Technical Report 1251

- Program Improvement
by Automatic
Redistribution of
Intermediate Results

Robert Joseph Hall

MIT Artificial Intelligence Laboratory

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden. to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, 0C 20503,

1. AGENCY USE ONLY (Leave blank) [2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
February 1990 technical report

4. TITLE AND SUBTITLE

Program Improvement by Automatic Redistribution of
Intermediate Results

6. AUTHOR(S)

Robert Joseph Hall

5. FUNDING NUMBERS

IRI-8616644
N0O0014-88~K-0487

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Artificial Intelligence Laboratory
545 Technology Square
Cambridge, Massachusetts 02139

8. PERFORMING ORGANIZATION
REPORT NUMBER

AI-TR 1251

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Office of Naval Research
Information Systems
Arlington, Virginia 22217

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
None

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Distribution of this document is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The introduction of function sharing, a universal principle of design op-
timization, allows eliminating costly structure by using other structure to
perform the function of the original. This approach is particularly applica-
ble to eliminating the inefficiencies that arise naturally in reusing general
software components in specific contexts. In this research, I have studied
a restricted form of function sharing, redistribution of intermediate results,
which is characterized by the fact that each optimization can be implemented
using only introduction of new local variables, additional function arguments,
and additional function return values. Examples are given showing that these
optimizations can capture many well-known types of optimizations, such as
copy elimination, generalized loop fusion, identical value sharing, and data

(continued on back)

1a. SUBJECT TERMS (key words)

reuse

15. NUMBER OF PAGES
275

16. PRICE CODE
$14.00

artificial intelligence software engineering
function sharing program optimization
17. SECURITY CLASSIFICATION } 18. SECURITY CLASSIFICATION] 19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED

UNCLASSIFIED

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18
298-102

Block 13 continued:

invariant suspension. I have decomposed the problem into two subproblems:
first search for a small set of plausible candidates, then certify the correctness
of each candidate. My system solves the search/screening subproblem while
leaving certification up to one of a variety of possible external approaches.
The system performs search and screening by automatically deriving oper-
ational filtering predicates from teleological input information obtainable as
a natural by-product of the design process. The system uses a novel form of
explanation-based generalization to derive these filtering predicates from a
program correctness proof. I also discuss how the research sheds light on the
certification problem and holds promise for future practical applications.

Massachusetts Institute of Technology
Artificial Intelligence Laboratory

A.l. Technical Report 1251 December, 1990

Program Improvement by Automatic
Redistribution of Intermediate Results

by
Robert Joseph Hall

This report was submitted in December, 1990 to the Department
of Electrical Engineering and Computer Science in partial fulfill-
ment of the requirements for the degree of Doctor of Philosophy.

(© Massachusetts Institute of Technology, 1991. All rights reserved.

Program Improvement by

Automatic Redistribution of Intermediate
Results

by
Robert Joseph Hall

Submitted to the Department of Electrical Engineering and Com-
puter Science in partial fulfillment of the requirements for the de-
gree of Doctor of Philosophy in Electrical Engineering and Com-
puter Science.

Abstract

The introduction of function sharing, a universal principle of design op-
timization, allows eliminating costly structure by using other structure to
perform the function of the original. This approach is particularly applica-
ble to eliminating the inefficiencies that arise naturally in reusing general
software components in specific contexts. In this research, I have studied
a restricted form of function sharing, redistribution of intermediate results,
which is characterized by the fact that each optimization can be implemented
using only introduction of new local variables, additional function arguments,
and additional function return values. Examples are given showing that these
optimizations can capture many well-known types of optimizations, such as
copy elimination, generalized loop fusion, identical value sharing, and data
invariant suspension. I have decomposed the problem into two subproblems:
first search for a small set of plausible candidates, then certify the correctness
of each candidate. My system solves the search/screening subproblem while
leaving certification up to one of a variety of possible external approaches.
The system performs search and screening by automatically deriving oper-
ational filtering predicates from teleological input information obtainable as
a natural by-product of the design process. The system uses a novel form of
explanation-based generalization to derive these filtering predicates from a
program correctness proof. I also discuss how the research sheds light on the
certification problem and holds promise for future practical applications.

Thesis Supervisor: Dr. Charles Rich
Title: Principal Research Scientist

To I-Fan and Kelsey

Acknowledgements

Special thanks are due my thesis adviser, Chuck Rich, for many valuable
discussions, encouragement, and useful criticism. My thesis readers, John
Guttag and Tomas Lozano-Perez, also contributed greatly to the research
both in the conceptual and writing stages. I would like to extend thanks
as well to Dick Waters, Doug Smith, and Peter Szolovits for discussing the
issues presented here, and to David Steier, Ted Linden, and Michael Lowry for
reading and commenting on drafts of portions of the document. Thanks to all
my friends at the MIT AI Laboratory who, over the years, have contributed
in various ways to making my experience there fun and enriching.

On the personal side, I am blessed with the best wife and daughter of
all time; I-Fan and Kelsey have provided me with loving support, friendship,
and a good excuse to think about the Blocks World again. I would like also
to sincerely thank my parents for the many different forms of support they
have given me over the years. Thanks also to my brother for the Big Game
tickets and all the long-distance phone calls.

Portions of Chapters 1, 2, and 14 appear in my paper “Program Improve-
ment by Automatic Redistribution of Intermediate Results: An Overview”
which appears in the book Automating Software Design, M. Lowry & R. Mc-
Cartney, eds. (Menlo Park and Cambridge: AAAI Press / The MIT Press).
They are reproduced here with permission.

This research was conducted at the Artificial Intelligence Laboratory of
the Massachusetts Institute of Technology. The lab’s artificial intelligence re-
search is supported in part by the National Science Foundation under grant
IRI-8616644, Advanced Research Projects Agency of the Department of De-
fense under Naval Research contract N00014-88-K-0487, IBM Corporation,
NYNEX Corporation, and Siemens Corporation. The views and conclusions
contained in this document are those of the author and do not necessarily
represent the policies, expressed or implied, of these organizations.

azn — ; —- = — ——
’ ———
»n. -— — — ——
n 3 E— ~—:—=__‘é
08, S —
Ye : = = |
1, —
& === = ———
e — — g
n 3 arce
. >y » .]
sempre p ¢ dol. aroohs u@
Vo, ES == —
dim,
n e ==
-, . sompre P ¢

Frontispiece. Function sharing in Brahms’ Tragic Overture (Brahms,
1880). The viola’s notes on beat 4 of bar 231 and beat 1 of bar 232
serve both to end the previous phrase in the clarinet and also to begin
the next phrase.

Contents

1 Introduction and Overview

1.1 Function Sharing
1.1.1 ExamplesinDesign
1.1.2 The Adaptation Problem
1.2 Significance of the Work
1.3 AnExample
1.4 Optimization Phenomena Captured by Redistribution
1.5 ResearchOverview
1.5.1 Key Ideas in the Implementation
Key Idea 1: Additional Design Information
Optimization Invariants.
Explanations.

Key Idea 2: Using Incomplete Design Information .
Relative Optimization Invariants.
Proofs of Quasi-specifications
Key Idea 3: Candidate Generation

Key Idea 4: Candidate Screening
Key Idea 5: Approaches to Correctness

.........

Compile-time certification.
Run-time debugging.
1.5.2 Experiments
153 Evaluation....................... ..

1.6 Reader’s Guide

..........................

2 Optimization Phenomena
2.1 Identical-value Redistributions
2.2 Copy Elimination

..................

.........................

2.3 Data Invariant Suspension
2.4 Generalized Loop Fusion

Representations and Operations

Program Structure

3.1 DataflowPrograms
3.1.1 Program Elements
3.1.2 Programs have eager dataflow semantics
3.1.3 Conditional execution
3.1.4 Showing box implementations
3.1.5 Virtual structure 0L,
3.16 Pathnames.
3.1.7 The causality relation on program elements

3.2 ModelingIssues
3.2.1 Stores model sideeffects
3.2.2 The series data type models iteration
3.2.3 Syntactic program restrictions for modeling

Store restrictions.
Series restrictions.,

3.3 Redistributions L L L.

3.4 Executing Programs
3.4.1 Structure of the Interpreter
3.4.2 Computational Primitives
343 Programtraces

3.5 ProgramsversusPlans

Program Function

4.1 Termsand Clauses
4.1.1 Syntax e
4.1.2 Semantics e
4.1.3 Ground Evaluation of Clauses

Universal Instantiation.
Term Evaluation.

4.2 Optimization Invariants
4.3 An Optimization Invariant Example

...............

5

Proofs Connect Structure to Function
51 Proof Syntax
5.1.1 Proof Nodes: Leaves
:TAUTOLOGY Nodes
:AXIOM Nodes

5.1.2 Proof Nodes: Internal
:SUBSUMPTION Nodes
:RESOLUTION Nodes

52 Proof Example
5.3 Weakened Relative Conditions
5.4 Proof-tree Restructuring

II The Optimization Algorithms

6

7

Overview of the Algorithms
Candidate Generation
71 TheProblem
7.2 The Solution Method
7.2.1 Pseudo-code Description e e e e
722 Cost Estimation.
Program-cost,
Use-cost
Cost Comparison
Shortcomings
7.2.3 SyntacticPruning
7.3 Discussion e

Candidate Screening I: Inv-Screen
8.1 Pseudo-code Description
8.2 Discussion

.............................

83
83
84
84
85
85
85
85
87
87
87
87
87
88
90
95

8.2.1 Optimization Power. 118

8.2.2 Test Input Evaluations 118

8.2.3 Certification Difficulties 119

8.2.4 Program Checking Difficulty 119

9 Candidate Screening II: EB-Screen 121
9.1 Pseudo-code Description 121
9.2 Target Condition Theory I: Single Redistributions 122
9.2.1 Computing Target Conditions from Proofs 124

9.2.2 Extensions to Handle Hierarchical Structure 128

9.2.3 Evaluating Target Conditions 131

9.2.4 Quality of Proof Structure 131

9.2.5 Proof Restructuring 133

9.3 Target Condition Theory II: Multiple Redistributions 134
9.4 Target Condition Theory III: Recursive Redistributions 137
94.1 TheBadNews 138

9.5 Applications to Checking Redistributions 140
9.5.1 Alternative Checking Strategies 142

96 Discussion 144
9.6.1 Comparison of Strategies 144

9.6.2 WrongAnswers 145

9.6.3 Routine Redistributions 147

9.6.4 Do We Need Recursion? 149

10 Proofs of Quasi-specifications 151
10.1 The Default Quasi-specification 151
10.2 Quasi-specifications for List Programs 152
10.3 Quasi-specifications for Set Programs 154
10.4 Proved Quasi-specifications in General 155
IIT Analysis and Discussion 157
11 Comparison of Algorithms 158
11.L1 Power 158
11.2 Time and Space Costs 159
1121 RunTime 159

11.2.2 Spaceo it 161

11.3 Routine Optimization. 161

12 Supplying Design Information 163
12.1 Optimization Invariants 163
12.2 Explanations (Proofs) 164
12.3 Representative Test Inputs 164
12.4 Program Structure 165

13 Certification 168
13.1 Compile-time Certification 168

- 13.2 Run-time Certification 170
14 Literature Review : 172
14.1 Program Improvement and Redesign 172
14.2 Explanation-based Generalization 177

15 Conclusions 179
15.1 Contributions 180
15.2 Limitations 182
15.3 Future Work and Potential Applications 183

16 References 186
IV Appendices 190
A Experimental Domain Knowledge 191
A.l1 Primitive Data Types. 191
A.2 Computational Primitives 193
A.3 Noncomputational Functions 193
A4 Universal Instantiators 194
A.5 Abstract Data Type Implementations 195
Ab5.1 LRI Lists 195

Ab52 SRSets 197

B Glossary 198

10

C Selected Examples 213

C.1 Example Programs On Numbers 214
C.LI POLYo e e e 215

C.1.2 Fibonacci Numbers: FIB 222

C.2 Example Programs On LR1 Lists 227
C.2.1 LR1-CONCAT-C+D (APPEND) 227

C.2.2 LR1-REV (MY-REVERSE) 229

C.2.3 LR1-REM+REVAPPEND 230

C.2.4 LRI-REM#APPEND v v v v i in v 234

C.2.5 LR1-MSORT (MERGE-SORT) 238

C.2.6 LR1-SUBSTITUTE+EQUAL? 246

C.3 Example Program On SR Sets 249
C3.1 SR-ELT?+UNION. 249

D Proof Restructuring 257
D.1 Preprocessing, 258
D.1.1 Eliminate MacroNodes. 258

D.1.2 Instantiation Pushing 258

D.1.3 Non-T Tautology Elimination 259

D.1.4 Subsumption Pulling 260

D.1.5 Local Inefficiencies 261

D.1.6 Preprocessing Pseudo-code 262

D.2 The Restructuring Algorithm 262
D.2.1 Removing Unneeded Marked Leaves. 262

D.2.2 Pushing Marked Leaves Down 262

D.2.3 Tree Restructuring Pseudo-code 264

E Programmability versus Checkability 265
F Series Subtleties 270
F.1 The Current Approach 272
F.2 A More General Approach 274

11

Chapter 1

Introduction and Overview

General tools make it easy to solve many different problems. Unfortunately,
using a general tool to solve a specific problem often yields an inefficient
solution. The reason is simple: the general tool was designed to handle
harder problems and so may do more work than necessary in a given context.

In some domains of engineering, general tools are used widely. Mechanical
engineers, for example, exploit catalogs of standard parts as much as possible
to reduce production costs. Since the precise part for the specific job is
unlikely to be available in a catalog, the designer must find a standard, more
general part that handles the job. Accordingly, mechanical designs often
sacrifice performance in order to be able to use low-cost standard parts.

Software engineers, by comparison, seldom reuse standard parts, except
low-level ones, such as programming language primitives, library routines,
and operating system tools. The benefits of widespread reuse in software -
engineering are many. It would yield more correct code, because the reused
code has already been tested and debugged. Code would be produced faster,
because no time is spent on producing reused subroutines. Also, the code
would be more readable, because reused components would be modular and
well-documented. Readability is an important cost consideration, because
debugging and “maintenance” usually dominate the cost of a large software
project (Boehm, 1981).

A major reason for the lack of widespread reuse in software engineering
is the inefficiency phenomenon discussed above. Software by nature has ex-
tremely complex, layered functional hierarchies; hence, using standard parts
at many levels of a software design would lead to compounding inefficiencies,

12

resulting in unacceptable system performance. Thus, programmers currently
tailor their code to the specific task, exploiting constraints in the problem
context to gain back efficiency. Unfortunately, a tailored solution has many
signficant drawbacks: it takes longer to write the code; the resulting pro-
grams tend to have tangled and unclear structure; the necessity of producing
more new code increases the potential for error; and unreadable programs
are hard for others to understand and modify.

The primary contribution of this research has been to invent a way to
automatically tailor general data and procedural abstractions to their con-
texts of use, thereby ameliorating the general-tool-inefficiency problem in
software reuse. I have implemented a prototype system capable of auto-
matically performing powerful-but-routine tailoring operations based on the
fundamental engineering design principle of function sharing. The system
is fully automatic in that it runs to completion fairly quickly without hu-
man intervention. Full automation has a price, however, since the problem
of verifying that a program optimization preserves correctness is in general
uncomputable.! The optimizations found by the system are guaranteed to
preserve correctness only on a set of given test cases; as a result, some form of
additional certification must be provided, either at compile-time or run-time.

This screen/certify methodology is illustrated in Figure 1.1. It is a funda-
mental departure from traditional compiler approaches, wherein the safety
of a given optimization is guaranteed by virtue of being derived using syn-
tactic transformations, each of which is known to preserve correctness in all
situations. There are two primary reasons for this departure. First, there
can be other computationally simple methods for demonstrating the safety
of a transformation besides simply restricting to sequences of correctness-
preserving transformations. For example, a sequence of arbitrary syntactic
transformations, none of which preserves correctness alone, may combine
to produce an optimization that is simple to prove safe based on the mod-
ules’ specifications. By explicitly separating the certification and screening
subproblems, we allow more flexible approaches to both. The second rea-
son for adopting the methodology is that it allows the encapsulation of the
candidate-generation phase of the process for potential use as a separate tool,
interesting in its own right. Such a tool would be a kind of “optimization ad-
visor,” to be treated as one would a medical expert system: it gives plausible

1This follows easily from Rice’s Theorem (Hopcroft & Ullman, 1979).

13

Program Specs +
Structure Explanations

NV NN NN
Find-Candidates
\ \(My System)\ \
Candidate
Optimizations
(likely safe)

3 P

Certify

(External)

Optimizations
(safe)

Figure 1.1: The screen/certify methodology applied to program optimization.
This diagram illustrates the top-level problem decomposition. It also points
out that this research discusses only the implementation of the candidate
search phase.

14

candidates and carries out routine aspects of the optimization process, but
leaves the responsibility for safety with the human user, where it currently
rests. I will return to these issues in Section 1.5.1, Chapter 13, and in the
Conclusion.

1.1 Function Sharing

Function sharing is when one structural component serves more than one
purpose in a design. This research attempts to automate the introduction
of function sharing into program designs. Many of the insights gained also
carry over to other design domains.

1.1.1 Examples in Design

Function sharing is ubiquitous in engineering problem solving. Ulrich (1988)
says this:

If automobiles were designed without function sharing they would
be relatively large, heavy, expensive and unreliable. But be-
cause elements like the sheet-metal body perform many func-
tions (electrical ground, structural support, aerodynamic faring,
weather protection, and aesthetics among others) automobiles
can be manufactured relatively inexpensively and can perform
relatively well. (Ulrich, 1988, p. 76)

Ulrich’s work explores introducing function sharing into designs of mechanical
devices. Here are some examples from other domains:

e In electronic design, fanout is a simple example of function sharing.
A bus structure is a more complicated example that saves quadratic
wiring costs by using a single set of wires to mediate communication
among functional units.

o Architects design the walls of buildings to perform several functions at
once: structural support of the building, separation of interior spaces,
decoration, and sound insulation.

15

¢ In software engineering, well-known optimization techniques such as
common subexpression elimination, loop fusion, and memoization in-
troduce function sharing in limited ways.

1.1.2 The Adaptation Problem

To introduce function sharing into a design one must solve two problems:
find a candidate for sharing, and adapt the design to make it work. Con-
sider the process of improving the design of a popcorn container to serve
not only as the shipping package, but also as the cooking vessel in a mi-
crowave oven. The original idea is simply the observation that the same
container can, in principle, serve both purposes. From there, however, sig-
nificant problem-solving remains: in addition to its original requirements of
strength, food preservation, and low cost, it must also be capable of expand-
ing as the cooked popcorn fills a larger volume; there should be no metal in
it (for use in a microwave oven); and it should withstand a larger range of
temperatures. Satisfying these additional constraints requires general design
problem solving expertise; I will call this the adaptation problem.

By contrast, consider going from the initial design of a car, in which there
is a ground wire running from the tail light to the battery, to that in which
the metal car body is used for this purpose. Almost no additional design
is necessary beyond the initial observation that the car body can serve the
purpose of the ground wire. In this case, the adaptation problem is trivial.

In this research, I have restricted my attention to those optimizations
requiring only trivial adaptation. By this, I mean that the only adaptation
considered is the introduction of dataflow from a new source (value producer)
to a given target (value user), together with elimination of any arc from
the old source to the target. This type of adaptation can be implemented
using only additional local variables, input arguments, and return values
as means of communicating a value from its point of computation to its
(shared) points of use. No additional subroutine calls are added, and the only
changes to subroutine calls are those required to implement data flow, such
as adding extra arguments or extra return values. I term this restricted kind
of function sharing in software design redistribution of intermediate results,
or just redistribution.

The decision to study only redistribution rather than general function
sharing has both advantages and disadvantages. The key advantage is that

16

it allows me to study the problem of automating the introduction of function
sharing into programs without developing a general theory of automated
program design. It also drastically limits the search for optimizations by
allowing the system to ignore any optimization that adds new computations.
Even with this simplification, however, search control is still a problem. (See
Section 1.5.1.)

The obvious disadvantage of studying only redistribution is that the sys-
tem will be able to perform fewer optimizations. Consider, for example, a
program whose original design operates on two different representations (say
array- and pointer-based) of the same list, and suppose the program requires
both representations of the list to be sorted. Such a design is plausible if one
reusable component constructs and operates on the array representation and
some other reusable component constructs and operates on the pointer-based
representation. Moreover, it is unlikely that the sorted array representation
can be directly used by the routines requiring a sorted linked list. However,
a system similar to mine that was capable of solving this more general adap-
tation problem could discover the design that converts the sorted array into
a sorted linked list and saves it for later use, thus eliminating a costly sort
in favor of a linear-time conversion.

1.2 Significance of the Work

The problem of automatic program improvement is of interest to both the
artificial intelligence and software engineering communities. From an artifi-
cial intelligence perspective, optimization is a key step in the design process;
design, in turn, is an important kind of human problem solving. Further-
more, design optimization is difficult enough that it shares a fundamental
property with many other problems studied by artificial intelligence; namely,
it requires computational solutions that trade off power for tractability. Al
researchers may view this research as a case study in the computational trade-
offs and techniques required to implement an intuitively motivated principle
of design optimization, introduction of function sharing, in the domain of
software. Note, however, that while this approach is motivated by intuitions
about how humans optimize designs, I have not attempted to rigorously
study or duplicate human cognitive behavior. Finally, I believe that many
of the insights gained carry over directly to other design domains.

17

From a software engineering perspective, automated program improve-
ment is important because better optimizers allow programmers to write
programs more quickly and clearly, while worrying about less detail. In par-
ticular, better optimizers can perform more of the tailoring required to reuse
software modules among different applications, thereby saving separate de-
velopment costs. Software engineers may view this research as an attempt to
demonstrate an approach to automatic program optimization that (1) cap-
tures qualitatively more powerful optimizations than do conventional ap-
proaches and (2) is well-suited to facilitating reuse of software components.
Note, however, that the research is still in the exploratory stage, so it is
too early to make specific claims about the ultimate usefulness of the tech-
niques. In particular, the implemented system has not yet been engineered
for maximum performance.

1.3 An Example

This section illustrates how my prototype system can perform powerful-but-
routine optimizations currently done by hand. The system has been applied
successfully to several (currently, 26) examples from three different program-
ming domains, including the example below (see Section C.2.2 for added
detail). I treat a simple example here for brevity, but it nevertheless illus-
trates the key features of the approach. More complex examples are shown
in detail in Appendix C.

The system requires more input than just the traditional source-language
structural representation; the system uses information about the program’s
function and the connection of its structure to its function as well. This
additional input is discussed below and in Section 1.5.1.

Suppose you want to write a Common Lisp program to reverse a list
(presumably forgetting that the language provides a primitive to do so). You
don’t want. the program to destructively modify the input list, so you decide
to use only side-effect-free Lisp primitives in writing the program. Here is
your first pass:

18

(DEFUN MY-REVERSE (L)
"Reverses the input list nondestructively"
(IF (NULL L)
NIL
(APPEND (MY-REVERSE (REST L))
(LIST (FIRST L)))))

This program is clearly correct as long as the input is a finite Lisp list (ie., a
CDR-chain of cons cells ending in NIL). Not only that, but it was constructed
quickly out of pre-existing software components, in this case the standard
Common Lisp language primitives. You didn’t have to implement any of the
subroutines, and you didn’t have to worry about side effects. Unfortunately,
this implementation uses too much time and space to be practical—both are
proportional to the square of the length of the input list, because APPEND
copies its first input on every recursive invocation of MY-REVERSE.

The implemented system discovers optimizations that turn this inefficient
implementation into one using only linear time and space. The optimized
program (shown below) creates only one new cons cell per cell of the input
list and maintains a tail pointer for the new list as it is constructed.

;3 returns two values:
;3 reversed list and last-cons of reversed list
(DEFUN’ MY-REVERSE-2 (L)
"Reverses the input list nondestructively"
(IF (NULL L)
(VALUES NIL NIL)
(MULTIPLE-VALUE-BIND (REVD-TAIL LAST-CONS)
(MY-REVERSE-2 (REST L))
(LET ((NEW-LAST (LIST (FIRST L))))
(VALUES (APPEND-2 REVD-TAIL NEW-LAST LAST-CONS)
NEW-LAST)))))

(DEFUN APPEND-2 (L1 L2 LAST-L1)
"Performs APPEND within MY-REVERSE-2"
(NCONC-2 L1 L2 LAST-L1))

19

(DEFUN NCONC-2 (C1 €2 LAST-C1)
"NCONC within APPEND-2.
If C1 is not NIL, then LAST-C1 must be the last-cons of it"
(IF (NULL C1)
c2
(PROGN
(RPLACD LAST-C1 C2)
cL))

Applying the system. A fundamental limitation of the power of tradi-
tional compiler-based approaches to optimization is the fact that they accept
only a program’s structure, expressed in a standard programming language.
They cannot exploit any freedoms that might exist in the program’s specifi-
cation, simply because there is no way for the programmer to express them.
By and large, the optimized program must compute values identical to those
computed by the original. Some approaches, however, can exploit limited,
implicit specification information such as the knowledge that newly allocated
memory cells are all equivalent.

I have explored two generate and test algorithms for discovering redistri-
butions, each incorporating several stages of filtering. IBR (Invariant-Based
Redistribution) operates simply by trying out each candidate redistribution
and directly evaluating the program’s overall correctness using representa-
tive test inputs and given optimization invariants (defined below). IEBR
(Invariant- and Explanation-Based Redistribution), by contrast, incorporates
an additional filtering step based on computing an approximate weakest pre-
condition on each program target, its target condition, that is sufficient to
guarantee overall correctness. That is, any object satisfying the target con-
dition may be connected to the target and the program will remain correct.
A source whose value fails to satisfy the target condition of a target in some
test case is eliminated from consideration. These two algorithms differ in
their required inputs and in their performance characteristics. I will dis-
cuss (Section 1.5.2) experiments comparing them later, but for brevity I will
demonstrate only IEBR here.

IEBR requires the following inputs:

® A structural representation of the main program and all subroutines.
Specifically, the program is represented as a dataflow graph as de-
fined and discussed in Chapter 3. Figure 1.2 illustrates the dataflow

20

MY-REVERSE v W

atNULL [@
en:SPLIT
T | F
=TT~ -1 "1
A 4 \ 4 |
i U:CDR || hd:CAR |
N I
I_ 1 I 4 |
| [g | sng:LIST |
I empty:NIL I
| |
| — | l |
L —] — —— _’ I rec: |
MY-REVERSE :
| .
= | L1:¢ I L2: |
| conc: I
| APPEND |
L___ri____J
4 % 4 %:
T | F
en:JOIN

vy

Figure 1.2: Structural representation of the recursive MY-REVERSE program.
Thin arcs represent standard data flow; thick arcs represent stores; arcs with
two short cross segments denote control flow, used here only to indicate con-
ditional execution. This representation is similar to but somewhat different
from the Plan Calculus as described in (Rich & Waters, 1990). A box is
labelled with an instance identifier, a colon, and a type identifier.

21

representation corresponding to the MY-REVERSE program above, and
Figure 1.3 shows those of APPEND and its subroutine NCONC. Note that
side-effects are modelled as in standard denotational semantics using
explicit stores. Note also that the representation does handle recursive
programs.

A set of representative test inputs for the program. The system incor-
porates an interpreter capable of executing programs on given inputs
and recording trace data. It turns out that a single well-chosen test
input is sufficiently representative of MY-REVERSE’s behavior to allow all
and only correct optimizations; one such test input is the cons-cell and
store representation of the abstract list (0 1 2 3 4 5).

A set of optimization invariants (see Section 1.5.1 and Chapter 4)
that together specify all properties of the program’s input/output re-
lation that must be preserved by the optimizer. If available, a ground-
evaluable input/output specification would be the ideal optimization
invariant(s). However, since a complete formal specification is often
difficult to obtain, an optimization invariant may be relative in that it
may express a relation between the optimized program’s outputs and
those of the unoptimized program. The optimization invariants used
for MY-REVERSE can be paraphrased in English as follows:

— For a given input, the output of the optimized program must be
the same as that of the original program viewing both outputs as
abstract lists; that is, corresponding CARs must be identical, but
the cells making up the list itself may be different.

— The program may only modify newly allocated memory cells.

Note that instead of using the well-known and easily formalized top-
level specification of list reversal I use here a relative optimization in-
variant to demonstrate the technique. In this case, the two are logically
equivalent, but in general a relative invariant will be more conservative
(allow fewer optimizations), but easier to formalize.

A proof (see Chapter 5) that the program’s structure correctly im-
plements its top-level specification based on domain axioms and pro-
gram structural axioms. Since it is difficult to formalize and prove

22

program specifications, the system can accept incomplete design in-
formation in the form of proofs of quasi-specifications. The proof and
specification inputs for MY-REVERSE were constructed automatically by
a quasi-specification proof generator for side-effect-free list programs
(see Section 1.5.1).

Intuitively, it is clear where all of the space inefficiency and much of the
time inefficiency in MY-REVERSE comes from: every recursive invocation of
MY-REVERSE makes a new copy of the reversed tail within APPEND. Of course,
in general APPEND must copy its first input list to avoid destroying it. Used
in MY-REVERSE, however, this copy operation is unnecessary, because the re-
versed tail is always made of “fresh” cons cells, and it is not used after the
call to APPEND. Thus, we can greatly improve the performance of MY-REVERSE
by eliminating the unnecessary copy operation. Note that this is exactly the
type of thing that might be done by compilers incorporating “copy elimina-
tion.” Section 1.4, however, shows that redistribution captures many other
phenomena as well. Moreover, these manipulations apply equally to user-
defined abstractions as well as language primitives.

The system discovers the two redistributions shown in Figure 1.4 that
suffice to eliminate the unneeded copy operation. This modification has
improved the space usage to exactly one new cons cell per cons cell in the
input list. This is the best space usage possible in general for a nondestructive
reverse.

The run-time is still quadratic, however. Almost every time NCONC calls
LAST, it must iterate down the cells making up the list to find the last cons
cell in the list. It turns out, however, that every time NCONC actually needs
to know the last-cons of the list, MY-REVERSE-1 has already computed it in
the previous recursive invocation! The output of the sng:LIST box one level
down in the recursion, after being appended to the reversed tail of the tail is
now the last cons. Hence, if we could pass this pointer upward a level to the
input of the rpd:RPLACD box, we could avoid the costly last-cons iteration.
The system eventually discovers this optimization and implements it as in
Figure 1.5. Note that this redistribution involves adding new auxiliary output
values to the MY-REVERSE program.

In summary,

® MY-REVERSE-2 is linear in both time and space, whereas the original
implementation was quadratic in both. Linear is the best possible.

23

AP PEND L1: Env: L2:

+

COPY-LIST

C1: ¢ C2:

nc:NCONC

vy

N CON C c Env: C2:
1
nu:NULL L::S:T
v
cn:SPLIT
T | F —+
l—C 1 ¥ VALUE:

I rpd:RPLACD I
—4 |

L —

F

L"r *14

cn:JOIN

NCONC-C:‘ ‘ NCONC-s:

Figure 1.3: Structural representation of the APPEND and NCONC subroutines.
These are the structural models used by the system, which do not correspond
directly to the way these operations are typically implemented in Lisp. These
are in “functionally exploded” form, as discussed in Section 12.4.

24

l rec:MY-REVERSE |

cpy:
COPY-LIST

nc:NCONC

¢ l conc:APPEND

C2:

Figure 1.4: First optimization step for MY-REVERSE. This diagram shows a
closeup of a portion of the MY-REVERSE program (see Figure 1.2), with the
implementation of the APPEND box shown within its boundary. The copy
operation has been eliminated by rerouting two flow arcs and eliminating
dead code. The Xed-out arcs and the dotted boxes and arcs are unused
structure eliminated in creating the optimized version.

25

e

r==T=1tT-""r—n
|
|| _J.. |
F I
— N]]
r 'L i ")
: | | LIST |
|E] o |
| |

|

|

1

]

L¥. - -—— - -
==
rec:MY-REVERSE-1
s ¥ |
=

—H—
(I

] —

-
l
I
-

[]
— —]

\ nc:NCONC

conc:APPEND-1

Figure 1.5: The second optimization step for MY-REVERSE. This diagram shows
a closeup of a portion of MY-REVERSE-1 including the changes made by the
second round of optimization. Implementations of subroutines are shown
within solid box boundaries. The redistribution indicated by the curved
arrow allows the elimination of the LAST box. It is implicitly applied at all
levels of recursion.

26

e The optimizations introduced by the system consisted only of creating
specialized versions of the original subroutines with some unnecessary
calls eliminated. The system did not rely on a large library of highly
specific program transformations.

e Even though the output of the optimized program is not identical at
the cons-cell level to that of the original, the modified program still
satisfies the given optimization invariants.

e The code is not very readable or clear, but since it will not be main-
tained (it can be regenerated automatically), it doesn’t need to be. In
practice, using an interactive approach to certifying optimizations may
require that the system justify optimizations to the user, but in any
case this won’t require readable source code.

1.4 Optimization Phenomena Captured by
Redistribution

A wide range of optimizations can be expressed in terms of redistributions.
Recall that a redistribution requires finding a new source to connect to a
given target, allowing one to eliminate the old source’s computation if the
old source is not used elsewhere. One large class of redistributions, called
identical-value redistributions, are characterized by the new source’s value
being identical to the old source’s value. This class generalizes the common
notion of common subexpression elimination, wherein the old source and the
new source must be computed by syntactically isomorphic subexpressions.

Often, however, a value not identical to that of the old source can be
substituted for it for the purposes of the target. One large class of this type,
copy eliminations, is based on eliminating unnecessary copy operations: the
new source is simply whatever was to be copied by the copy box, and the old
source is the output of the copy box. The eliminated box is the (unnecessary)
copy operation.

Yet another class of optimizations, generalized loop fusions, includes ex-
amples of both identical-value and non-identical-value redistributions. By
using a powerful representation for iteration due to Waters (Steele, 1990,
Appendix A), loop overhead becomes an explicit structural element that can

27

be shared. Loop fusing redistributions eliminate these loop-representing ele-
ments. Note that a restricted version of this is well known in the traditional
compiler world as loop fusion. The difference is that far more cases can be
covered by redistribution applied to the more powerful representation than
can be justified by the simple syntactic criteria used currently.

Finally, another class, data invariant suspensions, enables the removal of
code whose sole purpose is to maintain unnecessary and costly data invari-
ants. This class is not a generalization of any previously known compiler
technique, simply because it is dependent on the optimizer having some
awareness of the true specification of the program. Traditional optimizers
can perform limited instances of this class for particular data representa-
tions provided as primitives in the language. Unlike my system, they cannot
carry out invariant suspensions for user-defined data representations simply
because they cannot exploit the necessary freedoms in the program’s speci-
fication.

Given these observations, the single mechanism of redistribution concep-
tually unifies many optimization phenomena that are treated separately in
the conventional compiler literature. Moreover, by virtue of using more input
information, the approach can be applied at all levels of abstraction rather
than only at the language level. Chapter 2 discusses these categories in detail
and gives an example of each.

1.5 Research Overview

1.5.1 Key Ideas in the Implementation

This subsection summarizes the key ideas and tradeoffs made to obtain a
practical system.

Given unlimited time and space resources, a (nonexistent) perfect theorem-
prover for the domain, and a (nonexistent) practical theory of program ef-
ficiency, it would be easy to find the optimal set of redistributions to im-
prove any program. One could separately test each subset of the quadrat-
ically many source/target pairs in the program and evaluate each one for
correctness and degree of program improvement, picking the best one. Un-
fortunately, this approach is impossible. The correctness problem and the
problem of evaluating program efficiency are uncomputable, and there are

28

exponentially many sets of source/target pairs to try.

Recall (Figure 1.1) that I have broken down the top-level problem of
optimization into a candidate search phase that is to quickly produce a set
of likely-safe redistribution conjectures (source/target pairs) that improves
the program and a certification phase that checks the pairs for safety. The
system I've implemented performs the candidate search phase; I assume an
external agent performs certification. A key result of this research, however,
is that it is possible to design the candidate search phase so that it discards
candidates that, though they may be safe, would still require too much effort
of the certifier.

I have broken down the candidate search problem into two subproblems:

o Candidate generation: which of the exponentially many sets of source/target
pairs should we consider?

o Candidate screening: Given a source/target pair, how can we quickly
evaluate its likelihood of correctness?

The two optimization algorithms, IEBR and IBR, use the same approach to
candidate generation, based on box cost estimation. They differ in their
methods of candidate screening and in the additional input information (be-
yond the pregram’s structure) they require.

Key Idea 1: Additional Design Information

Requiring more information about the design is an extra burden on the user;
thus, it represents a tradeoff of ease of use for increased performance. I will
argue that the extra information is not too difficult to provide, particularly
if the system is to be used in an integrated program design environment.

There are two principal ways that this research can potentially be ap-
plied: either as a stand-alone optimizer used directly by programmers, or as
a subprocess of a larger automated design system, such as the Programmer’s
Apprentice (Rich & Waters, 1990) or KIDS (Smith, 1991). When used in the
larger context, the extra design information will be produced as a natural
part of the machine-mediated design process and hence represents little or
no extra effort. In the stand-alone case, various techniques can be applied to
help reduce the additional effort required of the programmer.

29

Optimization Invariants. Current optimizing compilers are fundamen-
tally limited in power, because they do not have access to the extra informa-
tion possessed by the human programmer. In the absence of some statement
of optimization invariants, such as a top-level specification, the optimizer
may only make program changes that can be proved to preserve correctness
based on the specifications of the language primitives. For example, can the
COPY-LIST in the following program be removed, i.e., replaced by IDENTITY?

(DEFUN F (X L)
"Prepends X to L"
(CONS X (COPY-LIST L)))

The answer depends on what specification the routine F is required to satisfy.
The replacement is allowed unless the specification includes the requirement
that the output cells be fresh. For example, the replacement would be disal-
lowed if F were used in this program

(DEFUN DANGER (X L)
"Appends X.L to L"
(NCONC (F X L) L)),

but it would be allowed if F were used only here:

(DEFUN SAFE (X L)
"Appends X.L to L"
(APPEND (F X L) L))

A standard compiler is forced to assume the worst and not make the re-
placement; there is no way to provide it with a weaker specification than the
most conservative. My system, however, accepts and exploits a statement of
optimization invariants for each program. For F, if freshness is required, the
programmer must give this explicitly as an optimization invariant, otherwise
the system need not preserve it. Chapter 4 discusses optimization invariants
further.

Feather & London (1982) have investigated the issue of exploiting spec-
ification freedoms in the context of automatically implementing high-level
program specifications.

Explanations. The intuition behind the IEBR algorithm is that it is easier
to find a substitute for a value and know that the substitute is adequate if
you know the purpose(s) the value serves.

30

A key idea of this research is that the purpose description above may be
automatically derived from a proof of the top-level specification of the pro-
gram. Typically, a programmer will know why (he believes that) the program
is correct. From this knowledge he can derive descriptions of the purposes
of intermediate results and use such descriptions to justify optimizations.
IEBR captures this notion using a new form of explanation-based generaliza-
tion, called parent-child clause unioning (PCCU). See Chapter 9 for further
discussion of this technique.

Key Idea 2: Using Incomplete Design Information

Both algorithms require extra information that can be difficult to supply.
Fortunately, in each case optimizer performance can be traded off for ease of
use.

Relative Optimization Invariants. To use IBR, the programmer must
provide top-level optimization invariants (ideally, a complete formal specifi-
cation) for the program. It is well known that complete specifications are
difficult to formalize for complex programs. The system, however, can use
relative invariants, because it has access to the unoptimized program which
is assumed correct. For many programs, this makes the job of providing
invariants trivial, as the effective specification can simply test for equality
to the original outputs. In other cases, such as in MY-REVERSE, the origi-
nal output values can be used to check some abstract properties of the new
outputs, but some properties must still be expressed without reference to
the original outputs. In still other cases, the original output values provide
no help at all in checking the output values of the optimized program. In
most instances, however, a relative specification is more conservative than a
non-relative specification could be, but easier to formalize.

Proofs of Quasi-specifications To use IEBR, the programmer must pro-
vide a proof that the program’s structure satisfies a given top-level specifi-
cation. IEBR would likely be impractical if the user were forced to provide a
complete proof of a complete specification for each program to be optimized.?

2One can, of course, simply choose to use IBR instead of IEBR; the former does not
require a proof input.

31

Two observations address this difficulty.

First, much of the proving and specifying can take place when the library
of reusable modules is built, rather than when the modules are used to de-
velop a new program. Thus, the costs for library modules are amortized to
effectively zero over all uses of the library.

Second, a tradeoff can be made: the user may sacrifice some optimiza-
tion performance in return for usability. To support this tradeoff, I define
a quasi-specification® to be any statement true of a program, allowing refer-
ence to internal elements (intermediate results) of the program’s implemen-
tation. A specification must refer only to the inputs and outputs, allowing
any implementation; a quasi-specification is not so restricted. Thus, quasi-
specifications are really incompletely abstracted specifications, depending as
they do on some details of the module’s implementation. This allows one to
automatically produce formal proofs that recapitulate the structure axioms
of the program at varying degrees of abstraction. The key idea is that even
though one has no real proof for the top-level program, one might still have
better proofs for called subroutines (from the library, for example), thereby
allowing some freedom to the optimizer. This idea can be extended to capture
partial knowledge of the program, such as its side-effect-free nature.

I have implemented algorithms to support the fully automatic produc-
tion of proofs of quasi-specifications for programs that operate on abstract
lists and sets. The proofs and quasi-specifications accurately capture such
properties as side-effect behavior and abstract list equality, but are overly
restrictive regarding other behavior such as the actual abstract list function-
ality. Generally, automatic proof and quasi-specification production must
be implemented differently for different domains of programs, since different
domains have different invariants and properties that must be systematically
captured. ‘

In summary, the user need not do any difficult manual proofs, nor even
define a complete formal specification to use IEBR; the system can do this
automatically. Of course, the system will then miss some optimizations,
because it cannot get as much information out of a quasi-specification proof
as it could from a proof of a real specification.

3An earlier version of this introduction, published as (Hall, 1991), referred to “incom-
plete proofs” and “incomplete specifications.” I apologize for this confusion; I believe the
quasi-specification terminology is clearer and more descriptive.

32

Key Idea 3: Candidate Generation

The system’s solution to the candidate generation problem represents a trade-
off of search completeness for tractability. Both IBR and IEBR use the same
heuristic search control strategy, based on a crude cost estimation technique
that considers only those sets of pairs that would allow the system to imme-
diately eliminate a box. Once a box is eliminated, the system then tries to
eliminate more boxes, with the iteration terminating when all* boxes with
cost estimate greater than a threshold (the boz cost threshold) have been con-
sidered. More costly boxes are considered before less costly ones, and boxes
within a box are considered after the box itself. The system can occasionally
miss the best set of source/target pairs, either because the best set requires
eliminating a low-cost box before a high-cost box, or because the best set of
pairs cannot be partitioned so that each group is associated with eliminat-
ing a box. This is a version of the well-known “local maximum” problem
that plagues all hill-climbing algorithms. The heuristic has performed well
in practice, however.

Key Idea 4: Candidate Screening

The second aspect of the candidate search problem is candidate screening.
A (human or machine) certification procedure for deciding whether a given
redistribution maintains program correctness (is safe) is likely to be com-
putationally costly. Thus, the search phase should discard as many faulty
candidates as possible, and it should also try to pass only those safe candi-
dates that are likely to be certifiable by a reasoner with limited resources.
Of course, if the system is used without a compile-time certifier the issue of
candidate screening is even more important.

Some candidates can be eliminated simply on “syntactic” grounds—either
based on a static type clash or on a causality conflict, i.e., when the proposed
source’s value is partially determined by the target’s value. Such simple tests
are not enough, however. In even moderate-sized programs, hundreds or
thousands of candidates may remain, of which only ones or tens are actually
valid redistributions.

The key idea for solving this problem centers around the idea of using

4Recursion complicates the definition of “all boxes” in a program. See Chapter 7 for
details.

33

concrete test inputs: if the program resulting from a source/target redis-
tribution is incorrect on a given test, then the redistribution candidate can
certainly be discarded. This represents a tradeoff: the negative aspect is that
test inputs for complex programs can be difficult to compute and store. Pos-
itive aspects include: it provides excellent filtering; test inputs are usually
available in the design environment; and, unlike automated theorem proving,
it is easy to compute test outputs, given the program.

I have designed and experimented with two different approaches that
exploit this idea. The approach taken in IBR is the simpler of the two: first,
carry out the source/target redistribution structurally, and then re-evaluate
each test, checking the correctness of the resulting program outputs using
optimization invariants. If the results are not correct, the system retracts
the structural change.

IEBR, on the other hand, avoids re-executing the tests for most pairs.
More importantly, it also screens out many safe candidates that would be
difficult to prove safe. It first derives an operational logical expression, called
the target condition for each target considered. It does this using a new
form of explanation-based generalization (DeJong & Mooney, 1986) called
parent-child clause unioning, or PCCU. It then evaluates whether the source
candidate satisfies the target condition in every concrete test. Once a pair
passes the target condition test, the redistribution is carried out structurally
and the tests are re-executed. Top-level optimization invariants are then
checked (as in IBR) to make sure the redistribution hasn’t rendered some
prior pair invalid.

Variants of IEBR can be made to operate, at the cost of some optimization
power, even in the absence of optimization invariants and even without ever
re-executing a test. A justification of why IEBR restricts to candidates that
are easier to prove safe must wait until Chapter 9.

Key Idea 5: Approaches to Correctness

Currently, programmers must solve two problems in optimizing their pro-
grams: first, they must find plausible and useful candidates. Then they
must convince themselves that the candidates preserve correctness. I have
automated the first problem, while cleanly partitioning the second problem.

The system produces a set of source/target pairs that, when used to
optimize the program, preserve correctness on the given test inputs. This

34

does not, of course, guarantee that the program remains correct on every
possible input.

It is obviously undesirable for an optimizer to introduce errors into the
user’s program; the user typically introduces enough by himself. Conse-
quently, the system must be used with some external form of certification of
redistributions. There are two places in the development process at which
certification may be performed: compile-time (when the system generates
the conjectures) or run-time (when the user runs the optimized program).

Compile-time certification. The idea here is for some external agent
to check each candidate redistribution as the system conjectures it. This
external agent may be either an automated reasoner, the human programmer,
or some combination of the two. Various approaches suggest themselves,
ranging from interactive near-term schemes to fully automated ones.

IEBR aids a compile-time certifier much more than does IBR: IEBR only
conjectures changes to the program whose justification (if it exists) can be
viewed as a perturbation of the original correctness proof. That is, all that
needs to be proved is simultaneous satisfaction of the target conditions of
the redistribution pairs, rather than a complete proof of the altered program.
(See Chapter 9 for more discussion of this point.) Thus, IEBR tends to restrict
attention to the more routine, easier to prove redistributions.

Run-time debugging. A modification of the notion of efficient program
checking introduced by Blum and Kannan (1989) provides another approach
to certification that does not rely on automated theorem proving at all. In-
tuitively, a program checker for a problem is a program (assumed correct)
that can check the outputs of any program purported to solve the problem.
My proposal is to use a program checker to check the optimized program’s
outputs every time it is run; if it is found to be incorrect, then signal the
user and offer to re-optimize the program using the inputs for the faulty
run as an additional test input. Of course, the re-optimization can ignore all
source/target pairs that were shown incorrect in the previous run. This saves
most of the time of re-optimization. The result of the re-optimization will
be a program that is more often correct than the original optimized version.
This approach is practical as long as the checking is efficient: the run-times
of the optimized program and the checker together must be significantly less

35

than that of the original program alone.

1.5.2 Experiménts

Both the IBR and IEBR algorithms have been run on 26 examples. Most
of the examples are in the domain of a simple pointer-based representation
of abstract lists, similar to but simpler than the list representation in Lisp.
MY-REVERSE is one such program. Some examples are simple numerical pro-
grams and some operate on a list representation of sets, the set representation
built as a next layer of abstraction on top of the abstract list representation.
The most complex example, i.e., the one that takes the longest to optimize
completely, is an implementation of the MERGE-SORT algorithm for sorting
lists of numbers. The box-cost threshold was set as low as possible on all ex-
amples, in that the only boxes not considered for elimination were zero-cost
boxes (constants).

The example programs were improved by large amounts, compared with
the typical improvement obtained from a traditional optimizing compiler.
Improvements included moving from exponential to linear, moving from
quadratic to linear, and decreasing time and space usage by large constant
factors. '

To give an idea of the speed of the system itself, the complete search and
optimization of MY-REVERSE took 158 seconds for IEBR and 346 seconds for
IBR. For comparison, IEBR required 14980 seconds (4:09:40) to optimize the
MERGE-SORT program, while IBR required 59081 seconds (16:24:41). The op-
timizations carried out included loop fusions and copy eliminations and were
somewhat different between IEBR and IBR, though the two result programs
were essentially equally efficient. The system is implemented in Common
Lisp on a Symbolics 3670.

Chapter 11 and Appendix C discuss the examples in more detail and draw
conclusions from them.

1.5.3 Evaluation

Redistribution of intermediate results captures a wide range of powerful opti-
mizations. This is to be expected since it is a limited form of one of the most
basic principles in all design optimization, function sharing. This research
has investigated the automation of this idea, with the major technical results

36

being the derivation and use of target conditions to restrict to more routine
optimization candidates, and the use of qualitative cost estimation and other
heuristics to solve the (restricted) optimization search control problem.

Limitations of the approach exist at many levels of description. While
some of these are fundamental, many appear to be interesting topics for
future research. The concluding chapter discusses these in detail.

The success of the implemented prototype serves as an initial demonstra-
tion of the feasibility of the approach; however, much remains to be done to
produce useful tools for programmers. Overall, I believe the techniques here
hold significant promise for eventual application.

1.6 Reader’s Guide

Chapter 2 indicates the wide range of phenomena captured by redistribution
and also shows some examples which the system has optimized successfully.

Part One defines representations for and operations on program structure,
program function, and the explanatory structure that connects structure
to function. As in designing any representation to be used for human or
computer reasoning, it will be important to keep in mind the aspects we
wish explicit and those we wish to suppress. The definitions presented in
Part One were designed with this in mind, together with a desire to keep
things as simple as possible. Thus, certain phenomena may not be captured
in full (or even at all); but it is hoped that the techniques will generalize
to richer formalisms. Moreover, I do not claim that these representations
are optimal for their respective purposes; experience with the implemented
prototype has pointed out several improvements that can be made in a second
round of implementation. By and large, however, they are good first tries.

Part Two describes the two optimization algorithms, IBR and IEBR. It
first discusses the aspects common to both; subsequent chapters discuss the
parts that differ. Finally, Chapter 10 describes the quasi-specification tech-
niques used to cope with the difficulty of specifying and proving properties
of programs. Due to the size and complexity of the implemented system,
it was neither possible nor desirable to give precise descriptions of all al-
gorithms used. However, I have given pseudo-code descriptions of the key
procedures, leaving it up to the experience of the reader to fill in the lower
level engineering details.

37

Part Three discusses the power, limitations, and implications of the algo-
rithms. It compares the two algorithms to each other in order to highlight the
important characteristics and tradeoffs underlying the general approach; it
discusses the issues surrounding supplying the design information necessary
to use the system; it discusses the issue of certification and several possible
approaches to dealing with it; and it surveys relevant literature both to com-
pare the system with other approaches and to place it in context of design
systems in general. Finally, I draw conclusions and point out limitations,
future research topics, and potential practical applications.

Part Four is a loosely structured set of appendices. The first three give
the domain knowledge and a representative sample of the programs opti-
mized by the system. A key chapter to be aware of throughout the thesis
is Appendix B, which is an alphabetical glossary of function and program
names with brief descriptions and cross references. QOther appendices de-
scribe the proof restructuring algorithm; explore the theoretical relationship
between computability, checkability, and relative checkability; and discuss
some semantic subtleties relating to the use of the series representation.

38

Chapter 2

Optimization Phenomena

This chapter is intended to indicate the wide range of optimizations that can
be expressed in terms of redistributions. It also illustrates the four categories
of phenomena discussed briefly in Section 1.4.

Redistribution is particularly well-suited to improving programs constructed
from general modules. That is, it is good at finding (and fixing) the types
of inefficiencies that arise naturally from the use of general modules in spe-
cific contexts. On the other hand, one would not expect redistributions to
significantly improve programs that are carefully hand-crafted. Each of the
examples in this chapter arises naturally when programs are constructed
quickly out of reusable (general) modules in a clear and readable fashion.

Details relating to the system’s performance on each of these examples
appear in Appendix C.

2.1 Identical-value Redistributions

The most obviously correct redistributions are those in which the new source’s
value is identical® to the old source’s value. A particularly simple special case
of this—where the old and new sources are computed by syntactically identi-

cal expressions—is known in the compiler literature as common subezpression
elimination (Aho, Sethi, & Ullman, 1986).

1Unless otherwise noted, I will always mean “identical” and “equal” as synonyms de-
noting the mathematical sense of equality; this is not the same, for example, as the Lisp
relation EQUAL.

39

There are many occasions when considerations of readability and clarity
lead one to code multiple computations of the same value within a program.
Consider the following self-evidently correct implementation of the polyno-
mial evaluation formula

IC]-1

poly(C,z) = 3 Ciz',

1=0

where C is a finite list of coefficients (in increasing order of subscript) and =
is a number:

(DEFUN POLY (C X)
(LET ((SUM 0))
(DOTIMES (I (LENGTH C))
(SETQ SUM (+ SUM (* (NTH I C) (EXPT X I)))))
SUM))

Two things cause this to use quadratic time:

e Iteration 7+ 1 of the loop in POLY calculates z'*! (in time proportional
to i + 1) by recursively calculating z* and then multiplying by z. But
iteration ¢ of POLY just computed z*, so this value could be shared
correspondingly at each level of the recursion.

e Iteration i+1 of the loop in POLY traverses the list C from the beginning
{within NTH, which calls NTHCDR) in order to find (NTH (i+ 1) C), taking
time proportional to 7 + 1. This computation finds (NTHCDR (i + 1) €)
by recursively finding (NTHCDR i C) and then taking the CDR. (NTHCDR
i C), however, was computed in iteration ¢ of POLY, so could be shared
for each 1.

The system discovers and carries out these two optimizations, resulting in a
linear time program.

There are many other occasions where identical values may be shared
in a program. For example, earlier redistributions can create opportunities
for later identical-value redistributions. In MY-REVERSE, the first optimiza-
tion, consisting of two non-identical-value redistributions, enabled the single
identical-value redistribution of the second optimization.

40

2.2 Copy Elimination

Non-destructive operations on structured data types often take the concep-
tual form of copy-and-modify: the program makes structurally disjoint copies
of (some of) the input objects and then performs a destructive operation on
the copies to produce the result. The APPEND program used in MY-REVERSE is
an example, as it copies its first argument and then destructively modifies
part of it to attach the second input list. Frequent use of operations like
APPEND often lead to programs that are inefficient in both time and space due
to unnecessary copying. Note that this was the problem with the original
MY-REVERSE that led to the first optimization. This inefficiency is inherent in
the specification of APPEND, not in its implementation. Only by realizing that
the specification of a given call to APPEND is overly general can the optimizer
remove the extraneous copy.

Copy-and-modify operations need not be coded in a style as explicitly
structured as the system’s APPEND was; frequently the copying happens along
with other operations, as the result list is built. For example, the standard
recursive implementation of APPEND has this property. The system is capable
of removing these unnecessary copies as well. Moreover, it can eliminate
user-defined copy operations on user-defined datastructures at all levels of
abstraction in exactly the same way as for copies of lists—by using the extra
information in the input teleological structure.

2.3 Data Invariant Suspension

Another general class of redistributions centers around the idea of data in-
variant suspension. Concrete representations of data abstractions are often
constructed by defining an abstraction function from a concrete type—a sub-
set of a (possibly mutable, possibly recursive) record type—to the abstract
type. The appropriate subset of the record type is defined by a set of con-
straints on the allowed values of the record fields. Each constraint is termed
an invariant, because it is a property that must be maintained by any module
that operates on the representation. Examples of invariants include

e A linked list used to represent a set contains no duplicate entries.

o A binary search tree representing a set is balanced.

41

¢ Each node in a pointer-based representation of a directed graph con-
tains lists of both forward and backward neighbor pointers.

Figure A.1 in Appendix A shows the abstractions I used in experiements.
The surrounding text discusses the invariants used to implement them.

Invariants must be maintained by modules that operate on the data struc-
tures if and only if their truth is required to prove the correctness of the spec-
ification of the program in which they are used. In a given context of use,
the optimizer may suspend a data invariant (i.e. not maintain it locally) as
long as the top-level program remains correct. The optimizer may then elim-
inate any subcomputations whose only purpose is to maintain the suspended
invariant locally. Note that I allow specifications to constrain the overall
efficiency of a program as well as its functionality; thus, invariants whose
purpose is only to maintain efficiency of other operations, such as keeping
a binary search tree balanced, may be suspended in certain contexts. An
example of such a context is one in which the efficiency to be gained is only
in modules not subsequently used by the program.

As an example of invariant suspension, consider the linked-list represen-
tation of a set. The operation of adding a new member to a set (set-add)
must check to see if the added element is already an element of the list to
avoid duplicating an entry. The only purpose of such a check is to maintain
the no-duplicates invariant. The no-duplicates invariant is then assumed
true in implementing operations such as set cardinality. However, the usual
implementation of the set membership operation will be correct even if the
list contains duplicates. Thus, if a program were to do several set-add’s fol-
lowed only by some membership tests and not return any of the set ob jects
as return values, then the no-duplicates invariant could be suspended over
that portion of the program. The set-adds would not need to do the extra
checking; they could simply push the new element onto the front of the list.
Each set-add would cost only a constant amount of time instead of time pro-
portional to the length of the list. Section C.3.1 shows an example where the
system performs this optimization.

Note that I am not claiming that all invariants are associated with code
that is for one purpose only. It is frequently the case that subroutines per-
form more than one function in a program. Thus, suspending just one of the
invariants maintained by such a module would not allow its elimination. The
system is most effective at introducing function sharing into designs where

42

the individual boxes have single (or few) purposes. My observation is that it
is usually possible to find such structural models of programs, though these
do not always correspond with the most natural implementations. Often it
turns out to be better to let the optimizer introduce function sharing in a
context-sensitive way, rather than just using a partially shared implementa-
tion everywhere.

2.4 Generalized Loop Fusion

In the conventional compiler literature a loop fusion (Or jamming) is the
action of merging two iterations over the same range when there can be
proven to be no dataflow conflicts between the two loops. For example, a
loop that sums the odd numbers in an array may be fused with one that sums
the even numbers, saving one round of incrementation and bound checking.
Typically such iterations must be explicitly bounded and the ranges must be
identical. Redistribution optimizations can capture more general loop fusions
by a judicious choice of program representation.

In this research, loop fusions are distinguished by the fact that the shared
“value” is a temporal sequence of values generated by iteration. These gen-
eral loop fusions do not necessarily involve same-length sequences of identical
values, because loops with different termination criteria may have their over-
lapping ranges fused and corresponding elements may differ.

The system uses a representation of loops based on Waters’s Series Ex-
pressions (Steele, 1990) which requires significant back-end compiler support
(in the form of a macro package). Note that even though the macro package
does non-trivial post-processing, the adaptation problem is still solved by my
system using only (series) dataflow rerouting. This is an advantage of using
a powerful representation.

A series data object is a mathematical sequence of Lisp data values, i.e., a
function from {0... k}, for some k < oo, to standard Lisp data values. At the
implementation level, each series object is used to represent the sequence of
values taken on by some variable on successive iterations of the compiled loop.
See the appendix of (Steele, 1990) for explanations of the series functions used
here.

As an example of generalized loop fusion, consider the following Common
Lisp program, EQUAL-AFTER-SUBSTITUTION?, which in this original form has

43

two loops. (This example appears in Section C.2.6 in a somewhat different
nomenclature.) The first consumes linear space in constructing an interme-
diate list representing the substituted list; this is then iterated over by the
EQUAL program. Subsequently, the intermediate list is discarded. Note that
both loops are implicit in the series representation.

(DEFUN EQUAL-AFTER-SUBSTITUTION? (NEW OLD L1 L2)
"True iff L2 is EQUAL to the result of substituting
NEW for OLD in L1“

(EQUAL (SUBSTITUTE NEW OLD L1) L2))

The Lisp primitives are modeled structurally as follows:

(DEFUN EQUAL (L1 L2)
“Lisp EQUAL"
(LET ((MARKER (MAKE-SERIES (GENSYM))))
(COLLECT-AND
(#MEQ (CATENATE (SCAN L1) MARKER)
(CATENATE (SCAN L2) MARKER)))))

(DEFUN SUBSTITUTE (NEW OLD LIST)
"Simplified Lisp SUBSTITUTE"
(COLLECT
(#MSUBIFEQ (SERIES NEW) (SERIES OLD) (SCAN LIST))))

;33 Helper for SUBSTITUTE
(DEFUN SUBIFEQ (NEW OLD X)
(IF (EQ OLD X) NEW X))

This Lisp code corresponds to the data flow representation used. The models
are presented in Lisp for expository purposes; the system accepts only the
data flow representation.

Series expressions have the advantage of making iterations explicit struc-
tural elements of programs; thus, they become things that can be shared
among different users. The iteration implicit in SUBSTITUTE is over the el-
ements of the first list argument, L1, to EQUAL-AFTER-SUBSTITUTION?. The
iteration in EQUAL is over both the result list of SUBSTITUTE and the second
input to EQUAL-AFTER-SUBSTITUTION?. The system introduces function shar-
ing here by replacing the (SCAN L1) in EQUAL with a series dataflow from
the output of (#MSUBIFEQ ...) from SUBSTITUTE. This obviates the COLLECT
in SUBSTITUTE, so the intermediate list output of SUBSTITUTE is not created.

44

Furthermore, the iteration is now controlled by the COLLECT-AND which can
terminate before the end of the input list is reached. The resulting pro-
gram has a single loop over the input list, L1. The improved version saves
substantial time and space.

45

Part 1

Representations and
Operations

46

Chapter 3

Program Structure

The purpose of this chapter is to define the system’s representation of pro-
gram structure. From now on, in speaking of a computational entity, I will
use the following uniform terminology: “code” or “source code” always de-
notes its representation in a certain standard programming language, like
Lisp. “Program” is reserved for its representation as a functional dataflow
program (as described below). This choice reflects the ontological stance that
the latter representation captures something more fundamental, abstracting
from unimportant details introduced when rendering a program in a source
language.

Programming languages are designed with many considerations in mind,
such as efficient execution by machine, code readability, and many others.
These considerations directly influence the features available. The optimiza-
tion task, on the other hand, requires different features; therefore, most pro-
gramming languages are not appropriate structural representations for this
task. For example, it is crucial that dataflow be explicit in a representation
for optimization. In most programming languages, local variables are used
as notation for communicating intermediate data values among subroutines;
variables are familiar from algebra and logic, and such familiarity often leads
to better readability. Variables are not explicit enough for optimization,
however. Most optimizing compilers compute and operate on some type of
dataflow representation of the input programs (Aho, Sethi, & Ullman, 1986)

I chose the program representation based on the following desiderata:

* A key distinction in optimizing by redistributing intermediate results
is between sources, value-producing entities within a program such as

47

function call outputs, and targets, value-using entities such as function
call input arguments. Information can be thought of as “flowing” from
sources to targets via explicit flow arcs, and redistributions are imple-
mented by introducing new such arcs and deleting old ones. Thus, one
goal of the representation is to make sources, targets, and flow arcs
within a program explicit. In standard programming languages, a flow
arc is implemented implicitly by setting and reading a variable or by
an expression appearing in an argument position of a function call.

o The chief way redistributions can improve the speed of a program is
by allowing the elimination of subroutine calls whose return values
(and side effects) are not used. Thus, every subroutine call must be
represented explicitly and independently of every other to maximize the
potential for optimization. A subroutine call within a program will be
termed a boz. Boxes have ports corresponding to the input arguments
and output values of the program to which the box represents a call.
In my formalism, free variables must be modeled as explicit input and
output ports. Boxes with side-effects must have explicit store input
and output ports (see below). A box may be of the same type as the
calling program; such a box will be called a “recursion box.” For this
research, I allow only explicit, self-recursion: programs may not call
other programs which in turn call the first program—they may only
call themselves directly.!

e Types in programming languages provide many advantages. For our
purposes, the key advantage will be that we can quickly rule out many
potential optimizations on the grounds of conflicting type. Thus, every
program’s input and output ports are endowed with a type from a user-
supplied type hierarchy. The system places only two requirements on
this type system:

— It must contain the type BoOL, representing the standard boolean
values; and

1This restriction is made to simplify the implementation of several algorithms, though I
do not believe it is fundamental. In particular, programs with complex recursive structures
may always be mechanically converted to ones using explicit self-recursion only, though I
do not propose that as the right way to deal with it.

48

— It must come with a fast implementation of a type-intersection
predicate, STATIC-TYPE-CHECK?, that returns true if and only if
its two type-identifier arguments denote non-disjoint types. The
requirement of a fast implementation rules out complex type sys-
tems. In particular, the type systems of some programming lan-
guages may be too complex for our purposes; this is because while
the number of value uses to be checked by a standard compiler
grows linearly with program size, my system considers quadrati-
cally many source/target pairs in the worst case.

e “Stores,” similar to those used in standard denotational semantics
(Stoy, 1977), are conceptual objects that record mappings from (non-
stack) memory cells to values. Side effects must be modeled explicitly
using “store flow” arcs so that the system can redistribute store arcs
in the same way as other types of arcs. This allows such optimizations
as copy elimination and removal of unnecessary datastructure mainte-
nance operations. Note that the explicit flow arc representation allows
us to avoid explicitly modeling mutable stack memory locations; thus,
stores need only apply to non-stack cells.

¢ A means must be provided to support conditional execution of boxes
within‘a program.

These are the key features we need to talk about redistributions within
programs; thus, almost everything else is left open and must be defined by the
programmer through the type system, computational primitives, and other
forms of system domain knowledge. I will discuss this knowledge later.

3.1 Dataflow Programs

Directed, acyclic dataflow programs satisfy the requirements listed above. I
will adopt a program representation similar in spirit, but not in detail, to
plans in the Plan Calculus (Rich & Waters, 1990). Section 3.5 discusses the
differences in detail.

Figure 3.1 depicts the APPEND program. It is copied from Figure 1.3.
Recall that it is an abstraction of the following Common Lisp code:

49

APPEND L1: Env: L2:

:

COPY-LIST
Cl:l 1 y C2:
nc:NCONC

vy

Figure 3.1: The APPEND program. The text explains the graphical notations
used.

(DEFUN APPEND (L1 L2)
"APPEND L1 and L2 non-destructively"
(NCONC (COPY-LIST L1) L2))

Each box is labelled with its instance identifier (“role name” in Plan Calculus
terminology) in lower case, followed by a colon, followed by its type name?,
designating to which program this box is a call, in upper case. Left-to-right
order is never significant in the diagrams. If necessary, explicit port identifiers
disambiguate which arcs are bound to which ports. Port identifiers are shown
(as necessary) near the port they label, including overall program input and
output ports.

Arrows indicate flow of data objects. Thin arcs represent standard data
flow. Thick arcs distinguish store flow, communication of store objects.
Later, it will be useful to introduce wide, outline arcs (=) to distinguish
series flow arcs (Section 3.2.2).

Lisp, like most programming languages, treats the store (for mutable
objects) as an implicit argument and return value. Thus, a more exact

2This use of the word “type” is meant merely in the generic sense of type versus token,
not in the more technical sense of Scott domains.

50

functional rendering of the diagram would look like

(DEFUN APPEND (L1 L2 ENV)
"APPEND L1 and L2 non-destructively"
(MULTIPLE-VALUE-BIND (COPY CPY-ENV)
(COPY-LIST L1 ENV)
(NCONC COPY L2 CPY-ENV)))

Note that programs are “functional” in precisely the same sense as programs
rendered in FP, pure Lisp, or pure Prolog source code; they are being used
here to model “nonfunctional” Lisp programs by promoting the stores to
first class status. Stores (see Section 3.2.1) are not first-class ob jects in Lisp,
however; I will therefore always suppress them when showing Lisp code.

3.1.1 Program Elements

A program consists of

e a (globally) unique program type identifier (i.e., a program name);

e a finite set of statically-typed (as described above) input ports, each of
which is named with an identifier unique among all identifiers in the
program;

e a finite set of statically-typed (as described above) output ports, each
of which is named with an identifier unique among all identifiers in the
program;

e a finite set of conditionals, each of which is uniquely identified. Each
conditional must have a unique boolean-typed test port, a finite set of
output ports and two sets of input ports, each of which is in one-one
correspondence with the output port set. One such set, termed the
conditional’s true-output port set, designates the values to return when
the test port’s value is true and the other, termed the conditional’s
false-output port set, designates the values to return when it is false.
Each conditional has a condition (possibly empty) that describes which
(other) conditional test ports must have which values in order for the
conditional to be executed;

o1

o a finite set of bozes, each of which is uniquely identified. Each box must
have a boz-type which names a program, P. Further, each box has input
ports in one-one correspondence with the input ports of P. Each must
also have output ports in one-one correspondence with the output ports
of P. Each box has a condition (possibly empty) that describes which
conditional test ports among those in the program must have which
values in order for the box to be executed;

e a finite set of flow arcs® each of which connects some source in the
program to some target within the program, where

— a source within a program is either a program input port, a box
output port, or a conditional output port; and

— a target within a program is either a program output port, a box
input port, a conditional test port, a conditional true-output port,
or a conditional false-output port.

Flow arcs are allowed to “fan out;” that is, there may be more than one
flow arc with a given source. There may also be sources not connected
to any flow arc. However, flow arcs may not “fan in;” that is, there
must be no more than one flow arc with a given target.

A source’s condition will be either (1) empty, if it is a program input,
or (2) the same as that of the box or conditional of which it is a port,
otherwise. A target’s condition is defined similarly, except that conditional
true(false)-output ports have the parent conditional’s condition conjoined
with the truth(falsity) of the parent conditional’s test port. If a condition
contains a reference to the test-port of some conditional, then the condi-
tion of that conditional must be a proper subset of the condition. In other
words, conditions (and hence conditionals) must have a last-in-first-out nest-
ing structure.

Programs, viewed as directed graphs with boxes as nodes and flow arcs
as edges, must be acyclic. This restriction keeps the operational semantics
of programs particularly simple.

3By “flow” I will always mean to include “store flow” and “series flow” and any other
particular type of arc.

52

3.1.2 Programs have eager dataflow semantics

Now that I have defined the structure of legal programs, I must also define
their meanings (operational semantics). Intuitively, program execution can
be thought of as eager dataflow execution. Section 3.4 explains how the
system actually executes programs on given data, but that is merely an
efficient implementation of the intuitive dataflow operational semantics. I
chose eager semantics for simplicity, “intuitiveness,” and ease of constructing
an efficient interpreter. ‘

Figure 3.2 illustrates the eager dataflow execution of APPEND on some
inputs. First, associate the input values with the corresponding program
input ports (a). Whenever an arc has a value associated with its source
end (tail), the value “flows” down the arc and appears at the target (head)
end (b, d, f). An arc with more than one target end is an abbreviation for
several arcs, each with one target end. Whenever a box has values at all of
its input ports, its corresponding type program is recursively gxecuted using
those input values to determine the box’s output values (c, €). This process
continues in parallel throughout the program until the output ports of the
program get values (f).

A call to a box may fail to return because of a nonterminating recursion, in
which case all of the program’s outputs are undefined. If all boxes terminate,
however, all program outputs must appear.

3.1.3 Conditional execution

The description above is silent on conditional execution of boxes, so to com-
plete my description of program semantics, I must explain how conditionals
are executed.

Conditionals can be viewed as composite objects constructed out of the
more traditional dataflow elements splits, joins, and control flow. Even
though the system represents conditionals internally as single objects and
treats them specially, they behave precisely as if they were constructed out
of the skeleton shown in Figure 3.3 (a). Figure 3.3 (b) shows this used in the
NCONC program. I present this view of them merely as an aid to understanding
how conditionals operate in programs.

A split takes in a single boolean value and puts out a single “control
token” either to its T output or its F output, depending on whether the input

33

- l 1

7ol
My e
cpy:

+

COPY-LIST COPY-LIST COPY-LIST
Il I)
4 L A8 vED
nc:NCONC nc:NCONC nc:NCONC

Aol

L

COPY-LIST

COPY-LIST COPY-LIST
CDl 1 vy l \ 4 l l , 4
nc:NCONC nc:NCONC nc:NCONC

m] - |
(I
(d) (e) ()
Figure 3.2: An illustration of the execution of APPEND on some inputs. Values

“flow” and boxes “fire” as in standard dataflow. Highlighted boxes are those
ready to fire by virtue of having all inputs present.

54

ca:SPLIT
T | F

T o T

Lad % £bal

T |
en:JOIN

Tl

(2)

N C ON C C1: !L‘;w: C2:

nu:NULL

v

ca:SPLIT

T F - +
I [_C 4 VALUE:
rpd:RPLACD

I
—— |
L —

»

A 4
T 1 F
cn:JOIN

»

NCONC—C:L ‘ NCONC.-8:

(b)

Figure 3.3: (a) The traditional dataflow components representing a condi-
tional. (b) The NCONC program. This illustrates the use of a conditional to
model conditional execution. The rpd:RPLACD box is only executed if the
control token arrives from the F port of the split; i.e., if the output of the
nu:NULL box is false.

55

1s true or false respectively. This is different from regular boxes, because not
all outputs appear for given inputs. A dashed rectangle surrounding some
boxes is a structural grouping used to indicate that those boxes are called
only if the control token appears. This is syntactic sugar for a control flow
arc from the split to each of the boxes within the dashed outline. A join takes
in two corresponding groups of inputs, each group including a control flow
arc, and puts out the non-control values of the group whose control token is
present. Outputs are undefined if both control tokens are ever present. A join
is not a box, either, since it may fire before all of its inputs appear. Control
flow arcs are not treated the same as other types of flow arcs; in particular,
they will not take part in redistributions. Ports of type “control” are neither
sources nor targets. Note also that the split and join of a given conditional
have the same instance identifier; this is to indicate they are conceptually
treated as part of the same object.

Note that the nesting of conditions discussed earlier forces conditionals
to be nested in last-in-first-out fashion—arbitrary jumps of control flow (eg,
GOTOs) are not allowed.

3.1.4 Showing box implementations

This subsection and the remainder of Section 3.1 are only loosely connected;
each discusses a single issue relating either to the implementation or to the
exposition of the material.

Redistribution optimizations can be thought of as introducing new com-
munication paths from internals of one subroutine to internals of another.
Thus, to show redistributions, it will often be useful to show the implemen-
tation of a program P within a diagram of a parent program () that has
a box of type P. This will be done by nesting the implementation within
a rectangle. This may be done to any level of nesting desired. Figure 3.4
demonstrates this for APPEND. Note that this does not imply the routines have
been coded in-line; this is merely an augmented view of the same structure.
The system has no conceptual object corresponding to an “expanded box.”
Note also that this is not the same as a dashed box surrounding a group of
program elements—dashed boxes indicate only structural groupings with no
input/output boundary.

Viewing boxes’ implementations from the perspective of the calling pro-
gram is both an expository tool and an important technical idea used by

56

APPEND L

L2:

e

Eav:
:3CANCDRS
scc:
ZCOPY-CELL
loull
A 4
:COLLECT-
SETCDRS
cpy:COPY-LIST v
C1: & Env: C2:
=g
A 4
A 4
nu:NULL scn:
SCANCDRS
v ¥
o=
<n:SPLIT :COLLECT-
ST
IGLAST o
” r— r < 1 — T
— | c L 4 VALUE;
“ I rpd:RPLACD |
! |
L 44 — - =
A 4 A 4
T | P
cn:JOIN
l nc:NCONC

Figure 3.4: Showing box implementations within the box boundary. Here,
the cpy:COPY-LIST, nc:NCONC, and 1c:LAST boxes have been “opened.” (Com-
pare to Figure 3.1.) The instance names of some boxes have been suppressed.
For example, the box labelled :COLLECT-LAST has instance name coll. Qut-
line arrows (=) indicate store flow.

37

the system. To introduce new communication paths into and out of box
internals, one must consider the internals of the boxes; one can do this ei-
ther by having a view mechanism, or else “flattening” the input program,
creating a new program with all subroutines in-line. The latter approach is
relatively costly, since a flattened program is typically much larger to create
and manipulate than the sum of the program definitions of all the boxes.

The system’s approach to search control determines when and how deeply
to look within boxes.

3.1.5 Virtual structure

Figure 1.4 (Section 1.3) showed a program fragment having a (dotted) box in
it whose outputs were no longer connected to anything, due to a redistribu-
tion. A back-end processor that actually carries out the optimizations recom-
mended by the system would remove such boxes from the design (dead-code
elimination). However, it will be useful to be able to refer to such structural
elements even though they do not have a causal effect on the outputs of the
program. The reason for this minor paradox is that IEBR develops and uses
descriptions of the purposes of the internal targets within a program and
these descriptions can refer to a piece of structure even after a redistribution
disconnects it. See Chapter 9.

I therefore define a box or conditional to be physical if there is a directed
flow path from it to a program output. An arc is physical if it lies on such a
path. A program input port is physical if it is connected to a physical arc;
a box input port is physical if the corresponding program input. port of the
box’s program-type is physical. A program output port is always physical. A
box output port is physical if the box is. All other boxes, conditionals, ports,
and arcs are virtual. Thus, the cpy:COPY-LIST box in Figure 1.4 is virtual,
as are its input arcs and the MY-REVERSE arcs connected to them. The arcs
with Xs-through them are not virtual; they are removed completely by the
system. Though the system may remove some arcs completely, it will never
remove any boxes—boxes may only change from physical to virtual.

3.1.6 Pathnames

It is useful to have a systematic naming convention, similar to a “coordi-
nate system,” with which to talk about sources, targets, and other program

58

structural elements. Each object in a program corresponds uniquely with
a sequence of identifiers, called its pathname, as follows. Each pathname
begins with a $—a syntactic cue for the reader—and the top-level program
name, followed by a sequence of identifiers separated by periods.

¢ A program of type P has pathname $p;

¢ Any input or output of the program $P whose identifier is A has path-
name $P.A;

* Any box or conditional within P whose identifier is I is denoted $P.I;

¢ Any input or output port of the box or conditional $P.I whose identifier
is A has pathname $P.I.4;

¢ By convention, the identifier of the test port of every conditional is TEST.
Thus, the test port of a conditional $P.CN has pathname $P.CN.TEST;

¢ By convention, each conditional true-output port is named consistently
with its corresponding conditional output port as follows. A conditional
$P.CN with output port named $P.CN.RESULT-X has corresponding true-
output port named $P.CN.RESULT-X.TRUE;

e Similarly, a conditional $P.CN with output port named $P.CN.RESULT-X
has corresponding false-output port named $P.CN.RESULT-X.FALSE;

For example, Figure 3.4 shows a flow arc connecting APPEND’s input port
$APPEND.L2 to $APPEND.NC.C2, the second cell input port to the box whose
pathname is $APPEND.NC. Note also that even though there are two things
labelled “Env” in the diagram, the upper one refers to $APPEND.ENV and the
lower one refers to $APPEND.NC.ENV.

A useful feature of this pathname convention is that we may talk sys-
tematically about structural elements at any level of the structural hierarchy
relative to a given program in a natural way. This is done by replacing the
program identifier in a pathname with the instance pathname of a box of
that type. Thus, for example, to refer to the port $P.I.A within the box
$Q.B (assumed of type P), we simply use the pathname $3.B.I.4.

In Figure 3.1, we can refer to the port labelled VALUE by the
pathname $APPEND.NC.RPD.VALUE; the conditional test port has pathname

39

$APPEND.NC.CN.TEST; and we can refer to the Z output of the scn:SCANCDRS
box within 1lc:LAST within nc:NCONC within APPEND by the pathname
$APPEND.NC.LC.SCN.Z.

Source/target ambiguity. Note that every port, except top-level input
and output ports, actually names both a source and a target, depending
on whether it is viewed as a box port within a parent program or as a
program port within a box implementation. For example, in Figure 3.4,
$APPEND.NC.C2 can be viewed as a target in that it is a box input port of
$APPEND.NC; on the other hand it is also a source when viewed as program
input port to (an instance of) NCONC. Since a flow arc emanates from there
to $APPEND.NC.RPD.VALUE, it must also be a source. A similar confusion
is possible with box/program output ports. This confusion is significant,
because the system can consider redistributions, say from $APPEND.NC.C2 to
$APPEND.NC.RPD.C.

Unless explicitly stated otherwise, I will use the “outer” interpretation by
default; that is, pathnames referring to box input ports will be interpreted
as targets and pathnames referring to box output ports will be interpreted as
sources. Thus, $APPEND.NC.C2 should be interpreted as a target unless oth-
erwise stated. The system investigates both interpretations when searching
for redistributions.

3.1.7 The causality relation on program elements

Since programs may not contain directed flow cycles (by definition; see Sec-
tion 3.1.1), the elements of a program are partially ordered by the transi-
tive closure of the flow relation. This easily-computable relation, called the
causality relation, is useful for quickly ruling out the candidate optimizations
that would introduce flow arc cycles.

The relation applies to boxes and ports (including conditional ports),
but not conditional objects as a whole—different pieces of a conditional are
causally separate. I will say that a program element, p,, is a causal predeces-
sor of another program element, p;, precisely when there is a directed flow
path, possibly involving control flow as well, from p; to p,. In this case I will
also say that p, is a causal successor of p;. Note that since we include control
flow in the definition, a box whose condition includes a given conditional test
port is a causal successor of the conditional test port.

60

We may extend the causal relation to include elements within box im-
plementations by adding relationships between elements within a box to ele-
ments outside of the box. This is done by making every element outside the
box that is a predecessor of the box be a predecessor of every element within
the box, and similarly every element outside the box that is a successor of
the box be a successor of every element within the box. This procedure is
applied at all levels.

Thus, in Figure 3.4 $APPEND.CPY.ZCC.ZOUT is a causal predecessor of
$APPEND.NC.LC.COLL.Z, because the former appears in $APPEND.CPY, the lat-
ter appears in $APPEND.NC, and there is a flow path from$APPEND.CPY to
$APPEND.NC. On the other hand, $APPEND.NC.LC.SCN.Z is neither a causal
predecessor nor successor of $APPEND.NC.CN.TEST.

3.2 Modeling Issues

Having concluded a discussion of the basic structural representation of pro-
grams, I must now discuss how to model desired capabilities (like side-effects)
within the formalism. While the system is neutral with respect to modeling
choices, they still profoundly influence the results achievable. This section
discusses some of the choices I've made for experimentation purposes.

3.2.1 Stores model side effects

Lisp, like most programming languages, treats the store (mapping of mem-
ory cells to their contents) implicitly. The system, however, must treat the
store explicitly in order to be able to reroute “store flow.” The ability to
redistribute intermediate stores will allow the elimination of store-changing
operations such as extra copying and unnecessary data field maintenance.
Thick arcs denote store flow in the diagrams. Formally, store ports have a
type which is disjoint from all other types. In my system, this is enforced by
the STATIC-TYPE-CHECK? predicate.

Thus, for example, to obtain the contents of a field of a memory cell, one
must call the SEL function, giving it the cell, a store, and a field number. To
alter the store, a program must take in the current store and put out a new
store. Thus, boxes changing the store must be totally ordered by store flow.
See Appendix A for further details of modeling side effects using stores.

61

3.2.2 The series data type models iteration

Wide, outline arrows in diagrams, such as that between $APPEND .CPY.ZCC.ZOUT
and $APPEND.CPY.COLL.Z in Figure 3.4, denote series flow arcs. The type

identifier for series is Z for compatibility Figure 3.4 has examples of this type

of arc. The reader is referred to Appendix A of (Steele, 1990) for a full de-

scription of the series type. I will summarize here briefly some aspects of the

theory.

Formulating in terms of series expressions makes iteration components
explicit structural elements of programs (sources), allowing the system to
introduce function sharing between distinct loops. The only other way of ex-
pressing iteration—through tail recursion—has the effect of “spreading out”
the structure of the iteration over the program, with several distinct ele-
ments contributing partly to the iteration and partly to other aspects of the
program. This makes it difficult to share iterations among several clients.

A “series” data object is a mathematical sequence of data values (i.e.,
a function from {0...k}, for some k < oo, to data values). When a series
expression is finally rendered into Lisp code and compiled by the Series Macro
Package, it becomes a loop. Each series object names the temporal sequence
of values taken on by some variable on successive iterations of this loop.*

For our purposes, the key advantage of using the series formalism is that
Waters’s macro package can compile “optimizable” series expressions into
efficient loops that do not create intermediate data objects to hold the series.
Typically, no series object is ever explicitly created; they are all coded using
loops and iteration variables. This yields efficient implementations compared
to the analogous expressions using Lisp sequences.

As an example of the use of series functions, the COPY-LIST program (see
Figure 3.4, within the cpy:COPY-LIST box) operates by first calling SCANCDRS
to produce a series of the conses in the input list; next ZCOPY-CELL makes a
series of copies of each cell; and finally COLLECT-SETCDRS assembles the copies
into a single result list. Appendix B has an alphabetical listing of descriptions
of primitives, programs, and functions which includes the series primitives.

To be “optimizable” by the series macro package, series expressions must
obey certain restrictions; these will be discussed shortly. My system must be
integrated with the series package to the extent that it must always produce

“In Waters’s implementation, there are cases when this is not strictly true. Such cases
are irrelevant here, however.

62

programs that translate into optimizable expressions, assuming the input
program corresponded to such an expression. The simplest way of integrat-
ing my system with the series macro package is to use the latter as a post-
processor: my system performs redistributions, obeying the optimizability
restrictions, and then transcribes the final program into Lisp using series
expressions where it can be processed by the macro package.> More com-
plicated integrations are possible, but they have not been implemented. For
example, one could apply the system first to the series formulation, apply the
(underlying technology of the) macro package to get a new representation of
the program, and then apply the system to the result, possibly getting even
more optimization.

3.2.3 Syntactic program restrictions for modeling

Unfortunately, due to the requirement of executability on a real machine,
some data types come with restrictions on the way they can be efficiently used
in legal programs. That is, programs violating the restrictions may be legal
(i.e. operationally meaningful) yet be impossible to implement efficiently in
code. Both stores and series have such restrictions. I assume that the input
program structure has no unoptimizable configurations in it (see below); thus,
the system must only keep from introducing any during the optimization
process. ,

I further assume that whenever the programmer uses a given restricted
type in a program, he has supplied an effective and efficient predicate that
returns whether a given program satisfies the legality restrictions for that
type.

Store restrictions.

Implementing two different simultaneous stores would be prohibitively ineffi-
cient, since these correspond to the memory of the machine; therefore, boxes
that alter the store must do so sequentially.

While a programmer would not ordinarily write a program that violates
this condition, it is possible for my system to consider “optimizations” that
do. Thus, it is important to be able to rule out such candidates, because

5The back-end transformation into Lisp-with-series expressions has not been imple-
mented as yet, but is straight-forward.

63

F

bl:

Figure 3.5: (a) An unoptimizable program involving store arcs. Both boxes
b1 and b2 may alter the same store. (b) An unoptimizable program involving
series expressions. Non-series value V can only be computed after having seen
all the elements of the series Z; thus a costly intermediate datastructure must
be built to represent z for use by the call to box b which can only occur after

V is computed.

(a)

b2:

(b)

64

even if they eliminate boxes from the design, they are unlikely to result in
an overall improvement.

I conservatively assume that any box with a store output may alter “the
store,” i.e. it may put out a store that is not equal to its input store. On
the other hand, a box that puts out no store cannot alter “the store.” Note
that a box may take in a store without putting one out. Consider Figure 3.5
(a). This program schema is unoptimizable (hence illegal) because it allows
both boxes b1 and b2 to alter the same store.

Here are the store restrictions:

¢ If a pair of physical boxes with store output ports have inputs connected
to the same store source, then they must have conflicting conditions;
i.e., there must exist some conditional test port true in one condition
and false in the other. This is a conservative way of guaranteeing
that boxes modifying the store during a given execution must do so
sequentially.

o A box may have at most one physical store input port.

¢ A box or conditional may have at most one physical store output port.

It is straight-forward to code a checker for these conditions.

Series restrictions.

Series flow arcs have more complex optimizability restrictions, but there are
efficiently checkable restrictions that work for many cases. I will summarize
the issues here; fuller discussions appear in Appendix F and in the discussion
of Waters’s series macro package in Appendix A of (Steele, 1990).

A programmer may inadvertently write programs that violate the series
restrictions, so the checking serves to detect unoptimizable input programs as
well as to avoid optimizations that result in unoptimizable programs. Waters
points out that most user programs violating the restrictions can be simply
rewritten to obey the restrictions.

There are basically two restrictions defined by Waters that are significant
to my system (I have restated them somewhat):

e The conditions of source and target of a series flow arc must be the
same. This is because the Series Macro Package requires that series
expressions not contain conditional branches.

65

e Waters defines a constraint cycle as “a closed oriented loop of data
flow arcs such that each arc is traversed exactly once and no non-series
arc is traversed backward (Steele, 1990, p. 946).” The optimizability
restriction is that the program may have no constraint cycles passing
through either non-series ports or “off-line” ports. Intuitively, a port
is off-line if its values cannot be consumed in lock-step fashion relative
to the other series ports around it. This is a static property analogous
to a port’s static type.

Figure 3.5 (b) shows a program schema that violates the second criterion.
The cycle contains a non-series flow arc. I have not as yet incorporated
automatic checking into the system, though such would be a straight-forward
re-implementation of Waters’s techniques. Moreover, the checks are easily
computable, so would not significantly impact the run-time of the system. I
have hand-checked the redistributions produced by the system, and only one
(out of hundreds) was illegal, violating the first criterion.

Note that the term “data flow” used above does not include store flow,
so such arcs are not included in the constraint cycle calculations. This leads
to some subtle semantic issues which I discuss in Appendix F.

3.3 Redistributions

Given the definition of the structural representation of programs, it is now
possible to define “redistribution” precisely. This single type of structural
program change is expressed as a rerouting of flow arcs.® Such an operation
will be termed a redistribution; an example appears in Figure 3.6. Here,
I’ve shown the redistribution, from the source $APPEND.CPY.ZCC.ZOUT to the
target $APPEND.NC.LC.COLL.Z, as a single arc for clarity of exposition. When
carrying out this redistribution, however, the system actually installs several
arcs, some new output ports, and some new input ports. The actual altered
program appears in Figure 3.7. The notation in Figure 3.6 is simply “syn-
tactic sugar” for Figure 3.7 and will usually be preferred. It will be useful
to call the collection of new arcs and ports introduced by a redistribution an
ertended flow arc.

8“Flow arc” is generic for data flow, store flow, and series flow. It does not include
control flow, as such arcs are not explicit in the system’s representation.

66

Figure 3.6:

APPEND

L1 nv:

U3
v

SCANCDRS

1

sce:
ZCOPY-CELL

sout
:COLLECT-
SETCDRS

L2:

cpy:COPY-LIST ‘
C1: “ Cz2:
[T
A 4 y
nu:NULL : sn: /
{ SCANCDRS /|
cn:SPLIT :COLLECT-
LAST
T | F
lc:LAST
+ 14—
€1 ” | ¢ \ 4 VALUE;
_H_l rpd:RPLACD |
! l
[I A
Yy Vv v
T | F
cn:JOIN
¥ nc:NCONC
v Yy
A redistribution example. In this

case,

a

series-

valued source, $APPEND.CPY.ZCC.ZOUT, is shared with the distant target
$APPEND.NC.LC.COLL.Z. In the process, an old arc is removed and some struc-
tural elements become virtual.

67

An alternative to adding several extra ports and arcs would be to ex-
tend the program formalism to allow arbitrary flow arcs to enter, leave, and
cross program bodies, thus allowing any redistribution to be implemented
by a single arc. Such an approach would, however, always be equivalent in
this system to adding a new port, etc. Thus, it would not save any effort
(conceptual or otherwise) and would make the definition of program more
complicated.

Note that the alterations made by the system take effect only in local
copies of the routines effected. In particular, if APPEND (or any other program)
were to have another box of type NCONC it will not be effected by the changes
to the version corresponding to $APPEND.NC. The exception to this rule is
that any recursive program effected by the change is altered at all levels of
the recursion, not just the top-level.” Thus, the optimizations in MY-REVERSE
took effect at all levels of the recursion, rather than being restricted to the
first level of recursion.

Here are the steps that go into carrying out a redistribution from source
s to target ¢, assuming such has been checked for consistency with store and
series constraints:

e Remove the old arc ending at t.

¢ Implement the new extended arc from s to ¢, introducing new arcs and
ports as needed, including those needed to support recursion.

e Mark structural elements virtual as necessary at all levels of the pro-
gram.

3.4 Executing Programs

In order to evaluate the truth of the optimization invariants that determine
whether a program change is allowed, the system must calculate new output
values for the optimized program on the given test cases. To find the new
output values, the system must be able to evaluate programs on data values.
More than this, however, the system needs to be able to record intermediate
values computed along the way for later use by IEBR in evaluating target con-
ditions. Thus, the system contains an interpreter that operates directly on

"Actually, even this exception can be turned off when desired.

68

APPEND L1: Env: L2:
SCANCDRS
sce:
ZCOPY-CELL
sout
V
N _ ¥
:COLLECT-
SETCDRS
cpy:COPY-LIST Y
Ct: v Env: C2: 4
*
P H
Yy l}
Y.
nu:NULL scn:
i SCANCD
+ 7
en:SPLIT .COLLECT-
‘ LAST
T | F
le:LAST
r~— L ad — — — 1
£ ” | c L A VALUE;
_H__' rpd:RPLACD |
| |
L i_. — —
A 4
T | F
cn:JOIN
nc:NCONC

Figure 3.7: This is the actual structure produced when the system carries

out the redistribution indicated in the previous figure. Removed arcs have
been removed; virtual structure remains but is now dotted.

69

the internal program representation. It is capable of recording intermediate
program values in a data structure called a program trace. This capability
forces the system to represent all data objects explicitly; in particular, series
and stores must now have first class representations that can be stored. This
means, of course, that the interpreter will be much slower than the com-
piled version of the program, but we are using the two for different purposes.
The interpreter is used only for ground reasoning about test cases; the “pro-
duction” version of the optimized program will be produced by translating
to Lisp and running various compilation routines such as the series macro
package and the Common Lisp compiler.

3.4.1 Structure of the Interpreter

To interpret program P on some input values, P is first preprocessed to de-
termine an execution order for the boxes and conditionals. The boxes and
conditionals are topologically sorted in a manner consistent with the causal-
ity relation, with causal predecessors before successors. The execution order
is determined once and only recomputed if the program is altered during
optimization.

Once the execution order is known, the inputs are initialized to their
values and then the boxes and conditionals are evaluated in order.® Boxes
are evaluated one of two ways: if the box’s type is a computational primitive
(see next subsection) then the corresponding primitive evaluation function
is called; otherwise the box’s type program is executed recursively using the
input values read from the box’s input ports. A conditional is evaluated
as follows: if the test port evaluated (earlier) to true, then the conditional
outputs are copied from the conditional’s true-output ports, otherwise the
conditional outputs are copied from the false-output ports. Note that since a
box’s condition must be true before it can be evaluated, boxes on the “wrong
side” of the conditional are not executed, because their conditions are not
satisfied. Once the output ports of a box or conditional are determined, the
values are (implicitly) copied to the other ends of all flow arcs connected to
them.

Note that virtual elements are evaluated in precisely the same way as

8Note that, because stores are treated explicitly, this is equivalent to the intuitive
parallel execution model given earlier.

70

physical elements; the fact that their outputs are not used is irrelevant to
the interpreter. It is only when final code is produced for the fully optimized
program that virtual elements are eliminated.

3.4.2 Computational Primitives

The recursion in the interpreter must bottom out in primitive programs for
which the system is given algorithms. This set of primitives is one way in
which domain knowledge is encoded in the system. Appendix A lists those
I used in experiments. They include programs for allocating, accessing, and
modifying memory cell arrays, arithmetic operations, and series primitives.

3.4.3 Program traces

If the interpreter’s recording option is selected, then each value computed is
recorded in a program trace, a table keyed by global pathname. Elements
at lower levels of the structure hierarchy (within box implementations) are
recorded using their unique global pathnames referred to the top-level pro-
gram, rather than their pathnames inherited from their direct program par-
ent. Thus, a program trace for APPEND could store the entry

$APPEND.NC.LC.SCN.Z — #Z<cell-2 cell-1 cell-0>

but not the entry

$LAST.SCN.Z — #Z<cell-2 cell-1 cell-0>.

Trace depth. A program trace also records a small amount of extra
information. One important such datum is the maximum depth of recursion
reached by the program on that input. When 1BR blindly tries each redis-
tribution, it is in great danger of creating a non-terminating program. The
interpreter can be set to terminate abnormally when updating a trace if the
recursion level ever exceeds the previously stored recursion level. IBR then
knows that it should avoid the redistribution causing this because, even if
the computation should eventually terminate normally, it will probably not

be any more efficient than the original. This heuristic has worked out well
in practice.

71

3.5 Programs versus Plans

To complete my description of the program structure representation, I will
briefly compare it to the most similar such representation in the literature,
the Plan Calculus (Rich & Waters, 1990).

The differences between a “program” in my terminology and a “plan” are
listed below.®

e Flow arcs in programs imply only “shallow” equality, whereas such arcs
in plans imply “deep” equality. The difference shows up in the treat-
ment of mutable objects, such as memory cells. In my formalism, a
dataflow equality between two cells implies only that the pointers are
identical—it says nothing about the values bound to the cell. In the
Plan Calculus, the equality implies not only equality of pointers but
also that the abstract objects represented by the cells are equal. Shal-
low equalities have several practical advantages, the most important of
which is that it is always easy to translate from programs with shallow
flow arcs to source code and back again. It can be arbitrarily difficult
to translate deep equalities into efficient code due to the difficulty of
deciding whether copying must be done to maintain the deep proper-
ties across intervening destructive operations. A point in favor of deep
equalities, on the other hand, is that they capture the designer’s intent
more closely, facilitating cliche recognition for example.

e Plans allow logical constraints among port values that are not implied
by either dataflow or box input/output specifications. For example,
two different box outputs may be constrained in the plan to be equal,
even if the specifications of the boxes are logically insufficient to imply
it. Programs do not allow such “extra” constraints. Disallowing such
constraints has the benefit of guaranteeing the useful property that
“any implementation of a box that provably satisfies the box’s specifi-
cation may be used to implement it while still maintaining correctness
of the overall program.” Several algorithms in the system depend on

®These are with respect to the version of Plan Calculus reported in (Rich & Waters,
1990). Since the publication of that book, the authors have modified the semantics of

plans to allow more expressive power. My system most closely resembles the original,
eager-semantics form.

72

this property for correctness. Plans do not have this property. The ex-
tra constraints allowed in plans are intended to capture partial designs
more flexibly.

Control flow arcs are allowed in full generality in plans; programs use
them only in implementing conditionals. I have not yet investigated
rerouting explicit control flow arcs, though it may allow added gener-
ality.

Plans use “situations” to model control flow ordering, mutable object
state, and non-termination. By contrast, the only control flow in pro-
grams is implicit in conditionals; stores model mutable object state;
and non-termination can be modeled as a separate (“bottom”) type.

73

Chapter 4

Program Function

By “program function” I mean logical properties that are true of the compu-
tation performed by the program. These properties may refer to intermediate
values within the computation as well as top-level input and output values.
The system uses representations of program function to help find and to help
justify optimizations. Here are some informal examples of program function
statements:

® COPY-LIST does not change the contents of any cells allocated in its
input store.

e The value produced at the internal port $MY-REVERSE.CONC.L2 is a fresh,
length-one Lisp list 'whenever the (value of) $MY-REVERSE.L is a non-
empty, finite Lisp list.

® The output list of COPY-LIST must be abstractly equal to the input list.

The system accepts, constructs, and uses representations of statements
such as these. This chapter defines the system’s representation of them. The
formalism is designed both to have sufficient expressive power to represent
partial correctness properties of programs and to support the manipulations
performed by the system, the most important of which is proof generalization
(discussed in Chapter 5).

74

4.1 Terms and Clauses

Program function is expressed as a collection of clauses, each of which ex-
presses a constraint among some program port values. A clause is a set
of boolean-valued terms, representing the logical disjunction of the terms.
Terms represent standard logical terms from predicate calculus.

4.1.1 Syntax

The system’s logical notation is essentially second-order predicate calculus
without existential quantifiers. Except for free variables in the function po-
sition, it is similar to the logic of the Boyer-Moore theorem prover (Boyer &
Moore, 1988). I present the details both for completeness and to fix notation.

A term is either atomic or compound. Compound terms are formed syn-
tactically by surrounding a sequence of terms with parentheses. The terms
making up a compound term are called its subterms. Atomic terms have
no subterm structure, and their names fall into three categories: function
symbols, free variables, and pathname terms.

Function symbols are character strings not containing spaces and not
beginning with a question mark. Examples include NIL, +, =, and A?. The
single-character identifier $ is not allowed as a function symbol.

Free variables are written as alphanumeric identifiers whose leading char-
acter is a question mark, such as ?N and 74. Note that free variables may
appear in the function position of a compound term.

Pathname terms are in one-one correspondence with program structure
pathnames, and are denoted in exactly the same way as pathnames.

A negated term is a term of the form (NOT t) where t is another term.
The negation of a term is (NOT t), except that multiple negations are canon-
icalized so that not more than one NOT may appear in a row.

A clause is a set of terms (some possibly negated), written in standard
set notation. Here are some examples of clauses:

° {?X}
. {(NOT (CHI-C ?C)), (> (CSIZE 7C) (ZER0))}
° {(NOT (CHI-C 7C)),

(NOT (A? (V 7C $P.ENV))),
(= (Q (V 7C $P.ENV)))}

75

4.1.2 Semantics

I will define the meaning of a clause by giving a mapping M from clauses to
sentences of first-order predicate calculus. I will then assume that the reader
is familiar with the standard semantics of such sentences.

Define the action of the mapping M on a term or clause as follows:

e A compound term is mapped to the corresponding logical term ob-
tained by mapping each of the subterms using M and applying the
first mapped subterm to the rest. Thus, '

M((t1 t2 t3)) = M(t1)(M(t2), M(t3)).

¢ Function terms are mapped to distinct logical function constants.
e [ree variable terms are mapped to distinct logical variables.

¢ Pathname terms are mapped to constant symbols with names func-
tionally derived from the pathname. These must be disjoint from the
constant symbols used for function symbols.

¢ A clause is mapped to the universal closure of the disjunction of the
mappings of its constituents.

Here are the mappings of the three clause examples in the previous sub-
section:

o Vrz

® Ve [xc(c) V (CSIZE(c) > 0)),
which is commonly written Ve .[xc(c) = (CSIZE(c) > 0))].

¢ Ve [xc(e) V AV (c,[$P.ENV)) v Q(V(c,[3P.EWV)))),

which is commonly written

Ve [xo(e) A A2(V (e, [$8.ENV)) = Q(V(c,[§8.E0V)])]

$P.ENV | denotes the logical constant corresponding to $P.ENV. From now on, ‘
I will always use the unboxed form for pathnames, as no confusion can arise.

76

4.1.3 Ground Evaluation of Clauses

The system needs to be able to evaluate ground instances of clauses in a way
consistent with the semantics just given. In particular, it needs to be able to
decide whether a given clause is true, false, or unknown when all pathname
terms are replaced by concrete data values calculated by a computation. One
application of this is in IBR, where the top-level specification is evaluated on
the inputs and outputs of a test-case in order to see whether a proposed
optimization maintains correctness on that test-case. Another application is
when IEBR evaluates target conditions using trace data to evaluate a pro-
posed optimization. The system, therefore, includes a clause evaluator that
is capable of performing this evaluation. The clause evaluator takes in the
clause and a program trace and puts out true, false, or unknown.

The clause evaluator consists of a universal instantiator and a term eval-
uator. The universal instantiator attempts to convert a clause containing
free variables into an equivalent finite set of clauses free of variables having
the property that the clause is true if and only if every set member is true.
If it fails to do so, the entire clause evaluates to unknown. To evaluate a
variable-free clause, the system calls the term evaluator on each term of the
clause until one returns true. If one is true, then the clause is true; if none
are true, but some are unknown, then the clause is unknown; otherwise the
clause is false.

The clause evaluator encodes domain knowledge in the term evalua-
tion functions and universal instantiators; this is another place that domain
knowledge must be entered by the user.

Universal Instantiation.

User-supplied instantiation experts perform the instantiation of the uni-
versally quantified free variables in a clause. Each expert examines the
clause, possibly calling the term evaluator on variable-free terms, and de-
cides whether it knows how to instantiate one or more of the variables in it.
If so, then the expert returns a mapping of variable(s) to value-list(s) that
defines the set of concrete clause instances to evaluate. If more than one ex-
pert tries to instantiate the same variable, one is chosen arbitrarily. Once all
the variables are eliminated by some collection of experts, the variable-value
maps are composed and returned to the clause evaluator, which then tries

77

each combination of values sequentially.

It is impossible (or impractical) to instantiate a quantification over an
infinite or large domain. Thus, a clause like {(= (+ ?N 7N) (* 2 7?N))} can-
not be handled soundly by the system. Fortunately, bounded quantifica-
tion over relatively small domains is often sufficient to express the necessary
constraints.! Here are some examples in both English and clause form, where
I've highlighted portions corresponding to the bounding of the quantification:

o Every member of the input list is a member of the output list:

{(NOT (MEMBER? ?X $P.Lin)), (MEMBER? ?X $P.Lout)}

e Every cell allocated in the input store maintains its binding in the out-
put store:

{(NOT (CHI-C ?7C)),
(NOT (A? (V 7C $P.ENV))),
(= (V 2C $P.ENV) (V ?7C $P.P-ENV))}

e The kth entry of the list is a number for every number? k less than the
length of the list:

{(NOT (< ?K (LENGTH $P.Lin))), (CHI-N (NTH ?K $P.Lin))}

In the first example, an expert would notice the form of the first term of
the clause, instantiating ?X by all the members of the list to which $P.Lin
evaluates in the current test-case. In the second example, a different expert
would notice the form of the second term and instantiate 7C with all cells
allocated in the input store. In the third, the system would instantiate 7K by
the integers 0...1 — 1 where [is the length of the list.

Term Evaluation.

Term evaluation is performed recursively. An atomic term is evaluated ac-
cording to its type: a pathname term is looked up in the current test-case

When large domains are required, instantiation experts can be coded that return a
list of representative values rather than all values. This hasn’t been necessary for the
examples I’ve run so far.

’In the domain knowledge given the system for the experiments the only “numbers”
are the nonnegative integers.

78

trace; a function term evaluates to an effective subroutine that can compute
it via lookup in a user-supplied table of primitive term evaluation functions;
a free variable evaluates to unknown, because it should have been instanti-
ated away before term evaluation. A compound term is evaluated by first
evaluating its subterms and then applying the subroutine corresponding to
the evaluation of the function subterm to a list of the evaluated other sub-
terms. If the function evaluates to unknown, then the entire compound term
does as well. Term evaluators may return unknown.

Note that the data values are the same as those produced by the pro-
gram evaluator. Also, if a function symbol term has the same name as a
computational primitive program, then the primitive’s (user-supplied) pro-
gram evaluator is called. This allows for greater consistency and sharing
between the program evaluator and the clause evaluator.

4.2 Optimization Invariants

Having defined a representation for program function statements, I will now
define, in terms of this representation, one of the key items of information
that must be input by the user of the system, the optimization invariant.
Later (see Chapter 9) I will define another class of function statement, target
conditions, that is derived and used internally by the system.

Informally, a program’s specification is a precise statement of the problem
it is required to solve. Formally, the system represents a program specifica-
tion as a collection of clauses referring only to program input ports and
output ports.® If for all input values the program’s computation always sat-
isfies all clauses of the specification, I will say that the program is correct
with respect to that specification.

A specification is a special case of optimization invariant, a logical state-
ment constraining the input/output functionality of a program. More gener-
ally, optimization invariants may state constraints among a program’s inputs,
its original (i.e. before it was changed by the optimizer) outputs, and its cur-
rent outputs (after the change). Typically, optimization invariants capture
the constraints required of a program for correctness in some larger context.
As such, these are what must be preserved by the optimization process.

3In Chapter 10, it will be useful to define the notion of a quasi-specification, which is
allowed to refer to values of internal elements of the program.

79

Representing optimization invariants for a program is crucial, because a
designer (in particular, an optimizer) that knows them has more freedoms
than does one ignorant of it. An optimizer may change the original design
even to the extent that the program gives different output values for given
inputs as long as the program is still correct with respect to the invariants. As
discussed earlier, traditional optimizers accept only the program’s structure
as input, having no access to more liberal constraints. This severely limits the
range of optimizations allowed, because the program must remain provably
correct with respect to all possible specifications satisfied by the program’s
structure.?

Note that optimization invariants expressed in terms of the original out-
puts of the program give one a way to express incomplete specification infor-
mation, by avoiding the need to formalize some properties of the outputs in
terms of the inputs alone.

The system represents optimization invariants as a collection of clauses
(implicitly conjoined). A special pathname syntax allows one to refer to the
original output values of a program: $P.0.0RIGINAL refers to the original
(unoptimized) output value corresponding to the program output $P.0.

There are both theoretical and empirical reasons to believe that it is sig-
nificantly easier to produce relative optimization invariants than those that
may not refer to the original outputs, which are essentially full formal spec-
ifications. In general, any problem that represents a single-valued function,
such as any decision problem, is trivial to check using the original outputs—
simply compare the new outputs to the old outputs for identity. On the
other hand, one can show that for decision problems, the checking problem
(without reference to original inputs) is equivalent to computing the problem;
of course, there are decision problems of arbitrary complexity. Appendix E
discusses the theoretical issues in more detail.

In addition to these theoretical considerations, practical experience indi-
cates that relative optimization invariants are much easier to produce and
use, as well. All of the LR1 examples (see Appendix C) run on the system used
essentially the same optimization invariants, modified only to reflect different
input and output names! Even with this somewhat restrictive information,

4This latter condition is not the same as “... must keep exactly the same output
values.” Language primitives only guaranteed to satisfy underdetermined specifications,
such as random functions or Lisp’s union, allow some variation in the output even in
complete ignorance of the program’s true specification.

80

the system was able to find the optimizations of interest. A similar story
applies to all SR examples, as well.

4.3 An Optimization Invariant Example

COPY-LIST takes in a pointer to a memory cell and a store and returns a
memory cell and a store. Informally, it must be side-effect free, and whenever
its output is a list of memory cells they must be fresh (newly allocated) with
respect to the input store. Furthermore, when the input is a NIL-terminated
CDR-chain, i.e. a legal Lisp list, the output must represent the same list,
that is, corresponding CAR pointers must be identical. Here are the clauses,
together with English paraphrases.

° {(NOT (CHI-C ?C)),
(NOT (A7 (V ?C $COPY-LIST.ENV))),
(= (V 7C $COPY-LIST.ENV) (V ?C $COPY-LIST.ENV-OUT))}

This says that for every cell allocated in the input store of COPY-LIST,
its binding in the input store must equal its binding in the output
store. CHI-C is a characteristic predicate for the memory-cell type.
The function V dereferences a memory cell pointer in a store, returning
a tuple (in this example, a pair) if and only if the cell is allocated. The
predicate A? decides whether the argument is a tuple or not; this is
used for telling whether a cell is allocated. $COPY-LIST.ENV is the input
store of COPY-LIST, while $COPY-LIST.ENV-0UT is its output store.

° {(NOT (CHI-C 7C)),
(NOT (SPINE? ?C $COPY-LIST.C-QUT $COPY-LIST.ENV-0UT)),
(NOT (A? (V ?C $COPY-LIST.ENV)))}

This is the freshness condition. It says that every cell in the spine of

the output list, i.e. all those accessible via a sequence of CDR operations
from the output list pointer, must not be allocated in the input store.

. {(NOT (LR1? $COPY-LIST.C $COPY-LIST.ENV))
(= (LR1 $COPY-LIST.C $COPY-LIST.ENV)
(LR1 $COPY-LIST.C-0UT $COPY-LIST.ENV-0UT))}
This expresses the abstract list function of the program. LR1? denotes
a predicate that is true if and only if the input cell and store pair
represents a finite list; LR1 (no trailing question mark) is an abstraction

81

function that maps the cell and store pair to the corresponding abstract
list. Thus, the clause says that if the input pair represents a list, then
the abstracted output must be equal to the abstracted input. Note
that the list elements are not abstracted; hence the abstraction is not
the same as that captured by the Lisp function EQUAL.

Note that the last property above could easily have been represented
relatively by replacing it with the following.

) {(NOT (LR1? $COPY-LIST.C $COPY-LIST.ENV))
(= (LR1 $COPY-LIST.C-OUT.ORIGINAL $COPY-LIST.ENV-0UT.ORIGINAL)
(LR1 $COPY-LIST.C-OUT $COPY-LIST.ENV-OUT))}

This expresses that the output, viewed as an abstract list, must
equal the original output, also viewed abstractly. For COPY-LIST,
whose list functionality is trivial, this is not obviously easier than
the direct formalization. Consider, however, replacing COPY-LIST with
REMOVE-DUPLICATES. Using the relative version of the third property,
one could simply convert the above using textual substitution. The
absolute formalization of the third property, however, would have to
be completely different and much more complicated.

82

Chapter 5

Proofs Connect Structure to
Function

The IEBR algorithm (see Chapter 9) exploits the intuitive idea that a hu-
man programmer uses knowledge of how a program’s structure implements
its function to help suggest and reject candidate optimizations. One way
to represent this knowledge is as a correctness proof demonstrating that the
program’s structure implies its specification. This is certainly not the only
possible representation, and it will probably not capture all of the program-
mer’s teleological knowledge, but it does have the following advantages:

e Proofs are well-defined formal objects, familiar to almost everyone.

¢ A proof contains enough information to derive approximate target con-
ditions (see Chapter 9).

e There is a relatively inexpensive way, using a kind of explanation-based
generalization, to derive target conditions from proofs.

The proof formalism defined below was designed to be powerful enough to
express interesting properties, yet simple enough to yield a relatively simple
generalization algorithm.

5.1 Proof Syntax

A proof is a finite, rooted tree. Each legal proof-tree represents a proof as
in first-order predicate calculus. Each node has a clause associated with it

83

that states the assertion proved by that subtree. Each node also has a type
(“inference type”) that indicates which inference step was used to deduce
the clause from those of its children, or what basis was used for assuming
the clause, if the node is a leaf. Each node may also have additional type-
dependent information, as discussed below.

If a node’s clause does follow from its children by the stated inference
step, or if it is an allowable leaf clause, I will term the node legal. If each
node in a tree is legal, then the clause at the root follows logically from (is
entailed by) the conjunction of the clauses at the leaves. Thus, to define the
proof-tree representation, I need only define the node types and the legality
criteria.

Some nodes must have a proof identifier which is a symbolic name for the
proof, used to access the proof library, a mapping from proof identifiers to
proof trees. Other nodes may or may not have identifiers. Proof identifiers
are provided both for convenience and documentation purposes.

5.1.1 Proof Nodes: Leaves

There are five types of leaf nodes.

:TAUTOLOGY Nodes

:TAUTOLOGY nodes may only contain clauses that are logically valid in the
theory of propositional calculus with ground equality. Such clauses are easy to
check by standard congruence closure techniques (Downey, Sethi, & Tarjan,
1980). I will term such tautologies PE-tautologies, for Propositional-plus-
ground-Equality. Here are some examples of PE-tautologies:

e aVa
o (a#b)Vavd
* (a#b)V(f(a) = f(b))

Any node whose clause represents a PE-tautology is automatically converted

to a :TAUTOLOGY node by the system. This type of node should have no
identifier.

84

:AXIOM Nodes

:AXIOM nodes state domain facts, such as “I is the successor of 0.” The only
legality checking done at this type of node is to ensure that the clause is not
a tautology and that it has an identifier for documentation purposes. If it is
a tautology, the node is converted to a :TAUTOLOGY type node.

:FORWARD Nodes

:FORWARD nodes state arbitrary facts. They are checked for legality in pre-
cisely the same way as :AXIOM nodes; I use this node type to represent facts
that are believed true, either to be proved later or simply assumed because
the user’s input program is assumed correct. The primary use for this node
type is in incomplete proofs, where we assume certain facts about the user’s
program because they are too hard to prove.

:DEFINITION Nodes

:DEFINITION nodes are used to define (predicate) names to stand for clauses.
Thus, they have extra information in addition to the clause: there is a (new)
predicate identifier and an ordered list of formal arguments. The clause is
that for which a predicate application stands. For example, suppose we have
a :DEFINITION node with predicate identifier P, argument list (?X, ?Y) and
clause {(NOT (A 7X)), (B ?Y)}. This means that for any terms t; and ¢, the
term (P t; ¢,) is logically equivalent to the clause {(NOT (A t;)), (B t2)}.
These nodes can only be used as children of :DEFINITION-APPLICATION nodes.
There is no legality checking other than that the fields are all present.

:PROGRAM-STRUCTURE Nodes

These nodes provide the connection between programs’ structure and clauses.
There are three subtypes of :PROGRAM-STRUCTURE based on the three different
ways of connecting values in a program functionally. The three are distin-
guished by extra node information as follows:

e Flow arc constraints in a program can be introduced into a proof
through the :FLOW subtype. To do this, one must give the source path-
name and target pathname. The pathnames must belong to the same

85

program and the program’s structure must contain a flow arc from the
source to the target. This information determines the clause completely
as follows: disjoin the term (= source target) to the negations of each
of the terms in the target’s condition. For example, if the source is
$P.I.Y and the target is $P.J.A and the target’s condition is {(NOT
$P.CN1.TEST), $P.CN2.TEST}, then the clause is

{$P.CN1.TEST, (NOT $P.CN2.TEST), (= $P.I.Y $P.J.A)}.

Constraints introduced by boxes can be used in a proof through the
:BOX subtype. To do this, one must give the box’s pathname and the
proof identifier naming the root of the proof-tree that proves some
clause of the specification of the box’s program type. Note that this
must be a specification clause, i.e. it may not refer to internal path-
names of the box’s type. Note also that it may not be a relative
clause; that is, it may not refer to the “original” outputs. Further-
more, the proof identifier must be declared to be one of the box’s
specifications. Such declaration is done when the box’s type program
is defined. This prohibits one from accidentally using unadvertised
properties of the box’s implementation. As an example, suppose the
freshness property of COPY-LIST’s output list (see Section 4.3) is proved
and the proof has identifier COPY-LIST-FRESHNESS-SPEC. Then suppose
we wish to use the freshness property in a proof about APPEND. We
must give the box’s pathname $APPEND.CPY and the proof identifier
COPY-LIST-FRESHNESS-SPEC as additional information. This then fully
determines the clause of the proof node to be the same as that of
COPY-LIST-FRESHNESS-SPEC, except the pathnames in the latter (all re-
ferred to the program COPY-LIST) must be renamed in the former to
their global names referred to APPEND. Here is the renamed clause:

{(NOT (CHI-C ?C)),
(NOT (SPINE? ?7C $APPEND.CPY.C-0UT $APPEND.CPY.ENV-0UT)),
(NOT (A? (V ?C $APPEND.CPY.ENV)))}

The other subtype of :PROGRAM-STRUCTURE allows proofs to refer to the
relationship between a conditional’s true-output (false-output) and out-
put ports. The only information needed here is the pathname of the
desired true-output (false-output) port. The clause is then either
{test-port, (= false-output-port output-port)}

86

or
{(NOT test-port), (= true-output-port output-port)}.

: PROGRAM-STRUCTURE nodes are conventionally without identifier.

5.1.2 Proof Nodes: Internal

There are four types of internal proof nodes. These are (mostly) familiar
proof rules from first-order predicate calculus.

:SUBSUMPTION Nodes

A :SUBSUMPTION node is legal if its clause is a superset of the clause of its
single child. No other information is necessary. This is sound, as AV B
obviously follows from A.

:RESOLUTION Nodes

A :RESOLUTION node represents a logical resolution. Let c¢; and c; be the
clauses of the node’s two children. I will say they resolve if there is a term
t (the resolvent) such that t appears in c;, and the negation of ¢ appears in
¢y. Then the :RESOLUTION node is legal if (1) its two children resolve with
resolvent ¢, and (2) its clause is (¢; —t)U(c;—1t). Note that it is legal for there
to be more than one resolvent, but the resulting clause is always a tautology.
Resolution is sound and complete for propositional reasoning.

:INSTANTIATION Nodes

Clauses referring to free variables are supposed to be true with the variable
bound to any individual. The :INSTANTIATION node allows one to conclude
the specific instance from the clause with the free variable. More precisely,
this type of node is legal if and only if there exist terms t,,. .., and distinct
free variables vy,...,v; such that the clause of the node is equal (as a set)
to the clause obtained by substituting each ¢; for v; in the clause of its child.

:DEFINITION-APPLICATION Nodes

These allow replacing a subclause by a single predicate term. This is useful
for introducing shorthand notations and for negating clauses. Such a node

87

has two children, exactly one of which must be a :DEFINITION node. Such
a node is legal if there exists a collection of terms t1,..., ¢ corresponding
to the k formal arguments of the :DEFINITION's predicate such that if we
call the substitution of the terms for the arguments in the clause of the
:DEFINITION the substituted definition, the following holds: the clause of the
:DEFINITION-APPLICATION node must both be a superset of the set-difference
of the clause of the non-:DEFINITION child and the substituted definition,
and it must contain the single term (P t1,...,tk), where P is the name of the
defined predicate.

As an example, suppose the definition-child is as given previously: predi-
cate name is P, formal arguments are (?X, 7Y), and clause is {(NOT (A ?X)),
(B ?Y)}. Further suppose the clause of the non-definition child is
{(NOT (A (ZERD))), (B (ZER0)), (G (ZERD))}.

Then a definition-application with these children could legally have any of
the following clauses:

o {(P (ZERO) (ZER0)), (G (ZERD))}

e {(P (ZERO) (ZER0)), (B (ZERD)), (G (ZER0))}

o {(P (ZERO) (ZERD)), (NOT (A (ZER0))), (B (ZER0)), (G (ZER0))}
but it could not have any of these clauses:

e {(G (ZER0))} - (missing (P (ZERO) (ZERD)));

o {(P (ZERD) (ZER0))} - (missing (G (ZERD)));

5.2 Proof Example

Figure 5.1 shows a proof of a lemma used by the system. It illustrates six
of the nine proof node types. The predicate APURE? is true of a pair of
stores if and only if all cells allocated in the first have the same bindings
in the second. This allows allocation and alteration of newly allocated cells
in the second store. The axiom (used twice) identified as APURE?-def is the
“converse” of the definition: whereas the :DEFINITION-APPLICATION replaces
the clause by the predicate, the “converse” replaces the predicate by the
clause. Conventionally, every defined predicate has an associated converse.

88

{(NOT (APURE? 781 782)),
(NOT (APURE? 782 783)),
(APURE? 781 783)}

:DEFINITIDN-APPLICATION

>

APURE? (781, 782) = {(NOoT (APURE? 781 782))
{(NOT (CHI-C 7C)) (NOT (A? (V 7C 781)))
(NOT (A? (V 7C 781))) (NOT (APURE? 782 783))
(= (v 7c 781) (V ?¢C 782))} (NOT (CHI-C 7))
:DEFINITION (= (v 7Cc ?81) (V 7C 783)))
:RESOLUTION

{(NOT (APURE? 781 782)) {(NOT (= (V ?C ?81) (V 7C 782)))
8{8: z:g:;: ;rg):m)) (NOT (A? (V 7C 781)))
N T 782 783
(= (Vv 7¢ 781) (Vv 7C 782))) :N:: ::::: 20)) »
: AXION APURE?-def (= (Vv 7¢ 781) (V 7¢ 783))}
:RESOLUTION

_—

{(NoT (= (Vv 7C 781) (V 7C 782))) {(NOT (= (V ?C ?81) (V 7C 782)))
(NOT (= (V 7C 782) (V 7C 783))) (NOT (A? (V ?7C 781)))
(= (V 7¢ ?81) (V 7C 783))) é:g; (CHI c?'rg)’)2 T
TAUToLoaY (= (Vv rC 782) (V 7C 783)))
:RESOLUTION

/\

{{NOT (= (V 7¢ 781) (V 7C 782))) {(NOT (APURE? 752 783))
(NOT (AT (V 7C 781))) (NOT (CHI-C 7€)

(A? (Vv 7¢ 782)) (HOT (A? (V 7C 782)))

: TAUTOLOGY (= (v 7¢ 782) (V 7¢ 783))}
: INSTANTIATION

{(NOT (APURE? 781 ?782))
(NOT (CHI-C 7C))

(NOT (A? (V ?C 7B1)))

(= (Vv ?C 781) (V 7¢ 782))}
: AXION APURE?-det

Figure 5.1: A proof of the transitivity of APURE?. This proof illustrates
six of the nine node types. APURE? expresses a relationship between stores
intuitively stated as “the second is obtained from the first through only
allocations and alterations of newly allocated cells.”

89

{(NoT (C X))

Q 7X)}
:RESOLUTION
{(NOT (B X))
c 7X
™ wmo
. AXION :RESOLUTION
{(noT (B X)) {(NOT (A X))
(A X)) Q 7%}
:AXION :RESOLUTION
{(noT (Q1 7X)) {(HOoT (A 7X))
(q 7x))> Q1 X))
T1 :AXTON :FORYARD

Figure 5.2: A proof, Ty, of the clause “for all z, if C'(z) holds then Q(x) also
holds”. The proof depends on three axioms and a “forward” (assumed) node
which is highlighted.

5.3 Weakened Relative Conditions

Consider the proof in Figure 5.2. The :FORWARD node is only assumed; how
can we logically weaken its clause (and possibly others in the tree) and yet
still be able to prove the desired conclusion at the root of the tree? This
will turn out to be useful for deriving conditions used for finding and proving
optimizations—weaker conditions allow more potential optimizations, be-
cause more objects will satisfy them. This section gives a technique for
weakening conditions at leaves of proof trees; Chapter 9 explains how the
technique is applied to program optimization.
One method for weakening is based on the following

Unioning Transformation: A proof having a subsumption

90

node, one of whose children is a resolution node, remains legal
after the following local transformation, where starred nodes may
be of any type:

® [J
- °
® []
D D
:RESOLUTION
: BUBSUNPTION |
N
~ /\
C A BuD
:RESOLUTION * : SUBSUNPTION
4 B (YY) B
* x *

By symmetry of the resolution rule, either child of the resolution node
may be used, or both by using the transformation twice. The transformation
is defined by the fact that the clause of the subsumption node on the right
is the union of the root’s clause and the clause of one of the resolution’s
children. Note that the root’s clause and the two original children’s clauses
are unchanged.

We can apply this to an entire path from the root of a resolution proof
to any particular leaf by first replacing the root with a trivial subsumption,
one with parent and child clauses identical, and then applying the unioning
transformation sequentially until the subsumption node is just above the
bottom of the chosen path. The bottom of the path may then be replaced
with any tree proving a subset clause of the subsumption node’s clause.

91

{(not (¢ X))
(¢ 7))
:RESOLUTION

/\

{(or (B X))
{(oT (c X))
(B ™)} Q ™)
: AXION (NoT (C X))}
:RESOLUTION

N

{(voT (B X)) {(voT (B 7X))

(A 70} Q™
. AXION (var (¢ X))

(NOT (A X))}
:RESOLUTION

A

NOT 7. {(NoT (B X))
X

(qQ X))

: AXTON (NOT (C X))
(NOT (A 7X))
QL X))
: SUBSUNPTION

{(voT (A X))
(QL 7X)}
:FORVARD

Figure 5.3: Applying the unioning transformation. This is the tree from
Figure 5.2 after applying the unioning transformation from the root down to
the :FORWARD leaf. Note that the tree remains legal (exercise for the reader).
It is potentially desirable if we want to find a weaker condition to replace the
:FORWARD leaf.

92

Figure 5.3 shows the result of applying the unioning transformation to
the example of Figure 5.2. Clearly, we may replace the :FORWARD leaf by any
node whose clause is a subset of the clause of the :SUBSUMPTION node. Note
also that the :SUBSUMPTION node’s clause js always a superset of the original
leaf’s clause, by construction. Thus, it is always logically entailed by (hence
weaker-than-or-equal-to) the truth of the original leaf clause. Thus, it is no
harder, and probably much easier, to prove the clause

A(z)VB(z) VC(@) V Q(z) V Qs(x)

than it is to prove

A(z) V Q1(z).
Note also that proving the weaker clause above is also strictly easier than
Just trying to prove one of the four clauses along the path from root to leaf
in the original tree (Figure 5.2). For example, the clause

o ——

B(z) v Q(z)

satisfies the weaker clause, but not any of the four pre-existing clauses.

I define the weakened relative condition of the leaf node n with respect
to the proof-tree T, denoted wre(n, T'), as the clause of the subsumption
node immediately above n after applying the (extended, see below) unioning
transformation on the path from the root to n.

The example used only :RESOLUTION internal nodes; for the unioning
transformation to apply to all proof trees, I must extend the unioning rules
to handle the other types of internal proof nodes. '

® :SUBSUMPTION nodes: A subsumption node whose child ¢ is also a sub-
sumption node may be replaced by a single subsumption node whose
child is the child of ¢ and whose clause is the same as the original node.

® :INSTANTIATION nodes: For this node type, we need some terminology.
Define the critical variables of clause c1 with respect to clause ¢, as
all free variables appearing in ¢; that do not appear in ¢;. Define the
function cterms(c, ¢1, ¢;) to be the set of terms In ¢ containing some
critical variable of ¢; with respect to ¢;. Finally, for a clause ¢, define
cler, ca) to be ¢ — cterms(c, 1, ¢;). Given these definitions, the unioning
rule for instantiation nodes is indicated in the following diagram:

93

c
: SUBSUMPTION

B
:INSTANTIATION

e :DEFINITION-APPLICATION nodes: These nodes are handled by the fol-
lowing proof transformation, where the notation is as in the instantia-

tion case:

94

C
: SUBSUNPTION

Bu cl[A,B]
: INSTANTIATION

AuBvU Cl A, B]
: SUBSUNPTION

c ¢}
:SUBSUNPTION : SUBBUNPTION
B Bu Cl A, B]
:DEFINITION-APPLICATION :DEFINITION-APPLICATION
D D
:DEFINITION :DEFINITION
A AUBuU Cl A, B]
. :SUBSUNPTION
A
L]

Clearly, these rules suffice to propagate an initial (trivial) subsumption
at the root all the way down to any chosen leaf, or group of leaves by simply
repeating the process once for each group member. I call this process parent-
child clause unioning (Pccu). If PcCU is applied to a given tree T with

respect to a set of leaves S simultaneously, then the set of clauses obtained
is denoted wre(S, T).

5.4 Proof-tree Restructuring

Suppose the previous example (Figure 5.2) had been structured instead as
in Figure 5.4, the difference being that one pair of resolution steps is done
in the opposite order. Whereas the first example was a linear sequence of
resolutions, the root of the second has two nontrivial subtrees. Applying the
extended unioning transformation to T, (denoting the :FORWARD node by n)
we obtain

wre(n, T2)={(Q ?X), (NOT (C 7X)), (NOT (A ?X)), (Q1 7X)}

95

{(not {Cc 7X))
@Q 7x)}
:RESOLUTION

{(NoT (C 7X))
(A)}
:FORWARD

N

{NoT (¢ X)) {(NoT (B 7X))

{(NOT (A X))

(B X)}
:AXIOM

:AXION

(A ™}

Q 7x)}
:RESOLUTION

N

{(NOT (Q1 7X))
(Q 7x)}
:AXTON

{(NoT (A 7?X))
Q1 7X)}
:FORYARD

Figure 5.4: A different proof, T, of the same clause as in the previous ex-
ample (Figure 5.2). Note that one pair of resolutions has been interchanged.

The unioning transformation gives a smaller (fewer disjuncts) weakened rel-
ative condition.

96

which does not contain the term (NOT (B ?X)) that was present in wre(n, Ty).

The first important point to understand about this example is that the
two conditions are precisely equivalent assuming the conjunction of the other
leaf nodes of the proof trees. That is, if we keep the domain theory fixed, the
two conditions are logically equivalent. This follows from first observing that
wre(n, T3) is a subset of (i.e. subsumes) wre(n, T), hence logically entails
it; and second, observing that one of the other leaves (of both trees) is an
axiom whose clause is {(NOT (B ?X)), (C ?X)} which can be resolved with
wre(n, T1) to get wre(n, Tp).

The second important point is that the larger condition has more dis-
Juncts, hence is probably more useful. For example, it might be easier to
prove things about the predicate B than directly about C. But the key advan-
tage of extra disjuncts is that more disjuncts tends to increase the generality
of the operational subset of the condition.

The explanation-based learning literature (Mitchell, Keller, & Kedar-
Cabelli, 1986; DeJong & Mooney, 1986) defines a condition to be operational
if it is stated in terms that are easily evaluated on a given data object; that
is, if the condition is operationally useful for recognizing objects that satisfy
it. Each problem-solver determines its own definition of “operational.” I
will define later what operationality means to my system, but part of that
definition is the fact that some predicates must be effectively evaluable to be
operational. Predicates that can’t be evaluated are not operational.

With this in mind, it is easy to see that a condition with more disjuncts
will usually have a more general operational subset than one with fewer
disjuncts. In the example, if the predicate B is operational and C is not, then
wre(n, Ty) has a more general (logically weaker) operational subset than does
wre(n, T;), because the former is satisfied when (B 7X) is false and the latter
need not be. .

IEBR uses PCCU to find an operational approximation to the weakest con-
dition on a target that guarantees program correctness. A more general con-
dition is satisfied by more sources, hence more optimizations will be allowed
if the generalization process produces a more general answer. As the example
illustrates, however, the process is sensitive to the form of the explanation
tree. While some degree of this sensitivity will remain, I have implemented
a way to restructure proofs that can improve the condition generated by
reorganizing the proof tree. The restructuring is performed by iterating a
terminating set of syntactic tree rewrite rules. Appendix D describes the al-

97

gorithm, RESTRUCTURE-PTREE(L, T'), which returns a tree T} that has been
restructured by pushing the leaf nodes in the set L down deeper, hence with
more intermediate clauses between them and the root.

98

Part 11

The Optimization Algorithms

99

Chapter 6

Overview of the Algorithms

The system incorporates two optimization algorithms, 1BR (for Invariant-
Based Redistribution) and IEBR (for Invariant-and-Explanation-Based Re-
distribution), the latter being an augmentation of the former. Both are de-
signed in accord with the generate-and-test paradigm, except that the testing
is done in cascaded filtering stages, each successive filtering operation being
more computationally expensive, but applied to less data than the previous.
The two algorithms are depicted schematically in Figure 6.1.

The thick arrows represent conceptual flow of the collection of pairs re-
maining under consideration (not yet eliminated). Thin arrows show use
of the different inputs: INV represents the optimization invariants; TEST-
INPUTS are the test input data; PROGRAM is the program structure; and
EXPLANATION is the proof. Note that both approaches have feedback paths
(dotted) from the output to the generator. These arise because pairs are
considered one at a time, and keeping or discarding a pair effects which pairs
are subsequently generated.

The following three chapters give the main ideas of the two algorithms.
Since the algorithms share the generation scheme, denoted by Generate in
the diagram, and the syntactic Pruning stage (prune-syntactically), these
components are discussed together in Chapter 7. Note that “Generate” is
not an explicit system function; rather, it is simply shorthand for the control
structure implied by Pair-Search and its callees discussed in Chapter 7.
The central search issues discussed there are the ways in which the system
(1) avoids searching an exponential space of optimization candidates, and
(2) orders the search, by estimated cost, to avoid the problem of insignificant

100

TEST- TEST-

INV INPUTS PROGRAM INV INPUTS PROGRAM EXPLANATION
Generate €| Generate <"
uusz 2285U
Prune- | Prune-
Syntactically| Syntactically
mi/L
i > N
4893 EB-Screen ‘/
: 254
— : ——»
Inv-Screen il Inv-Screen [
e —e—p
. 12 15
Certify Certify —
121 151
IBR IEBR

Figure 6.1: Conceptual diagram showing filtering stages in each of the two
algorithms, IBR and IEBR. Arrow widths indicate relative numbers of candi-
date pairs not yet eliminated, though widths are not to scale. Numbers by
the arrows are actual data (numbers of pairs) from the MERGE-SORT exper-
iment. Note that there is a feedback path (dotted) from the output to the
generator, because successful redistributions can cause structural elements
to be eliminated from consideration.

101

optimizations interfering with more desirable ones.

Chapter 8 discusses the invariant-based screening technique embodied
in the routine Inv-Screen. This is the heart of the IBR algorithm. Here,
the central concern is the extra design information (optimization invariants)
necessary to perform the screening.

Chapter 9 discusses the explanation-based screening technique of EB-
Screen, which is unique to IEBR. This chapter motivates, defines, and proves
properties of target conditions, the filter predicates used by EB-Screen. It
also explains how these conditions are derived automatically from correctness
explanations via a novel form of explanation-based generalization.

Throughout this part, I will use the following notation convention for
naming system objects. Procedures whose names appear in bold face are
system procedures with pseudo-code definitions given here. Functions whose
names appear in italic face are system functions for which I have not given
pseudo-code, but for which I have defined a specification, under the assump-
tion that their implementations are routine. Names appearing in SMALL
CAPITALS represent variables and formal parameters in pseudo-code!

Figure 6.2 shows a call graph indicating which procedures call which oth-
ers. Caller is always above callee and connected by a tree branch. Note that
certify is external to the system. Chapter 13 discusses the issues pertaining
to certification.

Throughout, I assume implementations of various bookkeeping details
and working datastructures to be used by the routines. Some of these datas-
tructures are operated on by side effect as the search proceeds; I will indicate
this in the pseudo-code. I will also assume a mechanism for retracting some
of the modifying operations. Implementing these low-level operations effi-
ciently is non-trivial but routine; therefore, I will not discuss them in detail,
except where necessary for clarity.

1BR and IEBR are exceptions to the small-capitals rule, since they denote the two
optimization algorithms. No confusion can result, however.

102

Pair-Search Pair-Search

AN

Prune- Prune-
Syntactically EB-Screen Syntactically
Inv-Screen Inv-Screen
Certify Certify
IBR IEBR

Figure 6.2: A call graph for the system, showing key subroutines.

103

Chapter 7

Candidate Generation

This chapter discusses the candidate generation process, including the syn-
tactic pruning phase, used by both IBR and IEBR.

7.1 The Problem

Abstractly, the system’s task is to find a set of redistributions that both
maintains correctness and improves efficiency as much as possible. Because of
several factors, such as the uncomputability of program efficiency, we cannot
hope for an algorithm that finds the optimal set of redistributions. As do
all program optimizers, we must settle merely for improving the program as
much as possible within limitations imposed by practicality. In the worst
case, we may even end up with a less efficient program.

A naive approach to search control would simply generate all possible
sets of redistributions, asking the candidate screener about the correctness
of each, and finally choosing the set that eliminates the most costly structure.
The difficulty with this is the astronomical number of such sets. If we let ¢
denote the number of targets in a given program and let s be the number
of sources, then there are st source/target pairs. It doesn’t make sense to
propose a set of such pairs where two or more have the same target, so the
total number of pair sets to consider is

2 (4)

104

which is much worse than exponential in ¢.! Since each port in a program,
except program inputs and outputs, can be viewed as both a source and a
target, the number of targets and the number of sources is roughly the same.
Furthermore, the number of targets grows proportionately to the size of the
input program, so even for programs of modest size, such a search would be
impractical.

To avoid this complexity, the system considers pairs one at a time and
never backtracks. The system’s search control method generates source/target
pairs, calling the candidate screener on each pair as it is generated, followed
by a compile-time certifier? if desired. For each pair, the screener/certifier
decides whether the redistribution maintains correctness of the current pro-
gram. This reduces the worst case number of screening operations to the
order of st. The incompleteness introduced by this approach appears not to
be much of a hindrance in practice®; the time/power tradeoff is well worth
it.

Note, however, that it is the responsibility of the search controller to pro-
vide the pairs in the right order, as once a redistribution is carried out it
will not be retracted.* The screener/certifier makes no judgements regarding
whether the redistribution actually improves the program’s efficiency. Search
ordering now becomes a central problem, because redistributions can mutu-
ally interfere; that is, it is possible for each of two redistributions to preserve
correctness by itself, but for the combination of the two to violate correct-
ness. Thus, the system must choose to do one first, thereby disallowing the
other one; hence it is important to choose the one that saves the most time
and space. I call this order-dependence among redistributions the interfer-
ence problem. As an example of this, consider a program that copies the
same input list twice before operating destructively on the result. Clearly,
the system may eliminate either one of the copies via redistributions, but if
it eliminates both copies the program would destroy the input list, violating
its specification. If one of the copy operations is more expensive than the
other, possibly because it is executed within a loop, then it is crucial for the

"This sum is greater than s', but less than 2** = (2*)’.

2A compile-time certifier is an external routine that checks whether a given pair is
correctness preserving in all cases. See Chapter 13 for further discussion of this.

3“In practice” refers to the 26 examples run, of which a representative set is given in
Appendix C. The examples are summarized in the Introduction.

“This is not completely true; see Section 7.2.

105

system to consider the more expensive one first. I will return to the issue of
cost shortly.

Another aspect of the search ordering problem is that if the system is
not careful, it can do a lot of work without eliminating any structure, i.e.
without improving the program. This stems from the fact that all outputs of
a box must be disconnected from all program targets before the box can be
eliminated from the program. A great danger, therefore, is that the system
can waste time finding and carrying out a number of redistributions that do
not lead to actual improvement and that may in fact prevent other, more
useful redistributions. I call this the focus problem.

In addition to search ordering, the system is faced with the fact that st
pairs is still a lot of pairs to consider. As argued earlier, this is roughly
quadratic in the program size. Moreover, it turns out that most of these—at
least 50% and typically 80-90% in the examples run so far—are obviously
illegal. One source of such pairs is static type conflicts. For example, any pair
whose source is of type number and whose target is of type store is obviously
bad. Illegal pairs also arise out of causality conflicts: any pair whose source
is a causal successor of its target results in an illegal program, having a flow
arc cycle. Fortunately, it is easy to rule out these obviously bad pairs.

7.2 Tl:le Solution Method

The system’s approach to-search control attempts to avoid all the problems
mentioned in the previous section.

® As mentioned previously, the system avoids a combinatorial explosion
by considering redistributions one at a time and never backtracking.
Note that the system may retract a redistribution once it has been
carried out—if the redistribution does not contribute to eliminating a
box—but since it will never then reconsider adding the redistribution,
this is not the type of backtracking that results in combinatorial search.

® The system avoids the focus problem by grouping pairs together that
contribute to eliminating a particular box and considering one group
at a time before going on to the next group. Successful members of
a group corresponding to a box are only kept if there are enough to
eliminate the box; that is, enough to completely disconnect its outputs.

106

e The system avoids the interference problem only partially. It considers
boxes in order from most expensive to least expensive, hence if two pairs
interfere, the one eliminating the more costly box is considered first. Of
course, computing exact costs of programs is impossible, so the system
uses a crude qualitative cost estimation technique. See Section 7.2.2 for
the details of this cost function. This approach only partially solves
the interference problem, both because the cost estimator is crude and
because there exist programs where a more costly box may only be
eliminated after a less costly box.

e The system uses simple syntactic criteria to eliminate obviously illegal
pairs. See Section 7.2.3 for details.

7.2.1 Pseudo-code Description

This subsection gives a high-level pseudo-code description of the candidate
generation algorithm. Conceptually, search control is implemented in the
single top-level procedure, Pair-Search, which takes the program to be op-
timized and, via the input parameter SCREEN, a function to use for screening
candidates. Currently, the only choices for this function are Inv-Screen and
EB-Screen. These functions are discussed in subsequent chapters. Pair-
Search is defined in terms of three other key subroutines, also defined below.

The code maintains a global working datastructure, referred to as the
“program datastructure,” corresponding to the program under optimization
and operates on it by side effect. Auxiliary function names are written in ital-
ics; such functions have access to and may operate on the working datastruc-
ture. cost(-) is the cost function on program boxes defined in Section 7.2.2,
and prune-syntactically(-,-,-) is the function that rules out obviously illegal
sources for a given target (see Section 7.2.3). Names of procedures defined
here are written in boldface; local variable names are written in small capi-
tals. Recall that a recursion box is a box whose program type is the same as
that of its parent program.

107

- Procedure Pair-Search (PROGRAM, SCREEN) : set of source/target pairs
Initialize global datastructures for PROGRAM
RESULT-PAIRS « {}
BOXQ « bozes(PROGRAM), sorted by decreasing cost(:)
While BOXQ is not empty
CURRENT « head(BOXQ); remove CURRENT from BOXQ
If physical(CURRENT)
Then BOX-RESULT « Try-to-eliminate-box(CURRENT, SCREEN)
If BOX-RESULT is not empty
Then add BOX-RESULT to RESULT-PAIRS
Else If boz-type(CURRENT) is not a primitive program
Then If CURRENT is a recursion box
Then add all non-recursion members of
bores(boz-type(CURRENT)) into BOXQ
Else add all bozes(boz-type(CURRENT)) into BOXQ
Re-sort BOXQ by decreasing cost(-)
Return RESULT-PAIRS.

Procedure Try-to-eliminate-box (BOX, SCREEN) : set of pairs
RESULT-PAIRS « {}
OUTPUTS « outputs(BOX)
While OUTPUTS is not empty
If there exists NEXT € OUTPUTS such that
(PAIRS « Try-to-eliminate-box-output(NEXT, SCREEN))
is not empty
Then add PAIRS to RESULT-PAIRS
and remove NEXT from OUTPUTS
Else retract all program datastructure changes caused by this call
and return {}
Return RESULT-PAIRS.

108

Procedure Try-to-eliminate-box-output (OUTPUT, SCREEN) : set of pairs
RESULT-PAIRS « {}
TARGETS « all targets connected to OUTPUT by a flow arc
For each TARG in TARGETS
NEW-SRC « Find-substitute-source(TARgG, boz(OUTPUT), SCREEN)
If fail?(NEW-SRC)
Then retract all program datastructure changes caused by this call
and return {}
Else add the pair (NEW-SRC, TARG) to RESULT-PAIRS
and carry out this redistribution on program datastructures
Return RESULT-PAIRS.

Procedure Find-substitute-source (TARGET, BOX, SCREEN) : source or fail
POSSIBLE-SOURCES «— prune-syntactically all-sources(), TARGET, BOX)
For each SRcC in POSSIBLE-SOURCES

If SCREEN(SRC, TARGET) then return SRC
Return fail.

The rest of this section discusses the two key auxiliary functions, cost(-)
and prune-syntactically(, -,).

7.2.2 Cost Estimation

Automatically determining the exact computational costs of a program is
an impossible task in general. Even obtaining functional order measures
is difficult (Le Matayer, 1988). For our purposes, however, such detailed
calculations appear to be unnecessary for adequate optimization results. A
crude qualitative measure suffices to determine which order to consider boxes
for elimination. This subsection defines this measure.

The function cost(-) computes the use-cost of its input box. This is dis-
tinct from the program-cost of a given program. The program-cost of a
program is a rough estimate of its run-time and (non-stack) space usage.
Use-cost, on the other hand, includes a consideration of where the box is
situated within the program. That is, it represents the cost to the top-level
program of the box over all invocations. For example, if we have a box whose
program type only requires constant time to execute but the the box is nested

109

within a loop with a linear number of iterations, the use-cost of the box is
linear while the program-cost of its type is constant.

Costs (both kinds) take on values that are pairs (time, space) of non-
negative integers where time represents the time cost and space represents
the space cost. Increasing numbers indicate only an increase in nesting level
within recursions; no account is taken of the relative sizes of the ranges of
the recursions. A cost of 0 in either coordinate indicates no cost at all in
that resource. A program constant box, for example, typically has cost (0, 0).
A cost coordinate of 1 indicates a constant, but non-zero, cost; 2 indicates
“linear” cost, 3 indicates “quadratic,” and so forth. These are only intuitive
guidelines, however.

For convenience, I define a cost incrementation operation, costl+, as

follows. Let inc-nonzero be the function that maps 0 to 0 and n to n + 1 for
n > 0. Then '

cost1+(a,b) «f (inc-nonzero(a), inc-nonzero(b))

A box’s cost is incremented when a box is used in an iteration, but iterating
a zero-cost function does not increase its cost.

Program-cost

Computational primitive programs (see Section 3.4) must be assigned costs
by the domain knowledge provider. Here are some examples:

o Constant programs (like ONE) are assigned the program-cost (0, 0).

® Accessing through a pointer (e.g., via CAR), which allocates no new
memory, is assigned the cost (1,0) indicating constant time and zero
space.

. Ailoéating a memory cell is assigned (1,1).

e Series operations that do not allocate memory are assigned cost (2, 0)

because they typically represent iterations. Operations that do allocate
memory cost (2,2).

If a non-primitive program does not call itself, it will get a program-cost
equal to the maximum of the program-costs of its boxes’ types. Otherwise,

110

the recursive structure must be taken into account. More precisely, costs of
non-primitive programs are determined as follows. First, program-costs are
calculated recursively for all box-types within the program, avoiding loops
caused by recursive programs, of course. Next, each box, b, in the program is
assigned a context cost function, denoted contezty(c), that maps a cost to a
cost as follows. If b’s condition does not conflict® with that of some physical
recursion box® in the program, and if 4 is not itself a recursion box, then
contexty(c) = costl+(c). In this case, I will say that b lies in a recursive
branch of the program. Otherwise, contexty(c) = c. The program cost of the
entire program is defined to be the maximum over all non-recursion boxes b
in the program of context,(program-cost(boz-type(b))).

As an example, the program-cost of MY-REVERSE (see Figure 1.2) is (3, 3),
because the box $MY-REVERSE.CONC has the same condition as the recursion
box $MY-REVERSE.REC and also has program type APPEND, which in turn has a
program-cost of (2,2). APPEND (see Figure 3.4) has a program-cost of (2,2) be-
cause the box $APPEND.CPY has program type COPY-LIST which has program-
cost (2,2). Finally, COPY-LIST gets its program-cost from the series primitive
ZCOPY-CELL.

Use-cost

The use-cost cost(-) of a box is intended to capture its contribution to the
top-level program using it. It can be defined recursively using pathname
notation as follows:

® cost($P) = program-cost(P)

® cost($P.I11.1I2.Ik) = contextsp 1(cost($P1.12.....1k)), where
P1 = boz-type($P.11).
Essentially, for every level of recursive nesting within which the box appears,
its program-cost is incremented once (via cost! +). Note that cost($P) is the
program-cost of the program P.
Thus, for example, cost(tHY-REVERSE.CONC.CPY.ZCC) is (3, 3), because it is
nested within the MY-REVERSE recursion. cost($MY-REVERSE. REC .REC) is (3, 3)

STwo conditions conflict if there is some test port appearing positively in one and
negatively in the other. Conflicting conditions imply the two boxes are never both executed
on the same invocation.

Recall that a recursion box is one whose type is the same is its parent program.

111

as well, because even though it is nested inside a recursion, it is itself a
recursion box.

Cost Comparison

Since costs are not numbers, they cannot be compared using the traditional
< relation. Instead, I have defined a total order on costs lexicographically as
follows. I will overload the < symbol to apply to this total order as well as
numbers. (a,b) < (a/,¥) if and only if either

e a<d, or
e a=a and b< V.

Thus, the costs are first compared on their time-cost coordinate; then, if
the time costs are equal, their space-costs are compared. This scheme places
primary emphasis on run-time and is based on the assumption that allocating
space requires time proportional to the number of cells allocated. This model
is appropriate, for example, on pointer architectures and on machines where
allocating space implies initializing it as well, such as in the language C,
as long as memory is allocated using the function calloc. The assumption
implies that for all costs (a,b), a > b.

Shortcomings

This technique of cost estimation is rather crude; hence it fails to make
some desirable distinctions. For example, the Fibonacci program (see Sec-
tion C.1.2) gets a program-cost of (3,0), so will be treated the same as
quadratic programs. It is, of course, exponential. This problem stems from
the fact that it calls itself twice per invocation rather than once, a subtlety
missed by the cost(-) function.

Another drawback is in the fact that cost(-) ignores relative lengths of
iteration ranges. This can skew estimates considerably. For example, the
MERGE-SORT program (see Section C.2.5) is assigned a program-cost of (3,3)
(“quadratic”) even though its actual complexity is n log n, a complexity class
without direct correspondence in the cost scheme. This could result in boxes
of type MERGE-SORT being considered before more costly, quadratic boxes.

Even in the face of these and many other drawbacks, this approach to
cost estimation and comparison has two key advantages: (1) it is simple to

112

compute, using a table to avoid repeated program-cost computations, and
(2) it has performed well in guiding the search. A more accurate alternative,
while desirable, must still be be easy to compute and must significantly
outperform cost(-) as a search control function.

7.2.3 Syntactic Pruning

The function prune-syntactically(source-list, target, bozr) returns a sublist of
source-list that contains only “syntactically plausible” alternative sources for
target. This list is always finite. The boz argument allows it to throw out any
sources associated with boz; this is always the box that the system is trying
to eliminate. It would be counter-productive to consider sources within boz if
1t is the one to be eliminated! The rest of this subsection explains the other
criteria used to discard sources from source-list.

First, all sources appearing within any virtual structure (at any level) are
discarded.

Next, all sources with static types incompatible with the static type of
target are eliminated. This is tested by STATIC-TYPE-CHECK?, as discussed in
Chapter 3.

Next, all sources that are causal successors of target are discarded, lest the
corresponding redistribution create a flow arc cycle. This, of course, extends
to all levels of the hierarchy.

Next, any sources (or targets”) that reside in branches of the program that
were never executed for any test case are discarded. Clearly, no information
is available, so screening such candidates would be a waste of time. To get
these considered, the programmer must enter more test cases.

Finally, pruning is done based on target’s position in the recursion struc-
ture of the program. If target lies within a recursion box, then only sources
from the body of the immediate parent call are kept. This reflects the fact
that other possibilities are redundant, because they are accounted for by
targets within the parent call. Also, sources within more than two levels of
recursion of the same type are discarded, because we have to stop somewhere
to get a finite list.

"Unreached targets are ruled out in Try-to-eliminate-box-output, causing the entire
box output to fail to be eliminated, thus causing the entire box to fail to be eliminated.
This is a refinement left out of the pseudocode for clarity.

113

7.3 Discussion

This approach to search control has worked well; on every example run so far
(see Appendix C) the system completes in a reasonable® time, with adequate
optimization results. A nice feature of this approach, though one I haven’t
used, is that basing the search on estimated cost provides a meaningful way of
limiting the optimization search, in case programs take too long to optimize.
That is, one can set a cost threshold that tells the system not to consider
boxes whose cost estimates are at or below the threshold. Thus, we can avoid
wasting a lot of time for relatively little return. I expect this feature will be
crucial to applying the system to large programs.®

The system’s approach is heuristic and can occasionally fail to exam-
ine boxes in the right order, because getting the most improvement requires
eliminating a low-cost box before a high-cost box can be eliminated. Typi-
cally this will result in the system eliminating the low-cost box but not the
high-cost box. This is a manifestation of the well known “local maximum”
problem that afflicts all hill-climbing approaches. It is not yet clear how
much of a problem this is, though it has not occurred in the 26 examples
run so far. A possible solution (not as yet investigated) is to re-check a box
when a target of one of its outputs is rendered virtual by an optimization
that occurs after the box itself has been checked. This could succeed because
that target may have been the only one for which a substitute source could
not be found.

The most serious lack of generality in the implementation is that com-
plicated recursive structures (such as coroutines) where there is indirect re-
cursion cause the system to go into an infinite loop. This is because it only
checks for selfrecursion in considering whether to add a box to the process-
ing queue. Also, the cost estimation functions check only for self-recursion
as well. T expect that extending the system to handle more general recursion
will not be too difficult. :

Another small problem with the approach is the fact that it only examines

8By “reasonable” I mean in a time consistent with a low-order polynomial function.
Keep in mind that actual times are inflated by the fact that the implementation has not
been engineered for maximum efficiency.

%All examples were run with this cost threshold set to (0,0). I left the threshold test
out of the pseudo-code description of Pair-Search for simplicity. It would appear as an
additional condition to be checked before adding a box to the Boxq.

114

boxes and sources down to a fixed level of recursive nesting. One can always
construct examples requiring examination of deeper boxes; on the other hand,
one can’t allow the system to descend forever into a recursion. This problem
has not yet arisen on my examples.

115

Chapter 8

Candidate Screening I:
Inv-Screen

The Inv-Screen candidate screening procedure takes in a source/target
pair for the program to be optimized, together with appropriately initial-
ized datastructures constructed by Pair-Search, and decides whether the
pair defines a “believable” redistribution. If the system is to be run with
a compile-time certifier’, then Inv-Screen calls it after first screening the
candidate for consistency with the test inputs.

8.1 Pseudo-code Description

The following is a somewhat idealized description of the Inv-Screen screen-
ing procedure. In reality, some of the program datastructure alterations done
here and in the caller (Pair-Search, et al.) would be shared instead of done
twice and retracted in between. A compile-time certifier certify(-) would also
take advantage of internals of this and the other routines for efficiency. These
details are suppressed here.

To use Inv-Screen, the programmer must provide a comprehensive col-
lection of effective optimization invariants. In the current system, each of
these is a clause expressing some constraint between the inputs and outputs
of the program. As stated earlier, each is effective if it can be evaluated

1See Chapter 13.

116

on ground instances by the system’s clause evaluator. Each may be rela-
tive in that it may be expressed in terms of special pathname symbols that
designate the outputs of the unoptimized program (these are the program
output pathnames extended by the keyword ORIGINAL). Note that for the
purposes of Inv-Screen alone, there is no reason for these invariants to be
in clause form; they could simply be black-box Lisp subroutines provided by
the programmer. I formulate them here as evaluable clauses for uniformity
of mechanism with EB-Screen (see Chapter 9).

The programmer must also provide only a set of representative test inputs,
rather than test vectors, which would include the outputs as well. The whole
point of using optimization invariants is to allow the optimizer the freedom
to change the exact output values for a given input if it makes the program
more efficient.

Procedure Inv-Screen (SRC-TRG-PAIR) : Boolean
[Assumes program datastructures are initialized appropriately
for the current program to be optimized.]
Carry out redistribution corresponding to SRC-TRG-PAIR
For each test input TEST, of the program to be optimized:
Evaluate the altered program on TEST producing new outputs
For each optimization invariant, INV, of current program
Evaluate INV on inputs and new and original outputs for TEST
If INV is not satisfied
Then retract all program changes made by this call
and return FALSE
Retract all program changes made by this call
If a compile-time certifier, certify, is available
Then return certify(SRC-TRG-PAIR)
Else return TRUE.

8.2 Discussion

Inv-Screen is more powerful than EB-Screen, but suffers from several
drawbacks of varying degrees of import. By far the most important difficulty
is in the number of test input evaluations required. The other difficulties are
relatively minor.

117

8.2.1 Optimization Power

Inv-Screen is conceptually simple, yet surprisingly powerful. The basic
observation regarding its power is that it will not rule out any correct re-
distribution (i.e., it gives no false negatives), assuming the input invariants
accurately reflect the desired postconditions. It can give false positives due
to unfortunate test coincidences; this is a consequence of substituting test
input reasoning for general theorem proving in the screening phase. If an om-
niscient certify(-) is available, however, then Inv-Screen will answer every
query correctly, but generally much faster than simply calling certify(.), with-
out screening, every time. Calling certify(-) on every pair would be drastically
slower, because it would involve calling something like a theorem prover on
every pair in the program. Since there are potentially hundreds, thousands,
or more pairs in a program such an approach would be impractical.

The only redistributions missed will be those ruled out by inconsistency
with an overly-conservative optimization invariant, and those which certify(-)
is unable to prove correct. Missing a redistribution because of a too-conservative
invariant can be viewed as a defect in the input rather than in the algorithm
itself.

8.2.2 Test Input Evaluations

Most important of Inv-Screen’s shortcomings is that it requires altering
the program and re-evaluating all test inputs once per candidate pair. In
particular, many of these runs will be of the almost completely unoptimized
program. Mitigating against this, however, is the hope that one can find a
small set of small tests that are sufficiently representative for optimization,
yet run the optimized (“production”) program frequently on much larger
cases. For example, FIB, in its unoptimized form, is exponential, so can only
be run on small tests; but the optimized form is linear? and can be run
practically for much larger inputs. Moreover, the single test input 4 suffices
for optimization. Obviously, Inv-Screen is impractical to use on programs
for which the only representative test sets are complex. This property should
not be confused with complexity of the program itself: large and complex
programs can have small representative tests. Moreover, even if no such
set exists, it may still be possible to find small test sets that execute only a

%that is, the number of recursive calls is proportional to the input value

118

portion of the program, allowing the system to optimize the executed portion
and ignore the unexecuted. I believe it is an open empirical question as to
whether “real-world” programs have small enough representative test sets for
Inv-Screen to be practical.

8.2.3 Certification Difficulties

The next most important shortcoming of Inv-Screen is its tendency to find
conjectured optimizations that are difficult to prove correct (or incorrect).
Inv-Screen passes these because it passes all redistributions whose resulting
program outputs are consistent with the optimization invariants on all test
inputs, regardless of the underlying correctness reasoning. This property is
a double-edged sword in that on the one hand, one is impressed by clever
optimizations; on the other hand, such optimizations are dangerous unless
they can be certified.> Both intuitively and practically, redistributions that
represent small perturbations on the correctness argument of the program are
easier to prove correct than clever ones that are based on deep domain rea-
soning or complicated reasoning about the dynamic behavior of the program.
The reason is that with a perturbation, “most” of the correctness proof of the
program is simply carried over to the new program. Thus, it would be best
if the certifier could be called only on the perturbation-type of optimization,
as the other type is likely to consume lots of resources. Unfortunately, Inv-
Screen has no way of distinguishing the two types and simply reports all
of them. By contrast, EB-Screen usually does find only perturbation-type
optimizations (see Chapter 9).

A compile-time certification scheme is more vulnerable to this difficulty
than is a run-time scheme. Obviously, if the optimization is correct, then
the run-time scheme (see Chapter 13) will never find a bug in it and thereby
pays no cost due to it. If there is a bug, however, it will be found the same
as any other optimization-induced bug.

8.2.4 Program Checking Difficulty

Another, less important, shortcoming of Inv-Screen is its reliance on ef-
fective optimization invariants. The issue of program checking—coding a

3See Chapter 13 for a complete discussion of certification schemes.

119

routine to check the correctness of the outputs of another program—is one
that has received quite a bit of attention recently (Blum & Kannan, 1989).
I have extended this notion to include relative program checking—where the
checker is allowed access to the outputs of the original (unoptimized) pro-
gram. It is both theoretically and practically easier to find relative checkers
than non-relative ones. I will sometimes use the term “program checker” to
mean a complete set of effective optimization invariants.

It is difficult enough to formalize specifications of complex programs; for-
malizing effective ones figures to be harder. In fact, there are computational
problems that have easy programming solutions, but for which it is impossi-
ble to code an effective program checker for the problem. For example, the
“compiler problem” of constructing a low-level machine code program equiv-
alent to a given high-level source program has become routine—people write
compilers all the time—yet computation theory shows that it is impossible
to write a program that can tell for every (low-level program, high-level pro-
gram) pair whether the high-level program computes the same function as
the low-level one. This is true even given access to a known correct compiler
for the same language; hence, even a relative program checker is impossible
for the compiler problem. On the other hand, there are many examples of
problems for which it is easy to find effective invariants. (All of the examples
in Appendix C—except APPEND, which is simple enough to do absolutely—
were done using relative invariants.) Moreover, it is usually much easier to
find relative invariants than non-relative ones (i.e. postconditions); of course,
it can reduce optimization power somewhat, by not allowing as much freedom
as possible. v

The uncheckability of some problems has not been an obstacle in prac-
tice. Appendix E, however, explores the relationships between computability,

checkability, and relative checkability from the standpoint of computation
theory.

120

Chapter 9

Candidate Screening II:
EB-Screen

The EB-Screen candidate screening procedure satisfies the same input/output
specification as Inv-Screen: it takes in a source/target pair for the program
to be optimized, together with appropriately initialized datastructures con-
structed by Pair-Search, and returns whether or not the pair preserves
correctness on all test cases, or whether the pair is correct in general if a
certifier is used. If the system is to be run with a compile-time certifier, then
EB-Screen calls it! after first screening the candidate for consistency with
the test-cases. The key difference between Inv-Screen and EB-Screen is
in how they perform this task.

9.1 Pseudo-code Description

As in the case of the pseudo-code for Inv-Screen, the following pseudo-code
for EB-Screen is somewhat idealized and has many details suppressed for
clarity. Again, the actual implementation is optimized so that expensive
operations like program surgery are shared rather than recomputed.

1 Actually, EB-Screen calls Inv-Screen, which calls it.

121

Procedure EB-Screen(SRC-TRG-PAIR) : Boolean
[Assumes program datastructures are initialized appropriately
for the current program to be optimized.]
TRG-CND « find-target-condition(target(SRC-TRG-PAIR))
If TRG-CND evaluates to true in every test case trace in which
source and target are both initialized
Then return Inv-Screen(SRC-TRG-PAIR)
Else return false.

Basically, EB-Screen computes an operational (see below) CNF predi-
cate of one argument, called a target condition, and evaluates it with path-
name terms replaced by actual data values from each test case in succession,
and with the argument replaced by the value of the source in the test case. If
the target condition evaluates to true in every test case for which the source
and target are both initialized, i.e. both appear in a part of the program that
was actually executed on the test case, then EB-Screen calls Inv-Screen to
verify that this optimization would not cause previous redistributions (those
carried out in earlier iterations of Pair-Search) to become incorrect. Key
questions, then, are

e What are target conditions and how are they computed?
e Why does EB-Screen need to call Inv-Screen?

e What is the relationship between target condition screening and cer-
tification? In particular, can such screening help restrict to routine
optimizations only?

The following sections answer these questions.

9.2 Target Condition Theory I: Single Re-
distributions

A target condition is an effective predicate intended to capture what is re-
quired of the object connected to a target in order for the overall program

to be correct. Ideally, the program will remain correct after connecting the
target (via extended flow) to any object satisfying the target condition.

122

The system represents target conditions in conjunctive normal form—i.e.
as a collection of clauses (see Chapter 4). Desirable attributes of a target
condition are that it guarantee correctness, that it be effective, and that
evaluating it not require re-execution of the tests. I will term the conjunction
of the latter two properties operationality of the target condition, a term
introduced by Mitchell, et al in the explanation-based learning literature
(Mitchell, Keller, & Kedar-Cabelli, 1986).

There are two obvious candidates for target condition for a given target.
First, one could set it equal to the top-level specification of the entire pro-
gram, in effect saying that “any object may be connected to the target as
long as the overall program remains correct.” In effect, Inv-Screen employs
this approach by using the optimization invariants as the target condition for
every target in the program. The obvious difficulty is that we cannot evalu-
ate the correctness of such a condition on given data unless we re-execute the
altered program to actually compute the new outputs. Thus, this approach
is not operational, because it requires re-executing the test-cases for every
source/target pair.

The second obvious candidate for target condition is the predicate “equal
to the value of the old source.” That is, the target condition is true of
any object if and only if the object is identical to the value of the source
connected to the target in the original (unmodified) program. This is clearly
operational; since programs may not have flow cycles, the value of the original
source cannot depend on the value of the target and so would have the same
value even after the modification.

Adopting “equal to the old source value” as the target condition for each
target in the program, with “source” depending on choice of target, is vi-
able and captures precisely all of the identical-value redistributions (see Sec-
tion 1.4). Moreover, no proof inputs are required, so such an approach is at
least as easy to use as IBR. To capture the other classes of redistribution
phenomena, however, we must find more general (weaker) operational target
conditions.

In the sections to follow, it will be useful to keep in mind that every target
condition computed is entailed by “equality to the original source,” and in
fact will usually be strictly more general. More precisely, every clause of every
target condition computed by the system will contain a term (disjunct) of

the form (= old-source ?target), so this equality logically satisfies any target
condition.

123

spec-clause-i %

'I‘ %
*
*
*
o e 0| 7 {8=-T} 7 |®o @@

L

Figure 9.1: A “typical” proof tree, T, of one clause of a program specification.
The leaf node labelled L has clause {S=T} and is the :PROGRAM-STRUCTURE node
of subtype :FLOW corresponding to the flow arc in the original program. The
nodes on the path from the root (a spec clause) to this leaf are marked with
asterisks, indicating they are to participate in parent-child clause unioning.

9.2.1 Computing Target Conditions from Proofs

A redistribution (single flow rerouting) logically involves two steps: retrac-
tion of a flow equality and assertion of a new flow equality. I do not distin-
guish here between standard and extended flows, because they both amount
to logical assertions of equality between a pair of values. I will motivate
the target condition computation by showing how the program’s correctness
proof changes across a single redistribution operation, and by proving a the-
orem that shows that satisfaction of the target condition by the new source
guarantees that the program remains correct.

Consider the proof structure of the original program. A schematic view of
one proof tree is shown in Figure 9.1. This shows the connection of program
structure to function: the flow arc (a structural entity) is captured in proofs
through inclusion of a :PROGRAM-STRUCTURE node of subtype :FLOW (leaf node

124

spec-clause-i %

T *
*
-k
*
oo | {8=T. 777 (@ ® @
L1,
Lk}
M
*
{8=1}
L

Figure 9.2: The tree T after tree unioning is applied. Note that all clauses
along the marked path are altered (enlarged somewhat) and an extra sub-
sumption node M (whose clause is wre(L, T)) is installed just above L.

L in the figure). The clause of such a node is (as described in Chapter 5)
basically an equality of the flow’s source to its target, possibly including
conditionalizing disjuncts.

For now, assume the program has a one-clause specification and that the
flow equality is used only once in the proof. With multi-clause specifications,
all proof trees are handled the same way, with the resulting target condition
being simply the conjunction of the single-tree results. Moreover, each oc-
currence within the tree of the flow arc leaf node is handled separately as
well, the results also being combined by conjunction.

To compute the target condition for the target t, the system applies

125

parent-child clause unioning (cf. Chapter 5) to the proof tree T along the
path from the root to the flow arc leaf L, obtaining wre(L, T') as the clause
of the (new) subsumption node M immediately above L. Thus, we obtain
the altered proof structure shown in Figure 9.2. As explained in Chapter 5,
the tree 7' must remain a valid proof tree.

Now, retracting L and asserting a new flow equality in its place requires
“patching” the correctness proof. We can do this by proving some clause
subset of M’s clause. This is depicted schematically in Figure 9.3. The
identical-value special case of this would be to reprove that the old source is
equal to the target by first proving that the new source is equal to the old
source and then using the new flow equality of new source to target.

It should be clear that the truth of any subclause of M’s clause guar-
antees the correctness of the overall program, because one can quickly and
automatically construct a correctness proof by attaching a “patch” subproof
in place of the original node L. I define the target condition for target t,
tci(?target), to be the maximal operational subclause of M’s clause, with
every pathname term for t replaced by the variable ?target.?

To find this subclause, the system simply discards any terms containing
references to causal successors of the target; that is, any pathnames reachable
from the target via a flow path. Since the clauses are disjunctions, we can
throw out any disjuncts and still have a clause whose truth implies the truth
of the original.

Finally, so that it may be viewed as a predicate of one input, the resulting
condition is A-abstracted by replacing all explicit references to the target’s
pathname by the variable ftarget. Note that there must be at least one,
because the equality term has one. As stated earlier, this process is applied
in parallel to all occurrences of the flow arc leaf in all proof trees supporting
the specification and the results are logically conjoined—each must be proved
true for the entire target condition to be proved.

This discussion essentially proves

Theorem 1: Given a proved correct program, and given a
source/target pair (s, t) for the program, if we change the program
by retracting the flow arc ending at ¢ and asserting a (possibly ex-
tended) flow arc corresponding to (s,t), not changing any of the

Note that tc really depends on which particular proof is used. Since the system only
allows one proof for a given program, I will leave this parameter implicit.

126

spec-clause-i

T”

oo e mMm {81 77 |00 e

® 0o o((s-T} 000

L’

Figure 9.3: The proof after patching using the new flow equality (L’). Note
that the clause at the root of the new subproof is constrained only to be a
subset of the clause of M. Hence, it may or may not contain the equality

S =T. Note that the subproof may contain any number of copies of the leaf
L.

127

other :PROGRAM-STRUCTURE nodes used in the proof, then the pro-
gram still satisfies the specification proved by the proof if tc,(s)
is true for every program input.

Note that to calculate weakened relative conditions, the essential tool in
calculating target conditions, the system need only walk the tree down the
path from root to leaf collecting all the literals allowed by the tree unioning
rules: all those not containing critical free variables as defined in Chapter 5.
This saves the large amount of datastructure copying and manipulation that
would be implied by actually carrying out the local tree manipulations im-
plied in the definition of the unioning transformations. This is an important
insight for efficient implementation. v

9.2.2 Extensions to Handle Hierarchical Structure

The technique given above for computing a target condition applies only to
the case when the target is a port in the top-level program directly. Ports
within box implementations (at any level) will not appear in the proof of the
top-level program, because only the boxes’ instantiated specifications may
be used in proving the top-level specification. Lower-level ports will appear
in the correctness proofs of the specifications of the boxes’ program types.
This situation appears schematically in Figure 9.4. To compute the target
condition for such a nested target requires extending the target condition
computation to handle hierarchically organized proofs.

Conceptually, we can solve the problem by simply renaming the path-
names in the lower tree to their corresponding instances under the instanti-
ation mapping® implicit in the use of the :PROGRAM-STRUCTURE node L,, then
attach the renamed tree in place of L,, and use the approach given earlier
on the constructed proof-tree. The result of this is shown in Figure 9.5.

As before, multiple occurrences of a leaf within a tree or multiple occur-
rences of different spec clauses are handled separately and simply combined
by logical conjunction at the end. Some subsequent cleanup is performed as
well, such as removing duplicate clauses.

3Every use of a :PROGRAM-STRUCTURE node of subtype :Box requires instantiating the cor-
responding specification clause by renaming all pathnames in the specification of the box
type to their global versions referred to the top-level program.

128

P-specclause-i

e & 0 M MTT |je e @

spec-instantiation

Q-spec-clause-j

eeo e {8=1} 7 (e e e

Figure 9.4: A schematic diagram of the hierarchical case. The upper tree
T, is a proof tree for a clause of the specification of top-level program P. It
contains a leaf node L, of type :PROGRAM-STRUCTURE and subtype :BOX which
instantiates the spec of a box’s type program Q. The lower tree is a proof of

the corresponding clause of Q’s specification, containing a flow arc leaf node
labelled L,.

129

P-spec-clause-i

T,
/ \
e o0 M 777 |e e @
T,
/ \
oo 0 777 {8=T7) 77 |e e @

L/

Figure 9.5: Conceptual solution to hierarchy problem. The instantiation
mapping from the previous figure is used to map all the pathnames in the
old T; to the correct extended pathnames in 7] and the renamed tree is
installed in place of the :PROGRAM-STRUCTURE node L,. The non-
target condition computation then produces the right answer. The actual
implementation, however, does not construct the renamed tree and in fact

performs no tree surgery whatsoever.

130

hierarchical

Implementing this approach naively would be inefficient, because new
tree structure would have to be constructed for every target condition com-
putation. Fortunately, it is again possible to avoid all tree renaming and
surgery operations. By walking down the path starting from the overall root
the implementation simply collects the additional (operational only) terms
(disjuncts) along the way in accord with the tree unioning rules. Every time
a :PROGRAM-STRUCTURE node of subtype :BOX is encountered, the system keeps
track of the pathname mapping and uses it to translate pathnames in terms
collected from lower trees to their correct global pathnames. The system
gains even more efficiency from the observation that the term collection pro-
cess need only be done once for any root-to-leaf path within a single tree,
the results being stored in a table. Only the renaming must be done for each
different usage.

9.2.3 Evaluating Target Conditions

Target conditions tend to be rather large, simply because they are derived
from what tend to be large proofs and they have a fair bit of redundancy. It
turns out that many of the terms in the clauses of a typical target condition
do not refer to the target variable nor any free variables. These clearly need
only be evaluated once per test case, rather than once per source/target pair.
I have found that applying partial evaluation and caching to target conditions
prior to performing search speeds things up immensely.

9.2.4 Quality of Proof Structure

As implied in Chapter 5, the form of the proof trees has a significant effect
on the generality of the target conditions obtained from the target condition
procedure.

The basic principle of program proof structuring is to prove weak op-
erational facts about a given target first and use only those facts in proving
subsequent facts. A fact is “operational” with respect to a target if it is stated
only using terms having no pathnames in them naming causal successors of
the target. The principle states that one should prove the weakest of such

facts about a target that still suffice to prove the desired clause before going
on with the proof.

131

box spec:
{R (ry) z)}

b1:T1 — b2:T2 -

{(R (F $P.B1.X) $P.B2.2))

:RESOLUTION

{(R (F $P.B2.Y) $P.B2.2)}
: PROGRAN-BTRUCTURE (:BOX)

(:RESOLUTION)

{(NOT (= $P.B1.X $P.B2.Y)),
(NOT (R (F $P.B2.Y) $P.B2.2)),
(R (F $P.B1.X) $P.B2.2)} {(= $P.B1.X $P.B2.Y)}

: PROGRAM-STRUCTURE (:FLOY)

: TAUTOLOGY
(b)
{(R (F $P.B1.X) $P.B2.2)}
:RESOLUTION
(:RESOLUTION)

{(r (F $P.B2.Y) $P.B2.2)}
:PROGRAN-STRUCTURE (:BOX)

{(NOT (= (F $P.B1.X) (F $P.B2.Y))),

(NOT (R (F $P.B2.Y) §P.B2.2)),
(R (F $P.B1.X) $P.B2.2)} {(= (F $P.B1.X) (F $P.B2.Y))}
- TAUTOLOGY :REBOLUTION
{(NOT (= $P.B1.X $P.B2.Y)), {(= $P.B1.X $P.B2.Y))}
(= (F $P.B1.X) (F $P.B2.Y))} :PROGRAN-STRUCTURE (:FLOY)
: TAUTOLOGY
(c)

Figure 9.6: (a) A simple program fragment where box b2 enforces the con-
straint {(R (F y) z)}. We prove the fact that {(R (F $P.B1.X) $P.B2.2)}.
(b) shows a poorly structured proof, and (c) shows a well-structured proof.

132

Consider, for example, the simple program fragment shown in Figure 9.6
(a). The target condition derived for $P.B2.Y from the proof in (b) contains
only one term (the original flow equality) because the only other term above
the flow equality leaf node is non-operational with respect to the target,
since it mentions the causal successor $P.B2.Z. On the other hand, the proof
may be reformulated as in (c) so that the weaker (but operational) term
(= (F $P.B1.X) (F $P.B2.Y)) appears in the target condition. That this is
more desirable can be seen if we instantiate F to the predicate ts-an-even-
number?. Clearly, a target condition requiring only an even number is much
more general than one requiring equality to $P.B1.X.

Note that since the weakened conditions obtained from different occur-
rences of the same leaf node are conjoined (i.e. they must all be satisfied for
the entire condition to be satisfied) the principle must be obeyed for every
use of a flow arc proof leaf.

I have found that this principle is easy to follow, because it is compatible
with a natural style of program verification: start from the input precon-
ditions, successively propagating minimal facts forward through flows and
boxes, until we prove the output postconditions. This propagation from in-
puts toward outputs tends to lead one to formulate intermediate lemmas in
more operational terms.

9.2.5 Proof Restructuring

Proof restructuring (as discussed in Chapter 5) can compensate somewhat for
proofs not structured in accord with the basic principle above. In particular,
it is good at getting intermediate lemmas “moved above” chosen leaf nodes
so that terms from the intermediate lemmas propagate down to the weakened
relative condition. Two problems restrict its use, however, so the prover must
still produce well-structured proofs. Proof restructuring removes some, but
not all, of the burden.

The first restriction is that full proof restructuring, that which uses the
resolution rule that can duplicate subtrees, can blow up the tree exponen-
tially, hence may not be used indiscriminately. This restriction implies we
cannot use optimal restructuring in every case.

The second restriction is that for target conditions to be correctness pre-
serving it must be possible in principle to construct the unioned proof tree
using them all simultaneously. This implies that we cannot restructure the

133

proof tree differently for each target (as we might be tempted to) because
otherwise we might not be able to assemble the resulting target conditions
into a proof. This restriction implies that the restructuring must occur only
once, before optimization, and must treat all flow arc leaves “equally,” i.e.
it cannot be biased toward improving one target condition at the expense of
others.

The system’s approach to restructuring is to mark path from the root to
a leaf of type :PROGRAM-STRUCTURE, allowing all and only those restructuring
moves that involve an unmarked subtree. This allows proofs to use lemmas
from a lemma library (whose proofs contain no :PROGRAM-STRUCTURE nodes)
and still get the same benefit as if the proofs had been instantiated by hand
directly into the proof. This effectively increases generalization power by
using domain knowledge, in the form of intermediate proof structure from
the lemma library, to improve the proof structure automatically. I have
run examples where optimizations are found when restructuring is used, but
missed when it is turned off.

I have not restricted the exponential restructuring rules, because they
have not caused any blowup. It may, in a practical implementation, be
necessary to implement such a restriction, however.

9.3 Target Condition Theory II: Multiple
Redistributions

In principle, to calculate accurate (i.e., sound) target conditions for targets
after the first redistribution has been carried out one must produce a patch
proof, install it in the tree, and calculate it as described above. This has
the major drawback of requiring that a theorem stating that source satisfies
target be proved before the second and subsequent redistributions can be
found. '

Obviously, Inv-Screen alone avoids the need for patch proofs, but re-
quires too many test-case evaluations. Fortunately, there is a way to avoid
the patch proof requirement, yet still avoid almost all4 test-case evaluations.
To see how, I must develop a bit more theory.

Basically, we wish to see how the program’s correctness proof can in

4 All in some variants of EB-Screen

134

spec-clause-i spec-clause-i

T” T”

oo o s-1, Wy} oo o oo o 777 (s-1, WU=v}|o o @
L1, L,
e M e M
Lk} Lk}
{Li1, ..., Lin} {Li1, ..., Lin}
e o o((g'=T)0 00 ® o 0 ((g=1}® 0 0 (va)
L v M

(a) (b)

Figure 9.7: The two cases where references to the target U (leaf node M)
may appear after a patch proof is put in for target T. (a) shows the case
where the patch proof does not use M. (b) shows the case where it does.

135

principle change across a redistribution. Consider F igure 9.7. Suppose we
wish to calculate a target condition for target U, in order to check pairs (V/,
U), after having decided to keep (carry out) the first pair ($’, T). There are
two possibilities:

o If the flow arc leaf node (M) for target U is not used in the patch
subproof (Figure 9.7 (a)), then the target condition calculated for [/
from the patched proof is identical to that calculated for [/ from the
original proof.

o If M is used in the patch proof (Figure 9.7 (b)), then the target condi-
tion calculated from the original proof conjoined with the satisfaction
of T'’s target condition by S’ suffices to maintain the correctness of the
overall program. Note that even though additional references to M
are added by the patch proof, they are all added below the root of the
patch subproof, hence if the patch subproof’s root clause is true in the
program resulting from the second redistribution, then all we need to
do to guarantee correctness is to make sure that the other occurrences
of M are patched correctly.

I have just sketched a proof of

Theorem 2: Given a proved correct program initially, and given
a set of source/target pairs {(so, ?), ..., (s, tx)} for the program,
if we change the program by retracting each of the flow arcs end-
ing at a t; and assert a new (possibly extended) flow arc cor-
responding to each of the pairs, not changing any of the other
:PROGRAM-STRUCTURE nodes used in the proof, then the program
remains correct if for every pair (s;, t;), tcy,(s;) is true, where all
target conditions tc,, are computed with respect to the original
proof structure.

To summarize, the insight is that the overall proof will remain correct as
long as all target conditions are satisfied in the fully modified program. It
is crucial here that no structural aspects of the program change other than
the flow arcs involved in the redistributions. As long as we check that sub-
sequent new sources satisfy the target conditions of subsequent targets and
that previously carried out redistributions remain correct after subsequent
redistributions are carried out, we can ignore any leaf occurrences below the

136

roots of the patch proofs. The key point is that the target conditions are
calculated from the original proof, so that patch proofs are unnecessary to
continuing the procedure. Note that carrying out a redistribution recursively
may alter specifications of the recursion boxes; hence Theorems 1 and 2 do
not apply to that case. I discuss recursion in the next section.

Theorem 2 has implications for screening strategies, but I shall put off
discussion of them until after discussing recursive pairs.

9.4 Target Condition Theory III: Recursive
Redistributions

To define precisely the concept of recursive as it applies to source/target
pairs, I must first fix some terminology. A call-ancestor program of a pro-
gram element named by a pathname $P.i1.ik.a, k > 0, is either the
program P or a call-ancestor program of the element $P1.i2.. ... ik.a, where
P1 is the program type of the box $P.i1. Let Pj be the program type of the
box $P.i1.....ij. Note that Pj is a call-ancestor program of $P.i1.... .ik.a,
if j 2 k. Define boapy($P.i1.... . ik.a) to be the box named by $P.i1..... ij.
That is, it is the box of the program Pj through which one must descend to
get (eventually) to the named element.

I term a source/target pair recursive if and only if the source s and target
t have.a common call-ancestor program Q such that bozq(s) and bozg(t) both
lie in a recursive branch of Q (see Section 7.2.2 for what it means to “lie in
a recursive branch”).

Intuitively, a recursive source/target pair actually corresponds to an
infinite set of source/target pairs, one per level of recursion. For ex-
ample, the pair ($MY-REVERSE.REC.L-0UT, $MY-REVERSE.CONC .NC.C1), corre-
sponding to the left-hand curved flow arc in Figure 1.4 (Section 1.3), is
recursive because source and target have the common call-ancestor pro-
gram MY-REVERSE, and both lie within its recursive branch. This pair cor-
responds to the infinitely many pairs given by the following pair schema:
($MY-REVERSE.REC* . L-0UT, $MY-REVERSE.RECH-! .CONC.NC.C1). By contrast,
the pair ($APPEND.CPY.L-0UT, $APPEND.NC.C1) is not a recursive pair (even
though NCONC is a recursive program) because the only common call-ancestor
program is APPEND, which is non-recursive.

137

Note that a recursive pair may or may not be treated as such: it requires
additional effort to carry out such a pair correspondingly at all levels of recur-
sion. Treating such a pair nonrecursively means only carrying it out at the
top-level, that is, changing the structure of the top-level program but leaving
the implementations of the recursion boxes unchanged. Treating a recursive
pair non-recursively gives the pair exactly the same status and properties
as non-recursive pairs; thus, the system can be set to treat all pairs non-
recursively, and the theory discussed in the previous sections applies as is.
However, it is usually beneficial (where possible) to carry out redistributions
of recursive pairs at all levels, translating the savings of one pair to all invo-
cations of the recursion. This section examines the relation between treating
a pair recursively and its target condition.

9.4.1 The Bad News

Unfortunately, for recursive source/target pairs (treated recursively) proving
that the source always satisfies the target condition does not guarantee the
correctness of all of the infinitely many pairs corresponding to the pair; hence,
it does not guarantee correctness of the program as a whole. The intuitive
“reason” is that the actual target condition of each of the infinitely many
targets is different, because each one is, after all, found in a different call
context than every other. Moreover, each of the sources will generally have
slightly different properties. The loophole in Theorems 1 and 2 lies in the
clause “not changing any of the other :PROGRAM-STRUCTURE nodes used in the
proof”. By carrying out redistributions at all levels, we are also changing the
implementations of the recursion boxes. This change is only guaranteed to
preserve the weakened specification of the recursive program obtained during
the hierarchical target condition computation. However, to maintain obvi-
ous correctness of the proof, the recursion boxes must satisfy their original
specifications, which may be stronger than the weakened ones guaranteed by
the target condition.

As an example, consider the program SUM-ELTS in Figure 9.8. This is
a simple program that sums the first ten elements of an input array. It is
implemented in a straightforward tail-recursive fashion. It is easy to see that
$SUM-ELTS.SUM-ELTS-REC.I is always equal to $SUM-ELTS . SUM-ELTS-REC.SUM,
because SUM-ELTS passes zero to both SUM-ELTS-REC inputs. But this means
that the pair ($SUM-ELTS . SUM-ELTS-REC. I, $SUM-ELTS . SUM-ELTS-REC. ADD. N1)

138

SUM-ELTS-REC

I SUM: ARR:
SUM-ELTS
ARR: tst: TEN?
s:ZERO

cn:SPLIT

! T | F
’-; — e e e e — - ~I

s:3UM- v ¥
ELTS-REC | I
| inc:14 aref: AREF I
l I |
=+= | Ny "2'l |
I add:+ I
| |
I I
—
| rec:SUM- |
ELTS-REC l
l R |
T | ¥

cn:JOIN

'

Figure 9.8: A tail-recursive program illustrating how the target condition
fails to capture correctness at all levels of a recursion.

139

passes the target condition check. In fact, doing this redistribution at the
first level is fine, but carrying it out recursively leads to an error: the program
would always compute ARR[9] + 9 instead of the correct sum.

An important exception to this failure of target conditions is that a non-
recursive pair within a program p, which can be proven correct by showing
that the source satisfies the target condition, cannot become incorrect simply
because p is called within a recursive program. This is easily seen because
the correctness proof of the redistribution must be independent of how the
nonrecursive program is used. This argument depends on the fact that cor-
rectness of a calling program may only depend on the proven specification of
the called program and not on internal implementation details, because the
system only guarantees preserving the program’s specification.

The problem with treating pairs recursively, then, is that checking that a
source satisfies a target condition for a recursive pair only gives information
about the top-level member of the infinite class of redistributions correspond-
ing to the pair.

9.5 Applications to Checking Redistributions

To use target conditions for screening, we must address the problem of re-
cursive pairs as well as the problem of re-checking previous redistributions.

e Recursive pairs. Since the target condition fails to capture the correct-
ness condition of recursive pairs, either another check must be done,
such as the top-level check in Inv-Screen, or else the pairs must not
be treated recursively.

e Previous pairs. Since target conditions of previous pairs won’t neces-
sarily be operational with respect to the most recent target U, we can’t
check them without re-executing test cases. The target condition for
U itself, however, is operational, by definition, so we can check it first,
discarding the pair if it fails to pass. For a successful pair there are
three approaches:

— Update-and-top-level-check strategy: do a top-level check, via Inv-
Screen, after updating test case traces;

140

— Update-and-re-check strategy: update traces, then re-check each of
the previous target conditions; or

— No-re-execution strategy: arrange only to consider subsequent pairs
that cannot possibly change the correctness of previous pairs.

I have investigated these three approaches to adding the extra checking
required to use target conditions without explicit patch proofs. Each of
these has somewhat different power and applicability conditions. I discuss
first the strategy implemented in the pseudo-code of Section 9.1. It is the
most powerful, in that it handles redistributions that are to be carried out
recursively. The next subsection discusses the two alternatives.

The update-and-top-level-check strategy assumes that re-executing test
cases can be afforded once per successful redistribution. This is the simplest
approach, but it assumes that in addition to the proof structure input, one
has the effective top-level optimization invariants required by Inv-Screen
as well. Basically, after a pair passes the target condition check, the sys-
tem carries it out structurally, updates test case traces, and checks top-level
invariants by calling Inv-Screen. Calling Inv-Screen guarantees that the
altered program is correct on the test cases; it provides only indirect evi-
dence that target conditions of previous pairs remain satisfied in the altered
program. *

It would be sufficient for correctness simply to call a compile-time certifier
to check each recursive pair. However, that approach would result in many
unsuccessful calls to the ‘certifier, because it is rather often the case that
a recursive pair will pass the target-condition test but fail the Inv-Screen
check. For example (see Section C.2.5), the merge-sort optimization resulted
in 254 pairs passing the target condition test, but 233 of them failed the
subsequent Inv-Screen test. If the system instead had had to call a certifier
unsuccessfully 233 times (in addition to the 15 successful times), it certainly
would have taken far too long. Note that since the target condition fails
to capture all information necessary to correctness of the redistribution, the
certifier’s job is also more difficult than with non-recursive redistributions.

Given this, one might wonder why the system should perform the target
condition test on recursive pairs, given that they must be checked by Inv-
Screen anyway. The answer here is again based on efficiency: the target
condition test can be done without re-executing the test cases and yet prunes
many potential candidates. Pairs failing the target condition check are not,

141

of course, checked by Inv-Screen. In the merge-sort example, 6701 pairs
passed the syntactic pruning phase, virtually all of which were recursive pairs,
yet only 254 passed the target condition test. Thus, about 96% of the pairs
were pruned by the less expensive target condition test.

9.5.1 Alternative Checking Strategies

Here are two alternatives to calling Inv-Screen every time a pair passes the
target condition test. I have implemented the first and run a few experiments
using it. I have not implemented the second approach at all, for lack of
time. These alternatives are important in that they have somewhat different
applicability conditions, hence may be used under conditions in which the
previous strategy is inapplicable.

The update-and-recheck strategy also assumes that re-executing test cases
can be afforded once per successful redistribution To check the first redis-
tribution, simply test the target condition as usual. Then, carry out the
redistribution and update the test case traces by executing the altered pro-
gram on the test case inputs. No further checking is required, since this is
the first redistribution. For subsequent rounds, screen using the target con-
dition check and if a pair passes, carry out the redistribution and update
the test case traces. The target condition check guarantees that the cur-
rent pair is correct with respect to the test cases. Updating the traces for
the altered program guarantees that values recorded in the traces accurately
reflect values in the altered program. Now, we simply need to recheck the
target conditions of all previous pairs to make sure they remain satisfied in
the altered program. The reasoning above based on the correctness proof
alterations showed that it is enough to prove that all sources satisfy the cor-
responding target conditions in the altered program structure. By carrying
out all redistributions and rechecking them, we guarantee that the program
remains correct on the test cases. Here is pseudo-code implementing the
update-and-recheck strategy.

142

Procedure EB-Screen (SRC-TRG-PAIR) : Boolean
[Assumes program datastructures are initialized appropriately
for the current program to be optimized.]
TRG-CND « find-target-condition(target(SRC-TRG-PAIR))
If TRG-CND evaluates to true in every test case trace
Then If update-traces-and-recheck-previous-pairs?()
Then If certify? is available

Then return certify?(SRC-TRG-PAIR)

Else return true.
Else return false.

Note that, unlike the update-and-top-level-check strategy, this does not
call Inv-Screen, hence it can be used even when effective top-level invariants
are not available. It has drawbacks, however, such as not being usable when
redistributions are to be carried out recursively. Note that we may still use
this strategy for recursive programs, but only by sacrificing the power of
having redistributions carried out recursively. Another disadvantage is that
the number of checks per successful pair grows linearly with the number of
successful pairs; for large programs this can slow things significantly relative
to the single top-level check approach.

Note that it is possible to avoid many of these checks if one can first
isolate those that could possibly have become false—if none of the values
named in the target condition are causal successors of the target of the new
redistribution, then it’s truth cannot have changed. I did not implement this
refinement, but expect that it would present no difficulty.

The no-re-ezecution strategy assumes that test case re-executions must
be avoided at any cost. The approach is simply to avoid any pair satisfying
one of

e Its source value or the values of any pathname terms in its target
condition could have been changed by a previous redistribution; or

e Its incorporation could change either a source of a previous pair or
some other value appearing in the target condition of a previous pair.

Obviously, if the program element values appearing in the target conditions
of previous pairs don’t change, the target conditions are still satisfied. Note

143

that one can decide (conservatively) whether one of these interactions exists
based only on what pathnames appear in the target conditions and on the
structure of the program. This strategy clearly sacrifices some optimization
power, as there are often cases (in MY-REVERSE, for example) where early
redistributions alter a source’s value so that it satisfies a target condition.
In MY-REVERSE, the first two redistributions caused the source of the third to
always equal the target of the third. On the other hand, causally disjoint
redistributions are common as well. Note that this approach is not applicable
if redistributions are to be carried out recursively.

9.6 Discussion

All the strategies above depend on computing target conditions. Proof re-
structuring behaves linearly in the proof-tree sizes, unless the exponential
resolution rule is unrestricted. In all experiments, the approach employed by
the system described in Section 9.2.5 was not a significant consumer of time
in relation to the rest of the computation.

The actual PCCU-based procedure for extracting target conditions is also
linear in the size of the proof trees and the size of the output. Unfortunately,
due to the inherent complexity of program correctness reasoning, target con-
ditions can be annoyingly large and redundant, particularly when expressed
in CNF. Again, however, the system’s approach to target condition com-
putation and evaluation, including partial evaluation in test cases, renders
target conditions usable in practice. I expect that, with further research and
engineering, target conditions will bear out as a practical tool for use even
with complex programs. Heuristics can be adopted to hold their sizes down
at the expense of generality, though I have not as yet needed to do so.

9.6.1 Comparison of Strategies

When it is usable, the update-and-top-level-check strategy is clearly better
than the update-and-recheck strategy, both because it handles recursive pairs
and because it tends to be significantly faster in that it does only the sin-
gle, top-level check per successful pair instead of the many individual target
condition checks. Of course, programs for which it is impractical to give
optimization invariants are not handled by update-and-top-level-check, but

144

can be handled by update-and-recheck.

The update-and-top-level-check strategy is much more powerful than the
no-re-execution strategy, both because it handles recursive pairs and because
the latter must discard interacting sets of pairs. No-re-execution is faster,
however, as it does not update test cases and does not do any checks other
than the successive target condition checks. This may be the best strategy for
highly complex or highly inefficient (non-recursive) programs, where running
test cases more than once is impractical.

9.6.2 Wrong Answers

EB-Screen (all three strategies) can give both false positive answers and
false negatives. As with Inv-Screen, false positives are simply due to the
fact that I have substituted test case reasoning for general theorem proving;
hence the system can be fooled by coincidences in the test cases.

False negatives are more interesting. There are two reasons EB-Screen
can give a false negative answer: either a target condition exists, but it
cannot be extracted from the given proof structure; or there is no proof of
the program from which a general enough target condition can be extracted.
I call this second type a “fundamental false negative.”

Section 9.2.4 gives an example where the input proof structure (Figure 9.6
(b)) can fail to give a general target condition, yet where a better proof
structure (Figure 9.6 (c)) exists. It is trivial to extend that example to an
actual false negative redistribution. The key is the lack of generality in the
target condition. I give below an example of the second type of false negative.

Fundamental False Negatives. Consider the program shown in Fig-
ure 9.9 (a). The primitive program MOD2 returns 0 if the input is an even
number, 1 if it is odd. The specification of the program ID-0/1 defines the
output to be 0 if the input is 0, 1 if the input is 1, and otherwise does not con-
strain the output. The overall program must satisfy the same specification
as M0OD2.

Fact: There is no target condition for $P.B2.C that allows all correct re-
distributions. To see this, assume that there is one, and call it 7. Any target
condition for $P.B2.C must not depend on the choice of implementation of
the box $P.B2, because only box specifications are allowed in proofs. More-
over, for any test case, the values of the pathname terms that may appear

145

X:
P
b1:MOD2

ey

b2:ID-0/1

v

()

X: X:
P l P l
b1:MOD2 b1:MOD2

c:l C:
v

b1:MOD?2
b2:ID-0/1 b2:1D-0/1
; ;
(v) (c)

Figure 9.9: A fundamental false negative for IEBR. (a) For any correctness
proof of P, the target condition for $P.B2.C must not depend on the imple-
mentation of the box $P.B2; it may only depend on the box specification. (b)
An implementation of $P.B2 in which the redistribution from $P.X to $P.B2.C
is correct. (c) An implementation of $P.B2 in which it is not.

146

in the target condition of $P.B2.C must be the same for any implementation
of $P.B2, because the portion of the program containing pathnames oper-
ational with respect to the target $P.B2.C is not causally effected by the
implementation choice. Therefore, any redistribution with target $p.B2.c
passing EB-Screen must be true independently of the implementation of
$P.B2.

But now consider the program in Figure 9.9 (b), where MOD2 is used to
implement the ID-0/1 specification. Clearly, the redistribution with source
$P.X and target $P.B2.C preserves overall correctness. Therefore, r must be
satisfied by the source $P.X in all test cases, because 7 was assumed to find
all correct redistributions.

Consider, on the other hand, the program in Figure 9.9 (b), where a
single flow arc implements the identity function. Clearly, the redistribution
1s incorrect here, as the result would be just an identity program. But then
there must be some input on which 7 is not satisfied by $P.X. But since 7
is the same for both programs, and evaluates the same way on all sources
and all test cases, this is a contradiction. Therefore, no such 7 exists. The
redistribution ($P.X, $P.B2.C) is a fundamental false negative for IEBR. Note,
however, that IBR would correctly give a positive answer for program (b) and
a negative answer for (c).

Note that to prove the correctness of the fundamental false negative re-
distribution (program (b)), new details of the internal implementation of the
$P.B2 box must be introduced into the correctness proof of P. Originally, P’s
proof used only the box’s specification.

This example illustrates how IEBR restricts its output to pairs that (if
true) have more routine proofs. The next subsection makes this more precise.

9.6.3 Routine Redistributions

Since a target condition may refer only to elements that are not causal suc-
cessors of the target, we can conclude the following

Theorem 3: Any correct, non-recursive redistribution passing
the target condition test of EB-Screen must be provable inde-

pendently of the implementations of any boxes that are causal
successors of the target.

147

A consequence of this is that a certifier need not introduce structural axioms
of box implementations for boxes succeeding the target. This can potentially
reduce the theorem prover’s search space greatly: assuming the target is on
the average somewhere in the middle of the program, we might expect this
to reduce the number of axioms a prover must consider by about half. Since
the search space is usually exponential in the number of axioms, this can
potentially reduce the size by taking the square root.

The redistributions passed by EB-Screen are, therefore, more routine
than many passed by Inv-Screen. They represent only incremental changes
to the program’s correctness proof. As discussed earlier, the correctness
of the altered program can be understood by understanding the original
correctness proof and understanding each of the patch proofs used to justify
the redistributions. Hopefully, each patch proof is simple compared to the
entire proof. Moreover, Theorem 3 and the search space size argument above
give us reason to believe that it will be much easier to prove redistributions
passed by the target condition test than arbitrary redistributions.

A major benefit of restricting only to routine optimizations is that the
compile-time certifier’s job is easier. It will not be called unless there is good
reason to believe both that the thing it is to prove is true and that the proof
will be relatively easy compared with a proof of correctness of the entire pro-
gram, and compared with correctness proofs of arbitrary redistributions. Of
course, because of potential interactions between sequential redistributions,
the certifier must make sure that previous patch reasoning is still valid in
addition to proving the patch for the new redistribution.

Theorem 2 guarantees that this is the whole story for non-recursive pro-
grams. For recursive programs, however, more complicated reasoning may be
required to justify recursive redistributions. Such redistributions, of course,
are harder to justify than non-recursive ones, particularly because the target
condition does not necessarily guarantee correctness. Thus, additional rea-
soning may be required, such as inductive proofs of useful properties. Nev-
ertheless, I believe that target condition screening is a useful heuristic for
ruling out extremely difficult recursive pairs, leaving only the more routine
ones that pass the target condition check.

As an example, consider the optimizer’s performance on the
LR1-REM+REVAPPEND example (Section C.2.3). IBR eliminated the
$LR1-REM+REVAPPEND .REVAPP .REV.SNG.CNS.RPD box via a recursive redistri-
bution, while IEBR gave a fundamental false negative. The correctness argu-

148

ment requires reasoning about two separate cases: cells in the middle of the
list and the last cell in the list. If we eliminate the above-named box, then
instead of the CDRs of all cells being initialized by it, non-end cells get CDRs
initialized by the $LR1-REM+REVAPPEND .REVAPP.REV.CONC.NC.RPD box, but the
end cell gets initialized only by the $LR1-REM+REVAPPEND .REVAPP . APP.NC.RPD
box. Thus, the form of the correctness proof changes from a uniform han-
dling of the CDRs of the result list cells to an argument by cases. Moreover,
the “saving” pointer operation performed in the APPEND box is not local to
the redistribution, which occurs within the reverse box. Thus, only a global
coincidence allows the redistribution. This shows how EB-Screen can help
screen out difficult recursive redistributions as well as non-recursive ones.

9.6.4 Do We Need Recursion?

Even easy theorems about recursive programs are hard.® It is worthwhile
asking the question of whether recursion is worth it.

It may at first seem that non-recursive programs are uninteresting or
“toy”; however Waters (1979) has estimated that the great majority of all
programs are written without recursion, using only simple loops and straight-
line code. Loops, in turn, can be represented using series expressions, so these
programs could all be written without explicit iteration of any kind. Thus,
restricting to non-recursive programs may be interesting from a practical
standpoint. :

Moreover, if adopting more powerful representations, such as series ex-
pressions, leads to more powerful automated program development tools,
it may be well worth adopting programming styles that use less recursion
and more explicit approaches to iteration. Note that more complex recur-
sive structures than tail recursion can be captured by generalizing series
expressions from sequences to other mathematical objects such as trees (for
tree recursion) and graphs (for more general types of recursion). I have not
explored this past the conceptual stage, but it seems a promising line of
research.

Two arguments favor the use of recursion, however. First, some redistri-
butions exist only in the recursive form of a program, because they involve

$This oxymoron may need clarification: “easy” means “easy for humans,” while “hard”
means “difficult for automated theorem provers.”

149

a recursion box (see Section C.3.1 for an example). Second, some problems
are most naturally solved recursively (such as Tower of Hanoi), hence should
be programmed that way. The point is that it may be easier to solve some
problems using recursion, and it may also be easier to prove correctness of
recursive solutions than of non-recursive ones.

The answer to the recursion question, then, is yes, we need recursion;
however, we also need to understand the relationship between the recursive
and non-recursive forms of a program better. We need to be able to automate
the transformation of programs from one form to the other, along with their
correctness proofs. This is an interesting area of future research.

150

Chapter 10

Proofs of Quasi-specifications

It is indisputable that formal specifications and proofs that programs satisfy
them are difficult to produce. As discussed in Section 4.2, T address the
specification difficulty by allowing relative optimization invariants, which are
generally much easier to specify when allowed to refer to the outputs of the
original program.

To make it easier to use IEBR—which requires a proof—I define a formal
construct called a quasi-specification that allows one to automatically produce
proofs capturing some, but not necessarily all, of the teleological information
relevant to & program. Technically, a quasi-specification is a statement of
program function which may include references to internal elements of the
program in addition to inputs and outputs. It turns out to be rather easy to
automatically compute proofs of certain classes of quasi-specifications rele-
vant to programs. I discuss three such ways below, together with automatic
procedures for producing proofs of quasi-specifications. Quasi-specifications
and their proofs can capture enough routine information about a program
to allow useful optimizations, yet still be produced quickly and completely
automatically.

10.1 The Default Quasi-specification

The first automatic quasi-specification proof procedure, default-proof, is the
weakest, in that it incorporates the smallest amount of information. It turns
out that it is, de facto, exactly the specification that traditional compilers

151

preserve.

The basic idea is to define a default quasi-specification predicate for a
program that is true precisely when all of the program’s : PROGRAM-STRUCTURE
leaves are true. In other words, it is postulated to follow from the conjunction
of the program’s structural axioms. This includes axioms corresponding to all
flow arcs, all conditional outputs, and all box specification axioms. Default-
proof takes in a program and puts out a single proof-tree containing one
copy of each of the program’s structural axioms and constructs (trivially) a
proof of the default quasi-specification predicate based on a single assumed
defining lemma.

This would at first appear to allow no changes to the program; however,
there are several ways freedoms enter. In particular, it allows all identical-
value redistributions, because all program structure axioms are expressed
in terms of the values of ports, not in terms of actual presence of program
elements. Moreover, box specifications may be sufficiently underdetermined
to allow optimizations either within a box implementation, due to properties
of its call context, or by communicating a value from within one box to
within another. Note that while the top-level program’s proof is constructed
by default-proof, the proofs of its box’s type programs may be constructed in
a more informative way, either by hand or by one of the methods below. This
allows, for example, considerable optimization freedom based on the richly
detailed proofs from a software library.

Several examples were carried out using only default-proof. Appendix C
has two: POLY and FIB.

10.2 Quasi-specifications for List Programs

It is common to write list-manipulating programs that should not modify any
of their input arguments. They are, however, allowed to allocate new memory
cells. To incorporate this information into proofs, I designed the procedure
Ir1-proof, which defines and proves for each program a quasi-specification
predicate that conjoins the program’s abstract list behavior with its side-
effect-free nature.! I define this more precisely below.

1“LR1” (List Representation 1) designates a particular representation of abstract lists
in terms of memory cells and stores. It is described more fully in Appendix C.

152

Default-proof does not capture this information because it requires that
the cell at the source end of a flow arc be identical to the cell at the target
end; this disallows a redistribution replacing the source by one representing
an isomorphic list. Moreover, it requires that the store output of the program
maintain exactly the same value across optimization, with no more nor fewer
allocated cells and identical bindings; thus, optimizations leading to fewer
allocated cells would not be allowed.

To use Ir1-proof, the programmer must distinguish for each program (in-
cluding all box type programs) certain specification clauses (via declarations)
as Irl-specs. These are intended to be the ones capturing the abstract list
properties. In my formalism, these can be distinguished by the fact that all
occurrences of cell pathnames and store pathnames appear as arguments to
the function LR1 which converts them to abstract lists. An example of an
Ir1-spec’s clause would be, for example,

{(= (LR1 $P.C-OUT $P.ENV-OUT) (TAIL (LR1 $P.C $P.ENV)))},

where TAIL is the abstract list function of taking the tail of a list. Non-Irl-
specs include all lower-level information such as freedom from side-effects,
freshness of output structure, etc.

The programmer must also declare which cell inputs and outputs are to
represent abstract lists, since not all cells are necessarily used to represent
lists.

The first property incorporated in the definition of the LR1 quasi-specification
is the program’s freedom from side-effects. In my formalism this is denoted
by the predicate APURE?, a predicate of two store arguments. It is easy to con-
struct a proof of the APURE?ity of the program (assuming each box modifying
the store has an APURE? specification) because APURE? is transitive. Note that
some boxes may be APURE? only when some preconditions are satisfied. Prov-
ing arbitrary preconditions is, of course, uncomputable; the system simply
postulates them true in constructing the proof.?

Next, each flow arc involving a cell declared to represent an LR1 list3 is

2This can, in principle, result in a target condition that is overly general, because some
necessary teleological dependencies may be left out of the proof. On the other hand, the
freedom from side-effects of most modules seldom depends on such preconditions. Thus,
such cases should be rare. This phenomenon has not arisen in any example considered by
the system.

3An “LR1 list” is an abstract list represented by a collection of memory cells and a

153

proved to enforce equality of abstract lists. That is, the source and target
ends of the arc, paired with appropriate stores as determined from declara-
tions, are proven to be equal as abstract lists. This may involve only equality
reasoning, or it may involve using the APURE?ity specs of intervening boxes,
but in any case Irl-proof constructs such a list-equality subproof for each flow
representing a list. Note that these proofs may also involve postulating the
truth of unknown preconditions.

Finally, Irl-proof uses default-proof to form a proved quasi-specification
for all flow arc axioms for types other than list, together with all conditional
axioms and all box Irl-specs. This has the effect of “freezing” the abstract list
structure, but leaving some details of the side-effect behavior free to change.

Ir1-proof then simply defines and proves a quasi-specification predicate
representing the conjunction of APURE?ity, list-equalities, and the Irl-spec
default specification.

Most of the examples run have been done using proofs produced by Iri-
proof. Examples include MY-REVERSE and LR1-REM+REVAPPEND. It is remarkably
successful (and fast) at capturing the low-level list representation information
while still being fully automatic (except, of course, for declarations needed).

10.3 Quasi-specifications for Set Programs

The SR set representation is built on top of the LR1 list representation, so it
captures even more high-level information. A set is represented by a list of
its elements. Some set operations require that the list contain no duplicated
entries (the no-duplicates invariant) for correctness, so all operations must
maintain it, at least before optimization in context. Refer to Appendix A,
particularly Figure A.1, for more information on the LR1 and SR representa-
tions.

Maintaining the no-duplicates invariant can be expensive in operations
like SR-ADD that adds a member to a set. Prior to adding the new element,
SR-ADD must check to be sure it is not already an element. This makes adding
the element cost linear time. In some applications a set will not need to be
represented with no-duplicates, since the operations requiring it aren’t used
on the set; thus, the optimizer should remove the check.

store in a certain way. Thus, the declaration contains more than the information that the
cell represents an abstract list; it also declares how the list is represented.

154

To capture this, sr-proof builds upon Irl-proof but also maintains the
no-duplicates invariant. Thus, as before, sr-proof constructs an APURE?ity
proof. Next, corresponding to list-equality subproofs are set-equality sub-
proofs for each cell flow arc representing a set. Next, each program must
have declarations, provided by the programmer, stating one of three things:

e It requires that no-duplicates be true of its inputs for correctness; or

e It requires that no-duplicates be true of its inputs only to maintain
no-duplicates in its outputs; or

e It doesn’t require no-duplicates at all.*

Sr-proof then performs the analysis that decides whether each box’s no-
duplicates spec is to be incorporated into the final proof. Finally, all box
sr-specs (as declared by the user) and necessary no-duplicates specs are con-
joined into a default subproof.

These elements are combined by conjunction into a proof of the SR quasi-
specification. Note that I have not implemented sr-proof, but have carried
out the examples by hand simulation. These include SR-ELT?+UNION and
SR-CHOOSE+REM in Appendix C.

10.4 Proved Quasi-specifications in General

In general, an automatic quasi-specification proof procedure might be written
for each different representation (abstraction function). This effort could
be amortized, however, over all the programs based on that representation.
Moreover, I expect that further research on these techniques may systematize
and unify them.

Note that there is no guarantee that the information captured by a quasi-
specification proof procedure is compatible with the information in the opti-
mization invariants used. This coherence must be enforced by the user. But
since these techniques—quasi-specification proof procedures and relative op-
timization invariants—represent tradeoffs for usability, the user must accept
more of the burden of correctness checking in return for having more of the

4Note that just because some operations on a data type require an invariant, others
may be oblivious to it.

155

necessary inputs produced automatically. After all, using hand-produced
proofs of absolute, effective specifications eliminates the coherence problem.
In practice, it has not been difficult to enforce the necessary coherence, how-
ever.

Moreover, it is not clear what the relationship is between certification and
the use of quasi-specification proofs, i.e., whether it makes the job any harder
or easier. On one hand, it may be easier since the optimizations cannot cap-
italize on all the information in a program; rather, they must be involved
with the representation invariants captured by the proof procedure and can-
not involve the full abstract functionality. On the other hand, since the
proof contains postulated axioms, which may substitute for necessary tele-
ological dependencies, there may be hidden subtlety in proving safety. My
experience with the examples indicates that it is no more difficult to check
optimizations found when the input is supplied by a quasi-specification proof
procedure than when the proof is supplied by hand. If these subtleties do
arise, however, we can always restrict the modules to have unconditional
APURE? specifications. More generally, all specifications used by automatic
proof procedures might be required to be unconditional. In that case, no
teleological dependencies would be omitted, so the target conditions gener-
ated would have exactly the same properties as any others.

156

Part I11

Analysis and Discussion

157

Chapter 11

Comparison of Algorithms

This chapter summarizes and extends previous remarks comparing the two
optimization algorithms. While the main point of this thesis is only to
demonstrate the feasibility of automating the search for redistributions, it
is nevertheless instructive to compare the two algorithms to each other.

11.1 Power

IBR is much more powerful than IEBR. More precisely, Inv-Screen gives no
false negative answers, while EB-Screen can do so. In fact, EB-Screen is
susceptible to two types of false negatives: those due to proof inadequacies
and fundamental false negatives. (See Chapter 9 for examples of both.)
Both approaches are susceptible to false positives, simply due to the fact
that the test cases cannot be guaranteed, a priori, to be free of coincidences.
Every false positive given by EB-Screen will also be given by Inv-Screen
(by construction); on the other hand, not every false positive of Inv-Screen
will be given by EB-Screen. The reason is that EB-Screen does an addi-
tional check on top of that done by Inv-Screen; the target condition test
can fail a redistribution while the top-level check passes it. I do not believe
this phenomenon has occurred in any of the experiments, though it is diffi-
cult to know for sure—a pair failing the target condition test is not normally
checked by the top-level invariant test, and IBR and IEBR do not always ex-
amine exactly the same sets of redistributions. There are, of course, several
cases where a correct redistribution passes the top-level test, but not the

158

target condition test.

11.2 Time and Space Costs

The costs of running the two algorithms are different. The actual run-time
and -space functions are too complex to derive, and the implementation has
not been tuned for speed. Thus, it is not possible to draw hard conclusions
about which approach will be less costly in a practical setting. On the other
hand, there are some qualitative insights to be had based on the general
design of the algorithms.

11.2.1 Run Time

Screening Only. Assume first that the two screening procedures give the
same answers on each candidate pair for a given example (this happens,
for example, in MY-REVERSE and APPEND). This ensures that the algorithms
examine exactly the same set of pairs (in the same order), giving us a better
idea of the relative costs of the screening procedures themselves.

In this case, IEBR seems to be significantly faster than IBR due to the
need for the latter to carry out the redistribution and re-execute test cases
for each candidate pair, while IEBR only does this once per successful pair.
The number of successful pairs is usually several orders of magnitude lower
than the number of candidates. We can derive crude run-time formulae for
each of the approaches as follows.

The dominant term in IBR’s time cost is proportional to the number of
screened pairs (number of pairs not pruned syntactically) times the total
aggregate size of all test case traces.! Thus,

Timegr & k; X number-screened-pairs x sum-of-trace-sizes + o,

0, represents other terms that do not grow as fast with program size. Note
that the pairs eliminated syntactically are dealt with in various aggregate
ways, hence are not constructed individually, so the contribution of prune-
syntactically is small by comparison.

'However, as optimization proceeds, the trace size will decrease (in IBR’s case only)
because virtual structure need not be evaluated for 1BR. I ignore this effect here, though
it is probably significant for some programs.

159

The dominant term in IEBR’s time cost is proportional to the number of
screened pairs times the average cost of evaluating a target condition in a
test case, times the number of test cases (not the aggregate size). Thus,

Timegpr ~ k2 X number-screened-pairs x avg-tc-eval x #test-cases + o,

Given these two crude models, we can see that as the program gets larger
(hence its traces get larger) IBR gets slower by comparison, assuming the
target condition evaluations and number of test cases stay about the same.
It is very difficult to apply these models, since the average target condition
evaluation time depends on its size; its size, in turn, depends on how often the
target appears in the proof, and that does not depend simply on the size of
the program. It depends more on the connectivity and intended behavior. It
also depends on how much generality we are willing to give up in the target
conditions: if we restrict to “equal to the old source” as the only target
conditions, then obviously evaluation doesn’t grow at all with program size.

The “low order” terms can have quite large constants, also; for most of
the programs tested, they had significant (but not overwhelming) effects. In
practice, IEBR’s low order terms tend to be larger than those of IBR; they
include the costs of tree-restructuring, target condition derivation, and trace
updating for successful pairs. IBR, on the other hand, has very little extra
low-order baggage.

Qverall. For most programs, the two screening procedures give different
answers, so IEBR and IBR examine different pairs. IBR’s greater power gives
it a considerable natural advantage as follows. Any box eliminated by IEBR
will also be eliminated by IBR (if it considers it), but not conversely. If
IBR eliminates a box, it need not investigate its substructure, obviously. If,
however, IEBR fails to eliminate it, IEBR will investigate it. Thus, the relative
weakness of IEBR can result in it examining more candidates. The merge-
sort example (Section C.2.5) illustrates this phenomenon: IEBR examined
370 boxes, while IBR examined 318.

In practice, this reduces the run-time advantage of IEBR, but IEBR usually
still outperforms IBR. The typical advantage seems to be about a factor of
2 to 3 on the examples I've run. It cannot be overemphasized that these
numbers are likely to change when more effort is put into careful engineering.

It is still open as to whether for larger programs IEBR will maintain its run-
time advantage.

160

Of course, for large programs, likely the most practical way of using the
system would be to look only at the most expensive boxes; thus, a small
run-time advantage for one algorithm is likely to be unimportant. Other
considerations, such as the degree of confidence in the results are likely to
dominate.

11.2.2 Space

Space costs are due mostly to storage of test case traces and maintenance of
internal datastructures corresponding to the program. In the current imple-
mentation, IEBR must store all intermediate values for each test case trace,
while IBR needs to maintain only whether each source and target was reached
in the execution of the test case. Thus, significant space savings might be
achieved by designing a clever way of storing this information w1thout actu-
ally storing the trace values.

If the program surgery required to carry out redistributions is imple-
mented using dynamic allocation and garbage collection (as in this system),
then IBR suffers a much greater space cost due to program surgery over IEBR,
since IBR does such operations once per candidate. These costs are converted
into time costs by the garbage collector, since only one version of the pro-
gram (together with the information necessary for chronological retraction
of alterations) needs to exist at one time.

Other space costs include storing programs, optimization invariants, proofs,
and lemmas in appropriate library structures. Storing proofs and lemmas is
necessary only to IEBR, of course.

11.3 Routine Optimization

As discussed in Chapter 9, IEBR captures a notion of “routine” optimization
that IBR fails to capture. The redistributions passed by IEBR are more routine
because they can be proved from fewer structural axioms on the average. I
believe this to be true, even for redistributions carried out recursively. This
is a double edged sword.

o Routine is good if one wants each optimization to be certified by some
automatic or semi-automatic means. Given the practical and theoret-
ical limitations on automatic theorem provers, it is important both to

161

avoid calling the theorem prover as much as possible, and to avoid call-
ing it when it will fail to find an answer. Deep or nonlocal optimizations
tend to result in the theorem prover failing to find an answer and being
cut off by some resource bound. This is obviously expensive.

o Routine is bad if one wants the highest degree of optimization and is
willing either to accept the possibility of optimization-induced errors
(using some run-time scheme to correct them), or to hand check each
optimization.

From the standpoint of restricting to routine optimizations, the choice of
which algorithm to use reflects more on how it is to fit in to a larger software
development environment than on an absolute good/bad judgement.

162

Chapter 12
Supplying Design Information

This chapter discusses the issues surrounding the need to supply the system
with design information beyond the program’s source code. In particular,
it addresses the questions of what characteristics the system’s inputs should
have, and how the system and user can cope with the practicality issues
involved.

12.1 Optimization Invariants

Optimization invariants should be cheap to evaluate, at least for the test
inputs. Since it is the certifier’s job to guarantee safety, we do not require
absolute correctness of the invariants. Probabilistic or even only approximate
checking would probably suffice as long as it did not allow too many unsafe
candidates to pass the screening. This observation significantly enlarges the
set of programs to which the approach is applicable, since probabilistic al-
gorithms can be faster than the best known determistic ones. Blum and
Kannan (1989) give probabilistic checkers for several problems.

The well known difficulty of formalizing specifications is mitigated by the
use of relative optimization invariants, which allow access to the outputs
of the original, unoptimized program. As argued in Chapter 4, there are
both practical and theoretical grounds for believing that such invariants are
easier to find and formalize. Recall, however, that as a last resort one can
sacrifice some power to use one of the variants of IEBR that does not require
optimization invariants, if even relative invariants cannot be found.

163

12.2 Explanations (Proofs)

Explanations represented as resolution proofs need to be structured according
to the guiding principle of operationality discussed in Section 9.2.4.

In a rich development environment, most proofs are free (in an amortized
sense). This is because one constructs programs mostly from reusable library
modules, each of which has its proofs done once and for all. The only thing
to be supplied for a given user-program is the top-level proof, but quasi-
specification proof techniques (as discussed in Chapter 10) can fill the gap
here. Adopting an iterative development strategy, one might use default-proof
on the first round, and progressively incorporate more detail into the proofs
on succeeding rounds as the program stabilizes. Finally, if the program were
of lasting value, it would be put into the library with a richly detailed proof.

Note that even if we cannot supply an adequate proof input, we can
always use IEBR by letting “equal to the original source” be the target con-
dition for every program target. This sacrifices some power, but nevertheless
is strictly more powerful than the well known technique of common subex-
pression elimination.

12.3 Representative Test Inputs

Test inputs should be “representative.” This can be defined differently for
different uses of test inputs. For the purposes of automatic redistribution,
representative means “lacking coincidences.” I have no precise description of
this as yet, except that there are some properties that are not important. I
believe the appropriate definition of “representative” for automatic redistri-
bution is close to that used for generating test suites in a “glass box” testing
methodology. A “black box” testing methodology is where test engineers
design tests without knowledge of any implementation details; this approach
seems less likely to produce useful test inputs for optimization screening. In
glass box test generation, by contrast, the test designer creates tests specifi-
cally for the given implementation.

It is not crucial that the test cases reflect the probability distribution of
the intended use of the program; for example, just because the program is
to be used mostly on large inputs, the optimizer doesn’t need large inputs,
unless an efficiency bottleneck is only exercised by large inputs. For example,

164

MY-REVERSE was optimized using only a single short list, while one might ex-
pect that the “typical” list would be large. Note that even if it is prohibitively
costly to run the program on the necessary test set, one can (sacrificing some
optimization power) use a variant of IEBR that never re-evaluates tests.

It is not crucial that every branch of the code be exercised by the test
cases since the system discards candidates where no test case exercised either
the source or the target. Since the system can tell when a part of the pro-
gram has not been executed by any test case, it can avoid trying to optimize
it; hence, failing to cover parts of the code won’t lead to erroneous optimiza-
tions. Moreover, the system could (though I haven’t implemented this yet)
keep track of how many test cases exercise a given source or target and use
this as a heuristic estimate of confidence in a given redistribution. That is,
if the source or target is only initialized in one out of ten test cases, any
redistributions using it could be flagged as more suspect than others involv-
ing well-tested sources. Aside from this, however, the test case problem is
difficult. It is no worse than the problem faced by current software engineers
who use testing to verify correctness, however.

12.4 Program Structure

With regard to the form of the structural representations of reusable compo-
nents, the key point is that programs should be represented in a “functionally
exploded” form. As much as possible, boxes should implement (or take part
in implementing) only one “property” of a program. This allows redistribu-
tions to eliminate a box when the single property is not required in context.
Having a box implement multiple properties would obviously mean that the
context would have to be insensitive to all the properties before the box could
be eliminated.

This criterion is only intuitive at this point; it is best explained by exam-
ple. Consider the most well-known implementation of list APPEND:

(DEFUN APPEND (L1 L2)
"Concatenate two lists'
(IF (NULL L1)
L2
(CONS (CAR L1)
(APPEND (CDR L1) L2))))

165

This source code translates into a recursive program that is definitely inferior—
for optimization purposes—to the more exploded structure shown in Fig-
ure 1.3 (page 24). The problem is that the subfunctions of (1) copying the
input list, (2) finding the last cons-cell of the to-be-altered list, (3) and set-
ting the CDR of the last cons cell are all distributed among the CONS, CAR,
CDR, and recursion boxes. Thus, it is very difficult for the optimizer to elimi-
nate any of these from the recursive form of the program. By contrast, all of
these are separate and explicit in the preferred structural representation of
Figure 1.3. Figure 1.4 (page 25) shows an optimization that eliminates just
the copying subfunction; Figure 1.5 (page 26) shows an optimization that
eliminates the last-cons subfunction. If I had chosen the recursive structure
the effect of the first optimization could have been achieved in a more com-
plicated way requiring more search time; the second optimization could not
have been achieved at all.

Note that if context-dependent optimizations are not possible, it at first
appears that we are stuck with an inefficient implementation: both the copy
box and the last-cons box perform essentially the same iteration over the list,
where the recursive implementation only iterates once over the list. In this
case, however, a different (context-independent) optimization fuses the two
iterations. This optimization is illustrated in Figure 3.6 (page 67). Thus,
even when APPEND must perform the copy, the functionally-exploded imple-
mentation leads to an optimized implementation that is at least as efficient as
the recursive version. This is an important observation; if a module can’t be
automatically optimized from the functionally exploded form to be at least
as efficient as other forms; it may not be worthwhile keeping that version in
the library.

Other examples of this phenomenon are illustrated in Appendix C. They
include data invariant suspension, where a single data invariant is enforced by
a single box; copy elimination, as in the example above; and identical-value
redistributions.

A question raised by this research concerns the fact that “functionally
exploded” does not uniquely define a best form in some cases. There are
programs where one form is better for certain uses, another form is better
for other uses, and there is no “join” form which can be optimized into both
forms. The examples I've come across center around the two ways of rep-
resenting iteration: via tail-recursion and via series objects. The LR1-REM
program is a case in point. Used within the SR-ELT?+UNION example (Sec-

166

tion C.3.1), the key optimization eliminates the recursion box of LR1-REM in
its tail-recursive form. In the LR1-REM+APPEND example (Section C.2.4), how-
ever, the key optimization is a loop fusion of the iteration within the LR1-REM
box. Of course, the recursion box is not present in the series implementation,
s0 it can’t be eliminated, and the series object is not present in the recursive
implementation, so it can’t be shared. The question raised by this and other
such examples is, should multiple structural representations be stored in the
library? Or should we try to develop methods for automatically converting
between different structural representations? Note that in the case of recur-
sion/series, the structural translation is straightforward, but the translation
of the explanatory information is not. Automatic conversion methods would
appear to have further advantages in optimization power, since they could
be executed several times during the optimization process, possibly allowing
more optimizations than could be obtained simply from choosing one or the
other at the beginning.

167

Chapter 13

Certification

Inasmuch as the system’s output represents a set of conjectures, rather than
certainties, safe (bug-free) use of the system requires some form of certifi-
cation, or checking that a given redistribution preserves correctness of the
program with respect to the top-level specification. There are two places in
the development life-cycle that one can install certification: compile-time is
while the optimizer is operating, but before the optimized program is run
on any new examples; and run-time is during actual use of the optimized
program on new examples.

13.1 Compile-time Certification

Since neither IEBR nor IBR requires proof structure to be produced during
their operation, the compile-time certifier needs only to decide whether the
proposed optimization is safe; it need not produce a proof. Thus, rather than
requiring a theorem prover, the certifier needs only a theorem checker. The
difference between checking and proving is significant, because one must be-
lieve in the correctness of the theorem checker to believe its answers, whereas
one can quickly and independently check the (positive) answers of a theorem
prover. The major advantage of requiring only checking for certification is
that the system is then insensitive to the particular reasoning used by the
system, so long as it is sound; no constraint is placed on the style of proof.
This allows more latitude in the design of the reasoner.

Comopile-time schemes vary in how much human interaction they require.

168

As remarked earlier, IEBR, in finding only more routine optimizations, will
presumably be more practical to use with a theorem checker than IBR.

o Fully Automatic. A fully automatic approach would employ some form
of limited automated reasoning system to try to formally verify the cor-
rectness of each redistribution. The theorem checker must be limited in
some way, because there is no guarantee that either a proof or disproof
exists for a given redistribution. Thus, an unlimited theorem checker
might run forever if given an untrue theorem to check. Moreover, there
can be theorems that could be found but only in an impractical length
of time. A conservative approach would be to discard a redistribution
whenever it can’t be certified within the given limits.

o Interactive Theorem Proving. A more practical approach, given the
current state of the art in theorem checkers, would be to use a human-
guided theorem checker. This would both increase the number of the-
orems checked and maintain the correctness guarantee of the resulting
program. The main drawback of this approach, as with all interactive

approaches, is that it requires the programmer to think about low-level
details.

e Human Oracle. Finally, a practical near-term approach is for the sys-
tem to simply ask the user whether to accept or deny each redistribu-
tion, without employing formal proof methods at all. While this may
be asking for trouble, it still appears to be a significant step up from
current programming practice: the search is systematically organized
to examine all the possibilties in a reasonable order, based on likelihood
of payoff. Most non-expert programmers do poorly at optimizing their
programs simply because they do not know how to organize the search.
Frequently, a great deal of effort is put into saving milliseconds out of
a much longer run, because the programmer doesn’t understand the
real bottlenecks. Note that since today’s programmers typically think

about low-level details anyway, having them do it here is no extra bur-
den.

169

13.2 Run-time Certification

The notion of efficient program checking introduced by Blum and Kannan
(1989) provides another means of coping that does not rely on automated
theorem proving, yet is still fully automatic. Intuitively, a program checker
is a distinct program (assumed correct) that can check the outputs of any
program claiming to solve the given problem Note that a set of optimiza-
tion invariants stated absolutely, without using the .0RIGINAL construct, is a
program checker; though, for certification purposes I do not restrict program
checkers to be in the effective-clause formalism.

My proposal is to check the optimized program’s outputs every time it
is run, using an efficient program checker as defined below; if it is found to
be incorrect, then signal the user and offer to re-optimize the program using
the inputs for the faulty run as an additional test-case. Of course, the re-
optimization can ignore all source/target pairs that were shown incorrect in
the previous run. This saves most of the time of re-optimization. The result
of the re-optimization will be a program that is more often correct than the
original optimized version.

This approach is practical as long as the checking is efficient: the run-
times of the optimized program and the checker together must be significantly
less than that of the original program alone. Blum and Kannan (1989)
develop a theory of efficient program checking related to this idea, but do
not apply it to program optimization; hence, their definition of an efficient
program checker, as one whose run time is little-omicron of the program’s
run time, is different than mine.

Note that an efficient checker cannot be relative, because it would be
forced to run the unoptimized program to get those outputs every time it
checked a run of the optimized program. Such a strategy obviously violates
the efficiency condition. Note, however, that the optimizer can still use a
relative optimization invariant during optimization; it is only forbidden at
program use time.

It is clear (see Appendix E) that it will not always be possible to find
a checker, much less an efficient one, so this approach to certification is not
applicable to all programs.

A Hybrid Scheme. It may be useful to combine compile-time and run-
time approaches by using a human oracle to check the redistributions as they

170

are produced, but still do run-time checking.

Note that using run-time checking with the other compile-time schemes
is pointless, since proving some of the redistributions correct doesn’t reduce
the time required to check the outputs at run-time.

An approach that won’t work. It might at first appear that with
IEBR one can simply add a run-time check to the program that evaluates
the target condition every time the production code is run to make sure
that the new source is still okay. This is exactly the same type of thing as
array bounds checking or run-time type checking. Unfortunately, it won’t be
practical because target conditions are frequently stated in terms of virtual
structural elements which won’t be present at production run-time.

171

Chapter 14

Literature Review

This chapter places this research in relation to previous approaches to the
problem of improving the performance of programs. It also discusses rela-
tions with other branches of Artificial Intelligence and Software Engineering
research.

14.1 Program Improvement and Redesign

Traditional Compiler Techniques. One way to view redistribution of inter-
mediate results is as an attempt at generalizing many traditional compiler
techniques to apply to arbitrarily high-level abstractions. Techniques like
common subexpression elimination, copy elimination, and loop fusion (Aho,
Sethi, & Ullman, 1986) are fundamentally limited by the level of their source
languages. That is, they can only exploit the semantics of the data types that
are primitive to the language, because they cannot capture and fully exploit
the semantics of user-defined types. This stems from having no access to
the true specifications of the programs or the domain theory that connects
the structure to the specification. For example, a FORTRAN optimizer can
only exploit the algebraic laws of integers, arrays, and other low-level types,
knowing nothing of the laws of higher-level types such as sets, mappings,
graphs, etc.

I include in the category of traditional compiler techniques the opera-
tions of type inference and automatic datastructure choice and aggregation
performed by the SETL compiler (Freudenberger, Schwarz, & Sharir, 1983).

172

SETL is a much higher-level language than most, hence the optimizations
its compiler performs have greater impact on the performance of programs.
Nevertheless, these optimizations are still limited to the semantics of lan-
guage primitives. The optimizer demonstrates a great deal of ingenuity in
determining when certain optimizations regarding sets and mappings may
be performed, but the language cannot capture any extra semantic informa-
tion about higher-level, user-defined abstractions. While it might infer that
a particular copy operation on a set is unnecessary, it will not be able to
infer the analogous fact about a copy operation on a user-defined type. Since
no language will ever predefine anywhere near all of the useful programming
abstractions, traditional approaches to optimization will never be free of the
“source language tarpit.”

Low-level Program Transformation Systems. The program transforma-
tion school (Partsch & Steinbruggen, 1983; Cheatham, 1984; Darlington,
1981; Reddy, 1991) takes the view that optimization should take place as a
process of program transformations, usually at the source code level. Each
transformation must provably preserve program correctness. Consequently,
each has a set of applicability conditions which must be verified. An as yet
unattained goal of the research is that these conditions be checked automat-
ically so that program correctness is guaranteed no matter how the human
influences the process.

Fully automatic approaches to choosing the sequence of transformations
are not practical ways of producing efficient code, both because the search
space is too large and because powerful optimizations require powerful theo-
rem checking capabilities not generally available. Consequently, most trans-
formational approaches are semi-automatic in that a human must guide the
selection process. Also, the human must sometimes assist in verifying appli-
cability conditions. This line of research cannot be termed a success as yet,
because the process of (a human) guiding the transformations is difficult and
tedious. Each transformation is relatively low-level, so many are required to
carry out any particular optimization. Optimizing a large program from its
clear, but inefficient specification requires too many small-grain steps to be
feasible. There is, however, ongoing research into structuring the transfor-
mation process; see Fickas (1985) for one approach and Meertens (1986) for
many papers on this subject.

A particular branch of this field (Wile, 1981; Scherlis, 1981) investigates

173

specializing data type implementations to their contexts. While these ap-
proaches discuss some of the transformations possible, they again do not
discuss the issue of automating the search. In particular, there is no discus-
sion of explanatory structure or the use of correctness information in guiding
the search.

It is possible that the search control ideas developed in this research
(focus on eliminating a box at a time, in order of estimated cost) may be
applicable to program transformation technologies; I have not looked into
this connection as yet.

High-level Program Transformation Systems. KIDS (Smith, 1991) is an
interactive program transformation system incorporating many powerful trans-
formation tools, such as algorithm designers, an inference system, a finite
differencing subsystem, and a partial evaluator. This is qualitatively differ-
ent from the other program transformation approaches in that the human
guidance is in terms of much higher-level operations. This ameliorates the
search problems faced by the lower-level transformation systems.

In fact, a redistribution module would, I believe, fit in well in the KIDS
environment as another automatic transformation step available, as it can
do things the other steps can’t. For example, Smith (1991) mentions several
shortcomings in the final program output by KIDS for the k-queens problem:
it performs unnecessary list member checks and unnecessary copy operations.
I have given examples here of how my system can get rid of these things.
Furthermore, the KIDS environment could probably be easily adapted to
maintain the teleological information needed by the redistribution system,
since all the steps are automated.

Similar in philosophy to KIDS is the Programmer’s Apprentice (Rich
& Waters, 1990). It too contains various types of experts (a designer, a
program recognizer, and a requirements assistant) and a general inference
system (CAKE). It is in principle capable of taking much higher-level and
less precise initial problem statements than KIDS, but is less automated
than KIDS. I believe that a redistribution subsystem would fit in to the
PA for much the same reasons as it would with KIDS; it provides necessary
capabilities not already available and the environment naturally provides

most of the extra teleological information as a by-product of the design and
analysis processes.

174

Finite Differencing. Finite differencing (Paige & Koenig, 1982) is a
method for improving programs by replacing repeated all-at-once compu-
tations with more efficient incremental versions. The implementation in
RAPTS (Paige, 1983) is semi-automatic in that a user must decide which
instances of differencing to apply and whether an instance is desirable. The
system is given a sizable base of specific “differentiation” rules, each of which
applies to some pattern of operations expressed in SETL. For example, one
such rule says that the expression #S, size of the set S, can be maintained
incrementally by (1) initially calculating the size of S, (2) for every addition
to S adding 1 to it, and (3) for every deletion subtracting 1.

Though finite differencing is an elegant idea, expressing this idea in terms
of a large rule base of highly specific instances has significant problems. The
biggest is that to exploit the idea of differencing to its fullest, the system
would require new differencing rules for any new abstraction. This is not
simply the “standard expert system complaint,” however. Typical expert
systems solve relatively fixed problems, where the expertise changes only
slowly. By contrast, every new user program can potentially have new con-
figurations of function calls that require new differencing rules. Therefore, in
order for the rule-based implementation of finite differencing to be considered
a complete theory, it must also account for how the rules are (automatically)
derived from the definitions of the abstractions. The analog to this problem
in my system is the difficulty of supplying appropriate design information as
input to the optimizer; by contrast, I have given an account of how much of
the needed extra knowledge can be automatically supplied (cf. Chapter 10).
Other finite differencing problems include difficulties in deciding which rules
to apply and whether a given rule will improve the efficiency of the program.

With regard to redistribution, I believe that much of the finite differenc-
ing behavior can be seen as an application of the redistribution principle.
A principled approach to redistribution would, therefore, supply a partial
answer to the problem mentioned above. Finite differencing could then be
seen as an emergent behavior rooted in deeper principles. Of course, rules
are not bad per se. Transformation rules compiled automatically from expe-
rience can be useful for speeding up a system in which they could otherwise
be derived in a principled but slow way.

Memoizing. Mostow & Cohen (1985) have investigated automating the
well-known technique of memoizing. This is the idea of a subroutine majn-

175

taining a cache of its output values for those inputs for which it has already
computed an answer. If the subroutine is ever called more than once on
the same input, the answer is looked up in the cache the second and suc-
ceeding times, rather than being recomputed. Mostow and Cohen explored
the addition of caches to Interlisp functions, with an eye to building a fully
automatic tool. Unfortunately, it appears that this problem is too difficult,
because side effects and large datastructures make the technique difficult
to justify in many cases. I believe the chief problem in this approach is,
again, that the memoizer has neither knowledge of nor control over the de-
sign process, because, like a compiler, it takes in only the Interlisp source
code. It must always assume the worst possible cases of usage for any given
subroutine, cases which could possibly be ruled out if extra information re-
lating to purpose and correctness were known. Memoizing can potentially be
used to implement equal-value redistributions, but I have not explored this
technique.

Tupling. Pettorossi (1984) has defined tupling to be the combination
of two initially separate functions into a single, vector-valued function in
order that their implementations may share partial results. He proposes it
as a program transformation, but does not discuss automation of the search.
The essence of the technique is interesting in comparison with my approach
to redistribution. My system avoids the need for tupling, by viewing the
program as “virtually flattened,” so that all intermediate results are available
to be shared. This is limited only by execution ordering of the boxes and
by recursion constraints. The system keeps track of the module boundaries,
but is free to add new input and output ports to boxes in order to achieve
sharing. I believe tupling can be viewed as a transformation that could help
implement redistribution in a general program transformation system.

Automatic Programming Approaches to Efficiency. Automatic program-
ming systems usually implement a top-down refinement approach to program
design, always “staying within” abstraction boundaries. This contrasts with
my system which is primarily concerned with breaking these boundaries to
gain efficiency. Thus, my system is complementary to these systems. The
most interesting point of comparison is in the method of deriving and using
cost information to guide the search.

Kant’s LIBRA system (Kant, 1983) is designed to be a search control ex-

176

pert which guides the stepwise refinement process of the PSI (Green, 1976)
synthesis system. LIBRA guides the search by performing an incremental
symbolic analysis of the efficiency of the evolving design, obtaining “opti-
mistic” and “achievable” performance estimates. The refinement is then
controlled using branch-and-bound. LIBRA spends most of its time per-
forming algebraic manipulation to simplify quantitative cost estimates of the
overall program. McCartney’s MEDUSA system (McCartney, 1987) designs
efficient algorithms in the domain of computational geometry problems. Mc-
Cartney’s approach augments the stepwise refinement paradigm of Kant’s
approach with domain knowledge of general problem decomposition tech-
niques. MEDUSA uses analytic knowledge in a similar way to LIBRA, i.e.
to provide a cost function for use with branch-and-bound search.

I have avoided the complexity of maintaining a quantitative cost estimate
of the entire program at each step by deriving qualititative cost estimates only
of portions (boxes) of the program.

Both LIBRA and MEDUSA would have trouble producing the optimized
implementations achievable with redistribution, simply because they operate
within abstraction boundaries. It would be interesting to integrate my sys-
tem with these systems. Moreover, since they perform stepwise refinement,
much of the teleological information, including the specifications and module
correctness proofs, would be a natural by-product of the software library and
the initial design process and could then be used by my system.

Replanning and Designing Eztensible Software. Linden (1989) proposes
using much the same additional information—specifications and teleological
information—to support the evolution and redesign, for a changing speci-
fication, of software systems. While not directly relevant to program opti-
mization, this work nevertheless points out other valuable uses of this extra
information. This is yet another reason to move toward integrated software
development environments that can support the type of automated docu-
mentation required for both approaches.

14.2 Explanation-based Generalization

In this research, target conditions are derived from proofs via a novel tech-
nique related to explanation-based generalization (DeJong & Mooney, 1986).

177

Though there are many approaches to EBG, they all take in an explana-
tion of why a given concrete example belongs to a concept and extract from
it a generalized, operational definition of concept membership. The tech-
nique used is basically the operation of turning constants to variables and
back-propagating constraints through operators.

My system contrasts with this first in the fact that the input is an ex-
plained program while the “concepts” to be learned are conditions on portions
of the program. Thus, the explanation is not of why a single concrete example
satisfies a single concept, but rather why many different structural elements
work together to satisfy a goal. The system then “learns” an approximation
to the role of each structural element in the correctness of the design. Each
of these roles is a target condition. Thus, each single explanation encodes
many concepts.

Another contrast is in the technique of generalizing: my system uses
parent-child clause unioning (PCCU) in resolution proof trees which is differ-
ent from standard approaches to EBG. Standard approaches generalize both
the concept at the root of the tree and the conditions at the leaves of the tree
through a form of variabilization. PCCU does not attempt to generalize the
clause at the root of the proof tree, which EBG does to get a proof of con-
cept membership in terms of a free variable, because the proofs it operates
on are not direct proofs of concept membership. Rather, the proofs establish
global program properties and the PCCU technique infers implicit “concept
membership conditions” (target conditions) from these proofs. As such, vari-
abilization is neither appropriate nor desirable. On the other hand, given a
particular proof tree, the PCCU technique extracts more general leaf condi-
tions than do standard EBG techniques, and is able to generalize selected
proof leaves rather than simply all of the leaves.

Though there is work on using EBG to acquire programming methods
from experts (Shavlik, 1988, among others), I have not seen any that uses
EBG to derive facts about elements of a given program in order to perform
optimization.

178

Chapter 15

Conclusions

The purpose of this research has been to investigate ways in which function
sharing—a universal principle of design—may be automatically introduced
into software designs. This approach is particularly applicable to the problem
of eliminating redundant or unnecessary operations introduced as a natural
result of reusing general software modules in specific designs.

The class of optimizations considered in this work, redistribution of inter-
mediate results, restricts the introduction of function sharing to those cases
where the adaptation problem is easy. Nevertheless, the range of phenomena
covered is broad, including examples of copy elimination, generalized loop
fusion, data invariant suspension, and identical-value redistribution (gener-
alized common subexpression elimination).

Key steps in achieving full automation of this process include exploit-
ing extra design information beyond program structure, deriving operational
target conditions for screening candidate optimizations, and using represen-
tative test inputs to quickly eliminate almost all candidate optimizations.
External to this thesis, but nevertheless important to the eventual success of
the overall research effort, are the steps required to automate certification of
candidate optimizations, whether at compile-time or run-time.

I designed and implemented two different algorithms, IBR and IEBR, to
find candidate optimizations (redistributions). IBR is more powerful but
appears to be slower, because it re-evaluates all tests for each candidate
optimization. IEBR, by contrast, avoids the need to re-evaluate tests by con-
structing operational target conditions and checking them using the original
test trace data. Importantly, IEBR restricts to a class of routine optimizations

179

which are significantly easier to automatically certify than the arbitrarily
clever optimizations found by IBR.

This research contributes both to software engineering and to artificial
intelligence, serving both as an initial feasibility demonstration of a novel
software engineering technique and as a case study in automating a part of
the design process. The success of the implemented system has demonstrated
the feasibility of automating the introduction of limited forms of function
sharing into programs. The question of whether the approach will ultimately
be useful to software engineers cannot, as yet, be answered conclusively. I
believe, however, that the potential benefits and likelihood of success justify
the further research required to answer it. The secondary question of which
of the two algorithms, IBR or IEBR, will ultimately be more useful cannot
be answered based on this research; to answer it, we must await a concen-
trated re-engineering effort. I believe something like an order of magnitude or
more in run-time performance can be achieved through re-engineering each
algorithm.

15.1 Contributions

o Generate and test approaches to design optimization have traditionally
been limited by the need to prove arbitrarily difficult theorems to certify
the safety of design changes. This research has taken a first step toward
alleviating this problem through the application of machine learning
ideas to deriving operational target conditions which supply theorems
that are easier to prove than arbitrary safety conditions. .

o Function sharing has long been acknowledged as an important principle
of design. This work has demonstrated that restricting solutions to the
adaptation problem can constrain the search space of possible function
sharing optimizations to manageable proportions. I believe this idea
carries over to the study of design automation in other engineering
domains, though the range of phenomena captured in each domain
may be more or less useful.

® The system is based on a new methodology for structuring the pro-
gram optimization task: first, it finds plausible and useful candidate
optimizations, then a certifier checks the candidates for safety. I have

180

automated the first problem, while separating out the second prob-
lem. This screen/certify methodology is more attractive than standard
approaches to program optimization, because it allows more powerful
hybrid approaches to certification, including (but not limited to) tech-
nology based on correctness-preserving transformations, limited theo-
rem proving, and program checking. All current automatic approaches
to optimization, by contrast, are fundamentally (and inextensibly) lim-
ited in power to a single approach to certification.

Current program optimizers are stuck in what I call the “source lan-
guage tarpit.” The only specification freedoms available to them are
those that follow from the specifications of the language primitives.
Such optimizers know nothing about the intended use of the program,
so must assume the worst cases of possible usage. By contrast, my
system can exploit specification freedoms present at any level of the
user-defined abstraction hierarchy. Supplying optimization invariants
to the system enables a large, qualitative improvement in optimizer
performance.

When considering a large space of interacting optimizations, it is cru-
cial to structure the search by adopting some cost-based heuristic. By
ordering the search in this way, the system avoids low-payoff program
changes interfering with subsequent high-payoff changes. Even the sim-
ple qualitative approach used here is surprisingly effective at this.

There is a symbiosis between the reuse methodology and powerful op-
timization tools: each benefits from the presence of the other.

— The availability of a more powerful optimizer makes reuse of com-
ponents more practical. This is true for the same reason that stan-
dard optimization techniques make the use of high-level languages
more practical. The corresponding benefits are of the same kind,
but the key difference between standard techniques and my sys-
tem is that the “language”—the modules in the software library—
is variable and arbitrarily high-level, while the optimizer’s power
is not limited to a fixed set of primitives. The high level of the
library modules allows initial programs to be written more quickly
and clearly than in a standard programming language.

181

— A reuse methodology can greatly improve the practicality of IEBR
and IBR. This follows from the simple observation that the costs
of producing the additional required information can be amortized
over the many uses of the library modules. This leads to a two-
stage model of the history of a module: it starts out as a user
program written in terms of library modules. Its optimization
invariants, explanations, and test inputs are produced as quickly
and simply as possible using (possibly) quasi-specification proof
generation and relative invariants. Then, experiments are per-
formed on the module, debugging and redesigning it. Once the
module’s design stabilizes and it is deemed potentially useful for
other applications, the programmer invests time and effort in im-
proving the invariants and proofs to a standard good enough to
enter into the library. The enrichment of the invariants and proofs
will mean that subsequent uses of the module will be more highly
optimized than the prototype was.

Note also that if this system is embedded in a larger, machine-
mediated design environment, it should be possible to obtain more
complete specification and proof information than might be gotten
from quasi-specification proof generators. This is because during
the initial design there might be other tools that acquire and aug-
ment such information. An example would be the Requirements
Apprentice (Reubenstein, 1990) which acquires evolving informal
requirements.

15.2 Limitations

Limitations of this research exist at many levels of description:

® As an approach to facilitating reuse of software modules, function shar-
ing is limited in that it cannot capture all possible optimizations. Other
techniques, such as partial evaluation and finite differencing, will eas-
ily capture some optimizations that function sharing will not get at
all. Function sharing, however, both captures new optimizations and
unifies classes already performed by other methods.

182

e Maximal function sharing is not well-suited to significantly parallel
computations. Forcing all processors to wait for one to compute a
shared value may be less efficient than having several different proces-
sors compute the value as needed. Redistributions tend to sequentialize
the program.

o Redistribution of intermediate results is more limited than function
sharing in general in that it introduces no new code into the design,
hence useful optimizations will be missed even if only simple additions
are required. I expect that this research will serve as a starting point
for exploring function sharing with nontrivial adaptation.

e Each of the tradeoffs made for practicality makes the system less pow-
erful. For example, the system can give answers (conjectures) that
introduce bugs into the program if the tests have unfortunate coin-
cidences in them—and it is difficult to find good test inputs. Also,
the system can miss the best optimizations if eliminating an inexpen-
sive box is required to enable eliminating a costly box. IEBR can miss
optimizations if a quasi-specification proof is used. IEBR also restricts
attention only to more routine optimizations, trading off power for help
with certification.

® Redistribution of intermediate results is sensitive to idiosyncracies of
the input program’s structure. That is, small changes to a program’s
structure can have significant effects on optimization results. I be-
lieve prospects are good, however, for extending adaptation techniques
without harming the basic practicality of the present approach.

15.3 Future Work and Potential Applications

There are two primary directions in which this research can be pursued, each
of which holds promise for significant theoretical and practical advances. The
two differ in the type of certification technology.

In pursuit of the long-term goal of a completely automatic compile-time
optimizer, I believe this work has laid a foundation for solving the certification
problem by devising a way of restricting certification only to candidates that

183

are feasible to prove. To further pursue this goal, the following problems
must be addressed:

e The certification of optimizations is a restricted theorem-proving task,
where a reasoner might capitalize on such task properties as incremen-
tality and the use of target conditions. Tailoring a theorem prover to
exploit these constraints can potentially improve its performance on
this task. Furthermore, usable ways of limiting the reasoner must be
explored as well. The work reported in (Hall, 1990) may provide a first
step along these lines.

¢ Redistribution optimizations within recursive programs are often thwarted

by the base case needing a different redistribution than that needed
by the recursive case, such as in the case of FIB-DESIRED (see Sec-
tion C.1.2). It should be relatively simple to extend the theory to
handle this simple instance of the adaptation problem. Other cases of
non-trivial adaptation should be explored as well, though I don’t antic-
ipate a fully automatic solution to the problem of introducing arbitrary
function sharing.

o As discussed previously, a fuller understanding of representation is-
sues would improve the system’s performance. In addition to studying
possible automatic conversion between series and recursive forms of
programs, powerful series-like representations should be developed as
alternatives to various other (non-linear) forms of recursion, such as
tree recursion. Undoubtedly, these would raise semantic issues similar
to those pertaining to series (see Appendix F), as well as the issue of
how and when to change among the different forms of a program.

¢ Resolution proof trees and clausal form are particularly simple and
difficult to use. Future research should address incorporating more
usable proof formalisms. Of course, the design must take into account
the needs of the target condition procedure; i.e., the Pccu procedure
must be suitably altered.

The less ambitious goal of a system based entirely on run-time (or inter-
active) certification is not dependent on automatic theorem proving as an
enabling technology. Aside from that, however, all of the above issues still

184

arise. Added to them is the fact that the test case coincidence problem is
more crucial, so further research must go into schemes for finding and im-
proving test suites. One possible approach to the testing problem is to locate
candidate optimizations whose empirical base, the set of test inputs that ex-
ercise that portion of the program, is small, and try to “perturb” those tests
somehow to see if they contain an unfortunate coincidence.

In addition to these two research agendas, I believe that the PcCU proce-
dure is interesting in its own right. Further work should clarify its relation
to other explanation-based generalization techniques. In particular, does the
extra power added by PCCU improve learning performance in some system?

185

Chapter 16

References

[Aho, A.V; Sethi, R.; & Ullman, J.D. 1986.] Compilers: Principles, Technigues,
and Tools. Reading, MA: Addison-Wesley.

(Blum, M. & Kannan, S. 1989.] Designing Programs that Check Their Work.
In Proceedings of the 21st Symposium on the Theory of Computation,
86-97. Association for Computing Machinery.

[Boehm, B.W. 1981.] Software Engineering Economics. Englewood Cliffs,
NJ: Prentice-Hall.

[Boyer, R.S., & Moore, J.S. 1988.] A Computational Logic Handbook. San
Diego, CA: Academic Press.

[Brahms, J. 1880.] Tragic Overture, Op. 81, bars 229-234. Excerpted from
the Edition Eulenberg score, Ernst Eulenberg Ltd, London.

[Cheatham, T.E. 1984.] Reusability Through Program Transformation. IEEE
Transactions on Software Engineering, SE-19(5):589-595.

[Darlington, J. 1981.] An Experimental Program Transformation and Syn-
thesis System. Artificial Intelligence 16:1-46.

[DeJong, G., & Mooney, R. 1986.] Explanation-based Learning: An Alter-
native View. Machine Learning 1:145-176.

186

[Downey, P.J., Sethi, R., & Tarjan, R.E. 1980.] Variations on the Common
Subexpression problem. J. Association for Computing Machinery, 27(4),
758-771.

[Feather, M.S., & London, P.E. 1982.] Implementing Specification Freedoms.
Science of Computer Programming 2:91-131.

[Fickas, S.F. 1985.] Automating the Transformational Development of Soft-
ware. [EEE Transactions on Software Engineering SE-11(11):1268-
1277.

[Freudenberger, S.M., Schwartz, J.T., & Sharir, M. 1983.] Experience with the
SETL Optimizer. ACM Transactions on Programming Languages and
Systems, 5(1):26-45.

[Green, C.C. 1976.] The Design of the PSI Program Synthesis System. In
Proceedings of the Second International Conference on Software Engi-
neering, 4-18. Long Beach, CA:Computer Society, IEEE Inc.

[Hall, R.J. 1990.] Parameterizing a Propositional Reasoner: An Empirical
Study. Journal of Automated Reasoning, 8, 1990. The Netherlands:
Kluwer Academic Publishers.

(Hall, R.J. 1991.] Program Improvement by Automatic Redistribution of In-
termediate Results: An Overview. To appear in Automating Software
Design, M. Lowry & R. McCartney eds. Menlo Park, CA: AAAI Press.

[Hopcroft, J.E., & Ullman, J. D. 1979.] Introduction to Automata Theory, Lan-
guages, and Computation. Reading, MA: Addison-Wesley Publishers.

[Kant, E. 1983.] On the Efficient Synthesis of Efficient Programs. Artificial
Intelligence 20:253-306.

[Le Metayer, D. 1988.] ACE: An Automatic Complexity Evaluator. ACM
Trans. on Programming Languages and Systems, 1 0(2), 248-266.

[Linden, T. 1989.] Repreéenting Software Designs as Partially Developed Plans.
In Automating Software Design, eds. M. Lowry & R. McCartney, Palo
Alto, CA: AAAI Press.

187

[Mason, 1. 1986.] The Semantics of Destructive Lisp. Chicago, IL: Univer-
sity of Chicago Press.

[McCartney, R.D. 1987.] Synthesizing Algorithms with Performance Constraints.
In Proceedings of the Sixth National Conference on Artificial Intelli-
gence, 149-154. Los Altos, CA: American Association for Artificial
Intelligence (Morgan-Kaufmann).

[Meertens, L.G.L.T. ed. 1986.] Program Specification and Transformation:
Proceedings of the IFIP TC2/WG 2.1 Working Conference on Program
Specification and Transformation. Amsterdam: North-Holland.

[Mitchell, T.M., Keller, R.M., & Kedar-Cabelli, S.T. 1986.] Explanation-based
generalization: a unifying view. Machine Learning, 1, 47-80. Amster-
dam: Kluwer Academic Publishers.

[Mostow, J., & Cohen, D. 1985.] Automating Program Speedup by Deciding
What to Cache. In Proceedings of the Ninth International Joint Confer-
ence on Artificial Intelligence, 165-172. Menlo Park, CA: International
Joint Conferences on Artificial Intelligence.

[Paige, R. 1983.] Transformational Programming—Applications to Algorithms
and Systems. In Proceedings of the Tenth Annual ACM Symposium

on Principles of Programming Languages, 73-87. New York, NY: ACM
Press.

[Paige, R. & Koenig, S. 1982.] Finite Differencing of Computable Expressions.
ACM Transactions on Programming Languages and Systems 4(3):402-
454.

[Partsch, H., & Steinbruggen, T. 1983.] Program Transformation Systems. ACM
Computing Surveys 15(3):199-236.

[Pettorossi, A. 1984.] A Powerful Strategy for Deriving Efficient Programs
by Transformation. In Proceedings of the 1984 ACM Symposium on

Lisp and Functional Programming, pp 273-281. New York, NY: ACM
Press.

188

[Reddy, U. 1991.] Design Principles for an Interactive Program Derivation
System. In Automating Software Design, eds. M. Lowry & R. McCart-
ney. Palo Alto, CA: AAAI Press.

[Reubenstein, H.B. 1990] Automated Acquisition of Evolving Informal De-
scriptions, Technical Report, AI-TR-1205. M.I.T. Artificial Intelligence
Laboratory.

[Rich, C. & Waters, R. 1990.] The Programmer’s Apprentice. New York, NY:
ACM Press.

[Scherlis, W.L. 1981.] Program Improvement by Internal Specialization. In
Proceedings of the Eighth ACM Symposium on Principles of Program-
ming Languages, 41-49. New York, NY: ACM Press.

[Shavlik, J. 1988.] An Approach to Acquiring Algorithms by Observing Ex-
pert Behavior. In Proceedings of the AAAI-88 Workshop on Automat-
ing Software Design. Palo Alto, CA: Kestrel Institute.

[Smith, D.R. 1991.] KIDS—A Knowledge-based Software Development Sys-
tem. In Automating Software Design, eds. M. Lowry & R. McCartney.
Palo Alto, CA: AAAI Press.

[Steele, G. 1990.] Common Lisp: the Language, 2nd Edition. Digital Press,
Digital Equipment Corporation.

[Stoy, J. 1977.] Denotational Semantics: The Scott-Strachey Approach to Pro-
gramming Language Theory. Cambridge, MA: MIT Press.

[Ulrich, K. 1988.] Computation and Pre-parametric Design, Technical Re-
port, AI-TR-1043. M.L.T. Artificial Intelligence Laboratory.

[Waters, R.C. 1979.] A Method for Analyzing Loop Programs. IEEE Trans.
on Software Engineering, SE-5(3), 237-247.

[Wile, D. 1981.] Type Transformations. IEEE Transactions on Software En-
gineering, SE-7(1):32-39.

189

Part IV

Appendices

190

Appendix A

Experimental Domain
Knowledge

This appendix defines the domain knowledge used for experiments, and the
next appendix is a glossary of the function and program names defined as
part of the domain knowledge.

I hand coded the domain knowledge for the system. Note that the system
can be applied to other machine models and sets of primitives. I made these
particular choices, because they model a simplified subset of destructive Lisp,
a domain with which I am familiar. A comprehensive formalization (seman-
tics) of destructive Lisp is available in (Mason, 1986); to apply my system
to a “real” Lisp environment, one should probably start from something like
Mason’s formalism.

A.1 Primitive Data Types

The primitive, atomic data types in my system are all mutually disjoint. Here
are brief descriptions of each. Note that because of the recursive nature of

Lisp’s types, the descriptions will corefer and will also refer to the compound
types (defined subsequently).

e N: Nonnegative integers.

® Bool: Booleans. true and false.

191

T: Tokens. Similar to Lisp symbols, these have names and nothing else.
NIL is the most useful member of this type.

® NIL: the subtype of T whose only element is the token NIL. This is an
overloading of the name NIL, which denotes both a type and an element
of type T.

¢ U: Undefined or “error” object. This type contains the distinguished
constant, u-. This type is disjoint from every other predefined type
and is not included in type 0.

® C: Mutable memory cells. Each memory cell has a positive number of
fields, numbered 0,1,...,k—1, with k denoted by CSIZE(c). Each cell ¢
can be bound (in a store) to a tuple of values of length CSIZE(c), where
the values can be any element of type 0 (see below), the union of all
data-like types. There are infinitely many memory cells of each CSIZE.

e S: Stores. Each store maps finitely many memory cells to objects of
type P, which are tuples (of compatible size) of objects of type 0. The
rest of the cells are mapped to type U.

Z: Series. (Not necessarily finite) sequences of values of type 0.

e P: Finite sequences (tuples) of objects of type 0.

For convenience, I have defined the following compound (union) types:
e A: (atoms) union of N and Bool and T.

e 0: (data-like objects) union of A and c.

Other types I have defined include L, the type of all finite abstract lists
of type-0 objects, and Set, the type of all finite sets of type-0 objects.}

1The type set should not be confused with the computational primitive function ser.
Context and typography should adequately disambiguate the two.

192

A2 Computational Primitives

Computational primitives are the leaves of the program structure hierarchy.
They are subroutines whose implementations are built in by the domain
knowledge provider and thereby define the virtual machine architecture on
which the user’s programs are built.

First, each of the types N, Bool, T, U, and C has an associated compu-
tational type recognizer whose name is formed by prepending CHI-. Each of
these has an assigned cost of (1,0).

Next, there are several computational constants defined: ZERO, ONE,
TWO, etc., are the standard type N constants. TRUE and FALSE are the Bool
constants. NIL is a type T constant used in Lisp (and here) to denote the
empty list. Contrary to Lisp, I will not use it to denote boolean falsity. _u_
is the error constant, of type U. All constants are assigned cost (0, 0).2

Memory cell manipulation is performed by the three computational prim-
itives SEL, SET, and NEW. NEW allocates a memory cell, SET sets a field of a
memory cell, and SEL accesses a field. See their glossary entries for further
detail.

Primitive equality is available in the computational function EQ?. This
tells whether any two elements of type 0 are identical. It has cost (1,0).

Finally, some standard integer (type N) functions are provided as well. 1+
increments, -1 decrements, + adds, - subtracts, * multiplies, DIV2 divides by
2 (integer division), and < decides the less-than relation. Each of these has
cost (1,0).

Series objects are described briefly in Section 3.2.2. Descriptions of se-
ries primitives are available in the glossary (Appendix B). Unless otherwise
specified, each series primitive has cost (2,0).

A.3 Noncomputational Functions

To state and prove facts about programs written in terms of the computa-
tional primitives discussed above, it is necessary to introduce logical functions
(including predicates). Each of these is endowed with a primitive term evalu-
ator (as distinct from a computational primitive program; see Section 4.1.3)

?Note that constants can be the sources of redistributions, so must be treated as explicit
boxes.

193

Many logical functions (such as 1+, and SEL) have corresponding compu-
tational primitives that implement them. Term evaluators for such functions
are identical to their corresponding primitive programs, and I will use one
name to denote both, since no confusion can arise.

Most basic of the noncomputational functions are characteristic predi-
cates for types without computational predicates: CHI-S, CHI-Z, and CHI-P.
Note that the union types A and 0 have type predicates that can be coded in
terms of given primitives.

Equality (=) is not entirely covered by the EQ? primitive, so there is a
term evaluator for judging equality of such things as stores and series.

Next, we have functions for reasoning about memory cells and stores. vV
takes a cell ¢ and a store s and returns either _u_ if ¢ is unallocated in s, or
the tuple (P element) to which ¢ is bound. A? takes either a P or a U and
returns true if and only if the input is a P. This predicate is used for telling
whether a cell is allocated in a given store, via the cliche (A? (V ¢ 8)). See
also NTHPTR and PTRPOS in the glossary.

A.4 TUniversal Instantiators

Recall (Section 4.1.3) that the system evaluates universally quantified clauses
by having “instantiation experts” recognize the form of the (implicitly
bounded) quantification and return lists of data values to substitute for the
variables. Here are the univeral instantiation experts given to the system.

o Allocated-cells. This notices a term in a clause of the form
(NOT (A? (V 7C 3))) and instantiates the variable 7C once for each cell
allocated in the situation to which s evaluates. If more than one term of
the clause matches the pattern, the one whose correspondmg situation
has the fewest allocated cells is chosen.

o List-members. This notices a term in the clause of the form (NOT
(MEMBER? ?X I)) and instantiates 7X once for each member of the list
value of [.

194

A.5 Abstract Data Type Implementations

I have performed experiments on two simple data type implementations.
LR1 lists® are representations of abstract lists in terms of memory-cell and
store pairs. SR sets are representations of finite sets in terms of abstract
lists. Each of these is defined by a pair of functions. Note that neither
abstraction function can be a computational primitive simply because their
ranges are not computational types. The relations among these types is
shown in Figure A.1.

A.5.1 LR1 Lists

Mathematically, the abstract type here is L, finite lists of objects of type 0.
Note that this is not the same as the notion of list in Lisp, because Lisp’s
lists may have lists as elements. The crucial difference is that LR1 lists are
compared for equality by using EQ? on corresponding elements. Lisp lists are
compared recursively by EQUAL.

LR1 lists get their name (List Representation 1) from the fact that they
are an approach to representing abstract lists (LR2 is another approach not
reported here). Thus, they are defined by two functions.

LR1? is a characteristic predicate taking a cell ¢ (or NIL) and a store s
and returning true if and only if the pair legally represents an abstract list
according to the encoding of LR1 lists. Operationally and more precisely,
this is exactly equivalent to (NOT (CHI-U (PTRPOS (ONE) (NIL) ¢ s))); i.e.,
a pair represents an LR1 list precisely when it is NIL-terminated via the (ONE)
field. Thus, infinite length lists are not represented by LR1 lists.

LR1 (no question mark) is the abstraction function that maps a cell ¢ (or
NIL) and a store s into the abstract list represented by the pair. (LR1 is only
defined when LR1?(c, 3) holds.) LR1 is recursively defined as follows:

e LR1(NIL, s) is the empty list for any s.

o A cell c whose ZERO field is bound to x in s and whose ONE field is bound
to y in s (and such that LR17(c, s) is true) is mapped to the list whose
first element is z and whose tail is LR1(y, s).

3My use of “LR1” is completely unrelated to LR(k) parsers. It stands for List Repre-
sentation number 1.

195

{1, 2}

=74

SR

(121)

/ /
/_é_?_é | Lists (L)

LR1

‘ 1 2 1
Z V4
/@/&alls X Stores (CxS)

Figure A.1: A diagram illustrating the relationship among the abstract data
type implementations studied. Even though the abstraction functions op-
erate on data objects, there is a sense in which they operate on programs
as well: any program on cells and stores having Irl-specs (see Chapter 10),
corresponds canonically to a program on lists where each box has only its
Irl-specs and none others. Similar remarks hold for the sr transformation.

196

A.5.2 SR Sets

The abstraction function SR maps an abstract list into an abstract finite set
via the usual forgetful functor.* The characteristic predicate SR? recognizes
exactly those lists mappable to a finite set, those with finitely many elements.
(Thus, LR1?(c, s) implies SR?(LR1(c, s)).) Note that SR and SR? are oblivious
to whether the list has duplicate entries; the no-duplicates invariant on lists is
a concept used in implementing set operations efficiently, but is not required

for mapping to a set. This is a key observation that allows suspension of the
invariant.

... that is, by “forgetting” the ordering information and the number of occurrences

of each element.

197

Appendix B

Glossary

This appendix lists alphabetically all names of functions, programs, compu-
tational primitives, etc., used in the experimental system as well as in the
examples in the rest of the document. Each name is accompanied by a brief
description and cross-reference if necessary. Immediately following the name
(in boldface), is a descriptive term distinguishing its type. “Primitive” de-
scribes the name of a computational primitive program, a leaf of the program
structure hierarchy. “Function” describes a mathematical function defined
in the logic. All primitives correspond with functions, so “primitive” implies
“function.” For multi-output primitives, multiple functions are defined cor-
responding to the output port names given in the signature. “Program” de-
scribes a program name in the structure hierarchy. “Program” alone implies
non-primitive, that is, it is a program that has a dataflow diagram definition
in terms of other programs and primitives. Each program, primitive, and
function has an associated signature of the form

(1 ti, 0ty .tk) — (o bory02 i loyyen s 0 1 Ly,)
that indicates the port names and types of its inputs and outputs.

e -: primitive. (N1: N, N2: N) — (-: NUU).
Subtracts two numbers. _u. if difference less than zero.

e -1: primitive. (N: N) — (-1: (NUU)).
Subtracts one, except when input is zero, then returns _u_.

198

+: primitive. (N1: N, N2: N) — (+: N).
Adds two numbers.

1+: primitive. (N: N) — (1+: N).
Subtracts one, except when input is zero, then returns _u_.

: primitive. (N1: N, N2: N) — (: N).
Multiplies two numbers.

#MSBIFEQ: synonym for MSBIFEQ.

=: function. (X1: <universe>, X2: <universe>) — (=: Bool).
Standard equality relation on the entire universe. Available in logic on
entire universe. Computational primitive available on 0 is called EQ?.

A?: function. (P: (PUU)) — (a?: Bool).

Takes either a P or a U and returns true if and only if the input is a P.
This predicate is used for telling whether a cell is allocated in a given
store, via the cliche (A? (V ¢ s)).

APPEND: synonym for LR1-CONCAT-C+D.

APURE?: function. (S1: S, S2: S) — (apure?: Bool).
True iff every cell defined in S1 is defined in S2 and also is mapped to
the same tuple. Note that S2 may have more cells allocated, however.

CAR: synonym for LR1-HDL.

CATENATE: primitive. (Z1: 2, Z2: Z) — (catenate: 2Z).
Concatenates two input series, returning a series.

CDR: synonym for LR1-TLL.

CHI-t: primitive(s). (0: 0) — (CHI-t: Bool).
Type recognizer for some primitive type. Allowed values of ¢ are N,
Bool, T, C, U. These are a subset of the following type predicates.

CHI-t: function(s). (0: 0) — (CHI-t: Bool).
Type recognizer for some type. Allowed values of ¢ are anything. Most

are non-computational, but appear in the logic. Examples include
CHI-S, CHI-Z, CHI-P.

199

CHOOSE: primitive. (ZBOOL: Z, Z: Z) — (choose: Z).
Takes in a series of Bools and a series of other objects and returns a

series of those objects of the second input in the same positions as TRUE
in the first.

COLLECT: synonym for LR1-COLLECT.

COLLECT-AND?: primitive. (Z: Z) — (collect-and?: Bool).

Returns logical and of bools in input series. (At the implementation
level, it terminates the iteration as soon as the output is determined,
possibly before the entire input is seen.)

COLLECT-LAST primitive. (Z: Z) — (collect-last: 0).
Returns the last element of its input series.

COLLECT-O0R?: primitive. (Z: Z) — (collect-or?: Bool).
Returns logical or of bools in input series. (At the implementation
level, it terminates the iteration as soon as the output is determined.)

COLLECT-SETCDRS: synonym for COLLECT-SETNEXT.

COLLECT-SETNEXT: primitive.

(Z: Z, S: 8) — (collect-setnext-c: (CUNIL), collect-setnext-s:
S).

Takes a series of memory cells and sets each ONE field to point to the
next cell in line, with the last pointing to NIL. This has the effect of
assembling a list out of the series of cells. (Section 3.2.2 called this
COLLECT-SETCDRS.)

COLLECT-SUM: primitive. (Z: Z) — (collect-sum: N).
Returns the sum of the input series’ (type N) elements.

CONS: program. (A: 0, D: O; ENV: S) — (CONS-C: C, CONS-S: S).
Puts out a fresh size-2 memory cell whose 0 field (“CAR” or “DATA”
field) is bound to A and whose 1 field (“CDR” or “NEXT” field) is bound

to D. APURE?. Structure is shown within diagram (below) for LR1-PPL
(page 205).

COPY-LIST: synonym for LR1-COPY.

200

COTRUNCATE: primitive.

(z1: Z, Z2: Z) — (cotruncate-z1, cotruncate-z2: 2Z).

Takes two series and returns the same two series, except the longer of
the two is truncated to the same length as the shorter.

CSIZE: primitive. (C: C) — (csize: N).
Gives number of fields in a memory cell.

DATA: program. (C: C, ENV: S) — (data: O0).
Selects the zero field (CAR) of the memory cell. Structure shown (below)
in diagram for LR1-HDL (page 203).

EQ?: primitive. (01: 0, 02: 0) — (eq?: Bool).
Tells whether two elements of type 0 are identical.

FIB, FIB-DESIRED: programs. (N: N)_ — (£ib: N).
Two different implementations of the Fibonacci function. Structure
appears in Section C.1.2.

FSERIES: primitive. (0: 0) — (fseries: Z).
This takes in a single type 0 object and makes a length-one series out
of it. This has cost (1,0). '

LAST: synonym for LAST-CONS.

LAST-CONS: program. (C: (CUNIL), S: S) — (last-cons: (CUNIL)).
Returns the unique memory cell accessible from input cell by ONE fields
whose ONE field is itself NIL. Same as Lisp’s LAST. Returns NIL if input
is NIL.

LIST: shorthand for structural cliche of calling LR1-PPL with its second
argument LR1-EL. Makes a length-one LR1 list out of its only argument.
Used in MY-REVERSE definition for familiarity.

LR1: function. (C: (cUNIL), S: S)

— (1r1: L). This function maps a cell (or NIL) and a store into the
abstract list it represents. (NIL, s) represents the empty list for any
s. A cell ¢ whose ZERO field is bound to z in s and whose ONE field is
bound to y in s and who satisfies LR1?(c, s) is mapped to the list whose
first element is and whose tail is LR1(y, s).

201

e LR1?: function. (C: (cUWNIL), S: S) — (LR1?: Bool).
This is a predicate taking a cell ¢ (or NIL) and a store s and returning
true if and only if the pair legally represents an abstract list according
to the encoding of LRI lists. Operationally and more precisely, this is
exactly equivalent to (NOT (CHI-U (PTRPOS (ONE) (NIL) ¢ s)));i.e. a
pair represents an LR1 list precisely when it is NIL-terminated via the
ONE field. Thus, infinite length lists are not represented by LRI lists.

e LR1-COLLECT: program.
(Z: Z, s: 8) — (collect-ac: (CUNIL), collect-s: S).
Returns fresh list whose elements are those of the input series.

o LR1-COLLECT-DATA: program.
(Z: Z, 8: 8) — (lri-collect-data-ac: (CUNIL), collect-data-s:
S).
Returns fresh list whose elements are the DATA fields (CAR fields) of cells
in the input series. Implemented in terms of ZCOPY-CELL as

COLLECT-SETNEXT(ZCOPY-CELL(SCAN-NEXTS(z)))

with store flow hooked up appropriately.

® LR1-CONCAT-C+D: program.
(ACL1: (CUNIL), ACL2: (CUNIL), S: S) —
(lri-concat-ac: (CUNIL), lri-concat-s: S).
Exactly Lisp APPEND viewed as a function on abstract lists. Does not
destroy either input argument. Implementation given as that of APPEND
in Introduction. Structure appears in Section 1.3.

e LR1-COPY: program.
(C: (cuNIL), S: S) — (lri-copy-ac: (CUNIL), lri-copy-s: S).
Makes a structurally fresh copy of the input LR1 list, without modifying
any existing structure. Same as Lisp’s COPY-LIST. Structure is shown
in Figure 3.4 under the synonym COPY-LIST.

e LR1-EMPTY?: program. (AC: 0) — (lri-empty?: Bool).
Returns true iff input is NIL. Satisfies LR1 spec of recognizing the empty
list.

202

LR1-EL: program. () — (lri-el: NIL).
Constant empty LR1 list. This is an “LR1” wrapper around the con-
stant NIL function to provide Irl-specs.

LR1-EQUAL?: program.

(L1: (cumIL), L2: (cUNIL); ENV: S) — (lri-equal?: BOOL).
Determines whether L1 is isomorphic (element-wise identity) to L2.
Structure appears in Section C.2.6.

e LR1-FIRSTN: program.
(L: (CUNIL), N: N, ENV: S) — (l-out: (CUNIL), env-out: S).
Puts out a fresh list consisting of the first N elements of the input list.
APURE?. Structure appears in Section C.2.5, within the diagram for
LR1-SPLIT.

e LR1-HDL: program. (C: C, S: S) — (1ri-hdl: 0).

Returns ZERO field contents of ¢ in s. Has LR1 list spec of performing
hdl function—head left, or leftmost element—on the abstracted list
input. Similar to Lisp CAR primitive when viewing CAR as a function on
abstract lists. Here is the structure:

LRI-HDL _ _
\'
5:ZERO
by
sl:SEL
l cr:DATA

LR1-TLL: l

¢ LR1-LENGTH: program. (L: (CUNIL), ENV: S) — (lri-length: N).
Gives length of LR1 list L. Here is the structure:

203

LR1-LENGTH

L: S:
scn:
SCAN-NEXTS
ll one:ONE
mdata:MDATA|
ser1:SERIES
scn:LR1-SCAN ﬁ U
cotr:
COTRUNCATE
(u.c.) g l}
coll:
COLLECT-SUM

LR1-LENGTH: ¢

e LR1-MEMBER?: program.
(X: 0; L: (CUNIL); ENV: S) — (lri-member?: BOOL).
Determines whether X is identical to some element of the LR1 list L.
Program cost is (2,0).

e LR1-MSORT: program.
(L: (cUNIL), ENV: S) — (lri-msort-ac: (CUNIL), lri-msort-env:
s).
Sorts the input list of numbers (undefined if list contains nonnumbers)
using the MERGE-SORT algorithm. LR1-MSORT-REC is a recursive helper

for the top-level LR1-MSORT program. APURE?. Structure appears in
Section C.2.5.

® LR1-NTH: program. (L: (CUNIL), N: N, ENV: S) — (1ri-nth: 0).

Puts out the Nth element of the list L. First element (LR1-HDL) is the
0Oth, etc. Structure is shown in Section C.1.1.

204

e LR1-NTHTLL: program.
(L: (CUNIL), N: N, ENV: S) — (1-out: (CUNIL)).
Puts out a fresh list consisting of all but the first N elements of the
input list. Structure appears in Section C.2.5, within the diagram for
LR1-SPLIT.

e LR1-PPL: program.
(X: 0, C: (CUNIL), S: S) — (lri-ppl-c: C, lri-ppl-s: S).
PrePend-Left; that is, make an LR1 list whose tail is the abstraction of
c and whose head is z. Exactly like viewing Lisp’s CONS as a function
on abstract lists. Here is its program structure:

LR1-PPL
(o] X: S
\ 4
D A
two:TWO
v v
aw:NEW
vy ¥y
rpa:SETDATA
vy v ¥
rpd:SETNEXT]
l 1 cns:CONS

LR1-PPL-C: l 1 LR1-PPL-S:
e LR1-REM: program.

(0: 0, C: (CUNIL), ENV: S) — (lri-rem-ac: 0, lri-rem-env: §).

205

Removes 0 from the input list and returns a fresh output list without
modifying any pre-existing structure. Series form structure appears in
Section C.2.4; recursive form structure appears in Section C.3.1.

LR1-REM+APPEND: program.

(ACX: 0; ACL1: (CUNIL), ACL2: (CUNIL); ENV: S) —
(1ri-rem+append-ac: (CUNIL), lri-rem+append-env: S).
Structure appears in Section C.2.4. Removes ACX from the list ACL1
and appends the list ACL2.

LR1-REM+REVAPPEND: program.

(ACX: 0, ACL1: (CUNIL), ACL2: (CUNIL), ENV: S) —
(1ri-rem+revappend-ac: (CUNIL), lri-rem+revappend-env: S).
Structure appears in Section C.2.3. Removes ACX from the list ACL1,
reverses the result, and appends the list ACL2.

LR1-REV: program.

(L: (CU¥IL), ENV: S) — (lri-rev-ac: (CUNIL), lri-rev-env: S).
Reverses its input list. Structure appears in Section 1.3 in different
nomenclature as the MY~REVERSE program.

LR1-SCAN: program. (C: (CUNIL), S: S) — (scan: Z).
Returns elements of LR1 list as elements of a series. Structure is shown
(above) in the diagram for LR1-LENGTH.

LR1-SPLIT: program.

(L: (cUNIL), N: N, ENV: S) —

(1ft: (CUWNIL), rgt: (CUNIL), split-env: S).

Puts out two lists: 1ft contains the first N (in order), and rgt contains
the rest. APURE?. Structure appears in Section C.2.5.

LR1-SUBSTITUTE: program.

(OLD: 0, NEW: 0; L: (CUNIL), ENV: S) —

(1ri-substitute-ac: (CUNIL), lri-substitute-env: S).
Subsitutes NEW for OLD in L. APURE?. Structure appears in Section C.2.6.

LR1-SUBSTITUTE+EQUAL?: program.
(OLD: O, NEW: 0; Li: (CUNIL), L2: (CUNIL); ENV: S) —
(1ri-substitute+equal?: BOOL, env-out: S).

206

Substitutes NEW for OLD in L1, then determines whether the result is
isomorphic (element-wise identity) to L2. APURE?. Structure appears in
Section C.2.6.

e LR1-TLL: program. (C: C, S: S) — (lri-tll: (CUNIL)).
Returns ONE field contents of ¢ in 3. Has LR1 list spec of performing ¢!
function—tail left, or list without leftmost element—on the abstracted
list input. Similar to Lisp CDR primitive when viewing CDR as a function
on abstract lists. Here is the structure:

LRI-TLL
\ 4
one:ONE
A A 4 l
sl:SEL
l cd:NEXT

LRI-TLL: l

® MARKER: primitive. () — (marker: 2).
Puts out a length-one series whose element is a marker token distinct
from all type T tokens in use by the user. (This is related to the Lisp
function GENSYM, but puts out a length-one series.) This has cost (0, 0).

e MDATA: primitive. (Z: Z, S: S) — (mdata: Z).
Takes in a series and a store s and maps SEL(-, ZERO, s) over the series
(presumably of memory cells).

e MEQ?: primitive. (21, 22: 2Z) — (meq?: Z).
Maps EQ? over its two input series in step.

207

MERGE-SORTED-LISTS: program. -
(L1, L2: (CUNIL), ENV: S) — (L-OUT: (CUNIL), ENV-OUT: S).
Structure appears in Section C.2.5. Takes in two sorted lists and con-
structs the sorted merge of them. APURE?.

MNOT?: primitive. (ZBOOL: Z) — (mnot?: 2Z).
Maps logical negation over a series of Bools.

MSBIFEQ: primitive. (NEW: 0, OLD: 0; Z: Z) — (msbifeq: 2).
Takes a series, a test object, and a substitution object and copies the
input series except that occurrences of the test ob ject are replaced by
the substitution object.

MSNGLTN: primitive.

(Z: Z, S: S) — (msngltn-z: Z, msngltn-s: S).

Takes in a series and a store and returns a series of cells and a new store,
with each of the cells newly allocated and with ZERO field bound to the
corresponding element of the input series and with ONE field bound to
NIL. Note that this has cost (2,2).

MY-EXPT: program. (BASE: N, POWER: N) — (my-expt: N).
Structyre appears in Section C.1.1. Exponentiates a number to a
power.

MY-REVERSE: program. Synonym for LR1-REV.

NEW: primitive. (N: N, S: S) — (new-c: C, new-s: S).

Output NEW-C(n, s) is a memory cell of CSIZE n that was unallocated
in s (i.e., it was bound to .u_). Output NEW-S(n, 8) is a store in which
(a) all cells except NEW-C(n,s) have the same binding as in s, and (b)
NEW-C(n.s) is no longer bound to u_. (Its binding is undefined, in that
applying SEL to it is undefined—but not _u_, i.e. not erroneous.) This
is the primitive memory allocation function, and is assigned a cost of

(1,1).

NEXT: program. (C: C, ENV: S) — (next: 0).
Selects the one field (CDR) of the memory cell. Structure shown (above)
in the diagram for LR1-TLL.

208

NTHPTR: function. (N: N, F: N; C: C; S: S) — (nthptr: (ouu).
Returns the nth iterate of SEL(f,c, s), the result of following the f field
pointer n times. If it runs out of pointers before the nth, it returns _u_.
Note that NTHPTR(O, f,c,s) = c.

NULL: synonym for LR1-EMPTY?.
ONE: primitive. () — (one: N). Number one constant.

POLY: program (X: N, COEFFS: (CUNIL), S: S) — (poly: N).
Structure appears in Section C.1.1. Evaluates a polynomial (specified
by an input list of coefficients in increasing order of exponent) on a
number.

POLY-REC: program.

(I, LENGTH, X, SUM: N; COEFFS: (CUNIL); S: S) — (poly-rec: N).
Structure appears in Section C.1.1. POLY-REC is a recursive helper to
POLY.

PTRPOS: function. (F: N, V: 0, C: C, S: S) — (ptrpos: (XUU)).
Returns the least nonnegative integer p such that NTHPTR(p, f,¢c,s) = v,
if it exists. Otherwise, returns _u_. For example, the usual way to state
that a list, connected through the ONE field, is NIL-terminated is by
(NOT (CHI-U (PTRPOS (ONE) (NIL) c s))).

RPLACD: synonym for SETNEXT.
SCAN: synonym for LR1-SCAN.

SCAN-NEXTS: primitive. (C: (CUNIL), S: S) — (scan-nexts: Z).
(This is called “scan-sublists” in (Steele, 1990)). and SCANCDRS in Sec-
tion 3.2.2.) Makes a series out of the cons cells making up the input
list. If the input is NIL then output is the empty series.

SCANCDRS: synonym for SCAN-NEXTS.

SEL: primitive. (N: N, C: C, S: S) — (sel: (ouv)).
Returns either the object bound to field 7 of ¢ in s or else -u. if either

¢ is unallocated in s or is of CSIZE smaller than n + 1. This is assigned
a cost of (1,0).

209

SERIES: primitive. (0: 0) — (series: Z).
This takes in a single type 0 object and makes an infinitely repeating
series out of it. This has cost (1,0).

SET: primitive. (N: N, C: C, 0: 0, S: S) — (set: (SUU)).

If ¢ is allocated in s and is of size at least n + 1 then it returns a
store with every field of every allocated cell bound the same as in s
except field n of ¢, which is now bound to 0. All unallocated cells are
untouched. This is assigned a cost of (1,0).

SETNEXT: program. (C: C, 0: 0, S: S) — (set: (SUU)).
Exactly SET with first argument bound to ONE, a.k.a. the “next” field.
Same as Lisp’s RPLACD.

SR: function. (L: L) — (sr: Set).
Abstraction function mapping a finite list into a finite set.

SR?: function. (L: L) — (sr?: Bool).
Predicate recognizing lists mappable to a finite set.

SR-ADD: program.

(X: 0, S: (CUNIL), ENV: S) — (sr-add-s: (cUNIL), env-out: §).
Adds the element X to the SR set S. APURE?. Requires no-duplicates to
maintain no-duplicates. Structure appears in Section C.3.1, within the
diagram for SR-UNION.

SR-CHOOSE: program.

(8: (CUNIL), ENV: S) — (sr-choose-elt: 0; env-out: S).
Arbitrarily chooses some element of the input SR set and returns it.
Does not require no-duplicates. Structure appears in Section C.3.1,
within diagram for SR-CHOOSE+REM.

SR-CHOOSE+REM: program.
(s: (cuxNIL), ENV: S) —
(sr-choose+rem-elt: 0; sr-choose+rem-s: (CUNIL); env-out: 8).
Arbitrarily chooses some element of the input SR set and returns it
together with a representation of the set with the element removed.
APURE?. Requires no-duplicates to maintain no-duplicates. Structure
appears in Section C.3.1.

210

SR-ELT?+UNION: program.

(s1: (cunNIL), S2: (CUNIL); X: 0; ENV: S) —

(sr-elt+union?: BOOL, env-out: S).

Determines whether X is an element of the union of the sets represented
by the SR-sets S1 and S2. APURE?. Does not require no-duplicates.
Structure appears in Section C.3.1.

SR-REM: program.

(s: (cu¥IL), X: O, ENV: S) — (sr-rem-s: (CUNIL); env-out: S).
Removes X from the SR set S and returns the result. APURE?. Re-
quires no-duplicates to maintain no-duplicates. Structure appears in
Section C.3.1, within the diagram for SR~CHOOSE+REM.

SR-UNION: program.

(s1: (cunxIL), S2: (CUNIL); ENV: S) —

(sr-union: (CUNIL), env-out: S).

Constructs the union of the sets represented by the SR-sets S1 and S2.
APURE?. Requires no-duplicates to maintain no-duplicates. Structure
appears in Section C.3.1.

TWO: primitive. () — (two: N). Number two constant.

V: function. (C: €, S: 8) — (V: (PUU)).
Returns either _u. if ¢ is unallocated in s, or the tuple (P element) to
which ¢ is bound.

ZCOPY-CELL: program.

(Z: Z, S: S) — (zcopy-cell-z: Z, zcopy-cell-s: S).

Takes a series of memory cells and a store and returns a series of fresh
memory cells, together with a new store. Each of the result cells has
CAR field equal to the CAR field of the corresponding input cell and each
of whose CDR field is uninitialized.

ZERO: primitive. () — (zero: N). Number zero constant.

ZERO?: program. (0: 0) — (zero?: Bool).
Returns true iff input is identical to the constant (ZEROD).

ZN<=K: primitive. (N: N) — (zn<=k: 2Z).
Output is a series of the integers 0,1,..., k. Cost is (2,0).

211

e ZN<K: primitive. (N: N) — (zn<k: 2).
Output is a series of the integers 0,1,...,k — 1. Cost is (2,0).

212

Appendix C

Selected Examples

This appendix demonstrates the system’s performance on a collection of in-
teresting examples. Each example is discussed and interesting features are
highlighted. Note that some of the nomenclature for list-manipulating pro-
grams is different here than in the body of the thesis. This is done to maintain
consistency with the uniform naming scheme I adopted for the experiments.
Synonyms are mentioned where appropriate. See Appendix A for a discussion
of the experimental domain knowledge and Appendix B for a cross-referenced
glossary of program and function names.
For each-program, I will summarize each of the following aspects

e Program structure.

e Optimization invariants and proof generation method. Recall that op-
timization invariants are simply collections of clauses. I have used four
proof generation procedures in these examples: by hand; default-proof,
which basically recapitulates the top-level structure axioms; Iri-proof,
which incompletely proves the LR1 properties and merely recapitulates
the abstract list structure; and sr-proof, which incompletely proves LR1
and SR properties while recapitulating abstract set structure.

e Test case inputs.

o Optimizations. I will give the boxes eliminated directly by Try-to-
eliminate-box, possibly indicating collateral boxes eliminated as well.
(The elimination of one box can cause the elimination of others if the

213

first box is the sole user of the value produced by the others. I term
these others “collateral.”) I will also summarize the source/target pairs.

Statistics. 1 will report system statistics in a table (see for example,
page 222). “Boxes examined” gives the number of times Pair-Search
called Try-to-eliminate-box. “Boxes eliminated” gives the number
of such calls returning a nonempty set of pairs. (This does not include
collateral boxes.) “Total src/trg pairs” is the number of pairs exam-
ined after eliminating those sources and targets too deep in the recur-
sion. “Syntactically pruned” is the number of such pairs eliminated
by prune-syntactically. “No. target conditions” gives the number of
target conditions computed by IEBR, hence the number of initialized
targets considered. The IBR column for this row will, of course, always
be empty. “Sum of trace sizes” is the sum of the numbers of entries in
the program traces for the test cases. This is, of course, the same for
both IEBR and IBR. This gives a relative idea of how expensive a single
call to the Inv-Screen candidate screener is, as it must recalculate
(whether it stores the values or not) a value for each such entry. “No.
of trace updates” gives the number of times each candidate screener re-
calculated a test case trace. Thus, for example, we expect the run-time
of IBR to grow on the order of the product of this field and the previous.
“Candidate screening time” is the total real time (in seconds) spent in
the candidate screening routine, while “Total time” is the total real
time (in seconds) spent altogether. We expect the differences between
these rows to be roughly the same across columns, since the rest of the
time is spent in common code (this is only roughly true, since the two
algorithms usually consider different sets of boxes). Real time values
vary widely due to environmental nondeterminism, anyway.

Notes. These are simply what I believe interesting or distinguishing
about the example.

C.1 Example Programs On Numbers

These examples are of interest primarily as examples of identical-value redis-
tribution. POLY is a good example of how a natural and self-evidently correct,
but inefficient, implementation can be optimized to gain back the efficiency

214

sacrificed to clarity. FIB holds the record for the largest run-time improve-
ment: the original is exponential while the optimized result is linear.! FIB
also illustrates a shortcoming of the technique: sensitivity to detailed form
of the input program. In particular, the system fails to optimize the most
natural implementation of the Fibonacci function, because single, sequential
redistributions can’t quite express the necessary structure changes. A slight
change to the input structure, however, yields an optimizable form.

C.1.1 proLy

Program Structure. The system’s model of the POLY program discussed
in the introduction is shown below followed by its key subroutines. Some
program names have been changed to conform with my naming conventions.
Structurally, the main difference between the figures and the code shown in
the introduction is that the loop in POLY is re-expressed as a tail-recursive
subroutine.

POLY
X: COEFFS: s:
TERO Inth:
sero: LR1-LENGTH
X: L UM:
A\ AA 4
Y LENGTEH:
pr:POLY-REC |

v

!One must be careful when giving the complexity of computing Fibonacci numbers.
Regardless of how one computes it, the size of the output is exponential in the size of the
input. The more interesting measure, however, is how the run-time grows as a function of
the input (not its size). Throughout, I will be referring to run-time as a function of input,
not size.

215

POLY-REC X

LENGTH: | SUM: COEFFS: 8:

L+ |
=" 1

4
en:SPLIT
[- @
T l F ~ T — vl — = —1— — — f—
BASE: Y A 4

I
T :E.I exp:MY-EXPT nth:LR1-NTH
I
I
!
I
!
I
I
I
I
I
L

—

v v

prod:*

l addi:1+

plus:+

SUMy & I COEFFS:
X <

—P :
LENGTH: | rec:POLY-REC/gm

cn:JOIN

v

MY-EXPT raises a base to a power. This is the same as Lisp EXPT, except
only applicable to nonnegative integers.

216

POWER: BASE:

MY-EXPT l

tst:ZERO?

cn:SPLIT

T | F
| subl:-1 :
I I
I ¢ |

rec: ‘e
r— - - Y | l MY-EXPT |
I |
! one:ONE l ' l y_ |
I ' I mult:* l
- L - - |
% |l - — — _ { _ 4
A 4
T | F
cn:JOIN

LR1-NTH and LR1-NTHTLL correspond with the Lisp functions NTH and
NTHCDR, respectively. These versions are used by the POLY example. Note
the recursive structure of LR1-NTHTLL; the second optimization wouldn’t ex-
1st if LR1-NTHTLL were formulated in terms of series expressions.

217

LRI‘NTHTLL N: AC:

i ¢
tst:ZERO?
LR1-NTH ¢

cn:SPLIT

N: AC: s: - | -
l l =|f v 1
|

nthtll:
LRI1-NTHTLL | subl:-1 |
v l |
== | |
hd:LR1-HDL | rec:
LR1-NTHTLL |
v | |
| \ 2
| t:LR1-TLL I
|
l — — _ _ _i_ N
A 4 A 4
T | F
en:JOIN

Invariants and Proofs. The specifications and proofs of POLY and
POLY-REC were produced automatically by default-proof. The single-clause
optimization invariant

{(= $POLY.POLY $POLY.POLY.ORIGINAL)}.

required that the outputs remain the same across optimizations.

218

Test case inputs. The single test case consisted of evaluating the degree-
5 polynomial whose coefficients are (1,5,10,10,5,1) on the number 2. This
is equivalent to computing (2 + 1)® = 3°. The coefficient list was encoded in
terms of memory cells and a store with only six allocated cells.

Optimizations. First, the system found the (source, target) pair
($POLY.PR.EXP.HY-EXPT, $POLY.PR.REC.EXP.HULT.N2), which eliminates the
box $POLY.PR.REC.EXP.REC—saving a cost of (3,0). As a side benefit, this
elimination in turn eliminates the collateral box $POLY.PR.REC.EXP.SUB1, sav-
ing an additional cost of (2,0). Here is a picture of part of the POLY-REC call
within POLY showing the redistribution. Note that this is an identical-value
redistribution, meaning that the new source is always equal to the old source.

219

Y

exp:MY-EXPT

rec:POLY-REC

In English, iteration 7 + 1 of the loop (POLY-REC) in POLY calculates Tit!
by recursively calculating z' and then multiplying by z. But iteration ¢ of
POLY just computed z', so this value (the source named above) could be
shared correspondingly at each level of the recursion with the target named

220

above. This pair applies recursively, hence must be checked using the top-
level invariant on the winner.
Next, the system found the pair

($POLY.PR.NTH.NTHTLL.LRI-NTHTLL,SPOLY.PR.REC.NTH.NTHTLL.TL.C)

This pair also applies recursively, hence must also be checked by the top-level
invariant. This is very similar to the previous redistribution, so I won’t show
the diagram. It saves another (3,0) box $POLY.PR.REC.NTH.NTHTLL.REC and
another (2,0) box $POLY.PR.REC.NTH.NTHTLL.SUB1.

In English, iteration ¢ + 1 of the loop in POLY traverses the list COEFFS
from the beginning (within LR1-NTH, which calls LR1-NTHTLL)in order to find
(LR1-NTH (i+1) C S). This computation finds (LR1-NTHTLL (i+1) COEFFS S)
by recursively finding (LR1-NTHTLL i COEFFS S) and then taking the LR1-TLL.
(LR1-NTHTLL i COEFFS S), however, was computed in iteration : of POLY, so
could be shared for each .

Note that IBR found a third redistribution as well (and thereby eliminated
one more box). The (2,0) box $POLY.LNTH.SCN.MDATA was eliminated via the
pair ($POLY.LNTH.SCN.SCN.SCAN-NEXTS, $POLY.LNTH.SCN.LR1-SCAN). This is a
context-independent optimization of LR1-LENGTH. The idea is that LR1-SCAN
need not access the data fields of each cell in the list, because only the length
of the series output is important. This is interesting in that it does not fall
into one of the four classes discussed in the introduction.

Here is Lisp code for the optimized version of the program. Note that
I have coded the altered subroutines in-line (for clarity only—the system
maintains the modularity) and used local variables and explicit iteration in
place of extra function arguments and tail recursion respectively.

(DEFUN POLY-2 (COEFFS X)
(LET ((SuM 0)
NTH-SAVE
EXPT-SAVE)
(DOTIMES (I (LR1-LENGTH COEFFS))
(SETQ SUM (+ SUM
(* (CAR (IF (=1 0)
(SETQ NTH-SAVE COEFFS)
(SETQ NTH-SAVE (LR1-TLL NTH-SAVE))))
(IF (=1 0)
(SETQ EXPT-SAVE 1)

(SETQ EXPT-SAVE (* X EXPT-SAVE)))))))
SUM))

221

POLY Statistics

IEBR IBR
boxes examined 56 56
boxes eliminated 2 3
total src/trg pairs 836 | 836
syntactically pruned 358 | 358
no. target conditions 42 | —
sum of trace sizes 1058
no. of trace updates 60 | 478
Candidate Screening time (sec) || 290 | 714
Total time (sec) 374 | 797

Notes.

e POLY-2 requires only time linear in the length of the

where POLY was quadratic.

coefficient list,

e The additional optimization found by IBR not found by IEBR was a
redistribution applying to LR1-LENGTH’s implementation independently
of context. It was not found by IEBR due to the weakness of the default-
proof proof-generation technique used for LR1-LENGTH. (The structure
of LR1-LENGTH is shown with its entry in the glossary.)

e All other redistributions found were identical-value type.

C.1.2 Fibonacci Numbers: FIB

Program Structure. Fibonacci numbers are defined by the formula

1
fib(n) = { fib(n — 1) + fib(n — 2)

n=0,1
otherwise

Thus, the most natural program to compute them looks like

222

FIB-DESIRED N:

tst0:ZERO? »
n:SPLIT
T | ¥] .
1 v T
=+ : |
| tst1:ONE? |
| l |
—_— Y |
r- 1 : co-inner:SPLIT] |
e]! T 7]- - --4-
| [! | I'
L4 _ ! T) L 4 sub1:SUB1 ll
| | |
=+ —_—) sub2:SUB2
Iy a0 J :u
' l l l recl: l
| one:1 | riB-DEsRED | | |
l l rec2: |
' | |FiB-DESIRED l I
| | h
* | l p| plus+ I |
N1 |
| l L — -3 —-|
| T] F Je |
| cn-inner:JOIN |
S _.I
h 4
T | F l———
cn:JOIN

FIB: i

This calls itself exponentially many times, hence is very inefficient since
Fibonacci numbers can be computed using linearly many (or even logarith-
mically many) calls. Annoyingly, redistributions as I’ve described them here
are insufficient to get rid of the inefficiency, though they almost do. The pair

($FIB-DESIRED.REC1.REC1.FIB—DESIRED,$FIB-DESIRED.PLUS.N1)
is correct recursively at every level, ezcept the recursive call just before the

base-case. In that call, the source is uninitialized, since it lies in the base-case

223

call which executes the wrong half of the conditional. For any invocation in
which the REC1 box executes the false side of the conditional (i.e. all but one
invocation), the pair works fine.

Though I have some ideas? about dealing with this problem (which has
come up more than once), the current system cannot deal with it. Thus, I
was forced to tweak the program structure slightly into a form that did work.
The FIB program is shown below.

2. .. such as examining the traces of a failing recursive redistribution to decide whether

all but the base case actually succeeded and, if so, searching for a base-case-only redistri-
bution to perform simultaneously. This would be a limited case of non-trivial adaptation
problem-solving.

224

FIB
tst0:ZERO?
cn:SPLIT
T]| |l m——F—9-—-=-1T-—
+ = |
s 1:ONE? sub1:SUB1 I
' !
—_ ¥ |y v |
r 1 I cn-inner:SPLIT LPIB |
: one:l : : T l L I
= g SEp—— G I
| = v -
L4 — 1_| | ..I | |
=t | sub2:SUB2 I
[I b
|
: ! .
| [l rearFms i | !
| | I
: | plus:+ | |
it
\ 4
Iz r |
f’l cn-inner: JOIN |
—_— — e — — —_
by 3
T | F
<n:JOIN

Note that the only difference between FIB and FIB-DESIRED is that two boxes
are moved out of the innermost conditional and one constant box is removed.

Invariants and Proofs. The specifications and proofs of FIB was pro-

duced automatically by default-proof. The single clause optimization invari-
ant was

{(= $FIB.FIB $FIB.FIB.ORIGINAL)}.

225

Test case inputs. The single test case input was 4.

Optimizations. IBR and IEBR found exactly the same sets of pairs. The
first optimization eliminated the (3,0) box $FIB.REC2 recursively, via the pair

($FIB.REC1.REC1.FIB, $FIB.PLUS.N1)

This gets rid of the second recursive call, reducing the number of subrou-
tine calls from exponential to linear in the input (the system, of course, only
thought the reduction was from quadratic to linear, since it had underesti-
mated the exponential complexity of FIB).

The second optimization eliminated the (2,0) box $FIB.TST2, via the
recursive pair

($FIB.REC1.TST1.ZERO?, $FIB.CN-INNER.TEST)

This saves a test on each invocation—not very significant.

FIB Statistics

IEBR IBR
boxes examined 7 7
boxes eliminated 2 2
total src/trg pairs 58 | 58
syntactically pruned 26 26
no. target conditions 4 —
sum of trace sizes 236
no. of trace updates 4 32
Candidate Screening time (sec) 7 12
Total time (sec) 14 | 19

Notes.

e The cost estimate of (3,0) for this program is misleading, as the pro-
gram is exponential, not quadratic.

e The result program is linear, while the original is exponential. This is
the greatest improvement demonstrated so far. The only optimizations
were identical-value.

226

e The test case, 4, is the smallest that suffices to get all the correct
optimizations and no others. It has to be at least 2 in order to exercise
the interesting branches of the conditionals; and the input must be
great enough for the output to differ from the input (otherwise the
system would get rid of all boxes!).

o Depressingly, the most natural program structure for computing Fi-
bonacci numbers does not yield the desired efficiency improvement,
because of the base-case problem: a promising source/target pair is cor-
rect everywhere except one call above the base-case invocation. The
small change made to get the FIB version (essentially, unfolding the
call immediately preceding the base-case invocation into a special-case
conditional) looks like it might be easy to automate.

C.2 Example Programs On LR1 Lists

These examples illustrate many interesting phenomena, such as copy elimi-
nation, identical value redistribution, and generalized loop fusion.

C.2.1 LR1-CONCAT-C+D (APPEND)

Program Structure. Structure for this program is shown in Figure 1.3.
In experiments run on the system, the nomenclature was different: APPEND
was named LR1-CONCAT-C+D for LR1 list program doing CONCATenation on lists
via Copy and Destroy. (I also experimented with the standard recursive im-
plementation of APPEND, which was named LR1-CONCAT-REC, but will not dis-
cuss it here.) COPY-LIST was named LR1-COPY, and so forth (the glossary in
Appendix B contains cross-references). I will use the nomenclature in the
diagrams here, but recall that the functionality is not exactly the same as
Lisp’s APPEND, because LR1 lists are not exactly Lisp lists.

Invariants and Proofs. The invariants are essentially just the usual
specification of APPEND, which I paraphrase here in English:

o If the input lists satisfy LR1?, then every cell allocated in the input
store is bound to the same values in the output store.

227

o If the input lists satisfy LR1?, then the output cell and store satisfy
LR1? as well.

o If the input lists satisfy LR1?, then the abstraction of the output list
(via LR1) is the list concatenation of the abstractions of the input lists.

The proofs for this and for the key subroutine, NCONC, were all produced by
hand.

Test Case Inputs. I used three test case input triples (cell-1, cell-
2, store) each encoding two lists as follows (the notation <C0>, <C1>, ...
indicates memory cells numbered 0, 1, etc.):

e (0, (<c1> 5289))
o ((<c6> 343 <c1> 5289), (0 0 <c0>))
o ((<c6> 343 <c1> 5289), (<c1> 5289))

This is probably not a minimal set.

Optimizations. The single redistribution found by both algorithms is
shown in Figure 3.6. Essentially, it is a loop fusion of the iteration within the
copying and the iteration in NCONC. It saves the (2,0) box, $APPEND.NC.LC.SCN.

LR1-CONCAT-C+D (APPEND) Statistics
IEBR IBR
boxes examined 15 15
boxes eliminated 1 1
total src/trg pairs 146 | 146
syntactically pruned 105 | 105
no. target conditions 18 | —
sum of trace sizes 189
no. of trace updates 1 41
Candidate Screening time (sec) | 51 | 37
Total time (sec) 71 | 59

Notes.

228

e The optimization improved the efficiency to that of the standard, re-
cursive implementation of APPEND. Thus, one might wonder why not
simply give the system that implementation to begin with? The an-
swer that the form given is advantageous in contexts where the copying
is unnecessary; it is both easier to find and easier to justify optimiza-
tions that remove needless copying from the explicit-copy version than
from the recursive version. (For an example of removing the copying in
an appropriate context, see the MY-REVERSE example. For an example
of removing copying that is not in the explicit copy-and-modify struc-
tural form, see the LR1-REM+REVAPPEND example to follow.) Thus, it is
better to give the system a seemingly inefficient structural model and
let it optimize to fit the context than to try to optimize first.

o In this case, IEBR took longer than IBR (even though both examined
exactly the same sets of pairs) because the run-time was so small that
the low-order run-time term corresponding to target condition com-
putation dominated. Generally, there are roughly linearly many tar-
gets and quadratically many pairs that pass prune-syntactically. In
this case, however, the 41 pairs passing the syntactic pruning stage
required 18 target conditions to be computed. Thus, at roughly two
pairs per target condition, the computation time became significant for
this example.

e While the optimization probably did not require the relatively large
time investment of a hand proof, the hand proof enabled many op-
timizations in other examples that used LR1-CONCAT-C+D. I basically
treated this program more like a “library module” than like a “user
program.”

C.2.2 LR1-REV (MY-REVERSE)

Program Structure. This is the example discussed in the introduction
(Section 1.3). Again, the nomenclature is different between the introduction
and the examples run on the system. The MY-REVERSE program was named
LR1-REV. Some of the subroutines were named differently as well; see the

glossary for cross-indexing. Important structure is shown in Figure 1.2 and
in Figure 1.3.

229

Invariants and Proofs. These are discussed in Section 1.3.
Test Case Inputs. These are discussed in Section 1.3.

Optimizations. These are discussed in Section 1.3.

LR1-REV (MY-REVERSE) Statistics

IEBR IBR
boxes examined 24 | 24
boxes eliminated 3 3
total src/trg pairs 561 | 561
syntactically pruned 338 | 338
no. target conditions 31 | —
sum of trace sizes 882
no. of trace updates 11 | 223
Candidate Screening time (sec) || 103 | 345
Total time (sec) 158 | 396

Notes.

e Space and time costs improved from quadratic to linear after the copy
elimination and the identical-value redistributions.

e Both algorithms found the same optimizations and examined the same
sets of pairs. However, IEBR was three times faster in candidate screen-
ing than IBR (about 2.5 times faster overall).

C.2.3 LR1-REM+REVAPPEND

Program Structure. This program takes in an object and two LR1 lists,
removes the object from the first list, reverses the result, and appends the
second list. The top-level program is shown here, with the LR1-REVAPPEND
box’s implementation shown. LR1-REV is a synonym for the MY-REVERSE pro-
gram (Figure 1.2) and LR1-CONCAT-C+D is a synonym for the APPEND pro-
gram (Figure 1.3). Note that no optimizations involved the internals of the
LR1-REM box; it was included simply to provide a fresh list to demonstrate
how side-effects can be introduced into programs not explicitly structured as
copy-and-modify.

230

LR1-REM+REVAPPEND

ACX: ACL1: ENV: ACL2:

rem:LR1-REM

W

vy

rev:LR1-REV

b

app:LRl-
CONCAT-C+D|

!

revap:LR1-REVAPPEND

LR1-REM+REVAPPEND-ENV: §y l LR1-REM+REVAPPEND-AC:

Invariants and Proofs. The invariants used were APURE?ity and ab-
stract equality to the original outputs. Proofs were produced by Ir1-proof.

Test Case Inputs. I used seven test cases. This is probably not minimal,
but it seemed “representative,” a priori. In each case, I give the object, the
first list and the second list. Each list is encoded in terms of cells and the

store input.

e 0, (<c5> 0 <c0> 3 2 0), (<c3> true)

<c3>, (), (<c3> true)

0, (0), (2 0); lists share structure

1, (0), (2 0); lists share structure

<c0>, (<c0> 3 2 0), (<c3> true)

231

0, (2 0), (<c3> true)

1, (2 0), (<c3> true)

Optimizations. Here are the boxes eliminated by IEBR. I have not
shown the redistributions simply because there are so many. In all cases,
the targets can be inferred directly from the box name and the program

structure. I have indicated the justifications (hence implied the sources) in
English.

$LR1-REM+REVAPPEND.REVAPP.REV.CONC.CPY
and $LR1-REM+REVAPPEND.REVAPP.REV.CONC.NC.LC. These are the same
as the two MY-REVERSE optimizations.

$LR1-REM+REVAPPEND.REVAPP.APP.CPY. This is a copy elimination within
the APPEND box.

$LR1-REM+REVAPPEND.REVAPP.REV.SNG.CNS.NW. This introduces side-
effects into the MY-REVERSE box by eliminating the allocation of the
new cells in favor of reusing the input cells.

$LR1-REM+REVAPPEND.REVAPP.APP.NC.LC. This takes advantage of the
last-cons pointer available within the last invocation of the MY-REVERSE
box to avoid the last-cons computation within the APPEND box.

$LR1-REM+REVAPPEND.REVAPP.REV.SNG.CNS.RPA. This eliminates the re-
initialization of the CAR fields of the reused input cells to MY-REVERSE,
since they are already set to the correct data.

$LR1-REM+REVAPPEND.REVAPP.REV.CONC.NC.NU

and $LR1-REM+REVAPPEND.REVAPP.APP.NC.NU. These are just avoiding
the null tests within the implementations of the APPEND boxes by shar-
ing with previous test results.

The boxes above were eliminated by both IEBR and IBR. IBR went farther
and eliminated the following two boxes as well.

$LR1-REM+REVAPPEND .REVAPP.REV.SNG.CNS.RPD. This eliminates the re-
setting of the CDR fields of the reused input cells to MY-REVERSE because

232

they are set later by $LR1-REM+REVAPPEND.REVAPP.REV.CONC.NC.RPD
(non-end cells) and by $LR1-REM+REVAPPEND.REVAPP.APP.NC.RPD (end
cell). This is a fundamental false negative for IEBR.

e $LR1-REM+REVAPPEND.REVAPP.REV.REC.HD.CR.SL. This is eliminated be-
cause its result is no longer used after
the $LR1-REM+REVAPPEND .REVAPP.REV.SNG.CNS.RPA box was eliminated.
This should not have been considered by Try-to-eliminate-box?, but
due to a small bug in the code for marking boxes physical, the recursive
version of the box (note the presence of ...REC...) remained marked
as physical. This error does not significantly effect the results, as it
just implies a few extra boxes were examined by both IBR and IEBR.
Since any such box examined by IBR is eliminated, I can detect such
instances. No others were found.

LR1-REM+REVAPPEND Statistics

IEBR IBR
boxes examined 59 57
boxes eliminated 8 10
total src/trg pairs 1403 | 1345
syntactically pruned 937 | 881
no. target conditions 80 —
sum of trace sizes 2463
no. of trace updates 14 | 464
Candidate Screening time (sec) [305 | 1202
Total time (sec) 517 | 1399

Notes.

e This demonstrates how IEBR screens out pairs that (even though they
are correct) are likely to be hard to prove. IBR, on the other hand,
makes no such distinction. (This is discussed fully in Section 9.6.3.)
The redistribution missed by IEBR is a fundamental false negative.

e This example also demonstrates how the system can introduce side-
effects into a program that is not as explicitly structured (“copy-and-
modify”) as, for example, APPEND. The key is that each “cons” operation

233

(allocation and initialization of a single memory cell) is treated as con-
sisting of an allocation followed by explicit initialization of the fields.
The system is therefore able to leave out any subset of these. In this
example, the allocation is removed by substituting a pre-existing cell
for the output of the allocation box within the cons within LR1-REV.
Since this pair takes effect recursively, it removes all extra allocation.

e Note that even though IBR removed a couple of more boxes than did
IEBR, the resulting programs are essentially equally efficient. IEBR’s
result program is only a small constant factor (& 2) slower and uses
no more space than does IBR’s result.

e Note that the APPEND box has both its copy operation removed and
its last-cons box removed. Essentially, only some tests and a single
RPLACD operation remain. This is a third form into which the seemingly
inefficient APPEND model can be transformed, giving further support to
using that model, rather than the recursive one. The recursive one
could not be transformed into this form, since there is no explicit,
single RPLACD box present in it.

C.2.4 LR1-REM+APPEND

Program Structure. Here is the top-level structure of LR1-REM+APPEND

234

LR1-REM+APPEND

ACX: ACL1: ENV: ACL2:

rem:LR1-REM

|

vy

epy:LR1-COPY

by

nc:NCONC

{4

app:LR1-CONCAT-C+D

LR1-REM+APPEND-ENV: ¢ l LR1-REM+APPEND-AC:

and here is the structure of LR1-REM:

235

ACX: ACL: ENV:
LR1-REM l l t—

ser:SERIES scn:LR1-SCAN

meq:MEQ?

1§

mnt:MNOT?

znoon:U
cu:CHOOSE [— |

P

coll:
LR1-COLLECT

<

LR1-REM-AC: l ‘ LR1-REM-ENV:

The internal structure of NCONC is shown in Figure 1.3.

Invariants and Proofs. The invariants used were APURE?ity and ab-
stract equality to the original outputs. Proofs were produced by IrI-proof.

Test Case Inputs. I used the same seven test cases as in
LR1-REM+REVAPPEND. Again, this is probably not minimal. In each case, I
give the object, the first list and the second list. Each list is encoded in
terms of cells and the store input.

® 0, (<c5> 0 <c0> 3 2 0), (<c3> true)

<c3>, (), (<ec3> true)

0, (0), (2 0); lists share structure

1, (0), (2 0); lists share structure

236

® <c0>, (<c0> 3 2 0), (<c3> true)
e 0, (2 0), (<c3> true)

e 1, (2 0), (<c3> true)

Optimizations. Here are the redistributions performing the same type
of copy elimination as in MY-REVERSE.

o ($LR1-REM+APPEND.REM.LR1-REM-AC, $LR1-REM+APPEND.APP.NC.C1)
o ($LR1-REM+APPEND.REM.LR1-REM-ENV, $LR1-REM+APPEND . APP.NC.ENV)

Next, the system performed a fusion of the implicit loop in LR1-REM with
the last-cons collection within LAST-CONS within NCONC. Here is the (series)
pair: ‘

o ($LR1-REM+APPEND.REM.COLL.MSNG.MSNGLTN-Z,
$LR1-REM+APPEND . APP.NC.LC.COLL.Z)

These removed the following two boxes.
e $LR1-REM+APPEND.APP.CPY, a copy box.

¢ $LR1-REM+APPEND.APP.NC.LC.SCN, a list scanning box (representing an

iteration).
LR1-REM+APPEND Statistics

IEBR IBR
boxes examined 21 21
boxes eliminated 2 2
total src/trg pairs 298 | 298
syntactically pruned 211 | 211
no. target conditions 28 | —
sum of trace sizes 739
no. of trace updates 3 87
Candidate Screening time (sec) || 41 | 120
Total time (sec) 77 | 156

237

Notes.

e This example illustrates the effectiveness of the series representation
for iteration. The second optimization, a savings of (2,0) (a linear-
time iteration), is made possible only by the fact that the scanning of
the list is explicit. I performed this experiment also with the standard
recursive definition of LR1-REM and the fusion was not performed. (The
copy elimination was done in either case, as to be expected.)

e Note that the APPEND implementation is reduced effectively to a sim-
ple RPLACD operation plus a COLLECT-LAST operation. Both of these are
constant time and zero space, while APPEND was originally linear time
and space. A similar thing happened in the LR1-REM+REVAPPEND exam-
ple above, but in a different way—the entire LAST-CONS box of NCONC
was eliminated there.

e IBR and IEBR examined exactly the same pairs and gave exactly the
same answers.

C.2.5 LR1-MSORT (MERGE-SORT)

Program Structure. Here is the top-level structure of LR1-MSORT.

238

LR1-MSORT

L ENV:
Y
mt?:
LR1-EMPTY?
cn:SPLIT
T| F .——-#--_4___
| \ 4 \ 4 1
:.‘ Inth: <py: |
LR1-LENGTH LR1-COPY l
|
== l ¢ l |
| |
| sort:LR1- l
| MSORT-REC
|
e I St
A 4
> T | F
cn:JOIN

LR1-MSORT-AC: l l LR1-MSORT-ENV:

Here is its key recursive subroutine, LR1-MSORT-REC, which implements the
familiar split-sort-merge sorting algorithm.

239

LR1-MSORT-REC

N: L: ENV:
$
A 4
tst:ONE?
en:SPLIT r- - —l i e e _]
r]l e] | I |
ﬂ: | div:DIV3 |
‘ N2: sub:- |
| P
4 I |
| |
| spit:LR1-SPL. |
I LFT RGT |
N: N:
| ~X I
I reccLR1- luipl rec2:LRI1- |
‘ MSORT-REC MSORT-REC

£ |
| y v |
] mrg:MERGE- |
l ORTED-LISTH '
—j L~ — — % g4 - - - -

\ AN 4 Y

hs—) T [F

en:JOIN

LR1-MSORT-REC-AC: ¢ ‘LR]-MSORT-REC—ENV:

Here are the other important subroutines.

240

LR1-SPLIT

L: ENV:

]

!

Y

A 4
T3 v 3
acn: SCR:
SCAN-NEXTS count : IN<K SCAN-NEXTS count : ZN<=X

1!

)

COTRUNCATE

cotr:

U < (u.c.)

colld:LR1-
COLLECT-DATA

l lfn:LRl-FIRSTN

U

1|

COTRUNCATE

cotr:

U L (ue)

COLLECT-LAST

coll:

l In:LR1-NTHTLL

LFT: l l SPLIT-ENV:

241

RGT: l

1
9
mtl:
LR1-EMPTY?|
cal:SPLIT] | o I_ B R T3
T |]| |re-EMPTYY
| 7 | hdit:LR1-HDL| | hdi2:LR1-HDL
l |
ca2:SPLIT p
| v v
| LT E |
| t..l | e e
' 4L |- L y (44 _L.
| YA 2 | 1 [asspur | 0
| I NEIE |
| | wiLrsTLL | | wzLRL-TLL ||
=+ =+ 1 \ | | |
| I Lli 2 | | 2 :
| I recl:MERGE- | | rec2:MERGE-{{gl: |
| I ORTED-LISTS | ORTED-LISTS
[¥ | | |
| ¥ 4 | | A 4 |
| I ppit:LR1PPL| | | | poizLR1-PPL |
|- A
— — b — L = — e c—
| [_l 2 v r
I | T | F
n3:JOIN 4
I e
¢ > T | ¥
L <a2:JOIN
s D
v
- T | F
cal:JOIN
‘ l MERGE-SORTED-LISTS

Invariants and Proofs. The invariants used were APURE?ity and ab-
stract equality to the original outputs. Proofs were produced by Ir1-proof.
Note that the program is correct only on lists of numbers. This is not cap-
tured by any of the invariants or proofs, but all test cases are lists of numbers,

242

so it is not necessary. In theory, this omission could result in less optimiza-
tion power (fewer explicit preconditions conditionalizing things), but it did
not effect the results in this case.

Test Case Inputs. The test cases are all single LR1 lists encoded in
cells and stores. Here are the ten test cases used. The set is probably not
minimal, though they were not chosen completely at random: the last three
were chosen to exercise previously unreached portions of the program.

e ()

e (0)

e (0123321 0)

e (33210)

e (10)
©(0246135T7)

e (61357

e (9238061 4)

¢ (71059238061 4)

e (1602475 3)

Optimizations. There are too many redistributions to show here, so
I show only the boxes eliminated, together with some intuition as to why.
Here are the boxes eliminated by IEBR:

e $LR1-MSORT.SORT.MRG.PPL1.CNS.NW
and $LR1-MSORT.SORT.MRG.PPL2.CNS.NW. The memory allocations
within the two different ways of adding an element to the result list
in the merge box are eliminated by reusing the input structure to the
merge box.

243

e $LR1-MSORT.SORT.SPLIT.FN.COLLD.ZCC.SNG.CNS.NW. The memory allo-
cation within the FIRSTN box’s iteration is eliminated by reusing the
input cells.

e $LR1-MSORT.SORT.SPLIT.FN.SCN. This fuses the iteration within FIRSTN
with that of LR1-NTHTLL.

e $LR1-MSORT.SORT.MRG.PPL1.CNS.RPA
and $LR1-MSORT.SORT.MRG.PPL2.CNS.RPA. Since we are reusing the in-
put lists to merge (see above), the cells already have the CAR fields set
correctly, so we needn’t reinitialize them.

e $LR1-MSORT.SORT.SPLIT.FN.COLLD.ZCC.PUSH. This is mostly an artifact
of the formalism; it is just the observation that the output series (of
cells) of the ZCOPY-CELL box is the same as the input series after we've
eliminated the memory allocation.

e $LR1-MSORT.SORT.SPLIT.FN.COLLD.ZCC.SNG.CNS.RPA. This avoids reini-
tializing the CAR fields of the reused cells within the FIRSTN box’s
ZCOPY-CELL.

o $LR1-MSORT.CPY.SCN. This fuses the loop within the length operation
with that of the first copy operation.

The only difference in the boxes eliminated by IBR is that the box
e $LR1-MSORT.SORT.SPLIT.FN.COLLD.ZCC

is eliminated instead of three of its internal boxes as before.

LR1-MSORT Statistics

IEBR IBR
boxes examined 370 318
boxes eliminated 9 7
total src/trg pairs 22858 | 16425
syntactically pruned 16157 | 11532
no. target conditions 475 —
sum of trace sizes 22736
no. of trace updates 254 | 4893
Candidate Screening time (sec) || 11944 | 55955
Total time (sec) 14980 | 59081

244

Notes.

e Note that the copy operation at top-level of LR1-MSORT would appear
to be useless in that LR1-MSORT-REC, as defined, is side-effect-free. This
is analogous to the program structure insight in APPEND: putting in
seemingly extraneous structure allows better optimizations. Without
the top-level copy, the system could not get rid any internal copying
done within the recursive procedure. This would result in (altogether)
two copies being constructed of the input list instead of exactly the
one needed.® This can be viewed as an instance of a problem with
the approach: small changes to the input program have relatively large
effects on the optimization results.

o The system had a choice of eliminating the first copy operation (not
within LR1-MSORT-REC) or to do what it did (eliminate the copies within
the recursive part). It could not do both, else it would destroy the input
list. It made the right choice, because the system estimated the costs
of the inner copies higher, hence it considered them first.

e The system estimated the cost of the entire program at (3,3), which is
the same as a quadratic program. The program is actually nlogn. In
this case, the discrepancy didn’t matter, but if we had a program that
contained both n log n boxes and n? boxes, the system could consider
them in the wrong order. This is a drawback of the crudeness of the
cost estimates.

e LR1-MSORT required the most time to optimize (for both algorithms).

e The optimizations were copy eliminations, loop fusions, and avoidance
of unnecessary data invariant operations (the eliminations of RPLACA
boxes when the CAR fields are already correct). The run-time improved
by a (significant) constant factor and the space usage dropped to the
optimal space usage for a non-destructive sort. (Space usage was cut
by a factor of three over the original program.)

e IBR was able to eliminate a box that IEBR couldn’t, but IEBR was able
to compensate by eliminating most of its insides. Thus, the relative

3Counting up the copies within LR1-MSORT-REC gives one a total of two, but they are
spread out piecemeal within the recursion.

245

weakness of IEBR wasted time, but didn’t result in a significant loss of
optimization power.

C.2.6 LR1-SUBSTITUTE+EQUAL?

Program Structure. Here is the top-level program structure for
LR1-SUBSTITUTE+EQUAL?:

LR1-SUBSTITUTE+EQUAL?

OLD: NEW:L1: ENV: L2:

sb:LR1-
SUBSTITUTE
l ﬁ—
equal:
LR1-EQUAL?
LR1-SUBSTITUTE+EQUAL?: ¢ ¢

and here is the structure for its two library subroutines:

246

LR1-EQUAL?

II: Eliv: [I;
scnl: R K scn?2:
LR1-SCAN | [mrkrMARKE: LR1.SCAN
catl: cat2:
CATENATE CATENATE
meq?:MEQ?
coll:
COLLECT-ANI]
LRl—EQUAL?:i
LR1-SUBSTITUTE
OLD: NEW: i ENV:
scn:LR1-SCAN

1|}

T

coll:
LR1-COLLECT

LR1-SUBSTITUTE-AC: i l LR1-SUBSTITUTE-ENV:

247

Invariants and Proofs. The invariants used were APURE?ity and simple
equality to the original outputs. Proofs were produced by IrI-proof.

Test Case Inputs. I used five test cases (not known to be minimal).
I give them in the form new-object, old-object, substituted-list, test-list.
Again, all lists were encoded in terms of cells and a store.

1, true, (0 true 0), (0 1 0)

1, true, (0 true O true 0), (0 1 0)

1,0, (O true 0), (0 1 0)

1, true, (0 true 0), (0 true 0)

® true, 1, (true 0), (true O true 0)

Optimizations. Here, there was a significant difference in performance
between IEBR and IBR. Here is the redistribution found by both:

. ($LR1-SUBSTITUTE+EQUAL?.SB.HSB.HSBIFEQ,
$LR1-SUBSTITUTE+EQUAL? .EQUAL.CAT1.Z1). This eliminated the box
$LR1-SUBSTITUTE+EQUAL? .EQUAL .SCN1.

This is a loop fusion.
Here are the pairs found additionally by IBR:

o ($LR1-SUBSTITUTE+EQUAL?.ACOLD,
$LR1-SUBSTITUTE+EQUAL?.SB.COLL.LR1-COLLECT-AC)

o ($LR1-SUBSTITUTE+EQUAL?.ENV,
$LR1-SUBSTITUTE+EQUAL?.SB.COLL.LR1-COLLECT-ENV)

These eliminated the box
e $LR1-SUBSTITUTE+EQUAL?.SB.COLL.COLL

which allocates and builds the substituted list. Thus, the result of IBR uses

no extra space, but IEBR was unable to eliminate this box, hence still uses
extra space.

248

LR1-SUBSTITUTE+EQUAL? Statistics
IEBR IBR
boxes examined 17 17
boxes eliminated 1 2
total src/trg pairs : 219 | 210
syntactically pruned 140 | 134
no. target conditions 20 | —
sum of trace sizes 370
no. of trace updates 2 76
Candidate Screening time (sec) [14 [75
Total time (sec) 37 | 101

Notes.

e This is an example where the weakness of IEBR made a significant
difference in the optimization results. IEBR’s version ended up having
a cost of (2,2), because it still creates the substituted list output of
the LR1-SUBSTITUTE box, while IBR’s (2,0) version doesn’t. The extra
(2,2) box is significantly costly.

e The optimization missed by IEBR is a fundamental false negative.

C.3 Example Program On SR Sets

This example demonstrates data invariant suspension and a good test case
coincidence (a “false true positive”).

C.3.1 SR-ELT?+UNION

Program Structure. Here is the top-level program structure.

249

SR-ELT?+UNION

X: S1: S2: ENV:

bel

un:SR-UNION

v

elt:SR-ELT?

v

Here is the key subroutine, SR-UNION.

250

SR-UNION

ENV:

82:

Here is the key subroutine of SR-UNION, SR-CHOOSE+REM.

251

:SR-EMPTY?
-— - = - & e el
' |
cen:SPLIT | chrem:SR-~ I
- ! CHOOSE+REM
F | |
=E—‘.I [l l v S2: |
I
| rec:SR-UNION l
|
: ! '
I
I Yy vV |
| mem?: |
| LR1-MEMBER |
| i r .y Ly ; | |
I cn:SPLIT | |
==] ¥ peh:LR1-PPL I
| ! 1t
| ” > - — [
| ¥ |
1| 9 7] F |
1 cn: JOIN |
| l l add:SR-ADD |
L - — — % _1 _____ -
A 4
> T | ¥
cn:JOIN

SR-CHOOSE+REM

S: ENV:

I

!
!

hd:LR1-HDL

l ch:SR-CHOOSE
r

v v 3
vy v ¥
rm:LR1-REM
(recursive)

l l rm:SR-REMOVE

SR-CHOOSE+REM-ELT:y sR.CHOOSE-;-REM-S:l l

And here is the key (recursive) implementation of LR1-REM:

252

LR1-REM (recursive version)

L: ENV: X:
' — = e e o e—] — e - — = — 1
LR1-EMPTY?| | |
S I ,
cn1:SPLIT | YV v |
T| ¥ | hd:LR1-EDL :LR1-TLL |
T .| oq:EQ? l
I — |
' |
| \ 4 |
I cn2:SPLIT
| T| F L
v I,_ |
| =3 1 I}E - Bl |
l | recT: ' I recF: I I
| r LRIREM || | LRI-REM | | |
S sy |
' iy i
| | | peiLR1-PPL 4'—|
T | p [t |
f 1 amion| L — — — — |
_____ l _1_ S |

Invariants and Proofs. The invariants used were APURE?ity and simple

equality to the original output. Proofs were produced by (hand-simulation
of) sr-proof.

Test Case Inputs. I used seven test cases (with degeneracy, see below)

and added one later to avoid the degeneracy. Here are the seven original
test cases. I state them as test element, set-list-1, and set-list-2. All are

253

represented in terms of cells and stores. I give lists rather than sets, because
the list representation is important to the examples (i.e. the ordering and
whether the list has duplicate entries).

e 7, (7T 0 <cO> 3 NIL 0), (7 2 11 1).
e 11, (7 2 11 1), (7 0 <c0> 3 NIL 0).
e 3, (7 211 1), (7 0 <c0> 3 NIL 0).

e false, (7 2 11 1), (7 0 <c0> 3 NIL 0).

0,0, (7211 1),

0, (1), (7 2 11 1).
e 2, (0), (7T 2 11 1).

Here is the extra test case that gets rid of the “good” degeneracy. Note its
similarity to the first test case above.

e 7, (0 <c0> 3 NIL 0), (7 2 11 1).

Optimizations. Using the original seven test cases, both IBR and IEBR
gave exactly the same answers. Here are the boxes eliminated.

e $SR-ELT?+UNION.UN.CHREM.REM.RECT

e $SR-ELT?+UNION.UN.ADD.MEM?

e $SR-ELT?+UNION.UN.CHREM.REM.HD.CR

Adding the eighth test case causes IEBR to fail to eliminate the first box
above, resulting in a less efficient result program. It still gets the other two,
however, so some improvement remains.

254

SR-ELT?+UNION Statistics
IEBR IBR
boxes examined 111 | 111
boxes eliminated 3 3
total src/trg pairs 2218 | 2192
syntactically pruned 1623 | 1610
no. target conditions 82 —
sum of trace sizes 6137
no. of trace updates 22 582
Candidate Screening time (sec) || 524 [3356
Total time (sec) 881 | 3652
Notes.
e This illustrates data invariant suspension. The no-duplicates

invariant is suspended within the SR-UNION box since SR-ELT?
doesn’t require it. This is illustrated by the elimination of the
$SR-ELT?+UNION.UN.ADD.MEM? box. Note that both algorithms elimi-
nated this box under both sets of test cases.

e The statistics above are for the run with only the original seven test
cases. Those seven illustrate a peculiar phenomenon: “good” test case
coincidence. This is where, instead of the coincidence causing a false
positive, it causes a true positive, but adding a test case results in
a fundamental false negative! (I whimsically term this a “false true
positive.”) Using the original seven, IEBR was able to eliminate the
recursion box within the SR-REMOVE box, because all seven test cases
had the property that the first element of the first set-list was not
duplicated later in the same set-list. Thus, the local specification of
SR-REMOVE was maintained by simply taking the tail of the set-list to
remove the first element (this implied the satisfaction of a particular
target condition). Of course, the SR-REMOVE is not maintained that
way if the first element is duplicated; subsequent occurrences remain
in the list. But on the other hand, the top-level optimization invariants
remain satisfied, because the abstract set properties of this program are
not effected by duplicates in the list. Thus, using the original test case
set, IEBR was right, but for the wrong reasons! Adding the eighth test

255

case exposed the fundamental false negative for IEBR. IBR accepted the
redistribution using either test case set, of course.

Note that the above optimization (within the SR-CHOOSE+REM box) is
only possible because LR1-REM is implemented recursively. The series
form given earlier (LR1-REM+APPEND example) does not have the recur-
sion box which is eliminated here. This shows that neither series nor
recursion can be used exclusively.

Note that even though the outputs of the two routines (on the seven
test cases) were the same, this does not imply that the screening pro-
cedures gave exactly the same answers everywhere. (Inv-Screen can
answer “true” while EB-Screen answers “false”, yet the resulting re-
distribution may eventually be retracted because the corresponding box
was not eliminated. This explains why such statistics as total src/trg
pairs aren’t exactly the same.

256

Appendix D

Proof Restructuring

Proof structure has a significant impact on target condition generality, as
shown in Chapter 9. This appendix gives an algorithm for improving the
weakened relative conditions of given leaves by computing a “better” proof.
In addition to its use in this research, the restructuring algorithm given here
may be of interest to anyone attempting to integrate the PCCU approach to
generalization into traditional EBG systems.

The intuition is that for a weakened relative condition to be larger (con-
tain more disjuncts), the path from it to the root of the tree should contain
more disjuncts. This can be accomplished by re-ordering resolution steps
within the proof. The basic technique will be to apply a set of local proof
transformations to the tree that combine to push the leaves of interest down-
ward, away from the root. It will be convenient to mark the leaves of interest,
together with every node on the paths to the root. Marking provides a means
of controlling the transformation process in order to avoid looping and to en-
sure progress toward a better tree.

Notation. It will be useful to represent local tree restructuring rules in
the following compact form.

(1{Aa/7x} [j(A,B)] (1{A/7x}o{B/?y} [j(A,B)]
(I1{B/?y} [j(?x,B)] -=> (> [j(?x,?9)1))
G GOx,?29D)

A tree node is represented by a list of the form

(operator{substitutions if applicable} [clause] subtree list)

257

where operator is I for :INSTANTIATION nodes, R for :RESOLUTION nodes, S
for :SUBSUMPTION nodes, DA for :DEFINITION-APPLICATION nodes, and D for
:DEFINITION nodes. An asterisk in the operator position means any operator
is allowed there. The term j(A, B) in the clause denotes any clause (not
necessarily a single term) some of whose terms have A or B as subterms. As
usual, identifiers starting with a question mark are free variable terms. A
clause of the form [xAB~C] denotes the clause, VAV BVC, where lower-case
letters denote clauses and upper-case letters denote terms (disjuncts). The
substitution A/?x indicates replacing occurrences of the variable ?x with the
term A. Substitutions may be composed, as in the right-hand tree schema
above, by the notation s o ¢, which means first perform substitution ¢, then
perform substitution s on the result.

D.1 Preprocessing

To simplify the algorithm, we would like to assume certain regularity con-
ditions on the tree which may not be present in the given proof. Thus, the
system first preprocesses each tree to establish the following conditions.

D.1.1 Eliminate Macro Nodes

For ease of use, I allowed the user to insert various notationally convenient
proof node types such as :UNARY, which allows many unit resolution steps to
be compressed into one; and :EQUALITY, which allows single paramodulation
steps. Each such operator is a straight-forward macro for some combination

of resolutions and tautologies. The first preprocessing step expands these
macros.

D.1.2 Instantiation Pushing

A disjunct with a free variable appearing in a weakened relative condition
is logically stronger than a corresponding disjunct with the free variable
instantiated. Thus, we would like the clauses above marked leaves to be

in terms of the instantiated versions rather than the open forms. We can
achieve the

258

Instantiation Regularity Condition: Instantiation nodes ap-
pearing in the tree have only leaf children.

by starting from the root and recursively walking the tree top-down, applying
the following local transformations where applicable. Note that no two are
applicable at the same node.

(1{a/7x} [j(W)] -=> (T WD
(T [(?x)1))
(I{a/7x} [j(A)] (s [Ca)]
(s [j(?x)] --> (1{a/7x} [x(A)]

(* [k(?x)1))) (* [k(?x)1)))

(1{a/?x} [j(A,B)]
(1{B/7y} [j(?x,B)]
(> [GCx,?79)1)))

(x{a/?x} [1(A)]
(R [1(?x)]
G
(* [k(7x)1)))

- (I{a/7x} [j(W)]
(DA [j(?x)]
D

(1{A/?x}Yo{B/?y} [j(A,B)]
(* [3(7x,7y)1))

(R [1(A)]
(I{a/7x} [j(W)]
(* [;(?x)]1))
(T{A/?x} [k(A)]
(x [k(?x)1)))

(oA [j(W)]
D
(I{a/7x} [k(W)]

(* [k(?x)1))) (* [k(?x)]1)))

D.1.3 Non-T Tautology Elimination

The system next searches the tree for any (non-:TAUTOLOGY) node whose
clause is a propositional tautology and transforms it into a :TAUTOLOGY node,
discarding any subtrees. The system has a switch that enables the more
powerful operation of finding all PE-tautologies, but this appeared to take
much more time than it was worth, and the only regularity condition needed
for the restructuring algorithm is the

P-Tautology Regularity Condition: Any node whose clause
is a propositional tautology has node type :TAUTOLOGY.

259

D.1.4 Subsumption Pulling

For simplicity in implementing the rest of the restructuring algorithm, we
would like the

Subsumption Regularity Condition: No : SUBSUMPTION nodes
appear in the tree, except possibly a single one at the root.

This condition is established by a single, bottom-up tree walk applying
the following transformations:

(s [x] -=> (* [k1)
(* [x]1))
(s [xyz] (s [xyzl]
(s [xy] --> (* [x]1))
(> [x1)))
(R [xy] (s [xyl
(* [~ayD) --> (> [x]1))
(s [Ax]
CIEIDD))
(R [xyz] (s [xyz]
(* [~ayD) (R [xyl
(s [Axz] -=> (* [~Ayl)
(* [Ax]))) (» [Ax])))
(DA [jkPy] (s [jkPy]
(D P=x) --> ¢ [31N
(s [jk]
ECEEEDD).
(DA [Pk1] (s [Pk1] ;assumes k not in x
(D P=x) -—> (DA [P1]
(s [jk] (D P=x)
CSIDD)) G 0GD)
(DA [Pk1] (DA [Pk1] ;assumes k in x
(D P=x) --> (D P=x)
(s [jk] CISIDD))
= [31))

260

D.1.5 Local Inefficiencies

We would like also to eliminate certain limited forms of inefficiency in the
proof structure. Of course, we would like to eliminate all inefficiency, but the
set below is easy to compute and still simplifies the rest of the algorithm.
The following two rules are performed during a top-down tree walk:

(R [xyzB] (S [xyzB]
(* [xAB]) -=> (= [yB1))
(R [yz~Al
(= [yBD)
(*» [z"B~AD)))
(R [xyzB] (S [xyzB]
(* [xAB]) (R [xyB]
(R [yz~al --> - (* [xAB])
(* [y~AB]) (* [y~AB1)))

(* [z~B])))
To establish the

Efficiency Regularity Condition: No pair of resolution steps
can be replaced by a subtree using a subset of the same three
starred subtrees that also uses fewer resolution steps.

we must iterate this procedure together with the S-pulling procedure until
no inefficiencies exist and the only subsumption nodes are at the root.

Procedure Remove-local-inefficiencies (TREE) : void
(Side effects to the input tree only)
While local inefliciencies remain
Remove them using the tree walk described above
Pull S nodes to the root

Clearly, since the number of resolution nodes strictly decreases with each

pass, this iteration terminates. In practice, it is rare to have even a second
iteration, much less more than two.

261

D.1.6 Preprocessing Pseudo-code

Procedure Preprocess-tree (TREE) : void
(Side effects to the input tree only)
Remove macro nodes.

Push instantiations down to leaves.
Remove non-T tautologies.
Remove-local-inefficiencies(TREE)

D.2 The Restructuring Algorithm

Before giving the algorithm, it is necessary to define a few more tree trans-
formations.

D.2.1 Removing Unneeded Marked Leaves

An important way to generalize a target condition is to remove an occur-
rence of the low arc leaf node from the tree if possible. Clearly, if the PCCU
algorithm would produce a weakened relative condition for a node that is a
P-tautology, that leaf may be replaced by a :TAUTOLOGY node, assuming the
ancestor nodes of the leaf have their clauses suitably enlarged. The procedure
Remove-unneeded-marked-leaves carries out this transformation. I will
not give the pseudo-code here, because for efficiency the actual implementa-
tion is uninterestingly more complicated than a simple application of PCCU
plus a check. It turns out that once this is applied, it may be necessary to
re-establish the subsumption regularity condition, so the S-pulling procedure
is included as a post-pass.

D.2.2 Pushing Marked Leaves Down

This transformation is the heart of the algorithm. It has the effect of making
the paths longer from marked leaves to root, thereby enlarging the resulting
weakened relative conditions. Up to this point, all transformations have
either reduced the number of nodes in the tree, or left it the same. Here,
there are two rules that leave the number the same, and one that increases
the number. I have indicated which nodes are marked using the letter M.

262

Here are the two nonincreasing rules:

M (R [xyz] M (R [xyz]
M (* [xAD) M (R [xz~B]
(R [yz~Al --> M (* [xA])
(* [yvl) (* [z"B~A]))
(* [z"B~A]))) (* [yB1))
M (R [Pyx] M (DA [Pyx]
M (x [x~Al) (D P=w)
(DA [PyAl -=> M (R [xyw]
(D P=w) M (* [x~Al)
(* [wyAl))) (* [wyAl)))
Here is the increasing rule (a.k.a. “the exponential rule”):
M (R [xyz] M (R [xyz]
M (» [xAl) M (R [xz~B]
(R [yz~Al --> M (* [xAl)
(* [yB~A]) (* [z"B~AD))
(> [2z"B~AD))) M (R [xyB]
M (* [xA])

(= [yB=Al)))

I also included analogous rules with all combinations of the signs of the
various resolving literals. All of these are applied in a top-down tree walk to
form the procedure Push-marked-leaves-down.

263

D.2.3 Tree Restructuring Pseudo-code

Procedure Restructure-tree (TREE) : void

(Side effects to the input tree only)

Preprocess-tree(TREE)

Mark desired nodes.

Remove-unneeded-marked-leaves(TREE)

Mark desired nodes.

While Push-marked-leaves-down would change something
Push-marked-leaves-down(TREE)
Remove-local-inefficiencies(TREE)
Remove-unneeded-marked-leaves(TREE)

If all three rules are used in Push-marked-leaves-down, then at termi-
nation no resolution nodes remain unmarked, unless the process is blocked by
a :DEFINITION-APPLICATION node that couldn’t be transformed by the single
DA rule. In practice, this blocking has not been a problem, though I haven’t
used :DEFINITION-APPLICATION nodes much. Unfortunately, the exponential
resolution restructuring rule can cause an exponential blowup in the size of
the tree, since it doubles a subtree. Thus, one way of restricting the algo-
rithm would be to rule out the use of the exponential rule. This would allow
cases of blocking on resolution nodes not satisfying the constraints of the
other rule. The reward, however, would be a guaranteed polynomial time
algorithm, since the number of marked nodes strictly increases, but the total
number of nodes cannot increase.

In practice, I have not had to discard the exponential restructuring rule,
as it almost never fires on trees of interest. This restriction may, however,
need to be imposed for use with other sets of test cases.

264

Appendix E

Programmability versus

Checkability

This subsection explores the theoretical relationship between problems that
are computable, checkable, and relatively checkable. It is tangential and may
be skipped without loss of continuity.

A computational problem is checkable if there exists a program for decid-
ing whether a given data value is a correct output for a given input value. It
is relatively checkable if it is checkable by a program that is allowed to use an
oracle for the problem. An oracle for a problem is a black box that gives a
correct output in a single time step for any input; note that it is not required
to give all correct outputs for a single input value.

For a computational problem, I will rate its computability, checkability,
and relative checkability on a qualitative scale of

e EASY: has a polynomial-time computational solution.
e HARD: NP-complete or worse, but still computable
e IMPOSSIBLE: uncomputable.

Note that I assume the relative checker has a constant-time oracle for the
correct program’s outputs; thus, I do not count the time to find them origi-
nally in the time for the relative checker. This is realistic with respect to the
system’s use of relative checking.

The following general observations follow easily.

265

e Obviously, the relative checkability of a program is no harder than the
checkability, since any checker can be used as a relative checker.

o If a program is easy to compute and easy to check relatively, then it
is easy to check absolutely by simply computing the problem and then
relatively checking it. Thus, the difficulty of checking is no worse than
the maximum of computing and relative checking.

e If a problem with denumerable range, which includes all problems com-
putable on a digital computer, is checkable, then it is computable.
Simply enumerate all possible input/output pairs for the given input
and check them; eventually one will be correct, so return the output
component.

e For any decision problem, checking and computing are the same, since
the outputs of computing the one-bit answer give no additional infor-
mation.

e Any problem for which there is only one correct, polynomial-sized out-
put per input is obviously trivial to check relatively: just compare the
output to that of the known-correct program.

Aside from these facts, however, there is no relationship between the
difficulties of the three types of problem measures, as Table E.1 shows. The
table covers the ten possibilities not ruled out by the above observations.

Meta halting problem. By the “Meta halting” problem, I mean computing
for any n some program, mhp(n) that takes in any Turing machine m and
if m is of size n then mhp(n) decides whether m halts on blank tape, oth-
erwise if m is not of size n then mhp(n) simply puts out FALSE. The meta
halting problem must be impossible to compute, because otherwise we could
compute the usual halting problem by first finding the size s of the Turing
machine, then computing mhp(s), and applying the result to the original
Turing machine. Meta halting is impossible to check because it is impossi-
ble to know even whether mhp(n) halts on all inputs, much less whether it
puts out the correct answer.! Meta halting is impossible to check relatively

!Note that for any particular n, mhp(n) is computable since there are only finitely
many Turing machines of size n. If the problem were simply to put out, for any n, a

266

problem computability | checkability | relative checkability
Meta halting IMPOSSIBLE IMPOSSIBLE IMPOSSIBLE
Halting-SAT IMPOSSIBLE IMPOSSIBLE HARD
Halting IMPOSSIBLE IMPOSSIBLE EASY
SAT-halting HARD IMPOSSIBLE IMPOSSIBLE
NPD-SAT HARD HARD HARD
NPD HARD HARD EASY
Restr. NPS HARD EASY EASY
Compiler EASY IMPOSSIBLE IMPOSSIBLE
Approx. BP EASY HARD HARD
Sorting EASY EASY EASY

Table E.1: Comparative difficulties of programming, checking, and relative
checking for selected problems. The text explains the rating scheme, defines
the problems, and justifies the ratings. The table covers all combinations
of computability, checkability, and relative checkability not ruled out by the
general observations given in the text.

because knowing whether the output halts is still impossible. Knowing a
correct answer does not help at all with this. ‘

Halting-SAT. This is the problem of deciding whether the input Turing
machine halts on blank tape and putting out a boolean formula that is sat-
isfiable if the machine halts and unsatisfiable if it doesn’t. Obviously, this is
at least as hard to compute as the halting problem, hence impossible. More-
over, it can’t be checked, because it is essentially just a decision problem,
i.e., the extra output gives no actual extra information. It can, however, be
relatively checked because the satisfiability of the known-correct output can
be determined and compared with that of the output to be checked, but at
a cost of NP-hardness.

Halting problem. Well-known to be uncomputable, the halting problem
is also impossible to check because it is a decision problem. It is trivial to
check relatively, however, since it is a single-valued function.

SAT-halting. If the input propositional formula is satisfiable, put out a
Turing machine that halts on blank tape; otherwise put out one that doesn’t

program to decide halting on all inputs then the program would be trivially incorrect on
all inputs, hence checking would be trivial.

267

halt on blank tape. This is obviously computable, but NP-hard. Checking
and relative checking are impossible, however, since the halting problem is
undecidable.

NPD-SAT. Take any NP decision problem. On any input decide it, then
put out two values: first, a flag indicating the decision; and second, a satisfi-
able boolean formula if it was true, otherwise an unsatisfiable formula. This
is NP-hard, of course, since merely computing the first value is NP-hard
for any NP decision problem. Checking and relative checking are also hard,
however, since SAT is NP-hard.

NPD. This denotes any particular NP-hard decision problem. Its check-
ability is the same as its computability because it is a decision problem. It
is relatively checkable trivially because it is single-valued.

Restricted NP search. “Restr. NPS” denotes restricted NP-search prob-
lems. NP-search problems are extensions of NP-complete decision problems
where the program must put out a polynomial-size “proof” of positive in-
stances. For example, for SAT-search the program must give a satisfying as-
signment for positive instances. Restricted NPS problems are ones where the
input is known to be a positive instance. Any restricted NPS problem must
be hard to compute, because if there were a polynomial time program for it
taking p(n) steps, then we could solve the corresponding unrestricted NPS
problem in polynomial time as well by running the program for time p(n) and
then either returning FALSE if it hadn’t halted or checking its result (which
we can do quickly) and reporting the result of our check. Restricted NPS
is easy to check because any answer comes with a polynomially-checkable
proof. Restricted NPS problems are easy to check relatively because they
are easy to check absolutely. -

Compiler problem. This is the problem of constructing a low-level ma-
chine code program equivalent to a given high-level source program. It is
easy to compute in polynomial time for most standard languages. Computa-
tion theory shows, however, that it is impossible to write a program that can
tell for every (low-level program, high-level program) pair whether the high-
level program computes the same function as the low-level one. Moreover,
knowing one low-level implementation of a given high-level program won’t
help at all in checking another; thus, relative checking is impossible as well.

Approzimate Bin-packing. This is the problem of finding a bin packing
within a factor of two of optimal. Approximate bin-packing is easy to com-
pute via a first-fit strategy. It is hard to check because easy checking would

268

imply knowing the optimal length, which in turn would imply being able to
solve the bin-packing decision problem, which is NP-complete. It is forced
to be difficult to check relatively because its checkability is no harder than
the maximum of its computability and its relative checkability.

Sorting. Sorting is easier to check (O(n)) than to compute (O(n lg n),
but only just barely; both are easy.

269

Appendix F

Series Subtleties

There is a subtlety raised by the fact that series expressions as defined by
Waters behave according to lazy semantics, which is not always equivalent to
the eager evaluation semantics assumed by my system. The difference arises
when series operations are allowed to have side effects on the store: side
effects of a causal successor may effect some of the series elements of a causal
predecessor (creating an implicit flow arc cycle in the program). Figure F.1
gives an example of a program that is compiled into a loop that does not
obey eager semantics.! The forward pointing DATA (field-0) pointer of cell
c0 causes COLLECT-SETNEXT to alter the NEXT (field-1) value of cell c1 before
SCAN-NEXTS has accessed it. This causes SCAN-NEXTS to put out a length-two
series instead of the length-three series predicted by an eager interpretation.
Note that this is not a defect in the Series Macro Package; there is no way
to compile all series expressions with side-effects into efficient, eager loops.
Moreover, it can even be difficult to determine whether the resulting loop
will behave consistently with eager semantics.

The implemented system assumes eager semantics everywhere, so it is
theoretically possible for a proposed redistribution to be correct when the

1The particular lazy semantics obeyed in this example is determined by the particular
low-level implementations of the scas-sEXxTs and coLLECT-SETEEXT primitives. For those in-
terested in running this example using Waters’s macro package, scAs-¥exts is implemented
as SCAN-SUBLISTS, MDATA is implemented as smcar, and COLLECT-SETEEXT is implemented as
(DEFUN COLLECT-SETBEXT (Z)
(DECLARE (OPTINIZABLE-SERIES-FUNCTION))
(COLLECT-NCONC (MAP-FB T #’(LANBDA (ELT) (WHEN ELT (SETF (CDR ELT) NIL)) ELT) Z)))

270

Input Store

c0 cl c2

L: S¢:

|

sca:
SCAN-NEXTS

L = ¢0, L-OUT = c1 U
(in both cases)
md:MDATA

L |

csn:COLLECTH
SETNEXT

ot ¥

R 4

c0 cl c2 c0 cl c2
c3 c3
L
Lasy Output Store Eager Output Store

Figure F.1: A program whose compilation by the Series Macro Package does
not preserve eager operational semantics. L-0UT is c1 in either semantics, but
the output stores are different as shown. SCAN-NEXTS returns a series of the
cells in the input list; MDATA selects the DATA fields; and COLLECT-SETNEXT
destructively assembles its input’s elements into a list, ignoring non-cell ele-
ments.

271

resulting program is interpreted according to eager semantics, but be incor-
rect when compiled into a loop conforming to the lazy semantics of series
expressions.

F.1 The Current Approach

The current system can rule out this problem by an extra syntactic check,
highly dependent on the choice of computational primitives, in addition to
those given in Section 3.2.3. I have not implemented it, but it is straightfor-
ward. Interestingly, none of the redistributions passing the screening phase
of either algorithm would have failed this check. Note that when applying
the check, the program is viewed flat with respect to series operations; that
is, all non-primitive boxes with series inputs or outputs are opened to expose
implementations.

The intuition behind the following check is to conservatively rule out
all situations where some destructive operation could possibly alter some
datastructure before it is accessed by a series primitive. For this set of
primitives, the only destructive series operation is COLLECT-SETNEXT, so I will
be ruling out situations where its use could possibly change a field value
before it is accessed by some consumer primitive within the same enclosmg
series subprogram (see below).

Eager semantics preservation check:

e The only series primitives allowed in a program are SCAN-NEXTS,
COLLECT-SETNEXT, MDATA, MSNGLTN, CATENATE, COTRUNCATE, CHOOSE ,
MSBIFEQ, MARKER, MEQ?, MNOT?, ZN<K, ZN<=K, COLLECT-AND?,
COLLECT-0R?, COLLECT-SUM, COLLECT-LAST, SERIES, and FSERIES.

e For every COLLECT-SETNEXT box c in the program, let its enclosing series
subprogram be the collection of all program elements (boxes and flow
arcs) connected to ¢ by some directed path of series flow arcs ending
at c. Then the enclosing series subprogram of ¢ can contain no more
than one SCAN-NEXTS box s., and every maximal series flow arc path
ending at ¢ must pass through one of the following classes of ports after
passing either through a CATENATE box or any box taking a non-series
(or series-of-stores, if such exist) input:

272

— the output port of a MSNGLTN box;
— the output port of s, if it exists; or
— the ZBOOL input port of a CHOOSE box.

Note that we treat COTRUNCATE boxes somewhat specially: all paths of

interest entering the box through the Z1 port exit through the cotruncate-z1

port and, similarly, all paths of interest entering through 22 exit through
cotruncate-z2.

® 8., = S, = €1 = C3, for all COLLECT-SETNEXT boxes c;.

One can see that this check preserves eager semantics as follows. It is
enough to guarantee that no cell is destructively modified before its NEXT
field is read by SCAN-NEXTS. This is because SCAN-NEXTS is the only series
operation that accesses this field. The only destructive primitive operation
is COLLECT-SETNEXT. The cells in the input series to such a box originate in
one of two types of places: in one case, the cell comes out of a MSNGLTN box,
in which case the cell is fresh and so cannot be found by the SCAN-NEXTS box
corresponding to the COLLECT-SETNEXT box; alternatively, the cell is produced
by the SCAN-NEXTS box itself, processed by some sequence of the primitives
COTRUNCATE.and CHOOSE, then passed to COLLECT-SETNEXT. In the latter case,
the cell must already have been seen by SCAN-NEXTS and will not be visited
again, since it was originally found by SCAN-NEXTS and the allowed primitives
can only delay a cell’s appearance at the input to COLLECT-SETNEXT, never
accelerate it.2 SCAN-NEXTS is implemented so that the current cell has its NEXT
pointer read and stored prior to the cell itself passing on to be processed,
so that altering the NEXT field of the current cell does not interact with
SCAN-NEXTS.

The set of allowed primitives can be extended based on this reasoning in
several ways. For example, any primitives that do not alter the store can
be added as long as the rest of the check is not changed. Addition of other
destructive operations would require significant thought, however.

The third condition simply guarantees that a given series subprogram
cannot have two or more COLLECT-SETNEXT boxes destructively modifying

?This is true as long as the input cons structure to SCAN-NEXTS is not circular. If it is
circular, the eager interpretation is undefined, so I assume it does not matter whether the
behavior is preserved.

273

series of cells possibly containing some of the same members. It may be
possible to relax this as well, if other checking is done.

F.2 A More General Approach

Even though I believe it is possible to express many useful implementations
in terms of a relatively limited set of series primitives, in which case a simple
syntactic check is both feasible and desirable, it may nevertheless be neces-
sary in the future to allow more liberal sets of series primitives, ones for which
there is no simple syntactic check to guarantee eager semantics preservation.
All is not lost in that case, as IBR and IEBR can be reimplemented as follows
to handle the “lazy” semantics of fully general destructive series expressions.

Inv-Screen’s only change is that when executing a test case it must
obey “lazy” semantics with respect to series values, in a manner consistent
with Waters’s definition. This is conceptually simple to incorporate into
the program evaluator, since it amounts to little more than adding a call to
Waters’s macro package.

IEBR need not be changed at all (except insofar as Inv-Screen must be
changed as just discussed); the input proofs need only be different. Instead
of proving the specification of a program using eager semantics (as currently
reflected in the legality conditions of :PROGRAM-STRUCTURE nodes), prove it
using lazy semantics. This would presumably require changing the form
and legality conditions of :PROGRAM-STRUCTURE nodes, as well as altering the
underlying logical domain theory to reflect lazy semantics.

Since lazy semantics is more complex and less intuitive than eager®, it may
be more desirable for a proof to assume eager semantics, but also incorporate
a subproof showing that the program actually obeys eager semantics. Of
course, Inv-Screen would still need to implement lazy semantics in program
evaluation.

Compile-time certifiers must, of course, take into account the semantic
interpretations of series objects and operations in checking redistributions.
I envision that the typical way of using series will be to reason in terms

3Programs obeying lazy operational semantics must be thought of operationally—in
terms of which series elements are generated and used when—whereas programs obeying
eager semantics can be viewed simply as composed mathematical functions.

274

of eager semantics;* the system then must only avoid making changes to
the program that cause it to violate eager semantics. (This is as opposed
to frequently writing programs whose behavior depends on lazy semantics.)
This will involve somewhat more complexity in screening (as outlined above),
but the only “lazy” reasoning required of the compile-time certifier will be
showing that the program still obeys eager semantics. This would appear
to be a smaller change to the certifier than extending it to handle arbitrary
reasoning in the more complicated lazy semantics.

4... except possibly with respect to input/output behavior which may be best thought

of operationally.

275

