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Abstract

Spacecraft, space-borne robotic systems, and manufacturing equipment often
utilize lightweight materials and configurations that give rise to vibration
problems. Prior research has led to the development of input command pre-
shapers that can significantly reduce residual vibration. These shapers exhibit
marked insensitivity to errors in natural frequency estimates and can be
combined to minimize vibration at more than one natural frequency.

In this work we present a method for the development of multiple mode
input shapers which are simpler to implement and produce smaller system
response delays than previous multiple mode designs. The new technique
involves the direct solution of a group of simultaneous non-linear impulse
constraint equations.

An MIT/NASA experimental flexible structure, MACE, is employed as a test
article for the validation of the direct solution shaping technique. We
examine the results of shaper performance tests conducted on linear and non-
linear computer models of MACE. Vibration problems caused by system non-
linearities are identified and their eradication attempted.

The direct solution shapers are shown to be effective in suppressing multiple
mode vibration, even in the presence of mild kinematic and dynamic non-
linearities.
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Chapter 1: Introduction

1.1 Background

Vibration is a problem common to a large fraction of mechanical systems.
The earliest reciprocating steam or water driven devices can claim a close
bond to even the most advanced modern robotic systems, in that mechanism
motion invariably induces troublesome vibration. Problems caused by
vibration can range from life-threatening structural failures to expensive

mass production assembly delays.

Reducing or even eliminating system vibration are goals worthy of
concentrated effort, and in this thesis we will examine some approaches for
achieving those goals. The immediate benefits of general vibration
suppression are improved system performance, increased safety, greater
reliability, and reduced operating costs. These in turn translate into the long-
term advancement of industrial and scientific hardware, the effects of which

can be viewed as global.
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Chapter 1: Introduction

1.2 Motivation

One of the more promising areas for the implementation of vibration
suppression techniques is robotics, broadly considered as the field of computer
controlled electro-mechanical devices. We can distinguish two areas of
closely related, yet somewhat divergent, fields of robotics: earth-based and
space-based systems. Each area can benefit from the successful application of
vibration suppression techniques, both in terms of increased performance

and reduced cost.

In an earth-based mass production setting, just a few seconds lost in the
assembly of an electronics board can add up to an annual financial loss of
millions of dollars. Industrial robots increasingly utilize lighter structural
elements to improve the speed of automated assembly. The combination of a
lightweight structure with high performance requirements often leads to
serious vibration problems, however, and the resulting increased settling

times can undermine the original desired gains in maneuvering speed.

Another "industrial” example where vibration reduction techniques
can afford great advantages is in the area of data storage, particularly relating
to hard disk drive mechanisms. The head that floats over the disk, reading
magnetic information, must be accurately positioned over a particular sector
on the platen to ensure proper data readings. When the head servos to a
different sector on the disk, the controller must pause after the move is
completed, allowing the residual vibration to settle and ensuring an error free

read. If the head was able to conclude a move and have no residual vibration
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Chapter 1: Introduction -

present, data reads could take place immediately, and the data access time

would be decreased.

Space-based systems share many of the vibration problems of earth-
based systems, especially the difficulties caused by the desire to decrease
weight. The cost of transporting equipment to orbit has risen to thousands of
dollars per pound, forcing designers of space borne robotic systems to trim the
mass of their devices and operate under the strictest weight budgets. The low
weights certainly facilitate launching, but high flexibility is a common result,

giving rise to chronic vibration problems.

It is common, for instance, for operators of the Space Shuttle's Remote
Manipulator System to spend 20 to 40 seconds waiting for oscillations to decay
after maneuvering the arm. Manipulating a massive satellite acts to further
degrade the maneuvering speed, and with shuttle operating costs at
approximately $20,000 per minute, decreasing the maneuvering time of the
arm through some means of vibration reduction is attractive, both financially

and from a performance viewpoint.

Future space program robotic efforts also include the development of
large, earth-monitoring satellites, as discussed in Chapter 4. Two systems
mentioned in that chapter are the Earth Observing System (EOS) and the
Geosynchronous Platform (GEOS). These systems are multi-body platforms,
meaning that they feature many different instruments all mounted on a
common structure. Again, to keep the system weight low, the structure is
often designed to have a lightweight, and thus flexible, configuration. The

vibratory interactions of multiple scanning payloads and antennae with each
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Chapter 1: Introduction

other and the structure can potentially cause serious pointing and tracking
accuracy problems. Reducing the vibration inherent in the spacecraft would

allow the satellite a greater chance of successfully completing its mission.

We can conclude that partial or complete suppression of system
vibration can improve spacecraft durability and performance, and would

allow manufacturing systems to operate faster and thus more economically.

1.3 Previous Work
Many researchers in the past decade have examined the problems of vibration
reduction, with varying success. This thesis stands firmly on the shoulders of

those previous investigations, the more relevant of which we consider here.

1.3.1 Vibration Suppression

In this section we will examine some previous efforts aimed at general
vibration reduction. These works follow no particular method, but are

presented here as a survey of influential research.

Nurre, Ryan, Scofield, and Sims [20] wrote a general study of some of
the problems caused by system vibration and possible approaches to curbing
vibration. These researchers constrained their examination to vibration
concerns relating to large space structures, but their paper outlines modelling
and control techniques that are broadly applicable to any flexible, vibration

plagued system.
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Chapter 1: Introduction

Cannon and Schmitz [7] experimented with the non-colocated feedback
control of a flexible beam. Through the use of highly accurate system models
and optical tip position sensing they achieved significant vibration reduction

and precise tip positioning in their planar test article.

Book, Maizza-Neto, and Whitney [4] examined three methods for
controlling a two-link manipulator with flexible members. A joint-angle
feedback control scheme incorporating transfer matrices and numerical
techniques was shown to improve manipulator performance, causing only a
slight increase in controller complexity. A second method, which fed back
data on the manipulator beam flexible modes, improved performance but
exhibited high sensitivity to parameter perturbations and required a

significant increase in controller complexity.

Asada, Ma, and Tokumaru [1] employed inverse plant dynamics to
develop feedforward vibration reducing manipulator trajectories. Virtual
rigid link coordinates simplified the system vibration constraints, reducing
the complexity of the inverse dynamics calculations. This technique
demonstrated performance enhancement in simulations of a flexible two-

link manipulator.

Turner and Junkins [29] studied the non-linear dynamics of a modelled
spacecraft featuring a central hub and four flexible appendages. Through an
application of optimal large angle reorientation principles and an "assumed
modes" modelling of the appendage flexible behaviour, rapid maneuvers
were achieved in simulation that suppressed the first four flexible modes of

the structure.
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Chapter 1: Introduction

Yurkovich, Pacheco, and Tzes [31] reduced vibration in the presence of
unknown and/or varying payloads by employing on line system
identification and controller tuning. By using frequency domain techniques
to examine the system response following a sample input, enough in-
formation was collected to adjust the controller gain scheduling to

compensate for vibration problems.

Wie and Liu [32] employed Heo controllers to reduce vibration while
providing robustness to modelling errors. This technique displayed solid

performance, but was relatively difficult to implement.

Crawley and de Luis [8] used distributed segmented piezo-electric
actuators to actively control the dynamic vibration and shape characteristics
of a flexible aluminum beam. They demonstrated the potential for piezo-
electric materials to be used as imbedded actuators capable of suppréssing the

vibration of flexible structures.

1.3.2 Input Command Shaping

An attractive vibration reduction method not mentioned above is input
command shaping. Using this method, commands can be fed through a
shaper and into the flexible system, and ideally the resulting output will be
vibration free. Shapers also usually reside completely outside of a given
control system and are thus easily compatible with other vibration reduction
schemes (see Figure 1.1). Smith [25] conducted early shaping investigations,
using "positive-cast," or posicast control to create inputs that would act to

suppress vibration.
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Closed Loop System
r— - - T T T 07 )
| |
| |
Input | |
Input — Command | Compensator »{ Plant i » Qutput
Shaper I |
I l
| |
| Feedback |
c - _

Figure 1.1: Shaper position in control system.

Meckl and Seering [16] examined the use of shaped force profiles to
reduce vibration in manufacturing systems. Meckl created profiles by using a
versine ( 1 — cosine ) function to modify force commands. When integrated
twice, these force profiles become input trajectories that reduce system

vibration at a structure's first natural frequency.

Aspinwall [2] modelled the effects of shaping pulse input commands
delivered to a free-free single flexible beam. By selecting the proper
coefficients for a short Fourier series expression for the forcing function, the
spectra of the system residual vibration was suppressed at desired points,

namely at the system's natural frequencies.

Farrenkopf [10] established optimal open-loop slewing profiles for
flexible spacecraft maneuvering between two quiescent attitude states.
Studies of a simple, single structural mode dynamic spacecraft model
revealed that the product of maneuver time and system natural frequency is a
key parameter influencing structural excitation. For certain time-frequency
products, calculus of variations methods can be used to form optimal profiles

which reduce post-maneuver structural deformation.
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A major problem with input command shaping techniques is that
their success usually depends on solid prior knowledge of plant dynamics.
Many attempts at input shaping have been criticized because the shapers

exhibited significant dependence on precise system models.

.Gupta, Lyons, Aubrun, and Margulies [12] examined the benefits of
using frequency-shaping methods imbedded in the hierarchical control of
large space structures. They developed approaches for controlling flexible
systems with poorly damped modes, where only a small number of low-
frequency modes -were known accurately. By employing a hierarchical control
structure of plant-dependent high-authority control laws, robust low-
authority controllers, and passive actuator damping, they proposed to
increase the parameter insensitivity of control systems that utilize shaping

methods.

Swigert [27] employed torque shaping techniques to suppress the
residual vibration of a two-link flexible structure. The shaped torque profiles
were generated using terminal boundary conditions, and excited vibration
during a particular maneuver, but pushed the vibration amplitude to zero at
the conclusion of a slew. This shaping method is very sensitive to plant
parameter variations if the torque input is minimized, but can be adjusted to

be less sensitive through an iterative numerical derivation technique.

Singer [23] presented a computationally simple shaping algorithm that
demonstrated strong insensitivity to modelling errors. The shapers were

assembled from impulse sequences; to shape a command, one convolved it
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with the impulse train. These shapers produced small delays in system

response times, on the order of one period of a system'’s natural frequency.

Singhose [24] revised Singer's work to increase the shaper insensitivity
to errors in parameter estimates. By allowing a small amount of residual
vibration to occur when the system modelling is perfect, shapers can be
designed which are insensitive to natural frequency estimate errors as large as

* thirty percent.

Tzes, Englehart, and Yurkovich [30] studied the effects of combining
input shaping with a closed loop acceleration feedback controller. They
conducted tests on a flexible beam and proved that each technique can
complement the other, resulting in enhanced vibration reduction. This work
supports the assertion that input command shaping can be used concurrently

with other vibration suppression schemes.

Singer [23] originally assembled shapers designed to cancel single mode
vibration and convolved these shapers together to handle multiple mode
problems. Simpler multiple mode impulse trains can be assembled by
directly solving a full set of constraint equations. These shapers are
functionally equivalent to the original shapers, and exhibit savings in

response time and implementation complexity.

1.4 Problem Statement
Our objective in this thesis is to develop a method of suppressing multiple
mode vibration in flexible systems without invoking massive computational

burdens or causing large system response delays. Since impulse sequence
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Chapter 1: Introduction

based input shapers have been proven effective in the past, we would like the
new method to be an extension of the established technique, exhibiting
equivalent vibration reduction while avoiding some of the performance

degradation caused by previous designs.

We will derive a direct solution multiple mode shaping method that
can circumvent some of the problems caused by convolution based input
shapers. We will examine the shaper effects on linear and non-linear
simulations of a physical structure. Problems caused by the system non-

linearities will be identified, and their eradication attempted.
The remainder of this thesis is divided into five chapters:

Chapter 2 examines fundamental single mode input command
shaping, and develops the equations which serve as the theoretical
foundation for much of the rest of the thesis. Simple experimental results are
presented to confirm the vibration reducing effectiveness of the input

shaping method.

Chapter 3 extends the fundamentals of Chapter 2 toward multiple
mode problems. Two methods, convolution and direct solution, are
examined in detail. We compare the relative strengths and weaknesses of the
two multiple mode shaping approaches, and present a computational

framework for the difficult generation of the direct solution sequences.

Chapter 4 introduces the Mid-deck Active Control Experiment (MACE),

a test article which will be employed in validating the direct solution shaping
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technique. We examine some of the motivational and developmental

concerns of MACE.

Chapter 5 presents the linear and non-linear computer simulations of
MACE, used to determine the direct solution shaper's effectiveness in

suppressing vibration.

Chapter 6 concludes the thesis and provides suggestions for future

work in the area of vibration suppression.
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Chapter 2: Fundamental Input Command Shaping

2.1 Introduction

This chapter presents the basic dynamics which define input command
shaping. This examination will begin with the simple concept of residual
vibration in single mode systems, progress through the basic shaper equations
and plant parameter insensitivity concerns, and finish with some examples
demonstrating the effects of input command shaping on the response of

physical systems.

Some of the material in this chapter is paraphrased from Singer [23].
This material is included here to provide a concise background on input
command shaping, and to define the equations which will occupy a few of the
later chapters. For a full derivation of the following equations, see Singer, but
note that the equations presented here originate from time domain response
relationships, not transformed frequency domain relationships, and therefore

some of these equations will differ from those found in Singer.
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2.2 Single Mode Shaping

A standard second order system, such as a car suspension, will oscillate in a
decaying sinusoidal pattern after experiencing an impulse input, e.g. when
you press your hand down quickly on a car hood and then let go. This
oscillatory behaviour is shown in Figure 2.1. A second impulse, delivered at
the proper time with the correct magnitude, will set up vibrations which are
180° out of phase with the motion caused by the first impulse, as shown in
Figure 2.2. The response to the second impulse will tend to cancel the
response to the first impulse, yielding a maneuver that is vibration free

following the application of the second impulse, as shown in Figure 2.3.

0.15

——Response to First Impulse
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0.05
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Figure 2.1: Second order system response to single impulse input.
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Figure 2.2: Individual second order system response to two impulses.
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Figure 2.3: Combined second order system response to two impulses.
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To derive a mathematical description of this cancellation, we first note

that the second order system response to an impulse input is described by:
yilt) = A; e Sol-1) sin((t—t,') oV l—Cz) (2.1)

where y;(t) is the output, A; is the impulse amplitude and ¢; is the time
at which the impulse occurs. The system's vibration frequency is ®, with
damping {. If the system is linear, its total response to a series of N impulses
can be expressed as a sum of the the responses to each impulse "i." The
amplitude of the total response immediately following the delivery of the

Nth impulse is given by:

Amp =[( 3 e Sot-sinly 01 ))2 ’
i=1

ekl Y

=l (2.2)

A train of properly arranged impulses can suppress residual vibration
by forcing Amp to equal zero. This can only happen when both the sine and

cosine terms in equation (2.2) independently equal zero:

i AjeGol sin(t; oV 1—§2 )=O
i=1

i A;e-C‘D"cos(ti oV 1—C2 )=0
i=1

(2.3)
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To construct an impulse sequence that will act as a vibration reducing

input shaper, we start by imposing two constraints:

Hh = 0 (24)

N
Y A=1
i=1

(2.5)

The first is simply an origin specification, and the second is a
normalization constraint. Normalizing a shaper's impulse magnitudes
ensures that a shaped input will not exceed limitations imposed on the
original input, such as actuator saturation or stress limits. We specify an
arbitrary value for A1, and with N = 2, we can use equations (2.3) to solve for
the time and amplitude of the second impulse in a two-impulse shaper.
Invoking equation (2.5) completes the shaper development. A two impulse

shaper designed for ®w =1 Hz and { = 0.1 is shown in Figure 2.4.
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l4

Amplitude (normalized)

0.2 0.4 0.6 0.8 1.
Time (sec)

Figure 2.4: Two impulse sequence.

This impulse sequence will completely cancel residual vibration in a
single mode system, as long as the natural frequency and damping ratio are
perfectly known. For small errors in these plant parameter estimates, the
post-maneuver residual vibration will grow rapidly. This behaviour is
shown in Figure 2.5, the "insensitivity curve" for the impulse sequence of
Figure 2.4. The horizontal axis on the graph is the actual plant frequency, and
the vertical axis represents the normalized amplitude of the residual
vibration. We create the insensitivity curve by plotting the residual vibration

amplitude expression, equation (2.2), using w as the independent variable. If
the amplitude equals unity, the residual vibration will have the same peak to
peak level as the response to an unshaped input. A residual vibration level of

about 5% is generally considered acceptable.
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Figure 2.5: Insensitivity curve for two impulse sequence.

When the actual plant frequency is 1 Hz, the residual vibration

amplitude is zero, as expected. When w drifts away from 1 Hz, however, the
amplitude curve rises steeply. By allowing for some uncertainty in our
estimates of plant parameters, we can attempt to "flatten” the insensitivity

curve, a topic of the next section.

2.3 Adding Insensitivity

The two impulse sequence of Figure 2.4 will completely suppress a single

mode system's residual vibration, but only if the values of @ and { are known
exactly. If there is an error in the estimate of one or the other of these

parameters, the impulses in the sequence will be spaced incorrectly, and will
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be assigned improper magnitudes. If the second impulse from Figure 2.3 is
shifted slightly to the right, some of the residual vibration will remain in the

system response, as shown in Figure 2.6.

The point to realize here is that the residual vibration is sinusoidal,
regular, and thus probably repeatable. If we erred and caused the vibration to
occur once, we can most likely do it again. And, if we create a duplicate of the
residual vibration out of phase with the original residual vibration, the total
post-maneuver vibration can be suppressed. Our flawed two impulse shaper
was responsible for the improper cancellation in Figure 2.6, but if we copy the
shaper and apply the copy immediately following the original shaper, we can
produce the phase shift required to suppress the vibration caused by the first
sequence. The duplicated two impulse shaper is equivalent to a single three

impulse shaper, as shown in Figure 2.7.

The response to each individual two impulse sequence is shown in
Figure 2.8. By adding the two traces, we get the total response shown in
Figure 2.9. As the figures clearly illustrate, we have successfully employed a
flawed two impulse shaper to suppress the system's residual vibration. The
process of combining the two impulse shaper with itself to yield a three
impulse shaper imparted some parameter insensitivity to our sequence.
Since we can never perfectly know our system parameters, this measure of

insensitivity will be crucial for proper vibration suppression.
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Figure 2.6: System response using an improperly positioned second
impulse.
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Figure 2.7: Combining two two-impulse sequences into one
three-impulse sequence.
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Figure 2.8: Repeating the effects of the incorrect two impulse shaper.
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Figure 2.9: Response to three impulse shaper.
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The above figures presented an intuitive approach for using three
impulse sequences to deal with parameter insensitivity. To develop the
equations defining the three impulse sequence, we start by differentiating
equations (2.3) with respect to natural frequency. This generates two

additional impulse constraints:

i A,'t,'e"gmtisin(t,' oV 1—C2 )=0
i=1
i A,'tie'gmticos(ti 0V 1—(_,2 )=0
i=1

(2.6)

Setting the partial derivative with respect to natural frequency equal to
zero also sets the partial derivative with respect to damping ratio equal to
zero, as shown in Singer [23]. These new constraints require the addition of a
third impulse to our sequence; we have four equations, we need two
unknown amplitudes and two unknown times. Given the constraint that #3
be as small as possible, a closed form solution exists for the single mode three
impulse shaper, making these sequences extremely simple to develop. The
three impulse sequence, as we have shown, will also force the residual

vibration to be low even if the system parameters are not precisely known.

The closed form solution for the single mode three impulse sequence
is described by equations (2.7), where @ is the system natural frequency in
radians, { is the damping ratio, and the "denom" term is used to normalize
the impulse amplitudes, as dictated by equation (2.5). It is interesting to note
that the impulse spacing depends on the values of  and {, but the impulse

amplitudes are only { dependent.
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Single Mode Three Impulse Sequence: Closed Form Solution

2
K=¢ V-G AT = —L— denom = 1+2K +K?
woV1- Cz
Impulse 1: time =0 amplitude = 1 / denom
Impulse 2: time = AT amplitude =2 K | denom
Impulse 3: time = 2 AT amplitude = K 2/ denom Q2.7

Figure 2.10 shows the three impulse equivalent of Figure 2.4. The
parameter insensitivity is clearly demonstrated by Figure 2.11. Notice that the
curve in Figure 2.11 is "flat" around the plant frequency, 1 Hz, and recall the
steepness of the two impulse sequence insensitivity curve around the same
frequency. Figure 2.11 illustrates that if our estimate of the natural frequency

is slightly in error, the amplitude of the residual vibration will remain small.
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Figure 2.10: Single mode three impulse shaper.
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Figure 2.11: Insensitivity curve for three impulse sequence.
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The penalty associated with the shaping method is a delay in the
system rise time. By passing a step command through a three impulse
sequence, for instance, the step will be delayed in reaching its full value for a
time equal to the time of the final impulse in the shaper, a delay of about one
period of the system's natural frequency. This delay will cause no instability
problems, because the shaper remains outside of the control system, but it can
act as an irritant in tele-operated systems. Minimizing the delay will be

covered thoroughly in Chapter 3.

Note: the impulses in these sequences are constrained to having only
positive amplitudes. If negative impulses are used, the time of the final
impulse in the sequence can be decreased, but negative impulses tend to tax a
system's actuators and introduce high stress levels. In the remaining
chapters, all shapers will utilize impulses with positive amplitudes. For a full

derivation of the above equations, see Singer [23].

2.4 Input Shaping Examples

In the following graphs, step inputs were fed through the shapers of Figures
2.4 and 2.10 and delivered to the ® = 1Hz, { = 0.1 system mentioned above.
Figure 2.12 illustrates the effect of a two impulse shaper on the step input, and
Figure 2.13 shows the corresponding response. Notice how shaping the step
input results in a “staircased” command; we never deliver an impulse to the
system. Figure 2.14 displays the step as modified by a three impulse shaper,
with the responses shown in Figure 2.15. Figures 2.13 and 2.15 clearly
illustrate the response delay caused by the shaper, and both graphs reveal the

effectiveness of the shaper in reducing the system residual vibration.
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Figure 2.12: Step input as modified by two impulse shaper.
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Figure 2.13: Responses to inputs of Figure 2.12.
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Figure 2.14: Step input as modified by three impulse shaper.
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Figure 2.15: Responses to inputs of Figure 2.14.
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2.5 Conclusion

In this chapter we developed a technique for using impulse sequences to
suppress residual vibration in single mode flexible systems. Standard system
inputs are convolved with an impulse sequence to generate an adjusted
command that will produce vibration free motion. The "input shaping"
method demonstrates significant insensitivity to variations in plant
parameters and causes only slight delays in the system rise time, on the order
of one period of the plant's natural frequency. The next step is to develop an
approach for suppressing vibration in the large range of systems that oscillate

at more than one frequency.
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Chapter 3: Extending to Multiple Mode Problems

3.1 Introduction

In this chapter we move on to the more complicated problem of systems
which vibrate at more than one frequency, or multiple mode systems. We
showed in Chapter 2 that we can use impulse based input shaping to suppress
vibration at a single mode, and in this chapter we'll examine two methods,
convolution and direct solution, that can be used to extend the single mode

shaping theory to deal with multiple mode problems.

3.2 Convolution

Convolution sequences utilize combinations of existing single mode shapers
to suppress multiple mode vibration. The approach is to develop single
mode shapers for all desired frequencies, and then convolve all of the shapers
together into a single long impulse train. This is a relatively straightforward

extension of the theory presented in Chapter 2.
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3.2.1 Building Convolved Sequences

In Chapter 2 we analyzed an impulse's tendency to cause vibration and then
we positioned additional impulses to counteract that vibration. The resulting
impulse train formed our input command shaper. In a multiple mode
system, the first impulse in the train will cause vibration at more than one
frequency. We can still place our additional impulses as in Chapter 2, and we
will eliminate residual vibration at one frequency, but the system will be free
to oscillate at frequencies not included in the shaper development. If we
know what the other frequencies are, we can develop individual shapers to
combat those modes, too, and we can convolve the sequences together so that

they all work at the same time.

As an example, consider a system with modes at 1 Hz and 10 Hz, zero
damping in both modes. Using equations (2.7), we can quickly generate
individual impulse sequences tailored to eliminate vibration at each of the
above frequencies. The single mode sequences for 1 Hz and 10 Hz are shown

in Figures 3.1 and 3.2, respectively.
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Figure 3.1: Three impulse sequence designed for 1 Hz.
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Figure 3.2: Three impulse sequence designed for 10 Hz.
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To convolve these two sequences, we perform an outer sum of the
impulse times in sequence #1 with the impulse times in sequence #2, and we
perform an outer product of the impulse amplitudes. Another way to think
of this is that every impulse in the 1 Hz sequence will touch off 10 Hz
vibration. Each 1 Hz impulse is therefore immediately shaped for 10 Hz by
the faster sequence. The result is a sequence with 3" impulses, m being the

number of modes suppressed by the shaper.

The product of convolving Figures 3.1 and 3.2 is shown in Figure 3.3,
and the insensitivity curve for the convolved sequence is shown in Figure
3.4. We create a multiple mode insensitivity curve using the same method as
in Chapter 2; we plot the residual vibration amplitude expression, equation

(2.2), with @ varying as the independent variable.

The time of the final impulse in the convolved sequence of Figure 3.3,
1.1 seconds, is equivalent to the sum of the damped periods of the modes
used in developing the sequences. This maximum time can be thought of as
the shaper's "length,” a term we'll use in the rest of the thesis. The length of
a sequence is not the number of impulses in the sequence, it is the time of the
sequence's final impulse, and concurrently, the delay in rise time caused by

the shaper.
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Figure 3.3: Convolved sequence designed for 1 Hz and 10 Hz, { = 0.0.
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Figure 3.4: Insensitivity curve for convolved sequence of Figure 3.3.
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As Figure 3.4 shows, vibration at 1 Hz and 10 Hz will have zero
magnitude in the residual vibration. The insensitivity curve also illustrates
an interesting feature of input shapers. If the system damping is zero, or very
low, odd integer multiples of the frequencies used in developing the shaper
will also be suppressed in the post-maneuver vibration. So in our example,
modes at 3 Hz, 5 Hz, 7 Hz, etc. and 30 Hz, 50 Hz, etc. are also suppressed,

incidentally providing excellent parameter insensitivity around 10 Hz.

This feature is caused by the periodic nature of the residual vibration,
or any vibration, for that matter. When we defined our closed form solution
for the single mode impulse shaper in equations (2.7), we specified that the
time of the third impulse, t3, be as small as possible. If we hadn't made this
specification, we could have found an infinity of solutions with t3 placed at
increasing odd multiples of 2 AT (the period of the mode's oscillation). So
our 1 Hz shaper also cancels vibration at 3 Hz, by applying the impulse train
over three cycles of the 3 Hz mode. The 1 Hz vibration is cancelled by
applying the train over a single cycle, as originally intended. This sup-

pression windfall disappears when the damping in the modes increases.

Figures 3.5 and 3.6 illustrate the effects of damping on the coincidental
multiple mode suppression. Figure 3.5 shows a convolved sequence for 1 Hz
and 10 Hz, with { = 0.1 in both modes, and Figure 3.6 graphs the insensitivity
curve for this sequence. We still cancel the necessary frequencies, at 1 Hz and
10 Hz, but the vibration amplitudes at the odd harmonic frequencies have

drifted up from zero.
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Recall from equations (2.7) that the presence of damping will affect the
placement of the impulses in the shaper. When { = 0.0 in all modes, the
shaper for one frequency will also suppress vibration at all of the frequency's
odd harmonics. When damping is introduced at the fundamental frequency,
however, the spacing and magnitudes in the impulse train will be altered,
and that shaper will not completely suppress vibration at the odd harmonics,
where the damping might remain zero. This behaviour is characteristic of all
shapers, including the direct solution sequences we'll examine in the later

sections of this chapter.
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Figure 3.5: Convolved sequence for 1 Hz and 10 Hz, { = 0.1.
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Figure 3.6: Insensitivity curve for sequence of Figure 3.5.

3.2.2 Implementing Convolved Sequences

Implementing any shaper in a digital control scheme involves modifying a
setpoint by convolving it with the shaper's impulse sequence. In the
computer code, the presence of one impulse requires one additional floating
point multiplication operation and one additional floating point addition
operation. In the previous section, we defined an expression for the number
of impulses in a convolved sequence: # impulses = 3", where m equals the
number of modes to be suppressed by the shaper. When the impulse
population increases exponentially, using a convolved sequence to cancel
even four or five modes will increase the computational burden and could

force a decrease in servo rate.
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Clever programming, however, can prevent the use of exponentially
growing sequences. By utilizing successive ring buffers that handle the
shapihg for each mode, the setpoint can be passed along to each shaper in
turn, allowing the controller to use only 3 * m impulses. This technique
essentially convolves the single mode shapers on the fly, and can reduce the

computer's workload.

3.2.3 Problems with Convolved Sequences

The convolved multiple mode sequences are easily generated, but their
failings become clear when the cancellation of higher mode vibration is
desired. We showed in section 3.2.2 that the number of impulses in a
convolved shaper grows at a rate of three per mode, an improvement over
the exponential growth expression of section 3.2.1, but still a potential cause of

servo rate reduction.

Particularly painful is the application of convolved shapers to multiple
mode problems involving several low frequencies. As an example, consider
the Space Shuttle Remote Manipulator System (RMS) maneuvering a 7,000
pound satellite out of the Shuttle's payload bay. The first four frequencies of
the manipulator arm / payload system, depending on orientation, can be
estimated at about 0.20 Hz, 0.26 Hz, 0.45 Hz, and 0.59 Hz, with very low
damping (around { = 0.01). Recall that the length of a convolved shaper is
equal to the sum of the damped periods of the shaper's modes. A shaper

designed for cancellation of these four modes will be about 12.76 seconds long.

The Shuttle RMS is a tele-operated system, with an astronaut sending

joint velocity commands to the arm to perform tasks. If we impinge a delay
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of 12.76 seconds into that human controlled system, serious stability and
hunting problems can result. Relatively precise maneuvers, such as docking
the arm with a malfunctioning satellite, or positioning massive objects
carefully within the payload bay, become extremely difficult. There are a
variety of other space-borne and industrial systems with low frequencies that

could experience similar problems caused by the convolved shapers.

So the major complaint of convolved shapers is their prohibitive
length when used on multiple mode, low frequency systems. Another
concern is their impulse population expression: we need three more
impulses for every mode we add to our convolved shaper. An approach
which addresses both of these problems is the direct solution technique, the

subject of the next section.

3.3 Direct Solution

In the previous section we constructed convolved shapers by developing
individual sequences for each mode, and then convolving them all together.
In this section we'll pursue the idea of developing a single multiple mode
shaper "all at once." This new approach will allow the generation of shapers
which contain fewer impulses and cause smaller time delays than convolved
sequences. We'll attempt to find such sequences through a "direct solution”

of the original shaper constraint equations.
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3.3.1 Re-formulating the Equations

To begin the search for direct solution sequences, we can rewrite the original
single mode impulse sequence equations, (2.3) and (2.6), to include an

arbitrary number of modes:

N
2 A;e'gm"t‘sin(t,- o V 1—§2j)=0
i=
3 A;e'c"mf“cos(t,- oy V I-Czj)=0
=1

—

i (3.1a)
2 Aitie g"o’t’sm(t,- w V I—Czj =0

i=1

N

Z Aite §’m’t‘cos(t; o V I—Czj =0

i=1 (3.1b)

s

]

simultaneous non-linear impulse constraint equations. If we can find a

Repeating equations (3.1) for additional modes "j" generates a set of
solution to these equations, we'll derive a shaper that has the vibration
reducing capabilities of the convolved shapers, and yet affords some

advantages, mentioned in the next section.

3.3.2 Advantages of Direct Solution Sequences

An.initial observation of equations (3.1) reveals that the solution of these
equations will require only (2 * m) + 1 impulses, m being the number of
cancelled modes. We can state that any sequence satisfying the above

equations will automatically have fewer impulses than the equivalent
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convolved sequence, which requires 3 * m impulses. The direct solution
sequence's slowly increasing population leads to fewer impulses in higher

mode shapers, reducing implementation time and computational burden.

We can also show that the direct solution sequences will always be
shorter than the equivalent convolved sequences. On an intuitive level, this
makes sense because we're defining one sequence from the outset which will
suppress all desired modes, whereas with a convolved sequence, we must
first develop a shaper for each mode and then stack all of the shapers
together. We will not present a theoretical proof of the direct solution
sequence's length savings, but we will clearly demonstrate this savings in
examples throughout the remainder of the thesis. We will show that in
some cases, a direct solution sequence can be as much as 20% shorter than the

equivalent convolved sequence.

3.3.3 Problems with Direct Solution Sequences

The savings in length and impulse number that the direct solution sequences
support are offset by an increase in sequence generation complexity. We
mentioned that the single mode shaper equations have a closed form
solution, equations (2.7). Convolved shapers achieve multiple mode
vibration suppression through simple combinations of single mode
sequences. The direct solution expressions, equations (3.1), have closed form
solutions only for cases of two or three modes, and only if a certain structure
is imposed on the resulting sequence. For higher mode systems, equations
(3.1) require a strict set of constraints just to limit their infinite solution space,

and no general closed form solution has been found.
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3.4 Solving the Direct Solution Equations

The lack of a closed form solution makes matters difficult, but it is still
certainly possible to develop a sequence that will satisfy equations (3.1). The
key to solving the multiple mode equations thus far has been to employ a
linear approximation. Equations (3.1) are non-linear only in terms of
impulse time, so by constraining the impulse times to known values, we can

linearize the equations and converge on a solution through optimization.

3.4.1 Formulating the Linear Problem

To linearize equations (3.1), we can pick a time for the sequence’s final
impulse, defining the sequence length, and then divide that length into a fine

time mesh, as shown in Figure 3.7.

0O 1 2 3 4 5 N

Figure 3.7: Defining the time mesh.
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An impulse is placed‘ at each time slot, with unknown amplitude but
known time. With this knowledge of the impulse times, we can evaluate all
of the non-linear terms in equations (3.1), forming constant coefficients for
the impulse amplitudes. We now have a constant coefficient linear problem
with impulse amplitudes as variables. We'll usually pick a fine time mesh to
provide a good approximation to the actual solution, and we get a new
variable with evefy time slot, so our linearized equations will be under-
constrained. We can generate solutions to these equations through the use of

linear programming with optimization.

To perform optimization, we need a matrix of constraints, and a cost
function that we'll try to minimize. The constraints for our particular
optimization problem are the equations we want to solve, the multiple mode
equations (3.1). We'll add the normalization requirement of equation (2.5) to

our constraint matrix to ensure that our final sequence will shape inputs

properly.

Choosing a cost function can be a bit more complicated. What
characteristics of our impulse sequence do we want to minimize? Several
answers come to mind. We know that eventually we want to minimize the
time of the final impulse, reducing the delay caused by the shaper. Also
desirable is the minimization of the sequence's sensitivity to parameter
variations. We can even think of using a cost function set equal to zero, so
the optimization problem will be solved as soon as we find the first sequence

that satisfies our constraint matrix.
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It turns out that minimizing the sequence length makes the definition
of the constraint matrix somewhat complex. Recall that we set up our time
mesh by defining a length and then subdividing the length into slots. If we
choose sequence length as a cost function, successfully reducing this cost
function will mean that we'll have to re-define our time mesh, and therefore
our constraint matrix will change throughoﬁt the problem. It is possible to
make this work, but we'll show in section 3.4.2.b that we can reduce the

sequence length using a simpler, yet perhaps less elegant method.

Minimizing the sequence's parameter insensitivity is also an attractive
goal. We demonstrated in Chapter 2 that three-impulse sequences display
greater parameter insensitivity than two-impulse sequences. Singer [23]
showed that the parameter insensitivity increases still further when four-
impulse sequences are used. Equations (3.1) are simply the three-impulse
equations, written for multiple modes. We can increase the insensitivity of
our three-impulse sequences by forcing them to behave more like four-

impulse sequences.

To develop the equations defining the three-impulse sequence, we
differentiated equations (2.3) with respect to natural frequency. Taking the
second derivatives of equations (2.3) with respect to natural frequency forms
the additional equations needed to develop a four-impulse sequence. We can
use these "second derivative" equations, as written for multiple modes, in
our cost function to impose some four-impulse sequence insensitivity on our

direct solution sequence. The cost function formed by using these "second
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derivative" equations is defined by equation (3.2). M is the number of modes

in the problem, all other notation has already been defined.

2
( i A; t?e'g"“y"cos(t,- o V l—Czj )) :'

i=1 (3.2)

In the majority of the following optimization problems, the cost
function will be defined by equation (3.2). Note that the summations over N
are squared to eliminate any negative values. This action creates a non-linear
cost function. One might argue that taking the absolute value of the
summations over N would work just as well and produce a linear cost
function, but the absolute value operator is also non-linear, around zero.
Mixing linear constraints with non-linear cost functions is actually a
common practice, and will not dramatically increase computation effort in

the search for a solution to the linear problem.

We will also occasionally employ the "zero" cost function mentioned
above. Using this cost function, our solution process stops when we find the
first sequence that satisfies our constraints. This cost function will be useful
when we want to get a quick, rough look at a non-optimal solution to the

constraint equations.
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With the constraint matrix formed by equations (3.1) and (2.5) and the
cost function of equation (3.2), the linear problem becomes the classic
mathematical exercise: "minimize the cost function subject to the stated

constraints."

3.4.2 Solving the Linear Problem: GAMS

There are many techniques for solving linear optimization problems, and
several existing routines and programs available that utilize those techniques.
We chose the General Algebraic Modeling System (GAMS) [5], a
comprehensive programming language that eases the process of problem

definition, communication with solver routines, and solution presentation.

3.4.2.a Running GAMS

The GAMS system reads an input file designating problem data and various
options, compiles the input file, sends the file to a specified solver routine,
and writes an output file containing the results of the optimization. The
output file details any solution problems such as infeasibility, local minima,
etc. The actual technique employed by GAMS to perform linear optimization

is a version of the popular primal simplex method.

To apply GAMS to our problem, we start by writing an input file that
contains the modal information for our vibratory system. We add to the file
our choice for ty , the time of the final impulse, and At, the time separating
the slots in our time mesh. This sets up an array of times containing tN / At

entries. We define our array of variables, the impulse amplitudes A;, to be

the same length as the time array. We then specify equations (2.5) and (3.1) as
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our constraints and equation (3.2) as our cost function. Alternatively we can
specify a zero cost function. GAMS will automatically use the values in our
time array to linearize the amplitude coefficients in the constraint matrix and
the cost function. Finally we specify a solver routine and define what data we
want to see in the output file. The next step is to simply call GAMS and

specify the input file.

To continue the example we used for the convolved sequences in
section 3.2.1, let's write an input file with the modal information: w1 =1 Hz,
w2 = 10 Hz, and { = 0.0 in both modes. Let ty equal the length of the old
convolved sequence, 1.1 seconds, set At = 0.005 seconds, and use the zero cost
function. We know that we'll be able to find a shorter direct solution
sequence than 1.1 seconds, but let's see what happens with these parameters
just for comparison. Using our input file, GAMS returns the sequence shown

in Figure 3.8, with the parameter insensitivity shown in Figure 3.9.
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Figure 3.8: Direct solution sequence for 1 Hz and 10 Hz, { = 0.0,
zero cost function.
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Figure 3.9: Insensitivity curve for sequence of Figure 3.8.
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Our sequence certainly works; the insensitivity curve reveals zero
vibration amplitudes at 1 Hz and 10 Hz, but a few interesting points should be
mentioned here. First, recall that we specified a variable array of the
amplitudes, A;, with the same length as our time array, or tN / At slots. As
part of our linearization, we placed an impulse at each time slot, meaning our
variable array must have 1.1 / 0.005 or 220 entries. The impulse sequence of
Figure 3.8, therefore, actually has 220 impulses, but only 9 are shown. The

remaining impulses are still there, but their amplitudes are zero.

The zero amplitude impulses result from the primal simplex method
that GAMS uses to solve linear problems. If M is the number of modes to be

cancelled, the GAMS constraint matrix consists of:
rows: ¥ = 4*M) + 1

columns: ¢ =tN / At

The primal simplex method dictates that at least (c - r) variables will equal
zero. The number of "zeroed" variables will be adjusted if the cost function is
non-linear, because GAMS adds or removes "supervariables" to its constraint
matrix to aid in the solution of non-linear problems. The main point is that
the returned sequence will have about r impulses, not ty / At. In our case, r
=9, and our returned sequence does, in fact, have 9 impulses. This number

will be shifted slightly when we use the "second derivative" cost function.

Using the "second derivative" cost function will improve the
parameter insensitivity of Figure 3.9. Figure 3.10 displays the sequence output
from GAMS when the zero cost function is traded for the second derivative

expression, with the accompanying insensitivity curve shown in Figure 3.11.
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Figure 3.10: Direct solution sequence for 1 Hz and 10 Hz, { = 0.0,
"second derivative" cost function.
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Figure 3.11: Insensitivity curve for the sequence of Figure 3.10.
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In a comparison between Figure 3.11 and Figure 3.9, we can see that the
insensitivity curve in Figure 3.11 is flatter around 10 Hz, reflecting the slight,

but beneficial effects of using the second derivative cost function.

An interesting point brought up by Figure 3.10 is the "pairing" of
impulses in GAMS sequences. In three cases in Figure 3.10, impulses were
placed in adjacent time slots. This phenomena can be thought of as GAMS
trying to place a single impulse in an imaginary time slot that exists between
two defined slots. GAMS just splits the original impulse and places the two

new impulses in the nearest time mesh locations available.

3.4.2b Finding the Shortest Solution

Now that we've shown that linearizing the constraint equations can actually

produce workable impulse sequences, the next step is to find the sequence
that yields the greatest time savings. This can be accomplished by running
GAMS multiple times, systematically reducing the final impulse time, tN.
GAMS will specify in the output file if the solution to the problem is
infeasible, meaning that the sequence length has been reduced too far. A
simple binary search algorithm was utilized to minimize the time spent
searching through the solution space. This technique ensured that the final

GAMS output was the shortest possible approximation.

While searching for the shortest sequence, the quickest method is to
use the zero cost function. This expression is computationally less difficult
for GAMS, and many iterations can be conducted quickly. Once the

minimum time has been discovered, the problem can be run again using the
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second derivative cost function to obtain the most insensitive sequence. The
time mesh length may have to be increased by one or two slots to accomodate

this new sequence.

The final, shortest, and most insensitive GAMS sequence for the 1 Hz
& 10 Hz problem is shown in Figure 3.12. The insensitivity curve for this
sequence is the subject of Figure 3.13. It is interesting to compare Figure 3.13
to Figure 3.4, the insensitivity curve of the equivalent convolved sequence.
Our GAMS sequence does not perfectly suppress vibrations at the odd
harmonics of the included frequencies. This mild performance degradation
can be attributed to the the digitization of the impulse times in the GAMS
sequence; an exact sequence can place impulses in continuous, not digital,
locations. We should recover the odd harmonic suppression if we are able to

convert the GAMS sequence into an exact, continuous sequence.

The length of the sequence in Figure 3.12 is 1.055 seconds, a savings
over the convolved sequence length of about 4%. This length improvement
is minor; greater time savings will be realized when we apply the direct

solution method to higher mode, low frequency systems.

As a stronger example of the direct solution sequence’s time savings
potential, consider the Space Shuttle RMS case mentioned in section 3.2.3. A
convolved shaper designed for the first four frequencies of that system, 0.20
Hz, 0.26 Hz, 0.45 Hz, and 0.59 Hz, zero damping in all modes, will have a
length of 12.76 seconds. The equivalent direct solution sequence is shown in

Figure 3.14. This sequence has a length of 10.70 seconds, a savings of 16%.
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Figure 3.12: Minimal time impulse sequence for 1 Hz and 10 Hz,
zero damping, second derivative cost function.
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Figure 3.13: Insensitivity curve for sequence of Figure 3.12.
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Figure 3.14: Direct solution GAMS sequence for modes at 0.20 Hz,
0.26 Hz, 0.45 Hz, and 0.59 Hz, zero damping,.

3.4.2.c Using the GAMS Sequence

When any impulse shaper is implemented in a digitally controlled system,
the impulse times must be rounded to their nearest value in servo counts.
This rounding, depending on the servo rate, can cause the shaper to lose
some of its effectiveness, as mentioned in Singer [23]. These errors are
minimized if the impulse times are already synchronized with the controller
servo rate. for instance, in the above GAMS sequences, we used a At of 0.005
seconds. If the system's controller were operating at 200 Hz, our impulse

sequence would fit perfectly into the servo count structure.
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In many cases, therefore, it is desirable to simply set the GAMS time
mesh to correspond with the controller servo rate, and employ the optimized
GAMS sequence as the input shaper. Occasionally, the number of impulses
in the GAMS output will be high enough to slow the controller down and
cause missed sampling problems. In these cases, the GAMS output can be
adjusted slightly to minimize the impulses in the sequence. Recall from
section 3.4.2.a that GAMS often returns sequences with "paired” impulses:
impulses in neighboring time slots. We can "squash” two neighbors together
by summing their magnitudes and pushing the new single impulses into one

of the slots previously occupied by one of the neighbors.

Figure 3.15 shows the sequence of Figure 3.12 after it has been
"squashed." The time mesh spacing is preserved; the neighboring impulses
are simply combined. Figure 3.16 displays the insensitivity degradation
caused by combining the neighboring impulses. A comparison to Figure 3.13
reveals this degradation as slight. We reduced the number of impulses from
11 to 7, and saving the computational burden of four impulses can possibly

allow a digital controller to operate properly and not miss data samples.

70



Chapter 3: Extending to Multiple Mode Problems

E‘ 0.24
S
£
g 0.15¢ N
0 S—— ————
E 0 i-- T
g_‘ .
<

0.05¢}

0.2 0.4 0.6 0.8 1.
Time (sec)

Figure 3.15: GAMS sequence of Figure 3.12 with neighboring
impulses combined, a decrease of four impulses.
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Figure 3.16: Insensitivity curve for GAMS sequence of Figure 3.15
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3.4.3 Finding Exact Solutions

Now that we've developed short, insensitive sequences through a linear
approximation, the next step is to try to convert those approximate sequences
into exact, continuous-time sequences. We will accomplish this by
considering the best GAMS results as initial guesses. These guesses will be

used by a non-linear equation solver to attempt to find an exact sequence.

3.4.3.a Interpreting the Linear Problem Results

The GAMS output has to be interpreted to be able to function as an initial
guess of the exact sequence. Recall that the exact solution to equations (3.1)
requires only ( 2 * m ) + 1 impulses, m being the number of modes. The raw
GAMS sequences are returned with about 4 * m impulses, so we need some
sort of algorithm that will reduce the number of the GAMS impulses while

retaining the basic sequence structure.

The interpretation algorithm used on the GAMS sequence has two
phases: first, neighboring impulses are "squashed" as mentioned in section
3.4.2.c, but instead of retaining the time mesh of the GAMS sequence, the new
impulse is placed at a time halfway between the original neighbors. This
"squashing” may or may not reduce the number of impulses far enough, it

usually will not and phase two must be used.

The second phase in the algorithm searches for the closest non-
adjacent neighbors, i.e. those impulses not squashed by phase one but still
very close to each other. These impulse pairs are replaced, one pair at a time,

by a single impulse. The amplitude of the new impulse equals the sum of the
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original impulses, and the new impulse time is calculated as a weighted
average of the times of the original neighbors. The weighting function for
this average is simply the amplitude of each original impulse. A check is
then made to determine if the sequence has the proper number of impulses,

and if not, phase two is repeated.

This set of techniques will yield a sequence whose number of impulses
matches that required by the non-linear multiple mode equations (3.1). As an
example, consider the four-mode sequence shown in Figure 3.14. The
resulting sequence, after employing the two-phase interpretation algorithm

mentioned above, is shown in Figure 3.17.

__0.25¢1

E 0.24

£

Q

5 - ——

3 0.15+4%

a —— ———

g 0.1}

<

0.05+4 "' '|'
2. 4 6. 8. 10. 12.

Time (sec)

Figure 3.17: Interpreted sequence from Figure 3.14, to be used as
initial guesses for non-linear equation solver.
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3.4.3b Using the Linear Results in a Non-Linear Solver

The availability of non-linear equation solving routines rivals that of linear
approximation routines, with a variety of approaches utilizing several
languages and formats. We chose Mathematica™ [33] as a non-linear
equation solver, mainly because of its additional potential as a programming
language that could envelop the entire computational side of the impulse
sequence generation. A long Mathematica program can be used to interface
with the user, write GAMS input files, analyze GAMS output files, and to

attempt exact solutions.

To use the GAMS sequence as an initial guess for the Mathematica
solver, we can hold constant the time and amplitude of the first (i = 1)
impulse in equations (3.1), matching the first impulse from the interpreted
GAMS output. The remaining times and amplitudes are allowed to vary,

with initial guesses of their values provided by the reduced GAMS sequence.

Continuing our use of the Space Shuttle four-mode problem, we can
feed the initial guesses of Figure 3.17 into the Mathematica solver routine.
The resulting exact direct solution sequence is shown in Figure 3.18, with the
corresponding insensitivity curve of Figure 3.19. The slight differences
between the final sequence of Figure 3.18 and the guessed sequence of Figure
3.17 reveal that our original guesses were quite close to the actual solution.
Our exact solution has virtually the same length as the GAMS sequence of
Figure 3.14, retaining the length savings of 16% over the equivalent

convolved sequence.
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Mathematica employs a Newtonian gradient search algorithm to arrive
at its solutions. This method works quite well, as long as our guesses are
"sufficiently” close to the optimal solutions, meaning that our initial guesses
reside on the same gradient as the final solution. As the non-linear
equations are continuous and differentiable, adequate gradients are readily

available, and points of singularity are usually easy to avoid.

GAMS can also be employed as a non-linear equation solver, and we
can extend our Mathematica program to write GAMS input files designed for
the exact solution of the constraint equations. Using GAMS instead of

Mathematica produced little or no difference in ease of solution.

3.4.3.c Exact Solution Difficulties

The GAMS / Mathematica routine can successfully derive exact direct
solution sequences for a variety of multiple mode problems. GAMS alone
will produce sequences that, with minor modifications, can be perfectly
meshed with digitally implemented controllers. The exact solution routine,
however, is not entirely robust, and the two problems that regularly cause

failure are modal spacing and number of modes.

The modal spacing characteristics that plague the generation of exact
solutions are difficult to describe, and at the time of this writing, not entirely
understood. Back in Section 3.2.1, we examined the input shaper's interesting
ability of eliminating vibration not only at a designated frequency, but also for
odd harmonics of that ffequency. We explained that this phenomenon is a

function of the vibration's periodic nature. An infinite number of shapers
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can be found that will suppress vibration at a particular mode; we happen to
be interested in the shortest possible sequence, that sequence with the

smallest final impulse time.

The modal spacing problems that prevent the exact solutions from
converging seem to be linked to the odd-harmonic suppression "feature.” In
a two mode case, for example, if the second mode is greater than three times
the first, the GAMS / Mathematica routine will not converge on an exact
solution. This difficulty appears to be governed by a ratio, R, that we have
established through further experimentation and analysis. R is the theo-

retical length of the exact direct solution sequence designed for two modes:

R=4/(1+f2)
fi: frequency of mode 1

f2: frequency of mode 2

If f» is less than or equal to three times f1, R will be greater than or
equal to 1/ fj, the period of the lowest mode, and everything works fine. If f
is greater than three times f1, however, R will be less than 1 / fj. When R
drops below the first mode's period, our routine won't find a solution - to
suppress a particular mode, our entire shaper must be at least as long as that
mode's period. The solution algorithm will try to use negative impulses to
force a shorter sequence, an action which we'd rather avoid for the reasons

mentioned in Chapter 2.

The coupling between solution feasibility and modal spacing becomes

unclear when additional modes are added to the system. We have so far been
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unable to identify an R parameter for systems involving more than two
modes. The clearest statement we can make at this point is that we realize
modal spacing is a problem, and we have some insight into the nature of that
problem, but we cannot predict exactly which spacings will cause the solution
algorithm to fail for systems involving more than two modes. We are
conducting further investigations into the difficulties caused by modal

spacing, and hopefully future work will shed some more light on this area.

The solution algorithm's difficulty with high modal numbers is a bit
more straightforward. To date, the routine has successfully generated exact
impulse sequences for properly spaced groups of up to five modes. Linear
GAMS sequences can be easily generated for many more modes, but the exact
solutions will not converge. The complexity of the simultaneous solution
process increases rapidly with additional modes, comparable to the rapidly
increasing difficulty of finding roots of third or greater order polynomials. As
we push past fifth-order modal problems, our current approach is not equal to

the mathematically burdensome task of finding exact solutions.

One might think that if the GAMS time step were reduced far enough,
the linear sequence would virtually emulate the exact sequence. This is sadly
not the case, for the problem as posed to GAMS does not strictly bound the
number of impulses; GAMS will use roughly 4 * M impulses, where the exact
solution is constrained to using (2 * M) + 1 impulses, M being the number of
modes. For finer and finer time meshes, therefore, GAMS will just continue
to use its allotted number of impulses, and the linear sequence will not

become a better approximation of the exact sequence.
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Generating exact multiple mode shaping sequences can thus become a
difficult, or even impossible computational problem. Fortunately, in many
cases the shapers will be employed in digital control algorithms, where
variations of the linear sequences, such as those output from GAMS, are
more appropriate. Linear sequences can be generated for any number of
modes, covering any modal spacing, provided the linear system time step can
be reduced sufficiently. In situations where finding an exact solution is
difficult or impossible, a linear sequence can be used to save a great deal of

time and effort, at a cost of a mildly increased controller burden.

3.4.3.d New Approaches

Current, parallel research is aimed at finding closed form solutions for
multiple mode problems. We can recognize that many of the exact sequences
we found in this chapter, either by convolution or direct solution, have been
symmetric, with an equal number of impulses ranged around a central pivot
impulse. We can rewrite the impulse constraint equations to "build in" a
symmetric grouping, which tends to reduce the complexity of the equations

and can allow a direct solution to be expressed in a closed form.

As of this writing, the "symmetric re-formulation” technique has
produced exact solutions for two- and three-mode problems, but modal
spacing still causes difficulties and occasionally the new sequences are not as
short as the equivalent GAMS linear solutions. We must also realize that
some of the exact solutions, depending again on modal size and spacing, are

not necessarily symmetric.
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Other current work proposes to constrain the number of impulses that
GAMS can use, bringing the raw GAMS output closer to the final exact
sequence. This would improve the fidelity of the linear sequences and
decrease the amount of interpretation required to use the GAMS sequences as
guesses for non-linear equation solvers. Both of these new approaches show
promise, and sections of future theses will be devoted to the increased

capability of finding exact solutions.

3.5 Conclusion

In this chapter we have examined two methods for applying impulse
sequence shapers to multiple mode problems: convolution and direct
solution. Convolution involves combining several single mode shapers into

an impulse train that will perform vibration suppression of multiple modes.

To use the direct solution method, we re-formulate the single mode
shaper equations to include several modes, and solve those equations
simultaneously, generating a single sequence that matches the performance
of the convolved shaper. The direct solution sequences use fewer impulses
than the convolved sequences, reducing the computational burden of
implementing the input shaper. The new sequences are also shorter than
convolved sequences, resulting in smaller system response delays. These

advantages are offset by an increase in sequence generation complexity.
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4.1 Introduction

In the previous chapters we examined input command shaping as a method
to suppress residual vibration in flexible systems. Now that we have a clear,
theoretical framework for the development and implementation of direct
solution impulse sequence shapers, we need a physical system upon which
we can test, and hopefully validate, the shaping technique. In this chapter we
will discuss the development of an experimental flexible structure, the Mid-
deck Active Control Experiment (MACE). We will use this experiment as a

test article in later chapters.

4.2 Motivation

Future plans in the U.S. Space Program call for the development of large,
earth-orbiting satellites that will monitor various global trends relating to
weather and long term temperature fluctuations. These proposed satellites

will be "multi-body" platforms, meaning that each spacecraft will carry an
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array of independent sensors, antennae, and instrumentation, all mounted
on a common structure. Two space platform programs in various stages of
development are the Earth Observing System (EOS) [19], and the
Geostationary Platform (GEOS) [11]. Figure 4.1 is a schematic of the early
EOS-A configuration, and Figure 4.2 is a drawing of the GEOS platform.

Figure 4.1: EOS-A Spacecraft Configuration
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Figure 4.2: GEOS Platform

One problem common to such space systems is structural vibration.
The several sensors and instruments all rest on a common platform. To
facilitate launching, the platform is designed to be as lightweight as possible,
while still maintaining strength and rigidity. These structures will not pass
for bedrock, however, and a moving antenna will transmit vibration through
the structure, affecting all of the other on-board devices. The problems caused
by several scanning antennae and optical systems, all moving at once, are

easily imagined.

There are several approaches for dealing with this system vibration.

Materials research continues to produce lighter, stronger structures, and
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heavy-lift rockets are a viable, if expensive, option for orbiting stiffer
platforms. The payloads can also be isolated from the common bus, utilizing
magnetic bearing technology to filter out small vibrations that can disrupt
radar imagery or communications. This concept can add weight, because each

payload requires an individual isolation mechanism.

A different method is to coordinate the control systems of all the
slewing objects on the satellite, and coupled with vibration sensing and
accurate system models, this global control network can act to circumvent
vibration problems. Each payload has full knowledge of the vibration in the
system, and can undertake measures to counteract that vibration, under the

instruction of the "overlord" controller.

Another technique, pursued in the MIT Space Engineering Research
Center (SERC) by Crawley and de Luis [8], among others, is the use of active
elements embedded within the platform. The platform designs are often
truss structures, formed of many linking struts and nodes. An active strut is
one which can shrink or expand to exert forces on the surrounding truss.
When the active element is linked to vibration sensors and a controller, it
can be used to dampen the vibration in the truss. These "smart" struts can
work in various ways; a popular approach is to use piezoelectric material that

will expand or contract under an applied voltage.

The input shaping techniques can be used to supplement any of the
above ideas. By shaping slewing commands, vibration can be prevented from
exciting the structure in the first place, easing the load on the isolation

platforms, global controllers, or active strut systems.
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To experiment with micro-gravity spacecraft vibration suppression
strategies, particularly the active piezoelectric strut options, personnel at
SERC have been developing a joint MIT/NASA experimental test article, the
Mid-deck Active Control Experiment (MACE) [9,18]. MACE will be tested on
the Space Shuttle's mid-deck, a shirtsleeve environment less hazardous than

the Shuttle's payload bay.

4.3 The MACE Project

MACE is composed of three major subsystems: structure, attitude control
unit, and pointing systems. The structure is a flexible segmented tube, or bus,
about 1.5 meters long. The bus is divided into four polycarbonate tubular
struts, with each strut threaded into two cubic aluminum nodes. Each face of

any particular node has fittings for attaching a strut or other instruments.

The attitude control unit is a set of three-axis torque wheels mounted
to the node at the center of the bus. A three-axis rate gyroscope package is
attached on the opposite side of the center node to provide inertial attitude
information. When the gyros indicate that the structure is rotating, the
wheels will be accelerated or decelerated, preventing the structure from

spinning out of control during experiments.

High precision two-axis pointing mechanisms are mounted on either
end of the bus. These gimbals will slew payloads to conduct pointing and
tracking tests. Each payload contains a two-axis rate gyro package, giving the
gimbal mechanism access to the payload's inertial position and allowing the

payloads to be pointed independent of bus orientation. Each gimbal can point
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its payload roughly within a 120° included cone, that is, each payload can

move * 60° away from vertical, in two directions.

To conduct active control experiments, a plain strut can be easily
swapped for a segment fitted with piezoelectric actuators. The replacement
strut can have various cross sections, giving freedom to the type of active
control desired for a particular experiment. The total weight of MACE is
projected at about 60 pounds, and a simple system schematic is shown in

Figure 4.3.

/— Pointing/Tracking Payload (2)

/ Active Segment

= 1 e T &

¥~ Inertial Platform

|[< Approx. 1.5m »‘

Figure 4.3: The MACE flexible test article.

The main research intent behind all of this hardware is to be able to
point or track with one of the payloads while the other payload is also
moving. Any slewing gimbal will transmit vibration through the bus,
affecting the performance of the opposite payload. With this test article, we
can examine various methods for suppressing the bus vibration in order to
increase the overall pointing and tracking performance of the individual

gimbals.
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The MACE project is divided into two separate physical systems, a
Ground Test Article (GTA), to remain at MIT, and a Flight Test Article (FTA),
scheduled for a Space Shuttle mid-deck flight in 1993. The following two
sections, 4.3.1 and 4.3.2, provide a rough description of the two test articles, for
general reference. The writer has also performed a significant amount of
detailed survey and design work for both test articles; refer td the Appendix

for a concise description of this activity.

4.3.1 Ground Test Article
The Ground Test Article will remain in the MIT SERC lab throughout the life

of the MACE experiment. To emulate a flexible spacecraft, the GTA will be
suspended in a tall bay by an active suspension system. The acfive
suspension allows the experiment to swing laterally, in two directions, and
also employs a sophisticated pneumatic weight matching system, providing
about four inches of essentially zero friction vertical travel. MACE will be
hung with the heavy payloads pointing downward, opposite from the
schematic in Figure 4.3, to keep the system naturally stable. Suspension wires
will be attached at three points; to the undersides of the central and endpoint

nodes.

The gimbals on the GTA are designed to have pointing accuracy of
about one arc minute, or 0.01667°. Some of the EOS and GEOS pointing
mechanisms will require accuracy of about one arc second, or 0.00028°, but the
relatively low accuracy GTA gimbals should provide insight into much of the

vibration caused performance degradation, and gimbal cost rises
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exponentially with accuracy. To keep the GTA practically affordable, the one

arc minute gimbals have been deemed adequate.

Electric signals for the sensors and actuators will be sent to the bus via
an umbilical cord, attached to the center node. All of the subsystems on the
structure will be managed by a real-time computer, which will implement

various control strategies.

Through a thorough study of the GTA, we can analyze many of the
vibration problems facing high performance components on actual space
systems. The tests conducted on the GTA will hopefully lead to possible
methods for dealing with those problems. The ground article will also be
useful as a support mechanism for the FTA while tests are being conducted
on orbit. Any major unanticipated problems experienced by the FTA could be
quickly communicated to SERC and simulated with the ground article. A
rapid study might generate corrections that could be relayed to the Shuttle,

allowing experiments to continue.

As of this writing, the MACE GTA is still under construction. The bus
~and attitude control systems are complete, and one of the gimbals has been
fabricated. The second gimbal may be designed simply as a disturbance
source, requiring less engineering effort than the first gimbal, but this is still
under consideration. The completed article should be available for testing in

the summer of 1991.
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4.3.2 Flight Test Article

The MACE Flight Test Article is needed because some of the problems facing
orbiting space structures simply cannot be simulated on Earth. We can use
our complicated suspension system to provide relatively frictionless travel in
three dimensions, and we could even suspend the article in a vacuum
chamber to eliminate damping effects caused by the atmosphere. The one
inescapable phenomenon on Earth, however, is gravity. Even when the GTA
is suspended actively, gravity will affect the vibratory behaviour of the
structure, compressing or extending the struts and gimbal mounts and

shifting the modal characteristics of torsional or in-plane bending.

To provide a full examination of vibration problems, therefore, we
need to examine a structure residing in a micro-gravity field. In 1993, when
the FTA is slated for a Space Shuttle flight, we will hopefully gain
comprehensive insight into the complex behaviour of multiple mode
vibration of flexible space structures. We will be able to apply controllers
designed on Earth, and detect flaws in our mbdelling of micro- and one-G
effects. Proposed methods of vibration reduction will also be tested, and

validated, if our simulations were accurate.

The FTA differs from the GTA in several respects. First, where the
GTA could be assembled at leisure and left hanging in the laboratory, perhaps
indefinitely, the FTA must be launched disassembled and stowed in a mid-
deck compartment. The bus segments will have to be hand-assembled by a
weightless astronaut once the Shuttle reaches orbit, and disassembled for re-

entry. To ease this process, the struts and nodes are designed for easy
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coupling; the connection is secured by a simple threaded collar. The gimbals
and attitude control system could be pre-fastened to their respective nodes
before launch. The FTA struts will also provide a simultaneous mechanical
and electrical connection, with about 50 conductors running through the
center of the strut. The wiring on the GTA, however, will probably be

external to the struts.

The gimbals on the FTA will be designed to be more accurate than
those on the GTA, to provide a closer approximation to the systems proposed
for the larger satellites. Proposed FTA gimbal designs call for accuracy of
around 5 arc seconds. The flight gimbal actuators will be less powerful than
the ground systems, simply because the FTA gimbals will not need to

overcome gravity in order to slew their payloads.

Another significant difference between the two articles is in their
controlling computers. The real-time computer governing the control of the
GTA has a relatively straightforward architecture. In space, unfortunately,
there is no atmosphere to provide shielding from cosmic rays and other types
of radiation. The FTA computer, therefore, will require special shielding and
perhaps a modified architecture, and all of the FTA wiring will have to be

carefully shielded to avoid problems caused by random background radiation.

The increased gimbal accuracy of the FTA, combined with the special
electronics concerns caused by spaceflight, boost the cost of the flight hardware
to several times that of the GTA. The rigorous safety guidelines imposed by
NASA only add to the difficulty of producing an effective flight experiment.

All of the trouble is necessary, though, to provide an accurate examination of
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the effects of micro-gravity environments on the vibration characteristics of

flexible structures, and on the methods utilized to suppress that vibration.

4.4 Conclusion

The Mid-deck Active Control Experiment (MACE) is a flexible structure
under development at the MIT Space Engineering Research Center (SERC).
The research for MACE is prompted by NASA proposals for large, earth
orbiting satellites that will be used in the future to monitor long term

environmental trends such as weather patterns and global warming.

The MACE structure is composed of a 1.5 meter segmented tubular bus
with articulated pointing payloads located at the bus endpoints and an
attitude control system situated at the bus midpoint. The experiment is
divided into two phases: the first phase utilizes a Ground Test Article (GTA)
which will be actively suspended in a high bay at MIT to emulate a free-
floating spacecraft. The second phase involves a Flight Test Article (FTA),
which will extend the study of the GTA during a Space Shuttle mid-deck
flight in 1993.

By studying the vibration characteristics of this flexible structure,
researchers can gain insight into methods for suppressing vibration, and thus
improving the performance of tracking and pointing devices flown on space-
borne flexible systems. The input shaping techniques developed in previous
chapters are possible methods for minimizing the system vibration. Some of
the input shaping techniques have been tested on physical structures in the

past, but the MACE test article is a prime candidate for additional validation
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Chapter 5: Simulations and Results

5.1 Introduction

In the previous chapters we have examined methods for developing multiple
mode input command shapers, and we have considered a suitable test article
(MACE) for validation of the new shaping techniques. The remaining task is
to conduct experiments using the test article and analyze the results. While
the MACE structure has been under construction, personnel at the MIT Space
Engineering Research Center (SERC) have developed several computer
models of the test article. In this chapter we will apply various input shapers

in tests of linear and non-linear computer simulations of MACE.

Note: the development of these models is not examined thoroughly
here; the writer employed existing SERC simulations, and performed no
significant modifications of the modelled plant in those simulations. For a
detailed study of the development of MACE models, consult Miller [17] and
Padilla [22].
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5.2 Linear Simulations

The linear tests were performed in MATLAB™ [28] using a simple finite
element model of MACE. These tests established some basic knowledge about
the behaviour of MACE in response to shaped and unshaped slewing

commands.

5.2.1 The Linear Model

The linear model features only the bus and one of the endpoint gimballed
payloads. The bus is treated as a uniform Bernoulli-Euler beam, divided into
six finite elements. Each finite element has two degrees of freedom, one
translational, and one rotational. The modelled payload is considered to be a

point mass mounted at the end of a rigid member.

Torques can be commanded at the payload axis of rotation, simulating
a gimbal, and the bus nodal translations and rotations are available as an
output state vector. The model is constrained to two-dimensional motion, so
the linear experiments examined only planar slews. Our version of the linear
model also runs open loop, so any control system torques, including attitude

controller inputs, are ignored. Gravity, of course, is also ignored.

Figure 5.1 shows a schematic of the MATLAB model. This linear
model is conceptually a bit simpler than the actual MACE structure, but we
can use tests conducted on this model to gain an understanding of the basic
response characteristics of MACE. Consult Miller [17] for a detailed

description of the background theory and specifications for this model.
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Figure 5.1: MATLAB linear finite element model of MACE.

The finite element model can be converted to a state-space form, which
allows the system eigenvalues to be easily identified and simplifies the
MATLAB simulation. The model has twelve modes of flexible vibration, and

the first five linear model natural frequencies are:

<
o
Q.
[¢*]

Natural Frequency (Hz)

9.8
31.7
66.2

114.1
175.9

G O N =

95



Chapter 5: Simulations and Results

These frequencies will be used to develop input shapers that we will employ

to suppress the model's post-slew residual vibration.

5.2.2 Experiments

We can use the eigenvalues from the above table to generate input shapers, as
outlined in Chapter 3. Figure 5.2 shows the GAMS / Mathematica direct
solution input shaper designed for the first three modes. The solution
algorithm failed when higher modes were included (see Chapter 3, Section
3.4.3.c ) so we pushed on with our three-mode shaper. The final impulse
time of this sequence is 0.118 seconds, a response time savings over the

equivalent convolved sequence of about 20%.
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Figure 5.2:  Direct solution input shaper designed for 9.8 Hz,
31.7 Hz, and 66.1 Hz, { = 0.0 in all modes.
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The next step is to define an input command to the payload gimbal.
Recall that in this case, MACE is modeled as a free-floating article running
open loop, so we need to use some sort of input that will not cause the
experiment to go spinning wildly out of control. If we accelerate the payload
up to a steady angular rate, pause to let the payload slew through some angle,
and then decelerate the payload along a profile that mirrors the original
acceleration, we should achieve bounded motion. The torque input

corresponding to this maneuver is a pair of delayed square pulses.

A candidate torque input and the equivalent shaped input are shown
in Figure 5.3. To employ the shaper of Figure 5.2 in the MATLAB code, we
rounded the sequence impulse times to their nearest equivalent in
simulation time steps. Note how cbnvolving a step input with the input
command shaper results in a "staircased” input; we never actually deliver an
impulse to the physical system. This input command will cause the payload
to rotate counter-clockwise, and the bus will therefore rotate clockwise in

order to keep the system center of mass stationary.

To study the system vibration, we can examine the displacement
history of the left-most bus finite element node, that node on the opposite
end of the bus from the payload. Figure 5.4 shows the nodal displacement
response history, and Figures 5.5 and 5.6 are detailed views of the unshaped

and shaped responses, respectively.

The model had a system of twelve modes of vibration, and only the
first three were used in forming the input shaper. It is clear from the figures,

however, that cancelling these three modes was sufficient to suppress the
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majority of the structure's vibration. The vibratory response to the unshaped
input had a peak-to-peak value of roughly 1.2 mm, but in a space-based

pointing application, vibration of this magnitude is a serious concern.
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Figure 5.3: System inputs adjusted by the input shaper.
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Figure 5.5: Response to unshaped input (detail).
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Figure 5.6: Response to shaped input (detail).

5.2.3 Conclusions

These MATLAB results are somewhat predictable. The input shapers are
defined by equations that predict the response of linear systems, and the
MATLAB model is also linear. Cancelling the vibrations of the MATLAB
model, therefore, serves mainly as a confirmation of the proper solution of
the constraint equations (3.1), and allows for concrete visualization of what

the MACE system experiences when the input shapers are employed.

The next step in this program is to employ more accurate models of
MACE. The actual structure will probably exhibit a variety of non-linear

phenomenon, which our MATLAB model cannot emulate. We do have
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access to non-linear MACE models, however, for the test article has also been

simulated using the DISCOS program.

5.3 Non-Linear Simulations

No physical flexible system behaves in exact concordance with linear system
theory. Inevitably, there is some factor involved in a physical experiment
that will cause some amount of non-linear behaviour. Phenomena such as
kinematic motion, non-linear dynamics, joint hysteresis, and friction will
disrupt the accuracy with which linear equations can describe the motion of
actual structures. It is possible to model many of the above non-linear
phenomena, however, and doing so can allow a computer model to closely

approximate the behaviour of an actual physical test article.

Having recognized the fallibility of their linear MATLAB model, SERC
personnel also developed a MACE model using DISCOS (Dynamic Interaction
Simulation of Controls and Structure), a program capable of ‘describing non-
linear behaviour [3]. This model can provide a more accurate picture of the
MACE system behaviour, and can also be used to develop an understanding

of the effects of actual system non-linearities on the input shaping method.

5.3.1 DISCOS

DISCOS is a large program written in FORTRAN that was originally
developed to analyze spacecraft dynamics. The program can simulate several
interacting bodies, all connected by specified hinges. The user can define

sensors at desired points on the modelled bodies and hinges, to obtain time

101



Chapter 5: Simulations and Results

histories of position, acceleration, etc. Initial body orientations and input
torque or force commands can also be injected into a model. DISCOS uses
numerical integration techniques to describe the non-linear motion of each

body in the system.

We will not examine the DISCOS program in detail here; for more
information consult the work by Bodley, et.al. [3], or for a concise overview of

some of DISCOS' capabilities, see Sundaram [26].

5.3.2 The Non-Linear Model

The non-linear model expands the description of the MACE test article by
adding the second payload and incorporating attitude and gimbal pointing
proportional + derivative control systems. Three-dimensional motion can

also be considered.

To retain similarity between the various MACE models, the DISCOS
model was constrained to two-dimensional motion, and its left-most payload
was clamped in a vertical orientation. One might argue that by constraining
the non-linear model we lose some of our ability to accurately predict the
motion of the physical MACE structure, but we want to develop a base level
of understanding before we launch into examinations of the behaviour of

more complex 3-D models.

The body and sensor layouts for the non-linear model are shown in
Figure 5.7. Note that the bus sensors are not placed at the endpoints or

midpoint of the bus; this arrangement will be helpful when we identify the
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natural frequencies of the structure. For an account of the development of

this model and its exact specifications, consult the work of Padilla [22].

Body 2 (Clamped Payload)

/ \Body 3 (Slewing Payload)

Body 1 (Bus)

Attitude Controller Torque —/ Payload Gimbal
Torque

X Sensor

Figure 5.7: DISCOS non-linear flexible model of MACE.

Our next step in the non-linear study is to determine the natural
frequencies of the model. We have two cases here, open loop and closed
loop, which we will examine independently. To find the system natural
frequencies, we can inject white noise into the attitude controller and the
unclamped gimbal axis, and average the Fourier transforms of the responses

at sensor points on the MACE structure.

For the open loop case, we set all the controller gains to zero, and with
the payloads standing in the orientation shown in Figure 5.7, we averaged the
spectra from several 30-second runs. The first four non-rigid frequencies

were identified as:
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Non-Linear Model Open Loop Frequencies

Mode Natural Frequency (Hz)

1.65
5.42
6.90
19.08

s W N .

Most of our DISCOS tests would be conducted using the model's built
in controllers, so we wanted to obtain an accurate picture of the closed loop
frequencies. We conducted two closed loop frequency identification tests; one
with the payload canted inboard by 60°, and the second with the payload tilted
out by 60°. These angles covered the designed slewing range of the payload
gimbal, and allowed us to get an idea of how the frequencies might shift
during a slew. We determined that a 6-second run was sufficient to identify
the model frequencies, and by averaging twenty runs we found the first four

non-rigid modes for the inboard and outboard closed loop cases:

Non-Linear Model Closed Loop (60° Inboard) Frequencies

Mode Natural Frequency (Hz)
1 1.88
2 13.40
3 14.20
4 15.90
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Non-Linear Model Closed Loop (60° OQutboard) Frequencies

Mode Natural Frequency (Hz)
1 2.18
2 14.25
3 15.25
4 15.90

As expected, the frequencies shift slightly when the payload orientation
changes. SERC personnel estimated that the damping in each mode would be
about 1%, or { = 0.01, and higher modes were unreadable from the frequency
spectra. We should note that with non-linear systems, the concept of a mode
becomes somewhat unclear. Only linear systems can truly have modes and
the corresponding eigenvalues and eigenvectors. With a non-linear system,
we can only hope to identify the significant natural frequencies, as we have
done above. We will use the term "mode" when referring to these
frequencies to imply some continuity between the linear and non-linear

experiments.

A second, very important note: in the closed loop system, there is
actually another mode below the first. Strong damping by the control system
prevents this mode from appearing on the Fourier spectrum, but it is evident
when a step slewing command, for instance, is delivered to the payload
gimbal. The payload will slew around to its commanded position, with a
peak overshoot time of about 4.2 seconds, corresponding to a natural

frequency of about 0.15 Hz. This slow mode will contribute little to the
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residual vibration, and so it will not be included in the development of input

shapers designed for the closed loop system.

We can anticipate two major types of non-linear behaviour from our
DISCOS model: frequency shifts brought on by kinematic motion and
centripetal acceleration effects caused by the slewing payloads. Other possible
non-linearities, such as gimbal friction, saturation limits, or hysteresis are not
included in the model. Estimates from SERC predict that if the lowest system
frequency (0.15 Hz for the closed loop case) is less than one-tenth the
frequency of the fundamental flexible mode, payload centripetal acceleration
effects will be minor. Quantifying the exact effects of these problems is
difficult, and as yet we have employed no metric for describing the actual

severity of the system non-linearities.

We can predict, however, that the kinematic non-linearities will be
more severe for large angle slews, and the centripetal acceleration effects will
increase as the payload angular velocity increases. Our objective is to identify
the supplemental residual vibration contributed by non-linear behaviour,
and to suppress as much as possible all of the residual vibration in the

modelled non-linear system.

5.3.3 Open Loop Tests

We conducted open loop experiments to provide some basis for comparison
with the MATLAB tests conducted earlier, and to serve as a base case before
controllers were added. We fed the identified open loop frequencies into the

GAMS routine, generating the sequence shown in Figure 5.8. We did not
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attempt an exact solution in this case, we merely set the GAMS time step
equal to the DISCOS simulation time step, and thus our GAMS shaping
sequence is tuned to the DISCOS "servo rate.” This sequence affords a

response time savings of 25% over the equivalent convolved sequence.
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Figure 5.8: Shaping sequence for 1.65 Hz, 5.42 Hz, 6.90 Hz, and
19.08 Hz, { = 0.01 in all modes.
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Figure 5.9: Modified sequence from Figure 5.8.

We can "clean up" the sequence of Figure 5.8 by combining
neighboring impulses while retaining the time mesh spacing, yielding the
sequence of Figure 5.9. A study of the new sequence's insensitivity curve
reveals it to be nearly as effective at suppressing vibration as the raw GAMS
output (see Chapters 2 and 3 for descriptions of insensitivity curves and
methods for adjusting the GAMS sequences). Impulse population is not a
significant concern in this case, it will only slow down the simulation, so by
using the sequence of Figure 5.9 we're just saving the trouble of typing in a
few more impulse specifications. If we were implementing the sequence on a
physical controller, however, the sequence of Figure 5.9 would decrease the

computational burden on the controller, possibly making room for a higher

servo rate.
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We wrote a few subroutines to implement the shaper in the DISCOS
source code, and set the controller gains to zero to achieve open loop
running. To retain similarity with the MATLAB tests, square wave torque
inputs were delivered to the unclamped payload gimbal axis, producing about
a 40° slew. We examined the resulting vibration occurring at the opposite

end of the bus.

Figures 5.10 and 5.11 display the vertical motion of the left-most sensor,
in response to unshaped and shaped torque inputs, respectively. These
graphs are centered around zero because the DISCOS sensors are measuring
relative, not absolute motion. The vibrations of the response to the unshaped
inputs are small, in the sub-millimeter range, but again, many feasible

applications can be disrupted by vibrations of this magnitude.
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Figure 5.10: Bus endpoint response to unshaped input.
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Figure 5.11: Bus endpoint response to shaped input.

The shapers again performed well, greatly reducing the amount of
residual vibration, but we still have some leftover oscillation. A close-up
inspection of the plot in Figure 5.11 reveals that the system is still vibrating at
about 1.9 Hz and 12.5 Hz. We would not observe this phenomenon with a
linear model. Clearly, these are new frequencies that the structure adopts in
its post-slew configuration. These new frequencies were not included in the
shaper development and they differ relatively significantly from the original
frequencies, so they were not removed by the input shaper. We had
identified our open loop frequencies with the payloads standing vertical; the

frequencies apparently shifted as a result of the slewing maneuver.

This kinematic frequency shift is a non-linear phenomenon, one of the

problems we anticipated in the previous section. Since most of the actual
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MACE experiments will be run closed loop, we will leave a detailed

investigation of this frequency shift to the next section.

In our open loop tests we have demonstrated a rough correspondence
with the linear MATLAB experiments, and we recognize that the input
shapers can be effective in suppressing vibration in non-linear systems, but
non-linearities can cause some shaper performance degradation. We will
continue our examination of system non-linearities and begin a thorough

study of the associated shaping problems by using our closed loop model.

5.3.4 Closed Loop Tests

We conducted a broad range of closed loop slewing maneuvers to span the
performance envelope of the MACE gimbal and to hopefully induce varying
non-linear motion. To shift from open loop to closed loop running, we
simply brought the controller gains up from zero to their specified values in
Padilla [22]). The simulations in this section feature symmetric slews, with the
payload starting at an outboard angle (rotated clockwise, or negative ©, from

vertical), and moving to the equivalent inboard angle.

We will examine two test cases, slews from negative 20° to positive 20°
and from negative 60° to positive 60°. We know that the system frequencies
will vary as the payload moves, but as an initial experiment we will employ a
shaper derived for the 60° outboard frequencies as defined in Section 5.3.2.
Similar to the open loop tests of the previous section, the shaper can be tuned
to the DISCOS "servo rate" by setting the GAMS time step equal to the
DISCOS simulation time step. The raw GAMS shaper for the four identified
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frequencies is shown in Figure 5.12, with the equivalent "cleaned up" shaper
shown in Figure 5.13. An 17% savings in response time is gained by using the

sequence in Figure 5.13 instead of the equivalent convolved shaper.
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Figure 5.12: Shaping sequence for 2.18 Hz, 14.25 Hz, 15.25 Hz,
and 15.90 Hz, { = 0.01 in all modes.
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Figure 5.13: Modified sequence of Figure 5.12.

The absolute inertial payload angle history in response to shaped and
unshaped 40° slew commands is shown in Figure 5.14. This graph clearly
shows the slight delay caused by the shaper, similar to the plot in Figure 5.4.
The opposite endpoint vertical displacement caused by the unshaped

command is detailed in Figure 5.15, and Figure 5.16 shows the response to the

shaped command. -

Once again, the shaper effectively inhibited most of the residual
vibration, and this example illustrates the shaper's ability to work with
existing control systems. There is still some leftover vibration, however; the
plot in Figure 5.16 clearly shows oscillations at about 1.8 Hz. Recall that we

used the 60° outboard frequencies to develop our input shaper. We know
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that the actual system frequencies during the 40° slew will differ from the

frequencies included in the shaper, and apparently the shifts were significant

enough to degrade the shaper performance. The payload centripetal

acceleration could also act to increase the residual vibration, but we know

from Section 5.3.2 that the centripetal acceleration effects will be small. In any

case, the problems caused by system non-linearities in this slewing case are

minor, and we'll examine a larger slew case to get a better view of the non-

linear problems.
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Figure 5.14: Closed loop 40° payload slew.
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When the payload gimbal travels between its extreme maneuvering
limits, negative 60° and positive 60°, the kinematic frequency shifts should be
greater than those experienced in the 40° slew. The inertial payload angle
history for the 120° slew is shown in Figure 5.17. Note the strong similarity
between this graph and the 40° trace of Figuré 5.14. The only difference is the
beginning and ending points of the slew; thanks to the MACE control
systems, the same amount of time is required to complete both maneuvers.
The 120° slew, therefore, requires greater acceleration and higher velocity,
which should boost any payload centripetal acceleration non-linear effects.
The delay between the shaped and unshaped responses is about the same as

in Figure 5.14; we used the same input shaper for both the 40° and 120° cases.
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Figure 5.17: Closed loop 120° payload slew.
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The graph of the unshaped response to the 120° slew is shown in
Figure 5.18; note the strong resemblance to the equivalent curve for the 40°
case, Figure 5.14. The major difference is that the maximum peak to peak
displacement per cycle in the large slew case measures about 0.50 mm,
significantly greater than Figure 5.14's 0.15 mm displacements. These larger
amplitude vibrations are a reflection of the greater energy required to

complete the 120° slew in the same time as the 40° slew.

The response to the shaped 120° slew (Figure 5.19), correspondingly,
looks nearly identical to Figure 5.16, the difference again being only in vertical
scale. Where the graph in Figure 5.16 peaks at about 0.025 mm and flattens
out at about 6 seconds, the shaped response to the 120° slew peaks at 0.09 mm
and dies out also at about 6 seconds. A closer look at Figure 5.19, however,
reveals significant residual vibration, more serious than the leftover

oscillations from the 40° slew (see Figure 5.20).
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Figure 5.19: Endpoint response to shaped 120° slew.
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Figure 5.20: Detail of residual vibration from Figure 5.19.

The shaper suppressed most of the residual vibration, but a roughly
1.83 Hz leftover oscillation is clearly evident in Figure 5.20. Recall that we
used the 60° outboard frequencies, with a fundamental of 2.18 Hz, to develop
our shaping sequence. Apparently, the system frequencies shifted far enough
during the course of the slew to disrupt the shaper's performance. This fast,
large angle maneuver would also cause stronger payload centripetal
accelerations, invoking dynamic effects that our technique is not prepared to
manage. The challenge now is to determine if it is possible to modify our

original shaper to compensate for some of these non-linear problems.
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5.3.5 Improving the Non-Linear Response

There are countless modifications of our original shaper that we might use to
improve the response curve of Figure 5.19. We'll look at a few in this section
that can help; keep in mind that there probably is no one sequence that will
always be the most effective. A particular shaper's performance will depend

on slew size and speed.

The first modification we can try is to use the 60° inboard frequencies
instead of the 60° outboard values. When we deliver our step input to the
system, several frequencies are excited. The lowest, well damped frequency is
regulated by our control system, as mentioned earlier. We also cause
vibration at four other system frequencies, those mapped at the 60° outboard
configuration. By the time the payload slews over to the 60° inboard position,
the earlier frequencies have shifted, reflecting the kinematic motion of the
MACE structure. If we shape for the frequencies at the final, rather than the
initial position, we will be anticipating this frequency shift, and we should

observe stronger vibration suppression.

The input shaper designed for the 60° inboard frequencies is shown in
Figure 5.21. This sequence was the result of a simple modification of the raw
GAMS output from the inboard four-mode problem. As with the previous
sequences of this section, the neighboring impulses in the GAMS output were

combined, yielding a "cleaner" sequence.

120



Chapter 5: Simulations and Results

0.25¢
0.2¢
0.15%

0.1¢

0.05} . : 1B _l;:s_]_ -I'

0.1 0.2 0.3 0.6 0.7

Time (sec)

Amplitude (normalized)

Figure 5.21: Shaping sequence for 1.88 Hz, 13.40 Hz, 14.20 Hz, and
15.90 Hz, { = 0.01 in all modes.

When we use this shaper to adjust our 120° slew command, the
resulting endpoint displacement is as shown in Figure 5.22, with a detailed
plot shown in Figure 5.23. A comparison with Figure 5.20 reveals that we
have managed to decrease the peak-to-peak value of the residual vibration,
but the roughly 1.83 Hz oscillation is still present. The lesson here is that it
‘helps to build the shaper using the frequencies present at a slew endpoint, not

those active at the initial configuration.
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Figure 5.23: Detail of residual vibration from Figure 5.19.
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We have now used a shaper designed for the frequencies that seem
most appropriate, and still we observe the 1.83 Hz residual vibration. The
fundamental mode in our shaper is 1.88 Hz, which should be close enough to
eliminate the remaining oscillations. We might surmise that the shaper's
parameter insensitivity is undermined by the non-linear behaviour, but in
tests where the shaper used 1.83 Hz as a fundamental, the vibration was not

decreased significantly.

We can try to force our sequence to be more insensitive to the varying
parameters by adding a frequency or two to the shaper. The residual motion
of Figure 5.23 oscillates at a frequency lower than the shaper's included
fundamental; let's try adding a frequency to our shaper that is also lower than
the current fundamental. Figure 5.24 shows a shaper designed for the

original four frequencies, plus a fifth at 1.50 Hz.

The insensitivity curve for the shaper of Figure 5.24 is shown in Figure
5.25. The flattened trace at 1.50 Hz and 1.88 Hz is clearly evident; the curve
doesn't quite touch zero simply because we're using a modified GAMS
sequence; this in itself will cause no appreciable increase in the residual
vibration. The associated system response curve for this sequence is shown
in Figure 5.26. A comparison with Figure 5.23 reveals that adding the extra
frequency didn't exactly help, the residual vibration in Figure 5.26 is if

anything greater than the vibration shown in Figure 5.23.
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Figure 5.24: Shaping sequence for 1.50 Hz, 1.88 Hz, 13.40 Hz, 14.20
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Figure 5.25: Insensitivity curve for shaper of Figure 5.24.
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Figure 5.26: Detail of response found using sequence of Figure 5.24.

We can extend this approach and attempt to improve the response by

adding yet another frequency, this one greater than the original fundamental.

Figure 5.27 shows the resulting sequence when frequencies of 1.5 and 2.0 Hz

are added to the original four 60° inboard frequencies. The corresponding

insensitivity curve is shown in Figure 5.28. We have now completely

flattened the curve in the region surrounding the original 1.88 Hz

fundamental. When we use the new sequence, the system responds as

detailed in Figure 5.29.
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Figure 5.27: Shaping sequence for 1.5 Hz, 1.88 Hz, 2.0 Hz, 13.40 Hz,
14.20 Hz, and 15.90 Hz, { = 0.01 in all modes.
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Figure 5.28: Insensitivity curve for sequence of Figure 5.27.

126



Chapter 5: Simulations and Results

0.05

\ ——Response to Shaped Input

0.03 \
0.02 \

0.01 e

Endpoint Displacement (mm)

0.00

-0.01

3 35 4 4.5 5 5.5 6

Figure 5.29: Detail of response foutlucriletisseicr)\g sequence of Figure 5.27.

This last modification causes significant improvement over the
response detailed in Figure 5.20. Bounding the shaper's fundamental
frequency to increase the parameter insensitivity is thus a viable means to
suppress residual vibration even in systems that experience notable frequency
shifts. The penalties associated with adding new frequencies to the shaper are
an increase in controller burden due to the impulse population increase, and
an increased delay in the system response thanks to the longer shaper length.
We have only to compare Figure 5.29 to the equivalent section of the
unshaped response curve of Figure 5.18, however, to realize the overall

benefits resulting from shaping the system input.
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We have not examined the specific problems caused by payload
centripetal acceleration. This non-linear effect will certainly increase with
faster slew rates, and some current work at SERC is dedicated to identifying
the exact magnitude of the centripetal acceleration terms in the equations that
govern the MACE response. We will leave the task of a detailed centripetal

acceleration examination to future writers.

5.4 Conclusion

In this chapter we have conducted tests of input shaper effectiveness on
linear and non-linear models of MACE, the test article described in Chapter 4.
We have shown that in linear systems, shapers can completely suppress all
modelled modes included in the shaper development. Simulations run on
non-linear models indicate that shapers can effectively suppress identified
vibration frequencies, but system non-linearities tend to disrupt the shaper's

general performance.

Shaper performance degradation caused by kinematic frequency shifts
can be reduced by boosting the shaper's inherent insensitivity to plant
parameter variations. Adding frequencies to the shaper which bound the
aberrant oscillation will allow the shaper to effectively suppress even those

vibrations which tend to shift in frequency as the system moves.
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produce vibration free motion. The "input shaping” method demonstrates
insensitivity to variations in plant parameters, but causes small delays in

system response time.

In Chapter 3 we extended the single mode input shaping approach to
multiple mode problems. We examined two multiple mode methods:
convolution and direct solution. Convolution works by combining several
single mode shapers into an impulse train that will perform simultaneous

vibration suppression of several modes.

The direct solution method involves a re-formulation of the single
mode shaper equations to include several modes. These equations are then
solved simultaneously to generate a single sequence that matches the
performance of the convolved shaper. The direct solution sequences are
computationally less intensive to implement than convolved sequences, and
they are also shorter, causing smaller system response delays. These

advantages are offset by an increase in sequence generation complexity.

The Mid-deck Active Control Experiment (MACE) was the focus of
Chapter 4. MACE is an experimental flexible structure under development at
the MIT Space Engineering Research Center (SERC). The research for MACE
is prompted by NASA proposals for large, earth orbiting satellites that will be
used to study long term environmental trends including weather patterns

and global warming problems.

The MACE structure features a 1.5 meter segmented tubular beam, or

"bus” with 2 degree of freedom pointing payloads located at the bus end-
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Figure 6.1: MACE endpoint response to shaped and unshaped 120° slew.

6.2 Future Work

A crucial step that must be carried out in the near future is the hardware
verification of the conclusions of Chapter 5 through tests on the MACE test
article. The results we gained from the non-linear simulations are valuable
and show great promise for the shaping technique, but even the most careful
simulation will suffer from some inaccuracies, and applying the shapers to
physical systems is unquestionably a critical activity. One of the writer's
regrets in this work is that sufficient time was not available for physical

testing.
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A second important endeavour is the improvement of the direct
solution generation algorithms. We have shown that the direct solution
sequences can afford advantages over the convolution multiple mode
approach, but the complexity of the direct solution sequences drastically
increases the computational effort required for their creation. To allow direct
solution sequences to be generated rapidly, possibly even in real-time,

adaptive applications, this computational burden must be lessened.

Closed form solutions to the direct solution equations are currently
being sought, as mentioned at the end of Chapter 3. These approaches, if
successful, could usher in expanded possibilities for the input shaping
technique. Using a closed form solution, sequences could be generated with
great speed, and in non-linear environments where the plant frequencies
might be shifting, new shapers could be created as the system moves to

account for such plant variations.

A final interesting step is to investigate the best means for blending
input shaping with standard vibration reduction techniques. Many
approaches for shaping movement trajectories or commanded velocity
profiles can only benefit from the supplemental employment of the shaping
technique. Future studies might be directed toward discovering an optimal
combination of input shaping with the different vibration reduction

techniques, those both currently available and newly emerging.
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Appendix: MACE Test Article Development

A.1 Introduction

This appendix describes design and vendor survey activity conducted by the
writer in support of the MACE test article development. Tasks relating to the
MACE Ground Test Article (GTA) included design of the attitude control unit
and specification of the corresponding purchased hardware. MACE Flight
Test Article (FTA) activity included vendor surveys and initial price quote

acquisition for the FTA attitude control unit and gimbal systems.

A.2 GTA Attitude Control Unit Development

The Attitude Control Unit is composed of five elements: inertial wheels,
motors and supporting electronics, the node/motor interface, and a protective
housing. The cluster can exert torques of 40 oz. - in. around three orthogonal

axes for up to five seconds, and wheel rotation rates can vary from zero to

6000 RPM, with about + 60 RPM accuracy.
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The inertial wheels attach to the motor shafts using a split hub and
clamping collar arrangement. The wheels were designed to allow for safe
operation at 12,000 RPM, twice the normal maximum speed. Running at 6000
RPM, the disks have a safety factor of approximately 2.5. Each wheel is
fabricated from aluminum, measures 6.75 inches in diameter, and weighs
about 2.2 Ibs. Figure A.1 shows the engineering drawing of an individual

inertial wheel.

The motors that drive the inertial wheels are Aerotech 1017 servo
units. The inertial wheels are clamped to the motor encoder shaft, not the
standard motor output shaft. This unconventional arrangement is used
because the encoder shaft is smooth, and has a 0.375 in. diameter, while the
output shaft has two milled flats and has only a 0.250 in. diameter. Allowing
the inertial wheel to grip the larger, fully round encoder shaft generates a
more stable configuration. The motor bearings are fully capable of supporting
the wheel, even though the load is attached to the "wrong" end of the shaft.
The unorthodox mounting arrangement allows the motor/inertial wheel
subsystem to be simply bolted to the node/motor interface using the standard

motor face plate hole pattern.

The motors are supplied with an Aerotech DS8020 pre-matched 3-axis
amplifier unit, which can easily power each motor to supply 40 oz. in. of
torque from 0 to 6000 RPM. The motors weigh 1.5 lbs, and to retain this low
weight, tachometers are omitted from the system. The back-EMF signal from
the motor is used instead to sense and control angular velocity. The

bandwidth capability of this control scheme has yet to be determined.
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The node/motor interface connects the motor/inertial wheel
assemblies to the standard MACE node. The interface's geometry defines the
three orthogonal axis configuration, and allows for the torque wheel unit's
center of mass to hang directly underneath the node. The block is
manufactured from aluminum and weighs about 1.5 lbs. Engineering

drawings of the interface are shown in Figures A.2 through A.5.

The protective housing will be constructed of thin plexiglas sheeting
and is intended only to prevent human interaction with the wheels, not to
contain fragments in the event of a wheel burst. Overload protection is
provided by the wheels themselves and the limited RPM capabilities of the
motors. Various configurations are still under consideration for the housing
0 an engineering drawing is not shown. The housing should weigh about 3
pounds, giving an overall attitude control unit weight of approximately 15.6

pounds.

141



MACE Test Article Development

Appendix:

TOIHD 06/8/8 200 e A v
HAAH ‘W' NAVIA HLVA ‘'ON DNIMVIA AILINVNO
THEHM TYLLYENI m——
FIILL ol FSIIONV
et
VIA ‘98puque) OLOTF XXX
A3otouyda g, Jo AIMNISUT SIASNYOBSSEIN ®OGF XX
I Yoreasey SuuoouiSuy aoedg SHONVITIOL
W0S€'0 OL 3HOS ANV NYHL TIHa
@
W8EP'0 —=]
+#1 |—.8ev0
_—— avH 5210
L
_ - _ - =
7 |
/] l© .so000 [v]T
d 2 v .052°0 ||/ / 8810
k » Z# 310N 33S
© .50000 [g [©] %
—»| le—.ELE0
052t .000'L0
: 0SL'SQ
© .1000 [ V][ /] .052°90

(NOILVHVJ3S .06 @

S101S 2) 4330 .09°0 LOTS .020°0 MVS (2
WNNINNTY L1202 1LV (1 :STLON

Figure A.1: Inertial wheel engineering drawing.
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Figure A.2: Node/motor interface engineering drawing, sheet #1.
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Figure A.3: Node/motor interface engineering drawing, sheet #2.
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Figure A.4: Node/motor interface engineering drawing, sheet #3.
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Figure A.5: Node/motor interface engineering drawing, sheet #4.
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A.3 FTA Vendor Surveys

The following sections are paraphrased from reports delivered at the MACE
Critical Design Review on February 20, 1990. Specifications and vendor
information is listed for both the FTA Attitude Control Unit and the FTA

Gimbal Systems.

A.3.1 FTA Attitude Control Unit

The attitude control unit provides MACE with three axis attitude control and
can also be used to suppress low frequency vibration. The limited vibration
suppression can be achieved by rapidly accelerating and decelerating the
inertial wheels, providing an external torque on the structure that can be used
to counteract vibration. The unit will interface to a standard MACE node,
and will normally reside under the central node on the bus. The physical

requirements for the torque wheels are:

Torque: 40 oz-in (5 seconds max duration)
Resolution: +/- 0.5 0z-in

Bandwidth: 1-100 Hz

Operation: Unidirectional

In addition to these requirements, low weight is desired, on the order
of 15 Ibs total. Some sort of protective housing must also be featured, to
prevent astronaut interaction with the wheels. The following attitude

control unit manufacturers have been identified and contacted:
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Bendix: Teterboro, NJ
Draper Labs: Cambridge, MA
Honeywell: Glendale, AZ
JPL: Pasadena, CA
Versatron: Healdsburg, CA

Draper has been asked to identify an internal group which would be
interested in supplying the components, with no coherent response thus far.
The other potential vendors received an informal request for quote on

February 6, 1990.

JPL wishes only to be involved as advisors, and Bendix, although they
provided some details of their proposed system, failed to deliver a price quote.
Honeywell claimed to be able to deliver a unit meeting our specifications for
$100,000 per axis. Versatron communicated the lowest price estimate, placing

the cost of three torque wheels at $100,000 total.

A.3.2 FTA Gimbal Systems

The gimbal systems serve as the core of the two-axis articulated pointing
mechanisms residing on either end of MACE's bus. The gimbals will
interface to a standard MACE node, and point a five pound payload
comprised of dead weight and a rate gyroscope package. These pointing
systems will serve both as disturbance sources, and measurements of MACE's
ability to dampen vibration. The physical requirements for the gimbals are

(per axis):
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Slew Range:
Slew Speed:

Acceleration:

Torque:
Resolution:

Bandwidth:

Low unit weight is

+/-60°

50°/sec

125°/sec/sec

40 oz-in (normal operation)

560 oz-in (desired max. stall)

30 arcsec (pointing and tracking
accuracy)

1-100 Hz

also desired, with each gimbal system weighing on

the order of 15 Ibs. The following gimbal system manufacturers have been

identified and contacted:

Ball Aerospace: Boulder, CO
Contraves: Pittsburgh, PA
Honeywell: Glendale, AZ
JPL: Pasadena, CA
Versatron: Healdsburg, CA

Each potential vendor received an informal request for quote on

January 23, 1990. These letters were FAX'ed only after a series of

conversations with company representatives and MIT personnel had clarified

our objectives and requirements for the gimbals.

To date, all of the vendors have replied, and JPL has indicated that

they wish only to be involved in an advisory capacity. Honeywell did not

mail a response, but their

rough verbal quote is defined below. The rough
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estimates for non-recurring engineering, production, and delivery of three

gimbal systems (two for MACE plus a spare) are:

Vendor Price Lead Time
Ball Aerospace $900,000 14 mos.
Contraves 5,000,000 24 mos.
Honeywell 750,000 -unspecified-
Versatron 320,000 -unspecified-

A.4 Conclusion

The MACE project is an ongoing MIT SERC / NASA endeavour, enjoying the
technical support of the Lockheed Missles and Space Company and the Jet
Propulsion Laboratory. For more information on MACE and the design and
development of MACE test articles, consult the MACE Phase A Final Report
[9] and the MACE Engineering Model Design Document [18].
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