Technical Report 1248

~ Concurrent Aggregates (CA):
An Object-Oriented
Language for
Fine-Grained
Message-Passing
Machines

Andrew Andai Chien

MIT Artificial Intelligence Laboratory

Tius blank page was inserted to preserve pagination.

Concurrent Aggregates (CA):
An Object-Oriented Language for Fine-Grained
Message-Passing Machines
by
Andrew Andai Chien

Submitted to the Department of Electrical Engineering and Computer Science
on May 22, 1990, in partial fulfillment of the
requirements for the degree of
Doctor of Science

Abstract

Fine-grained parallel machines exhibit great potential for high speed computation. Several
machines such as the J-machine [42] and the Mosaic C [13] are projected to provide peak
performance of 100’s of billions of instructions per second in an air-cooled computer that fits
in a cubic meter. While the hardware technology to build fine-grained machines is available,
significant challenges remain in developing software systems to harness their computational
power.

To program massively-concurrent MIMD machines, programmers need tools for manag-
ing complexity. One important tool used in the sequential programming world is hierarchies
of abstractions. Unfortunately, most concurrent object-oriented languages construct hier-
archical abstractions from objects that serialize — serializing the abstractions. In machines
with tens of thousands of processors, this unnecessary serialization can cause significant
loss of concurrency. Tools for managing concurrency should not restrict or reduce program
concurrency.

Concurrent Aggregates (CA) provides multiple-access data abstraction tools, Aggregates,
for managing program complexity. These tools can be used to implement abstractions with
virtually unlimited potential for concurrency. Such tools allow programmers to modularize
programs without reducing concurrency. These aggregates can be composed hierarchies of
abstractions, allowing the structuring of a program to be highly concurrent at all levels.

In this thesis I describe the design and motivation of the Concurrent Aggregates lan-
guage. I have used this language to construct a number of application programs. I present
this programming experience with Concurrent Aggregates. Multi-access data abstractions
are found to be useful for structuring applications without restricting concurrency. The
tools provided to build such abstractions in CA allow the expression of a number of dif-
ferent styles of concurrency, including both data and control parallelism. I also present
experience with the implementation of Concurrent Aggregates. A detailed evaluation of the
efficiency of Concurrent Aggregates and the potential for further improving that efficiency
is presented.

Thesis Supervisor: William J. Dally
Title: Associate Professor, EECS

iii

Acknowledgments

I am especially thankful to my thesis advisor, Bill Dally, whose can-do spirit and
enthusiasm have made the CVA Group a fun place to work. His encouragement and
support of my research over the past three years is greatly appreciated. Bill’s careful
reading and comments have greatly improved this thesis. Thanks also to my other
thesis readers, Bill Weihl and Dave Gifford, who have given me good advice (on
many topics), support, and critical feedback throughout my thesis project. My thesis
advisors, Bill Dally, Arvind, and Jim Melcher, have each in their own way helped me
to learn what research is all about.

I would also like to thank Linda Chao, Stuart Fiske, Waldemar Horwat, John
Keen, Jerry Larivee, Rich Lethin, Mike Noakes, Peter Nuth, Paul Song, Brian Totty,
Deborah Wallach, Scott Wills, and the other members of the CVA Group and Com-
puter Architecture Group for making the sixth floor an exciting place to learn. Your
die hard attitudes and fun-loving spirit have made working here great fun.

Thanks also to the many friends who have provided kindly distraction from the
seemingly never ending work at hand. In particular, I thank Julia Bernard, Gino
Maa, Ken Traub, Earl Waldin, the Chaos Nets (you know who you are), and the
members of the CSC-A Volleyball team.

My family have been a source of endless support and encouragement. I am in-
debted to my father who at an early age filled me with the joy of exploration and
discovery, and my mother who suffered through its occasionally destructive conse-
quences. Thanks Mom, Emily, Tony and Steve for your love, concern, encouragement,
and confidence in me.

I cannot begin to express my joy and appreciation for the love and encouragement
a special friend, Ellen. Thanks for hanging in through all those late nights in the lab!

Most of all, I give thanks to God for giving me the ability, perseverance and
opportunity to complete this work.

Contents

1 Introduction

1.1 Original Results. o 0 v it v ittt e i e e e e e e et e s
1.2 Multi-access Data Abstractions i e
1.3 Thesis Overview i i i it i it e e e e e e e
Background
2.1 Fine-Grained Concurrent Computers« v v v v v v v o v v v v
2.2 Concurrent Object-Oriented Programming
2.2.1 Why Object-Oriented Programming?
2.2.2 Language Background,
2.3 Other Related Programming Work
2.3.1 Functional Programming
2.3.2 Systolic ATTAYS . . v v v v v v v vt e e e e e e e e e e e e e
2.3.3 SIMD Programming Languages
2.3.4 CANTOR: a Programming Language for the MosaicC.

Concurrent Aggregates

3.1 ABriefExample i e e e e e e
32 CAlLanguageElementst eenneenennn
321 ExecutionModel oL,
322 Elementsttt e e
33 Language SyntaX v i i it it e e e e e e e e e e e

-
v

10
10
10
11

11

13

X CONTENTS
3.3.1 Program Structure: Classes and Aggregates 23
3.3.2 Basic Expressions: Method and Handler Bodies 26
3.3.3 First Class Continuations: Systemand User 29
334 First Class Messages o v v v v v v i o v v vt o a oo o oo 30
335 Globals i it i e e e e e 31
3.3.6 PrimitiveClasses i ittt i e 31

3.4 Design Issues in Concurrent Aggregates 32
3.4.1 Non-serializing Data Abstractions 32
3.4.2 Messages to only one representative 34
3.4.3 Aggregates of Identically Structured Objects 35
3.4.4 TUnified Object and Aggregate Model 36
3.4.5 Method-Oriented Object Description 37
3.4.6 First Class Continuations and User Continuations 37
34.7 First Class Messages v v v v v v vt v vt vt v v v v v e aa 41

35 SUMIMATY . . v v v v i it e et et e e e e e e e e e e 43

4 Language Evaluation 45

4.1 Application Studies. e e e e 46
4.1.1 Matrix Multiplication 0000 46
4.1.2 Multigrid Solver i e e e e 50
4.1.3 N-body Interaction Simulation 54
414 Parallel FIFO Queue v« vt v vt bt it v et o e o v 60
4.1.5 Printed Circuit Board Router 63
41.6 Concurrent B-tree i, 66
4.1.7 LogicSimulator. it i i it i 70

4.2 Evaluation of the Language 74
4.2.1 Non-serializing data abstractions 74

CONTENTS
4.2.2 Program Modularity oo,
4.2.3 Program Concurrencyo v v v v v v v v v v v v v oo
424 Program Efficiency i i e e e
4.2.5 Evaluation of other interesting language features
43 SUmMMAIY . . v v v v et v o o o o b et b i e e e e e e e e

5 Implementation Issues

51 Basic Runtime Support v i it i e
5.2 Supporting First Class Continuations and Messages
5.2.1 First Class Continuations
52.2 First Class Messages v v v it v vt vt vttt en v oo
5.3 Supporting Aggregateso i i it e e e e e e
5.3.1 A Spectrum of Implementations
5.3.2 Examining Aggregate to Representative Translation
5.4 Improving the Implementation of Concurrent Aggregates.
5.4.1 Aggregate Interface Optimizations
5.4.2 Locking Optimizationt
5.4.3 General Optimizations« . v v v v v v v vt vttt
5.4.4 Summary of Optimization Improvement
BB SUINIMATY . ¢ v v v v v v v v v it e e s e oo it o s et ae e s o a s e e

6 Conclusion
6.1 Summary of Present Work
6.2 Future Work ¢ i i i i i it it et e e e e e e e e

A Program Examples
A.1 Examples of Novel CAFeaturest

A.1l.1 Using First Class Messagest ot v v v v e v v,

76
77
81
85
86

89
89
90
90
94
99
100
102
106
106
112
113
115

115

117
117
119

131

List of Figures

1.1

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

3.9

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

4.9

Maximum Message Rates in Abstraction Hierarchies 4
A Simple Counters Aggregate 16
The Counters Aggregate: a set of countingbins 17
A Computation in Concurrent Aggregates 18
An Object Executing Messages ¢ ¢ v v v v v v v v v v v vt v oue o 19
Aggregate to Sibling Translation 22
Message Handling and Delegation 26
Different Aggregate Message Reception Schemes 34
Evolution of a Program to Greater Concurrency: replacing object A with an

Y4 = .. 36
Message duplication in a Fan-out Tree 42
Matrix Multiply in Concurrent Aggregates 48
Basic Matrix Operations v i i i it i i i i e 49
The Multigrid Algorithm 50
The Multigrid Algorithm in Concurrent Aggregates 51
Interfaces for the Grid Abstraction 52
The Code for a Grid abstraction 53
The code for a Top_Grid abstraction 54
Bodies interacting via gravity. oo oo 55
The Bodies and Interactions Abstractions 56

xiii

4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25

4.26

5.1

5.2

5.3
5.4
5.5
5.6

5.7

LIST OF FIGURES

Accumulating Forces on a Body: Linear Reduction 57
Accumulating Forces on a Body: Using a Combining Tree 57
A Dynamic Combining Treeof size 16 58
An Implementation of a Dynamic Combining Tree 59
The Parallel Queue Abstraction, 61
Using A*searchtofindapath 64
TwoConvergent Paths 65

The Hierarchy of Abstractions used to implement the Net Abstraction . .. 66

Hash Table Program« v v i it i i it i et e n e e o e 67
AConcurrent B-tree i e e e e 68
ALogic Simulator 70
Local Consistency in a Parallel Priority Queue 71
Construction of a Dynamic Broadcast Tree 73
Program Statistics using the Idealized Message Passing Model 78
Program Statistics using the Bounded Resource Message Passing Model . . 80
A Simple Shared-memory Model 82
Comparison of Message Counts for Multigrid 84

A Tree of Concurrent Activation Frames. All of the frames shown may be
active concurrently. All arrows shown are return links. 92

Fanning out a Partial application for a Data Parallel Operation: Each tree
node is on a separate processor. Objects with the same shading are on the

samenode. L. L e e e e e e e e e e e e e e e 95
Copying maintains Message Referencesaslocal. 95
Code for A Message Quetie ¢ vt v i vt v v ittt v oo oann 97
Spectrum of Aggregate Naming Implementations 100
A Generic Scheme for Supporting Dynamic Translation 102

Updating a Cache for an Aggregate Interface Miss 103

LIST OF FIGURES xv

5.8 An Operation on a Concurrent Array. vttt v v v v e .. 107
5.9 CodeforaConcurrent ATTAY« v v v v v v v o vt o e o v o o s o s 107
5.10 Compiling Indexing Code intothe Caller 108
A.1 An aggregate operation —movebodies 0L, 131
A.2 Abstract Implementation of operations on a Collection 132
A.3 Codefor a Future Object 134
A.4 A Barrier Synchronization Object 135
A5 A Race object for speculative concurrency o oo 136
A6 Parallel FIFO Queue v v i v vt v vt e ot oo ot e o e oot v oas 137
A.7 Structure of the Parallel FIFO Queue 0eo.. 138
A.8 A Parallel Queue Interface Aggregate. 139
A9 A Dynamic Combining Tree it i v 141
A.10 Building Tree of Continuations in Dynamic Combining Tree 142

A.11 Continuation Struct code maps a range of indices to the tree of request
continuations. The tree structure determines which request gets which index. 143

A.12 A FIFO counter object that manages the array as a circular FIFO. Part I of
thecode.. i i i i e e e e e e 145

A.13 A FIFO counter object’s reclamation code. Part IT of the code. 146

A.14 An Array Aggregate called pvector that synchronizes readers and writers.
Locations are write-once, read-once and must bereset. 148

A.15 Some code to use the parallel queue. 149

List of Tables

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

Usage of First Class Messages« v v v v v v vt vt v et e e e e e 98
Aggregate Interface Cache Simulations 104
Intra-Aggregate Addressing (indexing) Cache Simulations 105
Cache Sizes for Aggregate Naming Translations 105
Messages Eliminated by Aggregate Interface Optimization 112
Spin-Locking Overheadt eennenen. 113
Improvement Due to General Optimizations 114
Summary of Optimization Statistics 115

xvii

Chapter 1

Introduction

Since the early 1980’s, much has been written on the impact of VLSI and the impending
revolution of parallel computing. It is currently possible to purchase integrated circuits with
1-4 million devices, yet massively parallel computer systems (with a few notable exceptions
[93, 78]) have not had widespread impact. The dream of exceeding the performance of a
CRAY [82] with an army of microprocessors has not yet been realized.

The major impediment to widespread use of massively concurrent machines is the lack
of general-purpose programming systems. The development of circuit technology and our
ability to design complex chips have both progressed quite rapidly. In contrast, our ability
to program these machines has progressed much more slowly. Thus, their impact has
been limited by the difficulty in developing effective programming systems. By almost any
measure, massively parallel MIMD machines remain difficult to program.

Programmers of concurrent machines need tools for managing complexity. One impor-
tant tool that has been used in the sequential programming world is hierarchies of ab-
stractions. Unfortunately, most concurrent object-oriented languages construct hierarchical
abstractions from objects that serialize — serializing the abstractions. In machines with
tens of thousands of processors, unnecessary serialization of this sort can cause significant
loss of concurrency. Tools for managing concurrency should not restrict or reduce program
concurrency.

Concurrent Aggregates (CA) provides multiple-access data abstraction tools, aggregates,
for managing program complexity. A multiple-access data abstraction is an abstraction
with a well-defined message interface that can also process many messages simultaneously.
Aggregates can be used to implement abstractions with virtually unlimited potential for
concurrency. Such tools allow programmers to modularize programs without reducing con-
currency. These aggregates can be composed to form hierarchies of abstractions, allowing
the structuring of a program to be highly concurrent at all levels. CA supports expression
of both control and data parallelism in programs.

2 CHAPTER 1. INTRODUCTION

My thesis is that multiple-access data abstractions can be used to manage the complexity
of programming massively concurrent ensembles of processors [42, 13]. I call these multiple-
access data abstractions Concurrent Aggregates. I have designed a programming language,
also called Concurrent Aggregates, to explore this thesis. I examine motivation for the
language’s design and experience with its implementation and use.

To evaluate the programming language, I wrote a number of significant application
programs. I present the performance of these application programs on fine-grained message-
passing machines. In addition, I describe our programming experience: how features were
used and how useful they were. Finally, I consider the efficiency improvement possible
through better compilation and minor language changes in Concurrent Aggregates.

1.1 Original Results

The following results are the major original contributions of this thesis:

o The design of a language that incorporates multi-access (non-serializing) abstraction
tools as its focus. We demonstrate how these multi-access abstractions can be used
to organize programs, to implement massively concurrent data abstractions and data-
parallel collections.

o The design of a language that allows programmers to explicitly manage consistency
and replication within the programming model. This capability is used to implement
abstractions ranging from strongly consistent to loosely consistent to inconsistent with
a single set of mechanisms.

o The integration of first class continuations and user-defined continuations in a con-
current programming language. First class continuations are shown to be useful in
improving program efficiency. The utility of user continuations is demonstrated with
synchronization abstractions that suggest an efficient way to compose concurrent pro-
grams.

o The utility of first class messages is demonstrated. They can be used to implement
meta-programs. In addition, they can be used as partial applications — allowing
efficient support of SIMD concurrency or data parallelism in a multiple control flow
language.

e Development of a novel type of delegation that allows message interfaces to be con-
structed incrementally from a number of other message interfaces (abstractions). This
form of delegation allows the same interface to be constructed from shorter delegation
chains.

¢ Programming evaluation of Concurrent Aggregates showing how these novel features
can be used in real application programs.

1.2. MULTI-ACCESS DATA ABSTRACTIONS 3

¢ Implementation evaluation of Concurrent Aggregates programs. These studies show
that highly concurrent programs can be expressed. A number of interesting charac-
teristics of these programs are presented.

o Analysis of the achievable effiency of a Concurrent Aggregates implementation. Care-
ful analysis shows that our original implementation can be improved by 30% to 50%.
At that level, the message traffic of Concurrent Aggregates programs appears compa-
rable to other approaches.

1.2 Multi-access Data Abstractions

Parallel programming is important because it offers a means for solving larger and more
complex problems. Several research groups are building multiprocessors with thousands
of powerful processors. The aggregate computing potential of these machines will exceed
500 billion instructions per second [42, 13]. If parallel programs can take advantage of
the massive hardware concurrency we can afford to build (and make work reliably), such
programs will be able to solve more complex problems, including many that are economically
or practically impossible to solve with existing computer systems.

We are concerned with utilizing the computing potential of large ensembles of processors.
At least two major obstacles stand between us and that goal.! First, programming should be
relatively easy — it must not be so difficult that programs take years to construct and debug.
As in large sequential programs, it must be possible to use abstraction (and hierarchies
of abstractions) to relegate details to the appropriate level in a program. In fact, the
importance of abstraction techniques is perhaps greater in parallel systems as the presence
of nondeterministic behavior can complicate debugging. Second, the language must allow us
to express sufficient concurrency to utilize the machine. In an ensemble of 10,000 — 100,000
processors, unnecessary serialization may dramatically reduce the achievable performance.?

Most concurrent object-oriented languages serialize hierarchical abstractions. This leaves
programmers with the choice of reduced concurrency or working without useful levels of ab-
straction. Going without these levels of abstraction makes programs more difficult to write,
understand, and debug.

Concurrent Aggregates allows programmers to build hierarchical abstractions without
serialization as shown in Figure 1.1. The message rates shown are normalized to the max-
imum message reception rate of a single object. CA programmers can build hierarchical
abstractions from aggregates. Each aggregate is multi-access and therefore can receive many
messages simultaneously. By using appropriately sized aggregates in the upper levels of the
hierarchy, we can increase the message rate for lower levels in the hierarchy.

!There are several others such as load balancing and concurrent I/O but we will not discuss them here.
%A simple argument based on Amdahl’s law [5] confirms this.

4 CHAPTER 1. INTRODUCTION

Message Message
Rate / Abstraction Rate / Abstraction
1.0 4.0
0.5 2.0
0.25 1.0
Serializing Abstractions Non-Serializing Abstractions

Figure 1.1: Maximum Message Rates in Abstraction Hierarchies

Concurrent Aggregates incorporates four additional important concepts that help pro-
grammers to construct abstractions from collections of objects and aggregates.

Intra-aggregate Addressing

Delegation
o First Class Messages

First Class and User-defined Continuations

Intra-aggregate addressing allows representatives of an aggregate to compute the names
of other parts of the aggregate. This facilitates cooperation in implementing abstractions
by allowing representatives to pass messages to each other conveniently. For efficient com-
munication, internal aggregate names can be used to link representatives directly to other
objects in the same or in other aggregates. Externally, the aggregate can be manipulated
with a single name — in a manner identical to an ordinary single object. This enables
aggregates and single objects to be used interchangeably.

Delegation can be used to piece together (structurally compose) one aggregate’s behavior
from the behavior of others. In CA, an aggregate can delegate the handling of one or
more messages to another aggregate. An aggregate can also delegate the handling of all
messages not handled locally to another aggregate — implementing a more traditional form
of delegation [69].

First class messages allow programmers to write message manipulation abstractions.
Such abstractions can be used to implement control structures that perform message re-

1.3. THESIS OVERVIEW 5

ordering or implement data parallel® operations on aggregates. Such aggregate operations
are an important source of concurrency in our programs.

CA treats continuations [81] as first class objects. This enables programs to code syn-
chronizing abstractions such as futures [61]. Further, ordinary objects or aggregates can
be used as continuations (assuming they handle the reply message) making it possible for
programmers to construct complex continuation structures such as a barrier. These user-
defined synchronization structures can be cleanly factored from the remainder of the pro-
gram. These four features — intra-aggregate addressing, delegation, first class messages and
first class continuations — aid a programimer in constructing complex, concurrent aggregate
behaviors.

1.3 Thesis Overview

In this thesis, we describe a language for programming fine-grained message-passing ma-
chines. We first describe the unique programming challenges presented by fine-grained
machines in Chapter 2. These challenges are described in the context of a particular ma-
chine project, the J-machine. Some care is taken to describe the hardware support for
programming systems in this machine. In addition, we summarize the related work in pro-
gramming languages and systems. In Chapter 3, we motivate and describe the design of the
Concurrent Aggregates language. Particular attention is paid to the novel features in CA,
including delegation, first class continuations, user continuations, and first class messages.
Chapter 4 documents our programming experience with Concurrent Aggregates. The struc-
ture of our application programs and particularly the use of aggregates and other novel CA
language features is described in detail. The dynamic behavior of the programs is examined
via a message-passing machine simulator. In Chapter 5, we examine implementation issues
in the Concurrent Aggregates language. The cost of novel features such as first class mes-
sages and first class continuations is shown to be quite low. Two schemes for supporting
aggregate name translation are described. Three types of compiler optimizations and their
performance impact are studied. The potential performance improvement is measured.

3This differs from the usage of the term “Data Parallel” in the context of SIMD machines. We mean
the parallelism arising from operations on large sets of data, be it heterogenous or homogeneous. No global
synchronization is implied.

Chapter 2

Background

In this Chapter, we describe the context in which this research was performed. First, we
consider the class of machines for which Concurrent Aggregates was designed. These ma-
chines have very different cost structures than typical von Neumann sequential computers.
Second, we discuss the lingual ancestry of Concurrent Aggregates. The operational ba-
sis of the language and closely-related languages are described. Finally, we briefly discuss
some efforts to program massively parallel machines, based on very different programming
approaches.

2.1 Fine-Grained Concurrent Computers

Fine-grained parallel machines exhibit great potential for high speed computation. Sev-
eral such machines [42, 13] are projected to provide peak performance of 100’s of billions
of instructions per second in an air-cooled computer that fits in a cubic meter. While
the hardware technology to build fine-grained machines is available, significant challenges
remain in developing software systems to harness their computational power.

Fine-grained concurrent computers differ from sequential computers and most other
concurrent computers in several important ways. First, the tremendous computing poten-
tial of fine-grained machines comes from massive concurrency — thousands of processors
operating concurrently. A high level of concurrency such as 10° is only possible with very
small computing nodes. The fine-grained computers we consider differ from existing fine-
grained SIMD?! machines [55, 16] in their MIMD control structure. Second, these machines
have very fast networks that can transmit a message from one corner of the machine to the
farthest corner in a few microseconds {43](~ 10 — 20 instruction times). Third, fine-grained
concurrent computers can support very small tasks (=~ 20 instructions) efficiently. This
allows us to break a computation into very small pieces — exposing greater concurrency for

!Single instruction, multiple data.

8 CHAPTER 2. BACKGROUND

exploitation. Fourth, fine-grained machines have radically less memory capacity per unit of
computation power than sequential machines or contemporary small scale multiprocessors.
In such machines, a typical rule of thumb for a computer designers is “One megabyte of
memory per MIP of computing power.” In contrast, first generation fine-grained concurrent
computers such as the J-machine [42, 38] and Mosaic C [86, 13] will have approximately
one kiloword of memory per MIP of computing power?.

Fine-grained machines have very different resource costs than more familiar sequential
or small scale parallel machines. Computation cycles are very cheap as we have thousands
of powerful processing units instead just a few. Memory seems relatively expensive as its
ratio to computing power has changed dramatically. In fact, memory remains the primary
cost in these systems. Effective use of the communication bandwidth in these machines is
the key issue. As the scale of fine-grained machines is increased to 10° — 10° nodes, how
efficiently we can use the network will determine whether we continue to get performance
improvements.

We summarize the significant distinguishing features of Fine-grained Concurrent Com-
puters below:

Massive Concurrency (10 — 10® nodes)
¢ Low-latency Networks (2 — 3y seconds or 10 — 20 instruction times corner to corner)
e Support Small Tasks (10 — 100 instructions)

o Radically Lower Memory capacity to compute power ratio (= 1 Kword per MIP)

The dramatic performance potential and unique characteristics of fine-grained machines
demand the development of new software systems. Existing operating systems developed
for sequential computers or small-scale multiprocessors are inappropriate because they do
not support extremely fine-grained tasks. Furthermore, such operating systems typically
require far more memory per processor than is available in fine-grain machines.

2.2 Concurrent Object-Oriented Programming

2.2.1 Why Object-Oriented Programming?

Object-oriented models [36, 49, 72] provide an attractive base for building a concurrent
programming system. Aggregation of procedure and data in such systems allow us to
associate them — providing natural locality of reference. The grouping of data into semantic
units allows us to make placement and migration decisions (for objects) based on their

*It is interesting to note that even the CM-2 [93] has ~ 128 kilowords per MIP. This is based on 16useconds
for a 32-bit operation [80] and 256 kilobits of memory per node.

2.2. CONCURRENT OBJECT-ORIENTED PROGRAMMING 9

types. Object-oriented programming has been proven as an efficient and natural way to
write large programs.

Object-oriented approaches are especially attractive for fine-grained MIMD machines
as they encourage programs with many small pieces. The grain size of such programs
is typically individual methods. Object-oriented programming models also lend themselves
well to the introduction of concurrency — the addition of non-blocking sends fits very cleanly
into the object-oriented paradigm.

2.2.2 Language Background

The Actor model [2] and Concurrent Smalltalk (CST) [57, 38] have had significant impact
on the design of Concurrent Aggregates. The Actor model, developed by Agha, Hewitt
and Clinger [33], is a clean semantic model for the execution of concurrent ob ject-oriented
programs. It has become the basis for a large number of concurrent ob ject-oriented program-
ming languages {12, 74, 105, 48, 106]. The basic execution model of Concurrent Aggregates
is based on the Actor model as described in Section 3.2.1. However, Concurrent Aggregates
augments the model with aggregates and a number of other features.

In other Actor languages such as ACORE [74], ABCL/1 [105], CANTOR [12, 20| and
POOL-T [6], hierarchical abstractions (abstractions built from other abstractions) are built
from single objects. Their objects may accept only one message at a time — resulting
in serialized abstractions.® Multiple levels of abstraction can result in greatly diminished
concurrency — even if each level causes only a tiny amount of serialization. Concurrent
Aggregates solves this problem by incorporating some features from CST.

The direct predecessor of Concurrent Aggregates is Concurrent Smalltalk. Concurrent
Smalltalk [37, 57] is an object-oriented language based on Smalltalk-80. CST is similar
to ST-80 in that it supports dynamic typing and single inheritance. CST differs in the
addition of asynchronous message sends (analogous to task creation) and distributed ob-
jects (allowing an object’s state to be distributed). The addition of asynchronous sends
permits concurrent operations. CST even allows concurrent operations on a single object —
programmers must make appropriate use of locks to assure correct object behavior.

The design of Concurrent Aggregates incorporates some good ideas from Actor languages
and CST. On one hand, the object model of CA is based on the actor model — each object
processes only one message at a time. Each object has one lock that is implicitly acquired
and released. On the other hand, the basic aggregate mechanisms: one-to-one-of-many
translation and intra-aggregate name computation are clearly derived from similar features
in CST. Concurrent Aggregates integrates this package by making aggregates — multi-access
data abstractions — the focus of the language. Support is provided for programming with

3For example, in the Actor model, the serial message reception order is the actor’s lifeline. This assump-
tion is reflected in the notion that an actor’s behavior can change at the reception of each message. In
fact, in any language that assumes that an object resides on only one node, that processing node becomes
a serialization point for its objects.

10 CHAPTER 2. BACKGROUND

aggregates that makes it possible to conveniently build programs not easily expressible in
either ancestor.

2.3 Other Related Programming Work

There are many concurrent programming models under investigation, but most of these
models are not well-matched to fine-grained message-passing concurrent computers. To
date, most sequential and parallel languages have required a large amount of state to be
associated with a task. This typically implies large tasks and high task overhead. This
“process model” has been moderately successful for small scale parallel and distributed
systems, but the attendant overheads make it inappropriate for fine-grain machines. Other
languages focusing on fine-grained parallel approaches such as dataflow [9], systolic arrays
[64] and SIMD [53] have had some success. However, the systems developed to date de-
pend on specific architectural features for their efficiency. These models require data-driven
dispatch for each instruction and I-structures, very efficient nearest neighbor FIFO com-
munication, and cheap global synchronization and control respectively. While any of these
techniques could be used to generate code for fine-grained message-passing machines, we
would not expect fine-grained message-passing machines to support them at the same level
of efficiency as the respective custom architectures.

2.3.1 Functional Programming

Functional and near functional approaches to parallel programming have been pursued by
many researchers [8, 60, 104]. These approaches often offer the advantage of guaranteed
determinacy of execution. The disadvantage of a functional approach is that is difficult to
describe a computation that depends on updates to shared state. It is similarly difficult to
express non-deterministic computations. However, the main reason we have not pursued a
functional approach is that such schemes are typically based on a uniform storage access
model. The languages provide little support for expressing locality or data clustering. We
feel that expression of such locality is essential to the success of fine-grained message-passing
machines.

2.3.2 Systolic Arrays

Systolic arrays have been extensively developed and studied by Kung [63, 64] and others.
While systolic computations are an efficient way to describe a number of applications, many
others demand dynamic communication structures. In fact, researchers working on systolic
arrays have moved to more and more general purpose computing structures [21] to broaden
their application area. Systolic programming approaches suffer from the global knowledge
problem. In a systolic cell, a programmer must know about all data that passes through his
cell. This makes it difficult to build modular programs. In fact as a consequence, getting

2.3. OTHER RELATED PROGRAMMING WORK 11

an entire application to run on a systolic array is difficult. They are often used as back-end
processors for acceleration of particular algorithms.

2.3.3 SIMD Programming Languages

A number of different SIMD* languages such as C* [92] and Connection Machine Lisp
[63] have been developed for the Connection Machine [93]. These languages have a single
control stream, but allow parallel operations on arrays of objects. Programming in this
style has been termed “data parallel” [56]. Each parallel operation completes before the
next operation begins. This model is restrictive because is does not permit the expression of
heterogeneous concurrency (two computations doing different things). Not surprisingly, this
is a reflection of the fact that SIMD machines [93, 75] are not designed to exploit this type of
concurrency. Fine-grained message-passing machines can exploit heterogeneous concurrency
efficiently. Concurrent Aggregates is designed to support the expression of heterogeneous
concurrency and relatively coarse-grained (10’s of instructions) data parallelism.

2.3.4 CANTOR: a Programming Language for the Mosaic C

The CANTOR language [12] was designed for programming the Mosaic C [86], a fine-
grained concurrent computer. CANTOR is a statically typed message-passing language
based on the primitive actor model. The functionality provided in the initial design of the
language was close to primitive actors. In a later version, they have added functions and
vectors [20]. Functions provide functionality much like a procedure call - a call and return.
Vectors provide a means for constructing indexable objects. The work on CANTOR has
focused much more on low level efficiency and the expression of individual algorithms. The
Concurrent Aggregates project has focused on facilitating the construction of large programs
and entire applications in the language. In particular, CANTOR provides no support
for multiple-access data abstractions or first class continuations. In addition, CANTOR
provides no support for synchronization within a method, making it difficult to express
concurrency within a method. Concurrent Aggregates uses contezt futures (a local future
[61]) to support synchronization within a method.

4Single instruction, multiple data.

Chapter 3

Concurrent Aggregates

Programming languages for massively parallel concurrent computers need multi-access data
abstractions. As defined in Chapter 1, a multiple-access data abstraction is an abstraction
with a well-defined message interface that can also process many messages simultaneously.
These abstractions have virtually unlimited potential for concurrency.

Concurrent Aggregates allows programmers to build hierarchical abstractions without
serialization by providing a multi-access abstraction tool, aggregates. An aggregate is a ho-
mogeneous collection of representative objects that cooperate to implement an abstraction.
Each aggregate has a group name that is used as the abstraction’s name. Messages sent to
the collection are directed to an arbitrary member of the collection by a one-to-one-of-many
translation.

CA programmers can use aggregates to build hierarchies of abstractions. Each aggre-
gate is multi-access and therefore can receive many messages simultaneously. By using
appropriately sized aggregates in the upper levels of hierarchy, we can increase the mes-
sage rate for lower levels in the hierarchy - allowing greater concurrency in the hierarchy.
Not only does Concurrent Aggregates include multi-access abstraction tools, these tools are
integrated into the ordinary data abstraction framework. Externally, aggregate-based and
object-based abstractions are used interchangeably.

Concurrent Aggregates exploits concurrency at the level of message-passing operations.
Each method invoked on an object is a message-passing operation. Every invocation gives
rise to a potentially concurrent task. Each message passing operation is analogous to calling
a function in a procedure-oriented language, except that it need not require a reply. As in
many other object-oriented languages, method invocation in CA involves a type-dependent
dispatch using the name of the message, its selector, and the type of the object receiving
the message.

We are interested in computers that are capable of exploiting large amounts of fine-
grain concurrency. These machines are tuned to support message-passing efficiently, so
Concurrent Aggregates takes advantage of this by using message-passing pervasively. All

13

14 CHAPTER 3. CONCURRENT AGGREGATES

communication and synchronization and hence coordination between objects is performed
via message-passing. At first this may seem expensive, but as we gain experience with these
fine-grain computing systems, we will be able to optimize many of these message-passing
operations out — reducing the communication requirements of the programs.

Concurrent Aggregates also includes specific support for programming with aggregates.
This support includes intra-aggregate addressing, delegation, first class messages and first
class continuations. The motivation and utility of these features is briefly described here.

Intra-aggregate addressing allows parts (representatives) of an aggregate to compute
the names of other parts of the aggregate. This facilitates cooperation within an aggregate.
Allowing representatives to pass messages to each other conveniently facilitates implement-
ing a coherent abstraction interface with an aggregate. For efficient communication, internal
aggregate names can be used to link representatives directly to other objects in the same or
in other aggregates. Externally, the aggregate can be manipulated with a single name - in
a manner identical to an ordinary single object. This enables aggregates and single objects
to be used interchangeably.

Delegation can be used to piece together (structurally compose) one aggregate’s be-
havior from the behavior of others. In CA, an aggregate can delegate the handling of one
or more messages to another aggregate. For example, aggregate A might delegate the han-
dling of messages M1 and M2 to aggregate B and handle the rest of the messages itself.
This is done by specifically delegating M1 and M2. This allows a message interface to be
composed from several other interfaces without the many levels of indirection necessary in
previous schemes (forwarding due to delegation [97, 69]). With another kind of declaration,
an aggregate can delegate all messages not handled locally to another aggregate!. This
feature allows programs to use a more traditional form of delegation.

First class messages allow programmers to write message manipulation abstractions.
Such abstractions can be used to implement control structures that perform message re-
ordering or implement data parallel operations on aggregates. Such aggregate operations
are an important source of concurrency in our programs.

First class and User-defined continuations in CA allow programmers to manipulate
continuations as first class objects. This enables programs to decouple the call and return
structures — in some cases simplifying or improving the efficiency of programs. For example,
first class continuations can be used to code synchronizing abstractions such as futures.

The Concurrent Aggregates language even allows user-constructed continuations. A
programmer can substitute ordinary objects or aggregates as continuations (assuming they
handle the reply message) making it possible for programmers to construct complex con-
tinuation structures such as a barrier. These structures can be cleanly factored from the

lin effect, delegating the rest of the messages.

3.1. A BRIEF EXAMPLE 15

remainder of the program. These four features — intra-aggregate addressing, delegation, first
class messages and first class continuations — aid a programmer in constructing complex,
concurrent aggregate behaviors. Examples of usage for these novel features can be found in
Appendix A.

This chapter describes the Concurrent Aggregates language. First, we give a brief
example program — to give the reader a better perspective to understand the language
description. Second, we give a high-level description of the key elements of Concurrent
Aggregates programs — objects, aggregates, messages and continuations. Understanding
these elements is a prerequisite to understanding CA programs. We also describe the
execution model, the Aggregate model and its relation to the Actor Model. Third, we
present the CA language itself — describing its syntax and semantics. Finally, we discuss
the key design issues in CA and how they were resolved.

3.1 A Brief Example

Figure 3.1 contains a CA program that shows a simple use of aggregates. The counters
abstraction is used to collect a sum. Some number of count operations are performed on
the counters abstraction. The value from each such operation is accumulated into a local
running sum. After all of the count operations have completed, it is possible to request the
accumulated sum using read_sum. This operation returns the sum and clears it.

Each representative is used as a bin in the counting process as shown in Figure 3.2. In
the count handler we see that the program increments the local instance variable value
by the val argument. read_sum computes the overall sum via a linear reduction on the
local partial sums. This is done by starting at representative 0 and working our way up
through each representative collecting the sum and resetting the partial sum as shown in
the internal _read _sum handler. The initial message method shown is used to test the
program. To give the reader a better idea of how Concurrent Aggregates programs are
constructed, we work through several examples in detail in Appendix A.

Using an aggregate to implement the counters abstraction allows a counting operation
to be performed more rapidly — more count messages can be processed in a given amount
of time. The amount of concurrency that the implementation of counters can support
is parameterizable at the aggregate’s creation. Of course to users of the abstraction, the
concurrency need not be visible.

3.2 CA Language Elements

Concurrent Aggregates programs contain four key types of elements: objects, aggre-
gates, messages, and continuations. A Concurrent Aggregates program consists of a set
of data abstractions (implemented with objects and aggregates). These abstractions send

16 CHAPTER 3. CONCURRENT AGGREGATES

2
;; An aggregate that accumulates a SUM
HH
(aggregate counters value :no_reader_writer

(parameters nr_reps)

(initial nr_reps

(forall index from O below groupsize
(set_value (sibling group index) 0))))

(handler counters count (val)
(seq (set_value self (+ val (value self)))
(reply val)))

(handler counters read_sum ()
(forward (internal_read_sum (sibling group 0) 0)))

(handler counters internal_read_sum (sum)
(let ((newsum (+ sum (value self)))
(nextindex (+ myindex 1)))
(seq (set_value self 0)
(if (< nextindex (- groupsize 1))
(forward (internal_read_sum
(sibling group nextindex) newsum))
(reply newsum))))
e
;3 A test program that accumulates a set of numbers
;; and then reads the sum
HH
(method osystem initial_message ()
(let ((the_counters (new counters 4)))
(seq (forall index from 0 below 100
(count the_counters index))
(reply (read_sum the_counters)))))

Figure 3.1: A Simple Counters Aggregate

3.2. CA LANGUAGE ELEMENTS 17

AN

2
.
%
7.

COUNT messages
Counters

Bin 0 Bin 1 Bin 2 Bin 3

Figure 3.2: The Counters Aggregate: a set of counting bins

messages to each other; each message causes some local computation and perhaps some
further message-passing. A computation in Concurrent Aggregates consists of a network
of objects sending messages to each other. Figure 3.3 shows a network of objects and a
number of messages in transit. As the computation progresses, the connections between
objects change, new objects are created and the network of objects is transformed into the
result of the computation. The course of a computation is governed by the execution model
— the set of rules or state transitions that determine how the computation progresses. We
informally describe the execution model for Concurrent Aggregates.

3.2.1 Execution Model

A computation consists of a set of objects, residing in a shared object namespace. These
objects are distributed across the machine. They send messages to each other as shown in
Figure 3.3. Each message starts a small piece of computation — potentially causing other
messages to be sent. The model provides guaranteed delivery of messages: each message
will eventually be received by its destination object. Message transmission order between
objects is not preserved. The computation proceeds in two kinds of steps — objects executing
messages and messages being delivered to objects. The Concurrent Aggregates execution
model is based on the Actor Model [33, 2]. However, the rules must be changed slightly to
support our notion of aggregates. We describe both models here.

18 CHAPTER 3. CONCURRENT AGGREGATES

Figure 3.3: A Computation in Concurrent Aggregates

First, we define a few terms then we define the Actor and Aggregate models.

Local State The object storage used to hold a set of names of other objects. This set is
a fixed size.

Known Objects A set of names of other objects, often called acquaintances. For a com-
putation, this includes the local state as well as any objects’ names in the invoking
message.

3.2. CA LANGUAGE ELEMENTS 19

M- -

Incoming Messages Queued Messages Object Resulting Messages
from Network to the Network

Figure 3.4: An Object Executing Messages

Basic Actor Model

Actor transitions: In response to a message, an actor can perform some number of
the following actions.

1. Send messages to its acquaintances (other actors)
2. Specify a new behavior (includes local state modification)

3. Create new Actors

System transitions: Messages sent to actors are delivered eventually and in an inde-
terminate order. Messages that have arrived at an actor that is occupied are queued in
its message queue. Conceptually, the queues are infinite. Each actor repeatedly accepts
messages from its message queue, one at time. An implementation can covertly overlap
message execution to improve performance. However, this overlap must not be visible to
the programmer.

The local state that can be modified is in the receiver object. To modify state in ob jects,
one must send messages. Any shared state in a computation is kept in shared objects and
accessed only via message-passing. Execution of each method is exclusive — only one message
is being processed by an object at any given time. These two facts simplify the interference
that must be considered to assure correct program behavior. A programmer need not
consider the interleaving of individual read and write operations. Because execution of
messages is non-overlapping, the history of an object can be characterized by its lifeline,
the sequence in which it executes messages.

Each object repeatedly accepts messages from its message queue and processes them
as depicted in Figure 3.4. The system performs the complementary service — accepting
messages from the objects and delivering them to their destinations. When there are no
outstanding messages in the system the computation has completed.

20 CHAPTER 3. CONCURRENT AGGREGATES

These rules form the basis of a clean and powerful model. However, as we have de-
scribed earlier, one can see that the sequential message reception of Actors force them to
be serializing. Thus, in general, abstractions built from actors have some serialization?. We
have proposed the addition of aggregates — collections of actors — as a solution to this serial-
ization problem. The addition of aggregates requires only a few small changes to the Actor
transition rules. We call this extended actor model, the Aggregate Model. The transition
rules for the Aggregate Model are given below:

Aggregate Model

Aggregates are collections of actors. Each aggregate has a group name. Each actor
in an aggregate has its own actor name. Group names and actor names are manipulated
uniformly.

Actor transitions: In response to a message, an actor can perform some number of
the following operations.

1. Send messages to its acquaintances (these may include individual actors and aggre-
gates)

2. Specify a new behavior (includes local state modification)

3. Create new Actors

System transitions: These are quite similar to the basic actor model — messages sent to
actors and aggregates are delivered eventually, and in an indeterminate order. Messages that
have arrived at an actor that is occupied are queued in its message queue. Messages sent to
aggregates are delivered to an arbitrary actor in the collection. In addition, a distinguished
operation SELECT can be used to select actors out of a collection. Within an aggregate,
this can be used to communicate with and coordinate members in the implementation of a
coherent abstraction.

Our extension of the Actor model is well matched to the philosophy of simplicity and
leaving the maximum freedom to the implementer. Our aggregation mechanism can be
used to build collections of arbitrary kinds, with virtually unlimited concurrency (little
serialization).

One way to see that we need to extend the basic actor model is to realize that our
extension affects the basic addressing structure. Changing the addressing structure is not
within the scope of the Actor model. Any emulation or interpretation of something so basic

20f course actors that are immutable and a few other cases can be implemented without serialization.
One way to implement an immutable actor with little serialization is to replicate it.

3.2. CA LANGUAGE ELEMENTS 21

is likely to have significant storage and computational overhead. For example, we could use
an immutable Actor, containing pointers to all the members, to implement a collection of
size N. However, in order to reduce serialization, that actor would have to be replicated.
To get serialization as low as with aggregates, it is necessary to have N copies — an O(N)
storage overhead!

3.2.2 Elements

Object An object is an entity that shares its behavior and local-state structure with other
objects of the same class. Each message received by the object causes a piece of code to
be executed. The response of the object to messages characterizes its behavior. The code
executed in response to a message may modify the object’s local state and send additional
messages. An object’s local state consists of a set of object names.

An object definition consists of three kinds of top level CA expressions: a class declara-
tion, method declarations and delegation declarations. An object’s local state is specified
by its class declaration. The local state consists of a finite number of locations (instance
variables), which can hold the names of other objects. The behavior of an object is defined
by the methods and delegations declared for its class. Each such declaration specifies how to
handle messages with a particular name, or selector. Method declarations specify a program
fragment (the method body) to execute in response to a message. Delegations specify how
to find the object responsible for handling a message. Method and delegation declarations
should not both be made for the same selector. If conflicts exist amongst method definitions
and delegations, the program is considered to be invalid.

Aggregate An aggregate is a collection of representatives that can be described by a
single name. Each representative is an object. Aggregates allow the construction of highly
concurrent data abstractions. The basic idea is that externally, an aggregate can be viewed
as an ordinary object. Internally, an aggregate consists of many objects and can be used
to implement unserializable behavior. Messages sent to the aggregate are directed to an
arbitrary representative of the aggregate. The one-to-one-of-many translation is shown in
Figure 3.5. Since this one-to-one-of-many direction is performed by the runtime system
(itself multi-access), aggregates are multi-access and do not introduce serialization — each
representative can receive messages concurrently.

Aggregate names can be manipulated identically with the names of ordinary objects.
Users of an aggregate-based abstraction send messages to it and receive replies just as if it
had been constructed with an object. An aggregate is defined by an aggregate declaration,
handler declarations and delegation declarations. The aggregate declaration defines the
structure of the local state for each representative. The behavior of each representative
object is described with handler declarations (analogous to methods) and delegations.

Internally, an aggregate is a concurrent and distributed collection of objects working
together. Distributing the collection makes it possible to support very high levels of con-

22 CHAPTER 3. CONCURRENT AGGREGATES

&b

Many messages Parallel Aggregate
sent to Aggregate Runtime Representatives
System

Figure 3.5: Aggregate to Sibling Translation

currency. Each representative can compute the name of the aggregate as well as the names
of the other representatives. This ability allows the organization of aggregates to be quite
flexible. Consequently, aggregates can be used to implement many different concurrent ab-
stractions. Multiple representatives can be used to implement replication, partitioned state,
or more complicated divisions of state and function. As the state distribution is visible to
the programmer, he can control the degree of consistency and replication. Allowing the
programmer to have such control can result in improved efficiency.

Message Messages form the active part of the computation. In order to perform compu-
tation, objects send messages to each other. When a message is received, the receiver object
performs some computation in response. That computation may involve sending messages,
receiving replies, modifying the local state and finally sending a reply message. Each mes-
sage send is analogous to calling a function in a procedure-oriented language except that it
need not require a reply.

Concurrent Aggregates treats selectors and messages as first class objects. By first class,
we mean that CA programs can manipulate selectors and messages explicitly by storing,
copying, and sending them. Several language forms in CA allow programmers to send,
create, and modify messages. These facilities can be used to implement operations on
collections, shared control structure abstractions, and message handling abstractions.

3.3. LANGUAGE SYNTAX 23

A message is quite similar to an unevaluated function application in a function-oriented
language3. However, we have chosen to use messages because in many cases, the applications
are simply used as holders for immediate parameters. For example, many operations on a
collection of objects — data parallelism — can be implemented with first class messages. In
cases where no complicated sharing is required, first class messages allow a programmer to
factor message arity (number of arguments) out of concurrent program control structures
such as fan-out or fan-in trees. By using first class messages, the programmer can control
the efficiency of his program. Global compilation may not be required to achieve efficient
execution.

Continuation In Concurrent Aggregates, there are two kinds of continuations — system
constructed and user constructed. System continuations in Concurrent Aggregates are quite
similar to continuations in sequential programming languages, except that they can only
be used once. In CA, system generated continuations are references to a return location (a
location in an activation record). Replies to such continuations cause the value of the reply
to be stored in the return location. If the computation had suspended (i.e. was waiting)
on this location, it is resumed. References to system continuations may be passed around
just like ordinary objects. Unlike continuations in languages such as Scheme {81], a correct
program may only reply to a system continuation once. A reply to a continuation causes it
to be consumed ~ it no longer exists. More than one reply indicates an incorrect program.
This design allows activation frames and continuations to be reclaimed cheaply by placing
the onus for managing them properly on the programmer. The rationale for this design
decision is presented in Section 3.4.6.

Users can construct continuations in Concurrent Aggregates. In a message-passing lan-
guage, a continuation is nothing more than an object that accepts reply messages. This
interface is quite clean because there is no shared state between the replier and receiver
of the reply — all communication is done via the message-passing operation. Based on
this observation, CA allows the programmer to construct continuations (from objects or
aggregates) and use them throughout computations. Due to the clean interface, the con-
struction of such continuations is quite simple. User continuations can be used to implement
many different program control structures such as barriers, synchronization abstractions,
and broadcast trees.

3.3 Language Syntax

3.3.1 Program Structure: Classes and Aggregates

A Concurrent Aggregates program is a series of top level forms. Each of these forms is
described below. The programs are compiled and dynamically linked. The only ordering
restrictions are: globals should be defined in the order in which their initial value expressions

3The evaluation of arguments is strict at the time of message creation. The computation for the appli-
cation is actually performed after the message is transmitted and received.

24 CHAPTER 3. CONCURRENT AGGREGATES

should be computed, object class definitions must precede methods or delegations for that
class, and aggregate definitions must precede handlers or delegations for that aggregate.

top-level-form ::= class-def I method-def | delegate-def |
aggregate-def | handler-def I global-def | exp

Class and Aggregate Declarations

class-def ::= (class class-name ivar-list parameter-list init-form)
aggregate-def ::= (aggregate agg-name ivar-list parameter-list agg-init-form)
class-name ::= ident

agg-name ::= ident

ivar-list ::= ident* | ident* :no_reader_writer

parameter-list ::= (parameters ident+) | {}

init-form ::= (initial exp*) | {}

agg-init-form ::= (initial size exp*)

The syntax for class and aggregate declarations is almost identical. The only difference
is that the initial form for aggregates requires an additional term to specify the size (number
of representatives) of the aggregate. The ivar-list specifies the local state of the object
(representative). The :no_reader_writer switch indicates that reader and writer methods
should not be automatically defined. If this switch is not present, X and set_X methods
will be defined to access and modify the object state. The parameter list allows classes
and aggregates to be parameterized. The initial form is executed when the object (or
aggregate) is created. Upon its return, the descriptor is returned to the sender of the new
message. The parameters are passed as arguments to the initial form and may be accessed
as such in the initial form.

Method and Handler Declarations

method-def ::= (method class-name method-name (arg*) exp+)
handler-def ::= (handler agg-name handler-name (arg*) exp+)
class-name ::= ident

method-name ::= ident

arg ::= ident | :no_exclusion

agg-name ::= ident

handler-name ::= ident

Methods and handlers define the program to be executed when a message is received in
objects and aggregates respectively. Handlers are very similar to methods, but CA uses a
different reserved word to remind programmers they are dealing with an aggregate. For each
message, the message name and receiver object’s class determine which method is invoked.
If a message with selector, name, A was received by an object of class B, the method
with class-name B and method-name A would be invoked on the receiver. An analogous
procedure occurs for aggregates and handlers. Object behavior is defined by the methods

3.3. LANGUAGE SYNTAX 25

and delegations defined for that class. In similar fashion, aggregate behavior is defined by
the handlers and delegations defined for that aggregate. Method declarations and message
delegations should not conflict in object definitions. Likewise, handler declarations should
not conflict in aggregate definitions. So long as there are no conflicts, the action taken in
response to a message is uniquely defined.

Concurrency Control In many cases, it is necessary to control concurrency in order to
assure proper program behavior. Object oriented languages provide a natural granularity
for concurrency control — object methods. Concurrent Aggregates allows the programmer
to control concurrency on a per object basis with locks. Programmers can specify whether
each method is executed exclusively on an object.

Default Concurrency Control Normally methods have exclusive access to the state
of the receiver object. Messages reaching a locked object are deferred. When the lock is
relinquished (i.e. the message execution completes), the deferred messages will be processed.

No Concurrency Control With some methods, it is desirable to forgo any concurrency
control for the receiver object. CA allows a method to be uncontrolled (i.e. no implicit
lock - unlock forms around the method body). This means that the method may run
arbitrarily interleaved with ANY of the other methods of the object. Uncontrolled methods
are specified by using the :no_exclusion keyword in the argument list.

Delegation Declarations

delegate-def ::= (delegate cname message-name ivar-name)
cname ::= ident

message-name ::= ident l :rest

ivar-name ::= ident

Message delegations allow object behaviors to be composed from the behaviors of other
objects. A message delegation causes messages of name message-name sent to objects of
class cname to be sent to the object specified by ivar-name. In this way, a complicated
behavior can be built up from the behavior of its parts. Delegations to the :rest mes-
sage name cause all messages that are not explicitly handled or delegated to be delegated.
Message delegations for aggregates work in an analogous manner.

When a message with selector X is received, the handlers and delegations defined for the
aggregate determine how the message is handled as shown in Figure 3.6. If a method or
handler is defined for X, that code is invoked. If a delegation is defined for X, the message
is sent to the delegation target. Method definitions and delegations for a class should not
conflict (i.e., there should not be a method definition and a delegation for the same selector).
A conflict indicates an incorrect program. If neither method nor delegation is defined and
a :rest delegation is defined for X, then the message is sent to the :rest delegation’s target.

Concurrent Aggregates incorporates per messaage delegation which allows programmers
to construct aggregate behavior incrementally. A message interface may be constructed

26 CHAPTER 3. CONCURRENT AGGREGATES

Message Handled Message Delegated

Handler invoked Handler invoked on
on Aggregate A Aggregate B

Figure 3.6: Message Handling and Delegation

from several other interfaces without many levels of indirection (forwarding due to dele-
gation). Specific methods may be used to extend or modify the message interface of an
aggregate while a :rest delegation specifies a default receiver object for all other messages.
By enabling programmers to piece behaviors together, CA allows programmers to distribute
message handling responsibility over a number of objects — potentially increasing concur-
rency. If delegations are static (the object handling the delegated message never changes),
it is possible to compile out the level of indirection.

3.3.2 Basic Expressions: Method and Handler Bodies

Method and handler bodies can be divided into sequencing, message control, and binding
constructs. Handler bodies may also contain sibling expressions — a way of computing the
name of another representative within the same aggregate. Within a body, some message
and object state can be conveniently accessed as pseudo-variables. Instance variables on the
receiver object can be accessed and modified with (X self) and (setX self new_value)
forms in methods or handlers for that object. For example, the two expressions below
would return the value of the instance variable foo and set the value of the variable foo to
2, respectively.

(foo self)
(setfoo self 2)

When used with the self pseudo-variable, these expressions do not require that reader
and writer methods be defined.

3.3. LANGUAGE SYNTAX 27

None of the pseudo-variables may be modified. For the object methods and aggregate
handlers, the pseudo-variables are given below.

Pseudo-Variables

Object: self
Aggregate: self, group, groupsize, myindex
Message: msg, requester, <argname>

Self refers to the receiver of the message. In an aggregate representative, self refers to the
representative receiving the message while group refers to the entire aggregate. Groupsize is
the number of representatives in the aggregate, and myindex is the receiver’s unique index in
that aggregate. These indices are zero-origin. Msg refers to the received message. Requester
refers to the current continuation, the default destination of replies. In addition, the explicit
arguments of message can be referred to by name (we denoted this with <argname>).

Basic Expressions

exp ::= (message-name exp+) |
(concurrent exp+) | (conc exp+) |
(sequential exp+) | (seq exp+) |
(if exp0 expl) I (if exp0 expl exp2) |
(forall loopvar from exp0 below expl exp*) |
global-form

loopvar ::= ident

exp ::= (let (binding-pair+) exp+)

binding-pair ::= (variable-name exp)

variable-name ::= ident

exp ::= (sibling aggname exp0)

aggname ::= ident

(message-name exp+)

This is the basic message send operation. A message with selector message-name is sent
to the value of the first expression with the result values of the following expressions as
arguments. The expressions are executed as if they were within a concurrent construct, and
the message send occurs when all expressions have returned values (i.e. message sending is
strict). The value of the reply to the message is used as the value of this form.

The combination of sequencing constructs in a method body allows the programmer
to constrain the execution order of message passing operations — control the concurrency.
There are two constructs, concurrent and sequential, that can be used to sequence
execution in CA.

(concurrent exp+) | (conc exp+)

In the concurrent construct, execution order is only constrained by local data depen-
dencies. Subject to these constraints, any partial order is acceptable. The compiler and

28 CHAPTER 3. CONCURRENT AGGREGATES

runtime system may choose any order that satisfies the data dependencies. However, a top to
bottom and left to right order must be an acceptable order. For example, a total order such
as sequential execution is acceptable. Non-local data dependencies, such as a cycle through
several method invocations must be satisfied by the programmer. Concurrent constructs
return a null value after all expressions in the concurrent form have returned. Method and
handler bodies as well a the initial expressions in class and aggregate declarations have an
implicit concurrent construct at the top level.

(sequential exp+) | (seq exp+)

The sequential construct enforces a linear order on the execution of expressions. They
are executed in the order they occur in the program. This construct allows the programmer
to serialize execution as necessary. The value returned by the last expression is returned by
the sequential construct.

(if exp0 expl)
(if exp0 expl exp2)

The if construct allows for conditional execution. ExpO is executed, and its return value
determines which arm of the conditional is executed. For each if construct executed, exp0
is guaranteed to be executed. If expO returns a null value, exp2 is executed. If the result
of exp0 is non-null, exp1 is executed. The if construct returns the value of the arm which
is taken. If a null arm is taken, a null value is returned.

(forall loopvar from exp0 below expl exp*)

The forall construct specifies repeated execution. This is convenient for dealing with a
late-bound number of objects or size of an array. For example, this can be very convenient
at the leaves of a divide and conquer algorithm. The loopvar is bound in the body of the
forall. The forall is equivalent to a concurrent construct with the a variable number
of clauses and the appropriate index substituted for loopvar in each clause.

exp ::= (let (binding-pair+) exp+)

Let bound variables are bound in the scope of the let and may shadow arguments and
other let bound variables. Pseudo-Variables are reserved words and thus cannot be used
as identifiers for let bound variables. Let bound variables cannot be modified.

exp ::= (sibling aggname exp0)

For many aggregates, coordination and synchronization amongst the representatives is
important. This can be done in several ways: For instance, the control structure in message
handlers can be used to provide such coordination. Message handlers can also synchronize
via explicit access to shared state. Or, representatives can pass messages to each other
to cooperate. We facilitate intra-aggregate message passing with the sibling expression.

3.3. LANGUAGE SYNTAX 29

aggname should be bound to the name of an aggregate. The sibling expression requires
that exp0 return an integer i such that 0 <= i < groupsize for the aggregate specified by
aggname. For appropriate i, the sibling expression returns the name of the representative
with i as its index (myindex) value. For example, (sibling group 0) would return the
name of the Oth representative in an aggregate. The representatives in an aggregate have
indices from 0 to groupsize—1. groupsize is a pseudo-variable which contains the number
of representatives in an aggregate. Sibling names are ordinary object names — allowing
direct connection to aggregate representatives when performance is critical.

8.8.8 First Class Continuations: System and User

exp ::= (reply exp) |
(forward exp) |
(do exp) I (do exp0 expl)

Concurrent Aggregates supports several different message control constructs to allow a
programmer to control the synchronization between method invocations. The continuations
link method invocations together into the overall computation. Each method invocation has
a continuation. It can refer to that continuation with the pseudo-variable, requester. The
reply expression sends a reply message with the value of exp to the current continuation —
the continuation held in requester. By default, the continuation of a method invocation
handles the reply message and resumes any computation that has suspended waiting for the
reply value. CA allows the programmer to modify the continuation of an invocation with
the do and forward expressions. Forward uses the current continuation for the continuation
of the message being sent.

Do expressions allow the current method to execute an asynchronous or non-blocking
send. Execution continues immediately as no reply is expected. Any reply to a message sent
with do is discarded. The second do form allows the programmer to specify a continuation
for exp0. This continuation is specified by the value of expl.

Continuations in a message-passing language such as Concurrent Aggregates are simply
objects that handle the reply message. Because we have distributed and encapsulated all
activation frames, this abstraction is strictly observed. While the system may implement
continuations with a context (method invocation frame), continuations might also be im-
plemented with other objects. In fact, any object that handles the reply message can be
used as a continuation. CA programmers can construct continuations and substitute them
in programs using the do expression. This flexibility allows programs to decouple the for-
ward linkage (calling structure) from the backward linkage (return structure), in some cases
yielding simpler or more efficient programs. One good example of a simple user-constructed
continuation is a barrier synchronization.

30 CHAPTER 3. CONCURRENT AGGREGATES

3.3.4 First Class Messages

Message Access and Modification

exp ::= (message exp) I
(msg_at msg-exp index-exp) |
(msg_atput msg-exp value-exp index-exp)
(send exp) | (send exp0 expl)

Messages can be viewed as objects in CA. Their interface consists of the msg_at,
msg-atput, and send constructs. However, they are treated specially because they are
critical to system performance. Messages are by-value parameters [77] — they are copied
when references to them are duplicated. This assures that all message operations are local
and therefore can be performed efficiently.

(message exp)

The message construct creates a message and returns that message. The expression in
a message construct must be a message send. A message corresponding to that send is
created and returned. Arguments to that message are evaluated before the message value
is returned. The continuation of the created message is null. Another way to get ahold of
a message is to use the msg pseudo-variable to obtain a reference to the current message.

(msg-at message-exp index-exp)
(msg_atput message-exp value-exp index-exp)

Message state can also be modified as a message is sent by using the do and send
constructs. Message state can also be accessed and modified with the msg_at and msg_atput
expressions. Message state is mapped as follows: 0 = selector, 1 = continuation, 2 =
receiver object. Indices greater than two access the user-visible message arguments in
order. The msg._at expression returns the value at the specified index within the message.
The msg_atput expression returns the value just inserted into the message.

(send exp) I (send exp0 expl)

Send expressions allow the current method to send messages that it may have. Send
returns immediately. The continuation in the sent message is not changed by the send
expression. The second send form allows the programmer to substitute a receiver object in
the message. This receiver object is specified by the value of expl.

3.3. LANGUAGE SYNTAX 31

3.3.5 Globals

global-def ::= (global global-name initial-value)
global-form ::= (global global-name) I (set_global global-name value)
global-name ::= ident

Global variables are visible throughout a program. The global name is the name used
to reference the variable. The initial-value is a CA expression that returns the initial value
for the global. It may not be omitted — all globals must be initialized. Global variables
are initialized sequentially in the order of their appearance in the program. This allows the
initial values of globals to depend on each other. Globals may be read and written with
global form expressions. Access to and modification of globals is atomic.

3.3.6 Primitive Classes

A number of classes are built into the CA language. These primitive classes are the building
blocks for constructing higher level abstractions in the language. The user can augment
the operations on these primitive types but should not attempt to override existing their
method definitions. Such attempts will result in unpredictable program behavior.

Integer: +,%,/,— >, <, =,! =, >=, <=, min, maz, mod, and, or, not
Float: +,%, [, — >, <,min,maz
All types: eq, neq

Numbers need not be created explicitly with the new selector. They can be used as
literal constants or created as the result of an arithmetic expression.

Primitive built in classes include selectors, messages, symbols and arrays.

Array: CA supports 1-D arrays. Multi-dimensional arrays must be constructed explic-
itly. The message interface for this type is given below:

(new array size) An array object with size elements will be created and returned.

(at an-array index) Returns the value of the array at the index’th location (indices are
zero origin).

(atput an-array value index) Stores value in the index’th location of the array.

(size an-array) Returns the size of the array.

32 CHAPTER 3. CONCURRENT AGGREGATES

3.4 Design Issues in Concurrent Aggregates

In the design of Concurrent Aggregates, we have encountered many interesting design issues.
Some are peculiar to the design of Concurrent Aggregates, others are of broader concern.
We discuss some of the most interesting design issues and motivate our design choices.

3.4.1 Non-serializing Data Abstractions

The central idea in Concurrent Aggregates is to explore programming with non-serializing
data abstraction tools. We have argued the need for non-serializing data abstractions in
Section 1.2. Simply put, non-serializing data abstraction tools allow programmers to use
arbitrary levels of data abstraction without constraining concurrency.

Aggregates provide a framework for programmers to explicitly control replication and
consistency in building distributed abstractions. The framework provided by aggregates is
significantly different from other such object replication (caching schemes), shared mem-
ory, multi-version memories, and state partitioning in distributed memory machines. We
describe these other replication and partitioning schemes and consider how the aggregates
framework relates to them.

Object replication means creating a number of copies of an object. The object replicas
must be kept consistent: other than a performance increase, users of the object should not
be able to tell that replication is being done. The number of object copies may be static
as in a replicated file system or copies may be created dynamically. When an object is not
mutated, object copies can increase the effective bandwidth of the object. However, when
an object is mutated, all of the old copies must be invalidated, and only one master copy is
mutated. Subsequently, the object can be replicated again. A variation of this scheme is to
lock all copies and update all of them simultaneously. When they are unlocked, all of the
copies are consistent. In this scheme, the copies of the object are not visible as copies to
the user programs. They are all indistinguishable from the original object: they have the
same name.

Coherent shared memory systems can be viewed as an object replication system where
the copies are created dynamically. The objects in most shared memory systems are the
units of transfer — the cache lines. The operations supported on these objects are READ
and WRITE. Of course, mutation operations such as the WRITE operation require the
destruction or update of all copies of the cache line.

Multi-version memories as proposed by Weihl [101] allow for replication with transient
inconsistency. Updates that occur are guaranteed to propagate eventually to all replicas.
However, it is possible for different accesses to see different versions of the memory and thus
get an inconsistent view of the memory. All versions of a memory have the same name, but
upon access, a user of the memory accesses one of the versions. Thus the versions share the
same name in the user namespace. Multi-version memories are promising in data structures
such as B-tree’s [35], where operations can be structured so that correct operation of the

3.4. DESIGN ISSUES IN CONCURRENT AGGREGATES 33

structure does not depend on having the most recent information. Using stale information
will only result in slightly worse performance, not incorrect results. Extensive studies of
the concurrent B-tree implementation using multi-version memories can be found in [100].

State partitioning or domain decomposition has been used in distributed computer sys-
tems as well as in programs for distributed memory computers [85, 87, 4, 78, 11, 93] for
many years. State partitioning involves taking the state for a data structure or abstraction
and spreading it over a number of machines. Each machine is then responsible for handling
requests for that data. In such systems, the machine number (or node number) is used as
a key for mapping the partitions. As the different machines do not share an address space,
the name of such a partitioned collection data set is usually implicit and sharing must be
done by convention. For example in single-program multiple data (SPMD) programs, each
machine might keep a pointer to its part of the shared data structure in a variable of the
same name. There is usually no language support for managing such sharing or partitioning
in distributed memory machines.

Aggregates in CA unify and generalize the various techniques described here. Aggregates
provide at the language level a means for explicitly controlling replication, partitioning and
consistency. Aggregates can be used to implement partitioning — over a set of objects,
not tied in any way to the number of physical machines. Aggregates can also be used
to implement object replication schemes, though aggregates only support static replication
due to the expense of interpreting the dynamic translation required for dynamic replication.
To update an aggregate being used for static replication, all parts of the aggregate must
be locked, and then the update must be propagated to all copies. Only then can the
copies be unlocked. For non-mutating operations, no coordination is required amongst
the aggregate representatives. Aggregates can also be used to implement multi-version
memories. Of course multi-version memories are simply a less coherent version of replicated
shared memory, so they are even easier to implement. We direct all mutation operations to
a single representative, M, of the aggregate. Non-mutating operations can be performed on
any representative. The representative M serializes the updates and propagates them to the
representatives.

We chose to allow representatives to be mutable (and aggregates thereby inconsistent
under programmer control) because it is quite often useful to have inconsistent state amongst
the representatives. It can be used to support partitioned state, loose consistency, or other
forms of cooperation. These can all reduce the cost of replication from that required for
“consistent” storage.

One can view aggregates as an alternative to system-wide coherent shared-memory.
Aggregates give more flexibility to the programmer. By allowing the programmer to manage
the consistency, his program can be more efficient because he need only keep things as
consistent as necessary, not consistent all the time. A programmer can implement the full
spectrum from partitioned state (no consistency required) to static replication with full
consistency.

34 CHAPTER 3. CONCURRENT AGGREGATES

|:3:|—'>
)

Y
I

11—

|

|
o000
ARER
O00C0000)

00000000

One-to-All One to some indeterminate number

|

|
Il
||

|

|
|

y

One to several specific representatives One to an arbitrary one of many

Figure 3.7: Different Aggregate Message Reception Schemes

3.4.2 Messages to only one representative

We chose to have messages sent to an aggregate to be delivered to only one representative
object, and one chosen arbitrarily by the runtime system in an aggregate. Other options
included delivery to all representatives, as many as convenient, a specific representative or
several specific representatives. We eliminated the other choices for the following reasons:

All Representatives: This scheme is not scalable. For large aggregates, the effective
message bandwidth would be no larger than for a single object — each representative must
at least receive each message sent to the aggregate. Such waste may be acceptable in a
single-instruction multiple data style of programming (with the Connection Machine, for
example), because the underlying hardware structure prohibits the exploitation of hetero-
geneous concurrency, but in a multiple-instruction multiple data (MIMD) machine, it is

3.4. DESIGN ISSUES IN CONCURRENT AGGREGATES 35

not acceptable. Further, in the fine-grain concurrent computers we have considered, there
is no hardware broadcast medium. Thus, such broadcast requires at least N messages for
N representatives. These problems with broadcast conventions have also been noted in
systems with underlying multi-cast, and many fewer processing nodes [15].

Some indeterminate number: Deliver copies of messages sent to the aggregate to as many
representatives as is cheap or convenient. This kind of an imprecise specification, while
necessary in some distributed systems built upon unreliable transmission, is inappropriate
in computer systems where reliable delivery is assured. In distributed algorithms, having
reliable transmission can make a tremendous difference in the efficiency of algorithms [65].
Furthermore, delivery of an indeterminate number of message copies may complicate the
construction of distributed algorithms — knowing exactly how many you’re going to get is
often easier.

One or several specific representatives: A specific number of message copies delivered to
particular representatives, all specified by the aggregate creator. This is perhaps the most
flexible scheme we have considered thus far. From the point of view of the programmer,
it may be even more desirable than the single, random representative scheme we have
chosen. Omne or several specific representatives allows the user of a data abstraction to
direct messages to the appropriate parts of the aggregate. However, this scheme puts the
onus on the run time system to find the appropriate representatives. Further, in some cases
the aggregate creator may not care which representative receives the message — functionally,
it may not matter. Besides, if we provide reliable delivery to a single, random representative,
the implementer of the abstraction can easily implement the message redirection and fanout
required to emulate the several specific representatives behavior. The cost of this emulation
is quite small — as low as a single message-passing operation. In fact, in cases where the
routing does matter, a clever compiler might perform the optimization automatically ~ by
looking for redirection and fanout code.

One arbitrarily chosen representative: We chose to cause messages sent to an aggregate
to be delivered to only one representative object, and one chosen arbitrarily by the runtime
system in an aggregate. We chose this scheme because it allowed for data abstractions
with scalable bandwidth. This was important because the ma jor reason we’re interested in
aggregates is to increase the bandwidth of our data abstractions. In addition, the random
representative approach can be used to emulate all of the competing schemes we have
described. Delivering a message to an arbitrary representative places little restriction on
the runtime system. Perhaps this makes the translation the runtime system is performing
less expensive.

3.4.3 Aggregates of Identically Structured Objects

Concurrent Aggregates requires that aggregates consist of collections of objects with iden-
tical structure. This means that each of the representatives in an aggregate have identical
message handlers (behavior) and state structure. We considered allowing programmers to
build aggregates of arbitrary collections of objects, but decided against for several reasons.

36 CHAPTER 3. CONCURRENT AGGREGATES

Figure 3.8: Evolution of a Program to Greater Concurrency: replacing object A with an
aggregate.

First, any heterogeneous collection of objects can be built into an aggregate by nesting
them inside a homogeneous aggregate — the overhead of one level of indirection is required.
Second, given that we have chosen to send aggregate messages to an arbitrary single repre-
sentative, each representative must provide the abstraction interface. If the interface is to
be consistent, one easy way to do this is by having all representatives be homogeneous. Of
course, one could achieve a uniform interface through delegation, but using homogeneous
aggregates is perhaps a simpler fashion. Finally, if one is building aggregates out of objects
— not designed to work together with others in an aggregate — it is unlikely that the objects
will cooperate to provide a uniform interface. In fact, one might think it likely that mes-
sages routed to different representatives in the aggregate might give quite different results.
Basically, objects that were not designed to work in an aggregate are unlikely to work to-
gether effectively in one. Another interesting fact is that one can think of a heterogeneous
aggregate as a homogeneous aggregate with the one level of indirection compiled out. For
example, if we had a statically typed language, we might be able to avoid the indirection.

3.4.4 Unified Object and Aggregate Model

Externally, object and aggregate implementations of abstractions should be functionally
equivalent to limit programming complexity. A programmer should only have to deal with
a limited amount of complexity that is relevant to the correct and efficient execution of his
program. A user of a data abstraction should not have to think about the implementation of
that abstraction in order to be able to use it. This view of aggregate as an implementation
technique to build higher concurrency abstractions or to organize collections of objects in
order to build highly concurrent abstractions compels us to unify the object and aggregate
model. As much as possible, descriptions of objects and aggregates are similar. The usage
interface of objects and aggregates is indistinguishable. This simplifies both the language
and the programmers’ view of the world.

One could imagine a methodology that involves a user constructing a program first
from objects — of modest concurrency — and evolving his program by reimplementing the
bottleneck abstractions with aggregates. This process is depicted in Figure 3.8. Such

3.4. DESIGN ISSUES IN CONCURRENT AGGREGATES 37

an approach would allow the implementation, debugging, and improvement of massively
concurrent programs in a modular fashion. In fact, several of the applications described in
Chapter 4 were developed using this methodology.

3.4.5 Method-Oriented Object Description

Concurrent Aggregates incorporates a method-oriented description of an object’s program.
I made this choice for several reasons: the method-oriented approach clearly specifies the
interface of the object — consistent with our view of objects as data abstractions. This object
interface is unchanging. A method-oriented approach also makes it possible to succinctly
describe delegations of single message names and groups as part of the abstraction interface.
This makes it possible to construct an object incrementally, by using a the interfaces of other
objects.

Of course, behavior-oriented object descriptions that are used in languages such as
ACORE [74] and SAL [2] also have advantages. For example, in a behavior-oriented object
description, it is easier to express state transitions in an object. Especially state transi-
tions that involve changes in the message interface. In method-oriented descriptions, such
interface changes are often obscured as object state value changes. We chose not to use
behavior-oriented object descriptions because we did not want to have objects with changing
message interfaces.

3.4.6 First Class Continuations and User Continuations

With continuations, a programming language designer can take many different approaches
— each yielding different degrees of safety and expressive power. Allowing the user to ma-
nipulate continuations can lead to errors — continuations never replied to and continuations
replied to multiple times. It can also dramatically increase the cost of managing activation
records. On the other hand, allowing explicit manipulation of continuations can simplify
programs and make them more efficient.

The two main alternatives are to add specialized language constructs that allow a pro-
grammer to do a few useful things with first class continuations (e.g. supply forward) or
to allow a programmer to manipulate continuations explicitly. One possible benefit of the
former approach is that allowing only a subset of operations might constrain programmers
to write only “safe” programs (programs without continuation errors). We reject this ap-
proach because even very small sets of continuation operations are not safe (in the context
of our disposable system continuations). Furthermore, while forward is probably the most
common use of first class continuations, there are many other interesting things that can
be done with them. In Concurrent Aggregates, we not only allow continuations to be ma-
nipulated as first class objects, we go one step further and enable programmers to create
continuations from user objects and use them in their programs.

38 CHAPTER 3. CONCURRENT AGGREGATES

Safety and Expressive Power Permitting programmers to manipulate continuations
can make programs more expressive. In the context of message passing programs, this
typically means that programs can control more precisely the pattern of message passing
they construct. Programs are not bound by the procedure call - call and return — paradigm.
We can consider giving programmer access to a safe set of primitives and enforcing their
use in a safe manner. In fact, it is quite difficult to have a safe set of primitives without
providing quite strong restrictions on how reply messages are derived. For example, reply
by itself can be used in an unsafe manner as can the simple subset of reply and forward.
Consider the following examples:

(method foo biz (a b c)
(seq (if (predicate_1 a b) (reply c))
(it (predicate_2 a b) (reply c))))

(method foo biz (a b ¢)
(seq (if (predicate_1 a b) (forward (computation_i b c))
(if (predicate_2 a b) (reply c)))))

In both cases, the programs may be perfectly okay for solving the problem at hand.
However, in neither case is it possible to determine that only one reply message will be made
by the programs. Both of these examples illustrate unsafe subsets. These programs would
have to be made illegal if we wanted to guarantee no run time errors due to continuations.

One conservative alternative is to do away with the reply expression. Each method
could, by default return the value of the last expression evaluated. This is the convention in
many sequential languages such as Common Lisp, for example. However this is undesirable
as it restricts concurrency. The reply expression allows programs to reply with the return
value as soon as it is available, not only when we reach the bottom of a method execution.
Another way of solving this problem is to reply and forward terminate a method. This
works for the examples above, but would inhibit concurrency in the examples below.

First class continuations can allow the program to be more efficient or concurrent. For
example, consider the following example in which a subsequent message execution can begin
much earlier because we have user visible continuations:

(method foo baz (a b c)
(seq (long_computation_1 a b)
(forward (long_computation_2 b c))
(long_computation_3 a c)))

3.4. DESIGN ISSUES IN CONCURRENT AGGREGATES 39

Without user visible continuations, a programmer might structure the same program in
one of the two following ways:

Alternative 1
(method foo baz (a b c)
(seq (long_computation_1 a b)
(long_computation_3 a c)
(reply (long_computation_2 b ¢))))

Alternative 2
(method foo baz (a b ¢)
(seq (long_computation_i a b)
(let ((result (long_computation_2 b ¢))
(conc (long_computation_3 a c)
(reply result))))))

Alternative 1 orders long_computation_2 and long_computation_3, causing unnecessary
serialization and thereby reduced concurrency. Alternative 1 also requires an extra message
passing operation on the return path. The invocation of baz must receive the value from
long_computation_2 and send it along to the real user of the value.

Program Alternative 2 allows long_computation_2 and long_computation.3 to go on con-
currently, but the return path still requires an additional message passing operation. In both
alternatives, the extra message passing operation in the return path could be optimized by
a compiler that does tail-forwarding [57], the distributed machine analog of tail-recursion,
in this simple example. While tail-forwarding is useful in many cases, there are many oth-
ers that can be improved by explicit manipulation of continuations. Consider the following
example in which we know exactly one of the two subtasks will return a value. However,
we do not know @ priort which it will be.

(method foo buzz (a b ¢ d)
(conc (forward (computation_i c d))
(forward (computation_2 a b))))

This computation is difficult to express without additional message passing operations
in a language without explicit continuations. No set of “safe” primitives will allow the
construction of this program, because its correctness depends on the behavior of the user
programs computation_1 and computation_2. Since there is no reasonable “safe set” or
operations dealing with continuations, the programmer must already think about continu-
ations. Given that he is managing continuations already, it is not a large step to allow him
to explicitly manipulate them.

40 CHAPTER 3. CONCURRENT AGGREGATES

User Continuations Making continuations explicit enables programmers to construct
many interesting structures such as disjunctive subtasks, memory with presence bits [90],
and I-structures [10]. First class continuations allow the programmer to decouple the for-
ward calls (downward) from the upward replies in the dynamic control structure of a pro-
gram. For example, the forward construct allows the reply path of the program to bypass
one of the intermediate objects in the calling path. This decoupling can increase the effi-
ciency of the program.

We have found that we can construct even more interesting program structures by
allowing a programmer to build his own continuations. In Concurrent Aggregates, we take
decoupling one step further. As continuations are simply objects that accept reply messages,
we allow a programmer to construct abstractions that handle reply messages and use them
as continuations.

Because system continuations are already first class, user continuations can be substi-
tuted quite easily by using the do construct. This power can be used to implement complex
synchronization structures ranging from a barrier, a transparent future [61], race (specu-
lative concurrency [70]), to much more complicated subset synchronization dependencies.
Allowing user continuations allows this synchronization code to be factored out from the
remainder of the program — allowing modules from a program to be reused in a variety of
different synchronization contexts.

Efficiency We chose to make system continuations in CA a little different from continu-
ations in sequential languages. System continuations in Concurrent Aggregates are use-once
or disposable. They can only be used once. A system continuation in CA corresponds to
a single return location for a value. A reply message to a system continuation fills that
location and resumes the suspended location (if necessary). Programs may only reply to a
system continuation once — subsequent replies would indicate an incorrect program. This
differs from continuations in Scheme, which can be called multiple times. The behavior we
have chosen for system continuations allows activation records to be collected as soon as all
of their continuations have been fulfilled, reducing a global garbage collection problem to a
local one.

In several programming languages, researchers have shown that first class continuations
can be supported at reasonable cost. Compile time analysis coupled with the appropriate
run time support has been shown to significantly reduce this cost in sequential programming
languages [47, 32]. The analysis is used to determine when a reference to a continuation
may be created and to handle that case specially. If first class continuations are used only
rarely, the vast majority of activation record allocations can be done in stack fashion —
keeping their cost down. When first class continuations are actually used, they are still
quite expensive. Their use requires that activation records be garbage collected, not stack
deallocated.

We would like to make widespread use of first class continuations as a means for altering
message passing structures. This means that we must make actual use of first class con-
tinuations quite cheap. In a system where garbage collection may be quite expensive (due

3.4. DESIGN ISSUES IN CONCURRENT AGGREGATES 41

to the distributed memory and limited network bandwidth) we cannot afford to garbage
collect the continuations. Thus we settled on the single-use continuations as an acceptable
model.

3.4.7 First Class Messages

Many language designers have wrestled with issues of how to support meta-programming
[1]. In a function-oriented language such as Scheme, meta-programming is made possible
through first class functions and the apply operation [81]. First class functions allow func-
tions to be manipulated by programs. The apply operation allows the dynamic invocation
of function values. The fact that the apply operation can accept a variable number of argu-
ments solves the function arity problem (how to write meta-code that works for functions
of differing arities). Other languages use first class functions and currying to serve a similar
purpose [104, 8, 9, 51]. While these function-oriented approaches are not directly applicable
in a message-passing language, we use their example for the basis of our design.

Concurrent Aggregates uses first class messages to support meta-programming. Mes-
sages are used as unevaluated applications, containing a selector (message name), receiver
object, and some number of arguments. By manipulating messages as applications and
evaluating them by sending the messages, CA programmers can write meta-programs that
are independent of message arity concerns (in the same sense that other languages allow
the writing of programs independent of function arity).

Once we decided that we wanted to allow a programmer to manipulate messages ex-
plicitly, it became clear that rather than develop a specialized protocol, the most practical
way to manipulate them was to view messages as objects. Treating messages as first class
objects is nice, because it allows everything in the system to be treated uniformly, as an
object. Of course, because the efficiency of messages is crucial to the efficiency of an im-
plementation, they are managed specially. First class messages in Concurrent Aggregates
allow programmers to do a number of things: write code to reorder messages, write ab-
stractions that implement control structures such as doall that do not depend on the arity
of the body (and thus can be reused), and implement complex synchronization structures
depending on explicit manipulation of messages.

Because messages are used for communication in our system, access to messages must be
local. If they are, we can avoid an infinite regress problem®. To achieve this, we decided to
make messages by-value objects. By this we mean that whenever a reference to a message
is logically transmitted® (in another message), the message is copied so that the reference
always points to a local copy®. Often, this will result in the creation of additional message

*We need to send a message to change a message. But we need to access a message to send that message
and so on recursively.

®By logically transmitted, we mean even in the case the transmission is to the same node and requires
no actual physical transmission.

$This assures that the first level of message references is always local.

42 CHAPTER 3. CONCURRENT AGGREGATES

/'

w’f
’/"

&

¢

Figure 3.9: Message duplication in a Fan-out Tree

copies. This assures us that a send operation can be performed locally. In addition, in meta-
programs that use message parameters to support data parallelism, the message parameter
is replicated just as desired by default. Making messages by-value parameters causes some
additional implementation work, but has the advantage of the desirable sharing and locality
properties”.

One good example of this is a fan-out tree, used to implement a data-parallel operation
on a collection. This example is illustrated in Figure 3.9. At each stage in the fan-out
tree, the message parameter is duplicated and colocated with the computation holding a
reference to it. This results in the right number of copies at the leaves, one for each use of
the message. Throughout the fan-out process, the message parameters are always local.

Efficiency If messages were managed exactly like other objects, the overhead would be
tremendous. We observe that messages are different from other objects in three important
ways. First, messages move a great deal. Second, typically there are only one or zero
references to a message®. Finally, messages are typically created and destroyed at a much
higher rate than objects.

" Another designer might have simply chosen to make messages immutable as noted by Dave Gifford.
This would allow the compiler to decide if messages need to be copied when fields are replaced or if, as in
the case of no sharing, they can be updated in place.

®Remember, messages are active objects when they are sent, so they should not be garbage collected
simply because there are no references to them. When they become passive objects, they require at least
one reference or they are subject to garbage collection.

3.5. SUMMARY 43

In order to support efficient execution, messages are treated specially — they receive only
local names. This is okay for most cases, as their by-value property causes most messages
manipulated by programs to be local. When the single local reference is destroyed, the
message can be reclaimed without any garbage collection. Local names for messages means
that the operating system need only do a little bit of local work, and no communication
to allocate and deallocate them. In rare cases (when a message points to a message), a
message name is exported to a non-local location. At that time, a full relocatable object
name must be allocated for the message. In our experience this does not happen often.
The majority of the time, messages only receive local names — hence their management is
inexpensive and requires no communication.

3.5 Summary

In this chapter, I have described a new programming language Concurrent Aggregates (CA).
CA is a concurrent object-oriented language that allows programmers to build cooperating
collections of objects, aggregates. These collections can be used to construct hierarchies
of data abstractions without causing serialization. This allows programmers to use the
appropriate levels of abstraction without concern for reducing concurrency.

Concurrent Aggregates integrates programming with aggregates with a more familiar
object-oriented model. Message sends give rise to concurrency and message passing is used
for all synchronization in the system. In order to support programming with aggregates,
the design of CA includes support for intra-aggregate addressing, delegation, manipulating
messages as first class objects and manipulating continuations as first class objects. Intra-
aggregate addressing makes it convenient to build an abstraction from a collection of objects.
Delegation allows programmers to build abstractions incrementally from parts of other
objects. First class messages can be used for meta-programming, for example to construct
data parallel programs. First class continuations can be used for special synchronization
structures that specifically suit the requirements of the application at hand.

We have also discussed a number of issues in the design of Concurrent Aggregates.
Non-serializing data abstractions should be allowed, and they need not be fully coherent.
Allowing then to be slightly inconsistent can significantly reduce the cost of maintaining
distributed state. Messages to aggregates should be received by only one representative be-
cause such a scheme is scalable and can be used to construct any other scheme. Aggregates
are made up of identically structured objects because unless they are designed to work in
an aggregate, objects are not likely to be able to cooperate effectively.

Concurrent Aggregates unifies the aggregate model with its object model, allowing ob-
jects and aggregates to be used interchangeably. CA uses a method-oriented behavior
description as this meshes nicely with the per message delegation — allowing a program-
mer to construct an interface incrementally. Concurrent Aggregates allows programmers to
manipulate system continuations as first class objects and to create their own continuation
structures. This ability allows synchronization structures to be factored out from programs

Chapter 4

Language Evaluation

In order to evaluate our programming language design we have implemented Concurrent
Aggregates, written and executed a number of application programs. Our experimentation
and evaluation has focused on the primary innovation in Concurrent Aggregates — non-
serializing data abstraction tools. Programmers may use aggregates to explicitly control
distribution and consistency of state across the representatives in an aggregate. This free-
dom can be used to implement a wide variety of cooperative structures — replicated state,
partitioned state, and complex cooperation. In this chapter, we describe a number of ap-
plication programs and use them to evaluate the Concurrent Aggregates language. We also
evaluate the efficiency and concurrency of our CA programs.

Design and study of programming languages for machines much more powerful than
those currently available is difficult. Due to the performance difference between existing
and target machines (three to four orders of magnitude), it is hard to write and run real
application programs!. Emulation of a different machine architecture implies an additional
execution overhead. To run programs that are as realistic as possible (and therefore quite
large), an efficient implementation is essential.

In implementing CA, we have taken a hybrid approach that yields reasonable perfor-
mance, while maintaining system portability. We can simulate reasonably large programs
(millions of message-passing operations), yet can move to faster computers as they become
available. In order to be portable, we chose to compile CA into another high-level program-
ming language. We selected C++ as our target language because it is becoming widely
available and its object-oriented style is a good match to Concurrent Aggregates. Each
method or handler in CA is compiled to a function in C++. Thus, each method can be
executed as straight-line code — all interpretation at this level is compiled out. Between
methods, the linkage (message sending and method invocation) is provided by a runtime
system written in C++. This runtime system can simulate a variety of different message
passing machines ranging from an idealized message passing machine to a bounded resource
machine.

'Tt can take many hours to simulate just one second of machine time!

45

46 CHAPTER 4. LANGUAGE EVALUATION

We have used Concurrent Aggregates to write a number of application programs:

e Matrix Multiplication

o Multigrid Relaxation Solver

e N-body Interaction Simulation
Printed Circuit Board Router

e Parallel FIFO Queue

o Concurrent B-tree

Logic Simulator

These application programs have showed us both strengths and weaknesses of the lan-
guage. This chapter presents our evaluation of Concurrent Aggregates. First, we present
the application problems we studied and describe the algorithms used to solve them. For
each application, we briefly describe its program structure. Second, we present an overall
analysis of Concurrent Aggregates. In this evaluation, we consider the importance of multi-
access data abstraction tools and then discuss issues of program efficiency, modularity and
concurrency.

4.1 Application Studies

In this section, we present the seven applications we used to evaluate the Concurrent Ag-
gregates language. For each application program, we first describe the problem it solves.
Then, we describe the algorithm we are implementing and the resulting program structure
in Concurrent Aggregates. Finally, we present a brief summary of where aggregates were
useful in the program. A more detailed description of several CA programs can be found in
Appendix A. Documentation, source code, and detailed simulation statistics for all of our
application studies can all be found in [29].

4.1.1 Matrix Multiplication

Matrix multiplication is an operation that occurs in many algorithms. We consider a simple
algorithm for multiplying dense matrices. More efficient algorithms based on decomposition
are known [91, 102]. If many elements of the matrix are zero (the matrix is sparse), special
algorithms that are much more efficient can be used. Matrix multiplication of two n by n
matrices A and B to define matrix C' is computed according to the following rule:

Clk, 1] = znj Alk, 4] + B[4, 1]

1=1

4.1. APPLICATION STUDIES 47

From this definition, we see that there is opportunity for massive concurrency in matrix
multiplication. Each element in the result matrix can be computed concurrently — none
depends on any other. This means that a naive matrix multiplication scheme would have
up to n3 concurrent operations!? For a 100 by 100 matrix, this would be one-million-fold
concurrency. The average concurrency is %, or 150,514 for the 100 by 100 case.

Attempting to exploit the peak concurrency may be neither desirable nor achievable.
We chose a formulation of matrix multiply that yields n? concurrency. Each matrix multi-
plication is divided into n? sequential inner products. Each dot product defines one element
of the result matrix. By constraining each dot product to be sequential, we limit the con-
currency to be n?. As we have n? dot products and each can only have one outstanding
request at a time for each matrix, each matrix has only n? readers. This is well matched to
the number of readers we can actually support without using replication.

The matrix multiply computation in CA is depicted in Figure 4.1. It shows a number of
dot product computations computing against the two operand matrices. As the dot product
proceeds, it reads across a row of the first matrix and down a column of the second matrix.
At each step, a partial sum is added to the dot product. When the dot product reaches the
end of both matrices, it stores the value of the dot product in the result matrix (not shown).
This decomposition of matrix multiply into a number of computations, each computing a
part of the result, has been called result concurrency [23]. Each dot product is performed
at the result matrix (i.e. values are read from two term matrices and processed at the result
matrix). This approach results in lower contention at the term matrices, at the expense of
doubling the message traffic.

We implemented each matrix as an aggregate. This allows computation to be performed
on different parts of the matrix simultaneously. As each matrix is an aggregate, it can be
described with an ordinary name and passed, stored and manipulated as any other object.
Of course, users of the matrix abstraction cannot tell how it is implemented, save through
performance differences.

Each representative in the aggregate holds one element of the matrix. While this very
fine grain partition implies some storage overhead, it also allows maximal concurrency — all
n? elements of the matrix can be accessed simultaneously. The basic matrix operations, at
and atput, each require three message passing operations: the initial request, one message
to forward the request to the right representative, and one message to send the reply. A
basic matrix operation and the message handlers required to implement them are shown in
Figure 4.2. External requests at and atput are converted to internal requests and forwarded
to the correct representative. This forwarding passes the continuation of the original request
to the internal request, causing the reply to go the source of the external request. In Section
5.4.1, we show how this forwarding message can be eliminated at compile time.

?Each element in the result matrix involves 2n — 1 operations. Of these operations, at least initially, n
of them can be done concurrently, assuming we perform a fully parallel vector element-wise multiply then a
tree reduction for each result element.

48 CHAPTER 4. LANGUAGE EVALUATION

Matrix 1 Matrix 2

Values Values

Dot Product Q
Computations Q
wm&‘

To Result Matrix

Figure 4.1: Matrix Multiply in Concurrent Aggregates

4.1. APPLICATION STUDIES

[1T—

Initial Request By

AN Forwarding message

-
-
s
""""
.-
-
L

— \

Reply

)
.

;3 A 2-D matrix aggregate
H forward external requests according to our mapping function
(aggregate matrix_2d state xsize)

(handler matrix_2d at (xindex yindex)
(forward (internal_at (sibling group (+ (* xindex (xsize self))
yindex)))))

(handler matrix_2d internal_at ()
(reply (state self)))

(handler matrix_2d atput (value xindex yindex)
(forward (internal_atput (sibling group (+ (* xindex (xsize self))
yindex)) value)))

(handler matrix_2d internal_atput (value)

(seq (set_state self value)
(reply (state self))))

Figure 4.2: Basic Matrix Operations

50 CHAPTER 4. LANGUAGE EVALUATION

let G[i] be grids for i = 0,1,2,3,4,..m
Where the grid spacing in grid G[m] is 2™ x h (coarsest grid) and h is the grid
spacing of the bottom grid, G[0] (finest grid). We assume that the bottom grid
is n by n with n = 2° for some integer i. Thus G[i] is (n/2¢) by (n/2*).

1. Start with ¢ = 0 (finest grid)

2. Relax several iterations on G[i] to obtain an approximate solution to the
equation.

. Inject (use a restriction operator) the residual error from G[i] to G[i+1].
.i=14+1;If 1 < m, go to step 2

. Iteratively relax on Gl[i] = G[m)] until found solution

. Interpolate solution from G[i] to G[i-1] (use a prolongation operator)
t=1-1

Relax several iterations on Gli]

If i > 0 go to step 6
10. Return G[0], the solution.

Figure 4.3: The Multigrid Algorithm

4.1.2 Multigrid Solver

Multigrid is an efficient algorithm for numerically solving partial differential equations
[76, 73]. It is an indirect method based on finite differences. The variable of interest is
represented over a continuous space by a set of values at a set of discrete points called grid
points. By performing successive relaxation operations (averaging local grid values), we
solve for the variable over the space.

Multigrid is an improved relaxation-based solution technique. The crucial observation
in multigrid is that relaxation techniques efficiently reduce the high frequency components
of the error (the difference between the computed solution and true solution). By viewing
the error on successively coarser grids, low frequencies in the error become high frequencies
and hence can be reduced effectively by relaxation techniques. Thus, multigrid makes use
of a hierarchy of grids. As we go up in the hierarchy, the grids become smaller. Typically,
the grid sizes get exponentially smaller, so only a few levels of grid are needed even for large
problems. The multigrid algorithm is described informally using pseudo-code in Figure 4.3.

Multigrid is an efficient algorithm on both sequential and concurrent machines. Define
n to be the number of grid points in the finest grid. Multigrid algorithms are attractive
because they require only O(n) operations. Simple relaxation schemes require n iterations of
O(n) operations each, O(n?) operations overall. At any grid point, the successive iterations

4.1. APPLICATION STUDIES 51

TOP_GRID

SYNCH_RELAX

Figure 4.4: The Multigrid Algorithm in Concurrent Aggregates

are sequential, resulting in a critical path length of O(n) operations. In multigrid, the depth
of the hierarchy is logy/n and the number of operations at each level, i, is O(%)- Thus,
the total work is dominated by the lowest level and the overall work is O(n). The critical
path is determined by the time to go up through the hierarchy and back down (we lump
the number of iterations at each level into the constant factor) and therefore is O(log n).

The multigrid algorithm in Concurrent Aggregates consists of a number of abstractions
which are composed to form the multigrid solver. The basic structure of the solver is a
hierarchy of grids — each implemented by an instance of the grid abstraction.

Each grid abstraction is a simple relaxation solver that performs a fixed number of
iterations. Each grid is paired with a synch_relax abstraction which enforce the necessary
synchronization for successive iterations of the relaxation. This is necessary to prevent a grid
point from getting too far ahead and causing some grid values to be computed using values
from the wrong iteration. The per grid point synchronization provided by synch_relax
allows different parts of the grid to get out of synchrony but never too far — allowing the
exploitation of inter-iteration and inter-grid concurrency.

After a grid has finished its relaxation steps, it injects (interpolates) the grid values
to its upper (lower) grid neighbor. This operation is performed by a restriction (prolon-
gation) operator. Each grid does this in turn. When the computation reaches the top of
the hierarchy, the top_grid abstraction performs a barrier synchronization and starts the
algorithm back downward. On the way down the hierarchy, the multigrid also consists of
a fixed number of iterations for each relaxation solver. When we reach the bottom of the
hierarchy, we have solved the partial differential equation. The upward then downward
traversal of the grid is often called a V-cycle. The structure of multigrid in CA is depicted
in Figure 4.4.

52 CHAPTER 4. LANGUAGE EVALUATION

1 higher GRID

4
INJECT_PROLONGED_VALUE INJECT_RESTRICTED_VALUE

NODE_DONE
4 —_—
£ y to SYNCH_RELAX
. P
A RELAX_SPOINTS
INJECT_PROLONGED_VALUE INJECT_RESTRICTED_VALUE
Y

to lower GRID

Figure 4.5: Interfaces for the Grid Abstraction

Novel CA language features are used in a number of places in the multigrid program. Ag-
gregates are used for the grid, synch_relax, top_grid, and barrier_tree. barrier_tree
is a dynamic combining tree used in the concurrent barrier synchronization abstraction.
The aggregates, multi-access abstractions, allow the grids to be connected to each other by
single aggregate pointers.

The multiple access property of aggregates allows the synchronization code to be fac-
tored out of the grid abstraction. Without multi-access abstractions, the serialization at an
abstraction boundary would make the factoring infeasible. The synch_relax abstraction is
a highly concurrent abstraction based on an aggregate that supports fine-grain synchroniza-
tion for the grid. One consequence of this improved program modularity is that synch_relax
could be replaced with a simpler structure that performs a coarser-grain synchronization
with no change to the multigrid relaxation code.

In order to illustrate how Concurrent Aggregates allows us to construct clean interfaces
for abstractions, we depict the grid aggregate with interfaces, in Figure 4.5. A grid inter-
face has three parts: to the upper grid, to the lower grid and to its cooperating synch_relax
aggregate. These interfaces are defined by handlers and message sends used in the code
shown in Figure 4.6. The interface to the synch.relax abstraction is very clean. Each
completing local relaxation operator ends with a message node_done to the synch_relax
abstraction, indicating its completion. When the synch_relax abstraction determines that
the next local relaxation operator can be computed, it sends a rolax Spoints message to
the grid, beginning the next local grid point computation.

4.1. APPLICATION STUDIES

(aggregate grid value
count synch_node
scratch_value
xsize
restrict_prolong ;; 0 for up, 1 for down
upgrid downgrid
:no_reader_writer
(parameters totalsize ixsize ival nr_iters)
(initial totalsize ...))

;3 Jacobi method indirection solution
HH (also interface to synch_relax grid)
(handler grid relax_6points (local_x local_y)
-. send relax_Bpoints_step messages to neighbors ...)

(handler grid relax_Spoints_step (xval yval val)

(if (= (count self) 4) ;3 finished local operator
(do (node_done (synch_node self)))
)] ;i tell the synch_grid we’re done

e
;; upward and downward interfaces
LR}
(handler grid inject_restricted_value (val x y)
... put it in the right place and start relaxation ...)
(handler grid inject_prolonged_value (val x y)
... put it in the right place and start relaxation ...)

Figure 4.6: The Code for a Grid abstraction

54 CHAPTER 4. LANGUAGE EVALUATION

(aggregate top_grid downgrid msg_list barrier_tree

i Catches the messages, Modifies the selector,

HH receiver and two arguments and Saves the message
i3 Count for barrier_synch message indicates how many nodes
HH are done

(handler top_grid inject_restricted_value (val x y)

(seq (msg_atput msg inject_prolonged_value 0)
(msg_atput msg (downgrid self) 2)
(msg_atput msg (* 2 x) 4)
(msg_atput msg (* 2 y) §)
(set_msg list self

(new msg_pair msg (msg_list self)))
(do (barrier_synch (barrier_tree self) 1))))

Figure 4.7: The code for a Top_Grid abstraction

In order to make all grids identical, we constrained the top.grid abstraction to have
an interface compatible with the upward grid interface. Upward messages are caught by
top_grid and used to synchronize the computation globally. First class messages are used
by the top_grid to halt the upward phase of the computation, synchronize and proceed to
the downward phase. The top_grid catches, modifies and resends the messages as shown
in Figure 4.7.

4.1.3 N-body Interaction Simulation

The N-body interaction problem involves action at a distance (the force of gravity) and
the motion of bodies over a period of time. We use a simple algorithm that explicitly
calculates w force interactions and uses them to update the velocities of the bodies3.
Our N-body simulation proceeds as a number of time steps, each overlapped with the one
before. At time k, to proceed, each body must compute the following:

Fi(k) = 3 Fi(8)

When a body has computed the force acting on it in the current time step, that force
is used to update its velocity. The new velocity is used to move the body and start the
process again. Because the force Fj;(k + 1) depends on the position of both bodies i and j

3More efficient algorithms have been invented [52, 107], but we choose this simple algorithm as the most
convenient means of studying the language.

4.1. APPLICATION STUDIES 55

»*

[
’
[
]
.
[
1
.

0

»
-
Py

Forces

Figure 4.8: Bodies interacting via gravity.

for time step k, we see that no body can get more than one step ahead of any other. This
is because the new position for each body depends on the current position of all the other
bodies.

Force computations and position updates are not synchronized by any global control.
They are triggered by the implicit dependences for data. For this algorithm, the CA program
implements the minimal constraint — the computation proceeds as fast as the data can be
computed and communicated.

Our N-body program uses an aggregate to implement a bodies abstraction which con-
tains the state of all N bodies. All messages for a particular body are sent to the aggregate
and forwarded to the appropriate representative based on an argument specifying the num-
ber of the destination body. This scheme allows us to avoid linking a body to all of its
interactions — saving n — 1 elements of state for each body. In addition, due to the fact
that each body acceleration requires the accumulation of n — 1 forces, each body also has
a dynamic combining tree. Force messages are first forwarded to the appropriate body and
then on to the appropriate dynamic combining tree?. This tree can accumulate the forces
concurrently, producing the total force more quickly than a linear reduction. We chose a
dynamic combining tree instead of a static combining tree because we do not know the likely
arrival order of forces for a particular body. Its data dependent. Also, dynamic combining
trees are generally more space efficient as they require space proportional to the maximum
rate at which requests arrive. In comparison, static trees usually require space proportional
to the total number of requests.

*The serialisation of force messages through the body before reaching the combining tree does not limit
combining in this case. It takes much longer to combine two force vectors than to forward the force message
to the tree.

56 CHAPTER 4. LANGUAGE EVALUATION

[Posivion |

@ — Position ———
A [position | —
: 0,1 0,2 0,3
—
Force 12 > |13 23
s
Force -
@ D Force -
Messages
Bodies Aggregate Interactions Aggregate

Figure 4.9: The Bodies and Interactions Abstractions

An aggregate is also used for the interactions abstraction which computes all of the
forces due to body interactions. Each interaction receives position messages from two
bodies, computes their interaction, and sends the resulting force messages to each one.
We need not worry about linking the bodies directly to the interactions either. As in the
bodies aggregate, the linkage is achieved via index computation and message-passing within
the interactions aggregate. The division of the N-body simulation into two abstractions is
depicted in Figure 4.9. The members of the body abstraction are labeled with their body
numbers. The interactions are labeled with the numbers of the bodies whose interaction
they calculate.

Each body reports its position to the interactions aggregate, and in return receives mes-
sages telling it how to accelerate itself. This clean separation of the two abstractions allows
the implementation of each abstraction to change independently. For instance, we origi-
nally used a linear reduction to accumulate the forces on a body. However, the contention
caused by our spin-locking concurrency control scheme resulted in an excessive number of
messages. To solve this problem, we changed the bodies aggregate to include a combining
tree for each body ~ reducing contention due to spin-locking. This change to the bodies ag-
gregate required no change in the rest of the program. The changes to the bodies aggregate
are shown in Figures 4.10 and 4.11. In the original implementation, each body processed
a series of accelerate_body messages, one for each interaction. This series of computations
amount to linearly reducing the forces on each body. The modified program delegates
accelerate_body messages to a dynamic combining tree which consolidates requests. The

4.1. APPLICATION STUDIES 57

(aggregate bodies location velocity mass acc_count
interactions iters

.

(handler bodies accelerate_body (force_vector)
(seq (set_velocity self (add (scale force_vector
(/ 1.0 (mass self)))
(velocity self)))
. increment mycount by 1 .
. if we have all forces .
(forvard (update_position self 1.0))))

Figure 4.10: Accumulating Forces on a Body: Linear Reduction
(load "dcombtree.ca”) ;; include combining tree abstraction

(aggregate bodies location velocity mass acc_count
interactions iters dcombtree

L)

;3 delegate the accelerations to dcombtree
(delegate bodies accelerate_body dcombtree)

;; combined request
R
(handler bodies really_accelerate_body (force_vector count)
(seq (set_velocity self (add (scale force_vector
(/ 1.0 (mass self)))
(velocity self)))
.. increment mycount by count ...
.. if we have all forces ...
(forvard (update_position self 1.0))))

Figure 4.11: Accumulating Forces on a Body: Using a Combining Tree

58 CHAPTER 4. LANGUAGE EVALUATION

ofe e

Figure 4.12: A Dynamic Combining Tree of size 16

consolidated request is presented to the body as a really_accelerate_body message. It needs
one more argument — count — which indicates the number of forces that were consolidated
into this request.

Dynamic Combining Trees Dynamic combining trees are a simple abstraction with
widespread use. We used combining trees in the N-body simulation and many of the other
application programs. A dynamic combining tree aggregate is shown in Figure 4.12. The
Concurrent Aggregates code for a dynamic combining tree is shown in Figure 4.13.

A dynamic combining tree accepts a number of values — one from each of its leaves —
and combines them with some associative binary operation. The resulting value is produced
at the top of the tree. Our combining tree aggregate accepts a number of messages of the
form: (accelerate body <combiningtree> <value> <count>). The selector stored in
the combining tree specifies the binary operation that should be used to combine values.
Value is the value to be combined and count specifies how many values have been combined
together.

This tree can be adapted for other messages by changing the name of the accelerate_body
handler to another name. It’s also possible to build a general combining tree (one that works
for all kinds of messages) by using first class messages®. The dynamic combining tree aggre-
gate uses each representative as a node in a combining tree. The initial code connects the
representatives into a tree structure and initializes the state of each tree node. The com-
bining function is performed by the code for an accelerate_body message. If there are no
waiting requests — this is the first of a set of accelerate_body messages to be combined — we
send the send_requests message to the current tree node. When send_requests eventually
gets processed, the tree node will send its consolidated request to its parent in the tree. In

®This is 2 minor problem with the language. The reusability of these abstractions would be enhanced if
CA allowed the definition of a default or :rest handler.

4.1. APPLICATION STUDIES 59

LR
;; A dynamic combining tree
?
(aggregate dcombtree waiting reqs
myparent consolidated_value selector :no_reader_writer
(parameters size top comb_selector)
(initial size ;; initial method received by sibling 0
(seq (forall index from 0 below groupsize
(init_help (sibling group index) comb_selector))
(set_myparent self top))))

(handler dcombtree init_help (comb_selector)
(seq (set_waiting reqs self 0)
(set_consolidated_value self 0)
(set_myparent self (sibling group (/ myindex 2)))
(set_selector self comb_selector)
(reply done)))

;3 if waiting requests, combine. Else push and send send_requests
LR
(handler dcombtree accelerate_body (val count)
(seq (if (eq O (waiting reqs self)) (do (send requests self)))
(if (eq (consolidated_value self) 0)
(set_consolidated_value self val)
(let ((sel (selector self)))
(set_consolidated_value self (sel val (consolidated_value self)))))
(set_waiting reqs self (+ (waiting reqs self) count))))

(handler dcombtree send_requests ()
(seq (if (= myindex 0)
(do (really_accelerate_body
(myparent self)
(consolidated_value self) (waiting reqs self)))
(do (accelerate_body (myparent self) (consolidated_value self)
(waiting reqs self))))
(set_waiting_reqs self 0)
(set_consolidated_value self 0)))

Figure 4.13: An Implementation of a Dynamic Combining Tree

60 CHAPTER 4. LANGUAGE EVALUATION

the interim, all accelerate body messages will be combined together. The root tree node
is connected to an object outside the aggregate. At the root, a really_accelerate_body
message is sent to the body. Exactly how much combining occurs depends on the rate of
requests and the system message queueing policy. If messages queues are FIFO, then all
requests that are in the message queue already when a tree node gets the first request will
be combined. If none are in the queue, then the request will be propagate up the tree almost
immediately.

4.1.4 Parallel FIFO Queue

Our next application is a parallel first-in-first-out (FIFO) queue. Its behavior is linearizable
in the sense defined by Herlihy and Wing [54]. This means that queue operations whose du-
rations (time from request to reply) overlap may appear to occur in either order. If requests
are applied serially to the queue, its behavior is exactly FIFO. Our queue is similar to one
described by Schwartz in [83]. Our queue is implemented entirely in software. Schwartz’s
queue requires a hardware combining network used to compute queue indices. Our queue
can be scaled up to almost arbitrary size and throughput by increasing the number of repre-
sentatives in the synchronizing array, queue interface, and combining trees. A more detailed
description of the queue with select code fragments is shown in Appendix A.

An interesting feature of our parallel queue is that it is not only an element buffer. It’s
also a dequeue request buffer. We normally think of a queue as a buffer for a non-negative
number of elements. However, our queue is essentially just synchronizing between readers
and writers (dequeuers and enqueuers) it can serve as a buffer for dequeue requests also. For
a queue of size I, the producer can get [elements ahead or behind his consumer. However,
one restriction of our implementation is that only I requests can be active simultaneously®.

Our parallel queue program consists of five parts: a parallel interface, two index-request
combining trees, a synchronizing array, and a counter that holds the enqueue and dequeue
pointers for the queue. All of these abstractions, save the counter, are implemented using
aggregates. The structure of a parallel queue is shown in Figure 4.14.

The enqueue and dequeue counters are used to manage the synchronizing array in a
“circular” fashion, reusing the array when the indices exceed the array size. When a queue
request is made, it is received by the interface. The interface acquires the appropriate type
of index (enqueue or dequeue) by sending a request to one of the dynamic combining trees.
These trees are very similar to the tree described in Section 4.1.3. The counter allocates
a range of indices for each request. This range is mapped to the set of combined requests.
Details of the mapping are in Appendix A. With an index, the interface object makes a
request against the synchronizing array. When the interface has successfully read or written
the array, it returns the appropriate value to the originator of the queue request.

$This restriction allows our synchronizing array locations to be fixed size. They require no dynamic
allocation.

4.1. APPLICATION STUDIES 61

Parallel Queue Interface
RO OO OO
\ \«

\\
Dynamic Combining Trees
(Structured Aggregates)
FIFO
Counter

Synchronizing Array

Figure 4.14: The Parallel Queue Abstraction

62 CHAPTER 4. LANGUAGE EVALUATION

The array is “synchronizing” in the sense that it enforces the read-once-write-once pro-
tocol required for the array. Each location is read and written exactly once. The array must
be synchronizing because the index allocation and data storage are two separate operations
~ allocation of a write index does not imply that the data is already stored there.

However, the array must be even more complicated because we want to reuse the loca-
tions. One consequence of this fact is that this synchronizing array requires four states for
its “presence bits.” The extra states serve to tell us when we can reuse locations. Some
additional complexity is required to deal with the rounding (as the increment beyond the
end of the array) the in and out pointers and reusing array locations. In order to implement
the queue, it must be possible to distinguish the following states.

Synchronizing Array States
Full The location has been written but not read.

Waiting The location has been read, but not written. Location data bits contain the
reader’s continuation.

Empty-clean Neither a read nor a write has occurred since last reset.

Empty-dirty Both a read and a write have occurred since last reset.

The full and waiting states are similar to presence bits for memory in the HEP [90].
However, the empty-clean and empty-dirty states are unusual. They are required because in
managing the array as a circular FIFO, we are actually using the array as a synchronization
namespace between readers and writers. When the in and out pointers come back around,
we reuse the synchronization names. Since messages may take an arbitrary amount of time
in the system’, we cannot be sure that the synchronization for a particular location has
occurred — both the read and write may have not arrived. To safely reuse the storage, we
must be able to distinguish the two states — empty-clean and empty-dirty and thus tell that
a synchronization has occurred. When we reuse locations, we reset them to empty-clean
state.

The parallel queue demonstrates a number of interesting uses of aggregates. The par-
allel interface, which simply holds pointers to the parts of the queue abstraction, uses the
aggregate mechanisms to implement a number of replicas of the same state. This replication
is used to avoid a bottleneck in accessing the queue. The queue interface provides the glue
to put the abstraction together, and provide a coherent interface. The dynamic combining
trees demonstrate another use of aggregates — a structured collection. Each representative
is linked to other representatives in a pattern that forms a tree. The behavior of each
representative node assures that the appropriate combining function is implemented by the
overall aggregate. A third use of aggregates is demonstrated by the synchronizing array.
The array partitions its state over the representatives. Each representative handles requests

"Eventual delivery is assured, but no particular time period is promised.

4.1. APPLICATION STUDIES 63

for a subset of the array indices. The synchronizing function can be performed locally by
each representative. Requests arriving at the wrong representative are forwarded to the
appropriate representative.

The queue interface aggregate allows us to access a queue uniformly, without regard for
replication, size, and other implementation details. However, the efficiency of Concurrent
Aggregates could be improved by sending messages directly to a particular subset of the
aggregate. This would allow us to direct messages to the leaves of the combining tree only,
improving its behavior to be more FIFO-like. It would also allow us to direct messages to
particular representatives in the synchronizing array abstraction — avoiding any forwarding
of requests. In Chapter 5, we investigate the performance impact of sending such messages
directly — compiling the level of indirection out.

4.1.5 Printed Circuit Board Router

A printed circuit board router is used to route wires from one pin to another. In general,
we would like to route wires (nets) along the shortest path. Routes must avoid obstacles
on the board. A large board may include tens of thousands of nets. The PC board we are
building for our prototype J-machine [79] has over 5,000 nets. A complex VLSI board might
easily have 20,000 nets. One common approach is to route nets independently, and when
congestion occurs (too many wires in a region may demand a board with too many layers),
routes passing through a congested area are “ripped up” and rerouted [46, 88, 34, 99].
However, the cost function (originally simple distance) is changed to discourage routes from
passing through the congested area. Qur algorithm operates within this paradigm. For
simplicity, we simulate only a single phase of routing. The routing process is depicted in
Figure 4.15.

Our Concurrent Aggregates program uses the A* search technique [67] to find a path for
each net. The obstacles are recorded in a single shared PC board “grid” which represents
each point a net can pass through on the board. The grid can support massive concurrency
— each point on the board can be polled independently to determine if is blocked or passable.
Each net is routed independently and each net uses a priority queue to implement its Ax
search. Partial routes are prioritized by the distance traveled thus far plus an estimate
(guaranteed to be a lower bound) on the remaining distance to be traveled. To route a
net, we simply choose the partial route in the queue with the lowest priority and extend it.
Priorities are assigned as the sum of the distance travelled thus far and an estimate of the
remaining distance. Thus, choosing the lowest priority causes us to pursue a path that may
be the shortest one. The new partial paths are inserted into the priority queue. Eventually,
we will find the shortest path. Furthermore, we will typically have done much less work
than an exhaustive search.

There are some complications — typically there are many paths to an intermediate point
between start and destination as shown in Figure 4.16. Rather than extend each of the
paths that reaches a point, we would like to merge the routes. If we pursue any path from
a point of convergence, we only extend the merged path. Since we are only interested in

64 CHAPTER 4. LANGUAGE EVALUATION

® Destination

Printed Circuit
Board

Obstacles

Figure 4.15: Using A* search to find a path

the shortest route, we merge by eliminating the longer routes at intermediate points. If the
partial paths are the same length, we choose one arbitrarily. In order to merge paths, each
net maintains an occupancy table which includes all of the points that have been reached,
as well as the distance to reach that point. Of course, with sequential A* search, the first
path to reach an intermediate point will always be the shortest (equal in length or shorter
than all of the others).

We may not want to route 5,000 nets simultaneously, or we may want to make use of a
massively concurrent machine to route a smaller board. We can do so by making the basic
net routing operation, A* search, concurrent. Our approach to doing this is to pursue the
k best queue entries simultaneously, instead of just one. This change has two implications.
First, we will perform some extra computation by extending paths that would not normally
have been extended. Second, this means that we may reach intermediate points (and the
ultimate target) with suboptimal paths. To deal with this, we need to keep distances in
the occupancy table. Shorter paths to intermediate points are allowed to supersede longer
paths. This guarantees that we will ultimately find the shortest path, but we may do a
significant amount of extra work. This approach allows us to expose approximately k-fold
concurrency in the search for a single net.

Aggregates are used in a number of abstractions in our printed circuit board router.
The PC board grid that contains obstacles that must be routed around is a partitioned
abstraction — each representative holds the state for a small part of the board. As queries for

4.1. APPLICATION STUDIES 65

Convergence

t Obstacle

Start

Figure 4.16: Two Convergent Paths

different parts of the board do not depend on each other, the representatives can collaborate
to implement this abstraction without further message passing.

The net abstraction tops the hierarchy of abstractions as shown in Figure 4.17. In the
PC board router, both the net and the occupancy table abstractions are implemented with
aggregates. The net abstraction provides multiple access to the various parts of the net:
the starting point, the end point, the occupancy table, the grid for the entire board and
the priority queue for active paths. A multi-access net abstraction allows the concurrent
pursuit of several paths for a single net. Using an aggregate for the occupancy table is also
require to support simultaneous pursuit of several paths. The occupancy table is used to
keep track of the shortest path for this net to a given point in the grid. This information
allows us to eliminate the majority of redundant paths before they are inserted into the
priority queue. The occupancy table (implemented by a hash table) is a good example of
an abstraction that partitions its state and responsibility for handling requests over the
representatives. The code for a hash table is shown in Figure 4.18.

For each hash table request, insert and member, the key is hashed to determine which
representative is responsible for the request. Probe returns the list of <key, element> pairs
where the key should be found. Hash_pair is used to implement the appropriate query and
replacement operations on the for the hash_table.

If we wanted to pursue more than a few paths for each net simultaneously, serialization
at the priority queue would limit performance. The priority queue is currently implemented
with an ordinary object, and thus can only support limited concurrency. If the number of
partial paths being pursued were increased, the priority queue would become the bottleneck,
preventing any further increase in performance. The priority queue is pipelined, but can
only accept messages at the rate of a single object, far less than what is possible with
an aggregate. In order to significantly increase performance on a single net, it would be
necessary to implement the priority queue with multiple access abstraction tools.

66 CHAPTER 4. LANGUAGE EVALUATION

Net Abstraction

C/J Occupancy Table
Start and destination
O w O Qo

Aggregate

Grid (obstacles)

Entries (points already reached)

Figure 4.17: The Hierarchy of Abstractions used to implement the Net Abstraction

4.1.86 Concurrent B-tree

B-trees are used in many important programs [35] that require set abstractions with efficient
insert, query and delete operations. Perhaps the most notable applications of B-trees involve
their use in databases where the node sizes can be matched with page sizes in the virtual
memory system. The granularity control available at nodes makes it possible to optimize
the paging performance of a B-tree for very large trees. Our implementation of a concurrent
B-tree was based on the algorithms of Lehman and Yao [68] and Lanin and Shasha [66].
These algorithms allow reads and inserts to lock only a constant number of nodes at a time.
Deletes can require the locking of O(log n) nodes at once. The basic structure of a B-tree
is shown in Figure 4.19.

Generally, operations on the B-tree start at the top and work their way down to the
bottom of the tree. QUERYs make no changes to the tree while UPDATEs may modify
it. INSERTs may cause splitting of nodes at the bottom of the tree (expanding the tree
downwards) and DELETEs may cause merging of nodes in the tree (an upwards traversal).
Left-to-right links are maintained in the B-tree in order to assure correct behavior in the
case of concurrent updates and queries are going on at the same time. When this happens,
the query may find itself a few nodes too far to the left. The left-to-right links allow the
query to move to the right until it finds the appropriate node.

Our concurrent B-tree makes interesting use of aggregates to avoid bottlenecks in con-
current access to data®. Aggregates are used for the btree, multi-version memory (a loosely

8The concurrent B-tree program was written by Paul Wang as part of his study of concurrent B-trees. A

4.1. APPLICATION STUDIES

;3 Hash Table Abstraction
;; hash keys over the size of the aggregate and
3+ then do linear search on the local list
;3 (hash elt) must yield an integer for comparison with a key
9
(aggregate hash_table local :no_reader_writer
(parameters size)
(initial size ...))

(handler hash_table insert (key elt cost)
ee)

(handler hash_table member (key elt) :no_exclusion
(let ((eltlist (probe group key)))
(forvard (find_key eltlist elt equal))))

i probe returns a list from the appropriate bucket
HH
(handler hash_table probe (key)
(1ot ((hash_index (mod key groupsize)))
(forward (internal_probe (sibling group hash_index)))))

(handler hash_table internal_probe ()
(reply (local self)))
HH
;s Hash pair abstraction
HH Elements must have define "key" and "equal" operations
HH
(class hash_pair key elt next cost :no_reader_writer

ee)

(method hash_pair find key (t_key test_sel)
(if (test_sel (key self) t_key) (reply (elt self))
(it (neq 0 (next self))
(forward (find_key (next self) t_key test_sel))
(reply 0))))

;; for the end of list
(method integer find elt (x y)
(xreply 0))

(method hash_pair replace_key (t_key t_elt test_sel newcost)

. this is used to insert new elements
or new values for an element ...)

Figure 4.18: Hash Table Program

68

Child Node

CHAPTER 4. LANGUAGE EVALUATION

U

Root Node

Child Node

LOAEAAES - -bbbbbb00

:I Concurrent Aggregates Left to right links

O Ordinary Objects

Figure 4.19: A Concurrent B-tree

4.1. APPLICATION STUDIES 69

consistent replicated memory), and regular memory (a consistent replicated memory) ab-
stractions. btree is a multi-access abstraction that allows requests to access the b-tree
concurrently. All requests to the B-tree come to the btree abstraction. Having a multi-
access abstraction allows us to process them without serialization. We need this level of
indirection in case a split propagates all the way back up to the root.

A multi-version memory [101] is a loosely-consistent, replicated memory. Loose consis-
tency means that some read requests may receive stale data. Multi-version memories are
used for the internal nodes of the B-tree. Multi-version memories can process multiple con-
current requests, due to replication. Replicas can be updated lazily — avoiding the overhead
of locking all replicas simultaneously. Thus, the multi-version memory can continue to han-
dle read requests while it is being updated. Read requests are handled by an arbitrary copy
of the memory, and therefore may read old data. For the B-tree algorithm we used, reading
old data from an internal node will not affect the correctness of the operation. However,
it may make processing a request slightly less efficient (i.e. require it to traverse more tree
nodes). The use of old data may cause the request to compensate by moving a few nodes
to the right. This is no problem, as we keep all nodes linked left-to-right.

The third aggregate abstraction used in the concurrent B-tree is regular memory -
a consistent, replicated memory abstraction. This abstraction is used for the leaf nodes
which contain actual data elements. Read requests are processed by an arbitrary copy,
allowing many reads to proceed concurrently. Writes to the regular memory must first
lock all copies of the memory, update them, and finally unlock them. Of course, this
locking prevents other requests from using the memory for a much longer period than with
the multi-version memory. However in contrast to the multi-version memory, the regular
memory always presents a consistent view of the memory. The locking overhead is only
significant on writes, and since most uses of the B-tree are read only (i.e. simple queries), a
larger overhead for writes is acceptable. Accelerating reads at some cost for writes improves
the overall performance of the B-tree. For leaf nodes, we cannot use multi-version memory
because a consistent view of the replicated memory is required.

In the concurrent B-tree, aggregates are used to support a two different kinds of replica-
tion. For the multi-version memory is a loosely-consistent replication scheme. The regular
memory is a consistent replication scheme. For replication, aggregates structure is conve-
nient because it allows the programmer to explicitly manage the level of consistency and
tailor it to his program. In addition, the one-to-one-of-many direction of messages to rep-
resentatives mapping is a good match for the uses of aggregates in the B-tree program as
we do not care which representative handles requests.

more complete discussion of this program can be found in [100].

70 CHAPTER 4. LANGUAGE EVALUATION

Events to be
executed

Parallel
Priority
Queue

(event queue)

Events to be enqueued

Figure 4.20: A Logic Simulator

4.1.7 Logic Simulator

Our logic simulator program simulates simple digital logic circuits. All timings in the
circuits are discretized. The logic is simulated in an event-driven fashion [96, 95]. When
a circuit node makes a transition, an event is queued. Events are evaluated for each time
step, causing more gates to switch, causing more events to be scheduled in the future. In a
large chip, it is not uncommon to have tens of thousands or hundreds of thousands of gates.
It is important to do event-driven simulation because a typical percentage of active gates
can ranges from 2 — 10% per discrete time step [22].

We implemented a multiple delay digital logic simulator in which transitions to 1 or 0
can take different amounts of time. Our logic simulator implements event cancellation [3],
and could be easily extended to support oscillation detection. Qur simulator also detects
multiple events on a gate’s inputs in one time step and fires the gate only once (eliminates
redundant gate firings).

Our logic simulator consists of a parallel priority queue and a network of nodes and
gates. The basic structure is depicted in Figure 4.20. Messages from the queue to the
network involve the evaluation of events. Messages going in the opposite direction are used
to schedule events. Events in our circuits have a finite minimum delay of several time steps,
so it is possible to evaluate several time steps simultaneously. This allows us to increase the
available concurrency.

Aggregates were used to implement a restricted parallel priority queue. We were able to
avoid the cost of using a fully general priority queue by making the following observations
about event priorities. First, our priorities, really time stamps, are monotonically increasing.
Second, because events have a maximum delay, at any given time, all of the priorities in the
queue are within a fixed size range. Based on these restrictions, we make the observation
that the queue must manage events in a sliding window of priorities. This means that
we can use statically allocated, indexable storage (e.g. arrays) to implement the priority
queue. Because we are going to evaluate events from a number of different time steps

4.1. APPLICATION STUDIES 71

Parallel Priority Queue Aggregate

(n) (n+1) Values for the local time

ARN L1 [\[] Amayof Buckess,
one for each priority
; n } n+l n+2 n+3 Buckets

Figure 4.21: Local Consistency in a Parallel Priority Queue

72 CHAPTER 4. LANGUAGE EVALUATION

simultaneously, we also require the users of the queue to have some notion of time. Enqueue
operations take an event and a time. Dequeue operations must specify the time for which
we want the events. The priority queue also incorporates the driver for our logic simulation.
The structure of our priority queue implementation is depicted in Figure 4.21.

The parallel priority queue makes an interesting use of aggregates — replicated, local
consistency. Each representative in the queue aggregate has an array which contains point-
ers to time step buckets. The correspondence between time steps and the pointers in the
array is kept locally — each representative has a time variable. This allows each represen-
tative to adjust its array pointers and advance time in a decoupled fashion. In addition,
representatives in the queue aggregate can process requests independently, allowing many
requests to go to each bucket simultaneously. Time updates can be propagated gradually
because enough information is maintained to keep each representative locally consistent.
Figure 4.21 shows the local consistency in a parallel priority queue. The local times for
the two representatives shown are n and n 4 1 respectively. This difference is reflected in
the differing arrangements of pointers in their arrays of buckets. The pointers in the right
representative’s array of buckets have been advanced one step further than those of the left
representative. Each bucket is labeled with its time.

The local consistency scheme allows us to overlap enqueue operations with advances of
queue time. In order to advance the time in the priority queue, we tell each representative to
update its local time variable and move the buckets up in its array atomically. No requests
should be processed by a representative while it is advancing its time. We can continue to
send requests to the queue while the update is going on because the other representatives
can process them. At each representative, the advance of time is performed atomically
and independently. Because the change is atomic and kept consistent with the local time
information, no inconsistency will be visible to users of the abstraction.

Our queue has a “bucket” of events for each time step. We carefully designed the queue
aggregate so that many requests could arrive at each bucket concurrently. In order to exploit
that concurrency, the buckets must support concurrent access. Each bucket is implemented
with a combining tree aggregate. As enqueue requests are received, they are linked into a
dynamic broadcast tree as shown in Figure 4.22. Thus, an event becomes part of one such
tree when it is entered into the event queue. When the simulation is ready to compute all
events for a time step, it sends a message through the appropriate broadcast tree — firing
all of the events attached to the tree. Each node in a dynamic combining tree combines
requests and links the events into small broadcast trees. In turn, the consolidated request
and the broadcast are forwarded up the tree. The requests are further consolidated and
the small broadcast trees linked into larger ones. The code which performs this function is
quite similar to the dynamic combining tree code shown in Figure 4.13.

4.1. APPLICATION STUDIES

Dynamic D ;
= ynamic
Combining Broadcast
Tree Tree

after combining

O Combining Tree Nodes
A Events

D Dynamic Broadcast Tree Nodes

F
1
1
"
1
.
.

Figure 4.22: Construction of a Dynamic Broadcast Tree

73

74 CHAPTER 4. LANGUAGE EVALUATION
4.2 Evaluation of the Language

Based on the application programs we have written in Concurrent Aggregates, we evaluate
the language and its features. First, we evaluate the use of multi-access data abstraction
tools in CA programs and find them to be very useful. Second, we present measurements
of program concurrency under a number of different assumptions. Finally, we consider the
efficiency of CA. Compared to a shared memory program with similar concurrency, the CA
multigrid program is of comparable efficiency. In Chapter 5, we show that this efficiency
can be significantly improved with simple compiler optimizations.

4.2.1 Non-serializing data abstractions

The multi-access abstraction tools provided in Concurrent Aggregates were used to con-
struct a variety of non-serializing abstractions. These abstractions allowed hierarchical
structuring and complexity hiding in the application programs without causing serializa-
tion. The power of these tools stems from giving the programmer explicit control over
distribution, consistency and update of state. Such control allowed programmers to build
efficient implementations of traditional abstractions as well as some novel abstractions.
In this section, we describe a number of these different paradigms for using multi-access
abstractions.

Replicated State Each representative in an aggregate can be used to hold a replica
of the abstraction state. Read requests (non-mutating) can be handled locally by any
representative. Write requests must lock all representatives, perform the write, and then
propagate the new state to each representative before unlocking it®. If writes do not occur
frequently, the replication will increase the effective bandwidth of the abstracation. For
read-only (immutable) objects, aggregates can effectively increase their bandwidth. No
mutations are ever performed, so there is no locking overhead. The queue interface aggregate
(parallel FIFO queue application) and net (PC board router application) aggregate are two
examples of read-only replication. If there are many more reads than writes, replication can
be used to increase the effective bandwidth of mutable state. One example of replicated
mutable state is the regular memory abstraction (concurrent B-tree application).

Loosely-Consistent Replicated State As in the previous case, each representative in
an aggregate is used to hold a replica of the abstraction state. However, these copies
are not kept completely consistent. Updates are propagated gradually. Use of loosely
consistent replication can provide many of the benefits of replication — higher availability
and throughput — with lower cost updates. But, some read requests may get stale data, so

®This use of aggregates is very similar to caching of data in a shared memory machine [89, 25]. Object
caching schemes with similar functionality have been used in distributed systems [17, 15].

4.2. EVALUATION OF THE LANGUAGE 75

it is only useful when a consistent view of the state is not required. One scheme for loosely-
consistent replicated state is multi-version memories [101]. In a multi-version memory, a
request may be a read, read_newest, or a write. Reads may get stale data, read_newest and
write requests are serialized by a single copy of the data. In the B-tree example, we used
multi-version memories for internal tree nodes because 1) using the most recent information
was not essential for most operations and 2) high bandwidth is essential for internal nodes
to allow many B-tree requests to proceed concurrently. Multi-version memories may work
better than replicated memories because the overhead for updating internal nodes may be
less.

We found another interesting example of loosely-consistent replication in our logic sim-
ulation program. The parallel priority queue is an aggregate in which each representative
keeps an array of buckets. The queue is illustrated in Figure 4.21. There is one bucket for
each time step, and a representative’s array points to the buckets for time n, n 4+ 1, n 4 2,
etc. Buckets can be accessed concurrently, so the queue can process a large number of
requests simultaneously. However, moving forward one time step requires that the arrays in
each representatives be updated. Doing this consistently requires synchronizing the entire
aggregate. This is undesirable because synchronizing the entire aggregate causes the queue
throughput to temporarily go to zero. To avoid this, we maintain a local time count in each
representative. When we want to perform an update, we send an update message to each
representative and proceed. The representatives each process the update eventually. In the
interim, the “relative” time of each representative is captured by the local time, and queue
request winds up in the correct bucket.

Partitioned State Aggregates can be used to implement abstractions with partitioned,
non-interacting state. Many program abstractions consist of collections of non-interacting
state — the elements in an array for instance. We refer to such abstractions as partitioned
state abstractions. While requests to the abstraction need only access the data at a single
representative, the abstraction still forms a useful program structuring. This structuring
improves the modularity of programs. Consistency amongst the parts of the abstraction
is not an issue as the state of each representative corresponds to a different part of the
abstraction’s state. Typical implementations of partitioned state abstractions divide the
abstraction state evenly over the collection of representatives in an aggregate. Each repre-
sentative is responsible for operations on its part of the state. If a representative receives
a request to operate on part of the state, it handles the request. If the request requires
operation on another representative’s state, it forwards the message to the appropriate
representative. Examples of partitioned state abstractions include: hash table (various ap-
plications), synchronizing array (parallel queue), grid (PC board routing and multigrid),
concurrent bucket (top._grid in multigrid), bodies abstraction and interactions abstraction

(N-body simulation).

76 CHAPTER 4. LANGUAGE EVALUATION

Structured Cooperation A more complex use of aggregates involves a form of struc-
tured cooperation. An aggregate is organized into a network with a particular interconnec-
tion pattern. When requests are received, the interconnection pattern shapes the resulting
computation. One example of this is a dynamic combining tree — variations of which were
used for barrier synchronizations, buckets in priority queues, and index allocation in the
parallel FIFO queue. In each of these cases, the representatives are initially structured into
a tree. Using this interconnection structure, requests are combined and propagated up the
tree. Another example of structured cooperation is a grid. Representatives of an aggregate
can be linked into a 2-dimensional grid and thereafter refer to their neighbors by their north,
south, east or west direction. This can result in simpler code — singularities and boundary
conditions can be handled uniformly.

Using aggregates for structured cooperation is interesting because different representa-
tives are not consistent. Representatives are linked together, each forming a different part
of the overall abstraction. They are specialized by the interconnection. The behavior of the
abstraction emerges from the interconnection of representatives.

4.2.2 Program Modularity

Aggregates allowed us to implement an abstraction barrier, at little cost in concurrency.
As a non-serializing abstraction tool, using aggregates allowed programmers to structure
their programs without concern for reducing concurrency. This improved the modularity of
Concurrent Aggregates programs.

None of the abstractions described would have been practical to implement in an Actor
language [2] because they would reduce concurrency dramatically!®. One example of this is
the grid abstraction in our multigrid solver which processed thousands of message simulta-
neously. Implementing it as a serializing abstraction would be unacceptable!!. In fact, data
parallelism over the grid points was the primary source of concurrency in multigrid. If all
of our abstraction tools were serializing, even if the serialization was a single instruction, in
many cases we would be forced to avoid using them. In a grid abstraction, a few instructions
of serialization per message would cause many thousands of cycles of serialization for each
iteration on the grid, drastically reducing concurrency.

The grid abstraction in the multigrid application not only has well defined interfaces
to its upward grid and downward grid, it has a well defined interface to a synchronization
abstraction, synch.relax. We have even modularized the synchronization structure of our
program. As we explained in Section 4.1.2, the synch_relax abstraction could be replaced by
any other appropriate synchronization abstraction, such as a barrier, that had a compatible
interface. The grid abstraction would not need to be modified.

1%Tn fairness to the Actor model, it was developed to model programming in distributed systems, not
tightly coupled, fine-grain message passing machines.

10One way of reducing serialization due to an abstraction is to use caching or replication schemes. However,
they are unlikely to help in this case as the grid points are written quite often (making coherence expensive)
and the number of copies required to supports the thousands of simultaneous accesses would be quite large.

4.2. EVALUATION OF THE LANGUAGE 77

4.2.3 Program Concurrency

We simulated the application programs described on small data sets and measured the
concurrency using our message-passing machine simulator. These results are indicative of
how our application programs will behave on larger machines, using commensurately larger
data sets. It is difficult to accurately extrapolate these results to larger machines, so we
leave any extrapolation to larger machines to the reader.

Simulation Models Our vehicle for study is a message-driven simulator. This simulator
can model a number of different machines, varying the cost of various machine and runtime
system operations. In order to separate the constraints on program execution due to message
passing dependences and bounded resources, we use two basic simulation models in our
experiments: the Idealized Model and the Bounded Resource Model. The time units for
the two models are not the same, and therefore measurements made using the
two models should not be compared directly.

Idealized Message Passing Model The Idealized Model models an implementation of
Concurrent Aggregates in which all communication occurs in unit time. Program execution
is constrained only by message dependences (causality) and mutual exclusion on objects. Of
course, such an implementation is unrealistic. However, the statistics from Idealized Model
represent the basic constraints on concurrency in the program structure. From another
perspective, this simulation model corresponds to a machine in which local computation is
quite fast, and communication is performed synchronously!2.

In simulations using the Idealized Model, we present a number of different statistics.
Each of these is defined below:

Critical Path The number of message passing operations on the path from beginning to
end of the computation. This may include some overhead due to spin locking on
objects. The time unit used here is “message sweeps.” In each sweep, all messages
are delivered and executed.

Total Messages Total Messages executed in performing the computation.

Peak Message Concurrency The maximum number of messages executed in any mes-
sage sweep. This can be loosely interpreted as the largest number of processors it
would be useful to have in executing the program. This measure is quite sensitive to
simulation details.

12 A1l nodes communicate at once and then compute until they have no more work to do. Then all of the
nodes communicate again. The communication occurs in unit time. No time is charged for the computation.
This model is quite similar to the model presented by the Connection Machine, except our nodes are truly
MIMD and computation is not infinitely fast on the CM [93].

78 CHAPTER 4. LANGUAGE EVALUATION

| Application | Data Size | % size | Crit. Path | # msgs | Peak Conc [Avg Conc |

Matrix Mult | 4096 elts | ~ 25% 541 | 1,880,041 8070 3,475
Multigrid 4096 pts | ~ 25% 1,642 | 2,894,816 7029 1,763
N-body 64 bodies | <1% 20,576 | 2,020,304 2748 98
PCB Router | 8n 4096gp | < 1% 40,351 | 1,271,812 75 32
B-tree 10K ops | 10% 34,995 | 1,054,941 106 30
Logic Sim. | 3,584 gates | ~ 2% 35,267 | 1,512,461 306 43

Figure 4.23: Program Statistics using the Idealized Message Passing Model

Average Message Concurrency The average number of messages executed per sweep,
the total messages divided by the critical path length.

Our simulation results for the Idealized Message Passing Model are presented in Figure
4.23. Most of the statistics presented are as defined above. We present results for each of
the application programs described in Section 4.1.

Due to limitations of our simulation approach, we only ran CA programs on modest-
sized data sets. The size of the data sets and the approximate relation of these data sets
to “real size” problems are both presented in the table. The matrix multiply computation
was for multiplication of two 64 by 64 matrices. This is a modest size matrix multiplication
and only 25% of the work required to do a more realistic 128 by 128 matrix multiplication.
The Multigrid application involved a 64 by 64 grid at the finest level, again, roughly 25%
of the work required for a 128 by 128 grid typical in the Particle-in-Cell code [73]. The N-
body simulation was only for a tiny number of bodies, 64. Many simulations for molecular
dynamics often include 10, 000 to 100,000 bodies and other researchers have run simulations
with millions of bodies [108, 52]. The printed circuit board router example connected 8 nets
across a board grid of 64 by 64 tracks. In practice, boards are much larger and have 5,000
to 20,000 nets. The distance nets must be routed also effects the amount of work, and varies

greatly.

The B-tree simulation involved a tree with 1,000 keys. With a maximum fan-out of 10
per tree node, the depth was approximately 3-5. For the benchmark, we built a tree of 1,000
elements and then used 30 “workers” to perform 10,000 operations against the tree. The
effective concurrency we measured is quite good as it approaches the number of workers.
The operations were 80% QUERYs, 15% INSERTs, and 5% deletes. They were generated in
that mix using system random number generators. The logic simulation example involved
a synthetic circuit with 16 32-bit counters. All told the counters included 3,584 gates. In
the Concurrent VLSI Architecture Group at MIT, we are currently building a moderately
complex chip (the Message-Driven Processor [42, 41]) which contains approximately 50, 000
gates, not counting the on chip memory arrays. In other systems the gate count may run
into the hundreds of thousands. This collection of gates had an average of 14 events per
simulated time step. The average activity level (< 0.5% gates active per time step) is low

4.2. EVALUATION OF THE LANGUAGE 79

compared to that in many simulations. The counters show little activity as the high order
bits rarely change. Activity levels typically range from 2 — 10% [22]. A circuit with 50,000
gates and a 5% activity level would have plenty of concurrency to keep a machine of several
thousand processors busy.

Our results show that Concurrent Aggregates programs can exhibit massive concurrency.
The concurrency figures in Figure 4.23 are probably not realizable — communication latency
and resource contention are sure to reduce concurrency. However, these figures give us
an upper bound on the achievable performance on these programs. To provide a more
accurate estimate of the performance we would expect, we also performed simulations under
a bounded resource model.

Bounded Resource Message Passing Model In the Bounded Resource Model, we
model the finite processing resources of an actual machine. Resource limitations affect
the evolution of the computation. For example, if several objects are resident on a single
processing node, only one of those objects may be active at a time. This in turn will delay
the responses to messages arriving at that node as they are queued until the processor
becomes free to serve them. This, in turn, delays dependent parts of the computation.

It is quite difficult to model the detailed cost of operations in a real machine. Not
only is such detailed cost accounting expensive, it is not yet clear exactly which operations
a fine grain message-passing machine should be optimized to support. However, it seems
important to model contention for resources, as such contention can significantly change the
behavior of a computation. Qur solution to this problem is to use a very simple approximate
machine model. Every local operation takes unit time. Local operations include primitive
operations (add, sub, mult, etc.), context switches, function calls, method invocations, local
object allocation, object location resolution, and aggregate to representative resolution.
Communicating a message from one part of the machine to another takes a fixed latency
of one time unit. This overcharges for the simpler local operations (like addition and
subtraction), but is quite close to the costs in our J-machine for the other local operations.
This computation to communication cost ratio corresponds roughly to the realities of our
J-machine prototype!3.

The simple cost model reduces simulation complexity, making it possible to simulate
larger problems. The Bounded Resource Model simulations reflect a machine of 4096 nodes.
While we expect much larger machines to be constructed (16K-64K nodes), 4096 processors
is a good match for the problem sizes we could simulate. Typically, our application pro-
grams had from 10k to 100K objects. The processor resource limit may reduce the average
concurrency by truncating the peaks and smearing them out over time. All objects are
placed randomly on nodes and do not migrate.

13This reflects the assumption that the network is relatively lightly loaded. Network contention is not
modeled in the simulation.

80 CHAPTER 4. LANGUAGE EVALUATION

| Application | Data Size | % size | Crit. Path | # msgs | Peak Conc | Avg Conc |

Matrix Mult | 4096 elts | ~ 25% 5,922 | 1,880,055 3,595 2,098
Multigrid 4096 pts | ~ 25% 20,377 | 2,616,544 1,959 811
N-body 64 bodies | <1% 71,134 | 2,130,878 747 117
PCB Router | 8n4096gp | <1% | 136,796 | 1,283,174 63 30
B-tree 10K ops | 10% | 209,805 | 984,610 64 29
Logic Sim. | 3,584 gates | ~ 2% | 265,416 | 1,056,782 122 14

Figure 4.24: Program Statistics using the Bounded Resource Message Passing Model

In our simulation results using the bounded resource machine, we present a number of
different statistics. Each of these is defined below.

Critical Path The number of time steps from the beginning to the end of the compuation.
The time unit here is defined above.

Total Messages Total Messages executed in performing the computation. This number
differs from the count in the Idealized Model due to different rates of spinning and
waiting periods on spin locks.

Peak Concurrency The maximum number of processors busy in any time step of the
computation. It is influenced (and bounded) by the number of processors in the
simulation, 4096. This statistic can be quite sensitive to simulation details.

Average Concurrency The average number of processors busy per time step.

Our simulation results for the Bounded Resource Message Passing Model are presented
in Figure 4.24. We used the same application codes and data sets as with the Idealized
Model simulations. As expected, the program concurrency shown in this simulation model
is reduced from that of the idealized model. However even with resource restriction, the
amount of concurrency can be very large.

We found that the reduction in concurrency is attributable to several causes — contention
for objects, contention for processing resources on a node, and communication latency. Con-
tention for objects, not modeled in the idealized model, reflects the structure of the program.
The number of messages that must be processed in a particular phase of the computation is
determined by the algorithm. Contention for node processing resources causes performance
loss attributable to the runtime system. In choosing where to place objects, a runtime sys-
tem would like to avoid placing simultaneously active objects on the same node. Practically,
some of this is unavoidable, and if we have abundant concurrency, such node contention
should only be significant if it happens in regimes of low concurrency. Communication
latency reduces concurrency due to the distribution of a program throughout the machine.
When a runtime system chooses placement for data in the system, there is a direct tradeoff
between avoiding node contention and attempting to minimize communication latency.

4.2. EVALUATION OF THE LANGUAGE 81

For realistic data sets, the programs we have considered are likely to exhibit massive
amounts of concurrency. In fact, the amount of concurrency should be enough to utilize
machines with thousands of processors. From our simulation results and structural analysis
of the programs, we expect that in the absence of machine constraints, the concurrency in
all of the applications we have considered should scale in proportion to the data set sizel?,
This is a good sign for builders of massively concurrent message passing machines.

4.2.4 Program Efficiency

Program efficiency is important because speeding up unnecessary work is not productive.
It is difficult to evaluate the efficiency of a programming language in a manner independent
of compiler details, architectural quirks, and circuit technology. The situation is even more
difficult in our case because efficiency usually involves a comparison to some baseline lan-
guage or architecture. We are constructing programs for a machine with massive processor
concurrency, and most well established baselines involve moderately concurrent machines!S.
We considered a number of metrics for the cost of a program including total run time,
total instructions executed, and total messages. We eliminated total run time as it is the
most closely tied to architectural details and even specific implementations of the archi-
tecture. We also eliminated total instructions executed as a metric because it does not
accurately reflect the cost of a computation on a concurrent machine. In a sequential von
Neumann machine, the number of instructions executed is directly related to the total run
time. However, in a concurrent machine with thousands of instruction execution engines
(processors), the number of instructions and run time are not so simply related.

As communication is the one resource that becomes more critical as we build finer
and finer grained machines, we have chosen total message count as our metric of program
efficiency!®. As we scale fine-grain machines to larger and larger numbers of nodes, they
will ultimately be communication limited!”. The cross section can only grow as n§, while
the number of nodes is n. Thus, the message traffic is a good measure of the efficiency of a
programming system and algorithm!8. We consider the efficiency of Concurrent Aggregates

4For the B-tree example, it may be more complicated. The concurrency grows with the tree size and
replication factor for each node. The effective concurrency depends heavily on the mix of operations on the
tree.

1*The machines with comparable amounts of concurrency are the CM-2 [93] and the NCUBE/2 [78]
machines. While the CM-2 has massive concurrency (64,000), it is difficult to compare our results to it, as
the CM-2 presents a SIMD programming model. The NCUBE/2 can be configured as large as 8K processors,
but programming experience with such large systems is minimal.

180f course this metric is subject to optimization by the compiler. Better compilation, or simply com-
pilation that favors larger grains will reduce this number. Favoring larger grains will typically reduce
concurrency. To avoid this pitfall, we consider message counts in program formulations with approximately
the same program granularity.

!7This is because we must build machines in 3-space. We need to pack things closely to minimize propa-
gation delay, so the volume of our machine is proportional to n, the number of processors. The bisection of
a 3D densely packed machine is n? and limits the bandwidth for random traffic.

13We do not consider any exploitation of locality through caching or clever mapping of data onto the ma-

82 CHAPTER 4. LANGUAGE EVALUATION

Shared Memory

Reads and Replies with
Writes Read value

OIOIOIOIOIOIO

Processors or Processes

Figure 4.25: A Simple Shared-memory Model

by comparing the message traffic required to implement the multigrid algorithm in CA
to that required to implement a multigrid algorithm with comparable concurrency on a
shared memory machine. We find that the message traffic required for the CA multigrid
program is close to that required for bare memory accesses in a shared memory model.
Increasing the bare memory accesses to the full shared memory execution cost and allowing
for optimization of the CA program would bring the numbers even closer.

Message Count for the Shared Memory Model We consider the multigrid algorithm
described in Section 4.1.2 on a simple shared memory model, depicted in Figure 4.25. In
our shared memory model, each read takes two messages (request, then returning data),
and each write takes one message. Our accounting of messages is conservative because we
do not account for the message traffic for program control —~ synchronization and process
management. Also, we only charge one message for a write, while many systems may require
a second message for a write acknowledgement. In this algorithm, we use a three-level grid
structure. For each level of the grid, we perform eight relaxation steps on both the way up

chine. In some cases, these techniques can dramatically reduce the communication required. However, they
depend on many language, compiler, runtime and machine issues. In order to reach a basic understanding,
we consider message count as the metric.

4.2. EVALUATION OF THE LANGUAGE 83

and down the hierarchy. At each relaxation step, we use a five point stencil for the relaxation
step. Upward restriction is done with a single point, while downward prolongation is done
by spreading the one value over four points.

Ignoring boundaries and assuming a 64 by 64 grid and a three level grid structure (4096
grid points in the largest grid, 256 in the smallest), we get the following message counts. We
first compute the number of messages for the iterations within each grid level, then add in
the number of messages required to link the grids to each other. For each iteration, the five
point stencil requires 5 read and one write for each grid point. For the 16 total iterations
on the upward and downward pass, the number of messages required is shown below:

messages / 6 point stencil = (6 reads * 2 messages/read)
+ (1 write * 1 message/write)

messages per grid point = nr-iters * messages/stencil

16 * 11 = 176

The total number of grid points is the sumn of the three levels. For example, the total
number of messages for the relaxation operations on a 64 by 64 grid is:

relaxation messages = 176 » (4096 + 1024 + 256)

946,176 messages

Of course, to form the overall multigrid algorithm, we must communicate values between
the grids. This is done with restriction and prolongation operators. Our restriction (upward
linkage) operator takes a single value for every four grid points and injects it into the upper
grid. Our prolongation operator takes one data value and divides it over four grid points
in the lower grid.

84 CHAPTER 4. LANGUAGE EVALUATION

Grid Points | Shared Memory CAl CAIl
1024 239,424 686,964 345,303
4096 957,696 | 2,581,233 | 1,353,579

Figure 4.26: Comparison of Message Counts for Multigrid

The accounting for the messages required here is shown below.

upward messages = nr_target_gridpoints *

(4096 to 1024) (1 read + 1 write)
= 1024 * (2+1) = 3072

upward messages = nr_target_gridpoints *

(1024 to 256) - (1 read + 1 write)
= 266 * (2+1) = 768

downward messages = nr_source_gridpoints *
(266 to 1024) (1 read + 4 writes)
256 * (2 + 4) = 1536

downward messages = nr_source_gridpoints *
(1024 to 4096) (1 read + 4 writes)
1024 * (2 + 4) = 6144

3072 + 768 + 1536 + 6144
11,820

total linkage messages

This means that over 11, 520 messages are required for upward and downward coupling
in the multigrid algorithm. By summing the relaxation messages and the linkage messages,
we get our approximation for the message traffic required for multigrid.

total messages = relaxation messages + linkage messages
= 946,176 + 11,520
= 957,696

We compare this number to our actual measured numbers for the Concurrent Aggre-
gates language in Figure 4.26. We note that the measured traffic for CA program includes
whatever message traffic is required for initialization and synchronization as well as some
process management overhead. The numbers for the shared memory model do not include
a significant amount of control information that must be transmitted. In addition, the
statistics presented are taken from our first implementation of Concurrent Aggregates. The
measured numbers from our working CA implementation are shown in the column labeled

4.2. EVALUATION OF THE LANGUAGE 85

CA I. As we will see in Chapter 5, we are already aware of a number of crucial efficiency
issues in the implementation of CA. We expect that some minor language changes and bet-
ter compilation will significantly improve the message efficiency of programs. The numbers
of messages which would be produced by a program that made use of some simple opti-
mizations presented in Chapter 5 are shown in the column CA IL. The traffic for the shared
memory machine is probably somewhat understated as we have only considered data refer-
ence traffic. To support a comparable level of concurrency, the control traffic would have
to be quite significant. With the optimizations used to calculate the performance for CA
I, we are optimistic that the CA program will be ultimately be of comparable efficiency.

4.2.5 Evaluation of other interesting language features

Intra- Aggregate Addressing An aggregate is a cooperating collection of objects. In
order to cooperate, it is often convenient to be able to access the names of the other parts
of the aggregate. The intra-aggregate addressing facility was used extensively. The repre-
sentative indices were used to compute state partitionings and object interconnection. For
example, the representative indices were used to determine which representative handled
which part of the state in the synchronizing array abstraction. In combining tree abstrac-
tions, the indices determine the intra-aggregate interconnection to form the tree structure.
Because it is used so pervasively, cheap implementation of aggregate name operations is
essential to implementing Concurrent Aggregates efficiently.

First Class Continuations and User Continuations Continuations were used in
many of our application programs. The ability to explicitly manipulate continuations made
it possible to construct synchronizing structures such as futures, a synchronizing array and
a barrer synchronization within the CA language. Without this ability, more restrictive con-
trol synchronization would probably have to be applied in these programs. User constructed
continuations found use in fewer places — a barrier synchronization, fanning out replies in a
combining tree, and a race construct — to support speculative concurrency. While allowing
the user to manage continuations explicitly was convenient at times, the use-once charac-
teristic of system continuations caused quite a number of subtle bugs in programs. Double
reply cases are difficult to detect and if activation frame names are being reused, may cause
a very strange behavior. The extra reply may have come from any activation that handled
the continuation, not only the one we called directly. This often makes finding its source
quite difficult.

First Class Messages Allowing programmers to manipulate messages as first class ob-
jects turned out to be a useful feature. First class messages were used as partial applications
— factoring the details of a partial application from the code that manipulates the applica-
tion. For example, we constructed several varieties of fan out trees that implemented do-all
operations on each representative of an aggregate. We also used first class messages to con-
struct message reordering abstractions. For instance, we built a message queue abstraction

86 CHAPTER 4. LANGUAGE EVALUATION

— used to defer the processing of messages to a later time. A variant of this message queue
was used in the top_grid abstraction from the multigrid application. First class message
manipulation in Concurrent Aggregates can also be used to explicitly change the order in
which messages are processed. It could even be used for a message-ordering system — to
implement point-to-point order-preserving message transmission.

By-Message Delegation Our CA programs did not make much use of delegation. We
had hoped that delegation would allow us to compose behaviors incrementally — piecing
together the desired behavior and message interface for an abstraction. However, we did
not use it often because for most of our abstractions, the subparts needed to cooperate quite
closely. Abstractions not designed as a subpart in general did not include the appropriate
code for cooperation. This experience may be due to the type of program we examined, our
limited experience, or perhaps the way we chose to integrate delegation into the Concurrent
Aggregates language. It may be the case that delegation will become more important as
we construct larger and larger programs.

4.3 Summary

In this chapter, we have presented an evaluation of Concurrent Aggregates. We evaluated
the language by writing a number of application programs and executing them. The appli-
cation programs studied are a matrix multiplier, a multigrid solver, an N-body interaction
simulation, a PC board router, a scalable parallel queue, concurrent B-tree, and a logic
simulator. The application programs involve a wide variety of different algorithms and pro-
gram structures. For each application, we first described the algorithm and then the basic
program structure in Concurrent Aggregates.

We evaluated the primary innovation in the language — non-serializing data abstraction
tools — based on our experience writing the application programs and numerous other small
programs. Qur experience with these tools was quite positive. The non-serializing data
abstraction tools make it easier (or possible) to build modular programs. Programmers are
free to use abstractions wherever they improve program structure. In CA, adding a level
of abstraction need not reduce program concurrency. In addition, allowing programmers to
explicitly manage distribution and consistency enabled them to tailor the level of consistency
to the task at hand. Programmers came up with a number of interesting uses of our
aggregates. Some of these are familiar - read-only replication and consistent replication.
Others were quite novel — partitioned state, loosely consistent replication, and structured
cooperation. We described each of these schemes and gave several examples.

We also evaluated Concurrent Aggregates programs with respect to their concurrency
and efficiency. Though we could only simulate modest-sized data sets, our simulations
showed that for a number of applications, CA programs can exhibit massive concurrency.
For some programs, that concurrency should be sufficient to utilize a machine with thou-
sands of processors. To evaluate the efficiency of CA programs, we considered a case study

4.3. SUMMARY 87

that compared the message traffic of a CA multigrid program to a shared memory imple-
mentation. Our comparison showed that our unoptimized CA program required 2-3 times
the messages required for the shared memory version. However, the optimized CA program
was quite close to the shared memory program.

In light of our programming experience with Concurrent Aggregates, we also evaluated
other novel language features: intra-aggregate addressing, first class and user continuations,
first class messages, and by-message delegation. Intra-aggregate addressing has emerged as
a key feature for building aggregates. Without it, constructing a coherent abstraction
interface would be quite difficult. First class and user continuations were used in many
places in our programs. The use-once nature of system continuations was problematic
at times, but we still feel that the efficiency gain of avoiding full garbage collection of
activation frames justifies this sacrifice. First class messages turned out to be a very useful
way of implementing partial applications. These partial applications were most often used to
implement data parallel operations. The last feature we evaluated, by-message delegation,
did not fare as well as the others. We found little use for it, as abstractions not designed
for cooperation in the current context were often not useful — abstractions did not compose
well.

In Chapter 5, we take up implementation issues in Concurrent Aggregates. Specifically,
we will consider the cost of sending messages to aggregates, one-to-one-of-many translation
and intra-aggregate addressing. Our programs used these features heavily, so their imple-
mentation is a key issue in the overall language implementation. We will also discuss some
compiler optimizations which would allow us to implement CA more efficiently.

Chapter 5

Implementation Issues

Efficient implementation is an important issue in the design of programming languages. In
this chapter, we examine the support — hardware and software — required for an efficient
implementation of Concurrent Aggregates. We begin by considering the support required
for concurrent ob ject-oriented languages with fine-grained mobility (examples include Con-
current Aggregates, Emerald (19, 18], CST [58, 57, 38] and Amber [27]). Subsequently, we
discuss and evaluate the cost of implementing the novel features of CA. These include first
class continuations and first class messages. In addition, aggregates require two additional
services of the operating system — one-to-one-of-many translation and intra-aggregate ad-
dressing. We consider how often these features are used and a number of different schemes
for supporting them. As efficiency is an important concern, and our implementation is sim-
ple (unoptimized), we also examine compiler optimizations. Using dynamic run statistics
and manual analysis of the source code, we estimate the performance improvement possible
with these optimizations.

5.1 Basic Run time Support

A run time system for Concurrent Aggregates must contain a number of basic services.
These services are listed and described below. We refer to these services as basic because
they are required by many “reactive” message-passing languages. In this respect they are
not unique to Concurrent Aggregates.

Message Transmission In order to compute, objects must send messages to each other.
The system must assure reliable transmission of messages from one object to another.

For efficient support of fine-grain computations, the network must be low-latency and
high bandwidth.

89

90 CHAPTER 5. IMPLEMENTATION ISSUES

Object Location The system must support the association of an object name with its
storage. This may be a two-step process involving determining the appropriate node
as well as the location within that node. In systems with no relocation, this association
may be completely static.

Storage Allocation and Reclamation A run time system must manage storage for mes-
sages and contexts (activation records) as well as user objects. In practice, the alloca-
tion and deallocation of storage for messages and contexts must be very efficient. Qur
design of first class continuations takes this into account, and hence context allocation
and reclamation can be done efficiently. Reclaiming storage for user objects involves
a garbage collection problem.

Reactive Invocation In response to a message, the system must invoke a piece of user
code — a method. To support fine-grain concurrency, this invocation process should
be as rapid as possible,

Efficient support for the basic services has been studied extensively, so it is not considered
in detail here. A variety of hardware and software approaches have been taken to support
basic runtime services. We refer the interested reader to the literature on these various
topics: message transmission [40, 39, 43, 45, 103], Object Location [94, 58, 62, 71], and
reactive invocation [41, 84]. Efficient storage allocation and reclamation in fine-grained
message-passing is a very active research area. Some work in this area is described in
[7, 58, 50]. Many systems handle storage for messages and activation frames specially,
allowing them to be handled and reclaimed efficiently. However, efficient reclamation of
object storage is a general concurrent garbage collection problem. A detailed discussion of
these topics is beyond the scope of this thesis.

5.2 Supporting First Class Continuations and Messages

Concurrent Aggregates allows both continuations and messages to be treated as first class
objects. Continuations may be copied, stored, and used (replied to). Messages may be
copied, modified, and resent. References to messages can be stored. While these capabili-
ties facilitate programming with aggregates, they render invalid traditional assumptions in
storage and name management. In this section, we discuss implementation issues for these
two features in detail.

5.2.1 First Class Continuations

First class continuations can be used in many ways, but our primary intention was to allow
more efficient composition of abstractions. In both sequential and concurrent programs, first
class continuations are often used to separate the call and return structure of a program.
In sequential programs, the motivation for such separation is usually program clarity. For
example, exception handling facilities or co-routines can be implemented with first class

5.2. SUPPORTING FIRST CLASS CONTINUATIONS AND MESSAGES 91

continuations. In Concurrent Aggregates, the separation of control structure possible with
first class continuations can be used to improve program efficiency. Allowing programmers
to manipulate continuations allows them to express some concurrent control idioms more
efficiently. Our motivation for first class continuations in CA is discussed in greater detail
in Section 3.4.6.

First Class Continuations in Sequential Languages In sequential languages, activa-
tion records! are usually stack allocated. This allows inexpensive allocation and deallocation
of activation records. First class continuations in a language such as Scheme [81] allow a
program to call a particular execution point of the program after that place has returned
control. This is useful for implementing advanced control structures such as co-routines.
However, the existence of references to activation records requires some activation records
to persist after they have returned control. Such activation records cannot be deallocated
according to stack discipline. With first class continuations, references to the activation
record may persist and thus, it may not be safe to reclaim the record yet. To incorrectly
deallocate the frame might cause a “dangling reference” error. Persistence of activation
records can dramatically increase the cost of allocating and deallocating stack frames.

Implementations of first class continuations on sequential machines need not reduce
the basic efficiency of the programming language. Empirically, first class continuations
are rarely used. Thus, optimistic schemes (try for best case and trap the others) have
been quite effective for Scheme programs [32]. In this situation, the best case is when
no references to the activation record are created. Then, it can be stack allocated and
deallocated. Some run time overhead may be required in a few cases to determine whether
a reference is created. The expensive case, of course, is when a reference escapes. These
situations can be detected via a mix of compile and run time techniques. When an escaping
reference is detected, the system heapifies the activation records as necessary (copies into
the heap). Once activation records have been moved to the heap, they are collected by the
more expensive garbage collection mechanism. Since this does not happen often, the cost
of activation record allocation and deallocation is quite small on average.

First Class Continuations in a Concurrent Language In a programming language
with concurrent invocations, activation frames in a computation form a tree. Invocation,
return, and computation may proceed in all parts of the tree simultaneously. The activation
frames can no longer be managed as a stack, so a more general means must be employed.
Typically, the storage for activation frames is explicitly managed using a free list. The free
list may be partitioned into one list for each node. The activation tree can be extended and
contracted locally, without any global actions. If references to records do not escape, the
allocation and deallocation can be done in a manner analogous to stack discipline. This
scenario is depicted in Figure 5.1.

!We use the terms activation record and activation frame interchangeably.

92 CHAPTER 5. IMPLEMENTATION ISSUES

To Caller of this Program

A

1

M |
Activation Frames <\

Figure 5.1: A Tree of Concurrent Activation Frames. All of the frames shown may be active
concurrently. All arrows shown are return links.

5.2. SUPPORTING FIRST CLASS CONTINUATIONS AND MESSAGES 93

Introducing first class continuations complicates the picture. It becomes unclear when
an activation frame can be reclaimed. If a reference to a frame can persist in a stored
continuation, then it is unsafe to reclaim the storage for an activation frame, and transitively,
all of its ancestors in the call tree.

Traditional first class continuations in a concurrent environment complicate reasoning
about program execution. If a continuation can be invoked more than once, then the two
uses may occur concurrently. This means that two threads may be active within a single
activation record at once. One of the reasons for pursuing an object-oriented approach
is that the programmer can be freed from worrying about arbitrary interleavings of low
level operations such as reads and writes against a shared memory. The object-oriented
model allows the programmer to deal with concurrency at a higher level of abstraction,
simplifying his task. However, if we allow multiple uses of a continuation, there is the
potential for multiple threads of computation in a single activation record, forcing the
programmer back to dealing with arbitrary instruction interleavings. This problem arises
because our concurrency control is done on the basis of activation frames (i.e. a frame holds
the lock to an object) instead of activations themselves. We point out that two replies to
the same continuation is quite different from having two outstanding continuations for
a context. The latter case may happen whenever, the programmer uses a concurrent
construct. However, this concurrency is explicit and confined, as the end of a concurrent
construct is an implicit join.

In Concurrent Aggregates, we chose a cheaper kind of first class continuation — disposable
continuations. Programmers are free to replicate references to the continuations, but they
must assure that only one reference is ever used. After use, the continuation ceases to exist.
Multiple uses of a system continuation give unpredictable behavior. Programs that make
multiple use of a system continuation are considered to be invalid. The uses we have found
for first class continuations did not involve the reuse of continuations (calling a continuation
multiple times). And, while somewhat unconventional, disposable continuations are easy
to implement efficiently. Deciding when to reclaim an activation frame is straightforward.
Each activation frame is scanned before it is collected. If all continuations created for the
frame have been used, we can reclaim the activation record. Otherwise, the activation record
must remain until all of its continuations have been used. If some of the continuations are
never used, the activation frame must be reclaimed by the garbage collector.

User continuations in Concurrent Aggregates imply no special execution overhead, just
normal garbage collection. User continuations allow reply messages to be handled by user
abstractions. The type-dependent dispatch mechanism needed for languages such as CA
can be used to decide which code should handle any reply message. If the object is a
system continuation, then the system reply handler is invoked. If it is a user object, then
the appropriate user code is invoked.

94 CHAPTER 5. IMPLEMENTATION ISSUES

5.2.2 First Class Messages

First class messages allow programmers to build meta-programs, programs that control
the evolution of a program execution. We have used first class messages to build message
queues, fan out trees and other useful message handling abstractions as user programs. In
this section, we discuss our design motivation for first class messages. We also examine
implementation issues in supporting them.

Concurrent Aggregates incorporates messages as first class objects with a few restrictions
(for a more detailed description, see Chapter 3). Messages can be stored, modified, and
sent?. Messages are by-value parameters [77]. This means that they are copied when used
as an argument to an invocation. A by-value convention for messages conveniently assures
that messages are local for most message operations. In cases where a partial application is
being replicated for application to a parallel data collection, the implicit copying does just
the right thing to the message by default.

First class messages are useful as partial applications. For example, messages can be
manipulated as applications whose arguments can be modified or whose time of execution
is to be controlled. Examples of the former type include fan out trees and message routing
abstractions. Examples of the latter type include message reordering queues and various
synchronization structures, such as a barrier.

We chose messages over some variety of closures for partial applications. This is because
messages are a simpler type of application that allows a programmer to control locality.
Messages are by-value, so they are typically local. In addition with messages as applications,
operations to manipulate and invoke applications need not require communication. Further,
replication of messages does not require any special analysis of programs. Use of closures
would require analysis to determine when copying of closures is allowed. On top of that,
the run time system would still have to make good decisions about where to place closures
and when to move them in order to produce good performance. With messages none of this
is necessary, the programmer can control the locality.

Our parameter passing convention for message references (by-value) was designed to
support use of messages as partial applications efficiently. We designed it to support fan
out for data-parallel programs and storage of partial applications for meta-programs. For
fan out operations, as shown in Figure 5.2, at each stage of the tree, the message should be
replicated. This produces the appropriate number of message copies at the leaves of the fan
out tree. In fact, it is necessary to replicate the message (partial application) at each level
in order to preserve the logarithmic time property of the fan out operation. The copying of
messages allows the partial application to have enough bandwidth at the leaves to support
a massively concurrent data parallel operation.

Copying at message invocation boundaries is a correct implementation of these by-
value semantics. Such an implementation allows locality to be improved — we can copy

2This is the analogue to call in a procedure-oriented language.

5.2. SUPPORTING FIRST CLASS CONTINUATIONS AND MESSAGES 95

JIIA I/, ‘A
Vi
\ 2/ 7 /e

Figure 5.2: Fanning out a Partial application for a Data Parallel Operation: Each tree node
is on a separate processor. Objects with the same shading are on the same node.

Node 0 Node 1 Node 0 Node 1

Figure 5.3: Copying maintains Message References as local.

96 CHAPTER 5. IMPLEMENTATION ISSUES

the messages to the node that contains references to them. This optimization of locality
through copying is shown in Figure 5.3. When a message, A, containing a reference to
another message, B, is transmitted from Node 0 to Node 1, the result is a new message, A’,
on Node 1 with a local copy of B, B’. Messages A and B on Node 0 may continue to exist
or be reclaimed. By placing the new copies of messages in the right places, we can assure
that most operations on messages are local. Such operations include modification, copying,
and calling (sending the message). This is a pleasant outcome as messages are the elements
of communication, so to avoid recursive requirements for communication, operations on
messages must be local.

Another use of first class messages is in the construction of meta-programming abstrac-
tions. For example, consider a message-queue abstraction that receives messages and upon
demand resends them. This could be used to control the unfolding of concurrency in a pro-
gram in response to some measures of machine loading. Figure 5.4 shows a message queue
abstraction that is built from a singly-linked list. The list is built out of mpair objects
and the mqueue object implements the message queue interface. push takes a message and
enqueues it. resend transmits all the messages in the queue.

One drawback of a by-value convention for messages is that unnecessary copying of
messages may result. The operation of the code shown in Figure 5.4 causes a potentially
avoidable message copy operation. In the second line of the push method, the message
reference transmitted in the invocation results in a message copy operation. This copying
operation assures that the new message copy is colocated with the message pair. Later,
when the message is resent, this colocation allows the message to be resent without any
extraneous message passing. If the message being stored is quite large, the copy operation
may be much larger than the savings due to the colocation of the pair and message copy. We
felt that most messages would be relatively small and deemed these extra copying operations
an acceptable cost. These intuition is born out by our measurements in Table 5.1.

Another implication of by-value messages is that it becomes difficult for computations
to share state through messages. When a message reference is sent from one object to
another, an implicit copy operation occurs, preventing message state sharing. The by-value
semantics effectively preclude state sharing between caller and callee through a message
reference parameter. This is not a serious restriction on programmers as any other objects
can be used to implement the desired state sharing.

Implementation While programming with first class messages can be very convenient,
their implementation presents a number of interesting challenges. Messages are used perva-
sively, so their implementation efficiency has a crucial impact on overall language efficiency.
Potential expenses of first class messages involve the allocation and deallocation of names,
allocation and deallocation of storage and message locality (avoiding the necessity of recur-
sive implementations of message operations®). In order to understand the impact of our

3Sending a message to perform a message operation may require a message operation. This in turn may
require sending a message which may in turn require a message operation and so on recursively.

5.2. SUPPORTING FIRST CLASS CONTINUATIONS AND MESSAGES

;3 4 cons object
(global last_mpair (new mpair 0 0)) ;; list terminator

(class mpair left right
(parameters ileft iright)
(initial (set_left self ileft)
(set_right self iright)))

(method mpair resend ()

(do (send (left self) (global console)))

(it (neq (global last_mpair) (right self))

(do (resend (right self)))))

HH
;3 A deferral queue
(class mqueue head mpref

(initial (set_head self (global last_mpair))

(set_mpref self (global last_mpair))))

(method mqueue push (mess)
(seq (set_head self (new mpair mess (head self)))
(reply (head self))))

(method mqueue resend ()
(it (eq (head self) (mpref self))
(reply nothing_to_resend)
(seq (do (resend (head self)))
(set_head self (mpref self))
(reply resending))))

Figure 5.4: Code for A Message Queue

97

98 CHAPTER 5. IMPLEMENTATION ISSUES

Application | FC Msgs | Avg Msg Size | Total Msgs | FC Msg %
Matrix Mult 0 N.A. | 1,880,055 0.00%
Multigrid 131 6.93 | 2,616,544 < 0.01%
N-body 8,572 596 | 2,130,878 0.40%
PCB Router 2 5.00 | 1,283,174 < 0.01%
Logic Sim. 16,824 4.00 | 1,056,782 1.59%
Total 25,529 8,967,433 0.28%

Table 5.1: Usage of First Class Messages

changes to message semantics, we first consider how message handling is optimized in ex-
isting systems. Subsequently we discuss each of the implementation problems and present
our compromise solution.

First class messages jeopardize many efficiency enhancements traditionally used to ac-
celerate message processing. These enhancements include using local names, allocating
storage from a FIFO buffer (temporary names), and lazy copying into the heap. These
techniques have been used in systems such as the J-machine [42] and the Reactive Kernel
[84]. If messages are first class, they need names and persistent storage. If they may be
shared or accessed remotely, they need global names. Allocation and reclamation of such
names for each message might well be a very expensive operation. Persistent storage would
seem to require a more expensive scheme for storage allocation.

First class message parameters exist only in a small percentage of the messages in
Concurrent Aggregates programs. In Table 5.1, we present the counts of first class message
uses and their sizes. For some perspective, the total number of messages sent in these
applications is also presented. First class messages are not used that often. The usage rate
ranged from 0% to 1.6%. This is encouraging because if the first class message feature is
used rarely then it may be possible to construct an “optimistic” implementation. We term it
optimistic because it only incurs the cost of the full generality when it’s really required, not
all the time. Typically , optimistic schemes work by assuming the best case and trapping
to handle the worst. In addition, by-value messages allows the system to avoid allocating
global names for most first class messages — local names suffice.

Most messages have no explicit references to them. They are implicitly composed at
the sending side and destructured at the receiving end. If the data shown in Table 5.1 is
indicative of CA programs in general, programs create explicit references to relatively few
messages. On this basis, our implementation optimizes for the common case — messages
that are not explicitly referenced.

When a message arrives, storage is allocated for it in a region of memory managed as a
circular FIFO buffer. Messages are processed in the order they are received, so many of the
messages are discarded at this stage and never make it out of the FIFO buffer. If a message
need persist beyond the first invocation, it must be copied into the heap. Such messages

5.3. SUPPORTING AGGREGATES 99

are only allocated local names. The by-value semantics for messages assures that references
to these messages are local.

Our implementation attempts to keep message references local. When a message refer-
ence is transmitted, the message must be copied to assure that when the message reference
arrives, it will point to a local message. To assure this, a trap occurs when a program
attempts to transmit a message reference. The trap handler copies the message parameter
into the end of the transmitted message. On the receiving end, message parameters are
unpacked and referenced as local objects.

In a more efficient implementation, it would be possible to reduce the overhead due
to these message copying traps. For example, sometimes it is possible to detect message
references at compile time, allowing copy code to be compiled inline and avoiding the run
time cost of an exception. We can easily determine when references to messages are created
or “escape.” A programmer can obtain a reference to a message by using the MSG pseudo-
variable to refer the current message or the message construct to create a new message.
With local data flow information, we can annotate the sends to do the appropriate copying
and creation of a message reference. However, unless we can infer types for the entire
program or require some type declarations, we will not be able to eliminate all traps to
copy by-value messages. If message copy traps have a significant performance impact on
programs, then we would consider a statically-typed dialect of Concurrent Aggregates that
would allow us to reduce the cost of message copying. But, given the levels of use shown in
Table 5.1, it seems unlikely they will have significant performance impact.

5.3 Supporting Aggregates

If aggregates are used pervasively in programs, they must be implemented efficiently. The
additional requirements of aggregates are the one-to-one-of-many translation and intra-
aggregate addressing. In this section, we discuss several different implementations and
discuss their advantages and disadvantages. We also study the cost of a number of these
different approaches through simulation on traces derived from our application programs.

100 CHAPTER 5. IMPLEMENTATION ISSUES

<Static,Dynamic> .]
<Static,Static> »Lynami <Dynamic,Dynamic>
<Dynamic,Static>
More Efficient Less Efficient
Less Flexibility More Flexibility

Figure 5.5: Spectrum of Aggregate Naming Implementations

5.3.1 A Spectrum of Implementations

We consider a series of implementations of the aggregate naming operations: interface
translation and intra-aggregate addressing. Both of these functions require the mapping
from an aggregate name to some storage in the machine. We break down the translation
process into two steps?.

e Aggregate name to representative name translation. This is required for both one-to-
one-of-many translation used to implement aggregate interfaces. It is also required
for intra-aggregate addressing.

¢ Representative name to object storage.

We focus on the first translation step which is unique to aggregates. The second trans-
lation can be viewed as a simple object location problem. This type of service must be
provided by the run time system to support our basic object oriented programming model
(see Section 5.1.).

We parameterize our implementations of aggregate name translation in the flexibility
of the mappings for each translation step. These implementations can be seen as part of a
spectrum as shown in Figure 5.5. At one end of the spectrum, the Static,Static scheme
provides the least flexibility in placement and association. The first Static indicates that
the mapping from an aggregate name to its representatives is fixed. The second Static
indicates that representatives map to fixed machine nodes. The Static,Static scheme
can be implemented very efficiently as computation of relationships between aggregate and
representative names does not require any communication.

At the other end of the spectrum, other schemes may allow the runtime system and a
Concurrent Aggregates programmer more freedom. For example, the Dynamic,Dynamic

*In an actual machine implementation, for efficiency one might want to merge them into a single transla-
tion step. An example where this merging is done in conventional computer systems is a virtually addressed
cache. The virtual to physical address and physical address to data translations are merged into a single
translation step in the cache.

5.3. SUPPORTING AGGREGATES 101

scheme could support aggregates of arbitrarily named or placed objects. Objects could
be collected in aggregates long after their creation, rather than being created as a part of
them.® These less restrictive schemes appear to be much more expensive to implement.
We describe these schemes in more detail below. In particular, we evaluate the flexibility
gained and the cost of implementation.

Static,Static A fixed mapping from aggregate name to representative names. Represen-
tatives are fixed to machine storage according to their names. This scheme allows
for static collections and would be well matched to a system lacking both dynamic
allocation and object relocation.

Static,Dynamic A fixed mapping from aggregate name to representative names. However,
each representative is a relocatable object, and can be moved around the system to
allow for load balancing.

Dynamic,Dynamic A dynamic mapping scheme between aggregate name to representa-
tives allows the runtime system to avoid fragmentation problems in the namespace.
It also admits the possibility of an object participating in multiple aggregates®.

Dynamic,Static A weaker version of the above Dynamic,Dynamic scheme that might be
appropriate for a system without object relocation.

A static aggregate interface mapping can be implemented efficiently with no communi-
cation and fixed cost. The static mapping from aggregate name to representative names
allows one-to-one-of-many translation to be done locally. No information other than the
aggregate name is needed, so no communication is required. The static mapping also allows
indexing, intra-aggregate addressing, to be done without any communication. A dynamic
mapping from aggregate name to representatives allows both the runtime system and the
programmer more freedom. The runtime system need not allocate representative names in
a manner that allows them to be algorithmically derived from the aggregate name. This
avoids fragmentation problems in the object namespace.

The mapping of representatives to machine nodes is an orthogonal issue to the aggregate
interface mapping issue. The static or dynamic nature of the mapping between representa-
tive names and the machine nodes is primarily a reflection of the underlying system that
is supporting aggregates. If the system does not support efficient object migration, then a
static scheme may be the only workable one. If aggregates are being used to support data
parallelism, then a static scheme may be a good one. A placement with uniform spreading
assures that data parallel operations can go with optimal concurrency. However, typically

®This creation of objects as part of an aggregate is the model we currently support in Concurrent
Aggregates.

¢ Another way of achieving this, as noted by Bill Weihl, is to simply allow multiple names for an object.
In such a scheme, an object would have a name for each aggregate in which it was participating. This
“aliasing” of the object buries the first-level resolution in the second-level translation. One disadvantage of
this alternative is that things like an eq test become more difficult to implement.

102 CHAPTER 5. IMPLEMENTATION ISSUES

Network
Local

Translation
Cache

Backing Translation Array

Processing Node

Distributed Over the Machine

Figure 5.6: A Generic Scheme for Supporting Dynamic Translation

a static mapping means that only one type or a few types of mapping are supported. As
we have seen, aggregates can be used in many different ways. In different cases, a different
placement may be considered “good.” A dynamic scheme for mapping representatives to
nodes allows placement to be tuned to the particular aggregate or to the current machine
situation: loading, node failures, network partitions and resource sharing. Object location
is not a problem novel to aggregates, so we do not focus on it here. The interested reader
is referred to [94, 58, 62].

5.3.2 Examining Aggregate to Representative Translation

Our simulator implements a static mapping between the aggregate group name and the
names of the representatives. It is assumed that the names of all representatives in an
aggregate are encoded in its name. Thus translation from the aggregate group name to
the name of one of the representatives, one-to-one-of-many translation, can be done locally.
These assumptions are reflected in the simulation results shown in all other parts of the
thesis. For each one-to-one-of-many translation, we charge a constant amount to decode the
representative name from the aggregate name. The heuristic used to select a representative
is to choose any one of the representatives randomly.

Experimental Design In order to investigate the cost of supporting a dynamic transla-
tion from aggregate to representative, we collected traces of translation requests from our
application runs. These traces contained all translation requests for aggregates, including
both one-to-one-of-many or intra-aggregate addressing translations. In order to support

5.3. SUPPORTING AGGREGATES 103

<Agg, Index, Rep>
<100, 5, 105>
- <100, 19, 119>
- <420, 12, 432>
<420, 0, 420> - T
Request Translation | <512,3,515> Cache Miss 360 Backing
Translation
Array
<t <360, 19, 379>
Cache update <360, 19, 379>
Reply
Local Cache

Figure 5.7: Updating a Cache for an Aggregate Interface Miss

dynamic translation efficiently, we assumed that the implementation would take the form
shown in Figure 5.6. There is a cache for each node, so if a translation hits in the cache, no
communication is required. Changes to members of the aggregate may require invalidation
of some cache entries.

The aggregate to representatives translation is held in a backing array which may or
may not allow concurrent access. For large aggregates, we would probably want to support
concurrent access. Each node that accesses the aggregate may cache some information
about the aggregate, allowing some translation requests to be handled without accessing
the backing array.

To examine the potential for accelerating aggregate to representative translations, we
simulated an ideal cache for the translation at each node. This ideal cache keeps all trans-
lations it has ever seen. Matches in the cache can be used to avoid message traffic for later
translations. Matching in the cache is fully associative. We use the information in these lo-
cal caches in the following manner. The information in the cache consists of 3-tuples. Each
tuple contains the name of the aggregate, the name of a representative in the aggregate,
and the index number of the representative in that aggregate.

The main limitation of this approach is the lack of feedback into evolution of the program
execution. By running our cache simulator on traces, we can estimate the amount of work
required to do translation (cache hits, misses, etc.), but we cannot determine how this would
affect the actual run time of the computation. The best that we can do is to estimate the
additional amount of work.

104 CHAPTER 5. IMPLEMENTATION ISSUES

Application | Total Msgs | Interface | % Misses
Matrix Mult 1,880,055 528,448 0.7%
Multigrid 2,616,544 790,408 0.5%
N-body 2,130,878 97,150 6.4%
PCB Router 1,283,174 69,212 13.9%
Logic Sim. 1,056,782 24,013 3.3%
Total 8,967,433 | 1,509,231 1.6%

Table 5.2: Aggregate Interface Cache Simulations

For one-to-one-of-many translations, the node extracts all of the tuples with matching
aggregate name and chooses one of them arbitrarily. If there are no matching tuples, a
request is made to the backing array and that value is used for the translation. The node
also places this new translation in its local cache.

In order to support indexing (intra-aggregate addressing), tuples are selected on the
basis of aggregate name and index. If the tuple is not present in the cache, an access is
made against the backing array and response is used to service the request and to update
the cache. A translation miss and cache update is depicted in Figure 5.7.

Aggregate Interface Translation Caching We ran our translation traces against this
ideal cache design to determine whether caches were likely to be helpful in implementing
dynamic aggregate to representative translation. If the hit rates were high enough, caches
might be able to accelerate the translation, decrease its latency, and decrease its cost (fewer
messages required). The results for aggregate interface or one-to-one-of-many translation
are shown in Table 5.2. For each application kernel, the interface column indicates the
number of one-to-one-of-many translation requests made for the entire program execution.
The % Misses column shows the miss rate for caches. As we might have anticipated, it
is quite low. Intuitively, once a single tuple exists in the cache for a given aggregate, all
interface translations for that aggregate will hit in the cache. Qur results indicate that
caching may be effective in implementing dynamic translation from aggregate names to
representative names.

Caching of the aggregate interface translation may decrease its randomness. Rather than
repeatedly selecting random representatives from the aggregate, all subsequent requests
from a particular node will be sent to the same representative. For programs in which
many of the requests for an aggregate originate from one or a few nodes, this may cause
reduced throughput for the aggregate. For programs where the requests come from many
nodes, this should not be a problem.

Intra-aggregate Addressing Translation Caching We also studied the performance
of the ideal cache on indexing accesses (intra-aggregate addressing). These results are
presented in Table 5.3. In the intra-aggregate column, we indicate the total number of

5.3. SUPPORTING AGGREGATES

Application | Total Msgs | Intra-aggregate | % Misses
Matrix Mult 1,880,055 544,768 98.6%
Multigrid 2,616,544 811,873 96.8%
N-body 2,130,878 69,504 53.0%
PCB Router | 1,283,174 30,721 97.1%
Logic Sim. 1,056,782 9,790 17.5%
Total 8,967,433 1,466,656 94.8%

Table 5.3: Intra-Aggregate Addressing (indexing) Cache Simulations

Application | Total Msgs | Aggregates | Tuples/Aggregate
Matrix Mult 1,880,055 3.0 44.0
Multigrid 2,616,544 34 57.4
N-body 2,130,878 2.1 5.0
PCB Router 1,283,174 3.6 2.6
Logic Sim. 1,056,782 1.6 21

105

Table 5.4: Cache Sizes for Aggregate Naming Translations

indexed translation requests for the application program. % Misses contains the percentage
of translation requests that missed in the cache. It seems clear that the caches were not
effective for indexed references. In some cases, the hit rates were low enough that the caches
were totally ineffective.

The low cache hit rates for indexing translations may be due to the randomization of the
interface translation. We expected that caching might be effective for indexing translations
if there were some higher frequency communication patterns in the computation. If these
patterns involved intra-aggregate addressing, the repetition of these patterns would cause
hits in the translation caches. However as all messages to aggregates are sent to a random
representative, we suspect that this randomization is destroying the translation locality.
Any other aggregate interface translation scheme that results in more repeated identical
translations would produce more cache hits. We also suspect that the aggregate interface
optimizations described below in Section 5.4.1 will improve cache performance for indexing
translations. Compiling interface code into the users of aggregates avoids the interface
randomization step. In the context of this thesis and CA implementation, we must say that
our caching scheme was ineffective for indexing translations.

Cache Sizes We are interested in using finite-sized, even relatively small, caches, so
we also measured the maximum sizes that our ideal caches reached. These numbers are
presented in Table 5.4. We collected two statistics for the translation cache sizes, the
number of different aggregates for which there are tuples and the number of tuples per

106 CHAPTER 5. IMPLEMENTATION ISSUES

aggregate in the cache. The product of these two numbers is the number of tuples in
the node cache. For three of our applications, the N-body simulation, PC board router,
and Logic simulator, numbers were quite small. However for the other applications, both
grid-oriented applications in which much of the intra-aggregate addressing has to do with
element selection on partitioned state, the caches grew to much larger size. This is probably
related to the randomized aggregate interface effects described above. Most of the indexing
requests are made by code running at a random representative of the aggregate, which
means an arbitrary one of many nodes. This randomness may be destroying whatever
locality there is in the reference streams for a particular processing node. For this reason,
non-random schemes may be attractive for the one-to-one-of-many translation. At any
rate, our simulations show that the prognosis is not good for caching indexing translation
requests with partitioned state aggregates.

5.4 Improving the Implementation of Concurrent Aggre-
gates

By studying static and dynamic properties of our programs, we have identified a number of
optimizations that may have significant impact on the efficiency of CA programs. In this
section, we describe these optimizations and estimate the improvement achievable in the
context of our application programs. As in Chapter 4, we use the number of messages as
the cost metric for computations. The rationale for this choice is given in Section 4.2.4.
For efficiency comparisons to other programming approaches, we also refer the reader to
Section 4.2.4 where we compared the message traflic of an optimized implementation of a
Concurrent Aggregates program with the memory reference traffic required for a shared
memory machine. The optimizations we considered fall into three categories: reducing
the aggregate interface overhead, reducing locking overhead, and general optimizations for
concurrent object-oriented languages. For each optimization, we describe an example of
the code that would be optimized. Where appropriate, we indicate additional program
information that must be available in order to perform the optimization. This information
must come from the programmer or from compiler analysis. For each optimization we
present statistics that indicate how much these optimizations will improve the performance
of our programs.

5.4.1 Aggregate Interface Optimizations

In the design of many aggregates, two messages are required before a request even gets to
the appropriate representative. It is desirable and plausible to reduce the linkage overhead
to only one message passing operation. In many cases, where responsibility for handling a
request only depends on a limited amount of aggregate specific information, we can achieve
this performance improvement. In general, optimization of linkage also depends on having
some information about the type (which class or aggregate) of an abstraction at the point
of use. We will also call this type of optimization “request direction.”

5.4. IMPROVING THE IMPLEMENTATION OF CONCURRENT AGGREGATES 107

at <array> 6 J

I internal_at <rep6>J

Concurrent @ @ @ @
Array

| reply <value>J

Figure 5.8: An Operation on a Concurrent Array

(aggregate conc_array state :no_reader_writer
(parameters size)
(initial size))

(handler conc_array at (index)
(forward (internal_at (sibling group index))))

(handler conc_array atput (value index)
(forward (internal_atput (sibling group index) value)))

(handler conc_array internal_at ()
(reply (state self)))

(handler conc_array internal_atput (value)

(seq (set_state self value)
(reply (state self))))

Figure 5.9: Code for a Concurrent Array

108 CHAPTER 5. IMPLEMENTATION ISSUES

(at <conc_array value> i) =P (internal_at (sibling <conc_array value> i})

BECOMES

Figure 5.10: Compiling Indexing Code into the Caller

Take as an example the implementation of a concurrent array. Its operation is illustrated
in Figure 5.8. Each access to the array requires three messages. The code for the concurrent
array is shown in Figure 5.9. It seems clear that one third of the messages could be
eliminated by using the index argument of the at and atput messages to direct the message
to the correct representative. The computation for the direction operation in the at and
atput messages could be compiled into the user of the abstraction, thereby avoiding the
extra message. This improvement is shown in Figure 5.10 where the indexing code in the
at operation is moved into the caller. This optimization is really a special case of inlining
or open-coding methods.

Aggregate interface optimization requires some additional information about the pro-
gram. Whether or not interface optimization can be performed automatically depends on
what type information is available at the call site and precisely what information is used to
perform the request direction. The difficulty in obtaining type information depends on the
degree to which selectors are overloaded (reused) and how much information about types
we can derive. For the purposes of considering this optimization, we assume that we can
derive type information at the call site and focus on the information used to do the request
direction. Another possibility is to design an aggregates language with more static type
information.

We classify the information required to do the indirection into three levels. At each
level, some number of messages can be eliminated with the appropriate information. For
each level, we describe the type of information required and give an example of the kind of
code being optimized.

5.4. IMPROVING THE IMPLEMENTATION OF CONCURRENT AGGREGATES 109

None No information about the aggregate is required. The representative index to handle
the request can be derived from the arguments to the call only. A good example of this
is the Bodies aggregate in the N-body simulation. In that case, an aggregate is used only
to collect the representative objects together and allow them to be manipulated as a single
entity.

(aggregate bodies location velocity mass acc_count
interactions iters dcombtree
(parameters nr_bodies nr_iters)
(initial nr_bodies
(fanout group (message (default_init place nr_iters))
0 groupsize)))

(handler bodies accelerate (force_vector index) ;3 1 is request
(forward (internal_accelerate ;; count for leaves
(sibling group index) force_vector 1)))

(handler bodies accelerate_body (force_vector count)

. actually do the update on a body .

The accelerate handler simply forwards request to the representative specified by
index. If this code could be compiled into its callers, we could avoid one forwarding
message transmission.

110 CHAPTER 5. IMPLEMENTATION ISSUES

Size Information about the size (number of representatives) of the aggregate in addition
to the arguments is required to compute the index of the representative to handle the re-
quest. For example, in a concurrent array or a concurrent hash table, the interface handlers
compute some mapping function (or hash function) based only on the input arguments that
determines which representative should really handle the request. The mapping function
is combined with the size to determine the actual representative to handle the request, as
using the size allows “chunking.” Chunking is the distribution of work over a virtual set of
representatives may be collapsed together to improve efficiency in an actual implementa-
tion. In the example below, we implement a hash table by chunking responsibility for the
keys over the representatives in the aggregate. Size information may not require compiler
analysis or user declaration. It may be encoded into aggregate names, as it is needed to do
one-to-one-of-many translation.

(aggregate hash_integer local :no_reader_writer
(parameters size)
(initial size
(init (sibling group 0) 0)))

(handler hash_integer insert (key elt)
(let ((hash_index (mod key groupsize)))
(forward (internal_insert (sibling group hash_index)
key elt))))

(handler hash_integer internal_insert (key elt)

. actually do the local insert ..

In the example above, the insert handler uses the key and the modulo function to
determine the appropriate representative to forward the request to. The only data needed
to compute the representative number is key and the size of the aggregate.

5.4. IMPROVING THE IMPLEMENTATION OF CONCURRENT AGGREGATES 111

Static Some static information from the state in the aggregate may also be required
to do the direction of requests. Typically, this involves some constants for the aggregate
bound at creation time. This kind of information might be available in a language with
a static allocation model, or a strongly typed language. For example, static information
might include the bounds of a two dimensional array. The most important instance of
this involves grid-oriented applications: matrix multiply and multigrid’. In both cases,
the static information required was one of the dimensions of the array (the other could
be deduced with size information). The static information would allow for dramatically
better performance on these two applications. Below, we show part of the code for our
two-dimensional matrix abstraction. This is an example of code where static information
could be used to compile out linkage messages. In this case, the value of xsize is static and
bound at creation time for the matrix.

(aggregate matrix_2d state xsize
(parameters init_val isize ixsize)
(initial isize
(init (sibling group 0) init_val ixsize)))

(handler matrix_2d at (xindex yindex)
(forward (internal_at
(sibling group
(+ (* xindex (xsize self)) yindex)))))

(handler matrix_2d internal_at ()
(reply (state self)))

The at handler uses its arguments, the size of the matrix_2d aggregate and the value of
xsize to determine which representative should handle the request. If the value of xsize
was known at compile time, or could be cached, we could avoid a forwarding message step
in the interface to matrix_2d.

To avoid counting efficiency gains due to optimization more than once, we only count the
additional number of messages that could be eliminated by having this level of information
compared to the previous level. Thus, if we had size and static information, we would sum
the numbers under None, Size and Static to find the number of messages we would be
able to optimize. The effectiveness of these optimizations is estimated by hand analysis of
programs and dynamic message counts. We present the results for our application programs
in Table 5.5.

These results reflect not only the different levels of aggregate usage in the different ap-
plication programs, but also the way in which they are used. For example, where aggregates
are used to hold replicated state, it does not matter which representative handles a request.

"It is also important for the N-body application. In that case, the interactions aggregate is structured
like a grid.

112 CHAPTER 5. IMPLEMENTATION ISSUES

Application | Total Msgs | None Size Static | Total Red. | % Red.
Matrix Mult 1,880,055 0 0 524,288 524,288 | 27.9%
Multigrid 2,616,544 7 0 788,878 788,885 | 30.1%
N-body 2,130,878 | 36,436 1 28,244 64,661 3.0%
PCB Router 1,283,174 | 13,513 | 14,646 0 18,159 1.4%
Logic Sim. 1,056,782 0 0 0 0 0.0%
Total 8,967,433 | 49,956 | 14,647 | 1,341,410 | 1,395,993 | 15.6%

Table 5.5: Messages Eliminated by Aggregate Interface Optimization

Requests are handled by whatever representative receives them. Consequently, there is no
interface overhead to optimize. When aggregates are used as partitioned state (as with the
concurrent array example), typically there is a level of forwarding at the interface, so sig-
nificant improvement is possible. In the matrix multiply, multigrid, and N-body simulation
applications the aggregates used are predominantly partitioned state. This may explain the
larger improvements shown in Table 5.5.

5.4.2 Locking Optimization

In order to implement mutual exclusion for object operations, we used a simple spin-locking
scheme. Upon invocation, a method typically locks its receiver object. When an invocation
terminates, it unlocks the object. A message arriving at a locked object “spins” until it
can acquire the lock. A message spins by repeatedly resending itself. Each time its receiver
object is locked, it resends itself.

The liabilities and advantages of spin-locking schemes are well known. The “busy-
waiting” consumes resources and can result in contention that requires quadratic time to
process n messages. For some cases spin-locking can provide very low-latency access, often
an important performance issue. Qur rationale for using spin-locking was to avoid allocat-
ing heap storage for incoming messages. Spinning messages reside in the message queue
where storage allocation and deallocation is much cheaper than in the heap. For most of
our application programs, spin-locking did not cause significant overhead. However in a
few cases, the spin-locking overhead is significant. The spin-locking overhead (number of
messages induced by spinning) is shown in Table 5.6.

These results show that spin-locking caused overheads ranging from 0 - 35%. Spin-
locking overhead can be eliminated by storing these messages locally (in the context of our
first class message scheme), and thereby avoiding the allocation of global names for them.
The messages are passive while waiting and hence do not consume any processing resources.
When the desired object is unlocked, the waiting messages are resent. Thus, the necessary
exclusion for Concurrent Aggregates can be implemented without the overhead caused by
“busy-waiting.”

5.4. IMPROVING THE IMPLEMENTATION OF CONCURRENT AGGREGATES 113

Application | Total Msgs | Spin Msgs | % Reduction
Matrix Mult 1,880,055 0 0.00%
Multigrid 2,616,544 292,576 11.18%
N-body 2,130,878 744,023 34.92%
PCB Router | 1,283,174 5,154 0.40%
Logic Sim. 1,056,782 348,537 32.98%
Total 8,967,433 [1,390,290 15.5%

Table 5.6: Spin-Locking Overhead

5.4.3 General Optimizations

In our experience with Concurrent Aggregates, we have found a number of other situations
that occur often enough to warrant optimization. These scenarios include messages to self
(functions), messages to numbers or other immediate objects, and inlining objects. We
describe each of these below:

Messages to Self These are messages sent to the same object on which we’re currently
executing. Concurrent Aggregates has only methods and handlers but no functions.
This means that in order to share a piece of code, it is necessary to do two message
passing operations. This can be avoided by adding functions to the language, or
inlining the code for self calls.

Messages to Immediate Objects Many of the built-in objects in Concurrent Aggre-
gates are immediates such as integers, floating point numbers, and selectors. While
we would like to provide the programmer with a consistent message passing interface,
we need not implement operations on immediates in that fashion. We can operate on
immediates directly with much greater efficiency.

Inline Objects By inlining objects, we can make them subject to the same optimization
described for immediates. In order to make an object inline, it must be immutable or
have only one reference to it. We must be careful about doing this because inlining an
object may transform transmissions of references to it (one word) into transmissions
of the entire object (many words).

For each of our application programs, we estimated the potential for performance im-
provement. For Messages to Self and Inline Objects, these estimates are based on hand
analysis of the code and are therefore probably conservative estimates of the performance
achievable®. For Inline Objects, we only estimate the number of messages eliminated by
the inlining optimization. We do not consider the increased communication traffic caused

31t is more likely that we overlooked an optimizable method, handler, or class than included one that
could not be optimized.

114 CHAPTER 5. IMPLEMENTATION ISSUES

Application | Total Msgs Self | Immmediates Inline | Total Red. | % Red.
Matrix Mult 1,880,055 0 8,192 0 8,192 0.4%
Multigrid 2,616,544 | 177,408 4,096 0 181,504 6.9%
N-body 2,130,878 0 233,622 | 432,944 666,566 | 31.3%
PCB Router 1,283,174 0 21,143 | 341,053 362,196 | 28.2%
Logic Sim. 1,056,782 0 50,996 0 50,966 4.8%
Total 8,967,433 | 177,408 318,049 | 773,997 | 1,269,424 | 14.2%

Table 5.7: Improvement Due to General Optimizations

by inlining objects into messages. The Messages to Immediate Objects were deduced
from dynamic message counts collected by our simulator. We present the performance
improvement estimates in Table 5.7.

Optimizing calls to self has an impact on only the multigrid application. The vast
majority of messages to self involved the computation of X and Y coordinates in the grid.
Calls to self require messages in Concurrent Aggregates because there is no way to share
code except through message handlers. This means the sharing of a pure procedure requires
two messages just to call and return. This is inefficient because no message passing is really
required and if the message is being sent to self, the message send will result in no additional
concurrency. An improved version of CA should compile these calls to self inline or provide
programmers with a more efficient way of sharing procedures.

The improvements on immediates are mostly due to the optimization of operations de-
fined on the class of integers. The benefits were exceptionally large in the case of the N-body
simulation because we computed the square root by making tail-recursive calls on integers.
Each tail-recursive call shows up in our simulation results as a message. Optimization of
these calls transforms them into iteration, avoiding any message passing.

Improvements in inline objects are for two simple abstractions: point and vector ab-
stractions. Both of these abstractions were immutable and have quite small amounts of
state. Both the point and vector are simple data structures. The message interface is sim-
ply accessor functions. The two dimensional vector abstraction is inlinable for the N-body
simulation. Vectors are used for the positions, velocities, forces and accelerations in the
simulation. For the printed circuit board router, the inline object optimized was a point.
The point object was used to keep track of what points a path for a net had passed through.
Naturally, every time a path was extended, several operations on points were required.

Additional Optimizations We considered several other optimizations, but were unable
to investigate their effectiveness. One optimization is expression hoisting, pushing message
sends as far up as possible, to facilitate concurrency. This has the benefit of reducing the
computation run time if the concurrency can be exploited. Expression hoisting is analogous
to bubbling loads to the top of basic blocks. Another optimization is the collection of a

5.5, SUMMARY 115

Application | Total Msgs | Agg Int | Locking | General Total | % Improv
Matrix Mult 1,880,055 524,288 0 8,192 532,480 28.3%
Multigrid 2,616,544 788,885 292,576 181,504 | 1,262,965 48.2%
N-body 2,130,878 64,661 744,023 666,566 | 1,475,250 69.2%
PCB Router 1,283,174 18,159 5,154 362,196 385,509 30.0%
Logic Sim. 1,056,782 0 348,637 50,966 399,503 37.8%
Total 8,967,433 | 1,395,993 | 1,390,290 | 1,269,424 | 4,055,707 45.2%

Table 5.8: Summary of Optimization Statistics

number of mutually unordered requests to another object. We call this optimization request
combining. When method A makes two requests, B and C, to another object, D, we may
have four messages, two requests and two replies. If the requests are unordered, then we
should be able to compile a special method that handles the aggregate request BC, and
sends a reply with two values. By performing this optimization, we can reduce the message
traffic to process the two requests by as much as a factor of two.

5.4.4 Summary of Optimization Improvement

We have found that a number of optimizations can significantly reduce the number
of messages required in to execute Concurrent Aggregates programs. The reduction in
message count ranged from 28% to nearly 70%. The overall average improvement was just
over 45%. As communication is likely to ultimately be the limiting resource in fine-grain
message-passing machines, this is a very significant reduction. One interesting outcome of
our study is that no single class of optimizations dominated for all of the applications. In
order to get nearly a 30% improvement in all of them, it is necessary to apply all of the
optimizations. It also seems clear that type information for aggregates could be used to
significantly improve program performance (see messages under Agg Int).

5.5 Summary

In this chapter, we have considered the key implementation issues for Concurrent Aggre-
gates. First, we considered the use and implementation of first class continuations and
messages. We carefully designed the semantics of system continuations in CA to fulfill their
purpose, yet remain easy to implement efficiently. We measured the usage of first class mes-
sages and found it to be quite rare. In view of this, we presented an implementation that
handles the common case — no explicit references to a message - very efficiently. Message
references are trapped and handled specially. As long as the usage rate is quite low, this
will be an efficient implementation.

Second, we considered the problem of aggregate to representative name translation. This
is important for aggregate interfaces, one-to-one-of-many translation, and intra-aggregate

116 CHAPTER 5. IMPLEMENTATION ISSUES

addressing, indexing. Our application program simulations in Chapter 4 reflect a static
mapping from aggregate to representative name. In Section 5.3.2, we explored a dynamic
mapping that would allow objects to participate in multiple aggregates and allow aggregates
to be formed dynamically. In order to support this dynamic translation efficiently, local
translation caching for each node is an attractive alternative. Using an ideal cache model,
we examined the potential of one class of dynamic translation schemes. We found that the
caching can be quite effective for the aggregate interface translation, but is not very effective
for the indexed translation. We hypothesized that this was due to the randomization of
the aggregate interface translation in our simulations. If a more deterministic scheme is
used, or some aggregate interface compiler optimizations are performed, we suspect that
the caching will be more effective for indexed translation. Until we have results based on
those different assumptions, we must conclude that dynamic translation schemes appear
to be quite expensive, as simple caching is not likely to speed intra-aggregate addressing
requests significantly.

Third and finally, we considered a number of optimizations for improving the perfor-
mance of Concurrent Aggregates. These optimizations were divided into three categories:
aggregate interface, locking and general optimizations. Two of these, locking and general
optimizations, can be performed without any changes to the language. We found that these
two sets of transformations were likely to cause 15.5% and 14.2% reductions in the number
of messages for our application programs. The third set of aggregate interface optimiza-
tions require some more type information about the program. This information could be
supplied by the programmer (in a statically-typed or type-annotated version of CA) or be
inferred by the compiler. With complete information, we estimated that aggregate interface
optimizations might yield an additional 15.6% reduction in necessary message traffic. Al-
together, this set of optimizations promises the hope of reducing message traffic by 30-50%
in Concurrent Aggregates programs.

Chapter 6

Conclusion

In this section, I summarize the work I have presented in this thesis. I begin by highlighting
the research contributions and place them in perspective in the development of programming
languages for fine-grained message passing machines. In closing, I discuss issues and ideas
for future directions to pursue in programming systems for fine-grained message passing
machines.

6.1 Summary of Present Work

Concurrent Aggregates represents an important step in the development of programming
systems for fine-grained message passing machines. If there is an underlying lesson moti-
vating the development of aggregates it is this:

Whatever tools you use to manage complezity, they must not reduce
concurrency.

The multi-access abstraction tools provided in Concurrent Aggregates comply with this
requirement, allowing programs to be modularized without restraining concurrency. The
one-to-one-of-many interface and simple intra-aggregate addressing primitives were suffi-
cient for expressing a wide variety of multiple access abstractions. The major classes of
these multi-access abstractions include consistent replication, loosely consistent replication,
partitioned state, and structured cooperation. Allowing programmers to manage consis-
tency and update of aggregate state within the programming model is useful in a wide
variety of situations. It was typically used to support higher performance implementations
of abstractions.

We have written a number of significant application programs in Concurrent Aggre-
gates. The application programs we constructed include matrix multiplication, multigrid
relaxation, N-body interaction simulation, printed circuit board router, concurrent B-tree,

117

118 CHAPTER 6. CONCLUSION

digital logic simulation and a parallel FIFO queue. These applications show us broad va-
riety of uses for aggregates in concurrent programs. The application programs have also
been used to evaluate CA with respect to programmability and concurrency. Our expe-
rience with the language has been quite positive. Aggregates facilitate the modularity of
programs while allowing the programmer to exploit a great deal of concurrency.

We have found that aggregates can be used to effectively structure programs without re-
ducing their concurrency. Further, novel features in Concurrent Aggregates have allowed us
to express a number of different styles of parallelism: both data parallelism and control par-
allelism. More importantly, novel features such as first class and user continuations as well
as first class messages are an important step towards building composable ob ject-oriented
programs. Concurrent Aggregates provides some basic tools, but real composability involves
deeper issues than syntactic convenience and facilitation of code reuse. The interaction of
composition and issues of concurrency control and resource management have yet to be
explored.

An important source of efficiency in shared address space multiprocessors is the ability
to do address calculation. This capability is particularly powerful in languages such as
FORTRAN which support flat multi-dimensional arrays. Address calculation in sequential
machines can be used to eliminate unnecessary memory references. In multiprocessors, this
calculation can be used to eliminate unnecessary communication. In concurrent object-
oriented languages, this kind of address computation has been largely ignored. Aggre-
gates provide a framework for expressing address calculation in an object-oriented context.
Coupled with some of the optimizations described in Chapter 5, aggregates provide the
opportunity to recapture the efficiency due to address calculation.

We studied issues in an efficient implementation of Concurrent Aggregates. A number
of features in Concurrent Aggregates are sufficiently novel to merit special consideration.
First class continuations and user-defined continuations were carefully designed to require
little special support. At their current level of usage (< 5%), the cost of first class messages
appears to be manageable. We studied aggregate naming translations in detail and proposed
two different implementations. We found that a static mapping between aggregate and
representative names is the most attractive. Such a mapping not only supports aggregate
interface translation and intra-aggregate addressing efficiently, it is also compatible with the
aggregate interface compiler optimization techniques studied in Chapter 5. We considered
three classes of compiler optimizations for Concurrent Aggregates programs: aggregate
interface, locking and general optimizations. It is clear that type information for aggregates
can dramatically improve aggregate interface efficiencyl. Together these optimizations

It appears that the cost of maintaining the abstraction barrier at run time in the concurrent world is even
larger than in the sequential world. In Smalltalk-80 [49], much work is required to increase the efficiency
of the object interface [44, 24, 26]. Many of these optimizations may not be appropriate or effective in
fine-grained concurrent machines. However, efficient interfaces are crucial because one cost of an inefficient
interface is communication. A system designer must consider the price appropriate for facilitating code
sharing and reuse.

6.2. FUTURE WORK 119

reduced the number of messages in our computations by 30-50%. The improved perfor-
mance seems likely to be competitive with other approaches in terms of communication
requirements (see Section 4.2.4).

6.2 Future Work

If fine-grained message-passing machines are to have a significant impact in high perfor-
mance computing, their programming systems must meet several criterion. First, they
must support the expression of large amounts of concurrency. Second, it must be com-
parable in terms of complexity and convenience to write programs. This means that the
programmers must have good tools for developing programs and managing their complexity.
Third, the programs must provide some locality information, allowing the implementation
to reduce the communication bandwidth requirement. Finally, programmers must be able
to tune the performance of their programs by adding more information. At a reasonable
level of effort, the efficiency must approach that achievable on sequential machines.

The work in thesis has focused primarily on the first two requirements. Qur programs
exhibit massive concurrency. They are still more difficult to write than sequential programs,
but their complexity is now manageable. We turn our attention to the issues of locality and
efficiency.

Programming systems must allow the clustering of data, so it can be placed on the
same processor and accessed more efficiently. The perspective in fine-grained machines is
fundamentally different from conventional machines. In fine-grained machines, we bring the
computation to the data. In conventional machines, the data is brought to the computation.
A process can take the time to build a “working set” in its cache or the local node memory.
In fine-grained machines, tasks are short-lived. They do not exist long enough to build up
a working set.

The composability of object-oriented programs must be improved. The tools provided
in Concurrent Aggregates represent some first steps in this direction. However, many is-
sues have yet to fully examined (interaction of locality, synchronization, and concurrency
management across composition). Functional languages are quite good at composing func-
tions. However, because they typically do not support expression of locality, they do not do
well in composing data. Computation in such languages is generally done against a global
shared memory. Functions can be composed, but the data structures cannot. Efficient
performance in fine-grain message passing machines demands the development of a broader
form of composition.

In this thesis, we have avoided a number of open research problems that must be solved
to support flexible programming systems for fine-grained message passing machines. We
briefly describe them here.

The locking structure (object concurrency control) incorporated in Concurrent Aggre-
gates is simple, and in some cases too restrictive. We need to find an effective way of

120 CHAPTER 6. CONCLUSION

reconciling concurrency control, low overhead, and the desire to express recursive formu-
lations without concern for deadlock. One possibility is to allow users to define locking
protocols for objects by assuring that the language implementation made calls to special
lock and unlock functions. These functions could perform computation on the local ob-
ject state, allowing expression of any locking policy ranging from local locks to the more
complicated per variable locks of CST.

Difficulty in supporting recursion is one significant criticism of most simple locking
schemes. Simple recursion is a convenient programming idiom and easy to detect and im-
plement with a sophisticated compiler. The recursive call should be compiled as a local
procedure call. More complex forms or recursion are difficult to support as they require
the breakdown of the simple exclusion model which is one important benefit of the object-
oriented programming approach. Aggregates provide some hope in this area because re-
quests to an aggregate could be viewed as the start of a request. With this view, it is
possible to allocation a transaction ID and use that for exclusion. This is similar to many
distributed systems that support call back in their RPC protocols [14]. The overhead for
such a scheme is unclear.

One underlying premise of Concurrent Aggregates is that there is an efficient garbage
collector to reclaim names. In distributed memory machines such as the J-machine, such
collection may be quite expensive because each pointer traversal may require a message
transmission. However, since our local memories are relatively small, this overhead is not
as great as one might think. For a 4 kiloword per node machine with objects with average
size 8 words, each node could support a maximum of 512 objects. Sending 512 messages per
node during a garbage collection may be an acceptable amount of traffic. Unfortunately,
the receipt of messages may not be nearly so uniform. An uneven distribution can cause one
node to become the bottleneck, preventing the garbage collection from completing quickly.
One way to avoid this kind of bottleneck is to use a randomized routing technique similar
to that described by Valiant [98] coupled with dynamic combining.

Load balancing is a key problem in efficiently utilizing a parallel machine. For our ap-
plication programs, randomized initial placement was sufficient. However, for computations
with long-lived objects or less regular structure, we expect that object migration will be
necessary to balance both memory occupancy and processor load. Larger collections of data
such as aggregates form a natural basis for distribution over a machine. High-level anal-
ysis of programs based on their modular structure may prove useful in determining good
placements for load balance.

Concurrency management can be a key factor in the performance of parallel machines.
Exposing too much concurrency can reduce performance or worse yet, require so much
resources that the program cannot complete. We have not explicitly considered concur-
rency management — how to deal with an overabundance of concurrency. We expect that
meta-abstractions making use of first class messages may be useful here. Aggregates also
provide a natural place to control concurrency. A compiler working in conjunction with a
sophisticated run time system might scale the sizes of aggregates to control the amount of
concurrency exposed. One advantage we have with a language like Concurrent Aggregates is

6.2. FUTURE WORK 121

that the object-oriented model, as an open system, allows blending of operating system and
application program concerns. It is easy to build programs that condition their behavior
upon request of the run time system.

Locality will be of increasing importance as we scale fine-grained message-passing ma-
chines into the tens of thousands to millions of nodes. Ultimately, the scalability of these
fine-grained message passing machines will be network limited. Efficient management of
communication resources is a crucial factor in system performance. Studies such as [59]
have shown that in many cases it is possible to determine that objects will require sig-
nificant communication with each other and place them on the same node. This type of
information will allow us to reduce message-passing linkage overhead and communication
requirements.

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Harold Abelson, Gerald Jay Sussman, and Julie Sussman. Structure and Interpreta-
tion of Computer Programs. MIT Press, 1985.

Gul Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT
Press, Cambridge, MA, 1986.

P. Agrawal, R. Tutundjian, and W. Dally. Algorithms for Accuracy Enhancement in a
Hardware Logic Simulator. In Proceedings of the 26th ACM/IEEFE Design Automation
Conference, pages 1-4, Las Vegas, Nevada, June 1989. ACM/IEEE.

Ramune Alauskas. iPSC/2 System: A Second Generation Hypercube. In Proceed-
ings of the Third Conference on Hypercube Computers. Association for Computing
Machinery, ACM Press, January 1988.

G. M. Amdahl. Validity of the Single Processor Approach to Achieving Large Scale
Computing Capabilities. In AFIPS Conference Proceedings, pages 483-5. AFIPS,
1967.

P. America. Inheritance and Subtyping in a Parallel Object-Oriented Language. In
Proceedings of ECOOP, pages 234-42. Springer-Verlag, June 1987.

Andrew W. Appel, John R. Ellis, and Kai Li. Real-time Concurrent Collection on
Stock Multiprocessors. In Conference on Programming Language Design and Imple-
mentation, pages 11-20. ACM SIGPLAN, 1988.

Arvind, R. Nikhil, and K. Pingali. Id Nouveau Reference Manual, Part I: Syntax.
Computation structures group, MIT Laboratory for Computer Science, 1987.

Arvind, R. Nikhil, and K. Pingali. Id Nouveau Reference Manual, Part II: Semantics.
Computation structures group, MIT Laboratory for Computer Science, 1987.

Arvind, R. S. Nikhil, and K. Pingali. I-structures: Data Structures for Parallel Com-
puting. ACM Transactions on Programming Languages and Systems, 11(4):598-632,
October 1989.

Association for Computing Machinery. Proceedings of the Fifth Distributed Memory
Computers Conference, Charleston, South Carolina, April 8-12 1990. ACM Press.

123

124 BIBLIOGRAPHY

[12] William C. Athas. Fine Grain Concurrent Computations. PhD thesis, California
Institute of Technology, 1987. 5242:TR:87.

[13] William C. Athas and Charles L. Seitz. Multicomputers: Message-Passing Concurrent
Computers. IEEE Computer, pages 9-24, August 1988.

[14] B. S. Bacarisse, S. R. Wilbur, J. Crowcroft, and M. Riddoch. The Design and Imple-
mentation of a Protocol for Remote Procedure Call. Technical report, University of
London, 1986.

[15] Henri E. Bal. The Shared Data-Object Model as a Paradigm for Programming Dis-
tributed Systems. PhD thesis, Vrije Universiteit Te Amsterdam, Amsterdam, 1989.

[16] K. E. Batcher. Design of a Massively Parallel Processor. IEEE Transactions on
Computers, C-29(9):836-840, September 1980.

[17] J. Bennett, J. B. Carter, and Willy Zwaenepoel. Munin: Distributed Shared Memory
Based on Type-Specific Memory Coherence. Technical Report Rice COMP TR89-98,
Rice University, 1989.

(18] A. Black, N. Hutchinson, E. Jul, and H. Levy. Object Structure in the Emerald
System. In Proceedings of OOPSLA ’86, pages 78-86. ACM, September 1986.

[19] A. Black, N. Hutchinson, E. Jul, H. Levy, and L. Carter. Distribution and Abstract
Types in Emerald. IEEE Transactions on Software Engineering, SE-13(1):65-76,
January 1987.

[20] Nan J. Boden. A Study of Fine-Grain Programming Using Cantor. Master’s thesis,
California Institute of Technology, 1988. Caltech-CS-TR-88-11.

[21] Shekhar Borkar, Robert Cohn, George Cox, Thomas Gross, H. T. Kung, Monica
Lam, Margie Levine, Brian Moore, Wire Moore, Craig Peterson, Jim Susman, Jim
Sutton, John Urbanski, and Jon Webb. Supporting Systolic and Memory Communi-
cation in iWARP. In Proceedings of the 17th International Symposium on Computer
Architecture. IEEE Computer Society, 1990.

[22] M. A. Breuer and A. D. Friedman. Diagnosis and Reliable Design of Digital Systems,
pages 207-10. Computer Science Press, Inc., 1976.

[23] N. Carriero and D. Gelernter. How to Write Parallel Programs: A Guide to the
Perplexed. ACM Computing Surveys, 21(3):323-358, September 1989.

[24] Patrick J. Caudill and Allen Wirfs-Brock. A Third Generation Smalltalk-80 Imple-
mentation. In OOPSLA ’86 Proceedings, pages 119-30, September 1986.

[25] David Chaiken, Craig Fields, Kiyoshi Kurihara, and Anant Agarwal. Directory-Based
Cache Coherence in Large-Scale Multiprocessors. IEEE Computer, June 1990.

BIBLIOGRAPHY 125

[26] Craig Chambers and David Ungar. Customization: Optimizing Compiler Technol-
ogy for SELF, A Dynamically-Typed Object-Oriented Programming Language. In
Proceedings of the SIGPLAN ’89 Conference on Programming Language Design and
Implementation, pages 146-60, Portland, Oregon, June 1989. ACM Press.

[27] J. S. Chase, F. G. Amador, E. Lazowska, H. Levy, and R. J. Littlefield. The Amber
System: Parallel Programming on a Network of Multiprocessors. In Proceedings of

Twelfth Symposium on Operating Systems Principles, pages 147-58. ACM SIGOPS,
ACM Press, December 1989.

[28] Andrew A. Chien. CA Language Report, Version 1.0. MIT Concurrent VLSI Archi-
tecture Group Memo 26, August 1989.

[29] Andrew A. Chien. Application Studies for Concurrent Aggregates. Technical report,
Massachusetts Institute of Technology, Artificial Intelligence Laboratory, Cambridge,
Massachusetts, 1990.

[30] Andrew A. Chien and William J. Dally. Concurrent Aggregates (CA). In Proceedings
of Second Symposium on Principles and Practice of Parallel Programming. ACM,
March 1990.

[31] Andrew A. Chien and William J. Dally. Experience with Concurrent Aggregates (CA):
Implementation and Programming. In Proceedings of the Fifth Distributed Memory
Computers Conference, Charleston, South Carolina, April 8-12 1990. SIAM.

[32] W. D. Clinger, A. H. Hartheimer, and E. M. Ost. Implementation Strategies for
Continuations. In Conference on Lisp and Functional Programming, pages 124-31.
ACM, 1988.

[33] William D. Clinger. Foundations of Actor Semantics. Technical Report AI-TR-633,
MIT Artificial Intelligence Laboratory, 1981.

[34] G. W. Clow. A Global Routing Algorithm for General Cells. In Proceedings of the
21st Design Automation Conference, pages 45-51. IEEE, 1984.

[35] D. Comer. The Ubiquitous B-tree. ACM Computing Surveys, 11(2):121-8, June 1979.

[36] O.J. Dahl and K. Nygaard. SIMULA - An Algol-Based Simulation Language. Com-
munications of the ACM, 9(9):671-8, September 1966.

[37] William Dally and Andrew Chien. Object Oriented Concurrent Programming in
CST. In Proceedings of the Third Conference on Hypercube Computers, pages 434-9,
Pasadena, California, 1988. SIAM.

[38) William J. Dally. A VLSI Architecture for Concurrent Data Structures. Kluwer
Academic Publishers, Boston, Mass., 1987.

[39] William J. Dally. Virtual Channel Flow Control. In Proceedings of the 17th Interna-
tional Symposium on Computer Architecture. IEEE Computer Society, 1990.

126 BIBLIOGRAPHY

[40] William J. Dally. Express Cubes. IEEE Transactions on Computers, 1991. To Appear.

[41] William J. Dally, Linda Chao, Andrew Chien, Soha Hassoun, Waldemar Horwat,
Jon Kaplan, Paul Song, Brian Totty, and Scott Wills. Architecture of a Message-
Driven Processor. In Proceedings of the 14th ACM/IEEE Symposium on Computer
Architecture, pages 189-196. IEEE, June 1987.

[42] William J. Dally, Andrew Chien, Stuart Fiske, Waldemar Horwat, John Keen, Michael
Larivee, Rich Lethin, Peter Nuth, Scott Wills, Paul Carrick, and Greg Fyler. The
J-Machine: A Fine-Grain Concurrent Computer. In Information Processing 89, Pro-
ceedings of the IFIP Congress, pages 1147-1153, August 1989.

(43] William J. Dally and Paul Song. Design of a Self-Timed VLSI Multicomputer Com-
munication Controller. In Proceedings of the International Conference on Computer
Design, pages 230-4. IEEE Computer Society, 1987.

[44] L. Peter Deutsch and Allan M. Schiffman. Efficient Implementation of the Smalltalk-
80 System. In FEleventh Symposium on Principles of Programming Languages, pages
297-302. ACM, 1984.

[45] D. M. Dias and J. R. Jump. Analysis and Simulation of Buffered Delta Networks.
IEEE Transactions on Computers, C-30(4):273-82, April 1981.

[46] J. Dion. Fast Printed Circuit Board Routing. Technical Report WRL Research
Report 88/1, DEC Western Research Laboratory, 100 Hamilton Avenue, Palo Alto,
California, 1988.

[47] J. Elliot and B. Moss. Managing Stack Frames in Smalltalk. In Proceedings of the
SIGPLAN ’87 Symposium on Interpreters and Interpretive Techniques, pages 229-40,
1987. SIGPLAN NOTICES Volume 22 Number 7 July 1987.

(48] P. Wegner G. Agha and A. Yonezawa, editors. Workshop on Object-Based Concurrent
Programming. ACM SIGPLAN, ACM Press, April 1988.

[49] Adele Goldberg and David Robertson. Smalltalk-80 The language and its implemen-
tation. Addison-Wesley, 1985,

[50] Benjamin Goldberg. Generational Reference Counting: A Reduced-Communication
Distributed Storage Reclamation Scheme. In Proceedings of the SIGPLAN ’89 Confer-
ence on Programming Language Design and Implementation, pages 313-21, Portland,
Oregon, June 1989. ACM SIGPLAN, ACM Press.

[51] M. J. Gordon, A. J. Milner, and C. P. Wadsworth. Lecture Notes in Computer Science
78, chapter Edinburgh LCF. Springer Verlag, 1979.

[52] L. Greengard and V Rokhlin. A Fast Algorithm for Particle Simulations. Journal of
Computational Physics, 73:325-48, 1987.

[53] Guy L. Steele, Jr. and W. Daniel Hillis. Connection Machine LISP: Fine-Grained
Parallel Symbolic Processing. In Proceedings of the 1986 ACM Conference on LISP
and Functional Programming, pages 279-97, Cambridge, Massachusetts, August 1986.

BIBLIOGRAPHY 127

(54] M. P. Herlihy and J. M. Wing. Linearizability: A Correctness Condition for Con-
current Objects. Technical report, Carnegie Mellon University, School of Computer
Science, 1988.

[55] Danny Hillis. The Connection Machine. MIT Press, Cambridge, Mass., 1985.

[56] W. Daniel Hillis and Guy L. Steele, Jr. Data Parallel Algorithms. Communications
of the ACM, 29(12):1170-83, 1986.

[57] W. Horwat, A. Chien, and W. Dally. Experience with CST: Programming and Imple-
mentation. In Proceedings of the SIGPLAN Conference on Programming Language
Design and Implementation, pages 101-9. ACM SIGPLAN, ACM Press, 1989.

[68] Waldemar Horwat. Concurrent Smalltalk on the Message-Driven Processor. Master’s
thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts, June 1989.

(59] Norman C. Hutchinson. Emerald: An Object-Based Language for Distributed Pro-
gramming. PhD thesis, University of Washington, Department of Computer Science,
Seattle, Washington, 1987. TR-87-01-01.

[60] Simon L Peyton Jones. The Implementation of Functional Programming Languages.
Prentice-Hall, 1987.

[61] R. Halstead Jr. Parallel Symbolic Computing. IEEE Computer, pages 35-43, August
1986.

(62] Eric Jul. Object Mobility in a Distributed Object-Oriented System. PhD thesis, Uni-
versity of Washington, Department of Computer Science, Seattle, Washington, 1988.
TR-88-12-06.

[63] H. T. Kung. Why Systolic Architectures? IEEE Computer Magazine, January 1982.

[64] Monica S. Lam. A Systolic Array Optimizing Compiler. Technical Report CMU-CS-
87-187, Carnegie Mellon University, 1987.

[65] Leslie Lamport and Nancy Lynch. Chapter on Distributed Computing. Technical
Report MIT-LCS-TM-384, Massachusetts Institute of Technology, February 1989.

[66] V. Lanin and D. Shasha. A Symmetric Concurrent B-tree Algorithm. In Proceedings
of the Fall Joint Computer Conference, pages 380—-6, November 1986.

[67) C.Y. Lee. An Algorithm for Path Connection and its Applications. IRE Transactions
on Electronic Computers, pages 346-65, September 1961.

[68] P. L. Lehman and S. B. Yao. Efficient Locking for Concurrent Operations on B-trees.
ACM Transactions on Database Systems, 6(4):650~70, December 1981.

[69] Henry Lieberman. Using Prototypical Objects to Implement Shared Behavior in
Object Oriented Systems. In Proceedings of OOPSLA ’86, pages 214-23. ACM SIG-
PLAN, ACM Press, 1986.

128 BIBLIOGRAPHY

[70] Henry Lieberman. Concurrent Object Oriented Programming in ACT 1. In Aki
Yonezawa and Mario Tokoro, editors, Object-Oriented Concurrent Programming,
pages 9-36. MIT Press, 1987.

[71] Bruce Lindsay. Object Naming and Catalog Mangement for a Distributed Database
Manager. In Proceedings of the International Conference on Distributed Computing
Systems, pages 31-40, 1981.

[72] Barbara Liskov. Data Abstraction and Hierarchy. ACM SIGPLAN Notices, 23(5),
May 1988.

[73] Olaf M. Lubeck and V. Faber. Modeling the Performance of Hypercubes: A Case
Study Using the Particle-in-Cell Application. Technical Report LA-UR-87-15222, Los
Alamos National Laboratory, Los Alamos, New Mexico 87545, 1987.

[74] Carl R. Manning. ACORE: The Design of a Core Actor Language and its Compiler.
Master’s thesis, Massachusetts Institute of Technology, August 1987.

[75] MasPar Computer Corporation, 749 North Mary Avenue, Sunnyvale, California. MP-
1 Family Data-Parallel Computers.

[76] W. J. A. Mol. On the Choice of Suitable Operators and Parameters in Multigrid
Methods. Technical Report NW 107/81, Department of Numerical Mathematics,
stichting mathematisch centrum, June 1981.

[77] Peter Naur. Report on the Algorithmic Language ALGOL 60. Commaunications of
the ACM, 3(5):299-314, May 1960.

(78] NCUBE, Beaverton, Oregon. NCUBE 2 6400 Series Supercomputer: Technical
Overview, 1989.

[79] M. Noakes and W. J. Dally. System Design of the J-machine. In Proceedings of Sizth
MIT Conference on Advanced Research in VLSI, 1990.

[80] David A. Patterson and John L. Hennessy. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann Publishers, 1990.

[81] Jonathan Rees, William Clinger (editors), et al. Revised® Report on the Algorithmic
Language Scheme. Memo 848a, M.I.T. Artificial Intelligence Laboratory, Cambridge,
Massachusetts, September 1986.

[82] R. M. Russell. The Cray-1 Computer System. Communications of the ACM, 21:63-72,
1978.

[83] M. Schwartz and T. Stern. Routing Techniques Used in Computer Communication
Networks. IEEE Transactions on Communications, COM-28(4):265-78, April 1980.

[84] C. L. Seitz, J. Seizovic, and W. Su. The C Programmer’s Abbreviated Guide to Mul-
ticomputer Programming. Technical Report Caltech-CS-TR-88-1, California Institute
of Technology, 1988.

BIBLIOGRAPHY 129

[85] Charles L. Seitz. The Cosmic Cube. Communications of the ACM, 28(1):22-33,
January 1985.

[86] Charles L. Seitz. Submicron Systems Architecture: Semiannual Technical Report.
Technical Report Caltech-CS-TR-90-05, Department of Computer Science, California
Institute of Technology, March 1990.

[87] Charles L. Seitz, William C. Athas, Charles M. Flaig, Alain J. Martin, Jakov Seizovic,
Craig S. Steele, and Wen-King Su. The Architectre and Programming of the Ametek
Series 2010 Multicomputer. In Proceedings of the Third Conference on Hypercube
Computers, pages 33-6. Association for Computing Machinery, ACM Press, January
1988.

[88] H. Shin and A. Sangiovanni-Vincentelli. Mighty: A ‘Rip-up and Reroute’ Detailed
Router. In Proceedings of International Conference on Computer-Aided Design, pages
2-5. IEEE, 1986.

[89] A. J. Smith. Cache Memories. ACM Computing Surveys, 14(3):473-530, September
1982.

[90] Burton J. Smith. A pipelined, shared resource MIMD computer. In IEEE Proceeding
of the International Conference on Parallel Processing, pages 6-8. IEEE, 1978.

[91] V. Strassen. Gaussian Elimination is not Optimal. Numerische Mathematik, 13:354—
356, 1969.

[92] Thinking Machines Corporation, Cambridge, Massachusetts. C* Reference Manual

[93] Thinking Machines Corporation. Connection Machine Model CM-2 Technical Sum-
mary, April 1987.

[94] Brian K. Totty. An Operating Environment for the Jellybean Machine. Bachelor’s
thesis, Massachusetts Institute of Technology, 1988.

[95] E. G. Ulrich. Time-Sequenced Logical Simulation Based on Circuit Delay and Se-
lective Tracing of Active Network Paths. In Proceedings of the 20th National ACM
Conference, pages 437-47, 1965.

[96] E. G. Ulrich. Exclusive Simulation of Activity in Digital Networks. Communications
of the ACM, 12(2):102-10, February 1969.

[97] David Ungar and Randall B. Smith. Self: The Power of Simplicity. In Proceedings of
OOPSLA ’87, pages 227-41. ACM SIGPLAN, ACM Press, 1987.

[98] L.G. Valiant. A Scheme for Fast Parallel Communication. SIAM Journal of Comput-
ing, 11(2):350-361, May 1982.

[99] W. A. Dees, Jr. and P. G. Karger. Automated Rip-Up and Reroute Techniques.
In Proceedings of the 19th Design Automation Conference, pages 432-9. IEEE, June
1982.

130 BIBLIOGRAPHY

(100] Paul Wang. An In-Depth Analysis of Concurrent B-tree Algorithms. Master’s thesis,
Massachusetts Institute of Technology, 1990.

[101] William E. Weihl and Paul Wang. Multi-Version Memory: Software Cache Manage-
ment for Concurrent B-trees. 1990. Submitted for Publication.

[102] S. Winograd. Complezity of Sequential and Parallel Numerical Algorithms, chapter
Some Remarks on Fast Multiplication of Polynomials, pages 181-96. Academic Press,
New York, 1973.

(103] Chuan-Lin Wu and Tse-Yun Feng. On a Class of Multistage Interconnection Networks.
IEEE Transactions on Computers, C-29(8):694-702, August 1980.

[104] Yale University, New Haven, Connecticut. Report on the Programming Language
Haskell, 1.0 edition, April 1990.

[105] A. Yonezawa, E. Shibayama, T. Takada, and Y. Honda. Object-Oriented Concur-
rent Programming — Modelling and Programming in an Object-Oriented Concurrent
Language ABCL/1. In Aki Yonezawa and Mario Tokoro, editors, Object-Oriented
Concurrent Programming, pages 55-89. MIT Press, 1987.

[106] A. Yonezawa and M. Tokoro, editors. Object-Oriented Concurrent Programming.
Computer Systems Series. The MIT Press, Cambridge, Massachusetts, 1987.

[107] F. Zhao. An O(n) Algorithm for 3-Dimensional N-body Simulation. Technical Report
MIT-AI-TR-995, MIT Artificial Intelligence Laboratory, 1987.

[108] F. Zhao and S. L. Johnsson. The Parallel Multipole Method on the Connection
Machine. Technical Report YALEU/DCS/TR-749, Yale University, Department of
Computer Science, 1989. Also available as a Thinking Machine Corporation Technical
Report.

Appendix A

Program Examples

In this appendix, we describe a number of program example that exercise some of the novel
features in CA. We also work through an application programs in detail. This provides the
reader with a complete, documented example of a moderate-sized Concurrent Aggregates
program. These examples should give the reader some feel for what is would be like to
program in CA. Complete documentation of our application programs: source code listings
and statistics are available in [29].

A.1 Examples of Novel CA Features

A.1.1 Using First Class Messages

First class messages can be used to implement operations on collections — exploiting
“data parallelism.” For instance, in an N-body interaction simulation, first class messages
can be used to implement position update for a collection of bodies. Figure A.1 depicts
such a scenario. The CA code required to implement the fan out tree aggregate is shown
in Figure A.2. A single message sent to the fan out tree causes all bodies in the collection

mém
3

Message Fan Out Tree Bodies Aggregate

Figure A.1: An aggregate operation — move bodies

131

132 APPENDIX A. PROGRAM EXAMPLES

;3 first, include the range abstraction
(load "range.ca")
HH
;; A fanout tree
HH
(aggregate tree
(parameters treesize) (initial treesize))

(handler tree fan_out (mess bodies-agg range)
(it (> (size range) 2)
(let ((lrange (split_range range)))
(do (fan_out group mess bodies-agg lrange))
(do (fan_out group mess bodies-agg range)))
;; range has been side-effected
(forall index from (low range) below (high range)
(send mess (sibling bodies-agg index)))))
;3 A bodies aggregate
(aggregate bodies xpos ypos xvel yvel mass
(parameters psize)
(initial psize))

. other handlers ..
;3 Sample Usage
HH

;; (fan_out <tree>
33 (message (move <doesnt-matter> 10)) <bodies>)

Figure A.2: Abstract Implementation of operations on a Collection

A.1. EXAMPLES OF NOVEL CA FEATURES 133

to receive move messages with the current time step. Each time a fan_out message is
executed, the message parameter, mess, is copied. Each fan_out message is processed by a
representative determined by the runtime system. Thus, when we reach the leaves of the fan
out tree, there is one copy of the message for each representative of the bodies aggregate.
The last stage of the fan out tree transforms the messages (by writing the appropriate
representative’s name into message’s destination field) and sends them.

The tree aggregate demonstrates an interesting use of aggregates — as computational
bandwidth. The fan out function of the tree makes no use of state in the tree aggregate.
The representatives are only used as computation sites. This means the fan out tree can
be used by many fan out operations simultaneously. One could also use the size of the fan
out tree aggregate to limit the fan out rate for the tree.

134 APPENDIX A. PROGRAM EXAMPLES

(load "pair.ca")
;3 A future Object
HH
(class future tag val deferred
(initial (set_tag self 0)
(set_deferred self 0)))

(method future value ()
(it (= 0 (tag self))
(set_deferred self (new pair requester (deferred self)))
(reply (val self))))

(method future set_value (value)
(set_val self value)
(set_tag self 1)
(seq (do (forward_replies (deferred self) value))
(set_deferred self 0))
(reply value))

Figure A.3: Code for a Future Object

A.1.2 Manipulating System Continuations

The Concurrent Aggregates language allows programs to manipulate continuations as first
class objects. Programs can get references to continuations by using msg_at on a message
or accessing the requester pseudo-variable. requester contains the value of the current
continuation.

Programmer manipulation of continuations can simplify programs. Figure A.3 shows
first class continuations being used to implement futures [61]. The future object under-
stands two messages: value, which returns the value of the future, and set_value, which
defines the future’s value. When empty (the value is undefined), a future object pushes the
continuations of all value requests onto a list. When the future receives a set_value mes-
sage, replies are sent to each continuation on the list. Subsequent value messages receive
immediate responses.

The future object consists of three instance variables: tag — holds full or empty status,
val - the future’s value, and deferred — a linked list of continuations. When the value is
received, it is stored in val, tag is modified to indicate full, and the value is sent to all of
the continuations on the list. The pair object definition is not shown.

A.1. EXAMPLES OF NOVEL CA FEATURES 135

?
;3 A barrier synchronization abstraction
HH
(class barrier count maxcount next_message
(parameters imaxcount inext)
(initial (set_count self 0)
(set_maxcount self imaxcount)
(set_next_message self inext)))

(method barrier reply (val)
(seq (set_count self (+ val (count self)))
(it (= (count self) (maxcount self))
(send (next_message self)))))

Figure A.4: A Barrier Synchronization Object

A.1.3 Objects as Continuations

CA allows objects or aggregates to be used as continuations. In a concurrent message pass-
ing language, a continuation is simply an object expecting a reply message. CA programs
can substitute any object or aggregate that handles the reply message for a continuation.
This feature facilitates the construction of complex synchronization structures — now con-
tinuations can perform any user program computation. This makes it possible to factor the
synchronization code out of programs and into abstractions, allowing the remaining pro-
gram code to be written without regard for the synchronization context in which it is being
used. For example, a barrier synchronization can be implemented as shown in Figure A.4.
Each reply message to a barrier object is processed by the reply method. After count
has reached maxcount, all elements of the set have arrived and the barrier is complete.
Upon completion, the barrier abstraction sends an arbitrary message, next_message, which
starts the next stage of the computation. The computations being synchronized need not
know that they are being barrier synchronized — they obliviously send reply messages to
their continuations. Of course, the barrier abstraction implementation could be concurrent
— collecting the reply messages in a combining tree.

It is also possible to construct many other complex synchronization structures. As an
example, we present code for a “race” object in Figure A.5. A race object was introduced
in the Actor model as a way to describe speculative concurrency [70]. A number of compu-
tations are started and the race object takes on the value returned by the first to complete.
value messages received before any of the computations has returned are deferred — the
race object also performs future style synchronization. Later replies are discarded. A code
fragment that uses the race object to get the first answer from three different solution
strategies is also shown in Figure A.5.

136 APPENDIX A. PROGRAM EXAMPLES

(load “"pair.ca")
HH
;; a Race abstraction
HH
(class race val tag deferred
(initial (set_tag self 0)
(set_deferred self 0)))

(method race reply (value)
(it (= 0 (tag self))
(seq (set_val self value)
(set_tag self 1)
(do (forward_replies (deferred self) value))
(set_deferred self 0))))

(method race value ()
(if (= 0 (tag self))
(set_deferred self (new pair requester (deferred self)))
(reply (val self))))
E R
;; Using three strategies to solve a problem, using the
;; race object.
HH
(method osystem initial_message ()
(let ((race_object (new race)))
(do (strategyl a b c) race_object)
(do (strategy2 a b c) race_object)
(do (strategy3 a b c) race_object)
(reply (value race_object))))

Figure A.5: A Race object for speculative concurrency

A.2. PARALLEL QUEUE 137

lEnqueue <val> l \

| Enqueue <val> l’ﬂ

/->
= [Reply <acic> |
— [Reply <vai> |

> [Repty o> |

Parallel FIFO
Queue Abstraction

Figure A.6: Paralle]l FIFO Queue

A.2 Parallel Queue

A parallel FIFO (first-in-first-out) queue accepts enqueue and dequeue requests. For
the enqueue requests, the value is stored in the queue and an acknowledgement is returned.
For the dequeue requests, the value returned is the dequeued element. Qur implementation
of a parallel FIFO queue is based on an implementation of queues on the Ultracomputer.
However, no combining hardware is required as we do combining in software. The behavior
of our queue is FIFO when requests are presented sequentially, but deviates from that when
many requests are presented to it concurrently. A parallel queue is depicted in Figure A.6.

The structure of our queue is shown in Figure A.7. Tt consists a queue interface, two
dynamic combining trees, a fifo counter object, and a synchronizing array. The fifo counter
manages the array as a circular buffer. The combining trees are used to increase the effective
bandwidth of the fifo counter, and the queue interface aggregate is used to hold the whole
thing together.

Operationally, the queue interface receives enqueue and dequeue messages and requests
an index of the appropriate type — “in” or “out.” Based on the type of index it needs,
the queue interface makes a request to the appropriate combining tree. Once it receives an
index, it writes (or reads) the corresponding location in the array to complete the operation.
The code for the queue interface is shown in Figure A.S.

138 APPENDIX A. PROGRAM EXAMPLES

Parallel Queue Interface

RO OO OO
A ——

s —
Dynamic Combining Trees
(Structured Aggregates)
FIFO
Counter

Synchronizing Array

Figure A.7: Structure of the Parallel FIFO Queue

A.2. PARALLEL QUEUE 139

HH
;; parallel queue interface, 12/89, Andrew A. Chien

(aggregate parallel_q in_tree out_tree data_array :no_reader_writer
(parameters capacity asize)
(initial capacity
(let ((d_array (new pvector_presence asize)))
(let ((f_count (new fifo_counter asize d_array)))
(let ((i_tree (new dcombtree (/ capacity 4)
f_count in_increment))
(o_tree (new dcombtree (/ capacity 4)
£_count out_increment)))
(init_parallel_q (sibling group 0) i_tree o_tree d_array))))))

(handler parallel_q init_parallel_q (i_tree o_tree d_array)
(let ((base_index (* myindex 2)))
(let ((index0 (+ base_index 1))
(index1 (+ base_index 2)))
(seq (conc (if (< index0 groupsize)
(init_parallel_q (sibling group index0)
i_tree o_tree d_array))
(it (< index1 groupsize)
(init_parallel_q (sibling group indexi)
i_tree o_tree d_array)))
(set_in_tree self i_tree)
(set_out_tree self o_tree)
(set_data_array self d_array)
(reply done)))))

(handler parallel_q enqueue (value) :no_exclusion
(let ((index (in_increment (in_tree self) 1)))
(torward (atput (data_array self) value index))))

(handler parallel_q dequeue () :no_exclusion

(let ((index (out_increment (out_tree self) 1)))
(forwvard (at (data_array self) index))))

Figure A.8: A Parallel Queue Interface Aggregate

140 APPENDIX A. PROGRAM EXAMPLES

The code for the parallel queue interface in Figure A.8 shows the enqueue and dequeue
message handlers, as well as the aggregate declaration and initialization. The initialization
code creates all parts of the parallel queue.

One important part of the parallel queue is the dynamic combining trees. The CA code
for trees is shown in Figure A.9.

The dynamic combining tree initialization code links the representatives in the aggregate
together into a tree. The connections that for the tree are held in the myparent instance
variable and used to define what direction is toward the root in the tree. The combining
tree is “dynamic” in that the requests that will be combined are not statically determined.
The combining sequence depends on the run time program behavior.

The in_increment and out_increment requests can be combined. Each node combines
requests over a period of time then propagates the consolidated request up the tree when the
node receives a send_requests message (which it sent to itself). Thus, all the messages that
were waiting in the input queue of a tree node when the first request arrived get combined
before the request is propagated up the tree. We use one program to instantiate both
combining trees, so both trees could handle in_increment and out_increment requests.
The program structure at run time assures that each tree only receives one type of request.

As requests are combined in the trees, a tree of continuations with matching structure
is constructed. The construction of the continuation tree is shown in Figure A.10. At each
combining tree node, the continuations for combined requests are pushed onto a list. The
list is used as the continuation for the consolidated request. Thus, there is exactly one such
continuation tree for each request that gets to the fifo counter object. The reply from the
fifo counter is propagated through the continuation_struct tree.

The continuation_struct tree is used to assign indices to the combined requests. The
message that arrives at the fifo counter is an in_increment or an out_increment message
with an argument that represents the number of indices needed. The fifo counter allocates
that number of indices and replies with the starting index in a range to the tree of contin-
uations. The tree of continuation_structs, code shown in Figure A.11, maps this range
of indices to the original requests. Each continuation_struct holds the weight of the
requests in its left subtree. Thus as we descend through the tree, at each level, we simply
allocate (weight self) indices to the left subtree and the remainder for the right subtree.
The range of indices can be represented with one number, its starting index, because the
size of the range is implicit in the number of request leaves in the tree.

A.2. PARALLEL QUEUE 141

HH
;3 A dynamic combining tree
HH]

(load "continuation_struct.ca")

(aggregate dcombtree waiting regs
myparent consolidated_value selector :no_reader_writer
(parametexrs size counter comb_selector)
(initial size
(seq (forall index from O below groupsize
(init_help (sibling group index) comb_selector))
;; initial method received by sibling 0
(set_myparent self counter))))

(handler dcombtree init_help (comb_selector)
(seq (set_waiting reqs self 0)
(set_consolidated_value self 0)
(set_myparent self (sibling group (/ myindex 2)))
(set_selector self comb_selector)
(reply done)))
;3 if waiting requests, combine. Else push and send ping
s
(handlexr dcombtree in_increment (val)

(seq (it (eq 0 (waiting_reqs self)) (do (send_requests self)))
(set_consolidated_value self (+ val (consolidated_value self)))
(set_waiting reqs self (new continuation_struct

requester val (waiting _reqs self)))))

{(handler dcombtree out_increment (val)
. identical to in_increment ...)

(handler dcombtree send_requests ()
(let ((mysel (selector self)))
(seq (do (mysel (myparent self) (consolidated_value self))
(waiting_reqs self))
(set_waiting _reqs self 0)
(set_consolidated_value self 0))))

Figure A.9: A Dynamic Combining Tree

142 APPENDIX A. PROGRAM EXAMPLES

Towards the Root
a4
O
A4 p

77 €N\ i

O N7 pherrre "-
7/ ; :
emmmmreesmoeeesonmereeeanes i femoeeeeeeaomoeesnmnreran i
Incoming Requests @ Combining Tree Nodes

L]] 3 -
i ____+ Continuation Structures

Other O ’s are requests

Figure A.10: Building Tree of Continuations in Dynamic Combining Tree

A.2. PARALLEL QUEUE 143

2

;3 continuation_struct

HH used for pending requests in combining trees

HH holds the continuation, and the number of indices required for
HH this list

HH

(load “integer.ca") ;; handle termination, which is a 0

(class continuation_struct left weight right :no_reader_writer
(parameters ileft iweight iright)
(initial
(set_left self ileft)
(set_weight self iweight)
(set_right self iright)))

(method continuation_struct reply (val)
(et
((continuation (left self)))
(do (reply continuation val))
(it (neq 0 (right self))
(reply (right self) (+ val (weight self))))))

Figure A.11: Continuation Struct code maps a range of indices to the tree of request
continuations. The tree structure determines which request gets which index.

144 APPENDIX A. PROGRAM EXAMPLES

The fifo counter abstraction is complicated because it manages the allocation and recla-
mation of array locations. It allocates indices in sets of contiguous numbers. For example
an in_increment message with an argument of 20 would cause 20 indices for storing values
(enqueueing) to be allocated. The allocation of indices is shown in Figure A.12. The fifo
counter also reclaims array locations so that they can be reused. The array is managed
as a circular FIFOQ. This reclamation occurs in chunks of the entire array. Whenever the
amount of known free storage goes below a threshold, a time_to_reclaim message is sent
to the fifo counter. This causes reset messages to be sent to the array fragment that we
would like to reclaim. The code for reclaiming storage is in Figure A.13.

A.2. PARALLEL QUEUE 145

Y

;3 fifo_counter -- an abstraction that implements the pointer operations
HH for a fifo queue

HH Requirements: isize must be at least 8

;; Computations based on an index system that is monotonic and rooted
;; at the value of RECLAIM. The circular buffer is cut here and all
;; comparisons are made in this index system.
L)
(class fifo_counter in in_since_reclaim out out_since_reclaim
reclaim reclaim_lock size array :no_reader_writer
(parameters isize pvect_array)
(initial ...set up the state...))
L]
;; din-val = if (in >= reclaim) in - size
HH else in
HH
;: overflow-flag = (>= (+ in-val val) reclaim)
;3 (if true, then we’re going to overflow)
LI]
(method fifo_counter in_increment (val)
(seq (it (> (in self) (size self))
(set_in self (mod (in self) (size self))))
(let ((in_val (if (>= (in self) (reclaim self))
(- (in self) (size self))
(in self))))
(seq (set_in_since_reclaim self (+ (in_since_reclaim self) val))
(if (> (in_since_reclaim self) (/ (size self) 4))
(seq (set_in_since_reclaim self (- (in_since_reclaim self)
(/ (size self) 4)))
(do (time_to_reclaim self))))
(it (< (+ in_val val) (reclaim self))
(seq (reply (in self)) ;; not in overflow situation
(set_in self (+ (in self) val)))
;5 in overflow, spin on this message
(forward (in_increment self val)))))))
D
;3 out_increment is just like in_increment
(method fifo_counter out_increment (val)
. same as above...)

Figure A.12: A FIFO counter object that manages the array as a circular FIFO. Part I of
the code.

146 APPENDIX A. PROGRAM EXAMPLES

;3 Determination of whether or not to reclaim

;; base = reclaim - size
;; in-val = if (in > reclaim) in - size
HH else in

;3 out-val = if (out > reclaim) out - size
HH else out

;33 now indices are linearized
i+ clearspace = min(in-val,out-val) - base (base is negative)
;3 if (clearspace > (size/4)) clear(reclaim, size/2)
(method fifo_counter time_to_reclaim () :no_exclusion
(seq (if (not (reclaim_lock self))
(let ((in_val (if (>= (in self) (reclaim self))
(- (in self) (size self))
(in self)))
(out_val (if (>= (out self) (zreclaim self))
(- (out self) (size self))
(out self)))
(base (- (reclaim self) (size self))))
(let ((free_able_space (- (min in_val out_val) base))
(free_threshold (/ (size self) 4)))
(it (>= free_able_space free_threshold)
(reclaim_storage self free_threshold)))))
(reply done)))

(method fifo_counter reclaim_storage (amount) :no_exclusion
(if (reclaim_lock self) (reply done)
(seq (set_reclaim_lock self 1)
(reset (array self) (reclaim self) amount)
(set_reclaim self (mod (+ (reclaim self) amount) (size self)))
(set_reclaim_lock self 0)
(forwvard (time_to_reclaim self)))))

Figure A.13: A FIFO counter object’s reclamation code. Part II of the code.

A.2. PARALLEL QUEUE 147

The last part of the queue is the synchronizing array. This array aggregate partitions
its state one element per representative. at and atput requests are forwarded to the ap-
propriate representative. They are used to read and modify the state of the array. The
synchronization and reclamation is implemented independently by each representative. The
code for a synchronizing array aggregate is shown in Figure A.14. Reset is used to reset
ranges of locations in the array.

148 APPENDIX A. PROGRAM EXAMPLES

;3 Bach location contains presence bits with states:
;3 -1 :: one pending request, no value, 0 :: empty, no value
HH 1 :: full, value, 10 :: used, ready for reset
s
(aggregate pvector_presence state pbit :no_reader_writer
(parameters size)
(initial size (init_pvector_presence (sibling group 0) 0)))
(handler pvector_presence init_pvector_presence (pbit_val)
. initialize all the pbits to pbit_val and states to 0 ...)

(handlexr pvector_presence at (index)
(forward (internal_at (sibling group (mod index groupsize)))))
(handler pvector_presence atput (value index)
(forward (internal_atput (sibling group (mod index groupsize)) value)))

;: pbit must be 0 or 1 (empty or present)
(handler pvector_presence internal_at ()
(it (= (pbit self) 0) (seq (set_state self requester)
(set_pbit self -1)) ;; waiting state
(seq (zeply (state self))
(set_pbit self 10)))) ;; prepare for the reset

;3 pbit must be 0 or -1 (empty or pending req)
(handler pvector_presence internal_atput (value)
(it (= (pbit self) 0) (seq (set_state self value)
(set_pbit self 1)
(reply done_atput))
(seq (do (reply (state self) value))
(set_pbit self 10) ;; prepare for the reset
(reply done_atput))))

(handler pvector_presence reset (startval nr_elts)
(forward (internal_reset (sibling group startval)
startval (mod (+ nr_elts startval) groupsize))))
(handler pvector_presence internal_reset (startval endval)
(if (= (pbit self) 10)
(seq (set_pbit self 0)
(let ((nextindex (mod (+ myindex 1) groupsize)))
(if (!= nextindex endval)
(forward (internal_reset (sibling group nextindex)
nextindex endval))
(reply finito)))
(forvard (internal_reset self startval endval)))))

Figure A.14: An Array Aggregate called pvector that synchronizes readers and writers.
Locations are write-once, read-once and must be reset.

A.2. PARALLEL QUEUE

33 ... load all the other parts of the queue ..

’ e

(load “"fifo_counter.ca")
(load "pvector_presence.ca")
(load "dcombtree.ca")

(load "enqueuer.ca")

(load "dequeuer.ca")

;; some globals for testing the queue
(global nr_q_reps 64)

(global arr_size 1024)

(global nr_enqdeq 64)

(global ops_per_enqdeq 64)

(method osystem initial_message ()

(let ((the_q (new parallel_q (global nr_q_reps) (global arr_size)))
(ops_per_worker (global ops_per_enqdeq)))
(seq (forall index from O below (global nr_enqdeq)
(let ((enq (new enqueuer (* index ops_per_worker)
(* (+ index 1) ops_per_worker)

the_q))

(deq (new dequeuer ops_per_worker the_q)))

(conc (do (go emnq))
(do (go deq))

(do (starting_an_enq_deq_pair 50:0)))))

(reply done_initial_message))))

Figure A.15: Some code to use the parallel queue.

149

150 APPENDIX A. PROGRAM EXAMPLES

Finally, we can put all of these abstractions together to build a parallel queue. The
program that did this might look as is shown in Figure A.15. This program loads all of
the abstractions we have defined so far. Then, it instantiates a parallel FIFO queue and
a number of workers. Each of these workers performs a number of operations against the
queue.

Vita

Andrew Andai Chien was born in Mt. Kisco, New York on March 6, 1964, son of Robert
Tienwen and Sophie Loh Chien. He attended University High School in Urbana, Illinois
from 1977 to 1980. After graduating from high school, Andrew studied at the Massachusetts
Institute of Technology and received an S. B. in Electrical Engineering in 1984 with minor in
Chinese Studies. He chose to continue his studies at M.L.T. in the area of parallel processing.
He received an 5.M. in Computer Science in 1987. His Master’s Thesis title was “Congestion
Control in Routing Networks.”

Andrew completed his Sc.D. degree in June of 1990. As part of that program, he also
completed a minor in Political Science — Governmental Systems. He is currently a faculty
member in the Department of Computer Science at the University of Illinois in Urbana.

Tius blank page was inserted to preserve pagination.

CS-TR Scanning Project |
Document Control Form Date: & 12X 195

Report# AL TR-[Y

Each of the following should be identified by a checkmark:
Originating Department:

ﬁ(, Artificial Intellegence Laboratory (Al)
O Laboratory for Computer Science (LCS)

Document Type:

X Technical Repot TR) (] Technical Memo (TM)
00 Other:

Document Information Number of pages: 163(177-1mAGES)
- Mbwmm,mm.ob...awmoﬂy.

Originals are: | Intended to be printed as :
Single-sided or O Single-sided or
O Double-sided X Double-sided
Print type:
O Typewrter [] Offest Press Laser Print
0 nkietPrinter [] Uninown O other:

Check each if included with document:

25, boD Form (%) O Funding Agent Form /X Cover Page
M Spine O Printers Notes O Photo negatives
O Other:
Page Data:
Blank PageSey sege sumbe:

Photographs/Tonal Material ey pee sumse;_{ 1 I'V'; Vi it

Other o deciptonsege mmben
Description : Page Number:
ImAGE maC (1 -18) PAGKS B\ e i - X Vil (i netrp ve TTEE PAGE
(19-1(7) Paces TEE0 | - IS0 _AnD UV KD AXTOS,
(70 -119) ScmnconTROL , coysR, SPINE, DD
(hs-i77) TRGT'S 3)

Scanning Agent Signoff:
Date Received: & /542 Date Scanned: €12219S Date Retumed: 6129195

Scanning Agent Signature: W /%/ / 601&-’ Rev 6/04 DSLCS Document Control Form cebtorm.ved

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Dats Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
AI-TR 1248 /ZZX 7/z
4. TITLE (and Subtitie) 5. TYPE OF REPORT & PERIOD COVERED
Concurrent Aggregates (CA): An Object- technical report

Oriented Language for Fine-Grained Message
Passing Machines

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
And Andai Chi N00014-88<K~0738
ndrew Andai Lhien N00014-87-K-0825
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

Artificial Intelligence Laboratory
545 Technology Square
Cambridge, Massachusetts 02139

11. CONTROLLING OFF{CE NAME AND ADDRESS 12. REPORT DATE
Advanced Research Projects Agency July 1990
1400 Wilson Blvd _ 13. NUMBER OF PAGES
Arlington, Virginia 22209 172

14. MONITORING AGENCY NAME & ADODRESS(/! different from Controlling Oftice) 18. SECURITY CLASS. (of this report)
Office of Naval Research , UNCLASSIFIED
Information Systems

H 1 ini 18a, C FICA / RADING

Arlington, Virginia 22217 & QESELSIIFICATION/DOWNGRADIN

16. DISTRIBUTION STATEMENT (of this Report)

Distribution of this document is unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

None

19. KEY WORDS (Continue on reverse side If necessary and identify by block number)

parallel programming object-oriented
fine-grained parallel processing
language message-passing

massively parallel

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

Fine-grained parallel machines exhibit great potential for high speed computation. Several
machines such as the J-machine [42] and the Mosaic C [13] are projected to provide peak
performance of 100’s of billions of instructions per second in an air-cooled computer that fits
in a cubic meter. While the hardware technology to build fine-grained machines is available,
significant challenges remain in developing software systems to harness their computational

power. (con't on back

DD ‘52:”73 1473 EDITION OF 1 NOV 65 1S OBSOLETE UNCLASSIFIED

S/N 0102-014-6601 |

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

(block 20 con't)

To program massively-concurrent MIMD machines, programmers need tools for manag-
ing complexity. One important tool used in the sequential programming world is hierarchies
of abstractions. Unfortunately, most concurrent object-oriented languages construct hier-
archical abstractions from objects that serialize — serializing the abstractions. In machines
with tens of thousands of processors, this unnecessary serialization can cause significant
loss of concurrency. Tools for managing concurrency should not restrict or reduce program
concurrency.

Concurrent Aggregates (CA) provides multiple-access data abstraction tools, Aggregates,
for managing program complexity. These tools can be used to implement abstractions with
virtually unlimited potential for concurrency. Such tools allow programmers to modularize
programs without reducing concurrency. These aggregates can be composed hierarchies of
abstractions, allowing the structuring of a program to be highly concurrent at all levels.

In this thesis I describe the design and motivation of the Concurrent Aggregates lan-
guage. I have used this language to construct a number of application programs. I present
this programming experience with Concurrent Aggregates. Multi-access data abstractions
are found to be useful for structuring applications without restricting concurrency. The
tools provided to build such abstractions in CA allow the expression of a number of dif-
ferent styles of concurrency, including both data and control parallelism. I also present
experience with the implementation of Concurrent Aggregates. A detailed evaluation of the

efficiency of Concurrent Aggregates and the potential for further improving that efficiency
is presented.

Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.I.T
Libraries. Technical support for this project was
also provided by the M.L.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94

