synchronization or b-sync is a control synchronization mechanism, similar
to counting semaphores described by Dijkstra [21]. A b-sync maintains a count which
is adjusted (incremented or decremented) and tested. When a b-sync is tested, the
active task suspends if the barrier is positive. A b-sync maintains a ordered set of
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tasks which have suspended on the barrier. When a barrier synchronization count is
reduced to a non-positive value, suspended tasks waiting on the barrier are requeued.
If the barrier count is increased to a positive number, tasks will once again suspend
if they test the count.

Two operations are provided to support barrier synchronization: test-count and
adjust-count.

(test-count segment offset)

This operation tests the count of a barrier synchronization. If it is positive,
the active task is suspended and added to an ordered set of tasks waiting
on the barrier.

(adjust-count segment offset count-change)

This operation adjusts the barrier count by count-change. count-change
can be positive or negative, allowing the required count to be increased or
decreased. If the count becomes zero or negative, suspended tasks waiting
on the barrier are requeued in the order they suspended.

2.2.3 Producer-Consumer Synchronization

A producer-consumer synchronization or s-sync is a combined data and control syn-
chronization. An s-sync guarantees that each each value written to the synchro-
nization location is read exactly once. It is useful for the support of several model
mechanisms including lock step execution of a set of tasks, often required in data
parallelism.

An s-sync initially behaves like a d-sync, prohibiting reads until the location has been
written. After it has been written, write attempts are suspended until the s-sync
has been read. Then the cycle repeats. This behavior guarantees that a value is not
overwritten before it is read, or read twice.

2.2.4 Attributes

All synchronizations are supported in read-write storage locations. Storage locations
are designated as synchronizations by attributes. Each word of a read-write segment
is annotated with an attribute which governs the permissible access patterns for that
location. Read-Write locations are initially attributed as d-syncs. This attribute
can be changed using the attribute operation to one of the seven attribute types
summarized in Figure 2.1.

(attribute segment offset attribute-type)

21



read (suspend) read

write (requeue)  Write (suspend)

read (suspend) read

write (requeue)  Wwrite (suspend)

read (suspend)  read (requeue)

adjust adjust {requeue) adjust

read
READ-ONLY

write (suspend)

read (suspend)

WRITE-ONLY

write

read

READ-WRITE

write

Figure 2.1: Synchronization Attribute Summary

22



This operation attributes the specified segment location. The following
attribute types are supported: D-SYNC, WRITE-ONCE, S-SYNC, B-
SYNC, READ-ONLY, WRITE-ONLY, and READ-WRITE. When a lo-
cation is attributed, all suspended tasks on the location are requeued in
the order they suspended.

It is often desirable to check whether a local memory access operation is going to
result in a suspension without actually executing it. The probe operation is provided
for this purpose.

(probe segment offset access-operation)

This operation is a predicate, indicating whether the specified access op-
eration will result in a suspension of the active task. Access operations
include: read, write, and test-count.

Global time is valuable for supporting certain model mechanisms including temporal
synchronization. Global time is provided by the time operation.

(time)

This operation returns the global time of the system.

2.3 Communication

All communication requirements of Pi are satisfied by a single mechanism: message
passing. A messages passing cycle is composed of the following steps:

1. A message is injected into a network by a task on the source node. The message
destination, length, priority, and type are sent (in that order), followed by a
variable number of arguments.

2. The communication network routes the messages to the correct destination.
The destination field of the message is removed during delivery.

3. The destination node receives the first field of the message, the message length.
It then allocates storage (a read-write segment)in local node memory for the
messages.

4. The destination then accepts the remainder of the message from from the net-
work and stores it into the allocated segment.

5. The message is then scheduled as a task using the task ID (the ID of the
segment containing the message) in a task/message queue. The specific queue
is specified by the priority field. Task scheduling and invocation is discussed
further in Section 2.4.
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There are many alternatives to this approach for supporting communication. For
example, communication and task invocation can be separated into two operations.
The local task invocation operation is similar to Pi’s call operation, described in
Section 2.4.5. For the communication-only operation, naming of the communicated
data becomes problematic. A complex scheme is required to allow a task on the
destination node to connect with the appropriate received data. All of the approaches
(e.g., scanning a message arrival queue, supporting a shared address space, etc.)
require a substantial mechanism overhead. By combining communication and remote
task invocation, the invoked task knows the name of the communicated data since
it is included in the task segment. If communication-only messages are required, a
simple task which stores the data in the appropriate location can be employed.

Another alternative is to support more complicated communication operations like
remote reads and writes. However, this complexity is not always required, resulting
in wasted communication resources. Also, this mechanism can be easily synthesized
using message passing. Most often, a simple but general operation is preferable to a
more complicated one.

The simplest operation does not always provide acceptable performance. For ex-
ample, another communication alternative is an operation that transmits one word
of data to an adjacent neighbor. Since each “hop” in the communication network
requires node intervention, this creates unacceptable communication latency, and un-
necessarily burdens the nodes in the routing path. Additionally, the arbitrary source
and destination message passing operation in Pi provides a more abstract view of the
communication network, allowing greater implementation freedom for the machine

builder.

A single operation supports message sending in Pi:

(send destination length priority type arg-1 arg-2 arg-3 . . . arg-n)

This operation constructs a message containing the send arguments and
enqueues it for delivery to the named destination node. During trans-
mission, destination is removed from the message by the network. At the
destination node, storage (a segment) is allocated for the incoming mes-
sage, using length. The message fields type and priority specify how, and
in what order the message is handled by the receiving node. Message
handling is described in a later section.

When a message arrives at a node, it is enqueued as a segment in the node’s storage.
In the Pi abstract machine, this happens independently of the node’s current activities
(i.e., a task executing on the node is not suspended when a new message is received).

2.3.1 The Network

The communication network is capable of delivering messages between a sender and
receiver node. The details of the delivery (routing, in-transit buffering, etc.) are not
visible in the interface. However, the network exhibits the following properties:
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Message delivery is guaranteed.

Message latency is indeterminate.

Message delivery order between two nodes is not preserved.

2

e The network can exert backpressure? on message sending nodes.

2.4 Task Management

Communication and task management are closely related in Pi. Message sending is
one of two mechanisms for creating tasks (the other is task calling). All node activity
stems directly from message reception. This section considers several aspects of task
management in the Pi abstract machine.

2.4.1 Task Storage

Normally, all task storage is allocated at message arrival time. When a message is
received, the task storage requirement is computed as the sum of the message length
field and the task storage overhead size (i.e., space for processor state, etc.). A
segment of this size is allocated, and the message is stored there.

In some models, the required task size cannot be determined statically. In these
dynamic cases, an additional segment is allocated at runtime to provide the required
storage.

Task naming, like synchronizations, is supported by segment names (NSO). Therefore,
the allocation of task storage includes the assignment of a unique name to the task:
the segment name. This name is obtained via the self operation.

(self)

This operation returns the segment name, which is used as part of a NSO
address.

2.4.2 Task Dispatch

Both mechanisms for task invocation, send and call, use a type field to specify the
appropriate handler. Depending on the machine implementation, this field can con-
tain one of two value types: a physical address of a code segment or the segment ID
of the code segment (if this is implemented differently). This distinction (address or
ID) can be made at machine compile time or run time (using type tagging). In either
case, the code segment must be resident on the node.

2This means that the network can halt nodes that are injecting messages.
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To support handlers which are not guaranteed to be resident (i.e., non-resident han-
dlers), a separate argument in the message or called task specifies a name which can
be resolved to a segment ID using a user defined translation mechanism. After this
translation is accomplished (and the non-resident handler is copied locally), call is
invoked to begin handler execution. An example of non-resident handler support is
described in Chapter 3.

2.4.3 Task Atomicity

Task execution is non-preemptive. A task executes until termination, or until a
synchronization point forces a suspension. Non-busy wait techniques (explicit wake-
up) are employed to resume suspended tasks.

A task can voluntarily suspend itself, perhaps allowing higher priority tasks (defined
in the next section) to execute.

(suspend)

This operation suspends execution of the current task. It is immediately
requeued for execution.

A task is terminated when the associated segment is destroyed.

2.4.4 Task Prioritization

Task execution ordering is supported via task queues. FIFO ordering in these queues
is required, since non-FIFO ordering can result in livelock and deadlock in certain
circumstances, and excessive task buffering. This guarantees that tasks which suspend
on a synchronization are requeued in the order they suspended. If non-FIFO buffering
is employed (for example FILO), two tasks can enter a livelock condition arbitrating
for a synchronization®.

Since the Pi abstract machine is fine-grained, each node normally has many tasks
waiting to execute. In this circumstance, simple arrival ordering of tasks is inadequate,
since the waiting time for critical tasks becomes long. Therefore, multiple task queues
are used to allow more critical tasks to begin ahead of other earlier tasks.

When a message is received, the priority field determines where it should be enqueued.
Priorities can be positive or negative integers, where zero is “normal” by convention.
These queues determine an execution ordering where no task in queue N is started
until all queues greater than N are empty. However, once a task begins, it executes to
suspension or completion regardless of the priority of any received messages. There
are no task interrupts.

3This condition was actually produced in a demonstration example used in Chapter 3. An early
version of a simulator was erroneously coded with stack task queues. A livelock condition resulted.
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Multiple task queues are recommended but not required of machine implementa-
tions. Machine designers are free to support a single queue, using resources for other
features. Because of uncertainty in message delivery time, models should employ
multiple queues for performance improvements rather than for assuring functional
correctness.

2.4.5 Calling Tasks

Call is the second Pi mechanism for creating tasks. It is syntactically similar to a
sequential procedure call. The new task is executed on the same node. Also, the
caller task is suspended in a special way, so that no other node tasks can intervene
when the new task is called or after it completes. Calling a task behaves differently
than sending a message to the current node. With a message send, other messages
can execute before or after the new task, disrupting the caller task’s atomicity.

Call guarantees atomic execution of a code sequence, while allowing code sharing.
Without it, code sequences would need to be macro-expanded at each call. With
calls, the machine compiler can choose to macro-expand calls independently, while
supporting Pi’s semantics.

(call length type arg-1 arg-2 arg-3 . . . arg-n)

This operation invokes a handler on the current node. The length field
specifies the required storage size in the task segment. Type specifies
the handler. The task is executed immediately, with no opportunity for
waiting tasks to run. When the called task completes, the caller task is
immediately reinvoked.

Since called tasks are executed atomically within the caller, a called task can directly
return a result to the caller task, rather than the more complicated alternative of
sending a reply message. If a return operation is executed at any point during the
called task the result value is returned from the Call operation. The returned result
need not be read by a caller task. Additionally, non-called tasks (resulting from
message passing) can execute the return operation with no effect.

(return return-value)

This operation stores return-value away, to be returned later when the
called handler completes. If a return operation is executed more than
once, the last value is returned.

2.4.6 Variable Argument Passing

Pi supports handlers which accept a variable number of arguments. However, the send
and call operations pass a fixed number of parameters. A variant of these operations
exists for variable argument passing.
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(send-segment length type segment)

This operation is similar to send, except the arguments are taken from the
specified segment.

(call-segment length type segment)

This operation is similar to call, except the arguments are taken from the
specified segment.

2.5 Locality

Many types of locality can be exploited in a parallel problem solving system. The only
concern here is identifying what facilities are required in this architectural interface
to support locality. For example, as stated earlier, Pi neither requires nor precludes
exploitation of storage reference locality. It is handled below the interface and is not
part of Pi.

Spatial locality in node selection requires support in Pi since the communication
topology is abstracted below the interface. Yet information about spatial locality is
often available above the interface.

Several alternatives for specifying spatial locality were considered. However, no
scheme allowed general spatial specification without placing constraints on the un-
derlying substrate topology.

Pi provides three operations to support node spatial locality:

(node-id)
This operation returns the node ID of the current node. This supports

the specification of NSO handles, and locality designation for tasks which
should be executed on the current node.

(another-node-id where)

This operation returns a node ID of a node in the system. The locality of
the node is determined by the where parameter which is one of the follow-
ing: NEAR, FAR, or ANY. NEAR indicates that requested ID should be
near to the current node. FAR indicates that a distant node is required.
ANY indicates that any node in the system (including the current node)
is appropriate. ANY assumes a random node ID selection. A Pi imple-
mentation may use this information to balance storage or compute usage,
but this is not required.

(distance node-x node-y)

This operation computes the distance between node-x and node-y. The
units of the measurement are unspecified, but they are proportional to
communication latency between the nodes. This operation is most valu-
able for making relative comparisons of locality (e.g., what node is closest).
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2.6 Sequential Operations

Beyond the operations already described, Pi provides a base of sequential operations.
Even the most ambitious parallel models are beginning to recognize this need [5, 23,
44]. The following operations are included:

(plus x y) (minus x y) (times x y) (divide x y)

(not x) (orx y) (and x y) (xor x y)
(compare x y) (rotate x y) (arithmetic-shift x y) (logical-shift x y)
(branch-zero test-variable label) (branch-not-zero test-variable label)
(branch-plus test-variable label) (branch-not-plus test-variable label)
(branch-minus test-variable label) (branch-not-minus test-variable label)

Most of these operations have obvious meanings. The compare operation compares
two values (say X and Y), and returns 1 f X < Y,0if X =Y, and -1if X > Y.
Using compare and the branch operations, all branch types can be formed.

Sequential operations pose a dilemma in Pi. The design of Pi has avoided including
things in the specification which are irrelevant to its purpose as a parallel architectural
interface. Therefore, a complete set of sequential operations is not specified in Pi.
The definition of such a set is outside the scope of this thesis.

However it is impractical to construct a complete sequential operation set using the
operations specified above. For example, if hardware which computes square root is
present in hardware, one would not want to have a software square root routine built
from the operations above.

Therefore, the set of sequential operations included in Pi is intentionally left open.
Future work in the design of a sequential architectural interface will complete this
aspect of Pi.

2.7 Summary

This chapter has defined Pi, a parallel architecture interface. Pi is based on a set of
generic parallel model requirements. Pi provides:

e operations to support both linearly indexed and associatively addressed storage

several forms of data and control synchronizations

e a communication operation

support for task management

support for topology-independent specification of locality
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operation class | Pi operations |

storage (read-write) read, write
storage (associative) insert, match, remove, clear
storage management create-read-write-segment, create-associative-segment,

destroy-segment, segment-size
storage (node variables) | nodals

synchronization attribute, probe, time, test-count, adjust-count
communication send, send-segment

task management self, suspend, call, call-segment, return
locality node-id, another-node-id, distance

sequential operations plus, minus, times, divide, not, or, and, xor,

compare, rotate, arithmetic-shift, logical-shift,
branch-zero, branch-not-zero, branch-plus,
branch-not-plus, branch-minus, branch-not-minus

Table 2.1: Pi Operation Summary

e sequential operations

Table 2.1 summarizes the Pi1 operations.

Pi has been guided by evaluation criteria described in Chapter 1. Using these criteria,
it is hoped that the interface is appropriately abstract, accurate, well-matched, and
unbiased about model and machine implementation. Yet this can only be determined
by studying the interface in use. The remainder of this thesis examines the effective-
ness of this interface in supporting model mechanisms, and in being supported by a
machine substrate.
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Chapter 3

Building Models on Pi

A programming model is a collection of problem solving tools. The tools are abstract,
and they are usually not provided directly in Pi. Instead, this abstract functionality
is embodied in model mechanisms constructed from interface operations. A set of
model mechanisms must be constructed for each model supported in Pi.

In this chapter, Pi’s ability to support several model mechanisms is examined. A
broad range of examples is presented to demonstrate various aspects of mechanism
construction including task management, naming, synchronization, storage manage-
ment, communication, locality, and sequential sequence support. This chapter exam-
ines four specific mechanism examples and two simple applications, including:

e shared memory (with caches)
e set synchronization

e object name translation

e non-resident handler support
¢ n-body simulation

e relaxation simulation

Since Pi is an architectural interface, not a programming language, Pi programs are
very low level, with many details exposed. Programming in Pi is analogous to pro-
gramming in a machine-independent parallel assembly language. Task management,
naming, synchronization, storage management, communication, and locality issues
are all explicitly defined in the programs.

High level language programming environments are necessary to develop application
programs on a Pi machine. They provide a convenient specification environment
with model mechanisms presented cleanly and abstractly. High level languages and
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handler name parameters local variables  handler code

7+ This handlendefines]an i%orial. \

{define~handler Fact (N) (X)
(print-user "~&factorial (~d) = " (read (self) N))
(write (self) X 1)
(branch-minus (compare (read (self) N) 2) Done)
Loop
(write (self) X (times (read (self) X) (read (self) N)))
(write (self) N (minus (read (self) N) 1))
(branch-not-minus (compare (read (self) N) 2) Loop)
Done
(print-user "~d~&" (read (self) X))
(destroy—-segment (self)))

Figure 3.1: Factorial Handler

compilers are absent from this thesis because (a) their specification and construction
is an open research issue in parallel computing, and (b) the goal of the thesis is to
show that the model mechanisms which underlie high level languages can be efficiently
supported by an architectural interface.

The model examples have been implemented, tested, and metered using a Pi simu-
lator described in the next section. This chapter describes their implementation. In
Chapter 4, the results of these executions are presented and evaluated. The code for
all examples is provided in Appendix A.

3.1 PiSim: A Pi Simulator

It is difficult to construct mechanisms in Pi without an execution environment. For
this reason, a Pi simulator, PiSim, was created. PiSim supports the operations defined
in Chapter 2. It provides a way to define, debug, and meter Pi programs. PiSim
includes a syntax for expressing Pi programs. This section presents a short description
of the PiSim environment.

3.1.1 Handlers

Pi programs are collections of message handlers. Handlers in Pi are analogous to
procedures in a sequential program. A handler consists of a sequence of operations
which are sequentially executed on a node in response to a message. A handler also
specifies the state (e.g., parameters and locals) used during the execution.

PiSim assumes that the code for each handler is present on all nodes (support for
non-resident handlers is presented in an example later in this chapter). A simple
handler for computing factorial is shown in Figure 3.1.
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In a compiler generated Pi program, parameters and local variables are not mnemon-
ically named as in this example. A handler specification only includes the number
of parameters and required locals. These variables are named in PiSim to improve
program readability. When a variable name is used in a handler, it is translated by
PiSim to the appropriate offset into a segment. When a handler accepts a variable
number of parameters, its parameters are referred to by offsets directly rather than
names.

Sending a message is similar to calling a procedure. Handlers are invoked by send and
call operations in other handlers. When a message is received on a node, the message
type is used to select the appropriate handler to service the message. That handler
is then invoked on the message. Figure 3.2 illustrates a factorial handler invocation.

PiSim also provides an operation to inject a start message into the system:

(inject "handler-name arg-1 arg-2 arg-3 . . . arg-n)

This PiSim operation sends the message to a random node at time zero.
Since this operation computes the message length, it cannot be used to
invoke handlers which accept a variable number of arguments. When a
message is injected into the system, all simulated state is first initialized.
This prevents previous state from affecting the execution of a program,
thus improving repeatability for debugging.

PiSim is implemented using a single priority message/task queue on each node. As
explained in Chapter 2, this is a valid implementation of the interface. Multiple
message priorities have not been used in the examples.

3.1.2 Nodals and Constants

An example of a nodal and constant definition is shown in Figure 3.3. Constants
are often used in the examples to define a data structure. The constants define slot
offsets in a segment.

Variables in PiSim are automatically typed. Automatic typing is not required in Pi,
although PiSim provides no way of declaring a variable’s type.

3.1.3 Special Operations

The Pi examples presented in this chapter contain a few additional operations which

are not included in the Pi definition presented in Chapter 2. These operations are
not formally part of Pi, but they are useful for presentation clarity.

(print-user format arg-1 arg-2 arg-3 . . . arg-n)

This operation prints the arguments using the LISP format string.
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A message is received from the network
into a new segment on the node .

5 lnormal | Fact | 100 |

5
normal task
Fact
100
unbound

The segment is enqueued in a task queue
for later execution.

5
normal
Fact
100
unbound

The Fact handler is invoked
on the new segment.

Figure 3.2: Handler Invocation
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nodal name constant name constant value

i+ This nodalyectors the thap of chunk objelts on a node.

(define-nodal Chunk-Map)
i3 This constant defines khe size of/the cache map.

(define-constant Cache-Map-Size 16)

Figure 3.3: Nodal and Constant Definition

(set-debug-level level)

This operation sets the debug level, which controls the amount of debug-
ging information provided by PiSim.

These sequential operations are used in the examples. Since PiSim supports them
with the Common LISP equivalent, a detailed definition of their operation can found
in [32).

(random x) (exponent x y) (mod x y) (ceiling x y)

3.1.4 PiSim Implementation

This PiSim implementation also includes several program evaluation and metering
functions including operation profiling, task and storage statistics, and concurrency
information. These facilities are used to evaluate these mechanism examples in Chap-
ter 4.

PiSim is implemented in Common Lisp using Sun Common Lisp window and graphics
extensions. It is expressed in roughly 2000 lines of code. The examples in this chapter
execute on a Sun 4/60 in a range of minutes to several hours.

3.2 Shared Memory with Caches

This section describes an approach for supporting a shared memory model with
caches, using Pi. This scheme has not been evaluated using application trace data.
Its purpose is to exemplify the requirements of medium-grain to fine-grain shared
memory systems? (e.g., [2, 9, 11, 12, 22, 35, 36]). This example demonstrates efficient
shared memory mechanisms constructed with Pi.

1This task is complicated by the lack of message order preservation in Pi.
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3.2.1 A Shared Address Space

The shared memory model requires the support of a logically contiguous address
space built out of distributed, discontinuous memory. The basic unit of the model is
a line, a small contiguous piece of memory that is managed as an atomic element of
storage. Each line is mapped into a unique place in the shared address name space.
The number of words contained in a line is normally a power of two.

Since shared memory it too large to fit on a single node, it is divided into pieces which
are distributed across all the nodes in the system. Each piece is called a chunk®. In this
implementation, storage for the entire shared memory is allocated when the system
is initialized, rather than being allocated on an as-required basis. Chunk storage is
composed of a set of line sized segments. A chunk map is constructed on each node
to maintain the locations of line segments allocated there. Chunks are composed as
collections of small objects (lines) rather than a single large array to simplify accesses
using the segment paradigm in Pi.

Accessing a shared memory address requires locating the correct line on the correct
node. There are a variety of ways to map node and line identification into the shared
address. In this demonstration example, a simple scheme has been chosen.

A shared memory address is composed of the following fields:
MSB LSB

node ID index offset

Starting from the least significant bit, the first field is the line offset. This identifies
a word in the line. This is followed by the index field which specifies a line in the
chunk map of a node. Finally, the node ID field indicates the location of the shared
address storage.

The node ID field is actually the node number of an abstract machine node; there
is no indirection. This precludes the relocation of a specific shared memory loca-
tion. Supporting shared memory relocation requires a distributed name translation
mechanism. However it is not clear that this capability justifies the added complexity.
Caches themselves provide a form of relocation. The functionality may be appropriate
to support virtual shared memory addresses.

Address braiding is often used in shared memory systems. This is the technique
of dividing and intermixing the node and index fields to scatter sequential address
sequences (e.g., large objects) across several nodes. It is not employed in this example,
although it has been implemented in a simpler, non-caching scheme. The requirements
and overhead of supporting braiding are evaluated later. Address braiding is omitted
in this scheme for clarity.

Caches take advantage of locality to avoid remote accesses on each shared memory
reference. When a word of shared memory is accessed, the entire line in which it

20ther names (e.g., page, segment, block) were considered and dismissed because they implied
unintended connotations about the implementation.
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resides is obtained and stored in the cache to exploit spatial locality. Words are
retained in the cache for future accesses to exploit temporal locality.

Like chunk storage, caches are constructed using a set of lines. However the cache
map (analogous to the chunk map) is realized using associative storage. In order
to maintain cache consistency, cached copies of a shared memory line are chained
together forming a list. The permanent (chunk) line maintains a pointer to the head
of this list, so that the copies can be invalidated when necessary.

The details of lines and maps are presented in the next section.

3.2.2 The Components

Each node in the system contains a local cache and a chunk of the shared memory.
The cache and chunk are constructed using three segment types: lines, chunk maps,
and cache maps.

A line is the basic storage element in this shared memory implementation. It is
realized as a read-write segment containing twelve words. The segment is composed

of the following fields:

Store: This field contains the eight words of data maintained in this line.

Link: For chunk lines, this field indicates the node containing the first cache copy
of this line. For cache lines, this field holds the node containing the next copy
of this line. If no copies exist, or if this is the last copy in the chain, this slot
contains the value END.

Status: This field maintains the status of the line. A chunk line status can be one
of the following: UNLOCKED, LOCKED, READ-ONLY, or READ-WRITE.
Cache line status can be one of the following: INVALID, READ-ONLY, or
READ-WRITE.

Request: This field is used by the cache lines to serialize cache line requests. When
a cache line is not found, a memory access tries to acquire this field of the cache
line. If it is locked (via the READ-ONLY attribute), the request suspends until
it is released. Once this lock is obtained, it is held until the access is complete,
guaranteeing that other accesses will not interfere.

Barrier: This field is used for synchronization between the cache and chunk line
during an access operation. It is implemented as a b-sync.

Two map segments exist on each node to translate shared memory addresses to line
segments. The chunk map is a read-write segment which maps an index for a node’s
chunk to a line containing the data. The cache map is an associative lookup table

keyed on shared memory addresses (minus the line offset). It translates to a cache line.
If the line status is READ-ONLY or READ-WRITE on a read, or READ-WRITE
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on a write, the cache hits. If the line status is INVALID for a read or INVALID or
READ-ONLY for a write, the cache misses.

The cache map must be safe (i.e., entries are not overwritten by other insertions).
Cache maps are also bound in size to control the amount of local memory used by
the cache. Because of these two facts, a read or write operation may result in the
replacement of the current cache contents.

Cache lines are locked via the request field of a cache line. Chunk lines are locked
using the status field.

3.2.3 The Protocol

The shared memory scheme implemented in this example is defined by two interacting
protocols: the chunk line protocol and the cache line protocol. These protocols are
presented in this section.

The chunk protocol is summarized in Figure 3.4. It defines the behavior of a line
of chunk memory. There are three normal states: Unlocked, Read-Only, and Read-
Write, plus several locked intermediate states. The normal states have the following
meaning:

Unlocked When a chunk line is in this state, there are no cache copies on any other
node. If an access request is made to a line in this state, the data can be
furnished immediately.

Read-Only This state indicates that one or more read-only cache copies exist in
other nodes. A read access can be added to the chain of linked cached copies.

However a write access requires that all read-only cache copies be invalidated
first.

Read-Write This state indicates that a single read-write cache copy is contained
by another node in the system. Any access to this line must be preceded by
updating the chunk with the state of the exclusive cache copy.

The locked states in the protocol are intermediate states when an access is being
completed. When in these states, all additional accesses are blocked until the current
access completes. This is why read and write messages are excluded in these states.
The locked states have the following meaning:

Locked Read In this state, a read access is in progress. This state is entered when
the line data has been replied to the node that requested the line. It stays in
this state until an acknowledgment is received from the requesting node.

Locked Write This state is similar to Locked Read, except an exclusive read-write
copy of the cache has been replied to the requesting node.
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Locked Invalidate Write When a write access is received and the current state is
Read-Only, all read-only copies must first be invalidated. This is accomplished
by sending an invalidate message to the first node in the read-only cache chain.
This message is forwarded along the chain until all copies are invalidated. At
this point, an acknowledgment message is returned to chunk line, changing its
state to Locked Write.

Locked Flush Read When a read access is received and the current state is Read-
Write, the exclusive cache copy must first be flushed (and invalidated®) before
the read-only copy can be replied to the read requester. After the flush message
is sent, the chunk line remains in this state until a flush acknowledgment message
(with the updated line data) is received. The chunk then moves to the Locked
Read state.

Locked Flush Write This state is similar to Locked Flush Read, except a write
access is requested. After a flush acknowledgment is received, the chunk line
enters the Locked Write state.

The other half of this shared memory scheme is specified in the cache protocol sum-
marized in Figure 3.5. It defines the behavior of a line of cache memory. In the
protocol, accesses are separated into two classes: those that match the address con-
tained in the line, and those that don’t. Reads and writes that match are printed
in italics. Reads and writes that access a different address are printed in boldface.
This protocol includes three normal states: Invalid, Read-Only, and Read-Write, plus
several locked intermediate states. The normal states have the following meaning;:

Invalid When a cache line is in this state, the cache entry is empty. The empty
line continues to be included in the cache map. However, it can be acquired
immediately during an access.

Read-Only This state indicates the cached copy of the line can be read but not
written. A cache line in this state results in read hits and write misses. The
cache line can also receive an invalidate message, which causes it to invalidate
the line and forward the request to the next node in the cache, or, if it is the
last line in the chain, it sends an acknowledgment to the chunk line.

Read-Write In this state, all accesses can be served locally. A cache line in this
state can receive a flush message from the chunk line. Here, it sends a flush
acknowledgment, which contains the line update, to the chunk line. The cache
line then enters the invalid state.

The locked states of the cache line protocol differ from those of the chunk line protocol
in that some accesses are permitted (not blocked). The unlocked states have the
following meaning:

3Alternately, the Read-Write cache copy could be converted to read-only and placed on the
read-only chain.
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Locked Read In this state, a read message has been sent to the chunk line, but the
replied data has not been received. This state implies that the required cache
line has already been acquired. In this state, all accesses are blocked until the
request data is received.

Locked Write This state is similar to Locked Read, except a write message has
been sent to the chunk line.

Locked Read-Only Read This state indicates that cache line contains a read-only
copy, but different read accesses require the same cache line. A remove message
has been sent to the chunk line of the current copy. While in this state, read
accesses of the current cached line can complete. All other accesses block. This
state is left when an invalidate message is received from the current chunk line.

Locked Read-Only Write This state is similar to the Locked Read-Only Read

state except a write access is pending.

Locked Read-Write Read This state results from a read request that requires a
cache line currently containing an exclusive read-write copy. As in the Locked
Read-Only states, a remove message has been sent to the chunk line owning the
current cache line contents. In this state, read and write accesses to the current
cache line can complete. All other accesses are blocked.

Locked Read-Write Write This state is similar to Locked Read-Write Read ex-

cept a write access is pending.

In both the chunk and cache protocols, messages other than blocked accesses (read
or write) not drawn in the diagram are undefined and result in an error. A complete
cross-product of messages and states is presented in the shared memory code in
Appendix A.

This shared memory scheme does not require node to node message order preservation
on the network, since message ordering is not guaranteed in Pi. Because of this, both
chunk and cache lines are locked, guaranteeing exclusive access. This creates an
additional requirement for separate instruction and data caches, since a deadlock
situation could result if an instruction and a value it requests require the same cache
line.

A virtual shared address space can be constructed using the same mechanisms em-
ployed in this example. A page field is added to the address, and the described shared
memory scheme serves as the “physical” memory. When the page misses in the cache,
and it is not present in physical memory (as determined by the page table), the page
is fetched from disk. Disks appear in Pi as specially designated abstract nodes with
larger local memories.
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3.3 Set Synchronization

This section demonstrates set synchronization, a form of intertask control synchro-
nization used in several parallel models of computation, especially data parallelism.
It is defined as follows:

Consider a set of tasks 73...T,,. Each task T; contains two synchronization events: an
enabling event E; and a dependent event D;. A set synchronization guarantees that
no task passes its dependent event until all tasks have reached their enabling event.
This constraint requires that Vz, 7, D; > E;.

Intuitively, a set synchronization keeps a set of related tasks “in step” within the
quantization of the enabling and dependent events. After all tasks have reached E,
they can execute independently until the D for the next iteration is reached.

Set synchronization is often used for data parallel iterative algorithms. In these
algorithms, the set synchronization guarantees that all data sets are executing the
same iteration of a procedure.

The perceived importance of set synchronization varies widely across the parallel
computing community. It has been used effectively to implement many applications,
especially ones employing data parallelism. These applications are normally executed
on machines which provide a fast global synchronization mechanism (e.g., SIMD
machines such as the Connection Machine [56]).

Some argue that the inclusion of a hardware global synchronization mechanism is
overly restrictive, particularly when synchronization is provided at each instruction
(SIMD). Since most algorithms require less frequent synchronization, program execu-
tion is unnecessarily constrained. The technical ramifications of hardware supported
global synchronization are often serious because of the required communication. Also
multiple independent set synchronizations are not possible on these machines. Oth-
ers argue that global synchronization is subsumed by data synchronization (e.g.,
dataflow). However, some programming models employ global synchronization to
eliminate the need for data dependency analysis.

A global synchronization mechanism is not explicitly included in the Pi abstract
machine. Because of the difficulties and liabilities of a hardware implementation (e.g.,
long cycle times for global signals to propagate, restrictions of machine scalability),
global synchronization hardware support is not expected in machine designs. Instead,
set synchronization (including global synchronization) is supported on top of the Pi
abstract machine. Synchronization time is not constant as in SIMD machines. It
is a function of (a) the log of the number of elements in the set, (b) the distance
between elements in the set, and (c) message traffic (network traffic and message
queue lengths). While this overhead may be greater than that of SIMD machines, it
is paid only at required synchronization points. The set synchronization overhead is
partially masked if tasks perform work that overlaps the synchronization after £ but
before D. Pi also provides simultaneous multiple set synchronization not supported

in SIMD machines.
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3.3.1 The Components

This example demonstrates set synchronization in Pi. A set synchronization is used
to guarantee lock step execution of iterations of a procedure on several nodes. Imple-
menting a real application using set synchronization would unnecessarily complicate
the example and obscure the mechanism being illustrated. Instead, a simple count-
ing loop serves as the “work” of each iteration. However, a real task would perform
correctly in place of the loop.

Synchronization is accomplished via a synchronization tree in which the iteration
tasks are leaves. The structural elements, or stems, distribute start signals from the
root and combine finish signals from the leaves. Figure 3.6 illustrates this assembly.

The leaf behavior is summarized in Figure 3.7. It begins by waiting for a start signal
from its parent (a stem). When the start signal arrives, the leaf begins execution of an
iteration of a procedure. In this example, this task is a simple counting loop. However
a more complicated procedure could be undertaken which communicates with other
leaves, performs computation on a piece of a distributed data set, or executes run-time
selected sub-procedures. When a task reaches a defined point in the computation, it
sends a finished signal to its parent. This point is normally at the end of the iteration,
although a task may perform additional computation before waiting for the next start
signal.

Stem objects form the structure of the synchronization tree. Their behavior is illus-
trated in Figure 3.8. Stems distribute and combine signals between the leaves and
the root. A stem begins waiting for a start signal from its parent. When it arrives,
the stem forwards the signal to its children. An s-sync is used to guarantee that each
start signal is relayed. Then the stem adjusts a b-sync to receive the expected number
of finish signals coming from its children. The stem then waits for all finished signals
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to be received. After the last signal is received, a finished signal is forwarded to the
parent.

The execution of the tree is orchestrated by the root. It behavior is shown in Figure
3.9. It starts the execution of an iteration by sending a start signal to the top stem. It
then waits for a finished signal indicating that all leaves have completed the iteration.
It then sends a start signal for the next iteration.

In this example, data is not transmitted in the start and finish signals. However,
this feature can support applications requiring broadcasted data for each iteration,
or data combination and collection to the root. For example, the finish signal may
include information used by the root to determine the data broadcast in the next
start signal.

This example employs a general tree building algorithm to create an optimal tree of
a specified set size. The stem fanout can be adjusted to achieve the desired balance
between communication delay (tree depth) and message serialization at the stems
(branching factor). When the root determines that the final iteration has been com-
pleted, it sends a special end signal. When this signal is received, each element of the
tree deallocates all storage and ends (i.e., the algorithm is self cleaning).

3.4 Object Name Translation

This example demonstrates object’ name translation. This mechanism translates
an object name to the location of the object (e.g., a node number). Several name
translation mechanisms are employed in other examples in this chapter. For example,
in the n-body example (described later in this chapter), a translation table for all
objects is maintained on a single node. In the n-body example, the communication
patterns are static, so all translations are performed during the initialization phase.

4An object can be a segment or task (or both).
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Figure 3.10: Translation Overview

Shared memory demonstrates two other types of translation. A line in the shared
address space is algorithmically translated to the node number where it resides. When
received at the correct node, the address is translated to a segment ID via a table.
The shared address space is itself a translation mechanism of addresses to values.
It supports consistent caching so translations can change over time. However the
translation data itself is fixed. Also, name allocation is restricted by a rigid connection
between logical names and physical addresses.

In the n-body and shared memory examples, objects are fixed. Therefore no provision
is made for a translation to change. Once a translation is known, it assumed to
be correct forever. The translation mechanism provided by shared address space
supports an important additional capability. Objects are allowed to migrate. Object
migration requires that the translation system maintains consistent information about
the locations of objects even as the objects move from place to place. However,
guaranteeing this consistency has a high synchronization and communication cost.
Since an incorrect object translation can be detected easily, a less expensive technique
can be employed.

In this example, a logical segment namespace is supported which (a) allows segment
migration, and (b) the segment name is not rigidly connected to a physical address.
The first feature provides more flexible storage, task, and communication manage-
ment. The second feature supports more general name allocation techniques, and
more flexible name resolution.
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3.4.1 The Components

The three components in this system, Maps, Agents, and Clients, are shown in Figure
3.10. Maps store the translations in the system. Each map is a small associatively
addressed table of name/value pairs. Maps can grow, and have some mechanism for
dividing if they become too large. However this division is an internal process. A
map continues to be seen as a single (named) object by the other system components.
Maps are distributed randomly throughout the system.

Agents are the intermediaries between maps and clients. An agent is the “front end”
to the distributed collection of maps. Each agent maintains a table of the current
map locations. When a translation transaction is received, the agent performs a hash
operation on the name to select the appropriate map to receive the request. The
agent then forwards the transaction to the map.

Agents are connected in a ring® for communicating special transactions which involve
all agents. These include map location updates (used both in system initialization
and when maps migrate) and client requests for the closest agent. Using the agent
ring, new agents can be created when one agent becomes overloaded. The agent
simply creates a new agent “downstream” in the ring and passes a copy of the map
location tables to it. It can then redirect clients to the new agent.

Clients are the end users of the translation system. Each client maintains the location
of a nearby agent. All translation transactions are directed to that agent. A client
also maintains a local translation cache which eliminates message requests for recently
accessed translations.

Maps and agents are created at system initialization time. Clients are created as
required by an application. A client is created on the same node as the application
task needing access to the translation system. More than one client may be created
on a node to improve cache performance.

When a new client is created, it is given a prototype agent. This can be any agent
in the system. As part of the client’s initialization procedure, it requests the nearest
agent from the prototype agent. This way, a nearby agent is acquired, reducing
network traffic and transaction latency.

In the example system, map division, map migration, and agent spawning are not
implemented. However, their implementation is straightforward.

This translation system is designed to maintain object name — object location trans-
lations. Since some models allow object migration, translation bindings can change
over time. As a result, translations are not guaranteed.

There are two circumstances which result in incorrect translation. Since client caches
are not updated when a translation is changed, they can contain stale data which is
incorrect. Or, a transaction can get a stale translation from the map (a new location
arrives after a location request).

SIf the number of agents is large, a lower diameter connection structure can more efficiently
provide this function (e.g., a tree).
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Because of the possibility of incorrect translations being supplied, the system that
uses the information (e.g., message delivery) must be capable of detecting errors. One
error response is to return the message to the sender. The sender then requests the
translation again, this time without checking the client cache. The returned value
updates the client cache, overwriting a possibly stale entry.

In this implementation, the translation system supplies the node where the object
(a segment) resides. The message is then sent to that node along with the object
name. That node performs a second translation to obtain the segment number. This
is the mechanism which detects incorrect translations. If an object is moved within
the node memory, but remains on the node, the distributed translation address does
not change. Updates only result from internode migration.

3.5 Non-Resident Handlers

PiSim assumes that the code for all handlers resides on each node. For many models
of computation (e.g., concurrent object oriented), this is impractical. There are two
classes of handlers supported in Pi: resident and non-resident. Resident handlers are
small in number, and “wired down” on every node (i.e., they are always present).
Non-resident handlers are installed on a node as they are required. After they have
been used, they can be removed.

This example demonstrates support for non-resident handlers. In this scheme, a
single, reference copy of each handler (a reference handler) resides on one node in
the system. When a handler is required to handle a message on a node, a copy of
the reference handler is obtained first. Handlers are cached on the nodes to reduce
handler requests and improve handler dispatch time. Since handlers are immutable,
a cache consistency scheme is not required.

3.5.1 The Components

An overview of the example is shown in Figure 3.11. It is composed on five pieces: the
reference handler map, the current handler map, the translation client, the requested
handler set, and the dispatch handler.

Reference Handler Map One reference map resides on each node. It includes
all reference handlers that are maintained on that node. It is associatively
addressed using the non-resident handler’s name.

Current Handler Map Each node also contains a current handler map. It includes
all cached handlers on that node. The size of this map can be bound to prevent
cached handler storage from growing too large. It also is associatively addressed
using the handler’s name.
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Figure 3.11: Non-Resident Handler Overview

Translation Client This non-resident handler example uses the translation mech-
anisms described in the last example to determine the location of a required
reference handler. The translation system translates a non-resident handler
name to the node ID on which it resides.

Requested Handler Set Each node contains a requested handler set which main-
tains information about which handlers have already been requested. It also
provides access to the synchronization object which requeues dispatches when
the handler arrives.

Dispatch Handler This is a resident (wired down) handler which provides access
to the non-resident handler mechanism.

The non-resident handler dispatch procedure is shown in Figure 3.12. This example
demonstrates variable argument passing in Pi. It also shows how synchronizations can
be combined with associative sets (synchronization objects are stored in the requested
handler set for non-busy waiting).

The next two sections consider collections of several model mechanisms used to solve
two parallel scientific applications: n-body and relaxation.

3.6 N-Body Simulation

This example simulates the mutual interaction of N bodies in the absence of exter-
nal forces. Algorithmically, this is a straightforward implementation which does not
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Figure 3.13: N-Body Overview

incorporate recent approaches to the problem (e.g., Greengard [24], Zhao [59]). How-
ever, the application demonstrates several fundamental model mechanisms required
by static and dynamic dataflow, concurrent object oriented, and CSP models. The
program simulates the two dimensional problem, but is easily generalized to three
dimensions.

Normally, applications would not be writing directly in Pi. This example, and the
relaxation example which follows, demonstrate how application requirements are met
with Pi. A language compiler would ease the programming and debugging task.

3.6.1 The Problem

The n-body example is illustrated in Figure 3.13. Consider N bodies which are
randomly positioned in a plane. Each pair of bodies is acted on by a mutual force
between them, which is proportional to some characteristic of the bodies (e.g., the
body’s mass) and the distance between them (e.g., an inverse square relationship).
In this example, gravitational attraction is modeled. The force between two bodies
is expressed by the equation:

F’ - G-M]-Mg-!Xz—Xl!
(X2 -X1)?

If there are N bodies in the system, there are (N * (N — 1)/2) interactions. For this
example, the mass of each object is:

ObjectMass = BaseMass + (ID - DeltaMass)

where ID is the object number, assigned 0...(/N —1), and base and delta masses are
parameters of the system.
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3.6.2 The Components

The simulation is composed of two basic types of objects: bodies and interactions.
Body objects maintain the ID, position, velocity, and net acceleration of the body,
and pointers to the N — 1 appropriate interactions. Interactions maintain the dis-
tances and masses of the two bodies participating in the interaction, and compute the
net force and resulting acceleration components. Interaction objects also maintain
pointers to the two appropriate body objects.

The first interesting model mechanism demonstrated by this example occurs in the
system initialization handler (the code is provided in Appendix A). Here, the handler
must interconnect newly created body and interaction objects which are randomly
placed on nodes in the system. Although a clever node encoding scheme could reduce
network traffic and simplify interconnect, such a scheme was already demonstrated
in the shared memory example. An alternative technique is used.

The startup handler creates two segments to hold the newly created node object
locations (node and segment ID). As the node creation messages are sent, the des-
tination node ID is stored in the node segment. But the object segment ID must
be returned when the object is instantiated on the remote node. After the startup
handler sends out the body initialization messages, the are followed by the interaction
initialization messages. These messages include the locations of the bodies. However,
since the segments containing body locations are initialized as d-syncs, no explicit
synchronization is required between the two processes. This demonstrates simple
data synchronization, which is required in nearly every model.

When the body and interaction initialization messages are received on the selected
node, object storage is allocated and initialized with the formals as the message is
removed from the network (i.e., the message storage is the task storage). Storage
requirements which are not known at compile time (e.g., interaction location storage
maintained by bodies) is allocated explicitly.

When body and interaction objects are created, d-syncs support rendezvous synchro-
nization. Interaction objects send their locations directly to the appropriate body
objects. When these locations are written on the body objects, linkage is complete.

The body and interaction initialization handlers include the main simulation loop.
Therefore no additional task invocations (other than the communication messages)
are required.

The behavior of a body is described in Figure 3.14. It begins by sending its position
to each interaction in which its involved. It then waits for all acceleration components
from the interactions. It calculates a new velocity and position. Then, if the final
iteration count has not been reached, it begins another iteration.

An interaction’s task is shown in Figure 3.15. It calculates the distance and force
between two objects. Then it distributes acceleration components to the two bodies.
Acceleration rather than force components are computed since the interaction requires
the body masses for computing the interaction force. Body objects do not maintain
their mass. An interaction also tests the iteration count to detect termination.
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Figure 3.16: Relaxation Overview

Two synchronizations are required for these interaction loops. The body routine
requires a barrier synchronization (b-sync) to determine when all acceleration com-
ponents are received. Before the position updates are sent, the b-sync is set to the
number of interactions. When all updates are sent, the b-sync count is tested. This
typically results in suspension of the body loop. When an acceleration component is
received, the barrier is reduced by one. The last component requeues the body loop
to continue.

The interaction loop employs an s-sync to guarantee that each position update is used
exactly once. If the data has not been received, the interaction loop suspends until
it is written. If the position data has not been read by the loop, the update handler
which writes the value suspends until it has been read. Access is synchronized on a
per datum bases, avoiding unnecessary synchronizations between objects.

S-syncs can be used in static dataflow to eliminate acknowledgments without placing
restrictions on dataflow graphs. Only flow control messages are required to avoid
buffer overflow.

When both loops end, all storage is reclaimed.

3.7 Relaxation

This example uses a relaxation algorithm to computes the thermal equilibrium of a
rectangular plate in contact with four heat sources at different temperatures. The
plate is divided into an array of elements. Each element performs several iterations
where it computes its new temperature as the average of its four neighbors.
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This is a simple relaxation algorithm. A more sophisticated multi-grid technique
(e.g., Mol [42]) is more suitable for real applications.

3.7.1 The Components

The number of elements created in the simulation is specified by constants in the
program. Figure 3.16 illustrates the layout for the 10 by 10 plates simulated in this
example. Each element is identified by its index (the number in the element box).

A single task constructs all the elements by sending a start message to different nodes.
As in the shared memory example, node numbers are used as a naming scheme, and
as a way to spread out the computation. An element resides on node N where N is
its index modulo the number of nodes used in the example. An element computes the
address of its neighbors using the array sizes. It also determines whether it borders
on the plate boundaries.

Unlike the n-body example, an element never gets a pointer to its neighboring ele-
ment’s segments. Here, the creating task would be swamped by neighbor segment
requests. Instead, an element map is created on each node. It performs translations
between index name and elements residing on that node. So an element reaches its
neighbors by computing the neighbor’s node and sending a message there. When the
message arrives, the destination’s name is translated using the node’s element map
to the correct segment.

Once all elements are initialized, they begin the first iteration of the relaxation. This
procedure is shown in Figure 3.17. Each element executes a specified number of
iterations, then returns its final temperature to the creating task for display.

This scheme demonstrates the utility of s-syncs in regulating producer/consumer
synchronization. Each element includes an s-sync for each neighbor. The neighbors
produce temperature updates which write these values. The element consumes the
values when calculating its new temperature.

Because of this algorithm’s design, an s-sync never has more than one value presented
to be written before a read is executed. This is because of the data dependency
cycle between neighboring cells. In producer-consumer situation where the producer’s
output rate is independent from the consumer’s input rate, it is possible to have
multiple tasks waiting to write an s-sync with a produced value. Since the network
does not preserve message order, some form of message sequence numbers is required
to prevent produced values from being written out of order. When the producer
generates a value, it also assigns it a sequence number. Before these produced values
are written to an s-sync, the value sequence number is first tested to see if it is the
next produced value.

This scheme presents a problem: how does an element know when its neighbors have
been initialized? This example employs a spin-lock technique as follows. When a
temperature update arrives on a node, the element index is referenced in the element
map. If it is not found, the task suspends, then tries again. This allows other tasks to
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Figure 3.17: Element Procedure
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execute on the node before the next query. When the element creation task installs
the requested element in the map, the update task accesses it and completes.

The use of a synchronization object in the associative set, used for non-resident han-
dlers, could also be used here instead spin-locking. Since the synchronization object
requires no busy waiting, it is computationally more efficient. However, when a short
wait is expected, the simplicity of the spin-locking is sometimes appropriate.

This scheme does not include a mechanism to determine when all element temperature
changes are within a specified epsilon. There is a straightforward implementation
using the combining tree from the set synchronization example. This tree does not
serve to synchronize the iterations. Instead, it periodically (e.g., every J iterations)
combines temperature changes from all elements to determine if all are within the
specified epsilon. If so, the tree distributes a stop iterating message to all elements.
The combining tree operates independently from the element iterations.

3.8 Summary

This chapter demonstrates how mechanisms from different computational models are
represented in Pi. One of the interface evaluation metrics described in Chapter 1
is functionality match. The model mechanisms are directly implemented using Pi
operations (i.e., there is a good functional match between Pi operations and the
model requirements). Figure 3.18 shows the parallel issues are best demonstrated by
the examples. It also shows model or models which are most similar.

In the next chapter, the effectiveness of these examples is considered. Their cost
(in terms of basic parallel operations) is examined and their execution behavior is
characterized.
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Chapter 4

An Evaluation of Pi

This chapter evaluates the model mechanisms and applications described in Chapter
3. Features of Pi that support the examples are discussed and some key code frag-
ments are considered. Results collected during the execution experiments are also
presented and evaluated. First, the evaluation metrics are defined.

4.1 Evaluation Metrics

One way to evaluate a mechanism implementation is by examining the Pi code. Pi
is not an abstract programming language. In a Pi program, parallel operations are
explicit. By inspecting the code that implements a mechanism, one can estimate its
cost in terms of parallel operations (e.g., communications, synchronizations, etc.).

In this chapter, operations denote Pi operations such as read, self, and attribute. Usu-
ally, many operations are combined to form a single logical instruction. For example,
the Pi code fragment:

(write (self) C (plus (read (self) A) (read (self) B)))

contains seven operations (one write, one plus, two reads, and three selfs). Yet this is
considered a single instruction since adding two values is considered a single logical
step. Logical instructions are a more meaningful metric when considering costs on a
Pi substrate. They are used as the main unit of evaluation rather than Pi operations.

Other characteristics about the examples are gathered by executing them. PiSim is
instrumented to collect several statistics:

Total Tasks Executed This is the total number of tasks executed during a trial.
It gives a measure of the size of the experiment. Tasks are created by the send,
send-segment, call, and call-segment operations.

Total Instructions Executed This is the total number of logical instructions exe-
cuted during a trial. This is another measure of the experiment size.
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Average Instructions/Task This is the average total number of logical instruc-
tions executed by each task (i.e., the total number executed independent of
task suspensions). This metric measures task grain size.

Average Instruction Run Length This is the average number of logical instruc-
tions executed by a task between suspensions. For example, if a new task
executes six instructions, suspends, then resumes and executes four more in-
structions before completing, its average instruction run length is five (ten in-
structions / two running periods). This metric measures execution grain size.

Average Operations/Instruction This is the average ratio of Pi operations to log-
ical instructions. It measures the average complexity of the logical operations.

Total Read-Write Segments Created This is the total number of read-write seg-
ments created during a trial. This parameter includes both task segments re-
sulting from calls and sends, and explicitly created data segments. This metric
measures storage required by a trial.

Average Read-Write Segment Length This is the average size of a read-write
segment allocated during the experiment. It includes both data-only and task
segments. This metric measures the storage grain size.

PiSim also collects instruction type, operation type, segment size, segment age, and
task run and wait time histograms. A detailed log of each experiment is provided in
Appendix B.

4.2 Shared Memory with Caches

The definition and implementation of the shared memory protocol in Pi is similar to
those proposed for specialized shared memory machines [2, 9, 11, 12, 22, 35, 36]. The
sequences for supporting the protocol employ the same communication and synchro-
nization operations.

When evaluating Pi’s implementation, special issues that must be addressed include
(a) critical sequences in the protocol where machine specialization can improve the
performance (e.g., for cache read hits), and (b) protocol differences resulting from
characteristics of machine hardware (e.g., message order preservation). This section
discusses these issues.

If the cache hit rate is high, the overhead for accessing a cache hit is important for
memory access performance. Figure 4.1 gives the code for a shared memory read.
On a cache hit, the following logical instructions are executed: two and, one match,
two branch, and one read. So, a total of six logical instructions are executed when a
cached value is read.

Above the interface, this cost can be reduced to two logical instructions (one match
and one branch) by adding each shared memory word to the cache separately. Larger
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;3 This handler executes a "read" code fragment.

(define-handler Read-Address (Address) (Base Offset Line)
(write (self) Base (and (read (self) Address) Base-Mask))
(write (self) Offset (and (read (self) Address) Offset-Mask))
(write (self) Line (match (read (nodals) Cache-Map) (read (self) Base)))
(branch-zero (compare (read (self) Line) UNBOUND) Get-Line)
(branch-zero (compare (read (read (self) Line) Status-Offset) INVALID)

Get-Line)

(return (read (read (self) Line) (read (self) Offset)))
(destroy-segment (self))
Get-Line
(write (self) Line (call 8 Get-Cache-Line (read (self) Base) READ))
Read-Line
(return (read (read (self) Line) (read (self) Offset)))
(attribute (read (self) Line) Request-Offset READ-WRITE)
(destroy-segment (self)))

Figure 4.1: Read Access Code Fragment

lines (e.g., eight words) can still be requested over the network to provide spatial
locality.

Below the interface, the cost of supporting read hits can be reduced if segment caches
are provided in the hardware substrate. Segment caches are fast, associatively ad-
dressed read-write segment buffers that provide very low latency accesses. The ma-
chine dependent compiler can transform the Pi code sequence into segment cache
references that provide comparable access times to that of specialized shared memory
machines. In addition, segment caches also improve the performance of other model
mechanisms.

A Pi implementation of shared memory must deal with two issues not normally ad-
dressed in other implementations. First, since Pi does not preserve message order
between nodes, special handling is required to guarantee consistency. Chunk lines
must be locked for a longer period, and an extra acknowledgment must be sent from
the cache to the chunk.

The second additional issue is related to chunk request wait time. Since Pi does not
allow tasks to be interrupted when a message is received, a shared memory access
request (e.g., a chunk request) must wait until the task executing on the node suspends
or completes before it can be serviced. Prioritized task queues allow memory requests
to execute ahead of application tasks. However, if the run length of the application
task is long, the access request wait time can become unacceptably long. To prevent
this, the machine compiler must insert voluntary suspend operations in long execution
sequences to reduce the run length. If the suspension/ resumption overhead is low,
this does not significantly affect execution performance.

A non-caching protocol that incorporates address braiding is also included in Ap-
pendix A. Braiding requires three logical instructions to decode (unbraid) the address,
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total tasks executed 33,004
total instructions executed 329,359
average instructions/task 10.0
average instruction run length 8.1
average operations per instruction 4.6
total read-write segments created 33,770
average read-write segment length 6.9

Table 4.1: Shared Memory Statistics

but these operations are only executed on cache misses.

4.2.1 The Experiment

To demonstrate the shared memory example, several tests were conducted on a 4096
word shared memory!. The tests execute sequences of local and remote read accesses
that exercise the protocol. For example, one test writes a location locally, then reads
it back remotely to verify that its read-write cache copy was flushed properly. Another
test writes and tests each memory location in the shared address space to evaluate the
protocol in a high request traffic situation. The shared memory tests do not provide
“typical” access patterns since they are primarily testing “miss” behavior.

Table 4.1 presents statistics from the experiment. This is the largest model mechanism
example, in terms of number of instructions. Because some shared memory tests are
very long, this example has the second largest instruction per task ratio. Yet in spite
of this, the experiment has a run length of 8.1. Except for one atypical example, all
experiments in this chapter have a run length less than ten. This demonstrates Pi
ability to represent fine-grain tasks.

This example also allocated a large number of segments. Most are task segments
created by send and call (33,004 of the 33,770 segments). Of 766 segments created
explicitly, 637 were 12 word line objects (512 for chunk storage, 125 for cache). These
segments represent only two percent of the segments created. However, since these
segments are long-lived, whereas task segments are typically ephemeral, they consti-
tute a significant component of the storage requirement for this example.

This example presents a shared memory scheme constructed with Pi. This implemen-
tation is non-optimal, but it demonstrates the necessary mechanisms. Future research
will examine particular tradeoffs in the protocol specification using trace data from
concurrent applications.

1This size was selected to allow experimentation on a sequential Pi simulator (PiSim). The
overhead costs are the same for any shared memory size provided the addresses can be contained in
a single word.
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A shared memory location is more costly, in terms of storage and access time, than
a normal segment location. This reflects the extra cost of maintaining global consis-
tency. However, an efficient shared memory protocol implemented on an appropriate
Pi substrate can compete with the performance of specialized shared memory archi-
tectures.

4.3 Set Synchronization

In Pi, a set synchronization delay depends on (a) the log of the number of elements in
the set, (b) the distance between elements in the set, and (c) message traffic (network
traffic and message queue lengths). A machine that is specialized to support set
synchronizations can reduce the cost of these factors in several ways.

One approach is to distribute global synchronization information as a wired-or signal.
The delay is still dependent on the separation of the set elements (here, the size of
the machine), but the constant factor is smaller, since dedicated wires and control
logic is used. But these resources are idle, unless a synchronization is taking place.
Also, this approach can only support one global synchronization.

A more general approach is to dedicate special communication channels for syn-
chronization information and add hardware to reducing the overhead of distributing
communication information. This supports multiple set synchronizations with low
overhead. But like the previous approach, the resources used to make set synchro-
nization fast are taken away from other functions (especially data communication).

Pi uses the general communication mechanism send, to support set synchronizations.
Special hardware is provided on each node to provide fast set synchronization tasks.
This hardware also improves other features of Pi, making it generally more valuable.

The cost of performing a set synchronization in Pi can be computed from the code
in Appendix A. If F is the fanout and N is the number of leaves, the cost for a
single synchronization (not including tree initialization, which is amortized) can be
determined.

The root does a send, adjusts a barrier, and waits for the FINISH signal to arrive.
When it does, the barrier is adjusted, and the signal segment is destroyed. The total
cost is one send, two adjust-count, one test-count, and one destroy-segment.

After a START signal is received (one s-sync write and one destroy-segment), the stem
forwards F' copies? of the START signal to its children (one initialization, one s-sync
read, F' send, plus, and branch instructions). It then waits for N FINISH signals before
sending a FINISH signal to its parent (two branch, F' 41 adjust-count, one test-count,
F destroy-segment, and one send instructions).

Each leaf receives a START signal (one s-sync write and one destroy-segment), executes
the task, sends a FINISH signal and waits for the next signal (one send, one branch,
and one

?Depending on N and F, a few stems have less than F' children. Therefore this is the worst case.
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| instruction | root | stem |leaf [ F=5, N =100 |
test-count 1 1 26
adjust-count 2 |F+1 152
s-sync read 1 1 125
s-sync write 1 1 125
send 1 {F+1| 1 251
initialize 1 25
plus F 125
branch F+2] 1 275
destroy-segment | 1 | F+1| 1 251

Table 4.2: Set Synchronization Costs

Main-Loop

;; This is the section of iteration work that cannot be overlapped.
(write (self) Index (minus (read (self) Index) 1))
(branch-not-zero (read (self) Index) Main-Loop)

;; The finish signal is sent to the parent stem.
(send (read (self) Up-Node) 6 NORMAL Adjust-Barrier

-1 (read (self) Up-Segment) DOWN-BARRIER-OFFSET)

;; This is the section of the iteration work that can be overlapped.
(write (self) Index WORK-SIZE)

;; The leaf waits to begin the next iteration.
(urite (self) Temp (read (self) Up-Sync)) ;; wait for start signal
(branch-not-zero (compare (read (self) Temp) END) Main-Loop)

Figure 4.2: Leaf Task Fragment

s-sync read).

The total iteration cost for each object is summarized in Table 4.2. For a given F
and N, the cost of an iteration can be computed by multiplying the number of each
type of object by the cost of that object and summing the result. For example, if
F =5 and N = 100, the synchronization tree contains one root, 25 stems, and 100
leaves. For this tree, the overhead cost of one synchronization is listed in Table 4.2.

Strict synchronization is not always necessary. By overlapping non-synchronized code
during the signaling phase, the cost of synchronization can be reduced. For exam-
ple, if a leaf task can do part of the iteration work (that can be overlapped) after
sending the FINISH signal to the stem, the time of that work is subtracted from the
synchronization cost (see Figure 4.2).

4.3.1 The Experiment
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total tasks executed 25,579
total instructions executed 1,165,353
average instructions/task 45.6
average instruction run length 28.4
average operations per instruction 4.1

total read-write segments created 25,632
average read-write segment length 6.0

Table 4.3: Set Synchronization Statistics

The set simulation experiment was simulated with 100 tasks executing 100 iterations
of simulated work task (here, the task is counting to 50). Table 4.3 summarizes the
statistics.

This example has an abnormally high number of instructions, average instructions
per task, and average instruction run length because of the simulated iteration task: a
counting loop that executes “100 logical instructions without suspension. In a real ap-
plication, the task would probably suspend several times during an iteration because
of communication with other leaves. If an application task could run unsuspended
for an extended period, the compiler would insert voluntary suspends in the iteration
sequence.

In this experiment, a scalable synchronization tree is implemented in Pi. The example
demonstrates the use of synchronization trees. Future work will investigate compiler
techniques to reduce set synchronization costs.

4.4 Object Name Translation

This example is a straightforward implementation of a distributed name resolution
system. It uses associative segments in two capacities: as map storage and client
caches. Yet these usages have significantly different requirements. Maps require safe
storage of translations, and can grow to a relatively large size. Client caches need
not be safe, since the translation can always be retrieved from the appropriate map.
However, since clients reside on nodes with the application that uses the transla-
tion system, they must have fixed-sized storage. These particular requirements are
indicated by the boundedness and safety parameters of the associative segment.

This example exploits locality using the Pi operation distance. When a new client
is created, a prototype agent is initially supplied. Then the Closest-Agent handler,
shown in the code fragment in Figure 4.3, is sent by the client to the prototype agent.
This handler measures the distance between the new client and each agent, returning
the closest agent.

This technique results from a compromise made in Pi’s design. If the underling
substrate topology was visible in Pi, this technique would not be necessary. Agents
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. e
L3R

; This handler finds the closest agent to a client. Each agent
;; compares its distance to the current distance. If it is closer, it

updates the agent node and segment with it own value and sets the

;; new distance. When the last agent makes the comparison, the

closest agent is returned to the client.

(define-handler Closest-Agent (Count This-Agent Client-Node Client-Segment

Distance Agent-Node Agent-Segment) ()
(branch-zero (compare (read (self) Distance) -1) Skip-A)
(branch-not-minus (compare (distance (read (self) Client-Node) (mode-id))
(read (self) Distance)) Skip-B)
Skip-A
(write (self) Distance (distance (read (self) Client-Node) (node-id)))
(write (self) Agent-Node (node-id))
(write (self) Agent-Segment (read (self) This-Agent))
Skip-B
(write (self) Count (plus (read (self) Count) 1))
(branch-zero (compare (read (self) Count) NUMBER-OF-AGENTS) Skip-C)
(send (read (read (self) This—Agent) AGENT-NEXT-NODE)
10 NORMAL Closest-Agent (read (self) Count)
(read (read (self) This-Agent) AGENT-NEXT-SEGMENT)
(read (self) Client-Node) (read (self) Client-Segment)
(read (self) Distance) (read (self) Agent-Node)
(read (self) Agent-Segment))
(branch-zero 0 Skip-D)
Skip-C
(send (read (self) Client-Node) 6 NORMAL Reply-Value
(read (self) Agent-Node) (read (self) Client-Segment)
CLIENT-AGERT-NODE)
(send (read (self) Client-Node) 6 NORMAL Reply-Value
(read (self) Agent-Segment) (read (self) Client-Segment)
CLIENT-AGENT-SEGMENT)
Skip-D
(destroy-segment (self)))

Figure 4.3: Closest Agent Fragment
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total tasks executed 2,649
total instructions executed 14,049
average instructions/task 5.3
average instruction run length 4.5
average operations per instruction 6.2
total read-write segments created 2,786
average read-write segment length 8.1

Table 4.4: Translation Statistics

could be distributed uniformly across the machine at known locations, so a new agent
could directly access the nearest one. But this would commit the implementation to
a specific topology. Using the more general technique in this example, the closest
agent is obtained (with some computation cost) regardless of the topology.

The cost of translation is computed from the Match, Agent-Match, and Match-In-
Map handlers in Appendix A. If a match hits in the client translation cache, the cost
is one match and one branch operation. If the translation misses in the cache, the
translation must be fetched from the appropriate map via an agent. This requires two
match, one branch, three send, one insert, three destroy-segment, one d-sync attribute,
one d-sync read, and one mod instructions.

4.4.1 The Experiment

This experiment was executed with ten maps, 25 agents, and 25 clients. The test
program injects 100 translations into the system via different clients. Then it reads
the translations backs and tests the results. It then rereads the results to test the
client cache.

Table 4.4 summarizes the statistics. This is the smallest example, in terms of instruc-
tions. It also sets the lower bound for task size and run length. A Pi substrate must
have low enough task management overhead to support an execution sequence of 4.4
logical instructions.

This translation system demonstrates one straightforward example of a distributed
service. It is efficiently implemented (typically with two logical instructions, 13 in-
structions worst case) using short tasks and local communication. This translation
system is used by the next mechanism example.
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:; When a non-resident handler is invoked, this handler is called as
;; the normal handler type. It then uses the first argument as the
;; non-resident handler type. It tests if the handler is present on
;; the node. If not, it obtains it. Then it invokes it with the
;; remaining arguments. A special argument segment must be created.
;; Since the locals for a non-resident handler are included in this

space, care must be taken to only copy parameters into it.
(deflne—handler Dispatch (Name :VARIABLE) (Handler Message-Length Arguments

Index-A Index-B)
(write (self) Handler (match (read (nodals) Current-Handlers)
(read (self) Name)))

(branch-not-zero (compare (read (self) Handler) UNBOUND) Handler-Known)

(call 6 Lookup-Handler (read (self) Name))

(write (self) Handler (match (read (nodals) Current-Handlers)

(read (self) Name)))

Handler-Known

(write (self) Message-Length (minus (read (self) LENGTH) 6))

(write (self) Arguments

(create-read-write-segment (minus (read (self) LENGTH) 10)))

(write (self) Index-A 9)

(write (self) Index-B 0)

Loop

(branch-not-zero (probe (self) (read (self) Index-A) READ) Skip)

(write (read (self) Arguments) (read (self) Index-B)

(read (self) (read (self) Index-Ai)))

Skip

(vrite (self) Index-A (plus (read (self) Index-A) 1))

(vrite (self) Index-B (plus (read (self) Index-B) 1))

(branch-minus (compare (read (self) Index-A) (read (self) LENGTH)) Loop)

(call-segment (read (self) Message-Length) (read (self) Handler)

(read (self) Arguments))
(destroy-segment (read (self) Arguments))
(destroy-segment (self)))

Figure 4.4: Dispatch Fragment
4.5 Non-Resident Handlers

Non-Resident handlers employ several features of Pi including variable argument mes-
sages and non-resident handler calling. A slightly modified version® of the dispatch
handler is shown in Figure 4.4.

This is one example where the segment passed to the call-segment operation can be
eliminated by the machine dependent compiler. A selected block of the active segment
is copied to a new segment to specify that a variable number of arguments are to be
passed. The compiler can figure out that the segment is created only for use by the

3PiSim does not support direct dispatches on segments (since handlers are not stored as seg-
ments). Therefore, in the implemented example, the code segment contains the name of the handler
being executed. See Appendix A for the actual code.
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total tasks executed 3,021
total instructions executed 23,915
average instructions/task 7.9
average instruction run length 7.1
average operations per instruction 5.7
total read-write segments created 3,683
average read-write segment length 8.4

Table 4.5: Non-Resident Handler Statistics

call-segment operation. Therefore, it can call the message directly from the active
segment, avoiding the unnecessary work.

The cost of dispatching a non-resident handler (which is present in the node’s handler
cache) can be computed from the code of the dispatch handler. Besides argument
copying (which may be avoided as explained above), the cost is one match, one branch,
one call-segment, and one destroy-segment instructions.

4.5.1 The Experiment

This experiment was executed using a test non-resident handler that prints the active
segment (the printing was disabled for the log output in Appendix B). After the
handler is created in the reference map and added to the translation system, it is
executed twice on each node in the system. The first trial tests the handler fetching
mechanism. The second trial tests the handler caching mechanism.

Table 4.5 summarizes the statistics from the experiment. Only 128 test handlers
are dispatched. Most of the statistics in this table reflect the translation system
initialization. In the trial, a times instruction was used in place of the print statement
to shorten the (rather dull) log. The instruction profile in Appendix B shows that
128 times were executed. The task type profiles shows that handler lookup system
(e.g., match-agent) was only executed 64 times. Therefore, the local handler caches
worked properly.

This example demonstrates the construction of system code in Pi. It efficiently sup-
ports (with only four additional logical instructions) a dispatch mechanism that differs
from the resident handler dispatch mechanism provided by Pi.

4.6 N-Body Simulation

In this example, and in the relaxation example in the next section, an entire applica-
tion is coded in Pi. They employ several mechanisms from different parallel models
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Loop-A
(write (self) AX 0)
(write (self) AY 0)
(adjust-count (self) Barrier (read (self) Count))
(write (self) Index 0)
Loop-B
(send (read (read (self) I-Nodes) (read (self) Index))
7 NORMAL Update-Position
(read (self) X) (read (self) Y) (read (self) ID)
(read (read (self) I-Segments) (read (self) Index)))
(write (self) Index (plus (read (self) Index) 1))
(branch-not-zero (compare (read (self) Index) (read (self) Count)) Loop-B)
(test-count (self) Barrier)
(write (self) X (plus (read (self) X) (read (self) VX)))
(write (self) Y (plus (read (self) Y) (read (self) VY)))
(write (self) VX (plus (read (self) VX) (read (self) AX)))
(write (self) VY (plus (read (self) VY) (read (self) AY)))
(write (self) Tick (plus (read (self) Tick) 1))
(branch-not-zero (compare (read (self) Tick) (read (self) Last-Tick))
Loop-4)

Figure 4.5: Body Inner Loop Fragment

(specifically dataflow and concurrent object oriented). This n-body example employs
most of the parallel programming features of Pi. By examining the code that imple-
ments the application, one can directly observe the cost of the implementation, in
terms of basic mechanisms.

For example, Figure 4.5 shows the inner loop of the body object handler. If there are
N bodies, each body executes N + 1 adjust-count, one test-count, N — 1 send, N +5
plus, three initialization, N + 1 branches, and N — 1 destroy-segment instructions.

4.6.1 The Experiment

total tasks executed 213,051
total instructions executed 2,243,745
average instructions/task 10.5
average instruction run length 7.9
average operations per instruction 6.3

total read-write segments created 213,253
average read-write segment length 7.1

Table 4.6: N-Body Statistics (100 Bodies, 10 Iterations)
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total tasks executed 180,156
total instructions executed 2,028,903
average instructions/task 11.3
average instruction run length 8.4
average operations per instruction 6.3

total read-write segments created 180,178
average read-write segment length 6.5

Table 4.7: N-Body Statistics (10 Bodies, 1000 Iterations)

Two n-body experiments were executed. The first included 100 bodies simulated
for ten time steps (Table 4.6). The second experiment included 10 bodies simulated
for 1000 iterations (Table 4.7). The operations that print the body positions were
disabled for the log in Appendix B.

Note the short tasks and run lengths. The task lengths are short because of the high
percentage of communication-only tasks (93% of the 100 body trial, 99.9% of the 10
body trial). The run length (and task length) of the communication-only tasks is four
logical instructions. The run length of body and interaction tasks is longer, but still
kept short by synchronization suspends.

This example shows the low overhead of supporting an application. In the 10 body
example, 24.4% of the logical instruction types were times, used in the interaction
object handler to compute the interaction force.

4.7 Relaxation

This application is implemented using only four handlers types.

Using the Pi code for this example, the “overhead” of supporting the algorithm can be
computed. The cost of the inner loop of the relaxation (for a non-boundary element)
is four send, four match, four destroy-segment, nine branch, one initialize, four s-sync
write, four s-sync read, four plus, and one divide instructions.

This cost could be further reduced by handling boundary cases specially and using
a more sophisticated initialization scheme. With these improvements, the inner loop
would contain ten logical instructions, five of which are the arithmetic computation.

4.7.1 The Experiment

In this experiment, a 100 x 100 element plate was simulated for 100 time steps. Table
4.8 summarizes the statistics. These results are similar to those of the n-body trials.
These larger examples tend to be dominated by communication messages.
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total tasks executed 36,201
total instructions executed 305,873
average instructions/task 8.4
average instruction run length 5.2
average operations per instruction 5.3
total read-write segments created 36,266
average read-write segment length 7.0

Table 4.8: Relaxation Statistics

Relax 1]<0.1%
Reply-Value 100 0.3%
Start-Element 100 0.3%
Update-Temp | 36,000 | 99.4%

[ total [ 36,201 [ 100.0% |

Table 4.9: Relaxation Task Type Profile

Table 4.9 shows the task type profile for the experiment. Note that over 99% of
the messages are the communication/synchronization message type Update-Temp.
This means that the overhead for these short, ephemeral tasks play a key role in the
performance of this application.

4.8 Summary

This section presents composite statistics for all experiments described in this thesis.

4.8.1 Instructions

Table 4.10 lists the composite dynamic logical instruction profile for all the exper-
iments. Logical instructions that occurred less than .1 percent are excluded. Note
that over eighty percent of the executed logical instructions are basic sequential oper-
ations. This shows the importance of efficient sequential support for this small set of
examples. When designing a parallel architecture, sequential performance must not
be overlooked.

Communication (7.8%), storage management (8.4%), synchronization (5.1%), and
associative segment (.9%) instructions have a significant presence in the profile. If
these functions are not efficiently supported in the machine architecture, overall per-
formance could be jeopardized. Parallel machines based on conventional micropro-
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ﬁnstruction type number | percentage
branch-not-zero | 1,129,039 17.8%
times 1,066,004 16.8%
olus 916,048 14.4%
minus 819,268 12.9%
move 552,919 8.7%
destroy-segment | 534,011 8.4%
send 492,619 7.8%
adjust-count 237,683 3.7%
exponent 94,500 1.5%
call 89,222 1.4%
branch-zero 76,567 1.2%
initialize 65,745 1.0%
and 55334 0.9%
match 50,326 0.8%
test-count 48,120 0.8%
attribute 39,378 0.6%
a-shift 29,144 0.5%
return 14,933 0.2%
branch-minus 11,160 0.2%
divide 10,000 0.2%
or 8,730 0.1%
insert 5,670 0.1%
[ total [6,355,758 | 100.0% |

Table 4.10: Dynamic Instruction Profile Summary
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operation type number | percentage
self 14,267,394 39.4%
read 11,967,178 33.1%
write 3,540,240 9.8%
branch-not-zero | 1,129,039 3.1%
times 1,066,415 2.9%
plus 902,473 2.5%
minus 701,767 1.9%
compare 667,264 1.8%
destroy-segment 534,011 1.5%
send 488,793 1.4%
adjust-count 237,683 0.7%
exponent 94,500 0.3%
call 89,224 0.2%
branch-zero 76,564 0.2%
nodals 72,608 0.2%
and 55,334 0.2%
match 50,538 0.1%
test-count 48,120 0.1%
attribute 39,378 0.1%
mod 35,449 0.1%
a-shift 29,144 0.1%
node-id 25,372 0.1%
total 36,181,081 | 100.0%

Table 4.11: Dynamic Operation Profile Summary

cessors are vulnerable unless the deficiencies can be overcome with external circuitry.
A Pi substrate must efficiently support these operations.

4.8.2 Operations

Table 4.11 lists the composite operation profile for all the experiments. Operations
that occurred less than .1 percent are excluded. Since references to the active segment
are explicit in Pi programs, the leading operation is self. It is used with nearly every
logical instruction. The machine dependent compiler will reduce references to the
active segment by using registers for temporaries. Yet the expected frequency is high
enough to justify special handling of the active task segment in a Pi substrate.

In Pi programs, all read and write operations reference a segment. While the number
of segment accesses would also be reduced by register usage by the compiler, the
number is still large enough to require efficient support for offset addressing and
bounds checking.
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size | number | percentage | total storage percentagg]
1 65 <.1% 65 < .1%
2 64 <.1% 128 < .1%
3 156 < .1% 468 <.1%
4 16,567 3.1% 66,268 1.8%
5 2,426 0.5% 12,130 0.3%
6 228,666 42.7% 1,371,996 37.1%
7 248,829 46.5% 1,741,803 47.1%
8 16,136 3.0% 129,088 3.5%
9 11,406 2.1% 102,654 2.8%
10 2,570 0.5% 25,700 0.7%
11 2 <.1% 22 <.1%
12 639 0.1% 7,668 0.2%
13 778 0.1% 10,114 0.3%
14 154 <.1% 2,156 0.1%
16 1,624 0.3% 25,984 0.7%
19 110 < .1% 2,090 0.1%
21 100 < .1% 2,100 0.1%
23 4,995 0.9% 114,885 3.1%
25 22 <.1% 550 < .1%
99 200 <.1% 19,800 0.5%
100 3 <.1% 300 < .1%
1024 64 <.1% 65,536 1.8%

[ total [ 535,576 |  100.0% | 3,701,505 [  100.0% |

Table 4.12: Read-Write Segment Size Profile

The exponent operation has a significant presence in both the instruction and opera-
tion profiles. As explained in Chapter 3, this is not really a Pi operation. It would be
supported by a sequence of other Pi operations. Since this sequence would contain
mostly arithmetic instructions, these operations are underrepresented in the profiles.

4.8.3 Segments

Table 4.12 lists the composite read-write segment size profile for all the experiments.
The average segment size is 6.9. Note that 95.8% of the segments would fit in an
eight word block. 99.0% would fit in a sixteen word block.

Another interesting parameter is segment lifetime. This is the length of time from
when a segment is created to when a segment is destroyed. Segment lifetimes are
measured in Pi operation executions. Table 4.13 shows the collected data. Note
that profile bins where used to collect the data. Each entry indicates the number of
segments that had a lifetime falling within the range of that bin.
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[ low | high | number | percent |
9 16 | 46,519 8.7
17 32 | 162,046 30.3
33 64 | 34,585 6.5
65 128 | 59,312 111
129 256 | 45,513 8.5
257 512 | 33,103 6.2
513 1,024 | 15,813 3.0
1,025 2,048 | 40,428 7.6
2,049 4,096 | 50,181 9.4
4,097 8,192 | 34,112 6.4
8,193 16,384 6,496 1.2
16,385 32,768 28 0.0
32,769 65,536 176 0.0
65,537 | 131,072 132 0.0
131,073 | 262,144 60 0.0
262,145 | 524,288 5,051 0.9
524,289 | 1,048,576 454 0.1
1,048,577 | 2,097,152 2 0.0

| total | [ 534,011 [ 100.0 |

Table 4.13: Segment Age Profile

7



| task status | number | percentage |
NEW 488,865 63.9%
WAITING | 231,992 30.3%
CALL 44,740 5.8%

[ total [ 765,597 |  100.0% |

Table 4.14: Task Status Profile

The average segment lifetime is 5490 operations. The median segment lifetime is 96
operations. This discrepancy is cause by a large number of short-lived segments and
a small number of very long-lived segments. The short-lived segments are primarily
communication-only task segments. For example, in the relaxation example, Update-
Temp represented 99.4% of the tasks (and task segments) executed in the trial. Yet
this task typically executed only four logical instructions (20 Pi operations).

From these experiments, the typical segment can be characterized as small (7 words)
and ephemeral ("100 Pi operations). A Pi substrate must provide extremely fast
allocation and deallocation for small segments. Task overhead is closely dependent
on segment management efficiency.

4.8.4 Tasks

Table 4.14 lists the composite task status profile for the experiments. NEW is the
number of new tasks invoked in all examples. WAITING is the number of task
suspensions and resumptions. CALL is the number of called tasks. On the average,
a task suspends 0.5 times during its execution. This average results from a few tasks
that suspend several times and many tasks that never suspend.

During the experiments, the total amount of time each task spent running and wait-
ing was recorded. The running time includes the sum of all time when the task is
actively executing on a node. The waiting time includes time spent in the message
queue waiting to execute, as well as waiting time between suspensions. Table 4.15
presents the task run time profile. Note that 93.5% of the tasks executed under 32 Pi
operations. 99.0% executed under 128 operations. The average for all experiments is
74.3 operations.

The task wait time profile is shown in Figure 4.16. The average task wait time is
4980 Pi operations. The median task wait time is 48 operations. Note that 38.8%
of the tasks executed with zero wait time. These tasks (likely communication-only)
arrived, executed immediately, and completed without suspending.

Task wait time is dependent on the ratio of the average number of tasks executing on
each node. In these experiments, 64 nodes were simulated. Some experiments, like
relaxation, had a small number of tasks per node (typically 7.8 tasks/nodes), while
others, like 100-body, had a higher number ("150 tasks/node). As a result, the wait
time because of long message queues is much higher for the 100-body experiment. To
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| low |

high | number | percent |

9 16| 62070 116
17 32 [ 437,094 | 819
33 64 | 23,290 4.4
65 128 | 5,590 1.0
129 256 150 0.0
513 | 1,024 3 0.0
1,025 | 2,048 5,016 0.9
2,049 | 4,096 5 0.0
4,007 | 8,192 24 0.0
8,193 | 16,384 105 0.0
16,385 | 32,763 100 0.0
32,769 | 65,536 100 0.0
65,537 | 131,072 39 0.0
131,073 | 262,144 7 0.0
262,145 | 524,288 12 0.0
[ total | [533,605] 100.0 |

Table 4.15: Task Run Time Profile

observe the this effect, the 100-body experiment was executed with 4096 simulated
nodes. The median task wait time dropped from 1536 Pi operations (on 64 nodes) to
one Pi operation (on 4096 nodes).

Table 4.17 shows the composite statistics for all the experiments described in this
thesis. The instructions/task value (11.9) indicates that the task size of these mech-
anism and applications is small. The run length of 8.8 logical instructions suggests
that the lack of a task preemption facility in Pi does not have a major effect on task
waiting time.

In these examples, it is possible to determine the exact costs of mechanisms in terms of
parallel operations. Related implementations in other architectures do not explicitly
provide this measurement because the mechanisms are inseparable from the machine
architecture. The ability to make mechanism comparisons in terms of basic parallel
operations is a major feature of Pi.

While these examples are not a typical cross section of Pi programs, they provide
rough data for the specification of a Pi substrate. The characteristics of these exam-
ples are used to drive the design of a Pi substrate in the next chapter.

79



| low | high | number | percent |
0 0 | 206,830 38.8
1 1 531 0.1
2 2 2,856 0.5
3 4 1,297 0.2
) 8 6,788 1.3
9 61 7,167 13
7 32| 11414 2.1
33 64 | 36,609 6.9
65 128 | 40,446 7.6
129 256 | 43,064 8.1
257 512 | 24,686 4.6
513 1,024 [ 15,880 3.0
1,025 2,048 | 40,453 7.6
5,000 | 4,006 | 49,707 9.3
4,097 8,192 | 33,823 6.3
8,193 16,384 6,428 1.2
16,385 32,768 128 0.0
32,769 65,536 75 0.0
65537 | 131,072 132 0.0
131,073 262,144 157 0.0
262,145 524,288 5,006 0.9
594,289 | 1,048 576 128 0.0
[ total | [533,605] 100.0 ]

Table 4.16: Task Wait Time Profile

total tasks executed
total instructions executed
average instructions/task

average instruction run length

average operations per instruction

total read-write segments created

average read-write segment length

720,857
6,355,758
11.9

8.8

5.7
535,576
6.9

Table 4.17: Composite Example Statistics

80




Chapter 5

A Pi Substrate

Chapter 3 dealt with issues above the interface, namely the construction of mech-
anisms for different computational models. This chapter considers issues below the
interface, the machine substrate that supports Pi.

Pi is supported by hardware in combination with a machine dependent compiler. In
this chapter, the machine architecture is examined. The machine dependent compiler
is considered in Chapter 4. The design of a Pi substrate is examined only as far
as necessary to demonstrate that it can be built. It is left for future research (and
funding!) to complete the engineering and construction of the substrate.

This chapter includes the definition of a machine architecture, PiMac, plus a discus-
sion of an implementation. To avoid confusion, here are the definitions of "machines”
described in this thesis.

Pi Abstract Machine This is the architecture of the Pi interface. A machine def-
inition is used as a medium for defining the interface. However, a particular
approach to supporting the interface is not specified.

PiMac Machine Architecture This a specific machine architecture design to sup-
port Pi. Its definition includes details, such as microarchitecture and instruction
set architecture. A specific hardware implementation is not specified.

PiMac 1: a Gate Array PiMac Implementation This is a design for an imple-
mentation of the PiMac machine architecture. It uses a specific technology and
incorporates a certain set of implementation goals and restrictions.

This chapter begins the design goals of a Pi substrate. It then describes the PiMac
machine architecture. Finally, a gate array implementation! is considered.

1¥or a more detailed discussion of the differences between machine architecture and machine
implementation, see [47].
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word size 48 bits
maximum storage per node 65,536 words
minimum segment size 8 words
maximum segment size 4096 words
task limit (per node) 255 tasks
segment limit (per node) 1,023 segments

Table 5.1: PiMac Machine Details

5.1 Design Goals

Chapter 1 introduces a list of parallel model requirements which are the basis of the
architectural interface. The support of these requirements underlies the design goals
stated here. The detailed goals driving the design of a Pi machine include:

e low latency communication

o fast task switching (suspensions, queuing, and resumptions)

¢ multiple task/message queues

e support for attributes (synchronization)

o efficient storage management

e support for read/write and associative segments

o fast sequential execution
The design of PiMac aspires to one additional goal that is not required by Pi. PiMac
is fine-grained; both in terms of physical nodes size, and the task size which it can
efficiently support. A coarse-grain Pi machine is also feasible. In fact, a coarse-grain

system can tolerate higher task overhead, since fewer tasks are executed overall.
Unfortunately, coarse-grain systems have less potential for parallelism as well.

5.2 PiMac: A Pi Machine Architecture

PiMac is a parallel machine designed to meet the requirements of the Pi architectural
interface. Table 5.1 summarizes some details of the machine. These parameters are
selected based on (a) recent results from fine-grain message-passing research [27, 28]
and (b) from the examples in Chapter 3. This machine architecture incorporates
many ideas from the Message Driven Processor [14, 15]. The design of other parallel
machines has influenced PiMac [53, 7, 51, 31, 56, 4, 43, 8, 45, 13, 30].
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The memory limit is small compared with microprocessors with comparable sequential
performance. The Amdahl/Case rule [25] suggests one megabyte of memory per MIPS
of processor performance. By this rule, a PiMac node with 65 thousand words (256K
bytes) is balanced with .25 MIPS processor implementation. Yet a significantly faster
implementation is expected ("25 MIPS).

The Amdahl/Case rule is used to guarantee high processor utilization. It evolved
when processor hardware was expensive relative to memory. A low processor utiliza-
tion (< 10%), was considered excessively wasteful. Now, processor logic consumes
a much smaller fraction of the available resources (silicon area). Under this circum-
stance, excessive concern about processor utilization is inappropriate.

The Amdahl/Case rule also suggests one megabit of I/O bandwidth per MIP of
processor performance. For a 25 MIPS PiMac, this rule would expect 25 megabits
per second of I/O bandwidth. The router used in PiMac provides an estimated 540
megabits per second. This reflects the increased requirement for communication in a
fine-grain multiprocessor.

PiMac’s memory and I/O parameters reflect the fine-grain nature of the machine.
Results by Horwat [28] suggest that these parameters are adequate for fine-grain
tasks. This choice of memory size is also supported by the examples in Chapter 3,
where the average segment size is ~7 words. However, the issue of small memory nodes
is an open research question.

5.2.1 Microarchitecture

The PiMac microarchitecture is illustrated in Figure 5.1. It is composed of six mod-
ules.

Router

PiMac nodes are connected in a three dimensional mesh network. The network trans-
ports messages as chains of 18 bit flits® [17, 54] which are directed using a non-adaptive
routing algorithm. The network employs wormhole routing to reduce latency. The
router module is one node’s contribution to the composite system network. Unless
a message is being sent or received by a node, the message router operates indepen-
dently from the rest of the node. The specifications of the router module are taken
directly from the MDP [18, 54].

Network Controller

The network controller transfers messages from the network to local memory. It also
inserts messages from the datapath into the network. When a message arrives at

2A flit is the smallest piece of data that is arbitrated in the network.
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Figure 5.1: PiMac Microarchitecture
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a node, the network controller allocates an appropriate sized storage block in local
memory. The controller then receives and stores the message in memory. Finally, it
adds the message to a task queue for later execution.

Datapath

The datapath module is composed of two separate datapaths. The first is the tradi-
tional integer datapath containing a few data registers and a general purpose ALU.
This datapath is designed to provide fast context switching, and efficient support for
several Pi operations.

The second datapath supports the specialized requirements of addresses. This data-
path performs operations to support segment addressing, including bounds checking
and offset accessing.

Segment Buffers

These buffers are positioned between the datapath and the memory. They act as a
cache for recently accessed memory segments. They also provide hardware support for
Pi synchronizations. One segment buffer is also used for buffering incoming messages
received from the network controller.

Memory Controller

The memory controller supports memory transfers between the buffers and internal
and /or external memory. In some PiMac implementations, memory caches are also
provided in this module.

Instruction Unit

This module fetches and decodes instructions for execution. It executes in paral-
lel with the datapath to provide one instruction per clock for most non-branching
instructions. A special segment buffer caches several instructions from memory.

Controller
This module coordinates most of the activity in the microarchitecture. An excep-

tion is the network controller and router which operate autonomously. The network
controller bridges the two “machines”.
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Figure 5.2: A Segment Descriptor

5.2.2 Segments

The node memory space is addressed in sixteen bits. PiMac allows linear addressing
of memory. However, the expected mode of node memory access is via segments. A
segment can reside anywhere in the address space, but must be aligned on an eight
word boundary. An individual segment can be up to 4096 words long. Segment sizes
are integer multiples of eight words. Therefore a segment base pointer is 16 - 3 = 13
bits long and a segment size is 12 - 3 = 9 bits. A segment pointer includes both the
base and size specifiers, so segment accesses are bounds checked. This is illustrated
in Figure 5.2.

When a segment size field is zero, bounds checking is disabled. A zeroed segment
pointer is used for non-segment (linear) addressing of memory. The offset into this
segment is an absolute memory address.

To minimize segment allocation time, a list of free segments is maintained by a free
segment list which contains a linked list of fixed sized® free segments.

Usually, the processor or network controller can quickly access an adequate sized
segment from this list. If the length field is larger than the fixed size of segments on
the free list, or if the free list is empty, a trap is generated, causing the node processor
to execute a special handler to allocate the required segment or segments.

Each segment is assigned a ten bit segment ID which provides a logical name for it
on the node. This name is provided externally to identify the segment. A segment
map maintains the base and size specifiers for each segment.

3The optimal size will be determined in future parallel operating system experiments. Based on
the examples in Chapter 3, an expected size is 24.
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Figure 5.3: Indexing into the Segment Map

Segment ID allocation is usually combined with storage allocation. When a segment’s
storage is freed, the segment ID is reclaimed with it. The segment storage and ID are
placed on the free segment list together. When a segment is allocated from the free

list, it is assigned the same segment ID. Since most segments are short-lived, this is
the usual technique for segment ID management.

Two cases require more complicated segment ID allocation technique. If the free
segment list is empty, or if the fixed segment size of the free list is not large enough

to accommodate the required storage. In these cases, the segment map is scanned for
unused segment IDs.

A complete segment descriptor includes the segment ID, base pointer, and size de-

scriptor. If segments are relocated (e.g., during heap compaction), the segment bases
of all segment descriptors are invalidated. When the segment descriptor is referenced

again, the segment ID is used to access the segment map to obtain the segment base
and size specifiers. This process is illustrated in Figure 5.3.

5.2.3 Word Format

A named word in PiMac is composed of five fields:

[ Type (3) | Access Pattern (3) | Access Locks (2) | Suspended Tasks (8) | Value (32) |

The Type, Access Pattern, Access Locks, and Suspended Tasks fields are collectively
called the tag of the value.

87



[ type | description I format |

0 integer two’s compliment value

1 symbol value (0 = NIL)

2 boolean one bit boolean

3 segment descriptor | (segment number, base, size)
4 instruction instruction value

5 | user defined type A

6 | user defined type B

7 | user defined type C

Table 5.2: Word Types

[code | name | description |
0 D-Sync d-sync access pattern
1 S-Sync s-sync access pattern
2 B-Sync b-sync access pattern
3 | Write Once | write once access pattern
4 Read Only | read only access pattern
5 | Write Only | write only access pattern

Table 5.3: Access Pattern Types

Type

This field determines the type of data stored in the value field. The types are defined
in Table 5.2. Arithmetic operations on user defined types result in user trap handlers.
User defined types are used to support special types such as floating point numbers
and complex numbers.

Access Pattern
This field defines the access pattern for this word of memory. Used with the access

lock bits, it determines what accesses are permissible, and how access locks bits should
be changed by an access. The access patterns are defined in Table 5.3.

Access Locks
Each named word include two access locks: read and write. On each access to the

word, the corresponding access bit is tested. If the access is locked, the operation is
canceled and a microsequence is initiated which suspends the current task.
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If an access is not locked, the access completes, and the lock bits are modified in
accordance with access pattern defined in the access pattern field. For some access
patterns, a particular access results in the requeuing of tasks contained in the sus-
pended task list.

Suspended Tasks

This field points to the head of a list of tasks suspended on this word. If an access
of this word causes the current task to be suspended, it is pushed on the head of
this list. If an access of this word causes requeuing of the suspended tasks, each task
is added to the appropriate task queue. Tasks in the suspended task list are linked
together by task links. A task’s link is maintained by the suspended tasks field of
first word of the task segment.

Value

The remaining field of a word is the value field. It contains a 32 bit value.

5.2.4 Register Architecture

The PiMac register architecture is illustrated in Figure 5.4. This section describes
each component.

Active Segment

At any given moment, a PiMac node is either executing a task or waiting for a
message (idle). If a task is executing, the active segment is defined in the active
segment register. This register includes a pointer to the physical location of the
segment in local memory. This is used in several addressing modes of the instruction
set architecture. It also maintains the task number, a logical name of the task used
in both task management and synchronization support in PiMac. The value of the
active segment register is set automatically when a task begins execution.

Code Segment

Each task segment includes a reference to a segment which contains the code for the
handler being executed. This handler is also set when a task begins execution.

Instruction Pointer

This register indexes the current instruction in the code segment. It is analogous to
a program counter in a microprocessor.
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[type]  number | base [ size | active segment
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type value register A
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type value register D
type value register E
type value register F
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key word 3 word 2 word 1 word 0 instruction buffer
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head tail task queue 1
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Figure 5.4: PiMac Register Architecture
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General Registers

Six general purpose registers are provided in the register architecture. They are used
to supplement storage in the active segment and reduce swapping of the segment

buffers.

Segment Buffers

Four segment buffers provide dedicated caches for node memory. Each buffer contains
a quadword* of a segment. Each buffer maintains a key referencing its physical address
in memory. Each buffer also includes a dirty bit which indicates whether the buffer
must be written back to memory when it is replaced.

One buffer is dedicated for the code segment of the active task. Another always
includes a quadword of the active segment. The third buffer can include a quadword
from any segment addressed by a segment-accessing instruction. The last buffer is
used to buffer incoming messages to the node. Qutgoing messages are sent directly,
without buffering.

Task/Message Queues

These registers maintain the head and tail of four task queues (one for each prior-
ity). When a message is received from the network, it is enqueued at the tail of the
appropriate task/message queue by the network controller. When a task is requeued
after a suspension, it is inserted at the tail of a priority queue. The particular queue
is determined by the priority field of the task.

These registers are shared by the network controller and the processor. Accesses to
them, and node memory, are arbitrated by hardware to guarantee mutual exclusion.

Trap Task Register

This register maintains the ID of the task which was executing when the trap occurred.
Since traps are disabled during trap handling, this register is never inadvertently
overwritten.

Free Segments

This register maintains the head of the free segment list. It also contains the fixed
segment size contained in the list. The fixed size is a multiple of eight words, so the
five bits of the size field are the most significant of a eight bit size field.

4Quadwords are aligned on four word boundaries.
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[ state | size | saved on switch? | rtesumed? |
active segment pointer | one word no no’
code segment pointer | one word no no’
instruction pointer 12 bits yes yes
general registers six words yes yes
instruction buffer quadword no yes
active segment buffer | quadword sometimes sometimes
other segment buffer | quadword sometimes sometimes
message input buffer | quadword not affected not affected
task queues two words not affected not affected
free segments pointers 15 bits not affected not affected
clock two words not affected not affected
node ID 20 bits not affected not affected
trap task pointer eight bits not affected not affected
| total | 30 words | 8+ 8 words | 12 + 8 words |

Table 5.4: Register Architecture Suspend/Resume State

Clock

When a PiMac machine is initialized, a 64 bit free running clock on each node is
zeroed. This clock can be accessed to provide synchronized timestamps on different
nodes. It is also used to support the Pi operation time. At 50 MHz, this clock wraps
around every eleven thousand years.

Node ID

This register is set by software during initialization. It supports the node-id operation
in Pi.

Segment Map

Each segment on a node is assigned a unique name or segment ID. The node maintains
a segment map which maps these numbers to the corresponding segment in memory.
This table is located in local memory at address 0000—03FF. It can be accessed in a
microsequence in one memory cycle.

SThese values must be restored from the segment map.
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5.2.5 Instruction Set Architecture

The instruction set for PiMac contains the typical collection of sequential instruc-
tions, plus several additional instructions for efficient Pi support. The instruction set
architecture is composed of several instruction types, each supporting one or more
addressing modes.

Addressing Modes

PiMac supports register to register addressing modes. In addition, it provides special
modes for segment addressing. The eight addressing modes in the instruction set
architecture are:

mode 0 register «— register op (segment + variable offset)

This addressing mode accesses one operand from a register. The second operand is
accessed from a segment. The segment is specified by a register containing a segment
pointer. The offset is specified by a register containing an integer. Both registers are
specified by the instruction.

I

mode register «— register op (segment + constant offset)

This addressing mode accesses one operand from a register. The second operand is
accessed from a segment. The segment is specified by a register containing a segment
pointer. The offset is specified by a 14 bit constant stored in the instruction.

mode 2 register « register op register

In this addressing mode, both operands and the destination are specified by registers.

mode 3 register « register op constant

This addressing mode accesses one operand from a register. The second operand is
a 16 bit sign extended constant stored in the instruction. The result is stored in a
register.

mode 4 (segment + variable offset) « register

This addressing mode is for storing a value from a register to a segment. As in mode
0, The segment slot is specified by two registers, a segment pointer and an integer
offset.

mode 5 (segment + constant offset) « register

This addressing mode is for storing a value from a register to a segment. As in mode
3, The segment slot is specified by a register containing a segment pointer and a 14
bit offset constant.

mode 6 register « special register
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code name description
0 Rz constant (zero)
1 Rs active segment pointer
2 Ra register A
3 Rb register B
4 Rc register C
) Rd register D
6 Re register E
7 Rf register F

Table 5.5: Instruction Register Codes

This addressing mode is for loading a value from a special register.

special register « register

This addressing mode is for storing a special register.

As mentioned earlier, a zero segment size descriptor disables segment bounds checking.
This provides a mechanism for non-segment memory access using a segment pointer
with a zero base and size descriptor. In mode 0 and 4, the offset register can contain up
to a 16 bit offset. This allows the entire local memory to be treated as a contiguously
addressable block. This feature is important for system routines like heap compaction.

Table 5.5 lists the codes for register fields of an instruction. Besides the six general
registers, it includes two special references. Code zero accesses a pseudo-register
RO which always contains a zero. It can be written (unsuccessfully) to other values
without an error. It is useful for supporting operations like move (add Ri, Rj, RO),
and nop (and RO, RO, RO). It is also useful as the base register for non-segment
(absolute) addressing. Since the segment number, base, and size fields are all zero,
it can support linear addressing in address modes 0 and 4. This special register does
not cause type traps. The second special reference, Rs references the active segment.
This pseudo-register is set automatically, and cannot be modified. It is provided for
low overhead access to the active segment.

Table 5.6 lists the codes for the special registers accessed in modes six and seven.
When accessing the four priority queues and the free segment list, the tail pointer is
positioned at word bits 6-15. The head pointer is positioned at word bits 22-31.

Figure 5.5 presents the instruction format of each addressing mode. The address
mode decoding is determined by the mode bits. The first mode bit (bit 29) indicates
whether a constant or register-1 is being accessed from the instruction. The second
mode bit (bit 30) determines whether the operation accesses a segment (as specified
in registers k, 1, or a constant). The last address mode bit (bit 31) (in combination
with bit 30) indicates whether an ALU operation is involved, and determines the
direction of a segment access. It also determines whether general or special registers
are being accessed.
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mode O

register i <- register j <operation> register-k [register-1]

31 2928 2322 2019 1716 1413 1110 0
000 type reg.i | reg.j | reg. k| reg.1 00000000000

mode 1 register i <- register j <operation> register-k [constant]

31 2928 2322 2019 1716 1413 0
001 type reg.i | reg.j | reg. k constant (14 bit unsigned)

mode 2 register i <- register j <operation> register-1

31 2928 2322 2019 1716 1413 1110 0
010 type reg.i | reg.j | 000 | reg.1 00000000000

mode 3 register i <- register j <operation> constant

31 2928 2322 2019 171615 0
011 type reg.i | reg.j |0 constant (16 bit sign extended)

mode 4 register-k [register-1] <- register-j

31 2928 2322 2019 1716 1413 1110 0
100 type 000|reg.j| reg. k| reg.1 00000000000

mode 5 register-k [constant] <- register-j

31 2928 2322 2019 1716 1413 0
101 type 00O0]| reg.j | reg.k constant (14 bit unsigned)

mode 6 register i <- special register j <operation> register-1

31 2928 2322 2019 1716 1413 1110 0
110 type reg.i | reg.j| 000 | reg.1 00000000000

mode 7 special register i <- register j <operation> constant

31 2928 2322 2019 171615 0
111 type reg.i | reg.j |0 constant (16 bit sign extended)

Figure 5.5: PiMac Instruction Formats
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code description

clock (low 32 bits)
clock (high 32 bits)
node ID

task queue 0

task queue 1

task queue 2

task queue 3

free segments

-~ O O > W - O

Table 5.6: Special Register Codes

[ class | instruction types
arithmetic | Add, Subtract, Multiply
logical And, Or, Xor
shifting Arithmetic-Shift, Logical-Shift, Rotate
comparison | Compare
memory store | Store
tag support | Read-Tag, Write-Tag
sync support | Read-Count
hash support | Hash, Match

branching

Branch-Plus, Branch-Plus-Zero, Branch-Zero,
Branch-Not-Zero, Branch-Minus, Branch-Minus-Zero

task support

Resume, Send, Call, Suspend, End

These instruction formats could be packed more tightly, increasing the code density.
Perhaps two instructions could be packed into a single word. However, this would
complicate instruction decoding, and cloud the clarity of the machine architecture.

Table 5.7: Instruction Types

PiMac is intentionally simple.

Instruction Types

The PiMac instruction set architecture includes 27 instruction types. A type defines
the operation performed by an instruction. The instruction types are summarized in

Table 5.7.

Add

C=A+8B

C=A-B
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Multiply C=A*B

These instruction types perform two’s complement arithmetic operations on integers,
producing an integer result. These operations can produce overflow /underflow traps.

C=AAB
C=AVB
Xor C=A9B

These instruction types perform the logical operations on boolean and integer values.
The logical operation Not is achieved as (Value Xor -1).

right left

[ Arithmetic-Shif LB <TI0
right left

Togical-Shift 0—=[ITLITIT}+>  ~{TTTTITTI*0

right left
Rotate I-—Elj:rﬁ:n:l:—l pEEEEEamE

These instruction types shift or rotate an integer by a specified number of binary
digits. Arithmetic shifts preserve the sign of the integer. Logical shifts insert zeros.
Rotate wraps around the shifted out bit. B can be positive or negative. Arithmetic
shifts can cause overflow/underflow traps.

C = compare (A, B)

This instruction type produces an integer comparison of two values. The values can
be of any type, but they must be the same. If the compared values are integers or
boolean, the comparison result is 1 if X > Y, 0if X =Y and -1 if X < Y. For all
other types, the comparison performs an equivalency test, zero if X =Y, non-zero if
X # Y. The result is always an integer.

C—A

This instruction type stores a value in a segment. The value can be any type.

C =g 4)

Write-Tag tag (C) = A

These instruction types access the 16 bit tag of a segment value or the three bit tag
of a register. When a tag is read, it is copied to the least significant 16 bits of the
register in the format of a segment tag. The format is the same as the tag format
specified in section 5.2.3. Tags are written using the same format. Register tags
are copied to the same position in the lower 16 bits. All other tag fields are zeroed.
Copied tags are typed as integers.

C—A
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This instruction reads the value of a word. It bypasses the read lock mechanism so
it never causes a task suspension. It is used to support the adjust-count operation in
Pi.

C = hash (key, size)

This instruction type computes a hash index using the specified key and size. The
function is computed using specialized hardware. No specific hash function is guar-
anteed. The value, key, and result are all integers. This hash function is identical on
all nodes.

C = match (key, segment quadword)

This instruction type performs four simultaneous comparisons to quadword aligned
values in a segment. If a value matches, the segment offset of the value is returned.
If no match is found, -1 is returned. The key is an integer; the segment quadword is
specified as a segment pointer, offset pair. The resulting offset is an integer.

Branch-Plus if (A > 0), IP « IP 4 branch offset

| Branch-Plus-Zero | if (A > 0), IP — IP + branch offset
if (A = 0), IP — IP + branch offset
| Branch-Not-Zero | if (A # 0), IP «— IP + branch offset
| Branch-Minus | if (A < 0), IP — IP 4 branch offset
| Branch-Minus-Zero | if (A <0), IP « IP + branch offset

These instruction types perform a conditional, relative branch if the specified test is
true. The test variable and the offset are integers.

resume (task A)

This instruction type forces a suspension of the active task, and a resumption of the
task segment specified by the instruction. The segment specifier must be a segment
pointer.

network controller — A

This instruction type gives one word to the network controller to be sent out on
the network. A task executing the send instruction waits until the network controller
acknowledges that the word has been sent. For simplicity, a two word send instruction
is not included here.

call (task A)

This instruction calls a task specified by a segment ID. First the current task is
suspended and inserted on the head of the highest priority task queue. Then the
specified task ID is invoked, as if it had just been dequeued.
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Suspend suspend (active task)

This instruction type forces a suspension of the active task. The dequeue microse-
quence is then executed.

End end (active task)

This instruction type ends the current task execution thread. The dequeue microse-
quence is executed.

Table 5.8 illustrates the addressing mode/instruction type combinations supported in
PiMac.

5.2.6 Network

PiMac nodes are connected via a three dimensional mesh network. Each node con-
tains a piece of the network (a router), plus a network controller. The router and
interconnect topology is incorporated directly from the J-machine [16, 20, 18, 54].
The network controller has several distinguishing characteristics.

Like the controller in the J-Machine, the PiMac network controller sits on the edges of
the network mesh and enqueues/dequeues messages for a specific node. However, the
PiMac controller has no output buffering. If a message being sent into the network
blocks, the task executing on the node stalls until the network clears. A message
sent to and from the same node bypasses the network controller, so a trivial deadlock
situation is avoided.

The network controller buffers an incoming message in the input buffer. Once the
buffer is filled, the incoming message is stalled in the network while the network
controller arbitrates for access to node memory to write the buffer. When the network
controller receives the first word of the message, the length, it blocks the message until
it can obtain a segment equal to or exceeding the storage requirement. It then absorbs
the message from the network and writes it to the segment four words at a time. A
segment is allocated from the free segment list.

After the network controller has stored the incoming message into a segment, it
inserts it onto the end of the appropriate priority message/task queue. The queues
are maintained by the task queue registers in the register architecture.

5.2.7 Handlers

Code for PiMac is stored in read-write segments. A code segment implements a
specific message handler. Handlers are identified by their segment ID. There are
two types of handlers: resident and non-resident. Resident handlers are created
(permanently) on every node at system initialization time. The machine dependent
compiler allocates an identical segment ID for each resident handler on all nodes.
Non-resident handlers are not present on a node unless they are specifically copied
there. They are not guaranteed to have identical segment IDs on all nodes. However,
both handler types are invoked identically.

99



| types |
Add
Subtract
Multiply
And
Or
Xor
Arithmetic-Shift
Logical-Shift
Rotate
Compare
Store ole
Read-Tag o|e
Wirite-Tag
Read-Count
Hash
Match
Branch-Plus
Branch-Plus-Zero
Branch-Zero
Branch-Not-Zero
Branch-Minus
Branch-Minus-Zero
Resume
Send
Call
Suspend
End
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Table 5.8: Instruction/Addressing Mode Map
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code segment
instruction pointer
register A
register B
register C
register D
register E
register F
message length
message priority
message type
message locals

O 00 IO WO

[T
—_ o

Table 5.9: Task Segment Format

5.2.8 Tasks and Messages

A task is created when a message is received on a node. The message contents are
stored on the node in a task segment. A task segment is a read-write segment which
obeys special conventions for storage in the bottom twelve words. Table 5.9 shows
the format of a task segment.

The first four words of the message are stored in the task segment beginning at offset
eight. The network controller reads the locals (number of locals) field to determine
the offset for the first argument. Argument zero is stored at offset locals + 12. The
network controller also stores the message type field in the segment ID field of the
code segment (offset 0). The type field contains the segment ID of the appropriate
message handler. The instruction pointer is also zeroed to begin the execution with
the first word of the code segment.

Only 255 segments on each node can be the active segment for a task. Since segment
names are used as task names, this limits the number of tasks that can exist on a
node simultaneously. This design limit is based on the expectation that most tasks
are very short lived. In the examples in Chapter 3, over 99 percent of executed tasks
are for communication only (data delivery). They execute few instructions and are
non-blocking. This ephemeral nature means the probability of deadlock on a node,
caused by many suspended task and no free task IDs, is unlikely. If a node does run
out of segment IDs, the condition is handled by a catastrophe routine that handles
errors such as out of memory, by zero, etc. Typically, this handler halts activity on
the node and issues error messages to the host.

Each task segment includes a link which is used to create chains for task queues and
lists. The task ID zero is reserved as an end-of-chain marker.
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5.2.9 Microsequences

There are two task management microsequences in PiMac: Suspend and Dequeue.
They are supported as microsequences rather than trap handlers because of their
critical impact on task overhead. When a microsequence is invoked, normal program
execution is suspended and a sequence of predefined microoperations is performed.
Microsequences only occur at the completion or abortion of a PiMac instruction.
Microsequences cannot cause traps or invoke other microsequences.

Suspend

A task can suspend for three reasons: (a) the task accesses a locked segment location
(i.e., a synchronization suspend), (b) the task executes the suspend instruction, or (¢)
a trap event occurs. In all cases, the following microsequence occurs:

1. Registers C, D, E, and F are written as a quadword to the active segment
beginning at offset four.

2. The code segment, instruction pointer, register A, and register B are written as
a quadword to the active segment beginning at offset zero.

3. If the active buffer dirty bit is set, it is written back to its location in the active
segment.

4. If the other buffer dirty bit is set, it is written back to the appropriate segment.

For synchronization suspends, several additional operations are performed concur-
rently with these steps. During step 1, the task ID of the current task is exchanged
with the suspended task field of the accessed location. The instruction pointer is also
decremented during this step. During step 2, the previous suspended task field is
stored as the link of the task segment.

For suspend operations, two additional steps occur:

5. The tail of the current priority queue is used to index a task in the segment
map.

6. The first quadword of the indexed task in loaded into the other buffer and its
task link is set to the recently suspended task ID. The tail of the current priority
queue is set to the suspended task ID as well.

These steps enqueue the task at the end of the appropriate suspended task queue.
For a trap event, the suspended task ID is stored in the trap task ID register.

Consider an example of this microsequence. Figure 5.6 illustrates a case where a task
(ID 5) executes a blocked access on the second word (d2) of segment (ID 7). The
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Figure 5.6: Suspend Microsequence Example
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slot d2 already has one suspended task (ID 3) in its suspended task field. In step 1,
registers C through F are stored in the appropriate place in the active task segment.
The suspended task field of the accessed value is exchanged with the current task ID.
Here, task ID 3 is exchanged with task ID 5. Also in step 1, the instruction pointer
is decremented.

In step 2, register A and B, the code segment, and the instruction pointer are written
to the active segment. During this write, the link of the task segment (ID 5) is set to
the previous head of the suspended task chain (ID 3) of word d2.

In step 3, the active buffer is written back to the appropriate place in the active
segment if its dirty bit is set.

Step 4 writes the other buffer back to segment 7. This also updates the new suspended
task chain head for value d2. After the microsequence completes, the state of task
5 has been preserved in the task segment, and the task has been pushed onto the
suspended task chain of the value d2 of segment 7.

Dequeue

This microsequence occurs whenever a task completes or is suspended. It also executes
at the completion of a trap handler. It is responsible for selecting, dequeuing, and
starting or restarting a task. The following steps occur:

1. The highest priority, non-empty queue is selected. The head pointer is used to
index a task in the segment map.

2. The first quadword of the index task is loaded into register A and B, the code
segment, and the instruction pointer. The queue head pointer is set to the value
task link. The active segment task link is also set to empty.

3. The second quadword is loaded into registers C, D, E, and F.

4. If the code segment base and bound fields are empty, the segment is loaded
from the segment map.

Execution is then turned over to the task at the current instruction pointer. For a
trap handler completion, step 1 obtains the task ID from the trap task register rather
than a task queue.

An example dequeue sequence is shown in Figure 5.7.

In step 1, the next task to be executed is identified from the task queue. The highest
priority queue, zero, is empty (indicated by e). The next highest priority queue
contains three tasks: five, three, and seven. The first task, five, is selected as the
current active task. It’s base and size are loaded from the segment map. In step 2,
the code segment, instruction pointer, and register A are restored. The task queue
head is set to the next task in line (ID 3). Also, the task link of task 5 is cleared. In
step 3, the remaining processor state is loaded. Finally, the code segment base and
size are restored from the segment map (assuming they were empty) in step 4.
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Figure 5.7: Dequeue Microsequence Example
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5.2.10 Traps

The PiMac architecture includes a trap mechanism to handle exceptions. When a trap
is generated, the suspend sequence is generated and the suspended task ID is stored
in the trap task register. At this point, traps are disabled, preventing unrecoverable
double trap errors. Then the trap number is used to reference the trap handler
segment ID (which is loaded at system initialization time with the resident handlers).
This handler is invoked using a trap segment that is reserved for use as the active
segment for traps. When the trap handler completes, the dequeue microsequence is
executed using the trap task register as the source task. Trap handlers contain system
code, but are identical in format to other handlers.

Most trap handlers perform the standard responses to exceptions (e.g., ALU overflow,
queue empty, etc.). These handlers are outside the scope of this thesis. The following
trap handlers perform more specific functions in the machine architecture.

Enqueue

The enqueue trap can occur (a) if a task performs an access on a segment location
which enables the suspended tasks to be requeued for execution, (b) a task executes
the suspend instruction, or (c¢) a trap occurs. For (b) and (c), the enqueue trap is
executed immediately following the suspend trap.

This trap takes a suspended task chain, and inserts it, in reverse order, on the ap-
propriate priority task queue. The chain order must be reversed to preserve FIFO
ordering of suspended tasks. The trap walks down the suspended task chain, revers-
ing the chain links. Then it walks back up the chain inserting each entry on the tail
of a task queue. The task queue is determined by accessing the message priority field
from the task.

Segment Allocation

This trap occurs when the free segment list becomes empty, or when an abnormal
sized segment is required by the network controller. The trap handler allocates one
or more segments and adds them to the segment free list. This trap handler scans
the segment map for free segment IDs.

This trap does not violate the atomicity requirement of Pi since the trap handler
does not affect any state related to the executing task. It is an implementation
simplification.

5.3 A Gate Array Implementation

In this section, a gate array implementation of the PiMac machine architecture is
considered. In order to evaluate the feasibility of an implementation, estimated gate
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| module | device count [ gate count |

diagnostic interface 3,696 616
instruction prefetcher 3,168 528
controller 8,373 1,396
address datapath 75,244 12,541
integer datapath 39,368 6,561
external memory interface 8,990 1,498
internal memory interface 13,373 2,229
network interface (in) 4,450 742
network interface (out) 18,214 3,036
router (three dimensions) 30,540 5,090
| total | 205,416 | 34,236 |

Table 5.10: MDP Device and Gate Count Estimates (24 July 1990)

counts and timing of a gate array PiMac are examined. This section draws heavily
on the design of the Message Driven Processor [14, 15]. The specification of several
modules of the microarchitecture is taken directly from corresponding modules in the
MDP. Because of the close relationship of PiMac to the MDP, an overview of the
MDP is provided.

5.3.1 The Message Driven Processor

The MDP is being currently being designed in the Concurrent VLSI Architecture
Group at MIT. Work began on the MDP in 1986. Nearly all of the design has been
completed by graduate students. The design team has averaged around six to eight
members over the design period.

The architectural specification was completed in the Summer of 1988. A register level
specification was completed in Spring of 1989. The hardware architecture is imple-
mented using an Intel standard cell library. The implementation will be fabricated
in a one micron CMOS process on a 10 x 15 mm die. The expected clock rate is 15

MHz.

Table 5.10 summarizes device and gate estimates for the MDP®. It is difficult to
compare the library cells used for the MDP with the gate array gates used for PiMac.
The gate counts provided in Table 5.10 are computed using an average device per
gate ratio of six. The device per cell averages are higher (between eight and twelve),
but many of these larger cells require multiple gates to implement.

The implementation of PiMac described here uses a less aggressive gate array tech-
nology. The PiMac machine architecture is in many ways simpler than the MDP.

6This table includes logic only; MDP also includes 4096 words of on-chip memory ("890,000
devices)
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However, the MDP still provides the most accurate information for estimating details
about this PiMac implementation.

5.3.2 PiMac Module Designs

This section examines each module of PiMac’s microarchitecture with respect to the
corresponding MDP module or modules. Gate estimates used in this section are
derived from LSI Logic macrocells {37, 40].

Router

The PiMac router design is taken directly from the MDP. It is comprised of three
independent dimensions. Each dimension of the router buffers a flit of the message
passing through it, and compares the count of the destination field to the node’s
address (in the appropriate dimension). If the dimension matches the node’s address,
the message is passed to the next dimension for routing, or to the node if the final
dimension is routed. Otherwise, the message is routed towards the destination in the
current dimension.

The router module requires roughly 5000 gates. It can transmit a flit in one clock,
with a half flit transmitted on each clock edge.

Network Controller

PiMac’s network controller differs from MDP’s network interface in several ways.
First, PiMac has no outgoing message buffer. The send operation takes a word from
the datapath and inserts it directly into the network router via the network controller.
The next instruction cannot begin until the sent word has started entering the network
router. Because of this difference, the gate estimate for MDP’s outgoing network
interface is higher than the PiMac counterpart.

Second, PiMac network controller performs a more complicated procedure for receiv-
ing a message from the router, since it must determine the required storage size,
allocate the storage from the free segment list, or request a larger segment from the
processor. While no additional buffering is required, the control mechanism is much
more complicated. This gate complexity is comparable to that of the MDP’s outgoing
network interface.

PiMac’s network controller requires roughly 5000 gates. For an outgoing message, it
has a delay comparable to the datapath. For incoming messages, the network interface
requires one clock to compare the length field to the fixed message length, one clock
to allocate the segment from the free segment list, or request a larger segment from
the processor, and one clock to store the first word into memory. After the first word
is stored, additional words are stored every two clocks (the reception rate from the
router). The message is stored into memory via the input buffer.
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(read, write, test-count)

—— access value

Figure 5.8: Buffer State Machine

Datapath

PiMac’s datapath is similar to the MDP’s. It provides fewer registers (463 register
bits for PiMac” versus 1660 register bits for MDP). It includes logic from MDP’s

address datapath, integer datapath, and internal memory interface.

The approximately 6500 gates required by the MDP integer datapath is comparable to
the corresponding datapath in PiMac. PiMac has fewer data registers (six for PiMac
versus twelve for MDP). However, PiMac’s registers have an extra port to allow them
to be accessed as a quadword with memory. The datapaths contain similar logic in

the ALU.

The address datapath requires a more detailed comparison. The MDP’s address dat-
apath module was designed to support a wide range of architectural features besides
address arithmetic. Many of these other features are not provided in PiMac. For
example, PiMac does not support circular queues, ID registers, status bits, dedicated
address registers, multiple execution priority levels, multiple fault handling, or special
translation addressing. Most of the features unique to PiMac are supported in the
segment buffer module.

Using a breakdown of the MDP’s address datapath, an estimated 3500 gates are
required to support address and instruction pointer arithmetic. This brings the total
gate count estimate for PiMac’s datapath to 10000.

Segment Buffers

The four segment buffers provide memory caching for the datapath, instruction unit,
and network controller (for incoming messages). The active segment and other seg-
ment buffers also include simple state machines on each word to support access be-
haviors for attributes. One of these state machines is shown in Figure 5.8.

The active segment and other segment buffers also include comparators to support
the match instruction. These comparators are shown in Figure 5.9.

“PiMac contains an additional 828 register bits in the segment buffers but they are not counted
here.
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Figure 5.9: Buffer Comparators

[ buffer type | total bits | gates/bit | total gates |

active and other 384 7 2,688
input 192 6 1,152
instruction 192 4 768
key and dirty bits 60 4 240

| total [ 828 | | 4,848 |

Table 5.11: PiMac Buffer Gates (not including comparators and selection logic)

There are four buffers in this module. Each buffer consists of four 46 bit words, a
dirty bit, and a 14 bit tag. Two of the four buffers are used in conjunction with the
datapath (active and other). Each bit of these buffers is gated on four busses (three
for datapath, one for memory interface). A gate array implementation of a buffer bit
requires seven gates. The input buffer contains an internal shift register. Both the
input and instruction registers have a single input and output port. Input buffer bits
require six gates, and an instruction buffer bits require four gates. The total estimate
for buffer storage is summarized in Table 5.11.

An additional 1000 gates are required for the comparators and 500 gates for selection
logic. Therefore, the total gate estimate for the segment buffers module is 6500 gates.
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| module [ gate count |

network router 5,000
network controller 5,000
datapath 10,000
segment buffers 6,500
memory controller 1,500
instruction unit 500
controller 1,500
I total gates [ 30,000 |

Table 5.12: PiMac Module Summary

Memory Controller

PiMac’s memory controller module is taken directly from MDP’s external memory
interface. It should therefore require roughly 1500 gates to implement. The external
memory interface accesses a quadword of external memory as 16 twelve bit chunks.
The entire access takes approximately 720 ns. An on-chip memory cache is considered
in Section 5.3.4.

Instruction Unit

The instruction unit fetches and decodes instructions in parallel with instruction
execution in the datapath. Instructions are fetched, four at a time, into the instruction
buffer. Simple logic predecodes the address mode and instruction type and presents
it to the controller. Because of the simpler (but less compact) instruction format of
PiMac, a slightly smaller instruction unit is expected. The gate estimate is 500 gates.

Controller

PiMac’s controller is comparable to the MDP’s controller. Both architectures have a
similar number of features that contribute to the controller’s complexity. For example,

PiMac has simpler fault handling than the MDP, but it includes two “hardwired”
microsequences. The estimate for PiMac’s controller 1s 1500 gates.

PiMac module gate count estimates are summarized in Table 5.12.

5.3.3 PiMac Timing

Like the MDP, it is expected that PiMac is designed with a maximum of eight gate
delays per clock phase (16 total). Most PiMac instruction types can execute in a
single clock cycle. However, several conditions affect the instruction rate.
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Segment Buffer Accesses

When an instruction accesses a word in a segment, the segment address is compared
with the tags of the active and other segment buffers. If there is a match, the correct
word is selected and made available to the datapath in the next cycle. This means
that instructions that use addressing modes 0, 1, 4, and 5 execute in a minimum of
two clocks.

If the accessed word is not in the segment buffer, it must be loaded from memory. This
process involves freeing either the active or other segment buffer. If the appropriate
buffer’s dirty bit is set, the buffer must first be written back to memory. Then the
accessed word can be loaded. The extra cycles® required for these memory accesses
are added to the instruction time.

Instruction Buffer Accesses

The instruction buffer holds four instructions. When the instruction unit fetches an
instruction found in the buffer, it is accessed in a single cycle. When an instruction
is not present in the buffer, the appropriate quadword of the code must be fetched
from memory. This also adds extra cycles to an instruction time.

Microsequence Invocations

Microsequences can be invoked either directly (via the resume, call, suspend, or end
instructions), or indirectly by a segment access. In either case, the microsequence
execution time is added to the instruction time.

5.3.4 A PiMac Gate Array

The proposed PiMac gate array contains approximately 30,000 gates and executes at
a cycle time of 16 gate delays. This could be realized using several commercial gate
arrays. For example, an LSI Logic LCA100K gate array (.7 micron HCMOS) could
accommodate this design with a clock rate of up to 50 MHz (20 ns) [38].

A more interesting alternative is the embedded array gate arrays which combine gate
array logic with a high density static memory array on a single die. For example,
the LEA100K series would provide an estimated 1000 words of memory on-chip with
the 30,000 gate PiMac design [39]. This would reduce the memory access delay for a
quadword (192 bits) from 16 external memory cycles (720 ns), to a single quadword
on-chip memory access (40 ns).

A higher performance implementation of the PiMac machine architecture could be
constructed. This implementation has selected because it is (a) simple to design, and
(b) it is not aggressive with respect to hardware techniques and technology. It is the

8The number of extra cycles depends of the memory access speed.
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kind of implementation that can be undertaken in a university research group. If
a commercial version of a PiMac-like machine architecture is ever produced, it will
certainly incorporate more advanced techniques and technology producing a much
higher performance machine. This gate array implementation defines a baseline Pi
substrate.

5.4 Summary

This chapter presents PiMac, a Pi machine architecture. Its design is based on the
requirements of Pi, and the composite model mechanism characteristics from Chapter
4. PiMac has also been strongly influenced by the design of the Message Driven
Processor at MIT. The significant features of PiMac include:

fast task suspends and dequeues (four memory cycles each)

fast task allocation/deallocation via the free segments list

multiple task queues for priority messages

autonomous network router

low overhead for message sending and receiving

segment buffers for low memory access latency

segment addressing modes with bounds checking

low cost synchronization with per word granularity

support for associative segments

This chapter also described a proposed implementation of PiMac on a single gate
array with 1000 words of on-chip memory and a clock rate in excess of 25 MHz.

While PiMac is still only a proposed system®, it ratifies the goal of this chapter: to
demonstrates the feasibility of a Pi substrate. The effectiveness of this substrate in
supporting Pi is the subject of the next chapter.

9The actual realization of PiMac will be pursued in future research.
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Chapter 6

Pi1 on PiMac

This chapter examines the support of the Pi interface on PiMac. The match of the Pi
abstract machine to the PiMac machine architecture is considered. Some functions of
the machine dependent compiler and the runtime operating system are also discussed.
To avoid confusion, the term instruction is used to denote PiMac machine instructions;
the term operation is used to denote Pi abstract machine operations. The compiler
and runtime systems described in this chapter were influenced by [27, 28, 29, 57].

6.1 Storage

In both the Pi abstract machine and the PiMac machine architecture, storage is pre-
sented as part of a complete node. This provides locality between the processing and
storage elements of the system. Read-Write and associative segments are supported
using the same local memory in the PiMac machine architecture.

6.1.1 Read-Write Storage

PiMac’s instruction set architecture is designed to provide efficient support for read-
write segment accesses. Segment offset addressing with bounds checking is an address-
ing mode for most instruction types. Segment buffers cache named segment locations,
reducing the latency of these accesses. Register addressing modes are also provided
to reduce the load on the memory system and simplify the instruction formats.

A Pi read operation is supported by addressing modes 0 and 1. One read and a
dyadic operation (e.g., add) is supported by a single PiMac instruction. If the other
operand for the dyadic operation is not present in a register, it is placed in one, using
a pseudo-load instruction (e.g., (or operand 0)).

The machine cycle cost of performing a dyadic Pi operation depends on where the
operands reside. Table 6.1 summarizes the cost for each case. Since some operations
are not commutative, operand order can affect the cost. This table assumes that (a)
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[ operand A [ operand B| cost | mode |

register register 1 cycle | mode 2
register constant | 1 cycle | mode 3
constant register | 2 cycles | mode 2!
register segment | 2 cycles | mode 0
segment register | 3 cycles | mode 2°
constant segment | 3 cycles | mode 0*
segment | constant | 3 cycles | mode 3
segment segment | 4 cycles | mode 02

Table 6.1: Dyadic Operation Costs

segment locations are present in the segment buffers, and (b) the operation destination
is a register. If the operands are in segment locations that are not present, the cost
of loading them must be added to the total. If the result must be written to a
segment, an additional cycle is required. Additional time is also required if the access
of an operand results in an enqueue trap (the time is dependent on the length of the
suspended tasks list).

A Pi write operation is supported directly by the store instruction (addressing modes
4 or 5). This instruction requires two machine cycles. Sometimes the machine depen-
dent compiler can eliminate segment reads and writes by retaining results in registers.
This is possible if (a) the segment location is not attributed, and (b) other tasks do
not read the value in the segment. By retaining local and intermediate values in
registers, segment lengths can also be reduced.

Read-Write segment allocation is supported by the runtime portion of the operating
system. Since storage and segment ID allocation are a critical part of task overhead,
PiMac supports special mechanisms and techniques for efficient read-write segment
allocation.

Most read-write segments used in the examples in Chapter 3 are small and ephemeral.
Therefore the runtime system uses a fixed segment size for nearly all segment requests.
In Chapter 4, it was shown that 95.8% of segments in the example are less than eight
words long. 99.0% are less than 16 words long. Since PiMac requires an additional
eight words for processor state, a fixed size of 24 words would satisfy most segment
needs.

Free segments of this fixed size are maintained by the free segment list on the PiMac
register architecture. This supports very fast segment allocation for the most common
type of requested segment (segments less than 24 words). The network controller can
allocate a segment from this list in two machine cycles. A Pi create-read-write-segment
operation allocates a fixed sized segment with the following sequence:

1The constant operand is first preloaded into a register.
2The segment operand is first preloaded into a register.
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1. Compare the requested segment size to the fixed size.
If it is too long, branch to a more complicated allocation routine.
Read the head of the free segments list.

Read the segment link (the suspended tasks field of word zero).

Bl o S

Write the new head of the free segment list.

This sequence takes six machine cycles. Read-Write segments that are larger than
the fixed size are handled by a slower, heap storage management mechanism. The
network controller generates a segment allocation trap if a large segment is required.

Since segment IDs are retained in the free segment list, ID allocation is provided
automatically, except for the large segment case, where the segment map is scanned
for an unused ID.

The machine dependent compiler predefines certain segment descriptors (including
the segment IDs) for resident handler code segments, the nodal segment, trap han-
dler code and local variable segments. It also defines nodal variable offsets. These
descriptors and offsets are compiled in-line, avoiding more expensive runtime lookups.
This allows these objects to be accessed quickly (in two cycles if the appropriate value
is in the segment buffer).

6.1.2 Associative Segments

Associative segments are required much less frequently than read-write segments.
When created, they have a much longer lifetime. Because of this, less emphasis 1s
placed on fast allocation. A Pi Create-Associative-Segment is compiled into a sequence
of instructions that allocates a read-write segment of the correct size, and initializes
it as an associative segment. For an eight word segment, this takes approximately 45
machine cycles.

An associative segment of size N contains 2N +4 slots. The first N slots contain keys;
the second N slots contain values. The extra four slots are used for segment type
information. When a key is looked up in the segment (using the match operation),
the hash operation is computed on the key and segment entry size. The computed
hash value is used to index a quadword in the associative segment. Then a segment
buffer is used as a four-way set-associative cache to attempt to match the entry. If
a match is found, the value is accessed from the value slots in the segment using the
sum of the hash value and the match result as an offset. This procedure takes five
machine cycles.

The size and safety parameters play a key role in supporting the insert operation.
For SAFE segments, the insert operation must first test to see if the slot in the
segment is currently holding another entry. For a collision, the boundedness of a
segment determines the behavior. For UNBOUNDED segments, the insert operation
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must resize the segment by allocating another read-write segment and rehashing the
entries. For BOUNDED segments, the insertion is rejected. For UNSAFE segments,
collisions can result in the overwriting of an entry, or a resizing of the segment,
depending on the segment boundedness.

The remove operation employs the hash and match instruction to locate and remove
the specified entry (six cycles). The clear operation reinitializes the associative seg-
ment. For an eight element associative segment, this takes approximately 40 cycles.

It is unlikely that any Pi substrate will support all associative segment types in hard-
ware. The most straightforward type is BOUNDED-UNSAFE, since this is supported
by a conventional set associative memory. Other associative segment types can be
supported either by software, or by some combination of software and hardware. In
PiMac, the hash and match instructions provide a balance of efficiency and resource
cost for all associative segment types.

6.1.3 Storage Reclamation

Storage can be explicitly deallocated using the destroy-segment operation. If the
segment is a fixed-sized, read-write segment, it is placed on the free segment list.
Otherwise it is marked as free for later reclamation at the next heap compaction.
Before placing a segment on the free list, each word must be reinitialized to an empty
d-sync. If eight words are used, destroy-segment costs approximately 20 machine
cycles.

PiMac supports heap compaction via the segment map. Since only segment IDs
are passed out of a node, segments can be moved freely within a node as long as
the segment map is updated, and internal segment descriptors are adjusted. After
a compaction, the base and size fields of each segment descriptor (identified by the
type field) are zeroed. On the next access, the updated fields are restored from the
segment map.

6.1.4 Nodals

Nodals are stored in a special segment on each node. A nodal is accessed by refer-
encing the nodal segment descriptor using the nodal offset. Both the nodal segment
descriptor and the nodal offset are predefined by the machine dependent compiler.

6.2 Synchronization

The synchronizations defined in Pi are supported as attributed locations in read-write
segments. These attributes are supported directly in PiMac via the access pattern,
access locks, and suspended tasks fields of a segment location’s tag.
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6.2.1 Data Synchronization

When a location is attributed as D-SYNC, the tag of the location is accessed using the
read-tag instruction. The read lock bit is set, the d-sync access pattern is stored, and
the suspended tasks list is cleared. The location tag is updated using the write-tag in-
struction. The buffer access state machine suspends (via the suspend microsequence)
any task attempting to read the location until it is written. When written, the buffer
access state machine initiates a requeue microsequence of the suspended task list after
the operation has completed.

6.2.2 Barrier Synchronization

Barrier synchronizations are initialized by setting the access pattern to b-sync, clear-
ing the access locks, and zeroing the value fields. The adjust-count operation uses
the read-count instruction to access the value field (thus avoiding a possible suspen-
sion). The count is adjusted and tested. If greater than zero, the read lock bit is
set. Otherwise, the read-lock bit is cleared.®> The new count is stored in the value
field. The test-count operation is supported by reading the value field of the barrier
synchronization.

6.2.3 Producer-Consumer Synchronization

Producer-consumer synchronizations are initialized in the same way as data synchro-
nizations, except the access pattern is set to s-sync. The buffer access state machine
controls the behavior of the synchronization as defined in Pi.

6.2.4 Attributes

In PiMac, attributes are supported as fields of every word in local memory. This adds
a 13 bit overhead to every word, yet it provides fast and selective synchronizations. An
alternate approach is to provide a common suspended task list for an entire segment.
This reduces the attribute overhead by eight bits per location, and allows longer
task IDs. However, this approach has less selectivity, since all suspended tasks are
requeued together, independent of which synchronization becomes ready. Also, since
the suspended task list is not located with the synchronization, it must be loaded
whenever a suspension or requeue occurs. Since this usually involves several loads
and stores of a buffer, the overhead of a synchronization is increased.

The probe operation is supported by the read-tag instruction. The time operation is
supported by the node clock registers.

3The read lock bit is only written if its value changes.
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6.3 Communication

The principal communication operation, send, is supported directly by the send in-
struction. This instruction injects one word (32 bits value, three bits type) into the
network. It is important that the processor supply data as fast as the network can
accept it to prevent message “bubbles”. Since most messages are short, the compiler
can preload message data in registers and buffers. Some message data is also stored
as constants in the code sequence (e.g., the end-of-message word). To send an eight
word message, eight send instructions are executed. If half of the message is constants
or registers, and half is in segments, the eight word message takes twelve machine
cycles to transmit.

6.3.1 The Network

The PiMac network conforms to the properties of the Pi interface. In this PiMac
implementation, message order between two nodes is preserved. This will change as
adaptive routing techniques are incorporated in the future.

The PiMac network exerts immediate backpressure on a node by blocking the send
instruction, halting the processor. The active task is not suspended. The processor
waits until the network accepts the word being sent.

In a superior, but more complicated approach, the message sending task is suspended,
and communication-only messages (that are guaranteed not to block or send addi-
tional messages) are executed. This frees local storage space without creating ad-
ditional tasks, but there is a greater risk of creating a bubble in the message being
sent.

Both techniques use the network for concurrency control. The network acts as a con-
currency moderator, slowing down message sends (and task creations) as the network
becomes more heavily loaded. More sophisticated network moderation techniques em-
ploy time averaging, and network router communication messages to control system
concurrency more effectively. These techniques will be addressed in future research.

6.4 Task Management

The PiMac machine architecture is designed to support low overhead tasks. Effi-
cient message sends and fast segment allocation contribute to this goal. The section
considers other architectural features that reduce task overhead.

6.4.1 Task Storage

Task storage is obtained using the segment allocation mechanisms described in Section
6.1.1. The operation self is supported by the Rs register. It always contains the active
task segment descriptor.
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6.4.2 Task Dispatch

Every message contains a type field that specifies the segment ID of the resident
handler to be executed. When the message is dispatched, the type field is used to
invoke the correct handler. The machine dependent compiler defines the segments
IDs for all resident handlers. The operating system uses these IDs when it distributes
the resident handlers to each node. This technique supports task dispatch via a single
reference to the segment map (two machine cycles).

6.4.3 Task Atomicity

The definition of Pi requires that an executing task cannot be preempted by the
arrival of another task. PiMac conforms with the intent of this requirement (i.e., task
execution is atomic except for synchronization or explicit suspensions). The PiMac
machine architecture does allow suspensions of the active task (via traps) to support
several runtime system services (e.g., segment allocation, heap compaction, etc.). But
these trap handlers do not interfere with the atomic execution of the active task.

The suspend operation is supported directly by the suspend instruction in six machine
cycles. When a task executes a destroy-segment operation on (self), the active segment
is deallocated, and the end instruction relinquishes control of the processor.

6.4.4 Task Prioritization

Each task includes a priority word that is used in scheduling. Pi provides an arbi-
trary number of priority levels, but does not guarantee strict correctness of message
scheduling. PiMac supports four priority queues with registers in the architecture.
This provides low overhead queuing and dequeuing of tasks. The machine dependent
compiler can usually map an arbitrary number of priority levels in a Pi program into
the four levels provided by PiMac. If runtime computed priorities are employed, only
the least significant two bits are used. Alternatively. the compiler can remove runtime
determined priorities, and use a different scheme for priority selection.

6.4.5 Calling Tasks

The call operation is supported by the call instruction. Atomicity is preserved by
inserting the calling task onto the head of the highest priority queue.

The return operation is supported by a special nodal variable that contains the return
value. The use of a single return value does not prohibit nested called handlers, but
the machine dependent compiler must move the return value store to the end of the
called task.
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6.4.6 Variable Argument Passing

Variable argument passing is done in Pi via the send-segment and call-segment op-
erations. These operations are supported using the send and call instructions. The
machine dependent compiler can often eliminate the additional segment if (a) it is
generated within the Pi task that invokes the send-segment or call-segment operation,
and (b) adequate storage is available in the active segment.

6.5 Locality

Locality is primarily supported by the machine dependent compiler and the runtime
system. The proximity information provided in the another-node-id operation can
be used either at compile time, runtime, or both to decide where a task should be
created.

The node-id operation is supported in PiMac by the node ID register. It is not
generally possible to reschedule a task specified to run on (node-id) on another node,
since it may reference another segment that resides on the same node.

If the topology of a specific Pi substrate is known, Pi abstract node numbers can
be used to best exploit locality. If a Pi program that explicitly uses these abstract
node numbers is transported to another substrate (with a different topology), it will
execute correctly, although not with the same locality-dependent performance.

This is true because all possible abstract node numbers are mapped to a physical
node in the Pi substrate. Pi programs that are likely to be executed on several Pi
substrates (with different topologies and number of physical nodes), may have better
overall performance if generic locality specifications are used. This allows the compiler
and runtime system more flexibility in scheduling tasks.

6.6 Sequential Operations

All the sequential operations defined in Pi, except divide, are supported by a single
PiMac instruction. The divide operation is supported by a short sequence of arithmetic
instructions (approximately 25 machine cycles).

6.7 Summary

Table 6.2 summarizes the costs of Pi operations on PiMac. The number field indicates
the dynamic frequency of the operation in the examples in Chapter 3. The ops and
~ fields indicate the number of PiMac instructions and machine cycles necessary to
support the operation.
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| operation | number | ops | ~ [ operation [ number [ops | ~ |
adjust-count 237,634 | 2 | 4 | insert 5403 | 5 8
and 55,268 | 1 2 | I-shift 0] 1 2
another-node-id 6,386 | 2 | 2 || match 50,572 | 3 5
attribute 39,344 | 1 2 || minus 701,767 | 1 2
a-shift 290781 1 | 2 || mod 35,449 | 20 | 25
branch-minus 11,160 | 1 2 || move 565,131 | 1 2
branch-not-minus 2273 1 | 2 |f not 0 1 2
branch-not-plus 0] 1 2 || or 8,730 | 1 2
branch-not-zero | 1,129,059 | 1 2 || plus 902,473 | 1 2
branch-plus 1{ 1 {2 | probe 740 | 2 3
branch-zero 76,640 | 1 2 || remove 1,625 | 3 6
call 89,180 | 1 6 |l return 10,564 | 1 2
call-segment 256 1 | 6 | send 488,760 | 8 [ 12
clear 0] 30 |40 [ send-segment 64 8 | 12
compare 667,282 | 1 2 || suspend 225 1 6
create-associative 429 | 35 | 45 || test 150 1 2
create-read-write 1,541 5 | 6 || test-count 48,054 | 1 2
destroy-segment 533,956 | 11 | 20 || time 0f 1 1
distance 2,428 | 8 | 8 | times 1,066,416 | 1 2
divide 10,000 | 20 | 25 || xor 0] 1 2
initialize 65,810 | 1 2 || average 6,843,848 | 2.5 | 4.4

Table 6.2: Pi Operation Cost Summary
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The Pi operations self, read, and write are excluded from this table since their cost is
included in other Pi operations. The pseudo-operations initialize, move, and test, are
provided for cases where reads and writes occur in the absence of other operations.

Dyadic operations assume the case where the A operand is in a register and the B
operand is in a segment (two cycles). This is the anticipated average.

The average presented in the table is weighted by the frequency of occurrence in the
examples (dynamic average). The static average for all Pi operations is 4.6 PiMac
instructions and 6.9 PiMac machine cycles.

Note that many Pi operations are supported directly by a PiMac instruction®. It
was originally intended that each logical instruction (from Chapter 4) would be rep-
resented as a single PiMac machine instruction. However, some logical instructions,
such as create-associative-segment and send, perturb the ratio to approximately 2.5
PiMac instructions per logical instruction.

The figures in this table are estimates. The exact costs will be determined by a
machine dependent compiler running a typical mixture of applications.

Overall, PiMac provides reasonable support for the interface. With a 40 ns machine
cycle time, PiMac executes approximately six million Pi operations per second (5.7

MPOPS).

The greatest unresolved issue is the hit rate of the segment buffers. In the gate array
implementation of PiMac, going off-chip requires 16 memory cycles (720 ns). If the
hit rate is not high, much of the performance gains of PiMac will be lost. It is likely
that the 1000 words of on-chip (low latency) memory will be employed as a segment
cache. Future research will provide the answers.

4This is not a general requirement of Pi substrates. The emphasis is on efficient support of
parallel operations, not “one instruction per Pi operation”.

123



Chapter 7

Conclusion

This thesis addresses the problem of monolithic parallel architectures. It defines Pi,
a parallel architecture interface, to separate model and machine issues. The interface
is based on several generic parallel model requirements: low latency communication,
fast task switching, low cost synchronization, efficient storage management, the ability
to exploit all types of locality, and the ability to efficiently support sequential code
segments in a parallel environment. This foundation is the central contribution of
this interface design.

The interface provides many features for model mechanism construction including:

e Linear-addressed segments (e.g., read, write)

o Associatively addressed segments (e.g., insert, match)

e Common synchronization primitives (data, barrier, producer-consumer)
e Communication, both for data transport and remote task invocation

¢ Task management, including prioritized scheduling, local or remote task execu-
tion, voluntary suspension, and variable argument passing

e A common namespace for storage, synchronizations, and tasks
¢ Topology-independent specification of locality (e.g., another-node-id, distance)

e Efficient sequential code sequences

The interface is used to construct several key model mechanisms including: shared
memory (with caches), set synchronization, object name translation, and non-resident
handler support. In addition, two applications which incorporate multiple model
mechanisms are built: n-body and relaxation. The examples are executed using
PiSim, a Pi simulation and metering environment. Their behavior and performance,
in terms of basic parallel operations, is determined. Using composite statistics from
all of the executions, a first-order profile of operation frequency is derived.
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The information from these examples is used in the specification of PiMac, a Pi ma-
chine architecture. This design is also driven by the generic parallel model require-
ments identified earlier. The specific design goals for PiMac include: low latency
communication, fast task switching (suspensions, queuing, and resumptions), multi-
ple task/message queues, support for attributes (synchronization), efficient storage
management, support for read/write and associative segments, and fast sequential
execution.

PiMac is fine-grained, supporting a maximum of 65 thousand words of memory and
255 tasks per node. It provides fast microsequences for task suspension and de-
queuing ("4 memory cycles for each). Segment buffers play a significant role in the
support of several Pi features including read-write segments, associative segments,
and attributes. PiMac also contains an autonomous network router which provides
low latency communication with other nodes.

The design of PiMac has been significantly influenced by the Message Driven Pro-
cessor. A gate-array implementation of PiMac is considered based on data from the
MDP’s design. The PiMac core is expected to require 30,000 gates. Existing tech-
nology can easily accommodate this design, plus a modest-sized segment cache (1000
word) to further reduce memory latency.

Pi performance on PiMac is evaluated. Most Pi operations have direct and efficient
realizations on PiMac. An unweighted average Pi operation requires 4.6 PiMac in-
structions and 6.9 PiMac machine cycles. Using the operation frequencies from the
model mechanism examples, the weighted average instruction requires 2.5 PiMac in-
structions and 4.4 PiMac machine cycles. Based on this weighted average, a PiMac
implementation with a 40 ns machine clock executes 5.7 million Pi operations per
second.

Why Pi?

This thesis introduces Pi, a parallel architecture interface. Pi provides several benefits
for parallel architectures including:

o A well-defined boundary separating model and machine issues

¢ A platform for combining multiple model mechanisms to address the require-
ments of specific applications

e An evaluation medium for architecture components with explicit parallel oper-
ation costs

e An efficient vehicle for delivering new machine techniques and technology to
existing programming environments

A key feature of Pi is that it is designed specifically to be an architecture interface.
It has no additional purposes that could compromise its effectiveness as an inter-
face. This is not true of language-centered interfaces, machine-centered interfaces,
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and theoretical models, which have other goals. Would a language designer remove
a model-biasing feature if it made programming easier? Would a machine designer
neglect a model-biasing mechanism if it provided a significant performance improve-
ment? Using Pi, both the language and machine designer can pursue a single goal.
The interface defines a context for their separate problems.

By focusing on basic parallel requirements, Pi provides a model and machine inde-
pendent platform with which to build parallel systems. This lack of bias improves
Pi’s generality and increases its chances of compatibility with future models. No one
knows what the programming model of the future will be, but it will probably share
the same basic parallel requirements of existing models: communication, synchro-
nization, locality, linear and associative storage, and sequential sequences.

In the introduction, four interface evaluation criteria were defined: interface abstract-
ness, presentation accuracy, functional match, and implementation bias. In the course
of this thesis, these criteria have guided the design of Pi. As model mechanisms were
developed, Pioperations that restricted, or complicated implementation were removed
and new ones were added. In the design of PiMac, the interface was examined from
the other side and adjustments were made.

It is difficult to make a quantitative assessment of these criteria. However, through
the evaluation and refinement in this thesis, Pi has achieved a successful balance
between models and machines.

Future Directions

Pi is a starting point. There is a large agenda of future research including the follow-
ing.

¢ In order to get a complete and accurate representation of parallel programs,
programming language compilers must be written or modified to produce Pi
programs. Using the output of these compilers, a larger and more varied set
of examples can be collected. This also requires the construction of a complete
set of model mechanisms to support each programming language. Executing
these programs will provide statistics on model mechanism usage as well as Pi
operations.

e A machine dependent compiler and operating system must be constructed to
provide a more accurate measure of Pi operation costs. This is part of a larger
study into the cost of supporting generic parallel operations. This research
must also address several open research areas like resource management in a
fine-grained execution environment. New modes of compiler and operating sys-
tem interaction are required (e.g., post-execution recompilation using collected
statistics).

e A PiMac prototype must be constructed to accomplish two goals: (a) to support
execution of larger and more realistic programming examples, and (b) to provide
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a performance incentive for people outside computer architecture who have
problems they’d like to solve faster and big problems they can’t solve at all.
The latter goal is necessary if parallel computers are ever to become more than
academic curiosity.

e New programming environments that take advantage of the multi-model ca-
pability of Pi must be developed. These environments allow problem solving
paradigms to be selected based on the requirements of application, rather than
machine or language availability.

Certainly parallel architecture interfaces will continue to evolve as this work pro-
gresses. This thesis advocates the use of an interface based on generic parallel model
requirements. Pi is a first step towards that goal.
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Appendix A

Example Source Code

This appendix contains the complete code for the examples described in chapter 3.

A.1 Common Handlers

HH Common
M Scott Wills 14 September 1989

I These are common handlers for the Pi examples.
(in-package ’user)
;» These constants define offsets to the Length, Priority and
;3 Task-Type fields in a task segment.
(define-constant LENGTH 0)
(define-constant PRIORITY 1)
(define-constant TASK-TYPE 2)
(define-constant LOCALS-OFFSET 3)
;3 This handler stores a value in a read-write segment at a specified
;; offset.
(define-handler Reply-Value (Value Segment Offset) ()

(write (read (self) Segment) (read (self) Offset) (read (self) Value))

(destroy-segment (self)))
;3 This handler adjusts a barrier by a count.
(define-handler Adjust-Barrier (Count-Change Segment Offset) ()

(Adjust-Count (read (self) Segment) (read (self) Offset)

(read (self) Count-Change))

(destroy-segment (self)))
;3 This handler adds a value to a location and reduces a b-sync. Both
;5 the add location and b-sync must be in the same read-write segment.
(define-handler Add-And-Reduce (Add-Value Segment B-Sync-Offset

Add-Offset) ()
(write (read (self) Segment)
(read (self) Add-Offset)
(plus (read (read (self) Segment) (read (self) Add-Offset))
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(read (self) Add-Value)))
(Adjust-Count (read (self) Segment) (read (self) B-Sync-Offset) -1)
(destroy-segment (self)))

A.2 Shared Memory With Caches

N Shared Memory

HH Scott Wills 9 October 1989

;35 This is shared memory model example with caches.

HH There are two protocols in this example. One is for a line of a
HN chunk. The other is for a line of a cache. Both protocols are

HH defined below.

;; Chunk Protocol

;; Chunk States: UNLOCKED, READ-ONLY, READ-WRITE, LOCKED-REMOVE,
;; LOCKED-READ, LOCKED-WRITE, LOCKED-FLUSH-READ, LOCKED-FLUSH-WRITE,
; 3 LOCKED-INVALIDATE-WRITE, ERROR

;; Chunk Handlers: Read, Write, Remove Ack, Ack-Flush

;3 UNLOCKED

HH Read: send Reply; goto LOCKED-READ.
HN Write: send Reply; goto LOCKED-WRITE.
HN Remove: goto ERROR.

HH Ack: goto ERROR.

HH Ack-Flush: goto ERROR.

;3 READ-ONLY

M Read: send Reply; add to chain; goto LOCKED-READ.

M Write: send Invalidate; goto LOCKED-INVALIDATE-WRITE.
HH Remove: send Invalidate; goto LOCKED-REMOVE.

M Ack: goto ERROR.

H Ack-Flush: goto ERROR.

;3 READ-WRITE

H Read: send Flush; goto LOCKED-FLUSH-READ.
HK Write: send Flush; goto LOCKED-FLUSH-WRITE.
HN Remove: send Flush; goto LOCKED-REMOVE.

M Ack: goto ERROR.

I Ack-Flush: goto ERROR.

; ; LOCKED-REMOVE
HH Read: suspend task; goto LOCKED-REMOVE.
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HH Write: suspend task; goto LOCKED-REMOVE.

- Remove: suspend task; goto LOCKED-REMOVE.

M Ack: requeue suspended tasks; goto UNLOCKED.

HH Ack-Flush: update line; requeue suspended tasks; goto UNLOCKED.

; 3+ LOCKED-READ

HA Read: suspend task; goto LOCKED-READ.

H Write: suspend task; goto LOCKED-READ.

N Remove: suspend task; goto LOCKED-READ.

HH Ack: requeue suspended tasks; goto READ-ONLY.
N Ack-Flush: goto ERROR.

; 3 LOCKED-WRITE

HH Read: suspend task; goto LOCKED-WRITE.

HH Write: suspend task; goto LOCKED-WRITE.

HH Remove: suspend task; goto LOCKED-WRITE.

HH Ack: requeue suspended tasks; goto READ-WRITE.
HH Ack-Flush: goto ERROR.

; 3 LOCKED-FLUSH-READ

HH Read: suspend task; goto LOCKED-FLUSH-READ.
MM Write: suspend task; goto LOCKED-FLUSH-READ.
M Remove: suspend task; goto LOCKED-FLUSH-READ.
W Ack: goto ERROR.

HH Ack-Flush:

; » LOCKED-FLUSH-WRITE

HH Read: suspend task; goto LOCKED-FLUSH-WRITE.
I Write: suspend task; goto LOCKED-FLUSH-WRITE.
H Remove: suspend task; goto LOCKED-FLUSH-WRITE.
HH Ack: goto ERROR.

HR Ack-Flush: update line; goto LOCKED-WRITE.

;3 LOCKED-INVALIDATE-WRITE

HH Read: suspend task; goto LOCKED-INVALIDATE-WRITE.
HK Write: suspend task; goto LOCKED-INVALIDATE-WRITE.
M Remove: suspend task; goto LOCKED-INVALIDATE-WRITE.
M Ack: goto LOCKED-WRITE.

33 Ack-Flush: goto ERROR.

;; Cache Protocol

;; Cache States: INVALID, READ-ONLY, READ-WRITE, LOCKED-READ,
;3 LOCKED-WRITE, LOCKED-READ-ONLY-READ, LOCKED-READ-ONLY-WRITE,
;5 LOCKED-READ-WRITE-READ, LOCKED-READ-WRITE-WRITE, ERROR

;; Cache Handlers: Read-Same, Write-Same, Read-Different,
;3 Write-Different, Reply, Invalidate, Flush

;3 INVALID

HH Read-Same: send Read; goto LOCKED-READ.

HH Write-Same: send Write; goto LOCKED-WRITE.
HH Read-Different: send Read; goto LOCKED-READ.
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HH Write-Different: send Write; goto LOCKED-WRITE.
HH Reply: goto ERROR.

HA Invalidate: goto ERROR.

HN Flush: goto ERROR.

;3 READ-ONLY

HH Read-Same: read value; goto READ-ONLY.

N Write-Same: send remove; goto LOCKED-READ-ONLY-WRITE.

HH Read-Different: send remove; goto LOCKED-READ-ONLY-READ.
H Write-Different: send remove; goto LOCKED-READ-ONLY-WRITE.
M Reply: goto ERROR.

H Invalidate: send Invalidate or Ack; goto INVALID.

M Flush: goto ERROR.

;3 READ-WRITE

N Read-Same: read value; goto READ-WRITE.
HH Write-Same: write value; goto READ-WRITE.

HI Read-Different: send remove; goto LOCKED-READ-WRITE-READ.
H Write-Different: send remove; goto LOCKED-READ-WRITE-WRITE.
M Reply: goto ERROR.

N Invalidate: goto ERROR.

HH Flush: send Ack-Flush; goto INVALID.

; » LOCKED-READ

H Read-Same: suspend task; goto LOCKED-READ.

H Write-Same: suspend task; goto LOCKED-READ.

HN Read-Different: suspend task; goto LOCKED-READ.

HH Write-Different: suspend task; goto LOCKED-READ.

HH Reply: send Ack; update line; requeue suspended tasks; goto READ-ONLY.
HH Invalidate: goto ERROR.

HA Flush: goto ERROR.

; 3+ LOCKED-WRITE

M Read-Same: suspend task; goto LOCKED-WRITE.

M Write-Same: suspend task; goto LOCKED-WRITE.

HH Read-Different: suspend task; goto LOCKED-WRITE.

N Write-Different: suspend task; goto LOCKED-WRITE.

N Reply: send Ack; update cache; requeue suspended tasks;
H goto READ-WRITE.

H Invalidate: goto ERRCR.

H Flush: goto ERROR.

s 3+ LOCKED-READ-ONLY-READ

HH Read-Same: read value; goto LOCKED-READ-ONLY-READ.

M Write-Same: suspend task; goto LOCKED-READ-ONLY-READ.

HH Read-Different: suspend task; goto LOCKED-READ-ONLY-READ.
N Write-Different: suspend task; goto LOCKED-READ-ONLY-READ.
M Reply: goto ERROR.

I Invalidate: send Ack; change name; goto LOCKED-READ.

HH Flush: goto ERROR.

;3 LOCKED-READ-ONLY-WRITE

M Read-Same: read value; goto LOCKED-READ-ONLY-WRITE.
M Write-Same: suspend task; goto LOCKED-READ-ONLY-WRITE.
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Read-Different: suspend task; goto LOCKED-READ-ONLY-WRITE.
Write-Different: suspend task; goto LOCKED-READ-ONLY-WRITE.
Reply: goto ERROR.

Invalidate: send Ack; change name; goto LOCKED-WRITE.
Flush: goto ERROR.

LOCKED-READ-WRITE-READ
Read-Same: read value; goto LOCKED-READ-WRITE-READ.
Write-Same: write value; goto LOCKED-READ-WRITE-READ.
Read-Different: suspend task; goto LOCKED-READ-WRITE-READ.
Write-Different: suspend task; goto LOCKED-READ-WRITE-READ.
Reply: goto ERROR.
Invalidate: goto ERROR.
Flush: send Ack-Flush; change name; goto LOCKED-READ.

3
LOCKED-READ-WRITE-WRITE
Read-Same: read value; goto LOCKED-READ-WRITE-WRITE.
Write-Same: write value; goto LOCKED-READ-WRITE-WRITE.
Read-Different: suspend task; goto LOCKED-READ-WRITE-WRITE.
Write-Different: suspend task; goto LOCKED-READ-WRITE-WRITE.

’

.o
’

Reply: goto ERROR.
Invalidate:
Flush: send Ack-Flush; change name; goto LOCKED-WRITE.

goto ERROR.

(in-package ’user)

;3 This constant
(define-constant
;; This constant
(define-constant
;; This constant
(define-constant
;3 This constant
(define-constant
This constant
;; the word.
(define-constant
;; This constant
(define-constant
;3 This constant
;3 word.
(define-constant
;3 This constant
(define-constant
;; This constant
(define-constant

;; These constants specify offsets into a line.

(define-constant
(define-constant
(define-constant
(define-constant
(define-constant
(define-constant

defines the number of nodes.
Number-0f-Nodes 64)

defines the number of lines in a node chunk.

Chunk-Lines 8)

defines the base mask (minus the line offset).

Base-Mask 4088) ;; (4096 - 8)

defines the offset mask (minus the line base).

Offset-Mask 7)
defines the shift to move the

Node-Shift -6)

defines the node mask.
Node-Mask 63)

defines the shift to move the

Index-Shift -3)

defines the index mask.
Index-Mask 7)

defines the size of the cache
Cache-Map-Size 16)

Store-Offset 0)
Status-0ffset 8)
Link-Offset 9)
Request-0Offset 10)
Barrier-Offset 11)
Line-Size 12)

;5 This nodal vectors the map of chunk objects
(define-nodal Chunk-Map)
;3 This nodal vectors the cache map.
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(define-nodal Cache-Map)
;3 This handler initializes shared memory in the entire system.
(define-handler Shared-Memory-Setup () (Barrier Index)
(attribute (self) Barrier B-SYNC)
(adjust-count (self) Barrier Number-Of-Nodes)
(write (self) Index Number-0f-Nodes)
Loop
(write (self) Index (minus (read (self) Index) 1))
(send (read (self) Index) 9 NORMAL Node-Setup (node-id) (self) Barrier)
(branch-not-zero (read (self) Index) Loop)
(test-count (self) Barrier)
(destroy-segment (self)))
;3 This handler sets up a node to support a shared memory model. It
;3 allocates and initializes the shared memory chunk and cache
;; storage.
(define-handler Node-Setup (Ack-Node Ack-Segment Ack-Offset)
(Index-A Index-B Line)
(write (nmodals) Chunk-Map (create-read-write-segment Chunk-Lines))
(write (self) Index-A Chunk-Lines)
Loop-1
(write (self) Index-A (minus (read (self) Index-Ai) 1))
(write (self) Line (create-read-write-segment Line-Size))
(vrite (self) Index-B (plus Store-Offset Line-Size))
Loop-2
(write (self) Index-B (minus (read (self) Index-B) 1))
(write (read (self) Line) (read (self) Index-B) 0)
(branch-not-zero (compare (read (self) Index-B) Store-Offset) Loop-2)
(vrite (read (self) Line) Status-Offset UNLOCKED)
(write (read (self) Line) Link-Offset END)
(attribute (read (self) Line) Barrier-Offset B-SYNC)
(write (read (nodals) Chunk-Map) (read (self) Index-A)
(read (self) Line))
(branch-not-zero (read (self) Index-A) Loop-1)
(write (nodals) Cache-Map
(create-associative-segment Cache-Map-Size BOUND-SAFE))
(send (read (self) Ack-Node) 6 NORMAL Adjust-Barrier
-1 (read (self) Ack-Segment) (read (self) Ack-Offset))
(destroy-segment (self)))
;3 This handler executes a 'read" code fragment.
(define-handler Read-Address (Address) (Base Offset Line)
(write (self) Base (and (read (self) Address) Base-Mask))
(write (self) Offset (and (read (self) Address) Offset-Mask))
(write (self) Line (match (read (nodals) Cache-Map) (read (self) Base)))
(branch-zero (compare (read (self) Line) UNBOUND) Get-Line)
(branch-zero (compare (read (read (self) Line) Status-Offset) INVALID)
Get-Line)
(return (read (read (self) Line) (read (self) Offset)))
(destroy-segment (self))
Get-Line
(write (self) Line (call 8 Get-Cache-Line (read (self) Base) READ))
Read-Line
(return (read (read (self) Line) (read (self) Offset)))
(attribute (read (self) Line) Request-Offset READ-WRITE)
(destroy-segment (self)))
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>

This handler executes a "write" code fragment.

(define-handler Write-Address (Address Value) (Base Offset Line)

» s
.o
LR
)

..
)

(vrite (self) Base (and (read (self) Address) Base-Mask))

(write (self) Offset (and (read (self) Address) Offset-Mask))

(write (self) Line (match (read (nodals) Cache-Map) (read (self) Base)))
(branch-zero (compare (read (self) Line) UNBOUND) Get-Line)
(branch-not-zero (compare (read (read (self) Line) Status-Offset)

READ-WRITE) Get-Line)

(write (read (self) Line) (read (self) Offset) (read (self) Value))
(destroy-segment (self))
Get-Line

(write (self) Line (call 8 Get-Cache-Line (read (self) Base) WRITE))
(write (read (self) Line) (read (self) Offset) (read (self) Value))
(attribute (read (self) Line) Request-Offset READ-WRITE)
(destroy-segment (self)))

This handler loads a line into the cache in the specified mode.

It may be necessary to remove an existing cache line first. It
may also be necessary to create an empty cache line if no cache
exits.

(define-handler Get-Cache-Line (Base Mode) (Current-Base Node Line)

(write (self) Current-Base

(insert (read (nodals) Cache-Map) (read (self) Base) UNBOUND))
(write (self) Line

(match (read (nodals) Cache-Map) (read (self) Current-Base)))
(branch-not-zero (compare (read (self) Line) UNBOUND) Remove-Line)
(vrite (self) Line (create-read-write-segment Line-Size))
(write (read (self) Line) Status-Offset INVALID)
(insert (read (nodals) Cache-Map) (read (self) Base) (read (self) Line))
Remove-Line
(write (read (self) Line) Request-Offset (read (self) Base))
(attribute (read (self) Line) Request-Offset READ-ONLY)
(write (self) Current-Base

(insert (read (nodals) Cache-Map) (read (self) Base) UNBOUND))
(branch-zero (compare (read (read (self) Line) Status-Offset) INVALID)

Get-Line)

(attribute (read (self) Line) Barrier-Offset B-SYNC)
(adjust-count (read (self) Line) Barrier-Offset 1)
(write (self) Node (a-shift (read (self) Current-Base) Node-Shift))
(write (self) Node (and (read (self) Node) Node-Mask))
(send (read (self) Node) 6 NORMAL Remove (read (self) Current-Base))
(test-count (read (self) Line) Barrier-Offset)
Get-Line
(remove (read (modals) Cache-Map) (read (self) Current-Base))
(insert (read (nodals) Cache-Map) (read (self) Base) (read (self) Line))
(attribute (read (self) Line) Barrier-Offset B-SYNC)
(adjust-count (read (self) Line) Barrier-Offset 1)
(write (self) Node (a-shift (read (self) Base) Node-Shift))
(write (self) Node (and (read (self) Node) Node-Mask))
(send (read (self) Node) 7 NORMAL (read (self) Mode)

(read (self) Base) (node-id))
(test-count (read (self) Line) Barrier-Offset)
(return (read (self) Line))
(destroy-segment (self)))
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HH Chunk Handlers
;; This handler reads a line from chunk memory. First the chunk line
;; status is tested, and the lock is acquired. If the status is
;3 READ-WRITE, the exclusive copy is flushed. Then a READ-ONLY copy
;; is sent to the requesting node, and it is pushed on the READ-ONLY
;; chain. When the acknowledgment is received, the chunk line is
;; unlocked.
(define-handler Read (Base Reply-Node) (Index 0ld-Status)
(write (self) Index (a-shift (read (self) Base) Index-Shift))
(write (self) Index (and (read (self) Index) Index-Mask))
(write (self) Index (read (read (nodals) Chunk-Map) (read (self) Index)))
(write (self) 0ld-Status (read (read (self) Index) Status-Offset))
(attribute (read (self) Index) Status-Offset D-SYNC)
(branch-not-zero (compare (read (self) 0ld-Status) READ-WRITE) Skip-Flush)
(adjust-count (read (self) Index) Barrier-Offset 1)
(send (read (read (self) Index) Link-Offset) 6 NORMAL Flush
(read (self) Base))
(test-count (read (self) Index) Barrier-Offset)
Skip-Flush
(adjust-count (read (self) Index) Barrier-Offset 1)
(send (read (self) Reply-Node) 16 NORMAL Reply
(read (read (self) Index) 0) (read (read (self) Index) 1)
(read (read (self) Index) 2) (read (read (self) Index) 3)
(read (read (self) Index) 4) (read (read (self) Index) 5)
(read (read (self) Index) 6) (read (read (self) Index) T7)
READ-ONLY (read (read (self) Index) Link-Offset) (read (self) Base))
(write (read (self) Index) Link-Offset (read (self) Reply-Node))
(test-count (read (self) Index) Barrier-Offset)
(write (read (self) Index) Status-Offset READ-ONLY)
(destroy-segment (self)))
;; This handler replies an exclusive READ-WRITE copy of a line. First
;; the chunk line status is tests, and the lock is acquired. If the
;; status is READ-WRITE, the exclusive copy is flushed. If the
;; status is READ-ONLY, the READ-ONLY chain is invalidated. Then an
;; exclusive READ-WRITE copy is sent to the requesting node, and the
;; link field is set. When the acknowledgment is received, the
;; chunk line is unlocked.
(define-handler Write (Base Reply-Node) (Index 0ld-Status)
(write (self) Index (a-shift (read (self) Base) Index-Shift))
(write (self) Index (and (read (self) Index) Index-Mask))
(write (self) Index (read (read (nodals) Chunk-Map) (read (self) Index)))
(write (self) 0ld-Status (read (read (self) Index) Status-Offset))
(attribute (read (self) Index) Status-Offset D-SYNC)
(branch-not-zero (compare (read (self) Old-Status) READ-WRITE) Skip-Flush)
(adjust-count (read (self) Index) Barrier-Offset 1)
(send (read (read (self) Index) Link-Offset) 6 NORMAL Flush
(read (self) Base))
(test-count (read (self) Index) Barrier-Offset)
Skip~-Flush
(branch-not-zero (compare (read (self) 0Old-Status) READ-ONLY)
Skip-Invalidate)
(adjust-count (read (self) Index) Barrier-Offset 1)
(send (read (read (self) Index) Link-Offset) 6 NORMAL Invalidate
(read (self) Base))
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(test-count (read (self) Index) Barrier-Offset)
Skip-Invalidate
(adjust-count (read (self) Index) Barrier-Offset 1)
(send (read (self) Reply-Node) 16 NORMAL Reply
(read (read (self) Index) 0) (read (read (self) Index) 1)
(read (read (self) Index) 2) (read (read (self) Index) 3)
(read (read (self) Index) 4) (read (read (self) Index) 5)
(read (read (self) Index) 6) (read (read (self) Index) 7)
READ-WRITE END (read (self) Base))
(write (read (self) Index) Link-Offset (read (self) Reply-Node))
(test-count (read (self) Index) Barrier-Offset)
(write (read (self) Index) Status-Offset READ-WRITE)
(destroy-segment (self)))
;; This handler removes a cache copy from a node. If the line status
;3 is UNLOCKED, no action is taken. If the status is READ-ONLY, all
;; read-only copies are invalidated, and the link is set to END. If the
;; status is READ-WRITE, the exclusive copy is flushed, and the link is set
;; to END.
(define-handler Remove (Base) (Index 0ld-Status)
(write (self) Index (a-shift (read (self) Base) Index-Shift))
(write (self) Index (and (read (self) Index) Index-Mask))
(write (self) Index (read (read (nodals) Chunk-Map) (read (self) Index)))
(write (self) Old-Status (read (read (self) Index) Status-Offset))
(attribute (read (self) Index) Status-Offset D-SYNC)
(branch-not-zero (compare (read (self) 0ld-Status) READ-WRITE) Skip-Flush)
(adjust-count (read (self) Index) Barrier-Offset 1)
(send (read (read (self) Index) Link-Offset) 6 NORMAL Flush
(read (self) Base))
(test-count (read (self) Index) Barrier-Offset)
Skip-Flush
(branch-not-zero (compare (read (self) 0ld-Status) READ-ONLY)
Skip-Invalidate)
(adjust-count (read (self) Index) Barrier-Offset 1)
(send (read (read (self) Index) Link-Offset) 6 NORMAL Invalidate
(read (self) Base))
(test-count (read (self) Index) Barrier-Offset)
Skip-Invalidate
(write (read (self) Index) Link-Offset END)
(write (read (self) Index) Status-Offset UNLOCKED)
(destroy-segment (self)))
;; This handler acknowledges a Reply or Invalidate, and adjusts the
;3 chunk barrier.
(define-handler Ack (Base) (Index)
(urite (self) Index (a-shift (read (self) Base) Index-Shift))
(write (self) Index (and (read (self) Index) Index-Mask))
(write (self) Index (read (read (nodals) Chunk-Map) (read (self) Index)))
(adjust-count (read (self) Index) Barrier-Offset -1)
(destroy-segment (self)))
;; This handler updates the chunk data from a flush acknowledgment.
;; It then adjusts the chunk barrier.
(define-handler Ack-Flush (Word-0 Word-1 Word-2 Word-3 Word-4 Word-5 Word-6
Word-7 Base) (Index)
(write (self) Index (a-shift (read (self) Base) Index-Shift))
(write (self) Index (and (read (self) Index) Index-Mask))
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(write
(write
(write
(write
(write
(write
(write
(urite
(write
(write

(self) Index

(read
(read
(read
(read
(read
(read
(read
(read
(read

(self)
(self)
(self)
(self)
(self)
(self)
(self)
(self)
(self)

(adjust-count (read
(destroy-segment (self)))

(read (read (nodals) Chunk-Map) (read (self) Index)))
Index) 0 (read (self) Word-0))

Index) 1 (read (self) Word-1))
Index) 2 (read (self) Word-2))
Index) 3 (read (self) Word-3))
Index) 4 (read (self) Word-4))
Index) 5 (read (self) Word-5))
Index) 6 (read (self) Word-6))
Index) 7 (read (self) Word-7))

Index) Link-Offset END)
(self) Index) Barrier-Offset -1)

’

..
LR g

Cache Handlers

;; This handler stores a line (ten words) into a cache-line. It then
;; adjusts the cache line barrier.
(define-handler Reply (Word-0 Word-1 Word-2 Word-3 Word-4 Word-5 Word-6

Word-7 Status Link Base) (Node Line)

(vwrite (self) Node (a-shift (read (self) Base) Node-Shift))

(write (self) Node (and (read (self) Node) Node-Mask))

(send (read (self) Node) 5 NORMAL Ack (read (self) Base))

(self) Line (match (read (nodals) Cache-Map) (read (self) Base)))

(write
(write
(write
(write
(write
(write
(write
(write
(write
(write
(write

(adjust-count (read

(read
(read
(read
(read
(read
(read
(read
(read
(read
(read

(self)
(self)
(selt)
(self)
(self)
(self)
(self)
(self)
(selt)
(self)

(read (self) Word-0))
(read (self) Word-1))
Line) (read (self) Word-2))
Line) (read (self) Word-3))

Line) ©
1
2
3
Line) 4 (read (self) Word-4))
5
6
7

Line)

Line) (read (self) Word-5))

Line) (read (self) Word-6))

Line) (read (self) Word-T7))

Line) Status-Offset (read (self) Status))
Line) Link-Offset (read (self) Link))
(self) Line) Barrier-Offset -1)

(destroy-segment (self)))
;; This handler flushes an exclusive read-write cache copy and
;; invalidates the entry. It then adjusts the cache line barrier.
(define-handler Flush (Base) (Node Line)
(self) Node (a-shift (read (self) Base) Node-Shift))
(self) Node (and (read (self) Node) Node-Mask))
(self) Line (match (read (nodals) Cache-Map) (read (self) Base)))
(read (self) Line) Status-Offset INVALID)
(self) Node) 13 NORMAL Ack-Flush
(read (self) Line) 0) (read (read (self) Line) 1)
(read (self) Line) 2) (read (read (self) Line) 3)
(read (selt) Line) 4) (read (read (self) Line) 5)
(read (self) Line) 6) (read (read (self) Line) 7)
(self) Base))
(adjust-count (read (self) Line) Barrier-Offset -1)
(destroy-segment (self)))
;; This handler invalidates a read-only cache copy entry. If the
;; cache link is END, and Ack is returned to the chunk. Otherwise,
;; the invalidate is forwarded to the next cache copy in the list.
;; The cache line barrier is also adjusted.
(define-handler Invalidate (Base) (Node Line)

(write
(write
(write
(write
(send

(read
(read
(read
(read
(read
(read

142



(write (self) Line (match (read (nodals) Cache-Map) (read (self) Base)))
(write (read (self) Line) Status-Offset INVALID)
(adjust-count (read (self) Line) Barrier-Offset -1)
(branch-zero (compare (read (read (self) Line) Link-Offset) END) Ack-Chunk)
(send (read (read (self) Line) Link-Offset) 6 NORMAL Invalidate
(read (self) Base))
(destroy-segment (self))
Ack-Chunk
(write (selt) Node (a-shift (read (self) Base) Node-Shift))
(write (self) Node (and (read (self) Node) Node-Mask))
(send (read (self) Node) 5 NORMAL Ack (read (self) Base))
(destroy-segment (self)))

A.3 Shared Memory With Address Braiding

M Shared Memory
HH Scott Wills 14 September 1989

;3 This is shared memory mechanism (without caches) writen in Pi.
HK It demonstrates address braiding.
(in-package ’user)
;; This constant defines the number of nodes.
(define-constant Number-Of-Nodes 64)
;; This is the node variable that holds the pointer to the shared memory
;i space.
(define-nodal SM-Space)
;; This handler sets up a node to support a shared memory model (2,3).
;; It preallocates all of the required storage in a read-write
;; segment. The segment is vectored by the nodal: SM-Space.
;; This handler initializes shared memory in the entire system.
(define-handler Shared-Memory-Setup () (Barrier Index)
(attribute (self) Barrier B-SYKC)
(adjust-count (self) Barrier Number-0f-Nodes)
(write (self) Index Number-0f-Nodes)
Loop
(write (self) Index (minus (read (self) Index) 1))
(send (read (self) Index) 7 NORMAL Node-Setup (node-id) (self) Barrier)
(branch-not-zero (read (self) Index) Loop)
(test-count (self) Barrier)
(destroy-segment (self)))
;; This handler preallocates 1024 words of storage (64 16 word blocks) in a
;; segment vectored by the node variable SM-Space.
(define-handler Node-Setup (Ack-Node Ack-Segment Ack-Offset) (Segment)
(write (self) Segment (create-read-write-segment 1024))
(write (nodals) SM-Space (read (self) Segment))
(send (read (self) Ack-Node) 6 NORMAL Adjust-Barrier
-1 (read (self) Ack-Segment) (read (self) Ack-Offset))
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(destroy-segment (self)))
:; This handler reads a value and replies the content.
(define-handler Read (Offset Reply-Node Reply-Segment Reply-Offset) ()
(send (read (self) Reply-Node) 6 NORMAL Reply-Value
(read (read (nodals) SM-Space) (read (self) Offset))
(read (self) Reply-Segment) (read (self) Reply-Offset))
(destroy-segment (self)))
;; This handler writes a value. An acknowledgment is returned.
(define-handler Write (Offset Value Ack-Node Ack-Segment Ack-Offset) ()
(write (read (nodals) SM-Space) (read (self) Offset) (read (self) Value))
(send (read (self) Ack-Node) 6 NORMAL Adjust-Barrier
-1 (read (self) Ack-Segment) (read (self) Ack-Offset))
(destroy-segment (self)))
HH Shared Memory Two
1
;3 This version of shared memory is the most basic. It uses absolute
;; addressing of preallocated shared memory space.
;; This handler support a simple shared memory model. No caches yet!
;; An address is broken into two parts.

;3 |-—— node (6) —--|--- offset (10) ---|

;; The address space is composed of up to 64 chunks, each containing
;; 1024 words.
;; This handler executes a "read" code fragment.
(define-handler Read-Address-2 (Address) (Offset Node Value)
(write (self) Offset (and (read (self) Address) 1023))
(write (self) Node (a-shift (read (self) Address) -10))
(write (self) Node (and (read (self) Node) 63))
(attribute (self) Value WRITE-ONCE)
(send (read (self) Node) 7 NORMAL Read (read (self) Offset)
(node-id) (self) Value)
(return (read (self) Value))
(destroy-segment (self)))
;; This handler executes a "write" code fragment.
(define-handler Write-Address-2 (Address Value) (Barrier Offset Node)
(write (self) Offset (and (read (self) Address) 1023))
(write (self) Node (a-shift (read (self) Address) -10))
(write (self) Node (and (read (self) Node) 63))
(attribute (self) Barrier B-SYNC)
(adjust-count (self) Barrier 1)
(send (read (self) Node) 8 NORMAL Write (read (self) Offset)
(read (self) Value) (node-id) (self) Barrier)
(test-count (self) Barrier)
(destroy-segment (self)))
M Shared Memory Three
;; This version of shared memory is similar to the one above, but it
;; uses a braided shared memory address.
;; This handler support a simple shared memory model. No caches yet!
;; An address is broken into three parts:

>

;; |-—- block (6) ---|--- node (6) ---|--- offset (4) -——|
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;; The address space is composed of up to 64 blocks. Each block is spread
;; across all 64 nodes. Each piece of a block is 16 words long.
;3 This handler executes a "read" code fragment.
(define-handler Read-Address (Address) (Offset Node Value)
(write (self) Value (and (read (self) Address) 15))
(write (self) Offset (a-shift (read (self) Address) -6))
(write (self) Offset (and (read (self) Offset) 1008))
(write (self) Offset (or (read (self) Offset) (read (self) Value)))
(write (self) Node (a-shift (read (self) Address) -4))
(write (self) Node (and (read (self) Node) 63))
(attribute (self) Value WRITE-ONCE)
(send (read (self) Node) 7 NORMAL Read (read (self) Offset)
(node-id) (self) Value)
(return (read (self) Value))
(destroy-segment (self)))
;; This handler executes a "write" code fragment.
(define-handler Write-Address (Address Value) (Barrier Offset Node)
(write (self) Node (and (read (self) Address) 15))
(write (self) Offset (a-shift (read (self) Address) -6))
(write (self) Offset (and (read (self) Offset) 1008))
(write (self) Offset (or (read (self) Dffset) (read (self) Node)))
(write (selft) Node (a-shift (read (self) Address) -4))
(write (self) Node (and (read (self) Node) 63))
(attribute (self) Barrier B-SYNC)
(adjust-count (self) Barrier 1)
(send (read (self) Node) 8 NORMAL Write (read (self) Offset)
(read (self) Value) (node-id) (self) Barrier)
(test-count (self) Barrier)
(destroy-segment (self)))

A.4 Shared Memory Tests

Hi Shared Memory Tests
HH Scott Wills 9 October 1989
HH This file contains tests for the shared memory mechanisms.
(in-package ’user)
;; This constant is a multiple of the cache stride
(define-constant Stride 18)
;; This handler executes several tests on shared memory.
(define-handler Test () ()

(call 5 Shared-Memory-Setup)

(print-user "~%shared memory initialized~&")

(send (another-node-id ANY) 6 NORMAL Test-1 1100)

(send (another-node-id ANY) 6 NORMAL Test-2 1200)

(send (another-node-id ANY) 5 NORMAL Test-3 1300)
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(send (another-node-id ANY) 8 NORMAL Test-4 1400)
(send (another-node-id ANY) 6 NORMAL Test-5 1500)
(call 8 Test-6 0 256)
(send (another-node-id ANY) 8 NORMAL Test-7 0 4096)
(destroy-segment (self)))
;; This handler performs a read on a remote node. The value is returned.
(define-handler Remote-Read (Address Reply-Node Reply-Segment Reply-Offset)
(Value)
(write (self) Value (call 7 Read-Address (read (self) Address)))
(send (read (self) Reply-Node) 6 NORMAL Reply-Value (read (self) Value)
(read (self) Reply-Segment) (read (self) Reply-Offset))
(destroy-segment (self)))
;; This handler performs a write on a remote node. The barrier is reduced.
(define-handler Remote-Write (Address Value Ack-Node Ack-Segment Ack-Offset)
O
(call 8 Write-Address (read (self) Address) (read (self) Value))
(send (read (self) Ack-Node) 6 NORMAL Adjust-Barrier
-1 (read (self) Ack-Segment) (read (self) Ack-Offset))
(destroy-segment (self)))
;; This handler performs a test on a node. The barrier is reduced.
(define-handler Remote-Test (Address Value Test
Ack-Node Ack-Segment Ack-Offset) ()
(call 7 Test-Location (read (self) Address) (read (self) Value)
(read (self) Test))
(send (read (self) Ack-Node) 6 NORMAL Adjust-Barrier
-1 (read (self) Ack-Segment) (read (self) Ack-Offset))
(destroy-segment (self)))
;; This handler tests a memory location for a specified value.
(define-handler Test-Location (Address Value Test) (Test-Value)
(write (self) Test-Value (call 7 Read-Address (read (self) Address)))
(branch-zero (compare (read (self) Test-Value) (read (self) Value))
Skip-Error)
(print-user "~&ERROR: Test ~d: ~“d <> "d"&" (read (self) Test)
(read (self) Test-Value) (read (self) Value))
Skip-Error
(destroy-segment (self)))
;; This handler prints counts on hundred boundaries, and new lines of
;; thousand boundaries.
(define-handler Print-Count (Count) ()
(branch-not-zero (mod (read (self) Count) 1000) Skip-A)
(print-user “~"&" (read (self) Count))
Skip-A
(branch-not-zero (mod (read (self) Count) 100) Skip-B)
(print-user "“4d " (read (self) Count))
Skip-B
(destroy-segment (self)))
;; This test remotely writes a locatiom, then reads it locally, then writes
;3 1t locally.
(define-handler Test-1 (Address) (Barrier Result)
(print-user "~&Test 1: read a remote write, invalidate READ-ONLY cache~&")
(attribute (self) Barrier B-SYNC)
(Adjust-Count (self) Barrier 1)
(send (another-node-id FAR) 8 NORMAL Remote-Write
(read (self) Address) 11111 (node-id) (self) Barrier)
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(test-count (self) Barrier)

(call 7 Test-Location (read (self) Address) 11111 1)

(call 8 Write-Address (read (self) Address) 111110)

(call 7 Test-Location (read (self) Address) 111110 1)

(destroy-segment (self)))

This tests writes a location, reads a location that results in a cache
replacement, then reads the first location back.

(define-handler Test-2 (Address) (Result Barrier)

I3
* s

s

(print-user "~&Test 2: same cache flush~&")
(call 8 Write-Address (read (self) Address) 22222)
(vrite (self) Address (plus (read (self) Address) Stride))
(attribute (self) Barrier B-SYNC)
(adjust-count (self) Barrier 1)
(send (another-node-id ANY) 8 NORMAL Remote-Write

(read (self) Address) 20202 (node-id) (self) Barrier)
(test-count (self) Barrier)
(call 7 Read-Address (read (self) Address))
(write (self) Address (minus (read (self) Address) Stride))
(call 7 Test-Location (read (self) Address) 22222 2)
(destroy-segment (self)))
This test locally writes a location, then reads it remotely om
several nodes.

(define-handler Test-3 (Address) (Barrier)

..
L
’ >

3

(print-user "-&Test 3: multiple remote reads of a local write"&")

(call 8 Write-Address (read (self) Address) 33333)

(attribute (self) Barrier B-SYNC)

(adjust-count (self) Barrier 3)

(send (another-node-id ANY) 9 NORMAL Remote-Test (read (self) Address)
33333 3 (node-id) (self) Barrier)

(send (another-node-id ANY) 9 NORMAL Remote-Test (read (self) Address)
33333 3 (node-id) (self) Barrier)

(send (another-node-id ANY) 9 NORMAL Remote-Test (read (self) Address)
33333 3 (node-id) (self) Barrier)

(test-count (self) Barrier)

(destroy-segment (self)))

This test locally writes a location, then reads it remotely on

several nodes. Then it writes it again and reads it back to make sure

the read chain was invalidated.

(define-handler Test-4 (Address) (Node-1 Node-2 Node-3 Barrier)

(print-user "~&Test 4: read chain invalidation~&")

(write (self) Node-1 (another-node-id FAR))

(write (self) Node-2 (another-node-id FAR))

(write (self) Node-3 (another-node-id FAR))

(call 8 Write-Address (read (self) Address) 40404)

(attribute (self) Barrier B-SYNC)

(adjust-count (self) Barrier 3)

(send (read (self) Node-1) 9 NORMAL Remote-Test (read (self) Address)
40404 4 (node-id) (self) Barrier)

(send (read (self) Node-2) 9 NORMAL Remote-Test (read (self) Address)
40404 4 (node-id) (self) Barrier)

(send (read (self) Node-3) 9 NORMAL Remote-Test (read (self) Address)
40404 4 (node-id) (self) Barrier)

(test-count (self) Barrier)

(call 8 Write-Address (read (self) Address) 44444)
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(adjust-count (self) Barrier 3)
(send (read (self) Node-1) 9 NORMAL Remote-Test (read (self) Address)
44444 4 (node-id) (self) Barrier)
(send (read (self) Node-2) 9 NORMAL Remote-Test (read (self) Address)
44444 4 (node-id) (self) Barrier)
(send (read (self) Node-3) 9 NORMAL Remote-Test (read (self) Address)
44444 4 (node-id) (self) Barrier)
(test-count (self) Barrier)
(destroy-segment (self)))
;; This test locally writes three cache conflicting locations, then
;; tests there values.
(define-handler Test-5 (Base) (Address Barrier)
(print-user "~&Test 5: multiple writes and reads on node~&")
(attribute (self) Barrier B-SYNC)
(adjust-count (self) Barrier 3)
(write (self) Address (read (self) Base))
(send (node-id) 8 NORMAL Remote-Write (read (self) Address) 55551
(node-id) (self) Barrier)
(write (self) Address (plus (read (self) Address) Stride))
(send (node-id) 8 NORMAL Remote-Write (read (self) Address) 55552
(node-id) (self) Barrier)
(write (self) Address (plus (read (self) Address) Stride))
(send (node-id) 8 NORMAL Remote-Write (read (self) Address) 55553
(node-id) (self) Barrier)
(test-count (self) Barrier)
(write (self) Address (read (self) Base))
(adjust-count (self) Barrier 3)
(send (node-id) 9 NORMAL Remote-Test (read (self) Address)
556551 5 (node-id) (self) Barrier)
(write (self) Address (plus (read (self) Address) Stride))
(send (node-id) 9 NORMAL Remote-Test (read (self) Address)
65552 5 (node-id) (self) Barrier)
(write (self) Address (plus (read (self) Address) Stride))
(send (node-id) 9 NORMAL Remote-Test (read (self) Address)
55553 5 (node-id) (self) Barrier)
(test-count (self) Barrier)
(destroy-segment (self)))
;3 This location remotely writes a block of memory locations starting at
;; Address, then remotely tests them.
(define-handler Test-6 (Address Size) (Limit Index Barrier)
(print-user "“&Test 6: remote sequential block write and read~&")
(attribute (self) Barrier B-~SYNC)
(adjust-count (self) Barrier (read (self) Size))
(vrite (self) Limit (plus (read (self) Address) (read (self) Size)))
(write (self) Index (read (self) Address))
(print-user "~&writing ")
Loop-6A
(send (another-node-id ANY) 8 NORMAL Remote-Write (read (self) Index)
(read (self) Index) (node-id) (self) Barrier)
(write (self) Index (plus (read (self) Index) 1))
(branch-not-zero (compare (read (self) Index) (read (self) Limit)) Loop-64)
(test-count (self) Barrier)
(adjust-count (self) Barrier (read (self) Size))
(write (self) Index (read (self) Address))
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(print-user "~&reading ")
Loop-6B
(send (another-node-id ANY) 9 NORMAL Remote-Test (read (self) Index)
(read (self) Index) 6 (node-id) (self) Barrier)
(write (self) Index (plus (read (self) Index) 1))
(branch-not-zero (compare (read (self) Index) (read (self) Limit)) Loop-6B)
(test-count (self) Barrier)
(destroy-segment (self)))
;; This location writes a block of memory locations starting at Address,
;; then reads them back.
(define-handler Test-7 (Address Size) (Limit Index Value)
(print-user "~&Test 7: sequential block write and read“&")
(write (self) Limit (plus (read (self) Address) (read (self) Size)))
(write (self) Index (read (self) Address))
(print-user "~&writing ")
Loop-7A
(call 4 Print-Count (read (self) Index))
(write (self) Value (times (read (self) Index) 10))
(call 8 Write-Address (read (self) Index) (read (self) Value))
(write (self) Index (plus (read (self) Index) 1))
(branch-not-zero (compare (read (self) Index) (read (self) Limit)) Loop-T7A4)
(write (self) Index (read (self) Address))
(print-user "~&reading ")
Loop-7B
(call 4 Print-Count (read (self) Index))
(write (self) Value (times (read (self) Index) 10))
(call 7 Test-Location (read (self) Index) (read (self) Value) 7)
(write (self) Index (plus (read (self) Index) 1))
(branch-not-zero (compare (read (self) Index) (read (self) Limit)) Loop-7B)
(destroy-segment (self)))

A.5 Set Synchronization

M Set Synchronization

HH Scott Wills 23 January 1990

P ]

M This is a set synchronization mechanisms demonstration.
(in-package ’user)

(define-constant WORK-SIZE 50)

(define-constant END -1)

(define-constant FANOUT §)

;; These constant define the offset of the Down-Barrier in a stem or
;3 root.

(define-constant DOWN-BARRIER-OFFSET 4)

;; These constant define the offset of the Down-Segments segment in a
;; Stem or root.

(define-constant DOWN-SEGMENTS-OFFSET 6)

149



;; This constant defines the offset of the Up-Sync for stems and
;3 leaves.
(define-constant UP-SYNC-OFFSET 3)
;; This handler tests set synchronization by constructing a
;; synchronization test of a specified size, and performing a
;; specified number of iterations using it.
(define-handler Set-Sync-Test (Number Iterations)
(Index Down-Barrier Down-Node Down-Segments)
(write (self) Down-Node (another-node-id NEAR))
(send (read (self) Down-Node) 14 NORMAL Stem
(read (selft) Number) (node-id) (self) 0)
(attribute (self) Down-Barrier B-SYNC)
(adjust-count (self) Down-Barrier 1)
(write (self) Down-Segments (create-read-write-segment 1))
(test-count (self) Down-Barrier) ;; wait for child to ack
(write (self) Index 0)
Main-Loop
(send (read (self) Down-Node) 6 NORMAL Reply-Value (read (self) Index)
(read (read (self) Down-Segments) 0) UP-SYNC-OFFSET)
(adjust-count (self) Down-Barrier 1)
(test-count (self) Down-Barrier) ;; wait for child finish signal
(write (self) Index (plus (read (self) Index) 1))
(branch-not-zero (compare (read (self) Index) (read (self) Iterations))
Main-Loop)
(send (read (self) Down-Node) 6 NORMAL Reply-Value END
(read (read (self) Down-Segments) 0) UP-SYNC-OFFSET)
(destroy-segment (read (self) Down-Segments))
(destroy-segment (self)))
:; This recursive handler creates the necessary tree structure and
;; leaf cells for the specified number of cells and fanout. After
;; the necessary children are created, the handler waits for each to
;; return its segment name via the ack message. When all children
;; have acked, the handler acks its parent and enters the main loop.
;; This loop consists of the following procedure: First the stem
;; waits for the start signal from its parent. Then it forwards the
;; start signal to each of its children. Then it tests the signal to
;; see if it is the END signal (end of simmlation). If so, it
;; destroys itself. Otherwise it waits for all children to send
;; finish signals. Then it sends a finish signal to its parent and
;; returns to the beginning of the main loop.
(define-handler Stem (Number Up-Node Up-Segment Up-Index)
(Up-Sync Down-Barrier Down-Nodes Down-Segments
Index Count Temp)
;;(print—user "“gcreating stem "a parent “at&"
s (self) (read (self) Up-Segment))
(write (self) Down-Nodes (create-read-write-segment FANOUT))
(write (self) Index 0)
Loop-A
(write (self) Count (minus FANOUT (read (self) Index)))
(write (self) Temp (ceiling (read (self) Number) (read (self) Count)))
(branch-zero (compare (read (self) Temp) 1) Skip-A)
(branch-not-minus (compare (read (self) Temp) FANOUT) Skip-A4)
(write (self) Temp FAKOUT)
Skip-A
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(write (read (self) Down-Nodes) (read (self) Index) (another-node-id NEAR))
(branch-zero (compare (read (self) Temp) 1) Skip-B)
(send (read (read (self) Down-Nodes) (read (self) Index)) 14 NORMAL Stem
(read (self) Temp) (node-id) (self) (read (self) Index))
(branch-zero 0 Skip-C)
Skip-B
(send (read (read (self) Down-Nodes) (read (self) Index)) 9 NORMAL Leaf
(node-id) (self) (read (self) Index))
Skip-C
(write (self) Index (plus (read (self) Index) 1))
(write (self) Number (minus (read (self) Number) (read (self) Temp)))
(branch-not-zero (read (self) Number) Loop-A)
(write (self) Count (read (self) Index))
(attribute (self) Down-Barrier B-SYNC)
(adjust-count (self) Down-Barrier (read (self) Count))
(write (self) Down-Segments
(create-read-write-segment (read (self) Count)))
(test-count (self) Down-Barrier) ;; wait for children segment acks
(attribute (self) Up-Sync S-SYNC)
(send (read (self) Up-Node) 6 NORMAL Ack
(self) (read (self) Up-Segment) (read (self) Up-Index))
Main-Loop
(write (self) Index 0)
(write (self) Temp (read (self) Up-Sync)) ;; wait for start signal
;;(print-user ""&~a starting~&" (self))
Loop-B
(send (read (read (self) Down-Nodes) (read (self) Index))
6 NORMAL Reply-Value (read (self) Temp)
(read (read (self) Down-Segments) (read (self) Index))
UP-SYNC-OFFSET)
(write (self) Index (plus (read (self) Index) 1))
(branch-not-zero (compare (read (self) Index) (read (self) Count)) Loop-B)
(branch-zero (compare (read (self) Temp) END) Simulation-End)
(adjust-count (self) Down-Barrier (read (self) Count))
(test-count (self) Down-Barrier) ;; wait for children finish signals
;; (print-user "~&-a stopping~&" (self))
(send (read (self) Up-Node) 6 NORMAL Adjust-Barrier
-1 (read (self) Up-Segment) DOWN-BARRIER-OFFSET)
(branch-zero 0 Main-Loop)
Simulation-End
;;(print-user "~“&-a ending~&" (self))
(destroy-segment (read (self) Down-Nodes))
(destroy-segment (read (self) Down-Segments))
(destroy-segment (self)))
;; This handler creates a leaf (work) node. It first acks its
;; segment name to it parent. Then it wait for a start signal. If
;; the signal is an END signal, it destroys itself. Otherwise it
;; performs one iteration of the work and sends a finish signal.
Then it awaits another start signal.
(deflne—handler Leaf (Up-Node Up-Segment Up-Index) (Up-Sync Index Temp)
;; (print-user "“&creating leaf ~a parent “a~&" (self)
A (read (self) Up-Segment))
(attribute (self) Up-Sync S-SYNC)
(send (read (self) Up-Node) 6 NORMAL Ack
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(self) (read (self) Up-Segment) (read (self) Up-Index))
(branch-zero 0 Wait-Point)
Main-Loop
(write (self) Index (minus (read (self) Index) 1))
(branch-not-zero (read (self) Index) Main-Loop)
;; (print-user "~&"a working~&" (self))
(send (read (self) Up-Node) 6 NORMAL Adjust-Barrier
-1 (read (self) Up-Segment) DOWN-BARRIER-OFFSET)
Wait-Point
(wvrite (self) Index WORK-SIZE)
(write (self) Temp (read (self) Up-Sync)) ;; wait for start signal
(branch-not-zero (compare (read (self) Temp) END) Main-Loop)
;; (print-user "“&~a ending~&" (self))
(destroy-segment (self)))
;; This handler acknowledges the creation of a child (leaf or stem)
;; and writes the segment at the appropriate place in the
;; Down-Segments segment. It then reduces the Down-Barrier by one.
(define-handler Ack (Segment Up-Segment Up-Index) ()
(write (read (read (self) Up-Segment) DOWN-SEGMENTS-OFFSET)
(read (self) Up-Index) (read (self) Segment))
(adjust-count (read (self) Up-Segment) DOWN-BARRIER-OFFSET -1)
(destroy-segment (self)))

A.6 Object Name Translation

HH Translation
HH Scott Wills 26 January 1990

HE This is an object name translation mechanism writen in Pi.
(in-package ’user)

;3 This constant is the number of maps.

(define-constant NUMBER-OF-MAPS 10)

;; This constant defines the initial map size
(define-constant INITIAL-MAP-SIZE 25)

;; This constant is the number of agents.

(define-constant NUMBER-OF-AGENTS 265)

;; These constants defines offsets into the Agent segment.
(define-constant AGENT-MAP-NODES 0)

(define-constant AGENT-MAP-SEGMENTS 1)

(define-constant AGENT-NEXT-NCDE 2)

(define-constant AGENT-NEXT-SEGMENT 3)

(define-constant AGENT-SIZE 4)

;; These constants defines offsets into the client segments.
(define-constant CLIENT-AGENT-NODE 0)

(define-constant CLIENT-AGENT-SEGMENT 1)

(define-constant CLIENT-CACHE 2)

(define-constant CLIENT-SIZE 3)
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;; This constant defines the initial client translation cache size.
(define-constant INITIAL-CLIENT-CACHE-SIZE 10)
;; This handler initializes the translation system (except for the
;; clients which must be created separately where needed. It creates
;; the maps and agents. A prototype agent location is returned (mode
;; and segment).
(define-handler Initialize-Translations (Reply-Node Reply-Segment
Reply-Agent-Node
Reply-Agent-Segment)
(Agent-Node Agent-Segment)
(write (self) Agent-Node (another-node-id FAR))
(send (read (self) Reply-Node) 6 NORMAL Reply-Value
(read (self) Agent-Node) (read (self) Reply-Segment)
(read (self) Reply-Agent-Node))
(send (read (self) Agent-Node) 10 NORMAL Create-Agent O 0 O
(node-id) (self) Agent-Segment)
(send (read (self) Reply-Node) 6 NORMAL Reply-Value
(read (self) Agent-Segment)
(read (self) Reply-Segment) (read (self) Reply-Agent-Segment))
(send (another-node-id FAR) 6 NORMAL Create-Map
0 (read (self) Agent-Node) (read (self) Agent-Segment))
(destroy-segment (self)))
;; This handler creates a new map. The segment name is replied to the
;; head of the agent ring. If the index is less than NUMBER-OF-MAPS,
;; an additional map is created.
(define-handler Create-Map (Index Reply-Node Reply-Segment) ()
(send (read (self) Reply-Node) 8 NORMAL Map-Location-Update
0 (node-id)
(create-associative-segment INITIAL-MAP-SIZE UNBOUND-SAFE)
(read (self) Index) (read (self) Reply-Segment))
(write (self) Index (plus (read (self) Index) 1))
(branch-zero (compare (read (self) Index) NUMBER-OF-MAPS) Skip-A)
(send (another-node-id FAR) 6 NORMAL Create-Map (read (self) Index)
(read (self) Reply-Node) (read (self) Reply-Segment))
Skip-A
(destroy-segment (self)))
;3 This handler creates the agent ring. This procedure is a bit
;; complicated. When the ring is create, it is created in the reverse
;; direction of normal message travel. Each new agent receives the
;; node and segment of the agent in front of it. It also forwards the
;; return field including the node and segment ID of the start of the
;; ring (to close the ring at the last agent). An index of zero
;; indicates the starting agent. He returns his segment to the root
;; and passes his node and segment ID as the return field (for the
;3 ring closing). For the starting agent case, the input parameters
;; are used abnormally. Return-Node contains the root node number.
;; Return-Segment contains the root segment number. Return-Offset
contains the segment offset of returned value.
(deflne-handler Create-Agent (Index Next-Node Next-Segment
Return-Node Return-Segment Return-Offset)
(Agent)
(write (self) Agent (create-read-write-segment AGENT-SIZE))
(vrite (read (self) Agent) AGENT-MAP-NODES
(create-read-write-segment NUMBER-OF-MAPS))
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(write (read (self) Agent) AGENT-MAP-SEGMENTS
(create-read-write-segment NUMBER-OF-MAPS))
(write (self) Index (plus (read (self) Index) 1))
(branch-not-zero (compare (read (self) Index) 1) Skip-A)
(send (read (self) Return-Node) 6 NORMAL Reply-Value
(read (self) Agent) (read (self) Return-Segment)
(read (self) Return-Offset))
(write (self) Return-Node (node-id))
(write (self) Return-Segment (read (self) Agent))
(branch-zero 0 Skip-B)
Skip-A
(write (read (self) Agent) AGENT-NEXT-NODE (read (self) Next-Node))
(write (read (self) Agent) AGENT-NEXT-SEGMENT (read (self) Next-Segment))
Skip-B
(branch-not-zero (compare (read (self) Index) NUMBER-OF-AGENTS) Skip-C)
(send (read (self) Return-Node) 6 NORMAL Reply-Value
(node-id) (read (self) Return-Segment) AGENT-NEXT-NODE)
(send (read (self) Return-Node) 6 NORMAL Reply-Value
(read (self) Agent) (read (self) Return-Segment) AGENT-NEXT-SEGMENT)
(branch-zero 0 Skip-D)
Skip-C
(send (another-node-id FAR) 10 NORMAL Create-Agent
(read (self) Index) (node-id) (read (self) Agent)
(read (self) Return-Node) (read (self) Return-Segment) 0)
Skip-D
(destroy-segment (self)))
;; This handler creates a new client. The segment name is replied to the
;; root table. It then requests the nearest agent, and initializes the
;; local translation cache.
(define-handler Create-Client (Agent-Node Agent-Segment
Reply-Node Reply-Segment Reply-Index) (Client)
(write (self) Client (create-read-write-segment CLIENT-SIZE))
(send (read (self) Reply-Node) 6 NORMAL Reply-Value (read (self) Client)
(read (self) Reply-Segment) (read (self) Reply-Index))
(send (read (self) Agent-Node) 10 NORMAL Closest-Agent
0 (read (self) Agent-Segment) (node-id) (read (self) Client) -1 0 0)
(attribute (read (self) Client) CLIENT-AGENT-NODE D-SYNC)
(attribute (read (self) Client) CLIENT-AGENT-SEGMENT D-SYNC)
(write (read (self) Client) CLIENT-CACHE
(create-associative-segment INITIAL-CLIENT-CACHE-SIZE BOUND-UNSAFE))
(destroy-segment (self)))
;; This handler finds the closest agent to a client. Each agent
;; compares its distance to the current distance. If it is closer, it
;; updates the agent node and segment with it own value and sets the
;; new distance. When the last agent makes the comparison, the
;; closest agent is returned to the client.
(define-handler Closest-Agent (Count This-Agent Client-Node Client-Segment
Distance Agent-Node Agent-Segment) ()
(branch-zero (compare (read (self) Distance) -1) Skip-A)
(branch-not-minus (compare (distance (read (self) Client-Node) (node-id))
(read (self) Distance)) Skip-B)
Skip-A
(write (self) Distance (distance (read (self) Client-Node) (node-id)))
(write (self) Agent-Node (node-id))
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(write (self) Agent-Segment (read (self) This-Agent))
Skip-B
(write (self) Count (plus (read (self) Count) 1))
(branch-zero (compare (read (self) Count) NUMBER-OF-AGENTS) Skip-C)
(send (read (read (self) This-Agent) AGENT-NEXT-NODE)
10 NORMAL Closest-Agent (read (self) Count)
(read (read (self) This-Agent) AGENT-NEXT-SEGMENT)
(read (self) Client-Node) (read (self) Client-Segment)
(read (self) Distance) (read (self) Agent-Node)
(read (self) Agent-Segment))
(branch-zero 0 Skip-D)
Skip-C
(send (read (self) Client-Node) 6 NORMAL Reply-Value
(read (self) Agent-Node) (read (self) Client-Segment)
CLIENT-AGENT-NODE)
(send (read (self) Client-Node) 6 NORMAL Reply-Value
(read (self) Agent-Segment) (read (self) Client-Segment)
CLIENT-AGENT-SEGMENT)
Skip-D
(destroy-segment (self)))
;; This handler updates a map location maintained by each agent. The
;; map number is indicated by Map-Index. If the count is not equal to
;3 NUMBER-OF-AGENTS, the message is also forwarded to the next agent
;; (with the count incremented).
(define-handler Map-Location-Update (Count Map-Node Map-Segment Map-Index
Agent-Segment) ()
(write (read (read (self) Agent-Segment) AGENT-MAP-NODES)
(read (self) Map-Index) (read (self) Map-Node))
(write (read (read (self) Agent-Segment) AGENT-MAP-SEGMENTS)
(read (self) Map-Index) (read (self) Map-Segment))
(write (self) Count (plus (read (self) Count) 1))
(branch-zero (compare (read (self) Count) NUMBER-OF-AGENTS) Skip-A)
(send (read (read (self) Agent-Segment) AGENT-NEXT-NODE)
8 NORMAL Map-Location-Update
(read (self) Count) (read (self) Map-Node)
(read (self) Map-Segment) (read (self) Map-Index)
(read (read (self) Agent-Segment) AGENT-NEXT-SEGMENT))
Skip-A
(destroy-segment (self)))
;; This handler inserts a translation on the specified client. It
;; must be invoked on the same node as the client. The handler waits
;; for an acknowledgment before ending. If this handler is called,
;; the insertion is synchronous. If is sent (on the same node), the
;; insertion is asynchronous.
(define-handler Insert (Name Value Client-Segment) (Barrier)
(attribute (self) Barrier B-SYNC)
(adjust-count (self) Barrier 1)
(send (read (read (self) Client-Segment) CLIENT-AGENT-NODE)
10 NORMAL Agent-Insert
(read (self) Name) (read (self) Value)
(read (read (self) Client-Segment) CLIENT-AGENT-SEGMENT)
(node-id) (self) Barrier)
(test-count (self) Barrier)
(destroy-segment (self)))
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;; This called handler matches a translation on the specified client.
;; It must be invoked on the same node as the client. The handler
;: first checks for a match in its local agent cache. Failing there,
;; it sends a match request to the agent. The value is returned to
;; the caller.
(define-handler Match (Name Client-Segment) (Value)
(write (self) Value (match (read (read (self) Client-Segment) CLIENT-CACHE)
(read (self) Name)))
(branch-not-zero (compare (read (self) Value) UNBOUND) Skip-A)
(attribute (self) Value D-SYNC)
(send (read (read (self) Client-Segment) CLIENT-AGENT-NODE)
9 NORMAL Agent-Match
(read (self) Name)
(read (read (self) Client-Segment) CLIENT-AGENT-SEGMENT)
(node-id) (self) Value)
(insert (read (read (self) Client-Segment) CLIENT-CACHE)
(read (self) Name) (read (self) Value))
Skip-A
(return (read (self) Value))
(destroy-segment (self)))
;; This called handler matches a translation when an earlier
;; translation produces an incorrect result. It first invalidates the
:; translation in the client cache (if one exists). Then it requests
;; the translation using the Match handler.
(define-handler Rematch (Name Client-Segment) ()
(remove (read (read (self) Client-Segment) CLIENT-CACHE)
(read (self) Name))
(return (call 6 Match (read (self) Name) (read (self) Client-Segment)))
(destroy-segment (self)))
;; This handler inserts a translation into the distributed translation
;; map. An ack is returned.
(define-handler Agent-Insert (Name Value This-Agent
Ack-Node Ack-Segment Ack-Offset) (Index)
(vrite (self) Index (mod (read (self) Name) NUMBER-OF-MAPS))
(send (read (read (read (self) This-Agent) AGENT-MAP-NODES)
(read (self) Index))
9 NORMAL Insert-In-Map
(read (read (read (self) This-Agent) AGENT-MAP-SEGMENTS)
(read (self) Index))
(read (self) Name) (read (self) Value) (read (self) Ack-Node)
(read (self) Ack-Segment) (read (self) Ack-Offset))
(destroy-segment (self)))
;; This handler matches a translation into the distributed translation
;; map. The resulting value is returned.
(define-handler Agent-Match (Name This-Agent
Reply-Node Reply-Segment Reply-Offset) (Index)
(write (selft) Index (mod (read (self) Name) NUMBER-OF-MAPS))
(send (read (read (read (self) This-Agent) AGENT-MAP-NODES)
(read (self) Index))
8 NORMAL Match-In-Map
(read (read (read (self) This-Agent) AGENT-MAP-SEGMENTS)
(read (self) Index))
(read (self) Name) (read (self) Reply-Node)
(read (self) Reply-Segment) (read (self) Reply-Offset))
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(destroy-segment (self)))
;; This handler inserts a translation to the specified map. An
;; acknowledgment is returned.
(define-handler Insert-In-Map (This-Map Name Value
Ack-Node Ack-Segment Ack-Offset) ()
(insert (read (self) This-Map) (read (self) Name) (read (self) Value))
(send (read (self) Ack-Node) 6 NORMAL Adjust-Barrier
-1 (read (self) Ack-Segment) (read (self) Ack-Offset))
(destroy-segment (self)))
;; This handler matches a translation in the specified map. The value
;; 1s returned.
(define-handler Match-In-Map (This-Map Name
Reply-Node Reply-Segment Reply-Offset) ()
(send (read (self) Reply-Node) 6 NORMAL Reply-Value
(match (read (self) This-Map) (read (self) Name))
(read (self) Reply-Segment) (read (self) Reply-Offset))
(destroy-segment (self)))

A.7 Object Name Translation Tests

HH Translation Tests
KN Scott Wills 1 February 1990

M This file contains tests for the translation mechanism.
(in-package ’user)
;; This constant is the number of clients.
(define-constant NUMBER-OF-CLIENTS 25)
;; This handler begins by initializing the translation network. It
;; then creates the clients. It then executes several tests on shared
;; memory. All tests requiring client locations must be executed on
;; the same node as this handler.
(define-handler Test () (Agent-Node Agent-Segment
Client-Nodes Client-Segments Index)
(print-user "~&Translation Tests~&")
(send (another-node-id ANY) 9 NORMAL Initialize-Translations
(node-id) (self) Agent-Node Agent-Segment)
(write (self) Client-Nodes
(create-read-write-segment NUMBER-OF-CLIENTS))
(write (self) Client-Segments
(create-read-write-segment NUMBER-OF-CLIENTS))
(write (self) Index 0)
Loop-A
(write (read (self) Client-Nodes) (read (self) Index)
(another-node-id ANY))
(send (read (read (self) Client-Nodes) (read (self) Index))
9 NORMAL Create-Client
(read (self) Agent-Node) (read (self) Agent-Segment)
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(node-id) (read (self) Client-Segments) (read (self) Index))
(write (self) Index (plus (read (self) Index) 1))
(branch-not-zero (compare (read (self) Index) NUMBER-OF-CLIENTS) Loop-A)
(call 9 Test-1 100 (read (self) Client-Nodes)
(read (self) Client-Segments))
(call 9 Test-2 5 10 (read (self) Client-Nodes)
(read (self) Client-Segments))
(destroy-segment (self)))
;; This test inserts a specified number of translations, waits for all
;; to be acknowledged, then reads them all back and tests them. It
;; then rereads all translations (on the same clients) to test the
;; client caches (check the number of inserts and matches in the
;; profile).
(define-handler Test-1 (Number Client-Nodes Client-Segments)
(Index Client Barrier)
(print-user "~“&Test 1: sequential insert and match and cache test~&")
(attribute (self) Barrier B-SYNC)
(adjust-count (self) Barrier (read (self) Number))
(write (self) Index 0)
Loop-A
(write (self) Client (mod (read (self) Index) NUMBER-OF-CLIENTS))
(send (read (read (self) Client-Nodes) (read (self) Client))
9 NORMAL Client-Insert
(read (self) Index) (times (read (self) Index) 10)
(read (read (self) Client-Segments) (read (self) Client))
(node-id) (self) Barrier)
(write (self) Index (plus (read (self) Index) 1))
(branch-not-zero (compare (read (self) Index) (read (self) Number)) Loop-A)
(test-count (self) Barrier)
(adjust-count (self) Barrier (read (self) Number))
(write (self) Index 0)
(send (node-id) 8 NORMAL Compare-All-Clients (read (self) Number)
(read (self) Client-Nodes) (read (self) Client-Segments))
(send (node-id) 8 NORMAL Compare-All-Clients (read (self) Number)
(read (self) Client-Nodes) (read (self) Client-Segments))
(destroy-segment (self)))
;; This tests creates a client cache inconsistency, then corrects it.
;; The following steps are performed:

;3 (1) the translation (1000, 12345) is inserted on Client-B
;; (2) the translation for 1000 is compared on Client-A (caching it)
;3 (3) the translation (1000, 54321) is inserted on Client-B (changing it)
;; (4) the translation on Client-A is tested for the old value (12345)
;3 (5) the translation on Client-A is retested for the new value (54321)
(define-handler Test-2 (Client-A Client-B Client-Nodes Client-Segments)
(Value Barrier)
(print-user "“&Test 2: client cache consistency test~&")
(attribute (self) Barrier B-SYNC)
(adjust-count (self) Barrier 1)
(send (read (read (self) Client-Nodes) (read (self) Client-B))
9 NORMAL Client-Insert 1000 12345
(read (read (self) Client-Segments) (read (self) Client-B))
(node-id) (self) Barrier)
(test-count (self) Barrier)
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(send (read (read (self) Client-Nodes) (read (self) Client-4))
9 NORMAL Client-Match 1000
(read (read (self) Client-Segments) (read (self) Client-A))
(node-id) (selt) Value)
(branch-zero (compare (read (self) Value) 12345) Skip-A)
(print-user "~&ERROR: ~a translation value “a does not match expected “a"&"
1000 (read (self) Value) 12345)
Skip-A
(attribute (self) Value D-SYNC)
(adjust-count (self) Barrier 1)
(send (read (read (self) Client-Nodes) (read (self) Client-B))
9 NORMAL Client-Insert 1000 54321
(read (read (self) Client-Segments) (read (self) Client-B))
(node-id) (self) Barrier)
(test-count (self) Barrier)
(send (read (read (self) Client-Nodes) (read (self) Client-4))
9 NORMAL Client-Match 1000
(read (read (self) Client-Segments) (read (self) Client-A))
(node-id) (self) Value)
(branch-zero (compare (read (self) Value) 12345) Skip-B)
(print-user "~&ERROR: ~a translation value ~a does not match expected "a"&"
1000 (read (self) Value) 12345)
Skip-B
(attribute (self) Value D-SYNC)
(send (read (read (self) Client-Nodes) (read (self) Client-4))
9 NORMAL Client-Rematch 1000
(read (read (self) Client-Segments) (read (self) Client-A))
(node-id) (self) Value)
(branch-zero (compare (read (self) Value) 54321) Skip-C)
(print-user "~&ERROR: ~a translation value ~a does not match expected "a"&"
1000 (read (self) Value) 54321)
Skip-C
(destroy-segment (self)))
;; This handler tests a specified number of translations on the
;; clients. This handler must be executed on the same node as the
;; client node and segment arrays.
(define-handler Compare-All-Clients (Number Client-Nodes Client-Segments)
(Index Client)
(write (self) Index 0)
Loop-A
(write (self) Client (mod (read (self) Index) NUMBER-OF-CLIENTS))
(send (read (read (self) Client-Nodes) (read (self) Client))
7 NORMAL Client-Compare
(read (self) Index) (times (read (self) Index) 10)
(read (read (self) Client-Segments) (read (self) Client)))
(write (self) Index (plus (read (self) Index) 1))
(branch-not-zero (compare (read (self) Index) (read (self) Number)) Loop-A)
(destroy-segment (self)))
;; This handler inserts a translation on the specified client, and
;; waits for the insertion to complete. This handler must be executed
;; on the same node as the client. An acknowledgment is returned
;; when the insertion completes.
(define-handler Client-Insert (Name Value Client-Segment
Ack-Node Ack-Segment Ack-Offset) ()
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(call 7 Insert (read (self) Name) (read (self) Value)
(read (self) Client-Segment))
(send (read (self) Ack-Node) 6 NORMAL Adjust-Barrier
-1 (read (self) Ack-Segment) (read (self) Ack-Offset))
(destroy-segment (self)))
;; This handler matches a translation. It requests the match from the
:; client. If the translated value does not match the specified
;; value, an error is printed. This test must be run on the same node
;; as the client.
(define-handler Client—Compare (Name Compare-Value Client-Segment) (Value)
(write (self) Value
(call 6 Match (read (self) Name) (read (self) Client-Segment)))
(branch-zero (compare (read (self) Value) (read (self) Compare-Value))
Skip)
(print-user "~“&ERROR: ~a translation value “a does not match expected "a"&"
(read (self) Name) (read (self) Value)
(read (self) Compare-Value))
Skip
(destroy-segment (self)))
;; This handler matches a translation. It returns the matched value
;; to the caller. This handler must must be executed on the same node
;; as the client.
(define-handler Client-Match (Name Client-Segment
Reply-Node Reply-Segment Reply-Offset) (Value)
(write (self) Value
(call 6 Match (read (self) Name) (read (self) Client-Segment)))
(send (read (self) Reply-Node) 6 NORMAL Reply-Value (read (self) Value)
(read (self) Reply-Segment) (read (self) Reply-Offset))
(destroy-segment (self)))
;; This handler is similar to Client-Match, except Rematch is invoked.
;; This handler must must be executed on the same node as the client.
(define-handler Client-Rematch (Name Client-Segment Reply-Node
Reply-Segment Reply-Offset) (Value)
(write (self) Value
(call 5 Rematch (read (self) Name) (read (self) Client-Segment)))
(send (read (self) Reply-Node) 6 NORMAL Reply-Value (read (self) Value)
(read (self) Reply-Segment) (read (self) Reply-Offset))
(destroy-segment (self)))

A.8 Non-Resident Handlers

Hi Non-Resident Handler
HH Scott Wills i1 February 1990
;; This example demonstrates non-resident handler support in Pi.

(in-package ’user)
;; These constants define offsets into a handler segment.
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(define-constant HANDLER-LENGTH 0)
(define-constant HANDLER-NAME 1)
;; This constant defines the number of nodes.
(define-constant NUMBER-OF-NODES 64)
;; This constant defines the reference and current handler map size.
;; The reference handler map can grow larger; the current handler map
;; 8ize is fixed.
(define-constant HANDLER-MAP-SIZE 5)
;; This nodal maintains the node’s client segment.
(define-nodal Node-Client)
;:; This nodal maintains the node’s reference non-resident handler map.
(define-nodal Reference-Handlers)
;; This nodal maintains the node’s current non-resident handler map.
(define-nodal Current-Handlers)
;; This nodal maintains the set of outstanding handler requests
(define-nodal Requested-Handlers)
;; This is test handler for the non-resident handler mechanism. It
;; starts by initializing the NR handler system. Then it injects a
;; test handler into the distributed reference handler map and inserts
;; then into the handler name translation system. Then it invokes it
;; on each node twice.
(define-handler Test () (Barrier Index)
(attribute (self) Barrier B-SYNC)
(adjust-count (self) Barrier 1)
(send (another-node-id ANY) 10 NORMAL Initialize-NR-Handlers
(node-id) (self) Barrier)
(test-count (self) Barrier)
(adjust-count (self) Barrier 1)
(send (another-node-id ANY) 12 NORMAL Add-Handler
25 (node~id) (self) Barrier Test-NR-Handler)
(test-count (self) Barrier)
(write (self) Index 0)
Loop-A
(send (read (self) Index) 14 NORMAL Dispatch 25 HAVE A NICE DAY)
(write (self) Index (plus (read (self) Index) 1))
(branch-minus (compare (read (self) Index) NUMBER-OF-NODES) Loop-A4)
(write (self) Index 0)
Loop-B
(send (read (self) Index) 14 NORMAL Dispatch 25 HAVE A NICE DAY)
(write (self) Index (plus (read (self) Index) 1))
(branch-minus (compare (read (self) Index) NUMBER-OF-NODES) Loop-B)
(destroy-segment (self)))
;; This handler is the test case for a non-resident handler. It
;; prints the contents of the active segment.
(define-handler Test-NR-Handler (:VARIABLE) (Index)
;; (print-user "~&nr handler dispatched on node “d: [ " (node-id))
;3 (write (self) Index 0)
;3 Loop
;; (print-user "~a " (read (self) (read (self) Index)))
;7 (write (self) Index (plus (read (self) Index) 1))
;; (branch-minus (compare (read (self) Index) (read (self) LENGTH)) Loop)
;3 (print-user "]1-&")
(write (self) Index (times (read (self) LENGTH) (read (self) LENGTH)))
(destroy-segment (self)))
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;; This this is the main handler for non-resident handler support.
;; When a non-resident handler is invoked, this handler is called as
;; the normal handler type. It then uses the first argument as the
;; non-resident handler type. It tests if the handler is present on
::; the node. If not, it obtains it. Then it invokes it with the
;; remaining arguments. A special argument segment must be created.
;; Since the locals for non-resident handler are included in this
;; space, care must be taken to only copy parameters into it. Note:
;; since PiSim presently does not support direct handler segment
;; calls, the first argument of the non-resident handler is a symbol
;; of a normal handler.
(define-handler Dispatch (Name :VARIABLE) (Handler Message-Length Arguments
Index-A Index-B)
(write (self) Handler (match (read (nodals) Current-Handlers)
(read (self) Name)))
(branch-not-zero (compare (read (self) Handler) UNBOUND) Handler-Known)
(call 6 Lookup-Handler (read (self) Name))
(write (self) Handler (match (read (nodals) Current-Handlers)
(read (self) Name)))
Handler-Known
(write (self) Message-Length (minus (read (self) LENGTH) 6))
(write (self) Arguments
(create-read-write-segment (minus (read (self) LENGTH) 10)))
(write (self) Index-A 9)
(write (self) Index-B 0)
Loop
(branch-not-zero (probe (self) (read (self) Index-A) READ) Skip)
(write (read (self) Arguments) (read (self) Index-B)
(read (self) (read (self) Index-4)))
Skip
(vrite (self) Index-A (plus (read (self) Index-4) 1))
(write (self) Index-B (plus (read (self) Index-B) 1))
(branch-minus (compare (read (self) Index-A) (read (self) LENGTH)) Loop)
(call-segment (read (self) Message-Length) (read (read (self) Handler) 2)
(read (self) Arguments))
;3 (call-segment (read (self) Message-Length) (read (self) Handler)
s (read (self) Arguments))
(destroy-segment (read (self) Arguments))
(destroy-segment (self)))
;; This handler lookups a non-resident handler. It is called when a
;; handler is not present in the current handler map. It first looks
;; to see if the handler has been requested by checking the requested
;; handler set. If the handler has not been requested, it creates a
;3 d-sync for future requests and inserts it into the requested
;; handler set. It then looks up the reference handler location, and
;; requests the handler. Then it waits on the d-sync it created. If
;; the handler had already been requested, the task waits on the
;; d-sync in the requested handler set. This d-sync is written by the
:; handler which replies the requested handler.
(define-handler Lookup-Handler (Name) (Handler Location)
(write (self) Handler (match (read (nodals) Requested-Handlers)
(read (self) Name)))
(branch-not-zero (compare (read (self) Handler) UNBOUND) Handler-Requested)
(write (self) Handler (create-read-write-segment 1))
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(insert (read (nodals) Requested-Handlers)
(read (self) Name) (read (self) Handler))
;; (print-user "“&fetching handler "a on node ~d~&"
o (read (self) Name) (node-id))
(write (self) Location
(call 6 Match (read (self) Name) (read (nodals) Node-Client)))
(send (read (self) Location) 7 NORMAL Fetch-Handler
(read (self) Name) (node-id))
Handler-Requested
(read (read (self) Handler) 0)
(destroy-segment (self)))
;; This handler fetches a handler from a reference node. That segment
;3 is then sent to the caller.
(define-handler Fetch-Handler (Name Reply-Node) (Handler Size)
(vrite (self) Handler (match (read (nodals) Reference—-Handlers)
(read (self) Name)))
(write (self) Size (plus (read (read (self) Handler) HANDLER-LENGTH) 6))
(send-segment (read (self) Reply-Node) (read (self) Size) NORMAL
Reply-Handler (read (self) Handler))
(destroy-segment (self)))
;; This handler installs a handler into the current handler map on the
;; local node. Handler requiring the new non-resident handler are
;; reactivated when this handler writes the entry in the requested
;; handler set.
(define-handler Reply-Handler (Handler-Length Handler-Name :VARIABLE)
(Handler Index-A Index-B)
(write (self) Handler
(create-read-write-segment (read (self) Handler-Length)))
(write (self) Index-A Handler-Length)
(write (self) Index-B 0)
Loop
(write (read (self) Handler) (read (self) Index-B)
(read (self) (read (self) Index-4)))
(write (self) Index-A (plus (read (self) Index-A) 1))
(write (self) Index-B (plus (read (self) Index-B) 1))
(branch-minus (compare (read (self) Index-A) (read (self) LENGTH)) Loop)
(insert (read (nodals) Current-Handlers)
(read (self) Handler-Name) (read (self) Handler))
(write (self) Index-A (match (read (nodals) Requested-Handlers)
(read (self) Handler-Name)))
(write (read (self) Index-A) O HANDLER-PRESENT)
(remove (read (nodals) Requested-Handlers) (read (self) Handler-Name))
(destroy-segment (self)))
;; This handler adds a segment into the reference handler map on this
;; node. It also adds the handler name to the translation system via
;; the node client. The length of the handler segment is computed
;; by subtracting the number of locals and other parameters (plus 3)
;; from the message length field. Two is added to the handler segment
;; for the length and name slots.
(define-handler Add-Handler (Name Reply-Node Reply-Segment Reply-Offset
:VARIABLE) (Size Index-A Index-B Handler)
(call 7 Insert (read (self) Name) (node-id) (read (nodals) Node-Client))
(vrite (self) Size (minus (read (self) LENGTH) 9))
(write (self) Handler (create-read-write-segment (read (self) Size)))
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(write (read (self) Handler) HANDLER-LENGTH (read (self) Size))
(write (read (self) Handler) HANDLER-NAME (read (self) Name))
(write (self) Index-A :VARIABLE)
(write (self) Index-B 2)
Loop
(write (read (self) Handler) (read (self) Index-B)
(read (self) (read (self) Index-A4)))
(write (self) Index-A (plus (read (self) Index-A) 1))
(write (self) Index-B (plus (read (self) Index-B) 1))
(branch-plus (compare (read (self) Index-A) (read (self) LENGTH)) Loop)
(insert (read (nodals) Reference-Handlers)
(read (self) Name) (read (self) Handler))
(send (read (self) Reply-Node) 6 NORMAL Adjust-Barrier
-1 (read (self) Reply-Segment) (read (self) Reply-Offset))
(destroy-segment (self)))
This handler initializes the non-resident handler mechanism. It
initializes the translation system and creates an client on every
;; node. It also creates reference and current non-resident handler
maps on each node plus the requested handler set. The reference
; map maintains the sole reference copy of handlers stored on that
;: node. The current handler map maintains handlers that have been
;; temporarily cached for use on that node. The requested handler set
;: includes all handlers that have been requested on the node.
(define-handler Initialize-NR-Handlers (Reply-Node Reply-Segment
Reply-Offset) (Agent-Node
Agent-Segment Index Barrier)
(send (another-node-id ANY) 9 NORMAL Initialize-Translations
(node-id) (self) Agent-Node Agent-Segment)
(attribute (self) Barrier B-SYNC)
(adjust-count (self) Barrier NUMBER-OF-NODES)
(write (self) Index NUMBER-OF-NODES)
Loop
(write (self) Index (minus (read (self) Index) 1))
(send (read (self) Index) 9 NORMAL Create-Node-Maps
(read (self) Agent-Node) (read (self) Agent-Segment)
(node-id) (self) Barrier)
(branch-not-zero (read (self) Index) Loop)
(test-count (self) Barrier)
(send (read (self) Reply-Node) 6 NORMAL Adjust-Barrier
-1 (read (self) Reply-Segment) (read (self) Reply-Offset))
(destroy-segment (self)))
;; This handler creates a translation client on this node and stored a
;; pointer to it in a nodal. Then it creates the reference and
;; current handler maps and the requested handler set and stores them
;; in the corresponding nodals.
(define-handler Create-Node-Maps (Agent-Node Agent-Segment Reply-Node
Reply-Segment Reply-Offset)
(Client~Segment)
(send (node-id) 9 NORMAL Create-Client
(read (self) Agent-Node) (read (self) Agent-Segment)
(node-id) (self) Client-Segment)
(write (nodals) Node-Client (read (self) Client-Segment))
(write (nodals) Reference-Handlers
(create-associative-segment HANDLER-MAP-SIZE UNBOUND-SAFE))
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(write (nodals) Current-Handlers
(create-associative-segment HANDLER-MAP-SIZE UNBOUND-SAFE))
(write (nodals) Requested-Handlers
(create-associative-segment HANDLER-MAP-SIZE UNBOUND-SAFE))
(send (read (self) Reply-Node) 6 NORMAL Adjust-Barrier
-1 (read (self) Reply-Segment) (read (self) Reply-Offset))
(destroy-segment (self)))

A.9 N-Body Simulation

MM N-Body

H Scott Wills 27 October 1989

33 This is an N-Body simulator writen in Pi.

(in-package ’user)

;; The mass of each body if a function of its ID:

HH ((body ID * Delta-Mass) + Base-Mass)

(define-constant Base-Mass 1000.0)

(define-constant Delta-Mass 100.0)

;; Bodies are randomly position within the box described by points

;3 (0,0) and (Maximum-Position, Maximum-Position).

(define-constant Maximum-Position 1000.0)

:: These offset define the location of the slots in Body objects.

(define-constant I-Nodes-Offset 3)

(define-constant I-Segments-Offset 4)

(define-constant AX-Offset 9)

(define-constant AY-Offset 10)

(define-constant Barrier-Offset 11)

;; These offset define the location of the slots in Interaction objects.

(define-constant ID-A-Offset 16)

(define-constant X-A-Offset 3)

(define-constant Y-A-Offset 5)

(define-constant X-B-Offset 4)

(define-constant Y-B-Offset 6)

;3 This is the gravitational constant.

(define-constant G 1.0)

;3 This handler creates the necessary bodies and links for the N body

;; simulation. First the bodies are created (with the nodes and

;; segments being stored in arraies). Then each interaction between

;; the bodies is generated. The simulation is self-starting.

(define-handler Initialize-System (Number-Bodies Last-Tick) (Body-Nodes

Body-Segments N-1 Index-A Index-B Node)

(branch-not-minus (minus (read (self) Number-Bodies) 2) Skip)
(write (self) Number-Bodies 2)
Skip

;; (print-user "~&(Data-Size ~d ~d)~&" (read (self) Number-Bodies)
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s (read (self) Last-Tick))
(write (self) Body-Nodes
(create-read-write-segment (read (self) Number-Bodies)))
(write (self) Body-Segments
(create-read-write-segment (read (self) Number-Bodies)))
(write (self) N-1 (minus (read (self) Number-Bodies) 1))
(write (self) Index-A 0)
Loop-A
(write (self) Node (another-node-id ANY))
(write (read (self) Body-Nodes) (read (self) Index-A) (read (self) Node))
(send (read (self) Node) 19 NORMAL Start-Body (read (self) Index-A)
(read (selft) N-1) (read (self) Last-Tick)
(node-id) (zread (self) Body-Segments))
(write (self) Index-A (plus (read (self) Index-A) 1))
(branch-not-zero (compare (read (self) Number-Bodies)
(read (self) Index-4)) Loop-A)
(write (self) Index-A 0)
(write (self) Index-B 1)
Loop-B
(send (another-node-id ANY) 23 NORMAL Start-Interaction
(read (self) Index-A) (read (self) Index-B)
(read (read (self) Body-Nodes) (read (self) Index-A))
(read (read (self) Body-Nodes) (read (self) Index-B))
(read (read (self) Body-Segments) (read (self) Index-4))
(read (read (self) Body-Segments) (read (self) Index-B))
(read (self) Last-Tick))
(write (self) Index-B (plus (read (self) Index-B) 1))
(branch-not-zero (compare (read (self) Number-Bodies)
(read (self) Index-B)) Loop-B)
(write (self) Index-A (plus (read (self) Index-4) 1))
(write (self) Index-B (plus (read (self) Index-A) 1))
(branch-not-zero (compare (read (self) N-1) (read (self) Index-A)) Loop-B)
(destroy-segment (read (self) Body-Nodes))
(destroy-segment (read (self) Body-Segments))
(destroy-segment (self)))
;3 This handler initializes and starts a body. The bodies storage
;; is created when this handler is invoked, so all the parameters are
;; initialized automatically. The interaction node and segment arrays
;: are created first. After that, the body segment pointer camn be
;; replied to the system initialization program. The X and Y position is
;; randomly selected (within specified limits). The body velocity and
;; acceleration are initially zero. The tick count is set to zero. At
;; this point, the handler enters the update/adjust loop. First it
;; sends it location to all interactions, then it wait for the
;; acceleration updates to be received (via a B-SYNC). Then it adjusts
;; its velocity and position, increments the tick, and repeats (unless
;; the last tick has been reached).
(define-handler Start-Body (ID Count Last-Tick Reply-Node Reply-Segment)
(I-Nodes I-Segments X Y VX VY AX AY
Barrier Tick Index)
(write (self) I-Nodes (create-read-write-segment (read (self) Count)))
(vrite (self) I-Segments (create-read-write-segment (read (self) Count)))
(send (read (self) Reply-Node) 6 NORMAL Reply-Value (self)
(read (self) Reply-Segment) (read (self) ID))
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(write (self) X (random Maximum-Position))
(write (self) Y (random Maximum-Position))
(write (self) VX 0)
(write (self) VY 0)
(attribute (self) Barrier B-SYNC)
(write (self) Tick 0)
;3 (print-user "~&(Body-Position "d “d 75,1f “5,1f) 2" (read (self) Tick)
33 (read (self) ID) (read (self) X) (read (self) Y))
Loop-A
(write (self) AX 0)
(write (self) AY 0)
(adjust-count (self) Barrier (read (self) Count))
(write (self) Index 0)
Loop-B
(send (read (read (self) I-Nodes) (read (self) Index))
7 NORMAL Update-Position
(read (self) X) (read (self) Y) (read (self) ID)
(read (read (self) I-Segments) (read (self) Index)))
(write (self) Index (plus (read (self) Index) 1))
(branch-not-zero (compare (read (self) Index) (read (self) Count)) Loop-B)
(test-count (self) Barrier)
(write (self) X (plus (read (self) X) (read (self) VX)))
(write (self) Y (plus (read (self) Y) (read (self) VY)))
(write (self) VX (plus (read (self) VX) (read (self) AX)))
(write (self) VY (plus (read (self) VY) (read (self) AY)))
(write (self) Tick (plus (read (self) Tick) 1))
HH (print—user "~&(Body-Position “d "d ~5,1f “5,1£)"&" (read (self) Tick)
HH (read (self) ID) (read (self) X) (read (self) Y))
(branch-not-zero (read (self) ID) Skip)
(branch-not-zero (mod (read (self) Tick) 5) Skip)
(print-user "“4d " (read (self) Tick))
(branch-not-zero (mod (read (self) Tick) 50) Skip)
(print-user "°&")
Skip
(branch-not-zero (compare (read (self) Tick) (read (self) Last-Tick))
Loop-4)
(destroy-segment (read (self) I-Nodes))
(destroy-segment (read (self) I-Segments))
(destroy-segment (self)))
;; This handler creates and starts an interaction. It begins by
;; attributing the position slots of A and B bodies. It then calculates
;; the mass of the bodies. The handler then sends a message to the two
;; bodies setting this interaction’s location. For the B body, the A
;3 body’s ID is used as the interaction identification. For the A body,
;; one minus B’s ID is used (since no body has an interaction with
;; itself). This also starts the simulation on the body objects. and
;; initializes the tick. At this point, the interaction begins the
;; simulation loop by calculating the delta distances. This will lock
:; on the S-SYNCs until the values are updated by bodies. The force
;; between the two bodies is then calculated, and the acceleration
;; component on each body is determined. These components are sent to
;; the bodies and the process begins again (until the last tick is
;; reached). The following formulas is used.
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:: AX-A = K * M-B * (X-A - X-B) / ((X-B - X-4)"2 + (Y-B - Y-4)"2)"1.5
s AY-A = K * M-B * (Y-A - Y-B) / ((X-B - X-4)"2 + (Y-B - Y-A)"2)"1.5
:: AX-B = K * M-A * (X-B - X-4) / ((X-B - X-4)"2 + (Y-B - Y-A)"2)"1.5
s; AY-B = K * M-A * (Y-B - Y-A) / ((X-B - X-A)"2 + (Y-B - Y-A)"2)"1.5

(define-handler Start-Interaction (ID-A ID-B Node-A Node-B Segment-A
Segment-B Last-Tick) (X-A X-B Y-A Y-B
Mass-A Mass-B Tick DX DY FX FY AX AY)
{(attribute (self) X-A S-SYNC)
(attribute (self) Y-A S-SYNC)
(attribute (self) X-B S-SYNC)
(attribute (self) Y-B S-SYNC)
(write (self) Mass-A (times (read (self) ID-A) Delta-Mass))
(write (self) Mass-A (plus (read (self) Mass-A) Base-Mass))
(write (self) Mass-B (times (read (self) ID-B) Delta-Mass))
(write (self) Mass-B (plus (read (self) Mass-B) Base-Mass))
(write (self) ID-B (minus (read (self) ID-B) 1))
(send (read (self) Node-A) 9 NORMAL Write-Interaction-Location
(read (self) ID-B) (node-id) (self) (read (self) Segment-A))
(send (read (self) Node-B) 9 NORMAL Write-Interaction-Location
(read (self) ID-A) (node-id) (self) (read (self) Segment-B))
(write (self) Tick 0)
Loop-A
(vrite (self) DX (minus (read (self) X-B) (read (self) X-4)))
(write (self) DY (minus (read (self) Y-B) (zread (self) Y-4)))
(write (self) FX (times (read (self) DX) (read (self) DX)))
(write (self) FY (times (read (self) DY) (read (self) DY)))
(write (self) FX (plus (read (self) FX) (read (self) FY)))
(write (self) FX (exponent (read (self) FX) -1.5))
(write (self) FX (times (read (self) FX) G))
(write (self) FY (times (read (self) FX) (read (self) DY)))
(write (self) FX (times (read (self) FX) (read (self) DX)))
(write (self) AX (times (read (self) FX) (read (self) Mass-B)))
(write (self) AY (times (read (self) FY) (read (self) Mass-B)))
(send (read (self) Node-A) 6 NORMAL Add-Acceleration
(read (self) AX) (read (self) AY) (read (self) Segment-A))
(write (self) AX (times (read (self) FX) (read (self) Mass-A)))
(write (self) AY (times (read (self) FY) (read (self) Mass-A)))
(write (self) AX (times (read (self) AX) -1))
(write (self) AY (times (read (self) AY) -1))
(send (read (self) Node-B) 6 NORMAL Add-Acceleration
(read (self) AX) (read (self) AY) (read (self) Segment-B))
(write (self) Tick (plus (read (self) Tick) 1))
(branch-not-zero (compare (read (self) Tick) (read (self) Last-Tick))
Loop-4)
(destroy-segment (self)))
;; This handler writes the interaction location in the correct position
;; in the body’s I-Node and I-Segment arrays.
(define-handler Write-Interaction-Location (I I-Node I-Segment Body-Segment)
(I-Nodes I-Segments)
(write (self) I-Nodes (read (read (self) Body-Segment) I-Nodes-Offset))
(write (self) I-Segments
(read (read (self) Body-Segment) I-Segments-Offset))
(write (read (self) I-Nodes) (read (self) I) (read (self) I-Node))
(vrite (read (self) I-Segments) (read (self) I) (read (self) I-Segment))
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(destroy-segment (self)))
;; This handler updates the bodies position on an interaction. The body
;; ID is used to determine whether the update is body A or B.
(define-handler Update-Position (X Y ID I-Segment) ()
(branch-not-zero (compare (read (read (self) I-Segment) ID-A-Offset)
(read (self) ID)) Update-Body-B)
(write (read (self) I-Segment) X-A-Offset (read (self) X))
(write (read (self) I-Segment) Y-A-Offset (read (self) Y))
(destroy-segment (self))
Update-Body-B
(write (read (self) I-Segment) X-B-Offset (read (self) X))
(write (read (self) I-Segment) Y-B-Offset (read (self) Y))
(destroy-segment (self)))
;; This handler adds the acceleration component of one interaction to
;; the bodies composite acceleration values. The bodies barrier is
;; also decremented.
(define-handler Add-Acceleration (AX AY Body-Segment) ()
(write (read (self) Body-Segment) AX-Offset
(plus (read (read (self) Body-Segment) AX-Offset) (read (self) AX)))
(write (read (self) Body-Segment) AY-Offset
(plus (read (read (self) Body-Segment) AY-Offset) (read (self) AY)))
(adjust-count (read (self) Body-Segment) Barrier-Offset -1)
(destroy-segment (self)))

A.10 Relaxation

M Relaxation
HH Scott Wills 23 February 1990

H This is a 2d relaxation simulator writen in Pi.
(in-package ’user)

;; This constant defines the array dimensions
(define-constant X-Size 10)

(define-constant Y-Size 10)

;; This constant defines the number of nodes in the system.
(define-constant Number-0f-Nodes 64)

;; This constant defines the initial size of the element map
(define-constant ELEMENT-MAP-SIZE 2)

;; These constants define neighbor temperature offsets in an element.
(define-constant NORTH-OFFSET 7)

(define-constant EAST-OFFSET 8)

(define-constant WEST-OFFSET 9)

(define-constant SOUTH-OFFSET 10)

;; These constants define the boundary temperatures.
(define-constant NORTH-BORDER-TEMP 100.0)

(define-constant EAST-BORDER-TEMP 1000.0)

(define-constant WEST-BORDER-TEMP 1000.0)
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(define-constant SOUTH-BORDER-TEMP 100.0)
;; This nodal contains the element map; an associative set of elements
;; accessed by their index.
(define-nodal Element-Map)
;; This handler creates the relaxation elements in the system. Each
;; element is assigned a index equal its position in the array. A
;; elements index = (Y*Y-Size + X-Size). A element is created on node
;; (mod index Number-Of-Nodes). Each element performs a fixed number of
;; iterations (defined by Last-Tick), then returns its final temperature to
;; an array created by this task. This task then prints out the final
;; results.
(define-handler Relax (Last-Tick) (Number-Elements Index Node Results)
(write (self) Number-Elements (times X-Size Y-Size))
(write (self) Results
(create-read-write-segment (read (self) Number-Elements)))
(write (self) Index 0)
Start-Loop
(write (self) Node (mod (read (self) Index) Number-Of-Nodes))
(send (read (self) Node) 21 NORMAL Start-Element (read (self) Index)
(read (self) Last-Tick) (node-id) (read (self) Results))
(write (self) Index (plus (read (self) Index) 1))
(branch-minus (compare (read (self) Index) (read (self) Number-Elements))
Start-Loop)
(write (self) Index (times X-Size Y-Size))
(write (self) Index (minus (read (self) Index) X-Size))
(print-user "“&")
Print-Loop
(print-user "~5,1f " (read (read (self) Results) (read (self) Index)))
(write (self) Index (plus (read (self) Index) 1))
(branch-not-zero (mod (read (self) Index) X-Size) Print-Loop)
(print-user "-&")
(write (self) Index (minus (read (self) Index) (times 2 X-Size)))
(branch-not-minus (read (self) Index) Print-Loop)
(destroy-segment (read (self) Results))
(destroy-segment (self)))
;; This handler starts by initializing the element object and
;; installing it in the element map. It also determines whether it is
;; a boundary element and makes the appropriate adjustment. S-Syncs
;; are the basis of this example. Four s-syncs are created for the
;; north, south, east, and west neighbors. The element task then
;; enters a loop of sending its value to its neighbors, then averaging
;; the its neighbor’s values to compute it’s new value.
(define-handler Start-Element (Index Last-Tick Reply-Node Reply-Segment)
(N-Index E-Index W-Index S-Index
N-Temp E-Temp W-Temp S-Temp
N-Node E-Node W-Node S-Node
Temp Tick)
(write (self) N-Index (plus (read (self) Index) X-Size))
(write (self) E-Index (plus (read (self) Index) 1))
(write (self) W-Index (minus (read (self) Index) 1))
(write (self) S-Index (minus (read (self) Index) X-Size))
(attribute (self) N-Temp S-SYNC)
(attribute (self) E-Temp S-SYNC)
(attribute (self) W-Temp S-SYNC)
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(attribute (self) S-Temp S-SYNC)
(write (self) N-Node (mod (read (self) N-Index) NUMBER-OF-NODES))
(write (self) E-Node (mod (read (self) E-Index) NUMBER-OF-NODES))
(write (self) W-Node (mod (read (self) W-Index) NUMBER-OF-NODES))
(write (self) S-Node (mod (read (self) S-Index) NUMBER-OF-NODES))
(write (self) Temp 0.0)
(write (self) Tick 0)
(branch-minus (compare (read (self) Index)
(times X-Size (minus Y-Size 1))) Skip-i4)
(write (self) N-Index BORDER)
(attribute (self) N-Temp D-SYNC)
(write (self) N-Temp NORTH-BORDER-TEMP)
Skip-A
(branch-not-zero (compare (mod (read (self) Index) X-Size)
(minus X-Size 1)) Skip-B)
(write (self) E-Index BORDER)
(attribute (self) E-Temp D-SYKC)
(write (self) E-Temp EAST-BORDER-TEMP)
Skip-B
(branch-not-minus (compare (read (self) Index) X-Size) Skip-C)
(write (self) S-Index BORDER)
(attribute (self) S-Temp D-SYKC)
(write (self) S-Temp SOUTH-BORDER-TEMP)
Skip-C
(branch-not-zero (mod (read (self) Index) X-Size) Skip-D)
(write (self) W-Index BORDER)
(attribute (self) W-Temp D-SYNC)
(write (self) W-Temp WEST-BORDER-TEMP)
Skip-D
(branch-zero (probe (nodals) Element-Map READ) Map-Exists)
(write (nodals) Element-Map
(create-associative-segment ELEMENT-MAP-SIZE UNBOUND-SAFE))

Map-Exists
(insert (read (nodals) Element-Map) (read (self) Index) (self))
Relax-Loop
(branch-zero (compare (read (self) N-Index) BORDER) Skip-E)
(send (read (self) N-Node) 7 NORMAL Update-Temp

(read (self) N-Index) SOUTH-OFFSET (read (self) Temp))
Skip-E
(branch-zero (compare (read (self) E-Index) BORDER) Skip-F)
(send (read (self) E-Node) 7 NORMAL Update-Temp

(read (self) E-Index) WEST-OFFSET (read (self) Temp))
Skip-F
(branch-zero (compare (read (self) W-Index) BORDER) Skip-G)
(send (read (self) W-Node) 7 NORMAL Update-Temp

(read (self) W-Index) EAST-OFFSET (read (self) Temp))
Skip-G
(branch-zero (compare (read (self) S-Index) BORDER) Skip-H)
(send (read (self) S-Node) 7 NORMAL Update-Temp

(read (self) S-Index) NORTH-OFFSET (read (self) Temp))
Skip-H
(write (self) Temp (plus (read (self) N-Temp) (read (self) E-Temp)))
(write (self) Temp (plus (read (self) Temp) (read (self) W-Temp)))
(write (self) Temp (plus (read (self) Temp) (read (self) S-Temp)))
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(write (self) Temp (divide (read (self) Temp) 4))
(write (self) Tick (plus (read (self) Tick) 1))
(branch-minus (compare (read (self) Tick) (read (self) Last-Tick))
Relax-Loop)
(send (read (self) Reply-Node) 6 NORMAL Reply-Value
(read (self) Temp) (read (self) Reply-Segment) (read (self) Index))
(destroy-segment (self)))
;: This handler deposites a temperature in the appropriate slot of an
;; element.
(define-handler Update-Temp (Index Offset Temp) (Element)
Wait-Loop
(write (self) Element (match (read (nodals) Element-Map)
(read (self) Index)))
(branch-not-zero (compare (read (self) Element) UNBOUND) Write-Temp)
(suspend)
(branch-zero 0 Wait-Loop)
Write-Temp
(write (read (self) Element) (read (self) Offset) (read (self) Temp))
(destroy-segment (self)))
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Appendix B

Example Execution Logs

This appendix contains the execution logs for the examples described in chapter 3.

B.1 Shared Memory With Caches

12 June 1990 0:26:30pm sm-test PiSim version 0.1

task type profile

ACK . ittt it it i e 2,181 ( 6.6%)
ACK=FLUSH. . oo it e ieneiiieennaennanns 778 ( 2.4%)
ADJUST-BARRIER. ..o tiiirneennnennnnnns 593 ( 1.8%)
FLUSH. . ottt ittt ieiie e ceenenconansanns 778 ( 2.4%)
GET-CACHE-LINE......ovvivrnrrnnnnnnnn 1,560 ( 4.7%)
INVALIDATE . oot v et et ieeneenacnaennss 780 ( 2.4%)
NODE-=SETUP. . vttt it ittt enneeennnaaocnsas 64 ( 0.2%)
PRINT-COUNT. ....ovtiiineeeennennnnns 8,192 ( 24.8%)
READ . it ittt it eerieeiaaeneaneenanns 782 ( 2.4%)
READ—ADDRESS .+ vttt ieieenennanns 4,368 ( 13.2%)
REMOTE-TEST . .o vt vteteernrnnrnecnaennens 268 ( 0.8%)
REMOTE=WRITE. ... 0vvrrnernrennnnncnnenn 261 ( 0.8%)
REMOVE. .ot teiiie e inenaannanns 1,323 ( 4.0%)
REPLY . it iv et ie i ie it aiaeeaenaannn 1,660 ( 4.7%)
SHARED-MEMORY-SETUP. . ... vvvevnennnreannns 1 ( 0.0%)
TEST e e vt ittt it teitaetaeneeannnannnen 1 ( 0.0%)
TEST =t ittt ittt ien s et enneenaennnoeaanns 1 ( 0.0%)
oAy s S 1 ( 0.0%)
TEST =3 st ettt te v ensnsnesesanaesananasns 1 ( 0.0%)
TEST 4. ottt ittt tteeeioaeaneeaeanaasonnas 1 ( 0.0%)
TEST =5 vt ittt it ettt raanrneenes 1 ( 0.0%)
TEST 6. vt tteeie s ieenenosasnenonennnas 1 ( 0.0%)
TEST =7 e ettt et ittt ier et en e naanneas 1 ( 0.0%)
TEST-LOCATION. .. vetiienernenannnnn 4,367 ( 13.2%)
WRITE . ottt it ittt eaiecaanannanns 778 ( 2.4%)



WRITE=ADDRESS. . oo iviineeinennnnnnns 4,362 ( 13.2%)
BOLAL. o ittt 33,004 (100.0%)
task status profile

CALL . ottt ittt eneteanaannnns 22,851 ( 35.9%)
1§24 A O P 10,153 ( 16.0%)
WAITING . .ot o e ireeeeeenonnnnsannnns 30,604 ( 48.1%)
BOBAL . ettt e 63,608 (100.0%)
task run time profile

=T - A P 8,785 ( 26.6%)
1732 ittt 7,237 ( 21.9%)
B33o64. ittt 11,391 ( 34.8Y%)
BE=128. ..ttt 5,505 ( 16.7%)
120256 . o ittt et 19 ( 0.1%)
B13=1,028. o iitiin ittt 1 ( 0.0%)
1,025-2,048. ... 0urreeiiiii e 64 ( 0.2%)
8,193-16,384. .. 0vuirrrrnenrieianns 1 ( 0.0%)
262,145-524,288. .. 00uernrre e 1 ( 0.0%)
BOEAL. ittt e e 33,004 (100.0%)
task wait time profile

Dttt it ittt it et e 20,826 ( 63.1%)
PR OGO P 9 ( 0.0%)
2 OO U 3 ( 0.0%)
BB, e e i e e 9 ( 0.0%)
- A 3 (0.1%)
T U A O 39 ( 0.1%)
2% 3 AP N 40 ( 0.1%)
B33oB4 . ottt 4,502 ( 13.6%)
BE=128 . sttt e 917 ( 2.8%)
129256 s ottt e 1,305 ( 4.0%)
1y 8 -5 b 2 2,762 ( 8.4%)
B13-1,024. ittt i 403 ( 1.2%)
1,025-2,048. ..ttt 336 ( 1.0%)
2,089,096 . ...ttt 568 ( 1.7%)
4,007T-8,192. v ittt 726 ( 2.2%)
8,193-16,384. .. .0nvririin i 521 ( 1.6%)
16,385-32,T68. .o tiiveriernnernnnranannen 2 ( 0.0%)
32,769-65,536. .00ttt 1 ( 0.0%)
524,289-1,048,576. ..\ ouerneernenanenennnn 1 ( 0.0%)
BOTAL. vt sttt ae i 33,004 (100.0%)
instruction type profile

A=SHIFT. . ittt ittt it enennnnnanns 11,684 ( 3.5%)
ADJUST-COUNT .. .t ieieiieinenannaens 12,522 ( 3.8%)
AND . oottt e 29,144 ( 8.8%)
ANOTHER-NODE-ID. .. ..ovvvrrrrnennnnnennnns 3 ( 0.0%)
ATTRIBUTE. .ttt tie e ieeieeneenannnns 9,405 ( 2.9%)
BRANCH-NOT-ZERO........cvvvvunrnennns 41,944 ( 12.7%)
BRANCH=ZERD . .. oo oo v ieviennannnn 19,036 ( 5.8Y%)
CALL .t ettt it et aa ety 45,702 ( 13.9%)
CREATE-ASSOCIATIVE-SEGMENT.............. 64 ( 0.0%)
CREATE-READ-WRITE-SEGMENT.............. 702 ( 0.2%)



DESTROY-SEGMENT. . ... .covveennenennsn 33,004 ( 10.0%)
INITIALIZE. . o ove e ieeenennnnonan 13,901 ( 4.2%)
INSERT . o oot ettt ie it enaeiaennnonnns 4,806 ( 1.5%)
MATCH. oottt ittt eeneeenannnas 13,408 ( 4.1%)
MINUS . oottt iie ittt ieeeanaannenn 6,721 ( 2.0%)
()2 > 40,450 ( 12.3%)
PLUS . .ttt tteteiereeeraananaeaeacnnnns 9,223 ( 2.8%)
PRINT-USER. .. vvrereerrenannannnenenn 104 ( 0.0%)
1000, (0] 2 > N 1,560 ( 0.5%)
RETURN . ot oe it ieeie e iennennnnns 5,928 ( 1.8%)
SEND. ..ottt iienreranrnraaeoenns 10,152 ( 3.1%)
TEST=COUNT. .« v ot it eieiieieaenannnns 11,704 ( 3.6%)
TIMES . oottt ineneeneenseeonnnannn 8,192 ( 2.5%)
BOLAL. o ittt 329,359 (100.0%)
instructions per messages 32.4
instructions per task 10.0
instructions run length 8.1
operation type profile

A=SHIFT . . ittt it ittt iieeennannes 11,684 ( 0.8%)
ADJUST-COUNT. ...t tivnrereeennnnnns 12,522 ( 0.8%)
AND . ottt e 29,144 ( 1.9%)
ANOTHER-NODE-ID. .. ..cvvvvrnnrnennrnacas 526 ( 0.0%)
ATTRIBUTE. ..ot ite e iineeeaennaneennn 9,405 ( 0.6%)
BRANCH-NOT-ZERD. .. .cvvvvnvnnnennsns 41,944 ( 2.7%)
BRANCH-ZERD. ... o iieieeiaenanannns 19,036 ( 1.2%)
CALL. oottt it ittt et et e cnaaeanas 45,702 ( 3.0%)
COMPARE. . . oot tieieeieeenennnaennns 44,020 ( 2.9%)
CREATE-ASSOCIATIVE-SEGMENT.............. 64 ( 0.0%)
CREATE-READ-WRITE-SEGMENT.............. 702 ( 0.0%)
DESTROY-SEGMENT . ... vvvvrrrvnennnnn 33,004 ( 2.2%)
INSERT . oottt eee e iie e ennennanses 4,806 ( 0.3%)
MATCH. . ottt e ie it it ieencaaneenns 13,408 ( 0.9%)
MINUS . ittt it eaecianneannanns 6,721 ( 0.4%)
MOD . ottt it ie e 16,384 ( 1.1%)
NODALS . ot oottt iienneeeannanenees 26,256 ( 1.7%4)
HODE=ID. . et e sttt ieiennnennnnaenaanns 2,159 ( 0.1%)
PLUS . .ottt te it inensneraaaenaeanns 9,223 ( 0.6%)
PRINT-USER. . ..ot iiiernnnnrnacsnonanns 104 ( 0.0%)
READ . o ittt e ie i e eeieecnanans 476,974 ( 31.3%)
REMOVE. .ottt et inenenanneneeanns 1,560 ( 0.1%)
RETURN. v ittt it iieie e ieeeasannnnn 5,928 ( 0.4%)
753 28 1) 2O U 543,595 ( 35.6%)
SEND . v vttt ittt et 10,152 ( 0.7%)
TEST~COUNT. .ot ittt ieeennerneanasnas 11,704 ( 0.8%)
TIMES . . oot e it e ceennerananennaeanns 8,192 ( 0.5%)
WRITE. . ottt iiinnrnrenenanascnn 141,098 ( 9.2%)
BOBAL. ¢ ittt i e 1,526,017 (100.0%)

operations per instruction

4.6
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segment size profile

AU 1 ( 0.0%)
Bttt e et e 8,192 ( 24.3%)
B e et et et 2,183 ( 6.5%)
- 3 AU N 3,477 ( 10.3%)
T e e e e e 10,295 ( 30.5%)
- A OP 6,250 ( 18.5Y%)
D e e e et i e 332 ( 1.0%)
&SP 638 ( 1.9%)
< A AU 778 ( 2.3%)
(- RN 1,624 ( 4.8%)
BOLAL. - ettt 33,770 (100.0%)
average segment size 6.9

segment age profile

=T Y- SN 8,509 ( 25.8%)
S 2 2 P 1,747 ( 5.3%)
B3uB8 . . ittt e 12,192 ( 36.9%)
B5=128 . ittt i 2,742 ( 8.3%)
129256 .0 ot e ittt 1,624 ( 4.6%)
DLy 2 -5 B A PN 3,604 ( 10.9%)
B13-1,024. .. uieeeiieeiee s 444 (. 1.3%0)
1,025-2,048. ... ccurneiniarnneeeaaaan 398 ( 1.2%)
2,089-4,006. ... it 576 ( 1.7%)
4,007-8,102. .ttt 732 ( 2.2%)
8,193-16,384. .. 0.ttt 532 ( 1.6%)
16,385-32,768. .o vrriie e 2 ( 0.0%)
32,769=65,536. ... 0curiiiinna e 1 ( 0.0%)
1,048,577-2,097,152. ... ovreiennennnnnnn, 1 ( 0.0%)
BOEAL . ¢ vt ettt 33,004 (100.0%)

last tick at 1,132,375

simulation time: 19 minutes 5 seconds

B.2 Shared Memory With Address Braiding

12 June 1990 11:54:21am sm-nc-test PiSim version 0.1

task type profile

ADJUST-BARRIER. ... ...cvvvenenennenn. 4,955 ( 12.4%)
NODE=SETUP. . .o i i it ittt iie it eeeeiaenaannnn 64 ( 0.2%)
PRINT-COUNT. .. vit it ieeeceiieeennnnes 8,192 ( 20.5%)
READ . ittt it iie et teeienaernoanss 4,368 ( 10.9%)
READ-ADDRESS ...t vitieieiieiiennaennn 4,368 ( 10.9%)
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REMOTE-TEST. .. ..o iiiiiiiinnnnannasanss 268
REMOTE-WRITE...........ciiiivvenencnnns 261
REPLY-VALUE...........ciiiiiiiieeenns 4,368

SHARED-MEMORY-SETUP.......... . c0vienvnns

[
© OO

OO0 O0OO0OO0OOO0 OO

-
o

PN N STNSTNSN NN SN N SN NN N
[T
o O

LT
LT
.9%)
.0%)
.0%)
.0%)
.0%)
.0%)
.0%)
.0%)
.0%)
.0%)
.9%)
.9%)
.9%)
.0%)

o 0 21,291
NEW. . ittt it it it i et 18,653
WAITING. ... ..oiviieiitnnnonrncenneeens 30,031
total. . ... i e e 69,975

.4%)
LT
.9%)
.0%)

1 L 1 26,309
17-32. i e e 4,897
33-64. ...t i e i e 8,733
BB-128. ... . i i it e e e
B13-1,024....... . i i i e
8,1903-16,384. ... . 00ttt i
262,145-524,288........ .. it
total. . ... e e e 39,944

.9%)
.3%)
.9%)
.0%)
.0%)
.0%)
.0%)
.0%)

L 2N 25,470
P 23
2 i it e i e e et i s s e

T 17
T 2P 25
L 1 45
b 121
33=64. ... it e e e e e 8,620
B5-128. .. ittt i it it a e 4,863
129-2B66. .. . i i i i i e 163
DY i - 2

B13-1,024. ... .. i i i e 71
1,026-2,048. ... 0t itir it e

2,049-4,006. ... ... .. it i e e 386
4,007-8,192. ... it i e e 131
16,385-32,768. .. ..ottt i i i e

524,289-1,048,576. ... ...t

=3 - ¥ At 39,944

OO O OO0OO0ODONHOOOO OO

.8%)
A%
.0%)
.0%)
.1%)
.1%)
.3%)
.8%)
.2%)
.4%)
.0%)
.2%)
.0%)
.0%)
.3%)
.0%)
.0%)
.0%)

instruction type profile
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A=SHIFT . ittt it eieeennrnnnennnes 17,460 ( T.1%)
ADJUST=COUNT . . .t oee ittt eieeienannnn 9,327 ( 3.8%)
ARD . ottt e e 26,190 ( 10.7%)
ANOTHER-NODE=ID.....covivrrmmrnnnnnnnnnn 3 ( 0.0%)
ATTRIBUTE. .ottt ieeiecie e eennnnnenns 8,737 ( 3.6%)
BRANCH-NOT-ZERO. .. ....onveeunrnnannn 25,152 ( 10.3%)
BRANCH-ZERD. .. .. ovvitiieieanneennnn 4,367 ( 1.8%)
CALL. .ttt tiee it teieeneaenaaens 42,682 ( 17.4%)
CREATE-READ-WRITE-SEGMENT..........c..... 64 ( 0.0%)
DESTROY-SEGMENT . .. ....ovvvrnennannnn 39,944 ( 16.3%)
INITIALIZE. . oo vvineneeneiannnennonanonae 1 ( 0.0%)
MINUS . ottt ittt iie i eaeieeannnes 66 ( 0.0%)
MOVE. ¢ttt eiriinerereieannenanaenns 8,800 ( 3.6%)
(0] ;50O U O R 8,730 ( 3.6%)
121 1= S 8,711 ( 3.6%)
PRINT-USER. . ..o tienieeenanaennennns 104 ( 0.0%)
RETURN . .\ ottt ittt ieee e caaaiannnn 8,736 ( 3.6%)
[5J24. 1 A 18,6562 ( 7.6%)
TEST=COUNT. .+ o ittt ieeieiiaeeannns 8,744 ( 3.6%)
TIMES . . ottt t i iteiieeierierannenns 8,192 ( 3.30
BOtAL . sttt e i et 244,561 (100.0%)
instructions per messages 13.1
instructions per task 6.1
instructions run length 5.0
operation type profile

A=SHIFT .. ottt it iiiiaanns 17,460 ( 1.6%)
ADJUST=COUNT . . ot vttt iieineiannannns 9,327 ( 0.9%)
AND . o ittt et e 26,190 ( 2.4%)
ANOTHER-NODE-ID.....oovvrirnnrnannnenns 526 ( 0.0%)
ATTRIBUTE. .ttt iie et iieieiienannnnn 8,737 ( 0.8%)
BRANCH-NOT-ZERD.......00ivirinnennnn. 25,162 ( 2.3%)
BRANCH-ZERD. ..ot ve et iieiniennnnnnns 4,367 ( 0.4%)
Lo N 5 75 42,582 ( 3.9%)
COMPARE . .o vttt ittt it ineenanannns 13,071 ( 1.2%)
CREATE-READ-WRITE-SEGMENT............... 64 ( 0.0%)
DESTROY-SEGMENT . .......ovnvunennennn 39,944 ( 3.7%)
MINUS . .ttt iiiieieieeenananaannaanenans 65 ( 0.0%)
7 (0) JA A 16,384 ( 1.5%)
NODALS . ottt ittt et s ieineneenanen 8,794 ( 0.8%)
NODE=ID.. ..o 'iirineneneaenenannannn 9,329 ( 0.9%)
o) O 8,730 ( 0.8%)
-3 11 <1 8,711 ( 0.8%)
PRINT-USER. ....oviirerinrnennnnannennns 104 ( 0.0%)
151 o N2 295,187 ( 27.1%)
RETURN. v ittt e ieeiicnrenennaeanns 4,368 ( 0.4%)
154 1t OO N 431,365 ( 39.6%)
1550, 11 SO 18,652 ( 1.7%4)
TEST-COUNT . . ottt iee e e ieeeinneannn 8,744 ( 0.8%)
TIMES . ¢t vttt ettt e it eeeeneineennn 8,192 ( 0.8%)
WRITE. . i iieenniniernnnrnaaaannns 82,683 ( 7.6%)



BOLAL. o v e ettt 1,088,628 (100.0%)

operations per instruction 4.5

segment size profile

Bt ettt e e 1 ( 0.0%)
B i e et 8,192 ( 20.5%)
B ettt et e e 2 ( 0.0%)
B ettt it et e 9,326 ( 23.3%)
SO PN 13,167 ( 32.9%)
Bttt e et e 8,988 ( 22.5%)
= 3SR GO 268 ( 0.7%)
1024 . o ettt et e 64 ( 0.2%)
BOtAL . .ttt et e 40,008 (100.0%)
average segment size 8.0

segment age profile

=Y - O 265,490 ( 63.8%)
177832 ettt et e 106 ( 0.3%)
B3oB4 . ittt e 106 ( 0.3%)
BE=128. ittt 13,243 ( 33.2%)
120256 ittt e 395 ( 1.0%)
1Y 450 -5 - S AU 7 ( 0.0%)
B13-1,024. .. veieine i 70 ( 0.2%)
1,025-2,048. .. ittt 8 ( 0.0%)
2,089-4,006. ... ..nuutiinea s 386 ( 1.0%)
4,007-8,102. .ttt it 130 ( 0.3%)
8,193-16,384. .. .cuviiirrnnnenenaaiianas 1 ( 0.0%)
16,385-32,768. . cvvrvrnnnrencnaneesannnsss 1 ( 0.0%
1,048,577-2,007,152. .. tevinenernnnnnnnn 1 ( 0.0%)
BOBAL. ottt et e 39,944 (100.0%)

last tick at 1,167,698

simulation time: 17 minutes 50 seconds

B.3 Set Synchronization

12 June 1990 11:24:28am set-sync-100-100 PiSim version 0.1

task type profile

o4 126 ( 0.5%)
ADJUST-BARRIER. ... ...covvviernnennnn 12,600 ( 49.3%)
LEAF . ottt it it inrneenananaaannenns 100 ( 0.4%)
REPLY-VALUE. .....covniiiierinennnnnns 12,726 ( 49.8%)
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SET-SYNC-TEST.....civiitiiniiriniennanns 1 ( 0.0%)
STEM. .. i i i et e 26 ( 0.1%)
total. ... e e 25,579 (100.0%)

NEW. o it 25,579 ( 62.3%)
WAITING. .. .. ..ot itiiiiiniiiiennnnas 15,453 ( 37.7%)
total. ... 41,032 (100.0%)

e U S 25,452 ( 99.5%)
2,049-4,096. .. ...t e 1 ( 0.0%)
8,103-16,384. . .0cuiiiiiiiai i 26 ( 0.1%)
32,769-65,536. . ...ttt 100 ( 0.4%)
BOtAL. ittt it e e 25,579 (100.0%)
task wait time profile

o 3 11,207 ( 43.8%)
5 100 ( 0.4%)
b 202 ( 0.8%)
b 1 ( 0.0%)
R N 402 ( 1.6%)
T - 412 ( 1.6%)
E kB 106 ( 0.4%)
K Y 1,119 ( 4.4Y%)
B5=128. ittt i e 3,543 ( 13.9%)
120266, . .ttt e 1,335 ( 5.2%)
b3 £ -3 4,219 ( 16.5%)
B13-1,024. ...ttt 2,608 ( 10.2%)
1,025-2,048. .. iiit i 200 ( 0.8%)
131,073-262,144. ... .. ittt 100 ( 0.4%)
262,145-524,288. ... ..iiiiiiii i, 27 (. 0.1%)
87 - A 25,579 (100.0%)
instruction type profile

ADJUST-COUNT. ... covienn e 15,453 ( 1.3Y%)
ANOTHER-NODE-ID.......ovveuninnnennnn. 126 ( 0.0%)
ATTRIBUTE. v it e iiitiiie e ieeiie e 153 ( 0.0%)
BRANCH-NOT-MINUS.....coviiiininnnnnnn, 25 ( 0.0%)
BRANCH-NOT-ZERO.........ccovvnvnn.. 522,950 ( 44.9%)
BRANCH-ZERD. .....ovvvverinnnnnnnnnn. 5,601 ( 0.5%)
CEILING. . it tiint it eniaenenennennns 125 ( 0.0%)
CREATE-READ-WRITE-SEGMENT............... 53 ( 0.0%)
DESTROY-SEGMENT. ........covvnueunn.. 25,632 ( 2.2%)
INITIALIZE. . ...ovvienirinnnnnnnnnnns 12,773 ( 1.1%)
MINUS . .t tie et iee e, 500,250 ( 42.9%)
(1) 38,330 ( 3.3%)
2 005 12,850 ( 1.1%)
1S3 24 |1 35O 25,578 ( 2.2%)
TEST-COUNT. . oot iee ittt iieieeeeannn 5,454 ( 0.5%)
LT - 1,165,353 (100.0%)
instructions per messages 45.6
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instructions per task 45.6

instructions run length 28.4

operation type profile

ADJUST-COUNT .. . ot veneeeccanrnnonens 15,453 ( 0.3%)
ANOTHER-NODE-ID. .. vvvrreunennennansens 126 ( 0.0%)
ATTRIBUTE . . oottt veenenenncnonanoanonns 153 ( 0.0%)
BRANCH-NOT-MINUS. ... covvveenrunoonaonnns 25 ( 0.0%)
BRANCH-NOT-ZERD. .. .. vvvvivnennunnns 522,950 ( 10.9%)
BRANCH=ZERD . .o\t veevneenensonnnnannns 5,601 ( 0.1%)
CETLING. . o v v et esiinenernacnncnasnnnones 125 ( 0.0%)
COMPARE . .« ettt it enrenecasaenonneans 25,726 ( 0.5%)
CREATE-READ-WRITE-SEGMENT........ccoonn. 53 ( 0.0%)
DESTROY-SEGMENT. ... vvvevvernennronns 25,632 ( 0.5%)
MINUS . oot ee s inecvennscnasnnanons 500,250 ( 10.4%)
NODE=ID . . e cesevnvnacaencnonnnaossns 126 ( 0.0%)
PLUS . o et e et tennaaeanonaonnsananss 12,850 ( 0.3%)
READ . . oo e eeeteinaaraananonannns 1,271,975 ( 26.5%)
SELF s e v et ettt enanacanosnananns 1,832,068 ( 38.2%)
SEND . v o v eeeeseeaaaeeir s 25,578 ( 0.5%)
TEST-COUNT. . o v v v vr v vnencananrnnosnnns 5,45¢ ( 0.1%)
WRITE. ..o v eeneevncanaanananesnenns 551,781 ( 11.8%)
BOLAL . e e e e e 4,795,926 (100.0%)
operations per instruction 4.1

segment size profile

S S APPSR 1 ( 0.0%)
B e i 5 ( 0.0%)
AP 47 ( 0.2%)
B ettt i s 25,452 ( 99.3%)
YT AU U 101 ( 0.4%)
S WU 26 ( 0.1%)
BOLAL . ot ee et be e e 26,632 (100.0%)
average segment size 6.0

segment age profile

=Y . SR AU AP N 11,611 ( 45.3%)
S 20 & AU N 818 ( 3.2%)
BBoBB. st e e 710 ( 2.8%)
BE=128 . o ettt er st e 3,645 ( 14.2%)
100256 . o ettt 1,543 ( 6.0%)
257512, s ittt it 4,217 ( 16.5%)
B13-1,028. . ¢ cuenuuee s 2,708 ( 10.6%)
1,025-2,048. .00 iunnnnrrrnnecesiiaaennn 200 ( 0.8%4)
262,145-524,288. .. ...t iiiiiennaons 180 ( 0.7%4)
BOtAL . st ee e e 25,632 (100.0%)
last tick at 301,010

simulation time: 22 minutes 2 seconds

181



B.4 Object Name Translation

12 June 1990 11:20:55am X-LATE-TEST PiSim version 0.1

task type profile

ADJUST-BARRIER. ... ..covvivneninnnnnenns 204 ( 7.7%)
AGENT-INSERT.....o0vvrririmnnnnnnnnnnnn 102 ( 3.9%)
AGENT-MATCH. ...eoviiernieiiniennnnnnns 202 ( 7.6%)
CLIENT-COMPARE. ... .cvvvvnvnenenennnnans 200 ( 7.6%)
CLIENT-INSERT.....0ovviiieennnnnnnnn. 102 ( 3.9%)
CLIENT-MATCH. ........ooiiiiiiirinnnnnnnnn 2 ( 0.1%)
CLIENT-REMATCH. ... ..iiiitin e innnennnnn 1 ( 0.0%)
CLOSEST-AGENT. ..ot ii et ieieenenn, 625 ( 23.6%)
COMPARE-ALL-CLIENTS.........oivvnvinvrnn.. 2 ( 0.1%)
CREATE-AGENT . .. ..\ttt iniieinnenennnn 25 (. 0.9%)
CREATE-CLIENT ...ttt iieiniinieinenennns 25 ( 0.9%)
CREATE-MAP. . ..ottt it iieinennns 10 ( 0.4%)
INITIALIZE-TRANSLATIONS.......covvuurnn.. 1( 0.0%
INSERT . ottt it ieien e inennnenennns 102 ( 3.9%)
INSERT-IN-MAP. .. ...civriiiiirinnennnnn. 102 ( 3.9%)
MAP-LOCATION-UPDATE. ... ..o vvvvnnrnnnnnn 250 ( 9.4%)
MATCH. o ittt i it ittt et et 203 ( 7.7%)
MATCH-IN-MAP. . ..ottt iniiienenennnns 202 ( 7.6%)
REMATCH. ...ttt ittt iie it eienens 1 ( 0.0%)
REPLY-VALUE. ..t tii ittt ieiiecn e 285 ( 10.8%)
B o853 s 1 ( 0.0%)
) A 1 ( 0.0%)
X-LATE-TEST . sttt vttt it ieeiinennnnnns 1 ( 0.0%)
3 - 2,649 (100.0Y%)
task status profile

(o33 8 308 ( 9.0%)
54 2,341 ( 68.7%)
WAITING. . oo ti ettt ittt ittt iein e 787 ( 22.2%)
BOBAL . o it e 3,406 (100.0%)
task run time profile

=T - SO 793 ( 29.9%)
1782 ittt e e 758 ( 28.6%)
B3B8 ottt e 1,093 ( 41.3%)
85128 . ittt e e e 1 (C 0.0%)
B13-1,024. .. cuitiiit it e e 1 ( 0.0%)
2,040-4,006. .. 00t 3( 0.1%)
873 - SR 2,649 (100.0%)
task wait time profile
o2 1,393 ( 52.6%)



OO 9 ( 0.3%)
b~ OO 63 ( 2.4%)
L O 15 ( 0.6%)
e A P 15 ( 0.6%)
e (- SO AR 59 ( 2.2%)
17732 ittt it e e e 79 ( 3.0%)
B3B8, ittt i i, 94 ( 3.5%)
BE=128 . vttt it 399 ( 15.1%)
129256 . o ittt it e 85 ( 3.2%)
1Y -5 b AU 120 ( 4.5%)
B13-1,028. . vie et i 56 ( 2.1%)
1,025-2,048. .. .0ttt 4 ( 0.2%)
2,049-4,096. ... ittt e 14 ( 0.5%)
4,097-8,192. ..ttt i 219 ( 8.3%)
8,193-16,384. .. .00ttt 24 ( 0.9%)
16,385-32,768. .. ioviiiiinnianaenas 1 ( 0.0%)
L - 2,649 ( 0%
instruction type profile

ADJUST=COUNT . .ttt teeieieeieiiannnes 310 ( 2.2%)
ANOTHER-NODE-ID......cvvvrnrrmennnnnanns 26 ( 0.2%)
ATTRIBUTE. ¢« it tie e iieeieeennreeneennn 358 ( 2.5%)
BRANCH-NOT-MINUS.......coiveinennnnnnnn 600 ( 4.3%)
BRANCH-NOT=ZERO. . ..o vvtiieerneeennnannns 578 ( 4.1%)
BRANCH-ZERD. ..ottt ieiieinnnannnn 2,318 ( 16.5%)
(o7 N P 614 ( 4.4%)
CREATE-ASSOCIATIVE-SEGMENT.............. 25 ( 0.2%)
CREATE-READ-WRITE-SEGMENT.............. 102 ( 0.7%4)
DESTROY-SEGMENT. .. ....covivunnunnnnnn 2,649 ( 18.9%)
DISTANCE. o iit it iieeiinereeennneennnns 61 ( 0.4%)
INITIALIZE. ..ottt ittt iiieeeiaaannannns 5 ( 0.0%)
INSERT . ottt ettt ie e et i etaaeennnnns 506 ( 3.6%)
MATCH . oottt ittt iieeeeeeiaenanns 203 ( 1.4%)
{0 ) U 604 ( 4.3%)
{1 )2 0 895 ( 6.4%)
NODE-ID. . it uetie it et eieeenennenneens 62 ( 0.4%)
PLUS . ottt it ittt ettt 1,236 ( 8.8%)
PRINT-USER. ..o\ttt iieennennnnnnnnns 3 ( 0.0%)
REMOVE . .ttt ttte ittt teeienanaannas 1 ( 0.0%)
RETURN . .ttt it iecteeieiennennnns 205 ( 1.5%)
153 24. 11 J 2,479 ( 17.6%)
TEST=COUNT . . ottt ierinreenennanananns 210 ( 1.8%)
BOLAL. sttt 14,049 (100.0%)
instructions per messages 6.0
instructions per task 5.3
instructions run length 4.5
operation type profile

ADJUST—COUNT . ..ottt ieeiieeenann 310 ( 0.4%)
ANOTHER-NODE-ID.......0vvreennnnnennnnns 61 ( 0.1%)
ATTRIBUTE. . o vttt it ie i ieeieennennnns 368 ( 0.4%)



BRANCH-NOT-MINUS.........covviiinnnnnnn. 600 ( 0.7%)
BRANCH-NOT-ZERD........covivriinnnnnnnn. 578 ( 0.74)
BRANCH=ZERO. .. .. oo it iieieieiaennnn 2,316 ( 2.7%)
o) 0 A 616 ( 0.7%)
COMPARE. . ...oviiiieii it it iiniiennnn 2,891 ( 3.3%)
CREATE-ASSOCIATIVE-SEGMENT.............. 35 ( 0.0%)
CREATE-READ-WRITE-SEGMENT.............. 102 ( 0.1%)
DESTROY-SEGMENT. . .....ciiinennennnn. 2,649 ( 3.1%)
DISTANCE. .ot vtt ittt ie e inanannns 661 ( 0.8%)
INSERT .ttt iv vt tienetereneenennnnnnennns 304 ( 0.4%)
MATCH . ..t it ie it iereinnnenennnnss 405 ( 0.5%)
0] S 604 ( 0.7%)
{0)0) 2B » N 1,221 ( 1.4%)
PLUS . it ittt it ittt 1,235 ( 1.4%)
PRINT-USER. . ..'ttiittiieieia e 3 (C 0.0%)
11571 32,193 ( 37.1%)
REMOVE . ottt ittt it teeie et ieneaennn 1 ( 0.0%)
RETURN. ..ottt it iie it et iieeieenn 204 ( 0.2%)
£5) 24 1) 2P 33,182 ( 38.2%)
1) 2411 3 2,340 ( 2.7%)
TEST—COURT . . oot i ittt ineeeannnns 210 ( 0.2%)
B 301 ( 0.3%)
171 4 S 3,421 ( 3.9%)
BOtAL . it i e e 86,800 (100.0%)
operations per instruction 6.2
segment size profile
S 25 ( 0.9%)
B 25 ( 0.9%)
D e et e e 1( 0.0%)
-2 702 ( 25.2%)
7S 302 ( 10.8%)
Bttt e e 455 ( 16.3%)
2 437 ( 15.7%)
b L J 827 ( 29.7%)
2B e e e 12 ( 0.4%)
R 2= - 2,786 (100.0%)
average segment size 8.

segment age profile

12 R - 604 ( 22.8%)
1732, it e 261 ( 9.9%)
B T 786 ( 29.7%)
B5=12B . ittt e 258 ( 9.7%)
120256, .ttt e 203 ( 11.1%)
P £ -5 B 113 ( 4.3%)
B13-1,024. .. ittt e e 71 ( 2.7%)
1,025-2,048. .. ittt 3 ( 0.1%)
2,040-4,006. .. it 15 ( 0.6%)
4,097-8,102, .ttt e 218 ( 8.2%)
8,193-16,384. ..t 26 ( 1.0%)
16,385-32,768. .. iivitit it 1 ( 0.0%)



L7237 2,649 (100.0%)

last tick at 18,440

simulation time: 44 seconds

B.5 Non-Resident Handlers

12 June 1990 11:22:41am NR-HANDLER-TEST PiSim version 0.1

task type profile

ADD-HANDLER. ...ttt ittt ittt in e inrneennnns 1 ( 0.0%)
ADJUST-BARRIER. ... ...oovveinnnnnnnnnns 67 ( 2.2%
AGENT-INSERT......oiiriiiinnnnnenrennnn 1 ( 0.0%)
AGENT-MATCH. ... iiiiinin it ieneennn, 64 ( 2.1%)
CLOSEST-AGENT. . ...vovveieiieinannnn 1,600 ( 53.0%)
CREATE-AGENT. ... ..itiiiennnnennnnns 25 ( 0.8%)
CREATE-CLIENT. .. \uvitentineie i ennnnnn 64 ( 2.1%)
CREATE-MAP. ...ttt 10 ( 0.3%)
CREATE-NODE-MAPS........coviiuneinnnnn.. 64 ( 2.1%)
DISPATCH. .ottt ierie ittt iinennenenns 128 ( 4.2%)
FETCH-HANDLER. . ..ottt eein i ennanns 64 ( 2.1%)
INITIALIZE-NR-HANDLERS........oovuvuunnn. 1( 0.0%)
INITIALIZE-TRANSLATIONS........covunn.... 1 ( 0.0%)
£ 00 1( 0.0%)
INSERT-IN-MAP. .. .....iitiiiiiii it innnnn, 1 ( 0.0%)
LOOKUP-HANDLER. . ..ottt et enrnnnnns 97 ( 3.2%)
MAP-LOCATION-UPDATE. ......ovvvvnnennnn. 260 ( 8.3%)
L o) 64 ( 2.1%)
MATCH-IN-MAP..........coviiiinannnnnn.. 64 ( 2.1%)
NR-HANDLER-TEST......ooiiiniininnennnnnss 1( 0.0%)
REPLY-HANDLER. .. ...ovvviiinieenennnnnn., 64 ( 2.1%)
REPLY-VALUE. .. ....ooviiiinnnnnnnnnnn. 261 ( 8.6%)
TEST-NR-HANDLER. ........0vvvuvniinnnnn. 128 ( 4.2%)
<12 ¥ 3,021 (100.0%)
task status profile

o] 2 P 290 ( 7.9%)
24 2,731 ( 74.9%)
WAITING. ..o v sttt it it eeeeenn 627 ( 17.2%)
BOBAL. it 3,648 (100.0%)
task run time profile

1= (- J P 521 ( 17.2%)
17282, it 247 ( 8.2%)
33264, it e 2,058 ( 68.1Y%)



120288 . sttt i e 128 ( 4
1,025-2,048. ... 0iterriie it 2(C o
BOBAL. . ittt e i e 3,021

2%)
.2%)
.1%)
.0%)

L 1,720
2 i i i e ittt e ettt 120
B T S 11
> 2P 15
£ R L 2 141
17-32. it i i i e e 69
33-64. ... . i e 142
66-128. ... it i i i it i e, 112
129-266. .. i i e e, 1156
P 3 76
B13-1,024. ..., ... i i e 158
1,025-2,048........ . i i 112
2,049-4,096. .. ... 0000ttt eeanann 219
4,097-8,192. ... it i 11
total. ..ttt e e 3,021

O N WO N WWPE N OO

.9%)
.0%)
.4%)
.5%)
LT
.3%)
LT
LT
.8%)
.5%)
.2%)
TR
.2%)
.4%)
.0%)

instruction type profile

ADJUST=COUNT .« oottt eeeneeesinnnnnnns 71
ANOTHER-NODE=ID. .+ v vvvvvvreeeeennnnnnnns 1
ATTRIBUTE. o eoeeeteee e eeennnnnnns 195
BRANCH-MINUS .. .. tteverrerennennnnnnnns 960
BRANCH-NOT-MINUS.......covveeeeennnn. 1,536
BRANCH-NOT-ZERO. .. ovveeveneeernnnnnn 1,043
BRANCH-PLUS . .. vttt et ttetiiinaanennennss 1
BRANCH-ZERD . .. oo irieeeeeeeannnns 4,998
CALL . o et ettt eeeee et iinanns 324
CALL-SEGMENT . . ottt eteesennnnnnnns 256
CREATE-ASSOCIATIVE-SEGMENT............. 256
CREATE-READ-WRITE-SEGMENT.............. 396
DESTROY-SEGMENT . . .. vovvveeeennnnnn 3,149
DISTANCE. oottt sttt ennnnnns 187
INITIALIZE. . oo e eeeeeeineeteeeieeeennns 453
INSERT .« v voeveeveeee et eeernnnennnns 258
MATCH . o oottt et e ettt 514
MINUS . o ittt ettt ettt ean 193
(01 A 65
1 (1112 1,832
:01) 100 » FA 188
PLUS . e et ettt 3,743
4o\ S 194
REMOVE . o oo oo ettt eeeeeeenannnns 64
RETURN . « oo it teeeeee e eennnnnnnnes 64
SEND .+ ettt et e e e i 2,774
SEND-SEGMENT . . ..o vttt ttereeeeeannnn 64
TEST=COUNT .+« oo eteee et ee e eeeaannnnns 8
TIMES .+t ettt ettt e e eeeennnes 128
BOLAL. oottt et 23,915

O OBk OO O

N
O ~NOONF KR O W = O

-
o

PNONONNNNNNNONSNSNINONNNIN NN NN AN NN AN AN A A
©C OO +=» O OO0

.3%)
.0%)
.8%)
.0%)
.4%)
.4%)
.0%)
.9%)
.4%)
L1%)
.1%)
LT
.2%)
.8%)
.9%)
%)
L1%)
.8%)
.3%)
LT
.8%)
LT%)
.8%)
.3%)
.3%)
.6%)
.3%)
.0%)
.5%)
.0%)
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instructions per messages 8.8

instructions per task 7.9

instructions run length 7.1

operation type profile

ADJUST-COUNT. . oot ieeinieinenenenennns 71 ( 0.1%)
ANOTHER-NODE-ID........ovviiininnnnnnn. 38 ( 0.0%)
ATTRIBUTE. . i ittt ittt ieieennenannnns 195 ( 0.1%)
BRARCH-MINUS. . .....civiivineninennnnnns 960 ( 0.7%)
BRANCH-NOT-MINUS..........covveenn.. 1,636 ( 1.1%)
BRANCH-NOT-ZERD........oovvvnnennenn. 1,043 ( 0.8%)
BRANCH-PLUS . ...ttt iit ittt iineennennns 1 ( 0.0%)
BRANCH-ZERD. ... ..o viiiiineneennnnns 4,998 ( 3.7%)
o ¥ 2% 324 ( 0.2%)
CALL-SEGMENT.........00vtininrnnnnennns 256 ( 0.2%)
(o) 17V ) 6,296 ( 4.6%)
CREATE-ASSOCIATIVE-SEGMENT............. 266 ( 0.2%)
CREATE-READ-WRITE-SEGMENT.............. 396 ( 0.3%)
DESTROY-SEGMENT. .......cvvvvnnunnnnn. 3,149 ( 2.3%)
DISTANCE. ..ovviieeieeiieieennnnn 1,723 ( 1.3%)
B 11 | 194 ( 0.1%)
MATCH . ottt ittt i ittt e i 578 ( 0.4%)
MINUS. ..ttt ettt 321 ( 0.2%)
0] 1 65 ( 0.0%)
HODALS . it ire ettt e ii et eerieennnnn 1,093 ( 0.8%)
. [410) 0 | S 2,337 ( 1.T%)
2 41 3,743 ( 2.7%)
PROBE. . vttt it e it iinaennenns 640 ( 0.5%)
READ . oottt ittt it et e e 45,674 ( 33.5%)
REMOVE. .. ittt ittt ittt it e iineinanns 64 ( 0.0%)
RETURN . . it tite ittt ee et iiaeanns 64 ( 0.0%)
1) 4 1N 2 49,655 ( 36.4%)
13324, 11 2,666 ( 2.0%)
SEND-SEGMENT. . .. ..ot viniieenrnnnnnnn. 64 ( 0.0%)
TEST-COUNT. . ..ttt cieiiennnes 8 ( 0.0%)
D8 15 128 ( 0.1%)
11 1 > 7,956 ( 5.8%)
L 20 - R 136,502 (100.0%)
operations per instruction 5.7
segment size profile

5 S 64 ( 1.7%)
SN 129 ( 3.5%)
B 153 ( 4.2%)
B e e e e 193 ( 5.2%)
- 3 499 ( 13.5%)
T et e e e e 65 ( 1.8%)
- 0 442 ( 12.0%)
D e e e e e 258 ( 7.0%)
10 e e e 1,741 ( 47.3%)
2 1 ( 0.0%)



14, e e e 128 ( 3.5%)

2D e e i e e 10 (. 0.3%)
total...... ... e 3,683 (100.0%)
average segment size 8.4

segment age profile

T 1 301 ( 9.6%)
b 204 ( 6.5%)
3 T N 1,455 ( 46.2%)
o1 B - 301 ( 9.6%)
1207256, i it 285 ( 9.1%)
DLy -3 B 75 ( 2.4%)
B13-1,024. .0ttt it it e 180 ( 5.7%)
1,026-2,048. ... ..iiriit ittt 113 ( 3.6%)
2,080-4,006. ... ..ottt 216 ( 6.9%)
4,007-8,102. ittt 18 ( 0.6%)
8,193-16,384. . .0ttt 1 ( 0.0%)
£ 23 2N O O 3,149 (100.0%)

last tick at 12,444

simulation time: 50 seconds

B.6 N-Body Simulation (10 Bodies)

12 June 1990 1:12:04pm n-body-10-1000 PiSim version 0.1

task type profile

ADD-ACCELERATION...........covuvuun.. 90,000 ( 50.0%)
INITIALIZE-SYSTEM. ... ..ovniiivnninnnnnns 1 ( 0.0%)
REPLY-VALUE. ... .coiiiti i iiieineinennns 10 ( 0.0%)
START-BODY . ..o vvitiiieiie i, 10 ( 0.0%)
START-INTERACTION..........ovvvrnnnnnn. 45 ( 0.0%)
UPDATE-POSITION. .....ovvuvnennnnnn.. 90,000 ( 50.0%)
WRITE-INTERACTION-LOCATION.............. 90 ( 0.0%)
873 - R 180,156 (100.0%)
task status profile

NEW. o ittt et e 180,156 ( 74.7%)
WAITING. oot eetiee ittt iee e 61,086 ( 25.3%)
BOtAL. L it i 241,242 (100.0%)
task run time profile

LT - 10 ( 0.0%)
1732, ittt e e 180,090 (100.0%)
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2,049-4,096. ... et 1 ( 0.0%)
B5,537-131,072. 0 cverereeneneeonnnneennns 39 ( 0.0%)
131,073-262,144 . . ..o vienvti e 6 ( 0.0%)
262,145-524,288. .. ... .uiireii e 10 ( 0.0%)
BOLAL. e et ie et 180,156 (100.0%)
task wait time profile

o AU AP PR 101,644 ( 56.4%)
PR OO 4 ( 0.0%)
3R 1,994 ( 1.1%)
B e e 385 ( 0.2%)
3 - PP 4,017 ( 2.2%)
- Y - S AP 1,822 ( 1.0%)
E 2 .U PN 5,218 ( 2.9%)
33764, .ttt 14,020 ( 7.8%)
BE=128. .ttt 17,019 ( 9.4%)
129256, vttt it 26,986 ( 15.0%)
D15y 4505 b~ SO 6,992 ( 3.9%)
524,289-1,048,576. ...ccvvneeeeneenneeens 56 ( 0.0%)
BOBAL. ottt it 180,156 (100.0%)
instruction type profile

ADJUST=COUNT . ot ee e ieineaanann 100,000 ( 4.9%)
ANOTHER-NODE-ID. .. .. erienrearnnannennn 10 ( 0.0%)
ATTRIBUTE. .ot itieiieeennaaenonnsnnns 190 (. 0.0%)
BRANCH-NOT-MINUS. . .....0ivvrernurnnnnnens 1 ( 0.0%)
BRANCH-NOT-ZEROD. . ..o vvvverennoonsen 246,264 ( 12.1%)
CREATE-READ-WRITE-SEGMENT............... 22 ( 0.0%)
DESTROY-SEGMENT. .. .. voviereenenenss 180,178 ( 8.9%)
EXPONENT. .o oiiveiieneieenannsannen 45,000 ( 2.2%)
INITIALIZE. oo ieeeiereranencncnens 30,078 ( 1.5%)
MINUS. .ot ietieit i ieeenennaonnes 141,063 ( 7.0%)
MOVE . ottt it ittt s ennancanaens 180,380 ( 8.9%)
PLUS. .ttt it it ittt 410,163 ( 20.2%)
PRINT-USER. ... otivrrinnrnennreonsnenns 220 ( 0.0%)
RANDOM. oo vt i i iieieeieiieieeenansaannns 20 ( 0.0%)
1<) 2411 IO 180,224 ( 8.9%)
TEST=COUNT. it ieeeeenneaennesns 20,000 ( 1.0%)
TIMES . ottt r it e it intenanerennenn 495,090 ( 24.4%)
BOEAL . ettt it e 2,028,903 (100.0%)
instructions per messages 11.3
instructions per task 11.3
instructions run length 8.4
operation type profile

ADJUST=COUNT. . .\t einrnianannnns 100,000 ( 0.8%)
ANOTHER-NODE-ID. ... .covvirieenrannnnoens 56 ( 0.0%)
ATTRIBUTE. ..ttt ieiieeinenneaaenaenons 190 ( 0.0%)
BRANCH-NOT-MINUS.....ovvireeennennnnnnns 1 ( 0.0%)
BRANCH-NOT-ZERO. .. ..covvvreennnnnnn 246,264 ( 1.9%)
COMPARE . .ottt iinieinrnrnanannnns 235,064 ( 1.8%)
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CREATE-READ-WRITE-SEGMENT............... 22 ( 0.0%)
DESTROY-SEGMENT . ... .vvuevrnnnnnenn. 180,178 ( 1.4%)
EXPONENT. vt vt e ceieeeeeinnanannnns 45,000 ( 0.4%)
2. 111 J P 90,047 ( 0.7%)
(1) 2 JA R 1,200 ( 0.0%)
NODE=ID. . .o teveeeeennennnnennsenenons 100 ( 0.0%)
PLUS. .ottt iitiit it teie e 410,163 ( 3.2%)
PRINT=USER. ..o vvvrvinrrernnnnennnnneans 220 ( 0.0%)
RANDOM. .\ttt ettt i tieee e ieiaacnennns 20 ( 0.0%)
READ . ittt e eme e iieieanaenns 4,376,106 ( 34.4%)
1<) 24 ) 5,077,747 ( 40.0%)
SEND . v vt etieie it 180,155 ( 1.4%)
TEST—COUNT . ..ottt it eneeneinanannnns 20,000 ( 0.2%)
TIMES . ¢ et ie e teeeenennnanaaaenanns 495,090 ( 3.9%)
WRITE. . it iieiriinnneanaaannnnnn 1,250,809 ( 9.8%)
BOBAL . ettt 12,708,432 (100.0%)
operations per instruction 6.3
segment size profile

Bttt ettt e 90,010 ( 50.0%)
SO 90,000 ( 50.0%)
= J PP 110 ( 0.1%)
E (o TGP 2 ( 0.0%)
5 RO 1 ( 0.0%)
5 €= TS U PO 10 ( 0.0%)
23ttt et e 45 (. 0.0%)
S T3 7-% RN AP 180,178 (100.0%)
average segment size 6.5

segment age profile

17832, ittt i 108,053 ( 60.0%)
3364 . ottt 8,045 ( 4.5%)
=128 . ittt 25,020 ( 13.9%)
120=256. . ittt 25,997 ( 14.4%)
1y 8 -3 b S 12,985 ( T7.2%)
2,089-4,096 . ..ttt 3 ( 0.0%)
524,289-1,048,576. .. .cuuenrenerancnnenns 76 ( 0.0%)
873 - AU 180,178 (100.0%)

last tick at 851,237

simulation time: 1 hour 10 minutes 57 seconds

B.7 N-Body Simulation (100 Bodies)
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12 June 1990 3:16:48pm n-body-100-10 PiSim version 0.1

task type profile

ADD-ACCELERATION. ... ..cvvivernnnnnn. 99,000 ( 46.5%)
INITIALIZE-SYSTEM. ..ot irinrinnnnacannn 1 ( 0.0%)
REPLY-VALUE. ..ottt iiinineereecnnnanns 100 ( 0.0%)
START-BODY. ..o virininreeannnnnns .....100 ( 0.0%)
START-INTERACTION. ......c0vvuneuunannn 4,950 ( 2.3%)
UPDATE-POSITION. ....cvvveirnnnnnnnns 99,000 ( 46.5%)
WRITE-INTERACTION-LOCATION........... 9,900 ( 4.6%)
BOBAL . e v e ettt 213,051 (100.0%)
task status profile

HEW. « ot tet e ieitieieeuananaananns 213,051 ( 74.9%)
WAITING. .ottt ie it ieeieeenaeaanoans 71,324 ( 25.1%)
BOtAL. it 284,375 (100.0%)
task run time profile

= T - A N 100 ( 0.0%)
S £ 207,900 ( 97.6%)
1,025-2,048 . ... iiiii i 4,950 ( 2.3%)
16,385-32,768. . uueiirnnneinnnnnnaeenns 100 ( 0.0%)
131,073-262,144 . ...t vii ittt 1 ( 0.0%)
T3 - NN 213,051 (100.0%)
task wait time profile

o YOO AN 36,647 ( 17.2%)
S (PR A 196 ( 0.1%)
2 et ettt 174 ( 0.1%)
Bod e e et e 342 (. 0.2%)
- UG PP 956 ( 0.4%)
T - SO 2,255 ( 1.1%)
1732 ettt e et 2,669 ( 1.2%)
B3-B4. it et 3,931 ( 1.8%)
BE=128. vttt 7,697 ( 3.6%)
120256 . sttt 6,706 ( 3.1%)
1Y £ -3 P 6,717 ( 3.2%)
B13-1,028. . uiin i 12,5629 ( 5.9%)
1,025-2,048. ..t 39,767 ( 18.7%)
2,089-4,096. ...ttt 48,520 ( 22.8%)
4,097T-8,192. . ouritiirn s 32,736 ( 15.4%)
8,193-16,384. .. ...iiiiiianiaenianaenn 5,883 ( 2.8%)
16,385-32,T68. . oviieeennrennreennennns 24 ( 0.0%)
32,769-65,536. . ...ttt 73 (. 0.0%)
65,537-131,072. . i iiie e 132 (. 0.1%)
131,073-262,144 . .. oot ii et 57 ( 0.0%)
262,145-524,288. ... ..irinrnannneaen 4,979 ( 2.3%)
524,289-1,048,576. .. cccvreeenannenann, 71 (. 0.0%)
BOLAL. ettt et 213,051 (100.0%)
instruction type profile

ADJUST-COUNT. . ..ot it ii it iieienannn 100,000 ( 4.5%)
ANOTHER-NODE-ID. ... .0vverneernneeennnans 100 ( 0.0%)



ATTRIBUTE. .« ot e tevmcnacrorrnonnnnas 19,900 ( 0.9%)
BRANCH-NOT-MINUS. ... coceereeruronnnaonns 1 ( 0.0%)
BRANCH-ROT-ZERD. ... .cocvucvrnennnns 254,661 ( 11.3%)
CREATE-READ-WRITE-SEGMENT.............. 202 ( 0.0%)
DESTROY-SEGMENT . ... v vveernvnnennnns 213,253 ( 9.5%)
EXPONENT. . v o covveennenecennnnnnnenns 49,500 ( 2.2%)
INITIALIZE. « ot o v vveeeeeonnoenannnenns 8,253 ( 0.4%)
MINUS . o et e et ieennraaensnnanassns 170,765 ( 7.6%)
MOVE . ot ee et innenasacnenonnnnes 237,800 ( 10.6%)
PLUS . ot eeeeeiaeeenasaanennnennnnn 416,148 ( 18.5%)
PRINT-USER. ..t vvevncnnenscnsnansnsansens 2 ( 0.0%4)
BANDOM . v v voeeemaniaeonoeeneernnnnanns 200 ( 0.0%)
SEND . o v o veevenrnrneararoenaareae 216,560 ( 9.7%)
TEST=COUNT . . e v eeeeevnensnnsnnennnes 2,000 ( 0.1%)
TIMES . oo e e ve s vesaanacsssnnsnnnnas 554,400 ( 24.7%)
BOBAL. o e ettt 2,243,745 (100.0%)
instructions per messages 10.5
instructions per task 10.5
instructions run length 7.9
operation type profile

ADJUST=COUNT. . ot eeee e racnnsnnns 100,000 ( 0.7%)
ANOTHER-NODE=ID....0cvevenerornnnnnns 5,052 ( 0.0%)
ATTRIBUTE. o vt vt veeieeeenarnnnnnnnns 19,900 ( 0.1%)
BRANCH-NOT-MINUS. ..\ vivrnervronnnnonnses 1 ( 0.0%)
BRANCH-NOT-ZERO. .. ..vvevvnvnnnnnnns 254,661 ( 1.8%)
COMPARE. . ot o i iieeiecnncoccnonnnnn 253,649 ( 1.8Y%)
CREATE-READ-WRITE-SEGMENT.............. 202 ( 0.0%)
DESTROY-SEGMENT . ..o veveenncnrnnns 213,253 ( 1.5%)
EXPONENT . .o e coveeeeennecencnnenns 49,500 ( 0.3%)
MINUS . .ot eee v tenenaneencanannannns 103,952 ( 0.7%)
MOD . sttt et 12 (. 0.0%)
NODE-ID. . e v oo enneneanasnnnenncnanns 10,000 ( 0.1%)
PLUS . .ot teiieinesneesenacnnnnnans 416,148 ( 2.9%)
PRINT=USER. ... cvovoerecencnsonscnnanronsss 2 ( 0.0%)
RANDOM. « ot ees v it iiaennnnsaeannanns 200 ( 0.0%)
READ . ot v eetinveaanenennsannnan 4,956,243 ( 34.9%)
SELF . o et etee i et 5,685,447 ( 40.0%)
SEND . oot evevsrennsnonasansnnannans 213,050 ( 1.5%)
TEST=COUNT. « o v venveraeecasasnnnnenns 2,000 ( 0.0%)
TIMES . « oo vevenvennanaocneennunnns 554,400 ( 3.9%)
170 & ¢ > 1,370,554 ( 9.6%)
BOBAL. . oot nna e 14,208,226 (100.0%)
operations per instruction 6.3

segment size profile

B ettt 99,100 ( 46.5%)
T e e e 99,000 ( 46.4%)
=Y AU 9,900 ( 4.6%)
1 [Tt 1 ( 0.0%)



5 L= SRS AU 100 ( 0.0%)
23ttt it e 4,950 ( 2.3%)
=T 2 AU U P 200 ( 0.1%)
(010 AU R 2 ( 0.0%)
BOBAL. ettt e e 213,253 (100.0%)
average segment size 7.1

segment age profile

£ . 39,430 ( 18.5%)
B3B8, . ittt et 5,300 ( 2.5%)
BB=128. .ttt 7,582 ( 3.6%)
129256 . .ttt ittt 8,461 ( 4.0%)
P2-Y £ -3 b SO N 7,057 ( 3.3%)
B13-1,024. ..ttt 12,275 ( 5.8%)
1,025-2,048. .. ..uiiiieiananaaans 39,674 ( 18.6%)
2,089-4,006. ...ttt 48,985 ( 23.0%)
4,097-8,192. ottt 33,014 ( 15.5%)
8,103-16,384.....0viiiiiiaaaaaaan 5,936 ( 2.8%)
16,385-32,768. . uvutiiinrrernrnnenenanens 24 ( 0.0%)
32,769-65,536. .. .0uiierrrnnnie e, 73 ( 0.0%)
65,537-131,072. ¢ 0o irieiinrnnenanenannns 132 (. 0.1%)
131,073-262,144 . .0 oieein e 60 ( 0.0%)
262,145-524,288. .. ...ttt 4,871 ( 2.3%)
524,289-1,048,576. .. vuvrerinrnninannnnn 379 ( 0.2%)
BOtAL. ettt i, 213,253 (100.0%)

last tick at 559,691

simulation time: 2 hours 27 minutes 34 seconds

B.8 Relaxation

12 June 1990 0:56:52pm relax-100 PiSim version 0.1

task type profile

RELAK . .ttt ittt inine e e aeneananaans 1 ( 0.0%)
REPLY-VALUE. ..ottt iieiieeieennnnnnns 100 ( 0.3%)
START-ELEMENT. . .....ovtiriniiennnnnnnn 100 ( 0.3%)
UPDATE-TEMP. ..t o it ieeiiernnennnnan 36,000 ( 99.4%)
BOBAL. t ettt et 36,201 (100.0%)
task status profile

24 AP 36,201 ( 62.1%)
WAITING. .. ie it ieie it inienenennns 22,110 ( 37.9%)
7 - e 58,311 (100.0%)



task run time profile

T 1< e 100
B 0 365,965
3364 . . it ittt e e 15
B5-128. .. ittt it e i i e 17
129-266. . ittt iiner it it e 3
4,007-8,192. ... ittt it 24
8,193-16,384. ... ... ittt 77
total. .. it i ettt e i e 36,201

.3%)
.3%)
.0%)
.0%)
.0%)
%)
.2%)
.0%)

o 7,923
T 190
I TS 295
I T 517
T < 2 1,324
£ L 1 S T 2,394
17-32. i e e e 3,122
33-64. ... e i e e 4,181
B5-128. ... . i i i e i 5,896
129-266. .. ittt e i e 6,379
2B7-B12. .. i i e 3,795
B13-1,024. . ... i i i it 87
1,025-2,048. .. ...ttt 27
16,385-32,768. .. .....iitiiiireanaanans 100
32,769-65,5836. ... . ittt 1
7 2= 36,201

.9%)
.5%)
.8%)
.4%)
LT
.6%)
.6%)
.5%)
.3%)
.6%)
.5%)
.2%)
L1%)
.3%)
.0%)
.0%)

instruction type profile

ATTRIBUTE. . ittt ienetentnenneaanenss 440 ( 0.1%)
BRANCH-MINUS.....ooiiurennnnnnnnnnns 10,200 ( 3.3%)
BRANCH-NOT-MINUS......civirrnrnnnenenns 110 ( 0.0%)
BRANCH-NOT-ZERD. .....c0vvvennnnnnnns 36,447 ( 11.9%)
BRANCH-ZERD. .. oo iiv e in i iiencannnnnn 40,247 ( 13.2%)
CREATE-ASSOCIATIVE-SEGMENT.............. 64 ( 0.0%)
CREATE-READ-WRITE-SEGMENT.........c0nuu.. 1 ( 0.0%)
DESTROY-SEGMENT. . ....coviriennnennn 36,202 ( 11.8%)
DIVIDE. .. 'vveenrnrnenrrncennnnennnns 10,000 ( 3.3%)
INITIALIZE. . o io ittt et inenananannns 281 ( 0.1%)
INSERT . v oot eeie e iteeteseenannasnans 100 ( 0.0%)
MATCH . . oottt ieeeineennennannens 36,201 ( .8%)
MINUS . . ovtteee ittt eaaaeannennnns 211 ( 0.1%)
2 (0)» OO 500 ( 0.2%)
MOVE . .ttt iie ittt iie e ennennnes 44,432 ( 14.5%)
PLUS. ittt irieeiteeeaeeaneanens 53,975 ( 17.6%)
PRINT-USER. ..ot v iieieiincienanannnnns 113 ( 0.0%)
1] 24, | U 36,200 ( 11.8%)
SUSPEND . . ottt iiitiereinnanananeanenns 147 ( 0.0%)
TIMES . i vttt tee vt ittt ie et enenaanns 2 ( 0.0%)
8% 2= Y8 e 305,873 ( .0%)
instructions per messages 8.4
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instructions per task 8.4

instructions run length 5.2

operation type profile

ATTRIBUTE . .« c vt v tvereennraannnsnnennnns 440 ( 0.0%)
BRANCH-MINUS. ... oot virernneennnonnnn 10,200 ( 0.6%)
BRANCH-NOT-MINUS......cvvievurennnncnns 110 ( 0.0%)
BRANCH-NOT-ZERO. ... .0 cuveenunnennns 36,447 ( 2.2%)
BRANCH=ZERD. ..t eevvnernaonocnnnns 40,247 ( 2.5%)
COMPARE. . ..o itievrineeacracncnnonns 86,547 ( 5.3%)
CREATE-ASSOCIATIVE-SEGMENT.............. 64 ( 0.0%)
CREATE-READ-WRITE-SEGMENT. .......ovvvnnnn 1 ( 0.0%)
DESTROY-SEGMENT. . ....oovvveenrecnnns 36,202 ( 2.2%)
DIVIDE . .t s oo e eseenenananasnsnoes 10,000 ( 0.6%)
INSERT . c oot oeeetninnernasanacssosnenens 100 ( 0.0%)
MATCH . oot e eeeene e iie e enanaaanans 36,147 ( 2.2%)
MINUS . oottt iie it anaearsnenaneanns 411 ( 0.0%)
(6] + PP RIS 800 ( 0.0%)
HODALS . .ttt ieieieienensenncnnans 36,465 ( 2.2%)
NODE-ID . . o sctie i inraecananasoceansens 100 (. 0.0%)
PLUS . st et eeee ittt ereenaaaaneeenas 40,400 ( 2.5%)
PRINT-USER. ..o evvrireernenananonnennnns 111 ( 0.0%)
PROBE. .ot ve e ie s inneeneonanansnnnns 100 ( 0.0%)
READ . .ottt evieernneeaconasnseannnn 512,826 ( 31.5%)
=1 24 1h 23U 614,335 ( 37.7%)
15300, 11 7N 36,200 ( 2.2%)
SUSPEND . . ot v et e e ineaneensnesnsanens 147 (. 0.0%)
TIMES . oot ettt tenenenannennessensononns 112 ( 0.0%)
WRITE. . oo oete it inenrnanacacncnones 132,038 ( 8.1%)
BOBAL. oo v treinereneeen s 1,630,550 (100.0%)
operations per instruction 5.3

segment size profile

2 e e e 64 ( 0.2%)
B ettt e e e 100 ( 0.3%)
T e e e 36,000 ( 99.3%)
Bttt et e i e 1 ( 0.0%)
3 IR 100 ( 0.3%)
100 . o et et e et 1 0.0%)
BOBAL. e vttt e 36,266 (100.0%)
average segment size 7.0

segment age profile

1B s ettt it e 4 ( 0.0%)
2 U 11,427 ( 31.6%)
B384, ottt it e 5,991 ( 16.5%)
BE=128 . ittt it 6,521 ( 18.0%)
120=256 . ottt ettt 7,015 ( 19.4%)
1Y £ -3 b N 5,045 ( 13.9%)
B13-1,024. . .0 vtinerrnnannoacnncarnenans 65 ( 0.2%)
1,025-2,048. .0 ucerire i 32 ( 0.1%)
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