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Abstract

The Kineticist’s Workbench is a program that expands the expressiveness of
computer simulation: it combines symbolic and numerical techniques in simu-
lating a particular class of complex systems—chemical reaction mechanisms.
The Workbench assists chemists by predicting, generating, and interpret-
ing numerical data. Prior to simulation, it analyzes a given mechanism to
predict that mechanism’s behavior; it then simulates the mechanism numeri-
cally; and afterward, it interprets and summarizes the data that it has gener-
ated. In performing these tasks, the Workbench brings to bear a wide variety
of techniques: graph-theoretic algorithms (for the analysis of mechanisms),
traditional numerical simulation methods, and algorithms that examine the
simulation results and reinterpret them in qualitative terms. Moreover, the
Workbench can use symbolic procedures to help guide or simplify the task
of numerical simulation; and it can sometimes use its summary of numerical
results to suggest additional numerical analysis. Thus, it serves as a pro-
totype for a new class of scientific computational tools—tools that provide
symbiotic collaborations between qualitative and quantitative methods.
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Chapter 1

The Kineticist’s Workbench: an Introduction

Computers are marvelous numerical simulators. In virtually every field of
science, their influence in that role is profound. Colliding galaxies, evolving
ecosystems, turbulent fluids—all have been the subject of extensive compu-
tational simulation.

But when we say that a computer is “simulating” a complex system, we
are generally speaking only of numbers: a mathematical model is provided
to the machine (usually in the form of differential equations), and the ma-
chine returns a table (or graph) of numbers as its output. This is useful,
but a great deal of conceptual work is still left to the scientist. After all, the
numbers must be interpreted: the scientist examines the numerical record for
interesting phenomena, perhaps matching those phenomena to observations
from the real world. Moreover, the numbers must be viewed in relation to the
model that generated them: why did this model produce these results? And
before the computer is employed altogether, the scientist may spend time
analyzing the model, reasoning about its potential behavior, trying to sim-
plify it. From the human standpoint, then, “simulation” is much more than
number-crunching; but from the computational standpoint, this is usually
all that the term ever means.

Indeed, the very real successes of computational number-crunching have
resulted in the need for more “extra-numerical” work. The scientist is left,
in effect, with a devil’s bargain: it is easier than ever before to generate
data, but much harder to obtain computational assistance in predicting and
interpreting that data.

This paper describes a program, The Kineticist’s Workbench, that is a
“simulator” in the richer sense of the term. Specifically, the Workbench
predicts, generates, and interprets numerical data in the simulation of a
particular class of complex systems—chemical reaction mechanisms. It as-



sists the scientist prior to numerical simulation by performing analysis of
mechanisms to predict their potential behavior; it simulates the mechanism;
and afterward, it interprets and summarizes the data that it has generated.
In performing these tasks, the program brings to bear a wide range of sym-
bolic and numerical techniques, including graph-theoretic algorithms (for the
analysis of mechanisms), traditional numerical simulation methods, and algo-
rithms that examine the simulation results and reinterpret them in qualitative
terms. Moreover, beyond its conception as a scientific tool, the Workbench
represents a salutary exercise in formalizing a number of scientific reasoning
techniques that are often left unspecified or implicit in textbooks.

1.1 A Versatile Simulator for Chemical Kinetics

Chemical reactions are, as it happens, surprisingly complicated events. A
“simple” reaction might appear in a textbook as a direct transition from reac-
tant molecules to product molecules; but in actuality, that simple notation is
often just a summary of the combined action of many simpler, “elementary”
chemical steps. These elementary steps—typically, unimolecular decomposi-
tons and bimolecular collisions—together constitute a mechanism for the
overall reaction. By constructing and testing hypothetical mechanisms, a
chemist can develop an understanding of some net, overall reaction of inter-
est. Put this way, the job may sound easy enough; but because even small
mechanisms can give rise to complicated behavior, the task of formulating
and understanding such chemical models is in fact extremely difficult.

In the current state of the art, chemists make extensive use of comput-
ers to study the kinetics of the hypothetical mechanisms they construct.
Typically—in accordance with the scenario described above—the chemist
will translate a mechanism into a system of differential equations, and will
then use the computer as a high-speed numerical integrator. The machine
produces huge amounts of numerical output (perhaps in graphical form), rep-
resenting the concentrations of various species over time; and it is then the
chemist’s job to interpret these numbers. The chemist may look for interest-
ing patterns (such as the presence of steady states or oscillations), and may
vary parameters in the mechanism to see how these patterns are affected by
the changes in parameter values.



Although this kind of computational work has become an indispensable
part of the kineticist’s repertoire, it provides only a narrow sort of assis-
tance. More important, it fails to take advantage of the full range of the
computer’s capabilities. Much of the chemist’s interpretive work—spotting
rapid jumps in concentrations, for instance—is relatively straightforward and
can be performed by the computer. Some of the non-numerical work that
precedes simulation—e.g., deciding whether a mechanism is capable of “ex-
otic” behavior like oscillations—can likewise be performed or assisted by
the computer. And beyond this, the ways in which these modes of activity
interact—the ways, for instance, in which a structural understanding of a
mechanism can affect the interpretation of results—are capable of computa-
tional expression. In short, a true “kinetics simulator” can and should do
much more than print out numbers.

The Kineticist’s Workbench is designed in pursuit of this idea—a pro-
gram that fruitfully extends the range of computational work in chemical
simulation. It includes procedures that allow the chemist to examine a given
mechanism for special (potentially simplifying) properties, to simulate the
mechanism numerically, and to summarize the results of a simulation quali-
tatively. In many instances, the Workbench can use symbolic techniques to
help guide or simplify the task of numerical simulation; and it can sometimes
use its qualitative summary of numerical results to suggest additional numer-
ical analysis of those results. Thus, the Workbench is designed not merely
as a collection of distinct subprograms, but with an eye toward symbiotic
connections between symbolic and numerical techniques.

The Workbench is a prototype only. Even so, it illustrates how a new
class of computational tool can assist scientists in simulating, analyzing, and
understanding complex systems; and it provides a study in the extension of
standard integration algorithms with a spectrum of additional symbolic and
numerical techniques.

1.2 Design Principles of the Kineticist’s Workbench

The notion of multiple cooperating techniques is the basic design prin-
ciple of the Workbench system. In part, this principle is thrust upon the



program by the very nature of its domain. As noted, chemical mechanisms
are complex systems, and lend themselves to a multitude of different styles
of analysis. Sometimes the chemist tries to simplify a mechanism before sim-
ulation, by looking for particular features in the mechanism itself; sometimes
a simplification (or numerical approximation) is deemed possible based on
numerical results; sometimes the mechanism must be altered because some
feature of its simulated behavior is inconsistent with laboratory results. The
root of this complexity is that chemical mechanisms are nonlinear systems of
ordinary differential equations, and thus can exhibit all the myriad behaviors
of which nonlinear systems are capable.

The Workbench correspondingly avoids promoting a single all-purpose
computational formalism for analyzing mechanisms, as such a formalism
would inevitably misrepresent the opportunistic spirit in which kinetics is
actually performed. Rather, the program includes multiple representations
of mechanisms (both as differential equations and as certain types of graphs);
it has a variety of “special case” procedures appropriate to mechanisms with
special simplifying properties (e.g., mechanisms described by linear differen-
tial equations); it is written in Scheme (a Lisp dialect), thus facilitating the
interactive development of the program via the addition of new procedures.
Overall, the Workbench can be used to make powerful deductions about the
behavior of moderately simple mechanisms, but can also be used to study
recently-developed complex models.

An important theme in the design of the Workbench is the augmentation,
not replacement, of numerical simulation. The Workbench does not try to
obviate the need for numerical simulation by developing a purely qualitative
formalism for the behavior of chemical mechanisms; its aim is rather to use
symbolic techniques in ways that help to predict and interpret numerical re-
sults. In this sense the Workbench is to be distinguished from more explicitly
non-numerical efforts in the field known as qualitative physics.!

The fact that numbers are the primary data for the Workbench is related
to another design principle of the system—namely, that the techniques and
terminology be derived from the domain itself. The Workbench uses con-
cepts like “rapid equilibrium,” “autocatalysis,” and so forth in examining

Further discussion of this comparison appears in Chapter 8.



mechanisms for special features; likewise, it produces qualitative summaries
of simulations employing terms like “steady state,” “stable oscillations,” and
so forth. There is a concerted attempt throughout to stay close to the lan-
guage and concepts of chemical kinetics, so that the system can ultimately
be of use to working chemists.

Finally, the Workbench is designed so that its various modules produce
data in a form that is usable by other computer programs. That is, the
Workbench is not specifically concerned with “data visualization” in the usual
(human interface) sense of that term. The Workbench does produce tables,
graphs, and textual printout for the user, but it also ensures that its results
may be passed to other procedures. This is an important corollary of the
notion of multiple cooperating techniques mentioned earlier: the idea is that
the various portions of the program should be designed to take advantage of
the possibility of sending useful information to other programs.

1.3 Outline of This Paper

The following chapter lays the groundwork for an examination of the Ki-
neticist’s Workbench by presenting a (somewhat telegraphic) discussion of
chemical kinetics. This chapter will introduce the basic terminology of the
field, and will also motivate some of the specific features of the Workbench
system. The third chapter is devoted to an overview of the Workbench’s im-
plementation; and the three following chapters (4-6) expand on this overview
by examining the three major modules of the Workbench. Chapter 7 is de-
voted to a number of examples showing the Workbench in operation. The
final chapter is a discussion of related work, as well as problems in the current
Workbench system and prospects for future development.



Chapter 2

Kinetics: The Nature of the Problem

2.1 Chemical Reactions and Chemical Mechanisms

2.1.1 Mechanisms

The textbook picture of a chemical reaction is usually that of a direct
transition from reactants to products, as in the following example:

[1] 2 N205 ~~> 4 N02 + 02

It would appear from this notation as though the reaction [1] proceeds
by the collision of two molecules of nitrogen pentoxide (N205), causing a
rearrangement into five product molecules. In point of fact, however, this
scenario is extremely unlikely on geometric grounds alone. A rough (planar)
picture of the N205 molecule looks as follows {58}:

Looking at this molecule, it is hard to imagine how such an intricate
rearrangement of atoms could possibly take place as the result of a straight-
forward collision. And there is another, even more disturbing fact: the rate
of collision of two N205 molecules in gas phase is proportional to the square of
N205 concentration (at least for dilute concentrations).{58} Thus, we might
expect that if we double the concentration of N205, the initial rate of appear-
ance of 02 molecules will increase by a factor of 4:!

1The concentration of a given species such as 02 is written [02]. Throughout this
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The problem with [2] is that it is contradicted by experimental evidence.
In point of fact, the rate of initial production of 02 molecules is proportional
to the concentration of N205:{55}

Bl - o« [N205]

It would thus appear that the simple scenario suggested by the notation
of the overall rearrangement 1] does not adequately describe the events of
the actual chemical reaction. How, then, does reaction [1] take place? To
answer this question, the chemist must propose a model, or mechanism, for
the reaction: a sequence of two-molecule collisions (or occasionally single-
molecule decompositions). Each individual step in this mechanism should be
chemically plausible, and taken together the steps should account for both
the overall reaction and experimental data such as [3] above.

A plausible mechanism for nitrogen pentoxide decomposition is the following: {55}

[4.1] N206 --> KNO2 + NO3
[4.2] HO2 + NO3 --> N205
[4.3] HO2 + X03 --> NO2 + NO + 02

[4.4] NO + N2056 --> 3NO2

paper we will assume that the units of concentration are moles/liter (this is a common
choice; another choice of units often encountered in the literature is molecules/ cc).{74}



In contrast to the original reaction [1], each step in the set [4.1]-[4.4] is
intended to be read as a direct transition from reactants to products. To
introduce some standard terminology, each of these four reactions is referred
to as an elementary step (indicating that it proceeds directly “as written,”
unlike [1]). Reaction [4.1] is a unimolecular step, while the other three are
bimolecular.?

It should be stressed that [4.1]-[4.4], like any mechanism, is only a hypothesis—
often, the elementary steps that a chemist proposes cannot be observed di-
rectly in the laboratory. Mechanisms may be disproven in numerous ways: by
showing that they contradict experimental data, or that a proposed step does
not occur, or that some unanticipated step does indeed occur. Mechanisms
cannot, however, ever be said to be proven.{55}

Without going into detail, we can accept that [4.1]-[4.4] is chemically
reasonable—i.e., that each elementary step could conceivably occur via colli-
sions and plausible rearrangements of atoms. The kind of chemical knowledge
that goes into proposing such a mechanism, and into verifying that each step
is plausible (if not observable), is often profound; but that purely chemical
knowledge is not at issue in this paper. Rather, our interest is in the next
step—verifying that the mechanism [4.1]-[4.4] is capable of accounting for
experimental results such as [3] above. In other words, we want to know how
our proposed mechanism behaves—how it accounts for the changing concen-
trations over time of each of its constituent species. If our mechanism is
incapable of accounting for [3], then it cannot be correct, regardless of how
sensible each step appears; perhaps we have ignored a step that actually
occurs, or included one that doesn’t.

What we need, then, is a method for translating a mechanism such as
[4.1]-[4.4] into a mathematical model that allows us to predict the concen-
tration profiles (over time) of all the observable species. We can then compare
the results of our model to experimental data such as [3], and corroborate
(or disprove) our mechanism. The next subsection examines this process of
translating mechanisms into predictive models.

20n rare occasions, a three-molecule collision or termolecular step will be proposed.
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2.1.2 Mechanisms as Systems of Differential Equations

We can begin translating [4.1]-[4.4] into a mathematical model by using
the fact—alluded to earlier—that the rate of collision of two molecules of
type A and B is proportional to the product of their concentrations [A] [B].
Thus, if we restrict our attention to reaction [4.2] alone, we can write:

- a [§o2] - 4 [§03] a [¥208]
3 I = e s e = x2 [N02] [NO3]

The first two relations follow from the stoichiometry of reaction [4.2] (one
mole of NO2 is consumed in this reaction for every mole of NO3 consumed and
N205 produced). The last relation expresses the fact that the rate of produc-
tion of N205 is proportional to the collision rate of NO2 and NO3 molecules.
Here, k2 is a proportionality constant, or rate constant, to use the standard
terminology. Specifically, k2 is a second-order rate constant (corresponding
to a bimolecular step), and its units are concentration™! * time™1.

As for the unimolecular step [4.1], we assume that at any given moment,
the rate of reaction is proportional to the concentration of the reactant.®
Thus, for this step we can write:

3There are a number of theoretical models that account for this treatment of unimolecu-
lar elementary steps. One of the more popular such theories, the Rice-Ramsperger-Kassel
(or RRK) theory, actually treats unimolecular steps as “shorthand” for a collision step
followed by reaction of an activated species.{55} The RRK theory partially accounts for
the experimental limitations of the simple treatment embodied in [6]. For our purposes,
we will not concern ourselves with the “internals” of unimolecular steps, and will assume
that [6] is correct. As a heuristic explanation for this “standard” kinetic treatment, it may
be simplest to imagine that for a decomposition or unimolecular rearrangement of some
species A, the reaction occurs in a probabilistic fashion—e.g., for all molecules of A above
a certain level of internal vibrational energy, or for all molecules of A occupying a special
conformation. It is reasonable to assume that at any given time a constant percentage of
species A will be able to undergo reaction: hence expression [6] above. As a final aside, it
may also be worth mentioning that this treatment of unimolecular reactions is identical
to that of radioactive decay reactions.{58}



-d[H§205] d[No2] d[¥03]
(el = = e = k1 [N206]
dt dt dt

Again, the first two relations are derived from the stoichiometry of [4.1],
and the last relation indicates that this step obeys first-order kinetics. (The
units of the first-order rate constant k1 are time™.)

We can now combine the expressions derived from [4.1] and [4.2] with
analogous expressions derived from the other two steps, and arrive at the
following system of ordinary differential equations:

[7.4] 4 [N208]/dt =

-k1 [N205] + k2 [NO2][NO3] - k4 [uq][uzos]

7.21 4 [N02]/at

ki [N205]

k2 [N02]1[N03] + 3 k4 [NO][N205]

[7.3] d [K03l/4t

k1 [N205]

k2 [NO2][NO3] - k3 [NO2]([NO3]

[7.4] 4 [NOl/dt

k3 [N02] [N0O3] - k4 [N0](N205]

[7.8] 4 [02]/4¢ = k3 [N02][NO3]

These five equations [7.1]-[7.5] constitute a translation of the mechanism
[4.1]-[4.4] into a mathematical model. For each species in the mechanism,
we have a differential equation that dictates how the concentration of that
species changes with time; and each equation consists of terms derived from
steps in the mechanism in which that species is produced or consumed. (For
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example, the three terms in equation [7.1] are derived from steps [4.1], [4.2],
and [4.4] respectively.)

Our mathematical model is still not quite complete, because we have yet
to choose numerical values for the rate constants kl1-k4. Sometimes these
constants may be determined by direct laboratory observation of a partic-
ular elementary step; often they are treated as unknown parameters within
the model. In any event, once rate constants (and initial concentrations)
are chosen, equations [7.1]-[7.5] will determine the subsequent concentration
profiles of all species. These predictions may then be compared with exper-
imental data (such as the earlier expression [3]) to corroborate the original
mechanism.

2.1.3 Special Assumptions in the Treatment of Mechanisms

The previous discussion illustrated the essential process of translating a
chemical mechanism into differential equations. There are, however, several
additional points that deserve mention.

First, it is often the case that a particular species within a mechanism is
assumed to have constant concentration. This is superficially something of a
paradox: how can a given species enter into a reaction (or group of reactions)
and yet have unchanging concentration? The answer is that in some cases,
the assumption of constant concentration is an excellent approximation that
simplifies the treatment and understanding of the mechanism.

A typical example of this sort of simplification occurs for reactions in
solution in which the solvent enters into the reaction. For instance, consider
the following the elementary step (taken from a mechanism for hydrolysis of

alkyl halides {9}):

H+
/
(8] R + + H20 --> RO
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Here, the reaction is taking place in water solution, so the concentration of
H20 may be assumed constant for the entire course of the reaction.

More generally, the assumption of constant concentration is often used
when a particular species is present in such excess that its concentration can
be affected very little by any reactions into which it may enter. (The case
of “constant solvent concentration” may be viewed as a special case of this
principle.) Occasionally, it may be that a laboratory system is prepared in
which a particular species is kept at (approximately) constant concentration
by external control.

A second common assumption is that a mechanism has external “sources”
or “sinks” for particular species. We might, for example, stipulate that some
species A is being fed into a reactive system at a given rate; in this case
there is an external source for A (independent of its concentration within the
reactive system). Our differential equation for A would then have a “source”
term:

d[a]
o] ~——— = K gre +  other terms
dt

Here, the first term k,, is a constant (one might think of it as a “zero-th
order rate constant”) that indicates that species A is being added to the
system at a constant rate.

A “sink” for a given species B may be viewed conceptually as an elemen-
tary reaction of the form:

[10] B ---> Ezternal World

Such a reaction is expressed as a first-order term in the differential equa-
tion for B:
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d(B]
C11] === = -k gnx [B] +  other terms
dt

Physically, sources and sinks correspond to situations often encountered
in open laboratory systems. We might, for example, have a constant-volume
reactor of volume V with input and output channels, as depicted in Figure
2.1.{7} As the reaction Proceeds, a certain amount v of “feedstream” carrier
gas is input to the tank within each second, and during that same time the
identical volume v is withdrawn from the tank. The input stream contains
a fixed concentration of species A, while the concentrations in the output
stream are just those within the reacting system. In this case, our model of .
the reaction would include a source term for species A, and sink terms for all
species in the reactive system.4

A third type of assumption often made allows for certain species to be
“driven off” from a reactive system, or treated as having a concentration
of zero within the reactive system. (Physically, this might correspond to a

41t is sometimes the case that certain species will be removed via such a sink term, and
others will not. One might imagine, for instance, a tank reactor for liquid solution with
a semni-permeable membrane blocking the output channel, allowing only certain species to
leave the tank.
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gaseous product of a reaction taking place in open solution.) In a sense, this
is merely an extreme example of the “constant concentration” assumption
discussed earlier; formally, the same approximation might apply to a species
that is not in fact removed from the system, but that is simply an inert
(nonreactive) product whose real concentration is of no concern.

Finally, it is worth mentioning the possibly disturbing convention of in-
cluding “one-way” reactions within mechanisms. Since every reaction, viewed
microscopically, is reversible, it would seem necessary to include a “back re-
action” for every instance of a “forward reaction.”

There are various reasons why the convention of using one-way reactions
may not be dangerous. First, we may be interested in a given reaction

A —>8B

only for a certain brief period of time, and with an initial concentration of zero
for species B. In this case, we are implicitly assuming that the concentration
of B will be too small to affect our results by any appreciable amount during
the period of interest. Another instance is given by reaction [4.4], shown
earlier:

[4.4] NO + N2056 --> 3H02

Here, the backward reaction would occur via a collision of three NO2 molecules,
which is sufficiently unlikely (at moderate concentrations) so as to be treated
as negligible. Yet another possibility might be that thermodynamic consider-
ations dictate an overwhelming preponderance of products over reactants—
that is, that under normal or expected conditions the “forward” reaction will
run virtually to completion. And finally, there might be an implicit assump-
tion that the backward reaction is rendered negligible for mechanical reasons;
we might be removing products from the system very fast relative to the rate
of the backward reaction. In every case, the inclusion of a one-way reaction

is just an approximation that is built in to the formalism of the mechanism
itself.
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2.1.4 Sources of Complezity in Mechanisms

The preceding sections have outlined the path by which a chemical mech-
anism, expressed as a collection of plausible elementary chemical steps, is
rendered into a mathematical model. Having created this model, the chemist
now must study its behavior—an extremely difficult task. In general, even a
relatively unthreatening mechanism will take the form of [7.1]-[7.5]: that is,
a set of strongly coupled nonlinear ordinary differential equations. As is well
known, the range of behavior available to such systems of equations is large,
and few of these systems are solvable analytically.{74} Over the past several
decades, mechanisms have been devised to reconstruct or explain a wide vari-
ety of “exotic” chemical phenomena—bistability, oscillations, birhythmicity,
“chemical chaos,” and so forth.{67}

The link between nonlinear differential equations and mechanism behav-
ior is thus not usually obvious from the syntactic form of the equations
themselves; this is true even for mechanisms consisting of four or five steps.
Beyond this, sheer size may be a complicating factor in understanding the
behavior of a mechanism. Some mechanisms in the literature include hun-
dreds of steps (cf. {49}), while others are created by coupling together two
independently difficult mechanisms.{17}

Even after the behavioral record of a particular mechanism has been
generated—whether by direct simulation or other means—the task of describ-
ing and classifying that behavior can be problematic. Consider, for instance,
the difficulty of merely describing whether a particular jump in concentration
is a “rapid jump” or a “slow rise.” Language of this sort implies a known
time scale of interesting behavior; if the concentration of species A rises by
ten percent in ten minutes, this may appear “fast” in the laboratory time
frame, but it may be slow relative to other interesting events observed in the
record. Because chemical reactions can take place over a remarkably wide
range of time scales,® the observed “events” of a mechanism’s behavior—
jumps in concentration, stable periods, oscillations—have to be described

8Some fluorescence reactions take place in a matter of microseconds{42}; others, such
as the (uncatalyzed) reaction between hydrogen and ethylene, proceed at a rate too slow to
measure in the laboratory.{58} This wide range of time scales is true both for elementary
chemical steps and overall reactions.
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relative to an overall record of behavior, rather than as isolated occurrences.
2.1.5 Additional Complezities

Beyond the sources of complexity described above, there are additional
factors that can make the understanding (and indeed the simulation) of mech-
anisms even thornier. Because these extra factors are not handled by the cur-
rent Kineticist’s Workbench, they will not be discussed at length; but they
are worth mentioning, if only to provide a sense of how the picture presented
above is itself a simplification of some “real-world” problems.

First, our presentation of systems of equations such as [7.1]-[7.5] implic-
itly assumes that our rate constants (such as k1) are indeed constant over
the course of a reaction. In point of fact, rate constants are temperature
dependent. The standard form of this rate dependence, derived from the
Arrhenius equation, is: {55}

where R is the gas constant, T is in degrees Kelvin, and F,. is a constant
(thought of as an “energy barrier height” for the elementary reaction). Other
forms for this relation have been proposed, but the essential point is that
reaction rates can change noticeably with temperature. In many situations,
this fact is immaterial since the reactive system is assumed to be kept at
constant temperature; but there are some situations in which (for instance)
a strongly exothermic reaction raises the temperature of the entire system,
and this higher temperature in turn affects the rates of the various elementary
reactions within the system. Thus, the changing temperature of the system
plays an essential role in the progress of events.(cf. {55})

Another assumption implicit in the discussion thus far is that our reactive
system is homogeneous, with no spatial variation in concentrations. In the
laboratory, this condition often corresponds to the use of rapid mixing; but
there are interesting cases in which concentrations of species vary in space as
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well as time. {36, 81, 79} Inhomogeneous systems must be modelled by partial
differential equations, and as such are a good deal more computationally
demanding than the systems we will study in this paper.

Finally, we have been using the important assumption that the collision
rate of two species A and B is proportional to the product of their concentra-
tions. This is often a good approximation, but in practice there are numerous
qualifying circumstances: in gases at very high pressures, for instance, the
simple kinetic theory model on which this assumption is based begins to
break down.{58} Charged species (e.g., ions in solution) represent another
complication: often mechanisms involving such species can be recast in the
standard form by using activities instead of concentrations as the variables of
interest. The difficulty here arises from the fact that the activity coefficient
(the “correction factor”) of a species depends in a complicated way on the
ionic strength of the solution (as well as other less important factors).{9} In
practice, the form of equations [7.1]~[7.5], also known as mass action kinetics
for elementary reactions, is widely employed for reactions in both gas and
liquid phase.

To sum up this discussion, then, the systems handled by the Kineticist’s
Workbench are isothermal, homogeneous systems obeying mass action kinet-
ics. Although these stipulations rule out many reactions for study, there is
no lack of interest in the reactions left available to us. We will return to the
additional complications mentioned in this section in the final chapter of this
paper.

2.2 Strategies for Simplifying Mechanisms

Once a mechanism is constructed, there are various “special properties”
that we can occasionally spot that allow us some conceptual purchase on its
behavior. An extreme example of this would be a mechanism that happens
to generate a set of linear ODEs (this could happen if, for instance, all
elementary steps within the mechanism were unimolecular). The behavior of

linear systems is well understood, so a mechanism of this type is especially
simple to handle.{74}
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More typically, a mechanism (along with expectations about the condi-
tions under which it operates) will have some ad hoc numerical properties
that permit simplifying assumptions to be made. We have already encoun-
tered a few of these in the previous sections: for instance, the use of “con-
stant concentration” species often reflects the approximation that a particular
species will be present in excess throughout the course of the reaction. In
the following discussion, we will explore two other strategies for simplifying
mechanisms that are commonly encountered in textbooks: the assumption
of rapid equilibrium, and the steady-state assumption.

2.2.1 Rapid Equilibrium

Consider the following (very simple) mechanism:
[13.1] A --> B ki = 100

[13.2] B --> A k2

200

[13.3] B-->¢C k3 = 0.1

Informally, what we have is a rapidly equilibrated mixture of A and B, and
a slow transition from B to C. Thus, if we examine the behavior of this
mechanism, with initial conditions of (say) concentrations of 1, 0, and 0 for
A, B, and C respectively, what we will see shortly thereafter is a slow growth
of C (up to almost 1 M concentration) during which the ratio of [A] to [B]
is approximately 2:1.

The key to making this rapid equilibrium approximation is that the reac-
tions perturbing the equilibrium between A and B dictate slow changes rela-
tive to the equilibrating process. Thus, at any given moment, the equilibrium
ratios represent a good approximation to the truth. Mechanism [13.1]-[13.3]
might be used to explain an overall first-order expression for the reaction
A --> C, since we have

(141  —-- = k3 [B] = k3 (k1/x2) [A]
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The rapid equilibrium approximation is used in a number of standard
examples of kinetic theory; for instance, the treatment of unimolecular reac-
tions by Lindemann and Christiansen, and later by Hinshelwood, is derived
from this assumption.{55}

2.2.2 Steady-State Assumption

Earlier, the assumption of a constant concentration species was alluded
to as a common approximation used to simplify mechanisms. In a similar
spirit, one can often assume that some highly reactive intermediate species
will be at a (low) constant concentration throughout the running time of a re-
action. To see how this assumption arises, consider the following mechanism,
represented graphically:

k1 k2
[15] A ——==> B* —--=>(

We begin with the assumption that B is a much more unstable (thus
reactive) molecule than A; this implies that the transition from B# to C is
much faster than that from A to B*, or in other words that k2 > k1. In this
case, if we initialize our system with some of substance A (and nothing else),
we will find that for most of the reaction time, there will be a very small
(and nearly constant) concentration of B. Thus, we can write:

d[B+]
[16.1]  —————- = ki [A] - k2 [Bx] ~ 0
dt
d[c]
[16.2]  -———-- = k2 [B¥] ~ k1[aA]
dt

where [16.1] has been used in [16.2].5

®As with the mechanism [13.1]-[13.3], the overall kinetics of the mechanism [15] is
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Inasmuch as “reactive intermediates”—such as unstable species or free
radicals—are not uncommon in chemical mechanisms, the steady-state as-
sumption has wide utility. As a more complex (and realistic) example of
its use, we can return to the decomposition of N205 shown in mechanism

[4.1]-[4.4], and illustrate how the first-order expression [3] can be accounted
for.”

The mechanism and accompanying differential equations are reproduced
below:

[4.1] N205 --> NO2 + NO3

[4.2] NO2 + NO3 --> K205

[4.3] NO2 + NO3 --> NO2 + NO + 02
[4.4] NO + N205 --> 3NO2

[7.1] 4 [82081/dt =

-k1 [N206] + k2 [NO2][NO3] - k4 [NO][N205]

{7.21 4 [NO2]/d¢ =

ki [N206] - k2 [N02]{NO3] + 3 kx4 [NO][N205]

[7.3] 4 [N03]/4t =

k1 [N205) - k2 [N02] [NO3] - k3 [N02][N03]

[7.41 4 [WOl/dt =

k3 [N02][NO3] - k4 [NO][N205]

first-order in A; but the relationship of the overall rate expression to the elementary rate
constants is different.

"The treatment here closely follows that in Laidler {55}.
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[7.51 4 [02]/4¢ = k3 [NO2][No3]

We will use a steady-state approximation for two intermediates: NO and
NO3. Starting with NO3 and equation [7.3], we derive:

[17.1] x1 [N205] = (k2 + k3) [N02] [NO3]

From the steady-state approximation for NO, we get:

[17.2] x3 [N02] [NO3] = k4 [NO][N205]

As it happens, [17.1] is enough to derive the first-order expression for
the rate of production of 02. We substitute [17.1] into [7.5] and derive the
following;:

[17.3] af02)/dt = k3 (k1/(kx2 + k3)) [N205]

We can also derive a first-order expression for the rate of disappearance of
N205 by using both [17.1] and [17.2] in expression [7.1]:

[17.41 d [N208]/dt -k1[N205] + (k2 - k3) [N02] [NO3]

(~k1 + (k2 - k3) (k1 / (k2 + k3))) [N205]

(-2 k1 k3 / (k2 + k3)) [N206]

Expression [17.3] accounts for the experimental results summarized in
[3] earlier, and [17.4] predicts a similar result for the rate of disappearance
of N205. It may also be worth mentioning that these expressions allow the
overall measured rates of change for 02 and N205 to be related to the rate
constants for the individual elementary steps. Thus, if we are somehow able
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to measure (say) k1 and k2 independently, we can derive k3 from expression
[17.4] and our experimentally determined rate of decomposition for N205.

2.3 Numerical Simulation of Mechanisms

The previous section delineated two common strategies for simplifying the
numerical treatment of mechanisms. These techniques are often encountered
in textbook examples, where they facilitate algebraic treatment of mecha-
nisms (note, for instance, that we required nothing more than algebra and
the steady-state assumption to recover [3] from mechanism [7.1)-[7.4] above).

Unfortunately, strategies such as those described above are not univer-
sally applicable. For example, in mechanism [13.1]-[13.3], which we used to
illustrate the “fast equilibrium” approximation, we may be interested in a
situation in which the rates of all three steps are comparable; in that case,
our approximation no longer holds. Or it may be the case that a steady-
state approximation holds for only some portion of the running time of a
reaction. (Even in the case of reaction [15], we might imagine a hypothetical
initial situation in which only A is present; in this case, it takes some brief
amount of time before the steady-state approximation becomes a reasonable
one.) More generally, as mechanisms of interest grow larger and more com-
plex, these strategies become ever more limited in their applicability; and
numerical simulation becomes a necessity for understanding behavior.

Over the past several decades, with the advent of digital computers, nu-
merical simulation has become the prevalent method for studying the be-
havior of chemical mechanisms. By now a number of powerful simulation
packages exist {5, 13, 23, 46}. Typically, the chemist will use such a pack-
age by entering a set of differential equations (much like [7.1]-[7.5] above),
along with parameters such as rate constants and initial concentrations; hav-
ing the computer integrate the equations with the given parameter values;
and finally, saving or displaying the resulting concentration profiles. Unlike
the techniques described in the previous section, numerical simulation is of
course completely general, and its accuracy is limited only by that of the
computer and the choice of integration algorithm.
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2.3.1 Stiff Systems

As mentioned earlier in this chapter, chemical systems often involve pro-
cesses taking place at widely divergent time scales. A (relatively mild) ex-
ample of this phenomenon was encountered in mechanism [13.1]-[13.3]: here,
the two elementary steps [13.1] and [13.2] dictate an equilibrium between A
and B that is reached (to a good approximation) within seconds, while the
third reaction converts B to C at a much slower rate. Many other mechanisms
contain much more dramatic distances between the time scales of elementary
reactions.

Systems of this type, exhibiting both “fast” and “slow” processes proceed-
ing simultaneously, are known as stiff systems.® Chemical mechanisms are a
notorious source of stiff systems, and as such constitute a challenge to numer-
ical integration routines. Besides the usual criterion of numerical stability,
integration routines for chemical systems must allow for adaptive time-steps
(so that both fast “transient” behavior and slow “near-equilibrium” behavior
may be captured in a reasonable number of integration steps).

The most common integration routine used for handling stiff systems is
the Gear algorithm. The kth-order Gear algorithm is an implicit (predictor-
corrector) integration algorithm whose value at each time-step is obtained
by solving for the next state z[n + 1] in terms of that state itself and the k
previous states z[n],.... z[n — k + 1). As an example, the implicit equation
for the fifth-order Gear’s algorithm is shown below: {15}

[18] x[n+1] = (1/137) ( 300 x[n] - 300 x[n-1] + 200 x[n-2]
- 756 x[n-3] + 12 x[n-4]

+ 60 h £(x[n+1], tln+1]))

Here, we solve for z[n + 1] in terms of itself and the five most recent state
values. Much, of course, is still unspecified by this equation alone: how an

8More formally, a linear system of ODEs is stiff if it has wide distances between eigen-
values. A nonlinear system is stiff if its Jacobian has wide distances between eigenvalues
in some phase space region of interest.{15}
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initial prediction for each time step is to be chosen, the correction algorithm
to use, the strategy for changing the time step value h, and so forth. Chua and
Lin {15} provide detailed discussion of these points, as well as a derivation
for the particular constants in equation [18]; and they also discuss matters
such as strategies for implementing adaptive-order Gear routines.

The Kineticist’s Workbench supplies the user with a choice of integration
routines. For stiff systems, the Workbench can employ the Gear algorithm
supplied by IMSL, Inc.{50}; for non-stiff systems, the Workbench uses a
fixed-time-step fourth-order Runge-Kutta algorithm (a relatively simple ex-
plicit integration routine {44}). More detail on the Workbench’s numerical
integration module will be provided in Chapter 4.

2.8.2 Stochastic Simulation

Earlier in this chapter, we saw that certain types of approximations (such
as near-constant concentrations) may be incorporated into mechanisms, thus
simplifying the differential equations produced. In this sense, mechanisms
are often unabashedly approximate models of chemical systems. But there
is yet another approximation that is so pervasive in our discussion thus far
that it may go unnoticed: namely, that chemical systems can be described
by differential equations at all. In truth, concentrations are not continuous
quantities; since any system has a discrete number of molecules of any given
species, it is an idealization to speak of the “derivative” of a concentration
over time.

Of course in most situations this “idealization” is not problematic. A typ-
ical laboratory system will have on the order of 102° molecules of any given
species; and even a very dilute solution might contain 10'° solute molecules.
Thus, speaking of derivatives of concentrations is as reasonable as, say, speak-
ing of the derivative of electric current in a DC circuit (another “idealiza-
tion”). Nevertheless, there are situations in which the differential equation
formalism proves inadequate: for instance, we may actually be dealing with
exceedingly small numbers of reacting molecules. In these situations, we
would like some other method for simulating chemical systems—some method
that reflects the discrete nature of the system being modelled.
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The mathematical approach used in such situations is a probabilistic one:
the chemist sets up a “master equation” in which the probability of finding
the system in a given state at time ¢ is obtained by summing the probabilities
that the system entered this state from some previous state at time ¢ — dt.
Formally, such an equation looks as follows:

[19] P(s,t) = Y P(j,t-dt) * ¥ (j,s)
J

In prose, equation [19] says that if we know the probability of finding our
system in any state j at time ¢ —dt, and the probability that a system in state
J changes in time dt to state s (this the so-called “transition probability,”
denoted by W(j,s)), then we can compute the probability of finding the
system in state s at time t.°

Simulating a system described in this way generally means starting from
a given initial state s0, and using the (known) transition probabilities to
generate subsequent states nondeterministically. Computer programs for this
purpose use Monte Carlo methods and are typically run numerous times to
generate statistical averages of system behavior.{74}

Despite the utility and interest of stochastic simulation, we will not pursue
the subject beyond this brief outline. The Kineticist’s Workbench employs
differential equation models exclusively to generate numerical output, and
these “classical” models will be the sole focus of our attention henceforth.
Nevertheless it is worth including this telegraphic description of stochastic
techniques, if only to indicate some of the hidden limitations of differen-
tial equation models, and the range of simulation methods available to the
modern chemist.

2.3.3 Limitations of Numerical Simulation

Despite its usefulness and increasing affordability, numerical simulation

°It is not hard to show that for simple systems in which we assume dt very small and
a large number of particles, we can recover the expected differential equations from a
stochastic treatment such as this.{74}
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has unavoidable limitations as an aid to understanding mechanisms. Typi-
cally, the results of running a numerical simulation are large tables (or graphs)
of numbers representing the concentrations of various species over time. Al-
though this data is indispensable, the chemist is still required to do a good
deal of “qualitative” work, both before the simulation is run and after the
results are retrieved.

Before actually running the simulation, the chemist will look over the
mechanism to see if there are deductions about its behavior that may be
reached even in the absence of simulation. For instance, he may try to spot
special mechanistic features like “rapid equilibria” of the kind mentioned
earlier; or he may look to see whether the mechanism has certain properties
that guarantee that it will reach a stable equilibrium; or he may note that this
particular mechanism gives rise to linear differential equations, and that he
can thus express its behavior directly, by a mathematical formula. All of this
may be done before any simulation results are obtained—though of course
those results may later be helpful in checking the intuitions and predictions
developed during this stage of the work.

After running the simulation, the chemist will look over the results, trying
to spot features of interest—e.g., rapid changes in concentration, or long
periods during which some concentration is nearly constant, or oscillations.
He will try to relate those observed features to aspects of the mechanism
itself; for example, he might ask which particular steps in the mechanism were
most directly responsible for causing some large jump in the concentration of
a given species. In essence, the chemist attempts to fit a narrative structure
to the overall results, as evidenced in the following passage (in this passage,
a and f refer to small collections of elementary steps in the mechanism, and
symbols such as F3 refer to individual steps):

“The rate of («) is proportional to Y, and when this process is dom-
inant X attains a steady state approximated by Xmin...At such
a time, Y will be depleted by the dominance of (a). If (F3) is
rate-determining for (F3-4), then when (8) is dominant the rate is
proportional to X and X attains a steady state concentration ap-
proximated by X,.45... Transition between dominance by (a) and
(B) is strongly dependent on Y and takes place whenever that con-
centration passes through Y isicq.” {62}
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This kind of narrative interpretation is a significant part of what it means
to “understand a mechanism.” The chemist reads the simulation not as
numbers, but as a sequence of interesting events; and he is able to relate
those events back to the participation of individual steps within the original
mechanism.

In fact, the chemist’s interpretive powers must generally be extended be-
yond the results of a single simulation. Typically the chemist will perform a
series of simulations, varying one or more parameters (such as a rate constant
or initial concentration of some species). He will then attempt to relate the
presence or absence of particular features (such as oscillations) to the values
of the parameters chosen. Often he will generate a parameter-space graph,
showing how certain types of mechanism behavior vary with the choice of
parameters. Figure 2.1 shows such a graph from Markus {59}. This graph
summarizes the behavior of a particular model of an oscillating reaction; the
axes correspond to parametrized source and sink rates within the model.
The various annotated areas of the graph correspond to parameter regions
in which the model exhibits bistability (two possible steady states), monos-
tability, or oscillations.

It is thus fair to say that while the numerical results of simulation rep-
resent the primary data for the chemist—there is no purely qualitative for-
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malism that can accommodate the richness of detail provided by the actual
numbers—nevertheless, the mere generation of numbers is only a fraction of
the chemist’s job in understanding and analyzing mechanism behavior. The
greater and more interesting part of that job is spent in making predictions
of the numbers beforehand, and making narrative summaries of the results
afterward.

The Kineticist’s Workbench is designed in accordance with this view of
the scientist’s work. The Workbench augments the standard techniques of
numerical simulation with additional symbolic procedures that assist the
chemist in predicting and analyzing mechanism behavior. The Workbench
uses graphical procedures to examine the structure of a proposed mechanism
and determine whether any meaningful predictions of mechanism behavior
may be drawn prior to simulation; for certain mechanisms it can determine
whether the system must necessarily reach a stable equilibrium. The program
can also spot a variety of interesting special features within mechanisms,
including “rapid equilibria” (as described earlier) and autocatalytic loops (a
feature associated with exotic behavior such as oscillations).

After simulation is complete, the Workbench is able to analyze the events
of the simulation by several means. The concentration profiles are divided
into “episodes,” roughly corresponding to changes in the mechanism steps de-
termining local concentration changes'®; these may be used to generate narra-
tive descriptions of the simulation. The program also separately keeps track
of local concentration maxima and minima which it can use to spot a variety
of standard oscillation patterns; and it is able to generate parameter-space
graphs showing how the presence or absence of simulation events changes
with one or two parameter variations.

2.4 Why Kinetics Matters

The remainder of this paper will be devoted almost exclusively to the Ki-
neticist’s Workbench program—its features, implementation, use, and lim-
itations. But before proceeding with this examination of the program, it
is worthwhile stepping back to ask why chemical kinetics should hold any

19The full description of this part of the program is given in chapter 6 below.
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interest (or utility) as a domain of study. Why learn, or explore, kinetics at
all?

First, kinetics is an important aspect of the study of how chemical re-
actions occur. A typical contrast drawn in chemistry courses is that be-
tween thermodynamics and kinetics: the former can be used to determine
whether a given reaction is energetically favored or not (i.e., whether energy
considerations dictate an equilibrium constant that favors the “forward” or
“backward” reaction). The latter is used to ascertain how a reaction occurs
over time. A good illustration of this distinction is given by the following
reaction: {55}

2H2 + 02 <----> 2 H20

Thermodynamically, the right side of this reaction is strongly favored at
moderate temperature and pressure; the equilibrium constant for this reac-
tion dictates a huge excess of H20. But the kinetics of the reaction dictates
that, if we mix hydrogen and oxygen gas under normal laboratory conditions,
appreciable conversion to H20 will take many millions of years.!1

Formulating a mechanism for a particular reaction can provide the chemist
with insight into other, related reactions. For instance, if we are studying a
reaction system in which methyl radicals (CH3) are present, and we find that
the elementary step

2CH3 ---> C2H6

appears in our mechanism, then we would expect the same elementary step
(with the same rate constant) to appear in any mechanism in which methyl
radicals appear.’? The elementary steps that we postulate for one reaction
thus carry over, and lend us information about, other reactions.

!!Lighting a flame can speed things up considerably!{55}

121n point of fact, this step appears in mechanisms for acetaldehyde decomposition {55}
and methane decomposition {74}. In some systems with CH3 radicals present, we might
not include this step because some other step(s) with CH3 as reactant may proceed much
faster and thus be more important.
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It is also possible to find structural similarities between mechanisms of
different reactions. If we find, for example, that both nitric oxide and propy-
lene are able to inhibit certain organic decomposition reactions {55}, and
that the rate laws governing inhibition have the same general form, then we
might suspect that the mechanism of inhibition is similar for the two sub-
stances. Or, having elucidated a “chain reaction” schema for the formation of
hydrogen bromide, we might look for similar steps in the reactions of bromine
with a variety of molecules of the form X-H (such as methane, CH4, in which
“X” can be thought of as the methyl CH3- group).

In a similar vein, one can construct “abstract mechanisms” that in effect
illustrate the basic pattern of a mechanism, but that do not refer to any one
particular chemical reaction. (Mechanism [13.1]-[13.3), the earlier instance
of a “rapid equilibrium” reaction, is an example.) This can be a fruitful
technique for understanding or generating new classes of reactions: if we
create a very abstract mechanism that exhibits oscillations, but that does not
actually refer to any particular chemical system, we might then try to prepare
laboratory reactions that obey a similar mechanism in the hopes of finding
oscillations.!® Thus, the study of chemical mechanisms has a “synthetic” as
well as “analytic” purpose: starting from known reactions, we can proceed
(analytically) to a hypothetical mechanism, while starting from a sample or
abstract mechanism we can proceed (synthetically) to look for reactions that
appear to illustrate it.

The study of chemical kinetics has real-world consequences. Historically,
the study of various chain reaction schemas led to an understanding of explo-
sive systems and polymerization reactions.{55, 51} More recently, much of
the debate on the role of fluorocarbons in the depletion of stratospheric ozone
has centered on the comparison of the behavior of rival mechanisms.{16, 74}
In the past several decades, chemical systems have been regarded as an espe-
cially good source of examples in the study of nonlinear dynamics; oscillating
reactions (such as the Belousov-Zhabotinskii and Briggs- Rauscher reactions)
are used in the laboratory to study (and demonstrate) limit cycles, period-
doubling, strange attractors and other fundamental concepts of dynamical
systems theory.

13The Brusselator mechanism, to be discussed in detail later, is an example of such an
abstract “illustrative” mechanism.
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As a final point, it should also be mentioned that chemical mechanisms are
often syntactically equivalent (or similar) to models derived from other dis-
ciplines. The Lotka-Volterra model—an early simple model of oscillations—
was a chemical mechanism adapted for use in population biology.{56}}* A
variety of bacterial growth models may be recast in the formalism of chemical
mechanisms {10, 78}; and as noted earlier, radioactive decay reactions may
be modelled as unimolecular elementary steps. Thus, a system presented
“formally” as a chemical mechanism may in fact be capable of modelling
interesting non-chemical phenomena.!®

14The Lotka-Volterra model results in conservative, as opposed to limit-cycle,
oscillations.

!%Samardzija et al {70} in fact, demonstrate nonlinear transformations through which
several famous examples of ODE systems—including a forced RLC circuit and the Lorenz
system (derived from meterology)—are recast as chemical mechanisms with qualitatively
similar phase portraits.
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Chapter 3

The Kineticist’s Workbench: A Design Overview

The Kineticist’s Workbench program is best thought of as a set of three
modules. The first module is primarily concerned with numerical simula-
tion of mechanisms; the second with pre-simulation analysis of mechanisms;
and the third with post-simulation interpretation of results.! Although this
division represents a useful conceptual classification—each module handles
a different stage of mechanism analysis—the various portions of the pro-
gram are close-knit and have extensive communication with one another.
For instance, the numerical simulation routines generate on the fly much of
the symbolic information that will be used (along with the numerical re-
sults) by the post-simulation interpretation routines; likewise, the results
of (pre-simulation) graphical analysis can occasionally be incorporated into
numerical simulation (in ways that will be described at length later on in
this paper). Nevertheless, the division into numerical, pre-simulation, and
post-simulation portions of the program provides a close match to the way in
which the user would employ the Workbench, and as such will be the basis
of discussion here.2

3.1 Numerical Simulation

The Workbench contains a collection of procedures that together comprise
a flexible package for simulating mechanisms. The user enters a mechanism
(in the format of a Scheme list); the Workbench then translates this mech-
anism into differential equation procedures, using much the same strategy

1There are also a few additional procedures that supply a rudimentary user interface.

2An implementation note may be in order here. The Workbench is written in MIT
Scheme, and is run on a Hewlett Packard 9000/350 workstation. The compiled program
currently requires a little over a megabyte of memory storage; in addition, as mentioned
in the previous chapter, the program makes use of the IMSL mathematical library {50},
and uses calls to the X Window system as the basis of its graphical output.
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Figure 3.1: A Graph of Three Concentrations Versus Time

outlined in Chapter 2 earlier; and the resulting system of ODE procedures
1s passed off to a fourth-order Runge-Kutta integration routine, which can
print (or graph) its numerical results on the computer screen or save them
to a file. ‘

Should the user wish to employ the IMSL Cear integration routine, again
the mechanism is entered symbolically; but in this case the Workbench ac-
tually uses the symbolic mechanism to generate a Fortran program which
is then compiled and run (and which itself calls the IMSL library routines),
saving the numerical results to a specified filename. These results may then ‘
be read back, at which time they may be printed or graphed.

The graphing procedures provided by the program allow the user to dis-
Play several concentration-versus-time graphs simultaneously as the simula-
tion progresses (see Figure 3.1 for an example). These pictures may also be
stored as files.
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no2 + NO + 02 <--- N02 + N03 <----> nN205

no + n205 --------- > 3 no2

Figure 3.2: A Graph of a Mechanism

3.2 Pre-Simulation Analysis of Mechanisms

The Workbench includes a variety of useful techniques for analyzing mech-
"anisms prior to simulation. First, the program generates a “graph represen-
tation” of the mechanism that facilitates structural analysis; by performing
certain graph-theoretic algorithms on this representation (to be described at
length in Chapter 5), the program is often able to make powerful predictions
about the mechanism’s eventual behavior. In some cases, the Workbench is
able to conclude that the mechanism as written must eventually approach an
- equilibrium state (with all species at non-zero concentration). In other cases,
the Workbench may conclude that the system cannot reach equilibrium with
all positive concentrations; and the program can then offer possible asymp-
totic states for the system’s behavior. Even if the mechanism is of a more
complex type that does not lend itself to predictions of this kind, the program
may still look for interesting graph-theoretic features within the mechanism
often associated with exotic behavior (such as the presence of autocatalytic
loops).

The results of this graphical analysis are stored in a data structure as-
sociated with the original mechanism; they may also be displayed on the
computer screen, and in some cases are depicted “pictorially,” as suggested

by Figure 3.2. (A complete description of this representation will be provided
in Chapter 5.)

Going beyond the purely graph-theoretic algorithms alluded to above,
the Workbench is also able to look for certain standard simplifying “reaction
patterns”—such as the presence of a rapid equilibrium reaction pair—and
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to note these in its analysis of the mechanism. Notions such as “fast equi-
librium” and the “steady-state” approximation require some approximate
numerical decisions (eg, whether one rate constant is “much bigger” than
another), and so cannot be based on graph-theoretic information alone. This
type of analysis might be categorized as “quasi-numeric,” as opposed to the
purely structural conclusions of the previous two paragraphs.

Finally, in those occasional cases in which the Workbench is able to con-
clude that the mechanism must reach a unique equilibrium state independent
of initial concentrations, it can use simple minimization methods to locate
that equilibrium state directly, without performing the complete simulation.

3.3 Post-Simulation Interpretation of Mechanisms

Having performed a numerical simulation, the Workbench uses a variety
of means to intepret the numerical results and to note the presence of (pos-
sibly) interesting behavior. The program uses a special structure known as
the episode (to be described at length in Chapter 6) to link behavioral pat-
terns of the mechanism to the activity of elementary reactions. The program
generates an “episode history” which can often be used directly as a kind of
narrative depiction of the simulation; this history can also be used to spot
portions of the simulation during which simplifying assumptions might be
made (eg, periods during which the concentration of some particular species
remains virtually constant). The episode history also can be used (on oc-
casion) to find individual elementary steps that prove to be unimportant in
determining the mechanism’s behavior and which may be dropped from the
original mechanism specification.

For each species of interest, the Workbench keeps track of when that
species reaches a local maximum or minimum of concentration during the
simulation. By examining patterns of maxima and minima, the program
can spot a number of common oscillation patterns (including stable limit
cycles and damped oscillations). Having done so, the program also generates
informative parameters of the identified oscillation (such as the period and
amplitude of a stable limit cycle). In certain cases the program can also
identify even more exotic behavior such as the presence of birhythmicity or
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Figure 3.3: A Parameter-Space Graph

chaotic (non-periodic) oscillations.

Going beyond the results of a single numerical simulation: the Workbench
can be used to run a sequence of simulations in which up to two mechanism
parameters (rate constants or initial concentrations) are systematically var-
ied. In this case, the program stores its qualitative interpretation of each
run; and the stored information can then be retrieved and used to generate
parameter-space graphs that indicate how qualitative behavior changes with
the given parameters. An example of such a graph is shown in Figure 3.3,
and the origins of this example will be described in Chapter 7 of this paper.3

It should also be mentioned that the qualitative information produced by
the Workbench is in the form of Scheme structures (generally, lists of symbols
and numbers). This implies that this information may be used as the input to
other Scheme procedures. A specific example of this approach is indicated in
one of the examples to be shown in Chapter 7: in that example, a few special
procedures are written to identify that portion of the numerical results in

3The graph shown in Figure 3.3 is reproduced from original Workbench output. The
Workbench uses color-coding, rather than “stippling” and “box-outlines,” to distinguish
different symbols.
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Figure 3.4: The Workbench Program Structure

which a stable oscillation has been spotted, and to use only that (oscillating)
portion of the results as input to an FFT routine. In other words, we can use
the qualitative interpretation of our numerical results to identify portions of

the numerical results that are appropriate to study via still other numerical
methods.

3.4 The Workbench as a Whole

As mentioned above, there are several paths of communication between.
modules that have been implemented. The pre-simulation routines are able
to send information (such as known equilibrium concentrations) to the nu-
merical simulation module; the numerical module provides the results (and
additional information, such as “episodes”) that are analyzed by the post-
simulation interpretation routines; and in some cases, the post-simulation
routines can call procedures from the other two modules. (For instance, if
the interpretation routines are unable to identify any of several standard sim-
ulation results—equilibrium, stable oscillations, damped oscillations, and so
forth—they can sometimes redo the original numerical run, but with a longer
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simulation time, in the hopes of identifying some standard behavior pattern
that is not apparent in the earlier part of the run.)

Although much has been done, there is still plenty of room for expansion
of the Workbench program, both within modules and involving communica-
tion between modules. Some of the possible directions for expansion will be
discussed in Chapter 8; but in any event, the complexity of chemical mecha-
nisms (and the variety of types of reasoning involved in understanding them)
imply that there will be ample room for elaboration in the Workbench for
a long time to come. The current structure of the Workbench program as
summarized by this chapter—namely, the three modules and the types of
communication possible between them—is indicated by Figure 3.4.

The following three chapters will describe, in turn, the numerical, pre-
simulation, and post-simulation modules of the Workbench. After this,
Chapter 7 will illustrate the overall capabilities of the program with several
complete examples.
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Chapter 4

Numerical Simulation in the Workbench

4.1 The Mechanism Data Structure

The first stage in simulating a mechanism is to enter a representation
of that mechanism into the program. The Workbench’s mechanism data
structure is a Scheme list of the following general form:

mechanism =

( <step-list>
<constant-species-list>
<sources>
<sinks>
<driven-off>
<functions-of-time> )

Thus, a mechanism is a list of six elements, each of which is itself a list. The
first step-list element represents the sequence of elementary reactions, along
with their rate constants. The second element indicates which species within
the step-list are to be regarded as constant, and what their concentrations
are. The third and fourth elements indicate which species are replenished
by sources or lost to external “sinks” as described in Chapter 2. The fifth
element indicates which species are regarded as “driven-off,” i.e. having
constant zero concentration.! Finally, the last element is a list of species
whose concentrations will be given as functions of the time parameter in the
simulation (generally, simulations will run from ¢ = 0 to some final time value

tf).

lPra,gmaticadly, this is only of use for the occasional species that occurs as the product
of a reaction. We would obviously not wish to include an elementary siep one of whose
reactants is constant at zero concentration.
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Beyond this description, it is probably easiest to introduce the format of
the mechanism data structure through examples. Suppose, then, we wish
to represent the Brusselator mechanism; this is an early abstract mechanism
for oscillating reactions invented by Prigogine and Lefever {61}, and will be
used extensively as a later example:

[1.1] A-->X ki =1
[1.2] B+X-->Y+D k2 =1
[1.3] 2X + Y --> 3X k3 =1
[1.4] X -->E k4 =1

In this version of the mechanism, A and B are interpreted as constant species
(with concentrations chosen as 1 and 3, respectively), and D and E are in-
terpreted as “driven-off” products. The Workbench representation of this
mechanism would be:

(define brusselator

¢
( ( ((a1)) ((x 1)) 1)
(1) (x1)) ((y1) @1) 1)
(((x2) (y 1)) ((x 3)) 1)
( ((x 1) ((e 1)) 1) ) ; step-list
((at1) (b3)) ; constants
O ; sources
QO ; sinks
(de) ; driven off
0O» ; functions of time

The correspondence between the first (step-list) element in this data struc-
ture and the four steps [1.1]-[1.4] should be straightforward: each clement
of the step-list represents a single step, consisting of a list of reactants, a
list of products, and a numeric rate-constant value. Among the subsequent
elements, constant species are indicated as lists of species-and-concentration
pairs; driven-off species are simply indicated by the “driven-off” element.

Just for completeness, we might imagine including an external source for
B (which is thus no longer constant); an external “sink” for D (which is no
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longer a driven-off species); and finally, we might also imagine varying A as
a sinusoidal function of time, rather than treating it as constant:

(define brusselator-with-sinusoidal-a

‘(
( ( ((a1)) ((x 1)) 1)
(1) (x1)) ((y1) @1) 1)
(((x2) (y 1)) ((x3)) 1)
( ((x 1)) ((e 1)) 1)) ; step-list
QO ; constants
((b 0.01 B)) ; sources
((d 0.01)) ; sinks
(e) ; driven off

((a ,(lambda (time)
(+ 2 (* 2 (gin (* 0.1 time))))))) ; functions
»

Here, the external sources are indicated by a list giving the source species, the
flow rate, and the source concentration; and sinks are indicated by giving the
sink flow rate. Just to see what this means vis-a-vis the differential equations
governing the system, we would now have the following system of ODEs:

d[x]

[2.1] —==eun = k1[A] - k2 [BI[X] + k3[XJ2[Y] - x4 [X]
dt
afy]

[2.2] ——--w- = k2 [BI[X] - k3[x12[Y]
dt
d[B]

[2.3] ~—meeu = 0.056 - k2 [B]1[X]
dt
da[p]

[2.4] ———-- = k2 [BI[X] - 0.01 [D]
dt
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The functions-of-time element in our mechanism data structure is a list of
species-function pairs: the function part of the pair is a procedure that, when
called on the current time value, will return the concentration of the given
species.

The mechanism structure introduced here is the core information provided
by the user to the Workbench. This structure is employed by the program as
the basis of a more elaborate “mechanism ob ject” which contains not only
the original mechanism data structure, but a great deal of other information
deduced by the Workbench. We will return to the subject of mechanism
objects in Chapter 5.

4.2 Simulating a Mechanism with the Runge-Kutta Integrator

Having entered a mechanism into the program, we might now wish to per-
form a numerical simulation of that mechanism using a fourth-order Runge-
Kutta integration routine. In order to do this, a few additional parameters
are needed: in particular, we need an initial state (set of initial concentra-
tions), a time-step value to use for the integrator, and starting and ending
times for the simulation. These can be provided in a “run-parameters” list;
pursuing the Brusselator example (given by [1.1]-[1.4] above), we could con-
struct a sample run-parameters list as follows:

(detine brusselator-run-parameters
‘((starting-dt 0.025)
(start-time 0.)
(end-time 40.)
(actual-starting-concs
((a1.) (b 3.) (@0.) (e 0.) (x0.) (y0.)))
(integration-method runge-kutta)
(focus-species (x y))
(steps-per-display 40)
(save-numeric-results? ,false)))

The run-parameters list is a simple association list of parameter-value
pairs. Briefly summarizing this example: the first three pairs indicate that we
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wish to simulate the system from time ¢ = 0 to ¢ 7 = 40 seconds, with a Runge-
Kutta dt value of 0.025 seconds. The fourth pair provides a list of starting
concentrations; and the fifth indicates that we wish to use the Runge-Kutta
integrator. The focus-species pair indicates that for our purposes, the
concentrations of species x and y are of interest, and these concentrations will
be printed out every 40 time-steps (as specified by the steps-per-display
pair).? Finally, the save-numeric-results? pair indicates that we do not
wish to save out the numeric results into an external file (if the value of this
parameter were true, then we would need an additional parameter in the
list to specify a file name to use).

Having constructed both a mechanism structure and a run-parameter list,
we can simulate the mechanism as follows:

(do-simple-mechanism-run brusselator
brusselator-run-parameters)

The do-simple-mechanism-run takes as arguments a mechanism structure
and a list of run parameters, and simulates the mechanism numerically, print-
ing out on the screen the appropriate concentration values. Because we have
selected the Runge-Kutta integrator, the Workbench first constructs a set
of differential-equation procedures for each species (via the translation al-
gorithm indicated in Chapter 2), and uses these as input to its integration
routine. The results of the integration are printed out on the screen (here, we
are printing the concentrations of X and Y every 40 time-steps, corresponding
to one second of simulated time):

%Note that for a large mechanism, it might well be the case that we only wish to follow
the concentrations of one or two “interesting” species; this is the point of having a user-
defined set of “focus species,” rather than having the program assume that information
about all species needs to be retained.
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Species: y Concentration: 0.
Species: x Concentration: 0.

Species: y Concentration: .55844
Species: x Concentration: .25122
Current time: 1.

Species: y Concentration: 1.2790
Species: x Concentration: .26938
Current time: 2.

The program continues printing at one-second intervals until the end of the
run.

4.3 Simulating a Mechanism with the Gear Integrator

As mentioned in Chapter 2, certain chemical mechanisms prove too stiff
for adequate simulation by an explicit integration algorithm such as the
Runge-Kutta routine. An example is the Oregonator {61, 77}, proposed
by Field, Koros, and Noyes as a mechanism for the Belousov-Zhabotinskii
reaction:

[3.1 A+ Y -> X ki = 1.34
3.2 x+vY -> p k2 = 1.609
[3.3] B+1x -~> 2X + Z k3 = 8.0e3
{3.4] 2X -> q k4 = 4.0e7
[3.5] z -=> fY k5 = 0.8

Typically, f and k5 are parameters to the mechanism (for our present pur-
poses, we will let f = 1); species A and B have constant concentrations (both
at 0.06), and species P and Q are driven off species.

We represent this mechanism as follows:
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(define oregonator

(
ilist of steps
(
( ((a1) (y 1)) ((x 1)) 1.34)
( ((x 1) (y 1)) ((p 1)) 1.6e9)
(b 1) (x1)) ((x 2) (z 1)) 8.0e3)
( ((x 2)) ((q 1)) 4.0e7)
( ((z 1)) ((y 1)) 0.8)
)

((a 0.08) (b 0.08)) ;constant species
() ;sources

() ;sinks

(p q) ; driven off

() ;functions of time

))

And we specify run parameters appropriate to the Gear integrator:

(define oregonator-run-parameters
‘((starting-dt 1.0e-9)
(start-time 0.)
(end-time 200.)
(actual-starting-concs
((a1 0.08) (b 0.08) (p 0.) (q 0.)
(x 0.0000000001) (y 0.00002) (z 0.0000000001)))
(integration-method gear)
(gear-tolerance 0.0000000001)
(focus-species (x y z))
(steps-per-display 200)
(time-per-gear-read-out 0.025)
(save-numeric-results? ,true)
(numeric-result-filename
"/mydata/oregrun0i.out")
))

The run parameters here are similar to those for the Runge-Kutta example
earlier, but there are a few differences worth noting. First, we have chosen a
much smaller dt value; in the case of the Gear algorithm, which uses an adap-
tive time-step, this will only be an initial value for the algorithm (typically,
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later time steps will be a good deal larger). Having specified that we are us-
ing the Gear algorithm, we also need to specify an error tolerance. This will
be a parameter passed to the eventual IMSL routine, and it corresponds to
a number used by the “corrector” portion of the algorithm indicating when
a sufficiently small change has been noted between corrections.3 At present,
the Workbench has no alternative except to save Gear results to an external
file: hence we have a save-numeric-results? parameter value of true, and
we have provided a file name for the numeric-result-f ilename parameter.
The time-per-gear-read-out specifies that the IMSL routine will print out
to this file numeric values for all concentrations at every 0.025 of simulated
time. Finally, the focus-species and steps-per-display parameters indi-
cate that after the numeric results are saved, they will be read back from the
file; and after every two hundred reads (that is, every 5 seconds of simulated
time), the concentration values of species X, Y, and Z will be printed out on
the screen.

At this point, we can evaluate another call to do-simple-mechanism-run
as follows:

(do-simple-mechanism-run oregonator
oregonator-run~-parameters)

In this case, the Workbench constructs, compiles, and runs a FORTRAN
program that calls the IMSL Gear routine with an appropriate representation
of the Oregonator mechanism. The numeric output of this call is sent to the
filename provided by the user; read back; and the following printout appears
on the screen:

Species: z Concentration: .0000000001
Species: y Concentration: .00002
Species: x Concentration: .0000000001

Species: z Concentration: .000000030458
Species: y Concentration: .0000089341
Species: x Concentration: 5.1996e-11

3If this value is chosen too high—say, 107 in this case—then the simulation results
include negative concentration values. Thus, a very “tight” tolerance is usually indicated
for stiff chemical systems.
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Current time: 5.

Species: z Concentration: .000000032145
Species: y Concentration: .0000039972
Species: x Concentration: 5.4266e-11
Current time: 10.

Generally, the choice of whether to use the Gear or Runge-Kutta integra-
tor depends on the complexity of the mechanism being simulated: the former
method is required for most “exotic” mechanisms from the literature. Addi-
tionally, the current version of the Workbench is limited in that it cannot use
Gear integration on mechanisms with a non-null functions-of-time element.

As a final note, it is worth mentioning that Runge-Kutta numeric results,
like those produced by the Gear integrator, may be saved out to an external
file by using the appropriate settings of the save-numeric-results? and
numeric-result-filename parameters.

4.4 Graphing Numeric Results

Besides printing out numeric values of concentrations on the display
screen, the Workbench can produce graphs of concentrations. Pursuing the
Oregonator example from the previous section, we might wish to obtain a
graph of the concentrations of X, Y, and Z over time. In this case, we need to
add one additional parameter to the run-parameters list:

(detine oregonator-run-parameters
‘((starting-dt 1.0e-9)
etc.
(graph-window ,*display-graph-window*)))

The final graph-window parameter indicates to the program that we wish to
display the graphed results in the window to which the name *display-graph-window*
is bound.*

“This graphics window is created and initialized when the Workbench program is
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Having specified that we want a graph of our numeric results, we now
need to create a third parameter list that dictates the configuration of the

graph:

(detine oregonator-graph-parameters
¢ ((graph~type numeric)
(time-low 0.)
(time-high 200.)
(species-to-graph (x y z))
(species-concentration-boundaries
((0. 2.0e-5) (0. 1.0e-3) (0. 1.0e-3)))
(numeric-limits-for-graphs
((-30. -0.4e-5 210. 2.2¢-5) (-30. -0.le-3 210. 1.1e-3)
(-30. -0.1e-3 210. 1.2e-3)))
(window-regions-to-use
((0 0 400 120) (0 121 400 240) (0 241 400 310)))
(axis-colors-to-use
(8 8 8))
(default-colors (2 3 §))
(color-procedure
»graph-object-use-default-color)
)

The first parameter indicates that our graph will have numeric abscissa and
ordinate values.® Before proceeding to a term-by-term explanation of the
other parameter values, it is worth seeing what the eventual desired graph
looks like in Figure 4.1.

Figure 4.1 shows that we have three separate concentration-versus-time
graphs for the species X, Y, and Z.% Each of these graphs is displayed in its own
portion of the graphics window, and each uses its own ordinate line for ref-
erence (though all three graphs use the same abscissa line). Having seen this
end result, we can now return to the graph parameters provided to the Work-
bench. The time-low, time-high, and species-to-graph parameters indi-

started up.

8As opposed to symbolic values chosen from a finite set; these non-numeric graphs have
not yet been implemented in the program.

6The three graphs for X, Y, and Z are in fact shown in three different colors, a fact not
indicated by Figure 4.1.
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Figure 4.1: Graph of an Oregonator Run

cate that we wish to graph three species over time, and that the abscissa value
will run from 0 to 200. The fourth species-concentration-boundaries
parameter indicates that the ordinate values of our three graphs should run
from 0 to 0.00002, 0.001, and 0.001 for the three species X, Y, and Z, respec-
tively. The numeric-limits-for-graphs and window-regions-to-use pa-
rameters indicate that for species X, the rectangular region in the graphics
window between (0, 0) and (400, 120) will correspond to the concentration-
versus-time region between (-30, -0.000004) and (210, 0.000022), as shown
in Figure 4.2. The regions for species Y and Z are determined similarly; note
that the entire graphics window has a width of 420 units and a height of 320
units.

Finally, the last three graphics parameters specify the colors to be used
for the concentration graphs. The axis-colors-to-use choice indicates
that we wish the same color (here, color number 8) to be used for the axes
in each of the three graphs. The default-colors specifies that the three
concentrations will be plotted by default in colors 2, 3, and 5 respectively.
Finally, the color~procedure choice indicates that we wish to use only de-
fault colors in plotting concentration values. (A second “typical” procedure
choice will be mentioned in Chapter 7. For now, suffice it to say that the
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(210. 2.2e-5)

(-30, -4e-6)

Figure 4.2: Graph Region for Species X

color-procedure choice gives us some flexibility in how concentration-graph
colors are chosen: briefly, we can choose a color based on any computable
function of the current state of the reaction system.)

Having created the run-parameters and graph-parameters list, we are
now able to create the graph shown in Figure 4.1 earlier by evaluating the
following expression:

(do-simple-graphed-mechanism-run
oregonator
oregonator-run~parameters
oregonator-graph-paraemters)

Superficially, the collection of available graphics parameters gives the user
a fair amount of flexibility in visualizing concentration data (later, in Chapter
7, we will see an example in which the same species is graphed at two different
“magnifications”); but pragmatically, there are only a few typical “cliched”
patterns that would likely prove useful. One additional (and very useful)
feature, however, is that the user is able to graph functions of state other
than simple concentrations.

As an example of this capability, consider the following “tiny mechanism”:
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[4.1] A -->B k1 =20
[4.2] B-—>C k2=2
[4.3] C-—>B k3=1

Suppose that we wish to graph, not concentrations, but the ratio of the
concentration of C to that of B; examination of the mechanism shows that
this ratio should approach a value of 2 over time. We create the appropriate
data structure for the mechanism, as well as a run-parameters list with a
graph-window parameter:

(define tiny-mechanism
(
¢ (((a1)) ((b1)) 20)
C (b 1)) ((c 1)) 2)
( ((c 1)) (b 1)) 1))
O0000Nn

(define tiny-run-parameters
‘((starting-dt 0.025)
(start-time 0.)
(end-time 10.)
(actual-starting-concs
((a 3.0) (b 0.0) (c 0.0)))

(integration-method runge-kutta)
(focus-species (a b ¢))
(steps-per-display 40)
(save-numeric-results? ,false)
(graph-window ,*display-graph-window*)))

And we create a graph-parameters list as follows:
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(define tiny-graph-parameters
‘((graph-type numeric)
(time-low 0.)
(time-high 10.)
(symbols-to-graph (c/b))
(species~concentration-boundaries ({(0. 6.)))
(numeric-limits-for-graphs
((-2.5 -0.8 11. 4.5)))
(window-regions-to-use
((0 0 400 300)))
(functions-of-state-to-graph
,(list
(lambda () (let ({conc-c¢ (current-conc-of ’c))
(conc-b (current-conc-of ’b)))
(1ist (if (= conc-b 0.) 100. (/ conc-c conc-b))
3N

(axis-colors-to-use (8))))

Now, by evaluating the following expression:

(do-simple-graphed-mechanism-run
tiny-mechanism
tiny-run-parameters
tiny-graph-parameters)

we obtain the graph shown in Figure 4.3.

Each function in the list of functions-of-state-to-graph is a proce-
dure of no arguments that returns a list of a numeric value and a color value
(an integer in the range 0-15). Thus, in this example, we have written a
procedure that, at each step, returns a list of the ratio [C]/[B], and the
integer 3 (corresponding to green). It is not hard to see that a wide range of
function-types is possible with this facility — indeed, any function of state
expressible in Scheme may be graphed. It is often desirable, for instance to
graph the log of a concentration rather than the concentration itself (partic-
ularly when the concentration value has a wide range); by using a function
of the form
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Figure 4.3: Graph of Tiny Mechanism Run

(lambda () (list (log (current-conc-of ’'x))
3)) ; green

we can graph log[X] versus time.

Like numeric results, pictorial results may be saved at the end of a run
(in a special “PIC” format file that may be retrieved by commands in the
X-Windows system). If the user includes a save-picture? entry in the run-
parameters list (with a value of true), and a pictorial-filename entry
with the appropriate (string) pathname, then at the end of the simulation
the Workbench will save the graph of the just-completed run. In the following
section, dealing with parametrized mechanisms, we will see an example of this
picture-saving capability. '

4.5 Parametrized Mechanisms

Often, when exploring a mechanism, the chemist wishes to systematically
vary some numerical value and simulate the mechanism repeatedly as this
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value varies; in other words, the chemist wishes to employ some value as a
parameter for the simulation. Typically, this parameter will be either a rate
constant or initial concentration: for instance, the chemist might want to
examine the behavior of the Brusselator mechanism over a range of possible
values of (say) rate constants k3 and k4. The parametrized mechanism might
be expressed as shown below:

[5.1] A-->X ki =1
[5.2] B+X-->Y+0D k2 =1
[5.3] 2k + Y —> 3% k3 = (0.5 - 7.5)
[6.4] X -->E k4 = (0.5 - 4.0)

The idea here is that k3 might fall somewhere in the range of 0.5 to 7.5, and
k4 in the range of 0.5 to 4.0.

The Workbench allows the user to simulate a mechanism repeatedly over a
given range of one or two specified parameter values (which may be rate con-
stants, species coefficients in reactions, or initial concentrations). To do this,
the user includes symbolic (as opposed to numeric) entries in the mechanism
structure or run-parameters list, and then creates another parameter range
list that will be used to provide the ranges and parameter increment-size
for the Workbench to use. Continuing with the current example, we might
imagine that we wish to simulate the Brusselator at the specified ranges of
k3 and k4, using an increment of 1.0 for k3 and 0.5 for k4; that is, we wish
to try k3 values of 0.5, 1.5,... 7.5, and k4 values of 0.5, 1.0,... 4.0. To do
this, we first write a “parametrized” version of the Brusselator:
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(define double-parametrized-brusselator
*(

(

( ((d)) ((x)) 1)

€ () (x)) ((y) (@) 1)

( ((x 2) (y)) ((x3)) k3)

( ((x)) ((e)) k4)

)

((a 1) (b 3)) ;constant species
() ;sources

() ;sinks

(d e) ; driven off

() ;functions of time

))

We now create a parameter range list as follows:”

(define double-brusselator-param-range-list

‘((parameter-namel k3)
(parameter-low-valuel 0.5)
(parameter-high-valuel 7.5)
(parameter-incrementi 1.0)
(parameter-name2 k4)
(parameter-low-value2 0.5)
(parameter-high-value2 4.0)
(parameter-increment2 0.5)
(parameter-list ())))

In the current implementation of the Workbench, parametrized runs must be
accompanied by filenames in which to save numeric, pictorial, and qualitative-
analysis results; thus, we specify “template” filenames in yet another list:®

"The final entry of this list represents a “symbolic parameter” feature that has not yet
been implemented in the Workbench.

8Because we have not yet encountered the qualitative analysis module of the Work-
bench, this chapter has omitted any description of how these results are saved. The
details are mentioned in Chapter 6, but in any event the manner in which this analysis-
storing is implemented is completely analogous to the numerical and pictorial file-saving
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(define double-parametrized-brusselator-file-templates
¢(“/mydata/brussruns/numbers-"
“/mydata/brussruns/qualanal-"
*/mydata/brussruns/pict-"))

And now, after constructing appropriate run- and graph-parameters lists
(much as in earlier examples in this chapter), we evaluate the following
expressions:®

(define double-parametrized-brusselator-mech~ob ject
(make-mechanism-object double-parametrized-brusselator))

(do-double-parameter-space-scan-with-graphs
double-parametrized-brusselator-mech-object
double-parametrized-brusselator-file~templates
double-parametrized-brusselator-run-parameters
double~parametrized-brusselator-graph-parameters
double-brusselator-param-range-list)

The result of this final call is to run, in succession, all (in this case 64)
appropriate simulations, storing the numeric, qualitative, and pictorial re-
sults in three separate groups of files. (The numeric results, for example,
are stored in files named numbers-0, numbers-1, and so forth.) We will en-
counter a fuller portrait of this process—as well as a description of how the

stored files may now be used for additional analysis—in Chapters 6 and 7 of
this paper.

features mentioned earlier in the chapter.

9The first expression creates a “mechanism object” of the kind mentioned earlier. We
will encounter this data structure again in the next chapter; for now, we merely note
that the procedures that perform parameter space scans employ mechanism objects as
arguments, rather than the simpler mechanism data structure.
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Chapter 5

Analyzing Mechanisms Before Simulation

In the previous chapter, we saw how the Workbench performs numerical
simulation; in a sense, that discussion centered around the “standard” use
of computers in chemical kinetics. Before the Workbench performs such a
simulation, however, it is often capable of making interesting predictions
regarding a given mechanism’s behavior; and on occasion, the program is
capable of suggesting simplifications that might enable the chemist to replace
the original mechanism with a smaller, more easily understood variant.

In the first section of this chapter, we describe a variety of “graphical
techniques” that the Workbench can bring to bear in analyzing mechanisms.
These techniques are distinguished by the fact that they make no use of nu-
merical information (i.e., rate constants), but rather base their analysis solely
on the structure of the elementary reactions themselves. The succeeding two
sections may be thought of as “introducing numbers into the discussion”;
these two sections explain how the Workbench can use both a mechanism’s
structure and rate constants to suggest numerical approximations and locate
equilibrium states. Finally, we discuss how the Workbench effectively notates
its predictions of mechanism behavior, and we mention some of the current
limitations of the program’s pre-simulation analysis module.

5.1 Graphical Analysis

5.1.1 Structural Information from Mechanisms

Often there is a great deal that we can tell about the behavior of a mech-
anism before even having to simulate it. As an extremely simple instance,
consider the mechanism below:
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[1.1] A-->B (ki = 2)

[1.2] B-—->A (k2 = 1)

By inspection, we know that if we start off our simulation with non-zero
concentrations of either A or B, the system will eventually reach a stable
equilibrium. The rate constants k1 and k2 dictate the equilibrium ratio
[Bleq/[Aleq, and in fact—since the differential equations governing this
system are linear—we can derive analytic expressions for the concentrations
of both [A] and [B] as functions of time and initial concentrations. In any
event, without belaboring the point, we were able to derive key information—
namely, that the system does indeed reach equilibrium—without having to
use the precise values of the rate constants. Simply by virtue of the struc-
ture of the mechanism itself, and without using numerical information, an
important aspect of the mechanism’s behavior is known beforehand.

A very slight elaboration on this example might be provided by adding a
third step:

[1.3] C-—->A (k3 = 0.2)

In this case, we know that if the system starts out with a nonzero concentra-
tion of A, B, or C, it will over time approach a state in which the concentration
of C = 0, and the concentrations of A and B are at equilibrium values (which
again may be determined as functions of the rate constants and initial concen-
trations). We also know—by easy inspection—that if C has an initial nonzero
concentration, the concentration of C will decline toward zero throughout the
simulation.

It is not always such a straightforward matter to interpret the structural
information that the mechanism offers. Consider once again the nitrogen
pentoxide decomposition mechanism introduced in Chapter 2:
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[2.1] N206 --> NO2 + NO3
[2.2] NO2 + NO3 --> N206
[2.3] NO2 + NO3 —-> NO2 + NO + 02

[2.4] NO + N2056 --> 3N02

One might ask, can such a mechanism achieve an equilibrium state in which
all species have nonzero concentration? If not, which species will approach
a concentration of zero? And again if not, will there be an equilibrium state
between the remaining nonzero-concentration species (as there was between
A and B in mechanism [1.1]-[1.3])?

We will return to this example later, so an analysis of this mechanism
will be postponed; mechanism [2.1]-[2.4] is in any case only slightly trickier
than the previous ones. A still more subtle example is shown below: {32}

[3.1] D -->A+B
[3.2] D -->2¢C
[3.3] 2C -->D

[3.4] B+C -->E
[3.5] E -->B+¢
(3.6] E -——> A +0D

[3.77 A+D -->E

Staring at mechanism [3.1]-[3.7] for a while, we discover that every species is
both a reactant and product in some elementary step. Thus, unlike [1.1]-[1.3],
in which C obviously declined toward zero concentration, it is far from obvious
whether any species here will approach zero concentration. Perhaps this
mechanism will achieve equilibrium with all species at nonzero concentration;
indeed we may wonder whether the mechanism is not perhaps capable of still
more exotic behavior such as oscillations. As with [2.1]-[2.4], we will return
to this mechanism later in this chapter, but for now it is worth stressing that
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the process of gleaning structural information from mechanisms is not merely
a matter of restating the intuitively apparent.

The next several subsections present a variety of techniques for analyzing
mechanism structure; once we have acquired this collection of techniques,
we will return to the two previous examples and see how the Workbench
program performs on them.

5.1.2 Necessary Nonzero Species

In Chapter 2, it was stated that mechanisms are often endowed with
certain special features that reflect built-in assumptions (or approximations)
about the reacting system: for instance, it might be stipulated that a given
species is supplied at a constant rate from outside the system, or that a given
species is held at a constant concentration. (The Brusselator mechanism,
with two “constant species,” illustrates the second of these special features.)
In such cases, it is obvious that the constant or externally-supplied species
must have nonzero concentration in any asymptotically-approached state of
the system; we call such species “necessary nonzero species.” Moreover, any
species produced in a reaction whose reactants are all necessary nonzero
species is itself a necessary nonzero species. Thus, if we have the set of
reactions:

[4.1] A-->B
[4.2 B+C-->0D

[4.3] D+E-->F +8B

and if, in addition, we are informed that species A is held at a constant
(nonzero) concentration, then we can conclude that both A and B are nec-
essary nonzero species. If we are told additionally that there is an external
source for species C, then we know that A, B, C, and D are all Necessary Nonzero
species (but not E and F).

Note that the concept of necessary nonzero species only tells us that
certain species will be present if the system should approach some equilibrium
state. If it does not, then there is little that we can say about these species.

60



For instance, in the case of the Brusselator mechanism, both X and Y are
necessary nonzero species:

[5.1] A-->X ki =1
[5.2] B+X-->Y+0D k2 =1
[5.3] 2k + Y ——> 3X k3 =1
[5.4] X -->E k4 =1

However, it happens that with this choice of rate constants, the system ap-
proaches a stable limit cycle; so our classification of X and Y is not especially
useful. (There are, however, other choices of rate constants for this system
in which an equilibrium state is reached, and in these cases, both X and Y
naturally have nonzero concentration.)

5.1.8 Obvious Declining Sets of Species

Consider the following sample mechanism:

{6.1] A+B-->¢C
[6.2] C-->D
[6.3] D-->¢

As with the earlier mechanism [3.1}-[3.3], we can tell “by inspection” that
either A or B (or both) must asymptotically approach a zero concentration
in a system in which all species initially have nonzero concentrations. What
makes this conclusion obvious is simply that A and B appear as reactants but
not products in this system. We might say, then, that the set of species [A
B] is an “obviously declining set”—that is, the product of the concentrations
of the species in the set must approach zero, given enough time.

As in the case of nonzero species, we might likewise conclude that any
set of species whose presence in the system is exclusively determined by the
presence of a declining set is itself a declining set. This reasoning, when
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applied to the following mechanism:!
7] A-->B-->C-->D<->E

would enable us to conclude that over time, the concentrations of A, B, and C
must all approach zero. Again, this is straightforward, but subtler examples
can be found. For instance, consider the following mechanism:

[8] A+B-—->C<-=>D
A <--> E

B <-—~>F

At least one (but quite possibly not both) of E and F must approach a con-
centration of zero in this system. Thus, the set [E F] is a declining set; and
if we augment this mechanism with the additional steps

[9] E+F<-=>6

then we can conclude that the singleton set [G] is likewise a declining set,
since if there is some asymptotically-approached state in which G has a
nonzero concentration it must likewise be the case that the product of the
concentrations of E and F is also nonzero.

5.1.4 Consistent Zero Sets of Species

It is often of interest, for some particular mechanism, to answer a question
of the form, “If species X is at zero concentration in some asymptotically-
approached state of the system, which other species must likewise have zero
concentration in that state?” Or, as a similar question, we might ask, “Is it
possible for the set of species X, Y, and Z—and no others—to have zero con-
centration in some asymptotically-approached state?” In both cases we are

1Mechanism [7] is presented in a more compact “graphical” format, without rate con-
stants; we will often employ this format for convenience, particularly when the specific
values of the rate constants are immaterial to the discussion.
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asking about which sets of species may collectively have zero concentration
at some asymptotically-approached state.

Consider, for example, the mechanism
[10] A <-=> B <-=> ¢

In this case, if any one species has zero concentration at a stable state, then
all must; thus, the only consistent set of zero-concentration species is the set
[A B C]. The reasoning used here is simply that if a product of some reaction
has zero concentration at a stable state, then at least one of the reactants of
that reaction must also have zero concentration.

A slightly more elaborate example is the following:
[11] A+B<->C+D<-->E

Here, if A has zero concentration at some stable state, then so must E and
at least one of C and D; but it is possible that B (and at least one of C and
D) has nonzero concentration. Thus, consistent sets of zero-concentration
species include [A C E] and [A D E], along with sets of which these two are
subsets.

Taking this last example a step further, we might now ask for all the
possible (internally consistent) sets of zero-concentration species. We have
already found that [A C E] and [A D E] are the only such (minimal) sets
that include species A; starting with species B, we likewise find that [B C E]
and [B D E] are good candidates. As it happens, these four sets (along with
supersets of any of them) comprise a complete list of internally consistent
zero-concentration sets. Thus, if we are told only that some species in mech-
anism [11] is at zero concentration, and that the gystem is in a stable state,
then we know that in fact at least three species are at zero concentration,
and that these three must be specified by one of the four possible sets that
we have discovered.

5.1.5 The Zero Deficiency Theorem

More sophisticated, but also more powerful, than any of the techniques
discussed so far is the “Zero Deficiency Theorem,” derived by M. Feinberg,
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F. Horn, R. Jackson and colleagues at the University of Rochester.{32} The
statement of the theorem requires some auxiliary definitions, but because of
the theorem’s power and interest it is worth digressing here to present it in
outline.?

We begin by representing a mechanism in graphical notation, in the same
form as mechanisms [7]-[11] above. As a specific example, consider the fol-
lowing mechanism:

[12] A+B<—->C<-->D

Now, we let n denote the number of distinct vertices (i.e., left or right sides
of reaction arrows) in the graph above; these will be called complexes. In
our example, there are three complexes—represented as C, D, and A + B. We
next let [ denote the number of connected components in the graph. In this
case, the graph consists of one component, so the value of lis 1. Let m denote
the number of species found on either side of a reaction in the graph; in this
example, m is 4 (corresponding to the species A, B, C, and D).

Finally, for each reaction (directed edge) in the graph we will create a
representative vector in R™. We imagine that each coordinate of R™ corre-
sponds to one of the species in our graph: in our current example, we will
let the first coordinate correspond to species A, the second to B, and so on.
The vector that we will create for a given reaction will have negative coor-
dinate values corresponding to the coefficients of each reactant, and positive
coordinate values corresponding to each product. To take one instance, the
reaction A + B --> C is represented by the vector (-1 -1 1 0). The other
three reactions in our system would be represented by the vectors (1 1 -1 0),
(00-11),and (001 -1). We let s denote the dimension of the linear space
spanned by these four vectors; in our current example, s has a value of 2.
(This quantity is also called the dimension of the stoichiometric subspace for
the mechanism.) Yet another way of phrasing the definition of s is to say
that it is the rank of the matrix of reaction vectors:

-1 -1 i 0
1 i -1 0
0 o -1 1
0 0 1 -1

2A brief sketch of the theorem’s proof is provided in Appendix A.
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Having defined all these quantities, we now check the value of the expres-
sion n — | — s. (Feinberg {32} calls this quantity the deficiency and denotes
it by the symbol d.) For many reaction mechanisms in the literature, and for
our current example, this expression has a value of 0. If the mechanism has
zero deficiency, we then go on to check the graph for one more property called
“weak reversibility”: specifically, the graph is weakly reversible if every pair
of vertices V1 and V2 connected by a reaction pathway from V1 to V2 is also
connected by a reaction pathway from V2 to V1. In our current example,
the graph is weakly reversible: for instance, the two vertices represented by
A + B and D are connected by the pathways

A+B-->C-->0D

and by

D-—->C-->4+8B

so that there is a “forward” and “backward” reaction path between the two
vertices.3

The Zero Deficiency Theorem now states that if a mechanism has a de-
ficiency of zero, then the presence of a unique equilibrium state in which
all concentrations are positive is determined by whether or not the graph
is weakly reversible. If the graph is weakly reversible, then the mechanism,
when started from some initial state, gives rise to exactly one stable equilib-
rium state in which all concentrations are positive; if not, then the mecha-
nism cannot give rise a stable equilibrium state in which all concentrations
are positive.t

3The graph in our example has, in fact, a slightly stronger property than weak re-
versibility: each reaction is accompanied by a “reverse reaction.” (Feinberg {32} calls this
“strong reversibility.”) Thus, any path between vertices V1 and V2 will be matched by
a “reverse” path from V2 to V1. Strong reversibility implies weak reversibility, but the
converse is not true.

4There is actually a bit more to the statement of the theorem than is presented here.
For instance, even if a zero-deficiency mechanism is weakly reversible, that does not mean
that every initial state will attain equilibrium with all positive concentrations; it merely
means that there exists one such equilibrium state and that it is locally stable. Another
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To return to our example, we know that we have a weakly reversible, zero-
deficiency mechanism. Hence, the Zero Deficiency Theorem tells us that for
any given initial state, there is exactly one stable equilibrium state in which
all concentrations are nonzero. If we perturb our original mechanism by
imagining that the step A + B --> C is irreversible, we obtain the graph

[13] A+B-->C<—>0D

Our new mechanism is similar to the previous one, but we have deleted
one reaction. The deficiency of the new mechanism is still zero, but the
graph is no longer weakly reversible. Hence, there is no stable equilibrium
state (given any set of initial concentrations) in which the concentrations of
all species are nonzero. Indeed, this is the same mechanism [6.1]-[6.3] that
we looked at earlier, and for which we concluded that either A or B (or both)
would asymptotically approach a concentration of zero.

It may seem that for the examples [12] and [13], the Zero Deficiency
Theorem demands a great deal of terminology to confirm the obvious: after
all, it is not hard to conclude by inspection that mechanism [12] will reach
equilibrium with nonzero concentrations, and that mechanism [13] will not.
But there are many mechanisms for which the Zero Deficiency Theorem
dictates non-obvious conclusions. Consider once again the mechanism [3.1]-
[3.7] (taken from Feinberg {32}), represented in graphical form below:

[14] A+B<-—-D<—->2C

B+C<-—->E<-——>4+D

This is a zero deficiency mechanism whose graph is not weakly reversible;
hence the Zero Deficiency Theorem dictates that the mechanism cannot reach
equilibrium with all species at nonzero concentrations. As we discovered ear-
lier, this conclusion is by no means apparent by casual inspection of the
graph. A similar conclusion may be reached for the dinitrogen pentoxide de-
composition reaction [2.1]-[2.4]; again we have a zero deficiency mechanism
that is not weakly reversible, and again the theorem tells us that an equi-

point worth mentioning is that we are implicitly making use of the fact that all mechanisms
are assumed to obey mass action kinetics.
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librium state (with all nonzero concentrations) is impossible. We will return
yet again to both of these examples later in this chapter.

There are still several more points to mention about the application of the
Zero Deficiency Theorem. First, the treatment of constant-concentration,
source, and sink species must be handled specially in the construction of
our graphical representation. Constant species cannot be included in any
complex; rather they must be incorporated into an “effective rate constant”
for any step in which they act as reactant. Thus, considering mechanism [12]
once more:

[12] A+B<->C<—=>0D

if we now stipulate that species A is held at constant concentration, the
graphical representation for the mechanism becomes

[12°] B <—> C <==>D

Here, we have subtracted the constant species A from the complex A + B;
and we have effectively rewritten the original bimolecular step:

A +B-->Cki

as a unimolecular step

B~~—>¢C k1’ = k1 * [A]const

It should be apparent that this formal transformation of the elementary
step has no effect on the actual differential equations governing the mecha-
nism (12], as long as the concentration of A is indeed constant. A slightly
more complicated transformation is required if we stipulate that species D
(rather than A) will be held constant in mechanism [12]. In this case, the
complex consisting of the single species D is replaced formally by a special
“zero complex,” and the two elementary steps

C-->0D k2

D-->¢C k3

are replaced by
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cC-->0 k2

0 -->¢ x3 * [D]

This notation is consistent with the definition of the stoichiometric subspace
dimension s shown earlier, and again the differential equations governing the
system are unaffected. The new graph for the (updated) mechanism would
now be:

[122] A+B<—->C<——>0

It is not hard to see, parenthetically, that both mechanisms [12’] and [12”]
are zero-deficiency, weakly (indeed, strongly) reversible mechanisms and thus
meet the conditions for having a unique locally stable equilibrium state with
nonzero concentrations for any given set of initial conditions.

As for external sources and sinks, these are treated by the use of the
same “zero complex” introduced in the previous paragraphs. For instance,
an external source for a species A would be represented by the elementary
step:

0 --> 4 ksource

where k,ource 18 the product of the source concentration of A and the rate
(in time™') at which the source is added to the reacting system. Similarly, a
“sink” step for A is represented as:

A~-->0 ksink

where kjint is the rate (in time™) at which the reactive system is removed
to the external sink. Again, a comparison of this notation for “special steps”
with the more explicit version introduced in Chapter 2 (and represented
directly in the mechanism data structure via the presence of “constant”
“source” and “sink” fields) shows that the mathematical treatment of mech-
anisms remains unaffected by the new formalism.

As a final example it is worth noting how we would treat the Brusselator
mechanism [5.1]-[5.4], and reproduced below:
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[5.1] A-->X ki =1

[(5.2] B+X-->Y+D k2 =1
[5.3] 2X + Y —-—> 3X k3 =1
[6.4] X -—>E k4 =1

Since both A and B are treated as constant species, we first rewrite the
mechanism as follows:

[15.1] 0-—>X ki’ = 1M * ki
[15.2] X-=>Y+D k2’ = 3M * k2
[15.3] 2X + Y --> 3% k3 =1
[15.4] X -—>E k¢ =1

We now note that since both D and E are treated as “driven off,” i.e., having
constant zero concentrations, we can further rewrite the mechanism:

[16.1] 0 -—-—>X k1’ = 1M * k1
[16.2] X ——>Y k2’ = 3M * k2
[16.3] 2X + Y --> 3% k3 =1
[16.4] X-->0 k¢ =1

And now, by noting that identical complexes comprise a single vertex in our
“mechanism graph,” we arrive at a final graphical form for the Brusselator
mechanism:

[17] 0<——=>X -->Y

2X + Y --> 3X
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The number of complexes, n, for this graph is 5; the number of linkage
classes lis 2; and the dimension of the stoichiometric subspace is the rank of
the matrix

-1 0
i 0
-1 1
i -1

which is 2. Thus the deficiency of the overall mechanism is 1, and the Zero
Deficiency Theorem does not apply; we can make no predictions about the
necessary presence or absence of an equilibrium state for this system. In-
deed, we know that the Brusselator is capable of “non-standard” behavior
such as oscillation and that there are parameter values at which an unstable
equilibrium state exists (and the system has a stable limit cycle).

5.1.6 Submechanisms

In analyzing the mechanism [12]

A+B-—>C<-->0D

we noted that the asymptotically-approached state of the system must in-
clude nonzero concentrations of C and D. The way in which such a conclusion
is derived is by noting that at least one of A and B must approach zero con-
centration, and then considering the “remaining” portion of the mechanism
once the concentration of A or B approaches a near-zero value:

[18] C <-->1D

This remaining “submechanism” can be analyzed on its own, using the
very same concepts introduced earlier. For instance, by the Zero Deficiency
Theorem we can see that this simple mechanism possesses a unique equilib-
rium state with positive concentrations (given some starting state); and since
the only consistent set of zero-concentration species for this submechanism
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is [C D], we can further conclude that the only possible asymptotically-
approached states for this system are either the state in which C and D are
at zero concentration, or the state in which both are at their equilibrium
concentrations.

This example illustrates the notion of a “submechanism,” a collection
of reactions that remain operative after a certain set of species attains zero
concentration. It is not hard to devise mechanisms with several independent
submechanisms, or alternatively to devise submechanisms which themselves
evolve to (second-level) submechanisms, and so forth. We will also encounter
this notion in discussing mechanisms with “fast” components later in this
chapter.

5.1.7 Ezamples with the Workbench

The current version of the Workbench uses the mechanism data structure
described in the previous chapter to create a more “textured” mechanism
object that contains (besides the original mechanism) a large number of
special fields that serve as annotation to the mechanism. Many of these
fields relate to the techniques of graphical analysis discussed in this section.
In particular, the program derives, for the given mechanism:?

¢ Necessary nonzero species for the mechanism.

® Some (though not necessarily all) sets of declining species for
the mechanism.

o All consistent sets of species with zero concentration for the
mechanism.

e The deficiency of the mechanism, along with other useful
graph-theoretic properties (e.g., strong and weak reversibility);
and various conclusions drawn from these.

¢ Submechanisms derived from the original mechanism, corre-
sponding to “remaining” portions of the mechanism after reac-

5The algorithms used by the Workbench for these deductions are summarized in Ap-
pendix B at the end of this paper.
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tions involving declining sets have been deleted.

There are still other graphical techniques employed by the Workbench;
these relate to “special properties” of certain mechanisms, and will be dis-
cussed later in this chapter. Before proceeding to a discussion of these addi-
tional techniques, however, it is worth pausing to examine the Workbench’s
performance on several illustrative examples; this will give the reader a feeling
for the kinds of deductions that the program is able to make when presented
with a mechanism.

As an initial example, we consider the simple mechanism [12] with the
stipulation that species A is held at constant concentration:

[12] A+B-—->C<-->0D

We first create a mechanism data structure for [12] by evaluating the following
expression:

(define chapbexamplet
(
C(C(a1) (b 1)) ((c 1)) 1)
( (e 1)) (@ 1)) 1)
( (@ 1)) e 1)) 1))
((22.00) OO0 0N

Now we can ask the Workbench for an analysis of this mechanism by evalu-
ating a call to the analyze-mechanism-graphically procedure:

(analyze-mechanism—graphically chapSexamplel)

The Workbench responds first by asking the user if he wishes to display
the mechanism graphically on the screen; if the user answers “yes,” the rep-
resentation shown in Figure 5.1 is drawn in a screen graphics window.® It is
worth noting that Figure 5.1 indicates a bit of initjal analysis on the part of

5The figures in this chapter—and on several other occasions in this paper—have been
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d <> ¢ < a+b

Figure 5.1: A Graph of Mechanism [12]

the Workbench: necessary nonzero species (here, A) are shown in red, while
the rest of the mechanism is shown in green.

The Workbench now prints out a thorough (and somewhat verbose) anal-
ysis, of which excerpts follow:

Number of complexes: 3

Number of linkage classes: 1

Dimension of stoichiometric subspace: 2
Deficiency: 0

Reversibility: none

Rule number 2.3 -- Deficiency Theorem part 2 is firing
If the deficiency of the mechanism is 0, and the mechanism
is not weakly reversible, then the mechanism cannot reach
equilibrium at positive concentrations of all species.

Rule number 3.1 -- Searching for Species to Drop from System is firing

If the zero deficiency theorem stipulates that the mechanism

translated into reproducible (black-and-white) form from original Workbench output,
which often uses color-coding instead to convey information. In Figure 5.1, for instance,
the boldface a represents a species shown in red; normal font corresponds to the color
green in the actual Workbench output. All such “de-colorized” figures will be noted as
they occur. :
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does not reach equilibrium, then we first examine the
mechanism for species that are reactants only, and hence
cannot enter into any reactions that occur at steady state.
Sequence of Species to Drop: ((b))

Rule number 3.2 -- Creating and Examining Submechanism is firing

We have found that there are species that we can drop from

the original reaction mechanism. We now examine the smaller
mechanism defined by ignoring all reactions with droppable

species among the reactants.

Number of complexes: 2

Number of linkage classes: 1

Dimension of stoichiometric subspace: 1
Deficiency: 0

Reversibility: strong

Rule number 2.1 -~ Deficiency Theorem part 1 is firing

If the deficiency of the mechanism is O and the
mechanism is weakly reversible, then the mechanism must
reach equilibrium at positive (non-zero) concentrations
of all species.

In summary: the Workbench has deduced that over time, the mechanism

can be well approximated by the submechanism
C<—->D

and that this mechanism has a stable equilibrium state in which both species
have nonzero concentrations. Having printed out this analysis, the program
also shows the submechanism on the screen by “graying out” part of the
original mechanism, as shown in Figure 5.2. The “dropped species” B, and
the reaction arrow for which B is a reactant, is removed from the system and

only the remaining two reactions are shown in green.

As a second example, we return to the nitrogen pentoxide decomposition

reaction [2.1]-[2.4]. We create the mechanism in the usual way:

74



Figure 5.2: Dropped Species in Mechanism [12]
In the original Workbench output, a is shown in red, b and the
rightmost arrow (and plus sign) in gray, and all others in green.

(define n205-decomposition
1 (

(
( ((n205 1)) ((mo2 1) (no3 1)) 0.002)
( ((no2 1)(n03 1)) ((n205 1)) 0.001)
( ((mo2 1)(no3 1)) ((no2 1)(no 1) (02 1)) 30.)
( ((no 1) (n205 1)) ((no2 3)) 4000.)
)
O0000n

Now we request a graphical analysis of this mechanism from the Workbench:

(analyze-mechanism—graphically n2o5-decomposition)

The mechanism is displayed graphically as in Figure 5.3, and the follow-
ing analysis is displayed (again, the output has been slightly abridged for
readability):

Number of complexes: §

Number of linkage classes: 2

Dimension of stoichiometric subspace: 3
Deficiency: 0

Reversibility: none

Rule number 2.3 -- Deficiency Theorem part 2 is firing
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no2 + no + 02 <--- no2 + no3 <----> n205

no + n205 ---------> 3 no2

Figure 5.3: Graph of N205 Decomposition
All species are shown in green in the original Workbench output.

If the deficiency of the mechanism is 0, and the mechanism
is not weakly reversible, then the mechanism cannot reach
equilibrium at positive concentrations of all Species.

Rule number 4.3 -- Looking for asymptotic zero concentrations is firing

The mechanism cannot reach equilibrium with all nonzero concentrations.
It also does not contain any *obvious#* declining species or sets.

We now look for those sets of species that might asymptotically

have zero concentration.

Possible sets of zero-concentration species: ((no3 n205) (no2 n205))

The program now alters the display of the mechanism to show each of
the possible sets of zero-concentration species (highlighting these species in.
magenta).. Thus, the mechanism is first displayed as in Figure 5.4 then as in
Figure 5.5.

To summarize the example thus far in prose: the Workbench has an-
nounced that the mechanism cannot reach equilibrium with all species at
nonzero concentrations. It was also unable to find any species (like B in
the previous example) that clearly approach zero concentration over time—
in this mechanism, every reactant species is also a product. Nevertheless,
we know that some species must approach a zero concentration; therefore,
the program looks for those sets of species that are possible candidates for

76



no2 + no + 02 <--- No2 + no3 <----> n205

no + n205 --------- > 3 no2

Figure 5.4: One Zero-Set in N205 Decomposition
In the original Workbench output, underlined species
are shown in magenta, all others in green.

No2 + no + 02 <--- po2 + no3 <----> n205

Figure 5.5: Second Zero-Set N205 Decomposition
In the original Workbench output, underlined species
are shown in magenta, all others in green.
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achieving a concentration of zero over time. It finds two such sets, consisting
of the species N205 and either NO2 or N0O3.7

The Workbench continues its analysis by attempting to subtract each
of the two possible sets of zero-concentration species, to see whether the
remaining steps form a submechanism that can itself be examined:

Subtracting the following zero set: (no3 n205)
This mechanism contains no elementary steps.

Subtracting the following zero set: (no2 n2o5)
This mechanism contains no elementary steps.

The program has thus found that under either assumption—whether N205
and NO2 or N205 and NO3 are both at zero concentration—there are no ele-
mentary steps in the remaining system (i.e., no steps with all reactants at
nonzero concentration).

There is still a bit more that the program is capable of doing at this point:
depending on rate constants, the Workbench can suggest certain approxima-
tions, and it can also annotate a previously-created “mechanism ob ject” with
the results of its graphical analysis. We will return to these topics shortly.

Yet another example of a zero-deficiency mechanism is [3.1]-[3.7], cited
earlier as an instance of a mechanism whose behavior is difficult to predict
by casual inspection. The Workbench’s analysis of this mechanism is similar
to that of the N205 decomposition; briefly, the program finds that this mech-
anism cannot reach equilibrium with all nonzero concentrations, and then
looks for possible sets of species that might have zero concentration:

The mechanism cannot reach equilibrium with all nonzero concentrations.
It also does not contain any *obvious# declining species or sets.

We now look for those sets of species that might asymptotically

have zero concentration.

Possible sets of zero-concentration species: ((d e ¢))

Subtracting the following zero set: (d e ¢)

"In point of fact, only the second of these two possibilities is realistic, but the Work-
bench’s analysis is not sufficiently sophisticated to rule out the former possibility.
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2X +y-—->3Xx
b +Xx------ >y+d

Figure 5.6: Brusselator Graph
Species in boldface—a, b, x, and y—are shown in red in the original
Workbench output. “Outline-font” species d and e are shown in blue.

This mechanism contains no elementary steps.

Here, there is only one possible set of zero-concentration species—namely,
(D E Cl. As in the preceding example, the Workbench looks to see whether,
once these three species all achieve zero concentration, there are any remain-
ing elementary steps that might constitute a submechanism; and it finds that
there are none. Again, it is worth looking back at the original mechanism
to confirm that the Workbench has revealed something interesting and non-
obvious: namely, that this mechanism cannot reach equilibrium, and that
it will eventually “run down” with zero concentrations of the species C, D,
and E. It is also worth noting that the Zero Deficiency Theorem alone is not
able to tell us anything more about the mechanism than that it has no equi-
librium state in which all species have nonzero concentration; by combining
this knowledge with additional analysis, the Workbench is able to predict
precisely which species are bound to achieve zero concentration.

There are, of course, cases in which the program cannot make any firm
predictions about behavior. One such case is the Brusselator mechanism:
the graph produced by the program is shown in Figure 5.6 (the color coding
indicates that A, B, X, and Y are all “necessary nonzero species” and that D
and E are “driven-off” species). The printed output produced by the program
reveals that the mechanism has a deficiency of one, and thus that the Zero
Deficiency Theorem does not apply:
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Number of complexes: &

Number of linkage classes: 2

Dimension of stoichiometric subspace: 2
Deficiency: 1

Reversibility: none

Even in this case, the Workbench is able to say at least a bit more,
relating to the presence of autocatalysis in the mechanism; we will return to
this shortly.

It should be noted that the most typical way of using the Workbench
is not to use the analyze-mechanism-graphically procedure as in these
examples, but rather to first create a mechanism object (as mentioned ear-
lier in this chapter) from the original mechanism, and to use the procedure
analyze-graphically on this:

(define brusselator-mech-object
(make-mechanism-object brusselator))

(analyze—graphically brusselator-mech-object)

A mechanism object is a data structure containing not only the original
mechanism, but a collection of additional methods and data fields; some of
these fields are used by the Workbench to store the results of its graphical
analysis. (For instance, there is a deficiency field whose value is set by this
analysis.) Thus, the point of creating a mechanism object first, as we have
just done, is that we allow the Workbench to annotate the mechanism ob ject
with its graphical results; and, as will be illustrated, the program can often
make use of this extra “annotating” information in its future work with the
mechanism.
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5.1.8 Special Structural Features of Mechanisms

Occasionally, a mechanism will have some structural feature that is worth
noting: such a feature might permit even stronger predictions than the kind
we have seen so far, or it might give us a little more information about a
complex mechanism. An example of the former can be seen in the following
mechanism:

[19] 0 <——-> A <-—-=> 2B

Here, we have a mechanism in which there is an external source and sink for
species A, and the elementary reactions

A -——> 2B

2B —-> A

We have expressed [19] in the formalism appropriate to the application of the
Zero Deficiency Theorem, because this is a zero-deficiency mechanism with
an additional special property—namely, the stoichiometric subspace of the
system has the same dimension (2) as the overall state space. This implies
that the unique equilibrium stipulated for the mechanism [19] is independent
of starting concentrations of A and B—no matter what values of [A] and [B]
we start out with, there is only one stable equilibrium for the system. Thus,
we might be interested in knowing, for mechanism [19], what its global equi-
librium state is (without necessarily bothering to find this value by numerical
simulation of the mechanism). We will pursue this idea later in the chapter,
but for now it is worth mentioning that this property of some zero-deficiency
mechanisms is of potential interest, and is noted by the Workbench.

An additional “simplifying” feature is that some mechanisms happen to
give rise to linear differential equations. This occurs precisely when each
elementary step in the mechanism has at most one (non-constant) species:
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[20] A+B <==>(C <===>0D

[A]) constant

The differential equations created from this system are:

d[B]

_____ = -~-ki[A] [B] + k2 [c]
dt

da[c]

————— = x1 [A] [B] - (x2 + k3) [C] + k4 [D]
dt

d[p]

_____ = k3 [c] - x4 [D]
dt

and (recalling that [A] is constant) each of these is a linear equation. Again,
since linear systems are mathematically tractable, by noting that a mecha-
nism has this property we automatically have the benefit of linear system
theory in predicting its behavior.®

Mechanism [20] will give rise to a stable equilibrium in which the concen-
trations are dependent both on rate constants and initial concentrations; in
this sense it is different from mechanism [19]. An especially tractable case is
one in which the system is linear and has a unique equilibrium independent
of initial conditions:

[21] 0 <——=> A <-==> B

8As an aside, it is not true that all linear systems have a deficiency of zero; counterex-
amples are easily constructed. Thus, the tractability of linear systems is not conceptually
reducible to the tractability of zero-deficiency systems.
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In this case we have a linear system in which the equilibrium concentrations
may be determined from the rate constants alone. Again, this is a special
case noted by the Workbench; we will return to this topic later in the chapter.

A rare type of mechanism structure mentioned in Feinberg {32} is a
reversible star-like structure in which a single complex is either the reactant
or product complex for every elementary step:

compl  comp2 compn
Al Al Al
Il i R
[22] v v v
Center Complez

It happens that mechanisms of this structure, regardless of their deficiency,
behave like reversible zero-deficiency mechanisms in that they have a unique

positive stable equilibrium value. This too is a special feature noted by the
Workbench.

Thus far, the examples shown in this section—linear systems, star mech-
anisms, and so forth—have allowed for special (and powerful) predictions to
be made. There are other structural features of mechanisms that are more
heuristic in nature: they are worth noting because they are often important
elements in the chemist’s description of the mechanism’s behavior. In other
words, we don’t necessarily know whether these features will play a major
role in the behavior of the mechanism, but it is nonetheless worth flagging
them at the outset.

An example of a feature of this kind is the presence of “competing reaction
pathways” —that is, pathways of the form illustrated by [23] below:

23] I I

Here, there are two sequences of reactions leading from complex C1 to com-
plex C2, with no shared complexes in between. This feature is always present

83



in reversible cyclic reactions®, or may occasionally indicate that we are com-
paring “catalyzed” and “uncatalyzed” reaction pathways (with constant con-
centration of the catalyst).!® As with the other features described in this sec-
tion, the Workbench spots competing pathways in a given mechanism and
annotates the mechanism object with this observation.

A more general type of pattern involves catalytic pathways in which the
catalyst is not assumed to be at constant concentration. An illustrative
example of this pattern is seen in the standard textbook representation of
enzyme catalysis:

[24] E+S<-—->X ——->E+P

In mechanism [24], E represents an enzyme, S a substrate, X an “enzyme-
substrate complex,” and P a product. The important structural aspect of
[24] is that the enzyme E is left unaffected by the overall transition from
substrate to product, and thus may react with additional substrate (the
common assumption in such reactions is that [E] < [S]).1 Patterns of this
sort, in which a reaction sequence of three steps or less leaves one of the
original reactants unchanged, are noted by the Workbench. (Details of the
algorithm are given in Appendix B.)

Autocatalysis is another “heuristic” structural feature; it is common in
oscillating reaction mechanisms. The basic notion behind autocatalysis is
that a certain amount of species A can be used to create more of species A:

A ——> ..., ——=>2A

A specific example can be seen in the Brusselator, in which the third step is
autocatalytic for species X:

2X + Y ~——=> 3X

An example can be seen in {74}, problem 2.7, p. 104
°Compare, for instance, steps (22) and (18) in {74}, p. 147.
1See for instance {74}, pp. 190-193.
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In other mechanisms, the autocatalysis may be the result of two or more
consecutive steps. Again, the Workbench can spot such sequences when they
consist of three or fewer steps. (Again, details are provided in Appendix B.)

5.2 Numerical /Graphical Analysis

All of the examples of graphical analysis shown thus far share an im-
portant feature: they rely only on the reaction structure of the mechanism,
and not on the particular values of rate constants. We know, for instance,
whether a mechanism satisfies the conditions of the Zero Deficiency Theorem
simply by examining which reactants go to which products in the various el-
ementary steps; and, if the mechanism is reversible and has zero deficiency,
we know that a stable equilibrium with positive concentrations does exist,
but we do not have any information about how long the system might take
to reach that equilibrium from a given starting point. Similarly, such fea-
tures as “consistent zero concentration sets” and “catalytic pathways” are
derived from reaction structure without regard to particular rate constants.
This “minimalist approach” to mechanism analysis is both a strength and
a weakness: on the one hand, we are able to deduce important facts about
the mechanism without recourse to blatantly numerical reasoning.’? On the
other hand, the types of deductions that we reach from structure alone gen-
erally relate to limiting or asymptotic behavior; there isn’t much that can
be said about the mechanism’s behavior “in the interim” (e.g., on the way
toward equilibrium).

In this context, the “simplifying strategies” described in Chapter 2—
looking for rapid equilibria and steady-state candidates—are especially use-
ful. These are techniques that take into account both mechanism structure
and approximate (though not exact) numerical reasoning. For instance, con-
sider the mechanism [13.1)-[13.3] from Chapter 2, reproduced below:

12In many cases, we may not know the rate constants of all elementary steps, which
renders “purely structural” deduction especially useful.
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[26.1] A --> B k1 = 100
[26.2] B -—> & k2 = 200

[25.3] B --> ¢ k3 = 0.1

The only numerical information that we really need in order to invoke
the notion of “rapid equilibrium” is that both k1 and %2 are much greater
than k3. The specific values of these constants are of course necessary if
we want quantitative information, such as the near-constant ratio of B to A
throughout the course of reaction; but the fact that this ratio will indeed be
approximately constant does not depend on the particular numbers but only
on their relation.”® Thus, capturing the idea of “rapid equilibrium” (and
“steady-state candidates” also) depends on formalizing the notion that one
quantity is much bigger than another.

5.2.1 Fast Equilibria and Fast Submechanisms

The Workbench includes two heuristic techniques for spotting fast equilibria—
a simple technique that finds “obvious” examples (like [25.1)-[25.3] above),
and a more sophisticated strategy that looks for “fast submechanisms” larger
than simple reaction pairs. The first technique looks for patterns that meet
all the following conditions:

a. A reaction/reverse reaction pair

b. The species involved in this pair appear nowhere else in the
mechanism (that is, the two complexes in this reaction pair
contain all instances of their constituent species)

c. These two complexes only appear as reactants in reactions
outside the reaction pair

d. The rate constants of the reaction pair are much greater
than the rate constants of the other reactions involving these

13Generally, when examples like [25.1]-[25.3] appear in kinetics textbooks, the author will
not even bother to include specific rate constants but will merely represent the relations
between rate constants algebraically.
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complexes.

Using mechanism [25] above can help to clarify these conditions. We
have a reaction pair A <--> B, meeting condition a; the only complexes
that contain species A and B are in this pair, meeting condition b; these
complexes appear only as reactants in all other reactions, meeting condition
¢; and the rate constants of the reaction pair are much greater than the rate
constants (in this case, the lone rate constant) of all other reactions involving
these complexes, meeting condition d. (We will specify what is meant by
“much greater than” later in this section, but for now the concept should
be reasonably clear—we are merely comparing the relative magnitudes of
numerical values.)

Conditions b and ¢ assure that we are dealing with a particularly simple
situation: we know from b that there are no reactions “elsewhere” in the
mechanism that might be affecting the relative concentrations of the equilib-
rium species, and from ¢ we know that there are no reactions producing the
equilbrium species that might invalidate our approximation of fast equilib-
rium. As examples of “invalid” mechanisms, consider [26] and [27] below:

k1 k3 k4
[26] A <-==>B —==> ¢ D+B -->2C
x2
k1
[27] A <——-> B <—= ¢
k2 k3

In mechanism [26], a very large concentration of D might invalidate the fast
equilibrium approximation, even if k4 is much less than k1 and k2; this
mechanism violates condition b above. Similarly, a large concentration of C
can cause problems in mechanism [27] (which violates condition ¢). Thus, all
four of the indicated conditions must be met to invoke an “obvious” judgment
of a fast equilibrium situation.

There are other, less glaring cases in which the fast equilibrium approxi-
mation can be used. Consider the following mechanism:
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[28] A+B<—>C<-->D+E

B --—-> E

Suppose that the four reactions represented in the upper component of [28]
have much larger rate constants than the reaction B --> E. This suggests
that these four reactions might constitute a “rapid submechanism” in which
the ratios [D][E]/[C] and [C]/[A][B] are nearly constant over time. The
situation is not as clearcut as [25], since the concentrations of A and D may
be extremely small, so that the actual rate of the reaction A + B --> C
might in fact be comparable to that of B --> E. However, under “ordinary”
assumptions of the concentrations of A and D—that is, assuming that their
concentrations are comparable to those of the other species—the rapid sub-
mechanism approximation is a reasonable one.'* In this case, we can examine
the four fast reactions as though they constituted a complete mechanism:

[28°] A+B<—=>C<—=->D+E

This is a (strongly) reversible, zero deficiency mechanism; thus, we know
that the system has a unique locally stable equilibrium state (for any partic-
ular set of nonzero initial concentrations). As mechanism [28] runs, then, it
will generally look like a “perturbed” version of [28’] in which the available
stoichiometric subspace varies slowly over time.

Note that we have now extended the “fast equilibrium” approximation to
a broader and more general “fast tractable submechanism” approximation.
In doing so, we are making use not only of numerical comparisons, but also of
the previous section’s graphical heuristics (in particular, the Zero Deficiency
Theorem). An especially powerful illustration of this type of reasoning is
provided by mechanism [29] below:

[29] 0 <—==> A <---> 2B

A+ C<—==>2D

14Note that by the Zero Deficiency Theorem, some species in this mechanism will even-
tually approach zero concentration. Thus, in the limiting situation, the assumption of
rapid equilibrium fails; but it may be a good approximation for a long time period as the
mechanism approaches this limiting state.
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Again, suppose that the reactions in the upper graph component are very fast
relative to those in the lower component (note that we have used the “zero
complex” notation to indicate an external source and sink for species A). The
“fast submechanism” here is one in which the dimension of the stoichiometric
subspace is the same as that of the species space (namely, 2); thus, to a good
approximation, both A and B have constant concentrations (which can be
determined from the rate constants of the upper component). This in turn
implies that the overall reaction may be simplified to:

[29°] ¢ <—-> 2D

where the effective rate constant of the step C --> 2D now has the (near-
constant) concentration of A incorporated into it. The conceptual path from
[29] to [29°] thus reflects a combination of numerical approximation, purely
numerical work (to determine the constant concentrations of A and B) and
graphical analysis; in tandem, these techniques are able to achieve a major
simplification of the overall mechanism.

The Workbench is able to find certain plausible instances of “fast sub-
mechanisms” of the kind mentioned here, and notes when those submech-
anisms allow still further simplification (such as treating some species as
constant).'® As an example, we can look at the Workbench’s treatment of
mechanism [29]; here, we set the rate constants so that the four “fast reac-
tions” are indeed much faster than the two involving species C and D:

(define *mechanism-29+

'
(
( ((a1)) ((b2))2.)
¢ ((®2)) ((a1))1.)
( ((a1) (¢ 1)) (4 2)) 0.00001)
( ((@2)) ((a1) (¢ 1)) 0.000005)
)
O
((a1. 1)) ((@a2.)) O 0O
))

15The algorithm used by the Workbench is given in Appendix B.
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Now, we can create a mechanism object from this data structure, and we
request a graphical analysis of that object:

(define *mechanism-29-object*
(make-mechanism-object *mechanism-29%))

(analyze-graphically *mechanism-29-object#)

The Workbench notes that this is a (strongly) reversible zero deficiency
mechanism, and thus has a unique equilibrium state; it then goes on to flag
the “fast submechanism” within this mechanism. (In the printout shown
below, the program depicts the steps of the fast submechanism, incorporating
the “zero complex” notation described earlier.)

Rule number 5.3 -~ Fast Submechanisms is firing

We look for fast zero-deficiency submechanisms.
Fast Submechanisms Found:

(((((b 2)) ((a 1)) 1.)

(((*zero*)) ((a 1)) 1.)

(((a 1)) ((b 2)) 2.)

(((a 1)) ((#zero*)) 2.)))

Rule number 5.4 ~- Approximate Constants is firing

We now look for approximate constants to add from the fast submechanisms.
The following species have approximately constant values: (a b)

Rule number 5.4 Part 2-- Approximate Constants is firing

Would you like the value of the constants?(y/m) y
We now find the concentrations from the fast mechanisms.

Here are the concentrations of the near-constant species:
(((a .5000636403990566) (b 1.000105690606487)))

In summary, the Workbench has first noted that the four reactions in-
volving A and B only constitute a fast submechanism. The program then
notes that this tractable submechanism is reversible with zero deficiency and
in addition that the equilibrium concentrations of A and B do not depend
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on their initial concentrations; hence they may be treated as “approximately
constant” within the mechanism. Finally, the program uses fast numeri-
cal methods (as described in Section 3 of this chapter) to estimate those
near-constant concentrations of A and B. In the course of this analysis, the
Workbench annotates the original mechanism object, setting slots such as
approximate-constants-found; these results are used in making predic-
tions about the behavior of the mechanism, as described in Section 4 of this
chapter.

In this particular case, the Workbench’s annotation is also used to do
more than predict behavior: the program can exploit the identification of
“approximately constant” species to suggest a simplification to the mecha-
nism when it is eventually simulated numerically. If the user were now to
simulate mechanism [29] along the lines shown in Chapter 4, the Workbench
would notify the user that an “approximate version” of the mechanism is
available. Just to see how the program actually achieves this, we can pursue
our current example and evaluate the following expression (after creating
run- and graph-parameters lists as shown in the previous chapter):
(do-simple-graphed-run

smechanism-29-objects*

*mechanism-29-run-parameters#*
*mechanism-29-graph-parameters*)

The Workbench now replies with:

This mechanism has approximate versions. Do you want to see them? (y/n):

And if we respond in the affirmative, the program prints out the following
(excerpts are shown):

*** Approximate Mechanism: ##*

a+c--->2 Rate constant: .00001
2d —-> a + ¢ Rate constant: .000005

Constant species (and concentrations):

Species: a Concentration: .5000536403990566
Species: b Concentration: 1.0001055690506487
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These are retrieved by sending this mechanism object an
APPROXIMATE-CONSTANT-MECHANISMS message.

You may wish to change some run parameters:
(starting-dt .05)

(steps-per-display 100)

(focus-species (a b ¢ d))

The program has printed out for us, not only the approximate version of
the mechanism that it wishes to suggest, but run parameters that might
profitably be alterable if we choose to simulate the simplified mechanism. We
could now pursue this example further by retrieving the simpler mechanism
and numerically simulating that:

(define *mechanism-29-prime*
(car (*mechanism-29-object* 'approximate-constant-mechanisms)))

(do-simple-graphed-run
(make-mechanism-object *mechanism-29-prime*)
*mechanism-29-prime-run-parameters*
*mechanism-298-prime-graph-parameters#)

In the first of these expressions we retrieve the simpler mechanism from the
original mechanism object. (The message passed to our mechanism object
actually returns a list of possible simpler mechanisms; in this case there is
only one, so we retrieve the first object in the list.) We then create a new
mechanism object from this—which we could analyze graphically if we so
desired—and simulate our new simpler mechanism with new run and graph
parameters.

It is worth stepping back from this example a moment, just to see the
progression of operations employed by the Workbench. Originally, we pre-
sented the program with mechanism [29]; using a variety of methods, some
of them symbolic, some numerical, the program discovered that the [29] had
a fast “submechanism’; that this submechanism would inevitably reach a
global equilibrium state, independent of initial concentrations; and the val-
ues of those concentrations. It was then able to use its earlier deductions to
suggest a simpler mechanism to use for the numerical simulator—an instance
of the communication between graphical analysis and numerical simulation
mentioned in Chapter 3.
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5.2.2 Steady State Candidates

In Chapter 2, the notion of “steady-state approximation” was introduced.
The basic idea in this approximation is that a particular species—often a
reactive intermediate, like a free radical—will be produced by slow reactions
and consumed by faster ones; thus it is likely to be at a very low (and very
slowly changing) concentration throughout much of the running time of the
mechanism. Often, this assumption can render an algebraic analysis of the
mechanism feasible (as with mechanism [4.1]-[4.4] in Chapter 2); we might
also use the assumption of constant concentration to simplify the overall
mechanism, much as we did with mechanism [29] above.

The Workbench contains two techniques for finding steady-state candi-
dates: one that looks for “obvious” candidates (and makes no assumptions
about the concentrations of other species), and one that looks for “possible”
candidates, based on plausible assumptions about the concentrations of other
species in the mechanism.

The first, “obvious” technique looks for patterns roughly of the form:

k1 k2
[30] 0 —==> X —---> [products]

in which the value of k2 is much greater than that of kl. (Again, we are
using the “zero complex” notation to indicate the presence of an external
source or constant-concentration reactant.) In such a case, the species X is
deemed a good candidate for the steady-state approximation. Specifically,
such a pattern has to meet the following conditions:

a. The species X must be produced only by external sources or
constant-concentration species.

b. In any reaction with X as reactant, X must be the only species
appearing.

c. At least one of the rate constants for a reaction with X as
reactant must be much greater than all the rate constants for
those steps which have X as a product.
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In addition, if X only appears as a reactant in unimolecular steps the Work-
bench will return its estimate for the near-constant concentration of X.

The conditions listed above are rather restrictive, and designed to ensure
that the steady-state approximation is as defensible as possible. Condition
a ensures that the rate of production of the candidate species is a known
constant, and does not depend on the concentrations of other species. Con-
dition b likewise ensures that we needn’t consider wide fluctuations in the
concentrations of other species to determine the rate of disappearance of X.
Finally, condition ¢ ensures that there is at least one “very fast” reaction
in which X is consumed. As with the “obvious” technique for spotting fast
equilibria, the only qualitative comparison here is between numerical values
(namely, rate constants).

A more heuristic method for finding probable steady-state candidates uses
an a priori assumption that other species are at “normal” concentrations, and
searches for a species X such that at least one step with X as reactant is much
faster than all the steps with X as product. There are some subtleties involved
in making such a judgment; consider, for instance, the following mechanism:

ki k2
[31] A+B-—-->12X X+C--=>D

Now, it may be in this case that 2 is much greater than k1; but in
order for X to be a good steady state candidate, we need to know that the
product k2 * [C] is much greater (under “typical” conditions) than the
product ki * [A] * [B]. If A and B have large concentrations (much larger
than C), then this assumption is false and X will not obey the steady-state
approximation. The Workbench’s heuristic uses conservative assumptions
in a case like this, and insists that the relation between k2 and k1 be even
more extreme (in a way that will be explained later) than in an “obvious”
case like [30] above. That is, for every additional reactant molecule (like
A or B above) that produces X in an elementary step, the conditions under
which we decide that one reaction is much faster than another become more
restrictive. This is of course not a foolproof technique—it will admit cases
in which X really is not a good candidate, and it will exclude some cases in
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which the steady-state approximation could have been made—but it does
reflect plausible judgments about unknown aspects of the mechanism.

As an example of the “steady-state approximation” in action, we can
once more consider the Workbench’s performance on the N205 decomposition
mechanism [2.1}-[2.4].1® The original data structure is reproduced below:

(define n2o05-decomposition
*(

(
( ((n205 1)) ((no2 1) (no3 1)) 0.002)
( ((no2 1)(no3 1)) ((n205 1)) 0.001)
( ((no2 1)(no3 1)) ((no2 1)(no 1) (02 1)) 30.)
( ((no 1) (n206 1)) ((no2 3)) 4000.)
)
O0000n

The initial portion of the Workbench’s analysis, in which the program discov-
ered that certain species must approach a concentration of zero, was shown
earlier. Continuing with the analysis, the Workbench prints out the follow-
ing:

Rule number §.5 -- Steady State Candidates is firing

We now look for obvious sfeady state candidates in the mechanism.
We have found some steady-state candidates.
Possible sets of steady-state species: ((n205) (no3) (no no3))

The Workbench here indicates that, depending on initial conditions, we
might be able to use a steady-state approximation for N205 alone, for NO3
alone, or for both NO and N03. The reader may recall that in the analysis in
Chapter 2, we used the approximation for both NO and NO3 to analyze the
behavior of this mechanism; this is appropriate, since the “usual” assump-
tion is that our initial conditions will involve a significant amount of N205
and very little of either NO or NO3 (we are, after all, interested in the process

16Recall that the steady-state approximation was originally introduced in Chapter 2, in
which this mechanism was used as an example.
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of “N205 decomposition”). Under these conditions, the steady-state approx-
imation for both NO and NO3 proves useful. Nevertheless, it is interesting to
note that the Workbench has also pointed out the possibility of employing
a steady-state approximation to N205 alone; conceivably, if our initial condi-
tions were to involve a large amount of NO2 and NO3 (and very little N205),
this would be an appropriate approximation to make. The Workbench has
no notion of “typical” starting conditions in suggesting this possibility; it
bases its judgment on the rate constants and mechanism structure alone. As
an additional point, the Workbench has indicated that the steady-state ap-
proximation for NO depends on making the prior approximation for NO3 (that
is, that the approximation would not be evident unless we assume that the
concentration for NO3 is small). This follows from studying the two reactions
in which NO is involved:

NO2 + NO3 ---> NO2 + NO + 02 k3 = 30

NO + N206 ---> 3NO2 k4 = 4000

The rate at which the concentration of NO is increasing due to the first reac-
tion is 30 [NO2] [NO3], and the rate at which it is declining due to the second
reaction is 4000 [NO] [N205]. If we were to assume that NO2, N205, and NO3
were all at about the same concentration, then the rate of production of NO
might easily be rather high compared to its rate of consumption, invalidating
the steady-state approximation. Thus, in order to use this approximation for
NO, we must first justify its use for N03; this type of “dependence relationship”
among approximations is rarely made explicit in chemistry textbooks.

5.2.3 A Note on Qualitative Arithmetic

The previous two sections discussed the ability of the Kineticist’s Work-
bench to employ concepts such as “fast tractable submechanisms” and “steady-
state (low-concentration) species” to analyze mechanisms. In order to express
these concepts computationally, the Workbench must be able to represent
the notion that one number is “much bigger” than another. Consider, for
instance, the simple steady-state example shown in mechanism [30] above:

96



k1 k2
[30] 0 ---> X ---> [products]

We can say that X is a good candidate for a steady-state approximation if
k2 > kl; but what precisely does such a statement mean? The Workbench
uses, as the heart of its numerical comparisons, a special global variable
*qualitative-epsilon*, which has a default value of 0.01. This value is
used to generate a sequence of other globals:

*greater-than-factor* = 1/#qualitative-epsilon*

smuch-greater-than-factor* = *greater-than-factor#2

and so forth.

These values are in turn used to make the comparisons necessary for
the heuristics described in this section. For instance, in mechanism [30],
the value of k2 must exceed that of k1 by a factor of 10000 (the default
value of *much-greater-than-factor*) in order to justify a steady-state
approximation for X.

In its current state, the Workbench does not use (or need) a complete
axiomatization of qualitative arithmetic such as that described by Raiman
{65} or Mavrovouniotis and Stephanopoulos {60}. The systems described
in these papers focus upon rules that derive relations between expressions
based solely on qualtitative information; for instance, one axiom in Raiman
{65} reads:!”

frzr<yandy~z2thenz < 2

The Workbench does not have the capacity for qualitative deductions of
this kind. However, it does sometimes need to compare expressions with
both numeric and symbolic elements. Consider, for instance, the process of
making a steady-state approximation for the N205 decomposition mechanism.
In the course of its analysis, the program looks to see if NO3 may be a good
candidate for this approximation; and to do this it must compare the relative
rates of the following two steps:

17This is a “prose translation” from Raiman’s formalism.
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K206 ---> NO2 + NO3 k1

0.002

NO2 + O3 -——-> K02 + NO + 02 k3 = 30.

This is tantamount to comparing the algebraic expressions

0.002 [N205]

and

30 [wo2]

Obviously, the program cannot make a firm comparison of these expressions,
since the symbolic elements are unspecified; but in the absence of any further
information, we make the conservative assumption that N205 exceeds NO2 in
concentration by 100 (the value of *greater-than-factor*). Our effective
comparison, then, is between

0.2 [No2]

and

30 [No2]

We now test whether the value of the second expression exceeds that of
the first by 100 (again derived from *greater-than-factor*). In this case,
the test is met, so we can justify a steady-state approximation based (in part)
upon this comparison.'®

There are a number of other, similar tests made by the Workbench
to compare expressions,'® but the basic idea is illustrated by these exam-
ples. The single global value of *qualitative-epsilon* “cascades” through
all tests made by the Workbench; thus, the user can specify a more le-
nient qualitative comparison by resetting this value using the procedure

18The approximation cannot be made based solely upon the comparison shown: we
must also demonstrate that there are no other steps generating NO3 that might be “fast”
relative to the fastest step in which this species is consumed. In the current example, 03
is a product of only one step, so the conclusion is immediate.

19Summaries of the algorithms are given in Appendix B.
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reset-qualitative-epsilon! For instance, evaluating the following ex-
pression: '

(reset-qualitative-epsilon! 0.1)

would imply that in the previous example, N205 would be assumed to have 10
times the concentration of NO2 (rather than 100), and under this assumption,
the expressions would only have to differ by a factor of 10 (rather than 100).
Under these assumptions, a much higher value of k1 (say, a value of 0.2)
would still be compatible with a steady-state approximation for NO3.

5.3 Rapid Location of Equilibria

Earlier in this chapter, in the discussion of “special structural features of
mechanisms,” we noted that some mechanisms have the interesting property
that they must reach the same equilibrium state regardless of initial concen-
trations. (More specifically, these are reversible zero-deficiency mechanisms
whose state space has the same dimension as the available stoichiometric
subspace.) We made use of this property in one example of the “fast equi-
librium” approximation: in analyzing mechanism [29], the Workbench noted
that a “fast submechanism” could be spotted, and in addition that the near-
constant equilibrium concentrations of this mechanism could be determined
without simulating the mechanism. Again, the ability to perform this sim-
plification depended on the fact that the fast submechanism of [29] had a
unique equilibrium state, independent of initial concentrations.

When it encounters a situation of this kind, the Workbench has two
methods for rapid determination of equilibrium concentrations. If the given
mechanism has a unique (initial-state-independent) equilibrium, and if that
mechanism gives rise to linear differential equations, then this is an especially
tractable case: we are then able to find the equilibrium concentrations by
solving an easily-constructed linear system. As an example, we can return
to mechanism [21], reproduced below:

k1 k3
[32] 0 <~==> A <--=> B
k2 k4
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Here, we have augmented the original graph of the mechanism with symbolic
rate constants (k1 and k3 represent the “forward” reactions, ¥2 and k4 the
“backward” reactions). The differential equations governing this system are:

dal[al
[33.1] —-———- = ki - (k2 + k3) [A] + k4 [B]
dt
d[B]
[33.2] --—-—- = k3 [A] - k4 [B]
dt

Thus, to find the equilibrium concentrations for this system we need to
solve a linear system of the form

[a) -k1
[34] M -
(8] 0
where
k2 + k3 k4
M =
k3 -k4

Since we have already determined that this mechanism has a unique posi-
tive equilibrium state, we likewise know that these equations have a unique
solution. Given numeric values for the rate constants, it is thus easy to find
the solution to [34] and to determine the equilibrium concentrations of [32]
without bothering to simulate it.

As an example of the Workbench’s performance on such a mechanism,
we can first create a mechanism based on [32]:
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(define *chap5-mech32#*
(
(
( ((c 1)) ((a 1)) 2)
( ((a 1)) ((c 1)) 1)
( ((a 1)) (b 1)) 2)
( ((® 1)) ((a 1)) 3))
(2 OO0 O 0N

We now create a mechanism object from this and use the analyze-graphically
procedure:

(analyze-graphically *chap5-mech32-obj#)

In the course of its analysis, the Workbench prints the following:

Rule number 2.2 -- Deficiency Theorem with Unique Equilibrium is firing

If rule 2.1 applies, and the mechanism must reach
positive equilibrium, *and+ if the stoichiometric
subspace has the same dimensionality as the species
state space, then the equilibrium state is independent
of initial concentrations.

Rule number 2.2 -- Finding Unique Equilibrium Concentrations is firing

Would you like to compute equilibrium concentrations?

If we answer in the affirmative by typing y, the Workbench prints out:

We now look for equilibrium concentrations.
This is a linear mechanism.
The equilibrium concentrations: ((a 4.) (b 2.6666666666666665))

Here, the Workbench has noted that the mechanism in fact gives rise to linear
differential equations, and it uses a simple Gaussian elimination technique to
solve for the equilibrium concentrations.

A more difficult case arises if the system is not linear but involves quadratic
(or on rare occasions cubic) terms. In such a case, the Workbench does not
use algebraic methods but rather employs a kind of “fast equilibrium search”
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algorithm to locate the equilibrium concentrations numerically. This algo-
rithm, described in more detail in Appendix B, uses two separate “phases” of
search. Initially, it uses a “star-walk” procedure that seeks to minimize the
magnitude of the derivative vector obtained from the differential equations.
That is, we seek to minimize the magnitude of the vector

(d[S1]/dt, d[S2)/dt....d[Sn)/dt)

where S1, S2... Sn are the n species that determine the state of the system.
Clearly, this value is always non-negative, and it reaches its unique minimum
value of 0 precisely at that point at which the system is in equilibrium.

The star-walk procedure looks at each separate reaction in the mecha-
nism, and finds which of these reactions will most diminish the magnitude
of the derivative vector. It then “preferentially” runs this particular reaction
until another is found to be more effective. To take a concrete example, let
us use the “fast submechanism” that we saw before in mechanism [29]:

[35] 0 <——-> A <--=> 2B

The star-walk procedure looks to see which of the four reactions in this
mechanism is most effective (at the current state of the system) in reducing
the magnitude of the system derivative; for the sake of argument, suppose
this preferred reaction is

A --> 2B

The algorithm would now call for a certain amount of A to be “transferred
over” to twice that amount of B; in other words, we run this one reaction
alone, temporarily stopping all others. The advantage of this method is that
we can transfer a large amount of A all at once, moving to a new point in
state space at which the system derivative is a good deal smaller.?’ We
continue this process, adapting the “transfer amount” to take advantage of
the possibility of taking larger and larger steps in state space.

Typically, the star-walk procedure will move fairly rapidly at first, trans-
ferring large amounts along different reaction vectors; but then it slows down,

20Naturally, some care must be taken to preserve positive concentrations.
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eventually calling for only tiny transfer amounts even when the system is not
yet at the equilibrium point. At this juncture, the algorithm switches to its
second phase, in which it uses a standard fixed-step Runge-Kutta integration
routine to integrate the system until it appears that the system is approach-
ing some final equilibrium point in a linear fashion; that is, we look for a
series of steps in state space of the form

dV,zdV,z2dV, z3dV ...

where dV is the small step in state space dictated by a particular iteration
of the Runge Kutta integrator, and z is a positive scalar such that |z| < 1.
When the program spots a sequence of steps of this kind, it immediately
jumps to a new point:

Po+ (1/(1 — z))dV

where F, is the spot in state space where the sequence of linear jumps was first
noted. Thus, what the program is doing is looking for a chance to estimate
an equilibrium state by noting when the system seems to be approaching
such a state along a slow eigenvector.

Having taken this large “linear jump,” the system now iterates the entire
procedure, alternating star-walk and Runge-Kutta phases, until it deems that
it is sufficiently close to an equilibrium point. In practice—admittedly, with
fairly tractable examples such as mechanism [35]—the procedure has not
required more than two complete star-walk/Runge-Kutta cycles to find the
desired equilibrium state to a good approximation (better than one percent
accuracy).”! An example of the Workbench’s performance in this regard is
shown in its analysis of mechanism [29) earlier in this chapter; finding the fast-
equilibrium concentrations required approximately 120 star-walk steps and
30 Runge-Kutta steps in total, starting from initial (default) concentrations
of 1 for both A and B. (Note that since the initial concentrations do not
affect the ultimate equilibrium state, we can choose any starting state as
long as all concentrations are nonzero.)

The star-walk/Runge-Kutta algorithm outlined here is useful even in

211t should be noted that this algorithm is inadequate for stiff systems, because of the
poor performance of Runge Kutta integration on these systems. In principle, the same
basic algorithm could be adapted to use a Gear integrator, but the Workbench does not
have this capability at present.
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those cases where the eventual equilibrium state does depend on initial con-
centrations. In this case, we can start the algorithm at the desired initial
state; the equilibrium point reported by the algorithm will be consistent
with that initial state. The reason that the algorithm performs well in this
case is that each step of both the star-walk and Runge-Kutta phase keeps
the overall system state within the available stoichiometric subspace; in other
words, the algorithm will not “move” the system into a state that is inac-
cessible from its initial state. Thus, we may elect to use the Workbench to
find an equilibrium point for a given reversible zero-deficiency mechanism
starting from some initial state.

As an example of the Workbench’s performance in this capacity, we can
consider mechanism [12], shown earlier in this chapter and reproduced below:

(36l A +B<->C<->D

We create a mechanism data structure for [36], choosing a set of rate con-
stants:

(define *chap5-mech36*

’(
(
( ((a 1)(® 1)) ((c 1)) 2)
( (c 1)) ((a 1)(d 1)) 1)
( ((c 1)) (@ 1)) 2)
( (@ 1)) (¢ 1)) 3))
O0000Nn

We now create a mechanism object from this data structure and use the
Workbench’s find-rapid-equilibrium procedure, which takes as arguments
a mechanism object and a set of initial concentrations:

(find-rapid-equilibrium
*cbm36obj* *((a 1.) (b 1.) (c 0.) (4 0.)))

After 34 star-walk steps and 26 Runge-Kutta steps,?? the Workbench
prints out the result of its equilibrium search:

Final state:

22The calculation took less than two minutes in interpreted Scheme on an HP 350
workstation.
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((a .41786353744276783) (b .41786363744276783)
(c .34927453982662937) (d .23286192273060285))

Checking this solution against an algebraic solution for the original differen-
tial equations shows that it is well within one percent of the correct value.
Note also that this particular mechanism has four species that constitute its
state variables, but that for any given starting state it must obey two addi-
tional constraints that limit the stoichiometric subspace to two dimensions:

(Al - [A = [B] - [B]
o 0

(B8] +[c]+M] = [B] + [c] + I[p]
0 0 0

Examination of the Workbench’s approximation of the equilibrium state re-
veals that both these constraints have likewise been met by the program’s
solution.

The previous example shows that the Workbench is often capable of locat-
ing an equilibrium state relatively quickly—as long as it is provided with a re-
versible zero-deficiency mechanism and known starting conditions. The pro-
gram does not, however, perform this calculation during the “pre-simulation”
phase, since it is not supplied with starting conditions (the mechanism data
structure, and the mechanism object created from it, make no default as-
sumptions about initial concentrations). Thus, although the user may em-
ploy the Workbench to find a particular equilibrium state for a mechanism
such as [36], the program will only try to do this calculation automatically
for especially tractable mechanisms like [35], in which the equilibrium state
is independent of initial concentrations.

The Workbench’s ability to locate a global equilibrium point “on its own”
for mechanisms like [32] can be employed to guide its numerical methods: if
desired, a simulation can be automatically terminated when the (already-
known) equilibrium state is approached within a pre-defined tolerance. To
take advantage of this option, the user can include an end-conditions pa-
rameter in the run-parameters list, and give this entry a value of (end-time
use-known-equilibrium). With this specification, the numerical simula-
tion will run until either the given end-time is reached, or until the system
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nears its equilibrium point, whichever comes first. This “linking” of graphical
analysis with numerical simulation is an instance of the cooperation between
symbolic and numerical methods mentioned earlier in this paper; we saw an-
other instance of this symbiosis in the fast-submechanism example of Section

5.2.1.
5.4 Notating Mechanism Objects with Predictions

Often the reason for performing graphical analyses of mechanisms is to
predict their likely or necessary behavior. The Kineticist’s Workbench, as
it analyzes a mechanism, annotates the appropriate mechanism object with
a symbolic representation of whatever behavioral predictions it can make.
These symbolic predictions may later be checked against actual simulation
results (as will be shown in the next chapter).

Most of the Workbench’s predictions concern the asymptotic or long-term
behavior of mechanisms. For example, if the Workbench is able to deduce
that the mechanism must reach a unique equilibrium state independent of
initial concentrations (as was the case with example [35]), it annotates the
prediction-list slot of the mechanism object with a list containing the
symbol global-equilibrium and the predicted concentrations. Naturally,
such a prediction is not foolproof—we may later choose to simulate the mech-
anism for only a brief time, and the system may not achieve the predicted
concentrations. Nevertheless, the prediction is useful in that it tells us what
the program “expects” to see in any given simulation; and, occasionally, the
fact that a prediction is not met may also be of interest to the chemist.

A summary of the types of predictions made by the Workbench is shown
below. All of these prediction-types are represented by symbolic entries in
the prediction-1list slot of a mechanism object. In the following chapters,
we will see how the program can later use the numerical results of simulation
to check these predictions for accuracy.

¢ Global Equilibrium (all nonzero concentrations)

This prediction indicates that the system should reach a unique
equilibrium state, independent of initial concentrations (as in
example [35]). The predicted concentrations are also included
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in this entry.

o Necessary Equilibrium (all nonzero concentrations)

This indicates that the mechanism is a reversible zero-deficiency
mechanism, and thus can be expected to reach an equilibrium
state in which all species have nonzero concentration. (Mech-
anism [36] is an example of this type of system.)

¢ Possible Equilibrium (some species at zero concentrations)
This indicates that the mechanism may approach a steady state
in which some species are at nonzero concentration, and some
reactions are proceeding at a nonzero rate; but other species
are expected to approach a concentration of zero. (Mechamsm
[7] is an example of this type.)

e Possible “Non-Running” Mechanism

This indicates that the mechanism may approach a state in
which none of the elementary reactions has a nonzero rate—
i.e., the mechanism as written can “run down.” (The nitrogen
pentoxide decomposition reaction [2.1]-[2.4] is an example of
this type.)

e Possible Steady-State Species
This indicates that the Workbench has spotted some species
that are good candidates for a steady-state approximation.

¢ Possible Fast Equilibrium Pairs of Reactions

This indicates that the Workbench has spotted some forward/backward
reaction pairs (such as [25.1] and [25.2] in mechanism [25]) that

are good candidates for a “fast equilibrium” approximation.

5.5 Mechanisms not Handled by Graphical Analysis

There are two major classes of mechanisms that may be represented in the
Workbench, but that the program is incapable of analyzing. Currently, the
Workbench cannot analyze parameterized mechanisms—i.e., mechanisms in
which rate constants are provided symbolically. (These mechanisms are used
as the bases for parameter-space searches, as described in the next chapter.)
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The superficial reason for this limitation is that the use of a symbolic rate
constant renders some of the program’s techniques inapplicable; for example,
we can no longer perform a fast numerical calculation to find an equilibrium
state. However, many of the graphical techniques shown in this chapter
(especially in Section 1) could in principle still be applied to parameterized
mechanisms. Thus, this limitation is at least partially remediable; and future
versions of the Workbench should be able to perform at least limited analysis
of parameterized mechanisms.

Mechanisms with explicit “function-of-time” species are also not handled
by the Workbench. (These are mechanisms in which a particular species is
specified via a numerical procedure that takes a “time” argument and returns
a concentration value; an example named brusselator-with-sinusoidal-a
was shown in the previous chapter.) Here, the limitation of the program is
unavoidable; in general, by specifying that a concentration will be given by an
arbitrary function of time, we render the mechanism intractable to analysis.
Among other complications, we could stipulate that the given “function-
of-time species” has a concentration that is discontinuous, or varies over
tremendously wide ranges, or depends on user input. Thus, there is little
that the program could possibly say about the behavior of these mechanisms
without a great deal of specific (and necessarily ad hoc) information.

In practice, neither of these limitations is particularly severe. A chemist
who wishes to analyze a parameterized mechanism might, for instance, cre-
ate a version of the mechanism with “representative” parameter values, and
use the analyze-graphically procedure on this specific example; most of
the results printed out by the program would be applicable to the origi-
nal parameterized version of the mechanism as well.2> As for mechanisms

23The one remaining limitation in this example is that the program cannot use the pre-
dictions generated by graphical analysis to do any tests within parameter-space checks—
that is, the symbolic predictions have been added to the chemist’s “representative” mech-
anism, not to the parameterized mechanism that will later be simulated. For example,
the chemist cannot simulate the parameterized mechanism at a series of parameter values
and ask the program to graph at which parameter values a given prediction, such as the
approach to a unique equilibrium state, is met within a certain amount of time. Thus, the
example in the text demonstrates how the results of graphical analysis may be used by the
chemist; but in using the program this way, the symbolic predictions are not accessible to
the program.
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with function-of-time species, these are way too under-specified for the user
to expect much automatic analysis. In pragmatic terms, these mechanisms
are included in the program to provide the chemist with a richer collection
of mechanisms to study—and indeed, most of the techniques that generate

“qualitative summaries,” as described in the next chapter, remain applicable
to these systems.
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Chapter 6

Analyzing the Numbers

The previous two chapters have described how the Workbench performs
numerical simulation of mechanisms, and how it can precede that simulation
by analyzing mechanism structure with an eye toward prediction and sim-
plification. In this chapter, the final phase of the Workbench’s operation—
analyzing and summarizing numerical results—will be discussed. Before pro-
ceeding with a detailed discussion of the program’s operation, however, it is
worth stepping back to provide some context: what exactly is the purpose
of this part of the program? Why would we want a computer program to
describe the numerical results produced by its own simulation?

The answer is that this is a significant part of the chemist’s usual activ-
ity. After a chemist simulates a newly-created mechanism, he must then look
at the numerical results, devoting his attention all the while to potentially
interesting features of those results: rapid jumps in concentration, or concen-
trations that remain at a nearly constant value for much of the simulation,
or stable oscillations, or a myriad of other features. (Recall, for instance,
the quote from Noyes {62} in Chapter 2, in which a “narrative structure” is
imposed on the numerical results obtained from simulating a particular oscil-
lating mechanism.) Much of this interpetive work is not especially creative:
spotting whether oscillations have occurred, for example, is a fairly routine
job that might profitably be taken over by the computer that performed the
simulation.

It is this “cliched” aspect of numerical interpretation and summary that
the Workbench attempts to capture. The program is able to construct a
symbolic narrative history of the numerical results, employing qualitative
terms like “steady state” and “rapid increase in concentration”; it can look
for typical patterns within a numerical record, such as stable oscillations
or final equilibrium states; and it can generate reports that summarize its
findings for the user. Additionally, the Workbench can use the results of
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its qualitative analysis to guide further numerical work; and in those cases
where it was able to predict mechanism behavior, it can use its interpretation
of the numerical results to check the accuracy of those predictions.

The first two sections of this chapter describe two important data struc-
tures used by the Workbench in constructing its qualitative analyses. The
first of these structures, the episode, can be viewed as a symbolic “chunk”
representing a portion of the numerical record; the Workbench constructs a
narrative history of the results by enumerating a sequence of distinct, con-
secutive episodes. The second data structure is a record of local maxima and
minima of species concentrations; this proves helpful in identifying patterns
such as oscillations in complex mechanisms.

The third section of this chapter discusses how the Workbench uses both
these data structures to construct summary reports of numerical results;
these reports may then be used to generate parameter-space graphs, such as
Figure 3 in Chapter 3. The process of creating parameter-space graphs is
outlined in Section 4.

Section 5 describes how the Workbench checks the predictions of mecha-
nism behavior that were generated in the pre-simulation phase; and in Sec-
tion 6 we discuss some additional miscellaneous capabilities of the Workbench
that allow for storing and additional analysis of qualitative results.

6.1 Constructing Episode Histories of Simulations

In this section, we describe one of the two main data structures used by
the Workbench in constructing its qualitative summaries of numerical results.
We begin by defining this structure, the episode, and show how a sequence
of episodes are used as a narrative history of the simulation.

6.1.1 The Episode Data Structure

Early in Chapter 2, the relationship between a mechanism and its asso-
ciated mathematical model was described. At that time it was shown how a
mechanism such as the Brusselator:
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[1.1] A-->X k1 =1
[1.2]) B+X~-—->Y+D K2 = 1
[1.3] 2X + Y --> 3X k3 =1
[1.4] X -—> E ki = 1

(A} = 1, [B] = 3, [D] = [E] = 0)

dictated the construction of an associated set of ordinary differential equa-
tions:

4a[x3
[2.1] -————-- = x1 [A] - k2 [B] [x] + k3 [x] 2 Y] - k4 [X]
dat
4d[y]
[2.2] -~ = x2 [B] [X] - k3 [X] 2 1]
at

Now, when comparing differential equations such as [2.1]-[2.2] to the mech-
anism [1.1]-[1.4] from which they were generated, it is not hard to see how
each individual terms in the equations is derived. The term —k2[B][X] in
equation [2.1], for instance, represents the consumption of X from step [1.2];
likewise, the term k3 [X]12 [Y] represents the net production of X from step
[1.3]. Thus, at any given moment of time, the derivative of [X] is a sum
of terms, each of which represents a particular elementary step in which X
participates as reactant or product.

Suppose, then, we study mechanism [1.1]-[1.4] by performing the usual
numerical integration, but that as we perform the integration we keep track
of the magnitudes of individual terms in the differential equations. These
magnitudes, as we have just seen, will indicate the relative participation of
each elementary reaction in dictating the local derivatives of [X] and [Y].
Thus, by noting (for instance) which term in [2.1] has the largest magni-
tude at any given moment, we can determine which elementary reaction is
“dominant” for species X.

This notion is the basis of the episode data structure used by the Work-
bench. As it performs numerical integration, the Workbench keeps track
of the ordering of each individual term in the differential equations for the
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system. Each time this ordering changes, the Workbench notes a change of
episode. Thus, an episode may be defined as a period of time in a simula-
tion during which the ordering (by absolute magnitude) of the terms in the
governing differential equations remains constant.

This definition allows for some refinement in practice. It implies, for
instance, that the complete ordering of terms is used to distinguish episode
boundaries: to take a concrete example, the largest two terms in [2.1] may
remain unchanged, but if the third- and fourth-largest terms exchange places,
an episode change will be said to have occurred. This represents a “fine-
grained” definition of episode, in which any change in the ordering of terms
is deemed sufficient to warrant a change of episode. More often, a more
“coarse-grained” definition is used in which only the most important term is
used to distinguish episode boundaries; thus, in our example, the only time
a new episode is begun is when the most important term in either [2.1] or
[2.2] changes.

Further refinements are possible. For instance, in large mechanisms, a
particular species may participate in many elementary reactions, and the
chemist may only want to focus on the relative importance of several of
these. The Workbench thus allows the chemist to select among the reac-
tions that will be counted in determining episode boundaries. To use the
Brusselator mechanism [1.1]-[1.4] as an (unrealistically simple) example, the
chemist might decide that reaction [1.4] need not be used in determining
episode boundaries; thus, only changes in the ordering of terms derived from
[1.1)-[1.3] would be involved in determining a change of episode.

There are also hidden complications in the episode definition, particu-
larly in the matter of determining “ties” between the contributions of terms.
Often, it is reasonable to say that two terms are contributing “equally” to
the local derivative of a particular species; consider, for instance, the simple
mechanism shown below:

ki
[3] A <-->B
k2

If we start off this system with a nonzero concentration of species A, and zero
concentration of species B, we eventually arrive at a state in which the two
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opposing reactions are in near equilibrium; thus the contribution of the two
terms k1 [A] and —k2 [B] in determining the local derivative for [B] will
be about equal (though the first will always be very slightly larger). In this
case, we would like to say that the two reactions are approximately “tied” for
episode-determining purposes, rather than to say that the forward reaction
is “dominant” in any meaningful way.

The Workbench’s solution to this problem is to provide a special param-
eter used in determining ties between terms. If two terms differ by less than
this parameter (which, by default, is set at 0.2 percent), then the two terms
are deemed to have approximately equal contributions for the purposes of
determining episode boundaries.

The notion of “ties” between terms in certain episodes leads to other com-
plications in constructing “episode histories” of simulations; we will return
to this point in the following subsection.

6.1.2 Episode Histories

When a numerical simulation is performed, the user can request the Work-
bench to construct an “episode history”—a list of the successive episodes
encountered—for this run. This is done by adding entries to the “run pa-
rameters” list introduced in Chapter 4. As a specific example, we could use
the following as a run-parameters list for the Brusselator mechanism:

(define brusselator-run-parameters
‘((starting-dt 0.05)

(start-time 0.)
(end-time 40.)
(actual-starting-concs
((a1.) (b3.) (4d0.) (e 0.) (x 0.) (y 0.)))
(integration-method runge-kutta)
(focus-species (x y))
(steps-per-display 20)
(end-conditions (end-time))
(maintain-episode-history? ,true)
(episode-change-depth 0)
(graph-window ,*display-graph-window*)
))
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The maintain-episode-history? parameter here tells the Workbench that
we wish the numerical simulation to be accompanied by the construction of an
episode history. The episode-change-depth parameter indicates that only
the most important reaction (the “Oth-place” reaction) should be used in
determining changes of episode: that is, an episode boundary will be flagged
only if the most important term in the equations for X and Y changes.!

If the mechanism is now simulated numerically (as shown in Chapter 4)
a list of episodes—the “episode history”—is automatically maintained and
updated as the simulation runs. This history is then used as one of the
major sources of information for later qualitative analysis. Each episode in
the history is accompanied by the following information:

® The starting time for the episode
® The duration of the episode

e The list of “term-orderings” for each focus species that defines
this episode

e Concentrations of focus species at the beginning of the episode

¢ Maximum and minimum concentrations of focus species dur-
ing the episode

¢ Maximum and minimum species deltas during the episode

In addition to this information, the final episode in the history (i.e., the
episode that concludes the simulation) also contains a number of special
slots for the final concentrations, derivatives, and second derivatives of focus
species. Collectively, this information can be used to do closer analysis of the
qualitative history of the overall run, as shown in the following subsection.

1t should also be noted that the focus-species parameter is used to indicate those
species whose “changes of dominant reaction” will determine an episode boundary. Thus, if
we used only x as our focus species, an episode boundary would occur only if the dominant
reaction for species X should change.
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6.1.3 Initial Processing of the Episode History:
Removing Transition Episodes and Creating an Intrinsic Time-Scale

When the episode history is initially constructed, it often contains occa-
sional “transition episodes” that represent a kind of midway state between
longer episodes. For example, we might have a situation in which Brusse-
lator step 3 is gradually becoming more important than step 2 for species
Y. Initially, the term ordering for Y is simply (2 3); after the change, the
ordering is (3 2). However, it may be that for one or two time-steps during
the simulation, the two terms are nearly “tied” in value (this occurs when Y
is at a local maximum of concentration).

Transition episodes of this kind typically make the episode history harder
to analyze. We might, for example, be looking within the episode history
for repeating episode patterns; and indeed, in the Brusselator example, we
might find repeating patterns in which first step 2, and then step 3, becomes
the more important step for species Y. But the occurence of intermittent
transition episodes in the episode record could well make the job of finding
such repeating patterns difficult. Instead of seeing the following pattern of
episodes in the history:

Episode Ordering of Y terms Starting time
n (2, 3) 12.0
n+i (3, 2) 17.0
n+2 (2, 3) 19.0
n+3 (3, 2) 21.0
(ete.)

we see a more difficult-to-interpret pattern:
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Episode Ordering of Y terms Starting time

n (2, 3) 12.0
n+i (2 and 3 tied) 16.956
n+2 (3, 2) 17.0
n+3 (2 and 3 tied) 19.0
n+4 (2, 3) 19.05
n+5 (3, 2) 21.0

Looking down the central column of the first table, the repetitions are obvi-
ous; but the presence of transition episodes in the second table illustrates the
difficulties that they can introduce in automating the interpretation process.

It is for this reason that the first processing step that the Workbench
performs in analyzing an episode history is to filter out of it those episodes
that appear to be transition episodes—namely, very brief episodes that seem
to arise from one term “passing” another one. The remaining episodes are
used as the basis for future analysis.

The (filtered) episode history is also used as the basis for decisions about
what constitutes a “long” or “short” time-span within the simulation. The
Workbench creates a “time ruler” by using the shortest and longest episode
lengths as extreme values; it subsequently defines notions of “long time,”
“gshort time,” “very long time,” and so forth by reference to this ruler. For
instance, a “short episode” is defined as one whose duration D meets the
following criterion:

log D < (log S + (0.25(log L — log S)))

where L and S are the longest and shortest measured episode-durations,
respectively.?

The rationale behind this episode-history-based definition of terms like
“long” and “short” is that it allows these terms to be rooted in the events of
the simulation itself. Obviously there is no objective meaning to these terms:
a ten-second period may be a “short time” within a simulation of a year-long

2The full set of qualitative time definitions is given in Appendix C.
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process, or a “long time” in a twelve-second simulation. The Workbench’s
heuristic, then, is to let the simulation itself, and the pace of its episode
changes, dictate what will be called “long” and “short” for the purposes of
qualitative analysis. These terms likewise come into play in the definition of
“rapid” versus “slow” changes, as will be shown shortly.

6.1.4 Attaching Features to Episodes

Once the episode history has been filtered of transition episodes, and a
qualtitative time-ruler has been established, the Workbench produces a “fea-
ture history” associating qualitative features with the remaining episodes.
The purpose of the feature history is to note, for each episode during the
simulation, whether that episode included some interesting feature such as a
rapid rise or decline in the concentration of a given species.

The full set of feature-descriptors that the Workbench uses is shown in
Table 6.1 on the following page. These are accompanied by a brief description
of their meaning within the program.

As Table 6.1 makes apparent, most of the episode feature descriptors
(with the exception of SHORT, LONG, and FINAL) apply to the concentra-
tion path of some particular focus species. Thus, a possible feature descriptor
list for some episode might read:

((SHORT) (LARGE-INCREASE X) (RAPID-INCREASE X)
(STEADY-DECREASE Y))

This list—which would comprise a single entry in the feature history, cor-
responding to a particular episode in the episode history—indicates that
during the given short episode, species X experienced a large, rapid increase,
while species Y experienced a steady (moderate) decrease. We also know,
parenthetically, that X must have decreased during at least one integration
time-step in this episode (otherwise the Workbench would have included a
“steady-increase” feature descriptor for X in its list).

The feature list is used as a descriptive annotation to the episode his-
tory, attaching qualitative terms to the time-chunks designated by individual
episodes. For relatively short feature histories, it is perfectly reasonable for
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Descriptor

Definition

SHORT/LONG

STEADY-STATE spec

LARGE-INCREASE/DECREASE spec

WIDE-SWING spec

RAPID-INCREASE/DECREASE spec

SLOW-INCREASE/DECREASE spec

STEADY-INCREASE/DECREASE spec

FINAL

This episode is short (long) by the
measure of the “intrinsic time-ruler”

The species concentration varied little
during this episode

The species concentration increased
(decreased) by a “large amount”
during this episode

The species concentration varied by a great
deal during the episode (relative to its
net overall change for the episode period)

The pace of increasing (decreasing)
concentration change for the overall
episode is rapid for this species

The pace of increasing (decreasing)
concentration change for the overall
episode is slow for this species

The species never experienced a decrease
(increase) for any time-step during this

episode

This is the final episode

Table 6.1: Feature Descriptors for Episodes
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the user to examine the feature history alone and thereby get a sense of the
major events of the simulation. Moreover, this list is used as a data structure
in its own right by other portions of the program to be described later; for
instance, the algorithm for checking whether a simulation met a prediction of
obeying a “steady-state approximation” for some species includes a check of
the feature history to see if that species was associated with a “steady-state”
feature descriptor for a long period of time.

6.1.5 A Brief Example

It is worth pausing at this juncture to consider a brief example, just to
illustrate the creation and use of an episode history (and its associated feature
history). We consider, then, the “tiny mechanism” introduced in Chapter 4:

[4.1] A-—>B k1 = 20
[4.2] B-->C k2 =2
[4.3] C-->8B k3 =1

We create a mechanism object for this mechanism, as well as appropriate
run- and graph-parameters lists. Although there is nothing new and surpris-
ing to say about these, it is worthwhile to show them in full just to provide
a sense of how the entire example can be run in the Workbench:

(define *chap6-mech4s

*(
(
( ((a 1)) ((b 1)) 20) ; step 4.1
( (b 1)) ((c 1) 2) ; step 4.2
( ((c 1)) ((b 1)) 1)) ; step 4.3
OO0 000N ; no constants, sources, etc.

(define *chap6-mech4-run-parameters#
‘((starting-dt 0.026)

(start-time 0.)

(end-time 5.)

(actual-starting-concs

((a8.) (b0.) (c 0.))

(integration-method runge-kutta)

(tocus-species (a b c)) ; all species involved

; in episode construction
(steps-per-display 40)
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(maintain-episode-history? ,true) ; construct the history
(episode-change-depth 0) ; based on most important term
(graph-window ,*display-graph-window#) ; graph concentrations

))

(detine *chap6-mech4-graph-parameters#
‘((graph-type numeric)
(time-low 0.)
(time-high 5.)
(species-to-graph (c b a))
(species—concentration-boundaries
((o. 6.) (0. 6.) (0. 6.))) ; ordinate range for ¢, b, a
(numeric-limits-for-graphs
((-1. -1.8 6. 7.) (-1. -1. 6. 7.) (-1. -1. 6. 7.)))
; the window regions below correspond to the
; virtual regions above
(vindow-regions-to-use
((0 0 400 100) (0 101 400 200) (0 201 400 300)))
(axis-colors-to-use
(8 8 8))
(default-colors (1 1 1))
(color-procedure ,graph-object-use-default-color)))

(define *chap6-mech4-object*
(make-mechanism-object #chap6-mech*))

Here, we have created: a mechanism data structure representing [4.1]-
[4.3]; a list of run parameters, analogous to the Brusselator run-parameter list
shown earlier; and a graph-parameter list that specifies how concentrations
will be graphed. Finally, we create a mechanism object from the original
mechanism data structure. We now evaluate the following expression:
(do-simple-graphed-run

*chap6-mech4-object#*
*chap6-mech4-run-parameters#
*chapB8-mech4-graph-parametexrs*)

and the numerical simulation is run, constructing the graph shown in Figure
6.1.

So far, there is nothing particularly new about our example: we have
simulated our mechanism much as we did in Chapter 4. However, once the
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Figure 6.1: Simulating Mechanism [4.1]-[4.3]

simulation is complete, the Workbench prints out the following post-mortem
of the run:

We now begin to analyze the run results.
The grain for the analyzed episode history will be: 0

The feature history of the run:

((short)
(large-decrease a) (rapid-decrease a) (steady-decrease a)
(large-increase b) (rapid-increase b)
(large-increase c) (rapid-increase c) (steady-increase c))

((long)

(large-decrease a) (rapid-decrease a) (steady-decrease a)
(large-decrease b) (steady-decrease b)

(large-increase c) (steady-increase c))

((long) (final)

(large-decrease a) (rapid-decrease a) (steady-decrease a)
(steady-state b) (slow-decrease b) (steady-decrease b)
(steady-state ¢) (slow-increase c) (steady-increase c))

Analysis variables are now initialized.
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The apparent final state of the system:
((a (probable-steady-state zero a) () () () ())
(b (steady-state nonzero b) () () () ())
(c (steady-state nonzero c) () () () O)))

done

Here, the Workbench has chunked the time history of the run into three
episodes, and has printed out the qualitative features associated with those
episodes. That is, the Workbench has decided that the history of the run
can be summarized by a short period during which B and C rise rapidly and
A declines rapidly; a long period during A and B experience large decreases
in concentration, while C continues to rise; and finally a long period during
which A continues decreasing, while B and C are at near-steady-state concen-
trations. The last portion of the printout, in which the Workbench assesses
the final state of the system, will be discussed later in this chapter.

To understand how the Workbench reached its various decisions about
the salient features of the run, we can examine the episode history itself.
Here, for instance, is the first episode of the simulation as printed by the
Scheme interpreter (comments have been added):

#(.025 starting time of episode
.126 duration of episode
#( a vector of information for focus species

#(a 3.033864166666687
(((0 100.)))

starting concentration for A

delta that it represents) for A
(3.033854166666667 .026)
(.24952736718289784 .15)
(-.16171086886101962 .15) maximum delta for A

and final time of that delta

(-1.192999945746628 .05) minimum delta and final time

We We we Wi s We Wi we We we We ws WE we

OO extra symbolic information slots
similar sturctures for B and C
have been omitted
)
5) ; number of time-steps of this episode
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This structure indicates that the first recorded episode lasted 0.1 seconds,
from 0.025 to 0.125.2 Since this is the shortest episode in the history, it is
deemed a “short time” (hence the inclusion of this feature in the printout
above). Moreover, we see that species A declines from a concentration of 3.03
to a final concentration of 0.25 during this episode?. This decline is large
enough to be deemed “large,” and it happens in a brief enough time to be
deemed “rapid.” Moreover, since the maximum delta for A during any time-
step is -0.16, we know that all deltas for A must be negative in this episode
and that A thus experienced a steady decline. Similar data structures for
B and C (omitted above) are used to generate feature descriptions for these
species as well.

By examining the episode history further, we discover that the overall
episode history of the run consists of three episodes beginning at times 0.025,
0.15, and 0.2525. The boundaries between these episodes are shown in Figure
6.1, and indicate specifically the times at which the most important step for B
changed from [4.1] to [4.2], and then from [4.2] to an effective tie between [4.2)
and [4.3]. It is worth looking at Figure 6.1 for a moment and comparing it
to the feature history printed out earlier; functionally, what the Workbench
is trying to do is to report on the simulation results in the way that an
observant (but perhaps not very imaginative) assistant might.

6.1.6 Looking for Patterns in Episode Histories; Limitations of the Episode
Data Structure

Once an episode history has been constructed (as in the example of
the previous subsection), the Workbench tries to find repeating patterns—
specifically, those indicative of the presence of oscillations—within the episode

3The initial episode does not start at time 0 because certain episode initialization rou-
tines take place when an integration step is actually performed. Thus, the Workbench first
recognizes an existing episode after the first time-step for integration has been completed.
This “time-offset” in starting the initial episode does on very rare occasions cause slightly
unexpected results for qualitative analysis, due to the fact that the initial episode begins
with different concentrations than the overall simulation itself. It is thus probably worth
amending in future versions of the program.

“See the previous footnote regarding the value of A’s starting concentration; the final
concentration is obtained from the starting-concentration slot for A in the second episode.
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Figure 6.2: Brusselator Simulation

record. The algorithm used for this purpose is rather involved, as it is in-
tended to look for possibly complex repeating patterns (this notion will be
explained more fully later). Basically, however, the idea is that by examining
the episode history for patterns in which “similar” episodes recur at regular
intervals, the Workbench can spot the occurrence of patterns such as stable
oscillations.

The example in the previous subsection produced an episode history that
obviously did not contain repeating patterns; thus, in order to illustrate this
capability we need to use a more complex mechanism such as the Brusselator.
If we simulate the Brusselator using run- and graph-parameters analogous
to those in the previous subsection, we obtain a concentration-versus-time
graph as shown in Figure 6.2. (Here, the episode boundaries have also been
included on the graph, as in Figure 6.1.)

The qualitative analysis printed out by the Workbench reads in part as
follows:

We will now examine the coarse-grained episode history
for possible oscillations.
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((long)

(large-increase x) (steady-increase x)
(large-increase y) (steady-increase y))
((large-increase x) (steady-increase x))

((short)

(large-increase x) (rapid-increase x)

(large-decrease y) (rapid-decrease y) (steady-decrease y))
((long)

(large-decrease x) (rapid-decrease x)

(large-increase y))

((short)

(large-increase x) (rapid-increase x)
(large-decrease y) (rapid-decrease y))
((1ong)

(large-decrease x) (rapid-decrease x)
(large-increase y))

Two more two-episode pairs ezactly the same as the two above.

((short)

(large-increase x) (rapid-increase x)

(large-decrease y) (rapid-decrease y))

((final)

(large-decrease x) (rapid-decrease x) (steady-decrease x)
(large-increase y) (rapid-increase y) (steady-increase y))

Here, the Workbench has indicated (by the indentation) that it has found
repeating patterns of two-episode pairs: a short episode in which X increases
rapidly, followed by a longer episode in which X decreases rapidly and Y

increases. These repeating pairs are apparent in Figure 6.2, beginning with
the third episode.

The way in which the Workbench looks for repeating patterns involves,
as an initial step, trying to classify “equivalent” episodes within the history.
The basis for this classification is just the defining characteristic for any
episode—namely, the ordering of terms in the differential equations for the
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focus species. In other words: if two episodes are identical in their respec-
tive term-orderings,® we can tentatively assume that these are “equivalent”
episodes. Beyond this, the Workbench will not claim that two episodes are
equivalent if they have “inconsistent” feature descriptions: for instance, if
two episodes are described as “long” and “short,” respectively, the Work-
bench will not allow them to be classified as equivalent regardless of their
term-orderings.

The overall algorithm used by the Workbench to find repeating patterns
is described in detail in Appendix C. Basically, the program looks first for
large-scale patterns, and will then attempt to find smaller-scale repetitions
within those patterns. As an illustration of the idea, consider the letter-
sequence below, and suppose that each letter represents an “episode-type”:

ABCDCDABCDCDABCDCDAB ...

This sequence contains an apparent six-letter repeating pattern:
(aABcDCDI[ABCDCDI [ABCDCD] ...

Moreover, within each sequence we can see a smaller pattern of repetition:
ABIcD] [CD]] [AB [cD] [CcDI] ...

The Workbench’s algorithm is able to find repeating patterns of this type,
as long as it can unambiguously identify equivalence between instances of
distinct “episode-types” and the record is long enough to identify at least
several complete oscillations.

The problem of finding repeating patterns in episode histories is not a
trivial one, despite the apparent straightforwardness of Figure 6.2. It was this
task that originally motivated the identification and filtering of “transition
episodes,” as discussed earlier in this section: we saw that the occasional
transition episode inserted in the record can make it difficult to find “clean”
repetitive patterns among episodes.

More generally, the episode data structure has proved to be unsatisfactory
in practice as the sole basis for analyzing the behavior of complex reaction

5In practice, the Workbench usually employs only the most important (“zeroth”) term
in determining both episode boundaries and episode equivalence.
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systems. This is true for two main reasons. First, it is not easy to look for a
variety of common patterns, such as damped oscillations, by examining the
episode record alone. To pursue this particular thought, we can summarize
what happens when the Brusselator is run with an altered set of rate constant
values resulting in damped oscillations: we see one “repetition pattern” of
episodes (a two-episode pattern) give way to another (four-episode) pattern.
It is not easy to analyze this succession of repetition patterns in such a way
as to make apparent that these correspond to damped oscillations in the
original results.{24}

More troubling is the fact that the basis for the episode definition itself—
the ordering of differential equation terms—becomes problematic for espe-
cially stiff systems. The problem arises from potentially large variation in the
magnitudes of individual terms even within extremely tiny regions of state
space: this means that term-orderings may change even within portions of
the numerical record that appear relatively flat. On reflection, this is not
too surprising: in a sense, the fact that a system is stiff indicates that the
differential equation terms are highly variable and do not give a particularly
“clean” indication of the local behavior of the system. (If they did, then
the next state of the system after one more time-step would be indicated
by the differential equation terms at the previous time-step, suggesting that
an explicit integration method would be workable; but in point of fact, the
initial explicit prediction made by a numerical integrator for a stiff system
can be very far from the ultimate next-state value arrived at from iterative
corrections. To put the matter another way, if differential equation terms
were a highly accurate reflection of local system behavior, we would expect
a forward Euler integrator to be more-or-less adequate in finding the next
state of the system; and the fact that such an integrator is wildly inaccurate
should make us suspicious of the value of any individual term-ordering as
reflecting much information about the system’s behavior.)

When stiff systems are run on the Workbench, the resulting episode record
is usually very large and difficult to parse—even when some of the “refining”
strategies mentioned earlier are used.® What this has meant in practice is

6For instance, we might try using only a few elementary steps as the basis of episode
boundaries. This strategy does in fact deserve more examination; but preliminary experi-
ments with the chlorite-iodide mechanism to be discussed later suggest that the difficulties
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that the elaborate pattern-recognition techniques implemented in the Work-
bench, which are most appropriate for use with complex systems, have not
proven useful: those mechanisms that exhibit the complex behavior do not
produce “clean” enough episode records for analysis. As a result, a new data
structure has been introduced to provide more adequate analysis of complex
systems; and this data structure is discussed in the following section.

6.2 Zero-Crossings of Derivatives

To help in identifying patterns common to oscillating mechanisms, the
Workbench maintains a history list of derivative zero-crossing data struc-
tures. This history keeps track of local maxima and minima in the numerical
record of concentrations versus time, and, in concert with the episode history,
allows the Workbench to make more reliable judgments about the behavior
of complex mechanisms.

6.2.1 The Zero-Crossing Data Structure

As the Workbench performs a numerical simulation, it notes those time-
steps in which the (numerical) derivative of any focus species’ concentration
changes sign—corresponding to a local maximum or minimum in the nu-
merical record. When such an event occurs, the program constructs a new
derivative zero-crossing data structure consisting of the following informa-
tion:

¢ The species for which a maximum or minimum has been
encountered;

e The delta of the previous time step;
¢ The delta of this time step;
¢ Current concentrations of all species.

The newly-created zero-crossing structure is then added to a running history

in analyzing the episode record do not disappear when this strategy is employed.
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of these structures for later analysis.
6.2.2 Looking for Oscillation Patterns

Once a numerical simulation has been completed and the process of qual-
itative analysis has begun, the Workbench examines the list of zero crossings
to find successive sets of n crossings for a given species that have the following
properties:

e The corresponding initial zero crossings of successive sets
occur at approximately constant time intervals. (For instance,
if the initial zero crossing of the first set occurs at time ¢, and
the initial crossing of the second set occurs at time ¢ + 12,
then the initial crossing of the third set ought to occur at time
t+24.)

e The concentrations of all species are at comparable values
for each pair of corresponding zero crossings within successive
sets, or if not, the percent change in all species is comparable.

The purpose of the first check is to find a series of sets of n crossings
that occur at regular intervals; the second check is to ensure that concen-
trations (or changes in concentrations) are not extremely disparate at com-
parable points in the hypothetical oscillation.” The Workbench scans the
zero-crossing history with increasing values for n up to 8 (that is, a complete
identifiable oscillation may consist of up to eight zero-crossings, correspond-
ing to four separate “humps”).

Having found sequences of apparently-repeating zero crossings, the Work-
bench now examines those crossings more closely to see if they seem to com-
prise a straightforward, recognizable pattern such as stable or damped oscilla-
tions. (The check for stable oscillations, for instance, looks to see whether the
oscillations appear to have near-constant amplitudes; or, if the amplitudes
are increasing, the program checks to see whether the ratio of successive pairs
of amplitudes seems to be approaching 1.) In addition, the program attempts
to check the oscillations to ensure that they are not “noise”—that is, arti-

"The algorithm used by the Workbench is provided in more detail in Appendix C.
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facts of integration.® Even the possibility of some more exotic pattern such
as chaotic oscillations is acknowledged by the program, but this is defined
in a negative way: if no “obvious” pattern is detected, and the oscillations
appear to be long-lived, the Workbench suggests that they may be chaotic.®
A brief description of the Workbench'’s oscillation-recognition heuristics may
be found in Appendix C.

It should be noted that there are certain types of complex oscillation pat-
terns that the Workbench is unable to deal with at present. Oscillations with
a large number of “bumps”—for instance, a single large peak followed by four
small ones—are too complex to be recognized by the Workbench.!® Likewise,
oscillation patterns with highly regular “sub-patterns” (such as one large
peak followed by two nearly-identical small ones) may not be recognized.!!
And finally, very erratic oscillations (possibly chaotic) may not be recognized
if they exhibit wide variations in period and amplitude—though even in this
case, the Workbench will at least note during its qualitative analysis that
some kind of oscillation occurred.

Although the Workbench attempts to make some judgment about the
type of every repeating pattern of zero crossings that it finds, the program
focuses most of its interest on the very last pattern, as we will see later in this
chapter. In particular, the final repeating pattern is assumed to give some
clue as to the asymptotic state of the simulation—e.g., whether the system
seemed to be approaching a steady state, or perhaps whether it appeared to

80ccasionally, one can find that a species near an equilibrium concentration will “os-
cillate” around that concentration on alternate time steps. This oscillation is due only to
the discrete time steps taken by the integrator and can be detected by its (typically) small
amplitude and (two time-step) period.

9The Workbench currently makes no automatic attempt to distinguish between, e.g.,
quasiperiodic oscillations and chaotic oscillations. In this and the following chapter, how-
ever, we describe an additional feature of the Workbench that the user may employ to
help distinguish between these cases.

10Examples of such complex oscillations in a laboratory system (the Belousov-
Zhabotinskii reaction) may be seen in Figure 8.3 of {28}.

11The algorithm that looks for repeating sequences of zero crossings first flags the small-
period oscillations, and then does not seek longer oscillations that might “interfere” with
oscillations already found. Thus, in the current example, each pair of two small peaks
would be noted as a brief oscillation (of unidentifiable type)—and many such brief oscil-
lations would be noted—but the larger three-peak sequence would be missed.
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be approaching a limit cycle.
6.2.83 Coarse- and Fine-Grained Oscillations

In addition to the analysis described in the previous section, the Work-
bench also uses a more “coarse-grained” approach that filters the zero cross-
ing history to retrieve only those zero crossings in which the concentration of
the given species changes by at least a small percentage from its neighboring
zero crossings.!? This filtering step was motivated by the “noisiness” of cer-
tain complex systems integrated with the Gear algorithm, in which small (and
somewhat irregular) variations in concentration could be misinterpreted as
derivative zero-crossings (even in clearly flat regions of the numerical record).
To compensate for these fine-grained irregularities, it proved worthwhile to
look for regularities among the more “exaggerated” zero crossings.

The Workbench uses a similar (though a bit more “lenient”) algorithm
to look for repetitive sequences in the coarse-grained zero crossing record
as it does in the fine-grained case described earlier. Having located these
sequences, the Workbench seeks to classify them (as “stable,” “damped,”
and so forth) in exactly the same way as described earlier.

6.3 Constructing Feature Summaries of Simulations

Thus far, we have seen how the Workbench constructs (and analyzes) an
episode history of a given simulation; and we have likewise seen how it con-
structs (and analyzes) a history of local minima and maxima—i.e., derivative
zero crossings—encountered during a simulation. Having performed these
tasks, the program now undertakes an additional stage of analysis that makes
use of both these data structures. The purpose of this next stage is to make
some judgment about the overall behavior of the simulated system, with par-
ticular attention to its apparent asymptotic behavior. These judgments are
summarized in a “feature summary” list that is constructed for each focus
species in the simulation.

12The current default “percentage-difference” value is 2.5.
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The feature summary for each species consists of descriptor elements that
provide information about:

e Whether the species seemed to be at a near-constant concen-
tration at the end of the simulation; and if so, whether that
concentration was nonzero or zero.

e Whether some oscillation appeared to be going on at the
end of the simulation; and if so, a descriptor of that oscilla-
tion’s type (stable, unstable, damped, possibly chaotic, proba-
bly noise, or unidentified). This information is provided based
on both the “fine-grained” and “coarse-grained” zero crossing
information.

® Whether multiple fine-grained oscillation types (i.e., oscil-
lations with different numbers of “bumps” or with markedly
different periods) were encountered during the simulation.

¢ Descriptors for the types of all fine- and coarse-grained oscil-
lation patterns encountered.

The first of these descriptors—providing a judgment about whether the
concentration of a given species seemed to be “flattening out” at the end of
a run—involves checking the episode history for several types of information.
The final episode is checked for the values of both first and second deriva-
tives of the concentration-versus-time graph; these are used to estimate the
flatness of the graph at the end of the run. Additionally, the presence of a
final long episode in which the species is deemed to be at a steady state is
taken as corroborative evidence that the species is indeed at a near-constant
value. In exploring the question of whether the species concentration seems
to be approaching zero or not, the Workbench uses the final first and second
derivative values to estimate the given species’ concentration after a long
time past the end of the simulation (where “long” is defined according to
the episode history, as described earlier). If this estimated future value is
sufficiently small (compared to the maximum concentration of the species
during the run), and if additionally certain other conditions are met (such
as a negative first derivative and positive second derivative at the end of the
run), then the program hypothesizes that the concentration is approaching
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zero at the close of the run.

The descriptors dealing with oscillations are constructed according to the
same criteria as described in the previous section; the only point worth men-
tioning here is that the descriptor for “final oscillating state” must make some
judgment as to whether the oscillation pattern was still identifiable at the
end of the run. In the case of damped oscillations, it is quite conceivable for
the Workbench to conclude both that a species was approaching a (nonzero)
steady state and that it was experiencing damped oscillations at the end of
the run.

One more capability of the Workbench concerning oscillations also de-
serves mention: when the program observes an oscillation pattern for a given
species, it prints out a brief report of that pattern on the display screen,
including the time of onset of oscillations, the average period, the average
amplitude (for stable oscillations), and the average ratio of successive oscilla-
tions (for damped or unstable oscillations). In reporting a stable oscillation,
the program also prints out the “typical episode sequence” for this oscillation:
that is, the most commonly found sequence in the episode history that over-
laps with a single period. Thus, the Workbench is able to provide the user
with a conceptual link between the observed oscillations and the reactions
within the mechanism that give rise to those oscillations.

6.4 Saving Qualitative Analysis Results; Parameter Space Checks

If desired, the results of the Workbench’s qualitative analysis may be
saved in an external file. To do this, a new parameter, save-qualitative-results?,
is added to the run parameters list and given a value of true; a (string)
pathname must also be specified in a qualitative-result-filename pa-
rameter. With these additions, the Workbench will save out a variety of its
qualitative-analysis data structures at the end of its simulation.

Currently, the contents of a qualitative analysis file include the following:

e The episode history for the run, and the “filtered” episode
history (in which transitional episodes have been removed).
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® The feature history corresponding to the filtered episode his-
tory.

e The derivative zero crossing information maintained for the
run.

¢ A data structure indicating the repetitive patterns detected
in the zero crossing information.

e The overall feature summary for the run.

o Other information about the saved run, including the original
reaction mechanism, focus species, initial concentrations, inte-
gration method, time-step (dt) for integration, start and end
times for the simulation, and several more.

Saving the results of qualitative analysis is particularly important for
performing parameter space checks. As mentioned earlier, the Workbench
contains procedures that allow the user to run a simulation for a given
parametrized mechanism repeatedly, varying the parameter (or pair of pa-
rameters) over a pre-specified range.’*> An example was described in Chapter
4; there we created and simulated a “parametrized Brusselator,” with two
rate constants as its parameters. It was also mentioned at that time that
parameter space scans must be accompanied by a “template filename” for
saving numerical, pictorial, and qualitative-analysis results.

The procedure that performs parameter space scans actually makes par-
tial use of qualitative analysis results as it performs repetitive simulations.
In particular, the program checks the feature summaries after each simula-
tion; and if it finds that a given simulation resulted in no conclusion—neither
a steady state nor an oscillation—the program redoes the simulation for a
longer period, and with a smaller timestep. (Note, by the way, that the
“oscillation” in this case need not be stable; the program will accept even
an oscillation of unidentified type for these purposes.) This additional try is
only performed once: if the second attempt at simulation still results in no
identifiable feature summary, the program gives up and goes on to the next
parameter value. Nevertheless, this is a worthwhile feature that partially

134t present, the Workbench is only able to vary at most two parameters in such a scan.
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automatizes the alteration of simulation parameters based on qualitative in-
terpretation of the results.

Once a parameter space scan has been performed, the results may be
retrieved and summarized in a parameter space graph. Currently, the set of
Workbench procedures available for this purpose are a bit restrictive: only
a few types of graphs may be constructed. However, it is possible to create
a graph in which two parameter ranges are used as axes, and (e.g.) the
stored feature summaries are used to generate symbolic entries in the graph.
Complete examples of parameter space scans will be shown in Chapter 7.

6.5 Checking Predictions

In the previous chapter, we saw that the Workbench can often make in-
teresting predictions about the behavior of a mechanism under simulation,
and can add symbolic notations to a mechanism object indicating the predic-
tions that it has made. When a simulation is later performed, the Workbench
uses the numerical record (and associated qualitative analysis) to check those
predictions that it made earlier.

As an example of this capability, we can once more consider mechanism
[36] from the previous chapter, reproduced below:

(5] A+B<—>C<—>D

In analyzing this mechanism graphically, the Workbench notes that it is
a reversible zero-deficiency mechanism and thus can be expected to reach a
unique stable equilibrium with positive concentrations of all species:!*

Rule number 2.1 -- Deficiency Theorem part 1 is firing

If the deficiency of the mechanism is O and the
mechanism is weakly reversible, then the mechanism must
reach equilibrium at positive (non-zero) concentrations
of all species.

14The rate constants used for the actual mechanism data structure are the same as in
the Chapter 5 example.
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This conclusion becomes the basis of a prediction—specifically, a “nec-
essary equilibrium” prediction'®>—and a symbolic descriptor of the newly-
made prediction is added to the mechanism object being analyzed. When
the mechanism is later simulated (with all four species as focus species), the
Workbench conducts its qualitative analysis, in the course of which it checks
the necessary equilbrium prediction that it made earlier:

The apparent final state of the system:
((a (steady-state monzero a) () () O O ()
(b (steady-state nonzero b) () () () () ())
(c (steady-state nonzero c) () () (O OO O)
(4 (steady-state monzero d) () () (O OO O))

CHECKING PREDICTION:
Mechanism must reach equilibrium with all nonzero concentrations.

PREDICTION MET:
(a b ¢ d) all appear to be at nonzero steady state values.

Currently, the program does no additional processing of behavioral pre-
dictions: it does not specifically flag unmet predictions, nor does it store the
results of its checks in an external file. Thus, the only capabilities imple-
mented in the Workbench are those that display the checking of predictions,
and (when they occur) the meeting of predictions.

Additional examples along these lines will be encountered in the following
chapter.

6.6 Additional Analysis

We have seen in a variety of cases how the Workbench is able to make
use of the qualitative analyses that it produces: it can create graphs that
summarize the analyses, it can use the analyses to check predictions about
mechanisms, and it can even use the absence of an informative analysis to
motivate re-doing a simulation. The point of mentioning these examples
once more is to stress that the purpose of qualitative analysis is not merely
to summarize simulation results for the user, but also to provide information

155 described in the previous chapter.
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of various kinds to other programs. Thus, we can envision writing additional
Workbench files to make use of the qualitative results stored by previous
Workbench simulations.

As an example, consider the problem of analyzing apparently irregular
oscillations in a simulated chemical system. Suppose that a chemist observes
such a pattern, and wants to know whether what she is seeing is quasiperi-
odicity or chaos. This distinction, as it happens, is difficult if not impossible
to make by simply viewing the time series. Moreover, the features of the
Workbench encountered thus far offer no help in this regard, since both a
quasiperiodic and chaotic system would simply be flagged as showing possibly
chaotic (or perhaps “unidentified”) oscillation types.

In this situation, the most common numerical strategy for the dynami-
cist is to take a power spectrum of the system using an FFT algorithm. A
quasiperiodic system with two fundamental frequencies will show two distin-
guished sharp peaks at those frequencies, and smaller (but still visible) peaks
at other known frequencies derived from “small” sums and differences of the
fundamental frequencies.{76} A chaotic system, on the other hand, may be
distinguished by a broad frequency spectrum.{29} Using an FFT algorithm
on the numerical results can thus distinguish between the quasiperiodic and
chaotic systems, where simply observing the time series by eye cannot.

However, there is still a problem. The oscillations to be analyzed may not
begin at the onset of simulation, but rather sometime during the simulation;
that is, there may be an “induction period” before the irregular oscillations
begin. Moreove, the oscillations may actually end at some time during the
simulation as well; it is not hard to imagine a situation in which a chemical
simulation exhibits irregular oscillations for a certain period of time, but
then switches to a different mode of behavior. Thus, if the chemist wishes
to run an FFT algorithm on the numerical results, she had better have some
estimate of where the puzzling oscillations begin and end; otherwise, she risks
sending misleading numerical data to the algorithm and obtaining a wrong
conclusion.

Seeing where oscillations begin and end may not seem like much of a
chore for a particular simulation, but when it has to be done reliably over
many simulations, it is precisely one of those tasks that might be profitably
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left to the computer. The Workbench, we recall, does not automatically
distinguish between quasiperiodic and chaotic oscillations, but it does retain
information that we can use to find where oscillation patterns begin and end
within the numerical record. Thus, if we have the Workbench store both
numerical and qualitative results, we can create a new file to retrieve only
that portion of the record in which “problematic oscillations” occur, and to
send those results to an FFT algorithm.

In point of fact, an additional file has been written with precisely this
capability. This file is not intended to be seen as a “basic” part of the Work-
bench system, but as an illustration of a conceivable set of library files that
could be added as needed for additional processing of Workbench results. An
example showing this post-analysis file will be included in the next chapter;
but again, the main point of this example is to indicate how a large number
of new files, combining numerical and qualitative results, could well be added
to the basic Workbench structure. For example, we might imagine a file to
obtain the fractal dimension of an attractor in phase space (using a box-
counting algorithm{6}); this file could use the results of qualitative analysis
to find the “transient” portion of the numerical record that may safely be
ignored. Or again, we might have a file that looks over a series of runs in
a parameter scan and graphs the equilibrium concentration of some species
only for those runs that achieved an identifiable equilibrium state. These
hypothetical projects are reasonable precisely because the Workbench stores
its results—numerical and qualitative—in a form that may be read by still
other computer programs.
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Chapter 7

The Workbench in Operation

This chapter is devoted to showing examples of the Workbench in use.
We begin with an exploration of relatively simple mechanisms, and then go
on to discuss how the Workbench can be used to study more complex models.

7.1 The “Tiny Mechanism”

As an introduction—just to provide a sense of how the various portions
of the Workbench come into play in a single example—we use the same “tiny
mechanism” shown in Chapters 4 and 6:

[1.1] A-->B ki=20
[1.2] B-->C k2=2
[1.3] C-->B X3 =1

As in Chapter 4, we create a mechanism data structure for [1.1)-[1.3]:

(define tiny-mechanism
*(
¢ (((a1)) ((b1)) 20)
(1) ((c 1)) 2)

(((c1)) (1) 1) ; step-list
O ; constants
O ; sources
O ; sinks
QO ; driven-off
0O» ; functions of time

We could now go ahead and simulate this mechanism numerically, as in the
original discussion; but before doing this, we will first create a mechanism
object and perform graphical analysis on it:
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c<->b <—a

Figure 7.1: Graph of “Tiny Mechanism”
In the original Workbench output, a and the rightmost
arrow are shown in gray, all others in green.

(define tiny-mechanism-object
(make-mechanism-object tiny-mechanism))

(analyze-graphically tiny-mechanism-object)

The Workbench now prints out the results of its analysis. First, the
program asks if we want to see a graph of the original mechanism; we answer
in the affirmative, and see the graph shown in Figure 7.1.

Continuing with its analysis, the Workbench prints out the following on the
display screen:

Network-graph-mechanism:

a--->b Rate constant: 20
b =--=> ¢ Rate constant: 2
c--->b Rate constant: 1

Number of complexes: 3

Number of linkage classes: 1

Dimension of stoichiometric subspace: 2
Deticiency: 0

Reversibility: none

Rule number 2.3 -- Deficiency Theorem part 2 is firing

It the deficiency of the mechanism is 0, and the mechanism
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is not weakly reversible, then the mechanism cannot reach
equilibrium at positive concentrations of all species.

Rule number 3.1 -- Searching for Species to Drop from System is firing

If the zero deficiency theorem stipulates that the mechanism
does not reach equilibrium, then we first examine the
mechanism for species that are reactants only, and hence
cannot enter into any reactions that occur at steady state.
Sequence of Species to Drop: ((a))

Rule number 3.2 -- Creating and Examining Submechanism is firing

We have found that there are species that we can drop from
the original reaction mechanism. We now examine the smaller
mechanism defined by ignoring all reactions with droppable
species among the reactants.

Network-graph-mechanism:
b -—>c¢ Rate constant: 2
¢ —>D Rate constant: 1

Number of complexes: 2

NHumber of linkage classes: 1

Dimension of stoichiometric subspace: 1
Deficiency: 0

Reversibility: strong

Rule number 2.1 -- Deficiency Theorem part 1 is firing
If the deficiency of the mechanism is O and the

mechanism is weakly reversible, then the mechanism must
reach equilibrium at positive (non-zero) concentrations

of all species.

Adding prediction...(nonzero-equilibrium-2 ())
In prose, the Workbench has found that species A should be expected to

decline toward a concentration of zero, and that the remaining mechanism
(steps [1.2] and [1.3]) should reach a stable equilibrium state with positive
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concentrations of both B and C. The program annotates the mechanism object
with these predictions.

Having completed our graphical analysis of the mechanism, we now wish
to do a numerical simulation. In preparation for this, we create lists of run
parameters and graph parameters:

(define tiny-run-parameters
‘((starting-dt 0.025)

(start-time 0.)
(end-time 5.)
(actual-starting-concs
((a3.) (b0.) (c0.))
(integration-method runge-kutta)
(focus~-species (a b c))
(steps-per-display 40)
(end-conditions (end-time))
(maintain-episode-history? ,true)
(episode-change-depth 0)
(graph-window ,*display-graph-window#)
))

(define tiny-graph-parameters
‘((graph-type numeric)
(time-low 0.)
(time-high 5.)
(species-to-graph (¢ b a))
(species-concentration-boundaries
(C0. 3.) (0. 3.) (0. 3.)))
(numeric-limits-for-graphs
((-1. -1. 6. 4.) (-1. -0.5 6. 4.) (-1. -0.5 6. 4.)))
(vindow-regions-to-use
((0 0 400 100) (0 101 400 200) (0 201 400 300)))
(axis-colors-to-use
(8 8 8))
(detault-colors (1 1 1))
(color-procedure ,graph-object-use-default-color)))

Now, simulating the mechanism for 5 seconds yields the graphs of concentra-
tion versus time shown in Figure 7.2. At the end of the run, the Workbench
prints out its analysis of the results as in Chapter 6:

We now begin to analyze the run results.

143



T

"N,
e,

T

A
%‘i

o
.:‘ﬂ
3

m—«

Figure 7.2: Simulation of “Tiny Mechanism”

The grain for the analyzed episode history will be: 0
The feature history of the run:
((short)
(large-decrease a) (rapid-decrease a) (steady-decrease a)
(large-increase b) (rapid-increase b)
(large-increase c) (rapid-increase c) (steady-increase c))
((long)
(large-decrease a) (rapid-decrease a) (steady-decrease a)
(large-decrease b) (steady-decrease b)
(large-increase c) (steady-increase c))
((long) (final)
(large-decrease a) (rapid-decrease a) (steady-decrease a)
(steady-state b) (slow-decrease b) (steady-decrease b)
(steady-state c) (slow-increase c) (steady-increase c))
Analysis variables are now initialized.

The apparent final state of the system:
- ((a (probable-steady-state zero a) () () () () ())
(b (steady-state nonzero b) () () () O m
(c (steady-state nonzero c) () () () O O»n

CHECKING PREDICTION:
Mechanism contains obvious declining sets.
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PREDICTION MET:
((a)) all seem to have at least one species at zero concemtration.

CHECKING PREDICTION:
Mechanism must reach equilibrium with some zero concentrations.

PREDICTION MET:
() all seem to be close to zero concentration and

PREDICTION MET:
(b c) all seem to be at nonzero steady-state concentrations.

Again, the Workbench has announced that it has verified the prediction made
during the graphical analysis phase, and indicates (in the feature summaries)
that species A seems to have approached a concentration of zero, while species
B and C seem to be approaching nonzero steady state concentrations.!

While there is nothing terribly startling about this example, it does il-
lustrate a natural pattern for using the Workbench. Specifically, we perform
the following sequence of tasks:

e Analyze a mechanism graphically to find whatever may be
known or surmised about it beforehand.

¢ Simulate the mechanism numerically.

¢ Summarize and classify the numerical results produced, ver-
ifying if possible whatever predictions were made earlier.

We now try the same pattern of use on a slightly more complicated mecha-
nism.

7.2 N205 Decomposition

The mechanism of N205 decomposition has been used from time to time
throughout this paper as a running example; here we bring together elements

1The penultimate “prediction met” line indicates that there were no zero concentration
sets to check in conjunction with the check for steady states for both B and C.

145



from those previous discussions (as well as new material) to present a second
illustration of the Workbench in use. Once more, the mechanism in question
(as introduced in Chapter 2) is:

[2.1] ¥206 --> NO2 + NO3 ki = 0.002
[2.2] ¥02 + NO3 --> N205 k2 = 0.001
[2.3] NO2 + NO3 --> NO2 + NO + D2 x3 = 30.

[2.4] NO + N2056 --> 3N02 k4 = 4000.

Here, the rate constants are the same as those used in the example shown in
Chapter 5.2 We recall from that discussion that the Workbench made several
conclusions based on graphical analysis: first, that this mechanism must “run
down” with zero concentrations of N20S and either NO2 or NO3; second, that
there were several good candidates for “steady state” candidates (namely,
N205, NO3, or both NO3 and NO). These conclusions are summarized below in
excerpts from the Workbench’s graphical analysis of the mechanism:

Number of complexes: §

Number of linkage classes: 2

Dimension of stoichiometric subspace: 3
Deficiency: 0

Reversibility: none

Rule number 2.3 -- Deficiency Theorem part 2 is firing

If the deficiency of the mechanism is 0, and the mechanism
is not weakly reversible, then the mechanism cannot reach
equilibrium at positive concentrations of all species.

Rule number 4.3 -~ Looking for asymptotic zero concentrations is firing

The mechanism cannot reach equilibrium with all nonzero concentrations.
It also does not contain any *obvious* declining species or sets.

We now look for those sets of species that might asymptotically

have zero concentration.

Possible sets of zero-concentration species: ((no3 n205) (no2 n205))

Subtracting the following zero set: (no3 n205)

2These rate constants are chosen to be consistent with the Chapter 5 example, and are
not taken from the chemical literature.
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Adding prediction...(zero-final-state-1 (no3 n2o§))
This mechanism contains no elementary steps.

Subtracting the following zero set: (no2 n205)
Adding prediction...(zero-final-state-1 (no2 n205))
This mechanism contains no elementary steps.

Rule number §.5 -- Steady State Candidates is firing

We now look for obvious steady state candidates in the mechanism.
We have found some steady-state candidates.

Possible sets of steady-state species: ((n205) (noe3) (no no3))
Adding prediction...(steady-state-~candidates)

Having analyzed the mechanism beforehand, we can now simulate it nu-
merically as described in Chapter 4. When a simulation is performed with
the Gear integrator for 1500 seconds, we obtain the graph shown in Figure
7.3. After the simulation is complete, the Workbench analyzes the numerical
results that it has obtained. Excerpts of its printout are shown below:

We now begin to analyze the run results.
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The grain for the analyzed episode history will be: 0

The feature history of the run:

((short)
(steady-state n206) (steady-decrease n2o5)
(large-increase no) (rapid-increase no) (steady-increase no)
(large-increase no2) (rapid-increase no2) (steady-increase no2)
(rapid-increase no3) (steady-increase no03))

((steady-state n205) (steady-decrease n205)
(large-increase no) (rapid-increase no) (steady-increase no)
(large-increase no2) (rapid-increase no2) (steady-increase no2)
(large-increase no3) (rapid-increase no3) (steady-increase no3))

[20 more episodes]

((Qong) (f£inal)

(large-decrease n205) (steady-decrease n205)
(steady-state no) (slow-decrease no)
(slow-increase no2) (steady-increase no2)
(large-decrease no3) (steady-decrease no3))

The apparent final state of the system:

((n206 (probable-steady-state zero n205) () () () () ()

(no (steady-state nonzero mno) ()
(multiple-oscillations no)
((probably-noise) (probably-noise) (probably-noise) [29 more])
O 0)

(no2 (probable-steady-state nonzero no2) () () () () )

(no3 (probable-steady-state zero no3) () () () () O))

CHECKING PREDICTION:
Mechanism must cease running with some species at zero concentration.

PREDICTION MET:
(zero-final-state-1 (no3 n205)) are all close to zero final concentration.

PREDICTION MET:
(zero-final-state-1 (no3 n205)) seem to have reached a zero steady state.

CHECKING PREDICTION:
There are steady-state possibilities to check.

PREDICTION MET:
(no3) all appear as if they may have long steady states.
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PREDICTION MET:
(no no3) all appear as if they may have long steady states.

Here, the Workbench has produced a long (and not terribly informative)
episode history whose major distinguishing feature is the long final episode in
which NO and NO2 are increasing (slowly) to their asymptotically-approached
steady-state values, and NO3 and N205 are decreasing toward zero concentra-
tion. The large number of intermediate episodes is mainly due to intermittent
“ties” between steps in determining the changes in concentration of different
species.® Additionally, small variations in the concentration of NO are read as
“noisy” oscillations, which the Workbench ignores for the purposes of analy-
sis. Even so, the program is able to identify asymptotic steady states for all
species (two of which—NO and NO2—are at nonzero concentration). These
findings are seen in the feature summaries, listed under the “apparent final
state of the system.” The Workbench goes on to check its findings against
the “predictions” slot in the original mechanism object, and finds that its
predictions have been verified.

As it happens, then, the predictions that the Workbench made before the
simulation began have been met during this run: specifically, NO3 and N205
are both approaching zero concentrations, and both NO3 and NO prove to be
appropriate steady-state candidates. Naturally, these conditions might not
hold for every conceivable run of this mechanism. If the mechanism is run for
a very brief time, for example, the program will fail to verify any predictions:
both NO and NO3 experience brief “jumps” at the beginning of the run (before
the steady state prediction can be verified), and likewise both NO3 and N205
do not approach zero concentration until some time has passed. Slightly
more subtly, it is not hard to alter parameters for the Gear integrator to
render analysis more difficult. For instance, if we use a single-precision Gear
algorithm with a longer time-step (that is, a longer time between numerical
printouts of the IMSL Gear algorithm), then the program is no longer able
to recognize a clear steady state for N205 at the end of the run: the episode
record becomes “muddied” with numerous short episodes resulting from small
numerical errors within the integrator. In this case, then, the episode history

3For instance, the final seventeen episodes are distinguished only by alternating ties
between steps 2.1 and 2.4 in determining the change in concentration of ¥205.
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does not exhibit a long final episode (which the program uses as a signal that
the system has reached a steady state). :

In a sense, we should not be surprised by this dependence of the Work-
bench’s performance on integrator parameters. After all, in order to make
a sensible analysis of numerical results, those results have to be as free of
numerical “artifacts” as we can ensure; if the integrator introduces small er-
rors due (for instance) to roundoff, then the Workbench will have that much
more difficulty identifying patterns such as steady states within the numeri-
cal record. Even so, the fact that the Workbench can be thrown off by small
errors is a source of concern; the program is generally far less tolerant of
“noisy” results than the user. Moreover, this seems like a natural path for
program development: one can imagine strategies that the program could
use to pick appropriate integrator parameters automatically. We will return
to this topic in the final chapter.

7.3 Enzyme Kinetics

In this example we use the Workbench in its capacity as a parameter-
space scanner to illustrate a “classic” example from kinetics textbooks. The
reaction mechanism is that of enzyme catalysis: {43}

[3] E+S <->X <->E+P

'The mechanism illustrated in [3] involves four species: an enzyme (E), a sub-
strate (S), a product (P), and an intermediate species (X, sometimes denoted
ES). The idea here is that E and S react to form an intermediate enzyme-plus-
substrate combination, which eventually releases a (transformed) product
molecule, leaving the enzyme free to combine with additional substrate. The
assumption is also made—a realistic assumption—that the initial enzyme
concentration is low compared to the initial substrate concentration.

We can use the Workbench to investigate the question of how the ini-
tial rate of production of P varies with initial substrate concentration. Our
mechanism is written as follows:
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(define enzyme-mech

(
(
( ((e 1) (s 1)) ((x 1)) 20.)
(((x1)) (e 1) (s 1)) 4.)
( ((x 1)) ((e 1) (p 1)) 8.)
(((e1) (p1)) ((x 1)) 2.))

0O0000»n

We could now, as in previous examples, use the program to perform graphical
analysis on this mechanism; but the results are somewhat obvious. This is
a strongly reversible, zero deficiency mechanism and will clearly reach an
equilibrium state. Our interest, however, is not in the equilibrium state
of this system but rather in its initial “transient” behavior. We therefore
create a run parameters list that includes a parametrized value for the initial
concentration of substrate: '

(define enzyme-run-parameters

‘((starting-dt 0.005)
(start-time 0.)
(end-time 1.) -
(actual-starting-concs o
(e 0.01) (p 0.) (s sconc)(x 0.))) ; note symbolic conc value
(integration-method runge-kutta) '
(focus-species (x))
(steps-per-display 20)
(end-conditions (end-time))
(save-numeric-results? ,true)
(save-qualitative-analysis? ,true)
(save-picture? ,true)
(maintain-episode-history? ,true)
(episode-change-depth 1)
(graph-window ,*display-graph-window*)
)) '

In addition, we create lists of graph parameters and file template names
(which will be omitted here for brevity), and a parameter range list:*

*The parameter name is provided with a special syntax that indicates that this is a
concentration value, rather than a value within the mechanism data structure.
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Figure 7.4: Enzyme Simulation ([S]o = 1M)

(define parametrized-enzyme-param-range-list
‘((parameter-name (conc sconc))
(parameter-low-value 0.5)
(parameter-high-value 10.0)
(parameter-increment 0.5)
(parameter-list ())))

Our purpose is to run repeated simulations of the mechanism (3], using initial
substrate concentrations that vary between 0.5 and 10. We can tell the
Workbench to perform the simulations by evaluating the following expression:

(do-single-parameter-space-scan-with-graphs
*enzyme-mech-object=* :
parametrized-enzyme-file-templates
enzyme-run-parameters
enzyme-graph-parameters
parametrized-enzyme-param-range-list)

The results of two of the resulting sample runs are shown in Figures 7.4 and
7.5.

We can now read back the results of previous runs and graph the final
concentration of P against the initial concentration of S. Because our sim-
ulations are very brief, the final concentration of P (after one second) is a

152



-”.-“'..44'
P —] e
—— . “‘.w"‘.
—— -.._,c-‘".-
——t— -...,.v'"' -
0 . ——w""n -
.01
x —1
0.
| 1 I ] T! . I I ] ! 1
0. ime 1.

Figure 7.5: Enzyme Simulation ([S]o = 10M)

good approximation to the initial rate of production of P. We evaluate the
following expression:
(graph-parameter-scan-files
"/enzymedata/qualanal-"
0 19 (make-retrieve-init-conc-final-conc ’s ’p)
(make-two-numeric-values-graphing-proc
’So 'P£ 0 10 0 0.1))

and the Workbench produces the graph shown in Figure 7.6. The curve
indicated by the points in Figure 7.6 is an experimental verification of the
well-known Michaelis-Menten rate expression for enzyme kinetics:

d [P] (k3(Elo)

dt  t=0 1 + (k2 + k3)/(k1[S]o)

0.08

1 + (0.8/[s]o)

The purpose of this example is not to illustrate any of ‘the more exotic capa-
bilities of the Workbench, but merely to show that the program can be used
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Figure 7.6: Final (P] vs. Initial [S]

as an effective tool for studying “mainstream kinetics.” In fact, the Work-
bench’s numerical capabilities alone provide a flexible (though admittedly
slow) medium for simulation experiments.

7.4 Brusselator

The Brusselator mechanism, introduced in Chapter 4 and used in several
examples thereafter, is a simple “abstract” mechanism capable of generating
oscillatory behavior.{61} Once again, the elementary steps are:

(4.1] A-->X
[4.2] B+X-=>Y+D
[4.3] 2X + Y --> 3X

[4.4] I-->E

Here, we assume that [A] = 1, [B] = 3,and k1 = k2 = 1. In addition, the
concentrations of D and E may be ignored (or treated as identically 0). For

our purposes, the values of k3 and k4 will be treated as parameters to the
rnecha.nism.‘
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Toward the end of Chapter 4, we showed how the Workbench could be
used to run the Brusselator mechanism repeatedly, over a range of values for
the parameters k3 and k4. We can resume that earlier example now, and
show how the qualitative results generated for the series of runs may be used
to create a parameter-space graph. Once more, our data structure for the
parametrized Brusselator is defined as follows:

(define double-parametrized-brusselator
'(

(

( (@) =) 1

C ((®) (x)) ((y) (@) 1)

( ((x2) () ((x 3)) k3)

( ((x)) ((e)) x4)

)

((a 1) (b 3)) ;constant species
() ;sources

() ;sinks

(d e) ; driven off

() ;functions of time

))

And, as seen in Chapter 4, we create a parameter range list and a list of
“templates” for filenames:

(define double-brusselator-param—range-list

‘((parameter-namei k3)
(parameter-low-valuei 0.5)
(parameter-high-valuei 7.5)
(parameter-increment1 1.0)
(parameter-name2 k4)
(parameter-low-value2 0.5)
(parameter-high-value2 4.0)
(parameter-increment2 0.5)
(parameter-list ())))

(define double-parametrized—brusselator—tile-templates
‘("/mydata/brussruns/numbers-*
"/mydata/brussruns/qualanal-"
"/mydata/brussruns/pict-"))
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The lists of run and graph parameters were not included in the Chapter 4
illustration, but for completeness we present them here:

(define double-parametrized-brusselator-run-parameters
¢((starting-dt 0.05)
(start-time 0.)
(end-time 80.)
(actual-starting-concs
((a1.) (63.) (40.) (e0.) (x0.) (y0.)))
(integration-method runge-kutta)
(focus-species (x y))
(steps-per-display 160)
(maintain-episode-history? ,true)
(save-numeric-results? ,true)
(save-qualitative-analysis? ,true)
(save-picture? ,true)
(episode-change-depth 0)
(graph-window ,*display-graph-window*)
))

(define double-parametrized-brusselator-graph-parameters
‘((graph-type numeric)
(time-low 0.)
(time-high 80.)
(species-to-graph (x y))
(species-concentration-boundaries
(Co. 10.) (0. 20.)))
(numeric-limits-for-graphs
((-10. -3. 82 11.) (-10. -2. 82 22.)))
(window-regions-to-use
((0 0 400 150) (0 151 400 300)))
(axis-colors-to-use
(8 8))
(detault-colors (2 3))
(color-procedure
, (make-graph-object-use-reaction-table (4 5 6 7)))
)

One point worth mentioning is the color-procedure entry in the graph-
parameters list. This entry indicates that the color for a given species will
correspond at any moment to the elementary reaction currently dictating
the largest (absolute) change in concentration. Thus, if the largest local
change in [X] is dictated by reaction [4.1], then [X] will be graphed in color
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number 4; if reaction [4.2] is most important, then we will use color 5, and
so on. (Examination of the mechanism shows that [Y] can only be graphed
in either color 5 or 6.) By oberving color changes in the graphs, we can get a
rough overall view of how terms within the differential equations for [X] and
[Y] are changing, corresponding to the “coarse-grained” episode boundaries
mentioned in the previous chapter.®

Finally, we create the appropriate mechanism object and evaluate an
expression that now performs the series of simulations:

(define double-parametrized-brus selator-mech-object
(make-mechanism-object double-parametrized-brusselator))

(do-double-parameter-spacé-scan-vith-graphs
double-parametrized-brusselator-mech-object
double-parametrized-brusselator-file-templates
double-parametrized-brusselator-run-parameters
double-parametrized-brusselator-graph-parameters
double-brusselator-param-range-list)

The Workbench now performs 64 individual simulations of the Brusselator
in sequence; for each simulation, the numerical results are saved along with
the graph of concentrations versus time (in pictorial form) and a summary of
the results of qualitative analysis. Several representative graphs taken from
this series of simulations are shown in Figures 7.7-7.9.

We now have a large number of files that can be retrieved and examined
by other procedures. Currently, the Workbench has a limited repertoire for
processing files of this kind: essentially, sequences of named files may be
retrieved, and numeric or symbolic values from those files may be graphed in
a few “cliched” ways. In this case, we use a procedure that retrieves a series
of qualitative-analysis files with a given template (here, “qualanal-"), looks
for the values of two rate constants (here, the third and fourth rate constant

values), and graphs a symbolic representation of the feature summary within
each file: ~

SFigures 7.7-7.9 are in black and white for the sake of reproducibility, so our color-
coding is not depicted here.
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Figure 7.9: Brusselator (k3 = 1.5, k4 = 0.5)

(graph-parameter-scan-files

"/mydata/brussruns/qualanal-"

0 63 (make-retrieve-two-rate-constants-and-feature-summary 2 3)
(make-selective-two-rate-constants-feature-summary-graphing-proc
k3 'k4 0 8 0 5 (lambda (k3 k4) true)))

When this expression is evaluated, the Workbench reads each of the 64 saved
qualitative-analysis files in sequence, and uses the values of k3 and k4 to
obtain a graph location at which it prints out a representation of the feature
summary for this file. The parameter space graph created is shown in Figure
7.10: the feature summary for both X and Y is shown at each appropriate
location (k3, k4). The string “sO” indicates that a stable oscillation annota-
tion has been found in the feature summary; “SS” indicates a steady-state;
“dO” indicates a damped oscillation that is still at a measurable level at
the simulation’s conclusion; “dS” is a damped oscillation that is too small
to measure by the end of the simulation; and “ S” indicates a run that has
some sort of oscillating pattern early on, but that appears to end in a steady
state.

The boundary between stable and damped oscillations is clearly visible
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Figure 7.10: Brusselator Parameter Space Graph
In the original Workbench output, the string s0s0 is shown
in red; strings SS,S~8, ~S~8, and ~3dS are in green; 4040,
dSd0, and dSdS are in dark blue; and 7?7?77 is in white.
These colors are represented here by stippling, box-outline,
normal-font, and double-outlined entries, respectively.
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in Figure 7.10, and appears with a somewhat parabolic shape toward the left
of the graph. Steady states are identified toward the bottom of the graph
and at the upper left; the entry in the upper left corner at (k3 = 0.5, k4 =
4.0) indicates that this run could not be interpreted by the Workbench. It
is illustrative for the reader to compare Figures 7.7-7.9, the results of several
simulations, with their summary string in Figure 7.10.

The parameter space graph 7.10 can also be compared with theoretical
results obtained by solving for the Brusselator steady-state point and lin-
earizing the differential equations around this point. It is not hard to show
that for our system, the condition for steady-state stability is just:

(5] k4 + (k3/k4%) > 3

The boundary between stable oscillations and steady-states or damped os-
cillations is in agreement with this: that is, stable oscillations are observed
precisely when condition [5] is not met. The Workbench is a bit less suc-
cessful in distinguishing between true (theoretical) damped oscillations and
a steady state. The condition for damped oscillations in this system is:

[el (k4 + (E3/k4%) — 3)2 — (4 k3/k4)) > 0

We should expect to see damped oscillations when conditions [6] and [5] are
both met; if only [5] is met, a steady state (without transient oscillations)
is predicted. As it happens, whenever the Workbench has noted a damped
oscillation for either X or Y, these statements hold; so the program registers
no “false positives.” On the other hand, there are “unsure” identifications of
steady states at three locations—corresponding to the points (1.5, 4.0), (3.5,
4.0), and (6.5, 1.0)—that in fact are theoretical damped-oscillation points.®

80f course, in fairness to the program, even these points are noted as “unsure” in iden-
tification; and it should not be surprising that there is a “gray area” between identifying
(heavily) damped oscillations and a steady state.
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7.5 Oregonator

The Oregonator is a mechanism originally devised by Field and Noyes as a
rough model for the Belousov-Zhabotinskii reaction. A number of variants of
the Oregonator exist; the one used here is described in Nicolis and Prigogine
{61} and Troy {77}. We begin by presenting the mechanism:

[6.1] A +Y --->1X ki = 1.34
[6.2 X+Y --->p k2 = 1.6e9
[6.3] B+X -—=>2X+2 k3 = 8e3
[5.4] 2X --->Q k4 = 4e7
(s.5] Z --—-> 1Y k6

Here, the stoichiometric coefficient f and the rate constant k5 are treated as
parameters to the mechanism. A typical experimental range for f is from
about 0.5 to 2.0, while the range of k5 is from 0 to to about 500.7 In addition,
the concentrations of A and B are treated as constant at 0.06, and P and Q
are “driven off” species.

As in the case of the Brusselator, we create a doubly-parametrized mech-
anism, and simulate it repeatedly using the Gear algorithm. (The various
data structures are analogous to those used for the Brusselator example, and
so will be omitted here for conciseness; the only added feature worth noting
is that we use Y alone as a focus species, and use steps 5.1 and 5.5 alone as
determiners of episode boundaries.) A selection of sample graphs taken from
the sequence of runs is shown in Figures 7.11-7.13.

The Workbench stores qualitative-analysis files, much as in the previous
example; excerpts from several of these, corresponding to the runs shown in

7Although the notion of a “parametrized stoichiometric coefficient” may seem strange
at first, one can view it as shorthand for a class of mechanisms written in standard form.
For instance, the two steps Z --> Yand 2 --> 2Y, both with rate constant k5/2, may be
summarized by the single step Z --> 1.5 Y with rate constant k5. The equivalence may
be seen immediately by comparing the differential equations generated by both alternative
notations.
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Figure 7.11: Oregonator (k5 = 60, f = 0.4)
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Figures 7.11-7.13, are shown here:

Ezcerpts for f = 0.4, k5 = 60.

;Feature analysis
((short) (large-decrease y) (rapid-decrease y) (steady-decrease y))
((long) (final) (large-decrease y) (rapid-decrease y))

;Feature Summaries
(*feature-summaries* 1)
(y (probable-steady-state nonzero y) ()
(multiple-oscillations y) ((uninterpretable) (probably-n01se)) OO

Ezcerpts for f = 0.75, k5 = 60.

;Feature analysis

((long) (large-decrease y) (rapld-decrease y) (steady-decrease y))
((short) (large-increase y) (rapid-increase y))

((long) (large-decrease y) (rapid-decrease y) (steady-decrease y))
((short) (large-increase y) (rapid-increase y))

((long) (large-decrease y) (rapid-decrease y) (steady-decrease y)) -
((short) (large-increase y) (rapid-increase y))
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5 more 2-episode pairs
((long) (large-decrease y) (rapid-decrease y) (steady-decrease y))
((short) (final) (large-decrease y) (rapid-decrease y) (steady-decrease y))

;Feature Summaries
(*feature-summaries* 1)
(y O (stable-oscillation y) () ((stable)) ((stable)) ())

Excerpts for f = 1.1, k = 60.

;Feature analysis
((short) (large-decrease y) (rapid-decrease y) (steady-decrease y))
(Qlong) (final) (large-decrease y) (rapid-decrease y))

;Feature Summaries
(y (probable-steady-state nonzero y) ()
(multiple-oscillations y)
((probably-noise) (probably-noise) (probably-noise)) () ())

And, as before, we can retrieve the stored qualitative summary files and use
these to generate a parameter space graph summarizing the Oregonator’s
behavior. In Figure 7.14, we see the two parameters f and k5 used as axes
for the graph; only stable oscillations or (probable) steady states have been
identified for Y in this graph.

It is illustrative to compare the Workbench’s results with theoretical con-
siderations summarized by Figure 7.15, taken from Nicolis and Prigogine
{61}. The shaded region in Figure 7.15 indicates a parameter space region in
which the lone positive steady-state solution for the Oregonator is unstable;
outside this region, the steady-state is locally stable.® In fact, the parameter
values at which the Workbench has found stable oscillations correspond to
points within the shaded region of Figure 7.15.

8In the unshaded region, the steady-state solution is not always globally stable, how-
ever; at some parameter values in this region there is also a stable limit cycle.
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Figure 7.15: Oregonator Steady-State Stability (from {61})
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Figure 7.16: The Rossler Band (from {4})

7.6 Rossler Band System

In the previous examples, the behavior noted by the Workbench included
oscillations (both stable and damped), and steady states. Just to see that
the Workbench can in fact recognize instances of behavior besides these, we
present a “chemical translation” of a classical chaotic system: the “Rossler
Band.”® The Rdssler Band is described in several texts on chaos {4, 76}; the
“band” is a fractal attractor embedded in three dimensions, and its behavior
derives from a saddle point with one stable eigenvector and two eigenvectors
with complex eigenvalues forming an unstable focus. A portrait of the band
is shown in Figure 7.16; and the chemical mechanism that we will use to
generate this attractor is shown below.!?

°In developing our mechanism, we follow the treatment of Samardzija {70}.

1Qur mechanism employs a step with four reactant molecules, and is thus even more
“unchemical” than the Brusselator; but the Workbench is capable of handling any mech-
anism that obeys the formalism outlined in Chapter 2. :
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Figure 7.17: Simulation of Rdssler System
[6.1] AL + X +2Z --> X +3Z &kt =1.
(6.2] X+ Y --> 2¢ k2 = 1.
(6.3] A2 +X+ Z --> Z+ Pt k3-=1.
[6.4] A3 +X+ Z --> X + P2 k& = 100.
[6.5] Ad +2Y --> 3¢y kS = 0.2
[6.6] 22 --> P3 k6 = 55.
[6.7] AB + X -=> 2% k7 = 200.
(6.8] Y --> P4 k8 = 120.
[6.9] A8 + Z -=> 2Z k9 = 11000.2

The concentrations of species A1, A2, A3, A4, A5, and A6 are all constant at
1, and species P1, P2, P3, and P4 are driven off.

Simulating this mechanism for two seconds (using the Gear integrator)
produces the graph shown in Figure 7.17. The graph for species Y shows a
pattern of repeating “unstable” bursts, punctuated by larger bursts for Z. The
Workbench generates an episode history with little in the way of repeating
patterns (not surprisingly), and produces the following feature summary:
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((z ) (possible-chaotic-oscillation y)

(multiple-oscillations y)

((possibly-chaotic) (uninterpretable) (uninterpretable)
(probably-noise) (uninterpretable) (probably-noise)
(uninterpretable) (probably-noise) (uninterpretable))
similar interpretations of “grainy” patierns)

z O 0O

(multiple-oscillations z)

((probably-noise) (possibly-chaotic) (probably-noise)
(uninterpretable) (probably-noise) (probably-noise)
(probably-noise) (uninterpretable) (probably-noise)
(probably-noise) (uninterpretable))

((uninterpretable)) ()))

The Workbench has classified the pattern for Y as possibly chaotic. It does so
more or less in the absence of any other coherent intepretation; having found
no other explanation for the data, the program is able to link the various in-
dividual oscillations (whose separate interpretations are shown in the feature
summary for Y) into one larger, non-periodic structure.!! The interpretation
for Z is more difficult, and the Workbench has no overall classification; it spots
multiple oscillations (one of which is deemed possibly chaotic), but these oc-
cur too far apart for the program to classify them as part of a continuing
behavior pattern. Conceivably, the program could have a richer vocabulary
for patterns such as that evidenced by Z (such as “intermittent bursts”); we
will return to this topic in the final chapter.

7.7 Chlorite-Iodide Oscillator

In this final example, we will illustrate how the Workbench’s numeric files
and qualitative-analysis data structures may be used by additional Scheme
programs. The mechanism that we will simulate is a chlorite-iodide oscillator
described in Citri and Epstein {17}:

" The rationale for attempting this “linkage” among oscillations is that they appear
close together and have similar characteristics (for instance, they have similar apparent
“periods”).
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(7.1 H+ + HC102 + I- --> HOC1l + HOI k1 = 500

[7.21 HOI + I- + H+ --> I2 k2 = 4.17el1
[7.3] I2 --> HOI + I- + H+ k3 = 7.413
[7.41 HC102 + HOI --> HIO2 + HOCl k4 = 6.0e7
[7.5] HOCl + I- --> HOI + Cl- k5 = 1.4e8
[(7.6] HIO2 + I- + H+ --> 2HOI k8 = 1.0e6
[7.7] 2HO0I --> H+ + I- + HIO2 X7 = 25.
[7.8] 2HI02 --> HOI + IO3- + H+ k8 = 3000.
[7.9] HIO2 + HOI --> I03- + I- + 2H+ k9 = 230.
[7.10] HIO2 + HOC1l --> I03- + Cl- + 2B+ k10 = 1000.

The concentration of H+ is constant at 0.01; there are sources for both I-
and HC102, and sinks for all species.!?

We are going to simulate this mechanism for 40 seconds; but just out
of interest, we can precede our simulation with graphical analysis of the
mechanism. Not unexpectedly, the mechanism has a deficiency greater than
Z€ero:

Number of complexes: 23

Number of linkage classes: 7

Dimension of stoichiometric subspace: 8
Deficiency: 8

Reversibility: none

so none of the “obvious” theorems apply. The Workbench proceeds to look
for catalytic and autocatalytic pathways, and its findings for the latter are
shown here:

12Specifically, the source and sink flow rate terms are all 0.098, and the source concen-
trations of I- and HC102 are 0.004 and 0.0025, respectively.
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Autocatalytic pathways:
(((((hclo2) (hoi)) ((hio2) (hocl)) 60000000.)
(((hio2) (i-)) ((hoi 2)) 10000.)))
(((((hio2) (i-)) ((hoi 2)) 10000.)
(((hclo2) (hoi)) ((hio2) (hocl)) 60000000. unknown)))

The Workbench has found two two-step autocatalytic pathways in the mech-
anism. The first is a combination of steps [7.4] and [7.6], which involves
autocatalytic production of HOI (assuming that HC102 and I- are temporar-
ily in excess):

6.0e7

1.0e6

[7.4] HC102 + HOI --> HIO2 + HOC1 x4
[7.6] HIO2 + I- + H¢ --> 2HOI k6

The second is, in fact, the same pair of reactions—but written in opposite
order. In this order, the autocatalysis for HI02 is visible (again, HC102 and
I- must be at sufficiently sizable concentration):

[7r.6] HID2 + I- + H+ --> 2HOI k6
[7.4] HC102 + HOI --> HIO2 + HOCl k4

1.0e8
6.0e7

The only other noteworthy aspect of the Workbench’s analysis is that it
finds a possible steady-state candidate in I-, based on the wide variation
in rate constants for reactions producing and consuming this species. As it
happens, I- exhibits oscillations during the run, and it also exhibits a period
of time during which a steady-state approximation is appropriate. We can
see this by viewing Figure 7.18, the graph produced by simulating [7.1]-[7.10]
for 40 seconds. Here, we see I- graphed at two different resolutions; the top
graph is a hundred-fold expansion of the other’s lowest one percent. Viewed
at “coarse grain,” in the bottom graph, I- appears to drop off toward zero
concentration. A closer look, in the top graph, reveals that I- is in fact
oscillating after about 21 seconds; but indeed, the period between 12 and 21
seconds fits the steady-state approximation for I-.

Once the simulation is complete, the Workbench performs qualitative
analysis on the numerical results.’® Excerpts from the Workbench’s analysis
are shown below:

13We have used I- as the only focus species for this run.
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Figure 7.18: Chlorite-Iodide Oscillator Simulation

There are apparent oscillations for species: i-
Only one oscillation structure was found.

The oscillations for i- appear to be stable.

The oscillations appear to begin at time: 22.025

with average amplitude 1.4533946076111112e-5

and average period .9513890000000002.

The typical features of an oscillation for i- are shown below:

Oscillation beginning at time: 37.25

Features:
((short) (large-decrease i-) (rapid-decrease i-) (steady-decrease i-))
Episode begins at time: 37.525002 '
Important step(s):

(((12)) ((hoi) (i-) (h+)) 7.413)

((wide-swing i-))
Episode begins at time: 37.549999

Important step(s):
(((hoi) (i-) (h+)) ((i2)) 417000000000.)

At the end of the run, oscillations were still apparent.
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The apparent final state of the system:
((i- () (stable-oscillation i-) () ((stable)) O (O))

CBECKING PREDICTION:
There are steady-state possibilities to check.

PREDICTION MET: »
(i-) all appear as if they may have long steady states.

The Workbench has identified stable oscillations for I-, and provides a “typi-
cal episode sequence” (here, consisting of two episodes) for these oscillations.
The program then goes on to check its steady-state prediction, and finds that
the prediction is met. Although it would be nice to report that the Work-
bench has identified the period from 12 to 21 seconds as the “steady-state
period” for species I-, in point of fact closer examination shows that the
Workbench has identified the entire period from 12.2 onward as a reasonable
match for this approximation. (In effect, then, the Workbench has used the
“coarse-grained view” to sustain this prediction.)

So far, our example is a challenging one, but we have seen no new uses
for the Workbench. However, it is worth pausing to consider Figure 7.18
once more, and to imagine what kinds of numerical analysis we might want
to perform on this record. A reasonable idea is to study the oscillations of
I- by looking at a power spectrum, as mentioned in the previous chapter;
but we have to be cautious in doing so. Using an FFT algorithm on the
entire numerical record of Figure 7.18 isn’t sensible—the initial twelve sec-
onds muddy the spectrum of the concluding oscillations. Instead, we want
to perform an FFT only on some integral number of complete oscillations
chosen from the end of the run.

Identifying a reasonable “window” of results to pass to an FFT algo-
rithm is—like identifying the presence .of oscillations—a task typically left
to the chemist. But because the Workbench has produced qualitative data
structures that can be used to find both the onset and known conclusion
of oscillations, we can now write a program that retrieves only a reasonable
chunk of the numerical results, and then produces a power spectrum for this
chunk only. We evaluate the following expression:
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Figure 7.19: Two Power Spectra of I- Results

(define *iodide-spectrum#
(get-power-spectrum-of-last-oscillating-region ’i-))

and thus create a power spectrum for only a particular time-period!* of our
results. We have graphed this spectrum at the bottom of Figure 7.19; the
horizontal axis corresponds to frequencies between 0 and 20 sec~!. The large
peak (besides the “DC component” at far left) corresponds to a frequency
of 1.06 (close to the Workbench’s identified value of 1.05). Interestingly,
additional harmonic peaks are also visible.

The upper graph in Figure 7.19 is the result of calling an FFT algorithm
on the entire numerical record of Figure 7.18. (The y-range for the upper
graph is much larger than that for the finer-grained graph below it.) As the
figure shows, the structure visible in the power spectrum of the lower graph
has been lost in the Fourier transform of our entire record. Once again, the
central point is not that such a windowing of data is useful (obviously it is),
nor that it is especially difficult (we could perform this task by eye), but
rather that the Workbench has produced data structures that allow a pro-
gram to perform this task with relative ease. We could now imagine adding

4Specifically, the period from 22.025 until 39.15.
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Chapter 8

Related and Future Work

The previous chapters have been devoted to a close-up description of the
Kineticist’s Workbench—how it has been designed and implemented, and
how it can be used. In this final chapter, we take a step back and examine
the Workbench in relation to other work and to its own goals. We begin
by looking at related work in the fields of chemical simulation, qualitative
physics, and mixed symbolic/numerical computation. This summary of re-
lated work provides background for the discussion that follows: a portrait of
the role that qualitative reasoning may eventually play in the creation of truly
useful scientific tools. We then explore the myriad flaws in the Workbench
implementation, and how these may be addressed by subsequent work; and
finally, we conclude with a post mortem critique of the Workbench design.

8.1 Related Work

8.1.1 Chemistry Simulators

As noted in Chapter 2, there are numerous well-developed systems for
performing numerical simulation of chemical mechanisms. One program,
Acuchem {12}, runs on PCs and contains most of the numerical features of
the Workbench: it allows the user to specify reactions and rate constants in
a symbolic input file, and then integrates the appropriate system of ODEs
using either a Runge-Kutta or Gear integrator, graphing the results on the
display screen. Unlike the Workbench, Acuchem does not allow graphing
of arbitrary functions of state; it does not allow termolecular steps (though
these can be effectively created via concatenating simpler steps); it does
not include parametrized mechanisms; it does not include functions-of-time
species (which the Workbench can use with its Runge-Kutta integrator); and
its graphics routines are less flexible and do not employ color graphics. Even
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s0, the core of the Workbench’s numerical module is captured by Acuchem
(no doubt with greater speed), and the two programs share some limitations
in that they both model homogeneous, isothermal systems exclusively.

Finzel and Moore {37} describe a kinetics simulation program for a DEC-
10 computer; their program is similar to Acuchem, and has greater flexibility
for graphing (though less than the Workbench). However, it is not clear
whether the Finzel-Moore program allows zeroth-order reactions (as does
Acuchem), and it apparently does not contain the additional special features
mentioned in the previous paragraph. Shacham and Cutlip {73} discuss a
program which, like Finzel and Moore’s, is designed mainly for pedagogical
purposes. The Shacham-Cutlip program is tailored for the PLATO educa-
tional system; it requires differential equations (rather than mechanisms)
as input, and uses only a Runge-Kutta integrator (either explicit or im-
plicit). On the positive side, unlike the other programs described so far, the
Shacham-Cutlip program can solve systems of linear and nonlinear equations
(the Workbench can solve some systems of equations, but only in the context
of its graphical analysis of mechanisms). The system introduced by Edelson
{23} is also similar to Finzel and Moore’s; the added feature here is an abil-
ity to check reactions for atomic balance, and to check simulation results for
certain types of conservation laws.!

The program described by Byrne {13} is a numerical simulator more
powerful than the Workbench or the other programs described above. His
EPISODE program allows a much richer form for differential equations than
that assumed by the Workbench, and is aimed at simulating somewhat more
complex chemical systems (such as atmospheric systems with daily variations
in temperature). Another sophisticated program, described by Bader et al
{5}, is a large-scale professional simulator for ODEs derived from chemical
systems; while Hindmarsh {46} reviews a collection of numerical routines for
solving and integrating ODE systems.

Many more examples could be cited, but these should provide a represen-
tative sampling of chemical simulators. In every case, these systems perform
exclusively numerical computations (or perhaps near-exclusively: a few in-

11t is unclear from Edelson’s paper whether his system actively disallows “abstract”
mechanisms such as the Brusselator, in which reactions do not balance atomically.
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clude algebraic techniques for solving systems of equations, and Edelson’s
program does atomic balancing). The consequences of this limitation were
first discussed in Chapter 2, and we will return to this topic in the next
section.

Graphical heuristics for chemical systems have been incorporated into
a powerful computer program written in APL by Clarke {18}. Clarke’s
program includes some techniques not contained in the Workbench (though
the reverse is also true). Clarke’s program also uses notions of “fast” and
“slow” species (rather than reactions; “fast” species may be thought of as
a generalization of “steady-state” species), and allows the user to specify
sets of fast species interactively. There is no indication in Clarke’s paper
that his program is linked to a numerical simulation module; nor does the
program use rate constant information to assist the user, e.g., by locating
global equilibrium states numerically. On the other hand, Clarke’s program
is capable of analyzing certain complex mechanisms (such as the Oregonator)
that are beyond the current capabilities of the Workbench.

8.1.2 Qualitative Physics

Many of the techniques incorporated in the Workbench have analogues—
often more completely developed analogues—in the field of “qualitative physics.”
This is a broad term that encompasses a wide range of research; but generally
(to venture a one-sentence summary), qualitative physicists seek to develop
intuitive non-mathematical formalisms for explaining and simulating physi-
cal phenomena. In pursuing this goal, they face some of the same issues as
the Workbench: how to summarize physical events in meaningful ways, how
to represent phenomena that take place on vastly different time scales, how
to make reasonable predictions of a system’s behavior from its structure.

The Workbench uses the episode data structure (described in Chapter 6)
as its primary method for “descriptive chunking” of simulation results. These
“episodes” are reminiscent of the notjon described by the same term in de
Kleer and Brown’s {22} seminal paper in qualitative physics. De Kleer and
Brown’s emphasis is on the modelling of multicomponent physical devices,
and an “episode” for them is a period of time during which all the device’s
individual components (such as valves, springs, etc.) have unchanging states:
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for instance, an episode might consist of the time during which a valve is open
and a spring exerting a positive upward force. In this sense, the de Kleer and
Brown “episode” is like the Workbench’s (both are based upon the notion of
“temporarily unchanging state descriptions”); and in each case, the episode
can be the basis of a historical summary of some process.

There are important differences between the two notions, however. De
Kleer and Brown construct their episodes not by analyzing numerical re-
sults, but rather by “qualitative simulation”; first they construct a formal
qualitative description of a device (including rules that link the behavior of
the components), and then they simulate the device via those rules (“conflu-
ences,” in their terminology). There is a great deal more detail that could be
supplied, but the main point here is that for de Kleer and Brown, episodes
represent possible time periods of a qualitatively-simulated device, while for
the Workbench they represent periods of time derived from interpreting a
numerical record. Again, though, it is worth noting that both episode no-
tions are motivated by the need to find an intuitive “parsing” for physical
phenomena.

The same thread of thought can be detected in a number of important
qualitative physics papers: Forbus {38} models processes via a series of “pro-
cess episodes” in which state quantities of various objects of interest remain
constant; Williams {80} models circuits via transitions between “operating
regions”; de Kleer {21} models simple mechanics scenarios by chunking the
events into motions occurring under specific conditions (eg, the motion of a
sliding block on a segment of track with a constant slope). Indeed, for anyone
concerned with providing meaningful descriptions of physical phenomena—
however those phenomena may be simulated—the issue of finding boundary
points within the historical record is central.. The Workbench’s solution to
this problem is more prosaic than the other strategies mentioned here, since
the Workbench is able to work from both a numerical record and a known,
uncontroversial formalism that generates that record. Even for the Work-
bench, however, the parsing problem is not easy; nor has the problem been
completely solved, as can be seen by examining the less-than-useful episode
history of nitrogen pentoxide decomposition in Chapter 7.

A second theme that the Workbench shares with qualitative physics is
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the representation of phenomena whose “sub-processes” operate on widely
varying time scales. The Workbench looks for standard patterns of interest
to the kineticist, such as rapid equilibria; these patterns enable the chemist
to understand a given complex system as the (constrained) interaction be-
tween two simpler subsystems. In the realm of qualitative physics, Kuipers
{52} seeks a similar decomposition between systems; as an example, he pro-
vides a qualitative simulation of physiological water and sodium balance,
in which the two processes interact, but the former process can be viewed
as much faster than the latter. In Kuipers’ system, unlike the Workbench,
the different time scales are not deduced from structural information, but
rather must be explicitly provided to the program, which can then use these
time-scale specifications to treat slow processes as constant relative to faster
ones. Similar issues can be seen in Davis’ {20}paper on order-of-magnitude
reasoning in qualitative systems; his concerns are more general than just
time-scale differences (they also include interactions between, eg, particles of
widely varying mass), but include phenomena like a “quickly settling control
parameter.” :

Representing widely varying time-scales leads to considerations of prob-
lems involving “qualitative arithmetic,” since there is a need to express no-
tions like “quantity x is negligible compared to quantity y.” Raiman {65}
and Mavrovouniotis and Stephanopoulos {60} describe two formalisms for
approximate arithmetic statements of this kind. The former includes basic
relational concepts like “is negligible compared to,” and develops deductive
rules such as “If A is negligible compared to B and B to C, then A is negligible
compared to C.” Mavrovouniotis and Stephanopoulos have a more extensive
and powerful formalism that (unlike Raiman’s) combines approximate and
exact (numerical) computation. The Workbench in fact must compare ex-
pressions that mix symbolic and numerical quantities®, but does not require
anything like the power of Mavrovouniotis and Stephanopoulos’ system, since
the form of expressions being compared is highly restricted.

Predicting the behavior of a mechanism from its structure is an impor-
tant aspect of the Workbench’s operation; likewise, in qualitative physics,
the commonly-encountered notion of “envisionment” may be seen as an at-
tempt to understand the possible alternative behavior patterns of a physical

2 As described in Chapter 5.
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system.{39} The term has been given slightly varying meanings, but typ-
ically a qualitative physics program engages in envisionment when it uses
known qualitative relationships between state variables to generate all pos-
sible internally consistent qualitative behaviors for a given system. A good
example of the idea can be seen in de Kleer and Brown’s paper, in which the
possible behaviors of a pressure regulator are summarized in a state transi-
tion diagram; in this case, the envisionment process would be responsible for
generating some or all allowable paths through the diagram.

The Workbench’s techniques for predicting mechanism behavior are in
some cases much weaker than those of qualitative physicists: about com-
plex mechanisms, the program is not able to say very much. On the other
hand, techniques such as the Zero Deficiency Theorem are much more pow-
erful than most tools at hand for qualitative reasoning. The Zero Deficiency
Theorem, after all, is able to place fairly tight restrictions on the behav-
ior of those mechanisms to which it applies whereas the most commonly
encountered problem for qualitative envisioning is an overgeneration of pos-
sible behaviors.{54} In some sense, however, the Zero Deficiency Theorem is
not really “qualitative”; it cannot be rephrased (in any way that I know of)
in purely intuitive terms. The Zero Deficiency Theorem (like other similar
techniques) is more in the nature of a “symbolic enhancement” to numerical
computation; and we now turn our attention to other work along these lines.

8.1.8 Combining Symbolic and Numerical Computation

It is in fact hard to make a clean distinction between “symbolic” and
“qualitative” methods. Programs that employ qualitative reasoning almost
inevitably involve symbolic processing of some sort; but the converse is not
true. The term “symbolic methods” often applies to techniques involving
computer algebra, for instance; automatic deductions using predicate calcu-
lus might also fall under this heading. Some techniques, like those involving
approximate arithmetic, are harder to classify—and indeed, it may not ul-
timately be terribly important whether a technique is labelled “qualitative”
or “symbolic.” For our purposes, a symbolic (as opposed to qualitative)
technique might be defined as a primarily mathematical technique that em-
ploys symbolic data; the term “qualitative” implies an attempt to represent
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intuitive or “naive” concepts computationally.

Regardless of these fine semantic distinctions, some of the techniques
employed in the Workbench—the Zero Deficiency Theorem, for instance—are
arguably less qualitative than others. In a similar vein, the program by Clarke
mentioned earlier seems to fall more on the symbolic end of the spectrum.
There are other examples in which computer algebra is used to study the
behavior of systems of ODEs: Rand and Keith {66} describe a MACSYMA
program that derives an expression for the center manifold of a system with
one or more zero eigenvalues (and all others negative). The main example in
their paper is not taken from chemistry, but the same types of calculations
can be used to study the behavior of nonlinear systems at bifurcation points.
Hanusse {45} discusses a symbolic “reaction scheme translator” that looks for
classes of bifurcations in ODEs derived from chemical mechanisms; Hanusse’s
system is also part of a larger simulation package that performs numerical
integration.

There are other examples of symbolic/numerical computation that are
closer to the Workbench in their focus upon the behavior of parametrized
dynamical systems. Gladd and Krall {41}, for instance, describe a pro-
gram that uses both Lisp and FORTRAN code to perform parameter space
searches. In their program, the user notates the results of runs symbolically
(by labelling them as “oscillating” or “chaotic” or whatever); the program
can then use these labelled parameter scans to suggest parameter step-sizes
and initial state values for future runs. Unlike the Workbench, Gladd and
Krall’s program does not appear to do any interpretation of numerical re-
sults itself. Abelson’s Bifurcation Interpreter {1} explores the behavior of
parametrized nonlinear maps and identifies the types of bifurcations encoun-
tered as the (single) parameter changes. The Bifurcation Interpreter, unlike
the Workbench, varies parameter step-sizes to investigate regions of bifur-
cations more accurately. Sacks’ Piecewise Linear Reasoner program {68}
constructs qualitative descriptions of solutions for differential equations; it
approximates nonlinear systems with piecewise linear systems, and checks the
approximation with Sacks’ own Qualitative Mathematical Reasoning pro-
gram. The Piecewise Linear Reasoner represents a marvelous welding of
symbolic and numerical methods; on the problematic side, it is not clear
how Sacks’ transition-state formalism for system behavior extends to com-
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plex systems with a phase space of three or more dimensions. Finally, Yip’s
KAM program {82, 83} shares with the Workbench the goal of classifying the
results of its numerical simulations—in the case of KAM, the systems being
studied are Hamiltonian maps. KAM uses a Euclidean minimal spanning
tree algorithm to classify the types of orbits generated by these maps, and
uses knowledge of dynamics to locate “expected” orbits that the simulation
has not yet produced. '

All these programs represent efforts to integrate symbolic and numerical
processing for particular classes of problems—Hamiltonian maps (Yip), maps
with attractors (Abelson), two-dimensional systems (Sacks)—in much the
same spirit as the Workbench focuses on chemical mechanisms. A larger-scale
effort, Abelson and Sussman’s Dynamicist’s Workbench {3}, may be seen
as an attempt to create a special-purpose language (embedded in Scheme)
in which symbolic and numerical processing can be easily combined. This
system is more in line with the concerns of the following section, and we will
return to the Dynamicist’s Workbench a bit later on.

8.2 Philosophical Reflections I:

Beyond the Purely Numerical in Scientific Computation

The Kineticist’s Workbench is an exercise in combining different kinds
of programming paradigms—numerical computation, graph algorithms, “ap-
proximative” arithmetic, symbolic interpretation of numerical results. None
of the individual techniques in the program is particularly arcane; most have
been implemented at one time or another in earlier existing programs. What
makes the Workbench potentially interesting as a computer science project
is the attempt to combine all of these different programming “styles” syner-
gistically, so that they can communicate with and support one another. The
Workbench is thus not devoted to studying a particular numerical method or
symbolic representation, but is rather a prototype for a complete, coherent
tool for scientific computation. Ideally, such a tool should provide the scien-
tist with something approximating an “automated assistant” specializing in
simulation.
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I do not in fact believe that the Workbench is more than a partial success
in this regard. The two sections that follow this one will be devoted to a
dissection of various problems and flaws in the program, as well as directions
for future work. But before embarking on such a critique, it is worth devoting
some reflection to the ideal toward which the Workbench project is directed.

Scientific computation should support the reasoning processes and cre-
ative expression of the scientist. This statement alone implies a kind of
heterogeneity of methods that need to be incorporated into scientific tools.
After all, a scientist confronted with a complex system—a chemical reaction,
for example—must think about that system from a variety of viewpoints. He
must observe the events of the reaction itself closely, looking for “interesting
events.” (Are there rapid jumps in concentrations? Are there unexpected
patterns in the numerical results? Do the numerical results resemble those of
other known reactions?) He must imagine different experimental techniques
that could be brought to bear on this system. (Again, there might be analo-
gies with other systems: if an earlier reaction was successfully studied via
a relaxation experiment, perhaps this new one could be also.) He must use
his knowledge of real-world chemistry, and of other well-studied reactions, to
propose a mechanism, and might spend some time tinkering with this mecha-
nism until it looks capable of generating behavior similar to that observed in
the laboratory. Then he must simulate the mechanism numerically, scanning
parameters, looking for patterns within the numerical results, and explain-
ing those results with reference to the specific reactions in his hypothetical
model.

Throughout this process, the scientist reasons “visually,” by noticing
phenomena in the world and by looking at graphs; “numerically,” by per-
forming mathematical tasks—algebraic simplification, comparisons and ap-
proximations, numerical integration; “symbolically,” by describing certain
phenomena with terms like rapid, large, oscillating, stable, autocatalytic, in-
termittent; “pictorially,” by imagining the results of certain experiments or
processes; “encyclopedically,” by a knowledge of other similar reactions and
phenomena. And throughout this process, an appropriately-devised compu-
tational tool could provide assistance: by looking for interesting patterns
in experimental results from the laboratory and simulations; by perform-
ing numerical integration and other mathematical tasks; by labelling results
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with symbolic descriptors; by presenting quick pictorial approximations of
simulations; by accessing databases of known reaction mechanisms and ex-
perimental results.

As mentioned earlier, in Chapter 2, computers are employed only for a few
select tasks in this litany. Generally they act as number-crunching devices,
and occasionally are called upon to do symbolic algebra or imaginative data
presentation. But even among these limited tasks, there is little cooperation:
no commonly-used program that I know of can use numerical results to sug-
gest algebraic simplifications (e.g., by noticing that a particular state variable
is effectively constant during a simulation). And of course, even if these few
typically-automated techniques were exploited much more effectively, there
would still be huge areas of potential computer usage left untapped.

Computers are indeed superb number-crunchers, and numerical compu-
tation is a relatively advanced art. But because the numerical aspect of
computation has advanced so far, and in such isolation, the scientist is often
faced with a daunting problem of recent vintage: how to predict, interpret,
and manage the reams of data so easily produced by machines. Numerical
programs generate data, but offer little or no assistance in understanding
that data. '

Qualitative physics represents a type of response to this problem. In
fact, the previous complaints about purely numerical computation are heard
frequently from researchers in qualitative physics. Consider for instance the
following passage from de Kleer and Brown {22}:

The behavior of a physical system can be described by the exact

values of its variables (forces, velocities, positions, pressures, etc.)

at each time instant. Such a description, although complete, fails to

provide much insight into how the system functions. The insightful

concepts and distinctions are usually qualitative, but they are em-

bedded within the much more complex framework established by
. continuous real-valued variables and differential equations.

The complaints are valid; what, then, should be the response of the com-
puter scientist? Much of the effort in qualitative physics has gone toward re-
placing numerical formalisms with new, qualitative formalisms on the ground
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that these are simpler, more intuitive, and more representative of human
thought.® Indeed, the sentence following the quote above reads,

Our long-term goal is to develop an alternate physics in which these
same concepts are derived from a far simpler, but nevertheless for-
mal, qualitative basis.

The goal of creating a new, simple formalism for physical phenomena
is ambitious, and much of the work in this direction has been fascinating
and useful. Qualitative formalisms may well be of particular interest in de-
scribing systems for which a mathematical treatment is grossly incomplete
or unavailable (cf. {40}). My own view, however, is that in developing com-
putational tools for scientists, qualitative reasoning should be used not to
supplant numerical computation but rather to enrich it. Often scientists are
indeed interested in obtaining a numerical answer: a steady-state concentra-
tion, a power-law relationship between variables, a parameter value at which
a bifurcation occurs, a critical concentration at which oscillations begin. Nu-
merical computation is indispensable to this task; but why not support that
computation with programs that understand concepts like “steady state,”
“power-law,” “bifurcation,” and so on? '

This, then, should be one of the important goals of research in qualita-
tive reasoning: to find ways of cooperating with numerical techniques and
thereby increasing the expressiveness of scientific computation. Indeed the
synergy being proposed here should extend beyond qualitative reasoning and
include other types of symbolic (and less openly “intuitive”) formalisms, such
as algebra, as suggested in the previous section. The benefits of such het-
erogeneous cooperation would be enormous, and could take a huge variety
of forms; but in the interest of providing a few concrete examples, the fol-
lowing paragraphs suggest some particular tasks for which the combination
of numerical and qualitative computation would be especially well-suited.

8.2.1 Using Qualitative Interpretation to Guide Numerical Work

In the previous chapter we saw several examples showing how the Work-

3Researchers in qualitative physics display different opinions on the question of whether
their programs should in fact represent naive or expert cognition. (cf. {40, 69})

186



bench can be used to perform a parameter-space scan—that is, to vary one or
two parameters and classify the behavior of the mechanism as those parame-
ters change. Typically, computers are used to perform such scans iteratively,
parameter value by parameter value, without interpretation; the Workbench
does this as well but can produce a graph (like Figure 10 in the previous
chapter) indicating its interpretation of the mechanism’s behavior during
each run. This is all well and good, but another issue becomes immediately
apparent when looking at these parameter space graphs. We notice that
there are some relatively uninteresting regions, in which mechanism behav-
ior does not change much over large variations in parameters, and there are
also more intriguing regions in which mechanism behavior changes from one
type of behavior (eg, damped oscillations) to another type of behavior (eg,
stable oscillations). These latter regions are the ones we would most like to
focus our attention on—we would like the parameter step-size to be much
finer so that we can get an accurate picture of the boundaries between dif-
ferent behavior patterns. On the other hand, we don’t need nearly as much
detail in the more uninteresting regions of the parameter space graph.

What we would like then, is a tool that uses its judgment of system
behavior to dictate, on the fly, the fineness of the parameter step size. In fact,
both KAM and the Bifurcation Interpreter do have this capability, though
the Workbench at present does not; the main point, however, is that such
capabilities could conceivably be a common attribute of simulation programs.
Qualitative interpretation, in other words, is not just a frill or afterthought
tacked on to a numerical routine, but rather can be an integral part of the
simulation process.

More generally, qualitative interpretation can be used to suggest appropri-
ate numerical routines and parameters.{2} The Workbench exhibits a hint
of this talent in its parameter-scanning process: when a given simulation
fails to produce recognizable behavior, the Workbench tries one more run of
twice the length and half the time-step in the hope that this will produce
an unambiguously interpretable behavior pattern. More generally, though, a
simulation program could be used to suggest whether, eg, the Gear or Runge-
Kutta integrator should be used based on initial “dry runs” (in the case of
the Workbench, this decision is left to the sometimes unwilling user); or the
program could vary the time between Gear integrator read-outs depending
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on how interesting the system behavior is (for instance, long flat concen-
tration values could be summarized by a few data points, while “spikes” of

concentration like those seen in the Oregonator runs could be shown at a
high level of detail). ' '

It may well be the case that new numerical methods are suggested by the
incursion of qualitative interpretation. Consider, for instance the following
simple mechanism:

[1] A <=>B -—->¢

Now, suppose we are told that the equilibrium between A and B is extremely
fast relative to the conversion reaction between B and C. If we wish to simulate
the mechanism [1] numerically, we have to choose an integration algorithm—
and because the rates of the reactions vary so widely in this instance, we are
likely to choose a high-powered algorithm like the Gear integrator. But we
know that in some sense all this numerical power is unnecessary: the system
is essentially a first-order reaction

21 x -->¢

in which X may be viewed as a kind of “compound species” consisting of a
near-constant ratio of A to B concentrations. In other words, we could use
a simple integrator to study this mechanism, as long as we can express the
notion that the system is constrained to maintain a constant ratio [A]/[B].
Chemists make these approximations on their own, but there is no way of
directly representing the approximation to the computer, and no way of
expressing a “constrained integration” algorithm. These are the sorts of
numerical issues that could conceivably come to the fore once qualitative
concepts such as “fast equilibrium” find routine computational expression.

8.2.2 Using Qualitative Interpretation to Guide Data Management

In studying chemical mechanisms, it is often of interest to find classes of
mechanisms with a particular structural feature or type of behavior. Noyes
{63}, for instance, lists a set of structural features (including the presence of
an intermediate species shared by two “competing” sets of reactions) common
to oscillating mechanisms. We might therefore plausibly expect some chemist
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to ask a question like “Which mechanisms studied over the past decade have
this kind of intermediate?” To answer this question, the chemist must do
a search of the literature; but one can imagine a “mechanism database” in
which concepts such as “intermediate species” are directly represented and
retrievable. Potentially, such a database could enable the chemist to find (for
instance) all chlorite-iodide mechanisms that exhibit relaxation oscillations;
or all mechanisms that exhibit a parameter-space graph similar to that of
the Oregonator.

More powerfully, such a database could be accessible not only to the
chemist but to the computer as well. We might imagine a program that, as it
generates a parameter space graph, can retrieve already-existing graphs with
similar characteristics; thus a program could report (say) that it has observed
behavior similar to that of a certain enzyme reaction. Or the program might
automatically compare the behavior of a given mechanism to the recorded
behavior of other, structurally similar mechanisms.

8.2.3 Mizing Qualitative and Quantitative Representations

A bit earlier in this discussion, the notion of “constrained numerical in-
tegration” was introduced in a speculative way. The idea is that we want
to represent some system partly through “standard” methods of differential
equations, and partly through a formalism for expressing known constraints.
Taking this idea a step further, we might begin to imagine a broader class of
simulation strategies that enable us to freely mix differential equation models
with elements of a more qualitative nature.

As an example of what this type of simulation might look like, we can
consider an example drawn from outside the realm of chemistry: a water-
pump. This is the type of engineered, multicomponent device that is often
the subject of qualitative explanations; but suppose we wanted to develop
a simulation language suitable for predicting the behavior of such a device.*
Certain portions of the pump are best described by differential equations: a
water tank with open inlet and outlet valves, for instance. But other portions

4The specific type of pump being referred to here is explained—qualitatively—in
Macaulay.{57} '
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of the pump—valves, for example—might best be modelled as computational
elements that obey logical constraints such as “if the pressure on one side of
the valve is greater than the pressure on the other, then the state is open,
otherwise it is closed.” In other words, those portions of the device that lend
themselves to the type of formalism suggested by de Kleer and Brown could
be represented appropriately; these are precisely those elements for which
accurate numerical representations are unavailable, numerically expensive, or
hideously complicated. On the other hand, those portions of the device that
lend themselves to straightforward numerical treatment can be modelled that
way (rather than, eg, treating a water tank as something that goes through
logical states like “empty” “part-full” and “full”).

Such speculation is much harder to put into practice, of course, than it is
to generate. What is imagined here is a natural computational formalism for
mixing differential equations and symbolic elements into a single simulation
language.

The first major step toward such a system is discernible in the Dynam-
icist’s Workbench {3}, whose name suggested that of the project described
in this paper. The Dynamicist’s Workbench is a collection of procedures
designed for simulation of dynamical systems; it uses algebraic expressions
that can be treated either symbolically (for instance, for the purpose of sim-
plification) or numerically (by evaluating an expression with certain bindings
for variables). The program also allows the creation of elements (like resis-
tors) that are expressed in terms of constraints between variables. Probably
the most problematic aspect of the Dynamicist’s Workbench is its forbidding
(Scheme) syntax and lack of user-interface features, a topic to which we will
return later. '

It should also be mentioned that there is an increasing trend within qual-
itative physics research toward integration of qualitative reasoning and nu-
merical methods. Kuipers and Berleant {53}, for instance, describe a system
in which quantitative values, when known, can be propagated through a qual-
itative simulator to obtain (or constrain) the values of important “landmark”
quantities (such as the maximum level of water in a given tank). Forbus and
Falkenhainer {40} have a program that creates differential equation mod-
els for distinct operating regions corresponding to distinguishable qualitative
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states of a given system. There thus seems to be a growing convergence
of interests between researchers in the field of scientific computation (recall,
e.g., the Gladd and Krall article mentioned earlier) and those in the field of
qualitative reasoning.

8.3 Problems with the Workbench; Future Work

There are numerous problems in the current version of the Workbench.
One major issue, the design philosophy behind the Workbench program, will
be the focus of the section following this one. Here, we concentrate on those
flaws in the Workbench that permit a solution consistent with the current
basic design of the program. '

8.3.1 Speed and Range of the Program

The first, immediately apparent flaw in the Workbench is in its speed.
The program is simply too slow for professionals to use on anything but an
experimental basis. Each of the twelve Oregonator runs shown in Chapter 7
took approximately two hours of computer time; thus the overall parameter
space scan required over a day. This situation is capable of improvement in
several ways; there have, in fact, been a few recent rewrites to increase the
program’s speed since the Oregonator experiment was performed.’

A bit less prosaically, there are a number of “quantitative improvements”
that could be made to the Workbench—that is, bigger-and-better versions
of techniques already included in the program. Certainly the number and
variety of graphical heuristics in the program could well be improved; the
earlier-mentioned program by Clarke, for instance, employs some techniques
(including the so-called “knot-tree theorem” for determining the possibil-
ity of bistability) not included in the Workbench. Schlosser and Feinberg
{71} describe some additional graph representations appropriate for explor-
ing questions of bistability, while Feinberg {32, 33} mentions graph theorems

5One major improvement will occur when the Workbench is run on newer hardware.
Currently the program is run on an HP 350 workstation, but on the HP 720, the program’s
speed is likely to increase by a factor of at least five.
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for some deficiency-one mechanisms. All of these additional techniques could
be added to the Workbench in a relatively straightforward manner, as could
more elaborate techniques for finding catalytic and autocatalytic pathways
in mechanisms.

The range of approximations available to the Workbench could also be
increased. Currently, the program has no way of representing approximations
that can be derived from information regarding initial conditions. (This, in
fact, is why the program was unable to make a steady-state approximation for
the enzyme mechanism in Chapter 7; the approximation in this case is based
on the assumption that [S]y > [E],.) Likewise, there are no approximations
available to the program based on assumptions of, eg, linear concentration
growth (as opposed to near-constant concentrations); consider, for example,
the graph of [P] shown in Figure 5 in Chapter 7. Extensions along these
lines might well suggest corollary elaborations to the Workbench’s qualitative
arithmetic abilities: representing an a priori assumption about the concentra-
tions of two species, for instance, implies the need for systematic deduction
rules of the kind implemented by Stephanopoulos and Mavrovouniotis. {60}

A larger range of graphing and data-analysis techniques would be helpful
to Workbench users. The program does not permit phase-space graphs—e.g.,
graphing [X]- versus [Y] in the Brusselator mechanism rather than concen-
trations versus time. Other facilities for, say, plotting a planar projection
of a three- (or n-)dimensional path in phase space, or for plotting Poincaré
sections, would likewise belong on the “wish list.” So would various direct-
measurement tools. (For example, there is no ability to measure the values
of points on the graphs themselves; if the user wishes to know the value
of a particular location on a graph, she has no alternative but to estimate
that value by eye.) In the realm of data-analysis, additional programs—
analogous to the FFT program of the previous chapter—would be beneficial;
one possibility might allow the user to perform sensitivity analyses (showing
how certain quantities change with slight changes in parameters such as rate
constants).

8.3.2 Integration of Various Modules
Much of the interest of the Workbench is derived from the way that its
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various modules communicate with each other: for instance, the qualitative
analysis module uses the results of numerical simulation to check the predic-
tions made by the graphical analysis module. However there are avenues of
communication between techniques that should be included in future versions
of the program. One example was alluded to earlier: it would be desirable to
have the results of qualitative analysis dictate the step-size of a parameter-
space scan on the fly. A bit less ambitious would be the prospect of having
the numerical simulation module suggest integration step-sizes and the limits
of graph axes.

The results of graphical analysis currently have little bearing on the run-
ning of the numerical simulation module, except in terminating simulations
at a known “global equilibrium point” (a relatively unusual occurrence) or
suggesting simplifications that the chemist could then use in reimplementing
the original mechanism. In an earlier version of the Workbench, the results
of graphical analysis could be used to drop certain species from a running
mechanism when their concentration approached zero; this technique was
more of conceptual than practical interest, but it could nonetheless be prof-
itably reimplemented in the current program.t{25}

Adding channels of communication between program modules is more dif-
ficult than the sorts of “quantitative” improvements mentioned earlier. Both
the “sending” and “receiving” module have to be altered, and occasionally
re-thought at a deeper level, in order to implement the new communication
strategy. Currently, for instance, the Workbench’s technique for Gear inte-
gration involves performing the entire numerical run; saving the numerical
results to an output file; and then reading those values back. In order to have
the program alter integration parameters in mid-run, however, it would be
preferable to have a FORTRAN Gear routine callable one step at a time from
a Scheme program; and this in turn suggests a vast enhancement project for
the MIT Scheme programming environment.

SThe reason that this technique is not in the current Workbench is that the original
implementation, when eliminating a droppable species, actually substituted a new mech-
anism object to continue the numerical simulation. In the current version, this strategy
is more problematic to code because the original mechanism object, annotated with pre-
dictions from graphical analysis, must be retained and checked after the simulation is
complete.
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8.3.8 Improvements in Qualitative Analyses

When the Workbench was originally conceived, the episode data structure
was intended as the basis for all qualitative analysis: the hope was that
even somewhat complex patterns, such as compound oscillations, could be
adequately represented and interpreted via episode patterns. As experience
with the program accumulated, however, it became clear that episodes, while
informative, were not themselves sufficient for qualitative analysis.

One problem is that an episode record is often difficult to interpret for
even rather common patterns like damped oscillations. In an earlier paper
about the Workbench {24}, a damped oscillation is exhibited that produces
an episode history composed of two-episode repeating sequences, followed by
four-episode sequences (as the oscillations die down). It is a messy process to
determine from such a record that the same basic oscillation pattern is simply
dying down in amplitude. The subsequent addition of derivative Zero-crossing
structures was motivated by this difficulty in dealing with relatively standard
oscillation patterns in the numerical results; though it should be mentioned
that the episode record is far from useless in this case, and is employed to link
the events of a “typical” oscillation period with the contributions of reactions
in the original mechanism. A

There are deeper and more interesting reasons why the episode structure
has proved problematic for complex mechanisms. Thé problem arises from
the inherent uncertainty in the numerical values of derivative terms—the
terms used to define episode boundaries. A major reason why an implicit
algorithm like the Gear integrator is needed for stiff systems is that the local
values of first-order derivative terms can vary widely over tiny distances in
state space; a high Lipschitz constant is in fact a defining feature of stiff
systems.{72} This implies that very small numerical errors in the output
of the integrator can lead to spurious episode boundaries, and the resulting
episode history can prove hard to interpret.

The larger lesson to be taken from this situation is that there is a deep
interaction between the choice of numerical methods and the choice of qual-
itative techniques to interpret numerical results. The very properties that
make certain systems difficult to treat numerically can likewise make those

194



systems difficult to describe qualitatively. This observation suggests, too,
that decisions made with the intent of easing numerical analysis—for in-
stance, rescaling of variables—can reap benefits on the qualitative side as
well.

Returning to the issue of episode-history interpretation, there are still
other enhancements that could be made to the Workbench. One interest-
ing avenue for study involves comparisons of episode histories. For instance,
we might want to compare two mechanisms that differ only by the addition
of a single step; to do so, we would want a systematic procedure for com-
paring episode histories of similar mechanisms in a meaningful way. In a
similar vein, it would be desirable to look for larger patterns among qualita-
tive results in parameter-space graphs. A kineticist, for example, will often
spot a particular pattern of behavioral changes in such a graph (such as the
“cross-shaped diagram” pattern for oscillating reactions); but currently the
Workbench ca.nnot identify (and therefore make use of) such patterns.

There are still other strategies for quahtatlve analysis that could be added
to the Workbench. One method used by Cheung and Stephanopoulos {14}
for intepreting a numerical record employs a series of “triangular episodes”
that may be used to parse the record into distinguishable chunks; these data
structures are less susceptible than the Workbench’s episodes to problems
introduced by stiffness. (On' the other hand, they also are derived purely
from a numerical record and provide no easy conceptual link with the mech-
anism generating that record.) Another promising possibility would be to
employ computer vision techniques like those used by Yip to determine, for
instance, the geometry of an attractor in phase space. Such additional tech-
niques might also enhance the “qualitative vocabulary” of the Workbench
and enable it to recognize currently problematic numerical records, like the
“intermittent bursting” pattern seen for species Z in the Rdssler Band exam-
ple of the previous chapter.

8.3.4 More Complez Systems

An ambitious improvement to the Workbench—really, a reworking of the
program—would look toward treating chemical systems described by partial
(rather than ordinary) differential equations. In chemical terms, this means
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studying systems with concentration gradients in space, as well as reactions
that cause concentration changes over time. Especially interesting and dif-
ficult examples along these lines occur in the study of oscillating reactions:
some models generate “scroll-shaped waves” similar to those seen in the lab-
oratory for the Belousov-Zhabotinskii reaction.{81}

An expansion of the program to handle partial differential equations could
also be used to study non-isothermal systems, thus accommodating the de-
pendence of rate constant values upon temperature. Certain explosion re-
actions are modelled primarily as a combination of reactions and thermal

effects.{74}

The changes that would be required to implement such a reworking are
enormous and challenging. Prediction of system behavior becomes much less
powerful (there is no body of graphical analysis for these systems analogous to
the work for homogeneous systems); numerical simulation becomes far more
computationally expensive; qualitative analysis must now be employ terms
like “wavefronts,” “propagating velocity,” “destructive interference,” and so
forth in addition to the (purely temporal) terms already used. Developing
computational tools for these systems may be especially worthwhile, however,
for precisely the same reasons that make the task difficult: the systems are
so complex, and the simulations are so difficult to manage, that researchers
may feel themselves that much more in need of non-numerical computational
assistance. .

8. 3.5 Interface

The last topic to be discussed here—the user interface to the Kineticist’s
Workbench—has been left until the end of this section, not because it is the
least important, but because it leads to the considerations of the final section
below. The current Workbench interface is underdeveloped, and consists
mostly of interaction with the MIT Scheme interpreter. Although there is
a foundation for good graphical output in the Workbench, both for viewing
mechanism structures and simulation results, the user has little flexibility in
working with the program. She cannot, for instance, expand a region of a
concentration-versus-time graph; she cannot alter the positions of vertices
in a mechanism-structure graph; she cannot use menus to perform common
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tasks such as setting parameter ranges; and on and on.

Some of the gaps in the Workbench derive from incomplete aspects of the
underlying Scheme environment. At the moment, for instance, there is no
direct method in Scheme for using a mouse to “click-and-drag” objects in an
X-graphics window—a handy technique for, eg, rearranging the vertices of a
graph. But more of the problem lies in the fact that the central goals of the
Workbench project have focused more on issues of combining programming
paradigms than on user interface.

Despite the need for providing the Workbench with interface features like
menus, dialog boxes, mouse-sensitive graphs, and so on, the fact that user
input to the program is done through Scheme expressions is not, in and of
itself, a problem. In truth, having Workbench commands embedded within
Scheme adds a great deal to the flexibility of the program and makes it easy
to add new functionality. The “linguistic” aspect of the program interface
causes difficulty only through its overuse—because other interface features
are unavailable—and through its evolutionary, ad hoc design. The Work-
bench did not have, at its original conception, a draft for a user language;
and this is the topic of the next section.

8.4 Philosophical Reflections II: System Design

More than any other type of object, computers seem to be understood
through metaphors—they are “giant calculators” or “information processors”
or “artificial minds.” My own pet metaphor is that computers are a means
of expression: people can use these machines to say and understand things
that were incomprehensible a half-century ago. The burgeoning field of non-
linear dynamics is an instance of this: portraits of the Mandelbrot set, the
Lorenz attractor, the iterates of the quadratic map, become new “things,”
new objects in the world, for those who see them on the computer screen.

Computational tools should be conceived with the goal of expanding the
expressive range of those who use them. The present state of scientific com-
putation has addressed numerical problems, with impressive results; but sci-
entific tools, more than providing convenient output, should engage the sci-
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entist in re-expressing the input. Ideally, a good tool should suggest new
experiments (both in simulations and in the laboratory) that never would
have been conceived without the presence of the computer.

In order to be truly expressive, a computational tool—scientific or otherwise—
needs two central elements. The first is a user interface that permits easy,
natural expression of operations that are either “cliched” or best performed
directly, by hand; this interface should be designed for learnability and to
facilitate rapid experimentation. Most likely, such an interface would look
like (or be derived from) the marvelous direct manipulation interfaces that
have become a growing standard in the personal computer community.

The second element required for a good tool is a language—a program-
ming language in which to express those ideas that inevitably arise and that
are beyond the capabilities of any direct manipulation interface. This lan-
guage will almost certainly require more effort to use than the interface; but
once learned, it permits a vastly higher level of creativity on the part of the
user.

Currently, the Kineticist’s Workbench has a “language” of sorts: a col-
lection of special-purpose objects and procedures that have been embedded
in Scheme. The problem with the Workbench’s language is that it was de-
signed piecemeal, as issues came up in the original program development:
for instance, the notion of a “mechanism object” as an elaboration of the
original mechanism data structure arose from the need to annotate mecha-
nisms with the results of graphical analysis. The upshot of adding this new
object type is that there are some Workbench procedures that operate upon
mechanisms, others that operate on mechanism objects. This not a severe
matter for the program developer, but it illustrates a more general point: the
current collection of Workbench procedures arose from an accretion of de-
sired operations and functionality, and not from a conscious language-design
effort. Perhaps, as a first step, such a development pattern was unavoidable;
but the foremost priority in a redesign of the Workbench should now be to
construct an appropriate language for combining numerical and qualitative
techniques. This, in addition to thé interface development mentioned earlier,
could be the basis for a tool that is not only more usable than the current
program, but that could allow scientists to rethink the very nature of what
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it means to perform chemical simulations.

We can indulge in some speculation about how a redesigned Workbench
program might appear to the user. First, the chemist could select a menu
choice, Enter New Mechanism, to create a new mechanism for study. The
steps of this mechanism—and other features, like constant species—could be
entered via dialog boxes.” The chemist could then specify integration meth-
ods and parameters in similar ways; and could then perform a numerical
simulation with the results graphed on the screen. Alternatively, by select-
ing a menu choice to Graphically Analyze the mechanism, the chemist could
obtain the same sorts of information that the Workbench provides. Perhaps
additional choices could be provided allowing different sorts of graph repre-
sentations, or allowing the user to try simplifying assumptions (like Clarke’s
“fast” and “slow” species) interactively.

Once a simulation is complete, the program might present its qualitative
analysis in a text window, and the chemist might have the option of editing
this analysis interactively, to add her own observations. She could save the
annotated results into a database that allows retrieval of pictorial, numerical,
or qualitative results. ‘

Thus far, our imaginary system has been described with the emphasis on
interface features; but inevitably, the chemist would want to express ideas
that the interface—any interface, no matter how well designed—would fail to
capture. She might want to “smooth” the numerical data before analyzing
it; or find a functional relationship between the amplitude of oscillations and
a given parameter; or graph a Poincaré section of the attractor produced by
a particular oscillator; or graph the difference between the numerical records
obtained with two different methods of integration; or add corrections of
various kinds to differential equations to reflect non-mass-action kinetics.
These ideas should be economically expressible within a language provided
with the system. By gradually gaining experience with this language, the
chemist can eventually build more and more complexity into her simulations,
going well beyond the functionality apparent in the original interface.

"In fact, I have written a Scheme program with precisely this kind of interface for the
Apple Macintosh computer. Unlike the Workbench, this program does numerical simula-
tions only, using a Runge-Kutta integrator; but its interface features are more developed
than those of the Workbench.
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This type of system design should ultimately be the basis for future ver-
sions of the Kineticist’s Workbench—and “Workbenches” for other profes-
sionals. Tools for scientists, artists, mathematicians—tools that combine
learnable interfaces with powerful languages—can be realized, even if imper-
fectly at first. When we finally have these programs in hand, the computer
will no longer be a metaphor itself, but a means of expression, a medium for
expressing new metaphors.
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Appendix A

The Zero Deficiency Theorem

This appendix contains a brief sketch of the proof of the Zero Deficiency
Theorem (ZDT). The sources for this discussion are {30, 31, 34, 35, 47, 48}.

The key “intermediate concept” in the proof of the ZDT is complex bal-
ancing: a mechanism is said to be complex balanced if it is in a state in
which, for every complex, the rate of increase of all species due to reactions
contributing to that complex is equal to the rate of decrease due to reactions
in which this complex is a reactant. For example, consider the following
mechanism:

[1] A+B<—=>C<—>D

D + E <--> 2B

To check for balancing for the complex A + B, we now look to see whether
the rates of the following two reactions are equal:

A+B~-->¢C

C-->A4+8B

If these rates are equal—if the rate of decrease in [A] due to the first is
equal to the rate of increase in [A] due to the second—then the mechanism
is balanced for the complex A + B. If similar statements hold true for every
complex, then the mechanism is complex balanced.

Obviously, a complexed balanced mechanism is in equilibrium—no con-
centrations are changing. However, it is important to note that the converse
need not be true. For instance, just focusing our attention on species B, it is
possible that the concentration of B is declining due to the the two reactions
involving the complex A + B; but the net concentration of B may be stable
due to the contribution of the two reactions involving the complex 2B. Thus,
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the mechanism may be in equilibrium for B without being complex balanced.
The following is a more striking example, from {48}:

{2 A --> B

2B --> 2A

Obviously, one can choose rate constants to provide an equilibrium state for
[2]; but the mechanism is never complex balanced.

We can now state the first important theorem regarding complex balanc-
ing:

Theorem 1. {48} A mass action mechanism is either complex balanced at
all its equilibria or at none of them. (“Equilibria” here do not include states
with zero concentration values.) Moreover, if it is complex balanced, the
equilibrium is stable within the stoichiometric subspace.

The proof of this in {48} is done in several steps:

1. First the theorem is proven for simple “cyclic” systems, i.e.,
mechanisms consisting of a cycle of complexes. Two examples are
shown below:

3] A <-->B
[4.1] C~-->D+E
[4.2] D+E-->F
[4.3] F-->¢

2. Then the theorem is proven for arbitrary mechanisms by decom-
posing any given mechanism into a set of cyclic mechanisms. Since the
theorem holds for each component submechanism, it likewise holds for
the overall composite mechanism.

3. Moreover, it is shown earlier in {48} that for complex balanced
mechanisms, each equilibrium state is locally stable, and unique for
a given stoichiometric subspace. (In the terminology of {48}, the
mechanism is quasithermodyamic.) 4
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Since we are going to assume mass action kinetics throughout this dis-
cussion we can shorten the statement of Theorem 1 to the following:

Theorem 1. A mechanism is complex balanced either at all equilibria or none.
If it is complex balanced at all equilibria, then the system is quasithermody-
namic.

From Theorem 1, we can conclude that “complex-balancing” is a prop-
erty of the mechanism itself—not just a property of the mechanism at some
particular set of concentrations. In other words, we can divide those mech-
anisms that are capable of equilibrium states into “mechanisms with all
complex-balanced equlibria” and “mechanisms with non-complex-balanced
equilibria.” The next two theorems relate structural properties of a given
mechanism to the question of complex balancing.

Theorem 2. {31} If a mechanism has deficiency 0, then it w1ll exhibit complex
balancing at every equilibrium (if any exist).

The deficiency 0 property is expressed as a statement of linear algebra.
(Briefly: that if we express the reactions of the mechanism as vectors in
“complex space,” then the dimension of the stoichiometric subspace is equal
to the dimension of the space spanned by the “complex space vectors.” In
other words, if we express the available state space either through vectors
in species space, or through vectors in complex space, we arrive at spaces of
the same dimension.) Likewise, a particular sufficient condition for complex
balancing at every equilibrium is expressed in linear algebra. (Briefly, an
equilibrium point is expressed as a point in complex space, corresponding to
the rate of formation of each individual complex; and it is shown that all
equilibrium points must lie within a particular linear subspace of complex
space. If that subspace has dimension zero—i.e., if it consists only of the
zero vector in complex space—then any equilibrium point must correspond
to that zero vector in complex space. Thus, if this special subspace has
dimension zero, any equilibrium point must correspond to a point in which
the rate of formation of all complexes is zero.) It is then shown that the
two statements in linear algebra are in fact equivalent: that the deficiency 0
property corresponds to a sufficient condition to guarantee complex balancing
at any equilibrium, should one exist.
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Theorem 3. {47} If a mechanism is capable of a complex-balanced equilib-
rium, it is weakly reversible. -

The proof in {47} uses a notion of “adopting” and “decaying” subsets of
the complex set—roughly, a set is “adopting” relative to some complex C if it
“gets reaction flow” from C. It is then shown that it is impossible for a non-
reversible graph to exhibit complex balancing (since this would imply that
an “adopting” set of complexes relative to some particular starting complex
C is a “non-decaying” set relative to C, which condition is incompatible with
complex balancing).!

From Theorems 2 and 3, we can conclude:

Theorem 4. If a mechanism has deficiency 0, but is not weakly reversible,
then it has no nonzero equilibrium state in any given stoichiometric subspace.

The next theorem, from {47}, is the last crucial step in the proof of the
ZDT:

Theorem 5. If a mechanism has zero deficiency and is weakly reversible, then
it has a complex balanced equilibrium.

First it is shown that the weak reversibility condition (for any mechanism)
implies the presence of a nonzero kernel for the “rate matrix” A which takes
points in complex space to their associated complex-formation vectors. In
other words, weak reversibility implies an “equilibrium subspace” in complex
space. Zero deficiency—again expressed in terms of linear algebra—implies
that we can find a set of concentrations within the available stoichiometric
subspace that will correspond to a point in this equilibrium subspace. (In
other words, we can find some set of concentrations ¢ such that the matrix
A, when applied to the complex vector derived from c, returns the zero
complex-formation vector.) Thus, the two conditions—zero deficiency and
weak reversibility—together guarantee that at some set of concentrations,
the net rate of formation of each particular complex is zero.

Now, using Theorems 5 and 1, we conclude:

11 believe that a simpler, inductive pfoof based in graph theory should be possible for
this theorem.
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Theorem 6. If a mechanism has zero deficiéncy and is weakly reversible, then
it has a unique stable nonzero equilbrium in each stoichiometric subspace.

The overall Zero Deficiency Theorem is now the conjunction of Theorems
4 and 6.2

2There is actually still a bit more to the theorem, involving the inability of zero defi-
ciency mechanisms to exhibit cyclic trajectories in state space. For reversible mechanisms,
this is guaranteed by the “quasithermodynamic” condition mentioned earlier. For non-
reversible mechanisms, the proof is outlined in {34}.
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Appendix B

Algorithms for Graphical Analysis

This appendix contains outlines of the important algorithms used to perform
graphical analysis of mechanisms.

B.1 Necessary Nonzero Species

1. Let C§ denote all species that are constant with nonzero values, or that
have external sources. These are clearly necessary nonzero species. Let NZ
denote already-found nonzero species (initially C'S ).

2. Now, find all species with the following properties:
This species s is not in NZ.

This species is a product in a reaction whose reactants are

allin NZ.

3. If no species were found in step 2, return the current value of NZ. Oth-
erwise, append all species found in step 2 to NZ and go back to step 2.

B.2 Obvious Declining Sets of Species

1. Let LHS; denote the left hand (reactant) side of the reaction i, and
RHS; denote the right hand (product) side. Find all LHS; such that for
all j, LHS; N RHS; = {}. For each such LHS;, let LHS; — C'S denote
the difference of LHS; and nonzero constants and source species. Include
LHS; — CS as an element of DS, the set of declining sets of species.

2. Delete from the mechanism all reactions found in step 1, and perform step
1 again until no new sets are found.
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3. Find all LHS; that contain a species that only occurs as a reactant. Add
the (non-constant and non-source) portion of each such LHS; to DS, delete
these reactions and go back to step 1.

4. Find all LHS; with the following properties:

a. The corresponding RHS; consists solely of sink species,
driven off species, or species that only occur as products.

b. At least one species in LHS; does not have a nonzero
constant or source among its “ancestors” (i.e., there is no
sequence of reactions R;, Rj;1,...R;4m such that a nonzero
constant or source is among the reactants of R;; the target
species is among the products of Rjy.,; and for each pair
of adjacent reactions, there is a non-null intersection of the
products of the first and the reactants of the second). In
prose, what we are looking for is a reaction none of whose re-
actants has any conceivable dependence on nonzero constants
or sources, and whose reactants produce “disappearing” (sink
or driven-off) species.

Also,

5. Find all reactions all of whose reactants satisfy condition b of the previous
step, and at least one of whose reactants is a sink or driven-off species. Delete
all reactions found in steps 4 and 5 (appending their reactants to DS) and
go back to step 1. If no such reactions are found, go on to step 6.

6. Look for reactions for which the set of “ancestor” species (in the sense of
condition b of step 4) and the set of “daughter” species (in the same sense)
are distinct, and for which the reactants satisfy condition b of step 4. In such
a case, the reaction is “feeding” a product set that cannot possibly serve to
augment any of the species in the reactant set. Thus, the reactants must
constitute a declining set. Append this set to DS and go back to step 1.

7. Delete all the reactions whose reactants or products are a superset of some
element in DS. Append the reactant sets of such steps to DS, and go back
to step 1. If none are found go on to step 8.
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8. For each element declset in DS, look at each species s in declset and find
those species that must have zero concentration if this species does (this is
done via the algorithm described below for consistent zero sets). The union
of such “related species” found for declset must itself constitute a declining
set (the product of all these species’ concentrations must approach zero).
If the result of this process is a new set (one that is not a superset of any
existing declining set), include this in DS.

We do not go back to step 1 at the conclusion of step 8, though perhaps we
should; in any event, the algorithm concludes with this “second-level” search.
All the returned sets are declining sets, though there is no guarantee that
every declining set will be found (eg, there may be “third-level sets” that go
unnoticed). In practice, this algorithm has found all declining sets for the
mechanisms tested thus far.

It should also be mentioned that this algorithm may be fooled by mecha-
nisms in which constant species and sources are not expressed explicitly. For
instance, in the mechanism:

A ==> 2 -=> Ezternal World

this algorithm would find that A is a declining set (it is “lost” to a sink), even
though a nonzero steady state concentration of A is possible. The problem
with this mechanism is that, as expressed, it does not obey mass conservation.
A more plausible chemical mechanism might appear as follows:

A + B --> 20 --> External World

with B treated as constant. In this case, the algorithm would (correctly) find
no declining sets.

B.3 Consistent Zero Sets of Species

1. Find those species that are not necessary nonzeros, “driven-offs,” or
species that only occur as reactants.

2. For each such species s, assume that its concentration is zero and that
the system is at a steady state. The initial set of zero sets Z is the singleton
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consisting of (again a singleton) {s}.

3. Find those reactions R; which have s among their products. Take the
power set of the reactants in R;, and for each element in this power set, take
the set union with {s}. This is the new set of zero sets Z.

4. We continue the process begun in step 3. For each set in Z, and for each
newly-added species in that set, we find those zero subsets that might be
appended to the set. We continue this process until each set in Z has the
property that all its species have been examined as “roots,” and thus there
are no new species that can be added to the set by tracing any of the species
“one reaction arrow back.”

5. At the end of step 4, we have a (possibly large) collection of possible
internally-consistent zero sets in Z. We now remove all those sets in Z that
are a superset of some other set in Z, since we only want minimal internally-
consistent zero sets.

B.4 Catalytic Pathways

1. We are interested in the possibility of a “catalytic pathway” for some
species s (i.e., a reaction path in which s acts as a catalyst). We find all
sequences of one or more reactions R;, Ri41,... Riym that have the following
properties:

a. sis among the reactants in R; and the products in R;;,,, and does
not appear in any other reactant or product set in the sequence.

b. For each adjacent pair of reactions in the sequence, there is a
non-null intersection between the products of the first reaction in the
pair and the reactants of the second. (That is, we can think of each
reaction as “contributing one or more reactants to” the next one.)

c. For each reaction after the first in the sequence, none of the reac-
tants must enter into a reaction with s elsewhere in the mechanism.

Currently, the program looks for such sequences only up to a maximum length
of three.
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2. Having found such a sequence, we now find how many molecules of s in the
final reaction are produced from one molecule of s in the initial reaction. In
doing so, we need to “multiply” intermediate reaction coefficients; if there is
more than possible factor to multiply by (corresponding to a pair of reactions
(R:, Ri41) in which more there is more than one species in the intersection
of the products of R; and the reactants of R;;;), then we multiply by the
minimal factor (that is, we choose the “connection species” between reactions
that corresponds to the least production of s in the final reaction). Also
we check that our path is not simply a (two-step) reverse path—that is, a
“forward” and “backward” reaction pair.

3. If there is one molecule of s produced in this sequence for every molecule
consumed by the first reaction, then this path is labelled a “catalytic path.”

B.5 Autocatalytic Pathways

This algorithm is similar to the one described above, except in the final step
we check that more than one molecule of s is produced for each molecule of
s consumed in the first reaction.

It should be noted that there are “autocatalytic sequences” (and similar
catalytic sequences) not caught by these algorithms. For instance, we might
have the following set of reactions:

A-->B+¢C
B-—>4
C-->A4

The algorithm described in B.4 will find two two-step catalytic sequences, but
we will not find the (net) three-step autocatalytic production of A since there
is no three-step simple path of reactions meeting the conditions given above.
The problem here arises from the fact that the autocatalytic generation of A is
due to the combined effects of two separate products of A in the first reaction.
It would certainly be possible (and desirable) to enhance the algorithms
already in the Workbench with additional techniques to look for patterns
like this one. ‘
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B.6 Qualitativé Arithmetic

As mentioned in Chapter 5, the current qualitative arithmetic capabilities
of the Workbench are rather primitive. There is a global variable named
*qualitative-epsilon*, whose value determines the “scale” for a num-
ber of qualitative comparisons between numbers. By default, the value of
*qualitative-epsilon* is 0.01, and (writing this value as €), a number of
other quantities are defined in related fashion:

*qualitative-epsilon* = ¢
sapprox-equal-factor* =1 + ¢
*equal-factor* = 1 + ¢
#greater-than-factor* = ¢!

*much-greater-than-factor* = ¢~2

All of these quantities are effectively reset by performing a call to the proce-
dure reset-qualitative-epsilon! as illustrated in Chapter 5:

(reset-qualitative-epsilon! 0.1)

The most important procedure in the qualitative arithmetic package is the
get-approximate-factor procedure, which takes two numeric quantities
and, using the global variables shown above, returns a symbol indicating the
relation between those two quantities. This procedure is sufficiently brief to
be shown in full:

(define (get-approximate-factor ni n2)
(cond ((= n1 0) (if (= n2 0) *= ’undefined))
(else (let ((fct (abs (/ mn2 n1))))
(cond ((> fct *much-greater-than-factor*) ’>>>)

((> fct *greater-than-factors) ’>>)

((< fct (/ *much-greater-than-factor*)) ’<<<)

((< fct (/ *greater-than-factor*)) ’<<)

((and (> fct (/ *equal-factor*))
(< fct *equal-factors)) '=)

((and (> fct (/ *approx-equal-factor*))
(< fct *approx-equal-factor#*)) ’~)
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((< (abs n2) (abs n1)) <)
(else ’>))))))

Clearly there is very little sophistication in this arrangement; though again,
it should be pointed out in fairness that the Workbench does not currently re-
quire an elaborate qualitative arithmetic system to perform interesting iden-
tifications of fast equilibria and steady-state candidates. The algorithms for
these classification procedures are described below.

B.7 Fast Submechanisms

The Workbench algorithm for identifying fast zero-deficiency submechanisms
is as follows:

1. First, all reactions are ordered by the magnitude of their rate constants (to
achieve a rough ordering from “fast” to “slow” reactions). In the remainder
of the algorithm, we will look, one by one, at the fastest still-unexamined
reaction; and the set of already-picked reactions will constitute the “current
reaction set” in which we are seeking fast submechanisms.

2. Pick the next reaction and add it to the current set. If possible, find
a subset of reactions S that constitutes a weakly-reversible zero-deficiency
mechanism. The set S must have the following properties:

a. No other complex in the current set (i.e., no product or
reactant set) is part of a reaction that would, if added to S,
create a non-weakly-reversible mechanism.

b. No other complex in the current set contains a species
that occurs in S.

3. We add S to a list of subsets tried, and look to see if the slowest reac-
tion in S is faster than the fastest reaction (now assuming concentrations of
*greater-than-factor*) involving these species in the overall mechanism.
If so, we note that S is a fast submechanism; remove all reactions in S from
the overall mechanism; and continue picking reactions as described in step
2, until there are no further reactions to examine.
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B.8 Steady State Candidates

For every individual species in the mechanism, we check to see whether this
species is a plausible candidate for a steady-state approximation. Qur heuris-
tic for this purpose will be to examine whether at least one of the reactions
in which this species participates as reactant is much faster than all of the
reactions producing this species, under “reasonable” assumptions for concen-
trations of all species. To examine a given species for steady-state candidacy,
we do the following:

1. Find all reactions Rct in which this species s participates as reactant with
a coefficient of 1, and all reactions Prd producing this species. Let RctS be
the set of species in Rct that do not occur as reactants in Prd, and let StSt
be the set of species that we already assume to be steady-state candidates.
(If s occurs as reactant in any reaction and has a coefficient greater than 1,
as in (say) 2 8 -=> P, then we do not consider it as a possible steady-state
candidate. Likewise, we do not consider species that participate in steps both
as reactant and product.)

2. For all reactions in Prd that produce this species, assume concentrations
of *greater-than-factor*~! for all species in StSt (that is, we assume a
“small” concentration for our current set of steady-state species); assume a
concentration of *greater-than-factor* for all species that occur as reac-

tants in Prd; and assume a concentration of 1 for all other species (i.e., those
in RctS).

3. We now have a “reaction-out-factor,” corresponding to the fastest step
in which s participates as reactant, to compare to a “reaction-in-factor,”
corresponding to the fastest (assumed) step producing this species. The
two expressions being compared are reaction-in-factor and [s] * reaction-
out-factor. If reaction-out-factor is much greater than reaction-in-factor, in
the sense described earlier in the section on qualitative arithmetic, then we
consider s to be a plausible steady-state candidate. QOur claim is based on
the assumption that a small concentration of s will render the two terms of
fastest production and consumption approximately equal.

As noted in the text, this algorithm is approximate in several respects. First,
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it does not return every species that might in fact constitute a good steady-
state candidate: for instance, it does not consider species X to be a good
candidate in the following mechanism:

A-—>X ki-=1

2X —-> B k2 = 1e6

The reason our algorithm does not consider X here is because it participates
as reactant with a coefficient of 2 in the mechanism. (Such situations could
be handled at the cost of a little extra complication in the algorithm.)

A second problem is that the algorithm returns as possible candidates species
that may in fact not constitute steady-state species for one of a variety of
reasons: the assumptions regarding species concentrations may, for instance,
be inaccurate (it may be that certain species are present with much greater
or smaller concentration than we assume). Another flaw occurs when the
steady-state assumption leads, in a sense, to its own undoing: by assuming a
steady state for s, we build up the concentration of some other species that
eventually contradicts the assumptions that led us to a steady-state assump-
tion in the first place. Finding patterns of this kind would be a somewhat
more sophisticated project (and an interesting one); but the Workbench’s
current algorithm does appear to handle the easier “textbook” cases, such as
the N205 decomposition example shown in the text.

B.9 Rapid Location of Equilibria

The Workbench has two algorithms for rapid location of global equilibrium
points. The first applies to linear mechanisms only, and locates the global
equilibrium by a simple Gaussian elimination technique. (The algorithm as
currently implemented does only the easiest possible thing, triangulating the
appropriate system matrix and solving for the given unknown concentra-
tions; searches for numerically optimal “pivot” variables, for instance, are
not employed.)

The second, more elaborate algorithm consists of two phases, as outlined in
Chapter 5: a “star-walk” phase, and a “Runge-Kutta integration” phase.

225



These two portions of the algorithm run in interleaved fashion: the star-walk
is tried for a certain amount of time (until the step-size becomes sufficiently
small), and then the RK integration is done for a certain number of time-
steps (or until the equilibrium point is approached to a sufficient tolerance).
A more detailed explanation follows.!

B.9.1 Star-Walk

Since we are seeking an equilibrium state, we are (equivalently) seeking a
point in phase space, accessible from the starting state, in which the magni-
tude of the system derivative is zero. Moreover, we are guaranteed from our
graphical analysis that our system has only one such (nonzero) state.

1. Beginning at the initial state, we look at each reaction in the mechanism
and find that reaction which, when run to a certain percentage p of com-
pletion, would result in the largest decrease in the magnitude of the system
derivative.? We run p percent of this best reaction, if one is found. If no such
reaction is found, we decrease p by a certain factor and try again. If, on the
other hand, a best reaction is found and if this is also the best reaction for a
larger value of p (increased by a given factor), then we also increase p by an
increase-factor in preparation for the next step.

2. If we find that p has decreased for a certain number of consecutive steps,
and that the system derivative’s magnitude is small (relative to its original
value); or if we find that the second condition alone has been true for some

1The current algorithms for finding equilibria work well for mathematically tractable
mechanisms, and could conceivably be extended to more complex mechanisms, as men-
tioned in Chapter 5. An alternative and potentially powerful strategy would be based
directly in computer algebra—to use a nonlinear algebraic equation solver (the Work-
bench only employs this direct solution for linear systems). Adding such a capability to
the Workbench is feasible though nontrivial, and could well be listed with some of the
other desirable extensions mentioned in Chapter 8.

2The notion of “running a reaction to completion” simply means running the reaction
until one or more of the reactants reaches zero concentration. Thus, to run the reac-
tion A + B --> C to completion would mean allowing A or B, whichever had lesser initial
concentration, to reach zero concentration. Assuming for argument’s sake that [A] <

[B], running the reaction to p percent of completion means that p[A] moles per liter are
subtracted from both [A] and [B], and added to [c].
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number n of consecutive steps, then we halt the star-walk procedure and go
on to the RK phase. Otherwise, we continue by iterating step 1.

What we have provided here is an overall picture of the algorithm; all of
the symbolic parameters mentioned here have default values in the current
version of the program. For instance, the initial value of p is 0.005 (that is, one
half of one percent). The factor by which to increase p (if appropriate) is 1.2,
and the factor by which to decrease p is (1.2)~!. (There are a few additional
complications: for example, there is a maximum value beyond which p will
not go, which for the current algorithm is 0.04.) Likewise, the initial value
of the “successive small derivative counter” is 10, the initial “successive p-
decrease counter” is 25 (or, if the system derivative is sufficiently small,
9), and so forth. These values have been arrived at by experimentation
with a variety of reasonably simple systems whose equilibrium values are at
moderate concentrations; more robust, adaptive methods for setting these
parameters would be needed to handle more complex systems.

B.9.2 Runge-Kutta Integration with “Predictive Jumps”

In the RK phase of the algorithm, we simply perform fixed-time-step Runge-
Kutta integration (the default time-step is 0.1 seconds) for up to some max-
imum number n (default 100) steps. During the course of these steps, the
program looks for a series of m consecutive steps in approximately the same
direction and having the form

dV,zdV,z*dV,z3dV...s™1dV

where > 0 and |z| < 1 then the algorithm returns the value
Po+(1/(1 = 2))dV

where P, is the spot in state space where the sequence was first detected.
(The default value of m is 5, and two vectors are deemed to be “in approx-
imately the same direction” if their individual components each differ by a
factor f such that 0.96z < f < 1.04z.)

If the RK phase was entered due to the star-walk phase arriving at a local
minimum, then the returned value of this phase is the final value of the entire
equilibrium-search algorithm. Otherwise, we return to the star-walk phase,
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which tests the returned value for a sufficiently small system derivative; if the
value is sufficiently small, it is returned, and if not, the star-walk procedure
is resumed. A “sufficiently small” system derivative is one whose magnitude
is less than a given factor (default 0.0015) of the initial derivative magnitude,
or is less than another factor (default 0.015) of the magnitude of the actual
state vector itself. Again, in practice, these values are chosen based on expe-
rience with straightforward examples whose equilibrium concentration values
have moderate values; to extend the algorithm to more complex systems, a
more careful choice (possibly based on the second test above, but checking
individual components of the derivative vector against the components of the
state vector) would need to be implemented.
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Appendix C

Algorithms for Qualitative Analysis

C.1 Attaching Feature Descriptors to Episodes

Short/Long Episodes

As described in Chapter 6, the episode history itself is used as the basis
of the definition of “short” and “long” times. After transition episodes are
removed (again, see Chapter 6), the shortest episode length ¢, and the longest
{; are used to define a “time ruler” defined as the difference of the logs of the
two values:

ruler =logt; — logt,

A “short” time is then defined as a time ¢ such that
logt < logt, + 0.25 * ruler
and a “long” time is a time ¢ such that
logt > logt, + 0.85 * ruler
The time-periods represented by the right sides of the last two condi-

tions are known as the “longest short time” and the “shortest long time,”
respectively; these time-periods appear in some of the tests that follow.

Steady-State

This is the most complicated of all the Workbench’s feature tests. Ba-
sically, we look to see if both the net difference in concentrations (from be-
ginning to end of the episode) is small, and if the net variation in derivative
is also small. In doing so, we test for one of several possible conditions, of
which the most important (and common) is as follows:
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Net-difference / Starting-concentration < 0.01 and

Net-difference-of-deltas / Starting-concentration < 0.006

Another possible condition is that this is the final episode, and that it is
a long episode. In this case the two tests above are made a bit more lenient
(the “test values” are 0.025 and 0.01 instead of 0.01 and 0.005, respectively),
but we also check to see that the final delta is small:

(shortest-long-time / dt) * (final-delta / final-conc) < 0.006

Yet another possibility is that the original two tests are not met because
the episode is extremely long (and hence the net concentration difference is
just large enough to make the first test inapplicable). In this case, we keep
the second of the two tests above, but change the first test to:

(shortest-long-time / episode-duration)

* (net-difference / starting-concentration) < 0.01

Large-Increase/Decrease

A “large increase” is one in which either the concentration of a given
species increases from an initial value of 0, or increases by more than half of
the final concentration. A “large decrease” is one in which either the species
decreases to a final concentration of 0, or decreases by a total greater than
one third of the final concentration.

Wide-Swing

There are several conditions tested here, but the only non-anomalous
condition tests that the difference between the maximum and minimum value
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of the species over the course of this episode is greater than 5 times the net
difference in concentration from the beginning to the end of the episode. (The
idea here is that we wish to note the possibility of a large jump followed by a
large decrease in concentration over the course of the episode—or a decrease
followed by a jump—such that the beginning and ending concentrations are
close.)

Rapid-Increase/Decrease

A “rapid” increase in concentration is one which corresponds to a growth
of more than 0.5 of the final concentration within the “longest short time.”
A rapid decrease corresponds to a decrease of more than 0.1998 of the final
concentration within the “longest short time.”

Slow-Increase/Decrease

A “slow” increase corresponds to a growth of less than 0.05 of the final
concentration within the “shortest long time.” A slow decrease corresponds
to a decrease of less than 0.0475 of the final concentration within the “shortest
long time.”

C.2 Repeating Patterns in Episodes

The Workbench looks within episode histories to find repeating episode
patterns that might signal the occurrence of oscillations. Although this ca-
pability is not as important now as it was at the program’s inception (given
the introduction of derivative zero-crossings), the episode-chunking is still
printed out after runs when the episode history is sufficiently short.

Once an episode history is obtained, it is “coarse-grained” as described
in Chapter 6 to eliminate apparent “transition episodes” (and typically to
reduce the history solely to episodes that differ in the most important step).
The program then looks for repetitions of groups of episodes that might allow
as many as 1.6 complete oscillations; for instance, an 8-episode history will
be tested for repeating patterns of as many as 5 episodes (allowing for a
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5-episode sequence followed by a partial repeat of that sequence in the final
three episodes).

For the purposes of chunking episodes into groups, two episodes are
deemed equal if they have equal step-orderings up to a given position (usu-
ally the “zeroth” or initial position); beyond this, successive corresponding
episodes in an attempted chunking are tested for “feature-compatibility.”
The idea is that if we wish to find a three-episode chunking of some history,
and want to compare (eg) the fourth and seventh episodes in the history as
part of this attempted chunking, then we would expect the features of these
two episodes to be, if not identical, at least not wildly incompatible. For
example, if some species X has a steady increase in the fourth episode and a
decrease in the seventh episode, we would not want to declare these episodes
as occupying similar locations in successive oscillations, regardless of the step-
orderings in the two episodes. The Workbench’s feature-compatibility tests
basically look to see whether the feature-sets of two episodes are logically
inconsistent; it allows, for instance a “rapid increase” episode to be matched
with a “steady increase” episode, even if these are the only features noted
for the two distinct episodes.

Having found the largest possible chunking within the episode history, the
Workbench continues to look for others within the “unchunked” portion of
the record. For example, the program will locate a series of two-episode os-
cillations followed later in the history by (say) three-episode oscillations (the
latter will in fact be identified first by the algorithm). The Workbench also
recursively looks for “sub-oscillations” within the oscillating patterns them-
selves; for instance, if a six-episode chunk contains two two-episode chunks
at its conclusion (as in the pattern “A B C D C D”) then the Workbench will
note that each oscillation is itself composed of a smaller oscillating pattern.

C.3 Grouping Zero Crossings into Oscillations

The algorithm for grouping derivative zero-crossings into “chunks” is in
fact not as sophisticated as the episode-history grouping algorithm described
in the previous section: unlike the previous algorithm, it starts by looking
for the smallest possible (two-crossing) repeating pattern, and works its way
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upward from that. (The episode-grouping algorithm looks for the largest
possible repeating chunk and then looks for sub-patterns within each chunk.)
This means that complex oscillation structures (eg, consisting of one large
“hump” followed by three near-identical smaller ones) will not be classified as
such; only the smallest repeating portions of these structures will be found.!
In practice this has not yet proven to be a liability, but future versions of the
Workbench will probably have to incorporate a more sophisticated algorithm
analogous to the one described above.

One of the delicate problems associated with grouping derivative zero-
crossings is how much information to look at: for instance, are we anticipating
that all species in the system are oscillating in concentration (a presumably
common occurrence. if the system has reached a limit cycle), or do we only
wish to find repeating patterns for the zero-crossings of individual species?
The Workbench employs something of a compromise approach, looking for
repeating patterns of a particular species using fairly “stringent” criteria for
that species alone or more “lenient” criteria for all the species in the system.
In this way, we can find oscillations that occur for a particular species even if
certain other portions of the mechanism are not exhibiting oscillations; but if
this should occur, our criteria for grouping zero-crossings together are more
demanding.

The Workbench’s criteria for matching two zero-crossings for some species
X as part of an oscillation pattern involves checking several possible condi-
tions, any of which can justify a match. In one test, we examine the con-
centrations of all species: if all species differ in concentration by less than
some given percentage (default 12), then these two zero-crossings are deemed
matchable. Alternatively, the concentrations for X alone could differ by some
smaller percentage (default 6), in which case the other concentrations can be
ignored; or a greater percentage difference for [X] is allowed (default 24) if
the two concentrations differ by an absolute value less than five percent of the
net range of [X] over the course of the run. (This permits, for instance, very
low values of [X] to differ by a larger percentage as long as those low values
are small compared to the overall range of [X].) Yet another possibility is

1To continue the parenthesized example: our algorithm would find a series of apparently
separated “three-hump” oscillations, rather than a continuous series of complex “four-
hump” oscillations.
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that all concentrations change over successive chunks by a similar amount
(default'5 percent maximum difference between the ratios of successive con-
centrations). Another is as follows: if these compared crossings appear in the
“interior” of a chunk, we will allow them to be matched if the time difference
between these crossings and the initial (already-matched) crossings of their
respective chunks is within a certain small percentage difference (default 4
percent). (This means that if we have matched two initial crossings of a pos-
sible two-crossing chunk, and the second crossings appear exactly one second
after the initial crossings in both cases, we will match those second crossings
as well.)

The program looks for repeating chunks in this fashion up to a maximum
chunk size of 8 (corresponding to a “four-part” oscillation). Again, in practice
this has been sufficient for all examples thus far; but a more extensive check
may be needed for mechanisms that exhibit more complex oscillation patterns
than those already tried.

C.4 Classifying Oscillation Types

In general, in seeking to classify a particular group of linked zero-crossings,
we look at the final 80 percent or so of the crossings. This permits us to ig-
nore the possible complications that occur for the first several oscillations in
a series; often it is the case that the first oscillation or two has a somewhat
different shape than the “typical” portion of the series that follows.

Stable Oscillations

The test for stable oscillations looks for one of several possible conditions.
If the oscillations are neither all declining nor all increasing in amplitude, and
if the ratio of the net range of amplitudes to the mean of the amplitudes does
not exceed 15 percent, the program deems these to be stable oscillations.
Alternatively, if the amplitudes are all declining and their successive ratios
are increasing, and if the final ratio between successive amplitudes is between
0.95 and 1.05, these are stable oscillations; a similar test is made for all-
increasing amplitudes with decreasing ratios. Another possibility is that all
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ratios are between 0.999 and 1.001, in which case the oscillations are deemed
stable (or, if the ratios are all between 0.92 and 1.08, the oscillations are
deemed “probably stable”).

Damped/Unstable Oscillations

A series of oscillations is deemed to be an instance of “damped oscilla-
tions” if the amplitudes form a decreasing series and if the ratios of succes-
sive oscillations meet several additional conditions: a small range (the ratio
does not change by more than 8 percent over the observed oscillations), the
minimal ratio is sufficiently small (eg, less than 0.99 for a short series of
oscillations), and—if the series of oscillations is shorter than 5-the series of
ratios is a decreasing series. '

Similar tests are used for “unstable oscillations”; here, we test for in-
creasing amplitudes with a series of ratios that meet analogous tests to those
described in the previous paragraph (a small range, a sufficiently large max-
imum).

Possible Chaotic Oscillations

Oscillations are classified as “possibly chaotic” when they do not fit any
of the other categories: stable, damped, unstable, or noise (see below). In
addition, at least four peaks must have been recorded, and the state space
for the system must have a dimension greater than two (as specified by the
Poincaré-Bendixson Theorem).

Probable Noise

Occasionally, apparent oscillations are caused by a consistent pattern of
tiny round-off errors within the integrator: we might see, for instance, a
repeating pattern of “maxima” and “minima” around a steady-state concen-
tration, where the amplitude of ‘the oscillation is some tiny fraction of the
average concentration value.

The Workbench classifies an oscillation as “probably noise” if it is either
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very flat (the amplitude is less than one two-hundredth of a percent of the
mean concentration), or if it is rather flat (the amplitude is less than half
a percent of the mean conoentration) and brief (fewer than four amplitudes
recorded, or fewer than six recorded with no clear pattern of i lncreasmg or
decreasmg amplitudes).

C.5 Feature Summaries

Feature summaries are interpretations of the overall behavior of the simu-
lation based on the information gathered in the episode history and derivative
zero-crossing analysis. Typically, the classification decision is based on fea-
tures found in the final episode, analyses. of the last oscillation structure or
structures (if any), and numerical values at the end of the simulation.

Steady States

The Workbench uses a number of independent tests, whose results are
combined in different combinations, to decide whether the simualtion con-
cluded with a steady state for a given species (and, if so, whether the steady-
state appears to have a zero or nonzero concentration value). One test is for
a long final episode in the episode history; another is for a final episode with
a “steady-state” feature for the given species; yet another possibility—a less
compelling piece of evidence—is a final episode with either a “slow decre-
asse” or “slow increase” feature, which could at least be consistent with an
approach toward a final steady state value.

The program also checks the final numerical values of concentration,
derivative, and second derivative to estimate the “flatness” of the species’
concentration curve at the conclusion of the simulation. If the derivative val-
ues are sufficiently small to cause little change over a long time (where “long”
is defined through the episode history, as discussed above), then this is taken
as corroborating evidence for a final steady state; if the final concentration is
low compared to its maximum value, and the final derivative values indicate
that the concentration will continue to drop at a slow rate, this is taken as
evidence of a “zero-concentration steady state.”
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Certain oscillation tests are also used in the context of steady-state clas-
sification. If the species seems to have undergone a damped oscillation, this
is taken as corroborating evidence of a final steady state (in conjunction
with several of the other tests); on the other hand, the presence of stable
oscillations at the close of the simulation is taken as potential disqualifying
evidence of a steady-state classification. (For instance, the “numerical flat-
ness” test alone is sufficient for a designation of “possible steady state” as
long as stable oscillations were not detected at the end of the simulation.)

Possible Chaos

The typical feature-summary analysis for oscillations of various types is
to look at the classification of the very last oscillation structure recorded.
This strategy is problematic for chaotic behavior, because the program may
not identify chaotic oscillations as such, but rather as a series of unidentified
oscillation-types (see, for instance, the Rossler Band example in the text).
Thus, the Workbench employs a slightly more sophisticated test to look for
the possibility of chaotic behavior: in the event that multiple oscillations
structures were found, and that they occurred in relatively rapid succession,
and that all of them were of type “chaotic,” “unstable,” “uninterpretable,”
or “noise,” and that at least one of them was deemed unstable or chaotic,
then we have reason to believe that these linked oscillation structures may
form a larger chaotic oscillation.

A few specific parameters and additional facts are worth noting here:
again, the program will not attribute chaotic behavior to a system with
fewer than three state variables, and again the number of complete periods
accounted for by the “chaotic” designation must be large (greater than 10 in
the current version). Also, the algorithm for finding possible linked oscilla-
tion structures tests for “reasonably similar” periods of the linked elements
(within 33 percent of each other), and checks as well that the “shape” (peaks-
per-oscillation) are the same and that, when two structures are linked, the
later oscillation occurs within a little more than 3 periods after the earlier
identified structure (that is, we will not link together two identified oscilla-
tion patterns that occur far apart in time, beyond 3.1 periods of the earlier
structure).
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Oscillations of Various Types

The feature summaries for “standard” oscillation types are generally
based on checking two properties: whether the simulation apparently ended
while an identified oscillation structure was still in effect, and the type of
oscillation identified. Thus, if a stable oscillation structure was identified
at the end of the run, the feature summary will contain a “stable oscilla-
tion” element. Similar tests exist for damped and unstable oscillations (and
for chaotic oscillations as well, in addition the tests listed in the previous
subsection).

C.6 Coarse-Grained Zero Crossings

In addition to the analyses of zero-crossing structures described earlier,
the Workbench also attempts to look at the zero-crossings in a more “coarse-
grained” fashion, looking only at zero-crossings that differ from their neigh-
bors by a large amount. The point of this technique is to deal with numerical
records for certain stiff systems in which “noise oscillations” due to numerical
roundoff error tend to appear between more noticeable peaks.?

We can think of the coarse-graining process as being based on the no-
tion that we can only distinguish points within a concentration-versus-time
curve that differ by at least 2.5 percent of the net range of the curve. (For
instance, if the concentration of species X varies from 0 to 10 over the course
of some simulation, then we can say that two concentration values are “in-
distinguishably close together” if they are within 0.25 of each other.) The
zero-crossings are filtered so that the remaining set consists of zero-crossings
that occur “distinguishably far apart” from those that occur before and af-
ter. Similar algorithms may then be run on this filtered set as were run on
the original zero-crossings history: again, we group zero-crossings into stable,

2Currently, the coarse-grained analysis is only receiving mild attention—we include the
results of coarse-grained analysis in the feature summaries for focus species, but do not
use it to generate parameter space graphs. Using a finer time-step and double-precision
arithmetic for Gear integration generally renders the numerical records for stiff systems
sufficiently tractable so that the “fine-grained” zero-crossing analysis is reliable.
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