Technical Report 1294

Reliable

Interconnection Networks
for Parallel Computers

Larry R. Dennison

MIT Artificial Intelligence Laboratory

Tius blank page was inserted to preserve pagination.

Reliable Interconnection Networks
For Parallel Computers!

by

Larry R. Dennison

Submitted to the
Departmentment of Electrical Engineering and Computer Science
on April 18, 1991, in partial fulfillment of
the requirements for the Degree of Master of Science in
Electrical Engineering and Computer Science

Abstract

A new protocol, the unique token protocol, for reliably transporting data in
a network is described. This protocol makes use of existing buffer storage
in the network for the replication of data and avoids duplicate elimination
at the destination through the use of a token. The unique token protocol is
compared to end-to-end protocols in terms bandwidth, latency, and memory
requirements, for which it is found to equal or better them. It is also shown to
have constant memory requirements per switching and processing element,
thus allowing networks employing the protocol to be arbitrarily large. In
addition, the organization of a reliable switching element incorporating the
protocol is described. A register transfer model of the switching has been
implemented. The model and its validation are presented.

Thesis Supervisor: Dr. William J. Dally

Title: Associate Professor of Electrical Engineering and Computer Science
Keywords: Networks, reliable, protocols, routers, virtual channels, parallel
computers, fault tolerance.

1The research described in this technical report was supported in part by the Defense
Advanced Research Projects Agency under contracts N00014-80-C-0622, N00014-85-K-
0124, N00014-91-J-1698 and in part by a National Science Foundation Presidential Young
Investigator Award with matching funds from General Electric Corporation, IBM Corpo-
ration, and AT&T.

A cknowledgments

e Lance Glasser and Dave Gifford, who came through when I needed
them.

e Charlie Selvidge and Ellen Spertus, for reading my drafts and not
laughing too much.

e Bill Dally, for being helpful in so many ways and pushing me to do my
best.

e For my parents, Daniel and Dolores, who by letting me know that it is
acceptable to fail, encouraged me to succeed.

e For my other parents, my in-laws James and Lee Moses, for their help
in keeping my household together and happy.

e My children, Dan, Kate, and Larry, for having a grouch for a father
while he’s been doing this.

e Above all, for my wife Judy, for supporting me in this escapade. With
her love, I can do anything,.

Contents

1 Introduction

2 Communication Networks

21 Topology« o e
2.2 Congestion Management
23 Fault Model
3 Reliable End-to-End Protocols
3.1 Characteristics of the Protocols
3.2 Alternating Bit Protocol
3.3 TimeStamps it
3.4 Windowed Time Stamps
3.5 Summary e e e e e e e e e
4 The Unique Token Protocol
4.1 Overview of the Protocol
4.2 Protocol State Diagram
43 AnExample o .
4.4 Proof of Correctness
4.5 Performance and Scalability
4.6 SUmMmaryo e e e e e e e e
5 Switching Element Organization
5.1 Information Exchange
5.2 Block Diagram
5.2.1 Input Controller Overview
5.2.2 Crossbar Overview

5.2.3 Output Controller Overview 35

5.2.4 Router Overview 36
5.3 Summaryo i i e e e e e e 37
Details of the Switching Element Design 38
6.1 Design Goals and Guidelines 39
6.1.1 Two-PhaseClocks 39
6.2 Top Level Microarchitecture 41
6.3 Timing Generation 42
6.4 Input controller - ictict 45
6.4.1 InputPort-ipdp 46
6.4.2 Flit Checker -ictcheck 48
6.4.3 PointerFile-pfpf 49
6.4.4 Pointer File Load Controller - pfctl 50
6.4.5 Dual Ported Ram -dprdpr 51
6.4.6 Address Generator -ictaaddr. 51
6.4.7 Pointer to Address Mapper - ict.pfmap 52
6.4.8 Unload Controller - ict_unload 53
6.4.9 Token Generation - icttoken. 56
6.5 Crossbar 57
6.5.1 Token injector - xb_inject 58
6.5.2 Crossbar crosspoints - xbarelt 59
6.6 Output controller-octoct 60
6.6.1 ModuleI/O 60
6.6.2 Description 61
6.6.3 Output filter - octfilter 61
6.6.4 Output packager - oct_package. 63
6.7 Router e 64
6.71 ModuleI/O 64
6.7.2 Description 65
6.8 Summary e 66
Design Verification 67
7.1 Verification Procedure 67
7.2 Test Jigs and Scaffolding 68
7.3 TestingResults 69
74 Summary e e e e e e e e e 70

List of Figures

4.1 Packet, token passingl 18
4.2 State Diagram for the Reliable Protocol 20
4.3 Simple Network Topology 22
5.1 Switching element for 2D mesh 30
52 FrameFormat o 0., 32
5.3 Switching element block diagram 32
5.4 Input controller block diagram 34
5.5 Crossbar block diagram 35
6.1 Where the nonoverlap timegoes 40
6.2 Top Level Module Block Interconnect 43
6.3 Top Level Inter-Module Signalling 44
6.4 Input Controller Block Diagram 47
A.1 Simple TrafficModel 74

Chapter 1

Introduction

Suppose one wanted to construct a building-sized parallel computer. What
are the technical obstacles preventing one from doing so? The list is made
up of scalability concerns, issues which become increasingly important as the
machine gets larger. One key concern is the reliability, which decreases with
the size of the computer [10].

The reliability problem can be combatted by introducing a level of fault
tolerance into the computer. There are two main methods of providing fault
tolerance. The first is static reconfiguration, where the state of the machine
is checkpointed regularly to stable storage. Faults cause the machine to halt,
a reconfiguration is performed where spares are brought in or portions of the
machine are disabled, and the state of the computation is restored from the
last checkpoint. Unfortunately, as the machine gets very large and failures
quite frequent, the machine spends most of its time checkpointing. It may
even reach the point where the machine is unable to reliably checkpoint itself.

The second method of providing fault tolerance is dynamic reconfigura-
tion, where state is saved and restored in local areas of the machine through
replication. This allows the machine to continue operation while a fault is oc-
curring. This replication is not without costs. For example, one may replicate
the entire communication fabric of the computer to ensure reliable commu-
nication between processors, which loses by factor of two in performance to
non-reliable machines with equivalent wiring complexity. Alternatively, one
may use end-to-end protocols for communications, which require storage in

the processors to possibly repeat lost messages and a method of eliminating
duplicate messages upon receipt.

We propose in this thesis a third method of achieving reliable communica-
tion between processors. This method relies on the use of replicated storage
in the communication network and a new protocol, the Unique Token Proto-
col. The protocol requires a constant amount of storage per communication
element and hence is no barrier to scaling. It consumes no additional wire
bandwidth. Lastly, the overhead for elimination of duplicate messages is
only incurred when failures actually happen and thus the overhead becomes
essentially negligible.

We will also show the practicality of the unique token protocol by con-
structing a register transfer level description of a communication element.
This model is fairly complex, as one needs an adaptive router to go around
possible network faults, and the router must be deadlock free. As a result of
the base level of complexity, the model is kept as simple as possible to avoid
obscuring the implementation of the reliability protocol.

This thesis is organized into seven main sections. Chapter 2 details the
subset of parallel computers for which the reliable protocol was first designed.
Properties of the communication networks which impact protocols are given.
A simple fault model for those networks is presented. Chapter 3 explores
the scalability of end-to-end protocols to very large parallel computers. It
demonstrates that the storage requirements for such protocols do not scale
linearly with the number of processors. Chapter 4 presents the unique token
protocol which uses replication in the network. This protocol is shown to use
storage which scales linearly with the size of the machine. Chapter 5 presents
an overview of a router designed to support the new protocol. Chapter 6 gives
a detailed presentation of the microarchitecture. Chapter 7 describes the
design validation which was performed using simulations. Finally, chapter 8
presents conclusions.

Chapter 2

Communication Networks

There exists a large variety of communication networks for parallel comput-
ers. The major categories include butterflies [3], shuffle exchanges, hyper-
cubes [1], and meshes [6]. Further permutations exist when one accounts for
storage in the network, store-and-forward versus cut-through [12] and worm-
hole, congestion management policies, etc. All of these have an impact on
the protocols used to reliably transport data. In order to focus on the proto-
col and not the foibles of the network, we restrict ourselves to certain types
of networks which have uniform properties. These types of networks are not
readily described by the terms “3D mesh” or “hypercube”. Instead, we will
define what they are in terms of their topologies and congestion management
policies.

We are also contrasting reliable communication protocols, which implies
that portions of the network will sometimes fail. At the end of this chapter,
we will describe the network fault model used.

2.1 Topology

An interconnection network is a strongly-connected directed graph, I = G(N, C).
The vertices of I are a set of nodes, N. N itself is the union of the set of
processing nodes P and the set of switching nodes S. The edges are a set of
Channelsa C= Cinject U Ctransport U Ce:ctract’ where:

Cinjcct g P xS
Ctransport g S X S
Ce:vtract g S X P

Each channel is unidirectional and carries data from a source node to
a destination node. A bidirectional network is one where (nl,n2) € C —
(n2,n1) € C. Since symmetric communication paths between processors sim-
plify the analysis of things such as round trip times, the networks considered
here are constrained to be bidirectional.

The network must be able to maintain connectivity in the event of a fault.
The network is thus required to have at least two disjoint paths between any
two switching nodes. The paths must be disjoint in terms of the switching
elements appearing on each path.

Many topologys satisfy these requirements. They include toruses, hy-
percubes, meshes, and express cubes [8]. Later, examples of the protocols
will be given using two-dimensional mesh networks. This is to facilitate the
presentation and should not be construed as a binding requirement.

2.2 Congestion Management

Using the unique token protocol, the network promises to always deliver the
packet. The network is not allowed to drop packets, which implies that the
network must have storage for packets in the event of congestion. A switching
node may provide storage for an entire packet, as in the case of store-and-
forward networks. Alternatively, only portions of a packet may be stored at
each switching node, as in virtual cut-through and worm-hole routing. The
choice of buffering strategy does not affect the unique token protocol.

The network must have some facility for routing around failed channels
and/or switching nodes. For example, dimension-ordered routing in a 3D-
mesh network is not tolerant of any minor irregularities in the topology.
Adaptive routing algorithms such as those using virtual channels or chaotic
methods are required [4, 5, 14, 11]. Further, such algorithms must either be
deadlock free or provide a method other than packet dropping to break the
deadlock [9].

10

2.3 Fault Model

The fault model used throughout this thesis is a simple one. We assume that
failures occur at single points. We further require that the time between
failures is sufficiently large to allow the network to heal.

For wires, the fault model is a stuck-at fault. When a wire fault is de-
tected, the fault is assumed to be permanent, not transient. This is done
because the process of deciding whether or not a wire failure is transient
is technology dependent. For example, a wire failure between two adjacent
chips on a PC board is usually taken as indication that something is physi-
cally wrong with the board. If the wire is actually a cross country link using
commercial phone lines, one is more apt to blame noise for the failure.

Nodes are required to operate in a fail-stop fashion for much the same
reason, in that there does not exist a good technology or implementation in-
dependent model of node failures. The unique token protocol is not designed
to be robust in the presence of Byzantine failures. If one did not impose
the fail-stop requirement, one would always able to contruct some failure
mechanism which causes a particular implementation of the protocol to also

fail.

Lastly, we require that failures not occur too closely to one another. This
is to avoid multiple single point failures from appearing to be multiple point
failures.

11

Chapter 3

Reliable End-to-End Protocols

We have already seen that large scale parallel computers require reliable
interprocessor communication. In this chapter, we will look at the problem a
reliable protocol tries to solve and then explore several end-to-end protocols.
We will see that while these protocols do solve the reliability problem, they
do not scale linearly with the size of the machine. We measure machine size
by the number of processors and represent the size of the machine by the
letter n.

3.1 Characteristics of the Protocols

An entity on node A wishes to send a message to an entity on node B. We
wish that the entity on node B processes the message exactly once. A subtle
point is that is perfectly acceptable for node B to receive many copies of the
same message, as long they are processed exactly once. !

If a portion of the network which holds the message as it transits from
node A to node B could fail, then the message needs to be replicated some-
where. It could be replicated in the network, at node A, or both. Where the

1This may be loosened even further to allow the multiple processing of the same mes-
sage, as long as the processing is idempotent. We believe that most messages in parallel
computers result in actions which are not idempotent, so we are unable to take advantage
of idempotence.

12

the replication occurs is a key property of the protocols.

With multiple copies of the same message and imperfect communication
between any two copies, it is possible to deliver duplicates of a message to
node B. The destination must now discard all duplicates and process the
message exactly once. Thus, the other key property of a protocol is how the
destination detects and discards redundant messages.

3.2 Alternating Bit Protocol

The alternating bit protocol [2, 16, 19] relies on a FIFO communication
channel between two nodes, A and B. The channel is bidirectional. The
alternating bit is a reusable sequence number ranging over 0 and 1.

The protocol begins with node A sending a message to node B. The mes-
sage contains the sequence number 0. Node A repeatedly sends the message
until it receives an acknowledgment having a sequence number of 0. Node A
then shifts to sequence number 1 and starts its next message. Node B sends
acknowledgments each time it successfully receives a message. Node B only
processes messages whose sequence number differed from the last sequence
number successfully received.

This protocol cannot readily be used in a parallel processor for the fol-
lowing reasons:

1. It does not allow multiple, unacknowledged messages to be in flight
between the two nodes. This is a severe performance bottleneck.

2. It relies on FIFO channels. This is certainly not the case in a network
with adaptive routing.

3. The sequence number must be maintained between each pair of nodes.
This scales as O(n?), which is not acceptable for large machines.

13

3.3 Time Stamps

Time stamps are a way of augmenting the alternating bit protocol to allow
multiple messages in flight and account for out-of-order message delivery.
When node A first decides to send a message to node B, it stamps it with
the current time. The message is then sent to node B.

When node B receives the message, it checks to see if this message is
newer than all previous messages from node A. If it is, node B processes the
message and returns a positive acknowledgment to node A. If the message
was not newer, a negative acknowledgment is returned.

If node A receives a positive acknowledgment, it is done with that mes-
sage. If the node A receives a negative acknowledgment for a message it
believes to have been sent successfully, the negative acknowledgment is ig-
nored. If it receives a negative acknowledgment for a message which it be-
lieves hasn’t been successful, it updates the time stamp on the message and
resends the message. Lastly, node A may time out and simply resend the
message.

This protocol can be used in a parallel processor, but it still suffers from
the following problems:

1. When messages arrive at the destination out of order, they will need
to be retransmitted.

2. The sequence number must be maintained between each pair of nodes.
This scales as O(n?), which is not acceptable for large machines.

3. Choosing the size of the timeout window is difficult when the network
has large variations in latency.

3.4 Windowed Time Stamps

This protocol is basically the same as the time stamp protocol, except that
the destination remembers the n newest time stamps it has seen from a
source. This allows the destination to accept messages which arrive slightly
out of order. The protocol only suffers from:

14

1. The size of time stamp tables in the destination do not scale.

2. Choosing the size of the timeout window is difficult when the network
has large variations in latency.

3.5 Summary

We have explored three different end-to-end protocols. We have seen that the
expected space requirements of the protocols are not constant per node, ow-
ing to the n? growth in the destination time stamp tables and the \/n growth
of the source buffer pools?. Further, determining “good” source buffer-pool
sizes and time-out intervals is largely empirical. These parameters may not
yield satisfactory performance when new programs offer traffic not in accor-
dance with the simulation model. We are thus motivated to look for new
protocols, which is the subject of the next chapter.

2A derivation is contained in Appendix A

15

Chapter 4

The Unique Token Protocol

We saw that the end-to-end protocols replicate packets in the source, requir-
ing storage in amounts that do not scale linearly with the size of the machine.
The destination requires a large table to eliminate duplicates which also does
not scale. As alluded to in the chapter on end-to-end protocols, there are
several places in a system where packets can be replicated and many ways
for the destination to eliminate duplicates. In this chapter, we propose an al-
ternative reliable protocol which uses the network to replicate packets. This
protocol, the unique token protocol, will be shown to have both satisfactory
performance and implementation costs.

4.1 Overview of the Protocol

We observe that many networks already provide storage for packets in flight.
We propose to use that storage for maintaining duplicate copies of a packet
in the network, rather than keeping copies at the source. By distributing the
storage throughout the network, we will be able to bound the storage to a
constant amount per node.

We also noticed that the end-to-end protocols required large tables to
handle possible packet duplication, even though most the time duplicates
were not sent. It would be desirable if, when the network delivers multiple

16

copies! of a packet, all copies of the packet were marked as being copies.
Thus, when a packet arrived marked as unique, the destination node would
not have to worry about duplicate elimination. Only in the rare case of actual
errors would the duplicate elimination machinery be used.

We begin the presentation of the unique token protocol with a model of
a source node sending a packet to a destination node, where the packet is
buffered and forwarded at several intervening switching nodes along the way.
The buffering and forwarding process needs to ensure that at least two copies
of the packet exist along the path from source to destination at all times.
This is done by first copying the packet forward one node, then allowing
the release of the storage in the rearmost node. This is shown in figure 4.1.
Note that any node along the path only receives one copy of the packet, even
though multiple copies are kept.

When the packet first enters the network, a token is sent along behind
the packet. We will use the token to determine when the packet has been
duplicated in the network by preserving an invariant, that no copies of the
packet exist in the path behind the token. Thus, if a single path is used
to connect source and destination, the arrival of a token at the destination
implies that the packet has been delivered exactly once.

When a portion of the network fails, communication between the advance
and rear copies of the packet may be severed. Neither copy knows the fate
of the other, so they both must make their way to the destination. When
they arrive at the destination, both packets must be marked in such a way
as to cause the destination to look for duplicates. The protocol does this by
establishing two types of tokens: unigque or replica. When the token is first
sent along behind the packet, the type is unique. If the network ever has to
use multiple paths while forwarding a packet, the token is changed to type
replica for all copies of the packet.

The conversion of tokens of type unique to tokens of type replica happens
when the network fails. The rear copy of the packet is still on the path
leading from the source and will have a token coming up from behind. The
rear copy simply chooses a new forward path to the destination and copies
itself forward. When the token arrives at the point of reroute, it is converted

l«copies” includes the original, plus all replicas made in the event of the loss of the
original.

17

(a)
DDC

Switching Switching

[
{

Switch Switchi Switchin,

Node Ah' Node I“. Node C 9
(C)

Switching Switching Switching

Node A Node B Node C

Switching Switching Switching

Node A Node 8 Node C

Figure 4.1: An illustration of packets and the token moving through the network.
(a) Switching node A has the token and a copy of the packet, switching node B has
a copy of the packet, and switching node C is empty. The token-passing portion
of the protocol begins with the nodes in this state. (b) Switching node B then
copies its packet to node C. (¢) When node B has successfully copied its packet
to node C, node B sends an acknowledgment to node A. Node A now knows that
the packet is safely in two other places, and is able to delete its copy. (d) The last
remaining step is for node A to pass the token to node B.

to replica. The advance copy lost the path back to the source and will not
see a token. The advance copy generates a new token of type replica and
continues on to the destination. We rely on packets containing some form of
unique identifier to allow the destination to eliminate the duplicates.

18

4.2 Protocol State Diagram

The full protocol used by a single node for moving packets and tokens is
shown in figure 4.2. There are 12 states in total. States 1-6 are used under
normal operation, states 7-12 are used when errors occur. In the detailed
description that follows, there are actually three nodes involved. There is
the node whose state transitions are being displayed (simply the node), the
node closer to the source (the upstream node), and the node closer to the
destination (the downstream node).

The inputs to the state machine are tokens, packets, and acknowledg-
ments. Tokens and packets are placed in one first-in-first-out (FIFO) queue,
acknowledgments are placed in a second. This allows the state machine to
disregard the order of arrival of these events. In particular, this simplifies the
handling of the arrival of a second packet while the node is still forwarding
a token.

(1) Idle The idle state is left whenever a packet arrives from the upstream
node.

(2) Forward Packet The node determines a route for the packet and for-
wards the packet to the downstream node. The node waits a short,
fixed period of time to allow the downstream node to signal the success
or failure of the transfer.

(8) Send Ack The node sends an acknowledgment to the upstream node,
indicating that three copies of the packet now exist and that it is safe
for the upstream node to erase its copy.

(4) Wait for Ack The node now waits for the downstream node to tell it
that its copy of the packet may be erased.

(5) Wait for Token The node erases its copy of the packets and waits for
the token from upstream.

(6) Forward Token The token is sent downstream and the automaton re-
turns to idle.

19

6]

Idle
Packet Arrives
) ®)
Forward ailure C
Packet
Success Failure Success
3) (11
Send ailure Wait for A Wait for
Ack Ack Token
Success Failure Success
4)
. Reroute,
ailure : Token or
@ orward Failure
acket
Ack '
d)
Wait for

Token

Token
6)

Forward
Token

Figure 4.2: State Diagram for the Reliable Protocol

(7) Reroute The packet is rerouted and forwarded. This process repeats
until succeeding.

(8) Send Ack The node sends an acknowledgment to the upstream node,

20

indicating that three copies of the packet now exist and that it is safe
for the upstream node to erase its copy. Since this state is entered
under error conditions, the success or failure of the acknowledgment
transmission does not matter.

(9) Wait for Ack The node now waits for the downstream node to tell it
that its copy of the packet may now be erased.

(10) Reroute The packet is rerouted and forwarded. This process repeats
until succeeding. Since an acknowledgment has already been sent up-
stream, this state returns to the wait-for-ack state (9).

(11) Wait for Token The node erases its copy of the packets and waits for
the token from upstream.

(12) Send Replica This state is entered only after an error has occurred,
so the token sent downstream must be of type replica.

4.3 An Example

We now give examples of the protocol moving a packet through a simple
network topology, as shown in figure 4.3. Node A has generated a tagged
packet which is destined for node B.

The tagged packet must travel via either switching elements SE1,SE2,SE4
or SE1,SE3,SE4. We will assume that the preferred path is SE1,SE2,SE4.

Here is the protocol, given that no errors occur.

1. The protocol begins with node A holding a tagged unique packet. Node
A first transmits the packet part of the tagged packet to SE1.

2. SE1 sends the packet part to SE2 while keeping a copy.

3. When SE1 determines that the packet part has been successfully trans-
ferred to SE2, SE1 sends an acknowledgment to Node A.

4. When node A receives the acknowledgment, it knows that the packet
is now safely stored in two places in the network: SE1 and SE2. Node
A then deletes its copy of the packet and sends the token to SE1.

21

Node A Node B

10.

Figure 4.3: Simple Network Topology

Meanwhile, SE2 has transmitted the packet to SE4 and sent an ac-
knowledgment to SE1.

When SE1 has both the acknowledgment and the token, it deletes its
copy of the packet and sends the token to SE2.

SE4 sends the packet to node B and sends an acknowledgment to SE2.

SE2 now has the token and an acknowledgment, so it deletes the copy
and sends the token to SE4.

Node B, being the final destination of the tagged packet, sends an
acknowledgment to SE4 as soon as it receives the packet portion.

SE4 deletes its copy and sends the token to node B.

Node B now has a tagged unique packet and we see that no copies exist in
either node A or any of the switching elements. The tagged unique packet
has been delivered exactly once.

We now need to examine what the protocol does when errors occur. In
this example, the fault will occur in the channel between SE1 and SE2.

22

10.

11.

12.
13.

. The protocol begins with node A holding a tagged unique packet. Node

A first transmits the packet part of the tagged packet to SEI.
SE1 sends the packet part to SE2 while keeping a copy.

When SEI1 determines that the packet part has been successfully trans-
ferred to SE2, SE1 sends an acknowledgment to Node A.

When node A receives the acknowledgment, it knows that the packet
is now safely stored in two places in the network: SE1 and SE2. Node
A then deletes its copy of the packet and sends the token to SE1.

SE2 now transmits the packet to SE4 and tries to send an acknowledg-
ment to SE1, but the channel between SE1 and SE2 goes down. SE2
manufactures a replica token and proceeds as if the token was received

from SE1.
SE4 sends the packet to node B and sends an acknowledgment to SE2.

SE2 now has a replica token and an acknowledgment, so it deletes the
copy and sends the replica token to SE4.

Node B, being the final destination of the tagged packet, sends an
acknowledgment to SE4 as soon as it receives the packet portion.

SE4 deletes its copy and sends the replica token to node B.

Node B now has a tagged replica packet. Node B extracts the UID
contained in the packet and compares it against the list of replicas it
has received so far. Since it has not been seen before, node B adds it
to the list and processes the packet.

Meanwhile, SE1 notices that the channel between SE1 and SE2 has
gone down. It changes its token from unique to replica. It then takes
its copy of the packet and sends it to SE3.

SE3 transmits the packet to SE4 and sends an acknowledgment to SE1.

When SE1 has both the acknowledgment and the token, it deletes its
copy of the packet and sends the replica token to SE3.

23

14. SE4 sends the packet to node B and sends an acknowledgment to SE3.

15. SE3 now has the token and an acknowledgment, so it deletes the copy
and sends the token to SE4.

16. Node B, being the final destination of the tagged packet, sends an
acknowledgment to SE4 as soon as it receives the packet portion.

17. SE4 deletes its copy and sends the replica token to node B. Node B
now has a tagged replica packet, so it extracts the UID and checks its
list. Since the UID matches, the packet is discarded.

We see that although node B has received two copies, it processes only
one. Thus, for this simple example, the protocol works.

4.4 Proof of Correctness

The example given shows that the protocol works correctly in a select case.
We will now show that the protocol is correct in general. The correctness
properties we will show are:

e a copy of the packet is always delivered,
e a packet is always delivered with exactly one token, and

o if a packet is delivered tagged with a unique token, then it is the only
only copy of that packet delivered.

We begin by restating our assumptions about the network. We require
that the network remain fully connected after all faults have occurred, to
prevent stranding a packet in the network. The router must be able to route
around any faults. The faults are single points of failure and do not occur too
closely together in time. Lastly, we require that progress delivering tokens
or packets is always being made.

Theorem 1 If a a node s sends a packet to destination t, a copy of the
packet is always delivered.

24

Proof The unique token protocol keeps at least two copies of any packet
in the network. This was illustrated in figure 4.1, where the packet is copied
forward before the rearmost copy is erased. The fault model allows the
destruction of at most one copy per fault. After the fault has been detected
and the packet started on a new path, the packet is again duplicated. Thus
a packet will always be delivered. O

The next two properties are difficult to prove, as the protocol relies on
implicit channel state to bind a token and a packet. We will make that
binding explicit by augmenting the token with the destination of the packet
and the packet’s unique identifier. This restriction requires that a node
actually have a copy of the packet before it is able to generate a token. This
does not violate the spirit of the protocol, as a node need only erase its copy
of the packet before transmission of a token and we observe that the protocol
will only send tokens after it received a packet.

The second property requires two lemmas, to show that at most one copy
and at least one copy are delivered.

Lemma 2 A node receives at most one copy of a token for each packet it
receives.

Proof In order for a token to be delivered, it must have been sent from
another node. In order for the token to be sent, the protocol must have
passed either the forward token or send replica states shown in figure 4.2. In
order to reach either of these states, a copy of the packet must have been
sent. Once the token is sent, the packet and the token are erased. It is not
possible to generate additional copies, as the unique identifier is lost. a

Lemma 3 A node receives at least one token for each packet it receives.

Proof If a node receives a packet on a channel and communication is
not subsequently severed, the node will eventually receive a token, owing to
the network’s progress property. If communication is severed on the channel
before it receives a token, the node will generate one new token and bind it
to the packet, as shown in the wait for token and send replica states of figure
4.2. 0

25

Theorem 4 A packet is received with ezactly one token.
Proof We combine Lemma 2 and Lemma 3. O

Lemma 5 If a unique token is transmitted from a node, only one copy of a
packet was transmitted from that node.

Proof Tokens are only transmitted in states forward token and send
replica. In order for a unique token to be transmitted, the protocol must
have passed through the forward token state. There is only one set of state
transitions which allow the protocol to pass through that state. On that set
of transitions, the packet is transmitted exactly once in state forward packet.
O

Theorem 6 If a packet tagged with a unique token is delivered to a destina-
tion, then it is the only copy of that packet delivered.

Proof By contradiction. Suppose that multiple copies of a packet were
delivered to the destination, along with a unique token on one of the packets.
In order for multiple copies of packet to be delivered, a node between the
source and destination must have transmitted multiple copies. At the node
where multiple packets were transmitted, none of the transmitted packets
were tagged unique. As those packets found their way to the destination,
none of the tokens could have been converted to type unique, so no unique
tokens could have been delivered. o

4.5 Performance and Scalability

Under the unique token protocol, assuming error-free operation, each node
transmits a packet, an acknowledgment, and a token. The token is quite small
and can be represented by a single bit. The acknowledgment is only used
between nodes and could be represented in a few bits. Thus, the bandwidth
between nodes is used primarily for moving the packet. The end-to-end
protocol required that the acknowledgment be sent end-to-end, consuming

26

bandwidth equal to that of a small packet. Therefore, in terms of wire
bandwidth, the unique token protocol is superior.

The unique token protocol was designed to eliminate the nonlinear growth
in storage of end-to-end protocols. There are two storage components of
concern: the storage in the source and the duplicate elimination tables. The
unique token protocol eliminates the storage in the source. Instead, it uses
storage in the network. From the discussion of packet replication, we see
that the network requires buffers for at most three copies of any packet. This
compares well to the two copy requirement for ordinary store and forward
(copy forward, then erase). When wormhole routing is used, the buffering
requirements approach two copies for the unique token protocol and one copy
for the end-to-end protocols. The buffering required is a fixed amount per
switching node, which implies that the amount of memory in the system
dedicated to packet replication grows linearly with the size of the machine.

Duplicate elimination must still occasionally be performed at the desti-
nation, requiring tables. However, the tables need only log packets whose
tokens are of type replica, not those tagged as unique. Under error-free con-
ditions, the log will be empty. When an error occurs, only a fixed number of
replicas can be created before the network heals and packets are adaptively
routed around the fault. Restated, faults only cause replica of packets to be
made when those packets were near the fault around the time of failure, not
as a result of a static adaptation. If faults occur one at a time, only a fixed
number of replicas can ever be sent to a destination, allowing the duplicate
elimination log to be of fixed size. Again, a fixed size per destination node
allows a linear growth in the memory requirements of the system.

In terms of latency, the protocol does not delay the arrival of the packet
at the destination, even if the token is slowed. One simply winds up with
an excess number of copies of the packet distributed along the path between
the token and the destination. However, since the packet arrives at the
destination while the token is at least two nodes away, there is approximately
a two hop delay before the destination knows the type of token.

This need not be an impediment to the start of processing the packet.
If one is able to bound the maximum packet latency in the system, one is
able to timestamp the entries in the duplicate elimination log and discard
them after all possible copies have been received owing to the time constraint.

27

Since we expect the maximum delivery time to be small, say on the order
of milliseconds, and the interarrival time of failures to be large, say on the
order of tens of seconds, most of the time the log will be empty. When the
log is empty, we can safely process any packet which arrives, as long as the
tokens for all previous packets have been seen.

Of course, if several packets arrive before their tokens, due to the time
multiplexing of several packets onto the same physical channel, one is always
able to do a small amount of ordinary duplicate elimination as in the end-to-
end protocols. The size of the table required for this corresponds exactly to
the number of packets time-multiplexed onto the physical channel. Again,
these are all fixed size tables, so the overall storage requirement grows linearly
with the size of the system.

4.6 Summary

In this chapter, we described a protocol which will reliably deliver messages
without the use of an end-to-end protocol. The protocol’s correctness was
demonstrated in an example and then proven correct. The new protocol
only requires constant amounts of storage in each node to allow replication
of packets. Thus, the protocol imposes no limits on machine scaling owing
to memory constraints. The protocol was shown to be more wire bandwidth
efficient than end-to-end protocols. It was also shown not to increase the
latency from the start of message transmission to the start of message pro-
cessing. On all three critical measures: memory, bandwidth, and latency, the
unique token protocol is superior or equal to end-to-end protocols.

28

Chapter 5

Switching Element
Organization

In the preceding chapter we presented the unique token protocol which is to
be implemented in the network. We need to understand the costs of such
an implementation. In developing the organization of the switching element,
we will gauge its complexity and look for unforeseen costs or benefits. We
choose 2D meshes as the base network, as they afford simple non-reliable
implementations and the complexity of a reliable version will be due mainly
to the reliability features. Similarly, we organize the parts of the design for
clarity, not for performance, as we want the design to be intuitively correct.
This chapter will describe how a reliable switching element intended for use
in 2D-mesh networks may be organized.

5.1 Information Exchange

The switching element has interfaces to its four geographic neighbors and its
processor, as shown in figure 5.1. Here, the same type of interface is used to
connect the switching element to the processor as is used to connect to the
neighboring switching elements, although it need not be the case in other
designs. To form a network, the switching elements are tiled into a plane
and are assigned (z,y) coordinates.

29

West — nggmg . East

T\

South Processor

Figure 5.1: Switching element for 2D mesh

To describe how these switching elements communicate, we will use the
terminology suggested by Dally [7]. Communication between processing ele-
ments is performed by sending messages through the network. Messages may
be arbitrarily long, so a message may have to broken into one or more packets
for transmission. Packets contain sequencing information to allow them to
be reassembled into a message. They also contain routing information and
are the smallest unit of information exchange to do so. The routing informa-
tion is specified as a destination (z,y) coordinate pair. Packets must carry a
unique identifier for possible duplicate elimination at the destination. This
unique identifier is simply the source’s (z,y) coordinate pair concatenated
with a small sequence number.

A packet contains three or more flow control digits or flits. They are the
smallest unit on which flow control is performed. By decomposing the packets
into flits, the packet may be wormhole routed over virtual channels. Flits
from multiple packets are time division multiplexed onto a single physical
channel, forming the virtual channels. The virtual channels associated with
a single physical channel share physical bandwidth, allocated on a flit by
flit basis. Since the flits must be demultiplexed when received, they carry a
virtual channel identifier.

Flits come in three main kinds: head, data, and token. A packet is
made of one head flit, one or more data flits, and one token. The head

30

flit contains the routing information. The first data flit carries the unique
identifier. Subsequent data flits are used for the actual data transport. The
token flit cannot carry any data and comes in two sub-kinds: unique and
replica. Tokens of sub-kind replica are generated during network failures.

Flits carry sequence numbers to allow their reassembly into a packet in
the event that that network failure cuts the packet in two. This reassembly
information could be maintained as a starting-flit-number field in the head
flit of the packet. It is not done here in order to simplify the design.

Flits are transferred over physical channels in physical transfer units or
phits. A phit is usually smaller than a flit as one encounters pin-count re-
strictions on actual IC devices. For example, 36 data bits over 7 bidirectional
channels would require 504 signalling pins. In this particular case, we wanted
to keep the total pin-count for the switching element in the neighborhood
of 100 pins. With 5 ports, this came out to be under 10 pins per phit, so a
width of 8 bits was chosen for a phit. One of the 8 bits is used for parity, so
7 remain for the movement of data between devices.

At least 6 phits are needed to transport a data field of 36 bits. After
counting 11 additional bits for virtual channel numbers, sequence numbers,
and kind fields, we see that 7 phits are nearly fully used in transporting
a flit. Other information, such as acknowledgments and alarms must be
communicated between devices. To make efficient use of the wires between
devices, we use the same wires as are used to in transporting the flit and time
multiplex onto them this additional information. The time multiplexing is
done in a fixed manner and we call the structure of the time multiplexing a
frame. Figure 5.2 shows the complete frame format.

5.2 Block Diagram

The switching element, as shown in figure 5.3, is composed of four types
of elements. They are input controllers, a switch, output controllers, and a
router. Before delving into the details of each module, a few top level items
need to be explained.

The first item is where to put the the buffers. Since the switching element
does not drop flits under contention, buffering for flits must be provided. In

31

vco vCi vc2 Kind0 Kind1 AckO Alarm Parity0
Data0 Datat Data2 Data3 Data4 Data$ Seq0 Parity1
Dataé Data7 Datag Datad Data10 Datall Seq1 Parity2
Datat2 Datai3 | Datat4 | Datats Data16 Data17 | Seq2 Parity3
Datal8 Data19 Data20 | Data21 Data22 Data23 | Seq3 Parity4
Data24 | Data25 Data26 Data27 Data28 Data29 | Seqs ParityS
Data30 Data31 Data32 Data33 Datad4 Data3s Seqs Paritys
CRCO CRC1 CRC2 CRC3 CRC4 Ackl Ack2 Parity?
Wires

Figure 5.2: Frame Format

—4—1 Input Control =1 > Output Control
—+ =] Input Control | Switch ='Output Control

.
.
.
.

e e o @

—_:! Input Control I—“ Output Control

Figure 5.3: Switching element block diagram

32

Time

this organization, the buffering was chosen to be solely in the input controller.
This was done for several reasons. The first is that the presence of output
queueing implies that the peak transfer rate out of the switch is higher than
the peak transfer rate of the physical channel, which requires wider internal
data paths or higher internal clock rate. Both of these seem unlikely in
practical applications. The second reason has to do with the generation of
acknowledgments. The switching element cannot send an acknowledgment
upstream for a flit until that flit has successfully been copied downstream.
If queueing is done in the output controller, multiple output controllers may
decide to send acknowledgments over the same physical channel at the same
time, contending for use of the acknowledgment signals. Solutions involve
either separate acknowledgment signals for each virtual channel or some form
of queueing on acknowledgments, both of which appear to be impractical.

The second item deserving explanation at this point is the use of a single
centralized router. The motivation behind this is that the router allocates
resources, the output virtual channels. If the router were to be distributed
among the input controllers, some form of arbitration for those resources
would have be implemented. Although distributing the router is desirable
to avoid queueing delay for the centralized router, the arbitration for virtual
channels and communication of deadlock avoidance information is complex.
Attempting to describe such a distributed router is deemed outside the scope
of this thesis.

The last item is that the entire switching element is flit synchronous.
This was done to avoid the possibility of livelock arising from having control
loops longer than the fundamental unit of message synchronization. If the
switching element were to operate phit-synchronously, one would have to go
through all control loops and guarantee that livelock could not arise. It is
far simpler to make the unit of synchronization longer than any control loop
and suffer a performance loss.

5.2.1 Input Controller Overview
The input controller, shown in figure 5.4, logically consists of four submod-

ules: a loader, a dual-ported RAM, a pointer file, and an unloader. The
loader places flits into the dual-ported RAM. The unloader is responsible for

33

" Dual—Ported

8 RAM y 8

o [[} 7]

14 .

(o

. = Q

S 3 S| 2
Pointer File

Figure 5.4: Input controller block diagram

maintaining all channel state, interacting with the router and output con-
trollers, and removing flits from the RAM. The pointer file keeps all the
read/write pointers into the RAM.

The loader contains modules to receive phits from the physical channel,
check the parity and CRC fields, and place flits into the dual ported RAM.

The loader communicates the virtual channel state information to the
unloader via a pointer file. The pointer file maintains both write and read
pointers into the RAM for all virtual channels. The pointer file also keeps a
count of the number of acknowledgments sent for each virtual channel.

The unloader assigns one of three states to each input virtual channel:
idle, waitingForRoute, or active. The unloader monitors the pointer file,
looking for channels with unsent flits. This is determined by a disparity in
read and write pointers. If the channel is idle, the first flit is sent to the
router and the channel state changed to waitingForRoute. If the channel is
active, the flit is forwarded to correct output port. If the channel is in the
waitingForRoute state, nothing is done.

When the router establishes a route, it changes the state of the virtual
channel to active. If the route must be retried, the state is changed to idle.

The unloader contains the logic for generating acknowledgments. An
acknowledgment must be delayed a few flit times after the flit enters the
crossbar, to allow the error checking on the output link to take place.

The unloader also contains logic for changing flits of type tokenUnique
to type tokenReplica, as well as being able to generate a flit of type token-
Replica.

34

2 4
.E N

Outputs

Figure 5.5: A crossbar. Input 1 is connected to output 2,2 to 1, 3 to 4, 4 to
3, and 5 to 6.

5.2.2 Crossbar Overview

The crossbar moves flits from input controllers to output controllers and
the router, which results in an asymmetric crossbar. The input controller
submits a bid to the crossbar, indicating to which output it wishes to send
a flit. The crossbar responds with a bid-accepted signal if the crosspoint is
established. The output controller is told of the crosspoint by the column
valid signal. A typical crossbar is shown in figure 5.5.

The output controller or router indicates acceptance of a flit by assert-
ing the destination-accepts signal. The output controller may refuse a flit
if transmission of the flit would overflow the downstream input buffer. In
addition, the crossbar provides an indicator of output channel health back
to the input port.

5.2.3 Output Controller Overview

The output controller is composed of two submodules, the output filter and
the output packager. The output filter maps input <port,virtual channel>

35

tuples to output virtual channels. The virtual channel field in the flit is
altered in this submodule. The output filter also implements virtual channel
flow control by not accepting a flit from the crossbar when sending that flit
would cause a buffer to overflow.

The output packager computes and affixes parity for the first and last
phits of a flit. Parity for the intermediate phits are end-to-end. In addition,
the output packager computes and affixes the CRC field.

5.2.4 Router Overview

The router is responsible for the mapping of input <port,virtual channel>
tuples to output ports. The router receives head flits from the crossbar.
The router disassembles the flit into a dimension reversal (DR) number and
destination x, y, and z coordinates. The DR number is broadcast to all output
controllers. Each output controller responds with three pieces of information:

e if the output port is up,
o if there are any free virtual channels, and

o if there are no free channels, whether or not the packet can wait for a
virtual channel to free up.

The router then attempts to perform dimension ordered routing. If the
desired output controller is down, an output controller is selected at random.
If the targeted output has no free channels and the packet cannot wait due
to DR number constraints, a new output controller is picked.

If the targeted output controller has no free virtual channel, the router
tells the input controller to retry the route request. If there is a free virtual
channel, the router signals the output controller to reserve a virtual channel
at a given DR level. The router also notifies the input controller that a
route has been established and that the input controller may proceed with
forwarding the packet.

36

5.3 Summary

In this chapter, we presented the top-level organization of a switching ele-
ment implementing the unique token protocol. The communication between
switching elements was described. A block diagram of the switching element
was explained and several architectural motivations were given. Details of
the four top-level blocks were then filled in. We noted that this particular
organization was chosen to minimize the design complexity of the microar-
chitecture, which is the subject of the next chapter.

37

Chapter 6

Details of the Switching
Element Design

The low-level architecture and design must look ahead to the physical imple-
mentation. The easiest implementations (for humans) using our CAD tools
are done using standard cells. This implies that the logic complexity cannot
be too great, nor can more than a few specialized structures be built. Stan-
dard cell designs are also difficult to optimize for speed, so we do not attempt
to push the library cells to their limits. We also restrict ourselves to a clock
methodology and a sequential logic style which may be readily verified using
a timing analyzer such as Crystal.

Design guidelines are specified to support the design goals. The guidelines
cover the clocking methodology and how hand timing calculations may be
done. They discuss documentation style, the use of custom circuits and
circuit conventions.

A detailed architecture for the switching element is presented. It is given
at the module level, which should correspond to a page or two of schematics
per module. For each module, we list its inputs and outputs and give a
description of the functionality contained in the module. The signal names
used in the descriptions are intended to be the same as those used in the
M-language! model of this architecture, found in the appendix.

1Mentor Graphics, Silicon Design Division

38

6.1 Design Goals and Guidelines

The primary design goal is to demonstrate the logical correctness of the
unique token protocol under operating conditions. The protocol is built
on top of a full-featured router, one that is both adaptive and provably
deadlock free. This design base is non-trivial and we try to simplify the design
wherever possible. We therefore minimize the number of basic mechanisms
and do not perform some obvious optimizations. For example, portions of
the router could be distributed among the input controllers, optimized for
packets traveling in straight line. This is a common case and would eliminate
congestion at the router module. However, it would add considerable logic
complexity and chip area, so it is deemed to be not worth the risk.

6.1.1 Two-Phase Clocks

The chip is synchronous and derives all timing from a two-phase non-overlapping
clock. An single external clock is supplied and the clock buffer logic will in-
ternally generate the two non-overlapping phases PH1 and PH2. The two
high-true phases PH1 and PH2 are distributed across the entire switching
element. The low-true versions PHln and PH2n must be derived locally in
each module.

For the MOSIS 24 process, T is about 75ps. Our goal is a clock period of
6007, 2007 per phase with 1007 of non-overlap. Figure 6.1 illustrates where
the nonoverlap time of 1007goes. Intermodule clock skew is +/— 257. For
SPICE, we use slow-N, slow-P, at 50C and 4.5v.

Strict two-phase discipline is used throughout the chip. All signals are
labeled with their type, one of:

39

Fb{mlule A’s /——
Module A’s —
Data
Module A's
PH2
25tau skdw
Module B's — _-I
PH2 \ / }) /
50tau Q2 generation
. ~f
Soten ® T\ T\ /)

25tau fall tigne
=

Figure 6.1: Where the nonoverlap time goes

V1 | Valid during phase 1. S1 signals are the outputs of latches
clocked by PH2 or signals combinatorially derived from other
V1 signals.

V2 | Valid during PH2.

Q1 | Qualified by PH1. QI signals are asserted only during PHI.
PH1 is a QI signal. Other Q1 signals are derived by ANDing
PH1 with V1 signals.

Q2 | Qualified by PH2.

S1 | Setup during PH1. Occasionally, a signal originating at a PH2
latch will have a propagation time longer than 1/2 a clock
period. Such signals will met the setup time for a PH1 latch,
but cannot be used to generate a Q1 signal. Note that all V1
signals are S1 signals, so a V1 signal may safely be supplied to
any input requiring an S1 signal.

S2 | Setup during PH2.

The remaining restrictions are:

1. Maximum delay to a Q1 (Q2) signal from PH1 (PH2) is 507. Delay is
measured from 50% of input to 50% of output.

40

10.
11.

12.

13.

Maximum rise(fall) time (10% to 90%) of a Q signal is 257.
There are no minimum delay constraints.

All combinatorial delays must be less than 2507 from PH1 or PH2
except where expressly noted. This is to allow a very simple timing
verifier to operate.

Each latch must be supplied with a Q1 clock and S1 data or a Q2 clock
and S2 data.

All feedback paths must be broken by a latch.
All signals sourced by a module should be V2.

All internal modules should latch their inputs on PH2, operate for zero
or more cycles, and then drive their outputs starting in PH1.

. Modules should assume that their inputs are S2, as they may still be

changing during PH2, on account of clock skew between modules. They
will be stable 1007 before the end of PH2.

All modules used should use only fully restored static CMOS logic.

All signals should be pulled to VDD or GND at all times. No precharged
or pseudo-NMOS circuits should be employed. All transmission gates
should include both N and P devices.

All modules should be designed so that all storage nodes are static
during PH1. If the clock is stopped with PHI high, no data should be
lost.

All static latch feedback loops should connect only to the gates of
transistors to avoid dynamic charge sharing.

6.2 Top Level Microarchitecture

With the design guidelines stated, the details of the microarchitecture can
be presented, starting at the top level. The block diagram, as presented in

41

chapter 4, did not provide any details of the wiring between modules. It
is redrawn in figure 6.2 to explicitly call attention to the module intercon-
nect. A representative of each modules is shown is figure 6.3, along with the
intermodule signals used.

The chip interface consists of support signals, such as clock and reset,
together with the signals used to communicate with other switching elements.

| Name | 1/0 [Description i
clock I | The single phase clock.
reset The chip reset.

I
d[4:0][7:0] | I [The port data in.
q[4:0][7:0] | O [The port data out.

6.3 Timing Generation

The timing generator tim_tim provides a chip wide timebase for flit relative
timing. Since there are 8 phits per flit, the timing module provides 8 outputs,
phitTime[7..0]. All are V2 signals. PhitTime[0] corresponds to the time when
the first phit of a flit appears on the physical channel between IC’s.

42

tim_tim

Port0

ict_ict

!

oct_oct

Port 1

ict_ict
1

oct_oct Crossbar

Port 2

ict_ict

Port 3

oct_oct

ict_ict

Processor
Port ‘

oct_oct

Router

Figure 6.2: Top Level Module Block Interconnect

43

Port
Data In

Port

Input

Controller

Data

Latch New State

l

Bid

Bid Accopted

Destination Accepts

Destination Alarm

Acknowledgment To Send

Alarm

Data Out

Set Route

Retry Route

Virtual Channel Number Routed

Route Port
Alarm

Qutput
Controller

Data

Crossbar

Data Valid

Accepts

Alarm

Dimension Reversal Number

Free Virtual Channel

Reserve Virtual Channel

Router

44

Figure 6.3: Top Level Inter-Module Signalling

6.4 Input controller - ict_ict

Module I/0
| Name _ | I/O | Description

d[7..0] I | One port’s worth of physical input wires to
the chip.

q[7..0] O | Flit data sent to the crossbar

bid[2..0] O | The output controller or router to send the
flit to.

bid_accepted I | The crossbar accepted the bid, i.e. a connec-
tion has made between the input controller
and the desired output port.

dst_accepts I | The connected output controller accepted
the flit sent.

dst_alarm I | The connected output controller is down.

alarm O | The input controller has detected some form
of error, possibly parity, CRC, alarm re-
ceived, or other protocol violation.

alarms[4..0] I | The alarms from all input controllers.

ack_recvd|2..0] O | The last acknowledgment received.

ack_to_send[2..0] O | The acknowledgment that the paired output
controller should send.

set_route I | A control input from the router, it is used to
indicate that a route has been established.

retry_route I | A control input from the router, it is used
to indicate that a route has not been estab-
lished and should be rerequested later.

vc_being routed[2..0] | 1 | The virtual channel that the router is cur-
rently updating.

route_port[2..0] I | When aroute is established, this is the target
exit port.

45

Description

The input controller is composed of only of submodules, no logic is imple-
mented at this level. The block level interconnect is shown in figure 6.4. The
submodules include:

input port, which captures incoming data,

checker, which checks incoming data,

low address generation, which provides a phit offset into the flit storage,
dual ported RAM, where the flits are stored,

address map, which converts a flit sequence number into a pointer,
pointer file, where the FIFO pointers for each virtual channel are kept,
load control, which controls the entry of flits into the FIFOs, and

unloader, which removes flits from the FIFOs and maintains channel state.

6.4.1 Input Port - ip_ip

Module I/O

| Name | I/O | Description |
d[7..0 I | One port’s worth of physical input wires to the chip.
q(7..0] O | Flit data sent to the dual ported RAM
raw_q[7..0] | O | Flit data sent to the flit checker
ack[2..0] O | The acknowledgment just received, it is sent to the

paired output controller.
Description

The input port latches the external data using phl. This “raw” data is sent
to the checker for verification of parity, CRC, and alarm fields. The data is

46

Figure 6.4: Input Controller Block Diagram

47

then delayed a couple of phits and sent to the dual ported RAM. The delay
is necessary to allow the pointer file to retrieve the correct write pointer. It
also allows the checker to suppress the increment of the write pointer, thus
preventing errored flits from affecting the unloader. Note that an errored flit
will be written into the dual ported RAM using a possibly errored VC, so an
extra flit’s worth of storage must be added to each input buffer to account
for this overwriting.

6.4.2 Flit Checker - ict_check

Module I/O

| Name | I/O | Description |
d[7..0] | I | The raw phit stream from the input port.
alarm | O | Alarm is asserted when any error is detected.

Description

The checker checks the parity every clock period. It also monitors the alarm
bit sent with each flit. If either condition ever becomes true, the alarm is set.

48

6.4.3 Pointer File - pf_pf

Module I/0
[Name | 1/0 [Description |

alarm I | The alarm signal from this input controller’s
checker.

load_vc[2..0] I | The virtual channel of the incoming flit

unload_vc[2..0] I | The virtual channel for the outgoing flit

ack_vc[2..0] I | The virtual channel of the flit just
acknowledged

incr_ack I | Control signal which causes the acknowledg-
ment count for a virtual channel to increment.

load_opcode|2..0] I | Operation desired by the loader.

unload_opcode[2..0] [T | Operation desired by the unloader.

read_ptr[5..0] O | The sequence number of the flit to be read
from the dual ported RAM.

write_pointer[5..0] O | The sequence number of the flit to written to
the dual ported RAM.

flits_to_send[4..0] O | Indicates which virtual channels are non-
empty.

send_.ack[4..0] O | Indicates which virtual channels have for-
warded flits and not yet acknowledged them.

Description

The pointer file maintains 4 counters for each input virtual channel: a write
pointer, an acknowledgment count, a head-of-packet read pointer, and a data
read pointer. It also outputs two signals per virtual channel: flits_to_send

and send_ack.

Two read pointers, not one, are needed to handle retransmissions for the
tail ends of long packets. When a packet needs to be retransmitted, the head
flit must again be sent to the router. After the head flit is transmitted, the
effective read pointer might need change to point at any location in the input
ring. The two read pointers are combined together to form an effective read
pointer in the following way:

49

¢ if the head-of-packet read pointer is less than the number of head flits,
the effective read pointer is the head-of-packet read pointer.

e if the head-of-packet pointer is equal to the number of head flits, the
effective read pointer is the sum of the head-of-packet pointer and the
data read pointer.

When the read pointer is to be incremented, the head-of-packet pointer is
incremented until it reaches the number of head flits, then the data read
pointer is incremented.

The write pointer is used by the loader to place flits into the dual ported
RAM. When the write pointer is greater than the effective read pointer, the
signal flits_tosend is asserted.

The acknowledgment counter is not externally visible. When the effective
read pointer is greater than the acknowledgment count, the signal send_ack
is asserted.

Backing up

This is a bit tricky. Suppose that the data portion of the input buffer is
n flits long and the write pointer is w. We know that one flit of the n
may be inadvertently overwritten when input channel errors occur. We also
know that some number of flits may sent prior to an acknowledgment being
sent. Call this threshold number t. So, the t + 1 flits after the current write
pointer may be overwritten. We can therefore only back the read pointer to
bew—(n—(t+1))=w-—n+t+1 flits.

6.4.4 Pointer File Load Controller - pf_ctl

Module I/O

| Name [1/0 | Description I
| opcode[2..0] | O | The opcode to the pointer file for flit loading. |

50

Description

The pointer file load controller initiates a fetch of the write pointer for each
incoming flit and increments the write pointer.

6.4.5 Dual Ported Ram - dpr_dpr

Module I/O

[Name [I/O | Description

d[7..0 I | Datain

q[7..0] O | Data out

ra{9..0] I | Read address

wa[9..0] [I [Write address

we I | Write enable
Description

This is a simple dual ported RAM.

6.4.6 Address Generator - ict_addr

Module I/O

[Name | I/O | Description
ra[2..0] | O | Lower three bits of read address.
wa[2..0] | O | Lower three bits of write address.

Description

The address generator provides the phit-within-a-flit address portion of the
dual ported RAM’s read and write addresses.

51

6.4.7 Pointer to Address Mapper - ict_pfmap

Module I/O

| Name | /O | Description]
[pf_addr(5..0] I | Address from the pointer file.
dpr.addr[3..0] | O | Address to the dual ported RAM.

Description

The pointer to address mapper converts the 0 to 63 range of pointers to a
number between 0 and 15 for the dual ported RAM. The function is 0 maps
to 0, all other numbers n map to (n mod 15) + 1.

52

6.4.8 Unload Controller - ict_unload

Module I/O
[Name | I/O | Description

flits_to_send[2..0] [I [These inputs from the pointer file indicate
that a virtual channel queue is non-empty
and that a flit should be forwarded.

send_ack|[2..0] I | These inputs from the pointer file indicate
that an acknowledgment for a virtual chan-
nel should be sent when one of its flits is
forwarded.

make_replica O | Forces the flit being forwarded to be of type
tokenReplica.

gen_replica O | When the tail of a packet is lost, no token will
be in the input queue and one must be gener-
ated. This signal forces one to be generated.

pi_vc[2..0] O | The virtual channel sent to the pointer file
to obtain its current read pointer, increment
it, back it up, or clear it.

dpr_vc[2..0] O | Current virtual channel number for the dual
ported RAM. This is simply a delayed ver-
sion of pf_vc.

dpr_q[7..0] I | The output of the dual ported RAM which
the unloader needs to determine the flit’s
kind.

opcode[2..0] O | Opcode to the pointer file.

bid[2..0] O | Desired exit port out of the crossbar,

bid_accepted I | The crossbar made the crosspoint.

dst_accepts I | The flit was accepted by the output
controller.

dst_alarm I | The alarm condition at the output controller.

src_alarm I | The alarm condition in the input loader.

53

| Name | I/O [Description |
alarms[4..0] I | The alarms from all output controllers, used
to suppress acknowledgments as late as
possible.
route_port|[2..0] I | The exit port to use for a virtual channel.
vc_being routed[2..0] [I | The virtual channel the routing is updating.
set_route I | The router established the route.
retry_route I | The router was unable to establish the route,
but the packet could wait. Try again later.
ack_tosend[2..0} O | The acknowledgment to send out through
the paired output controller.
incr_ack O | Increment the acknowledgment count in the
pointer file.
Description

The unload controller manages most of the state associated with an incoming
virtual channel. The state information is:

vc_state Either idle, waitingForRoute, or active.

vc_backed_up A boolean which indicates if this virtual channel had had to
be backed up and rerouted.

vc_to_port The target exit port.

Initially, the state for all virtual channels is idle, not backed up.

When the loader places a flit into the input buffer for a virtual channel,
the flits_to_send signal for that virtual channel becomes asserted, Each flit
time, the unloader scans the virtual channels, looking for a virtual channel
with flits to send that is either in the idle or active states. If the virtual
channel is in the idle state, the flit is sent to the router and the channel state
changed to waiting_for_route. If the virtual channel was in the active state,
the flit is sent to the destination port found in the vc_to_port table.

For flits of type head and data, the unloader sends the flit across the
crossbar by first presenting a bid to the crossbar. If the bid is accepted and

54

the destination accepts the flit, the read pointer is incremented in the pointer
file. This has the side effect of updating the flits_to_send signal.

For flits of type token, the situation is more complex. The output con-
troller will refuse the flit as long as there are any outstanding unacknowledged
flit transmissions for this virtual channel. This is to ensure that all the flits
in the packet have been copied to two places before freeing up the input
channel. Thus, when the input controller sends a flit of type token across
the crossbar, the state associated with the virtual channel is initialized.

For all kinds of flits, if the destination responds with an alarm, the read
pointer in the pointer file is backed up, the channel state is changed to idle,
and vc_backed_up set. This eventually causes the packet or packet fragment
to be re-routed. When the token for the packet is finally transmitted, the
assertion of vc_backed_up causes the type of the token to be coerced to replica.

The unloader only notices the failure of the physical input channel when a
virtual channel is in the active state and there are no more flits to send. The
unloader forces the generation of a token of type replica and then initializes
the state of the virtual channel.

Lastly, the unloader generates acknowledgments. When a flit is success-
fully sent to an output controller, the virtual channel number and output
controller number are placed in a 3 deep pipeline which is shifted every flit
time. At the end of the pipeline, the output controller is checked to see if an
alarm has been set. If there is no alarm and the pointer file indicates that
an acknowledgment should be sent, it is sent and the acknowledgment count
in the pointer file incremented.

Acknowledgments for flits of type token are handled slightly differently,
as the state of the virtual channel is initialized as soon as the flit made it
to the output controller. The fact that it was of type token is also placed in
the 3 deep pipeline. At the end of the pipeline, an acknowledgment is always
sent when the type token indicator appears.

%)

6.4.9 Token Generation - ict_token

Module I/O
[Name { I/O | Description |
d[7.0] | T [The flit data in.
makereplica [I | If the flit is of type tokenUnique, coerce it to be a
replica.
gen_replica I | Create a new flit of type tokenReplica.
dpr_vc|2..0] I | The virtual channel number to use when generating
a token.
q[7..0] O | The flit data out.
Description

This module handles the coercion and the generation of flits to type token-
Replica.

56

6.5 Crossbar

Module I/O
| Name | I/0 | Description
d[4..0][7..0 I | The data entering the crossbar
q[5..0][7..0] O | The data leaving the crossbar
bid[4..0][2..0] I | The bids from the input controllers
column_valid[5..0] O | Indicates to the output controller that the
data appearing is valid.
bid_accepted[4..0] O | Indicates to the input controller that a cross-
point was established.
dst_acceptsdn(5..0] I | The signal from each output controller which
indicates that the output controller accepted
the flit.
dst_accepts—out[4..0] | O | This is the dst_accepts-in signal brought back
over the crosspoint.
alarm_nl[5..0] I | The destination’s alarm.
alarm_out[4..0] O | The destination’s alarm
brought back through the crosspoint to the
input controller.

Description

This module is composed of an array of crosspoints (xb_elt) and a token in-
jector (xb_inject). Nearly the entire crossbar is simply the two dimensional
array of crossbar elements, so all of the crosspoint allocation logic is dis-
tributed into each crosspoint. This makes the simulation model a bit hard
to understand, but allows a simpler physical realization.

The crossbar is organized into rows and columns. Inputs to the crossbar
are sent along the rows, outputs are taken from the columns.

57

6.5.1 Token injector - xb_inject

Module I/O

| Name | 1/0 | Description I
latch-new_state | I | A once per flit signal used to change the state of
the crossbar.

tokensl4..0] O | Only one of these will be asserted. The asserted
token is used to determine which input controller
has the highest priority bid.

Description

In order to ensure fair access to the crossbar, an input controller is selected
at random to have the highest priority bid.

58

6.5.2 Crossbar crosspoints - xbar_elt

Module I/0O
[Name | I/O | Description |
d{7..0 I | The row data to be moved across the crosspoint.
q{7..0 O | The data driven onto the column.
bid[2..0] I [The bid from the input controller.
inject I | The initial token from the injector, giving this row
highest priority.
token.in I | Priority daisy-chain in.
token_out O | Priority daisy-chain out.
column_available | I | Column was not allocated by the router. Not
used.
latch_new_state I | Places the crosspoint in high impedance and stores
the new crosspoint setting.
column_valid O | A crosspoint will provide valid data to the output
controller or router attached to this column.
bid_accepted O | A crosspoint in this row accepted the bid.
dst_accepts_in I | The flit was accepted by the output controller, in.
dst_accepts_out O | The flit was accepted by the output controller,
out.
alarm_n I | The alarm for the output controller attached to
this row.
alarm_out O | The alarm sent to the input controller from an
established crosspoint.
Description

An input controller broadcasts a bid along a row of crosspoints. Each cross-
point knows its column number. The crosspoint compares the bid against
its column number. If there is a match, that crosspoint is responsible for
sending status information back to the input controller.

An allocation token is injected along one row of the crossbar each flit
time. When a crosspoint has the allocation token, if it matched the input
controller’s bid, it establishes the crosspoint and asserts column_valid. If the

59

crosspoint did not match, it forwards the allocation token in its column.

If the allocation token should return to the same row as it was injected
into, that crosspoint deasserts column_valid.

6.6 Output controller - oct_oct

6.6.1 Module I/O

| Name | I/0O | Description
d[7..0] I | Data from the crossbar.
column_valid I | An indication from the crossbar that crosspoint to
an input controller has been established.
send_alarm I | The alarm indicator from the paired input
controller.
ack-tosend[2..0] [T | From the paired input controller, this indicates

which input virtual channel has successfully repli-
cated a flit further into the network and should
now be acknowledged.

ack_recvd|[2..0] I | From the paired input controller, this signal indi-
cates the availability of one more flit’s worth of
storage in the queue across the physical channel.

pad O | The data to be sent to the output pads.

flit_valid O | The output controller asserts this signal when it
accepts the flit.

reserve_vc[2..0] I [From the router, this reserves a virtual channel at

the given DR level.

dr_from_rt{5..0] I | The DR number of the packet currently being

routed.

free_vc O | Asserted when the output controller has free vir-
tual channels.

okay_to_wait O | Asserted when the the DR number of the packet

being routed is less than or equal to the DR num-
ber of all the packets assigned to virtual channels.

60

6.6.2 Description

The output controller is made of two submodules: the output filter and the
output packager.

6.6.3 Output filter - oct_filter

Module I/O
| Name | /O [Description I
d[7..0] I | Data from the crossbar.

column_valid | I | An indication from the crossbar that crosspoint to
an input controller has been established.

send_alarm I | The alarm indicator from the paired input controller.
ack|[2..0] I | From the paired input controller, this signal indi-
cates the availability of one more flit’s worth of stor-
age in the queue across the physical channel. Cor-
responds the ackrecvd signal in the surrounding

module.

q[7..0] O | Data to the output packager.

flit_valid O | The output controller asserts this signal when it ac-
cepts the flit.

reserve.vc I | From the router, this reserves a virtual channel at
the given DR level.

dr[5..0] I | The DR number of the packet currently being
routed.

free_vc O | Asserted when the output controller has free virtual
channels.

okay_to_wait | O | Asserted when the the DR number of the packet be-
ing routed is less than or equal to the DR number of
all the packets assigned to virtual channels.

61

Description

The output filter performs three functions. It implements flow control. It
maps <input port, input vc> tuples to output vc’s. Finally, it provides
output virtual channel information to the router.

Flow control is implemented by keeping a count of the number of flits
which have been sent on an output virtual channel which have not yet been
acknowledged. When the count exceeds some threshold, the output filter will
stop accepting flits from the crossbar for that channel. The ack input will
cause the count for that virtual channel to decrement.

The mapping function is straightforward. For each output virtual chan-
nel, its associated input port and input virtual channel are remembered in a
table. When a flit arrives, the table is searched for a match and the vc field
in the flit updated.

The output filter remembers the DR number of each packet associated
with an active output virtual channel. When the router is determining where
to send a packet, it first broadcasts the packet’s DR number to all the output
filters. Each filter responds to the router with an indication of free virtual
channels, If there are none, the output filter must tell the router if the router
is able to wait for one based on the DR number presented and the DR
numbers stored.

When the router determines that it wants a packet to go out a given
output port, it reserves a virtual channel in the output filter. This is to allow
the output filter to remember the DR number for the channel in time for the
next routing decision. If the output filter waited for the head flit to arrive
before establishing the channel, the state could wind up being inconsistent.

When the head flit of a packet arrives, the output filter looks for a reserved
virtual channel with a matching DR number and completes the map.

The output filter will not accept a flit of type token if the number of
unacknowledged flits is non-zero. Once the flit is accepted, the output virtual
channel is marked as reclaimNextAck. The next acknowledgment for that
virtual channel will cause the channel to be freed.

62

6.6.4 Output packager - oct_package

Module I/0
| Name 1/0 | Description |
d[7..0] I | Data from the output filter.
send_alarm | I | The alarm indicator from the paired input controller.
ack(2..0] I | From the paired input controller, this indicates which
input virtual channel has successfully replicated a flit
further into the network and should now be acknowl-
edged. This corresponds to ack_to_send in the sur-
rounding module.
pad[7..0] O | The data to be sent to the output pads.
Description

The output packager splices the acknowledgment and alarm fields into the
outgoing flit. It then recomputes the CRC field for the flit. Finally, it
computes parity for the first and last phits of the flit.

63

6.7 Router

6.7.1 Module I/O

| Name | I/O | Description i
ourx[5..0 I | The x coordinate of the switching element.
our.y[5..0 I | The y coordinate of the switching element.
ourz[5..0] I | The z coordinate of the switching element.
dr_to_oct[5..0] O | The DR number of the packet currently be-
ing routed.

okay.to_wait[4..0] I | From each output controller, these are as-
serted when the the DR number of the
packet being routed is less than or equal to
the DR number of all the packets assigned
to virtual channels.

free_vcs_from_oct[4..0] | I [From each output controller, these are as-
serted when the output controller has free
virtual channels.

reserve_vc([4..0] O | This reserves a virtual channel in a partic-
ular output controller.

q[7..0] O | Data input to the crossbar. Currently not
used.

bid[2..0] O | Output port select to the crossbar. Cur-
rently not used.

bid_accepted I | Not used.

dst_accepts I | Not used.

d[7..0] I | The data lines from the crossbar carrying
the head flit of the packet to be routed.

column_valid I | An indication from the crossbar that a
crosspoint from an input controller has been
established.

dst_accepts_out O | Currently always asserted, it indicates that
router will attempt to route this packet.

dst_alarm I | Always deasserted and currently ignored.

64

[Name | 1/O [Description |

alarm_stub O [Always deasserted, as the router cannot

have an alarm.

route_port(2..0] O | The exit port fro the packet being routed.

vc.being routed[2..0] [O | The input virtual channel of the packet be-
0

ing routed.
Causes the input controller to record the
routing information and begin forwarding

set_route[4..0]

the packet.

retry_route[4..0] O | Causes the input controller to retry the
routing the packet later.

alarm[4..0] I | The alarm conditions of all the ports.

6.7.2 Description

When an input controller decides that a packet needs to be routed, it send
the head flit to the router. The router parses the flit into destination X,Y,Z
coordinates and DR number. It extracts the input port number and input
virtual channel number. It then attempts to find an output port.

To find the output port, it first computes the desired exit port, using
dimension ordered routing. If the desired port is either non-functional or if
exiting the desired port would result in a backtrack, a new port is chosen
at random. If the exit port has no free virtual channels and the packet is
unable to wait owing to dimensional reversal constraints, a new port is again
chosen.

Finally, if the desired exit port has a free virtual channel, the router
reserves the channel and communicates the exit port to the input controller.
If the exit port had no free channels, the router tells the input controller to
retry the route request.

65

6.8 Summary

In this chapter, we stated the goals of the architecture, namely to show that
the unique token protocol was realizable using standard cell technology. De-
sign guidelines in support of the goals were developed, describing clocking,
intermodule communication, and circuit-design style. The microarchitecture
was then presented at the top level and successively refined. This microar-
chitecture has been implemented as a register-transfer model using the M
modeling language. The verification of this model will be discussed in the
next chapter.

66

Chapter 7

Design Verification

We have developed a new protocol, the unique token protocol, for reliably
moving data through a network. To show that the protocol is realizable,
a switching-element microarchitecture was designed and presented in the
previous chapter. This microarchitecture has been implemented as a register-
transfer level (RTL) model using the M modeling language'. In this chapter,
we describe the validation of this model and the subsequent observations.

The goal of the verification is to ensure that the model functions as a
router for a two dimensional mesh network and that the implementation
delivers packets according to the unique token protocol, under both fault-
free and faulted conditions.

7.1 Verification Procedure

The verification process was done in four stages and, as bugs were found and
corrected, repeated several times until the model was verified. The first stage
is a single chip test. The original purpose of this test was to aid in bringing
up a single device, along with the various traffic sources and sinks. Once
the design stabilized, this test evolved into a confidence test of the switching
element by injecting random traffic for an extended period of time. This
stage of testing does not not involve any fault recovery.

1 Mentor Graphics, Silicon Design Division

67

The second stage of testing connects two devices together. The purpose
is to expose the discrepancies between the artificial traffic generated by the
test fixture and the actual traffic between two switching elements.

In the third stage of testing, a 2 X 2 mesh is constructed and traffic gen-
erators attached to all spare ports. This provided a slightly longer path for
messages to travel and served as a base case for the fourth stage.

The final stage of testing is again a 2 x 2 mesh. Traffic is sourced only
from a single processor port and is sent to the processor port on the opposite
corner of the mesh. Since the router first attempts dimension ordered routing,
this traffic would travel along a preferred route. The first link along this route
is sabotaged and the protocol allowed to adapt to the fault and recover. The
timing of the fault is changed from run to run.

7.2 Test Jigs and Scaffolding

Support code falls into three classes: port stubs, fixtures, and post-mortem
sanity checks.

A port stub provides a source of traffic to send into a port on a chip. It is
capable of injecting a variable number of packets into all the virtual channels
within a port. The length of the packet is chosen at random between some
easily changed lower and upper bounds. The packet consists of a head flit, a
data flit containing a unique identifier, some number of data flits containing
random data, and a token flit.

The destination address contained in each packet may be bounded by
min/max X,Y,Z pairs independently in each port stub. The port stub will not
generate traffic to its local processor port. It also receives and acknowledges
flits to allow the flow control algorithm to work. Without such support, the
chip model hangs after it has sent a few flits.

All flits sent and received are written in human-readable form into a log
file, to make debugging easier. The format is also readily parsed by computer
programs for more automated verification.

Three major and several minor variants of the test fixture have been
written. The first fixture is a single chip with port stubs attached at all five

68

locations. This fixture was heavily used throughout the course of writing and
debugging the model. The second fixture has two chip models interconnected
with port stubs at all other open locations.

The third fixture implements a 2 x 2 mesh. This fixture was used mainly
to verify the reliability protocol. The stubs are attached to the processor
ports of the chips. Two variants have been constructed, one with stubs at
the edges of the mesh, the other with the edge ports grounded. This fixture
is capable of injecting a fault along one the links. The fault time may be
varied at run time via a parameter on the simulator command line. This
makes it possible to write a shell script to make repeated simulator runs,
stepping through fault times.

A program, sane, has been written to verify the correct operation of the
switching element. It first compiles a list of packets which have been injected,
then compiles the list of packets extracted. It discards runt packets, those
that consist only of a head flit and a token. It splices together packets from
the packet fragments arriving tagged as type replica. Finally, it compares
the packets sent against the packets received for length and contents. If all
packets sent have a corresponding packet received and vice-versa, then the
test has been passed.

7.3 Testing Results

Three different configurations were tested under normal operation. A single
chip was injected with 720 packets, two chips with 9 packets, and the 2 x 2
mesh with 640 packets. All configurations passed.

A 2 x 2 mesh was used as the basis for the fourth test. The source
of traffic was the processor port on the lower left. It sent six messages of
random lengths to the processor at the upper right. Since the router is
primarily dimension ordered, the usual path includes the switching element
on the lower right. At some programmable time, the wires leading from the
node on the lower left to the node on the lower right were forced to all zeros.

This basic test was run from within a shell script which stepped the failure
time from time zero until a time after all six packets had been received. After
each pass, the sanity checker was run and the results written into a file. All

69

Chapter 8

Conclusions

This thesis presented a new protocol, the unique token protocol, for reliable
communication using replication in a network. It contrasted the scalability
of this protocol with existing end-to-end protocols. It described the organiza-
tion and microarchitecture of a switching element implementing the protocol.
Finally, it presented the results of the design verification simulations. This
work has led to several conclusions concerning the protocol and possible im-
plementations.

The unique token protocol can be used in a wide variety of network topolo-
gies. It consumes less network bandwidth than end-to-end protocols when
acknowledgments are taken into account. It offers excellent scalability, with
storage requirements dominated by O(n) terms, where n is the number of
Processors.

What the protocol does under some boundary conditions is not well de-
fined in this thesis. For example, the recovery procedure to use when the
destination fails and the message is undeliverable is not given, as it has
strong interactions with the method of adaptive routing chosen. One has to
decide that the destination is truly unreachable and not that the bulk of the
physical channels leading into the final switching element are down. This is
currently handled by delivering the packet to the nearest processor when the
packet’s dimension reversal number overflows. Software will then be used
to probe for alternate routes or return the packet if none exist. A future
research topic is to provide semantics for undeliverable packets.

71

The implementation provided several insights. The key one is that the
protocol is indeed implementable without a dramatic increase in logic com-
plexity over an adaptive, deadlock-free switching element. Indeed, the changes
are confined mainly to the input controller.

The second insight is that containment of network errors can lead to
increased latency. The switching element has state which is altered by in-
coming packets. The model, as constructed, did not allow any critical state
to be altered until the incoming data could be certified error-free. Thus, the
progress of the data is slowed by the error checking process. This increased
latency may be dealt with by providing wider data paths, which collapses
the time from start of flit until verification. Secondly, one could checkpoint
the critical state and backtrack upon error detection. The amount of criti-
cal state is heavily determined by the network topology and the complexity
of mechanisms required for adaptive routing and deadlock avoidance. Some
topologies, such as indirect connection networks, are intrinsically deadlock
free and may have less complex checkpointing circuits.

A second cause of latency in the model is the use of a centralized router.
By centralizing the router, several input controllers contend for its use. If the
typical packet size is large, this contention will be minimized. The central-
ization was done for practical reasons in order to avoid the construction of
some form of distributed router. The problem is that the router not only de-
cides where to send the packet, it must also allocate resources in the form of
channel bandwidth. Distributing the resource allocation decision is possible
through the introduction of a second crossbar array. This second crossbar
would allow an input controller to lock the output controller and allocate a
virtual channel without interference from other input controllers.

72

Appendix A

Buffer Storage Requirements
of End-to-End Protocols

End-to-end protocols require storage in the source. We need to understand
how that storage requirement changes with machine size. Consider a node
in the middle of a very long chain of n + 1 nodes as shown in figure A.1.
Each physical channel has bandwidth w, where w has units of msgs/sec. The
system has an aggregate bandwidth of nw, measured in channel-msgs/sec.
When this aggregate bandwidth is evenly distributed over the nodes, each
node may use w channel-msgs/sec.

Let A be a probability distribution function (PDF) describing the likeli-
hood that a node wishes to send a message to another node, passing through
d channels. (d = 0 implies no message sent.)

Vd,d > 0, A(d) = aqy (A1)

Since it is a PDF, we know that:

io: ag = 1 (A2)

d=0

Each node would be using system bandwidth equal to:

Z wday (A.3)
d=0

73

Figure A.1: Simple Traffic Model

which must be equal to w under uniform maximum loads. We can then write:
o0
d=0

Let the internode delay on a channel be e. Let 4 be the time it takes a
node to receive a message and generate an acknowledgment. The total round
trip for a message and its acknowledgment to a node d channels away is:

2de + v (A.5)

The expected amount of storage required to hold copies of messages sent
to a node d channels away is simply the probability of sending a message d
channels away X channel bandwidth x duration:

aqw(2de + %) (A.6)

The total expected storage is then:

> agw(2de +7) = 2we Y dag+wy) aqg (A7)

d=0 d=0 d=0

Using equations A.2 and A.4, this reduces to:

w(2e+7) (A.8)

74

The expected amount of storage used to buffer messages is constant,
irrespective of the actual PDFs used to model the traffic sources. Note that
we have only calculated the expected amount of storage used under uniform
conditions. When a node can consume a disproportionately large share of
the system bandwidth, its expected storage requirements increase. This can
be seen mathematically by introducing a load factor into equation A.4:

d=0

which results in expected storage of:

w(2ed +) (A.10)

Intuitively, we can bound ¢ by considering a network where only one node
is sending traffic, and that is to a destination node over the longest possible
path. For 2D mesh networks, these nodes are on opposite corners of the
machine. ¢ is then simply the number of hops needed to get from source to
destination. For such a mesh network, we have:

b =2(va—1) (A11)

Substituting A.11 into A.10 yields an expected storage requirement of:
w(4e(v/n = 1) +7) (A.12)

We see that the expected storage requirements in 2D meshes for end-to-
end protocols grow as O(y/n).

75

Bibliography

[1] Athas, W.C., and Seitz, C.L., “Multicomputers: Message-Passing
Concurrent Computers,” IEEE Computer, Vol 21, No 8, August
1988, pp- 9-24.

[2] Bartlett, K.A., Scantkebury, R.A., and Wilkinson, P.T., “A note
on reliable Full-Duplex Transmission Over Half-Duplex Links”,
CACM, 12, No. 5, 260, 1969

[3] BBN Advanced Computers, Inc., Butterfly Parallel Processor
Overview, BBN Report No 6148, March 1986.

[4] Chen, M.S. and Shin, K.G., “Adaptive Fault-Tolerant Routing in
Hypercube Multicomputers”, IEEE Transactions on Computers,
Vol. 39, No. 12, December 1990, pp. 1406-1416.

[5] Chen, M.S. and Shin, K.G., “Message Routing in an Injured Hy-
percube”, Proc. Third Conf. Hypercube Concurrent Computer
Appl., January 1988, pp. 312-317.

[6] Dally, W.J. “Wire-Efficient VLSI Multiprocessor Communication
Networks,” Proceedings of the Stanford Conference on Advanced
Research in VLSI, Paul Losleben, ed., MIT press, March 1987, pp.
391-415.

[7] Dally, W.J., “Network and Processor Architecture for Message-
Driven Computing,” in VLSI and Parallel Processing, R. Suaya
and G. Birtwistle eds., Morgan Kaufmann, to appear 1989.

7R

[8] Dally, W.J., “Express Cubes: Improving the Perfomance of k-ary

n-cube Interconnection Networks”, IEEE Transactions on Com-
puters, to appear 1991.

[9] Dally, W.J. and Seitz, C.L., “Deadlock Free Message Routing in

[10]

[11]

[12]

[13]

Multiprocessor Interconnection Networks”, IEEE Transactions on
Computers, Vol C-36, No. 5, May 1987, pp. 547-553.

Frey, A.H. and Fox, G.C., “Problems and Approaches for a Ter-
aflop Processor”, Caltech Report C3P-606.

Gordon, J.M. and Stout, Q.F., “Hypercube Message Routing in
the Presence of Faults”, Proc. Third Conf. Hypercube Concurrent
Computer Appl., January 1988, pp. 318-327.

Kermani, P., and Kleinrock, L., “Virtual Cut-Through: A New
Computer Communication Switching Technique.” Computer Net-
works, Vol 3, 1979, pp. 267-286.

Karol, M.J., Hluchy, M.G., and Morgan, S.P., “Input Versus Out-
put Queueing on a Space-Division Packet Switch.” IEEE Transac-
tions on Communications, Vol COM-35, No 12, December 1987,
pp- 1347-1356.

Lee, C.T. and Hayes, J.P., “Routing and Broadcasting in Faulty
Hypercube Computers”, Proc. Third Conf. Hypercube Concurrent
Computer Appl., January 1988, pp. 346-354.

Liu and Leyland, “Scheduling Algorithms for Multiprogramming
in a Hard Real-Time Environment,” Journal of the ACM, Vol 20,
No 1, January 1973, pp. 46-61.

Davies, D.W., Barber, D.L.A., Price, W.L., and Solomonides,
C.M., Computer Networks and Their Protocols, John Wiley and
Sons Ltd, 1979.

Mailhot, J.N., A Comparative Study of Routing and Flow-Control
Strategies in k-ary n-cube Networks, Massachusetts Institute of
Technology, SB Thesis, May 1988.

77

CS-TR Scanning Project
Document Control Form Date: (/IS 135

Report# AT -TR-[2JY
Each of the following should be identified by a checkmark:
Originating Department:

Artificial Intellegence Laboratory (Al)
(O Laboratory for Computer Science (LCS)

Document Type:
)S: Technical Report (TR) [] Technical Memo (TM)
O Other:
Document Information Number of pages: J3(Z5- imags o)
~ Not to include DOD forms, printer intstructions, efc... pages only.
Originals are: | Intended to be printed as :
)&.Single-sided or O Single-sided or
OO Double-sided B(Double-sided
Print type:
[0 Typewitsr [Offset Press]2(Laser Print
[wkJetPrinter [] Uninown [Other:
Check each if included with document:
h DOD Form [0 Funding Agent Form }(Cover Page
\ﬂ Spine [0 Printers Notes 0O Photo negatives
O other:
Page Data:
Blank Pagessysege mmbe):

Photographs/Tonal Material ey pege mmben:

Other o sseciptonpege mmben:
Description : Page Number: . _
lmacic mae (1=7%) PaGrs F'E0 [~7¥ (i Nstindiv6 T3 T L PrGE)

(99 - 3) Seaneantigi <ovR SPINE) Oob
(82~ &5) TRGETS (2)

Scanning Agent Slgnoff ¢
Date Received: _6 /.S /55 Date Scanned: (1495 Date Retumed: byl

Scanning Agent Signature: w\ ‘i/\/ ‘%@g Rev 34 DSALCS Document Contral Form cerform.ved

REPORT DOCUMENTATION PAG

E

Form Approved
OMB8 No. 0704-0188

Public report:ag burden tor this collection of information 1s estimated to average 1 hour per response, including the time tor reviewing instructions, searching existing data sources,
gathenng and mantaining the data needed. and compieting and reviewing the collection of information. Send comments r
coliection of information, Inciuding suggestions for reducing this burden. 1o Washington Headquarters Services, Dlrecloru:?or information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. and 10 the Office of Management and Budget. Paperwork Reduction Project (0704-0188), Washington, DC 20503.

arding this burden estimate or any other aspect of this

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE
October 1991

3. REPORT TYPE AND DATES COVERED

technical report

4. TITLE AND SUBTITLE

Reliable Interconnection Networks for Parallel Computers

6. AUTHOR(S)
Larry R. Dennison

S. FUNDING NUMBERS
NO0014-80-C-0622

N00014-85-K-0124
NO0014-91-J-1698

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Artificial Intelligence Laboratory
545 Technology Square
Cambridge, Massachusetts 02139

8. PERFORMING ORGANIZATION
REPORT NUMBER

AI-TR 1294

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Office of Naval Research
Information Systems
Arlington, Virginia 22217

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

AD-A2LS5TCTY

11. SUPPLEMENTARY NOTES
None

12a, DISTRIBUTION / AVAILABILITY STATEMENT
Distribution of this document is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

A new protocol, the unique token protocol, for reliably transporting data in
a network is described. This protocol makes use of existing buffer storage
in the network for the replication of data and avoids duplicate elimination
at the destination through the use of a token. The unique token protocol is
compared to end-to-end protocols in terms bandwidth, latency, and memory
requirements, for which it is found to equal or better them. It is also shown to
have constant memory requirements per switching and processing element,
thus allowing networks employing the protocol to be arbitrarily large. In
addition, the organization of a reliable switching element incorporating the
protocol is described. A register transfer model of the switching has been
implemented. The model and its validation are presented.

14. SUBJECT TERMS (key words)

15. NUMBER OF PAGES

networks fault tolerance parallel computers 78
reliable routors 16. PRICE CODE
protocols virtual channels

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION] 19. SECURITY CLASSIFICATION [20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED

MSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribeg by ANSI Std. 239-18
298-102

Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.L.T
Libraries. Technical support for this project was
also provided by the M.L.T. Laboratory for
Computer Sciences.

darpirgt.wpw Rev. 9/94

