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ABSTRACT

This thesis addresses the problem of how to detect boundaries on the basis of
motion information alone, and its solution is performed in two stages: (i) the
local estimation of motion discontinuities and the computation of the visual
flow field; (ii) the extraction of complete boundaries belonging to differently
moving objects. For the first stage, three new methods are presented that can
independently estimate motion boundaries: the Bimodality Tests, the
Bi-distribution Test, and the Dynamic Occlusion Method. These methods can
estimate motion boundaries in a scene containing several moving objects,
without prior knowledge of their shapes or motions, and they require only
local computations. The motion boundary estimators have been
implemented on the Connection Machine, a large parallel network of simple,
locally interconnected processors. Further, it is also shown that the visual
flow field can be locally estimated as a by-product of the early estimation of
motion boundaries, and a mathematical formulation is provided to show
that the proposed computation of visual motion is well-posed. The second
stage consists of applying and modifying the Structural Saliency Method by
Sha'ashua & Ullman to extract complete and unique boundaries from the
output of the first stage, which is often broadly defined and can contain gaps.
Results are presented that show that the methods can successfully segment
complex dynamic images composed of random-dot patterns or natural
textures. It is also shown how the methods can be used in stereopsis and
surface reconstruction.
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Master's Thesis by Anselm Spoerri VISUAL SYNOPSIS

The Early Detection of Motion Boundaries

The reader may perceive the outline of a
dalmation on its morning walk, but most likely
she or he will experience some difficulty because
of the absence of distinct intensity edges along
the dalmation's outline.

If, however, the reader were to see a motion
sequence of the dalmation then she or he would
immediately perceive its outline, even though the
intensity information in the individual frames is
ambiguous.

This thesis addresses the problem of how the
outline of the dalmation, for example, can be
computed based on motion information alone
and without there being a sharp change in
intensity along its outline.
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* Problem Statement

How to detect and group boundaries based on motion information alone and how to
estimate visual motion early on ?

* What can be computed early on ? > Potential displacements

Observation & Assumption

There is a great deal of ambiguity concerning the correct match, regardless of whether intensities or edge-tokens are
used as matching primitives to compute the potential displacements. Intensity values remain roughly constant at
corresponding points in subsequent frames, and we use a Gaussian matching function, which depends on the difference

in intensity at the two points which define a potential displacement.
/ the correct displacement

Iso-intensity curve in next frame with value I(x, y) and . > apotential displacement
points along it receive highest value by Gaussian ="
&y matching function. -

* How to deal with the ambiguity of the potential displacements ? > Use the fact that the
potential displacements are unimodally distributed inside an object.

Observation & Assumption

The image flow field can be approximated as locally constant. Hence, neighboring points will have a potential
displacement in common and their potential displacements will cluster around a single point in a local
two-dimensional histogram that collects the votes for the different possible motions.

A
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* How to detect motion boundaries ? --> Look for bimodal distributions of the potential displacements

Observation

The potential displacements of points within a circle, whose center is in the vicinity of a motion boundary, will cluster
around two different points in a local two-dimensional histogram that collects the votes for the different possible
motions.
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Local
histograms
computed at
(x1, y0),

(x2, y0),

(x3, y0),
showinga 1-D
slice through
2-D histogram.
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A motion boundary will cause the local histograms to be bimodal.

* How to capture the occurring bimodality ?

Propose five measures that are sensitive to a motion boundary. The left column shows how they i

are defined and the right column shows their value along a scanline in a
random-dot image containing a translating square.

Peak-ratio
Ratio of the height of
the second highest and
of the highest peak in a
local histogram.

Signal-Noise-ratio
Ratio of the votes for the
highest peak & its neighbors
and of the votes for the
remaining displacements.

THI T

Local-Support-ratio
Ratio of the highest peak and
the area of the circular
histogram support.

Chi-Square

Measures how well a
Gaussian distribution can be
fitted to a local histogram.

Kolmogorov-Smirnov
Measures the probability that two
histograms have been created by
the same population of motions.
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The proposed measures have a global extremum at a motion boundary.

i

Kolmogorov-Smimov

.
-

e How to infer motion boundaries ?

The rows show the locally estimated boundaries for the case of a complex dynamic
random-dot pattern that contains a rotating circle and rectangle and a translating
square. The following three approaches can be used to infer the motion boundaries.

chi-square

signal-noise-ratio

local-support-ratio

Thresholding

For the different measures a
threshold can be derived, above/
below which a motion boundary
can be asserted with high certainty.

Detecting Global Extrema

A boundary can be inferred where
the first derivative of a measure
crosses zero, its second derivative is
of the appropriate sign, and its
value is below or above a
conservative threshold, which has
been chosen so that any extremum below or above it can be safely excluded.

Combing the Measures

The measures have in common that
they have a global extremum at a
motion boundary, and that their
local extrema anywhere else in the
image are weakly correlated. Hence,
their thickened extrema contours

)

can be superimposed, and a motion boundary is inferred where they all intersect (thickened by 1, 2 or 3 pixels
respectively). This approach has the attractive feature that it does not require the setting of a threshold.

* How to locally estimate the visual flow field early on ?

The highest peak in a local histogram corresponds to the displacement with the most local support. Hence,
this displacement represents an estimate of the image flow and the peak-ratio reflects how good the estimate is.
The computation is well-posed and consistent with human psychophysics.
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The estimated motion boundaries can be broadly defined and can contain gaps.

* How to extract complete and unique motion boundaries ?
How to separate contour segments belonging to differently moving objects ?

Observation .
Object boundaries are generally smooth and the flow vectors along a boundary vary smoothly.

Structural Saliency Method

Extracts boundaries and closes gaps by employing a simple iterative scheme that uses an optimization
approach to measure the saliency of curves of line segments in terms of their smoothness and length.

A line segment consisting of three points is created only if the estimated flow vectors associated with its
points do not differ by more than two units in order to prevent curves of being formed that wander across
boundaries. Each segment corresponds either to a corresponding asserted motion boundary segment or to
an empty area or gap, called a virtual segment.

e e

The optimization problem is formulated in terms of
maximizing Q(n) over all curves of length n starting from P.
The computation becomes linear in n if Q is an extensible
function. Hence, the most salient curve of length n at P will be
equal to the maxima over all segments leaving P and the
maximal curves of length (n-1) starting at the respective
end-points of these segments.

The saliency measure is associated with each segment and not
with the entire curve.

* How to extract a unique contour ?

If the area in which curves are allowed to form is broadly defined then there will be several contours
growing alongside each other. To extract the most salient curve, we have to first propagate the saliency
value of the most salient segment along the curve that contributed to its value. This is done iteraterively by
each segment maximizing over the value of its preferred neighbor and its own. Thus, the largest value will
be propagated along its curve. Finally, we perform a non-maximal suppression operation, where each
segment suppresses all its neighboring segments if their saliency value is less and if they have similar
motion estimates associated with them. Hence, the most salient contours belonging to differently moving
objects will remain alongside each other.

Input Output
Estimated motion Connected contours belonging to
boundaries differently moving objects

C—>
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Introduction

CHAPTER 1
INTRODUCTION

It is a major goal of vision to.infer the physical properties of the objects
present in a scene, such as their three-dimensional structure and motion
in space. An essential first step towards this goal is the segmentation of
the image into regions that are likely to correspond to different objects.

This early segmentation can be used to guide and substantially
facilitate the further processing of the image. Firstly, it provides the
boundary conditions required by many early vision modules, such as
optical flow, stereopsis, shape from shading, and surface reconstruction.
For example, many models for these processes assume that the visible
surfaces are generally smooth [14,15,17,19,28,40]. Without prior
knowledge of the boundaries, however, these computations tend to
impose the smoothness assumption across boundaries, leading to error in
the computed motion, stereo and 3-D shape [15,17,40]. Secondly,
boundaries are ideal for integrating information provided by the different
early vision modules [12]. Thirdly, the early detection of boundaries
provides the input to visual routines that establish higher-order shape
properties and spatial relations among entities in the image [44]. These
processes can focus the attention of higher-level modules on the edges of
interest in a scene and they can preferentially allocate processing
resources to these structures of interest. Fourthly, early segmentation
provides the critical input to recognition processes, since salient and
grouped edges greaﬂy reduce the combinatorial problem facing the
recognition methods, which often depend on the number of edge
primitives having to be examined.

Hence, a key problem of early vision is the detection of boundaries.
This problem, however, is difficult because the only information
available is a large array of intensity measurements. Likewise, detection
of boundaries from early 2-D or 3-D representations is difficult because
they are often sparse, noisy and inaccurate, especially in the vicinity of
object boundaries.

Why is it impor-
tant to detect
boundaries early
on?

¢ They provide the
boundary condi-
tions required by
the early vision
modules.

* Boundaries are
ideal for inte-
grating informa-
tion provided by
the different
early vision
modules.

* Boundaries pro-
vide the input to
visual routines
that establish
higher-order
shape properties.

¢ Salient and
grouped bound-
aries provide the
input to recogni-
tion processes
and reduce the
combinatorial
problem facing
them.
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What is the role of
motion informa-
tion and what are
its advantages?

* Motion can pro-
vide boundary
and shape infor-
mation in the ab-
sence of distinct
intensity edges

or other cues.

* Motion bound-
aries are sparser
than intensity
edges and are
primarily associ-
ated with object
and depth
boundaries.

+ Motion-based
segmentation
can be used for

figure-ground
separation.

‘What makes the
detection of
motion boundaries
difficult?

* Movement of
elements in an
image is not
given directly.

¢ Dilemma of
computation of
motion: To detect
boundaries by
applying existing
edge detectors to
the computed
image flow field
requires an al-
most error-free
flow field, buta
necessary condi-
tion to compute
such a flow fieid
is the knowledge
of the boundaries
prior to its com-
putation.

1.1 Problem Statement of the Thesis

Perceptual motion studies have shown, using random-dot displays, that
the human visual system is able to segment a scene into distinct objects
based on motion information alone [3,6,21]. Human observers are very
sensitive to relative movement (for review, see [30]), although it appears
that a large difference in direction and speed of motion may be required
to localize a boundary accurately [15].

This thesis addresses the problem of detecting boundaries on the basis
of motion information alone and it deals specifically with the following
questions :

* How to detect motion boundaries early on in a scene containing
several moving objects, without prior knowledge of their shapes
and motions ?

¢ How to decouple the estimation of motion boundaries from the
computation of a full image flow field ?

* How to integrate the pointwise output of the developed motion
boundary estimators with a process that can extract salient, com-
plete and unique contours ?

* How to separate contour segments belonging to differently mov-
ing objects and how to group together segments belonging to the
same object ?

1.2 The Advantages

Motion boundaries play four useful roles. First, motion can provide
boundary and shape information in the absence of distinct intensity edges
or cues from other sources of visual information. Second, motion
boundaries are sparser than intensity edges, and they are primarily
associated with object and depth boundaries rather than texture
markings, shadows or highlights [41]. Third, motion-based segmentation
offers additional information since in most cases the side of a motion
boundary corresponding to the occluding object can be identified [26].
Fourth, motion boundaries can be used to facilitate the computation of
the image flow field [15,17].
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1.3 The Difficulties

The fundamental problem that arises in the computation of motion and
its boundaries is that the movement of elements in an image is not given
directly. It has to be computed from more elementary measurements. All
we are given initially are the temporal changes of the intensity values at
each image point, which allow us only to compute the flow component
in the direction of the image gradient due to the aperture problem [23].

One possible solution to this problem is to compute the flow field and
its boundaries simultaneously, using for example a Markov Random
Field model and its line processes [13,18,24]. These time consuming
schemes would be greatly facilitated if the boundaries are either already
known or at least estimated. A more common approach is to compute the
image flow field first and then to detect motion boundaries. This
approach has several inherent difficulties which will be discussed now.

The methods for computing visual motion fall in two classes:
intensity-based and token-matching schemes. Intensity-based methods
have to integrate the local motion measurements due to the aperture
problem [23]. This integration problem is commonly solved by assuming
that the image flow field varies smoothly in the image [2,15,17,27,28]. This
constraint is valid everywhere except at object boundaries. Because of
this, considerable error will occur in the vicinity of object boundaries
[17,43]. A further problem is that the computed flow field is often noisy
and inaccurate due to error in the initial motion measurements. As a
consequence, edge detectors that locate sharp changes in the components
of the computed image flow field will detect many incorrect motion
boundaries [15].

Token-matching schemes have to solve the difficult correspondence
problem in order to.compute motion, and they usually produce a sparse
flow field [42]. Such a flow field needs to be smoothly interpolated so that
edge detectors can be applied to locate the motion boundaries. Without
the knowledge of the boundaries, however, the interpolation scheme will
cause the motion boundaries to be smoothed over to such a degree that it
may become impossible to recover them, or the ones that can still be
detected by the edge operator will be poorly localized.

Aperture Problem
* A moving edge,
seen through a

circular aper-
ture, seems to be
moving normal
to itself, while
the transverse
component of
velocity can not
be perceived.

Correspondence

Problem

 There is a great
deal of ambiguity
when trying to
find the unique
match of a token.

¢ Intensity-based
methods solve
the aperture
problem by as-
suming a
smoothly vary-
ing image flow
field to be able to
integrate the
dense local
motion mea-
surements.

¢ Token-matching
methods have to
solve the corres-
pondence prob-
lemand assume
smoothness to
interpolate
between the
sparse motion
estimates.
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How are we going

to solve it ?

¢ In two stages:
(i) local estima-
tion of motion
discontinuities
(ii) extraction of
complete bound-
aries by modify-
ing the Struc-
tural Saliency
Method by
Sha'ashua &
Ullman.

® Guided by the
Constant Inten-
sity and the Local
Translation
assumptions,
which are re-
laxed by using a
Gaussian match-
ing function and
a Gaussian
spatial support
function respec-
tively.

o Construct local
histograms of
the easily com-
putable potential
displacements,
which will be bi-

dis-
tributed at a mo-
tion

To summarize, both classes of methods for computing visual motion
do not provide an image flow field from which boundaries can be
detected easily and reliably. The computation of motion and the detection
of motion boundaries is faced with a dilemma: in order to detect
boundaries with existing edge detectors, an almost error free and densely
defined image flow field is required, but a necessary condition for
computing such a flow field is the knowledge of the boundaries prior to
its computation.

Thus, it is necessary and desirable to be able to decouple the detection
of motion boundaries from the computation of the image flow field. But
what information other than the image flow field can be used to detect
motion boundaries? Which quantities can be easily computed at such an
early stage to compute a useful estimate of the motion boundaries ?

1.4 Detecting Motion Boundaries Early On

The early detection of motion boundaries can be performed in two stages:
(i) the local estimation of the motion discontinuities; (ii) the extraction of
complete boundaries belonging to differently moving objects.

1.4.1 The First Stage

For the first stage, three new methods are developed that can perform the
local estimation of motion boundaries: the Bimodality Tests, the Bi-
distribution Test and the Dynamic Occlusion Method. It is also shown
how visual motion can be locally estimated as a by-product of the early
estimation of motion boundaries.

The first two methods make use of the fact that at a motion boundary
certain quantities, which can be easily computed early on, will cluster
around two different points in a local histogram. The quantities in
question are (i) the potential displacements of an image point, and (ii) the
flow component measured in the direction of the intensity gradient. The
local histograms are constructed at every point using a circular
neighborhood whose radius will range between five and eight pixels.
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If a local histogram is computed in the vicinity of a motion boundary
then the resulting histogram of these quantities will be bimodal, where
the two peaks are of roughly equal strength. Hence, the Bimodality Tests
detect motion boundaries by computing the degree of bimodality present
in the local histograms. The Bi-distribution Test employs a non-
parametric statistical test to detect boundaries, using the fact that the
populations of motions are different on the two sides of a boundary. The
Dynamic Occlusion Method is based on the fact that intensity edges of
opposite contrast, called thin-bars, will be created or destroyed in the
vicinity of a motion boundary. A method is developed that can locally
compute the appearance and disappearance of thin-bars in a way that is
sufficient to estimate motion boundaries, without having to solve a
global and difficult correspondence problem.

The computation of the visual flow field and the detection of its
boundaries can be performed in parallel, since the highest peak in a local
histogram of the potential displacements corresponds to the motion with
the most local support. Hence, this displacement represents an estimate
of the image flow. The measures that are sensitive to degree of bimodality
occurring in the local histograms will reflect how good the estimate is. A
mathematical formulation is provided to show that the proposed
computation of visual motion is well-posed, and it is demonstrated that
the developed method is similar to the local voting scheme proposed by
Biilthoff, Little & Poggio [7]. The approach of using local neighborhoods
to find the displacement with the most local support is consistent with
human psychophysics, since it exhibits several of the same "illusions"
that humans perceive.

1.4.2 The Second Stage

The pointwise output of the motion boundary estimators is often broadly
localized and it can contain gaps. The second stage consists of applying
and modifying the Structural Saliency Method developed by Sha'ashua &
Ullman [37,45] to extract complete and unique boundaries from the
pointwise output of the first stage. Boundary segments belonging to
differently moving objects are separated by using the motion estimates
provided by the first stage to constrain which edge segments can be
formed.
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The Structural Saliency Method employs a simple iterative network
and uses an optimization approach to produce a "saliency map", which
emphasizes salient locations in the image. The saliency of curves is
measured in terms of their smoothness and length, which is often
sufficient to perform figure-ground separation. The main properties of
the network are: (i) the computations are simple and local, (ii) globally
salient structures emerge with a small number of iterations, (iii) there is
little dependence on the complexity of the image, (iv) contours are
smoothed, gaps are filled in and linking information between edge
segments is provided.

The optimization problem is formulated in terms of maximizing a
structural saliency measure {(n) over all curves of length n starting from
P. The computation is linear in n because 2 has been constructed to be an
extensible function. Hence, the most salient curve of length n at P will be
equal to the maxima over all segments leaving P and the maximal curves
of length (n-1) starting at the respective end-points of these segments.

1.5 Organization of the Thesis

Chapter 2 discusses previous work on the detection of motion
boundaries. Chapter 3 presents three new methods that can locally
estimate motion boundaries early on: the Bimodality Tests, the Bi-
distribution Test and the Dynamic Occlusion Method. It is shown how to
infer a motion boundary from the computed measures and how the
appropriate thresholds can be derived. Chapter 4 shows how visual
motion can be locally estimated as a by-product of the early estimation of
motion boundaries. A mathematical formulation is provided for the
proposed computation of visual motion and it is demonstrated that the
developed method is well-posed. Chapter 5 introduces the Structural
Saliency Method by Sha'ashua & Ullman and shows how it can be
modified to extract complete and unique boundaries from the pointwise
output of the motion boundary estimators, whose output is often broadly
localized and can contain gaps. Chapter 6 shows the results of applying
the methods to image sequences composed of random-dot or natural
textures. Chapter 7 shows how the methods can be applied in stereopsis
and surface reconstruction. Chapter 8 provides a summary and
conclusion.
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CHAPTER 2

PrREVIOUS WORK

2.1 Introduction

The previous work on the detection of motion boundaries can be
categorized by making the following two distinctions. First, there are at
least two ways to describe what takes place at an object boundary in the
presence of motion. One is that regions of a more distant object will, in
general, either appear or disappear from view over time at an object
boundary. The other is to observe that if two adjacent surfaces undergo
different motions or are separated in depth then they will give rise to a
motion discontinuity along their boundary. The second distinction can be
further differentiated based on the stage at which the detection of motion
boundaries is performed since it can be performed either prior to, simul-
taneously with or following the computation of the image flow field.

2.2 Detecting Discontinuities Prior to the Computation of the
Flow Field

Reichardt et al. [34] propose a method, working on the figure-ground
discrimination of the house-fly, where direction selective movement
detectors inhibit flicker detectors, when the same movement appears in
the center and surround of the motion detectors. Hence, flicker detectors
with significant activity indicate the presence of motion boundaries.

Marr & Ullman [23] and Hildreth [15] use the flow component in the
direction of the intensity gradient, also called the normal flow
component, to detect motion boundaries. They make use of the fact that if
two adjacent objects undergo different motions v; and v,, then the
normal flow compbnents, whose orientations lie between the directions
of (v; + 90°) and (v, + 90°) or (v; - 90°) and (v, - 90°), will change in sign
across the boundary (see Figure 3.2). Therefore, a change in the sign of
normal flow components with appropriate and roughly equal orientation
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signals a motion boundary. This method is limited by the fact that the
number of flow components, whose orientations lie between the direc-
tions of (v; + 90°) and (v, + 90°) or (v, - 90°) and (v, - 90°), will decrease as
an image becomes less textured and the angle between v; and v, becomes
smaller. Furthermore, the neighborhood, over which measurements are
collected, will have to be large so that there will be a sufficient number of
normal flow components, whose signs can be compared.

2.3 Detecting Discontinuities After the Computation of the Flow
Field

Nakayama et al. [29] propose to detect boundaries by using a center-
surround operator that signals image flow differences between the center
and surround, but their method has not been implemented and tested.
Potter [31] employs region growing techniques to group features of similar
velocity, assuming that the image flow field is due to translation.
Clocksin [9] shows that object and depth boundaries give rise to
discontinuities in the magnitude of flow created by an observer
translating in a static environment.

For the more general case of unconstrained motion, Thompson et al.
[41] show that object boundaries give rise to discontinuities in the image
flow field. In principle, these sharp changes could be detected as zero-
crossings in the Laplacian of the components of the flow field. In a
preceding paper, Thompson et al. [1982] computed the image flow field
using a token-matching method. Because the resulting flow field was
sparse, they had to smoothly interpolate between the feature points at
which the flow field was defined. Without the knowledge of the location
of the object boundaries, their interpolation scheme smoothed over the
boundaries. As a result, the motion boundaries that could still be detected
by the Laplacian operator were poorly localized.

Schunck [35] computes the image flow field using a motion constraint
line clustering algorithm. He assumes that the flow field is due to the
translation of objects in the scene under orthographic projection. Object
boundaries are detected by using an edge detector that locates the sharp
changes in the components of the flow field. Schunck utilizes an iterative
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procedure that interleaves the application of an edge detector with a
smoothing of the computed flow field, in order to reduce the noise that is
causing the erroneously detected boundaries.

Adiv [1] first partitions a flow field into connected segments, where
each segment is consistent with a rigid motion of a roughly planar
surface. A global, multipass Hough transform is used to determine the
parameters describing the motion and the plane. The segments are then
grouped under the hypothesis that they are created by a single, rigidly
moving object, by searching for the motion parameters that are
compatible with all the segments in the corresponding group.

Terzopoulos [40] proposes to detect discontinuities in sparse surface
representations by marking locations where the thin plate used to
interpolate between the sparse data points has an inflection point and its
gradient is above some threshold. To overcome the shortcoming that the
smoothing thin plate tends to obscure boundaries, a cost is also
introduced for the placement of a boundary, leading to a non-convex cost
functional that has to be minimized.

2.4 Detecting Dynamic Occlusion After the Computation of the
Flow Field

An example of the approach that also detects boundaries after the flow
field computation, but uses the fact that dynamic occlusion occurs at
object boundaries, is the work of Mutch & Thompson [26]. They use a
relaxation technique to compute the flow field. Areas in the image with a
high percentage of features that do not have a match in the previous or
subsequent frame are identified as regions that have appeared or
disappeared, respectively.

2.5 The Simultaneous Computation of the Flow Field and its
Discontinuities

Wohn & Waxman [47] suggest a scheme where the motion segmentation
is performed by detecting "boundaries of analyticity", that is where an
approximation of the local flow field by second order polynomials breaks
down. The boundaries are located within the process that models the
local flow field.
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Hutchinson, Koch, Luo & Mead [18] and Gamble & Poggio [12] propose
that binary line processes, first introduced in the Markov Random Field
method developed by [13], can signal boundaries. At locations where such
a line process is set, an edge is postulated ensuring that the smoothness
assumption is not imposed across them. The computation of the image
flow field and the activation of the binary.line processes is then
performed so as to minimize a non-convex energy functional.

Hutchinson et al. and Gamble et al. restrict the location of motion
boundaries to coincide with the location of intensity edges. This strategy
effectively prevents motion boundaries from forming at locations where
no intensity edges exist, unless strongly suggested by motion data.
Conversely, however, intensity edges by themselves will not induce the
formation of discontinuities in the absence of sharp changes in motion.

Hutchinson et al. introduce the following procedure to cope with the
different velocity gradients that are generally present in a scene. The
formation of lines is initially strongly penalized, encouraging a smooth
image flow field everywhere except at very steep velocity gradients. A
smaller price has to be paid subsequently, and the image flow field will
break at smaller flow gradients. The final state of the network is
independent of the limiting flow gradient, and their method has been
successfully applied to motion sequences.
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CHAPTER 3

THE EARLY ESTIMATION OF MOTION
BOUNDARIES

3.1 Introduction

In this chapter, we will describe three new methods that can estimate
motion boundaries at an early stage in the processing of visual informa-
tion, using only motion and no intensity boundary information. The
methods make use of the following two facts. First, object boundaries give
rise to discontinuities in the flow field, i.e., the velocities on the two sides
of a boundary cluster around two different points in a velocity histogram.
Second, dynamic occlusion occurs at an object boundary in the presence
of motion, and therefore spatial relationships between simple image
features change most dramatically in the vicinity of motion boundaries.

This chapter consists of four parts. First, we will describe the
Bimodality Tests that estimate motion boundaries by computing the
degree of bimodality present in the local histograms of the potential
displacements or normal flow components. Second, we will introduce an
application of the Kolmogorov-Smirnov Test in the Bi-distribution Test,
that detects boundaries by measuring the probability that two histograms
have been created by the same population of motions. Third, we will
discuss how to infer the presence of a motion boundary from the
measures computed by the Bimodality Tests and the Bi-distribution Test.
Fourth, we will describe the Dynamic Occlusion Method that makes use
of the fact that thin-bars are created or destroyed at a motion boundary.

Before describing the methods in detail, we will discuss the matching
primitives used, and why either the local histograms of the potential dis-
placements or the normal flow components contain sufficient informa-
tion to estimate motion boundaries. We will also outline the constraints
that can be used to filter the local histograms and how to handle images
that contain only little texture and are sensitive to the effects of noise.

Observation

* Object and
depth boundaries
give rise to
discontinuities in
the visual flow
field and cause
dynamic
occlusion.
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Flexible in terms
of the matching
ves used:

* Smoothed inten-
sity values are
densely defined
and we use a
Gaussian match-
ing function to
account for
occurring
changes in
intensi
between frames.

¢ Edge-tokens are
more robust, but
they are sparse
and they can be
non-uniformly

3.1.1 Matching Primitives

The Bimodality Tests and the Bi-distribution Test are flexible in terms of
the matching primitives used, since either intensities, zero-crossings or
other edge features can be used.

Intensity values have the advantage that the potential displacements
can be computed at almost every point. Hence, the density of matching
primitives will be uniform across a boundary, and the methods will be
more robust, because there will be more contributors to the local
histograms. The intensity values are also smoothed by convolving them
with a Gaussian filter to increase their reliability.

We are, however, implicitly assuming that the intensity values at
corresponding points do not change greatly, although they are sensitive
to noise and, more importantly, to changes in illumination. These effects
will be minor as long as there is sufficient texture in the image. The prob-
lem will be more serious in parts of the image where intensity changes
slowly. To account for these gradual changes in intensity, we use a
Gaussian matching function, which depends on the difference in
intensity at the two points which define a particular displacement, to
weigh the possible displacements of a point. The smaller the difference in
intensity, the greater the weight that is assigned to a particular
displacement. The spread of the Gaussian matching function can be
chosen to reflect the estimated noise in the intensity measurements.

Using zero-crossings or other edge features as matching primitives has
the advantage that they are more likely to be tied to a physical event in
the scene, and are therefore more stable with respect to noise and changes
in illuminationl. These primitives, however, have the disadvantage that
they tend to be sparse, and their density can be non-uniform across the
image. In particular, the less textured the image, the greater the size of the
histogram neighborhood needs to be for there to be sufficient contributors
to the local histograms. This increase in the size of the histogram
neighborhood, however, can decrease the robustness of the developed

1 1t has been noted that methods superficially so different as edge-based and intensity-based flow
field computations give very similar results and are to a certain degree equivalent [7].
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methods because it increases the likelihood that the image flow field
changes too rapidly over the spatial support used to compute the
histograms.

3.1.2 Input Representation

The input representation used by the Bimodality Tests and the Bi-
distribution Test is a local histogram constructed at each image point. The
matching primitives that lie within a circular neighborhood will
contribute either the match scores for all the possible displacements or
their normal flow component to the local histogram. The radius of the
spatial support used to compute the histograms will typically range
between five and eight pixels.

The local histograms of the potential displacements contain sufficient
information to infer the presence of motion boundaries, because, in a
region that is translating locally, all the matching primitives will have
one potential displacement in common, namely, the one which corre-
sponds to the translation of the region. Thus, there will be a single strong
peak at the location in the histogram that corresponds to the local transla-
tion2. In the vicinity of an object boundary, the local histogram will have
two peaks of roughly equal height because the matching primitives in
one half of the histogram neighborhood will have one displacement in
common, whereas the other half will have a different displacement in
common. Hence, motion boundaries give rise to local histograms that
have a bimodal distribution (see Figure 3.1).

As previously noted, the local motion measurements provide only
the normal flow components. These components, however, provide
sufficient information to detect motion boundaries for the following
reason. Normal flow components that have the same orientation will
have both the same sign and roughly equal magnitude in a region that is
locally translating. If, however, two adjacent objects move differently
then the normal flow components of most orientations will have differ-
ent magnitudes across the boundary (see Figure 3.2).

2 provided the motion primitives are not arranged in a regular pattern, as would be the case for
an image composed of stripes, causing the resulting histogram to contain ridges.

¢ The potential
displacements of
points in the
vicinity of a
motion boundary
will cluster
around two
different points
in a local
histogram,
which collects
the votes for the
different possible
motions.
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Figure 3.1 The Information Provided by the Potential Displacements.

Shows a 1-D slice through the two-dimensional local histograms that collect the
potential displacements of the points that lie within a circle centered at the locations (x,,
¥o), (x2, yo), (X3, Yo), respectively. The solid vectors represent the correct local
displacements and the dashed vectors represent the other, but spurious potential
displacements.

Figure 3.2 The Information Provided by the Normal Flow Vectors.

(a) and (b) show for which orientations of the normal flow vector N the sign of its
component will be positive or negative with respect to v; and v,, respectively.
(c) Combines results of (a) and (b) and the textured areas show for which orientations the
component of the normal flow vector N will be of opposite sign across a motion boundary.
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Hence, a histogram of the normal flow components that lie in the
same narrow orientation range will be bimodal at a motion boundary.
The distance between the two modes will be a function of the angle «
between the normal flow vector N and the bisector of v; and v, as well as
the resolution of the histogram. The smaller the angle «, the greater the
distance between the two peaks will be. The resolution of the histograms
can be chosen arbitrarily, but there is the following trade-off: the coarser
the resolution, the more robust the histogfams. But, the number of the
orientation ranges that will display bimodality at a motion boundary will
be less, and the flow difference across a boundary will have to be larger, in
order for there to be two distinct modes in the histogram. We will choose
the resolution to be equal to the one used for the potential displacements.
This should ensure that the histograms will be robust and that there will
be a sufficient number of disjoint orientation ranges that are sensitive to
motion boundaries. We will detect motion boundaries by computing the
local histograms for a number of disjoint orientation ranges and
analyzing them, using the methods that will be described below.

The use of the normal flow components to segment a scene extends
the work by Marr & Ullman [23] and by Hildreth [15] in two ways. First, it
uses the magnitude as well as the sign of the components to detect
motion boundaries. Second, the flow components at any point where the
matching primitives of our choice are defined will contribute to the local
histogram, instead of just the normal flow components that can be
measured along contours.

The information provided by the measured normal flow vector N
could also be used in another way to detect motion boundaries. The
normal flow vector at a point P defines a line 4 on which its
corresponding point P’ in the next frame has to lie, (see Figure 3.3).
Hence, in a region that is locally translating, all lines defined by the
normal flow components will intersect roughly at the location in a
velocity histogram that corresponds to the local translation of the region.
At points in the vicinity of a motion boundary, the local histogram will
have two peaks of roughly equal height, because the lines defined by the
normal flow components in one half of the neighborhood will intersect
at one particular point, whereas the ones from the other half will
intersect at a different point.
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Matching
Constraints
Coqeepondxn. ng
motion primitives

* Same contrast

¢ Match lies on
the line defined
by normal flow
component.

» Information
measured at
different scales
can be combined.

3.1.3 Ways to Filter the Histograms

In this part, we will describe the constraints that can be used to remove
some of the incorrect potential displacements of a motion primitive. This
filtering reduces the noise in the local histograms and it sharpens the
peaks.

The first constraint is that corresponding matching primitives must
have the same sign of contrast, i.e. the scalar product of their intensity
gradients must be positive. Similarly, the angle between the intensity
gradients at corresponding primitives should be within a certain bound
for small rotations. The second constraint is that the normal flow vector
N at a point P defines a line 4 on which the corresponding point in the
subsequent frame has to lie. Hence, a rectangular window can be specified
within which the corresponding motion primitive must lie, where the
dimensions of this window are chosen to account for errors in the
measured flow components. This constraint greatly reduces the number
of potential displacements (see Figure 3.3). The third constraint is that a
match must lie in the intersection of the bands defined by the normal
flow components, which have been measured at different scales.

Figure 3.3 The Normal Flow Constraint.

The normal flow component N at a point P defines a line 4 on which the corresponding
point in the subsequent frame has to lie. A rectangular window can be specified within
which the corresponding motion primitive must lie, and its dimensions are chosen to
account for measurement errors and the maximal expected displacement.
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3.1.4 Ways to Handle Images with Sparse Texture

Motion sequences that have sparse texture are very sensitive to the effects
of noise. Hence, the intensity values at corresponding points will most
likely not be the same, and the potential displacements that have been
computed using the Gaussian matching function, which favors constant
intensity, will assign the highest weight to the wrong displacements.

We try to solve this problem by, firstly, weighing the contributions to
the local histograms based on the magnitude of their intensity gradient or
by allowing points to contribute only if their gradient is above a certain
threshold. This places our scheme midway between area- and edge-based
approaches. Edge locations are favored because the gradient is high, but
other places contribute as well. Secondly, we compute the average of the
gradient over the neighborhood used to compute the histograms and we
suppress the output of the methods that estimate motion boundaries if
the average is not above a chosen threshold.

¢ Use magnitude
of intensity
gradient or its
local average to
suppress false
alarms in regions
with little
texture.
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e The Ratio
Measures have a
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at a motion
boundary, and
their local
extrema
anywhere else
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correlated.
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3.2 The Bimodality Tests

We will now present two methods that locate motion boundaries by
detecting the resulting bimodality in the local histograms computed at a
boundary. In the first method, three measures are computed that are
sensitive to the degree of bimodality in the histograms. We will discuss
the assumption of local translation that underlies these three measures,
and introduce a Gaussian spatial support function as a way to relax this
assumption. The second method detects bimodality by applying the chi-
square test. In this discussion, we will consider the case where the
potential displacements are the input to the local histograms, but what
will be said applies equally well to the normal flow components.

3.2.1 The Ratio Measures

This method consists of three measures that each capture and monitor a
different characteristic of a motion boundary. The local histograms must
contain two modes of roughly equal height at a boundary, assuming local
translation. This is captured by the peak-ratio. At a motion boundary the
votes will not just cluster around the correct displacement, the "signal",
but will be more spread out due the votes from the other side of the
boundary. This is measured by the signal-noise-ratio. Finally, the
displacement receiving the most votes should receive minimal local
support at a motion boundary, which is measured by the local-support-
ratio. These three ratios all have a global extremum at a motion
boundary, and their local extrema anywhere else in the image are weakly
correlated with each other.

The Peak-Ratio measures the degree of bimodality by comparing the
heights of the two highest peaks in a local histogram. It is equal to the
ratio of the height of the second highest and of the height of the highest
peak. Hence, the height of the peaks is used to represent the strength of
the peaks. This is a reasonable approximation to make as long as the local
flow field can be assumed to be constant over the spatial support used to
compute the local histogram.

When we compute the two highest peaks, we require that their
respective neighboring displacements received strictly less votes. This
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ensures that the two highest peaks are separated by at least two
displacement units and furthermore, that no motion boundaries are
asserted within a moving object whose image flow field is composed of
patches of uniform motion that differ by one displacement unit.

The peak-ratio will be small in a region that is locally translating. This
is because there will be one strong peak at the location corresponding to
the local translation, while the second highest peak, which will be due to
the incorrect potential displacements, will be small in comparison. At a
boundary the two highest peaks will be of roughly equal height, because
the matching primitives in one half of the spatial support will have one
particular displacement in common, whereas the matching primitives in
the other half will have another displacement in common that receives
the highest matching score. Thus, the peak-ratio will generally have a
global maximum close to 1.0 at a motion boundary (see Figure 3.4) .

The Signal-Noise-Ratio is equal to the ratio of the number of votes for
the highest peak and its neighbors and of the number of votes for the re-
maining displacements in the histogram. In a region that is locally trans-
lating, all the points in the histogram, other than the one corresponding
to the local translation, will receive some votes due to the incorrect
potential displacements. We will refer to these votes as the noise activity
in the histogram. The signal-noise-ratio will have a global minima at a
motion boundary because the heights of the highest peak and its neigh-
bors, the "signal", will decrease, whereas the noise activity will increase
due to the votes from the other side of the boundary (see Figure 3.4).

The Local-Support-Ratio measures how many of the contributors to
the local histogram have supported the displacement with the most
votes. This measure is equal to the ratio of the height of the highest peak
and the maximal possible local support (which is equal to the area of the
neighborhood used to compute the histogram, provided that all points
are weighted equally, see also section 3.2.2). The local-support-ratio will be
close to 1.0 in a region that is locally translating because almost all the
points will have a potential displacement that receives the highest
matching score and is equal to the local translation. It will have a global
minimum below 0.5 at a boundary, because at least half of the matching
primitives will not have a potential displacement that votes most
strongly for the highest peak (see Figure 3.4).

HE
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Assumption

» Visual flow field
is locally
constant over the
spatial support
used to compute
the local

histograms.

» The smaller the
size of the his-
togram neigh-
borhood, the
steeper the
magnitude of the
flow gradient
can be, but the
less robust the
three measures,
because there
will be fewer
contributors to
the local
histogram.

¢ Relax Local
Translation
Assumption by
using Gaussian
spatial support
function that
weighs points
less that are
farther away
from the point at
which the
histogram is
computed, since
points farther
apart are less
likely to move
equallyina
smoothly vary-
ing flow field.

3.2.2 The Local Translation Assumption and Ways to Relax it

The assumption that underlies the computation of the above three
measures is that the visual flow field is locally constant over the spatial
support used to compute the local histograms. This assumption is strictly
only true for the projected flow field of a 3D planar surface patch,
translating parallel to the image plane under orthographic projection. It
is, however, a satisfactory local assumption, and it is sufficient to just use
the height of the peaks to compute the degree of bimodality present in the
histograms. It is also assumed that the matching primitives are not
arranged in a regular pattern; as would be the case for an image composed
of stripes, which would cause the resulting histogram to contain ridges.

The size of the histogram neighborhood imposes an upper limit on
the magnitude of the flow field gradient that can be tolerated, so that the
local translation assumption still holds. In general, there is also the
following trade-off between the size of the histogram neighborhood, how
much the flow field can change locally and the robustness of the
histogram method: the smaller the size of the histogram neighborhood,
the steeper the slope of the flow gradient can be. The smaller the
neighborhood, the less robust the three measures, because there will be
fewer contributors to the local histogram. We employ a circular
neighborhood for the construction of the histograms, with a radius
between five and eight pixels. This range of radii has proved sufficient to
estimate motion boundaries reliably.

There are at least three ways to handle the situation where the
assumption of local translation should be relaxed and the local flow field
changes too quickly over the spatial support used to construct the local
histograms. First, we can use a Gaussian spatial support function that
weighs contributors to a local histogram less that are farther away from
the point at which the histogram is computed. This will account for the
fact that the flow vectors at points farther apart are less likely to be equal
in a smoothly varying flow field. It will also sharpen the response of the
ratio measures, as is shown in section 3.4.1.1. Second, the flow field can be
"slowed down" by using a coarser resolution for the histogram. Third, a
measure of the broadness of the peaks could be computed and
incorporated in the analysis.
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3.2.3 A Statistical Test

Due to noisy intensity measurements, the potential displacements of
many of the matching primitives receiving the highest weight may not
contain the correct displacement. This could cause the peaks to be broadly
or ill-defined. It could also have the effect that the second highest peak is
just a major sub-peak of the highest peak. These concerns lead us to
consider the following statistical method.

The Chi-Square Test will measure how well a Gaussian distribution
can be fitted to a local histogram. Motion boundaries cause the
distribution in the local histograms to be bimodal, whereas anywhere else
the histograms will be unimodal. Due to noise and errors in the intensity
measurements, the peaks of the histograms might not be well defined,
but their unimodal or bimodal nature will be preserved. We estimate the
parameters of the Gaussian distribution by requiring that it be centered at
and pass through the highest peak of the local histogram. Hence, the
error of trying to fit a Gaussian distribution to the histogram will be
maximal in the vicinity of a boundary (see Figure 3.4).

3.3 The Bi-distribution Test

The input to this method is also a local histogram of the potential
displacements or normal flow components. The difference, however, is
that it attempts to detect motion boundaries by comparing histograms
computed at different image points, rather than by analyzing the
individual histograms.

3.3.1 A Non-Parametric Statistical Test

The Kolmogorov-Smirnov Test measures the probability that two
local histograms have been created by the same population of motions. It
does this by computing the maximal absolute difference between the
cumulative density functions of the two histograms. The Kolmogorov-
Smirnov measure will be maximal in the vicinity of a motion boundary
because the histograms on either side of the boundary are created by
different populations of displacements (see Figure 3.4).

Chi-Square Test

* Measures how
well a Gaussian
distribution can
be fitted to a
local histogram.

A
A

Kolmogorov-

Smirnov Test

¢ Compares two
local histograms
by computing the
maximal abso-
lute difference
between their
cumulative den-
sity functions.
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At each image point the Kolmogorov-Smirnov measure is computed
by comparing the histograms constructed at two points, whose connecting
line passes through the point in question, and which are separated by
twice the radius of the histogram neighborhood. Several orientations of
this connecting line are used to detect motion boundaries of all
orientations. The Kolmogorov-Smirnov measure that is assigned to a
point is the maximum of the measures that have been computed for each
of the chosen orientations.

This test has the advantage that it does not depend on the form of the
histograms that are being compared. Also not a great deal needs to be
known about the nature of the two histograms. There are, however, the
following limitations and trade-offs when comparing the histograms
constructed at two different points: the more the spatial supports used to
compute the two histograms overlap, the less the two histograms will
differ. The greater, however, the distance between the two points, the
more likely it will be that two histograms have been created by different
populations of motions, although the two points might still belong to the
same object. For example, if the Kolmogorov-Smirnov measure is
computed in the center of a rotating object then it will be maximal there,
because any two histograms that are being compared will have their
peaks at different locations (e.g. notice the high Kolmogorov-Smirnov
measure at the center of the rotating circle in Figure 6.1).
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Figure 3.4 The Developed Measures to Estimate Motion Boundaries.
The left column shows the definition of the five measures that are sensitive to
a motion boundary, and the right column displays their value along a scanline

in a random-dot image containing a translating square.
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3.4 Inferring Boundaries

We have introduced five measures that are sensitive to the presence of
motion boundaries, because they each capture and monitor a different
characteristic of a motion boundary. The question arises of how and
when to infer a motion boundary so that few actual boundaries are being
missed and few spurious ones are being accepted. We will consider
thresholding and the detection of global extrema as ways to infer motion
boundaries. We will also address how well the detected boundaries are
localized.

3.4.1 Thresholds and their Derivation

For the Ratio Measures, a threshold can be derived by calculating their
expected value as a function of the histogram neighborhood radius r and
the distance x from the boundary at which the local histogram is
computed. We assume that the correct flow field is given and we consider
shearing3 and occluding motion, where d denotes the width of the area
occluded in the subsequent frame. Hence, the height of the two highest
peaks is equal to areas 4 and b of the circular support used to compute the
local histograms.

area occluded in the next frame

; ndy; occl
peak-ratio = hetgl.tt of 2 .hzghest peak _b .

height of highest peak a .

d
local-support-ratio = "¢/8"_of highest peak _ g .
maximal local support ¢
a

where b

c=a+ b+ occl = area of circle

R
a=rx rz-{rz- acos ("—;‘i)-(x-d)«/rz-(x-d)2 ,where%slx-dlsr
b=r2. acos (—";)- x - Vr2-x2 , where %SMSr

1 - local-support-ratio

if occl =0 then peak-ratio = ,
local-support-ratio

3 Shearing motion occurs when the relative movement between two objects is in the direction of
their boundary and hence no occlusion occurs.
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For shearing motion and radii 5, 8 and 10 pixels, the peak-ratio will be
0.34, 0.52 and 0.60, respectively, two pixels away from the boundary, (see
Figure 3.5). For occluding motion, the peak-ratio will be maximal one
pixel away from the boundary (for explanation see section 3.4.3), and it
will be 0.23, 0.46 and 0.55, respectively, three pixels away from the
boundary. This leads us to use a threshold of 0.8 for the peak-ratio,
because this ensures that few actual boundaries are being missed and few
spurious ones are being accepted. We have obtained good results with
this threshold, regardless of the type of display or motion.

Figure 3.5 The Derivation of a Threshold for the Peak-Ratio.

The right and left panels show the expected value of the peak-ratio for the case of
shearing and occluding motion, respectively, and its value has been computed as a function
of the radius r = 5, 8, 10 of the circular neighborhood used to construct the histogram and as
a function of the distance x from the boundary at which the local histogram has been
computed. For the case of occluding motion, the width d of the area occluded in the next
frame is assumed to be equal to two.

Peak-ratio (shearing) Peak-ratio (occlusion)
1.00
0.80 4
0.60 4
0.40 4
0.20 4
0.00
5 4 3 2101 2 3 45 5 4 32101 2 3 45
Distance from boundary Distance from boundary

Similar graphs can be computed for the local-support-ratio, (see Figure
3.6). For occluding motion and radii 5, 8 and 10 pixels, the local-support-
ratio will be minimal at one pixel away from the actual boundary, and it
will be 0.63, 0.58 and 0.56, respectively, three pixels away from the
boundary. This leads us to use a threshold that ranges between 0.45 and
0.6, where any value below it will be considered.

® Use a threshold
of 0.8 for the
peak-ratio.

¢ Use a threshold
between 0.45 and
0.6 for local-
support ratio.
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Figure 3.6 The Derivation of a Threshold for the Local-Support-Ratio.

The right and left panels show the expected value of the local-support-ratio for the case
of shearing and occluding motion, respectively, and its value has been computed as a
function of the radius r =5, 8, 10 of the circular neighborhood used to construct the
histogram and as a function of the distance x from the boundary at which the local
histogram has been computed. For the case of occluding motion, the width d of the area
occluded in the next frame is assumed to be equal to two.

Local-support-ratio (shearing) Local-support-ratio (occlusion)

0 . 0 0 ¥ 1 Ll L) 1 Ll 1 L] T 0 . O 0 1 ] L] 1§ 13 1 ¥ ] !
S5 4 32 -1 01 2 3 45 S5 4 3 -2 -1 01 2 3 45
Distance from boundary Distance from boundary

For the signal-noise-ratio, a threshold can be derived by using the
following approximation. The signal-noise-ratio has been defined to be
equal to the ratio of the local support for the highest peak and its neigh-
bors, referred to as the "signal", and the total number of votes minus the
"signal". If we assume that the total of votes is a multiple of the area of
the histogram neighborhood4, and that the "signal" is a multiple of the
height of the highest peak, then the signal-noise-ratio will be equal to :

signal
total votes - signal

signal-noise-ratio =

if total votes = - ¢ and signal = B-a then

signal-noise-ratio = B-a =—42 _  where§ =2
o¢-c-B-a 6c-a B
if § =1 then

onal-noise-ratio = —&— = local-support-ratio
SIGNATIOIeTaN0 =7 = 1. local-support-ratio

4 which is equivalent to assuming that each point has a certain number of potential displacements
on the average.
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For occluding motion and radii 5, 8 and 10 pixels, the signal-noise-
ratio will be minimal at one pixel away from the actual boundary and. it
will be equal to 0.60, 0.73 and 0.77, respectively, and it will be 1.68, 1.38 and
1.29, respectively, three pixels away from the boundary, (see Figure 3.7).
These values represent the upper bounds for the signal-noise-ratio, and
we will use, in general, a threshold of 0.6.

Figure 3.7 The Derivation of a Threshold for the Signal-Noise-Ratio.

The right and left panels show the expected value of the signal-noise-ratio for the case of
shearing and occluding motion, respectively, and its value has been computed as a function
of the radius 7 = 5, 8, 10 of the circular neighborhood used to construct the histogram and as
a function of the distance x from the boundary at which the local histogram has been
computed. For the case of occluding motion, the width d of the area occluded in the next
frame is assumed to be equal to two.

Signal-noise-ratio (shearing) Signal-noise-ratio (occlusion)

S5 4 3-2-1012 3 435 5 4 3-2-10 12 3 45
Distance from boundary Distance from boundary

For the chi-square and the Kolmogorov-Smirnov measure, a confi-
dence level can be derived. For example, the confidence level for the
Kolmogorov-Smirnov measure will be roughly 0.1. This confidence
level, however, is too low to be used to localize the motion boundaries
for the following reason. The Kolmogorov-Smirnov measure can be
above this confidence level even for points that lie in a translating region
because the matching scores of the potential displacements associated
with the matching primitives can be sufficiently different. We will there-
fore use a threshold between 0.4 and 0.6 to detect and localize motion
boundaries, and reasonable results have been obtained with this choice.

* Use a threshold
0.6 for signal-
noise-ratio.

¢ Use a threshold
between 0.4 - 0.6
for the
Kolmogorov-
Smirnov
measure.
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* Gaussian spatial
support function

response of ratio
measures.

3.4.1.1 How to Sharpen the Response of the Ratio Measures

If we use, as mentioned in section 3.2.2, a Gaussian spatial support
function with sigma & that weighs contributing points less that are farther
away from the point at which the histogram is computed, then this will
cause the response of the ratio measures to be sharpened, (see Figure 3.8).
The smaller sigma J, the sharper the response, and the next figure shows
the resulting responses for sigma 6 ='5, 25 and e (which is equivalent to
weighing all contributing points equally), where r = 8 and we consider
occluding motion.

Figure 3.8 Sharpening the Response of the Ratio Measures.

The right and left panels show the expected value of the peak-ratio and local-support-
ratio, respectively, if a Gaussian spatial support function with sigma = 5, 25 or « is used to
weigh the contributing points less that are farther away from the point at which the
histogram is computed. Occluding motion is assumed and the radius r of the circular
neighborhood used to construct the histogram is equal to eight. The smaller sigma, the
sharper the response of the two measures.

Peak-ratio (occl., r=8) Local-support-ratio (occl., r=8)
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0.4 4
0.2 4
0 —r—Tr T T T

S5 4 3 2 -1 0 1 2 3 4 5 S5 4 3 2 -1 0 1 2 3 4 5

Distance from boundary Distance from boundary




The Early Estimation of Motion Boundaries

29

3.4.2 The Detection of Global Extrema

As Figure 3.4 has shown, all the proposed measures have a global
extremum in the vicinity of a motion boundary. There are at least two
ways in which the presence of motion boundaries can be inferred via
these global extrema. First, a boundary can be inferred where the first
derivative of the peak-ratio, for example, is zero, its second derivative is
negative, and where this ratio is above some minimal threshold. This
minimal threshold is chosen so that any extremum below it can be safely
excluded.

Second, the measures have in common that they have a global
extremum at a motion boundary, and that their local extrema anywhere
else in the image are weakly correlated with each other. Hence, the
extrema contours can be used in the follbwing way to locate the motion
boundaries, without having to use any thresholding. First, the extrema
contours are computed by differentiation. These contours are then
thickened by some number of pixels because the extrema of the different
measures are not perfectly localized and can be shifted with respect to
each other at a motion boundary. Finally, these thickened contours are
superimposed, and a motion boundary is inferred where they all intersect
(see Figure 6.2). This approach of combining the extrema contours to
detect boundaries has the attractive feature that it does not require the
setting of a threshold. The motion boundaries are inferred by
corroborating the information provided by the different measures, and
good results have been obtained.

3.4.2.1 Hysteresis

The problem with setting a fixed threshold is that it can cause the detected
boundaries to streak. Streaking occurs when the peak-ratio, for example,
fluctuates above and below the threshold of our choice along a motion
boundary. To reduce the likelihood of streaking, the thresholding
“approach could be improved by using hysteresis [8]. We could use two
thresholds, a high and a low one. A high threshold of 0.9 is chosen so to
ensure that any point on a local maxima contour of the peak-ratio above
this threshold is with a high probability a motion boundary.

¢ A boundary is in-
ferred where the
first derivative
of a measure is
zero, its second
derivative is of
the appropriate
sign, and where
a ratio measure
is above/below
some threshold.

» Combining and
intersecting the
thickened
extrema con-
tours to detect
the boundaries
has the attrac-
tive feature that
it does not
require the
setting of a
threshold.
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* Corners get
rounded and the
estimated
boundary can lie
midway between
the locations of
the actual object
boundary in the
first and second
frame respec-
tively.

Frame (n+1)

A low threshold of 0.6 is chosen so that the probability is low that a
motion boundary is missed. If any point of a local maxima contour is
above the high threshold, then that point is immediately accepted, as is
the entire connected segment of the contour which contains the point
and lies above the low threshold. The likelihood of streaking could there-
by be greatly reduced, because for a contour to be broken it must now fluc-
tuate above the high and below the low threshold. Also the probability
that false motion boundaries are marked is reduced because the high
threshold can be raised without risking streaking. If streaking still occurs
then these gaps can be filled by the methods introduced in Chapter 5.

3.4.3 Localization

The localization of a motion boundary is affected, firstly, by the curvature
of the boundary with respect to the size of the neighborhood used to
compute the local histograms; corners, for example, will get rounded.
Secondly, regions occluded in the next frame will cause the estimated
boundary to lie midway between the location of the actual object bound-
ary in the first frame and its location in the next frame (as shown in
derivation for the thresholds). This is because the occluded matching
primitives will not have a match in the next frame and only midway
between the locations of the actual object boundary in the first and second
frame are the consistent contributions from the two sides of the boundary
roughly equal. The detected motion boundary should however coincide
with the actual boundary, if a region appears next to it in the subsequent
frame, because the matching primitives on either side will have a match
in the next frame.

3.4.3.1 Figure-Ground Separation

The fact that the estimated boundary can lie midway between the actual
object boundary in the first and second frame could be used to infer the
side of a motion boundary that corresponds to the occluding object. If the
order of the frames is reversed then the regions, which disappeared pre-
viously, will come into view now, and the estimated boundary will be
correctly localized there. Similarly, the estimated motion boundaries,
where previously regions came into view, will now be shifted in the
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direction of the relative motion between the occluding object and the
background. Hence, we can compute to which side a boundary has moved
by comparing where the estimated boundary happens to lie with respect
to the boundary that was estimated by reversing the order of the frames.
We refer to this displacement of boundary as vz. We have to consider the
velocities on the two sides of a boundary, in order to be able to infer
which side of the motion boundary is closer to the viewer. As will be
outlined in the Chapter 4, the highest peak in the local histograms of the
potential displacements estimates the image flow at each point. Now, the
occluding object will move in the same direction as the motion
boundary, i.e. the scalar product of their flow vectors has to be positive.
Hence, if the scalar product of v and the difference vector between the
velocity to the right, vz, and to the left of the boundary, v, is positive, i.e.
vp.(vg - v1) > 0, then the occluding object is to the right of the detected
boundary. Similarly, a negative scalar product implies that the side to the
left of the detected motion boundary is closer to the viewer. If there is no
dynamic occlusion occurring, then vg will be zero, and the local inference
of which side corresponds to the occluding object becomes difficult.
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Definition

o Athin-barisa
pair of zero-
crossings of op-
posite sign sepa-
rated by less than
3 sigma, where
sigma refers to
the spread of the
Gaussian used to
smooth the
image.

¢ Thin-bars
consisting of
close pairs of
zero-crossings of
opposite contrast
are created or
destroyed at a
motion

boundary.

* Wedonot
attempt to solve
the corre-
spondence prob-
lem since we only
check for the
existence of a
matching thin-

bar.

3.5 The Dynamic Occlusion Method

In this section, we show how dynamic occlusion can be used to estimate
motion boundaries at a stage prior to the computation of visual motion.
Specifically, we want to develop a method that can locally compute the
appearance and disappearance of simple features in a way that is
sufficient to estimate boundaries, without having to solve a global and
difficult correspondence problem.

3.5.1 Dynamic Occlusion of Thin-Bars

Certain spatial relationships between simple image features change most
dramatically in the vicinity of a boundary in the presence of motion. In
particular, zero-crossings® of opposite contrast will move closer together
or farther apart. They may even disappear or come into view. Hence,
pairs of zero-crossings of opposite contrast will be created or destroyed in
the vicinity of a boundary. We will refer to these pairs as thin-bars
because they can correspond to thin bars of constant intensity in the
image. We define a pair of zero-crossings of opposite contrast to
constitute a thin-bar if they are separated by less than 3 sigma, where
sigma refers to the spread of the Gaussian used to smooth the image. The
appearance or disappearance of the thin-bars can be used to construct a
method that locally estimates motion boundaries.

When tracking a thin-bar, we do not attempt to solve completely the
correspondence problem since we will only check for the existence of a
matching thin-bar, instead of trying to determine the correct and unique
match. The disappearance of a thin-bar will only be concluded if no
corresponding thin-bar can be found in the next frame that satisfies the
constraints outlined below. As Figure 6.5 shows, this is sufficient to
estimate motion boundaries. The appearance of a thin-bar is detected by
using the fact that the appearance of a thin-bar is equivalent to the
disappearance of a thin-bar, when the order of the frames is reversed.

5 Zero-crossings correspond to sharp changes in intensity detected by filtering the image with the
Laplacian of a Gaussian.
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A matching thin-bar has to satisfy the following constraints. First,
corresponding zero-crossings must have the same contrast, i.e., the scalar
product of the intensity gradients at the locations of the zero-crossings
must be positive. Similarly, the angle between the intensity gradients at
the locations of corresponding zero-crossings should be within a certain
bound for small rotations. Second, the direction of the measured normal
flow component constrains the motion of a zero-crossing within 180°.
More specifically, the direction and magnftude of the measured normal
flow component defines a band within which the matching thin-bar has
to lie (see Figure 3.3). The dimensions of the band are chosen to account
for measurement errors. This constraint reduces greatly the number of
potentially matching thin-bars. Third, we can define a spatial ordering for
a thin bar, since either the first zero-crossing will be to the right or left of
the second zero-crossing, and vica versa. This spatial relationship or
ordering is not likely to change as a thin-bar moves, because the two
partners are spatially close and their flow vectors are therefore roughly
equal (see Figure 3.9).

Figure 3.9 The Spatial Ordering Constraint.

If the zero-crossing with a negative contrast, z-c (-], moves with v; then the spatial
ordering between the two zero-crossings of opposite contrast will remain intact in Frame 2.
But if it were to move with v,, then the spatial ordering between z-c [-]and z-c [+] would be
violated.
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The Dynamic Occlusion Method requires that the image be finely
textured, because otherwise thin-bars will appear or disappear only in a
few places. Furthermore, this method can have false alarms, when a
surface rotates in depth or, for perspective projection, when a plane
moves towards or away from the viewer. This will cause the distance
between zero-crossings to increase or decrease, and.it can thereby
accidently create or destroy thin-bars. In the case of a rotating cylinder,
dynamic occlusion and effects due to rotation in depth are confounded,
but the thin-bars are still being created or destroyed only in the vicinity of
the boundary of the cylinder. Despite these shortcomings, the reason for
developing this method has been to show that the dynamic occlusion of
these simple features can be computed locally in a way that is sufficient to
estimate boundaries at a stage prior to the computation of visual motion,
without having to solve a global correspondence problem (for results see
Chapter 6).
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CHAPTER 4

THE LocAL ESTIMATION OF VISUAL
MOTION

In this chapter we show how visual motion can be locally estimated as a
by-product of the early estimation of motion boundaries. The local
histograms of the potential displacements can be used to compute a dense
image flow field, because the local histograms have their highest peak at
the displacement that received the most local support. Hence, this
displacement represents an estimate of the image flow. Furthermore, the
ratio of the two highest peaks or "strongest contenders" reflects how good
the estimate is. A low peak-ratio implies a good estimate, whereas a peak-
ratio close to one implies the presence of a motion boundary and,
likewise, that the estimated image flow might be inaccurate.

It is worth noting the following: firstly, the estimated motion bound-
aries are not incorporated in the computation of visual motion discussed
here. These early estimates of the image flow field and its discontinuities
could then be integrated in a later computation. Secondly, the local
estimation of visual motion will be difficult in image regions with only
little texture, as is the case for the early estimation of motion boundaries.

Local support or voting schemes have been used by, for example,
Stevens (1977) [39], Fennema & Thompson (1979) [12], Prazdny (1984) [33],
Bandopadhay & Dutta (1986) [4] and Biilthoff, Little & Poggio (1989) [7] to
compute disparity and displacements fields. These methods, however, do
not compute and analyze the full histogram of the possible displacements
to detect the presence of boundaries.

In this chapter we show that the method proposed in this thesis for
computing visual motion, using the local histograms of the potential
displacements, is well-posed. Furthermore, we show that the proposed
method is similar to the local voting scheme developed by Biilthoff, Little
& Poggio. The two methods might appear to be different because of
nomenclature and more importantly because of what their main goal is.

¢ The highest peak
in a local his-
togram corre-
sponds to the
displacement
with the most
local support.
Hence, this
displacement
represents an
estimate of the
image flow.

® The estimation
is well-posed
and consistent
with human
psychophysics.
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Biilthoff et al. are primarily interested in estimating the image flow field
and assume that motion boundaries should be detected a later stage,
whereas we are primarily interested in demonstrating that the detection
of motion boundaries can be decoupled from the computation of the
image flow field and that it can be performed using no intensity boundary
and only motion information.

Both methods assume that the image flow field can be approximated
locally as constant and both use a small circular neighborhood at each
point to determine the displacement with the most votes. The main
difference is that the votes for each possible displacement is recorded in a
local histogram by our method, whereas Biilthoff et al. are only interested
in the displacement with the most votes. Hence, our method computes a
more general representation, which can be used to detect motion
boundaries and estimate visual motion in parallel. Another difference
lies in the comparison function used to determine the pointwise match
between intensities in subsequent frames.

4.1 Mathematical Formulation

The computation of the visual flow field is locally underconstrained and
in order to make it well-posed we need to add a constraint to compute the
smoothest flow field which matches the data [7]. When the projected
motion of objects is small relative to the image size, we can restrict the
search for corresponding points to small regions in the image. Using a
formulation similar to the one used by Biilthoff et al. [7], we look for a
discrete image flow field V(x;y) = (u(x,y),v(x,y)) £ (-/+4,/+4) to minimize:

.[ [ -Q(Et(x,y), Et+At(x+uAt,y+vAt)) 69

+ 8 (d2ufdx? + d2uldy? + d2o/dx2 + d2vjdy?)] dx dy
where E(x,y) denotes the image brightness or intensity at (x,y) at
time ¢, 2 is a comparison function which measures the pointwise match

between subsequent frames, and p denotes the maximal expected
displacement in the x and/or y dimension.
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We construct the image flow field pointwise, since for each
displacement, every point evaluates a comparison function (2 at that
displacement, and it then sums the match scores over the circular
neighborhood Cyr. Each point chooses the displacement with maximal
support out of the finite set of possible displacements. The resulting
image flow field is the union of these pointwise displacements.

We simplify and approximate equation (1) by using the constraint that
the image flow field can be assumed to be locally constant in the small
neighborhood C used at each point to compute the local support for the
different possible displacements. We choose the neighborhood Cr to be
circular with a radius r that is dependent on the distance to the objects in
the scene and their expected size in the image. The choice of u depends
on the maximal expected velocities of objects in the scene, their distances
from the camera, and the time separation At between frames. The time
separation At is small and therefore the resulting image displacements
will be small with respect to the image size. Hence, we are dealing with
short range motion.

The second-order term of equation (1) vanishes, because of the local
translation assumption. The simplified and approximated equation (1)
minimizes now, in each overlapping circular neighborhood Cr(x,y) with
radius r:

Z Q(Et(x,y), Et+At(x+uAt,y+vAt)). (2)
(xy) E Cy

As mentioned in section 3.1.1, we use a Gaussian matching function,
which depends on the difference in intensity to measure the pointwise
match between subsequent frames to account for the occurring changes in
intensity. The smaller the difference in intensity, the larger the weight

that is assigned to a particular displacement. The spread §8 of the Gaussian
matching function can be chosen to reflect the estimated noise in the
intensity measurements. Hence, in our case the comparison function Q is
equal to:

Q(Es(xy), Errar(x+udty+vat) = - e B (Exxy) - Eppp(xrudty+oat)) (3
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whereas Biilthoff et al. use 2(Ex(x,y), Et+as(x+udt;y+vat)) = (Euxy) -
2
Etiat(x+udt,y+vAt))".

We can substitute equation (3) into equation (2) and absorb the minus
sign by turning the minimization into a maximization. Hence, the visual
flow vector of a pixel is computed by maximizing for all (u,v) £ (-/+4,
-[+1)

e B (Efxy) - E4., At(x+uAt,y+vAt))2 4
(xy) E Cp

The local neighborhoods used to estimate the image flow field are
overlapping from pixel to pixel. Each pixel, surrounded by its
neighborhood Cr with radius r, independently chooses the image flow
vector to maximize matching in its neighborhood. We do not match
intensities directly, since the presence:of noise makes the process
unstable. We rather choose the displacement whose intensity value
maximizes (4), which in turn regularizes the solution of the matching
computation [7].

4.2 Advantages and Relationship to Human Psychophysics

Like the method by Biilthoff et al. [7], this way of estimating the image
flow field has several attractive features. First, noise is reduced by the
local neighborhoods used to find the displacement with the most local
support. Second, it does not rely on the numerical precision of
derivatives, making it therefore more robust. Third, this approach
computes a dense image flow field, removing the necessity of
interpolating or smoothing the estimated flow field.

Biilthoff et al. [7] have demonstrated that the approach of using local
neighborhoods to find the displacement with the most local support is
consistent with human psychophysics, since it exhibits several of the
same "illusions" that humans perceive, such as the "barbepole-", the
"non-rigidity-", the "motion-capture-" and the "Wallach's aperture-
illusion".
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CHAPTER D

EXTRACTING COMPLETE AND UNIQUE
CONTOURS

5.1 Introduction

The pointwise output of the motion boundary estimators is often broadly
localized and it can contain gaps. Hence, we have to find a way to extract
single and unique boundaries without gaps. We apply and modify the
Structural Saliency Method developed by Sha'ashua & Ullman [37,45] to

achieve this goal.

Sha'ashua and Ullman have proposed two different kinds of saliency
measures: local saliency and structural saliency. An edge's local saliency is
determined by attributes of that edge alone, and in our case local saliency
is equal to the magnitude of the output of the motion boundary
estimators. Structural saliency refers to more global properties of an edge -
its relationships with other edges - and often this saliency is a property of
the structure as a whole, whereas the parts of the structure are not
necessarily salient in isolation.

5.2 The Structural Saliency Method

The Structural Saliency Method employs a simple iterative network and
uses an optimization approach to produce a "saliency map", which
emphasizes salient locations in the image. The saliency of curves is
measured in terms of their smoothness and length, which is often
sufficient to perform a figure-ground separation. The main properties of
the network are: (i) the computations are simple and local, (ii) globally
salient structures emerge with a small number of iterations, (iii) there is
little dependence on the complexity of the image, (iv) contours are
smoothed, gaps are filled in and linking information between edge
segments' is provided.

How does it work?

¢ It extracts com-
plete boundaries
by computing
their saliency in
terms of their
smoothness and
length.

¢ The optimiza-
tion is linear in
terms of the
length of the
contour because
an extensible
functional is
used.
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5.2.1 Detailed Description

A structural saliency measure 2 is computed by a locally connected
network of processing elements. The image is represented by a network of
n x n grid points, where each point represents a specific (x, y) location in
the image. At each point P there are k orientation elements coming into P
from neighboring points, and the same number of orientation elements
leaving P to nearby points (in the current implementation k is equal to
16, providing a reasonable angular resolution). Each orientation element
p; responds to the output of the motion boundary estimators by signalling
the presence of the corresponding motion boundary in the image, so that
those elements that do not have an underlying line segment are
associated with an empty area or gap in the image. We refer to a
connected sequence of orientation elements pj.s, ..., pisn, €ach element
representing a line segment or a gap (called a virtual element), as a curve
of length n. The optimization problem is formulated as maximizing Q(n)
over all curves of length 7 starting from p;.

An exhaustive enumeration of all combinations of pi,1, ..., pi+n Would require

an exponential search space of size k™ for each element in the network.
The computation becomes linear in n if we use an extensible function Q
to measure saliency:

rg}ax Qu(py-eers Pu) = max Qu(p, max Qui(Pistyerenes Pisn))
@y

Pi+1 €5 (@ LANCIRY

where Sn( ;) is the set of all possible curves of length n starting from ;.
Pi P g Pi

Hence, the maximal curve of length n at P will be equal to the maxima over

all possible segments leaving P and the maximal curves of length
(n-1) starting at the respective end-points of these segments.

It is worth noting that the optimal contour through P does not
necessarily extend itself as the iterations proceed. In fact, the optimal
curve at stage n+1 can be different from the optimal curve at stage n.
Further, the saliency measure is associated with each element, not with
the entire curve.
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The structural saliency Ejis equal to the weighted contributions of the
local saliency values along the curve. Each weight is a product of two
factors. The first factor is inversely related to the number of virtual
elements (i.e. gaps) along p;, ..., pj, and the second factor is inversely
related to the total curvature of the curve. Curves that have a high
structural saliency value are long curves that are as straight as possible
and have the least number of gaps (for an in-depth description, see
Sha'ashua 1988 and Sha'ashua & Ullman 1989 [36,37,45]).

The structural saliency E;j is updated by the following computation:
Ei(o) = o,

Ei(n”) = Gj + p; Mmax E]gn) £,
pj€ ()

and it can be shown by induction on the length of the curve that
i+n

E™ =, Cijpij O

=i

where
j!1 2ay tan 2k
—— 2
Cij= [ ] fixer , where fig a1 = €=
k=i
and

j
- _ | 1if pxisactive
Pij= kH1 Px , where Py = <<lifpkisvi.rtual} )

=i+

5.2.2 Extending the Structural Saliency Method

We incorporate the motion estimates to separate boundary segments
belonging to differently moving objects. The three points that constitute
an oriented segment have each a motion estimate associated with them.
We allow only points to form an oriented segment whose motion
estimates do not differ by more than two displacement units. We want to
prevent contours from being formed that wander across motion
boundaries, and thereby violate the constraint that a flow field varies
smoothly along a boundary. The effectiveness of this constraint hinges on
how well the qualitative aspects of the motion field are estimated.

¢ Structural
saliency is equal
to the weighted
contributions of
the local saliency
values along the
curve.
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5.2.3 Extracting a Unique Contour

If the area in which curves are allowed to form is broadly deﬁnéd, then
there will be several contours growing alongside each other, as is the case
in our examples. To extract the most salient curve, we have to first
propagate the structural saliency value of the most salient segment along
the curve that contributed to its value, because the saliency measure is
associated with each element and not with the entire curve. The
propagation is done iteratively by each segment maximizing over the
value of its preferred neighbor and its own [Sha'ashua in prep.]. Thus, the
largest value will be propagated along its curve.

Finally, we perform a non-maximal suppression operation [Sha'ashua
in prep.], where each segment suppresses all its neighboring segments if
their structural saliency value is less and if they have similar motion
estimates associated with them. Hence, the most salient contours
belonging to differently moving objects will remain alongside each other®
(see Figure 6.7).

6 At the locations where the differently moving objects occlude each other, there will be two
boundary segments extracted that lie alongside each other, but where one of them is an artifact of
the occlusion. A next step could be to label the boundary segments that lie alongside each other
so that they receive a lower priority than boundary segments that do not have a boundary
segment belonging to another object close by, when the extracted boundaries are the input to a
recognition process.



Results

43

CHAPTER 6

RESULTS

In this chapter, we present results, where the developed methods have
been applied to motion sequences containing several moving objects
composed of either random-dot or natural textures. The methods for
estimating the motion boundaries have been implemented on the
Connection Machine, a massively parallel network of simple, locally
interconnected processors [16]. The smoothed intensity values are used as
the matching primitives and the histograms of the potential
displacements are used as the input representation.

6.1 The Estimation of Motion Boundaries

The early detection of motion boundaries is performed in two stages:
(i) the local estimation of the motion discontinuities; (ii) the extraction of
complete boundaries belonging to differently moving objects.

The methods for estimating the motion boundaries make use of the
fact that the potential displacements of image points in the vicinity of a
motion boundary will cluster around two different points in a local
velocity histogram. The local histograms are constructed at every point
using a circular neighborhood with a radius of eight pixels. The potential
displacements are quantized and they are measured in terms of pixels.

6.1.1 The Bimodality Tests and the Bi-distribution Test

The Bimodality Tests, consisting of the peak-ratio, local-support-ratio,
signal-noise-ratio and the chi-square measure, estimate motion
boundaries by computing the degree of bimodality present in the local
histograms of the potential displacements. The Bi-distribution Test
detects boundaries by applying the Kolmogorov-Smirnov Test to
measure the probability that two histograms have been created by the
same population of motions.
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6.1.1.1 Complex Dynamic Random-Dot Display

Figure 6.1 shows the estimated boundaries for a complex random-dot
motion sequence which contains a rotating circle and rectangle, and a
translating square in the image plane. The first row displays the estimated
boundaries using thresholding. The second row displays the inferred
boundaries by detecting the global extrema and using a minimal
threshold.

Figure 6.1 Estimating Motion Boundaries in a Complex Dynamic 7
Random-Dot Display.
G

Thresholding

peak-ratio signal-noise-ratio

For the above example, the peak-ratio and the signal-noise-ratio
successfully estimate all the motion boundaries, and they mark very few
false boundaries. The reason these two measures perform so well is that
they directly measure the degree of bimodality occurring in the local
histograms, whereas the other measures do it indirectly. The local-
support-ratio, the chi-square measure and the Kolmogorov-Smirnov
measure also successfully infer where motion boundaries are present, but
they mark more incorrect boundaries. The chi-square measure has a high
false alarm rate inside the two rotating objects, because the highest peak is
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broadly defined at the borders between regions of constant displacement
that differ only- by one displacement unit. The Kolmogorov-Smirnov
measure has a high false-rate at the center of the rotating circle, because
any two histograms that are being compared will have their peaks at
different locations.

The false alarms can be ruled out by overlapping the thickened
extrema contours of several of the measures, because these measures
have a global extrema at a motion boundary, whereas their local extrema
elsewhere in the image are weakly correlated with each other. Figure 6.2
shows the results of intersecting the thickened extrema contours of the
peak-ratio, signal-noise-ratio and local-support-ratio to infer the motion
boundaries. (a), (b) and (c) display the intersections of the extrema
contours thickened by one, two and three pixels, respectively. This
approach has the attractive feature that it does not require the setting of a
threshold and it can be used to rule out false alarms. Figure 6.2
demonstrates that the measures are highly correlated at a motion
boundary, whereas elsewhere in the image they are weakly correlated
with each other.

Figure 6.2 Intersecting the Extrema Contours of the Developed Measures to Estimate
Motion Boundaries.

(a) thickened by one pixel (c) thickened by three pixels
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6.1.1.2 Natural Motion Sequence

Figure 6.3 (a) shows the Canny edges of the Salisbury Robot Hand; (b)
displays the estimated motion boundaries when the hand is lifting the
objecf that it is holding, where the peak-ratio has been thresholded and its
output has been suppressed where the average intensity gradient was not
sufficiently large; (c) shows the detected global maxima of the peak-ratio.

Figure 6.3. Estimating Motion Boundaries in a Natural Image Sequence.

(a) Canny Edges

(b) Peak-ratio thresholded
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6.1.2 Dynamic Occlusion Method

Figure 6.4 (a) shows where the Dynamic Occlusion Method estimated the
appearance or disappearance of thin-bars in a random-dot display of a
translating square. This method gives a rough sense of the motion
boundary, although it does not provide complete boundaries. (b) Shows
the output of this method for the same motion display as in Figure 6.1.
The marked locations provide a sense of the boundaries for this more
complex display, although there are false alarms in the rotating regions.

Figure 6.4 Estimating Motion Boundaries using the Dynamic Occlusion Method.

(@)

6.2 The Estimation of Visual Motion

A local histogram of the potential displacements has its highest peak at
the displacement that received the most local support. Hence, this
displacement represents an estimate of the image flow.

6.2.1. Complex Dynamic Random-Dot Display

The first panel in Figure 6.5 shows the estimated image flow field for a
complex random-dot motion sequence which contains a rotating circle
and rectangle, and a translating square. The second panel displays the
error in the computed flow field. As expected, the error is largest in the
vicinity of the motion boundaries. In the interior of the rotating objects,
there are also small errors at the borders between the regions of constant
displacement that differ only by one displacement unit.
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Figure 6.5 Estimating the Image Flow Field.

The first panel shows the estimated image flow field for a complex random-dot motion
sequence which contains a rotating circle and rectangle, and a translating square. The
second panel displays the error in the computed flow field. As expected, the error is
largest in the vicinity of the motion boundaries. In the interior of the rotating objects,
there are also small errors at the borders between the regions of constant displacement

that differ only by one displacement unit.
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6.3 Extracting Complete & Unique Motion Boundaries

The pointwise output of the motion boundary estimators is often broadly
localized and it can contain gaps. We apply and modify the Structural
Saliency Method developed by Sha'ashua & Ullman to extract single and
unique boundaries without gaps.

6.3.1. Complex Dynamic Random-Dot Display

Figure 6.6 (a) shows the estimated motion boundaries for a random-dot
motion sequence which contains a translating circle, rectangle and square,
where the peak-ratio has been used and thresholded to provide the
estimate. (b) Displays the three most salient structures extracted by the
Structural Saliency Method, where the motion estimates are used to
ensure that the contours do not wander across motion boundaries. The
purpose of the second stage is to extract complete boundaries from an
input that can be noisy.

Figure 6.6 Extracting Complete & Unique Motion Boundaries.

C—>

Input Output
Estimated motion Connected contours belonging
boundaries to differently moving objects




50 Applications

CHAPTER 7

APPLICATIONS

7.1 Stereopsis
* The disparity Stereopsis computes relative depth by using the differences, also called
fields of stereop-
o eadiowet  disparities, in the projection of points in space onto the two eyes or
S, cameras, which view the scene from two slightly different vantage points.
of motions.

* Advantageous
to detect depth
or motion
boundaries prior
to the stereo
computation,
because they
make explicit
where the
smoothness
assumption is
not valid, and
they could be
used to simplify
the correspon-
dence problem.

The key problem of stereopsis is how to match points in the two images
that correspond to the same point in space. This correspondence problem
is inherently underdetermined and constraints are needed to solve it. As
for the computation of the image flow field, the assumption is typically
made that the surfaces of objects are generally smooth, i.e., that the
disparity varies smoothly almost everywhere in the image. This
constraint is not valid across depth boundaries, and so far, most stereo
algorithms not only do not directly detect discontinuities in depth but
also perform badly precisely at these locations [10,46]. The methods
developed for the early detection of motion boundaries are relevant to
stereopsis in the following ways.

First, stereopsis is a special case of general motion, because its disparity
fields are equivalent to image flow fields created by a restricted class of
motions and all the motion boundaries are due to depth discontinuities.
Hence, these depth boundaries can be detected by the methods developed
for general motion at a stage prior to the depth computation, where the
two images do not need to be registered.

Second, motion boundaries can be used as stereo matching features
and there is psychological evidence that the human visual system is able
to do this [21,22,32]. The motion boundaries can be matched using the
ordering constraint, i.e., if a motion discontinuity is to the left of another

motion discontinuity in the left image then this ordering will be
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preserved in the right image, and vice versa. Further, the figural
continuity and edge connectivity constraints can be applied, because the
motion boundaries will form continuous contours [5,26].

Third, the detected motion and depth boundaries can be used as
pointers to the regions in the two images that do not possess a match in
the other image due to occlusion. In particular, these occluded regions
will always be to the right (left) of a depth discontinuity in the left (right)
image, for perspective projection. A search could be performed in the
neighborhood of a detected motion or depth boundary to determine the
extent of an occluded region. Finally, the corresponding points, that are
visible in both eyes, could be then matched using the ordering constraint,
thereby simplifying the correspondence problem.

Fourth, a stereo algorithm can be devised that simultaneously
computes depth and its discontinuities, because the highest peak in the
local histogram of the potential disparities estimates the disparity, and the
depth boundaries can be inferred where the peak-ratio, for example, is
close to one.

To summarize, it is advantageous to detect depth or motion
boundaries prior to and use them in the stereo computation, because they
make explicit where the smoothness assumption is not valid, and they
could be used to simplify the correspondence problem.

7.2 Surface Reconstruction

In most models of stereopsis, disparity is initially computed at specific
locations, such as where intensity changes sharply. The surface
reconstruction from this sparse and noisy data can be formulated in terms
of minimizing an energy functional [14,20,40]. In particular, the surface
reconstruction should be performed as a piecewise smooth interpolation
to account for the existence of several surfaces within a scene. Without
the knowledge of the locations of depth discontinuities, the information
about the shape of one surface can affect the shape of an adjacent surface,
i.e., the surface reconstruction scheme will smooth over the boundaries.
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Hence, the early detection of depth boundaries is of special importance
because it makes explicit where not to smoothly interpolate the sparse
depth map. The methods described in this thesis can be used to segment

sparse and noisy depth maps (see Figure 7.1).

Figure 7.1 Detecting Boundaries in a Sparse Depth Map.

(a) Shows the synthetic depth map used as the test input. The depth map has a depth
range of 200 units. The resolution is reduced by a factor of 10, because the depth gradient is
too large and changes too rapidly over the spatial support used to construct the local
histograms of the depth estimates. (b) Displays the depth boundaries detected by
thresholding the signal-noise-ratio, where the sparseness of the data is 10% and Gaussian

noise has been added.

(a) Synthetic depth map

(b) Signal-noise-ratio thresholded
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CHAPTER &

SUMMARY & CONCLUSION

This thesis has shown, firstly, that a useful segmentation can be
performed on the basis of motion information alone at an early stage of
visual processing. Secondly, it has been demonstrated that the estimation
of motion boundaries can be decoupled from the computation of a full
image flow field and how it can be performed in parallel. Thirdly, this
thesis has shown how to integrate the pointwise output of the developed
motion boundary estimators with a process that can extract salient,
complete and unique contours, where contour segments belonging to
differently moving objects are separated and segments belonging to the
same object are grouped together. The detection of motion boundaries
has been performed in two stages: (i) the local estimation of the motion
discontinuities and of the visual flow field; (ii) the extraction of complete
boundaries belonging to differently moving objects.

8.1 The First Stage

For the first stage, three new methods have been presented that can
independently estimate the presence and location of motion boundaries:
the Bimodality Tests, the Bi-distribution Test, and the Dynamic Occlusion
Method. These methods require only local computations. They have been
implemented on the Connection Machine, a parallel network of simple,
locally interconnected processors.

The Bimodality Tests and the Bi-distribution Test make use of the fact
that at a motion boundary certain quantities, which can be easily
computed from an image sequence, will cluster around two different
points in a local histogram. The quantities in question are (i) the potential
displacements of an image point, or (ii) the flow component measured in
the direction of the intensity gradient. The local histograms are
constructed at every point using a circular support, whose radius ranges
between five and eight pixels.
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We use a Gaussian matching function, which depends on the
difference in intensity at the two points defining a displacement, to
compute the match score of a possible displacement. This matching
function has been chosen to account for the fact that the intensity values
at corresponding points can change due to noise and changes in
illumination. Further, we use the magnitude of the intensity gradient or
its local average to suppress false alarms in regions with little texture.

We assume that the image flow field can be approximated as locally
constant. Hence neighboring points will have a potential displacement in
common. We can relax this assumption by using an Gaussian spatial
support function that weighs contributors less that are farther away from
the point at which the histogram is computed. This will account for the
fact that the flow vectors at points farther apart are less likely to be equal
in a smoothly varying flow field. It will also cause the response of the
Ratio measures to be sharpened.

The Bimodality Tests consist of four measures that monitor the degree
of bimodality present in the local histograms of either the potential
displacements or the normal flow components. The peak-ratio, the local-
support-ratio and the signal-noise-ratio can be computed from the local
histograms directly, and each of them captures a different characteristic of
a motion boundary. The chi-square measure estimates bimodality by
measuring how well a Gaussian distribution can be fitted to a local
histogram. Of these four measures, the peak-ratio and signal-noise-ratio
estimate motion boundaries most accurately and reliably, because they
directly measure the degree of bimodality present in the local histograms.
It was also found that more than one of these measures can be combined
to detect boundaries and to rule out false alarms by intersecting the
thickened extrema contours of several of these measures.

The Bi-distribution Test, which uses the non-parametric statistical
Kolmogorov-Smirnov test, can compare any two distributions. But this
method often does not perform as well as the Bimodality Tests, because
the local histograms used in the detection of motion boundaries can be
sufficiently different even for nearby points belonging to the same
moving object.
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The reason why we have developed five different measures is because
they each capture and monitor a different characteristic of a motion
boundary. We have shown that these measures have a global extrema at
a motion boundary, whereas their local extrema elsewhere in the image
are weakly correlated with each other. Thresholds have been derived for
the different measures, and we have shown how to use thresholding and
the detection of global extrema as ways to infer the presence of motion
boundaries. In particular, the approach that combines and intersects the
thickened extrema contours to estimate the boundaries has the attractive
feature that it does not require the setting of a threshold. The motion
boundaries are inferred by corroborating the information provided by
these measures, and good results have been obtained.

The Dynamic Occlusion Method uses the fact that thin-bars are created
or destroyed at a motion boundary. Dynamic occlusion of these simple
features can be computed locally in a way that can estimate boundaries
prior to the computation of motion without having to solve global
correspondence.

It has also been shown that the visual flow field can be locally
estimated as a by-product of the early estimation of motion boundaries.
The highest peak in a local histogram of the potential displacements
estimates the local image flow. The measures that are sensitive to degree
of bimodality present in the local histograms reflect how good the
estimate is. It was noted that the developed method to compute visual
motion is well-posed and that it is similar to the local voting scheme
proposed by Biilthoff, Little & Poggio [7].

8.2 The Second Stage

We have applied and modified the Structural Saliency Method
developed by Sha'ashua & Ullman [37,45] to extract complete and unique
boundaries from the pointwise output of the first stage, which is often
broadly defined and can contain gaps. Boundary segments belonging to
differently moving objects have been separated by using the motion
estimates provided by the first stage to constrain which edge segments can
be formed.
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The Structural Saliency Method extracts boundaries and closes gaps by
employing a simple iterative scheme that uses an optimization approach
to measure the saliency of curves of line segments in terms of their
smoothness and length. The optimization problem is formulated in
terms of maximizing a structural saliency measure (2(n) over all curves
of length n starting from P.

The computation is linear in n because {2 has been chosen to be an
extensible function. Hence, the most salient curve of length n at P will be
equal to the maxima over all segments leaving P and the maximal curves
of length (n-1) starting at the respective end-points of these segments. The
saliency measure is associated with each segment and not with the entire
curve.

Because the area defined by the first stage is broadly defined, there will
be several contours growing alongside each other. To extract the most
salient curve, we propagate the saliency value of the most salient
segment along the curve that contributed.to its value. This is done
iteratively by each segment maximizing over the value of its preferred
neighbor and its own. Thus, the largest value is propagated along its
curve. Finally, we perform a non-maximal suppression operation, where
each segment suppresses all its neighboring segments if their saliency
value was less and if they had similar motion estimates associated with
them. Hence, the most salient contours belonging to differently moving
objects remain alongside each other.

Finally, we have presented results that show that the developed
methods can successfully segment scenes with several independently
moving objects, without prior knowledge of the shape and motion of the
objects. We have also shown that the developed methods can segment
sparse depth maps.
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