Technical Report 1321

Concurrent Smalltalk
on the Message-Driven
Processor

Waldemar Horwat

MIT Artificial Intelligence Laboratory

Tius blank page was inserted to preserve pagination.

Comncurrent Smalltalk
on the
Message=Driven
Processor

Waldemar Horwat

May 12, 1989
Updated September 26, 1991

Copyright © 1989, 1991 Waldemar Horwat

This report describes research done at the Artificial Intelligence Laboratory at the Mas-
sachusetts Institute of Technology. Funding for this project was provided in part by the De-
fense Advanced Research Projects Agency and monitored by the Office of Naval Research un-
der contracts N00014-88K-0738 and N00014-87K-0825. Funding was also provided by a Na-
tional Science Foundation Presidential Young Investigator Award, grant MIP-8657531, with
matching funds from General Electric and IBM Corporation. The author was supported by
an ONR Fellowship.

Keywords: Compiler Fine-grained Object-oriented
Concurrent Smalltalk Message-Driven Processor Parallel Processing
CST Message-passing Programming Language

Massively Parallel

This empty page was substituted for a
blank page in the original document.

Concurrent Smalltalk
on the
Message-Driven Processor

by
Waldemar Horwat

Submitted to the Department of Electrical Engineering and Computer Science on
May 12, 1989 in partial fulfillment of the requirements for the degree of
Master of Science in Computer Science

Updated September 26, 1991

Abstract

Million-transistor processors are being manufactured today, and soon it will
be possible to put several million transistors on one integrated circuit. While
memory applications of this technology are clear, it is not obvious how best to
use it for computation purposes. One possibility is the architecture of the
Message-Driven Processor (MDP), which consists of a 32+4-bit CPU, memory,
and a network interface together on one chip. MDPs can be connected di-
rectly to each other to form a 65536-processor, message-passing, MIMD, par-
allel computer, the J-Machine. The MDP’s architecture is unusual in that it
provides a very high processing power to memory ratio.

Concurrent Smalltalk is the primary language used for programming the J-
Machine. Concurrent Smalltalk is the the language of choice because it fits
the J-Machine’s fine-grain, message-passing model well. This thesis de-
scribes Concurrent Smalltalk and its implementation on the J-Machine, in-
cluding the Optimist II compiler and Cosmos operating system. Optimist II
can perform global optimization of programs, including inline function expan-
sion, type inference, and global evaluation of constant expressions. Next,
Cosmos and the Concurrent Smalltalk runtime environment are described.
Finally, some quantitative and qualitative results are presented. The grain
size (the average amount of time a method executes before suspending) was
found to be about 60 instructions, and the MDP was found to execute one in-
struction every two or four cycles, depending on whether external DRAM is
used. A number of qualitative issues are described, along with a few prelimi-
nary results for addressing difficult problems such as controlling parallelism.

Thesis Supervisor: William J. Dally, Ph.D.
Title: Associate Professor of Computer Science and Engineering

Concurrent Smalltalk on the Message-Driven Processor

Acknowledgements

I would like to thank_

Professor Bill Dally for kis support during the difficult times as well as the easy ones and for advice
without giving orders.

Andrew Chien for providing many insightful comments while this work was being done, reviewing
drafts of this thesis, and sharing his ideas about the development of abstractions in concurrent
programming.

Scott Wills for providing suggestions and taking his time to show me around the MIT purchasing
bureaucracy.

Carl Manning for providing feedback on Concurrent Smalltalk and other ideas.

The co-authors of Concurrent Smalltalk, Andrew Chien and Scott Wills, and the original creator of
the language, Bill Dally, for making a wonderful language for programming the J-Machine.
Peter Nuth for his well-developed, Canadian sense of humor and a healthy attitude towards MIT,

as well as for his numerous contributions to the MDP project.

The other hardbeaners, Stuart Fiske, Johin Keen, Rich Lethin, Mike Noakes, and Debbie Wallach
for working long hours striving to make the MDP chip a success.

Brian Totty for writing the operating system on which Cosmos is based.

Lucien Van Elsen for providing relevant ideas about micro-optimization of floating point calcula-
tions on the MDP.

Ricardo Jenez and John Wolfe for knowing everything about MIT's computers, sharing that knowl-
edge, and for connecting UNJX computers to the Macintosh.

Ellen Spertus for getting the first dataflow compiler to work on the MDP and for rescuing this the-
sis by getting Word 4.0 directly from Microsoft in less than twenty hours.

Kathy Knobe for listening well and suggesting ideas for further research.

Scott Furman, Todd Dampier, and Shaun Kaneshiro for debugging the J-Machine, bringing up
Cosmos on it, and adding extensions to it.

Steve Keckler and Larry Dennison for being friends.

Anant Agarwal, my advisor, for advice.

The Office of Naval Research for providing a fellowship with no strings attached and amazingly lit-
tle bureaucracy.

Also, I would like to thank Bernard and Maria Horwat, my parents, for their love and support which
made my education possible.

Most of all, I would like to thank God for the abilities and opportunities He has granted me.

Concurrent Smalltalk on the Message-Driven Processor

Table of Contents

Chapter 1. Introduction
GOALS ceeeeeeieeeeeieiereesssersrsrnrreresneesssssins
Second Editionc.ccoeeeeene eereereeresennnes

1.1. Hardware and Software Architecture 2
The J-MAChINE....cccccviiieeiirnereeirernreeeerrerssresescsssansasssssssssrnnss revrnnreerenns erreerers vesseeresssensesanren 2
The Message-Driven Processor.....ccuiiieeensiesscsinnninimisssis vorreemsases .2
Concurrent Smalltalkcccceevnnee reesraereseesesrstnresensen recssesstareeeeessrrtanen rersesecesssssassassrrararens 2

1.2, Overview 4
Foundations..........cccooeeeernnnen verrreereeesnnennes ceeeennrereees teeeeessbesssesessrnrsnneeresaasnnasanssessssernassnseess 4
System Overview............. vrerenen 4

The Optimist II Compiler........cccoeeviivnmiiiiniininnesennscsssnnseiesesesnesesnes eer &
Cosmos
Exampleccoccccvveeeeennnnns
Implementation............
Results coovvveveeeereeecreeeeiececevveecesnens e
Caveats....cccceveeeeirrrecssrnneessonns 8
Reading GUIdeveveeeeevecneenciieieiiristir et st ssesssstesere s e st a s s as s s st sas s 8

1.8. Related Work

Smalltalk SYSEEmMS ...covcovieiericeeeeneniiener st

Smalltalk-80

Optimized Sequential Smalltalk

ConcurrentSmalltalk

Actor Systems......ccccoveeveniinieinriniininrene e
Cantor......ccueevveeviiienrennens

J-Machine Referencescccoevvvreeeecierereecsencussisssses

Chapter 2. Concurrent Smalltalk 14

INtroductionccccveeverrerrrennrneeceecensneesessenssssasenes
FUNCLIONS ceeeeeeiieeeeeeeriecciriesssernersereseeesessssssseasasssssssrersnarnrssesesnsens
Extracting Methods
ClASSES coeeveeeeereeanceesssssseressssssansaessesssrnrasesasssssesssossrsunsassssssrnns
Overriding Methods
Type Restriction
The Class ODBJECt......uvuereeerereererierisieseesiiitsesterioretsbesresestesressssnesmessssetcassssssssssnssnasssasssne
Local Variables

VDS c1evreeervrersenenceereseosesisesesesssssssssaesebesss e s s s b e b e e sE e RS h s eSS e RS a S asesess

Concurrency

Distributed Objects
IMLEICTOS veeerunverereeesaeseessesassnsessssessssessssosnnnssssonsanssnsesssessstessssssesrosssnnessessassasnnaessnssssssnasssssssss

Chapter 3. The Optimist II Compiler............ 22
SEFUCLUTE eeeeeieeiiieeietieireesreeirresassssessetssneaecrstesssssssssssstasssnsssassssassessstssssasssntsssanssnnnasens 23
Reading Guide

3.1. Data Structures
IS vaurereecieesseceerreeseessnnsssesssesssensesssssssnssssossssnnennensresssassesseesensansnssnsnssasssasesessnes

Valuesccceeeune
TyPes ANd ClASSESccecceeeririiiiniiiiiieri et sssnsasne st s e b s s sas st st sree st ss o

Concurrent Smalltalk on the Message-Driven Processor

Multitypes ...ccocoeveecevcvrnirncnenne rreerrernresesteeneee e eeanes revreeraeeeees rereerressressnesnreesnesnsees 28
Global Data Structures.................

3.2. Initial Phase 30
Reader.....ovuiveveeccreircceeenens eereesersensensrrrnrenanen trerereransnsnnnesanrerrees reeeressesresssesnnnens 30
Parser reerreresrseneeses 30

Macro Implementationuueuuceen. teeteeeressesreeeressasnnteeeaesssesnnatessiisssrans SUURRUROUROe:. 3 |

Environments trvesoesesresshrnrasarnssesnaesernnnn SRR 3 |
Concurrent Smalltalk Runtime..................

Top-Level Primitives

essveseceseosrsnsresnananstrranees4--.....-.......29

Initial Transformationsc..ccvvumrineens
Lambda-Collapsingcccocceeveene
Efficiency Considerations.........c......
Examplecccoovvvieiiiniinineeninnnnn.
Top-Level Evaluator
Interpreterccccccuvrennne.

3.3. Optimization 38
Treewalkerveveieiviiieeeerenereeeeverseennnenens tevreessrenrrsrrarenrsenaaaees eeerrrenrearanenarres rrrreeresrnnneen 38
rerrrreereenes revcerrrrereeneer 38

Preparatory Transformations..........ccovivinervervensenniennnne. vereeerenens
Lambda Copier and Structural Optimizer............ ererrrrreenns
Nconcurrently Flattener ervereeseaneens vervreesrvesneenne weveerenne
Continuation Expander..........ccoeenn.

Function Inliningcccccceeveveivvniemnneinnncinen.
Cleanup Transformations........cccccoeiiniiiiniiininnensnnsecnnneens revrerreeeeeeesennnes rvesrrereerenaananes .45
MDP-Specific Transformations
Global Expander...................... rereererraeessrnreessaeesnaaeranes rversrrreeerssaeaareerrranes veveeeenns ...45
Addressing Mode Flattener.......... . weeerndD
Statement Splitter.............
Built-in Optimizerc.cccovvvircnennnns tereereeereererntrreeeasrrteearaeses
Instance Variable Target Transformer rrereeeeesssasssrassessressrarsssssaesseasssesansssresves 40

Cfuture Parameter Eliminator revereerreeenes reveeverreeiannnrean reeresrvessesssssesss 46
Enter/Exit Introducer................... tevvrerrrrrraraarnes evererarana. teeeserrerrrnerrnannanees reereserennnsena 46

3.4, Code Generation 47
New Hcode Compiler Features......... ereeersrbeessreaestraeesanerens revreeersaeesesbesaasannne ISR ¥
New Assembler Features..........ccccceeeeeeeen. teeeeeeeesteetrennrrarannnsnnnnaneranes . JRRTUSRY- ¥ |

Global Compilation........ eereersrreeerarnnes reeeeerssresnrrnnee rreeneannn USRI ¥ |
Identifiers............... . tevesesnrsessrararrene reeerrerrarsnrraasarenes
I8 coveeereeereereeeeeeeeaaeseiseessssasasssrerrrereeresassesosrsrnntsnnsaaeseatesesersesssssasssses rerereenenns
Method Tables
Data Formats..........connee. e ververressnnneeesrernn 48

3.5. Conclusion 49
Observations.............. eereeeeeceersesnnnnas rereeeresssresesssssannee e 49

Chapter 4. The Cosmos Operating SysteM........ccceerererssesssssssesssasssssossisnss 81
teveeesrersessesssssrsusrans .51

Concurrent Smalltalk on the Message-Driven Processor

Reading Guide.......ccccenueene. reererens .
Heap Manager teeeerereressesaseeesssenensntnsensteteseranretrebsissresessennrrsnseranas
BRAT MANAEZETcveveereeeiereeneitessunestesinissnessasssasstassasssssssssssessnasssssssossnasss JUTRRORe 5 .
Object Manager...
Context Manager evereerereatasestasessssetetasessesesaases st eb et st et sasbsstertsasr bt erer b srarses DD
Global Object Manager....
Method MaNAZeET........cceeveevreerermressisssenstesiiisiessssssanasssesssssssesaessnssraness rrreeeerssnreesnenene O
Control- Manager........cccceecurirrnvnnens cerreeeesreearsnnnees D4
UtiHtIES. .o reeeerreecrreceererseesssneessnnnnnas reeereeearesaessnessesssssbessessrsseesnensasseessesssssaersessessessOd
MDDP RUNLIIME couiiiiiieeeeeiirerneeeecesrnrssssssssssansssissssssnsssssessnsassssssses D4
CST RUNEIIIE ..eeeeeeeereeeeereeneeeeessesssssssessessssssssssssssssssessssssasssssrssssssssenersssnsnssasessscsessO

Data Representation......cc.ccceevvrrnniieinnnnns rerveeseersessnesateeassssseestessseansessrsnsersnassacessssne O

4.1. Hardware Building Blocks 56
Memory Organizationcouenne. ereereeteteseaseeteatetentertersensnessesarasanessesssneresrorsersasrasess OO
Priorities............... eeveenneeenanns

4.2. The Cosmos Kernel 58
Criticalities............
Heap Manager...............

Heap Structure. tereereararrarrrrresaranaes reerees JORRPRTRRRRIUON ;1. |
Heap BIoCKS ...oovevreeeereireeniiissinsesanesercnesnnessesenes
Object Allocatlon........ teereeesssesessisessaraeesestsae s aneeearabtesssaasesesnrseesatisaansrt
Heap Compaction.........cceovereeerenriniinsinisiieiiesennrmsmecsssssssssssssienae
Utility Routines veererens teveersrnrreeeeeesarnnasersesss
BRAT Managercouueeunnee .
XLATE and BRAT Table Formats......... .
BRAT Routines eersrerrerrarsreeeaeasesesssssesen
Heap Compaction......cccccvrererverenensnnssivissiensnns revreeeesnreressarasnens tereereernrrenssssassenaseases 02
Object Manager
Object IDs......
Routines
Context Manager..............
Context Availability
Kinds of Contexts......ccceccvvreiimrrnneensineeenanne rreesrneeesrennns
Allocation and Deallocation Calls............... rerreesreesseeessessssesessrresasasrnssnsasnssssnesanassess©O T
Suspending and Resuming Processes........cccoervinceceicinenisiisnininnne. JUURRTRIRUUURURON . ¥ |
Reclaiming Contexts..... . rrverressrerns reersveesresrrsenressesnseraeasnss OO
Global Object Manager cervrene vererreene verereseananaes vreae ...68
Data Structures.........
Object Migration.............. revreeesseens erveeeeseanes weveeeens rteteesieeseestueeessneeesssaseresrrneeennte70
Object Allocation and Deletion rervreeereeernarees vveees rervereennnreeeersases 12
Other Services............... rreeereeerrneerbresanens revreeenrreeenrraesssnans reversstesesnsessnsessrssssarersseacsses 1O
Initialization..........cccceeeuueeeenn. veerrereraeens rreeeerees araees teterreenerseesrestessnesrseeneesssassnssstsesseers 1O
Downloading Programs vreeneenanns

4.3. The Cosmos Higher-Level Facilities 75
Method Manager revsessarsrssssssesssesassesrros (O
Control Manager cereeernereriraaannes teressessteeeseaneessarrtanansrranassansssrnasesnns cereeeesrraaaenns

Function and Method Dispatchcccoee...... tetetessereessssrarenastreeesneseasnnasesare e
Function Calls and Replies............... retereetteseesaeassreteas e beertaarateestassarraenrbsssrbeen

Utilities oveereeeieeveceecnnnesnreeens reevanmaeresesesseesesnasennrsrren reereeeeessssssnsnrsssrrrann rerereaes 78
..... teeerneeessessssrseessessnssnne 19

-..nu.-.......uu.....u-u....u.u-...u-----uu...----....--no..n.nou..-...-....-53

-....u...n...u-.......-........-......u-..---uu..-.uo......oo.-..-......n.--.58

..-........u...-...u.......u.....-.o..n..u.....-u..n58

...-...-....uu........-u-........ﬁo
.....n-.......--.......--......-....61

eeesrsessssanese sssesens essessecsesssscnsssescscnn62

creeeraeenes cresesereserennsarernsnanes ereveennessessaesssneses 14

IYTYITIIRTE Y

. oo ...:.......80
Locating Constituents rereeenreaens rerrvrreeeas reeennrees reeerereeeeeeaes R IRRPTURURS . 3 |
Allocating Distributed Objects................. vevreeerresessennee rrrerereeeeessrresesisnarsns rerrererreenre 82

44. Summary 84

Concurrent Smalltalk on the Message-Driven Processor

Chapter 5. Sample Program 85
INTEIAL PhAS@ c.cccovvivvireceinrerrrierssrreereesesssseesecsesiarseesassssensssssssssssssssosssssssnnnnsssssssasssasasassssssss 86
Optimization PRase ... inssrtsssasssasssssssesssssssetsonssssssosnons 86
Compilation PRASEcccciiiiviiiiierencne ettt etcsiesssesesasssassnessessesssssasssssns snesanas 91
Running RANEESUM.......ccoevirvieinieniniiiiiiiiiniisineesssensenssssssssssssssssnnssssosessusnsssnsssesssss 93

Chapter 6. Debuggingccccccerevecciercrneees . 98
Debugging Concurrent Smalltalk Code......c.cocivenineiiiiniinininiiinincessnnienecsecnienne 98
Debugging MDP Code on MDPSIim........ccoviimmininiiininnnniessiiesssssiesssssssenansissnes 98
Debugging MDP Code on a J-Machinecoiviiiiinininnniininesnsnnissinessecionee 99
SUMINATY ooovveviireirveriieceneesreesiseessnsssecsesessssesssniosssmssssosssnssssassontsssaasssnsssssssssss sobtsssssnasorns 99

Chapter 7. Performance Measurements 101

7.1. Derived Times 102
CoSMOS ESLIMALES ..uvvevieriiiinrieeiriitrrrrirssnreetieasrsneessessssseessssssissssssensessssnnaessssasssssassssssses 102
User Program EStimatescovvieenrnnciiiniincinniienesiirsnnsesssesessssssssassnessees 103
ANALYSIS .vevveereieiesenteeereeetenee e seste sttt et st b s sa e sa e e e a s besr s sabesuessesrasas e s e e s u e as 104

Standard INVOCALIONS.....coocuvivvvvreeiiiiiererresereseesttsssssraessssensssssseessssnressssssssssssnarssnns 104
Tail-Forwarded INVOCAtIONScvveeviveveeeeciiiieereesireseeeesissisesrressssssisrsssssssassssasasees 105
| IF: 1723 4T 2O OO OO OO IU PP PPOOUPPPIPPRPRNTPPOR 106
SUMIMATY et se st e s s cs et stts st st s s esb e s s sr s e s r s seasssasrasassasstsssesssssvensanses 106

7.2. Measurements 107

Grain Size and Machine Loadoociiiriiniiiecrenienniecceieinsnnsissinseerssnsessssneenees 107

Comparison with Dataflow ... csssssesnes 110
NEtWOTK LOAG cooeounreieiieiiireiriiiiiieseesrreeeseteresraeeesseenssssseassisssssssannessessassesssnanssessansssssns 110
INStruction Frequencies.......vcveceiivnnsneneinnnesioeeeiimeenincossassssssssssonnnsssssssssesses 111

7.3. Conclusion 114
Context Switching Performance..........ccovveeveereecmneniiiiiiiniiiirinninessssssssssssissssioses 114
SUMIMATY «ovvveieriieeereiierrere e steetee et eses st esats st sat st ssr b esbas e ssnno s aasasarsnssnasarssassastassesses 114

Chapter 8. Future Evolutioncccceecniniicinnicisnncccccnnccnnes 115

8.1. Features 116
ATYTAYS covvevrrrereceieerriroressiesssasuessteesesseeesessstossssstessssssassssessesnnsssesssansstasssssstesssssstsssesoseessnssn 116
Overriding Primitive Selectors.......ccimiiiiiiiiineesveecccesnsiiec e 116

LONG INLEERTS ..oueereesere e cerciciiisiiestenrc et st s n s sr e s s ssa e sassaesassssescosessnnenne 117
FULUTES vocoevevrrreeieierirreereirsisseeeeeeeesstirsressssrsrsessasssssasssessssssssassnsssbessssssssssssssnsossssrsssnnnseases 117
Floating Point NUMDETScc.coecevereceirrniniiniic it ssessssessesosssstsssesens 117
TIUE LOODPS .vveeeeireerieeirecereeisisersseesnesrnnssissesseeseneescameessesssstsssssossssssanstsnsesasanssnnssssssssssssses 118
INLINE ODBJECLS oovvvverierrirrirecireirieeiereissenesssesesieesiecsseessstessaesssresssssssssnessnssessnrsssnssesasesssessssns 118

8.2. Resource Management 119
Heap COoOmMPACLIONeeeeeecieciirteeircteereen e ereessrsstesstssssess s e sesssasssasnsssessassssssssssasssssuaes 119
Fanout BottlenecksSccuueoeeiiiiieiiciiiirrecveenerestvessrseesssesseessnnesensesssssssssssssssssssnsssssasenns 119
Garbage ColleCtioncccveveeiirieeeeiieniiintinirienr st essse e s saosssesssassusssstsas 120
Load Managementcoccoeeerircrnientoiiosicsninisisieiiiiesssssesssssessessessaosssssesssssssssssns 120
Controlling ParalleliSmcccovevvrirrnerniiniinniniiniiinicnnrisseesssinessresssussssesscsssssssossanes 121
INGINE SPACES ..evevveeeeirrrreeireearerioeessttessresossessseseseersseeessssssssssnsesassssssssasssarassassssnnsssaassenss 123

8.8. Architectural Considerations 125
Minor Instruction Set Changes.........cccccevviiireererrererineseecneentriiirersnseessasssnsssssessansens 125
Fast Context Saves and Restoresc.occiceviceevimieiecnirerniseciinnersssnnennsesssssessssssensens 125

8.4. Conclusion 126

Vi

Concurrent Smalltalk on the Message-Driven Processor

Chapter 9. Conclusion 127
Optimist IL......cocvveevvvrrvencrcssnnnnas tereeressreeessaresesenens vereeeser reveeersesnreeereanesesrenrenss rerrveranans 127
COSINOS ceeeeereeeieeeenernrsssesessressssasessenessessssssssnsasssenssssossssssnssases ervessesreasnsrnnenes vevessnes ererereenees 127
Debugging........cccceeverrerciniiiennniininiiiesrre e sreesssssasssns reeeeresessssesssnns verseesessrtssesssseesens 127
Performance Measurements............... reessarressessssaaasaenes veeerenne tereeeeresteveesarsessesersens coeeerens 127
Future Work............... tersrsteeessrrtessesnnrnnnes ereeennns cesereereeeeresen reveessssssensesssrsnaresnees veeesenes 128
HOPES ..ocveeerierreircenersrnnssnnecsecsssessssisssinssstessesesssssssasssnnss vererreranenens reerrrerresesssssnansessssses .. 128

Appendix A. Concurrent Smalltalk Reference 129

A.l. Introduction 129
GOAIS ..eeeeeeeeeeevveieiessrceeesessssssrresessssnssssssesssnsesssnsssssensresssssrans reveerrrrrrenesnes eevereenes vesrvererenns 129
Format ...ccocovvrererereeereveeeeveenenens eevervenrerene teertesesiaeerrasreneesneansreaser reeesessmsseananenasesessrrenararssns 130

BNF .
Methods and FUNCLIONSeeeevveinireeeeeriessessssrsssscassasseeeseensaniens reeereresersesessesrsssssss .

A2, Syntax
P O KIS e eeeeerreereeneessenssrsneeseeeseasssessaesssssessnsnsessssenessasssassssssssssssnssssssnsansssssssssassuesnnnnassasarsness
LACNEITIOTS «.uvvveveereereiieeeeeieesseesieessssnrsrsssssessesesesssssssrrsnsasessentessareseassssrones tereerrnrnsenenns rereenes 131
SYMDBOIS ...ttt sttt e sa s s e se b e sh et s s e 133
COMISEANES v vvvevveereeeeeereeeeeeaeesaasennsssseeessosesessrssssrrorsasesstssnnsnsansssessssssssessnstensssnssssesssasassssss 133
COTIIMIEIIES «reeveeeeeeeeeeeeesreeeeeeaasvseesssosssereesssssnsssessasssansesseassssssnressesssssstsnsssssssssasnnanssesssnne 134

A.3. Programs 135
Constant EXPresSionsciicieiiiecrresesceeniminsiosseisiisssssssssersensasssssssassesasssssesssssssesses 135
G10DAl DefiNItIONS voeeeeeeneeeerieiiriiieieisrtiieieseessssreeeaeasseassssessrsssssesssessssssasesasensan reernsreereeens 135

A4. Classes 137
Built-in Classes ...ccvieeeeiiiieeeireriereneerenseneeees eeeeresereeesernrensssssseesrtrrarsannaneseeeseserareserossnsses 137
Defining New Classescc.ccceverveiriniiiniiniiinisiennstsissesssnssessesscesisissasstsstsssssssssssnssasses 137

Class INheTItanCe ...uueeeeeieeireeieiiirrcceerrrrnrreseeneteaaseeseseesesssessssssssssrssone rerreeeeeenerens . 137
INSEANCE VATIADLES .vveeeeeeeeeeciiiieeeiisinrrseetesssssrenressssssssasessesssssssssessssssssrasnnesssersrsanaasosses 138
Reader and Writer Methods 138
Class Definition OpPtionsS.....cccoiivuiiriiierrninscrnctisiiesinenin s sss s sinesssrsossstssstnsssssessens 138
INHNE ClASSES ooieeeeeeeeeeeeeevetiersssenesreessesersesiesssssesssssssssnsesessssssssssssssosssssrnnsassssssssssneassasss 139
A.5. Methods and Functions 140
IOt TOAUCEION .ot eeeeeeeeeaeeeteesaseessassssraneeserssssaasassassnsnsnessassssnsstassssssssssssnnnssesssssenes 140
FOTTIIALS . eueeeeeeeveeeeneereeeeeeieesssssssesneeesesseseessorsssssssssssssssssssnsssssssssnnnnsssssenassesassaesssstons 140
REbUTTI VAU . ieiiieeeeeeeeeettieeieessieersesssssessarnnrsrsteseessasssssessssasessrsssssssssssessssnvansosnsss 141
Method and Function Declarationsccccooovvevvveervercrnnnnenneceecctesieeerresneansnenessssesssses 141
The Calling Processc..ceceeeeeccermriseiiienniesiunissesisissessseissssssssssssassssssssecsssssansssssasaes 141
Scoping of Local Variables ... esiisccssisieesmeieeninns 142
FPUNLCEIONS 1eeeeieeeeeeeeeeereeeeeresseeeereeasessesssssssnsssrsssssssnsassnnestesssssssssssesssssssssserssssnsnssnnsnssnssnnass 142
IMEEIOMS +reeeeeeeieeieeeeeeeeeeeeeeeeeeeesssaseessessosarseessssssssssesssssannssesesssassessaseessssssssannressssnsnsnnnanes 142

A.6. Statements 144
FULUTES ANA CFULUTES «.eueeeeeieeeiieeieieecereserarsrreereseesesesssssssssesssessssssssssossssnsssansvenssnrassone 144
Argument Evaluation ...ttt 145
Application Statement ... s 146
TYPE ASSEILION ..eevieeeeiienieseinrcteiiiesine e st a s e sr st et st cenae bt st esaesen s b s et anasas 146
Variable BiNAINGSccccverieereiveenrerneecinsiiiiinssstenressresesssassssssessssssssssssssssessessrnnsness 147

MUItIPlE VAIUES.....cccoiieiirecreirrecresecsrieneenentise st crnssa s e e essra e sesssenesanenussansbees 148
g 117: 161 AT 1 V=28 OO USROS URTO SOOI PO UPPISPT TRV IR 148
FLOW OF CONETOL ..ceeeiiiiiiiiiirireeeecresseeeeeeeeernsassssssassssssssesseresnsnsasassorsssssssssssnssssssssssessannane 149
LIOODS outveeereiiire e eeeesieesreessssesnsesseeesssessssnsssssisssassssassratessnsasnsasses tereesereesessssranenseres . 149
Primitive CONEIo]u.eeeeeiiiiriieiieieiinissosesessrsnssesesssessosssessassssenssssssossssssssssssssssssssssss 150
Returning VAIUESc.oocveeiereeeceraeeneceeesnisiiessiintesieireveessasssssssessasenssssssssssoss sonressssenes 150
CONLITIUBLIONIS 1vvvevreeeeesieieeerieieeeeeeeresttnsetssrssssessseeressensressesssssssssssssssssssssosssasnssansnnns 150

Concurrent Smalltalk on the Message-Driven Processor

A.7. Built-in Methods and Functions 152
BUilt-in ClAaSSES voeeveuveeerreieirrreecsirieseriesssreeessssessssssssssesssssasssossseeessrssossssssarssssusssassansens 152
Built-int MEtRoAS coveeeveiieerreeeiinerseceieirieeesssenesecssecsssnssssssasssesssessossessssssesesssnsansssssansansas 153

Redefining Restricted Selectors ... 153

A.8. System and Object Operations 156

ODBJECLS ..eevvereeereeneserarenseeseesstaeonssssssossossesstssnssssssessessessesssassosessassnessassasssssssasessessasassoss 156
COPIETS ...ceeeveereereee e et e e e sreeres e st ssnosasstestessnestortsssensessesaresassnssssssneseassessessnssassnnines 156
DEAIIOCALOTS «uvvvieereeeiriceeriiieriesrretirieeessueesesseasesssaesssnasessensssssnssssssansessssanassasansssssas 156

C1a58 INQUITIES .ovvevevreeeeerrrrriinertesieesreesseseessscsssssseessatsstsssesssessssernsesssassasssesssssosssosesssasas 156

A9. Distributed Objects 158
Group and Constituentscccoveeireererenininiiiiiersesessressesssstssssssssanssssee 158
CTEALION .eeiiieeeevvriecrrsrsreeteessssssseeeessestsnessrssrssaesssssssssssessesssantss sosssssnenseessssssssasssssasasssnonens 158
OPETALIONS ...ooueeveeerererrernenerterseeessesseeeese st essssassesaecsessuesssssassnsstestessssnsrsssosesasssssssessross 158

A.10. Logical and Arithmetic Operations 160
COTNPATISONS ..vvverererreerarsrvesssessessmessesssssassssssesssssssissssesssssaisnsessssssaernssssssesssnssssssosassssnsne 160
Logical OPerationsccceeveeeeeceiiniinnceeiresiesisiinsississesssssssssssssessnssssssossssssssssssssnsas 160
ATIthetic OPerationseeecveeeecrieeiiiieereseerenrrreresessstessissssrsasessssssssessueessessussssses 161

Bitwise Logical Operations........ccccceeveviiiniiiniiiiinneciiieernnessissssesesasecsnsssssnessane 162

A.11. Locks 163
LOoCk OPETatiOoNS ..ccivvivieiiiiriireeireeiscieecetenaeesrrceceneiestsssresssssssssasssssasssassnnssssseesissssssessssnns 163

A.12. Strings and Arrays 164
CreatiNg ATTAYS . ..oceeeiereeieeeeereiesieseeeeiereeentsssteris sres st s sras e srbnoss s s s e s rsssassssssnssnesssssnsess 164
Operations on Entire Arrays........ceeiiiiininimnirerinesisssissnssnecsssnessmnsnes 164
ACCESSINEZ ATTAYS ...oeeieeveevaenreeeeseeessitsstsssssisssesstbe s e resraessasatssssssassssessssssssessnnensanesss 165

A.13. Input and OQutput 166
Sl EAIMIS 1 ieieeeeieeieeeieeeeeneseeseeeeeertsersessessssrsssasssnnssasssesesenssesssssssssssssesssessnnsrsssssnansannassnesasns 166
Operations on General Streamso.ccocviiirinniiiniiiiir s ssrsssssssstsssesssesnns 166

REAAINEG ...oeeeenrrereereeeeeeerte et see st s errrer s e bs s s be s s s e sasaese s s sssentsbssrnenan 166
WD convereeeeereveere e et et sre st et s st e e s e b s s be s be e st e st as e sa s s e s aesnsnusnnosbiss 166
ABOMIECIEY .eveeeeiereeeeeceeerersveesreesesstssiessisassssstesseesstssnesans s ssssassssasssssassnsesssassassnnsnns 167

Input and OQULPUt SErEAMIScc.ecvvierirciecieececccstines s e saes s s sssaassseasnne 167

FOrMAtEING...ccciiiecccceeceeceecee e resarie st esssne s saae et ee e as s sessraeseseaatsssosens osannsenssnnnanes 167

A.14. Macros 168

A.15. Environment 169
EIITOTS. .. coeeiceieeeeeeeerrterseseeaesiresesosesossnassssssssssaressasssssssansssrassssbratesessaesesssstsssonntsivorsases 169
A IES ceve e cecveiiisieiitteeeeecssaares s sessreresoessssasesosssnsnsassansssnsenssesooseessssssssssstnsnssssansnannnrensns 169
OPLIONS ... vviertereerreenrreeiaeeeriessreantesstaeeneseaeeeaessnteresassrssssrbssosssesssnsaasassunessssesstsosssnsssases 169

Appendix B. Using Optimist IL.......ccccinieiineeecrcncecicssacsene 170
Starting the Compiler.......ciee ettt 170
Top-Level Commandsccceocevieeierereverreeeneeneectssenessesassssissesrnsssssessssasssssesssnassssses 170

Utility CommMAandsccocveeieeierncrecerisieiiisiieiri e e sessssssesssessnasessssesssssssassres 170
VIEWINEZ ODJECES ..eveeueeririeirrereceie e neestesensseesissiestsnisssessisnesasssessassassssssesssssesanesecs 170
Compiling Programs.....ccccouuiciircriecreenemnneninisnisisisssissssssiesstsssssesssnsesscssssssssssssons 171

OPLIONS. ...c.ecveeeriterreerrecraeeeieestete e st e st e ees s eseestest s st esbsssssrsnnensesssatsesssssastssstasesssnsessutsreas 171

Appendix C. Using Cosmos.... 174
Loading COSIMOS ...eeveiieecieeiereeeeerrerneseeessesstssssissesssssossostasstessansssassssssassssasatssossssesssnsss 174
Loading USer Programs.........ccccccivmimiiniinneiinreiiemiisinsessssessssossssssmsstmssssasenss 174
RUnning Programscccoeooeriinnncninniinnicintinniniessiscssnissssessssssssansssisssssssssnssnns 174

Appendix D. MDP Architecture Summary.........cceeueeen. 176
I OAUCEION o eeeeeieeeeiieeeeeieeeeeesseeresrstseeseeseessessesirsssssssrressnnresseesiesessssssssssossonssnsranovernos 176

Concurrent Smalltalk on the Message-Driven Processor

ProCeSSOT SEALE .covueiiveeriiiriireece ettt erseseeerscsnsescssnsssssresssstssesssansrssssrnasessnssssnesanssssannasss 176

DALA TYPES ceuveeecrererrerrereeereseereesuestestebestsre s bsssesa e s sass st s sassssassnssssesassssssasnsssssssasssnsnss 178
NEtWOTK INEEITACE . .eoovvvireiiieiecevictteerreninresrtessessrassseesssssssssssosssnsssaesrassansassssnasensssoses 179
Message TranSmiSSIONcuuiiiiiiiieiiniisesiessssessesestesess e sssssesssssassnes 179

Fault ProCesSINE....veveererererrereieereenetcriessresstesisssseesasssansssssssasssnssstssaassstssassosesssssssansssses 179
Instruction ENCOGINGccoccvvvireerereceeiieiitiniiiensnsisnssssssssssessssssssssatssessansssssssssnsns 180
Instruction Set SUMMATYccccirrerreennieninntcrcintiresssesness st ssesassssssassssssessnsssasass 181
Appendix E. Optimist II Listing . 184
Appendix F. Cosmos Listing 185
COSINOS. T veuvreeereeecerreereeosueesiesassessssessesesseesssesssnssnssssssneesssssssesssssserssssossasssstessnnssrntssanssons 185
COSIMOS. M uvereneeeererreeersreresseeessrsssesssssenssesssasseesssssaasessassosssssasessnnsesasunsssssrssssssssssesssansasasss 190
RUNEIME. TN ceeeiiiiiieiinerecireeeerieeeriirsesseresesssersssseasessasssosssssssssnnssnsasusssssnsessossastassssansissssans 218
Bibliography 221
Concurrent Smalltalk Index....cccceernnnneercccccsssnneee 224

Concurrent Smalltalk on the Message-Driven Processor

List of

Figure 1-1.
Figure 1-2.
Figure 1-3.
Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-5.
Figure 2-6.
Figure 2-7.
Figure 2-8.
Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.
Figure 4-1.
Figure 4-2,
Figure 4-3.
Figure 4-4.
Figure 4-5.
Figure 4-6.
Figure 4-7.
Figure 4-8.
Figure 4-9.

Figure 4-10.
Figure 4-11.
Figure 4-12.
Figure 4-13.
Figure 4-14.
Figure 4-15.
Figure 4-16.
Figure 4-17.
Figure 4-18.
Figure 4-19.
Figure 4-20.
Figure 4-21.
Figure 4-22,
Figure 4-23.
Figure 4-24.
Figure 4-25.

Figure 5-1.
Figure 5-2.
Figure 5-3.
Figure 5-4.
Figure 5-5.
Figure 5-6.
Figure 5-7.
Figure 5-8.
Figure 5-9.

Figure 5-10.
Figure 5-11.
Figure 5-12.
Figure 5-13.
Figure 5-14.

Figures
Software Environment Organization...........eiiieiesemesineaes 5
ComPiling FACh.....ccccoveriieerneeeenieiiiniiininestesrensr et assne e s e sessessssstbestssnsrnsssassnsnans 6
RUunning FACL ...ttt snssss st sst e ssts st st b tssnsansenass 7
A simple Fibonacei PrOgram........c.ceemuiiiniiiinieieeinsissrssssessosessssisessorsessans 14
A simple Fibonacci program as a functionceeeeiininecnincenineiinen. 14
The PAIT ClASS ..ccueveeerirceerenrieeeectsiesisstessirsisinerseiassssnsssarsessssstosssstsssssssssnsssessssssenses 15
Fibonacci program with local variables.......ceuiiierinncciinineiennnnn. 17
Fibonacci program with types ... 18
LoCk EXAMPIE.....c.ccoeeriiieiiicreninecsecsisstcisessiesie e snessssssssssssssnssussasssssssessnesasssssasans 19
Distributed Object EXample.......c.ccoeerincnrnierrinininnverneniioesnmessisssscenmiesssesanens 20
WRETI INACTO0. . evveereriirieeeveissueessesssseessasessesssnensssesssssssssssssssssssssnnsssnssssnssssnnesassessssssosns 21
Optimist II Organization............ciiiiiiinieensss s s nisasssssens 24
Exit Flattening EXamplecccoiiiiiiiiininniiiiniiscniicosssemacenee s 33
Lexical Variable State Machineccccoieeecccrerminiiiiireenmeiinensiesseseacsnsesceses 34
Optimizer Organization ...t 39
Operating System Organization ..., 52
Concurrent Smalltalk Object Representationscceeiieeiiinnncecniniiiininiiiiienn, 55
MDP Memory OTganizationcuieiiiieieenirimsmmmimesosiessseisismrms o 56
A HeEAD BlOCK....oouiieereieeere et sreseesseccsecsnesecnnsnesaes s sassesssssassnnsnesssestssassnasnsenses 59
XLATE Table FOITALeuvviirireeeiientieecreiircaeeerseseeeresssssssssansessssssssssnnssssosssssosssssas 62
BRAT Entry FOrmatccccoveeviniiniiniiniiiiiinieisreeiessisessssessssatisanisssssssssassssens 62
BRAT Table FOrmatcccciiiieeciieeeceeerivesnssessesnessnniiineineessstsesssssansssssseesisssnceses 63
Object ID FOTMALS ...ceeeevvererreerinirintiiiiisisisine e e s s sssesss st ssesnesnesassssssnsennsnssns 63
COoNteXt FOIMAL.....coveeeeeiiceecrrecrceevnsveessesteas st ssssar e sresessssss s seennnsssssssssessnnensess 65
RestartContext MeSSAZE.....ouieiieaireisrinrreessesiteiisesisssesissssssessntsssnassnneesssss sassesoss 68
Object XLATE Table and BRAT Entries......ccocvivneiienineiniinnnnennn it 69
Object Migration MESSAZescccceevminiiiisiiieinieinsesnstess et snesscssssasssssesvnsasesesses 70
Object Migration Protocolccciiivniiniiniinieniiencncssssnicisnneens 71
Class Object FOrmatccccveicminninnininiititiiniiesessesssreeesiessesssstsss s nsissessenees 72
Object Creation and Disposal MesSages........covvieemeecrenincencniininiiioninssnenioens 73
Class/Selector Word FOrmat........c.ccececveeiiiiceneeiciismiinnniieeniinninreesssssnessessassssnns 75
Selector Object FOrmat........ccccoeveriiivmniiniiniinininnreese st ssetseennssnnsssesssnsennes 76
Method Manager MESSAZESc.cvverumriiriseniisseesiiiesiestasissssesseesssstsssmssssssssssessssans 76
ApPDlCAtion MESSAZES ..cceeerviuireeeeieriniiiinniitisreris e s sb s s snesssssassasnsssssessnses 7
Function Object FOrmatccccvveverieveininsininiiiinesrestsns e ssecstsssssesseenes 78
Reply Message Format ... 78
CloSUTE FOTINAL ...coviirvirireririeitieiesseesresnnre s eneeesesstessesssssssasssnsrssensasssssasessntassseaes 79
Distributed Object Group ID.......ccoceoiiiiiiiiiisiininnnnecrcreiess et steasinsens 80
Looking up a Constituent in a Sparse Distributed Objectcccevvveceicinninnnin. 81
Looking up a Constituent in a Dense Distributed Objectcccoevereiiiinnnnnennne 82
The Rangesum Program...........c.iiniiiniseescsssecsniissesnesssisssons 85
Rangesum Interactive Sessioncoiiniiiiniininnineniessesnsesssiissinesesesssan 86
Rangesum MacroeXpansion.......c.ceveuueierssrsrmniissesisesiseseseesiossisessnssssssssnsersassass 87
Initial Rangesum HCodecoovviiiimininiininiieineiienncsinnnnervcsneest st senssnsnnane 87
Hcode after Initial Transformations.........ccceniionimiinniiiinniennrere s cessseccessssaees 88
Locally Optimized Heode......coveveeeememiiiiiiiiniiiiiniieiniesnstst et sesatesnesesnns 88
Hcode after Global Constant Propagation........cccccccvcceninnnvonnirressaneiesssnnsesessssass 89
Optimized Average Heodecccoevvmmiiiniinininicniinenie et cnisiessssnseenes 89
Rangesum with Average Inlined ... 90
Rangesum after General Optimizations.........ccooievniiniiiniinni, 90
FINAL HCOME c.eeeeeeveeeeeeeee ettt st ee st sssassnee s e eesbs s sras s saas s bnes s s srsnaassanasansassibensns 91
MDPSIm Output File.....ovvieiiiiiieiieeiieie et e steessnes e e cssas ssnssastasane 93
Rangesum Call File........coovvevnniniiiiiiiiiii et ssess s 94
MDPSIm TranSCriPL ...occoveeeeeciieiereirrrseeeentesitisinsstiessrsssssssruessssesesssssstnessnrssssess 97

Figure 7-1.

Concurrent Smalltalk on the Message-Driven Processor

Function Invocation Latency ... 105

Figure 7-2. Factorial Programcceevevrinecninnninieississsersesessssesssessssesessressssssssessssssnsssses 107
Figure 7-3. Rangesum2 Programc.ccoviiiiniineniiniennnniiniesesisnsesesssessesssssessenssessesssssessees 107
Figure 7-4. Sort Programi...........ciiiiiiniineniioniinnesieeneersessessessessessesssessassssssssssssaessessennes 108
Figure 7-5. Factorial Program used in Dataflow..........ccoceveeveieerececnrneserenesesessessesssesssees 110
Figure 8-1. A Doubly-Recursive Fibonacci Programc.cccveveerererenesersssssnessessesessessenes 121
Figure 8-2. Progress of a Sequential Computationccceeveeeverieerreersvesreresnessensscassanesaresans 122
Figure 8-3. Progress of a Parallel Computationcovvvicvmenreviniiecneninseeesseeessseesarssseens 122
Figure 8-4. Modified Fib Assembly Language Function.........ccccceeirieveenirineceecrensecsessesseesaens 124
Figure A-1. Scopes of IAeNtifiersccevverenerveenrenieinniinienenisseeseessessesssesessessssssssssssssssesasons 132
Figure A-2. Hierarchy of built-in classesccccccevuveerenienesecreesecreneeceecsesseesessssesessesssessnsne 153
Figure C-1. An Injected Application MeSSAZEcccvvrevvvrrreecrersierenrereeesrressessessassssessassssessans 174
Figure D-1. The MDP Register Set.cccvvviirveerrerrnirrerinveseesesrnsecseessessssessessasessassnssensessasses 177
Figure D-2. The MDP Data TYPes.......ccccceeecvrerirececiiresiriserecssseresecssssessssessssessssssssssessessesses 178
Figure D-3. The MDP Normal Addressing Modes.........cccceecereeeenreereesreneenreesenesssnssessesseesnens 181
Figure D-4. The MDP Register Oriented Addressing Modes.........ccccoerreererveecrenreccressensenceenns 182

List of Tables

Table 3-1.
Table 3-2.
Table 3-3.
Table 3-4.
Table 3-5.
Table 3-6.
Table 3-7.
Table 3-8.
Table 4-1.
Table 4-2.
Table 7-1.
Table 7-2.
Table 7-3.
Table 7-4.
Table 7-5.
Table 7-6.
Table A-1.
Table A-2.
Table A-3.
Table A-4.
Table B-1.
Table D-1.
Table D-2.

HCOAES ..eevvvvriieiiiriiiietet ettt e sstve s esssstsatsessesssosbessessssostarssssesssssssssnsssnssssnsranansen 26
CONAILIONS ..ovveeiiiiiciiiiiiiticetescecceerr st ersrvaeessbatessesssressssssessssssssssssssassssasssesnrsnasaen 27
RVAIUES ..ottt csenee e sers e sres s sosnatssssssaesssssesrsssssssssssssssssssasesssanssnn 27
LVAIUES ..ottt eeceteeesttte s bt s ssssseessseaessessaesssstnsesssnentessmaasssssannssssnssessonste 28
LY PES rveeeereiieiesteeeeireeesaeesssereesssrsessseressssesssssssessssesssssnnesssssnnessssnnsesssssessssnsssesssssssssasnas 28
Lambda-Collapser Example Resultsccccccciieeieviniiveenineeenreeressseeessssssessssnssssees 36
Permanent Root ODbjJects.......cvvcvviveiiveniieieeciieinieeeesiereessiissserssssessrsrssessssssssesssesessens 38
JAeNtifIer PrefiXes....occcvcovviiiiieiierrreiiisteeseserseesseessesseesssssnssssssssesssssseesesssneesassssssessnses 48
CrILICAITIES 1vveevvirrriieiiiitieeiiiititteeesiisstressesssssaeesssesssssesssstesnsssssasssesssossrsseraassssssnsssnnnnes 58
XLATE and BRAT ASSOCIAtIONS ..ueuiveiiiiiuereiieesiinereeseessssrerseessssessssssessassssssssassessosns 61
Selected Cosmos Routine Instruction Counts........ceeovvevevivmeieceirireeciieeeeeesssvecesanes 102
Selected User Action Instruction Countscovvveevevirieeveeeeereereecesrreesssneesersvanes 104
Performance MeEaSUTEINENESccccvveeeiirsneeeeieiisesrsrreesvressssersssessssssssssssssssssssssnsseses 109
Static InStruction Frequencies. ... eeiinionrnnreeniieerressieerssssessreesenseessassssessss 111
Dynamic Instruction Frequencies..........ovvveeevvvvereenvverresreeecisesesesesessessssseesseees 112
Memory Access FreqUencIiesvvvecveieeeveiriercre e et eete st e eeeaeesenessens 113
PredefiNed ConsStants........ocvveiiiveeiiiieiiiireieseeeseeseeeeesssreesssseessssssneessssseessesssssosssens 133
BUilt-in ClaSSeSoueiiiieeieeriecreeesrce vt st ee et s nresssse s esss e nsssssaeeesssnsessnnsans 152
ReStricted SelECtorsuviivveeiieeeeceee ettt cete e srveeess st resssnt s e sesnsresssssneesensanaens 154
Identities among Primitive Methodsccccveevieeivrinniinniiiecveiciesieeceneeeeseeessnnesenne 155
OPLIONS . .eeeeueeeieeieeceeeesette et ree st eeessrressstrbeessstesssssesssssssssesssseesssssrssesssassessssnsesssnsaens 172
MDP FAultS ...ccoovviiiiiiiiiiiii e s issieeeee s ssstrteessessssessseesssssosssessssasssssnsasesssosssssnsenene 180

Xi

This empty page was substituted for a
blank page in the original document.

Chapter 1. Introduction

Goals

This thesis describes the Concurrent Smalltalk language and its implementation on the Mes-
sage-Driven Processor. Concurrent Smalltalk, also known as CST, is a concurrent version of
the object-oriented programming language Smalltalk [20]. The implementation consists of a
global, optimizing compiler and a streamlined operating system for the J-Machine.

This thesis covers quite a broad scope of the implementation of Concurrent Smalltalk, includ-
ing subjects ranging from issues in parallel programming in general and the design of Con-
current Smalltalk itself to some of the fine points of the design and optimization of the MDP
architecture. The goal of the thesis is to demonstrate a working implementation of Concur-
rent Smalltalk on the Message-Driven processor. Although the implementation is not yet
complete, it does provide hooks for all of the advertised functionality of Concurrent Smalltalk
and is based on solid ground. Versions of the implementation are running on recently manu-
factured MDP chips, and I hope that the programs described herein will survive and evolve
for the next five years.

Another goal of this thesis was to discover and, whenever possible, fix design flaws in the
MDP architecture and language specification so as to make an implementation of Concurrent
Smalltalk practical. Several errors in the MDP architecture and Concurrent Smalltalk were
found, as well as numerous bugs in the simulation tools used to verify the hardware.

The next section gives a brief overview of the J-Machine hardware and the Concurrent
Smalltalk language. It is followed by an outline of the software bridging the gap between
Concurrent Smalltalk and the MDP hardware—the Optimist II compiler and the Cosmos op-
erating system. The relationship of this work to others’ in fine grain concurrent computation
is then described.

Second Edition

This work was originally a Master’s thesis completed in May 1989. It has been updated for
the state of Optimist I compiler, Cosmos operating system, and MDPSim 7.0 simulator as of
the end of May 1991. The Optimist II compiler now produces better code, and several Cos-
mos routines, especially the CFUT fault handler, have been sped up. Furthermore, Cosmos
has been updated for a few minor architectural revisions.

The compiler and operating system have been evolving rapidly in the past few months due to
the recent availability of MDP chips. This document does not include these newest changes,
which include support for hardware I/0, debugging aids, and workarounds for first-silicon
chip bugs, as they have little effect on the ideas in this work. Other members of the Concur-
rent VLSI Architecture group, including Scott Furman, Rich Lethin, Todd Dampier, Shaun
Kaneshiro, John Keen, and Mike Noakes, are now working on CST applications and Cosmos
enhancements such as floating-point arithmetic, queue overflow handling, and garbage
collection. These will be published in separate documents as they are completed.

Concurrent Smalltalk on the Message-Driven Processor

1.1. Hardware and Software Architecture

The J-Machine

Million-transistor processors being manufactured today, and soon it will be possible to put
several million transistors on one integrated circuit. While memory applications of this
technology are clear, it is not obvious how best to use it for computation purposes. One pos-
sibility is the architecture of the Message-Driven Processor (MDP), which consists of a 32+4-
bit! CPU, memory, and a network interface together on one chip. MDPs can be connected
directly to each other to form a 65536-processor, message-passing, MIMD, parallel computer,
the J-Machine [14]. The network is a three-dimensional mesh fast enough to provide com-
munication between the farthest pair of processors on a 65536-processor J-Machine in a few
microseconds—on an unloaded network an 8-word message can be transmitted from one
corner of the J-Machine to the other in just 4 microseconds. The processors are optimized for
sending and receiving messages; a processor can be working on a message even before the
entire message has arrived. The MDP’s architecture is unusual in that it provides a very
high processing power to memory ratio.

The Message-Driven Processor

The MDP has a register-based architecture and operates on 32-bit data words with 4-bit tags.
Tags are essential in efficiently supporting late binding for object-oriented languages such as
Concurrent Smalltalk. In addition, tags are necessary for garbage collection and valuable for
debugging programs.

The MDP is message-based. In its normal mode of operation, the MDP listens on the net-
work for messages. When it receives a message from the network, it stores the message in a
FIFO input message queue and dispatches on the address given in the first word of the mes-
sage. Messages are used for all communication tasks, including function and method calls,
replies, object transfers, and other synchronization facilities.

A detailed but slightly obsolete description of the MDP architecture is in [16]; a updated
summary is presented in Appendix D. MDPSim [24] [25] is an instruction level simulator,
assembler, and debugger used to run MDP assembly language programs and test the operat-
ing system.

Concurrent Smalltalk

Concurrent Smalltalk is the primary language used to program the J-Machine. One of the
main goals of designing Concurrent Smalltalk was to take advantage of the J-Machine’s
unique features. A new software architecture was needed that would efficiently support fine-
grain, message-passing computation. Whereas some existing parallel computers have mes-
sage routing times measured in milliseconds, the routing time for a message sent from one
end of even a large J-Machine to another is on the order of several microseconds. Operating
system overhead on processing and dispatching that message of more than a few microsec-
onds is not acceptable.

Concurrent Smalltalk introduces concurrency to standard Smalltalk by evaluating argu-
ments to method calls in parallel as well as allowing the computation of the value of a vari-
able to proceed in parallel with the other computations of a method until the variable’s value
is actually needed. Furthermore, Concurrent Smalltalk adds distributed objects to Smalltalk.
A distributed object is an object that can process many methods at the same time without
any serialization bottlenecks other than those required by the algorithm in use. Although

IEach word consists of 32 bits of data and a 4-bit tag.

Chapter 1 Introduction

standard objects can also process several methods simultaneously, they can only dispatch on
one method at a time!l.

Concurrent Smalltalk is an ideal language for programming the J-Machine because it is easy
to parallelize and yields small, fine-grain methods as well as a considerable amount of flexi-
bility in the system software implementation. The methods dealing with a particular class
can travel to the data object as opposed to the data traveling to the code. Concurrent
Smalltalk also provides excellent facilities for creating data abstractions; the Optimist 1I
compiler amplifies this power by providing global optimizations so performance does not suf-
fer because abstractions are used.

Another advantage of Concurrent Smalltalk is that it is low-level enough to be useful in im-
plementing parts of the J-Machine runtime system, while being at a level high enough that
the programmer does not have to worry about the infamous problems of parallel process syn-
chronization and deadlocks. In fact, once the data structures are defined properly, pro-
gramming in Concurrent Smalltalk feels much like programming in a standard sequential
language.

LThis restriction is relaxed for immutable standard objects because they may be copied at the operating system’s
discretion. Nevertheless, a distributed object can be mutable and still have no synchronization bottlenecks.

3

Concurrent Smalltalk on the Message-Driven Processor

1.2. Overview

Foundations

Some of the pieces comprising the Concurrent Smalltalk environment were available before
this thesis was done. A primitive compiler was available [21], as were a description of the
operating system kernel [38], several descriptions of the language [13] [21] [17], and an MDP
assembly language simulator (MDPSim 5.2) [24]. Unfortunately, none of the pieces really fit
together—the various versions of the language were inconsistent, the output of the compiler
was incompatible with the untested operating system kernel, which itself was written for an
obsolete version of the MDP architecture [23].

It became clear that it would be easier to design the language, the compiler, and the operat-
ing system from scratch than to try to fit the existing pieces together. Nevertheless, the ex-
isting code and ideas were useful as guides to which approaches would likely yield good re-
sults and which techniques should be abandoned. I took advantage of this opportunity to
extend Concurrent Smalltalk to support several programming styles and add functions, clo-
sures, continuations, arrays, nested local variables, and inline classes to produce a language
with a compact implementation yet powerful libraries. The new features did not complicate
implementation; in fact, by providing a small set of fundamental primitives, the new features
often simplified the implementation of existing functionality, a phenomenon noticed in the
design of the Scheme language [31] [1].

The contributions of this thesis include:
¢ A redesign of the Concurrent Smalltalk language.
e Optimist II, a new Concurrent Smalltalk compiler and interpreter.

e Cosmos (Concurrent Smalltalk Operating System), an operating system that supports
Concurrent Smalltalk on the MDP.

¢ Runtime libraries for Concurrent Smalltalk.

e Modifications to MDPSim, the MDP assembler/simulator, to facilitate downloading pro-
grams, simplify debugging, and collect performance measurements.

e Modifications to the MDP architecture that make it more suitable for Concurrent
Smalltalk.

I am indebted to Scott Wills and Andrew Chien for helping with the redesign of the Concur-
rent Smalltalk language, and Richard Lethin, John Keen, and Stuart Fiske for helping with
the MDP architecture changes. Professor William Dally supervised the project.

System Overview

The Optimist II Compiler

The Optimist II compiler continues in the tradition of the Optimist compiler by compiling
Concurrent Smalltalk to assembly code that is as small as possible without sacrificing speed.
In addition, Optimist II contains an interactive Concurrent Smalltalk interpreter that is
useful for prototyping and debugging Concurrent Smalltalk programs at the source level.
Optimist II is also a platform for experimenting with compiler optimizations. Global opti-
mizations such as function inlining and the reduction of method calls to function calls were
added and found to be highly successful.

Chapter 1 Introduction

The compiler itself is divided into several phases, which are described in more detail in
Chapter 3. It produces an MDPSim command file which can be downloaded into MDPSim
and run on a simulated J-Machine.

Cosmos

Cosmos is the operating system used on the Message-Driven Processor to support code out-
put by Optimist II. Many of the ideas in Cosmos are borrowed from JOSS [38] written by
Brian Totty—JOSS introduced the concept of a Birth/Residence Address Table (BRAT) and
the protocol for migrating object between processors. Nevertheless, Cosmos’s code bears lit-
tle resemblance to JOSS.

Concurrent
Smalltalk

|

Optimist I

Interpreted
Results

Y

MDP Assembly
Code Cosmos

MDPSim

Compiled
Results

Figure 1-1. Software Environment Organization

A Concurrent Smalltalk program can be either compiled or interpreted by the Optimist It compiler. Interpretation is
useful to debug Concurrent Smalitalk programs and interactively experiment with language features. When a
Concurrent Smalltalk program is compiled, it is loaded into MDPSim, a J-Machine simulator, together with the
Cosmos operating system. MDPSim will then run the program to obtain its results as well as program perfor-
mance statistics.

The main goals of Cosmos were to make a working operating system, make it as efficient as
possible, and make it simple, all subject to the time constraints of a Master’s thesis. Those
three goals have been achieved to a large extent, in that the operating system does work, and
simple programs have been run on it. Unfortunately, controlling a large parallel computer is
a difficult task, and Cosmos still falls short in many ways which are described in Chapter 8.
In particular, higher-level resource management and load balancing issues are yet to be ade-

5

Concurrent Smalltalk on the Message-Driven Processor

quately addressed. Nevertheless, Cosmos is a good start and a platform for experimenting
with the more difficult problems.

Example

A very simple example of the use of the system to compile and run a factorial program is
listed below. Please refer to chapter 5 for a more detailed example of the transformations in
the compiler and Appendices B and C for information about using the compiler and the oper-
ating system.

CST: (defun fact (n)
(if (<=n 1)
1
(* n (factorxial (- n 1)))))
#<Cst-Lambda 5090060 FACT>
CST: (fact 3)

When interpreting: (FACT 3)
Error: Unbound global FACTORIAL
> Break:
> Type Command-/ to continue, Command-. to abort.
1 > Continuing...Fatal error: Can't apply #<Nil>
> Break:
> Type Command-/ to continue, Command-. to abort.
1 > Continuing...
CST: (defun fact (n)
(1f (<= n 1)

1

(* n (fact (- n 1)))))
#<Cst-Lambda 4920924 FACT>
CST: (fact 4)
#<Integer 24>
CST: (compile fact "NewFact.mdp")

Figure 1-2. Compiling Fact
The user entered a factorial function, corrected an error in it, tested it on a sample input, and then compiled it into
MDP assembly code in the NewFact.mdp file. The user's input is shown in bold.

First the user starts the compiler and enters the compiler’s interactive mode (see Appendix
B) as shown in Figure 1-2. He enters the fact function and runs it only to find an error—fact’s
recursive call should be to fact, not factorial. The user corrects the error and then uses the
compiler’s interpreter to successfully compute the factorial of 4.

Afterwards the user compiles fact to MDP assembly code, quits Optimist II, and launches
MDPSim, where he loads the object file, and calls fact on 4 to get the correct answer—24
(Figure 1-3). The stats command can then be used to determine some running statistics,
such as the frequencies of instructions executed, the amount of parallelism used, and the to-
tal time taken to run the program. Starting from a cold start, fact takes 725 steps on a 2x2x1
J-Machine to compute its answer. '

Implementation

The Optimist II compiler is written in CLOS [27], the Common Lisp Object System. Except
for the use of the LOOP iteration macro [7], Optimist II adheres to standard Common Lisp as
specified in [35] and amended in [6] and in the amendments specified by the Common Lisp
Cleanup Committee that were available at the time of this writing. The LOOP macro is itself
written in standard Common Lisp, so Optimist should run on any machine with a faithful
implementation of Common Lisp. A slightly modified version of the 12/7/88 version of Xe-
rox’s P(IIL was used to implement a subset of CLOS before Apple Common Lisp 2.0 became
available.

6

Chapter 1 Introduction

MDPSim -x 2 -y 2 -msize 0x1000 ::Cosmos:Cosmos.m NewFact.mdp

Message~Driven Processor Simulator

Version 7.0 Rev B

Accompanies MDP Architecture Document 11B

Written by Waldemar Horwat

Architecture Updates by Brian Totty and Jerry Larivee
UROPs for Bill Dally

4 MDPs present.

@0..3}MESSAGE factd

Message }MSG:msgApplyFunction|5

Message} {fFact}

Messagel4d

Message } IONODE

Message}O

Message }END

@0..3}inject fact4@s

@0..3}resetstats

@0..3}run

Tick 724 Received priority 0 message:
OBJ:5$801BB004 u=1 f=0 offset=S006EC=Reply length=$0004
INT:$0000FCO0 = 64512
INT:$00000000 = O
INT:500000018 = 24

@0..3}stats
725 ticks executed.
... More statistics ...

Figure 1-3. Running Fact

The user loaded the fact object code and typed a few magic incantations that invoked the fact function on the input
4 (the third word in the injected message). The result 24 (the fourth word in the ejected message) was returned
after 725 steps on a 4-node J-Machine. Most of the time was spent distributing the fact code throughout the J-Ma-
chine; the second time it only takes 498 steps to compute the answer (some code is still being distributed), the
third time takes 289 steps, and afterwards the execution time is about 265 steps.

Optimist II was developed on a Macintosh using Apple Common Lisp 1.2.2 and 2.0 written by
Coral Software Corp (now merged with Apple Computer, Inc.). It runs on a 5-megabyte Mac-
intosh II, although 8 megabytes are recommended and at least 16 are needed to run Optimist
II and MDPSim simultaneously.

Cosmos is written in MDP assembly language {16]. MDPSim [24] [25] was used as an
assembler and simulator for a small J-Machine.

All of the software needed to compile and run Concurrent Smalltalk programs exists on both
a Macintosh II platform and on Sun workstations.

Results

The primary result of this work is a demonstration of a working implementation of Concur-
rent Smalltalk on a J-Machine. In addition, a number of secondary results were obtained.
These include the qualitative and quantitative benefits of optimizations in the Optimist 1I
compiler, data on the expected grain size (the number of instructions executed in response to
a message), and a number of qualitative observations about the shortcomings of the current
system. The results did not always come out as expected. For example, the finding that the
grain size is about 60 instructions was surprising; it was expected to be much lower. Code
statistics indicate that the MDP will take about 1.9 cycles per instruction, although most in-
structions execute in 1 cycle; if slow external DRAM is used to hold user programs and data,
the MDP could take as many as 3.5 cycles per instruction. Network loading calculations indi-
cate that network congestion will become a concern when the size of the J-Machine exceeds

7

Concurrent Smalltalk on the Message-Driven Processor

343 nodes; either a faster network or some means of exploiting locality will be needed for
larger J-Machines.

The quantitative results are listed in Chapter 7, while the qualitative ones are in Chapter 8.
Chapter 8 may seem a little pessimistic, but many of the current shortcomings listed there
would not have been found had this work not been done; furthermore, the current implemen-
tation of Cosmos provides a great, highly accurate platform for research into the issues pre-
sented there.

Caveats

Due to the availability of only a finite amount of time for writing this thesis, which could po-
tentially involve an infinite amount of work, some features could not be included in the cur-
rent implementation of Concurrent Smalltalk. The biggest omission is the lack of garbage
collection—if enough storage isn’t reclaimed, the machine will fail. Garbage collection,
although interesting, was omitted to keep this project to a reasonable size—a good garbage
collector and load manager would require more effort than is desirable for a Master’s thesis.

Full futures were also not implemented. They were omitted from the interpreter in the com-
piler because simulating them is difficult on a sequential machine in a sequential language
(Common Lisp). Futures were omitted from the run-time system because of the considerable
amount of work needed to implement all the fault handlers and special cases involved. Ne-
vertheless, almost all Concurrent Smalltalk programs still attain reasonable parallelism
through the use of cfutures!, which are fully operational.

Other features that were not implemented are 1/O facilities at both the Optimist II and Cos-
mos levels and runtime support for local (non-distributed) arrays and floating point numbers.
I/0 facilities, while useful, do not contribute much to the project and are easy to add later.
Local arrays and floating point numbers are supported by the Optimist II compiler but not
the runtime system; supporting them at the runtime level will require writing MDP assem-
bly language; no major surprises are expected there.

Some of the optional features of Concurrent Smalltalk were not included due to a lack of
time. All class inline declarations are currently ignored; I anticipate that it will be possible
to inline objects inside other objects sometime in the future, but that is not a high priority at
this time. The omission of class inlining does not change the semantics of Concurrent
Smalltalk programs. Function inlining is more useful, and it does work now.

Reading Guide

The remainder of this chapter describes related work in fine-grain concurrent computation.
The succeeding chapters delve into various aspects of the system, starting from the top—
Chapter 2, Concurrent Smalltalk, provides an introduction to the Concurrent Smalltalk
language in general. Chapter 3, The Optimist II Compiler, describes the Concurrent
Smalltalk compiler and interpreter. Chapter 4, The Cosmos Operating System, describes
the operating system. To avoid overlap, the compiler features documented in [21] are not
documented here; thus, it might be helpful to consult [21] when reading Chapter 3.

Chapter 5, Sample Program, traces the progress of a sample program from the Concurrent
Smalltalk source level down to object code. Chapter 6, Debugging, provides some debugging
techniques for Concurrent Smalltalk and MDP programs. Chapters 7, Performance Mea-
surements, and 8, Future Evolution, present the results of this work. Chapter 7 contains
quantitative measurements of the performance of Cosmos and the compiled code, while
Chapter 8 describes some of the less tangible, qualitative shortcomings of the current system
and ideas for correcting them. Chapter 9, Conclusion, concludes the main body of the the-
sis.

1A cfuture, also called a context future, is a local future which cannot be passed outside the function without being
touched (i.e. replaced by its value).

8

Chapter 1 Introduction

The appendices parallel the main chapters with more detailed information. Appendix A,
Concurrent Smalltalk Reference, is the most important, for it contains the specification
of Concurrent Smalltalk. Appendix B, Using Optimist II, provides a detailed description of
the Optimist II features not listed in Appendix A. Similarly, Appendix C, Using Cosmos, is
a guide to running Cosmos on MDPSim; the latest MDPSim reference manual [25] should
also be consulted when running Cosmos. Appendix D, MDP Architecture Summary,
summarizes the current version of the MDP architecture. Finally, Appendix F, Cosmos
Listing, contains a listing of the entire operating system.

Since this thesis also serves as a reference manual for Concurrent Smalltalk, Chapter 2 and
Appendices A and B have been indexed. The index appears at the end of the thesis.

Concurrent Smalltalk on the Message-Driven Processor

1.3. Related Work

The ideas of optimizing Smalltalk and running object-oriented software on concurrent, fine-
grain systems are not new, but they have not been integrated previously to the extent found
on the J-Machine. While most of the efforts concentrated on either optimizing Smalltalk for
conventional computers or developing radically new programming methodologies, Concurrent
Smalltalk presents a somewhat conventional Smalltalk environment to the programmer
(with a few new features such as futures and distributed objects), which is at the same time
efficiently implemented on a fine-grain parallel computer.

A major contribution of this work is the actual optimized implementation of Concurrent
Smalltalk on an assembly language architecture. While theoretical studies and simulations
in higher-level languages can yield asymptotic and qualitative results, an implementation
yields the constant factors determining a system’s performance. These performance mea-
surements are an important part of this work, as they indicate the relative costs of the primi-
tive operations and can be used to gauge the true performance of a concurrent computer.

Smalltalk Systems

Smalltalk-80

Early Smalltalk-80 optimization efforts such as [18] concentrated on optimizing Smalltalk
within the constraints of the byte code interpreter. In addition, the work was limited by the
Smalltalk-80 constraints of making contexts and methods program-visible data structures,
which required some effort to convert between the optimized and standardized versions of
the structures. Several context optimizations are also presented in [18], including determin-
ing which contexts which can be referred to as first-class data objects and which contexts can
be pointed by blocks. Most contexts do not fall into either category, and they can be placed
on the stack. Such optimizations are now also commonly done in Lisp compilers [36].

Whereas early Smalltalk-80 implementations were constrained to compatibility with byte
codes and were run on stack machines, Concurrent Smalltalk is bound by neither constraint.
The formats of contexts and method code are not defined in the language, and there are no
portable means to store a pointer to a context in a programmer-visible variable. Thus, Opti-
mist IT and Cosmos can use the most efficient format for a context or even several different
formats if they so desire. Furthermore, the MDP is not a stack-based machine, so there are
no clear advantages to determining which contexts will be live for a long time. Also, contexts
are fully self-contained, so a closure cannot refer to a context. Finally, several techniques are
used to optimize closures. As will be seen in Chapter 3, when a closure is created, either the
lexical variables are copied into the closure, or a common object is made to which both the
context and the closure refer.

Optimized Sequential Smalltalk

A few years later it became clear that global analysis and optimization were necessary to op-
timize Smalltalk programs further. Optimizing Smalltalk well required an ability to convert
method dispatches into more efficient function calls, which led rise to several type systems
for Smalltalk [5] [26].- When a type system could be applied to a Smalltalk program, the
compiler could optimize it by a factor of 5 to 10 over interpreted Smalltalk. The main com-
piler optimizations of TS [26] are similar to those of Optimist II: Both TS and Optimist II
can convert a message send into a case statement of procedure calls, substitute functions in-
line, and optimize tail recursion. In addition, TS can beta-reduce blocks, which Optimist II
currently cannot do. On the other hand, Optimist II contains a number of other powerful
dataflow optimizations (see Chapter 3 and [21]) commonly found in C compilers, which make
its assembly language output close to optimal. Moreover, Optimist II can evaluate large con-
stant expressions at compile time, and it can infer types of variables, allowing it to produce

10

Chapter 1 Introduction

good code even though type declarations in Concurrent Smalltalk are completely optional.
TS, on the other hand, has difficulties combining typed code with untyped code.

The MDP hardware also plays an important role in making Optimist II efficient. By provid-
ing tags and checking them on primitive operations, the MDP architecture frees Optimist II
from the difficult and often unrewarding process of analyzing programs trying to determine
information such as whether an integer variable could contain a large-integer (an integer
which does not fit into a single 32-bit word) or whether the arguments to + are known to be
numbers. Although this information is generally difficult to determine, in most cases
integers are small and the arguments to arithmetic primitives are usually numbers, so
hardware tag-checking is the right approach to this problem. Thanks to the MDP hardware,
even if Optimist II cannot determine the type of some expression, performance does not
suffer too much.

CONCURRENTSMALLTALK

A recent language close to Concurrent Smalltalk and having an almost identical name is
CONCURRENTSMALLTALK [39] [40] independently developed by Yasuhiko Yokote and Mario
Tokoro. CONCURRENTSMALLTALK shares with Concurrent Smalltalk the cfuture facility
(called a CBox in CONCURRENTSMALLTALK) and the ability to process messages asyn-
chronously. In addition, CONCURRENTSMALLTALK defines atomic objects, which Concur-
rent Smalltalk does not have but can easily emulate using locks. On the other hand, Concur-
rent Smalltalk includes distributed objects, which CONCURRENTSMALLTALK does not pro-
vide. Furthermore, the implementation of Concurrent Smalltalk is more optimized.
Whereas CONCURRENTSMALLTALK is implemented as a byte code interpreter, Concurrent
Smalltalk compiles to assembly language.

The two languages have somewhat different flavors. CONCURRENTSMALLTALK is very close
to Smalltalk-80, and most of the concurrent features are add-ons that have to be explicitly
requested by the programmer. Concurrent Smalltalk makes concurrency the default, and
the programmer has to explicitly request sequential processing if he wants it. At the same
time, the MDP hardware assists Concurrent Smalltalk by making the use of concurrency
very cheap. For example, a hardware tag is provided that implements cfutures in Concur-
rent Smalltalk using much less overhead than cboxes in CONCURRENTSMALLTALK.

In [40) several changes to the original CONCURRENTSMALLTALK are discussed. Blocks are
treated differently depending on whether they were created by atomic objects’ contexts or not.
Concurrent Smalltalk’s model of only having one kind of object and using locks where neces-
sary to make atomic transactions does not lead to these difficulties. Finally, secretary objects
were introduced to CONCURRENTSMALLTALK to keep track of which threads are waiting for
a resource. An equivalent facility is used internally in locks in Concurrent Smalltalk.

Actor Systems

Another recent development in object oriented programming was the rise in actor systems
[2]. An actor system is a programming paradigm in which simple self-contained entities
called actors communicate with each other to run a program. Much of the program’s content
is held in the interconnections among the actors. From the implementation standpoint, Con-
current Smalltalk shares many of the ideas with actor systems, but the language itself is not
designed exclusively as an actor language. Instead, Concurrent Smalltalk is as a language
closer to Smalltalk and Lisp, but it is possible to write actor-like programs in Concurrent
Smalltalk without too much trouble.

Cantor

Cantor [4] is both a programming language and a formalism for reasoning about the prob-
lems that arise in fine-grain, message-passing parallel computers. In Cantor each object (the
Cantor equivalent of a Concurrent Smalltalk context) can only perform a bounded amount of
computation on receiving a message, and that computation is atomic. Also, messages sent

11

Concurrent Smalltalk on the Message-Driven Processor

from one object to another are guaranteed to arrive in the original order. Concurrent
Smalltalk is similar to Cantor at the implementation level—when a message is sent to a con-
text, it performs a bounded amount of computation!, perhaps sends a few more messages,
and then either suspends or waits for the next message. The state of a computation is com-
posed mostly of idle objects and messages traveling between objects, with only a few objects
executing. Hence, at a superficial level, a Concurrent Smalltalk object code program is a
Cantor program. Nevertheless, the Concurrent Smalltalk object code program is more com-
plicated because it might fault while performing the computation of the next state. One can
view this possibility as either computation being non-atomic or treating faults as if they were
message sends and suspends, preserving the Cantor model. Another distinction is that Con-
current Smalltalk does not guarantee that messages between a pair of objects will arrive in
the order in which they were sent.

Probably the best relationship between Concurrent Smalltalk and Cantor is that Concurrent
Smalltalk is a high-level language that compiles to Cantor-like object code. At the source
level, Concurrent Smalltalk frees the programmer from the myriad of error-prone synchro-
nization details found in Cantor. Concurrent Smalltalk encapsulates the Cantor concept of
future flow into a few easy-to-use primitives such as touch and nconcurrently. At the
same time, Concurrent Smalltalk presents the appearance of global and nested data struc-
tures (such as lexical scoping of local variables) which are compiled into interacting objects.

Nevertheless, Cantor is a good theoretical model for computation on the J-Machine. For ex-
ample, the load balancing and management results in [4] are expected to also apply to the J-
Machine. However, the J-Machine can also suffer from problems not discusses in [4], such as
having too much parallelism. Some of the load balancing issues are presented in Chapter 8.

Acore

Acore [30], an “actor core language,” is another recent actor language. Like Cantor, it pro-
vides an environment in which a computation is done by interacting actors with limited abili-
ties; however, actors in Acore can compute arbitrary functions to determine state, and Acore
has a notion of a transaction (a message send and a reply), which greatly simplifies pro-
gramming.

Acore and Concurrent Smalltalk are similar in many ways. Both languages implement mes-
sage sends, replies, concurrent evaluation of subexpressions, local variables, static scoping,
and instance objects (called actors in Acore). However, there are also a few differences. Due
to its Smalltalk-80 heritage, Concurrent Smalltalk permits local variables to be altered,
while Acore does not; both languages allow mutation of instance variables. In addition,
Acore implements a sponsorship mechanism for higher-order control of the course of a com-
putation and a complaint mechanism for handling exceptions. It remains to be seen whether
these mechanisms will be necessary in Concurrent Smalltalk2.

Acore is compiled into Pract, which is a form of an actor assembly language, whereas Con-
current Smalltalk is compiled into MDP assembly language. As a result of this difference,
some actions which are cheap in one language are expensive in the other, which affects the
language design. Actor creation is very cheap in Acore, while instance object creation, mod-
erately expensive in Concurrent Smalltalk, is avoided whenever possible. On the other hand,
futures are fairly expensive in Acore, while they are very cheap in Concurrent Smalltalk;
thus, Concurrent Smalltalk creates a future (or a cheaper cfuture) as a result of every non-
primitive function call, achieving maximum concurrency within a method in most cases.
Acore, on the other hand, often has to do a relatively expensive join operation. For the same

1As will be discussed in Chapters 5 and 10, the amount of computation done by a Concurrent Smalltalk process on
receiving a message truly is bounded, but it is done for a more prosaic reason than keeping a clean modcl—user
Concurrent Smalltalk methods are not allowed to loop without a message send somewhere to break the loop to pre-
vent the incoming message queues on an MDP from overflowing if the loop lasts for a long time. Also, long, indivis-
ible loops would degrate latency for other messages that are waiting in an MDP’s incoming message queue.

12

Chapter 1 Introduction

reason, futures are transparent in Concurrent Smalltalk, while they are programmer-visible
in Acorel.

The two languages use the same mechanism for calling messages. When a Concurrent
Smalltalk process or an Acore actor makes a function or method call, it passes a continuation
to which results should be sent. The continuation includes both a process and a slot within
that process in which the result should be stored.

J-Machine References

[13] and [14] are good descriptions of the philosophy of the J-Machine project and the early
Concurrent Smalltalk language; [15] is a recent status report on the MDP from the hardware
perspective. [22] describes some of the experiences gained from designing the previous ver-
sion of Concurrent Smalltalk and implementing the first-generation Optimist compiler. [10]
contains a nontrivial program written in an older dialect of Concurrent Smalltalk. [8] and
[9] describe Concurrent Aggregates, a higher-level language than Concurrent Smalltalk for
programming the J-Machine. [33] and [34] describe a parallel project to implement dataflow
on the J-Machine. Finally, [41] and [42] analyze the desirability of supporting the more
common existing parallel programming paradigms on the J-Machine.

2A complaint mechanism could be built on top of Concurrent Smalltalk by using the multiple-value return feature—
one of the values could denote a continuation to which exceptions should be routed. Acore uses a similar im-
i)lementation to handle exceptions.

Nevertheless, a language that hides futures could be built on top of Acore.

13

Chapter 2. Concurrent Smalltalk

Introduction

A Concurrent Smalltalk program is a sequence of top-level definitions. Figure 2-1 shows a
sample program that calculates Fibonacci numbers using double recursion.

(Defmethod fib Integer ()
(if (<= self 2)
1
(+ (fib (- self 1)) (fib (- self 2)))))

Figure 2-1. A simple Fibonacci program
This program calculates Fibonacci numbers using double recursion. Although it does not use the most efficient al-
gorithm to calculate Fibonacci numbers, it does illustrate Concurrent Smalltalk’s implicit concurrency.

The program is a single method associated with the selector £ib and class integer. The fact
that the method takes no arguments other than the integer receiver is indicated by the empty
list, (), on the first line. The following three lines contain the body of the method. Self rep-
resents the receiver object, which is the number to which fib was applied. The if statement
checks whether that number is less than or equal to 2. If so, £ib returns 1. Otherwise, fib
returns the sum of (fib (- self 1)) and (fib (- self 2)), which are computed con-
currently. This concurrent evaluation of arguments is one of the important differences be-
tween Concurrent Smalltalk and sequential Smalltalk.

Fib can be invoked by calling it on an integer (the receiver object):

(fib 30)
Fib would then calculate and return the answer 832040. If fib had any more arguments,
they would be included after the receiver object, as in:

(fib 30 x y 2)

Functions

The Fibonacci program was defined as a method. It is also possible to define it as a function,
as in Figure 2-2. A function is a method not associated with any class or selector. Although
in this example methods and functions are equivalent, in other cases, such as in iterators,
functions may be more useful than methods.

(Defun ffib (n)
(if (<= n 2)
1
(+ (£ffib (- n 1))} (ffib (- n 2})))))

Figure 2-2. A simple Fibonacci program as a function
Functions have no receiver object, so the parameter n has to be specified explicitly.

The syntax for a method and a function call is the same, so ££ib would also be called by:
(f£ib 30)

The meaning of applying ££ib to arguments (30 in this case) depends on whether ffib is a

selector or a function. If ffib were a selector, a method lookup would be done to determine

the class of the first argument and then call the method corresponding to the selector and

that class, while if ££ib is a function, it is called directly.

14

Chapter 2 Concurrent Smalltalk

Extracting Methods

A manual method lookup can be done using the method primitive. Method takes two pa-
rameters, a selector and a class, and returns a function which performs the same action as

the method. For example, the method shown in Figure 2-1 can be extracted using
(method fib integer)

The result behaves just like the ££ib function in Figure 2-2. It can be called using
({method fib integer) 30)

A method extracted in this way does not have to be a direct method of the class; it can be an
inherited method.

Classes

A Concurrent Smalltalk class is a type; the two words are used interchangeably in the lan-
guage definitionl. A few built-in classes are predefined; these include symbols, booleans, in-
tegers, floating point numbers, characters, functions, and other classes. A complete list is
given in table A-2. All classes are subclasses of the class object.

The defclass primitive can be used to add user-defined classes. A class definition consists
of a list of superclasses and zero or more new instance variables. Each instance object of that
class contains those instance variables. The user may also define a number of methods for
that class. A simple class that implements Lisp-like lists is shown in Figure 2-3.

(Defclass pair (object) car cdr)

; (Defmethod car pair () car)

; (Defmethod cdr pair () cdr)

; (Defmethod get-car pair () car)

; (Defmethod get-cdr pair () cdr)

; (Defmethod put-car pair (value):pair (set car value) self)
; (Defmethod put-cdr pair (value):pair (set cdr value) self)

(Defun cons (first second):pair
(put-car-cdr (new pair) first second))

(Defrmethod put-car-cdr pair (first second):pair
(cset car first)
(cset cdr second)
self)

Figure 2-3. The pair class

The six methods that are commented out by semicolons are defined automatically by defclass (in addition to a
few others described in Section A.4). Car and get-car do the same thing; both are defined because car is
more convenient, but it cannot be used in the body of a method of class pair because static scoping shadows the
method car by the instance variable car.

The :pair constructs define the result types of the methods. They are unnecessary, but they do improve effi-
ciency and allow rudimentary type checking.

The class pair is defined on the first line of Figure 2-3. The defclass primitive specifies
the class name (pair), the superclasses ((object)), and the instance variables (car and
cdr).

Whenever a class ¢ is defined, a class predicate and reader and writer methods are defined
automatically, as well other, less-used methods described in Section A.4. The class predicate
is a function named c? that accepts one argument a and returns t rue if a is a member of
class ¢ (or one of its subclasses) and false otherwise. Also, for each instance variable x of c,

INonetheless, the words type and class have slightly different meanings in the discussion of the compiler in Chapter
3.

15

Concurrent Smalltalk on the Message-Driven Processor

the methods x, get-x, and put-x are defined. The first two methods take an instance object
0 as an argument and return the value of x in 0, while put -x takes two arguments, an in-
stance object 0 and a new value v of x, and assigns v to x in 0. The methods x and get -x are
known as reader methods, while put -x is called a writer method. The writer methods return
0, the object to which the value is written.

After a class is defined, additional methods may be defined for it. In the above example, a
method put ~car-cdr is defined for the class pair. Put-car-cdr sets the value of a pair’s
car and cdr variables and returns the pair. Inside a method, the receiver’s instance vari-
ables can be accessed by their names.

Overriding Methods

Consider a class ¢2 which is a subclass of c1. When a class ¢2 defines a method m2 with the
same selector s as a method m1 of c1, the class ¢2 is said to be overriding the method m1.
When selector s is applied to an object of class ¢2 or one of its descendants, method m2 will be
used instead of m1.

Nevertheless, sometimes it is desirable to call m1 on an object of class ¢2. For example,
method M2 might want to call the method it is overriding. An overridden method m1 can be
called by performing a manual method lookup using the form (method s ¢1). The resulting
method can be called normally.

Type Restriction

The type of an overriding method must be a subtype of the type of the overridden method.
For instance, in the above example the type of m2 must be a subtype of the type of m1. This
means that both methods must have the same number of arguments, the types of the argu-
ments of the overriding method must be supertypes (superclasses) of the types of the argu-
ments of the overridden method, and the result type of the overriding method must be a sub-
type (subclass) of the result type of the overridden method. If any argument of the overrid-
den method is declared inline or using any other declaration, either explicitly or by default,
the corresponding argument of the overriding method must have the same type and declara-
tions. The results of violating the above rules are undefined. The compiler may issue errors
if the above rule is violated, but it is not guaranteed to do so.

The above restrictions apply only to methods being overridden. There are no restrictions on
methods with the same name declared for disjoint classes (i.e. classes which are not sub-
classes of each other).

The Class Object

Methods of class object are very similar to functions. There are two main differences be-
tween functions and methods of class object:

* A method of class object can be overridden by a method of a more specific class. For ex-
ample, if cons in Figure 2-3 is defined as a function, no other function or method may be
called cons. On the other hand, if it is defined as a method of class object, it may be over-
ridden by a method cons defined for integers. However, a method may not be overridden by
a function.

¢ A function that takes no parameters can be defined, while a method must always take at
least one parameter—the instance object.

In the interest of code maintenance and readability, it is recommended that functions be used
in cases when overriding makes no sense; parameter functions to iterators fall into this cate-
gory. On the other hand, if overriding a function might be desirable, that function should be
defined as a method of type object. It is not clear whether overriding cons (Figure 2-3)

16

Chapter 2 Concurrent Smalltalk

would be useful, so it might be defined either as a function or a method, depending on one’s
taste.

Local Variables

A method or a function can declare local variables using the clet or let statements or their
derivatives. For example, the function £ib from Figure 2-1 could be rewritten using two lo-
cal variables as in Figure 2-4.

(Defmethod Integer 1fib ()
(if (<= self 2)
1
(clet
((a (lfib (- self 1}))
(b (1£fib (- self 2)))})
(+ a b)))

Figure 2-4. Fibonacci program with local variables
The above program is equivalent to the one in Figure 2-1 and actually compiles into the same code.

Local variables declared with a clet or a let statement have a scope which is the body of
the clet or let statement (except for the bindings themselves). CLet and let statements
can be nested. Local variables can be altered using a cset or a set statement; the difference
between the two will be explained in the Concurrency section below.

Types

The types (i.e. classes) of various values can be declared explicitly. Such declarations serve
three purposes:

¢ Types allow the compiler to generate faster code by allowing it to perform operations
such as method lookup at compile time.

* The compiler can perform type checking to find simple errors such as passing a value of
one type to a function that is expecting a value of a different type.

¢ Declaring types of function parameters and results serves to document the code.
For the purposes of type inclusion, a type is its own supertype and subtype.

Due to the common use of generic types, the compiler’s type checking is necessarily limited.
In particular, when an expression of type t1 is assigned to a variable of type t2 or passed as a
parameter to a function that expects type t2, the compiler usually will give an error or a
warning if t1 is not 12, t1 is not a superclass of 12, and t2 is not a superclass of t1. This does
not mean, however, that the semantics of function parameter and return type declarations
are any different from their standard interpretations—when a function parameter is declared
type t, every value passed as that parameter must be a member of type t, and when a func-
tion result is declared type t, the function must return a value that is a member of type t as
that result—the only difficulty is that the compiler is not able to do full type checking, so it
usually follows the rules outlined above.

For example, integer and boolean are both subclasses of the object and magnitude
classes (see Figure A-2), but they are otherwise unrelated to each other. Thus an integer
can be passed to a function that expects an object, an object can be passed to a function
that expects an integer, but a boolean cannot be passed to a function that expects an in~
teger. The second possibility, passing a more general type to a function that expects a less
general one, is included to handle the common case of extracting values from general storage
class. One could, for example, keep a pair of integers and desire to add the pair’s car and
cdr together. Since a pair is a generic data structure, it can contain values of type object;

17

Concurrent Smalltaltk on the Message-Driven Processor

a compiler has no simple way of knowing at compile time that the pair will contain inte-
gers, so the best it can deduce is that the pair’s car and cdr are objects.

Types can be declared as follows:

* To specify the type of a local or an instance variable, follow the variable name with a
colon and its type. Several locals can be declared using the same type by separating their
names with commas.

¢ To specify the type of a function or method formal, follow the formal name with a colon
and its type. Several formals can be declared using the same type by separating their names
with commas.

¢ To specify the result type of a function or method, follow the list of formals with a colon
and the result typel.

¢ A type of an intermediate result can be specified using a type-assertion statement?.

The three kinds of declarations are illustrated in Figure 2-5, yet another copy of the Fi-
bonacci program. All untyped variables, parameters, and functions and methods are typed
object by default.

(Defun tfib (n:integer) :integer
(if (<= n 2)
1
(clet
((a:integer (tfib (- self 1)))
(b:integer (tfib (- self 2))))
(+ a b)))

Figure 2-5. Fibonacci program with types
There are three type declarations here. In order, they are a declaration of the parameter type of n, a declaration of
t £ib's result type, and declarations of the types of the local variables a and b.

Concurrency

Concurrency is expressed in Concurrent Smalltalk in several ways:

¢ Concurrent argument evaluation. In
(+ (big-computation 3) (time-sink 738))
the expressions big-computation and time-sink can be evaluated in parallel.

¢ Expressions in concurrently statements may be evaluated concurrently. The expres-
sions in parallel statements are always evaluated concurrently.

* The variable bindings in clet and let statements can also be evaluated concurrently.
For example, the expressions big-computation and time-sink can be evaluated concur-
rently in

(cset a (big-computation 3))

(cset b (time-sink 738))

(+ a b)
as well as in

(let ((a (big-computation 3))

(b (time—-sink 738))
(+ a b))

* The computations in assignments using cset and in function calls whose result values
are unused can be done concurrently with neighboring statements.

1See also return values in section A.5 for a description of specifying types of multiple results.

18

Chapter 2 Concurrent Smalltalk

e The computations done for futures are always evaluated in parallel.

The action of a cset can be thought of as storing a promise (known as a cfuture) to calculate
the value of a variable. For example, after
(cset a (big~computation 3)})

is executed, a will contain either the value of (big-computation 3) or a cfuture promising
to deliver that value when it is needed. If a contains a cfuture, (big-computation 3) is
evaluated in parallel by a different task. At the same time, execution of the method can pro-
ceed and the method can perform another time-consuming task. It will not have to wait for
(big-computation 3) to complete until the value of a is needed.

Sometimes it is desirable to explicitly wait until the value of an expression is available before
continuing. This is called either touching or forcing the expression. Touching or forcing an
expression that evaluates to a normal value does nothing. Touching or forcing an expression
that evaluates to a cfuture causes evaluation to wait until the value of the cfuture is avail-
able. Finally, touching an expression that evaluates to a future does nothing, while forcing it
causes evaluation to wait until the value of the future is available. The resulting value is
then touched or forced again until the touch or force operation does not change it.

An expression can be touched using the touch statement and forced using the force state-
ment. Since built-in methods and functions usually touch or force their arguments, touching
and forcing are rarely done explicitly.

The reference manual in Appendix A defines more precise semantics for what expressions
may or may not be evaluated in parallel.

Locks

(defclass resource (object)
1:1lock
... other fields)

(defmethod init resource ()
(cset 1 (new-simple-lock)) ;Creates an initially available lock
... other initialization code)

(defun new-resource ()
(init (new resource})))

(defmethod access resource (parametdrs
(acquire 1)
... code to perform the access using parameters ...
(release 1))

(defmethod access2 resource (parametqgrs
(with-locks (1)
... code to perform the access using parameters ...))

Figure 2-6. Lock Example

This example defines a class resource that contains a lock. Every call to access acquires the lock when it
starts and releases it when done, so the code in the middle of the access method cannot be interrupted by an-
other access method. The with-locks macro is a convenient shorthand for acquiring and releasing locks; the
access method could have been rewritten as access2.

Locks are used to synchronize computation by Concurrent Smalltalk programs. Locks are
especially useful around critical sections of code where only one process may access a re-
source; a process that wants the resource acquires a lock before accessing the resource and
releases it when it is done. Two variants of locks are provided. Simple-locks are fast locks
which, however, perform poorly when many processes are waiting for a resource; simple-

2Sce section A.6.

19

Concurrent Smalltalk on the Message-Driven Processor

locks should be used in situations in which the probability of contention for a resource is
small. Queueing-locks are slower locks designed to handle a large amount of contention.

As an example of the use of locks, suppose one wants to restrict the use of a resource so that
only one process can access it at a time. To accomplish this exclusion, a lock can be associ-
ated with the resource, in which case every process should acquire the lock before using the
resource and release it when done. Figure 2-6 shows sample code used to access the resource.

Distributed Objects

(defclass distarray (distobj)
value)

(defun new-distarray (size:integer)
(new distarray size)

(defmethod get distarray (index:integer)
(get-value (co group index)))

(defmethod put distarray (index:integer new-value)
(set (get-value (co group index)) new-value))

(defmethod size distarray ()
(logical-limit self))

Figure 2-7. Distributed Object Example

This example defines a class distarray used for distributed arrays. The get method returns the element at
position index in the array; since each constituent contains only one element of the array, the get method returns
the value in the constituent specified by the given index. Similarly, the put method routes the message to the
constituent specified by index, where it stores new-value. The size method simply returns the array’s size.

Whereas standard objects serialize messages sent to them!, distributed objects can accept
and process many messages at a time. A distributed object is comprised of an array of con-
stituent objects and a common, group name. When a message is sent to the group name, the
operating system routes it to a constituent of its choosing. The constituent can then process
the message or send it to another constituent; constituents know how to address each other.
The co primitive is used to find a particular constituent of a distributed object, while the
group instance variable can be read to determine the group name of a distributed object
given one of its constituents.

For example, a large array might be implemented as a distributed object. When a get mes-
sage is sent to the array to read a value of a particular element, the message is routed to one
of the constituents. That constituent examines the given index and forwards the message to
the constituent containing the element, which reads and returns the value.

Figure 2-7 shows a simple example of the use of distributed objects to create a distributed ar-
ray. Each constituent contains only one element of the array to keep this example short; a
better implementation would use a simple-array at each constituent to reduce the number
of constituents needed.

The advantages of using a distarray class like the one in Figure 2-7 is that many accesses
can be made to the array simultaneously; they do not have to pass through a common bottle-
neck to access the array. In addition, as will be clarified in Section 3.3, the get and put
methods do not access any instance variables of distarray themselves, so they could be in-
lined wherever they are called?; thus, reading or writing the distarray in Figure 2-7 could

IExcept for a few special cases such as immutable objects and messages which do not need to access an object’s data
to execute, only one message may be processing on a standard object at a time.

2The compiler’s handling of group would have to change a little to permit this optimization; the compiler currently
treats group solely as an instance variable, but there is no intrinsic reason why the compiler could not provide a by-
pass path that checks whether a method was called on a group ID (as opposed to a constituent ID) and just uses the

20

Chapter 2 Concurrent Smalitalk

involve only two message sends, which is no less efficient than reading or writing a simple-
array.

Macros

Concurrent Smalltalk provides a macro facility which can be used to extend the language. A
macro consists of a pattern and a replacement. The pattern can contain variables or key-
words. If it matches with an expression, that expression is replaced by the replacement,
which can be either another pattern or a Common Lisp function!. Much of the language it-
self has been implemented in terms of macros. Figure 2-8 contains a sample macro which de-
fines a when form that is the equivalent of a Common Lisp when.

(defmacro (when ?test . 2body)
(1f ?test
(begin . ?body))

Figure 2-8. When macro

The when form defined by this macro takes a test and a number of statements comprising the body. If the test is
true, the statements are executed one after another, as in begin. If the test is false, when retums nil. This
macro takes advantage of the fact that i f returns nil if there is no else-clause and the condition is false. The
Lisp dot notation is used to indicate that the body forms the rest of the given list.

group ID if it was provided instead of always using the group instance variable. When this optimization is imple-
mented, distributed arrays such as the one above will be as efficient as simple arrays.

1Concurrent Smalltalk functions may be added as replacements later, when the entire compiler and development
system is rewritten in Concurrent Smalltalk.

21

Chapter 3. The Optimist II Compiler

Optimist II is an optimizing compiler for the Concurrent Smalltalk language described in
Appendix A. The compiler generates assembly language code for the Message-Driven Pro-
Cessor.,

Optimist II is based on the Optimist compiler described in [21]. Optimist included many
standard optimizations such as register variable assignment, dataflow analysis, copy propa-
gation, and dead code elimination [3] [43] that are used in compilers for conventional proces-
sors. In addition, Optimist included fork and join mergers that try to merge similar (not nec-
essarily identical) statements on both sides of conditionals, a powerful move eliminator, and
numerous code generator optimizations to accommodate various idiosyncrasies of the MDP.

Optimist II is a substantial improvement over the Optimist compiler. While Optimist sup-
ported only a small subset of an early Concurrent Smalltalk language, Optimist II imple-
ments almost the entire new Concurrent Smalltalk language. Some language features sup-
ported by Optimist II that were not present in the original Optimist include:

e Method lookup (Optimist could compile method code but could not associate a method
with a selector)

¢ Global variables

¢ (Class and variable declarations

* Macros

¢ Lambdas and closures

¢ Multiple inheritance of classes

¢ Distributed objects

¢ Multiple return values

* Nonlocal exits

¢ Functions

* Methods referencing more than one object at a time
e Synchronization primitives

¢ Arrays

® Methods overriding primitive selectors such as +
¢ Compile-time evaluation of expressions

Furthermore, Optimist II contains an interactive language environment, including a Concur-
rent Smalltalk interpreter and facilities to view code in various stages of compilation. Opti-
mist II gives helpful warnings and errors when it encounters questionable language con-
structs. It also includes entire new categories of optimization, including type inference and
global program optimizations. Finally, Optimist II's code generator has been updated to con-
form to and optimize for MDP Architecture version 11B [16]! instead of Optimist’s Architec-
ture 10 [23].

1This reference is to MDP Architecture version 11. Version 11B has not been published yet.

22

Chapter 3 The Optimist II Compiler

The only language features listed in Appendix A missing from Optimist II are full futures
and I/O facilities. It is expected that they will be added later, when the operating system is
updated to support them. In addition, some optional features of the language such as inline
objects and first-class continuations have not been implemented, although facilities have
been provided that will simplify their implementation in the future.

Structure

Figure 3-1 shows the overall structure of the compiler. Concurrent Smalltalk code is read
and parsed by the reader and parser, transformed by the preoptimizer, and saved in the
global environment. It can be either interpreted using the global environment or optimized
further by the optimizer and then compiled into MDP assembly code by the compiler and
assembler. The treewalker controls the compilation process and prevents unused modules
and objects from being compiled and assembled.

Reading Guide

The Data Structures section introduces the common data structures used in the Optimist IT
compiler. A few data structures such as digraphs and hcode appear throughout the compiler,
and familiarity with them is assumed in the later sections.

The next three sections discuss the three main components of the compiler environment: The
Initial Phase includes facilities to read Concurrent Smalltalk expressions and compile them
into hcode (an intermediate code format), interpret that hcode, and maintain the global Con-
current Smalltalk environment. This phase executes until the user requests a compilation of
the program to MDP assembly code, at which time the other two phases are invoked. Most of
the optimizations in Optimist II are done in the Optimization phase, although a few appro-
priate optimizations are scattered in the other phases. The Code Generation phase com-
piles the optimized hcode into MDP assembly language and outputs that assembly language,
together with immediate objects, class descriptors, and method tables, after performing a few
final optimizations. The output of the Code Generation phase can be read directly into
MDPSim. The code generator and MDPSim share the task of linking programs. Finally, the
Summary section summarizes the important ideas in the compiler.

Chapter 5, Sample Program, shows the progress of a sample program through various
phases of the compiler, and it may be helpful to illustrate some of the optimizations.

1This reference is to MDP Architecture version 11. Version 11B has not been published yet.

22

Concurrent Smalltalk on the Message-Driven Processor

Concurrent Smalltalk Source Code Initial
* Phase
Reader -
Runtime
Paiser Library
Pre-optimizer and
Initial Transformer
|
Hcode
¥ / Interpreter
Top-Level ’
Evaluator
N Global
Environment
Hcode

Optimization

Optimizer Phase

v

MDP-Specific Treewalker

Optimizer
Y
Data Objects /ﬁj

Hcode

¥

Code
Compiler Generation
Phase

|
Assembly Language Module

L

Assembly
Optimizer

v

Assembler

v

MDPSim Executable File

Figure 3-1. Optimist IT Organization

24

Chapter 3 The Optimist II Compiler

3.1. Data Structures

Utilities

Optimist II uses a number of supporting data structures throughout the compilation process.
These include abstractions such as environments, queues, ordered sets, bit sets, and exten-
sions to CLOS. The supporting data structures are defined in the System Ulilities, Utilities,
and Digraph files!.

An environment associates keys with values. Environments can be atomic, linked to each
other, and either simple or based on hash tables. Atomic environments allow a series of
changes to be cancelled, which is a useful operation if a syntax error is found in the input
Concurrent Smalltalk expression. See the System Utilities file for more information about the
internal Optimist II environment formats.

The implementation of digraphs (directed graphs) is discussed in [21]. The digraphs in Op-
timist II extend that implementation by taking advantage of CLOS's class inheritance mech-
anism and by automatically marking a digraph altered when any change to it is made, elimi-
nating some hard-to-find consistency errors. For example, using the dfs function to ask for a
listing of the nodes of a digraph will always yield an up-to-date list. Furthermore, an Opti-
mist II digraph has a root dinode that is attached to both the digraph’s starting nodes and
the ending nodes, allowing easy identification of the digraph’s exit points. Including the root
node generalizes some algorithms; for example, the join merger can now join statements at
the end of the digraph.

The traversal returned by dfs is not quite a depth-first search—the search order is depth-first
modified to avoid listing a node ahead of its predecessors whenever possible. If the graph is
acyclic, no node (except the root) is listed before its predecessors. The digraph dataflow prob-
lem solver [21] [3] has been updated to detect this condition and solve a dataflow problem on
a digraph in one pass if the digraph is acyclic; otherwise, the dataflow solver makes two or
more passes until no node changes. Moreover, dfs automatically detects and removes dead
dinodes from a digraph; dead dinodes are dinodes which cannot be reached by following the
edges in the digraph in the forward direction starting at the root, but which can be reached
from the root by following edges in the undirected digraph.

The other structures based on digraphs such as modules are similar to those in Optimist.
See the Digraph file for more details, including the dataflow problem solver and a directed
graph mapper utility.

Hcodes

Hcode is the primary intermediate code format of the Optimist II compiler. It is loosely
based on I-code found in Optimist. Hcodes? are represented by instance objects of CLOS
classes, and there is no uniform syntax for reading and writing programs in hcode form,
although the show utility prints hcodes fairly well. In addition, the usage of hcodes is not
uniform throughout the compiler. The sets of hcodes allowed in different stages of the com-
piler differ—some hcodes are used early and then banned, while others are introduced just
before assembly code is generated. The number of hcodes used in the compiler is small and
fixed—there are only thirteen hcodes, and nine of them are limited to certain phases the
compiler. Since there are few hcodes, most operations can be expressed in only one way in
hcode, and the optimization algorithms have to handle only a few cases instead of many syn-
onymous I-codes, as used in Optimist.

15ee Appendix E for information on getting copies of the files.

25

Concurrent Smalltalk on the Message-Driven Processor

Table 3-1. Hcodes

HCode Arguments | Usage* Action
e ——
Directive Directive I, Pre Evaluate top-level directive such as add-method
Directive-args on the directive-args.
Application Targets I, Pre, O, | Apply funct to args and put the result values in
Funct Post, C the targets.
Args
Assent-Type | Argument |, Pre, O, | Assert that the argument value’s type is a sub-
Type Post type of type.
Move Target |, Pre, O, | Move value from source to target.
Source Post, C
Make-Closure | The-Lambda ||, Pre, O, | Make a closure out of the-lambda using sources
Sources Post as the values of the display arguments.
Nconcurrently | Threads I, Pre Execute threads concurrently.
If Condition I, Pre, O, | Branch if argument satisfies condition. Table 3-2
Argument Post, C__ |lists the allowed conditions.
Touch Argument I, Pre, O,] Touch the argument
Post, C
Force Argument |, Pre, O, | Force the argument
Post
Make-Future | Target |, Pre, O, | Make a future which will evaluate the lambda
Argument Post passed as an argument. Store the future in tar-
Lazy get. The future is lazy if lazy is true.
Enter l,C Commence function or method execution,
Exit C Terminate function or method execution.
Grab Argument C Temporarily dereference an instance object.

*The Usage column specifies the stages of the compiler in which the hcode is valid. The stages are:
l Hcode before initial transformations.

Pre Pre-optimized hcode. This hcode is stored in the global environment.

o Hcode during most of the main optimization phase.

Post Hcode during the MDP-specific post-optimization phase.

c Hcode just before it is compiled into MDP assembly language.

Table 3-1 lists the hcodes. Most hcodes contain fields such as arguments and targets. An ar-
gument field can contain any rvalue?, while a target field can contain any lvalue. Also, a type
field can contain any type, while a class field requires a class. The formats of those fields are
listed in Table 3-3.

There is no hcode that returns a value from a function or a method. Instead, a special lvalue
is used to represent a continuation to the caller. A value is returned by storing it using a ref-
erence to the continuation as a target. Thus, a move hcode with a reference to a continuation
as a target is really a return statement, while an application hcode with a reference to a con-
tinuation as a target is a tail-forwarded application. More complicated combinations are also
permitted—an application hcode that returns two values can forward one to a continuation
and store the other in a local variable, or continuations to several different callers within
whose static scopes a function resides could be used. The benefits of not including a return
hcode are a more orthogonal set of hcodes and a simplification in the tail forwarder, which
now becomes a somewhat specialized move eliminator.

Every hcode has exactly one successor in the digraph except the if hcode, which has two, cor-
responding to evaluating the conditional as true or false. The nconcurrently hcode has only
one successor, but it also contains a set of nested digraphs, which may be evaluated concur-

28ometimes the word statement will also be used to refer to an hcode.
1Rvalues are defined below.

26

Chapter 3 The Optimist Il Compiler

Table 3-2. Conditions

Condition Expression

— —=
itrue Branch if the argument is true. The argument must be a boolean.
false Branch if the argument is false. The argument must be a boolean.
:nil Branch if the argument is eq to nil. The argument can be any object.
:non-nil Branch if the argument is not eq to nil. The argument can be any object.

:zero Branch if the argument is equal to 0 using the = predicate.
‘non-zero Branch if the argument is not equal to 0 using the = predicate.

rently, sequentially, or interleaved in any fashion. There is no restriction on the number of
predecessors an hcode can have.

Hcodes are rarely processed alone; usually hcodes are embedded in a code-lambda or cst-
lambda, which represent digraphs of hcodes with header information. A code-lambda con-
tains a digraph of hcode statements together with a database of local variables used by those
statements. Each local variable has an optional name, a type, and some declarations such as
whether it can hold inline objects. Furthermore, the locals in a code-lambda are consecu-
tively numbered to allow the efficient use of bitmaps to keep track of variable data while
solving dataflow problems. In addition, a code-lambda shares with cst-functions (another in-
ternal Optimist II class that describes all functions, including primitives) the interface fields
which consist of a list of parameters, return values, and display variables used by closures.

Hcodes are documented in the HCode file.

Values

An Optimist I value is a representation of a Concurrent Smalltalk object—it can be, say, an
integer, a character, a distributed object, a function, a class, or any other valid Concurrent
Smalltalk object. On the other hand, a variable or a parameter is not a value, but it may con-
tain a value. In addition, values of a few hidden types such as continuations and continua-
tion displacements are also used. Many different representations are used for values, and
these representations will not be described further here; please refer to the Types file for
more details on this subject.

An rvalue can be either a value or a location that can be read to obtain a value. Thus, a local
or a global variable is an rvalue, and so is the Concurrent Smalltalk integer 7. An instance
variable in general is not an rvalue, but a reference to an instance variable in a particular in-
stance object is. The common rvalue kinds are listed in Table 3-3.

Table 3-3. Rvalues

Rvalue Specializers Notes

Value Any value is also an rvalue.

Local : Name, scope, etc. A local variable.

Gilobal Name A global variable.

Option Name A Concurrent Smalltalk option.

Ivar-ref Instance variable, An instance variable of an instance object. The

Instance object instance object must also be an rvalue.

An lvalue is a location into which a value can be written. Examples of rvalues include local
variables, references to instance variables in instance objects, and references to continua-
tions. A continuation by itself is not an lvalue, but a reference to one is. The common lvalue
kinds are listed in Table 3-4.

27

Concurrent Smalitalk on the Message-Driven Processor

Table 3-4. Lvalues

Lvalue Specializers Notes

Local Name, scope, etc. A local variable.

Global Name A global variable.

Continuation-ref Continuation or A reference to a continuation specified either as
Context and a continuation rvalue or as a pair of context and
Displacement displacement rvalues (See Section 3.3).

All rvalues are instances of the rvalue CLOS class, all lvalues are instances of the Ivalue
CLOS class, and all values are instances of the value and rvalue CLOS classes. CLOS’s mul-
tiple inheritance is used to define objects that are both rvalues and lvalues or other combina-
tions of the above.

Types and Classes

Table 3-5. Types

Type Specializers Notes
Class Any class is also a type.

Continuation-type Continuation-type A type based on the continuation class that
represents a continuation that will return a
value of the continuation-type type.

Displacement-type Continuation-type A type based on the displacement class that
represents a displacement field of a continua-
tion that will return a value of the continua-
tion-type type.

A Concurrent Smalltalk class is a Concurrent Smalltalk value that is an instance of the
class class. Classes are implemented in Optimist II as instances of the cst-class CLOS
class. In addition to itself being a value, a class also represents a set of values. For example,
the class integer represents the set of all integers, which includes, among others, the values
4 and -17. The class null represents the singleton set (nil). The class class represents
the set of all Concurrent Smalltalk classes, including itself.

In addition to classes, Optimist II includes types which provide finer discrimination than
classes for describing sets of values. Types are listed in Table 3-5. Currently a type is either
a class or a continuation that returns an object of some type. A type can be always projected
to a class; the base-class Lisp generic function performs this conversion. A type that is also a
class projects to itself, while a continuation type projects to the class continuation.
Although a class is always a value, a type is not necessarily a value.

Multitypes

When describing the possible contents of variables, Optimist II uses the concept of a multi-
type. A multitype is a list of zero or more types; a value is a member of a multitype (satisfies
that multitype) if it is a member of one of its types. No value satisfies a null multitype, while
every value satisfies a multitype that has object as one of its types. Routines are provided
to calculate unions (least upper bound) and intersections (greatest lower bound) of multi-
types and simplify representations of multitypes. Since multitypes are not necessarily closed
under those operations, the lub and glb routines may conservatively enlarge their multitype
results.

28

Chapter 3 The Optimist II Compiler

Global Data Structures

Two atomic environments, the global environment and the class environment, contain most
of the state of the Concurrent Smalltalk interpreter. The global environment contains all
Concurrent Smalltalk globals, parameters, and constants, while the class environment con-
tains all known Concurrent Smalltalk classes. The global environment is linked to the class
environment, so the latter is searched if an identifier is not found in the global environment.

The classes are themselves heavily linked together. Each class object has lists of its immedi-
ate superclasses and subclasses and all of its superclasses and subclasses, as well as a meta-
class, a description of its instance variables, and sundry options such as whether the class is
immutable. To allow typed recursive data structures, an “undefined” class structure is cre-
ated when a class name is encountered in a program without being defined. An “undefined”
class can turn into a normal class when the class is defined; CLOS’s change-class construct is
very valuable here. A substantial number of classes have to be updated whenever a new
Concurrent Smalltalk class is defined, but compilation speed does not seem to suffer because
of this. The heavy linking of classes made defining a bootstrapping subset of Concurrent
Smalltalk classes challenging; some CLOS objects had to be created with the wrong classes
and then transformed to the right classes. Once the bootstrapping subset of Concurrent
Classes was defined, defining the remaining classes on top of it was easy.

A method is associated with both a class and a selector. There is no single method table in
Optimist II; instead, whenever a method is added, it is added to the selector’s list of methods
hashed by class and the class’s list of methods hashed by selector. Thus, a selector knows all
of the methods defined for it, as does a class. Methods are not replicated in these hash tables
unless a method is added more than once; instead, the lookup-method function, which returns
a method associated with a class and a selector, searches the superclasses when a method is
not defined for a selector and a class; an ambiguous selector error is signalled if there is more
than one superclass and they are associated with differing methods.

Current settings of the options are also kept in a global data structure. Each option is de-
clared as a dynamic Lisp variable, and a list of all options and their default values is kept in
an object. The #sname reader macro expands into a reference of the option named name.

Concurrent Smalltalk symbols are not accumulated in any data structure; however, when a
Lisp symbol is used as a Concurrent Smalltalk symbol, its cst-symbol property is set to the
Concurrent Smalltalk symbol object to ensure that that object is reused if the symbol is ref-
erenced again; otherwise, (eq 'sym 'sym) would be false according to the interpreter.
Number objects are not reused, so (eq 13 13) is false according to the interpreter!, but
(clet ((x 13)) (eq x x)) istrue.

INevertheless, compiled code will currently return t rue if eq is used to compare two equal integers. The action of
eq on numbers is purposely not defined in Concurrent Smalltalk to allow an implementation of a bignum package.

29

Concurrent Smalltalk on the Message-Driven Processor

3.2. Initial Phase

The initial phase of the compiler reads the Concurrent Smalltalk input and converts it into a
rough hcode form. Several early transformations have to be done on the resulting hcode be-
fore it becomes suitable for optimizations.

The most complicated early transformations create statically scoped functions. The initial
phase determines parameter interfaces for lexical variable displays [3] used by closures, and
it does a considerable amount of work to pick those interfaces well. Delaying this decision
would have made manipulation of functions in that stage very difficult; the advantages of
splitting nested functions into components early are that every function is self-contained and
completely owns its local variables—no other function can alter or examine the local vari-

ables.

Reader

A customized Common Lisp reader is used to read the Concurrent Smalltalk programs. The
customizations consist of using a special readtable and reading all Concurrent Smalltalk
names into the CST package. The readtable is used to implement the special characters in
the Concurrent Smalltalk syntax. Most special characters expand into lists; for example, !a
expands into (! a). Some character tokens such as :, : :, and , (comma) expand into sym-
bols with the same names.

The CST package is used to prevent conflicts between Concurrent Smalltalk symbols and any
symbols the compiler or the Common Lisp environment might be using. For instance, nil is
just the name of a constant (which happens to have the value 'nil) in Concurrent Smalltalk;
nil is not confused with the Lisp nil, which also represents an empty Lisp list. Since the
colon has a special readtable meaning in Concurrent Smalltalk mode, Concurrent Smalltalk
symbols are restricted to the CST package.

Read macros have been inserted into both the Common Lisp readtable and the Concurrent
Smalltalk one to facilitate easy switching between the two tables. The #$ macro in standard
Lisp input reads the next token in Concurrent Smalltalk mode, while #~ can be used inside a
$-expression to switch back to Lisp mode. In addition, the #L macro in Concurrent
Smalltalk mode reads a list expression and returns a two-element list with the symbol lisp as
its first element and the expression read as the second.

Parser

The parser parses the input expressions into a prototypical hcode form. The parser is a re-
cursive descent macro evaluator. Each primitive in Concurrent Smalltalk is implemented as
a macro. There are three main kinds of macros: normal macros substitute Concurrent
Smalltalk text with other literal Concurrent Smalltalk text as described in Section A.14, non-
terminal macros substitute Concurrent Smalltalk text with Concurrent Smalltalk text pro-
duced by a Lisp function, and terminal macros read Concurrent Smalltalk text and perform
an action such as emitting hcodes. Furthermore, macros can be restricted to evaluate at the
top level only.

The parser, when asked to parse an expression, compares it against macros in its macro list
in reverse chronological order until it finds a match; when a match occurs, the macro is ex-
panded as above. If the macro was not a terminal one, the resulting text is expanded again
until either no macro matches the text or a terminal macro is expanded. If no macro applies,
the text must be a symbol, which is looked up in the current lexical environment. If the sym-
bol is not found in the current environment, it is assumed to be an undefined global unless it

30

Chapter 3 The Optimist II Compiler

happens to be one of the Concurrent Smalltalk primitive names or the warn-free-refer-
ences! declaration is in effect, in which case an error or a warning is given.

Macro Implementation

Since the parser is an intensive user of macros, a fast implementation of macros is used to
make the parser in the compiler fast. Macros are stored in linked lists hashed by the first
non-variable symbol in the macro pattern; macros with no such symbols are stored in a sepa-
rate list. Thus, relatively few macros have to be examined for a given piece of Concurrent
Smalltalk text. Furthermore, the macros themselves are compiled Lisp functions that check
that their patterns are satisfied and, if so, compute the text replacement or perform their
terminal actions. Compiling macros avoids the costly interpreted unification step during pat-
tern matching. The make-macro-text function in the Environment file compiles a macro into a
Lisp function.

If a macro contains an @ directive in its pattern, the macro expander calls itself recursively
on the text matching the @ directive. In this case it does not allow terminal macro expansion
on that text.

Environments

While the parser is generating code, it frequently needs to determine the meanings of identi-
fiers. It uses linked environments to keep track of statically scoped identifiers such as the
names of local variables and continuations. The last local environment is linked to the global
environment to cause a search of the global and class environments when an identifier is not
defined locally. Optimist II distinguishes local variables according to whether they are eq to
each other or not. Thus, no alpha-renaming is necessary anywhere in the parser. Also, a
lambda may reference local variables it captured from an enclosing lambda. Since most of
the optimizations cannot handle externally visible local variables, such local variables are
“unshared” before the optimization pass is invoked.

Concurrent Smalltalk Runtime

Most of the Concurrent Smalltalk directives described in Appendix A are macros which ex-
pand into either other Concurrent Smalltalk primitives or hidden primitives. The Runtime
file contains a listing of all macros used by Concurrent Smalltalk.

Top-Level Primitives

Most Concurrent Smalltalk top-level primitives listed in Appendix A expand into the directive
hcodes and are evaluated at expression interpretation time. Directive hcodes may be inter-
preted but not compiled; to ensure that no directive will be compiled, directives are prohibited
inside 1ambdas (and, of course, any constructs which expand into lambdas). A few directives
such as include, top-level set, and defclass? are evaluated by the reader; those directives
must be placed at the top level—they may not be nested in any expression except a top-level
begin, which evaluates its arguments sequentially at the top level.

Method-Lambdas

A method-lambda of a class ¢ expands into a lambda with a formal self of type ¢ prepended to
the method-lambda’s formals and a (_with-object (self:c) ...) form surrounding the body of the
lambda. The _with-object form establishes bindings in the parser’s environment that associ-

1See Appendix B.

2pefclass isn't really evaluated by the reader; nevertheless, it must be a top-level form because it expands into a
top-level begin containing the internal class definition followed by definitions of accessor and predicate methods.
The internal class definition has to have been interpreted before the accessor method definitions are read; otherwise,
the reader will complain about an undefined class. Grouped forms not at the top level and not in a top-level begin
are read as a group and then interpreted as a group.

31

Concurrent Smalltalk on the Message-Driven Processor

ate names of C’s instance variables to ivar-refs of the corresponding instance variables pointed
by the self object. The action of _with-object is analogous to that of the symbol-macrolet con-
struct in CLOS [6].

Optimist II does not restrict a lambda to referencing only one instance object; in fact, through
inlining of method-lambdas or accessor methods, a lambda can reference many objects at the
same time. Objects may also be referenced through the use of _with-object directly in Con-
current Smalltalk code, but this practice is discouraged, as it uses a nonstandard feature of
the language and gains no real functionality.

Loops

Although Optimist II can optimize and output code with loops in it, loops are currently not
implemented this way. The problem is that a Concurrent Smalltalk function with a loop in it
might execute for a long time and not allow any other messages to be processed at its node.
To prevent this problem, loops are implemented as closures which pass themselves as argu-
ments— (wvhile (< i 10) (set i (+ i 1)) expands into:

(clet ((_loop
(lambda ((_loop-arg:function &no-leak))::{_while)
(if (< 1 10)
(set 1 (+ i 1))
(return _while 'nil))
(_loop-arg))))
(_loop _loop))

The loop function is called and passed itself as an argument. If i is less than 10, _loop
increments i and calls its argument tail-recursively; otherwise, it returns nil to the caller.
The tail-recursive call breaks the long invocation of the function.

The compiler is not yet sophisticated enough to detect that the value of the _loop variable
never changes, so the _loop-arg argument to the internal function can be eliminated and
the function could call itself recursively directly.

Initial Transformations

Immediately after the hcode is created by the parser, a transformation and an optimization
are done on it. The first transformation flattens all exit hcodes out of every newly created
lambda. Exit hcodes are generated by the exit Concurrent Smalltalk primitive, which may
also be a result of the expansion of a return statement. Each exit hcode in the lambda is
removed and the preceding statement linked to the digraph’s root dinode to indicate that the
execution of the lambda should terminate at that point. Sometimes exit hcodes can be found
nested inside nconcurrently hcodes; if that is the case, the exit flattener moves as many of the
nconcurrently’s threads outside as it needs to remove all exit hcodes from the nconcurrently.
Then it flattens the exits as usual. An example is shown in Figure 3-2.

Simple structural optimizations are done immediately after the exits are flattened. These
optimizations do not depend on dataflow analysis and can, therefore, be done before lexical
variables are untangled. The optimizations consist of the following transformations:

¢ If statements with identical consequents and alternatives are deleted.

¢ |f statements conditioned on constants are deleted, and resulting dead code, if any, elimi-
nated.

e Move statements with identical sources and destinations are deleted.

¢ Assert-type statements on constants are checked and deleted. The compiler generates an
error if an assertion fails.

32

Chapter 3 The Optimist I Compiler

(e
GG
G-

(@)

(b)

Figure 3-2. Exit Flattening Example

Exit statements are inserted by the parser in all places in which the execution of a lambda should terminate. As
the first transformation, those exit statements are removed and replaced with links back to the root of a digraph.
For example, part (a) shows the main body of a lambda with two sub-digraphs that are the threads of a nconcur-
rently. After exit removal (b), all exit paths are linked back to the root of the main body of the lambda, which also

required the inlining of one of the nconcurrently’s threads.

¢ Touch and force statements on constants are deleted.
¢ Empty nconcurrently statements are deleted.
* One-thread nconcurrently statements are replaced by their threads.

The structural optimizations are done for two reasons: First, structural optimizations
shorten the hcode, using less memory in the later compiler stages and making them run
faster. Second, structural optimizations may remove some variable references, improving the
quality of the code produced by lambda-collapsing and the nconcurrently flattener in the op-
timization phase.

33

Concurrent Smalltalk on the Message-Driven Processor

Lambda-Collapsing

Lambda-collapsing is the process of unnesting nested lambdas. After lambda-collapsing,
each lambda has exclusive access to its local variables. Lambda-collapsing becomes difficult
when the inner lambdas reference the outer lambdas’ local variables and continuations.
Since continuations are restricted local variables, they will not be discussed here further.
Lambda-collapsing occupies most of the Preoptimizer file. Since lambda-collapsing is a com-
plex process, an illustrative example is provided at the end of this section.

The lambda-collapser (the assign-lexicals Lisp function) examines each outermost lambda in
the hcode produced by the initial transformations. For each outermost lambda L it looks at
the lambdas N1, N, ..., N nested in L and their free variables. Each nested lambda N,; is
considered to also include any lambdas nested in it. Thus, if, say, N2 contains a lambda N3 4
that references a variable x that is not defined in Ng y or N, then X is a free variable of both
Ny 1 and Np. If a nested lambda N; does not reference any free variables, it is a self-contained
lambda and a first-class data object and does not present any difficulties here. Otherwise, N;
is the code portion of a closure. '

The lambda-collapser first calculates the sets of free variables read and written by N;. Next,
the lambda-collapser considers each local variable xj of L. Alocal x;is called a mutable lexical
if it is either (1) written by any N; or (2) read by any closure N; and written by L after the clo-
sure N; has been created by L and before the closure was called for the last time. Mutable
lexicals of the first kind are easy to determine by scanning every N; and checking which free
variables are written in any hcode in it. To determine mutable lexicals of the second kind,
the lambda-collapser solves a few dataflow problems on L. In effect, to each variable x; in L,
it assigns a state machine S; (Figure 3-3) and uses the dataflow problem solver to run §;
through all possible control paths in L. If S ever enters state 4, Xjis a mutable lexical of the
second kind. The state machine assumes that any local variable x; that is modified after the
creation of a live! closure which reads x; is a mutable lexical. Since the compiler cannot cur-
rently determine when a lambda finishes executing, it cannot optimize local variables that
are modified by L only after the closures have completed execution.

Initia%)State Variable Modified

Closure Made

Closure Called

Closure Exists Closure Called
1) 2
Variable Modified Variable Modified
N\
Variable \ Closure Called ariable must bd Closure Called or
Modified) Mutable Variable Modified
3 4

Figure 3-3. Lexical Variable State Machine

Each local variable starts in state 0 at the beginning of the lambda. For each local variable every possible path of
control fiow is traversed and a state updated as above. If the variable ever enters state 4, it must be a mutable
lexical of the second kind—the variable's value cannot be saved with the closure when the closure is made.

11f the closure is not called, it is not a live closure, and the variable is not necessarily a mutable lexical.

34

Chapter 3 The Optimist II Compiler

Any variable that is free in one of the lambdas N; and is not a mutable lexical is an im-
mutable lexical. Once all of the free variables in the sublambdas of L have been classified,
the lambdas are separated.

Each sublambda N; of L that has free variables is assigned a number of display parameters in
addition to the normal parameters it has. The values of the display parameters are deter-
mined at the time a closure of N; is created. Immutable lexicals are stored directly in the dis-
play, while mutable lexicals are stored in an object whose pointer is passed in the display.
More than one such object may be present if N; uses mutable lexicals from several levels of
enclosing lambdas.

Once the display parameters are assigned to the sublambdas, the code of L is modified to
store the display parameters into a closure whenever one is created, and the N’s are modified
to use the display parameters instead of referencing L’s locals directly. IfL has any mutable
lexicals, it creates an object containing them upon entry and treats mutable lexicals as if they
were instance variables of that object; any mutable lexicals that are also parameters of L are
copied into that object as soon as it is created. The object containing mutable lexicals is itself
mutable, so only one copy of it per invocation of L can be present on the J-Machine. The ob-
ject is not disposed because Optimist II cannot determine the temporal lifetime of a closure;
the object and the closures have to be garbage-collected.

After the above transformation, L has exclusive access to its locals. Since some of the Ni’s
could themselves have locals used by their sublambdas, the lambda-collapser calls itself re-
cursively on every lambda and closure contained in L, even if that lambda did not have any
external free variables.

Efficiency Considerations

There are several advantages for using immutable lexicals instead of mutable lexicals:

e Immutable lexicals are stored directly in a closure’s display, so the closure has immediate
access to their values.

* Closures are immutable objects. If many closures are executing simultaneously, many
copies of the closures and their immutable lexicals can be made. On the other hand, if many
copies of a closure with a mutable lexical are executing, the copies will be contending for the
single object containing that lexical’s current value.

¢ The outer lambda can store immutable lexicals in its context or in registers, while it has
to allocate an object for mutable lexicals and keep their values there.

In order to ensure that lexically scoped variables are immutable lexicals, the programmer
should check that their values are not altered after any closures which might reference them
are created.

Example

Consider the following code:

35

Concurrent Smalltalk on the Message-Driven Processor

(defun outer (x)
(clet ((y 3)

(z 4)
(t 1))
(clet ((innerl
(lambda ()
((lambda () (cset x 2z))) ;innerll
(write x y)))
{inner2
(lambda ()
(write y)))
(innexr3
(lambda (a)

(write a))))
(if (zero? x)
(innerl)
{cset x 5))
(cset z 3)
(inner 2)
(write x y z t))))

The lambda-collapser first determines that the outer lambda has no free variables, so it is
made into a normal function instead of a closure. Next it examines the three sublambdas
within outer: inner1, inner2, and inner3. Inner1 will become a closure because it has three free
variables, x, y and z. It writes to X, so x becomes a mutable lexical; although inner1 does not
write to y and z, another lambda might, so y’s and z’s statuses are unknown. Inner2 will also
become a closure because it has one free variable, y, whose status is still unknown. Since in-
ner3 has no free variables, it becomes a normal function.

Next the lambda-collapser runs the state machines on the x, y, and z locals in outer; outer
also has other locals such as t, inner1, inner2, and inner3, but those are not referenced by any
inner lambdas. X is already known to be a mutable lexical of the first kind. Y is not written
anywhere after inner1 and inner2 are created, so it is an immutable lexical. Z is written after
the inner1 closure is created, and the compiler makes it a mutable lexical of the second kind.
Unfortunately, the compiler does not realize that z is altered only after inner1 finishes exe-
cuting; if it were smarter, it could have made z an immutable lexical. Finally, the lambda-
collapser creates the displays and alters the code of the lambdas to produce a parameter-
passing pattern shown in Table 3-6.

Table 3-6. Lambda-Collapser Example Results

Inner1 Inner11 Inner2 Inner3 |

a

Parameters || x (copied into

lexical-object)

Returns continuation-0 | continuation-1 | continuation-2 | continuation-3] continuation-4
Display lexical-object | lexical-object |y
y

Locals y a

t

inner1

inner2

inner3

lexical-obiect

lexical-object

Instance Variables I X
Z

36

Chapter 3 The Optimist II Compiler

Top-Level Evaluator

Lambda-collapsing was the last preliminary hcode transformation. At this point the hcode is
in a format understood by the interpreter. If it found no syntax errors, Optimist II now eval-
uates the Concurrent Smalltalk expression it just read by running the expression’s hcodes
through the hcode interpreter. If the expression contained any directives, the interpreter ex-
ecutes them at this time.

Interpreter

The interpreter is a simple hcode interpreter for executing Concurrent Smalltalk programs.
The interpreter is completely sequential. Except for full futures and some unimplemented
input/output facilities, the interpreter is a valid Concurrent Smalltalk implementation—the
Concurrent Smalltalk definition allows cfutures to be touched at the implementation’s dis-
cretion, so a completely sequential Concurrent Smalltalk interpreter trivially “touches” each
cfuture as soon as it is created. While the interpreter never achieves any parallelism, it
couldn’t use parallelism if it had any because it is running on a sequential computer.

The interpreter in Optimist II was provided for three reasons:

e It is a powerful constant expression evaluator for expressions encountered while compil-
ing Concurrent Smalltalk programs.

o It is the most interactive Concurrent Smalltalk environment, allowing methods and func-
tions to be changed almost instantly.

e It permits debugging of Concurrent Smalltalk programs before they are compiled into
MDP assembly language.

¢ It maintains the Concurrent Smalltalk global environment and permits interactive exam-
ination of that environment.

Currently the interpreter can only interpret unoptimized hcode; however, a bypass hcode
path could be added to transfer optimized hcode back to the interpreter. This bypass is not
quite as simple as it sounds because the format of continuations changes during optimiza-
tion.

37

Concurrent Smalltalk on the Message-Driven Processor

3.3. Optimization

As long as no MDP code output is desired, Optimist II does not leave its first phase. Only
when a compile command is issued does Optimist II enter its second phase, its first goal be-
ing to determine just what it should compile. Every compile command requires a root set of
objects that should be compiled. The compiler uses the treewalker to automatically deter-
mine the minimum amount of code that has to be compiled and loaded in order to permit
running the functions in the root set on the J-Machine.

Treewalker

The root set specified in the compile command is passed to the treewalker, which appends it
to its own permanent root set of objects which must always be compiled (Table 3-7). The
treewalker then calls the optimizer on each code object in its set and scans the optimized
hcode (if the object is not code, the treewalker scans it directly). If, while scanning, it en-
counters an object not in its current set of objects, it adds that object to its set, optimizes it if
necessary, and scans it. The process continues until every object referenced by any object in
the treewalker’s set is also in that set. At that point the second phase of the compiler has
completed and the treewalker calls the compiler’s third stage to compile and assemble each
object in the set and print the resulting MDPSim code into a text file.

Table 3-7. Permanent Root Objects

_closure boolean character #:class context
#:continuation displacement distobj distributed=~class #:false
float funct function global integer
magnitude null number object primitive-class
real selector standard-class symbol #:true

These objects are emitted in the output assembly file regardless of which objects were compiled. _closure,
context, displacement, # :continuation, and global are internal Optimist Il classes.

Calling the Optimizer

The optimizer is called simply by requesting the value of the hcode or mdp-hcode CLOS slot
in a Concurrent Smalltalk lambda (cst-lambda). If the lambda has already been optimized,
these slots contain the optimized hcode and hcode optimized for the MDP, respectively. If
not, those slots are unbound, and CLOS calls the optimizer to calculate their values. Thus, a
lambda’s optimized hcode can be requested repeatedly by the treewalker or the optimizer
without a performance penalty. To prevent infinite loops, a semaphore keeps a function op-
timizing a lambda from requesting that lambda’s optimized hcode. One of the consequences
of this rule is that a function may not be inlined inside itself.

Guide to Optimizations

The transformations done by the optimizer are summarized in Figure 3-4. The transforma-
tions can be divided roughly into two classes: general hcode optimizations and MDP-specific
optimizations and transformations. The general optimizations occupying the first half of the
optimizer produce optimized hcode. If MDP assembly code output is desired, the second half
of the optimizer is invoked to convert a number of hcode constructs into simpler, MDP-spe-
cific ones. For example, the second half of the optimizer converts globals into references to
global objects, CAS built-ins into code that explicitly compares and sets values, and three-ar-
gument sums into two two-argument sums. The order of optimization is critical; expansion
of CASes into compare-and-set code could not have been done in the first half of the optimizer
because there was no way to assure its atomicity. ‘

38

Chapter 3 The Optimist II Compiler

Y
Heode Global
Dead Definition 4 Expander
Eliminator Copier and ¥
Y Parameter Substituter Addressing Mode
Type 4 Flattener
Specializer ¥
Structural
Y Optimizer Statement
Move Splitter
Eliminator)
¥ Nconcurrently 1
Flattener Stru.Ctl:ll‘a
Touch Optimizer
Eliminator ¥
L 1| Continuation Built-in
Dataflow Expander Optimizer
Optimizer ¥
Y Iterative Touch
Constant Optimizer Eliminator
Folder ¥
Y : ‘ Function IVar-Target
Tail . Transformer
it Inliner
Forwarder ¥
Y - Grab
Structural Iterative Introducer
Optimizer 5 Optimizer i
Y Cfuture Parameter
Fork Local Eliminator
Merger Eliminator ¥
Y Y Local
Join Optimized Hcode Eliminator
Merger | ¥
' Enter/Exit
Introducer
V..
MDP-Specific Hcode

Figure 3-4. Optimizer Organization

The first few filters convert the hcode produced by the initial phase into a format usable by the optimizer. The it-
erative optimizer and function inliner perform the major optimizations. The remaining filters implement some Con-
current Smalltalk features out of more basic ones and fix a few quirks in the Cosmos and MDP architectures.

39

Concurrent Smalltalk on the Message-Driven Processor

The transformations new in Optimist II will be described in the order in which they are per-
formed. The following optimizations will not be described here because they were present in
Optimist and their concepts have not changed significantly:

¢ Dead Definition Eliminator
¢ Move eliminator

¢ Touch eliminator

¢ Tail forwarder

¢ Fork merger

¢ Join merger

Also, the structural optimizer was used in the first phase of the compiler and is described
there.

Preparatory Transformations

Lambda Copier and Structural Optimizer

Before optimizing a lambda, the optimizer first makes a copy of it to avoid destroying the
copy used by the global environment and the interpreter. While copying the lambda, the op-
timizer assigns consecutive indices to the lambda’s local variables. These indices will allow
the use of fast bitmaps to represent local variable data during later dataflow analysis rou-
tines.

At this stage the optimizer replaces all references to parameters! with their values. Once the
compilation process has begun, values of parameters cannot change, and replacing pa-
rameters with constants as early as possible enables early constant folding and dead code
elimination. Parameters are usually used to hold global functions and compiler conditionals
such as a debugging flag. Debugging code can be compiled conditionally by enclosing it
within an if statement conditioned on a debug parameter. If debug is false, the code and the
if statement are removed by the structural optimizer immediately following the copier; the
remaining optimizations don’t even see that code. Dead code is best removed early because
removing it enlarges basic blocks, permits additional function inlining, and improves the per-
formance of the dataflow optimizer and tail forwarder. It is unfortunate that conditional de-
bugging code cannot be removed before lambda collapsing, but doing that would prevent
changes in the debug parameter from having any effect on existing code.

The structural optimizer cleans the code to give the nconcurrently flattener maximum lati-
tude in scheduling nconcurrently hcodes.

Nconcurrently Flattener

The nconcurrently flattener removes nconcurrently hcodes from the lambda being optimized.
Later optimizations run many dataflow calculations on the lambda, and the presence of
nconcurrentlys would complicate dataflow analysis and make some optimizations less effec-
tive. In the interest of compiler simplicity I decided to remove nconcurrentlys at this stage.

The nconcurrently flattener uses a heuristic to interleave the nconcurrentlys it is flattening.
If it finds a nconcurrently statement with more than one thread, it first calls itself recursively
on each thread and then separates each thread into a leading and a trailing set of state-
ments. A thread’s trailing set of statements contains the longest string of consecutive hcodes
at the end of the thread which are not considered worth advancing relative to other hcodes in
the lambda. The trailing set cannot contain any forks or joins of flow-of-control paths. All

11n this paragraph parameters means parameter globals defined in Section A.3, nof function parameters.

40

Chapter 3 The Optimist II Compiler

other statements in the thread are placed in the thread’s leading set. Once the nconcurrently
flattener separates each thread into the two sets, it replaces the nconcurrently hcode with all
leading sets concatenated together followed by all trailing sets concatenated together.

Hcodes worth advancing are non-built-in function and method calls and any hcodes which re-
turn values through continuations; all other hcodes are not considered worth advancing.
Hcodes not worth advancing are pushed as far back as possible by the nconcurrently flat-
tener, which displaces hcodes worth advancing forward.

The nconcurrently flattener could use more complicated heuristics to increase parallelism.
For example, it could realize that no matter how it orders function calls in statements such
as (£ (a (b 1)) (c (d 2))), there would remain a possibility of a loss of concurrency
caused by touching the intermediate results (b 1) and (d 2) in the wrong order. Hence, it
could split the calculation of, say, (a (b 1)) into a separate function call to avoid a poten-
tial loss of concurrency. Nevertheless, the nconcurrently flattener’s current heuristic seems
adequate.

Continuation Expander

The continuation expander is the one MDP-specific transformation that is done early. So far
in the compiler, continuations have been represented as single words, while on an MDP a
continuation is two words—the context to which the continuation is pointing and an offset of
a slot within the context where the return value should be stored. I originally planned to
implement continuations as a special case of inline objects, but writing a general implemen-
tation of inlined objects would have been too time-consuming and inappropriate for an initial
version of the compiler. Hence, I included a partial implementation of inline objects that
only inlines continuations.

The continuation expander expands each local variable of type continuation into two vari-
ables, one of type context and the other of type displacement. Similarly, each formal and
display parameter typed continuation is made to correspond to two local variables. A
move hcode moving a continuation is changed into two moves, while an application hcode calls
its function with both new locals as arguments.

Changing structures of instance objects and global variables containing continuations is hard
at this stage of compilation, so to avoid this problem continuations have not been made first-
class objects—there is no way to store a continuation in an instance variable of an object;
disallowing programmer-visible continuation local variables ensures that no continuation be-
comes a mutable lexical which would get stored in an instance object.

Iterative Optimizations

The iterative optimizations perform general dataflow and constant propagation optimiza-
tions. They are called in a loop until none of them changes the lambda. All of the optimiza-
tions were altered in some way since Optimist; most had to be updated to handle multiple re-
turn values and typed variables, and some were changed because reply is no longer an ex-
plicit hcode. However, only the new features will be described below.

Type Specializer
Local variables in Optimist II are associated with types in two ways:

1. The variable itself has a type supplied by the programmer when the variable is declared.
This type applies throughout the variable’s lifetime.

2. The programmer can declare types through the use of the type assertion primitive
(Section A.6), or the compiler can infer from its knowledge about the types of function and
method arguments and results that a variable has a particular type at a given point in the
lambda. These type assertions apply only to a particular point in the variable’s lifetime.

41

Concurrent Smalltalk on the Message-Driven Processor

Each type asserted in this manner must have a non-null intersection with the variable’s type;
otherwise, no legal value could be stored in the variable and Optimist II generates an error.

The type specializer examines each variable and calculates the lub of the types it can assume
throughout its lifetime, combining all the knowledge it has from assertions of the second
kind. It then intersects the variable’s type with the lub and makes that the variable’s new,
more restricted type.

Type specialization is done to improve the quality of the move elimination optimization and
to permit inlining of values in the future. When the move eliminator merges two variables, it
sets the new variable’s type to the lub of the variables’ types. The temporaries created by
other optimizations often have type object even though they can contain only more re-
stricted values, and if one of them were merged into an existing variable, that variable’s type
would also become object unless the temporary’s type were specialized first by the type spe-
cializer. When Optimist II supports inline classes in the future, type specialization of a vari-
able to an inlineable class will permit some objects such as double-precision floating point
numbers and locks to be inlined in local variables.

Dataflow Optimizer

The dataflow optimizer has an extra optimization in addition to those mentioned in [21]. The
dataflow optimizer always checked whether an if statement would always branch one way
and eliminated the if statement and the dead branch if that is the case. In addition to that
check, if the if statement has several predecessors, the dataflow optimizer now checks each
one separately whether it would cause the if statement to always branch one way; if so, that
predecessor is connected directly to one of the if statement’s branches. This situation arises
often when sc-and and sc-or are used. A code fragment like the one below is generated for
(if (sc-and a b) (f)):

(IF :FALSE (LOCAL CST::A) 2246)
(MOVE (LOCAL 387) (LOCAL CST::B))
(JUMP 2248)

(LABEL 2246)

(MOVE (LOCAL 387) #<False>)
(LABEL 2248)

(IF :FALSE (LOCAL 387) 2252)
(APPLY NIL (#<Lambda CST::F>))
(LABEL 2252)

It is optimized to:

(IF :FALSE (LOCAL CST::A) 2252)
(IF :FALSE (LOCAL CST::B) 2252)
(APPLY NIL (#<Lambda CST::F>))
(LABEL 2252)

Constant Folder

The constant folder performs two duties: it evaluates constant expressions and replaces
method calls with function calls. The constant folder examines each application statement in
the lambda. If the arguments are all values, the function or method to be invoked is side-ef-
fect-free, and the precise mode is off!, the constant folder calls the interpreter to evaluate the
function or method call and replace it with move statements of the results to the application’s
targets. If the interpreter generates an error, the compiler aborts the compilation; the error
is not hidden until runtime. The call could potentially invoke many functions and methods.

One has to be a little careful with this optimization—if all inputs to a program are specified,
Optimist II is perfectly willing to precalculate the program’s results and compile the entire
program to a single function that returns the answer. This will happen often on benchmarks,

1See Appendix B.
42

Chapter 3 A The Optimist Il Compiler

especially when Optimist II learns how to automatically determine which functions are side-
effect-free; currently it assumes that a function is not side-effect-free unless explicitly de-
clared so by the programmer.

In addition to evaluating applications with all arguments specified, the constant folder also
simplifies built-in operations such as arithmetic and logical primitives according to the iden-
tity rules listed in Table A-4.

When the constant folder encounters a method call, it looks in the selector’s table of methods
and selects all methods which match the number and types of arguments provided. The ar-
guments’ types are determined by dataflow analysis of the same information as is used by
the type specializer. If no methods match, the constant folder signals an error. If exactly one
method matches, the constant folder replaces the method dispatch with a direct call of the
method’s code, which may even be inlined later. If two methods match, the constant folder
uses a heuristic to determine whether it is better to do a standard method dispatch or to get
the type of the first argument and call one of the two methods depending on that type.

The heuristic is as follows: The classes of the first arguments accepted by the two methods
are determined. If the two classes are disjoint, the constant folder picks the class that is
easier to check!l. If one is a subclass of the other, the constant folder picks the subclass;
otherwise, the constant folder gives up and does not optimize. If the picked class is easier to
check than doing a method dispatch, the constant folder replaces the application with a call
to the class’s predicate followed by an if statement with direct calls to the two methods on the
two sides of the conditional.

Function Inlining

Functions are inlined after all iterative optimizations have been performed and can yield no
more improvements. To inline functions, the function inliner considers each function call? in
the lambda. If the function is not a built-in and is declared inlineable, the function inliner
attempts to inline it; however, there is no a priori guarantee that it will succeed. A function
is considered inlineable if it is either declared inline by the user or heuristically inlineable
and not declared not-inline by the user. To be heuristically inlineable, a function has to be
small—its optimized hcode can contain no more than two full-fledged function or method
calls and no more than twelve built-in calls. A point system is used to determine a function’s
“size;” the threshold can be varied by adjusting the inline-size-cutoff option.

Furthermore, to prevent object thrashing on the J-Machine, a function is heuristically unin-
lineable if it references an instance variable of an object passed as its first argument if the
caller of that function does not pass its first argument through as the first argument of the
function. To see an example of this rule, consider the function sum4 in:

(defclass pair () car cdr)
(defun sum4 (p:pair q:pair) (+ (car p) (car q) (ecdr p) (cdr q))

The car and cdr accessor methods are well under the size threshold. However, only the
(car p) and (cdr p) calls are inlined— (car q) and (cdr q) are not because the calling
function sum4 does not pass its first argument p as car’s or cdr’s first argument. There is
no problem with inlining (car p) and (cdr p) into direct accesses of p’s instance variables
because sum4 is executed on the same node on which p resides. However, if sum4 were to
reference o’s instance variables directly, it would force g to travel to the same node on which
p resides, thrashing q. Instead, sum4 calls (car q) and (cdr q) in the usual manner, and

IRach class has an integer that specifics how casy it is Lo test an arbitrary object for membership in that class. If
that integer is zero, doing this check is no casier than doing a method dispatch; il that integer is a high positive
value such as six or seven, this test can be done in one or two assembly language instructions. Built-in classes such
asboolean or null allow easy membership checking, while user-defined classes do not.

2Method calls cannot be inlined unless they were previously converted into function calls by the Constant Folder.

43

Concurrent Smalltalk on the Message-Driven Processor

the car and cdr methods are executed on q’s node and return their results to sum4 running
on p’s node.

The function inliner tries to avoid forcing objects to migrate whenever possible. This is not
necessarily the optimal strategy—in some cases it might be better to migrate an object to a
method that accesses it frequently—but the desirability of migrating the object is difficult to
determine by the compiler because it depends on the frequency of the object’s use by other
processes in the system. Thus, the simple solution of minimizing object migration was taken;
in the cases outlined above, a method that makes numerous distant object accesses can usu-
ally be rewritten as several communicating methods which only access local objects.

Once the function inliner decides whether it would like to inline a function, it attempts to in-
line the function’s optimized hcode. Nevertheless, it might still encounter difficulties if the
inlined function performs nontrivial processing after it returns its result. For example, con-
sider the functions silly-add, shelll, and shell2:

(defun silly-add (x y)
(reply (+ x y))
(prove-fermats-last-theorem)
(exit))

(defun shelll (x y)
(cset ((z (silly-add x y)))
(+ z 5)))

(defun shell2 (x y)
(silly-add (+ x 5) y))

If the function inliner were to inline silly-addin shelll, it might convert a terminating
program into a nonterminating one (assuming prove-fermats-last-theorem does not
terminate in any reasonable amount of time in this example) because shelll would try to
execute all of silly-add before continuing with the addition of 5 to z. Thus, the function
inliner should not inline any function that performs nontrivial processing after it replies to
its caller. On the other hand, there is nothing wrong with inlining silly-add in shell2 as
long as shel12 is tail-forwarded because shel12 would still return the sum to its caller be-
fore trying to prove Fermat’s last theorem. Other interesting scenarios with callers and
callees accessing the same lock are also possible.

The general rule for determining whether it is safe to inline a function is as follows: inlining
is safe unless the inlined function performs nontrivial processing after replying to the caller
all return values that the caller is not tail-forwarding. It does not matter if or when the in-
lined function replies to any other functions in whose lexical environment it might be; i.e.
non-local lexical returns by the inlined function are fine as long as they don’t transfer control
to the caller!. '

After copying the inlined function, the function inliner implements the above rule. It runs a
dataflow analysis on the continuation local variables in the inlined function to determine
where each continuation reference can return its value; if it has any problems with perform-
ing this analysis, it does not inline the function. Next, the function inliner uses the dataflow
problem solver again to verify that no statement that returns a value to the caller is followed
by any statement that might not terminate.

Once all of these conditions are satisfied, the function inliner splices the inlined function’s
code and local variables into the caller. Then it introduces move statements to move the
caller’s arguments to the appropriate locals in the callee. If the callee wasn’t non-strict, each
argument is touched as it is moved. Also, the statements returning values from the callee to
the caller are modified to store the values in more temporaries, which are moved to their
proper destinations after the spliced callee’s code. Needless to say, the move eliminator will
value such as six or seven, this test can be done in one or two assembly language instructions. Built-in classes such
asboolean or null allow easy membership checking, while user-defined classes do not.
2Method calls cannot be inlined unless they were previously converted into function calls by the Constant Folder.

43

Chapter 3 The Optimist II Compiler

have a lot of work cleaning up the extra moves just introduced, but they are necessary to
make sure that functions are inlined correctly in all cases.

To make sure that the compiler terminates, it does only one pass of function inlining for each
lambda; otherwise, it could peel invocations of recursive functions forever. However, the sin-
gle pass of inlining does not mean that functions are only inlined one level deep; on the con-
trary, the callees are themselves fully optimized before being considered for inlining, and in
the process of being optimized they may let other functions be inlined into them. It is true,
thov.llfgh, that the treewalker’s antirecursion rules prevent a function from being inlined into
itself. :

Once all potential functions are inlined, Optimist II performs another pass of iterative opti-
mizations to clean up and optimize the code introduced by the inlining process.

Cleanup Transformations

Just one final cleanup transformation is done on hcode. The preceding optimizations gener-
ated a number of local variables in the lambda, many of which are no longer used. The local
eliminator removes all unused locals and renumbers the remaining locals to fill the gaps.
This simple transformation has no effect on the code generated by the compiler because Op-
timist II’s third phase will compact the locals anyway. The local eliminator is present solely
for aesthetic and compilation speed reasons—hcode is less readable if it has many unused lo-
cal variables. Also, since variable bitmaps are represented as integers, the dataflow code
runs much faster if no more than about thirty variables are present so Lisp can use fixnums
instead of bignums.

MDP-Specific Transformations

A number of MDP-specific transformations have to be done on hcode before MDP assembly
code can be generated. These transformations and optimizations are sketched below and are
listed in the Postoptimizer file.

Global Expander

The global expander implements global variables as instances of the global class. Each ref-
erence to a global variable is replaced with a reference to a global instance object’s
global-value slotl. The global instance object itself is a mutable immediate object; its ID
and initial value are known to the compiler, so the instance object can be referenced by any
lambda without having to access another global.

Addressing Mode Flattener

The addressing mode flattener flattens nested hcode lvalue and rvalue expressions? because
the assembly language compiler can only compile one-level expressions. Whenever the ad-
dressing mode flattener finds a nested lvalue or rvalue expression, it unnests it and precedes
the hcode containing it with other hcodes that calculate the expression’s components and
store them in local variables.

Statement Splitter

The statement splitter is the first of two MDP built-in optimization filters. This filer con-
verts associative built-ins such as + and and with more than two arguments into chains of
two-argument built-in calls, removes type-assertion statements which are no longer needed,

IThe global class name and accessors to its global-value slot arc all undef’d just afier they are created, so they
cannot be referenced by user Concurrent Smalltalk programs, and no name conflicts can result.
2See Tables 5-3 and 5-4.

45

Concurrent Smalltalk on the Message-Driven Processor

and expands many primitives and hcodes such as cas, make-closure and force into their
components.

Built-in Optimizer

The second MDP built-in optimization filter is the built-in optimizer. This optimizer reduces
the strength of some built-in operations such as multiplication and division by converting
them into logical shifts using the identities in Table A-4.

The built-in optimizer is followed by another call to the touch eliminator, which is able to
eliminate more touches than it could previously. At this point the touch eliminator can de-
pend on built-ins not being optimized out, so it can remove touches of values which are sub-
sequently used by built-ins. For example, if a touch of a is immediately followed by an appli-
cation of + to a and b, the touch can be eliminated; it could not have been eliminated before
bec(:lause the + might have been eliminated or another statement inserted between the touch
and +.

Instance Variable Target Transformer

This transformation and the following two correct quirks in the MDP and Cosmos architec-
tures. One restriction of the Cosmos design is that the targets of full-fledged applications can
only be local variables in the context; applications other than built-ins cannot store their re-
sults directly into instance variables or into locals in places other than the context. The in-
stance variable target transformer scans for application statements that store their results in
instance variables and modifies them to store the results in local variables and then move
them into the instance variables.

Grab Introducer

The grab introducer generalizes the instance object access mechanism in Optimist. While
Optimist could access at most one instance object in a lambda, Optimist II can access many.
Unfortunately, there is only one MDP address register, ID2, assigned to holding pointers to
instance objects. Hence, before every statement s that might access an instance object, the
grab introducer checks the value of ID2 left from the previous statement; if that value is in-
correct, the grab introducer inserts a grab statement just before s to put the right object into
1p2. If s accesses many instance objects, the grab introducer inserts moves and uses other
statement-specific techniques to make s access only one instance object; doing this well can
become quite an involved process for some hcodes.

The grab introducer also generalizes the instance object part of the Context Optimization
transformation found in Optimist—if an instance object is not referenced, there is no need to
point ID2 to it and possibly force it to migrate.

Cfuture Parameter Eliminator

The cfuture parameter eliminator complements the instance variable target transformer by
eliminating application statements that store their results back in a lambda’s parameters.
Unlike Optimist, Optimist II allows function and methods to use their parameters just like
any other local variables, and, in particular, write into them. However, the operating system
does not support cfutures in a function’s parameter area. Hence, if the cfuture parameter
eliminator finds a parameter p used as a target of a full-fledged application, it creates a new
local variable I, emits a move to copy p into | upon entry to the function, and substitutes | for
every use of p in the function.

Enter/Exit Introducer

The last two filters are another call to the local eliminator and the introduction of enter and
exit hcodes at the beginning and end of the lambda, respectively. The compiler will compile
these hcodes to the entry and cleanup code for the lambda.

46

Chapter 3 The Optimist II Compiler

3.4. Code Generation

The third phase of Optimist II contains the hcode compiler, assembly optimizer, and assem-
bler. The hcode compiler compiles hcode into an assembly language module, which is a di-
graph of assembly language statements. The assembler and the assembly optimizer then in-
sert branches into the module and perform peep-hole optimizations on it. Since the hcode
compiler, assembly optimizer, and assembler were all present in Optimist, only the differ-
ences will be described here.

New Hcode Compiler Features

The hcode compiler has been updated for CLOS, the new Concurrent Smalltalk, and the new
Architecture version 11B. Major Concurrent Smalltalk changes affecting the compiler in-
clude introduction of multiple values to application statements and the introduction of many
built-ins which compile into MDP system calls or sequences of MDP instructions. Built-ins
for even such low-level facilities such as reading or checking tags were provided, and are ac-
cessed by the Concurrent Smalltalk runtime system.

The context and variable allocation schemes have changed somewhat. Optimist’s graph-col-
orer for allocating context local variables worked well and has been extended to also allow
slots in the message to be reused as local variables; thus the slots in the incoming message
and the slots in the context form a pool of slots to which the compiler can allocate local vari-
ables at will. The only restriction imposed by Cosmos is that local variables which might
contain cfutures cannot be assigned to incoming message slots.

Unlike JOSS, Cosmos fixes the locations of the saved registers in the context. If a function
would need more slots than the fourteen provided in a standard context, Optimist II assigns
the extra locals to slots after the saved register area in the context!, up to a limit of 53 total
slots; the MDP cannot readily address more than 64 words in an object, and 11 are used for
overhead. If a large context is needed, Optimist II emits code to create it when the function
starts execution and dispose it when it is done. |

One architectural change had considerable impact on all stages in the third phase. Architec-
ture 11B allows long immediate constants and long displacement into objects on most two-
operand instructions but not three-operand ones. Optimist II takes advantage of these oper-
ations whenever possible, but handling the worst case possibilities is now more complicated.
For example, it is no longer true that an ADD instruction allows the same addressing modes
as a NEG.

New Assembler Features

The assembler has been upgraded to output many kinds of objects instead of just code. When
it encounters the use of a pointer to an object inside another object, it outputs an MDPSim
reference to the pointed object. MDPSim resolves all of these references when it downloads
the objects to its simulated J-Machine.

Global Compilation

Unlike Optimist, which compiled isolated modules, Optimist II compiles entire programs.
Hence, it has the additional duty of emitting the “glue” that holds programs together. In par-
ticular, it emits class definitions, method tables, data objects, and code objects. It emits all
class definitions first because they are needed to load other objects.. The order of the other

1See Figure 4-9.
47

Concurrent Smalltalk on the Message-Driven Processor

objects does not matter because MDPSim can resolve references in any order. After emitting
objects, Optimist II emits code that automatically downloads the objects into the J-Machine.

Identifiers

Since MDPSim currently allows only alphanumeric characters and underscores in its identi-
fiers, Optimist II converts any identifier characters outside that set into strings of characters
in that set. Next, Optimist II prepends the kind of identifier to each identifier it emits. The
kinds are listed in Table 3-8. Finally, Optimist II checks whether another identifier with the
same name has been emitted. If so, and if the other identifier is not eq to the current one,
Optimist II disambiguates the current identifier by appending two underscores and a num-
ber to it. This transformation is necessary because sometimes many anonymous functions
are generated.

Table 3-8. Identifier Prefixes

Kind | Prefix
Class c
Selector sel
Symbol sym
Function f

Other Object | o

IDs

To allow downloading of circular data structures, Optimist II assigns IDs to all objects it
emits. In order to do this assignment, it has to know how many nodes there are in the J-Ma-
chine for which it is compiling. This number is provided in the n-nodes Optimist II option.

Optimist IT uses increasing positive integers to generate serial numbers for classes, selectors,
and symbols. Functions and other objects are assigned IDs starting with the serial number
$7FFF and decreasing to avoid conflicts with serial numbers generated by Cosmos, which
start at $0000 and increase. Optimist II tries to distribute the objects it creates evenly
throughout the MDPs in the J-Machine.

Method Tables

The Optimist II's assembler generates a method table which associate methods with classes
and selectors. The method table is distributed among the class and selector objects loaded
into MDPSim. Each selector (Figure 4-17) contains a list of class/method pairs that describe
all methods defined for that selector. In addition, each class object (Figure 4-13) contains an
ordered list of the class’s ancestors.

Together, the two objects contain enough information to deduce the method associated with a
class and selector: first the class is looked up in the selector’s list of class/method pairs; if it
is not found, the ancestor classes are looked up, one by one, in that list. Either a binding is
found, in which case the binding contains the desired method, or no binding is found, in
which case there is no method associated with the given class and selector.

Data Formats .

The formats of built-in objects emitted by Optimist II are described in more detail in the next
chapter. Primitive objects are listed in Figure 4-2, instance objects of user-defined classes
are shown in Figure 4-4, and functions are shown in Figure 4-20 and closures in Figure 4-22.
Optimist I cannot emit immediate distributed objects, but they can be created at runtime.

48

Chapter 3 The Optimist II Compiler

3.5. Conclusion

The main goal of writing Optimist II was to bridge the gap between Concurrent Smalltalk
and the J-Machine. Optimist II is the first compiler that can compile a Concurrent Smalltalk
program into code that can be run on a J-Machine without any changes. Unlike Optimist,
which compiled only modules, Optimist II compiles entire programs, including the class hier-
archy, method tables, functions, and immediate objects. Furthermore, Optimist II supports a
much larger subset of Concurrent Smalltalk than Optimist. Optimist II supports the entire
language except for full futures and I/O facilities.

Observations

The global optimizations included in Optimist II are very useful, as they free programmers
from having to break abstraction barriers in order to achieve reasonable performance. This
consideration alone was a great help in writing the runtime system. Many of the built-in
functions such as zero? and instance variable accessors are candidates for inlining, and, in
fact, they are often inlined into user programs. Without global optimizations writing an effi-
cient runtime system would have been difficult and error-prone. Zero? could perhaps have
been implemented as a macro, but then it would not be possible for a user program to over-
ride it for its own classes. Moreover, zero? would then suffer from the classic Lisp problem
of a macro not being a first-class data object and interchangeable with functions. Also, inlin-
ing of functions may be controlled by fairly sophisticated heuristics, while macros would al-
ways be expanded.

The substitution of function calls for method calls is also a useful optimization. In simple
programs almost all method calls are replaced with function calls and then often inlined. In
fact, in all the simple and non-contrived examples I have compiled, Optimist II was able to
remove all method dispatches and replace them with function calls. Even in applications us-
ing Lisp-style lists, there are usually at most two methods defined on an object—one method
handles the nil case, while the other handles the nontrivial case—and Optimist II turns the
method call into a comparison of the argument against nil followed by one of two function
calls, often inlined.

Generality or Simplicity?

One recurring issue was whether Optimist II should be a compiler for a general target or a
compiler specifically tailored to the J-Machine. Ideally, Optimist II should have a back end
that could be replaced to compile code for a different architecture. Unfortunately, this ideal
was not achieved. Although many MDP-specific transformations are collected near the end
of the Optimizer, some, such as the continuation expander had to be placed earlier in the
compilation process. Worse, much of the runtime system at the very front of the compiler is
heavily dependent on the MDP architecture.

The two issues at odds here are generality and simplicity. Due to the limited scope and ex-
perimental nature of this project, I resolved conflicts in favor of simplicity. For example,
Concurrent Smalltalk is a useful systems programming language, and it was desirable to
implement some features of Concurrent Smalltalk in Concurrent Smalltalk. While this ap-
proach would make the Optimist II front end nonportable, I decided to use this approach
anyway because it made the runtime system simple to write, understand, and modify.

Future Plans

Optimist II is still an evolving compiler, and it will surely change in the future. In addition
to implementing the remaining language features and fixing bugs, Optimist II could be ex-
tended to implement inline objects and the load balancing ideas discussed in Chapter 8. In
addition, a number of minor tweaks mentioned in {21] are still possible. Now that branches

49

Concurrent Smalltalk on the Message-Driven Processor

have a longer range, Optimist II could be more liberal with the use of MDP register RO to
hold values between statements!. A smarter register allocator could assign a variable to a
register for part of its lifetime. The peephole optimizer could replace branches to SUSPEND
instructions with SUSPEND instructions themselves. The implementation of closures could be
made faster. The compiler could automatically detect side-effect-free and no-leak functions;
this information might permit it to explicitly deallocate some objects such as closures if it
could prove that they could not be referenced again. Overall, though, it seems that, except
for loops which are deliberately broken to avoid hogging processors, no more than a few per-
cent more performance can be squeezed out of the code generated by Optimist II; however,
since the operating system overhead time overwhelms the execution time in Concurrent
Smalltalk methods, there might be room for improvement through coordinated compiler and
operating system changes.

1Tn Architecture 10, all but the shortest branches required the value of RO to be altered, rendering that register
practically useless for holding values between statements.

50

Chapter 4. The Cosmos Operating System

Design Goals

The Cosmos operating system was designed primarily as a support kernel for running Con-
current Smalltalk programs on the J-Machine. Nevertheless, Cosmos is not specialized to
Concurrent Smalltalk, and many of the operating system’s components could be used to sup-
port a general message-passing environment.

The goals in designing the operating system were, in order:

1. To make a working operating system.

2. To make the operating system as efficient as possible.

3. To make the operating system as simple and flexible as possible.

The design of the operating system also had to be small enough to allow both it and most of
the Optimist IT compiler to be written in one semester; for this reason garbage collection and
load management facilities were not included in the operating system. Several steps were
taken to achieve goal (1), including the criticality system and the debugging techniques de-
scribed later. The criticality system is an organized accounting method used to ensure that
no re-entrancy problems occur when operating system routines call each other. Features
were added to MDPSim to detect and signal race conditions known as hazards. To achieve
goal (2), the entire operating system kernel was written in hand-optimized assembly lan-
guage. Poor J-Machine performance can no longer be blamed solely on the operating system.
Goal (3) was achieved by providing general data structures that are reused in many compo-
nents of the system.

Functionality

The operating system assists Concurrent Smalltalk programs by providing the following ser-
vices:

¢ Initialization and setup of the J-Machine.

e Providing fault handlers for faults needed to keep the J-Machine running.
¢ Global function calls and returns.

* Looking up methods corresponding to class/selector or object/selector pairs.
¢ Context allocation and deallocation facilities and conventions.

* Local and global object allocation, deallocation, lookup, and migration facilities. Mutable
objects exist on only one node at a time, while immutable objects can exist on many nodes at
a time; all but the primary copy can be purged when extra memory is needed.

* Support for distributed objects as defined in Concurrent Smalltalk.

¢ Support for Concurrent Smalltalk primitives such as determining the type of an object.
¢ (Calls assisting in the creation and evaluation of closures.

¢ An integer division routine.

¢ Debugging and consistency-checking facilities.

51

Concurrent Smalltalk on the Message-Driven Processor

Applications

CST Runtime

Concurrent
Smalltalk
Code

MDP Runtime

Initialization

Utilities Control Manager
_\J<
Fault Handlers Method Manager
Global Object
Manager

'

Context Manager

Object Manager N,|

v

1.

BRAT Manager

~

—

Heap Manager

Figure 4-1. Operating System Organization

The arrows represent calling patterns in the Cosmos operating system. Every module uses the fault handlers;
those dependencies were omitted for clarity. The modules in bold boxes are roots—they are invoked by the user.

The modules in the top section of the figure are written in Concurrent Smalltalk; however, the CST Runtime mod-
ule may not necessarily be portable to other Concurrent Smalltalk implementations because it references some
MDP data structures. The modules in the middle section are written in MDP assembly code because they imple-
ment functionality that cannot be easily expressed in Concurrent Smalltalk. From the point of view of the rest of
the operating system, though, these modules are indistinguishable from compiled Concurrent Smalltalk code. The
modules in the bottom section are fixed in the memory of every MDP either because they are critical to the MDP's

operation or because calling them as functions would be inefficient.

52

MDP
Code

Fixed
MDP
Code

After Cosmos initializes the J-Machine, a Concurrent Smalltalk program can be loaded using
Cosmos’s downloading facilities. Once the program is loaded, a single call to Cosmos’s Apply
handler can start the execution of one function in the program. Whenever a function needs

Chapter 4 The Cosmos Operating System

to invoke another function or method, it first calls the Cosmos ObjectNode routine! to de-
termine a good node for that invocation and then sends an Apply message or one of its vari-
ants to that node. The target node, upon receiving that message, executes the Cosmos Apply
handler that fetches the function or method code and calls it.

Many functions need to store local state in memory, either because they need more variables
than will fit in the MDP’s registers or because they make function or method calls and need a
place in which to save state for the duration of the call. Cosmos uses contexts to save state
and provides routines to allocate and deallocate them.

In addition, Cosmos manages objects globally, migrating objects and code to the nodes that
need them. Cosmos keeps only one instance of immutable objects, but it can make copies of
immutable objects and code. Also, Cosmos provides routines to determine the type of an ob-
ject and to create and address distributed objects. Finally, Cosmos provides primitives such
as division that would be hard to implement in Concurrent Smalltalk.

Structure

The operating system is composed of interacting modules shown in Figure 4-1. The high-
level modules are built in layers out of lower-level ones; however, the low-level modules are
deeply interrelated because of the hardware restrictions of the MDP. Furthermore, due to
efficiency considerations and hardware restrictions on faulting, much of the code in some of
the managers is inlined inside other managers. This is especially common at the lowest
levels such as the heap and context managers.

Reading Guide

This chapter describes the handlers in the two lower sections of Figure 4-1; the Concurrent
Smalltalk code is described in Chapter 3. After a brief overview, the handlers will be de-
scribed in this chapter from the bottom level up.

Heap Manager

The heap manager manages the heap on each MDP. The heap allows allocation, dealloca-
tion, and purging of arbitrary objects in the local memory on the MDP. All object references
are bounds-checked, and primitive compaction facilities are provided.

BRAT Manager

The BRAT manager keeps track of the BRAT—Birth/Residence Address Table [38]. The
BRAT is an associative table used mainly for translating virtual addresses to physical ad-
dresses, although it is also used for some housekeeping tasks in object migration.

Object Manager

The object manager combines the facilities of the heap manager and the BRAT manager to
provide a virtual name space for the objects allocated by the heap manager. The object man-
ager is capable of allocating objects on the local node and giving them unique names. It can
all)so determine that an object does not reside on the local node, but it cannot access nonlocal
objects.

Context Manager

The context manager keeps track of contexts. A context is the MDP equivalent of an invoca-
tion descriptor on a conventional computer. The context contains values of the local variables

1Sometimes that call is optimized by Optimist II to a single MOVE from NNR instruction.

53

Concurrent Smalltalk on the Message-Driven Processor

of a process, saved data and ID register values, and the instruction pointer (IP) when a pro-
cess suspends.

Global Object Manager

The global object manager is an extension of the object manager to the global virtual address
space of the J-Machine. The global object manager can access nonlocal objects, and it can
migrate objects between nodes. It can distinguish mutable objects from immutable ones and
maintain copies of the latter on many nodes.

The global object manager also can determine the class of an arbitrary object, and it is the
lowest level in the operating system that implements distributed objects.

Method Manager

The method manager implements an association between classes, selectors, and methods on
top of the global object manager. The method manager can, given a class and a selector,
quickly determine the appropriate method that represents applying the selector to an object
of that class.

Control Manager

Function and method calls and replies are dispatched by the control manager. Every func-
tion or method call is actually a message send to an entry point in the control manager,
which interprets the incoming message, makes sure it is valid, fetches the called code, and
runs it. The control manager also handles suspending after cfuture faults and resuming
when a called function or method returns a value.

Utilities
The operating system kernel includes commonly-used utilities that would suffer too much

overhead if they had to be called via the standard function call mechanism. The current util-
ities include a divide system call and calls that create and evaluate closures.

MDP Runtime

The MDP runtime system contains other utilities that have to be coded in MDP assembly
language. Currently MDP runtime utilities include a method table lookup routine and func-
tions that create distributed objects. When arrays are implemented, they will also be imple-
mented as MDP runtime utilities.

CST Runtime

The CST runtime system contains utilities which could be coded in Concurrent Smalltalk.
These utilities implement most of the functions and macros listed in the Concurrent
Smalltalk reference manual (Appendix A), including locks, some array code, and object-han-
dling functions such as copiers and destructors, as well as lower-level functionality such as
global variables.

Data Representation

Figure 4-2 shows an overview of the representations of various Concurrent Smalltalk objects.
The representations of the complex Concurrent Smalltalk object such as functions, selectors,
and classes will be explained in more detail in the following sections.

54

Chapter 4

NIL

Symbol

Class

Selector

Character

FALSE

TRUE

Integer

Float

Future

Standard Object

Dist. Obj. Constituent
Dist. Obj. Group Name

The Cosmos Operating System

3 333 22 11 11
5 210 87 65 10987 54 10
TAGO | SYM 0
TAGO | SYM Symbol Number
TAGO |CLASS Class Number
TAGO | SEL Selector Number
TAGO | CHAR 0 ASCII Code
BOOL 0 0
BOOL 0 1
INT Two's Complement Value
FLOAT IEEE Single-Precision Float Value
FUT Serial Number , Home Node Number
ID |o Serial Number , Home Node Number
D |1 Serial Number , Home Node Number
DID |1 Serial Number Lg(Stride) | Linear Home Node Number

Figure 4-2. Concurrent Smalltalk Object Representations

Primitive objects are represented as above using the MDP’s 32-bit words with 4-bit tags. Objects not shown
above are represented as standard objects using the ID tag. Due to a shortage of tags, NIL, symbols, classes,
selectors, and characters share the same MDP tag, TAGO (also known as SYM), and are distinguished by the up-
per four bits of the data word. One MDP tag, TAGA, has been retained for future expansion.

With the current bit layouts, Cosmos is limited to representing 268435456 symbols, 65536 classes, 65536 selec-
tors, 65536 futures, 32678 objects per node, and 32768 distributed objects in the entire system. The last three
limitations are especially severe and will be considered in Chapter 8.

55

Concurrent Smalltalk on the Message-Driven Processor

4.1. Hardware Building Blocks

Memory Organization

Globals Priority 0 Message Queue Heap
FixedHeapStart—
Message 2 Fast Context
Fast Context

Message 1

Fault Vectors

Message 2

Priority 1 Message Queue

Operating System XLATE Table
NN ID__1 Addr
T

’, 7
s

b
s LTS

’
'

BRAT Root Table

P AR RS
LY L Y TR A
PR AP R

ERENESESEENENES

4
I

~
4
A Y
g
7

k4
7
\\\\\I\\\\\\\\\

F A a

~
~

s
s
s

~
Id

~
Id

A
~

~
~
~
~
~
A Y
~
~
~
~
~
Y
~
~
~
~
~

~
Is

“~
&

’
s’
VAV A A R AN BN A A A A AN A A AN AN A i

~ AN
~ LY
~ LAY
s 7
~ A
s
~ AR Y
T4
~ NN
P
~ SN
¢
> ALY
L
~ AR Y
'
~ LY
I
~ SN
LS
~ ALY
;L
. AR Y
P ks
~ SN
P4
~ NN
s’ 7
~ . N
s L
~ NN
s
~ A

L N R N YL YL YL LN S L Y
A S N S N S N TR L T N L AN

“~

S N
2
7,

Figure 4-3. MDP Memory Organization

Fast Context

HeapStar

Object

Object

Object

Object

FirstFre

LastFrec®T

BRAT Entry

BRAT Entry

BRAT Entry

BRAT Entry

BRAT Entry

BRAT Entry

HeapEn

The data structures above are replicated on every MDP in the J-Machine. All of the data structures except the
heap reside in fast RAM. The top of the heap resides in fast RAM, but most of it is in slow RAM.

Figure 4-3 maps the structures addressable in the physical address space of every MDP. The
heap occupies most of memory and is used for storing and keeping track of Concurrent
Smalltalk objects and contexts. The BRAT root table is a separate hash table that points to
the BRAT entries in the heap. The XLATE table is a table used for hardware-assisted asso-
ciative lookups. In addition, every MDP contains a copy of the Cosmos code and fault vector
assignments and a small set of globals used by Cosmos and some of the runtime routines.
Finally, every MDP contains two hardware-managed incoming message queues.

56

Chapter 4 The Cosmos Operating System

Priorities

Each MDP provides three levels of execution priority—background, priority 0, and priority 1.
The network allows messages to be sent at priority 0 or 1; when a message of a given priority
arrives at a destination node, it is queued in the appropriate priority’s queue. The queues
are constantly monitored by the CPU, and if a queue contains a higher-priority message than
the task currently running, the current task is pre-empted to handle the message.

Cosmos currently only uses the background and priority 0 levels. It is anticipated that prior-
ity 1 will be used in the future for garbage collection and resolving emergencies such as
queue or memory overflow. In addition, on a real J-Machine (as opposed to MDPSim), prior-
ity 1 will make a good debugging channel. Cosmos’s use of the background priority is cur-
rently limited to initialization; it would be nice if background mode could be used for incre-
mental heap compaction, but that may be difficult—because of flaws in the MDP architec-
ture, the background priority and priority 0 share the same sets of globals, ID and fault reg-
isters, and fault vectors, meaning that execution of a priority 0 message is likely to clobber
the state of a background process.

57

Concurrent Smalltalk on the Message-Driven Processor

4.2. The Cosmos Kernel

Criticalities

Cosmos was fairly difficult to write because almost all of its routines are non-reentrant; thus,
locations of faults inside Cosmos code have to be carefully controlled. The MDP does not in-
clude any stacks, which means that each routine and fault handler must save its state in a
different set of global variables. Furthermore, the low-level routines have to be very careful
not to alter the same global or register through some combination of system calls and faults.
Another class of problems consists of critical sections of code in which physical addresses are
manipulated in data registers or objects are referenced assuming they are present in the lo-
cal memory. No heap compaction or object migration is allowed in those sections. If a heap
compaction or object migration were to occur in such a section, the physical address or object
reference would become invalid.

To make these problems tractable (but, nevertheless, still difficult), the concept of a critical-
ity was introduced. The criticality of a system call is a number which reflects what actions
that system call is allowed to perform. The criticalities are listed in Table 4-1.

A routine with a given criticality may not call another routine with a lower one. For exam-
ple, if a routine is sending a message, it may not make a system call or allow a fault of criti-
cality less than 4 while it is sending the message. Thus, the routine has to force any poten-
tial cfutures before sending the message, because a cfuture fault has criticality 1. If a routine
stores a physical address of a heap block in a data register, it must have criticality at least 5
as long as the address can be read out of the data register. If a routine runs with the MDP’s
fault bit set, it must have criticality at least 6 to prevent a catastrophic double fault. There
will be no re-entrancy problems as long as each routine’s criticality is correct, the criticality
rules are obeyed, and all possible faults are anticipated.

Heap Manager

The heap manager manages the heap on each MDP, allowing allocation, deallocation, and
purging of arbitrary objects in the local memory on the MDP. The heap manager does not
use the network, so most of its routines run at criticality 5.

Heap Structure
The heap, shown in Figure 4-3, is organized as a contiguous block of memory. Objects are

allocated from the bottom (lower addresses) up, while BRAT entries are allocated from the

Table 4-1. Criticalities

Value Actions Allowed
0 All actions are allowed. Caller’s registers do not have to be preserved.
1 Caller's registers must be preserved. May suspend, so MDP’s globals are not pre-
served.

2 No suspending faults, no modification of context state.

3 No suspending faults, no modification of context state, no object migration.

4 No message sends, no object migration.

5 No heap compaction, no message sends.

6 No faults or system calls, no heap compaction, no message sends.

7 No priority 1 interrupts, no faults or system calls, no heap compaction, no message
sends.

58

Chapter 4 The Cosmos Operating System

36 32 26 10 0
0] 9BJ|Flags| Class |Object Length=n
1 \ Object ID
2

Object Data

3 33322222 1
5 21098765 09 0

oBJ Object Class Number Object Length

—l True if this object is a fast context.

True if this object is free.

True if this object is copyable.

True if this object is purgeable.

True if this object is locked.
I_ True if this object is marked.

Figure 4-4. A Heap Block

Each MDP heap block consists of a header and |D words followed by user-defined data.

top down by the BRAT manager. The objects in the heap between FixedHeapStart and
HeapStart are nonrelocatable—once allocated, they are never moved. Currently that area
is used for storing a few fast contexts. The rest of the heap is dynamically divided between
relocatable objects and BRAT entries. The FirstFree pointer points to the first unused
word of heap memory, while the LastFree pointer points to the first word used for BRAT en-
tries.

Heap Blocks

Each heap block has the structure shown in Figure 4-4. The presence of the length of the
block in the first word and its virtual ID in the second word allows the heap to be scanned
and compacted quickly.

The heap manager uses only the free, purgeable, and marked flags, which have the following
meanings:

e Free. The heap manager will reclaim storage from those blocks when it needs extra
memory.

¢ Purgeable. The heap manager can purge those blocks when it needs extra memory.

e Marked. A purgeable block is marked if it has not been accessed for a while. It will be
purged at the next opportunity.

The copyable and locked flags are managed by the global object manager, while the context
manager uses the fast context flag to distinguish fast contexts from standard ones.

59

Concurrent Smalltalk on the Message-Driven Processor

Object Allocation

Allocating an object on the heap is usually quite fast, taking about twenty instructions.
Given the object ID and header word, the AllocObject heap manager routine checks
whether there is enough room in the heap for the object!. If so, it creates and returns a relo-
catable ADDR-tagged word pointing to the physical memory that will be occupied by the ob-
ject, after initializing the object’s first two words and advancing the FirstFree pointer. If
there is not enough free memory, AllocObject calls the heap compactor to try to free
enough memory for the object.

Heap Compaction

The heap compactor is called whenever a memory request cannot be satisfied. First it invali-
dates all relocatable addresses cached in the address registers and the XLATE table?. Then
it scans through the heap starting from HeapStart, moving each block as far to the front of
the heap as possible. As each block is moved, its physical address is updated in the BRAT,
but not the XLATE table3. Deleted blocks are not copied, nor are marked purgeable blocks*.
If a purgeable block was unmarked, it is copied and then marked. The next time the block is
referenced, that block’s marked bit will be cleared by the XLATE fault handler.

A heap compaction increases the amount of contiguous available memory between
FirstFree and LastFree. However, if the compaction did not free enough memory to sat-
isfy the allocation request, another compaction is immediately done. The second compaction
purges the remaining purgeable blocks from the heap. If the second compaction does not free
enough memory, the system halts.

Utility Routines

The heap manager contains a couple of general-purpose utility routines which illustrate cre-
ative use of the MDP’s fault mechanism. One, BlockMove, quickly moves a block of memory
from one address to another. The routine uses straightline code followed by an infinite loop
to copy data. The loop is terminated by a LIMIT fault when a copy is attempted of the first
word out of bounds of the source block. Similarly, BlockSend quickly sends words of an ob-
ject until terminated by a LIMIT fault. Without using LIMIT faults these routines would be
two to four times slower.

BRAT Manager

The BRAT manager maintains the BRAT—Birth/Residence Address Table [38] and the
XLATE table. The BRAT is a general-purpose associative table used mainly for translating
virtual addresses to physical addresses. The XLATE table is used mostly as a cache for the
BRAT table. Table 4-2 lists the associations currently maintained by the BRAT manager.
Like the heap manager, the BRAT manager does not use the network and runs mostly at
criticality 5.

The format of the XLATE table is dictated by the MDP hardware. The table is a two-way set-
associative cache whose location and position are specified by the MDP TBM register. Each

1Actually, A110cObject makes sure that there are three more free words in the heap than necessary to hold the
object in case a BRAT entry will also be allocated for the object. This avoids the difficult situation of being able to
allocate a heap object but not its BRAT entry; a heap compaction in the BRAT manager would violate criticality
rules.

2Just re-entering each association between a virtual ID and the new physical address would not work because sev-
eral virtual IDs may alias to the same physical object; the copying code would find only one such association in the
XLATE table.

3Physical addresses are not updated in the XLATE table because if they were, there would be no easy way of de-
termining which blocks were referenced between heap compactions. The XLATE fault handler clears the marked bit
of every block it encounters without a binding in the XLATE table.

4Nevertheless, if an object’s locked flag is set, the object is preserved, even if it is also indicated as deleted or
purgeable and marked. This action is required to maintain consistency in the global object manager.

60

Chapter 4 The Cosmos Operating System

binding in the XLATE table consists of a key word and a data word. Invalid bindings have a
NIL data word. The XLATE and PROBE instructions hash the key they receive into the
XLATE table and check the two possible bindings whether they contain the right key; if so,
the corresponding data word is returned. The ENTER instruction enters a new binding into
the XLATE table; that binding might overwrite an existing binding of a different key, so the
XLATE table is only a cache—bindings are not guaranteed to remain in the table. The hash
function used is the exclusive-or of the four bytes that constitute the data portion of the key
word; the tag of the key word does not participate in the hashing. Thus, the XLATE table is
limited by hardware to 512 bindings, which may not be enough if there are many small ob-
jects on a node.

Table 4-2. XLATE and BRAT Associations

“Virtual” Ta “Physical” Tag _Tables Assoclation

ID ADDR XLATE, BRAT Physical object location

ID INT BRAT Node number of node containing object

iD context ID BRAT Context waiting for object

DID ADDR XLATE Physical location of nearest constituent
TAGO:SEL ADDR XLATE, BRAT Physical location of selector object
TAGO:CLASS ADDR XLATE, BRAT Physical location of class object
TAGO:.CLASS INT BRAT Node number of node containing class object
TAGO:CLASS context ID BRAT Context waiting for class object

TAG0:SYM none XLATE Symbols are primitive objects

TAGO:CHAR none XLATE Characters are primitive objects

INT none XLATE Integers are primitive objects

BOOL none XLATE Booleans are primitive objects

FLOAT none XLATE Floating point numbers are primitive objects
CS (INST1) ID XLATE Class/selector lookup

The above table contains the current associations kept in the virtual tables. A general object (tagged ID or
TAGO:CLASS) can associate either to a physical address, the node number of the node thought to contain the
object, or a context waiting for the object. In the last case, if the object is being accessed, the current process
suspends and puts itself onto the list of contexts waiting for the object. Selector objects are just like general ob-
jects except that they do not migrate. The DID-sADDR association is used for quickly getting to constituents of
distributed objects from the group ID. The results of the DID—ADDR must be consistent through time—looking up
a DID on the same node must always yield the same constituent. Looking up a primitive object other than the
ones just mentioned in the XLATE table must always miss. Finally, due to a shortage of virtual tags, words tagged
INST1 are used as class/selector keys to the method manager's method cache.

XLATE and BRAT Table Formats

Unlike the XLATE cache, entries in the BRAT table are guaranteed to remain in the table
until they are deleted. As shown in Figure 4-7, the BRAT table is rooted by a small root hash
table. Each entry in the root table points to a linked list of BRAT bindings with keys that
hash to the same value. In addition, there is a linked list of free BRAT entries. There are
several advantages to keeping the BRAT table organized this way instead of the flat hash
table in [38]:

¢ Deleting entries from the BRAT is easy, while at the same time searching the BRAT for a
missing key is fast. Such searches are common because they occur almost every time an ob-
ject not present in local memory is referenced.

* ' The boundary between BRAT memory and the memory used for objects in the heap is ad-
justed dynamically. Thus, accurate predictions of the average size of an object needed in [38]
become unnecessary.

» No memory is wasted keeping the flat hash table no more than 70% full. On the other
hand, linked lists require one additional word per BRAT entry for the links; however, it is
conceivable that BRAT entries could be stored contiguously with their objects, eliminating
this waste.

61

Concurrent Smalltalk on the Message-Driven Processor

TBM
XLATE Table

ID ADDR

NIL
DID ADDR

NIL

Class/Selector ID

ID INT

NIL

NIL

Figure 4-5. XLATE Table Format

The XLATE table's position and length are specified by the MDP TBM register. The XLATE table is a two-way set-
associative cache composed of key/data pairs of words. A NIL data value specifies an invalid entry. The XLATE
and PROBE instructions provide hardware support for quickly looking up keys in the cache.

36 32 0

0 Key
1 Data

2 Address of next entry or NIL

Figure 4-6. BRAT Entry Format

Each BRAT entry is a linked list entry associating a key word to a data word.

BRAT Routines

There are three main routines for managing the BRAT table. They are:

* EnterBinding, which enters a new binding of a key to a data word. This routine uses a
binding from the BRATFree linked list whenever possible. However, if that list is empty,
memory is allocated from the back of the heap, moving LastFree forward by three words,
which might force a heap compaction.

* LookupBinding, which returns the data word associated with a key or NIL if there is
none.

e DeleteBinding and PurgeBinding, which remove a binding from the BRAT. The
binding must have been present in the BRAT. In addition, PurgeBinding removes the bind-
ing from the XLATE table.

Heap Compaction

The current heap compactor in the Heap Manager does not attempt to compact free BRAT
entries linked on the BRATFree list. Thus, once memory is used for a BRAT entry, it can
only be used for another BRAT entry. Nevertheless, performing such compaction by moving
BRAT entries up in memory would not present any special difficulties.

62

Chapter 4 The Cosmos Operating System

BRAT Hash Table

BRATStart™™

BRATFree—™] Key

Data

Figure 4-7. BRAT Table Format
The BRAT entries are kept in linked lists rooted in the BRAT hash table. Free BRAT entries are linked in a sepa-
rate linked list.

Object Manager

The local object manager combines the facility of the heap manager and the BRAT manager
to provide a virtual name space for the objects allocated by the heap manager. The local ob-
ject manager can allocate objects on the local node and give them unique names. The local
object manager is tightly interwoven with the global object manager, so the distinction be-
tween the two managers is only conceptual—their code is inlined together in common rou-
tines.

3 333 22 11 1
5 210 87 65 09 54 0
Class | TAGO |CLASS] 0 Class Number
Selector | TAGO | SEL 0 Selector Number

Future | FUT Serial Number , Hom? Nod;a Nun;ber .
Standard Object ID o Serial Number , H0mei Nod;x Nun;ber)
Dist. Obj. Constituent iD |1 Serial Number , Homei Nod;a Nun;ber .

Figure 4-8. Object ID Formats
Words with the above formats are virtual addresses of objects on the heap. Special care must be taken when
handling virtual addresses which are also futures to avoid forcing them prematurely.

Object IDs

The Object Manager recognizes several formats of object IDs and virtual addresses, as shown
in Figure 4-8. In addition, the Object Manager can generate unique new standard object IDs
by incrementing a local serial number counter and adding it to the local node number. Since

63

Concurrent Smalltalk on the Message-Driven Processor

no mechanism exists currently for reclaiming IDs, the system will fail after 32768 local ob-
jects have been allocated at one node. See Chapter 8 for a discussion of what could be done
about this problem.

Each of the IDs in Figure 4-8 contains a home node number in the lowest 16 bits. For fu-
tures, standard objects, and distributed object constituents, the home node number is merely
the network number of the MDP that serves as the object’s home; any unused bits must be
zero. However, for classes and selectors, any of the lowest 16 bits not used for storing the
network number are used to distinguish among several class or selector objects sharing the
same home. For example, on a 1024-node J-Machine arranged as 16x16x4, bits 0-3, 5-8, and
10-11 hold the home’s x, y, and z coordinates, respectively, while bits 4, 9, and 12-15 disam-
biguate among classes or selectors living on the same node. For this configuration, the class
object’s home node number can be obtained by logically ANDing the class number with
%0000110111101111. See Figure 5-12 for more on this.

Why not use bits 16-27 to disambiguate classes and selectors living on the same node, as is
done for objects? The reason is that several parts of Cosmos require class and selector num-
bers to be no greater than 16 bits. For instance, a class number is stored in every heap ob-
ject’s header, and the class and selector numbers are concatenated to make a 32-bit word
during method lookup.

Routines

The local object manager provides routines to allocate and deallocate objects. The object-allo-
cating routine has two variants—AllocNewObject allocates an object given its ID and
header word, while A11ocNextObject takes a header word and generates a new ID for the
object. Both variants then allocate local memory for the object and enter the binding of the
ID to the physical address in the BRAT and the XLATE tables. AllocNextObject is used
for most of the general object-allocating needs, while Al1ocNewObject is used in special
cases—downloading of objects or allocation of distributed object constituents—where an ob-
ject’s ID is predetermined.

DeallocateObject, the local object deallocator, deletes an object’s bindings from the BRAT
and the XLATE tables and sets the object’s deleted flag. Thus, the object will be compacted
during the next heap compaction. If the object was a distributed object constituent, it might
have had more than one binding in the XLATE table; only one such binding is deleted, so it
might still be possible to access a deleted constituent object through the other bindings until
the second heap compaction. This is not an error because the consequences of accessing a
deleted object in Concurrent Smalltalk are undefined.

The object manager also provides a handler for XLATE faults. When an XLATE instruction
that searches for a local object misses, the object manager searches the BRAT for the binding.
If it finds such a binding, it returns the object’s physical address and enters the object’s
binding back in the XLATE table. This is also the point at which the heap manager unmarks
the object if it was previously marked. If the object’s binding was not found in the BRAT,
further action depends on the value of the XLATE action code!—the XLATE fault handler
might use the global object manager to bring the object onto this node, return NIL, or fail.

Context Manager

The context manager maintains contexts which contain local variables and saved register
values and messages of processes. The structure of a context is shown in Figure 4-9. MDP’s
register ID1 contains a virtual address of the current context at all times when a context
switch is possible, while A1 contains the physical address and length of the context. Contexts
are used for the following purposes:

IThe XLATE action code tells the XLATE handler what the user of the XLATE instruction wanted to accomplish.
The action code conveys information such as whether the caller really nceded to reference an object (and the object
should be brought locally if it isn’t present) or the caller only wanted to tell if the object exists.

64

Chapter 4 The Cosmos Operating System

36 32 26 10 0
0| OBJ | Flags 0 Context Length=rl"'
1] ID Context ID
2

Saved Message
m-1
m
Local Variables
15
16 Saved RO
17 Saved R1
18 Saved R2
19 Saved R3
20 Saved IDO
21 Saved ID2
22 Saved ID3
23 Saved IP
24 Link
25 More Local Variables
(Long Contexts Only)
n-1

Figure 4-9. Context Format
Standard and fast contexts have the above format except that they are only 25 words long, while long contexts can
be up to 64 words long (the MDP only allows convenient addressing of the first 64 words of an object).

There is no saved iD1 field because ID1 points to the context itself, so it has to be known by whatever routine is
resuming the context.

The link field is used for several purposes. Contexts on the FastContextQueue are linked together by their link
fields. When a process suspends execution, the resumption condition is stored in the link field: if the process
suspended because it read a cfuture from a local variable in the context, the offset (tagged CFUT) of that local
variable is stored in the link field. If the process suspended because it referenced a non-local object, the context is
put on a linked list of contexts waiting for the object rooted at the object's BRAT binding. The old data value of the
BRAT binding is placed in the link field of the last context waiting for the object. Since the data value of a BRAT
entry can be an integer, the INT tag cannot be used to represent contexts waiting for cfutures.

e When a function calls another function, it stores a cfuture in a local variable in its con-
text and then proceeds to fault on that cfuture. The reply from the called function will store
its value into the designated local variable, overwriting the cfuture.

e When evaluation of a function needs to be suspended for any reason, including a cfuture
fault, the function’s registers are saved in a context.

e When evaluation of a function is suspended, the message that invoked that function is
copied into the beginning of the context (except for the first two words of the message, which
are then lost). When the function resumes, A3, the register which originally pointed to the
message, is aliased to point to the context to allow the function to use A3 to refer to the in-

65

Concurrent Smalltalk on the Message-Driven Processor

coming message regardless of whether the message has been copied into the context yet or
not.

Context Availability

There are four fundamental approaches to allocating contexts:
1. Always allocate a context at the beginning of every function and deallocate it at the end.

2. Allocate a context at the beginning of a function that needs a context and deallocate it at
the end.

3. Lazily allocate contexts only when necessary.
4. Always keep a context allocated, even when no message is being processed.

Approaches 1 and 2 are commonly used for stack frames on stack-based computers. Initially
I chose approach 3 for the context allocation strategy. Approaches 1 and 2 are simpler but
have the disadvantage of often allocating unnecessary contexts—most of the leaf nodes of
computations do not require contexts, and allocating contexts unnecessarily is a considerable
overhead. Approach 3 worked by storing an invalid address in A1, the MDP’s context ad-
dress register. When a context was needed, the access through A1 would fault, and a context
would be allocated. However, I ran into two difficulties with approach 3: allocating contexts
through faulting on A1 was slow because determining the cause of an INVADR fault on the
MDP is quite involved, and there were some difficult code sections in the object manager
where a fault might allocate a context, violating criticality rules.

Due to the above difficulties, I switched to approach 4, which combines the advantages of
lazy context allocation with the advantages of always allocating a context. In approach 4,
when a function finishes executing, it does not deallocate its context!; thus, the next message
that arrives does not have to allocate a context. There are two places where approach 4
involves a little extra work than approach 3: when a function suspends on a cfuture or object
migration wait, it must allocate a new context to avoid having its own context overwritten;
and when the value of a cfuture is returned or an object arrives, the currently allocated con-
text must be deallocated and replaced with the suspended function’s context. The additional
context allocation on a cfuture or object migration wait is not a significant penalty because it
occurs on the tail end of message processing—it does not affect the latency of message pro-
cessing until the J-Machine is fully loaded. The context deallocation on the reception of a
cfuture value or an object does add to the latency, but context deallocation is always fast—it
takes only four instructions.

To avoid reentrancy and criticality problems, the value in register A1 is required to be always
valid; therefore, any routine, such as the heap compactor, which might invalidate A1 must
recalculate the value of A1 when it is done.

Kinds of Contexts

There are three kinds of contexts: fast contexts, standard contexts, and long contexts. A
fixed number of fast contexts is preallocated when an MDP is initialized. Each fast context is
25 words long. The fast contexts are nonrelocatable heap objects between FixedHeapStart
and HeapStart. The physical addresses of these contexts never need to be invalidated, so
these contexts are especially fast. Fast contexts are never deallocated. Enough of these con-
texts should be allocated to serve a normal computation load on an MDP; the current operat-
ing system allocates eight per MDP, which is probably too few.

Standard contexts are like fast contexts in that they are 25 words long, but they are relocat-
able objects allocated from the main heap area; thus a heap compaction invalidates their

1This only applies to functions which use 25-word contexts; functions which usc long contexts must deallocate their
contexts and allocate 25-word contexts upon exiting.

66

Chapter 4 The Cosmos Operating System

physical addresses. Unlike fast contexts, the storage occupied by standard contexts can be
reclaimed.

Fast contexts and standard contexts are eligible to be queued on a linked list of free contexts
rooted by the global variable FastContextQueue. Whenever a 25-word context is desired,
FastContextQueue is checked first; if it contains a context, that context is unlinked from
the queue and used. Otherwise, a standard context is allocated. When a fast context is dis-
posed, it is linked back on the queue. When a standard context is disposed, it is either liked
back on the queue or deallocated, at the caller’s discretion. These queue operations are
fast—allocating a context from the queue takes five instructions, while deallocating one onto
the queue takes four.

Long contexts are contexts for functions which require extra space for local variables. Long
contexts are identical to standard contexts except that they are longer and ineligible for
queueing on the FastContextQueue. When a function that might need a long context starts
executing, it calls the NewContext routine, which replaces the present context with a newly
created long context. NewContext also copies any relevant state such as the message from
the fast context to the new, long context. A function which allocates a long context must
terminate with a call to Suspend, which disposes the long context and allocates a new fast or
standard context. DisposeContext can be used to dispose a context without allocating a
new one,

Allocation and Deallocation Calls

The routines to allocate and deallocate 25-word contexts are short enough that they are in-
lined whenever they are needed. The following calls are available for handling long contexts
and the case in which the FastContextQueue is empty:

¢ AllocFastContext creates a new fast context when the queue is empty.

e suspend checks whether a fast context was used by the routine. If so, it links it into the
fast context queue; otherwise, the context is disposed by the heap manager, and a new 25-
word context allocated.

e NewContext allocates a new long context. If a context is currently in use, it is deallo-
cated after the message has been copied from it to the new context.

* DisposeContext is like Suspend except that it does not allocate a new 25-word context.

Suspending and Resuming Processes

When a process must be suspended because it tried to read a cfuture, perform an operation
on a future, add two user-defined objects together, or reference a nonlocal object, the process’s
state must be saved in its context. In particular, the values of registers that need to be pre-
served must be stored in the context along with the IP at which execution should resume.
Furthermore, the reason for suspending must be stored in the link field of the context; other-
wise, the context might be restarted prematurely, which would lead to a disaster if the con-
text was waiting for an object!. Finally, a new 25-word context is allocated in Al and ID1 to
prevent the suspended context from being reused.

When a process is to be resumed, the resuming event is checked against the context’s link
field to make sure that the context should, in fact, be resumed. If it should, the existing con-
text in A1 and ID1 is deallocated, and the values of the registers and IP read from the con-

IThe reason why restarting a context early would crash the computer is not obvious. The problem is not that the
process would access a bad object or value—the process would fault and suspend again because it still cannot refer-
ence the nonlocal object. Instead, the system crash would occur because if a context that had been waiting for mi-
gration of a nonlocal object were restarted early, the context would not be unlinked from the list of contexts waiting
for the object. The Reply handler would not even be aware that the context had been present on the linked list.
Then, when the context’s process faulted again on the missing object, it would be added to the list of contexts wait-
ing for the object a second time, corrupting that list.

67

Concurrent Smalltalk on the Message-Driven Processor

text. If a resource for which several processes were waiting arrives, one of these processes is
resumed immediately, while the other ones are resumed later by RestartContext messages
(Figure 4-10) which the node sends it itself. A RestartContext message deallocates the
existing context in A1 and ID1 and then restarts the specified context.

0| MSG RestartContext 2
Context ID

Figure 4-10. RestartContext Message
The RestartContext message restarts the context specified by the ID. The context must be present on the tar-
get node.

Reclaiming Contexts

The current strategy for reclaiming free contexts by the heap compactor is somewhat hap-
hazard. Fast contexts are never reclaimed. Long contexts are always reclaimed because
they are required to be deallocated before their processes can exit. On the other hand, stan-
dard contexts are reclaimed only if enough processes call Suspend when they are done;
otherwise, once a standard context is allocated, it is never deallocated. This may be an ad-
vantage because once a working set of fast and standard contexts is allocated on an MDP, al-
location of 25-word contexts will always be fast. If the lack of regular deallocation of stan-
dard contexts turns out to be a problem, it would only be a simple modification to the heap
compactor to have it scan the FastContextQueue and deallocate any standard contexts it
finds there.

Global Object Manager

The primary means of invoking the global object manager is through the local object manager
when the latter cannot find a local object. The global object manager extends the local object
manager to the global virtual address space of the J-Machine. Together, the two managers
provide an integrated facility for efficiently managing objects globally on the J-Machine. The
managers can distinguish mutable objects from immutable ones and cache copies of the im-
mutable objects on many nodes.

Data Structures

Every object on the J-Machine has a home node. The home node most likely created the ob-
ject, and that node has the responsibility of keeping track of the object’s location throughout
the object’s life. Objects may migrate from node to node, but the object must inform the home
node of every such move. If a node needs an object and does not know where it is, it asks the
home node. Certain objects such as contexts, selectors, and immutable objects do not mi-
grate, so such objects can always be found at their home nodes. The address of the home
node is usually encoded in the lowest 16 bits of an object’s ID (see Figure 4-8). This is a con-
venient format because the network ignores the upper 16 bits of a routing address, so mes-
sages may be sent to an object’s home node simply by transmitting the object’s ID as the
routing word.

In addition to the flags used by the local object manager, each object has three additional
flags: copyable, purgeable, and locked. An object is copyable if it is immutable. Many primi-
tive objects are immutable, as are objects belonging to classes declared immutable by the
Concurrent Smalltalk programmer. Furthermore, the compiler might be able to determine
that objects of a particular class cannot be mutated and mark then copyable, although the
compiler does not perform this optimization at this time. When a copy of a copyable object is
made, the copy is marked purgeable. Thus, many copies of immutable objects can be made,
and the heap compactor can reclaim storage used by copies that are no longer needed. Set-

68

Chapter 4 The Cosmos Operating System

ting the locked flag prevents an object from migrating or being deleted during critical proto-
col sections.

XLATE Entry BRAT Entry Contexts
4)) None None
D
Im ID ADDR ADDR
(111 None
Header
awv) None D
Link Context ID Link
Header Header
V) None ID D
Link Context ID Link

Figure 4-11. Object XLATE Table and BRAT Entries

There are five possible BRAT table states for a particular object. Each object must have a BRAT entry on its
home node. The XLATE table entry, where specified, is optional. The states are as follows:

I. The object does not exist on this node, and its whereabouts are unknown.
Il. The object exists on this node. Its physical address is given.

ll. The object does not exist on this node, but it is believed to reside on the node specified by the integer.

IV. The object does not exist on this node, but the contexts linked 1o its BRAT entry are waiting for its arrival.

V. The object does not exist on this node, but the contexts linked to its BRAT entry are waiting for its arrival, and
the object is believed to reside on the node specified by the integer.

Only states 11, Ill, and V are allowed on an object's home node, while only states I, I, and IV are allowed on the
other nodes.

69

Concurrent Smalltalk on the Message-Driven Processor

Every object must always have a BRAT entry on its home node. The BRAT entry can be in
one of the states shown in Figure 4-11. When an object is initially allocated, its BRAT entry
is in state II. If an object is in state I on its home node, that object does not exist, and any at-
tempt to access it halts the system.

Object Migration

The object migration protocol is a slightly simplified version of the protocol in [38]. When a
node requests an object because it does not have the object in local memory, it sends a
RequestObject message (Figure 4-12¢) to the object’s home node. If the home node does not
currently have the object (its BRAT table entry is in states III or V), it forwards the
RequestObject message to the node thought to contain the object. If the home node does
not know about the object (BRAT state I), it halts the system. This halt is deliberate, for it
detects accesses to deleted objects. If the RequestObject message was forwarded to a node
that has the object, the message is processed there; otherwise, that node forwards the
RequestObject message back to the home node, and the two nodes keep forwarding the
message to each other. Nevertheless, since the home node is required to know an object’s
whereabouts most of the time, the home node will eventually learn of the object’s true loca-
tion and forward the RequestObject message to the right place.

0 | MSG| AcceptObject [Msg. Length=n+ 0 | MSG| AcknowledgeObject 2

INT Reply Node Number

-

1 Object ID

OBJ | Flags| Class |Object Length=n

(b) AcknowledgeObject Message

A WD

Object ID
Object Data
n+1 - - I
0 | MSG| MigrateObject IMsg. Length=n+1
(a) AcceptObiject Message 1] OBJ | Flags|] Class |Object Length=n
2 Object ID
0| MSG| RequestObject 3 3
1 Object ID Object Data
2| INT Reply Node Number n
(c) RequestObject Message (d) MigrateObject Message
0| MSG UpdateHome 3
1 Object ID 0| MSG Unlock 2
2| INT Node Now Containing Object 1 Obiject ID

(e) UpdateHome Message (f) Unlock Message

Figure 4-12. Object Migration Messages
The AcceptObject and AcknowledgeObject messages are used only for downloading objects into the J-Ma-
chine and for debugging. The other four messages are used for successive steps of object migration.

70

Chapter 4 The Cosmos Operating System

Home Node Object's Node Requesting Node
Suspend Context
RequestObject —
<
Lookup BRAT
Requ
W‘
Copy Object
Mi gr.
W‘
) . Install Copy
(a) Copying a Copyable Object Restart Contexts
Home Node Object's Node Requesting Node

Suspend Context
P\eCIues‘CObject e

<
Lookup BRAT

Re
questobje
Ct

Move Object
M

1
grateobje
et

Lock Object

UpdateHome

Update Object's
Location

W

Unlock Object
(b) Migrating a Mutable Object Res?-,arct Cothexts

Figure 4-13. Object Migration Protocol

When a copy of an immutable object is made, the copy is simply sent to the requester as in part (a). If a mutable
object has to be moved, the protocol is more complicated because the object's home node has to be kept informed
about the object’s location.

What happens when the RequestObject message finds the object depends on whether the

object is copyable or locked. If the object is locked, the node forwards the message back to it-
self; the message will be handled once the object is unlocked. If the object is copyable, the

71

Concurrent Smalltalk on the Message-Driven Processor

node simply mails a purgeable, copyable copy of the object in a MigrateObject message to
the requesting node, which then installs the copy in its memory (Figure 4-13a). If not, the
protocol becomes more complicated (Figure 4-13b). The node on which the object is residing
deletes the object from its memory and BRAT and sends the object to the requesting node in
a MigrateObject message. The requesting node installs the object in its memory, locks it,
and sends an UpdateHome message to the birthnode, telling it about the object’s new where-
abouts. Finally, the birthnode sends an Unlock message to acknowledge receipt of the
UpdateHome message and allow the object to be moved again. Since a locked object might
have been deleted, the Unlock message checks the object’s deleted flag and deletes it and its
BRAT entry if it was set. The last two messages are optimized out if the requesting node
happens to be the object’s home node.

The object is locked in the last phase of the protocol to prevent the home node from receiving
the UpdateHome messages from two successive migrations out of order; if that were to hap-
pen, the home node would lose track of the object’s location. Alternatively, counters could be
used to achieve the same synchronization, but that solution would require an extra word in
the BRAT and in the object.

Object Allocation and Deletion

An object can be allocated either at the local node or on a remote node. The NewLocalOb-
ject system call allocates an object locally. Unlike the AllocNextObject call,
NewLocalObject takes a class as a parameter and extracts the appropriate header word
from the class object (Figure 4-14) to use for the object. Reading the class object may involve
another call to the global object manager if a copy of the class object is not present in local
memory.

0| OBJ |Flags| Metaclass 4+n

1| TAGQ CLASS}] 0 Class

2| OBJ Ins}ance Object Hgader Word

31 INT n=Number of Ancestors

4 | TAGQ CLASS| o0 Class

5| TAGQ CLASS| o0 Ancestor
3+n | TAGQ CLASS] 0 Object Class

Figure 4-14. Class Object Format
The instance object header word is the word that is stored as the header of every object of this class. That word is
nil if the metaclassis primitive-class.

In addition, each class object contains an ordered list of the class's ancestors from the most specific to the least
specific. The class’s ancestors consist of the class itself, its superclasses, its superclasses’ superclasses, and so
on; each class is listed at most once. The ancestors are ordered according to a partial order which always places
a class before any of its superclasses; thus the class itself is always the first ancestor and Object is always the
last ancestor.

The DisposeObject system call is used to dispose objects, both locally and globally. Dis-
poseObject first tries to dispose the object locally; if the object is locked, it is marked as
deleted but not disposed; it will be disposed when it is unlocked. If the object does not reside
on this node, a Dispose message is sent to the object’s home node, which follows a route
analogous to the RequestObject message above and will not be discussed further. If the ob-
ject is present on this node but this is not the object’s home node, a Di sposeBRAT message is
sent to the home node to dispose the object’s BRAT entry there. If the DisposeBRAT mes-
sage happens to find another instance of the object on its home node, it deletes that instance
too.

72

Chapter 4 The Cosmos Operating System

0| MSG NewObject 4 0

1 | TAGQ CLASS 0 Class 1

2] ID Reply Context ID

3 Reply Slot Numb (b) Dispose Message

(a) NewOb ject Message o|msc] DisposeBRAT 5

Object ID

(¢) DisposeBRAT Message

Figure 4-15. Object Creation and Disposal Messages

The NewOb ject message creates an object of the given class on the remote node and returns its D in a Reply
message. The Dispose message disposes an object on the remote node, while the Di sposeBRAT message
disposes an object's home BRAT entry.

This protocol successfully deletes the single instance of a mutable object and the unpurgeable
original of an immutable object along with, perhaps, one copy. Other copies, if any exist, of
an immutable object are not disposed; however, they will simply be purged out if they are not
referenced for a while,

Other Services

The global object manager provides two routines, ClassOf and TypeOf, that can determine
the class of any of the objects listed in Figure 4-2. If the object is a primitive object, the
global object manager returns it class directly. Otherwise, the global object manager extracts
the class from the object’s header and returns. In addition, the global object manager pro-
vides the ObjectNode routine which returns the node number of a node likely to contain the
object. If the object is primitive, ObjectNode returns a random node number. This system
call is frequently used in Concurrent Smalltalk to determine the node to which an applica-
tion message should be sent.

The global object manager actively participates in the process of downloading a Concurrent
Smalltalk program to the J-Machine. It provides support for installing objects on nodes
without migrating them from anywhere. If a node receives an AcceptObject message
(Figure 4-12a), it installs the object and its ID in its memory and the BRAT and responds
with an AcknowledgeObject message (Figure 4-12b) containing the object’s ID.

To avoid difficulties with downloading objects recursively referencing each other, object IDs
are assigned by MDPSim (see the section about late-binding references in [25]) before the
objects are downloaded into the J-Machine; hence, an MDP accepting an object must also ac-
cept the object’s ID instead of generating a new one. The IDs assigned by MDPSim use serial
numbers in the upper range of the allowed numbers, thus preventing ID conflicts with ob-
jects generated at runtime.

Finally, the global object manager provides support for distributed objects. This support is
documented in the distributed object section later.

Initialization

Upon powerup each MDP performs the following actions:

¢ Clear the address and ID registers at all priorities.

73

Concurrent Smalltalk on the Message-Driven Processor

® Clear the globals to CFUT-tagged words. If an uninitialized global is accidentally refer-
enced, the MDP will halt because the cfuture handler can distinguish a valid cfuture from a
CFUT-tagged word that just indicates an uninitialized value.

¢ (Clear the XLATE table and the BRAT root table to NIL.

e Initialize and enable the network queues, but block network message dispatching until
initialization is done.

¢ (Clear the heap to CFUT-tagged words.
¢ Initialize the global variables that need initializing.

* Create eight nonrelocatable fast contexts, link them onto FastContextQueue, and ini-
tialize HeapStart to the first word after those contexts.

* Unlink one fast context and point priority 0’s Al and ID1 to it.
¢ Enable message dispatching and fall into an infinite loop in background mode.

The version of Cosmos for running on a real J-Machine instead of MDPSim has a startup se-
quence that also includes a self-test of the CPU, a memory test, a network test, debugging
utilities, and a protocol to let each MDP determine its location on the network.

Downloading Programs

In the MDPSim emulation of the J-Machine, a special non-MDP network node called the I/O
Node acts as the bridge between the compiler and the J-Machine. The compiler outputs an
MDPSim script which queues a series of objects in the I/O Node. The I/O Node then sends
AcceptObject messages to the appropriate nodes, waits for the AcknowledgeObject
replies, and sends more objects until all objects have been downloaded.

On the real J-Machine, Concurrent Smalltalk programs are also downloaded through a MDP
that includes special software to communicate with the outside world. Each MDP contains a
diagnostic port that lets the user halt the MDP and directly examine and change its memory
and state. The Cosmos kernel is loaded onto the MDPs through these diagnostic ports.

74

Chapter 4 The Cosmos Operating System

4.3. The Cosmos Higher-Level Facilities

Method Manager

The method manager associates class/selector pairs with methods, although it could also be
used for keeping general immutable associations. It provides only one routine, Lookup-
Method, with a variant, LookupMethodU, which performs less processing of its arguments to
make it more efficient. LookupMethod takes a class word and a selector word and attempts
to find the method associated with them; it is the equivalent of the Concurrent Smalltalk
method primitive.

3 33 22 11
5 21 87 65 0
Class | TAGO |CLASS 0 Class Number
3 33 22 11
5 21 87 65 0
Selector | TAGO | SEL 0 Selector Number
3 33 11
5 2 0
CS Class Number Selector Number

Figure 4-16. Class/Selector Word Format

The Class/Selector word is formed by combining a 16-bit class number with a 16-bit selector number. The word is
tagged CS (which is also the INST1 tag) to avoid conflicts with other kinds of bindings stored in the XLATE table.

Lookupmethod first attempts to look up the association in the local XLATE cache. It com-
bines the 16-bit class and selector numbers into a single word, tags that word cs (Figure 4-
16), and looks for a binding in the XLATE table. Ifit finds a binding, the binding’s data word
is immediately returned as the desired method. If no such binding exists, Lookupmethod
sends a Lookupmethod message (Figure 4-18a) to the selector’s home node. The message
will invoke the LookupMethod runtime function on the selector and the class.

The LookupMethod runtime function executes on the same node as the selector object
(Figure 4-17). Each selector has a list of methods defined for it together with their classes.
LookupMethod first tries to find the given class in the selector object; if it finds it, it returns
the corresponding method. If LookupMethod cannot find a method for the given class, it gets
the class object (Figure 4-14) and searches the selector’s method list for the class’s ancestors
until it either finds a method or runs out of ancestors. In the latter case the method lookup
fails and LookupMethod returns nil. In either case LookupMethod returns the result in a
MethodReply message (Figure 4-18b). The requesting node then associates the
class/selector pair with the result in its XLATE table.

The method lookup strategy is conservative in the use of space, taking space roughly propor-
tional to the number of methods defined in the program. However, the method lookup time
suffers somewhat, especially when a method is requested corresponding to a deeply nested
class and a selector with many methods defined; in the worst case the method lookup time is
the product of the number of ancestors of a class and the number of methods defined for the

75

Concurrent Smalltalk on the Message-Driven Processor

selector. A binary search could have been used for searching the method table, but it would
have much worse constant factors, resulting in slower lookup for most methods, because the
MDP does not have enough registers to support the inner loop of a binary search.

The methods are stored in selector objects indexed by the class instead of storing them in
class objects indexed by the selector because the number of selectors is usually much larger
than the number of classes, and selectors tend to be accessed more uniformly than classes;
thus, the method lookup table can be distributed more evenly on the J-Machine.

0 |- OBJ | Flags| classSelector 3+2n
1 | TAGQ SEL 0 Selector
2] INT n=Number of Methods
3|TAGYQ CLASS|] o0 Class 1
41 ID Method 1
142n | TAGQ CLASS] © Class n
242n| ID Method n

Figure 4-17. Selector Object Format

Each selector object contains a table associating classes to methods.

0| MSG ApplyFunction 5 o | MSG MethodReply 3
1 ID LookupMethod 1 ID Context ID

2 TAGQ SEL 0 Selector 2 NIL or ID of method

3 | TAGQ CLASS 0 Class

4 Reply Context ID. (b) MethodReply Message

(a) LookupMethod Message
Figure 4-18. Method Manager Messages

The LookupMethod message requests a lookup of the class and selector to get NIL or a method ID; the Method-
Reply message replies to the lookup.

Control Manager

The control manager dispatches function and method calls and handles replying from func-
tions, a task shared with the context and global object managers. The control manager’s code
is relatively short because so much groundwork has been laid by the previous managers.

Function and Method Dispatch

The control manager handles three types of messages for calling functions and methods:
Apply, ApplyFunction, and ApplySelector (Figure 4-19). The first message can be used
for applying an arbitrary object—a function or a selector, while the other two messages can
only be used for applying functions or selectors, respectively. The Apply handler checks the
type of its argument and jumps into either the ApplyFunction or ApplySelector handler,
as appropriate; the check takes three to five instructions.

76

Chapter 4 The Cosmos Operating System

0 | MSG Apply... Message Length
1 Function or Selector
2 Argument O
3 Argument 1
1+n Argument n-1

2+n | Context ID for first reply value or NIL

3+n | Context slot for first reply value or NIL

2m+n | Context ID for last reply value or NIL

1+2m+n | Context slot for last reply value or NIL

Figure 4-19. Application Messages

The Apply, ApplyFunction, and ApplySelector messages have identical formats except for the address
stored in the header word. Each value returned by the called function corresponds to one two-word continuation
passed to the function. The continuation specifies either the context ID and slot to which that value should be
replied or two NILs if that value is ignored by the caller. The context IDs passed to the function are not necessar-
ily the same due to tail forwarding.

ApplyFunction reads the ID of the function from the message, stores it in MDP’s registers
1D0 and A0 (the code segment registers), and jumps into the fourth word of the function ob-
ject (Figure 4-20). The entire process takes only 4 instructions.

ApplySelector reads the selector and the first argument (the receiver object) from the
message, uses inline code to quickly determine the class of the receiver, and calls Lookup-
MethodU to determine the ID of the method that should be called. If the ID is NIL, Apply-
Selector halts; otherwise, ApplySelector initializes I1D0 and A0 and jumps into the
fourth word of the function object. ApplySelector takes 23 instructions in the best case,
and considerably more if the class of the receiver is hard to determine or if LookupMethodU
misses in the XLATE cache.

Either of the above handlers can suspend even before the first instruction of the function is
executed if the function code or, in the case of ApplySelector, the receiver object is not pre-
sent locally. Hence, it is important that a valid context be always present in ID1 and Al. In
fact, a valid context is present in those registers as explained in the context manager section.

Function Calls and Replies

The control manager’s other task is handling CFUT faults. There are two primary causes for
a CFUT fault: a function accesses the result of a computation that has not finished yet, or
any routine accesses some uninitialized variable. The control manager distinguishes these
two cases by the data in the CFUT-tagged word that caused the fault, which is conveniently
stored in MDP’s FOP0 register.

If the data is positive, the fault was a cfuture fault, and the control manager stores that
CFUT word in the current context’s link field and suspends the context. The Optimist 11
compiler arranges for the data portion of the CFUT word to contain the offset of the context
variable that was accessed; this way the cfuture handler does not have to disassemble the
faulted instruction to determine the offset. The offset is needed later by the Reply handler
to determine whether the context should be restarted.

77

Concurrent Smalltalk on the Message-Driven Processor

If the data in the CFUT-tagged word was zero or negative, the control manager halts the
computer because an uninitialized variable was accessed. On startup, all memory in the
MDP’s heap is cleared to CFUT:-1.

0 | OBJ | Flags| classFunction] Length
1] ID Object ID

21 INT§{ Incoming message size or NIL

Function Code

Figure 4-20. Function Object Format

The function object contains the code for a function. Registers A0 and ID0 point to the function while it is execut-
ing. The third word contains the size of the message expected by the function or NIL if the size is not known or the
function expects a variable number of arguments. The compiler initializes that word, but the operating system
does not check it against the size of the message that invoked the function; that check would add at least five in-
structions to the function dispatch time.

0 |MSG Reply 4
1] ID Context ID for reply

2] INT Context slot for reply
3 Reply Value

Figure 4-21. Reply Message Format
The Reply message carries the reply value to the specified slot in the specified context. The context ID and reply
slot may not be N1L—if they were NIL in the Apply message, no Reply message is sent.

Functions return results to their callers via Reply messages (Figure 4-21). If a function re-
turns multiple values, it sends one Reply message for each value returned. The Reply han-
dler on the caller’s node performs the following processing when it receives the message:

1. The value from the message is stored over the cfuture in the caller’s context. However, if
the slot indicated in the Reply message did not originally contain a cfuture, the Reply han-
dler halts because some function replied twice to the same slot or the compiler generated in-
correct code.

2. The CFUT-tagged link field in the caller’s context is checked against the slot number of
the newly updated slot. If the numbers match, the context is resumed; otherwise, the Reply
handler exits because the context is waiting for some other event.

Actually, for reasons of efficiency the check in (1) is done only if the slot number in (2) doesn’t
match.

Utilities

The operating system kernel currently contains three utilities: a divide routine, a closure
maker, and a closure evaluator. The Divide system call divides one integer by another and
returns the quotient and remainder using the sign conventions described in Appendix A. The
divide routine includes considerable overhead to evaluate all signed 32-bit results correctly,
including special cases such as dividing -$80000000 by 1 or -1 because a large-integer

78

Chapter 4 The Cosmos Operating System

package might be implemented on top of the normal integer arithmetic routines sometime in
the future.

NewClosure, the closure maker, allocates and returns a new closure object (Figure 4-22) on
the local heap. The caller should then initialize the closure’s display arguments before using
the closure.

CallClosure is the function called by a closure when it is invoked as a function. CallClo-
sure calls the function specified in the closure with the additional display arguments in the
closure.

It is true that Divide and NewClosure could have been implemented as functions instead of
system calls; however, these routines are used frequently enough and are short enough that
it was decided that it would be best to make them readily available whenever they are
needed. The additional overhead that would be required in making a function call is compa-
rable to the time it takes to divide two numbers or allocate a new closure object.

0 | OBJ | Flags| classFunction{ Length
11 ID Closure ID

2| INT } Incoming message size or NIL
3| INST} CALL callClosure

41 ID Function ID

5 Display Argument O

6 Display Argument 1

Display Argument

n+4

Figure 4-22. Closure Format

Closures are treated just like functions by Concurrent Smalltalk and the control manager. When the control man-
ager calls a closure, it executes the instruction at offset 3, which is a Cal1Closure system call. That system call
forwards the message appended with the display arguments included in the closure to the function with the ID
specified in the word with offset 4 in the closure.

MDP Runtime

The MDP runtime system contains utilities for which it is not important that they reside on
every node. Currently the MDP runtime system includes a method lookup routine and two
routines that allocate distributed objects and are described below.

Distributed Objects

A distributed object is an object composed of many constituents. A message sent to the group
name of a distributed object arrives at a constituent chosen by the operating system; the
hope is that the operating system chooses the constituents evenly enough so as not to over-
load some constituents and underutilize others. In addition, each constituent of a distributed
object is itself a Concurrent Smalltalk object.

Distributed objects are supported by the global object manager and the MDP runtime sys-
tem. The MDP runtime system handles allocation of distributed objects, while the global ob-
ject manager handles accessing constituents of distributed objects.

79

Concurrent Smalltalk on the Message-Driven Processor

Implementation

Each distributed object is implemented solely as a set of constituent objects; there is no
“group” data for a distributed object anywhere in the system. The group name of a dis-
tributed object contains enough information to permit quickly finding the ID of any of its
constituents as well as a convenient way to find a nearby constituent. The structure of the
group name is shown in Figure 4-23.

3 333 11 11
5 210 65 10 0

| DID |1

Figure 4-23. Distributed Object Group ID

The group ID (DID) contains the distributed object’s serial number, linear *home” node number (explained in
Figure 4-24), and a signed base-2 logarithm of the distributed object's stride, which is the ratio S of the number of
nodes in the J-Machine to the physical number of constituents. Both the physical number of constituents and the
number of nodes in the J-Machine must be powers of two. The Lg(S) field is signed and 5 bits long, ranging from
-16 (S=1/65536; 65536N constituents on an N-node J-Machine) to 15 (S=32768; 1 constituent for every 32768
nodes) by powers of two. The linear home node number H must be less than S. The kth constituent, counting
from k=0, is located on the node with the linear number H+LkS).

If the stride S is 1 or greater, each constituent object has the same serial number as the group object. If S is less
than 1, several constituents reside on every node in the J-Machine, and more than one serial number is required
to distinguish them. Hence, the distributed object reserves 1/S consecutive constituent serial numbers, and the
kth constituent has serial number N+(k mod 1/S) and resides on the node with the linear number LkS J, where N is
the group name's serial number. H should be zero in this case.

Serial Number Lg(Stride) | Linear Home Node Number

The linear home node number is used to distributed sparse distributed objects evenly
throughout the J-Machine. The linear home node number is always zero for dense dis-
tributed objects (ones with stride 1 or less). :

The physical size of a distributed object has been constrained to be a power of two for two
reasons. First, it is desirable to be able to find any constituent from just the information con-
tained in the DID, and encoding an arbitrary distributed object size in the DID would require
too many bits; recording the logarithm of the size requires only five bits for any potential
size. Second, unless some radically different addressing scheme were used, distributing the
constituent objects evenly throughout the J-Machine would require a division operation ei-
ther in the Co routine or in the PreferredConstituent! routine.

A variant of the current scheme has been considered in which the constituents above the
logical size of the distributed object are not created. The Co system call would work fine in
such a scheme (except that its range checking would no longer be valid), but the Preferred-
Constituent routine might return a nonexistent constituent of the distributed object, and
since it does not know the logical size of the distributed object, it would not know that the
constituent does not exist. It could, however, inquire at the constituent’s home node, at the
expense of complicating and slowing down the implementation of distributed objects in Cos-
mos. This variant may be adopted if the loss of memory caused by rounding the sizes of dis-
tributed objects up to powers of two becomes too large.

Another consequence of rounding the sizes of distributed objects up to powers of two is that
the MDPs with high node numbers contain mostly unused constituents. This difficulty could
be alleviated by always allocating a 11-bit random “home” node number, and adding that
number to the node number of the constituent modulo the size of the J-Machine, at the ex-
pense of complicating the PreferredConstituent routine somewhat. If a J-Machine has
more than 2048 nodes, bits could be stolen from the serial number field and added to the
home node number field. To avoid placing too severe a restriction on the number of dis-

lpreferredConstituent returns the ID of a constituent near to the current node.

80

Chapter 4 The Cosmos Operating System

3 333 11
5 210 65 10 0

E

Constituent 5

Linear Node Number $2C9
010111001001

E:

&

Figure 4-24. Looking up a Constituent in a Sparse Distributed Object
This figure illustrates the co system call looking up constituent 5 in a 16-constituent distributed object on a 2048-
node J-Machine organized as 16x16x8. The stride is 2048/16=128, so lg(stride) is 7. Constituent 0 is located on
the node with the linear number $49. The distributed object's serial number is $1328.

Since the stride is greater than 1, the constituent number 5 is multiplied by the stride 128 and added to $49 to get
constituent 5’s linear node number, $2C9. The dimensions in the linear node number are packed together to
simplify arithmetic operations; the co system call unpacks them to get the constituent's ID.

tributed objects in the system, NewDistobj could use both the home node number and the
serial node number fields to distinguish distributed objects.

Locating Constituents

The Co system call implements Concurrent Smalltalk’s co primitive. To find the £th con-
stituent ID of a distributed object, the global object manager shifts k by lg(stride) bits to the
left and adds the linear home node number to obtain the constituent’s linear node number
and ANDs k with a right-justified mask of max(-lg(Stride),0) ones and adds it to the serial
number from the group object to obtain the constituent’s serial number (see Figures 4-24 and
4-25).

When a message is sent to the group name, the translation from the group name to a con-
stituent object happens transparently in the global object manager. The PreferredCon-
stituent system call also performs this translation. Just like any ID-to-physical-address
translation, the object manager first checks the XLATE table. If it finds a match for the DID
there, it immediately returns the physical address from the XLATE table. If not, it con-
structs the ID of a nearby constituent by appending the group serial number to the local lin-
ear node number with the lowest max(lg(Stride),0) bits replaced with the lowest bits from the
group linear home node number. Then the resulting constituent ID is looked up in the usual
object manager manner. If a physical address of the constituent is found, it is entered into
the XLATE table bound with the DID to accelerate the lookup next time.

The above algorithm deterministically maps every node in the J-Machine to exactly one con-
stituent of the distributed object. Having such a deterministic mapping is important because
a method running on a distributed object may reference the distributed object several times
during its execution, and it is very important that it get the same constituent every time.
For example, the method might be suspended while accessing fields of a constituent. When
the method restarts and references the constituent again, it is important that it refer to the

81

Concurrent Smalltalk on the Message-Driven Processor

>>6)+0 = $186)

Constituent 25000 // / >((25000

61328 + 25000 MOD 246 = $135 Linear Node Number $186
00110000110

3 333
5

Figure 4-25. Looking up a Constituent in a Dense Distributed Object

This figure illustrates the co system call looking up constituent 25000 in a 131072-constituent distributed object on
a 2048-node J-Machine organized as 16x16x8. The stride is 2048/131072=1/64, so lg(stride) is -6. The home
node number should be zero in a dense object. The distributed object has a block of 64 reserved serial numbers
starting with $1328.

The constituent number 25000 is muitiplied by the stride 1/64 and added to 0 to get constituent 25000's linear
node number, $186. The constituent’s serial number is determined by calcutating 25000 MOD 64 and adding it to
the base serial number. As before, the dimensions in the linear node number are unpacked to get the con-
stituent's ID.

same one. Since processes can’t migrate across nodes, the function will, in fact, refer to the
same constituent every time it translates the DID to a physical address.

The above mapping will utilize the distributed object’s constituents uniformly if calls to the
distributed object come from a uniform distribution of nodes, unless the stride is less than
one, in which case only one distributed object representative is chosen per node. If the MDPs
were arranged in a linear array, the above mapping would always yield either the closest or
the second-closest constituent to a given node. Since the MDPs are actually arranged in a
two or three-dimensional mesh, the mapping will tend to cluster the constituents in lines or
planes of the mesh, which may or may not produce favorable communication patterns. Over-
all, though, the current mapping approach does have the advantage of simplicity, and it is
useful for small-scale J-Machines.

Allocating Distributed Objects

{NewDistobj class:class sizeinteger) :distobj Function

Distributed objects are allocated by calling the NewDistobj function in the MDP runtime
system. That function first checks whether it was called on node 0; if not, it forwards its
message to node 0, and the function is invoked there. If invoked on node 0, the function cal-
culates the physical size of the distributed object by rounding the given logical size size to the
nearest higher power of two. Then the stride is computed by dividing the number of MDPs in
the J-Machine by the physical size; since the relevant numbers are all powers of two, the
computations are done using base-2 logarithms. Max(1/stride,1) consecutive distributed ob-
ject serial numbers are allocated for this distributed object, and a random home node is cho-
sen between 0 and [stride}-1, inclusive. A global variable is used to maintain the next free
DID number. Finally, a DID is constructed from the above information, and a NewDistobj~-

82

Chapter 4 The Cosmos Operating System

Tree message is sent to the zeroth constituent of the distributed object (which does not exist
yet, but the Co function can calculate its ID anyway). When that message returns, the DID
is returned to the caller.

{(NewDistobjTree class:class size:integer ID:distobj start,logDeltainteger) :null
Function

NewDistobjTree creates constituents numbered start through (start+2logbela.1) of the dis-
tributed object with the DID ID and then returns. Each constituent has group, index, and
logical size instance variables, which are initialized to the appropriate values; size is the logi-
cal size. NewDistobjTree works by creating the constituent start if logDelta is zero or by re-
cursing itself on the two halves of its range if logDelta is positive.

The current implementation will have to be extended on a larger system so as not to bottle-
neck node 0, but it is adequate for small and medium-range systems.

83

Concurrent Smalltalk on the Message-Driven Processor

4.4. Summary

The Cosmos operating system provides the software extension to the MDP architecture
needed to run Concurrent Smalltalk programs. The operating system is comprised of a ker-
nel resident on each MDP and a set of Concurrent Smalltalk functions written in either MDP
assembly language or Concurrent Smalltalk.

The operating system is built in layers which include the heap manager, BRAT manager,
object manager, context manager, global object manager, method manager, control manager,
utilities, and MDP and CST runtime systems. Efficiency and re-entrancy problems were re-
curring issues in the design of the operating system kernel. The criticality system was de-
veloped to deal with the re-entrancy and double faulting problems. In addition, many rou-
tines are inlined in other routines to make the efficiency reasonable and avoid double faults
and re-entrancy problems (in some cases a system call cannot call another system call but
can use it inlined because there are no more free data registers on the MDP; global variables
cannot be used as temporaries in routines running at criticality less than 2).

The operating system facilities were streamlined and simplified compared with those pro-
posed in [38]. The emphasis was on making resource allocation decisions as late as possible.
Thus, the size of the BRAT is varied dynamically at run time instead of being fixed at operat-
ing system compile time as in [38]. The object migration protocol has been streamlined com-
pared with the one in [38]. The resource wait table in [38] has been eliminated entirely; the
BRAT manager is a general-purpose mechanism that can perform the same task better.

Finally, a scheme for quickly addressing constituents of distributed objects was designed.
The scheme is very fast and requires only knowledge of a group ID to find either some nearby
constituent or any given constituent. Disadvantages of the scheme include the necessity of
rounding the size of a distributed object up to the nearest power of two and a resulting de-
creased load on the higher-numbered MDPs in the J-Machine. Means of circumventing these
disadvantages were explored.

84

Chapter 5. Sample Program

This chapter presents the progress of a simple program through the various stages of compi-
lation. Unfortunately, it is difficult to write a simple sample program that exercises all of the
features of a compiler. Instead of trying to write a contrived sample program that exercised
as many features as possible, I decided that a simpler program that exercised the major op-
timizations would make a better example. If an illustration of a more esoteric optimization is
desired, one can write an appropriate Concurrent Smalltalk program, compile it with Opti-
mist II, and watch the intermediate output.

The source program, listed in Figure 5-1, returns the sum of the integers from 0 to n. Figure
5-2 shows a transcript of the interactive Optimist II session in which the program was en-
tered, tested on a few inputs, and then compiled.

(defmethod average integer (b:integer)
(// (+ self b) 2))

(defmethod average boolean (b:boolean)
false)

(defmethod rangesum integer (high)
(if (= self high)
self
(let ((middle (average self high)})
(+ (rangesum self middle)
(rangesum (+ middle 1) high)))))

(defun sum (n)
(rangesum 0 n))

Figure 5-1. The Rangesum Program

The sum function adds the integers from 0 to n, inclusive. The rangesum method adds the integers from self to
high, inclusive. The average method returns the average of two integers; the definition of average for booleans
was included just to confuse the compiler a bit.

CST: {(+ 2 2)

#<Integer 4>

CST: (include)
#<Cst~-Lambda 5024988 SUM>
CST: (sum 0)

#<Integer 0>

CST: (sum 1)

#<Integer 1>

CST: (sum 2)

#<Integer 3>

CST: (sum 10)

#<Integer 55>

CST: (average 3 5)
#<Integer 4>

CST: (average true false)
#<False>

CST: (sum 100)

#<Integer 5050>

CST: (rangesum 10 13)
#<Integer 46>

CST: (compile sum “::fact:Rangesum.mdp")

Optimizing #<Cst-Lambda 4713968 CST::SUM>
Expanded continuations

Folded constants

Forwarded replles

Optimizing #<Cst~-Lambda 4711636 CST::RANGESUM>
Collapsed nconcurrentlys

Expanded continuations

Specialized local types

Deleted moves

Deleted touches

Folded constants

Optimizing #<Cst-Lambda 4709940 CST::AVERAGE>
Expanded continuations

85

Concurrent Smalltalk on the Message-Driven Processor

ized local types
locals

#<Cst-Lambda 4711636 CST::RANGESUM>
uted inlines

ized local types

moves

touches

ted values

dead definitions

locals

#<Cst-Lambda 4713968 CST::SUM>
locals
d ENTER and EXIT

ed built-ins
d ENTER and EXIT

ized vlocs
ed SENDs

g
d labels
ambda 4713968 SUM>

e 5-2. Rangesum Interactive Session
gesum file was read in the (include) directive, at which time the user interactively chose the file name us-
cintosh dialog. A few functions were then tested, after which point the file was compiled.

ing sections will illustrate the actions of some of the compiler’s optimizations on
in Figure 5-1. Please refer to Chapter 3 and [21] for explanations of the trans-
formations.

Initial Phase

The initial phase of the compiler first performs a few macro expansions on the input pro-
gram, compiles the program into hcode, and then performs some transformations on that
hcode to get it into a form that the rest of the compiler can use. Figure 5-3 shows the
macroexpansions which are done by the Optimist II parser, and Figure 5-4 shows the hcode
produced by the parser. To save space, only the transformations on the rangesum method
will be shown from this point on.

Optimization Phase

The Optimist II optimization phase performs local and global optimizations on the program.
The order of the optimizations can be seen in the transcript in Figure 5-2; the compiler often
interrupts the optimization of one function to optimize another because it wants to inline the
second function in the first.

The first transformation done by the optimization phase is the collapsing of nconcurrentlys
and the expansion of continuations to the two-variable format, yielding the hcode in Figure 5-
5. The threads of the nconcurrently are inlined in the function’s main body, and the nconcur-
rently statement is removed. Then, since an MDP continuation is actually two words (a con-
text ID and an offset within that context where the return value should be stored), each con-
tinuation variable is replaced by two variables.

86

Chapter 5 Sample Program

(defmethod rangesum integer (high)
{(1f (= self high)
self
(let ((middle (average self high}))
(+ (rangesum self middle)
(rangesum {(+ middle 1)} high})))))

(DEFMETHOD RANGESUM INTEGER (HIGH) :#:0BJECT
(IF (= SELF HIGH)
SELF
(LET {((MIDDLE (AVERAGE SELF HIGH)))
(+ (RANGESUM SELF MIDDLE) (RANGESUM (+ MIDDLE 1) HIGH)))))

(DEFMETHOD RANGESUM INTEGER (HIGH) :: (CONTINUATION: # :OBJECT)
{IF (= SELF HIGH}
SELF
(LET ((MIDDLE (AVERAGE SELF HIGH)})
(+ (RANGESUM SELF MIDDLE) (RANGESUM (+ MIDDLE 1) HIGH})}}})}

{BEGIN
{DEFSELECTOR RANGESUM)
(ADD~-METHOD RANGESUM INTEGER
(METHOD-LAMBDA INTEGER (HIGH):: (CONTINUATION:#:0BJECT) &NAME RANGESUM
(IF (= SELF HIGH)
SELF
(LET ((MIDDLE {(AVERAGE SELF HIGH)))
(+ (RANGESUM SELF MIDDLE) (RANGESUM (+ MIDDLE 1) HIGH)}})}})))

. (LAMBDA (SELF:INTEGER HIGH) :: (CONTINUATION:#:OBJECT) &NAME RANGESUM
(_WITH~OBJECT (SELF:INTEGER)
{IF (= SELF HIGH)
SELF
(LET ((MIDDLE (AVERAGE SELF HIGH)}))}
(+ (RANGESUM SELF MIDDLE) (RANGESUM (+ MIDDLE 1) HIGH})))))}

Figure 5-3. Rangesum Macroexpansion

The rangesum function is first macroexpanded through two macros that add the class of the continuation to the
defmethod syntax (see Section A.5). Then the de fmethod itself is expanded into a combination of a defse-
lector and an add-method of a method-lambda. Later the method-lambda is expanded into a 1ambda.

(LAMBDA CST::RANGESUM

(#<Parameter CST::SELF #<P-Class CST::INTEGER>

#<Parameter CST::HIGH #<S-Class CST::0BJECT>)

(#<Parameter CST::CONTINUATION #<Cont-Type #<S-Class CST::0BJECT>>>}

(({LOCAL 435) #<S-Class CST::0BJECT>)

((LOCAL 434) #<S-Class CST::0BJECT>)

({LOCAL 433) #<S-Class CST::OBJECT>)

({LOCAL 432) #<S-Class CST::0BJECT>)

((LOCAL CST::MIDDLE) #<S$-Class CST::0OBJECT>)

({LOCAL 431) #<S-Class CST::OBJECT>)

{{LOCAL 430) #<S-Class CST::OBJECT>)

((LOCAL 429) #<S-Class CST::OBJECT>)

{{LOCAL CST::SELF) #<P-Class CST::INTEGER>)}

{(LOCAL CST::HIGH) #<S$-Class CST::O0BJECT>}

{ (LOCAL CST::CONTINUATION) #<Cont-Type #<S-Class CST::0OBJECT>))
(ASSERT-TYPE #<P-Class CST::INTEGER> (LOCAL CST::SELF))
{APPLY {((LOCAL 429})

(#<Built-In-Selector CST::=> (LOCAL CST::SELF) (LOCAL CST::HIGH}})

(IF :FALSE (LOCAL 429) 2587)

(MOVE ({(LOCAL 430) (LOCAL CST::SELF))
(JuMp 2611)
(LABEL 2587}
(APPLY ((LOCAL 431)) ((GLOBAL CST::AVERAGE) (LOCAL CST::SELF) (LOCAL CST::HIGH)))
{MOVE (LOCAL CST::MIDDLE) (LOCAL 431}))
(TOUCH (LOCAL CST::MIDDLE)}
{NCONCURRENTLY

({ (APPLY ({(LOCAL 433))

(#<Built-In~Selector CST::+> (LOCAL CST::MIDDLE) #<Integer 1>})
(APPLY ((LOCAL 434)) ((GLOBAL CST::RANGESUM) (LOCAL 433) (LOCAL CST::HIGH)}))
{(APPLY ({(LOCAL 432))
{ (GLOBAL CST::RANGESUM) (LOCAL CST::SELF) (LOCAL CST::MIDDLE}}))))

(APPLY ({LOCAL 435)) (#<Built-In-Selector CST::+> (LOCAL 432) (LOCAL 434}
(MOVE (LOCAL 430) ({(LOCAL 435))

{LABEL 2611)

{(MOVE (CONT-REF LOCAL CST::CONTINUATION) (LOCAL 430)))

))
Y)

Figure 5-4. Initial Rangesum Hcode
This hcode is the final output of the initial phase. The lambda is comprised of the two parameters (self and high),
a return (continuation), no display parameters, a list of local variables, and a representation of the hcode digraph.

Next, the compiler starts the iterative optimizations. The first successful one is local type

specialization, which uses type dataflow analysis to detect the fact that local 429 always
holds a boolean value, so it changes local 429’s type to boolean.

87

Concurrent Smalltalk on the Message-Driven Processor

{LAMBDA CST;::;RANGESUM

(#<Parameter CST::SELF #<P-Class CST::INTEGER>

#<Parameter CST::HIGH #<S-Class CST::OBJECT>)

(#<Parameter CST::CONTINUATION #<Cont-Type #<S-Class CST::OBJECT>>>)
¢

(((LOCAL 435) #<S5-Class CST::0BJECT>)

((LOCAL 434) #<S-Class CST::O0OBJECT>)

((LOCAL 433) #<S-Class CST::OBJECT>)

{(LOCAL 432) #<S-Class CST::OBJECT>}

((LOCAL CST::MIDDLE) #<S-Class CST::0BJECT>)

{{(LOCAL 431) #<S$-Class CST::0OBJECT>)

{{LOCAL 430} #<S-Class CST::0BJECT>)

({LOCAL 429) #$<S-Class CST::0BJECT>)

{(LOCAL CST::SELF) #<P-Class CST::INTEGER>)

((LOCAL CST::HIGH) #<S-Class CST::0OBJECT>)

{ (LOCAL CST::CONTINUATION) #<Cont~Type #<S5-Class CST::0BJECT>)

((LOCAL CST::CONTINUATION) #<P-Class CST::CONTEXT>)

((LOCAL CST::CONTINUATION} #<Disp-Type #<S-Class CST::0BJECT>))
(ASSERT-TYPE #<P-Class CST::INTEGER> (LOCAL CST::SELF))

(APPLY ((LOCAL 429))

(#<Built-In-Selector CST::=> (LOCAL CST::SELF) (LOCAL CST::HIGH)))

{IF :FALSE (LOCAL 429) 2587)

(MOVE (LOCAL 430) (LOCAL CST::SELF))

{(JUMP 2611)

(LABEL 2587)

(APPLY ((LOCAL 431)) (#<Selector CST:;:AVERAGE> (LOCAL CST::SELF) (LOCAL CST::HIGH))}
(MOVE (LOCAL CST::MIDDLE) (LOCAL 431))

(TOUCH (LOCAL CST::MIDDLE))

(APPLY ((LOCAL 433)) (#<Bullt-In-Selector CST::+> (LOCAL CST::MIDDLE) #<Integer 1>})
(APPLY ((LOCAL 434)) (#<Selector CST::RANGESUM> (LOCAL 433) (LOCAL CST::HIGH)))
(APPLY ((LOCAL 432)) (#<Selector CST::RANGESUM> (LOCAL CST::SELF) (LOCAL CST::MIDDLE}))

(APPLY ((LOCAL 435)) (#<Built-In-Selector CST::+> (LOCAL 432} (LOCAL 434)))

(MOVE (LOCAL 430) (LOCAL 435})

(LABEL 2611)

(MOVE (CONT-REF (LOCAL CST::CONTINUATION) (LOCAL CST::CONTINUATION)} (LOCAL 430}))

Figure 5-5. Hcode after Initial Transformations

The nconcurrently statement has been broken into its threads, and two variables assigned to hold the continuation.
The two new continuation variables have the same name as the single old continuation variable, which is still pre-
sent, but the compiler does not get confused over variable name conflicts.

{LAMBDA CST::RANGESUM
(#<Parameter CST::SELF #<P-Class CST::INTEGER>
#<Parameter CST::HIGH #<S-Class CST::0BJECT>)}
(#<Parameter CST::CONTINUATION #<Cont-Type #<S$-Class CST::O0BJECT>>>)
()
{((LOCAL 435) #<S5-Class CST::0OBJECT>)
((LOCAL 434) #<S-Class CST::OBJECT>}
({LOCAL 433) #<S~Class CST::0BJECT>)
((LOCAL 432) #<S-Class CST::0BJECT>}
{ ({LOCAL CST::MIDDLE) #<S-Class CST::OBJECT>}
{ (LOCAL 431) #<S8~Class CST::0BJECT>)
((LOCAL 430) #<S-Class CST::0BJECT>)
{ (LOCAL 429) #<P~Class CST::BOOLEAN>}
((LOCAL CST::SELF) #<S-Class CST::0BJECT>)
({LOCAL CST::HIGH) #<S-Class CST::0OBJECT>)
{{LOCAL CST::CONTINUATION) #<Cont-Type #<S-Class CST::0OBJECT>)
{{LOCAL CST::CONTINUATION) #<P-Class CST::CONTEXT>)
((LOCAL CST::CONTINUATION) #<Disp-Type #<S~Class CST::0BJECT>})
(ASSERT-TYPE #<P-Class CST::INTEGER> (LOCAL 435))
(APPLY ((LOCAL 429)) (#<Built-In-Selector CST::=> (LOCAL 435) (LOCAL CST::HIGH)}))
(IF :FALSE (LOCAL 429) 2587)

(JUMP 2611)

(LABEL 2587)

(APPLY ((LOCAL 431)) (#<Selector CS$T::AVERAGE> (LOCAL 435) (LOCAL CST::HIGH)})
(APPLY ((LOCAL 433)) (#<Bullt-In-Selector CST::+> (LOCAL 431) #<Integer 1>))
(APPLY ((LOCAL 434)) (#<Selector CST::RANGESUM> (LOCAL 433) (LOCAL CST::HIGH}))
(APPLY ((LOCAL 432)) (#<Selector CST::RANGESUM> (LOCAL 435) (LOCAL 431)))

(APPLY ((LOCAL 435)} {#<Built-In-Selector CST::+> (LOCAL 432) {(LOCAL 434}})
(LABEL 2611)
(MOVE (CONT-REF (LOCAL CST::CONTINUATION) (LOCAL CST::CONTINUATION)) (LOCAL 435)))

Figure 5-6. Locally Optimized Hcode

This hcode has been fully optimized using the optimizations in the original Optimist compiler. Note that due to
move elimination the self parameter is no longer stored in the old self local; instead, a new local numbered 435 is
now used to hold the self value.

Afterwards, the standard dataflow optimizations described in [21] remove a few moves and a
touch to yield the hcode in Figure 5-6. Then the constant folder realizes through type infer-
ence that only one possible method of the rangesum and average selectors could be called, so
it replaces the method calls with direct function calls (Figure 5-7).

88

Chapter 5 Sample Program

(LAMBDA CST: :RANGESUM
(#<Parameter CST::SELF #<P-Class CST::INTEGER>
#<Parameter CST::HIGH #<S-Class CST::0BJECT>}
(#<Parameter CST::CONTINUATION #<Cont-Type #<S-Class CST::OBJECT>>>)

{ ((LOCAL 435) #<5-Class CST::0BJECT>)

((LOCAL 434) #<S-Class CST::O0BJECT>)

((LOCAL 433) #<S-Class CST::O0BJECT>)

((LOCAL 432) #<S~Class CST::0BJECT>)

((LOCAL CST::MIDDLE) #<S-Class CST::OBJECT>)

((LOCAL 431) #<S-~Class CST::0BJECT>)

({LOCAL 430) #<S-Class CST::OBJECT>)

((LOCAL 429) #<P-Class CST::BOOLEAN>)

({LOCAL CST::SELF) #<S-Class CST::OBJECT>)

({LOCAL CST::HIGH) #<S-Class CST::OBJECT>)

({LOCAL CST::CONTINUATION) #<Cont-Type #<S-Class CST::OBJECT>)

({LOCAL CST::CONTINUATION) #<P~-Class CST::CONTEXT>)

{{LOCAL CST::CONTINUATION) #<Disp-Type #<S-Class CST::0BJECT>))
(ASSERT-TYPE #<P-Class CST::INTEGER> (LOCAL 435))

(APPLY ((LOCAL 429)) (#<Bullt-In-Selector CST::=> (LOCAL 435) (LOCAL CST::HIGH)})
(IF :FALSE (LOCAL 429) 2587)

(JUMP 2611)

(LABEL 2587)

(APPLY ((LOCAL 431)) ({(LAMBDA CST::AVERAGE) (LOCAL 435) (LOCAL CST::HIGH)))
(APPLY ((LOCAL 433)) (#<Built-In-Selector CST::+> (LOCAL 431) #<Integer 1>))
(APPLY ({(LOCAL 434)) ({(LAMBDA CST::RANGESUM) (LOCAL 433) (LOCAL CST::HIGH}))
(APPLY ((LOCAL 432)) ((LAMBDA CST::RANGESUM) (LOCAL 435) (LOCAL 431)))
(APPLY ((LOCAL 435)) (#<Buillt-In-Selector CST::+> (LOCAL 432) (LOCAL 434})})
(LABEL 2611)

(MOVE {CONT-REF (LOCAL CST::CONTINUATION} (LOCAL CST::CONTINUATION}) (LOCAL 435)))

Figure 5-7. Hcode after Global Constant Propagation
The constant propagator found that the average and rangesum method calls would always invoke the same meth-
ods, so it replaced them with function calls.

{LAMBDA CST::AVERAGE
(#<Parameter CST::SELF #<P-Class CST::INTEGER>
#<Parameter CST::B #<P-Class CST::INTEGER>)
($<Parameter CST::CONTINUATION #<Cont-Type #<S-Class CST::0OBJECT>>>)
()

{{ ({LOCAL 424) #<P-Class CST::INTEGER>)
{(LOCAL 423) #<P-Class CST::INTEGER>)
((LOCAL CST::SELF) #<P-Class CST::INTEGER>)
{(LOCAL CST::B) #<P-Class CST::INTEGER>)
{ (LOCAL CST::CONTINUATION) #<P-Class CST::CONTEXT>)
{(LOCAL CST::CONTINUATION} #<Disp-Type #<S-Class CST::O0BJECT>})
(ASSERT-TYPE #<P-Class CST::INTEGER> (LOCAL CST::SELF))
(APPLY ((LOCAL 423)) (#<Built-In-Selector CST::+> (LOCAL CST::SELF) (LOCAL CST::B)))
(APPLY ((LOCAL 424)) (#<Built-In-Selector CST:://> (LOCAL 423) #<Integer 2>})
(MOVE (CONT-REF (LOCAL CST::CONTINUATION) (LOCAL CST::CONTINUATION)) (LOCAL 424)))

Figure 5-8. Optimized Average Hcode

The average method for integers has been optimized in an attempt to inline it inside rangesum..

Next, the optimizer attempts to inline the average and rangesum functions. Due to the an-
tirecursion restrictions, it cannot inline rangesum inside itself, but it is more successful with
average. In order to inline average, it first optimizes it, yielding the hcode in Figure 5-8.
Then it checks that the inlining heuristics are satisfied—they are because the optimized av-
erage contains only two primitive calls. Average does not perform any computation after it
replies, so all of the requirements for inlining have been satisfied. Therefore, the optimizer
inlines average inside rangesum to produce the hcode in Figure 5-9, which is optimized to the
hcode in Figure 5-10 at end of the general optimizations.

89

Concurrent Smalltalk on the Message-Driven Processor

(LAMBDA CST::RANGESUM
(#<Parameter CST::SELF #<P-Class CST::INTEGER>
#<Parameter CST::HIGH #<S-Class CST::0BJECT>)
(#<Parameter CST::CONTINUATION #<Cont-Type #<S~Class CST;::0BJECT>>>)

(({LOCAL 435) #<S-Class CST::0BJECT>)
v ({LOCAL 434) #<S-Class CST::0BJECT>)
{(LOCAL 433) #<S-Class OBJECT>)
({LOCAL 432) #<S-Class CST::0BJECT>)
((LOCAL 431) #<S-Class CST::0BJECT>)
((LOCAL 429) #<P-Class CST::BOOLEAN>)
((LOCAL CST::HIGH) #<S-Class CST::OBJECT>)
((LOCAL CST::CONTINUATION) #<P-Class CST::CONTEXT>)
((LOCAL CST::CONTINUATION) #<Disp-Type #<S-Class CST::OBJECT>)
((LOCAL 424) #<P-Class CST::INTEGER>)
({LOCAL 423) #<P-Class CST::INTEGER>)
((LOCAL CST::SELF) #<P-Class CST::INTEGER>)
({LOCAL CST::B) #<P-Class CST::INTEGER>)
((LOCAL 455) #<S-Class CST::0BJECT>))
(ASSERT-TYPE #<P-Class CST::INTEGER> (LOCAL 435))
(APPLY ({(LOCAL 429)) (#<Built-In-Selector CST::=> (LOCAL 435) (LOCAL CST::HIGH)))
(IF :FALSE (LOCAL 429) 2979)
{JUMP 2611)
(LABEL 2979)
(MOVE (LOCAL CST::B) (LOCAL CST::HIGH))
(MOVE (LOCAL CST::SELF) (LOCAL 435))
{TOUCH (LOCAL CST::B))
{TOUCH (LOCAL CST::SELF})
(ASSERT-TYPE #<P-Class CST::INTEGER> (LOCAL CST: :SELF))
(APPLY ((LOCAL 423)) (#<Built-In-Selector CST::+> (LOCAL CST:3SELF) (LOCAL CST::B}})
(APPLY ((LOCAL 424)) (#<Built-In-Selector CST:://> (LOCAL 423) #<Integer 2>})
(MOVE (LOCAL 455) (LOCAL 424))
(MOVE (LOCAL 431) (LOCAL 455))
(APPLY ((LOCAL 433)) (#<Built-In-Selector CST::+> (LOCAL 431} #<Integer 1>}}
(APPLY ((LOCAL 434)) ((LAMBDA CST::RANGESUM) (LOCAL 433) (LOCAL CST::HIGH)))
(APPLY ((LOCAL 432)) (({(LAMBDA CST::RANGESUM) (LOCAL 435) (LOCAL 431)))
(APPLY ((LOCAL 435)) (#<Built-In-Selector CST::+> (LOCAL 432) (LOCAL 434)))
(LABEL 2611)
(MOVE (CONT-REF {(LOCAL CST::CONTINUATION)} (LOCAL CST::CONTINUATION)) (LOCAL 435)))

Figure 5-9. Rangesum with Average Inlined

The integer average method has just been inlined into rangesum.

(LAMBDA CST::RANGESUM

(#<Parameter CST::SELF #<P-Class CST::INTEGER>

#<Parameter CST::HIGH #<S-Class CST::0BJECT>)

(#<Parameter CST::CONTINUATION #<Cont-Type #<S-Class CST::OBJECT>>>)

0
({ (LOCAL 435) #<S-Class CST::0BJECT>)

({LOCAL 434) #<S~Class CST::0BJECT>)

({LOCAL 433) #<P-Class CST::INTEGER>)

{ (LOCAL 432) #<S-Class CST::0BJECT>)

{{LOCAL 429) #<P-Class CST::BOOLEAN>)

((LOCAL CST::HIGH) #<S-Class CST::QBJECT>)

((LOCAL CST::CONTINUATION} #<P-Class CST::CONTEXT>)

((LOCAL CST::CONTINUATION) #<Disp-Type #<S-Class CST::OBJECT>)

((LOCAL 424) #<P-Class CST::INTEGER>)

({LOCAL 423) #<P-Class CST::INTEGER>})
(ASSERT-TYPE #<P-Class CST::INTEGER> (LOCAL 435))
(APPLY ((LOCAL 429)) (#<Built-In-Selector CST::=> (LOCAL 435) (LOCAL CST::HIGH}})
(IF :FALSE (LOCAL 429) 2541)
(JUMP 2611)
(LABEL 2541)
(ASSERT-TYPE #<P-Class CST::INTEGER> (LOCAL 435))
(APPLY ((LOCAL 423)) (#<Built-In-Selector CST::+> (LOCAL 435) (LOCAL CST::HIGH}))
(APPLY ((LOCAL 424)) (#<Built-In-Selector CST:://> (LOCAL 423) #<Integer 2>))
(APPLY ((LOCAL 433)) (#<Built-In-Selector CST::+> (LOCAL 424) #<Integer 1>)}
(APPLY ((LOCAL 434)) ((LAMBDA CST::RANGESUM) (LOCAL 433) (LOCAL CST::HIGH)))
(APPLY ((LOCAL 432)) ((LAMBDA CST::RANGESUM) (LOCAL 435} (LOCAL 424)))
(APPLY ((LOCAL 435)) (#<Built-In-Selector CST::+> (LOCAL 432) (LOCAL 434}))
(LABEL 2611)
(MOVE (CONT-REF (LOCAL CST::CONTINUATION) (LOCAL CST::CONTINUATION)) (LOCAL 435)))

Figure 5-10. Rangesum after General Optimizations
The rangesum hcode is now at the "Optimized Heode" stage in Figure 3-4.

The MDP-specific optimizations remove the assert-type hcode, reduce the division to a shift,
and insert enter and exit heodes to yield the final hcode in Figure 5-11.

90

Chapter 5 Sample Program

(LAMBDA CST: :RANGESUM
(#<Parameter CST::SELF #<P-Class CST::INTEGER>
#<Parameter CST::HIGH #<S5-Class CST::0BJECT>)
(#<Parameter CST::CONTINUATION #<Cont~Type #<S~Class CST::OBJECT>>>)

(({LOCAL 435) #<S-Class CST::OBJECT>)

{{LOCAL 434) #<Ss-Class CST::OBJECT>)

({LOCAL 433) #<P-Class CST::INTEGER>)

({LOCAL 432) #<S-Class CST::0BJECT>)

((LOCAL 429) #<P-Class CST::BOOLEAN>)

({LOCAL CST::HIGH) #<S-Class CST::OBJECT>)

({LOCAL CST::CONTINUATION) #<P-Class CST::CONTEXT>)

({LOCAL CST::CONTINUATION) #<Disp-Type #<S-Class CST::OBJECT>)

({LOCAL 424) #<P-Class CST::INTEGER>)

((LOCAL 423) #<P-Class CST::INTEGER>))
(ENTER)
(APPLY ((LOCAL 429)) (#<Built-In-Selector CST::=> (LOCAL 435) (LOCAL CST::HIGH)})
(IF :FALSE (LOCAL 429) 2547)
(JUMP 2611)
(LABEL 2547)
(APPLY ((LOCAL 423)) (#<Built-In-Selector CST:;:+> (LOCAL 435) (LOCAL CST::HIGH)))
(APPLY ((LOCAL 424)) (#<Built-In-Selector CST::ASH> (LOCAL 423) #<Integer -1>})
(APPLY ((LOCAL 433)) (#<Built-In-Selector CST::+> (LOCAL 424) #<Integer 1>))
(APPLY ((LOCAL 434)) ((LAMBDA CST::RANGESUM) (LOCAL 433) (LOCAL CST::HIGH}))
(APPLY ({LOCAL 432)) ((LAMBDA CST::RANGESUM) (LOCAL 435) (LOCAL 424)))
(APPLY ((LOCAL 435)) (#<Bullt-In-Selector CST::+> (LOCAL 432) (LOCAL 434)})
{LABEL 2611)
{MOVE (CONT-REF (LOCAL CST::CONTINUATION) (LOCAL CST::CONTINUATION})} (LOCAL 435))
(EXIT))

Figure 5-11. Final Hcode

This is the final hcode produced before it is compiled into MDP assembly language.

Compilation Phase

The compilation phase compiles each hcode in Figure 5-11 into MDP assembly instructions
and then peephole-optimizes and emits the resulting code to produce the MDPSim file in
Figure 5-12. There is no need to describe the transformations here, as an appropriate exam-
pleisin [21].

The definitions of the label numbers in Figure 5-12 contain expressions of the form LABEL
cObject=(5&mX) <<sX| (5&mY) <<sY] (5&mZ) <<sZ}| (5&m3) <<s3| (5&m4) <<s4| (5&m5) <<

s5. This expression means that cObject is class with serial number 5. Nevertheless, since
objects should be distributed throughout the J-Machine, the bits in the class serial number 5
are permuted to map the low-order bits onto the bits denoting the x, y, and z network coordi-
nates of an object. This is done by the first half of the expression,
(56mX) <<sX| (5&mY) <<sY| (5&mZ) <<sZ; mX, mY, mZ, sX, sY, and sz are constants defined
by the operating system and depend on the dimensions of the J-Machine. The second half of
the expression, (5&m3)<<s3]| (5&6md)<<s4| (5&m5)<<s5, maps the rest of the class serial
number bits onto the remaining bits. A similar expression, REF REV fSum=ID: (-
26&mX) <<sX| (=2&mY) <<sY| (-2&mZ)<<sZ| (-2&mS) <<s8, is used to map objects onto nodes.

LABEL cObject=(5&mX) <<sX| (5&mY)<<sY] {5&m2) <<sZ}| (5&4m3)<<s3| {(5&m4) <<s4| (56m5)<<s5

LABEL cClass={8&mX)<<sX| {(8&mY) <<sY| (B&mZ)<<sZ| {8&m3) <<s3| (B&md)<<s4| (B&mS) <<s5

LABEL cStandard Class={(3&mX) <<sX| (3&mY)<<sY| (3&mZ}<<sZ] (36m3)<<s3| (36m4) <<s4{ (3&m5) <<s5
LABEL cPrimitive_Class={(2&mX)<<sX| (2amY) <<sY{ (2&mZ}<<sZ]| (2&m3)<<s3| (24m4)<<s4]| (2&m5) <<s5
LABEL cDistributed Class=(4&mX)<<sX]| (4&mY)<<sY| (4&mZ)<<sZ) (4&m3)<<s3| (4&m4)<<s4| (4&m5) <<s5
LABEL cSymbol=(7&mX)<<sX| (7&mY)<<sY| {7&m2) <<s2] (7&m3)<<s3| (7&md) <<s4 | (7&m5)<<s5

LABEL cNull={6&mX)<<sX| (6&mY)<<sY| (6&mZ) <<sZ| {6&m3)<<s3| (6&m4) <<s4] (6&m5)<<s5

LABEL cFunct=(17&mX)<<sX] {17&mY)<<sY| {17&mZ)<<sZ| (17&m3)<<s3|(17am4)<<s4] (17&m5)<<s5

LABEL cSelector=(9&mX)<<sX| (9&mY)<<sY| {9&6mZ) <<sZ| (9&4m3)<<s3| (9&m4) <<s4| (9&6m5) <<s5

LABEL cMagnitude=(18&mX}<<sX| (18&mY)<<sY| {18&mZ)<<sZ| (18&m3)<<s3| (18&sm4)<<s4] (18&m5)<<s5
LABEL cCharacter=({10&mX) <<sX] (10&mY) <<sY| (10&m2)<<sZ]| (10&m3) <<s3| (10&m4) <<s4| (10&m5) <<s5
LABEL cNumber=(19&mX)<<sX]| {19&mY)<<sY| (19&4mZ)<<sZ2] (196m3)<<s3]| (19&md) <<s4| (19§mS5)<<s5
LABEL cReal=(20&mX)<<sX| (20&mY}<<sY} (20&m2)<<sZ| (20&m3)<<s3| (20&m4) <<s4| (20&m>) <<s5

LABEL cInteger={(1l&mX}<<sX| (11&mY)<<sY| (11&m2)<<sZ]|{1llaem3)}<<s3|(11&m4)<<s4| (11&mbd)<<s5
LABEL cBoolean={12&mX)<<sX| {12&mY)<<s¥Y] (12&mZ)<<s2| (12&m3)<<s3| (12&m4)<<s4| (12&m5)<<s5
LABEL cFalse=(13&mX)<<sX| (13&mY)<<sY| {13&mZ)<<s2| (13sm3)<<s3| (13am4)<<s4d| (13&m5)<<s5

LABEL cTrue=(14&mX)<<sX| (14&mY)<<sY| (14&mZ)<<s2] {(14&m3)<<s3| (14&m4)<<s4] (14&m5)<<s5

LABEL cFloat=(15&mX)<<sX| (15&mY)<<sY| (15&mZ)<<s2| {15&m3)<<s3| (156m4) <<s4] (15&m5) <<s5

LABEL cFunction={16&mX)<<sX| (16&mY)<<sY| (16&mZ)<<sZ]| (16&m3)<<s3| (16&md)<<sd]| {16&m5)<<s5
LABEL c_Closure=(21&mX)<<sX| (2l&mY)<<sY| (21&mZ)<<sZ| (21&m3)<<s3]| (21&m4)<<s4| {21&m5)<<s5
LABEL cContext={22&mX)<<sX| {22&mY) <<sY| (22&m2)<<s2| (22&6m3)<<s3| {22&m4)<<s4| (22&m5) <<s5
LABEL cDisplacement=(23&mX)<<sX| (23&mY) <<sY]| {(23&mZ)<<s2| (23&4m3)<<s3}| (23sm4)<<s4d] (23&m5) <<s5S
LABEL cContinuation=(246mX)<<sX| (24&mY)<<sY| {24&mZ)<<s2| (24&m3)<<s3| (24&m4)<<s4| (245m5) <<s5
LABEL cGlobal=(25&mX)<<sX| {25&mY)<<sY| (25&m2)<<sZ]| (25&m3)<<s3} (25&6m4) <<sd4| (25&m5)<<s5
LABEL cDistobj=(26&mX) <<sX| (26&m¥Y}<<sY| {26&m2) <<s2] (26&m3) <<s3| (26&m4) <<s4| (26&m5) <<sS

91

Concurrent Smalltalk on the Message-Driven Processor

REF
REF
REF
REF
REF

REV
REV
REV
REV
REV

SelPLUS=TAGO:subSEL<<subtagN| (0&mX) <<sX| (0&mY)<<sY| (0&m2Z) <<sZ| {0&m3) <<s3| (0&m4) <<s4| {0&m5) <<s5
selEQUAL=TAGO: subSEL<<subtagN{ {1&mX) <<sX| (1&m¥)<<sY| {1&mZ) <<sZ| (14m3) <<s3| (1&m4) <<sd| {1&m5)<<s5
selAsh=TAGO:subSEL<<subtagN|(2&mX)<<sX|(2&mY)<<sY|(2&mZ)<<sZ|(2&m3)<<s3l(2&m4)<<s4|(2&m5)<<s$
fRangesum=ID: {(-16mX) <<sX| {~1&mY)<<sY| (-1&m2) <<s2| (-1&mS) <<sS

fSum=1ID: (-2&mX) <<sX| (-2&mY) <<sY| {-2&m2) <<sZ| (-2&mS) <<sS

MODULE cObject

DC MSG:hdrCopyable|cStandard Class<<offsetN|5
DC TAGO: subCLASS<<subtagN|cObject

DC MSG:;cObject<<offsetN|2

DC i

DC TAGO: subCLASS<<subtagN|cObject

END

MODULE cClass

DC MSG:hdrCopyable|cPrimitive_Class<<offsetN|6
DC TAGO:subCLASS<<subtagN|cClass

DC NIL

DC 2

bC TAGO:subCLASS<<subtagN|cClass

DC TAGO: subCLASS<<subtagN|cObject

END

MODULE cStandard Class

DC MSG:hdrCopyable|cPrimitive Class<<offsetN|?7
DC TAGO:subCLASS<<subtagN|cStandard Class

DC NIL -

DC 3

DC TAGO:subCLASS<<subtagN|cStandard_Class

DC TAGO:subCLASS<<subtagN|cClass

DC TAGO:subCLASS<<subtagN|cObject

END

... MODULEs for the rest of the classes deleted ...

MODULE selPLUS

DC MSG:hdrCopyablejcSelector<<offsetN}3
DC {selPLUS}

DC 0

END

MODULE selEQUAL

DC MSG:hdrCopyable|cSelector<<offsetN|3
DC {selEQUAL}

DC 0

END

MODULE selAsh

DC MSG:hdrCopyable|cSelector<<offsetN|3
DC {selAsh}

DC o]

END

MODULE fRangesum

DC MSG:hdrCopyable|cFunction<<offsetN|28
DC { fRangesum}

DC 6

MOVE {2,A3),R0 ; 3
MOVE {2,A3),R3 ; 3.5
EQUAL R3, [3,A3],R1 ;4
BT R1,~L001 ; 4.5
ADD R3, (3,A3],R1 ; 5
ASH R1,-1,R3 ;5.5
ADD R3,1,R2 ;6
MOVE R2, RO ; 6.5
CALL objectNode ;7
DC MSG:msgApplyFunctionié ; 8
SEND20 R1,RC ;9
DC { fRangesum} ; 10
SEND20 RO, R2 ;11
SENDO [3,A3] : 11,5
MOVE 6,R0O ;12
SEND2EO [1,Al],RO ; 12.5
WTAG RO, 6, RO ; 13
MOVE RO, [6,Al] ; 13.5
MOVE [2,A3),R0 ; 14
CALL objectNode ; 14.5
bC MSG:msgApplyFunction|é ; 15
SEND20 RI1,RO ; 16
DC { fRangesum} ;17
SENDO RO ; 18
SEND20 [2,A3},R3 ; 18.5
MOVE 7,R0 s 19
SEND2EC [1,Al},RO ; 19.5
WTAG RO, 6,RO ; 20
MOVE RO, [7,A1) ; 20.5
MOVE [7,Al1),R2 ;21
ADD R2, [6,A1],R1 ; 21.5
MOVE R1, {2,A3) ; 22

Chapter 5

L0O1:

Loo2:

DOWNLOAD
DOWNLOAD
DOWNLOAD
DOWNLOAD
DOWNLOAD
DOWNLOAD
DOWNLOAD
DOWNLOCAD
DOWNLOAD
DOWNLOAD
DOWNLOAD
DOWNLOAD
DOWNLOAD
DOWNLOAD
DOWNLOAD
DOWNLOAD
DOWNLOAD
DOWNLOAD
DOWNLOAD
DOWNLOAD
DOWNLOAD
DOWNLOAD
DOWNLOAD
DOWNLOAD
DOWNLOAD
DOWNLOAD
DOWNLOAD
DOWNLOAD
DOWNLOAD
DOWNLOAD

RUN

MOVE {4,A3]),R2 ;23
BNIL R2,~L002 ; 23.5
DC MSG:msgReplyl4 ; 24
SEND20 R2,RO ; 25
SENDO R2 7 25.5
SENDO [5,A3] ; 26
SENDEO [2,A3) ; 26.5
SUSPEND ;27
END
MODULE fSum
DC MSG:hdrCopyable|cFunction<<offsetN|1l0
DC { £Sum}
DC 5
MOVE 0, RO ;3
CALL objectNode ; 3.5
DC MSG:msgApplyFunctionté ; 4
SEND20 R1,RO ;S
DC {fRangesum} : 6
SENDO RO ;7
SENDO o] ; 1.5
SENDO [2,A3] ; 8
SENDO (3,A3] ; 8.5
SENDEO [4,A3] : 9
SUSPEND : 9.5
END

cObject

cClass

cStandard_Class
cPrimitive_Class
cDistributed Class
cSymbol -
cNull

cFunct
cSelector
cMagnitude
cCharacter
cNumber

cReal

cInteger
cBoolean

cFalse

cTrue

cFloat
cFunctioen
c_Closure
cContext
cDisplacement
cContinuation
cGlobal
cDistobj
selPLUS
selEQUAL

selAsh
fRangesum

£Sum

Figure 5-12. MDPSim Output File

Except for Cosmos, this file contains all code and data necessary to run sum on a J-Machine. The file starts with
class number definitions, which are followed by definitions of the classes themselves, including the class hierarchy.
The selectors are defined next, followed by code and MDPSim statements that download all of the code, selector,
and class modules to the simulated J-Machine. The RUN command runs the J-Machine until all modules have
been loaded.

Only the functions and selectors necessary to run the program have been compiled. For example, neither average
method has been included because, after optimization, neither is necessary to run sum. Similarly, all method dis-
patches have been optimized out, so there is no need to include the definition of the rangesum selector.

Running Rangesum

Sample Program

Before rangesum can be run on MDPSim, a file holding the calls that will be done needs to be
defined; the file that was used is shown in Figure 5-13. Each MESSAGE directive defines an
ApplyFunction message that can be used to call the sum function. The argument is the
third word of the message, while the fourth and fifth words contain a magic continuation that
cause the Reply message to be printed by MDPSim in the listener window. The MESSAGE

definitions can also be entered into MDPSim manually.

93

Concurrent Smalltalk on the Message-Driven Processor

Once the calls file is written, MDPSim can be started and used to run sum on a sample input.
An example session is shown in Figure 5-14, in which the input 10 is tried on sum, and the

statistics observed. The results will be discussed in more detail in Chapter 7.

MESSAGE suml
MSG:msgApplyFunction|5
{£Sum}

1

IONODE

0

END

MESSAGE sumlO
MSG:msgApplyFunction|5
{£Sum}

10

IONODE

o]

END

MESSAGE sum50
MSG:msgApplyFunction|5
{£Sum}

50

IONODE

0

END

Figure 5-13. Rangesum Call File

Three messages have been defined for calling the sum function with the arguments 1, 10, and 50. IONODE is an
integer constant predefined by MDPSim and denotes the address of the MDP serving as the I/O node between the
J-Machine and the outside world. In MDPSim, the I/O node simply prints every message it receives.

MDPSim -x 2 -y 2 -msize 0x1000 ::Cosmos:Cosmos.m RangeSum.mdp RangeSum.calls

Message-~Driven Processor Simulator

Version 7.0 Rev B

Accompanies MDP Architecture Document 11B

Written by Waldemar Horwat

Architecture Updates by Brian Totty and Jerry Larivee
UROPs for Bill Dbally

4 MDPs present.
@0..3}watch fault all

Q0..3lresetstats
@0..3}inject sumlO@l

@0,.3}run

Fault: @ 1: (faultXlateO)

Fault: @ 1: (BBBW} $008B = DC f1tXLATE

Fault: @ 1: {lookupBinding)

Fault: @ 1l: {BBBW} $00C6 = DC fltLookupBinding
Fault: @ 1: {enterBinding)

Fault: @ 1l: {BBBW} $00C5 = DC fltEnterBinding
Fault: @ 2: (blockSend)

Fault: @ 2: {BBBW} $00C2 = DC fltBlockSend
Fault: @ 2: (faultLimit0)

Fault: @ 2: (BBBW} $0088 = DC fltLimit

Fault: @ 1: (allocObject)

Fault: @ 1: {BBBW} $00C4 = DC fltAllocObject
Fault: @ 1: {lockupBinding)

Fault: @ 1: {BBBW} $00C6 = bC fltLookupBinding
Fault: @ 1l: {blockMove)

Fault: @ 1: {BBBW} $00Cl = DC fltBlockMove
Fault: @ 1: (faultLimit0)

Fault: @ 1: {BBBW} 30088 = DC fltLimit

Fault: @ 1: {objectNode)

Fault: @ 1: {BBBW} $00D3 = DC fltObjectNode
Fault: @ 2: (faultXlateO)

Fault: @ 2: (BBBW} S008B = DC f1tXLATE

Fault: @ 2: (lookupBinding)

Fault: @ 2: {BBBW} $00Cé = DC fltLookupBinding
Fault: @ 2: {enterBinding)

Fault: @ 2: {BBBW} $00CS5 = pC fltEnterBinding
Fault: @ 3: {blockSend)

Fault: @ 3: {BBBW} $00C2 = DC fltBlockSend
Fault: @ 3: (faultLimit0)

94

;XLATE
;806
;505
;802
;s LIMIT
1504
;806
;801
s LIMIT
;$13
: XLATE
;806
2805
1802

Chapter 5 Sample Program

Fault: @ 3: {BBBW} $0088 = DC fltLimit ;LIMIT
Fault: @ 2: {(allecObject)

Fault: @ 2: {BBBW} $00C4 = DC fltAllocObject 1504
Fault: @ 2:, {lookupBinding}

Fault: @ 2: {BBBW} $00C6 = DC fltLookupBinding 2506
Fault: @ 2: {(blockMove)

Fault: @ 2: {BBBW} $00Cl = joled fltBlockMove ;801
Fault: @ 2: (faultLimit0)

Fault: @ 2: {BBBW]} $0088 = DC fltLimit ¢ LIMIT
Fault: @ 2: (faultXlateO)

Fault: @ 2: {BBBW]} $008B = DC f1tXLATE +XLATE
Fault: @ 2: {lookupBinding) .

Fault: @ 2: {BBBW} $00C6 = DC fltLookupBinding ;506
Fault: @ 2: (faultXlateO)

Fault: @ 2: {BBBW} $008B = DC £1tXLATE ;XLATE
Fault: @ 2: (objectNode)

Fault: @ 2: (BBBW} $00D3 = DC fltObjectNode ;813
Fault: @ 1: (faultXlateO)

Fault: @ 1l: (BBBW) $008B = DC f1tXLATE ;XLATE
Fault: @ 2: {(objectNode)

Fault: @ 2: {BBBW} $00D3 = DC fltObjectNode ;813
Fault: @ 1: (lockupBinding)

Fault: @ 1: {BBBW} $00C6 = DC fltLookupBinding 2806
Fault: @ O: (faultXlateO)

Fault: @ O: {BBBW} $008B = DC f1tXLATE ;XLATE
Fault: @ 2: {faultCFut0)

Fault: @ 2: {(BBBW} $008D = DC fl1tCFUT ;CFUT
Fault: @ O: {lookupBinding)

Fault: @ O: {BBBW} $00C6 = DC fltLookupBinding ;806
Fault: @ 2: {(faultXlateO)

Fault: @ 2: {BBBW} $008B = DC f1tXLATE ;XLATE
Fault: @ 1: {enterBinding)

Fault: @ 1: {BBBW} $00CS = DC fltEnterBinding ;505
Fault: @ 3: {blockSend)

Fault: @ 3: {BBBW} $00C2 = 3,04 fltBlockSend ;502
Fault: @ 2: {lookupBinding)

Fault: @ 2: (BBBW} $00Cé = DC fltLookupBinding ;506
Fault: @ O: {enterBinding)

Fault: @ 0: {BBBW} $00C5 = oC fltEnterBinding ;805
Fault: @ 3: (faultLimit0)

Fault: @ 3: {BBBW) $0088 = DC fltLimit ;LIMIT
Fault: @ 3: {blockSend)

Fault: @ 3: {BBBW} $00C2 = pc fltBlockSend ;802
Fault: @ 1: (allocObject)

Fault: @ 1: {BBBW} $00C4 = DC fltAllocObject ;804
Fault: @ 3: (faultLimitO)

Fault: @ 3: {BBBW} 50088 = DC fltLimit ;s LIMIT
Fault: @ O: (allocObject)

Fault: @ O: {BBBW} $00C4 = DC fltAllocObject ;504
Fault: @ 1: (lookupBinding)

Fault: @ 1l: {BBBW} $00C6 = DC fltLookupBinding ;506
Fault: @ O: (lookupBinding)

Fault: @ O: (BBBW} $00Cé6 = DC fltLookupBinding ;506
Fault: @ 1: (blockMove)

Fault: @ 1: {BBBW} $00Cl = DC fltBlockMove ;801
Fault: @ O: {(blockMove}

Fault: @ O: {BBBW} $00Cl = pC fltBlockMove ;501
Fault: @ 1: (faultLimit0)

Fault: @ 1l: (BBBW} 50088 = DC fltLimit ;s LIMIT
Fault: @ O: {faultLimitO)

Fault: @ O: {BBBW} $0088 = DC fltLimit ;LIMIT
Fault: @ 1l: (faultXlate0}

Fault: @ 1: {BBBW} $008B = DC fl1tXLATE ;XLATE
Fault: @ O: {objectNode)

Fault: @ O: {BBBW} $00D3 = DC fltObjectNode ;813
Fault: @ 1: {objectNode}

Fault: @ 1: {BBBW} $00D3 = DC fltObjectNode : 813
Fault: @ O: {obJjectNode)

Fault: @ O: {BBBW} $00D3 = DC fitObjectNode ;513
Fault: @ 1: (objectNode)

Fault: @ 1: {BBBW} $00D3 = pc fltObjectNode ;813
Fault: @ 3: (objectNode)

Fault: @ 3: {BBBW} $00D3 = DC fltObjectNode ;513
Fault: @ 2: (faultXlateO)

Fault: @ 2: {BBBW} $008B = bDe f1tXLATE s XLATE
Fault: @ O: {(faultCFut0)

Fault: @ O: {BBBW} $008D = DC f1tCFUT ;CFUT
Fault: @ 1: {(faultCFut0)

Fault: @ 1: {BBBW} $008D = bC f1tCFUT ;CFUT
Fault: @ 3: {(objectNode)

Fault: @€ 3: {BBBW} $00D3 = DC fltObjectNode ;813
Fault: @ 2: (lookupBinding)

Fault: @ 2: {BBBW} $00Cé& = DC fltLookupBinding 7806
Fault: @ 3: (faultCFut0)

Fault: @ 3: {BBBW} $008D = DC £1tCFUT ;CFUT
Fault: @ O: (objectNode)

Fault: @ O: {(BBBW} $00D3 = DC fltObjectNode ;813
Fault: @ 1l: (objectNode)

Fault: @ 1l: {BBBW} $00D3 = DC fltObjectNode ;513
Fault: @ O: (objectNode)

Fault:; @ O: {BBBW} $00D3 = DC fltObjectNode ;813
Fault: @ 1: (objectNode)

95

Concurrent Smalltalk on the Message-Driven Processor

Fault:
Fault:
Fault:
Fault:
Fault:
Fault:
Fault:
Fault:
Fault:
Fault:
Fault:
Fault:
Fault:
Fault:
Fault:
Fault:
Fault:
Fault:
Fault:
Fault:
Fault:
Fault:
Fault:
Fault:
Fault:
Fault:
Fault:
Fault:
Fault:
Fault:
Fault:
Fault:
Fault:
Fault:
Fault:
Fault:
Fault:
Fault:
Fault:
Tick 1543

ERERPEAEEEPDDDADDPEPRERODADERDAAAPEPERMBEDRDMB®D
NP ERNNNDNONNNONNNDOOFRPOOOCOWWNRNNWWNRNWWRFPROONNDE

%6 o6 ¥E %e 4 o4 N 64 @% % 26 K6 ®a 94 04 66 40 G4 04 60 00 P9 00 40 00 €V €V 60 SE V& S¢ €4 60 €0 40 88 04 00 48

{BBBW} $00D3 =
{objectNode)
{BBBW} $00D3 =
(faultCFut0)
{BBBW} $008D =
(faultCFutO}
{BBBW} $008D =
(objectNode)
{BBBW} $00D3 =
(objectNode)
{BBBW} $00D3 =
(objectNode)
{BBBW]} $00D3 =
(faultCFut0)
{BBBW} $008D =
(faultCFut0)
{BBBW} $008D =
(objectNode)
{BBBW} $00D3 =
{objectNode)
{BBBW} $00D3 =
{(faultXlate0)
{BBBW} $008B =
(faultCFut0)
{BBBW} $008D =
(objectNode)
{BBBW} $00D3 =
(objectNode}
{BBBW} $00D3 =
(faultCFut0)
{BBBW} $008D =
(faultXlateO)
{BBBW} $008B =
(faultXlateO)
{BBBW} $008B =
(faultXlateO)
{BBBW} $008B =
(faultXlate0)
{BBBW} $008B =

Received priority 0 message:

DC

DC

DC

DC

DC

DC

DC

DC

bC

DC

DC

DC

DC

DC

DC

DC

DC

bC

DC

DC

fltObjectNode
fltObjectNode
£1tCFUT
f1tCFUT
fltObjectNode
fltObjectNode
fltObJjectNode
f1tCFUT
f1tCFUT
fitObjectNode
fltObjectNode
f1tXLATE
f1tCFUT
fltObjectNode
fltObjectNode
fltCFUT

f1t XLATE
f1tXLATE

f1t XLATE

f1CXLATE

OBJ:$801D9804 u=1 f=0 offset=$00766=Reply length=50004
INT:$0000FC00 = 64512
INT:$00000000 = 0
INT:$00000037 = 55

@0..3)stats

1544 ticks executed,
Dynamic Instruction Usage:

STOP:
READ:
WRITE:
READR:
SEND:
DC:
BR:
XLATE:
ROT:
ADD:
AND:
WRITER:
BT:
SEND2:
BNIL:
NOP:
BF:
LDIP:
SUB:
SUSPEND:
XOR:
CALL:
WTAG:
LDIPR:
EQ:
SENDE:
EQUAL:
SEND2E:
CHECK:
RTAG:
OR:
GT:
ASH:
ENTER:
GE:
BNNIL:
NEG:
NOT:
FFB:
INVAL:
PROBE:
LSH:
NEQ:
MUL:

2887 47.13%

737 12.03%
500 8.16%
163 2.66%
160 2.61%
143 2.33%
130 2.12%
123 2.01%
117 1.91%
104 1.70%
98 1.60%
88 1.44%
71 1.16%
70 1.14%
69 1.13%
64 1.04%
57 0.93%
54 0.88%
52 0.85%
50 0.82%
48 0.78%
48 0.78%
44 0.72%
40 0.65%
37 0.60%
26 0.42%
25 0.41%
24 0.39%
22 0.36%
21 0.34%
15 0.24%
14 0.23%
10 0.16%

7 0.11%

4 0.07%

4 0.07%

0 0.00%

0 0.00%

0 0.00%

0 0.00%

0 0.00%

0 0.00%

0 0.00%

0 0.00%

96

;813
;513
;CFUT
; CFUT
:$13
;813
;%13
;CFUT
;CFUT
;513
1913
;s XLATE
;CFUT
7813
;813
;CFUT
; XLATE
;+ XLATE
; XLATE

; XLATE

Chapter 5 Sample Program

MULH: 0 0.00%
NEQUAL: 0 0.00%
CARRY: 0 0.00%
HALT: [0.00%
BZ: 0 0.00%

LE: 0 0.00%
BNZ:] 0.00%
LT: 0 0.00%

STOP: 2887 47.13%
Move: 1488 24.29%
ALU: 407 6.64%

Branch: 331 5.40%
Network: 330 5.39%
Field: 204 3.33%
DC: 143 2,33%
Fault: 142 2,32%
Assoc: 130 2,12%
NOP: 64 1.04%
Other: 0 0.00%

Foregnd: 3239 52.87%
Total: 6126

Fault Usage:
objectNode: 21 26.25%
faultXlateO: 14 17.50%
lookupBinding: 11 13.75%

faultCFutO: 10 12.50%

faultLimitO: 8 10.00%

blockSend: 4 5.00%

allocObject: 4 5.00%

enterBinding: 4 5.00%

blockMove: 4 5.00%
Total: 80

The xlate hit ratio is 109 out of 123 (88.62%).

376 words sent in 51 messages on priority 0.

Average message size: 7.37.

16.29 instructions/word (8.61 foreground instructions/word)

120.12 instructions/message (63.51 foreground instructions/message)
No priority 1 words sent.

@0..3}

Figure 5-14. MDPSim Transcript

This transcript shows a MDPSim session in which the user loads the rangesum assembly code and calls the sum
function with the argument 10 on a 2x2x1-node J-Machine with COSMOS using only internal memory (-msize
0x1000). Since watching faults was enabled, MDPSim prints each fault encountered at each MDP as it is run-
ning. The fault message gives the number of the MDP on which the fault occurred, the number of the fault vector,
and the name of the fault; the {BBBW)} is additiona! MDPSim breakpoint and watchpoint information. Finally, after
1544 steps the answer 55 is produced and displayed.

The dynamic instruction statistics for the run are also shown. About half of the time is spent distributing the func-
tions 1o all of the nodes; the second time sum is called with the argument 10, it only takes 893 ticks to produce the
answer (a tick is the time it takes every node to execute one instruction; MOPSim assumes that every instruction
runs in the same amount of time).

97

Chapter 6. Debugging

Optimist II, Cosmos, and the Concurrent Smalltalk applications are large programs, and de-
bugging them is an important consideration. I will not discuss the process of debugging Op-
timist II itself; standard Common Lisp and CLOS techniques such as building firewalls and
providing print routines for important data structures were used.

The primary approach to debugging MDP code I took is prevention. I made sure that the
Cosmos design was sound before running it. The criticality criteria were very helpful in
avoiding re-entrancy and double fault problems. Nevertheless, while the prevention ap-
proach was successful on Cosmos itself, it cannot be the sole debugging method used on the
Concurrent Smalltalk programs. Instead, a combination of debugging means at various
levels has been provided.

Debugging Concurrent Smalltalk Code

The first line of defense is the Optimist II compiler itself. The compiler will complain when it
detects errors such as incorrect function argument counts or bad types, if types are declared.

The second line of defense is the interpreter in the Optimist II compiler. The interpreter can
be used to run Concurrent Smalltalk programs before they are downloaded into MDPSim or
onto a J-Machine. The interpreter provides nearly complete checking of Concurrent
Smalltalk programs, so it should catch most of the remaining bugs. However, the interpreter
will not catch bugs which occur only on large data sets, nor will it find Cosmos’s or the Opti-
mist II code generator’s bugs.

Debugging MDP Code on MDPSim

Debugging becomes considerably more difficult once the code is in assembly language form.
Fortunately, Cosmos does include some facilities for debugging Concurrent Smalltalk pro-
grams.

The third line of defense is comprised of the safety features built into the MDP architecture.
Type and bounds checking were extremely valuable when debugging Cosmos, as they catch
most common type errors when they happen and prevent runaway programs from doing too
much damage to the machine state. Without these facilities debugging Cosmos and Concur-
rent Smalltalk programs could have been intractable.

The fourth line of defense consists of safety checks built into a number of critical places in
Cosmos., These checks include:

e A check in the CFUT handler that distinguishes real cfutures from uninitialized vari-
ables, together with the initialization of memory and globals to values that will cause CFUT
faults.

¢ Checks in the XLATE and INVADR handlers for references to primitive, nonexistent, or
deleted objects. Without these checks, such references would generate messages that wander
about the J-Machine forever.

e A check in the Return handler to make sure that the context was expecting the value
that was returned. This check catches the extremely elusive bug of replying to the same con-
tinuation twice, as the second reply message may overwrite a variable in the context after it
has been reallocated to a completely unrelated function. The bug will be caught eventually,
even if the second function stores a cfuture into the same context location, because then there
will still be two replies to the same context location, and the cycle will repeat itself. Of

98

Chapter 6 Debugging

course, by the time the bug will be caught, the original evidence may be gone, but at least
there will be some indication of a problem.

¢ A check in the Co routine for a reference to a nonexistent constituent of a distributed ob-
ject.

e A HALT on any reference out of bounds of any object except in BlockMove and Block-
Send.

e HALT instructions on any type or overflow faults that occur in the course of execution of
Concurrent Smalltalk programs.

Furthermore, MDPSim does its part to make debugging easier. Once the operating system is
loaded, memory used by the operating system code is read and write-protected (it may only
be executed) to catch any runaway references to it. Since dereferencing NIL is a common
mistake in the MDP’s unchecked mode, physical memory locations O through 3 have been
protected from all accesses to catch any routines that dereference nonexistent objects. More-
over, MDPSim immediately halts if a message is sent to a nonexistent node.

MDPSim includes the HALT instruction which is not present on the MDP. The HALT instruc-
tion immediately halts the simulated J-Machine without altering any state. However, the
HALT instruction can almost be emulated on the J-Machine—executing HALT will cause ei-
ther an INVINST or a CATASTROPHE fault, which can be intercepted.

Moreover, the newest MDPSim [25] includes hazard detection—MDPSim 7.0 will complain
and optionally stop the program if it detects an unsafe programming construct such as refer-
encing the FIR register if it could have been altered by an asynchronous interrupt or sending
a message when the F bit is set (a network send fault could be catastrophic in this case).
Clearly MDPSim cannot discover all such possible bugs, but it can provide considerable as-
sistance in uncovering sporadic asynchronous bugs.

Finally, MDPSim is deterministic—running the same program twice will always yield identi-
cal results. Thus, if an inexplicable bug occurs, it can always be reproduced. Moreover, ear-
lier snapshots in time can be examined by running the same session again in MDPSim. On
the Macintosh version of MDPSim, the entire session is automatically saved, making repro-
ducing it easy.

Debugging MDP Code on a J-Machine

Debugging code on a real J-Machine is still harder than debugging it with MDPSim. Cosmos
currently does not include any facilities specifically designed for such debugging other than
the ones described above, but such facilities are being added in the true J-Machine version of
it. The primary facilities consist of a set of mousetraps to catch weird conditions such as
hardware errors and a set of fault handlers that interact with the host through the diagnostic
port. Unfortunately, it is impossible to examine an MDP’s state without destroying some
register values, so debugging on the hardware is much harder.

Assuming one can stop the computation at a safe point, it is possible to get a dump of all
memory and most registers on each MDP in a J-Machine. What does one do with a huge
dump of the state of a J-Machine? One possible course of action would be to examine it using
MDPSim’s debugging facilities. Another possibility is periodically checkpointing the compu-
tation on the J-Machine by saving images. If a crash occurs, earlier images can be examined
or restarted to determine the cause of the crash.

Summary

Debugging Concurrent Smalltalk code, while not especially easy, is not impossible. Several
lines of defense against bugs in Concurrent Smalltalk programs are provided. It is highly

99

Concurrent Smalltalk on the Message-Driven Processor

recommended to try to find bugs in the earlier steps of the compilation process because the
tools at those levels are more robust and informative (but not as faithful to the J-Machine).

Although Cosmos includes many checks for the common Concurrent Smalltalk programming
errors, Cosmos does not protect itself from itself—it does not detect corruption in its data
structures. Fortunately, segmentation by the MDP ensures that those data structures could
only be corrupted by Cosmos itself, as well-compiled Concurrent Smalltalk programs cannot
reference data outside their segments. Cosmos was mainly debugged by design, with only
minor debugging necessary once the operating system was written.

MDPSim also helps in debugging MDP cede by providing watchpoints, breakpoints, the HALT
instruction, hazard detection, and determinism, which allows any bug to be reproduced.

100

Chapter 7. Performance Measurements

Both Cosmos and the code output by Optimist II were optimized for speed. This chapter pre-
sents some measurements that determine just how fast compiled Concurrent Smalltalk runs
on a J-Machine. Both theoretical derivations and real measurements are presented and
compared. Both calculations indicate that the average grain size (the ratio of useful instruc-
tions executed to messages sent) for running Concurrent Smalltalk on a J-Machine is be-
tween 50 and 70 instructions, and the average number of instructions executed per method is
about 100 instructions. This is a pity if the average method only performs a few instructions’
worth of real computation, yet, since Cosmos and the code output by Optimist II are already
heavily optimized, it does not seem likely that incremental changes will reduce these num-
bers much further.

In addition to the above figures, various other statistics are presented. The static and dy-
namic instruction use frequencies were collected to identify areas in which the MDP’s hard-
ware performance could be improved; no major surprises were found there. These frequen-
cies indicate that the MDP spends an average of about 2 cycles per instruction; this number
increases to 4 if slow external DRAM is used to hold the user program and data.

Finally, the network load is analyzed. The network should not become saturated until more
than 343 MDPs are put together; if a larger J-Machine is to be built, either the network will
have to be made faster, the operating system slower, or considerable attention will have to be
paid to locality.

101

Concurrent Smalltalk on the Message-Driven Processor

7.1. Derived Times

This section presents some rough estimates of the overhead on the J-Machine. A number of
assumptions are made when making these estimates; the results of actual measurements
will be reported in the next section to verify those assumptions.

Cosmos Estimates

The instruction counts needed for various important Cosmos services are shown in Table 7-1.
The counts are approximate, but usually accurate to within a few instructions. The counts

listed may not be completely correct due to approximations in some routines.

Table 7-1. Selected Cosmos Routine Instruction Counts

Routine

Instruction Count

Method and Control Managers

Description

Apply 3+ApplySelector or Dispatch a general Apply message.
5+ApplyFunction

ApplyFunction 4 Dispatch an ApplyFunction message.

ApplySelector >23 (=15+LookupMethodU) Dispatch an ApplySelector message.

LookupMethod 8+L.ookupMethodU Lookup a method given a class and a

selector.

LookupMethodU | 8 on cache hit, Internal core of LookupMethod.
40+SaveStatelD023+message la-
tency on cache miss.

CFUT Fault =30+2msize if context available | Save state when a cfuture was read
on queue (14+SaveState!D023) from the context.

Reply 27 if process is restarted; Process a reply message.
12 if not.

RestartContext 20 Unconditionally restart a context.

Context Manager

SaveStatelD023

14 if message already saved in
context and new context avail-
able in queue

16+2msize if context available on
queue;
17+2msize+AllocNextObject
otherwise,

Save the 1D registers and the mes-
sage in the context, save the context,
and suspend.

Global Object Manager

NewObject =37+2msize+Reply Allocate a remote object.
(21+SaveStatelD023+Reply)

ClassOf 15 to 25 (10+TypeOf) Return the class of an object.

TypeOf 5 to 15, depending on tag Internal core of ClassOf.

(5 for integers, 11 for ordinary
user objects; varies for others)

Return the node most likely to con-

ObjectNode 9 for primitive objects;
4 for ordinary user objects; tain the object or a random node if
32 for distributed objects. the object is primitive.

Co 38 (49 when the object has more | Return the ID of the nth constituent

constituents than there are
nodes)

of a distributed object.

102

Chapter 7 Performance Measurements

PreferredConst 27 (12 when the object has more | Return the ID of a nearby con-
constituents than there are stituent of a distributed object.
nodes)

MigrateObiject ~62+AllocObject+LookupBinding+ | Receive and install an object and
2size (may vary if more or fewer | restart a context waiting for it.
contexts are restarted)

UpdateHome >11+LookupBinding Update a migrated object’s home

BRAT entry.

Unlock 9 Unlock an object.

Local Object Manager

NewlocalObject | 3+AllocNextObject Allocate a local object of the given

class.

AllocNextObject

12+AllocObject+EnterBinding

Allocate a local object using the next
ID and the given header word.

DeallocateObject | 11+PurgeBinding Deallocate a local, unlocked object.

BRAT Manager

EnterBinding 26 (35 if no free BRAT entries Allocate a new BRAT binding.
were available; may also compact
heap)

LookupBinding 14+5n, where n is the number of | Lookup a binding in the BRAT.
links traversed in linked list.

PurgeBinding 2+DeleteBinding Delete a binding from the BRAT and

the XLATE table.

DeleteBinding 23+5n, where n is the number of | Delete a binding from the BRAT.
links traversed in linked list.

Heap Manager

AllocObject 20; may also compact heap Allocate an object on the heap.

CompactHeap varies from 2N to 10N or more, | Compact the heap.
where N is the size of the heap.

Utilities

Divide from 40 for small numbers to 400 | Divide two 32-bit numbers and re-
for large numbers. turn the quotient and remainder.

Faults

Early Fault 8 Penalty for reading data from mes-

sage queue too fast.
Send Fault 8 Penalty for sending data into net-

work too fast.

Some Definitions:
size is the size of the object.

msize is the size of the message in the queue. If the message has already been saved and the Q flag is false,
msize is defined to be -1 for the purposes of the above timings. If msize is mentioned in a time expression, the
current process is suspended and later restarted; the time does not include the time between the suspension and
the resumption because other processes are assumed to execute then.

User Program Estimates

In contrast to the counts in Table 7-1, an examination of the rangesum method in Figure 5-12
shows that it takes about 13 instructions! to execute a function or method call and about 8
instructions to return a reply and suspend (see Table 7-2). Thus, the typical time the MDPs
spend in user code to execute a function call and return is about 21 instructions; perhaps a
few more instructions are used for primitives, but the user code execution time is seldom
more than 30 instructions per function invocation. Hence, estimating conservatively, any

IThere are several NOPs not shown in the listing caused by alignment around DCs.

103

Concurrent Smalltalk on the Message-Driven Processor

Table 7-2. Selected User Action Instruction Counts

Action Instruction Count Description

Function or =11+nargs. May be higher if ar- | Call a function or a method. The

Method Call guments must be touched or time does not include the CFUT fault
lower if many SEND2s are used. | or reply time.

Reply with 8-10 Return a reply to the caller.

Suspend

Primitive 14 for instructions and up to Perform a primitive operation such
400 or more for system calls. as an addition or a conditional.

Nargs is the number of arguments sent in the application message.

time above 30 instructions per function or method invocation is spent in the operating sys-
tem!,

Analysis

A juxtaposition of the main figures from Tables 7-1 and 7-2 reveals that a typical program
will spend about 70% of its active time in the operating system and 30% of the time in user
code. Furthermore, the program will take about 100 instructions per function invoked, ex-
cept for tail-forwarded functions which will only take about 25 instructions each. About 20
extra instructions should be added for each method dispatch that the compiler is unable to
optimize out. To derive these estimates the following system of accounting is used: the work
ascribed to a function invocation consists of all work needed to call the function on the origi-
nating node plus all work needed to dispatch the function on the called node, but not includ-
ing the work done by the called function to call other functions.

Standard Invocations

Each non-tail-forwarded function invocation requires the processing of an ObjectNode call,
a function message send, a reply message, and optionally a cfuture fault on the originating
node, and a function dispatch and a reply on the called node. Assuming that the average
function call has two arguments, the total operating system work for the above activity is:

ObjectNode + ApplyFunction

+ ¢(CFUT fault + restarting Reply) + (1-c)(non-restarting Reply)
=9 +4+ 69+ 12(1-¢)
= 25 + §7¢ instructions.

¢ is the probability that a cfuture will be referenced before being replaced by the returned
value. This probability can vary over a wide range depending on the branching factor of the
program call graph. c is 1.0 for a recursive factorial program and 0.5 for a recursive fibonacci
or rangesum program. If a branching factor between 1 and 2 is assumed, ¢ will be somewhere
between 0.5 and 1.0; suppose it is 0.75, which results in 68 instructions executed in the oper-
ating system per function invocation.

The total user code work is

Function call + Primitives called by function + Reply with Suspend.
The time spent executing primitives will vary greatly depending on the application; 10 in-
struction seems reasonable for most cases, although it will be higher if the user program calls
Divide or allocates objects. Substituting this number and the average number of arguments
yields a total user code work of

1Tail-forwarded calls are cheaper because the net cost of a tail-forwarded call is one call and no return, which is
about 15 user code instructions.

104

Chapter 7 Performance Measurements

13 + 10 + 9 = 32 instructions.

Thus, the total amount of work taken to process one function invocation is 100 instructions,
out of which about 10 instructions (the primitives) could be construed as being “useful” work
and the rest overhead. This figure does not include any object migration or XLATE miss
overhead. These results should not be interpreted as implying that an MDP running Cosmos
has a performance 10 times slower than a comparable processor in a sequential computer be-
cause sequential computers also have a considerable function calling and parameter passing
overhead.

Tail-Forwarded Invocations

Tail-forwarded applications are considerably more efficient. Using the accounting method
outlined above results in ascribing

) N\
ObjectNode
9 instructions -/

Begm N\
Message Send
11 mstructlons/

Flmsh)
Message Send

2 instructions _/

Fault on
Cfuture
42 instructions

Message
Travel Time
10 instructions

ApplyFunction
4 instructions

Called

Function

n instructions

Send)
Reply Message

8 instructions _/

\
(Suspend
1 instruction _/

Message
Travel Time
10 instructions

Receive Reply
and Resume
27 instructions

Figure 7-1. Function Invocation Latency

The latency of the network is estimated at about 10 instruction times (20 cycles) to send a message between two
randomly chosen nodes on a 4096-node machine.

If n is the time taken by the called function, the latency of invoking a function is 9+11+10+4+8+10427+n = 79+n
instructions uniess the called function takes fewer than 12 instructions, in which case the latency is 9+11+2+42+27
= 91 instructions.

105

Concurrent Smalltalk on the Message-Driven Processor

ObjectNode + ApplyFunction = 13 instructions
operating system overhead and
Function call + Primitives called by function = 23 instructions

user code work. The total work done is 36 instructions, out of which again 10 instructions is
“useful” work.

Latency

The preceding analysis calculated the total amount of work needed per function invocation in
a program, which determines throughput on a fully loaded system in which each processor is
busy; however, another important component of performance is latency. It turns out that the
latency of a function invocation can be lower than the amount of work done by the function
invocation because two processors (the caller and the callee) can execute much of the function
invocation in parallel.

Assuming no other activity in the system, a non-tail-forwarded function invocation will con-
sist of the caller sending a message to the callee. Then the callee evaluates the function,
while the caller takes a cfuture fault (or calls another function, but this won’t matter). Un-
less the called function is very short, the caller will finish the cfuture fault processing and
then idle before it gets the reply message from the callee. Finally, the callee replies to the
caller, which restarts the calling process.

As can be seen in Figure 7-1, the latency of a function call is 79 instructions in addition to the
time taken to execute the function; if the function takes fewer than 12 instructions to exe-
cute, the overall latency is 91 instructions. These numbers are less than the total amount of
work done by the system (104 instructions).

Summary

The results above indicate that the number of instructions needed to process a function invo-
cation for Cosmos running on a J-Machine should be about 100 instructions, with the notable
exception of tail-forwarded functions, which require only about 36 instructions. The instruc-
tion counts may be higher if many primitive calls are made or if the operating system faults
often.

106

Chapter 7 Performance Measurements

7.2. Measurements

Grain Size and Machine Load

To attempt to measure the J-Machine’s performance and grain size, I ran several programs,
including factorial (Figure 7-2); rangesum as listed in Chapter 5; rangesum2 (Figure 7-3),
which is a version of rangesum which builds and traverses a data structure; and sort (Figure
7-4), which generates and sorts an array of n pseudo-random numbers using the Batcher

parallel sort technique described on page 112 of [28].

(defun fact (n)
(if (zero? n)
1
(* n (fact (- n 1)))})

Figure 7-2. Factorial Program

(defclass pair (object)
car
cdr)

(defun cons (x y):pair
(put-car-cdr (new pair) x y))

(defmethod put-car-cdr pair (x y):pair
(cset car x)
(cset cdr y)
self)

(defun make-countlist (low:integer high:integer)
(if (> low high) (halt}))
(if (= low high)
low
(let ((middle (// (+ low high) 2)))
(cons (make-countlist low middle)
(make—-countlist (+ middle 1) high)))))

(defmethod reduce pair (op:funct)
(op (reduce car op) (reduce cdr op)))

(defmethod reduce integer (op:funct)
self)

(defun add (x y)
(+ x y))

(defun reduce-add (tree)
(reduce tree add})

(defmethod ramp integer ()
{make-countlist 0 self))

(defmethod rangesum2 integer ()
(reduce-add (ramp self)))}

Figure 7-3. Rangesum2 Program

This program exercises several Concurrent Smalltalk object facilities such as allocating objects and traversing
trees.

107

Concurrent Smalltalk on the Message-Driven Processor

(defclass distarray ({(distobj)
value)

(defmethod initialize distarray (low,high:integer f:funct)
(if (= low high)
(cset (get-value (co group low)) (f low))
(clet ((middle (// (+ low high) 2)))
(concurrently
(initialize group low middle f)
(initialize group {4+ middle 1) high f)))))

(defun make-distarray {(n modulus)
(clet ((da (new distarray n)))
(initialize da 0 (- n 1) (lambda (x) (mod (* x x x) modulus)))
da))

{defmethod sort-exchanges distarray (low,high,p,r,d:integer)
(if (<= low high)
(if (= low high)
(clet ((low2 (+ low d)))
(clet ((vl (get-value (co group low)))
(v2 (get-value (co group low2))))
(if (> vl v2)

(concurrently
(cset (get-value (co group low)) v2)
(cset (get-value (co group low2)) vl)})))
(clet ((middle (// (+ low high) 2)))
(concurrently

{sort-exchanges group low middle p r d)
(sort-exchanges group (+ middle 1) high p r d})))))

(defmethod sort-q distarray (p,q,r,d:integer)
{sort-exchanges group 0 (- (logical-limit self) (+ d 1)) p r d)
(if (<> p q)
{sort-q group p (// g9 2) p (- g p))))

(defmethod sort-p distarray (half,p:integer)
{sort-q group p half 0 p)

(if Cp 1)
(sort—-p group half (// p 2))
group))

(defmethod sort distarray ()
(clet ((half (ash 1 (- (integer-length (- {(logical-limit self) 1)) 1))))
(sort-p group half half)))

(defun sort-distarray (n modulus)
(sort {(make-distarray n modulus)))

Figure 7-4. Sort Program

Sort-distairay, given the values of n and modulus, sorts an array of n pseudo-random numbers. The th pseudo-
random number is equal to Smod modulus. The Batcher sort algorithm is used, as presented on page 112 of [28].

Measurements were done on a 4-node and a 16-node simulated J-Machine. The results of the
trials are summarized in Table 7-3.

The grain size is the third number in the working instructions executed column. The time to
process one function invocation is approximately twice the grain size unless tail-forwarding
is used extensively. Except for sorting 4 numbers and the trivial factorial case, the results
indicate function invocation times of between 81 and 162 instructions, which means that the
estimate of 100 in the previous section was about right. Many of the functions in the sort
sample program are tail-forwarded, so the average function invocation time for that example
is less than twice the grain size. In addition, the sort program has a grain size higher than
predicted in the previous section. This is probably due to frequent calls to the multiplication,
divisionl, and co primitives as well as to distribution of large code objects; the grain size does
decrease for larger input values.

1A division by 2 is just a single ASH instruction, but the division in make-distarray requires a complete Divide call.

108

Chapter 7 Performance Measurements

Table 7-3. Performance Measurements

Program In [Inputinvo [Start- [Total Instructions Working Instructions [% Bu[Net EZt hvg
MD catioup [Executed Executed sy Wds gs Msg
Ps ns Sent [Sent [Size*
— —— m—— — e |
factorial 4 0 1{cold 95 864 47.50 17 155 850 18 11 2 | 550
2x21 10| 11jcold 5949 30.82 212.46 2001 10.37 7146 | 34| 193 28 6.89
warm 3407 28.16 154.86 1078 8.91 4900 | 32] 129 22 | 5.50
rangesum 41 10| 21fold 6985 18.43 134.33 3364 8.88 64.69 48| 379 52 7.29
2 %2 warm 3122 1210 72.60 1737 6.73 4040 | 56| 258 43 6.00
50 | 101cold 17017 1271 8027 | 11585 8.65 54.65 | 68| 1339 | 212 6.32
warm | 11998 9.85 59.10 9395 7.71 46.28 7811218]203 6.00
hot 10982 9.02 54.10 8841 7.26 4355 | 811218 | 203 6.00
rangesum2 | 4| 10} 21cold 15365 24.08 174.60 6194 9.71 70.39 | 40| 638 88 7.25
22 arm 5470 1447 86.83 3067 8.11 4868 | 56| 378 63 6.00
50 | 101}cold 27971 1340 84.76 | 19559 9.37 59.27 | 70}2088 1330 | 6.33
warm | 23232 1257 75.18 | 16401 8.88 53.08 7111848 1309 5.98
hot 21418 1178 70.69 | 15767 8.67 52.04 7411818 | 303 6.00
sort 4 4 cold 57939 30.27 298.65 | 23982 12.53123.62 4111914 | 194 9.87
2 %2 warm | 35168 36.79 256.70 | 14655 15.33106.97 42| 956 | 137 6.98
29 cold | 351144 1485 101.22 | 269019 11.38 77.55 77 R3647 [3469 6.82
warm { 289336 12.94 86.55 | 232974 10.42 69.69 81 22361 3343 6.69
16 4 cold | 201681 95.90 979.03 | 24026 11.42116.63 1212103 | 206 | 10.21
4x4] 29 cold | 868586 3256 238.56 | 295483 11.08 81.15 | 34 6679 [3641 7.33
100 old P612981 18.61 126.35 [1469377 10.46 71.05 | 56 |140436120680} 6.79

*The average message length includes the address word sent at the beginning of each message. That word is
kept as the message is routed through the network but removed before the message is inserted into the queue on
the destination node.

The working instruction counts are instruction counts with all STOP instructions executed in background loops re-
moved; they represent the useful work done in the system.

The three numbers in the total instructions executed and working instructions executed columns give the absolute
numbers of instructions executed, the numbers of instructions per word of network traffic, and the number of in-
structions per network message, in that order.

A cold startup indicates that the program was executed just after it was loaded; a considerable portion of the run-
ning time is spent on distributing the functions to all nodes that need them.

A warm startup indicates that the program was executed after the functions it needed were already installed on
every node.

A hot startup indicates the third trial of the program on the particular input. This time may be less than the warm
startup time because the previous trials have preallocated enough standard contexts on the MDPs to let the pro-
gram run without the need to allocate any more contexts. Warm and hot startup times are probably the most rep-
resentative of the J-Machine’s performance on larger problems.

The geometry of the J-Machine does not have much of an effect on a program simulated under MDPSim. It is
unimportant anyway for the small sizes simulated above.

Using inputs much larger than 50 for the range sums or 100 for the sort generated too much concurrency and
caused the message queues to overflow. See Chapter 8 for a possible solution to this problem.

Another pattern in Table 7-3 is that the percentage of the J-Machine that is busy is higher
for the larger problems, which was to be expected. Also, the warm and hot start programs
tended to exhibit more concurrency than the cold start ones!; apparently there is some
wasted time during the initial code distribution phase.

1This was not the case in a slightly earlicr version of Cosmos, possibly because it was less efficient and therefore had
more work to do.

109

Concurrent Smalltalk on the Message-Driven Processor

Comparison with Dataflow

Ellen Spertus made a few performance numbers available for her implementation of dataflow
on the J-Machine [34]. I compared her timings with those obtained by Optimist II/Cosmos on
the same examples. The program used was the factorial function listed in Figure 7-5.

The dataflow interpreter took 431 steps to compute the factorial of 4. The Concurrent
Smalltalk version of the factorial program took 725 steps to execute from a cold start but only
265 steps from a hot start. The dataflow interpreter allocates code statically and references
absolute addresses, so every timing is effectively a hot start. The dataflow interpreter took
628 steps to compute three factorials of 4 in parallel, while the Concurrent Smalltalk code
took 399 steps to complete the task. Thus, for this simple example the Concurrent
Smalltalk/Optimist II/Cosmos combination is faster than dataflow, but not by much. How-
ever, Concurrent Smalltalk is more dynamic than the current dataflow system in [34].

(defun fact (n)
(if (<= n 1)
1
(* n (fact (- n 1)))))

Figure 7-5. Factorial Program used in Dataflow

Network Load

As seen in Table 7-3, the network loading is usually between one word every 8 instructions
and one word every 20 instructions, with the earlier figure dominating as the J-Machine uti-
lization approaches 100%. If an average MDP instruction length is taken to be 2.0 cycles,
this implies that a program could inject words into the network as fast as one word every 16
cycles on every MDP.

Suppose that we run one of the above programs on a J-Machine organized as a kxkxk mesh.
Let N=kxkxk be the number of nodes. To a first-order approximation, the capacity of the
network is 3N half-word-hops/cycle!, or 1.5N word-hops/cycle. Assuming random sources and
destinations, a message will have to travel an average of /3 nodes on each of the three
dimensions, so the expected distance the message has to travel is 3k/3 = k nodes. Hence, the
network’s theoretical capacity is the delivery of 1.5N/k = 1.5k2 words per cycle. On the other
hand, the program offers N/16 words/cycle to the network, which means that unless locality
is exploited or the program slowed down, there will be an upper bound on the size of the J-
Machine which can run Cosmos.

A mesh loaded at about 30% of its theoretical capacity should be able to route messages
without excessive delays [32]. To calculate the maximum k, set

0.3x1.5%2 = k3/16
k=12

Thus, the network should not become a critical resource until a J-Machine with over 73 = 343
nodes is built. If the network routing speed is doubled, network loading should not be prob-
lematic until the J-Machine exceeds 143 = 2744 nodes. On the other hand, should the Cos-
mos operating system be sped up somehow, the critical size might fall below 343 nodes. Seri-
ous attention to locality will have to be paid if a J-Machine larger than a few hundred nodes
is built; conversely, if only a small J-Machine is built, it may not be adequate for testing al-
gorithms for exploiting locality because almost any algorithm will work.

IThe J-Machine network can transmit half a word between every pair of adjacent MDPs on every cycle.

110

Chapter 7 Performance Measurements

Table 7-4. Static Instruction Frequencies

Instruction Count Freq. Instruction Count Freq. -
DC 440 19.33% XOR 13 0.57%
READ 324 14.24% EQUAL 11 0.48%
WRITE 210 9.23% ENTER 10 0.44%
NOP 173 7.60% SENDE 10 0.44%
WRITER 104 4.57% SEND2E 10 0.44%
READR 88 3.87% NEG 9 0.40%
BR 86 3.78% Bz 9 0.40%
SEND 80 3.51% BNZ 9 0.40%
ROT 64 2.81% PROBE 7 0.31%
HALT 64 2.81% EQ 7 0.31%
ADD 59 2.59% . LT 5 0.22%
AND 50 2.20% GT 5 0.22%
BT 46 2.02% NOT 4 0.18%
CALL 46 2.02% GE 4 0.18%
BF 42 1.85% BNNIL 4 0.18%
SuB 39 1.71% FFB 4 0.18%
CHECK 32 1.41% LSH 3 0.13%
OR 29 1.27% RTAG 3 0.13%
XLATE 29 1.27% NEQUAL 1 0.04%
BNIL 25 1.10% STOP 1 0.04%
LLDIPR 23 1.01% INVAL 1 0.04%
SEND2 22 0.97% LE 1 0.04%
LDIP 21 0.92% MUL 0 0.00%
SUSPEND 20 0.88% MULH 0 0.00%
ASH 15 0.66% CARRY 0 0.00%
WTAG 14 0.62% NEQ 0 0.00%
____Instruction Count Freq. | Instruction Count Freq.
Move 726 31.90% Bit Field 116 5.10%
DC 440 19.33% Fault 90 3.95%
ALU 256 11.25% Other 64 2.81%
Branch 221 9.71% Assoc. Table 47 2.07%
NOP 173 7.60% STOP 1 0.04%
Network 142 6.24%
Total 2276

The above table includes the static instruction frequencies in the Cosmos kernel and the MDP runtime system.
The second table categorizes the instructions according to their kinds. Each DC is counted twice because it oc-
cupies as much space as two normal instructions. 173 NOPs had to be inserted to align instructions to word
boundaries around DCs and at branch entry points.

Instruction Frequencies

I collected data on the frequencies of various MDP instructions to provide another estimate of
what the MDP is doing most of the time. Table 7-4 shows a histogram of the static instruc-
tion use in Cosmos and the MDP runtime routines, while Table 7-5 shows dynamic instruc-
tion use in the cold-start sort trial running on 16 MDPs on an input value of 100. Combined
with the results from Table 7-6, which show the memory reference frequencies, these tables

111

Concurrent Smalltalk on the Message-Driven Processor

contain enough information to deduce the approximate! number of cycles taken per MDP in-
struction.

As shown in Table 7-6, a 16-MDP J-Machine will achieve somewhere between 1.87 and 3.48
cycles per working instruction when running the sort program on an input of 100. The inter-
nal-memory-only cycles-per-working-instruction number varied between 1.8 and 2.0 for other
trigls, while the external-memory cycles-per-working-instruction number varied between 3.0
and 3.9.

Table 7-5. Dynamic Instruction Frequencies

Instruction Count Freq. | Instruction Count Freq.
STOP 1143604 43.77% CHECK 14401 0.55%
READ 309073 11.83% EQ 14293 0.55%
WRITE 169577 6.49% LT 11816 0.45%
ROT 78272 3.00% SEND2E 11220 0.43%
READR 76641 2.93% NEG 10886 0.42%
AND 71150 2.72% RTAG 9859 0.38%
XLATE 67230 2.57% SENDE 9594 0.37%
DC 63981 2.45% XOR 5637 0.22%
BF 53595 2.05% FFB 5624 0.22%
SEND 47474 1.82% NOT 5444 0.21%
ASH 43161 1.65% EQUAL 4725 0.18%
OR 41948 1.61% LE 4296 0.16%
BR 40800 1.56% ENTER 1117 0.04%
WRITER 39085 1.50% BNZ 886 0.03%
SEND2 30783 1.18% LSH 786 0.03%
ADD 26468 1.01% GE 502 0.02%
NOP 23633 0.90% BZ 475 0.02%
SuB 21840 0.84% BNNIL 420 0.02%
BNIL 20786 0.80% MUL 200 0.01%
SUSPEND 20679 0.79% PROBE 74 0.00%
WTAG 20406 0.78% NEQUAL 28 0.00%
BT 19497 0.75% NEQ 0 0.00%
LDIP 18032 0.73% MULH 0 0.00%
CALL 18557 0.71% CARRY 0 0.00%
LDIPR 17712 0.68% HALT 0 0.00%
GT 15714 0.60% INVAL 0 0.00%
Instruction Count Freq. Instruction Count Freq.
STOP 1143604 43.77% Assoc. Table 68421 2.62%
Move 594376 22.75% DC 63981 2.45%
ALU 283732 10.86% Fault 55301 2.12%
Branch 136459 5.22% NOP 23633 0.90%
Bit Field 123724 4.73% Other 0 0.00%
Network 119750 4.58%

Foreground 1469377 56.23%

Total 2612981

This particular problem (Sort creating and sorting an array of 100 numbers on 16 MDPs) only kept an average of
56% of the MDPs busy at a time—about 44% of the instructions executed are STOP. Although the frequency of
the STOP instruction varies widely, the relative frequencies of the other instructions are typical for an MDP pro-
gram.

1Some of the instruction row buffer dynamics were simplified and all branches were assumed to take 3 cycles, even
though sometimes they may take fewer cycles.

112

Chapter 7 Performance Measurements

Table 7-6. Memory Access Frequencies

Operating System memory usage:
Reads: 394430 (0.15/instruction, 0.27/working instruction)
Writes: 152756 (0.06/instruction, 0.10/working instruction)
Fetches: 2285682 (0.88/instruction, 1.56/working instruction)

Heap memory usage:
Reads: 152262 (0.06/instruction, 0.10/working instruction)
Writes: 138807 (0.05/instruction, 0.09/working instruction)
Fetches: 317299 (0.12/instruction, 0.22/working instruction)

Total memory usage:
Reads: 546692 (0.21/instruction, 0.37/working instruction)
Writes: 291563 (0.11/instruction, 0.20/working instruction)
Fetches: 2612981 (1.00/instruction, 1.78/working instruction)

3.48 cycles/working instruction
1.87 cycles/working instruction without external RAM

The numbers above indicate the number of memory references (reads, writes, and fetches) done to the operating
system (everything except the heap) and heap areas of memory by Sort running on 16 MDPs with an input of 100.
The numbers for the other sample programs are similar. The cycles per instruction figures were calculated by
adding the instruction frequencies from Table 7-5 weighted by the instruction times together with the memory
usage frequencies weighted by memory access times.

The 4096-word internal memory contains all of the operating system data and code and a small portion of the
heap (about 2100 words). The rest of the heap (65536 words) lies in slow external memory. When running on a
real J-Machine, the sort program will achieve somewhere between 1.87 and 3.48 cycles per working instruction
depending on how much of the program and data resides in the internal memory portion of the heap.

Considering that internal memory read, write, and fetch times average 1, 0, and 1/8 cycles!,
respectively, while external memory read, write, and fetch times are 6, 5, and 3 cycles?, re-
spectively, a loss of only a factor of two in performance by placing the user program and data
in external memory is surprisingly low. The reason for such a low cycles-per-working-in-
struction figure when the user program and data are in external memory is the high Cosmos
overhead. The MDP spends most of its time executing Cosmos code, which decreases the cy-
cles-per-working-instruction number from what it would otherwise have been. For the same
reason, changes that would reduce Cosmos overhead at the expense of user program size are
undesirable in most cases.

IThe write time is 0 because it is absorbed by the execution of the WRITE instruction—WRITE does not require any
extra cycles when writing to memory as opposed to a register. Eight instructions can be fetched in one cycle for an
effective fetch time of 1/8 cycle per instruction; the branch instruction cycle counts already include the overhead for
fetching the next set of instructions.

2Two instructions are fetched at a time from external memory in 6 cycles, for an effective fetch time of 3 cycles per
instruction.

113

Concurrent Smalltalk on the Message-Driven Processor

7.3. Conclusion

Context Switching Performance

A large component of the current operating system overhead time is the time taken to save
and restore contexts, especially in the CFUT fault handler. One possibility to increase the
speed of the CFUT fault handler is to not save data registers and not copy the message upon
a CFUT fault [11]. Not saving data registers would reduce the fault handler’s time by 4 in-
structions!, while not copying the message would reduce it by 6 more instructions. However,
these gains would come at a price—the size of the object code would increase because the
compiler could not effectively allocate variables to registers; it is not clear whether the
savings in the operating system overhead would outweigh the increased time spent executing
user code, especially if the user code lies in external DRAM, while the operating system lies
in fast internal SRAM.

Summary

Both the derived and measured data indicate that the grain size for running Concurrent
Smalltalk on the J-Machine is 50 to 70 instructions. Since most functions involve two mes-
sages (one apply message and one return message), the average number of instructions needed
to process a function call is between 100 and 140; actually, it is probably closer to 100 be-
cause of tail forwarding.

When running entirely from internal memory, the MDP executes one instruction about every
two cycles; if user programs and data have to be accessed from external memory, that count
increases to about four cycles per instruction. The network load was calculated assuming a
fast program (two cycles per instruction) injecting messages into the network at the fastest
observed rate (one word every eight instructions) and utilizing 100% of the J-Machine’s pro-
cessors. If the messages are sent randomly under the above conditions, the J-Machine net-
work will saturate when a J-Machine with over 343 MDPs is built. Of course, most programs
will not be as fast, but some crafted library routines could impose network loads as high as
indicated above. To prevent network saturation, either the network will have to be made
faster, the program slower, or some means of exploiting locality invented.

1The reduction would be 8 instructions if the data registers did not have to be restored by the reply handler; how-
ever, it is difficult for the reply handler to distinguish the cases in which it has Lo restore registers because some
unanticipated fault like overflow happened from the cases in which it doesn’t; the extra instructions needed to make
this decision would make this optimization not worthwhile.

114

Chapter 8. Future Evolution

Although working Concurrent Smalltalk programs have been demonstrated, the Concurrent
Smalltalk programming system is by no means complete. Some suggestions for improve-
ments were discussed throughout the previous chapters—more optimizations could be added
to the compiler, distributed objects could be distributed more uniformly, and storage used by
free BR]AT entries and free standard contexts could be placed back into the heap’s free stor-
age pool.

Nevertheless, the possible modifications are by no means limited to the minor ones listed
there. The Concurrent Smalltalk programming system is still an evolving research and
demonstration vehicle, and many issues still have to be addressed before it becomes a truly
general-purpose system. This chapter lists these issues together with potential approaches
for addressing them.

The first section lists features that were left out of the Concurrent Smalltalk implementation
that are desirable in a full system. These features are useful in many specialized applica-
tions, but the system can work without them.

The second section lists the resource management concerns raised by the implementation of
Cosmos. These concerns include load balancing, garbage collection, name space reuse, fanout
bottlenecks, and parallelism control. A few ideas are suggested about handling the fanout
bottleneck and parallelism control problems, but many of these issues are still in the re-
search stage.

The third section outlines a few changes that could be made to the MDP architecture that
would improve the performance of Cosmos and compiled Concurrent Smalltalk programs.

115

Concurrent Smalltalk on the Message-Driven Processor

8.1. Features

This section lists additional features that would be desirable in the Concurrent Smalltalk
environment. The most obvious ones are the current omissions from Cosmos: futures, ar-
rays, floating point numbers, and overriding primitive methods. In addition, the perfor-
mance of Concurrent Smalltalk loops could be improved.

Arrays

Arrays are already fully implemented in Optimist II-——Optimist II can interpret and compile
code containing arrays. Cosmos, however, does not currently support arrays. When imple-
mented, they will be added in the form of MDP runtime code in the Runtime.m Cosmos file.
Ideally four different kinds of arrays will be provided: strings, bit arrays, integer arrays, and
general object arrays. Strings can pack four characters per word, bit arrays can pack thirty-
two booleans per word, while integer arrays can, depending on the range of integers supplied,
pack 1, 2, 4, 8, 16, or 32 integers per word.

I expect arrays to be placed in self-contained objects fitting on single nodes rather than trees.
This will limit arrays to about 200 words each because larger objects will overflow message
queues when migrated. If large arrays are desired, distributed array classes should be de-
fined, and perhaps new-simple-array, new-integer-array, new-string, and new-
boolean-array could automatically allocate distributed arrays if their size arguments are
large enough.

Enough primitives have been provided in Concurrent Smalltalk to support almost all com-
mon array operations efficiently. The map and init methods treat arrays dataflow-style, al-
lowing elements of arrays to be defined in terms of other elements of the arrays. Cfutures
could be used in unpacked arrays to prevent elements of arrays from being read before writ-
ten; if an array is packed, a bitmap of valid elements, perhaps stored in a context, could be
attached to it.

Although implementing arrays well on the J-Machine is not particularly difficult, it is quite
time-consuming and was omitted from this thesis for this reason.

Overriding Primitive Selectors

Concurrent Smalltalk allows user programs to override primitive selectors such as + and <,
thereby allowing the implementation of additional number types such as complex numbers
and matrices which respond to the traditional numeric operations. While Optimist II permits
selectors to be overridden in its interpreter, Cosmos does not support this facility, again be-
cause this feature would be too time-consuming to implement.

Adding the ability to override primitive selectors will not be as easy as adding arrays, but,
fortunately, all the hardware building blocks needed are present in Architecture 11B. When
an instruction is executed on a word with a type not supported by the hardware for that in-
struction, the MDP faults. When a system call such as Divide is done on words with unsup-
ported types, the operating system halts. All of the type-related fault handlers and halts will
have to be implemented; they will have to decode the operation which caused the fault and
emulate it by performing a standard message send. This emulation will require a lot of at-
tention to little details and will be error-prone. Also, the context will have to be enlarged.

For an example of the complexity involved, suppose the user overrides the = method to sup-
port complex numbers. One of the consequences might be that a BNZ instruction somewhere
in the program faults ID because it was called on a complex number instead of an integer.
The fault handler will have to call the = method to compare the complex number against

116

Chapter 8 Future Evolution

zero. In order to make this call, it has to save the entire state of computation in the context
plus two more words: a return IP back to the fault handler and a slot into which the result
(true or false) should be written. When the fault handler regains control, it will examine
the slot and either take the branch in the user program or let execution continue with the
next instruction. Due to CFUT-handling in the MDP’s architecture (specifically, because
WRITE does not fault on cfutures), primitive selectors can never return cfutures.

Another issue is what to do with commutative operations such as +. One might add an inte-
ger to a complex number or a complex number to an integer, and it would be nice not to have
to override the integer method for + to implement complex numbers. To implement this
cleanly, the fault handler for ADD would have to try adding the arguments in one order, and,
if no method matched, reverse the arguments and try again. If no method matched a second
time, it would halt.

Finally, a few minor modifications may have to be done to Optimist II's back end to support
overriding primitive selectors.

Long Integers

Once overriding primitive selectors is supported, it will not be particularly difficult to imple-
ment a bignum package for the MDPs and watch how many microseconds it takes a J-Ma-
chine to compute the factorial of 1000.

Futures

Optimist II currently provides most of the support needed for full futures, although some
modifications would still be necessary. The major changes would be to the operating system.
The changes would be similar to those needed to implement primitive selector overriding—
FUT fault vectors would have to be defined and emulate all possible cases.

Floating Point Numbers

There are four different ways to implement floating point facilities on the J-Machine. Rang-
ing from the easiest to the hardest and most exotic, they are:

1. Emulate operations on the FLOAT data type through software fault handlers. This ap-
proach would provide IEEE-compatiblel, single-precision floating point number capability.
Unfortunately, this approach would be very slow because of the large instruction decoding
and floating point packing and unpacking overheads. The advantages of this approach are
simplicity, transparency, and IEEE compatibility, if desired.

2. Store floating point numbers as two words each. One word would be the exponent and
the other the mantissa. The precision would be intermediate between single precision and
double precision. Floating point operations could be inlined, and micro-optimization tech-
niques [12] could be applied. The advantage of this approach is speed without the need for
extra hardware. The disadvantages are that this approach would need object inlining to be
implemented by Concurrent Smalltalk (otherwise this technique would be even slower than
technique 1), the floating point number format is nonstandard, and the use of floating point
numbers would be cumbersome. Since floating point variables would take two words instead
of one, they would have to be declared as such to avoid losing efficiency, and a variable could
not efficiently support both floating-point and non-floating-point values. The last restriction
is a major problem because floating-point versions of all of the methods operating on general
objects might have to be written and used to achieve good performance.

3. The third possibility would be the inclusion of a floating-point unit on the MDP. The unit
would require no significant software-visible architectural changes; the arithmetic instruc-

LANSI-IEEE standard 754.
117

Concurrent Smalltalk on the Message-Driven Processor

tions would simply start working on words tagged FLOAT, and maybe a DIV instruction and a
few control registers would appear. The disadvantage of this approach would be the inclu-
sion of a hardware floating point unit on the MDP, which would increase the hardware’s
complexity. The advantages would be speed, simplicity, transparency, and IEEE compatibil-
ity, if desired.

4. The last possibility would be addition of RAP [19] chips to the J-Machine network. RAP
chips are custom chips that contain a large number of serial floating point units, achieving
estimated peak performance of 300 MFLOPS per chip. Under this approach, an MDP would
send floating point calculations to a friendly neighborhood RAP, which would do the calcula-
tions and respond to the continuation it was given. This approach would work well if the
floating point calculations were grouped and did not have to be mixed with symbolic process-
ing. If the MDPs were to perform mainly symbolic processing with occasional floating point
instructions, the message overheads would make this approach inefficient. This approach
would require a large investment in operating system and runtime software, and it is not
immediately clear that it would be faster than approach 3, although the potential payoff is
large.

True Loops

Loops are currently not implemented particularly efficiently in Concurrent Smalltalk. It is
not clear whether this inefficient implementation will hurt program performance; it does, of
course, depend on how often loops are used. Using iterators and similar abstractions to step
through arrays and other data structure is usually preferred to using loops because iterators
might execute in parallel, while loops are inherently sequential. Nevertheless, there might
be some situations where sequential loops are needed.

The primary reason for the current, inefficient implementation of loops is the need to ensure
that a loop does not execute for a long time uninterrupted, preventing other messages from
being executed at the node and maybe even causing a message queue overflow. Currently
Optimist II compiles a loop into a function which calls itself tail-recursively, which is a fairly
large penalty to pay for tight loops. The implementation could be improved to a true loop in-
side a lambda if the code inside the loop either made at least one full-fledged function call per
iteration or tail-recursed every few iterations; either case takes care of the message problem.
Some experimentation is needed in this area to determine the best course of action.

Inline Objects

The largest feature change to the Optimist II compiler would be the addition of inline objects.
This would be a difficult and error-prone process because all cases have to be handled well;
these cases include passing an inline object to a function that does not expect one, storing in-
line objects in contexts, creating pointers to inline objects, and altering inline objects. It is
likely that if inline objects were implemented, several versions of each function would be
compiled. One version would be unoptimized, while the others would support inline objects
as arguments and results. The constant folder would then try to convert unoptimized func-
tion calls to optimized function calls in the same way it currently converts method calls to
function calls.

118

Chapter 8 Future Evolution

8.2. Resource Management

Concurrent Smalltalk presents the programmer with an ideal model of a machine with an
unlimited number of processors and an unlimited amount of memory; unfortunately, real
computers are limited in both the number of processors and the size of memory. Several re-
source management problems result from the discrepancy between the Concurrent Smalltalk
ideal and the hardware reality. These problems include reusing memory that can no longer
be accessed and simulating an unlimited number of processors with a fixed, finite number.
Additionally, there are a few bottlenecks in the current system that can be ignored in small
implementations but will become important in large-scale systems.

Heap Compaction

The current design of the Cosmos heap compactor compacts the entire MDP heap when a
storage allocation request exceeds available free memory. This approach works, but it has
two significant disadvantages, both related to the long time it takes to compact the memory:

1. On a small J-Machine, the MDP will effectively stop responding until the heap com-
paction is done. In the few tens of thousands of instruction it takes the MDP to do the heap
compaction, the other MDPs may run out of things to do and all wait for the stopped MDP.
The heap compaction will effectively stop the entire computer. Soon after the first MDP fin-
ishes its heap compaction, another MDP may starts its own compaction, and the process will
repeat.

2. On a large J-Machine, a heap compaction on one MDP will not be enough to stop the
other MDPs from running; instead, they will continue to run longer and are likely to send
enough messages to the compacting MDP that its incoming message queue overflows. The
poor MDP now does not know what to do because it has no free memory into which to put the
extra messages.

Finally, the current heap compactor does not compact BRAT entries or standard contexts,
but it could compact them with a little additional effort.

An incremental heap compactor would address both of the serious disadvantages of the cur-
rent heap compactor. It might even be possible to run the incremental heap compactor in the
MDP’s background mode, although the lack of a separate set of fault vectors and a full set of
registers would pose serious detriments.

Fanout Bottlenecks

Cosmos currently assigns one node as a “home” of an object; with few exceptions, if a differ-
ent node needs a copy of that object, it turns to the home node to get it, and the home node
takes care of supplying the object. Unfortunately, sometimes many nodes want to use the
same object simultaneously. Accesses to mutable objects are serialized anyway, so having a
home node for a mutable object is not such a bad idea; however, there is no reason why ac-
cesses to immutable objects should be unnecessarily serialized. On the contrary, functions
are immutable objects, and it would be nice if a function’s home node did not have to send a
copy of the code to every other node on a 65536-MDP computer.

One solution to this bottleneck would be to assign several home nodes to each immutable ob-
ject; perhaps the more popular the object would be, the more home nodes it would have.
When another node needed a copy of that object, it could ask the closest home node. If one
home node were made special and all the others allowed to purge their copies of the object
because they could get it from the special home node, this scheme would become a distribu-
tion tree. Brian Totty presents an analysis of distribution trees in [38].

119

Concurrent Smalltalk on the Message-Driven Processor

Cosmos also serializes the allocation of distributed objects at one node because of the need to
give each distributed object a unique ID. The allocation process could be parallelized by
splitting the ID space and making several nodes responsible for allocating distributed ob-
jects, one for each chunk of addressing space.

Garbage Collection

Garbage collection on the J-Machine is currently an open research problem. Parallel garbage
collection algorithms exist, but they may not work well on the J-Machine. For example, the
parallel garbage collection algorithm in [29] requires a node to keep track of all of the local
IDs it sends to other nodes, which would be unfeasible for two reasons. First, each MDP
spends a considerable amount of its time sending data onto the network, and its performance
would suffer if it had to record every ID sent. Second, most local IDs become known to other
nodes in the J-Machine, degenerating the algorithm’s performance.

Perhaps the best solution is a simple mark-and-sweep algorithm run on all MDPs in parallel;
after all, the combined MDPs have a considerable amount of processing power. Unfortu-
nately, this approach has three potential problems:

1. The mark-and-sweep garbage collector has to stop the J-Machine, and it might be diffi-
cult to stop all processors and allow the messages in the network to land somewhere, espe-
cially if the messages in the network are blocked because some node is out of memory and
queue space.

2. The J-Machine network bandwidth may be insufficient for a mark-and-sweep garbage
collection.

3. There may not be enough room on the MDPs for the intermediate storage needed by the
algorithm. In particular, if all the MDPs immediately start marking their root sets, all mes-
sage queues will quickly overflow with mark messages. This is a parallelism control prob-
lem. :

Load Management

The purpose of load management on the J-Machine is to distribute a parallel computation
evenly throughout the processors while keeping network congestion low. Load management
is a very broad current research area. Cosmos and Optimist II include limited attempts to
balance the load—Optimist II distributes the objects it compiles evenly among the nodes of
the J-Machine, and Cosmos allocates new objects on random nodes and evaluates applica-
tions on primitive objects on random nodes to prevent the entire computation from taking
place on one node. Nevertheless, these are only initial steps to addressing the load manage-
ment issues. The following are at least some of the load management concerns that should
be addressed on a large J-Machine:

¢ The current system for allocating objects may have to be reevaluated. At least theoreti-
cally, the current system should perform quite well if all objects are about the same size. If
the nodes on which objects are allocated are always picked randomly, memory usage on all
nodes will remain within a few standard deviations of the average memory usage, so even on
a large J-Machine the probability that a single node’s memory overflows can be made expo-
nentially small. On the other hand, real programs may allocate objects with a large variation
of sizes, and they may wish to allocate objects on specific nodes to take advantage of locality.
Both of these conditions may overflow memory on some nodes while other nodes still have a
considerable amount of free memory,

* An analogous issue to the one above is handling message queue overflows. Due to the

queues’ small sizes and the large variance in the sizes of messages, it is difficult to make
queue overflows statistically unlikely. Instead, mechanisms have to be introduced to handle

120

Chapter 8 Future Evolution

them. These mechanisms should not allocate extra local memory because a queue overflow is
most likely to happen when little or no memory is available because it is being compacted.

e MDPSim assumes that the MDPs are connected by a crossbar network, so all MDPs are
equally far apart from each other. This is a good approximation on a small J -Machine—on a
64-node J-Machine organized as 4x4x4 MDPs, no two processors are more than 9 links apart,
while the expected distance between two random nodes is only 3 links. On the other hand,
on a 65536-node J-Machine organized as 64x32x32, locality becomes an important issue; if
objects continue to be allocated randomly, the network will become hopelessly congested.

There are two general approaches to distributing the load evenly. One approach is to make
objects very mobile and hope that they will redistribute themselves to exploit locality. When
a portion of the J-Machine becomes congested, it could simply throw objects at the rest of the
J-Machine. JOSS hints [38] were an example of a technique that could be used by this ap-
proach. While this approach is simple, it does suffer from some disadvantages. In particular,
if load management decisions are made often, they cannot be too time-consuming to prevent
excessive overhead. Also, when an object migrates often, it is difficult for a node to send a
message to it. In JOSS, if a node does not know where an object is, it sends the message to
the object’s home node instead, which forwards it to the object. If an object is not at the home
node, then both the home node and the object’s current node are congested with messages
addressed to the object. JOSS attempted to correct this problem through the use of hints, but
JOSS-style hints may be ineffective because all first-time users of an object must still first
reference the home node to get to the object.

The other approach is making objects on the J-Machine relatively static and redistributing
them to balance the load only occasionally. This is the approach taken in Cosmos. Objects
are free to move around the J-Machine for short periods of time, but an object’s home node
asks the object to return to it when it another node sends a message to the object via the
home node. Hence, objects tend to remain where they were first created. As long as the ob-
ject allocator allocates objects well, the load will remain roughly balanced. Any small dy-
namic imbalances that arise can be handled by the garbage collector, which could have the
power to truly change an object’s home node by renaming all of the IDs in the entire J-Ma-
chine pointing to the object.

Controlling Parallelism

In addition to load balancing, which distributes a fixed amount of work among the MDPs, it
will also be necessary to throttle the amount of work being done by the J-Machine as a whole.
A simple example illustrates this point.

{(Defmethod fib Integer ()
(if (<= self 2)
1
(+ (fib (- self 1)) (fib (- self 2)))))

Figure 8-1. A Doubly-Recursive Fibonacci Program

Consider the doubly-recursive Fibonacci program in Figure 8-1. When run on a sequential
computer, the program traverses the computation tree of the Fibonacci function in a depth-
first order (Figure 8-2), taking only O(n) space but exponential time to compute Fib(n). On
the other hand, when run on the J-Machine, each invocation of fib except the tail ones at-
tempts to evaluate the two recursive calls in parallel. In effect, the computer traverses the
computation tree in breadth-first order (Figure 8-3). This is good if there are many proces-
sors, because then the function is computed in only O(n) time. Unfortunately, this manner of
computation requires an exponential amount of both main memory and message queue
space. Thus, a parallel computer can fail if a program exhibiting too much parallelism is run
on it.

121

Concurrent Smalitalk on the Message-Driven Processor

Figure 8-2. Progress of a Sequential Computation

Although the computation consists of a large number N of function invocations, a sequential computer traverses
the computation tree in depth-first order, so only Ofiog N) functions are active at any particular time (bold gray),
and the “wavefront” of computation consists of only a single invocation (bold biack) Oflog N)space is required to
run the program and constant-size message queues suffice because the wavefront is at most one invocation.

Figure 8-3. Progress of a Parallel Computation

A parallel computation tends to evaluate the computation tree in breadth-first order, which requires the storage of
most of the function invocations in the computation tree at about the half-way point. Thus, the computation re-
quires O(N) space, and, moreover, the “wavefront” can also become as large as O(N). Hence, the computation
also requires O(N) message queue space. The computation will exceed the parallel computer's memory it Nis
large compared with the number of processors.

122

Chapter 8 Future Evolution

When the compiled code for Fibonacci is run on a simulated 4-node J-Machine, Fib(11) is the
largest value that can be computed. An attempt to compute Fib(12) results in queue over-
flows; enlarging the message queues or spilling them into main memory would not help much
because the storage needs grow exponentially.

Fortunately, it appears that a solution to this problem does exist. Why not change from
evaluating the computation tree in a breadth-first fashion to a depth-first fashion when all of
the processors on the J-Machine are busy? A seven-instruction change to the compiled code
for Fib (Figure 8-4) accomplishes just what is needed. The change forces sequential evalua-
tion of Fib’s two recursive calls if the local message queue is more than a quarter full. Thus,
the computation grows exponentially until all MDPs are saturated. From then on until the
answer is ready, all MDPs are busy computing the problem without increasing the space re-
quirements. After the change was made, the Fib program could calculate answers for much
larger inputs.

The simple change in Figure 8-4 is not a panacea, though. The change allows enough paral-
lelism for the message queues to be a quarter full on the average throughout the J-Machine.
Unfortunately, in practical simulations the sizes of the queues vary widely—the queues on
some processors might be empty, while other MDPs may have queues that are more than
half full. It is easy to see why this might happen—an MDP with a nearly empty queue is not
throttled down and will happily send messages to an MDP with a nearly full queue. Due to
this variance, the queues overflowed anyway if the threshold for inhibiting parallelism was
set to half of the queue size. To summarize, it seems that this approach for controlling paral-
lelism will work, but it may have to be combined with load balancing to keep the variance in
queue sizes low. '

Name Spaces

The scarcity of IDs in the 32-bit name space is also an important consideration on the J-Ma-
chine. After allowing for flags and nonuniform usage of the name space, 32 bits allow only
about a billion objects to be named on the J-Machine. Furthermore, if the name space is not
reused, a J-Machine could run out of names in less than a second—each node is limited to
creating only about 32000 objects before exhausting its name space.

To solve this problem, object IDs could be collected and reused by the garbage collector!. The
garbage collector could compact the ID space, which would also permit an ID-renaming load
balancer almost for free. However, even this approach might not be enough. If the J-
Machine is implemented using technology of the 1990’s, it may well have enough physical
memory to overflow the 32-bit name space even with garbage collection. At that point the
only reasonable solution will be to increase the word size, perhaps to 64 bits.

1An approach that almost works and does not require a garbage collector is to test each candidate ID in the ID-
generation routine. If the ID names an existing object, the ID-generator simply chooses another ID. Unfortunately,
this approach does not work for immutable objects because some copies of such objects could exist with the home
node not knowing about them. Keeping the home node informed about copies of its immutable objects would cause
bottlenecks of its own, not the least of which are the space needed to store such information and the network band-
width used to maintain it.

123

Concurrent Smalltalk on the Message-Driven Processor

MODULE fFib

DC MSG:hdrCopyable|cFunction<<offsetN|32
DC {fFib}
DC 5
MOVE {2,A3],R3
LT R3,2,R1
BF R1,~L0O0O1
MOVE 1,R1
BR ~L002
LO01: SUB R3,2,R2

MOVE R2,RO
CALL objectNode

DC MSG:msgApplyFunction|5
SEND20 R1,RO
DC {fFib}

SEND20 RO,R2
MOVE 5,R0
SEND2EC [1,Al],RO
WTAG RO, 6, RO
MOVE RO, {5,A1]
MOVE QHL,R1
WTAG R1,INT,R1

DC 63

AND R1, $§3FF,R1

LE R1,RO,R1

BT Rl, “Empty

MOVE [5,A1] ,RO
Enmpty: SUB R3,1,R2

MOVE R2,RO
CALL objectNode

DC MSG:msgApplyFunction]|5
SEND20 R1,RO
DC {fFib}

SEND20 RO,R2
MOVE 6,R0O
SEND2EO [1,Al].RO
WTAG RO, 6,R0O
MOVE RO, [6,Al]
MOVE [6,A1],R2

ADD R2, [5,A1],R1
L002: MOVE [3,A3],R2

BNIL R2, ~L003

DC MSG:msgReplyl 4

SEND20 RZ2,RO

SENDO R2

SEND2EO [4,A3],R1
L003: SUSPEND
END

Figure 8-4. Modified Fib Assembly Language Function

When the incoming message queue is at least a quarter full, the modified Fib function throtties down the paral-
lelism by waiting until the result of the first recursive call has been received before starting the second one. The
modification is shown in bold. No parallelism penalty other than the execution of six extra instructions is paid when
the J-Machine is not saturated.

124

Chapter 8 Future Evolution

8.3. Architectural Considerations

Some architectural modifications could be made that would streamline execution of MDP
code in critical sections in the operating system.

Minor Instruction Set Changes

One set of optimizations with a relatively large payoff would be allowing MOVE instructions
from the ID registers directly to memory and XLATE instructions directly from memory into
address and ID register pairs. Introducing these instructions would cut the number of in-
structions needed to save and restore ID registers on context switches by half, and it would
accelerate allocation and deallocation of fast contexts.

A large part of the operating system is still spent saving and restoring state in fault han-
dlers. Also, most faults point the FIP register to the instruction after the one that faulted,
while most fault handlers (with the notable exception of CALL) would rather resume the in-
struction that faulted, requiring the FIP to point to the instruction that faulted. Backing up
the FIP by one instruction takes five or seven instructions depending on whether a free regis-
ter is available. Pointing the FIP to the instruction that faulted (except for CALL faults) or
making an extra shadow FIP register that points to the instruction that faulted would reduce
the number of instructions needed in important fault handlers such as CFUT, EARLY, and
SEND—the EARLY and SEND fault handlers would be reduced from eight instructions to
one!

Other critical resources which are near the limits of their capacities are the message queues
and the XLATE table. The message queues can only be made to hold 1024 words, and the
XLATE table cannot hold more than 512 bindings. If a MDP has 65536 words of memory, it
might be beneficial to have a 2048-binding XLATE table or a message queue that could hold
4096 words, especially if large objects are frequently transmitted over the network.

Another critical resource in the XLATE table is the key space. The XLATE table is a popular
associative cache in the operating system, and it is used for a variety of purposes. Unfortu-
nately, there are only 16 tags on the MDP, and tag conflicts exist among the keys XLATEd by
the users of the XLATE table. For example, class/selector pairs had to be tagged INST1 be-
cause all of the “normal” tags were already taken. A future version of the operating system
might run out of key tags for the XLATE table. Possible solutions to this problem include,
but are not limited to, providing several XLATE tables or using more than one word as a key.

Finally, one instruction is seldom used and could be removed. The INVAL instruction is used
only once in Cosmos in the heap compactor, and since a heap compaction takes a long time
anyway, emulating INVAL in software would neither be difficult nor harm performance.

Fast Context Saves and Restores

Perhaps a more ambitious project would be to attempt to improve the MDP’s context-switch-
ing time by supporting in hardware a shadow image of the registers in memory. In other
words, the registers would act as a cache for a context in memory. When a context switch oc-
curred, the modified registers would be written back into memory and a new register set
loaded from the new context. Quick register saving and restoring for fault handling is even
more important than fast context switching, and this approach might be generalized to sup-
port fault handling as well by allocating a context to each fault handler that wanted one.

125

Concurrent Smalltalk on the Message-Driven Processor

8.4. Conclusion

A number of desirable features for future inclusion in Cosmos or Optimist II were described,
including arrays, full futures, overriding primitive selectors, floating point numbers, and
large integers. Implementing arrays and primitive selector override facilities should not pre-
sent major difficulties, although it will be time-consuming. Several approaches for imple-
menting floating point numbers were discussed, including two software approaches—a fast
and dirty one and a clean but slow one—as well as two hardware approaches—including a
floating point unit on every MDP and including RAP chips in the J-Machine network.

In addition, a number of resource management issues were discussed, ranging from heap
compaction, garbage collection, load management, and ID reuse to fanout bottlenecks and
parallelism control. New methods may have to be developed to support efficient garbage col-
lection on the J-Machine, but once garbage collection is done, ID reuse and load management
may be obtained for free. Parallelism control is a serious issue in many applications. An ap-
plication that tries to operate on a large data set in parallel or explore a large search tree will
quickly overflow the entire J-Machine’s queue capacity. One approach to solving this prob-
lem was explored—if Concurrent Smalltalk code switches to evaluating itself sequentially
when the local queue size exceeds a threshold, the total queue size on the J-Machine appears
to remain bounded, although individual queues may still overflow. This approach shows
some promise for solving the parallelism control problem.

Finally, a few changes to the MDP architecture were proposed. Allowing direct MOVESs to and
from ID registers and providing the right FIP value after a fault would save instructions in
many critical Cosmos code sections.

While Cosmos and Optimist form a workable system as they are now, much fine-tuning re-
mains to be done. Due to a lack of time, a few features of Concurrent Smalltalk have not
been fully implemented. The door is now open for experimenting with the difficult problems
of load management, concurrency control, and garbage collection. These areas have not been
studied very much in the context of fine-grain parallel computers, and there is room for both
practical and theoretical results.

126

Chapter 9. Conclusion

Optimist I1

Optimist II is a second-generation optimizing compiler for Concurrent Smalltalk, and the
first to implement nearly the entire revised Concurrent Smalltalk language. Optimist 11
builds upon Optimist by adding an interactive prototyping and debugging environment and a
few new classes of optimizations. The introduction of global optimizations was especially
valuable in making Concurrent Smalltalk easy to use efficiently and the runtime system easy
to write. The greatest advantage of global optimizations is that they permit the programmer
to divide a system into self-contained abstractions without suffering a performance penalty
for doing so. There is a trend in modern programming languages towards global optimiza-
tions!, and Optimist II shows that they are both feasible and desirable for a language like
Concurrent Smalltalk.

Cosmos

Cosmos is an optimized operating system for the J-Machine. In addition to performing the
necessary services to keep the J-Machine running, it includes facilities for function and
method calls; local and global object allocation, disposal, and migration; method lookup ta-
bles; distributed object creation and addressing; and various utilities. A few interesting pro-
gramming techniques were used: an infinite loop broken by a fault is used for block moves
and sends, and an addressing scheme was developed for distributed objects that allows easy
addressing of constituents while at the same time distributing them throughout the J-Ma-
chine and allowing efficient implementation of an operation that returns a nearby con-
stituent.

Cosmos was fairly difficult to write due to the constant specter of re-entrancy problems and
double faults. These errors were the most common problems in JOSS [38]. Nevertheless,
with the aid of the criticality system those difficulties were overcome. Unfortunately, the ca-
sualty of this battle with re-entrancy is ease of modification of the Cosmos kernel—the kernel
is now one compact piece of code. Nevertheless, it should not be necessary to make extensive
modifications to that kernel in order to add the features mentioned in Chapter 8.

Debugging

An important consideration when designing a complicated computer system today is ensuring
that it is debuggable. The hardware world has been buzzing with ideas such as design-for-
test for a few years now; yet, these ideas are just as applicable to software. Thus, Cosmos in-
cludes consistency checks in strategic locations which detect common errors that may be com-
mitted by Concurrent Smalltalk programs. However, even with those checks debugging a
Concurrent Smalltalk in assembly language is unpleasant and not as interactive as it could
be; for this reason, Optimist II includes an interpreter which can be used to get a Concurrent
Smalltalk program working before it is run on a J-Machine.

Performance Measurements

Performance measurements on a simulated J-Machine indicate that the grain size (the num-
ber of instructions executed in response to a message) averages about 60 instructions. Since
most functions invocations involve two messages (tail-forwarded invocations being an impor-

1For example, C++ [37] allows functions to be declared inline, recommending that the compiler inline them in other
functions.

127

Concurrent Smalltalk on the Message-Driven Processor

tant exception), the average number of instructions needed to process a function call is about
100 to 120; the number is lower if many tail-forwarded invocations are made.

The MDP executes one instruction about every two cycles when running entirely from inter-
nal memory; when the user program and data are located in external memory, that count
only doubles to about four cycles per instruction even though the external memory is 5 times
slower for writing, 3 times slower for reading, and about 24 times slower for fetching instruc-
tions. The reason for the unusually low cycles-per-instruction number when the user pro-
gram and data are located in external memory is the high operating system overhead; since
the operating system is always in internal memory, running operating system code out of in-
ternal memory tends to pull the cycles-per-instruction number down.

Under good conditions the MDPs can saturate the network on J-Machines larger than 343
nodes, although most programs will not execute fast enough for the network to saturate until
significantly larger J-Machines are used. To prevent network saturation, either the network
will h;ve to be made faster, the program slower, or some means of exploiting locality in-
vented.

Future Work

Many ideas for future work and research were outlined in Chapter 8. The short-term goals
are twofold: first, to fill the remaining holes in the implementation of Concurrent Smalltalk;
in particular, arrays will be useful for running real Concurrent Smalltalk applications; sec-
ond, to write some nontrivial Concurrent Smalltalk programs and see how well they can uti-
lize the J-Machine’s power. In addition, the load management and parallelism control issues
in Chapter 8 should be explored. So far development of the Concurrent Smalltalk environ-
ment has been done without much feedback from applications because until very recently it
was not possible to run any applications on even a simulated J-Machine. Now that the com-
piler and the operating system are operative, it will be possible to close the loop and provide
concrete measures of the J-Machine’s performance on real problems.

Hopes

Optimist II and Cosmos are but an early step in an evolving base of software for the J-Ma-
chine. My hopes are that the J-Machine will evolve into a computer competitive with today’s
fastest computers on numerical codes and surpassing them on less-structured but nonethe-
less computation-intensive Artificial Intelligence applications.

When I originally wrote this thesis in early 1989, I wrote that I was hoping to be able to run
a Concurrent Smalltalk program on a set of real MDPs. Two years later, during the summer
of 1991, this wish came true.

128

Appendix A. Concurrent Smalltalk Reference

A.1. Introduction

Concurrent Smalltalk (CST) is a concurrent descendant of Smalltalk. It is an object-oriented
programming language developed for multiple instruction/multiple data concurrent comput-
ers such as the J-Machine. It is an interesting language for a message-passing concurrent
computer because it encourages locality and disciplines the use of message-passing.

Goals

Concurrent Smalltalk is a high-level language intended for general-purpose programming of
the J-Machine. It was created and revised with the following goals in mind:

o Expressiveness. Concurrent Smalltalk must be expressive enough to support the paral-
lel programming paradigms we desire to research on the J-Machine. In particular, it must
support object-oriented programming and fine-grained parallelism. Also, since a large part of
the Concurrent Smalltalk runtime system is written in itself, Concurrent Smalltalk must
support higher-order features such as reasoning about classes of objects.

» Consistency. Features which would interact destructively with other features were left
out. For example, become, although a useful Smalltalk-80 construct, would confuse the type
semantics so it was left out.

e Simplicity. Concurrent Smalltalk should be as simple as possible. In order to reach the
goal of simplicity, Concurrent Smalltalk should consist of a few orthogonal concepts. It is
very important that Concurrent Smalltalk contain no surprises—one should be able to tell
what a program should do by reading it. Features involving action at a distance (i.e. having
a statement invisibly affect another statement far away) were intentionally excluded.

e Familiarity. Programmers familiar with existing languages should be able to carry over
their experience to Concurrent Smalltalk. Also, corresponding features should act in the
same ways, which reinforces the “no surprises” philosophy. On the other hand, Concurrent
Smalltalk is most similar to Smalltalk-80, Common Lisp, and Scheme in this respect. Hence,
static scoping is used for variables.

o Efficiency. It is important to be able to compile Concurrent Smalltalk programs into ef-
ficient machine code. An efficient implementation allows a programmer to concern himself
primarily with algorithms and implementation rather than performance tuning. Concurrent
Smalltalk is not a tightly bound low-level language in order to give the compiler latitude in
optimizing code.

e Commonality. The sets of built-in classes and methods presented in this language spec-
ification are by no means minimal. However, the built-in classes are frequently used and
were included in order to provide a common base for Concurrent Smalltalk programs. The
inclusion of frequently used classes has three advantages:

¢ The built-ins are implemented only once, saving time and effort.

¢ The built-ins provide a consistent functional and naming specification.

¢ The built-ins can be optimized for efficiency.

129

Concurrent Smalltalk on the Message-Driven Processor

Format

BNF

The syntax of commands is presented in BNF. Literals are presented in bold, while non-ter-
minals and metasymbols are plain. There are two enhancements to the BNF syntax:

The {expr1 | expr2 | ... | exprn} form specifies that each expr can appear at most once, but they
can appear in any order. The symbol = expr form is a macro used for readability. It specifies
that whenever symbol appears, it should be replaced by expr before any productions are done.

Methods and Functions

The declarations of methods and functions are presented in a syntax similar to that used by
defmethod. To give an example,

(move what:robot x,y, z:integer theta:float) :result Method

declares a method called move of class robot that takes a receiver argument what of class
robot, three integer arguments, x, v, and z, and a float argument, theta. That method
returns an object of class result.

Sometimes an abstract class like number is declared that has no direct instance objects; in-
stead, every object of class number is also an object of one of number’s subclasses. Methods
of an abstract class may or may not have definitions for that class. A method that does not
have a definition for the abstract class is called an abstract method. For example, + is an ab-
stract method of class number; there exists no generic method to add two arbitrary numbers.
Instead, when + is called on two numbers, the definition of + for either the class integer or
the class float is used. Were a third number subclass, complex-number, defined, it would
have to define its own + method. On the other hand, the zero? method of class number is
not abstract because it uses the = method (a method defined on all numbers). Thus, com-
plex-number does not have to define its own zero? method.

Abstract methods are indicated by the words Abstract Method on the right side of the dec-
laration line.

Optional statements are extensions to the basic Concurrent Smalltalk language. They are
not guaranteed to be present in all implementations of Concurrent Smalltalk, but if an im-
plementation supports the capabilities described by optional statements, it should use the de-
scribed syntax.

130

Appendix A Concurrent Smalltalk Reference

A.2. Syntax

Tokens

A Concurrent Smalltalk token is an arbitrarily long string composed of the characters A-2, a-
z,0-9, ,!,2, %+ -,%/,.,<=,>4&,@, and ~. The characters !, ?, &, and @ may not be
used at the beginning of a token, and a token may not be composed entirely of periods (.) or
underscores (). Also, tokens beginning with an underscore (_) or a percent sign (%) are re-
served for system purposes and macros and should not be used by user programs. Case is
not significant.

A token is considered to be a number if it consists entirely of the characters 0-9, _, +, =, /, .,
E, or I; it contains at least one digit; it begins with +, -, or a digit; and it does not end with a
digit. These rules are borrowed from Common Lisp. E introduces an exponent, while I can
b; used for complex numbers if they are implemented. Any token that is not a number is an
identifier.

Identifiers

Concurrent Smalltalk uses static scoping of identifiers. Local identifiers shadow identical
global identifiers, and the meaning of an identifier can be determined by its location in the
text of the program. Global identifiers are introduced by the following top-level statements
and their derivatives:

Defconstant, to define a constant;

Defglobal, to define a global variable;

Defclass, to define a class;

Defselector, to define a method selector;

Define, to define one global identifier in terms of another.

The syntactic sugar defmethod expands into, among other statements, a defselector, de-
fining a global identifier. Similarly, defun expands into a defconstant statement that de-
fines the function.

Except for classes, the above categories share a single name space. Redefining a global iden-
tifier causes an error or a warning unless the new definition is identical to the old one. Class
names have lower precedence than other global identifiers, so a global constant can shadow a
class name.

All macros are global; however, macros are also in a name space separate from the one
shared by the above categories. Since macros match patterns instead of just names, two
macros may share the same name. If more than one pattern is applicable, one is chosen at
the implementation’s discretion. Whenever a macro is applicable, it is expanded, unless one
of the literals specified in the macro pattern is shadowed by a local identifier.

Local identifiers are introduced by the following statements and their derivatives:

¢ Lambda and defun introduce the names of formal parameters.

e Method-Lambda and defmethod introduce self, group, names of the instance vari-
ables, and names of the formals. If a name conflict occurs between the formals, instance
variables, self, and group, the results are unspecified.

* Let, clet,mv-clet, and mv-let introduce names of the locals.

e Lambda, method-lambda, defun, defmethod, block, and loop introduce the names of
continuations.

All of the shadowing rules are summarized in Figure A-1.

131

Concurrent Smalltalk on the Message-Driven Processor

Language Global Local - Local
Nil
True —‘ Symbols |e— ridentifier
False
Classes Predefined | . iqentifier
Classes o identifier
A — # 'identifier *
Constants Predefined Instance Instance
Constants Variables Variables
Predefined Functions | | .
Predefined Selectors Self Self
X J 1 1|
Parameters Functions Group group
Selectors | I
| Formals +++t| Formals
el —
Globals | 1
Continuations Continuations
4 Continuation Continuation
sl Top-Level Local Local
Primitives Forms Variables Variables
1 el
Macros Precggggzi Continuations Continuations
Keywords & sidentifier ! Macro Variables [«#— !identifier in macro
g‘r’)‘t’;g::r @ (option identifier) 2 Macro Variables [#— 2identifier in macro

Figure A-1. Scopes of Identifiers

The scopes of various kinds of identifiers are shown above. Except for macros, sets of identifiers connected by
thick lines are mutually exclusive and may not contain duplicate names. To find the meaning attributed to an iden-
tifier, follow the arrows from the bold pattern indicating the identifier's usage to the first box that contains the identi-
fier. For example, if i is encountered in a program, it is first checked to be a local in the innermost scope, then a
local in the next innermost scope, and so on until the global scope is reached. If 1 is not a valid macro pattern, itis
checked against the globals, parameters, and constants, and finally classes. On the other hand, if #:1 is encoun-
tered, i is checked against the names of classes only. #*1i searches only globals, parameters, and constants,
both user and predefined.

132

Appendix A Concurrent Smalltalk Reference

Identifiers that are not defined globally! or in any enclosing scope are defined as globals.
They must be defined before they are used. The exceptions to this rule are identifiers en-
closed in quote or class statements listed below.

(global identifier) Primitive
ridentifier

Global returns the global identifier identifier, which, if already defined, must be a global (not
a class). If identifier is not already defined globally, it is defined as a global.

(class identifier) Primitive
i :identifier

Class returns the global class class. Since classes are in a separate name space from other
globals, no error occurs if there is already a global identifier defined with the same name as
identifier.

Symbols

(quote (nil | true | false | identifier | number | character | string)) Primitive
"(nil | true | false | identifier | number | character | string)

Symbols can be specified by preceding including them in a quote form as above, which can
be abbreviated by a quote mark ('). When presented with an identifier, the quote expres-
sion evaluates to a symbol. Any valid identifier except nil, true, and false can be used—
symbols cannot be captured by any scope, nor can they be globally redefined. Nil, true, and
false are treated specially—(quote nil) returns the null object nil, while
(quote true) returns the boolean true and (quote false) returns the boolean false.
(quote number), (quote character), and (quote string) just returns the number number,
character, or string.

Constants

A few constants are predefined. These are listed in Table A-1 below. In addition, any num-
ber can be specified by just including the number. Characters can be specified by preceding
them with #\. Strings can be specified by enclosing them in double quotes (). Double
quotes can be included inside strings by preceding them with \.

Table A-1. Predefined Constants

Constant Value Class
TRUE True True?
FALSE False False?
NIL Nil Null

End-of-file Anend-of file object Object

11t is up to the implementation to define the meaning of a global definition here. When a file is compiled, an im-
plementation might choose to read all of the definitions in the [ile and then compile the code, or it could compile the
file incrementally. In the latter case forward-referenced identifiers will be considered undefined.

2Since t rue is a global constant, 4 : t rue has to be used Lo refer to class true. Also, class true is a subclass of class
boolean.

3Since false is a global constant, # : fal se has to be used to refer to class false. Also, class false is a subclass of
class boolean.

133

R SIS SRy P NIP R I I SEPNNE R N Y i SR R O R R R R S

134

Appendix A Concurrent Smalltalk Reference

A.3. Programs

program ::= (top-level | statement)*

A Concurrent Smalltalk program is a sequence of top-level forms. Additionally, an imple-
mentation may allow begin and if as top-level forms if test is a constant expression and
statements in body, consequent, and alternative are top-level forms. Other statements may
also be allowed at the top level by extended implementations. Statements at the top level are
executed sequentially as if they were enclosed in a begin.

Constant Expressions

Constant expressions are expressions that have to be evaluated at compile time. A constant
expression can include any expression or function call, except that constant expressions may
not produce distributed objects as values and may not call functions that use futures.

Global Definitions

All constants, parameters, and globals reside in a single name space; in general, redefining
an identifier with a different meaning causes an error. Macros reside in a separate name
space and do not conflict with each other or any other global objects (although they may be
shadowed by local static scoping).

(defconstant name[:type] value) Top-level Primitive

Defconstant defines a constant named name. The constant can be any valid Concurrent
Smalltalk type. If type is specified, the value must have that type. Once a constant is de-
fined, it may not be changed (another constant is accepted, though, if it has the same value).
Constants encountered in methods are replaced by their values at compile time. Value must
be a constant expression. Predefined constants are listed in Table A-1.

Language primitives and built-in functions and selectors are defined as global constants.

(defparameter namef:type] value) Top-level Primitive

Defparameter defines a parameter named name. The parameter can have any valid Con-
current Smalltalk type. If type is specified, the value, if present, must have that type. If no
type is specified, type is assumed to be object, the most general type. Parameters encoun-
tered in methods are replaced by their values at compile time. Value must be a constant ex-
pression. Unlike constants, parameters may be redefined at the top level, but their types
may not be changed. The value of a parameter may not be changed by a running program.

User functions and selectors defined using defun, defmethod, and defselector are de-
fined as parameters. Hence, they may be redefined.

(defglobal name|:type] [value)]) Top-level Primitive

Defglobal defines a global named name. The global can have any valid Concurrent
Smalltalk type. If type is specified, the value, if present, must have that type. If no type is
specified, type is assumed to be object, the most general type. Value must be a constant ex-
pression.

A global may be defined several times, but only the value from the first definition is used.
Nevertheless, all definitions of a global must have the same type.

135

Concurrent Smalltalk on the Message-Driven Processor

(define hame name) Top-level Primitive

This primitive defines the first name as an alias for the object specified by the second name.
For example, if the second name refers to a global, after this primitive is executed, both
names will refer to the same global.

(undef hame) Top-level Primitive

This primitive removes the top-level definition of name, if any. It should be used with cau-
tion, as it is possible to bring the system into an inconsistent state using undef.

136

Appendix A Concurrent Smalltalk Reference

A.4. Classés

Built-in Classes

A few classes are predefined. These are listed in Table A-2, and their hierarchy is shown in
Figure A-2. The defclass primitive can be used to define other classes, which may be based
on the built-in ones shown in bold in Figure A-2.

Defining New Classes

(defclass class {class-declaration} superclasses Top-level Primitive
instance-var-spec*)
class ::= name
superclasses = (class+)
instance-var-spec ::= typed-names | (typed-names {instance-var-declaration})
typed-names ::= name (, name)* [: typel
instance-var-declaration = &inline | ¬-inline |
&reader names |
&writer names | sewriter names |
&cas-er names
names ::= hame | (name”)

Defclass defines a new Concurrent Smalltalk class. A class is a template for specifying ob-
jects and methods. Each object belonging to the class contains the instance variables defined
in the class definition as well as the instance variables inherited from its superclasses, if any.

In the class definition, class is the new class name. It is followed by an optional declaration,
described later, the class’s superclass list, and finally the additional instance variables de-
clared by the class.

Class Inheritance

Each user-defined class must have at least one superclass, but it may have more than one. A
class inherits the instance variable and method definitions from its superclasses. It may add
its own instance variables and methods, and it may attempt to override existing methods. If
a class is overriding a method, the new method must be a subtype of the existing one.

A simple form of multiple inheritance is allowed. Two or more superclasses may be specified
for a class under the following conditions:

e There must be no instance variable conflicts among the superclasses. Formally, this re-
quirement is satisfied if and only if out of the superclasses s;, Sy, ... S, provided there is one §;
such that if v is an instance variable of sj, 1<j<n, then v is an instance variable of s; or one of
its superclasses.

e There must be no inherited method conflicts among the superclasses. Formally, this
means that if selector s is associated with method m; for superclass s; and method m; for s;,

then mj and mjare the same method (Textual equivalence of the method code is not enough;
m; and m; must “point” to the same method).

The class then inherits all of the instance variables and all methods from all of its super-
classes.

137

Concurrent Smalltalk on the Message-Driven Processor

Instance Variables

After the superclasses in the class declaration is a list of new or redefined instance variables.
Instance variables without any type are given the type object. An instance variable may be
specified to have the same name as an instance variable of one of the superclasses. If so, the
specified type must be a subtype of the original instance variable’s type, and either both or
neither must be inline.

An instance variable may be declared &inline or &énot-inline. These are hints to the
compiler that the variable’s object should be placed inline or on the heap (not inline). These
hints only apply if the variable’s type is an inline class. The compiler is free to ignore these
declarations.

Reader and Writer Methods

A few methods are automatically defined when a class ¢ is defined. For each instance vari-
able x of ¢, two functionally identical methods are defined, named x and get-x, that, when
called on an object o0 of class ¢, return the value of x in 0. These methods are called reader
methods; two are defined in order to avoid name conflicts with instance variables. Similarly,
a writer method put-x is defined that, when called on an instance object 0 of ¢ and a new
value v of X, and assigns v to x in 0 and returns 0. Furthermore, a cwriter method cput-x is
defined that behaves just like the writer method put -x except that it is not strict—it does
not necessarily touch its second argument v. Finally, a cas-er method cap-x is defined that
performs an atomic compare-and-put operation: (cap-x 0 comparison replacement) checks
whether the value of instance variable x in 0 is eq to the value of comparison. If so, it stores
the value of replacement in x and returns t rue; otherwise, it returns false.

If it is desirable to produce reader, writer, cwriter, or cas-er methods with names different
from the defaults, the sreader, swriter, &cwriter, and scas-er options can be used to
specify the new names. More than one method name may be specified for an instance vari-
able. If sreader, &writer, &cwriter, or &cas-er is used, the corresponding default
method name is not defined. For example, if swriter is used with an empty list of names,
the corresponding writer method name is not defined.

Class Definition Options

class-declaration = &inline | ¬-inline-default |
&immutable |
&predicate names

A class definition allows several options which are described in more detail below.

A class may be declared inline, which means that, whenever possible, objects of that class are
allocated inside other objects or in local variables instead of on the heap. ¬-inline-de-
fault is an option for inline classes.

Objects of an immutable class declared with the simmutable option may be shallow-copied
at any time at the system’s discretion, which can lead to significant performance improve-
ments. They are also often passed by value to methods and functions. It is not necessary
that no methods ever write to instance variables, but only that the effects of such writes not
})e visible outside the class data abstraction. The compiler is free to ignore & immutable dec-
arations.

The spredicate option defines the name or names of the class predicate. A class predicate
is a function that returns t rue when called on an object of the specified class or its sub-
classes and false on all other objects. The default name of a class predicate is obtained by
concatenating a question mark (?) to the end of the class name, so (integer? x) tests
whether x is an integer.

138

Appendix A Concurrent Smalltalk Reference

Inline Classes

When a class is declared sinline, instance objects of that class are often inlined—allocated
inside other objects or local variables. No method dispatching takes place on inlined objects
because the compiler knows the exact types of inlined objects—inline class methods are con-
verted to functions. Declaring a class &inline does not alter its semantics except for a few
additional restrictions on its usage. The compiler is free to ignore &inline declarations.

Subclasses of inline classes can be declared under the following restrictions: A subclass of an
inline class may not declare any additional instance variables, and it may not override any
methods. The only superclasses allowed for inline classes are classes with no instance vari-
ables.

Normally all formals, locals, and instance variables declared with inline classes are inlined
by default. However, that default can be overridden for individual variables by declaring
them ¬-inlinel. The default can be overridden for all variables by declaring the class
gnot-inline-default, in which case individual variables can be inlined by declaring them
&inline and giving them the proper type.

Inline classes are useful for representing small objects such as £1oats and locks which re-
quire more than one word but for which ordinary object overhead is prohibitive. In general, it
is pointless to declare a class inline unless it is immutable or its instance objects are rarely
passed to methods other than the inline class’s.

1Another way to override this default is to declare the variable’s type as object.

139

Concurrent Smalltalk on the Message-Driven Processor

A.5. Methods and Functions

Introduction

Methods and functions are the basic blocks of computation in Concurrent Smalltalk. Each
method and function can accept a number of arguments, which are assigned to the formals
for the duration of the execution of the body of the method or function. Furthermore, a
method has a special first argument, called the receiver, which contains an object of the
method’s class on which the method was called. In general, methods and functions execute
concurrently unless explicitly synchronized. This is true even if they are accessing shared
objects.

Formals

formal-spec ::= typed-opt-names | (typed-opt-names {formal-declaration})
typed-opt-names ::= opt-name (, opt-name)”* [: type]

opt-name ::= name | _

formal-declaration = &value | &inline | snot-inline | &no-leak | &name name

A method’s or function’s formals are listed when the method or function is declared. Each
name specifies the name of a formal. Typed-opt-names specifies one or more names sepa-
rated by commas followed by an optional type. The character _ can be used to indicate an
unnamed formal; unnamed formals accept arguments but cannot be referenced from within
the method or function. If type is not present, it defaults to object. If the long form of a
formal-spec is used, the formals in typed-opt-names can be declared using declarations.

Arguments are passed by value, just as in Smalltalk-80, Scheme, and Common Lisp. The
types of the arguments to the method or function must be subtypes of the types of the corre-
sponding formals. A method or a function may assign a value to a formal, which only
changes the method’s or function’s local value. Of course, a method or a function is also free
to mutate a formal using some other method; such changes are visible to the outside. This
kind of mutation corresponds to communication via shared objects.

A formal may be declared svalue, which means that, at the implementation’s discretion, the
method or function may be passed a shallow copy of the argument when it is called. Thus,
not only is the formal passed by value, but its first-level structure may also be passed by
value. All formals declared using an &immutable class are automatically declared &value.
&value declarations are especially useful to improve efficiency of inline classes.

A formal may also be declared sinline or ¬-inline. These are hints to the compiler
that the formal’s object should be placed inline or on the heap. These hints only apply if the
formal’s type is an inline class. The compiler is free to ignore these declarations.

Declaring a formal sno-1eak is a hint to the compiler that the value of the formal is not
passed out of the method or function, and it will not be referenced after the method or func-
tion returns. Thus, the implementation is free to perform a shallow deallocate on the value
of the formal when the function returns. This declaration is especially helpful for arguments
of type funct. The compiler is free to ignore this declaration.

&name can be used to name an anonymous function or method. The name is saved for de-
bugging purposes. &name is only allowed in a 1ambda or a method-lambda.

140

Appendix A Concurrent Smalltalk Reference

Return Values

return-specs ::= : type | : : (return-spec*)

return-spec ::= typed-names | (typed-names {return-declaration})
typed-names ::= name (, name)* : type]

return-declaration = &value

A method’s or function’s return specification may be listed when the method or function is
declared. Most methods and functions return only one value. For these functions, the short
form, consisting of a colon (:) followed by the return type, is adequate. If the return type is
object, the entire return specification can be omitted altogether.

The long form of declaring a method’s or function’s return types uses the double colon (::)
notation and allows explicit naming of the return continuation. The name is called a contin-
uation name. Continuation names are lexically scoped and may be referenced in the body of
the method or function. The syntax and semantics of continuation declarations are analo-
gous to those of formals, and the continuation names reside in the same namespace as formal
and variable names. The only declaration allowed is &value. If the short form is used, a de-
fault continuation name continuation is used. Some implementations may also allow re-
turning multiple values. Multiple values do not all have to be returned at the same time, but
all have to be returned at most once by the time the method or function finishes.

Since the implicit return statement at the end of a method’s or function’s body returns its
value to continuation, it is an error to allow execution to “fall through” the method or
function to the implicit return statement unless one of the continuations is named contin-
uation.

Method and Function Declarations

funct-declaration = &non-strict |
(¢inline | ¬-inline) |
&side-effect-free

The following declarations are allowed for methods and functions:

o The &non-strict declaration specifies that the arguments do not have to be touched be-
fore the body of the method or function begins executing. Thus, the method or function may
at the compiler’s discretion receive cfutures in the formals. This declaration is useful mainly
for inline functions.

e The sinline and snot-inline declarations specify that the method or function should
or should not be included inline at the points where it is called. This declaration is only a
hint, and the compiler does not have to obey it.

¢ The ¢side-effect-free declaration is a hint to the compiler that the method or func-
tion does not perform any visible side effects on its arguments or on the global environment.
This information lets the compiler better schedule calls to the method or function. This di-
rective is also useful on methods and functions that do perform side effects; it tells the com-
piler that those side effects are not essential. One example of a method that falls into this
category is a method operating on an immutable class of complex numbers that allows redun-
dant representations in rectangular or polar form. The method could side effect a complex
number to calculate its polar representation from its rectangular one, but that side effect is
not essential for the program to work correctly.

The Calling Process

When a function or a method is called, the values of the arguments are computed and as-
signed to the formals. The formals are touched unless the function is declared
gnon-strict. After all formal values are evaluated, execution of the method’s expressions
proceeds as if the expressions were enclosed in an implicit block—initially the first expres-
sion is evaluated, then the second one, and so forth. The value of the implicit block, which is

141

Concurrent Smalltalk on the Message-Driven Processor

the value of the last expression, is returned to the caller unless an exit or return state-
ment is encountered first.

Scoping of Local Variables

Local variables are statically scoped. Any lambda, method-lambda, future, or lazy-fu-
ture created within a method or a function is a full closure and may reference and alter the
method’s or function’s local variables. Similarly, the method or function may alter its locals,
and such changes will be visible to any 1ambda, method-lambda, future, or lazy-future
nested within it.

If concurrency and efficiency are desired, however, such sharing should be avoided whenever
possible. A lambda, method-lambda, future, or lazy-future should declare its own tem-
poraries for local computations instead of using ones belonging to an outer static scope. If a
method or function wants to pass values into a closure, it should initialize the appropriate
temporaries before the closure is created and not change those temporaries afterwards. The
closure should not change those temporaries either, unless it wants to pass a result back to
the method or function that created it.

Functions

(lambda (formal-spec*) [return-specs] {funct-declaration} Primitive
body)

Lambda defines and returns an anonymous function. Formal-spec* is a list of the function’s
formals and their types. Return-specs specifies the function’s return type, or, if it returns
multiple values, the number of return values and their types. The function may also have
declarations, as explained above. Body is a list of statements that form the body of the func-
tion.

{(defun name (formal-spec*) [return-specs] {funct-declaration} Top-level Macro
body)

Defun defines a global function with name name, formals as specified in formal-spec*, return
values defined by return-specs, optional declarations funct-declaration, and body body.

Methods

(method-lambda class (formal-spec*) [return-specs] {funct-declaration} Macro
body)

Method-lambda returns a method of class class. The resulting method does not have a se-
lector. Nevertheless, it can be called as a function if the first argument is an instance object
of class. The other parameters are as in lambda.

Method-lambda also introduces into the scope of body the names of the instance variables of
an object of class class as well as two special variables: self and group. Self refers to the
first argument of the method call, also known as the receiver object. If class is a subclass of
distobj, group refers to the group name of the distributed object of which self is a con-
stituent.

(defselector Sselector) Top-level Primitive
selector ::= name

Defselector defines name as a selector. This primitive is rarely used explicitly, as all un-
defined names are assumed to be selectors by default.

142

Appendix A Concurrent Smalltalk Reference

(add-method selector class value) Top-level Primitive

Add-method associates a method with its class and selector. When selector is called with a
receiver object that belongs to class, value is called. Value should be a function or a method.

(method selector class) Primitive

Method performs the inverse of the add-method operation—it returns the method associ-
ated with selector and class. If no method is associated with selector and class, method re-
turns nil.

(defmethod selector class (formal-spec’) [return-specs] Top-level Macro
{funct-declaration}
body)

Defmethod defines a global method with the given selector and class. The rest of the syntax
is analogous to defun.

When a method is called, the values of the selector and arguments are computed, and the
method associated with the selector and the class of the receiver object is found. Of course,
this method may have been defined for a superclass of the class of the receiver object (i.e. it
may be inherited). It is an error occurs if no such method exists. Otherwise, the process of
calling a method is the same as that of calling a function.

143

Concurrent Smalltalk on the Message-Driven Processor

A.6. Statements

value ::= statement
expression ::= statement
body ::= statement*

In the definitions below, the non-terminals value, expression, and statement all refer to
statements, although value usually denotes a side-effect-free statement that is executed for
its return value, expression denotes a statement that may have side effects but is executed
mainly for its return value, and statement denotes a statement that is executed mainly for its
side effects. A body is a sequence of statements executed one after another just like in be-
gin; the value of a body is the value of its last statement.

Futures and CFutures

Futures and cfutures (context futures) are the main means of achieving concurrency in Con-
current Smalltalk. Both futures and cfutures are promises to produce some value at a later
time. Forcing a future means forcing the future to fulfill its promise and return its value.
Analogously, touching a cfuture forces it to calculate and return its value. A force implies a
touch, so a force never returns a cfuture.

There are two main differences between futures and cfutures. These are outlined below:

¢ Futures are guaranteed not to be forced unless they are explicitly forced, while cfutures
are not guaranteed not to be touched—they may be touched at any time at the compiler’s and
operating system’s discretion. In an extreme case, cfutures may be touched as soon as they
are created, leading to a sequential implementation of Concurrent Smalltalk (except for fu-
tures).

e CFutures are generated by almost all primitive operations, while futures are generated
only by the future and lazy-future primitives and their derivatives.

e CFutures are always eager—if left alone, they will tend to evaluate to their values. Nor-
mal futures, on the other hand, may be eager or lazy. A lazy future may not begin to evalu-
ate to its value until it is forced; if it is never forced, it may never be evaluated.

The rationale behind creating two kinds of futures is to allow the use of cfutures for most
tasks where parallelism is desirable but guaranteed parallelism is not necessary for the cor-
rect operation of the program. CFutures are intended to be very cheap—they can be created
and touched in a few assembly language instructions. Futures, on the other hand, are re-
served for the cases like normal-order evaluation where the semantics of delayed evaluation
are necessary for the program to run correctly. Futures are much more expensive than cfu-
tures in terms of space and time.

Both futures and cfutures may have values of complicated expressions as their promises. For
example, if (f 3)=30, (g 7)=49,and (h 30 49)=79, during the execution of the state-
ment

(cset a (h (£ 3) (g 7)))
a may be computed in arbitrary order, and £ and g need not have returned values by the
time the next statement is executed. If a is later touched, it will assume the value 79.

The semantics become more complicated if the functions £, g, and h have side effects. The
order of evaluation of arguments of function calls is undefined and may be parallel, so f and
g may be evaluated in parallel. Furthermore, if h is declared &non-strict (as many built-
ins are), the evaluation of h may overlap with the evaluation of its arguments. If, say, h does
not use the value of its second argument until late in its execution, h may already be execut-
ing while (g 7) is still being calculated. Finally, if h can return without ever requesting the
value of its second argument, (g 7) may never be completely evaluated (since cfutures are

Appendix A Concurrent Smalltalk Reference

eager, it will keep evaluating, but the entire program may finish before it is done). A good
example of this phenomenon is (and b false), where the program can proceed without
ever determining the value of b.

Argument Evaluation

Unless a method or a function is declared &non-strict, method and function calls are strict
with respect to cfutures but not futures—the arguments of a method or function are guaran-
teed not to be cfutures when the method or function begins evaluation. For example, assum-
ing no futures are used, in

(cset a (h (£ 3) (g 7)))

(cset b (k 10))

{touch a)

{(cset ¢ (1 10))
(f 3) and (g 7) are guaranteed to be done evaluating before (h 30 49) begins evaluating. Also,
(f3), (g 7), and (h 30 49) are guaranteed to be done evaluating before the evaluation of (110)
iie, started. However, (k 10) can be evaluated concurrently with any of (f 3), (g 7), (h 30 49), or
(1 10).

The arguments of functions are evaluated concurrently. This means they may be evaluated
sequentially, in parallel, or any combination of the two. Using side effects can sometimes
lead to deadlock. For example, suppose that the function release-lock releases a global
lock and acquire-lock waits until the lock is released and then acquires it. Further, sup-
pose that global-lock is originally acquired. Then, the expression
(h (release-lock global-lock) (acquire-lock global-lock))

can lead to deadlock because the implementation might choose to evaluate acquire-lock
sequentially before release-lock.

Concurrent evaluation order is also distinct from an arbitrary sequential order. For example,
suppose that c is a local variable with an initial value of 0 and consider the value of the ex-
pression

(cset a (+ (cset ¢ (+ 1 ¢)) (cset c (+ 1 ¢))))

(touch a)

(touch c¢)
Under sequential evaluation of arguments, the final value of a would always be 3 and the fi-
nal value of ¢ would always be 2 when this expression completes. Under concurrent evalua-
tion of arguments, the final value of c could be 1 if, say, both increments were done before ei-
ther assignment to c. In this case, a would get the value 2.

(touch expression) Primitive
(touch expression*) Macro

If expression is not a cfuture, touch does nothing. Otherwise, touch waits until the value of
the cfuture is available and then returns that value. It should be kept in mind that if touch
is used in a subexpression, other subexpressions may or may not continue evaluating while
this touch is waiting. Also, a touch in a subexpression does not guarantee that the entire
expression will not yield a cfuture, as is demonstrated in one of the examples above.

If more than one expression is specified, touch touches them all and returns the value of the
last one. If no expressions are specified, touch returns nil.

Touch does not have any effect on futures.

145

Concurrent Smalltalk on the Message-Driven Processor

(force expression) Primitive
t expression Macro
(foxce expression*) Macro

If expression is not a future or a cfuture, force does nothing. Otherwise, force waits until
the value of the future or cfuture is available and then returns that value. That value is
guaranteed not to be a future or a cfuture.

If more than one expression is specified, force forces them all and returns the value of the
last one. If no expressions are specified, force returns nil. The !expression form is a
shorthand for (force expression).

(future expression) Primitive
(lazy-future expression) Primitive

Future and lazy-future both return futures that promise to evaluate expression when
forced. The futures are guaranteed to evaluate in parallel with all other processes unless
explicitly synchronized. Future and lazy-future differ in that future begins evaluating
its expression immediately, while lazy-future waits until it is forced before it starts
evaluating its expression. In any case, expression is evaluated at most once, no matter how
many times it is forced.

Caveats: The actual time when a future is forced is sometimes rather fuzzy, especially in
the presence of inlined primitives and side-effect-free functions, so the guarantee in the pre-
vious paragraph may not apply in the code just before a future is forced (the extent of this
fuzzy section of code is still to be determined). Also, futures should not return objects of
classes that can be inlined—doing this may force the future immediately at any point. These
caveats should not present problems unless futures have intricate side effect dependencies.

Application Statement

(funct arg*) Primitive
funct ::= expression
arg ::= expression

The first item of an application statement is either a method selector or a function. Ifitisa
selector, the method corresponding to the selector and the class of the first argument is called
using the arguments provided. If it is a function, it is applied to the specified arguments.
The first item can also be any expression that evaluates to an object of type funct. The
va}ue of the application statement is either the return value or a cfuture promising that
value.

The order of evaluation of arguments is not specified; in fact, some of them may be (but are
not guaranteed to be) evaluated concurrently. The arguments are not guaranteed to be
touched before being passed to the funct—some of them may be passed to the funct as futures
or even cfutures (However, all user-defined methods and functions not explicitly declared
:non-strict will touch their arguments before their code begins executing). For example,
(cset a (+ 0 a)) does nottouch a, and (and b false) does not touch b.

Type Assertion
(:type expression) Primitive
The type assertion statement asserts that the type of expression’s value is a subtype of type.

It returns expression’s value. The compiler is not required to generate an error if expression
evaluates to a value that is not a subtype of type, but it may do so.

146

Appendix A Concurrent Smalltalk Reference

Variable Bindings

(clet (binding-spec*) body) Primitive
binding-spec ::= typed-opt-names | (typed-opt-names {variable-declaration} [value}])
typed-opt-names ::= opt-name (, opt-name)* [: type]

opt-name ::= name | _

variable-declaration = &inline | ¬-inline

Clet creates local variable bindings and evaluates body within the scopes of those bindings.
Each name specifies the name of a new variable. Typed-opt-names specifies one or more
names separated by commas followed by an optional type. The character _ can be used to in-
dicate an unnamed local variable; unnamed local variables can be used to evaluate the initial
value expression without binding a name in the static scope. If type is not present, it de-
faults to object. If the long form of a binding-spec is used, the variables in typed-opt-names
can be declared using declarations and can be given an initial value. Value, the initial value
is an expression evaluated outside the scope of the clet. Each initial value is evaluated only
once, even if it is assigned to more than one variable. The new variables are bound concur-
rently. Their initial values may be evaluated concurrently, and they are not guaranteed to
lc? touched by the time body begins executing—in body the new variables may still contain
utures.

A variable may be declared &inline or snot-inline. These are hints to the compiler that
the variable’s object should be placed inline or on the heap. These hints only apply if the
variable’s type is an inline class. The compiler is free to ignore these declarations.

The value returned by a clet is the value returned by the last statement in body.

(let (binding-spec*) body) Macro

Let is the same as clet except that all newly-bound variables are touched before body be-
gins executing. As with clet, the initial values are evaluated concurrently.

(cset name expression) Primitive

Cset sets the variable name to expression. The variable gets either the touched value of ex-
pression or a cfuture promising to evaluate expression. The value returned by a cset is the
value of expression.

(set name expression) Macro

Set sets the variable name to the value of expression. The value is touched before it is as-
signed to the variable, so the variable will not contain a cfuture or a future after this state-
ment. The value returned by a set is the touched value of expression.

(cas name comparison replacement) Primitive
comparison ::= expression
replacement ::= expression

CAS (compare-and-set) is an atomic! operation that checks whether the value of variable
name is eq to the value of comparison. If so, the value of replacement is stored in variable
name and cas returns t rue; otherwise, cas returns false. The value of variable name is
never a cfuture when cas completes.

Tn the current implementation, in order for cas to be atomic, neither name nor replacement can be a future. If
replacement could be a future, it should be forced before a cas is done. There is no easy solution if name could be a
future. Fortunately, there is usually little reason to store a future in a semaphore.

147

Concurrent Smalltalk on the Message-Driven Processor

Multiple Values

The constructs below are used for receiving multiple values from methods and functions.
Multiple values may not be supported by all implementations of Concurrent Smalltalk.

(mv-cset (name*) (funct arg*)) Optional Primitive

Mv-cset sets the variables name* to the multiple values returned by (funct arg*). The vari-
ables get either the touched return values of expression or cfutures promising to evaluate
them. Some of the return values may be available before others. Mv-cset returns nil.

(mv-set (name*) (funct arg*)) Optional Macro

MV-set is just like mv-cset except that it touches all variables in name” before continuing.

(mv-clet (mv-binding-spec*) (funct arg®) body) Optional Macro
mv-binding-spec ::= typed-opt-names | (typed-opt-names {variable-declaration})
typed-opt-names ::= opt-name (, opt-name)* [: type]

opt-name = name | _

variable-declaration = &inline | ¬-inline

(mv-let (mv-binding-spec*) (funct arg*) body) Optional Macro

Mv-clet and mv-let are just like clet and let except that they initialize the new vari-
ables to the values returned by (funct arg*).

Syntactic Sugar

farg*l Macro
This form is equivalent to (get arg”).

(eset (funct arg*) expression) Macro

When the first argument of a cset is a function or a method call, cset is desugared into an-
other function or a method call. The above forms are converted to (funct' arg* expression),
where the identifier funct' is obtained by appending the characters cput - to the beginning of
the identifier funct, unless:

funct is get, in which case funct' is cput;

funct is get -x, in which case funct' is cput -x (x is any sequence of characters);

funct is put, put-X, cput, cput-x, cap, or cap-X, in which case an error occurs.
Funct must be a function name or a method selector. It may not be an expression or a vari-
able reference. (funct arg*) may, however, be a macro or contain macros; these macros are
expanded before the above conversion takes place.

For example, (cset (first sequence) 3) isconverted to (cput-first sequence 3),
while (cset [big-array 7] 12) isconverted to (cput big-array 7 12).

(set (funct arg") expression) Macro

When the first argument of a set is a function or a method call, set is desugared into an-
other function or a method call. The above forms are converted to (funct' arg* expression),
where the identifier funct’ is obtained by appending the characters put- to the beginning of
the identifier funct, unless:

funct is get, in which case funct’ is put;

funct is get-x, in which case funct' is put -x (x is any sequence of characters);

funct is put, put =X, cput, cput-X, cap, or cap-X, in which case an error occurs.
Funct must be a function name or a method selector. It may not be an expression or a vari-
able reference. (funct arg*) may, however, be a macro or contain macros; these macros are
expanded before the above conversion takes place.

148

Appendix A Concurrent Smalltalk Reference

For example, (set (first sequence) 3) isconverted to (put-first sequence 3),
while (set [big-array 7] 12) isconverted to (put big-array 7 12).

(cas (funct arg*) comparison replacement) Macro
When the first argument of a cas is a function or a method call, cas is desugared into an-
other function or a method call. The above form is converted to

(funct arg® comparison replacement), where the identifier funct' is obtained by appending
the characters cap- (compare-and-put) to the beginning of the identifier funct, unless:

funct is get, in which case funct' is cap;

funct is get -, in which case funct' is cap-x (x is any sequence of characters);

funct is put, put -X, cput, cput-X, cap, or cap-X, in which case an error occurs.
Funct must be a function name or a method selector. It may not be an expression or a vari-
able reference. (funct arg*) may, however, be a macro or contain macros; these macros are
expanded before the above conversion takes place.

Flow of Control

(begin body) Primitive

Begin evaluates the statements in body sequentially, touching each one except the last be-
fore it begins the next, and returns the untouched value returned by the last one. If there
are no statements in body, begin returns nil.

(nconcurrently statement*) Macro
(concurrently statement®) Macro
?statement Macro

These macros evaluate the statements in statement* concurrently and return nil.
Concurrently waits until all statements have finished executing before returning, while
nconcurrently does not. ?statement is an abbreviation for (nconcurrently statement).

(nparallel statement®) Macro
(parallel statement®) Macro

These macros evaluate the statements in statement® in parallel and return nil. Parallel
waits until all statements have finished executing before returning, while nparallel does
not. The parallelism is guaranteed, which makes parallel a much more expensive state-
ment than concurrently. In most cases concurrently should be used instead unless par-
allel semantics are explicitly required.

(if test consequent [alternative]) Primitive
test ::= expression

consequent ::= expression

alternative ::= expression

If evaluates the test expression, which must return either true or false. If it returns
t rue, the consequent expression is evaluated and its value returned; otherwise, the alterna-
tive expression, if any, is evaluated and its value returned. If is not guaranteed to touch the
test value. However, it is guaranteed to evaluate only the appropriate arm of the condi-
tional.

Loops
(while test body) Macro
test ::= expression

While evaluates the test expression, which must return either true or false. Aslongas it
returns t rue, body is evaluated and test reevaluated. When test evaluates to false, while
returns nil.

149

Concurrent Smalltalk on the Message-Driven Processor

(repeat body until test) Macro
test ::= expression '

Repeat first evaluates body and then the test expression, which must return either true or
false. Aslong as it returns false, repeat goes back to evaluating body. When test evalu-
ates to true, repeat returns nil.

Primitive Control

(block continuation body) Macro

Block is just like begin except that it allows the use of return and reply statements to
leave it. The statements in body are evaluated as in a begin. Continuation specifies the
block’s continuation for use in return and reply statements.

(loop continuation body) Macro

Loop defines a loop body. The statements in body are evaluated as in a begin, except that
after the last statement in body has been evaluated, the first statement is evaluated again,
and so on. The loop does not terminate unless an explicit return or reply statement is en-
countered. Continuation specifies the loop’s continuation for use in return and reply state-
ments.

Returning Values

Since the last expression in the method code is implicitly returned to continuation, the
statements below are necessary only if it is desired to return a value from the middle of a
method or function, if a block or loop should be terminated, if multiple values are being re-
turned, or if a value is returned to a continuation with a name other than continuation.
Reply and exit should be used with caution, as exit may cause the caller to hang, while
reply may cause the caller to crash if two replies are inadvertently sent. Care must be taken
to reply to each continuation at most once—sending a second reply to a continuation will al-
most certainly cause a system crash, and it is quite difficult to protect the system against
this type of error. When using reply it is important to remember that there is an implicit
reply of the last expression in the method code to continuation.

Continuations

Continuations are introduced by lambda, method-lambda, defun, defmethod, block,
loop, future, lazy-future, parallel, and nparallel. The continuations defined by
future, lazy-future, parallel, and nparallel are not externally accessible. Lambda,
method-lambda, defun, and defmethod define the default continuation continuation un-
less told otherwise. They also reply to continuation if allowed to complete executing with-
out an intervening exit. Thus, care must be taken when using nested function and method
definitions to make sure that reply and return reply to the right continuation.

Continuation manipulation can become quite complicated, and not all features have to be
supported by all implementations. A minimal implementation only has to allow replying to
the innermost construct that defines continuations; hence, an implementation may restrict
non-local replies. Furthermore, an implementation does not have to support replying out of a
future, lazy-future, parallel, or nparallel statement, since these also introduce con-
tinuations. A more sophisticated implementation may allow replies to all continuations ac-
cessible in the current lexical scope. Finally, an advanced implementation may choose to
make continuations first-class values of class #:continuation and allow them to be stored
in variables.

(exit) Primitive

Exit is a statement that hangs, never returning a value. In most cases exit can be thought
of as exiting the current method or function, but it does not necessarily do so if used in a

150

Appendix A Concurrent Smalltalk Reference

cset, concurrently, nconcurrently, parallel, nparallel, block, loop, future, or
lazy-future statement, let or clet bindings, or some other statement that permits paral-
lel execution without synchronization.

{reply expression) Macro
(reply (continuation expression)*) Primitive

The first variant of reply evaluates expression and sends its value to continuation. Exe-
cution then proceeds with the next statement of the current method, if any. Reply is not
strict—it may reply a future or a cfuture. The value of a reply statement isnil.

The second variant of reply is used to return values to named continuations. The reply
takes an even number of arguments; within each pair, the first argument is the continuation
name and the second one its value.

(return expression) Macro
(return (continuation expression)*) Macro

Return is equivalent to a reply followed by an exit—the values of the expressions are sent
to the caller, and the execution of the method or function terminates subject to the caveats in
the exit statement description.

{(return-value-expected?) :boolean Function
(return-value-expected? continuation) :boolean Function

Return-value-expected? returns true if the caller of the method or function is expecting
a reply for continuation (or continuation if continuation is not specified). It is not guaran-
teed to return false otherwise, so an implementation that always returns true is accept-
able.

151

Concurrent Smalltalk on the Message-Driven Processor

A.7. Built-in Methods and Functions

Built-in Classes

Built-in classes are provided for reasons of efficiency and convenience. Many methods on
built-in classes are compiled into single assembly language instructions instead of method
calls, improving their speed greatly. Other built-in classes may be defined by methods writ-
ten in assembly language and linked with the programs generated by the compiler. Arrays
may be defined this way. The built-in classes are listed in Table A-2, and their hierarchy is

shown in Figure A-2.

Table A-2. Built-in Classes

Class Metaclass Values

Null? Primitive-Class Nil

Symbol Primitive-Class Symbols,inciuding nil,butnot t rue and false
True! Primitive-Class The boolean t rue

Falsef Primitive-Class Theboolean false

Boolean Primitive-Class The booleans t rue and false

Character Primitive-Class ASCI| characters

Small-Integer
Large-Integer
Integer

Float

Real

Nurmber
Magnitude
Primitive-Class
Standard-Class
Distributed-Class
Classt
Function

Funct
System-stream
Stream
Simple-Lock
Queueing-Lock
Lock
Integer-Array
String
Boolean-Array
Simple-Array
Array
Collection
Distobj
Object.

Primitive-Class
Primitive-Class
Primitive-Class
Primitive-Class
Standard-Class
Standard-Class
Standard-Class
Primitive-Class
Primitive-Class
Primitive-Class
Primitive-Class
Primitive-Class
Primitive-Class
Primitive-Class
Standard-Class
Primitive-Class
Primitive-Class
Standard-Class
Primitive-Class
Primitive-Class
Primitive-Class
Primitive-Class
Standard-Class
Standard-Class
Distributed-Class
Standard-Class

Integers representable in a machine word!
Integers not representable as Small-Integers
Arbitrary-sized integers

Floating-point numbers?

Real numbers

Arbitrary numbers

Numbers, characters, and booleans

Primitive classes defined by Concurrent Smalltalk
Standard (non-distributed) classes

Distributed classes

General classes

Functions, methods, and closures

Functions, methods, closures, and method selectors
System-defined streams

Sources of input or destinations for output

Very cheap and simple locks

More expensive locks that queue pending tasks
General locks

Small arrays of integers

Small arrays of characters

Small arrays of booleans

Small arrays of arbitrary objects

Arrays of arbitrary objects

Indexed collections of objects

Al distributed objects

All first-class values

The metaclass of a class is the class of the class object itself. Metaclasses govern certain
aspects of class behavior such as inheritance and the action of new. Only classes having
standard-class or distributed-class as a metaclass permit user-defined subclasses.
At the implementation’s discretion some classes with primitive-class as a metaclass may

T'This class name conflicts with another global name, so it has to be preceded with # : whenever it is used.
1Currently a machine word is 32 bits, so the small-integer range is -2147483648 to 2147483647.

152

Appendix A Concurrent Smalltalk Reference

Symbol—#Null
False
Boolean {
True
. Character Small-Integer
Magnitude Integer(
Number—®Real { Large-Integer
Float
Primitive-Class
Class Standard-Class
Distributed-Class
Object Function
Funct <:
Selector
Stream ———®System-Stream
Simple-Lock
Lock <
Queuing-Lock Integer-Array
Collection—®=Array —¥ Simple-Arra String

Boolean-Array
DistObj

Figure A-2. Hierarchy of built-in classes

The superclasses are shown to the left of their subclasses. Al classes are subclasses of object. Classes
with metaclass primitive-class are shown in bold, classes with metaclass standard-class are shown in
standard type, and the one class with metaclass distributed-class is shown in italic. User-defined classes
may be defined as subclasses of any of the classes having standard-class or distributed-classasa
metaclass.

actually be instances of standard-class or distributed-class, but portable programs
should not rely on this,

Built-in Methods

Built-in methods are provided for the basic arithmetic and logical operations. The methods
are explained in the following sections. Since some built-in method calls compile into assem-
bly language instructions, some restrictions are necessary on the use of their selectors.
Specifically, if any other methods are defined using the selectors in Table A-3, they must
obey the identities listed in Table A-4.

Redefining Restricted Selectors

If a restricted selector is called with an argument that is not one of the built-in classes it rec-
ognizes, the actual method for the class is found and executed, possibly after some of the iden-
tities in Table A-4 have been applied. Thus, it is possible to define a class of type, say, com-
plex, and define a method * for numbers of that type. That method will be called whenever
* is used on a number of type complex, regardless of whether that number is the first or sec-
ond argument. If both complex numbers and quaternions are defined, the complex * method
should be prepared to handle a quaternion as the second argument, while the quaternion *
method should be prepared to handle a complex number as the second argument. The re-
verse methods have been added to handle the case of a non-built-in object being the second
argument of a noncommutative operation. The <>, <=, and >= methods should never be rede-
fined, as they are never called. Redefine =, >, and < instead.

2Floating point numbers may not be implemented in all Concurrent Smalltalk implementations.

153

Concurrent Smalltalk on the Message-Driven Processor

The associative restricted selectors allow an arbitrary number of arguments; they compile
into pairwise invocations of the corresponding methods. The grouping order is not specified.

Methods declared with restricted selectors should not have side effects.

The identities in Table A-3 have been carefully selected to allow efficient implementation of
primitive operations without sacrificing functionality. Some identities have been omitted on
purpose. For example, * does not have to be commutative in general, nor does (* a 0) have
to equal 0. Not requiring these identities allows * to be used to multiply quaternions and
matrices.

The restricted selectors not, and, or, and xor may not be distinguishable from lognot, lo-
gand, logor, and logxor on all implementations. Redefining these should be avoided; if
they must be redefined, only one set should be redefined.

Table A-3. Restricted Selectors

not and or xor lognot logand logor logxor

< <= > >= = <>

neg + - reverse-- * // reverse-// mod reverse-mod
ash reverse-ash integer-length

154

Appendix A Concurrent Smalltalk Reference

Table A-4. Identities among Primitive Methods

+ is associative and commutative.
0 is an identity for +.

(- a b) = (reverse-- b a).
(- ab) = (+ a (neg b)).
(neg (neg a)) = a.

* js commutative with scalar constants and associative.
1 is an identity for *.

(* a -1) = (neg a).

» (* a 2% = (ash a e).

* (// a (neg b)) = (neg (// a b)).
(// a 2®%) = (ash a -e).

(// a b) = (reverse-// b a).

(mod a (neg b)) = (neg (mod a b)).
(mod a b) = (reverse-mod b a).
(ash a b) = (reverse-ash b a).
(ash 0 a) = 0.

(ash a 0) = a.

(not (not a)) = a.

and, or, and xor are associative and commutative.
(and a false) = false.

(and a true) = a.

(or a false) = a.

(or a true) = true.

(xor a false) = a.

(xor a true) = (not a).

(lognot (lognot a)) = a.

logand, logor, and logxor are associative and commutative.
(logand a 0) = 0.

(logand a -1) = a.

(logor a 0) = a.

(logor a -1) -1.

(logxor a 0) a.

(logxor a -1) = (lognot a).

(< a b) = (not (>= a b)).
(> a b) = (not (<= a b)).
(= a b) = (not (<> a b)).
(< ab) = (b a)

(<= a b) = (>= Db a).
(=ab) = (=b a).

(<> a b) = (<> b a).

155

Concurrent Smalltalk on the Message-Driven Processor

A.8. System and Object Operations

Objects

(new c:standard-class) :object Method
New, when applied to a standard class, creates and returns a new instance object of the speci-
fied class. The object is not initialized. Some implementations may restrict the new argu-
ment to be a constant expression.

Copiers

(deep-copy o:0bject) :object Method
Deep-copy returns a copy of the object. Any of the object’s instance variables are also recur-
sively copied using deep-copy. If the class of the object is immutable, deep-copy may just
return the object it received. Deep-copy may fail to terminate on circular object references.
(shallow-copy o:0bject) object Method

Shallow-copy returns a copy of the object without copying any of the object’s instance vari-
ables. If the class of the object is immutable, shallow-copy may just return the object it re-
ceived.

(copy o:0bject) :object Method
Copy is the most appropriate copying routine for a given object. It defaults to shallow-
copy.

Deallocators

In addition to waiting for garbage collection, the following methods can be used to explicitly
deallocate the storage for an object. Accessing an object after it has been deallocated causes
an error.

(deep-dispose o:0bject) :null Method

Deep-dispose deallocates the object’s storage. Any of the object’s instance variables are
also recursively disposed using deep-dispose. Deep-dispose should not be used on circu-
lar or multiple object references.

(shallow-dispose o:0bject) :null Method

Shallow-dispose deallocates the object’s storage without disposing any of the object’s in-
stance variables.

(dispose o:0bject) :null Method
Dispose is the most appropriate deallocating routine for a given object. It defaults to shal-
low-dispose.

Class Inquiries

(class-of o:0bject):class Method

Class-of, when applied to an object, returns its class.

156

Appendix A Concurrent Smalltalk Reference

(class-kind? o:0object c:class):boolean Method
(class-member? o:object c:class):boolean Method

Class-kind? returns a boolean value that specifies whether the given object is an instance
of the given class or one of its subclasses. Class-member? is just like Class-kind? except
that it returns t rue only if the object is a direct instance of the given class.

(subclass? cl, c2:class):boolean Method

Subclass? returns true if c1 is a subeclass of c2 and false otherwise.

157

Concurrent Smalltalk on the Message-Driven Processor

A.9. Distributed Objects

distobj Class
Distobj is the distributed object class.

Group and Constituents

A distributed object consists of a group name and one or more constituent objects. The con-
stituent objects act just like normal objects except that they inherit methods and instance
variables from the class distobj and they respond to the group and get —-group messages.
A group name indicates the entire collection of distributed objects. When a method is called
on the group name, it is processed by one of the distobj’s constituent objects, as though the
method were called on that constituent object. The identity of the constituent object receiv-
ing the message is left unspecified; implementations are encouraged to heuristically pick dif-
ferent constituent objects for different calls to the group, thereby facilitating concurrency for
distributed object operations. When a constituent object is processing a method, self is the
constituent object, not the group name.

Creation

(new c:distributed-class n-constituents:integer) :distobj Method

New, when applied to a distributed class, creates and returns a new distributed object of the
specified class with the given logical number of constituents. The constituents are not initial-
ized.

The distributed object that is created may contain more constituents than n-constituents. The
runtime system determines an appropriate physical number of constituents for the dis-
tributed object that is at least as large as n-constituents. The additional constituents should
be prepared to respond to messages sent to the distributed object.

Operations

(co o:distobj n:integer) :distobj Method
Co returns the nth constituent object of the distributed object. © can be either the group ob-
ject or any of its constituents. N must be between 0 and the physical number of constituent
objects in the distobj minus one.

(logical-limit o:distobj):integer Method
Logical-limit is the logical number of constituent objects in the distributed object.

(physical-limit o:distobj) :integer Method
Physical-limit is the physical number of constituent objects in the distributed object. The
constituent objects are numbered between 0 and physical-1imit minus one, inclusive.
Physical-limit is never less than logical-limit.

(index o:distobj) :integer Method

Index is the number of a particular constituent object in a distributed object. Index ranges
between 0 and physical-1imit minus one, inclusive.

158

Appendix A Concurrent Smalltalk Reference

Instance Variable

group.distobj
Method

(group o:distobj) :distobj
(get-group o:distobj) :distobj
Group is the inverse of co—it returns the group object of the given distributed object. O can
be either the group object or any of its constituents; if o is already a group object, group just
returns it. Get-group is functionally equivalent to group; it is provided to avoid name con-
flicts with the group variable inside distributed object methods.

159

Concurrent Smalltalk on the Message-Driven Processor -

A.10. Logical and Arithmetic Operations

Comparisons
(eq ol, o2:0bject) :boolean Function
(neq o1, o2:0bject) :boolean Function

Eq returns true if the two objects are indistinguishable—there is no legal way of distin-
guishing o1 from o02. For mutable objects this means that o1 and o2 are the same object.
For immutable objects, eq may in addition return true if o1 and o2 are different objects that
contain the same data.

Eq may return unusual results for inline classes—an instance object of an inline class is not
necessarily eq to itself, but eq will never return t rue on distinguishable objects.

Neq is the logical negation of eq.

(= o1, o2:0bject) :boolean Method
(<> o1, o2:0bject) :boolean Method

These comparisons return true if ol is equal to or not equal to 02, respectively. Equality
means numeric equality for numbers. It defaults to eq or neq for other objects, but the =
method can be overridden to specify a different criterion for a particular class.

(< ml, m2:magnitude) :boolean Abstract Method
(<= ml, m2:magnitude) :boolean Abstract Method
(> ml, m2:magnitude) :boolean Abstract Method
{(>= ml, m2:magnitude) :boolean Abstract Method

These comparisons return t rue if m1 is less than m2, m1 is less than or equal to m2, ml is
greater than m2, or ml is greater than or equal to m2, respectively. For the purposes of com-
parison, false is considered to be less than true. It is an error to use <, <=, >, or >= to com-
pare an object from one direct subclass of magnitude with one of another direct subclass of
magnitude—a boolean cannot be compared with an integer.

(max ml, m2:magnitude) :magnitude Method
(min ml, m2:magnitude) :magnitude Method

Max returns the greater of m1 and m2, while min returns the lesser one. Both max andmin
use one of the comparison operations above to decide which is the greater or lesser, and the
same caveats as above apply.

Logical Operations

(not b:boolean) :boolean Method
Not returns the logical negation of b.

(and (b:boolean)*) :boolean Method

And returns the logical AND of its arguments. If no arguments are specified, and returns
true.

(or (b:boolean)*) :boolean Method

or returns the logical inclusive OR of its arguments. If no arguments are specified, or re-
turns false.

160

Appendix A Concurrent Smalltalk Reference

(xor (b:boolean)*):boolean Method
Xor returns the logical exclusive OR of its arguments. If no arguments are specified, xor
returns false.

(sc-and (b:boolean)*) :boolean Macro
(sc-or (b:boolean)*) :boolean Macro

These are short-circuit versions of and and or. They evaluate arguments sequentially from
left to right only as far as necessary for the answer to be unambiguously determined.

Arithmetic Operations

For most binary arithmetic operations, the class of the result is the class of the most general
argument. For example, if two integers are added, the result is an integer, but ifan in-
teger and a £loat are added, the result is a f1oat. User-defined classes may define other
numeric subclasses, in which case they have to handle appropriate coercions themselves—if a
number is added to a member of a user-defined subclass of number, the + method for the
user-defined subclass will have to dispatch on the type of its second argument.

(zero? n:number) boolean Method

Zero? returns true if n is zero and false otherwise.

(neg n:number) :number Abstract Method
Neg returns the negation of n. The class of the result value is the same as the class of n.

(+ (n:number)*) :number Abstract Method

+ returns the sum of its arguments. If no arguments are specified, + returns 0.

(- nl, n2:number) :number Abstract Method

- returns the difference of its arguments, n1-n2.

(* (n:number)*) :number Abstract Method

* returns the product of its arguments. If no arguments are specified, * returns 1.

(/ nl, n2:number) :number Abstract Method

/ returns the quotient of its arguments, n1/n2. If nl and n2 are both integers and nl is
not exactly divisible by n2, the result is a float. Ifn2 is zero, either an error occurs or some
representation of infinity is substituted as an answer.

(// nl, n2:integer) iinteger Method

// returns the integer quotient of its arguments rounded towards -e, n1/n2). If n2 is zero,
either an error occurs or some representation of infinity is substituted as an answer. Having
// round towards -w allows the use of ash to divide when the divisor is an integral power of
two.

(mod nl, n2:integer) :integer Method

Mod returns the nonnegative remainder of dividing n1 by n2, n1-n2*n1/m2). If n2 is zero, ei-
ther an error occurs or some representation of an indeterminate number is substituted as an
answer. Having mod return the nonnegative remainder allows the use of 1ogand to find the
remainder when the divisor is an integral power of two. When the remainder is nonzero, its
sign is always the same as the sign of the divisor n2. Also, (+ (mod nl n2) (* n2 (//
nl n2))) = nl.

161

Concurrent Smalltalk on the Mcssage-Driven Processor

(ash nl:integer n2:integer) :integer Method
(ash nlifloat n2:integer) float Method

Ash returns nl1 multiplied by two raised to the n2th power, n1*272, Ifnl is a float, no
rounding takes place; however, if nl is an integer and n2 is negative, the result is rounded
towards -oo.

(integer-length n:integer) integer Method

Integer-length returns the bit “size” of n1. For positive n this is MNoga(n+1)], while for
negative n it is equal to [loga(-n)1

Bitwise Logical Operations

(lognot b:boolean) boolean Method
(logand (b:boolean)+) :boolean Method
(logor (b:boolean)+) :boolean Method
(logxor (b:boolean)+) boolean Method
(lognot binteger) iinteger Method
(logand (binteger)*):integer Method
(logor (binteger)*):integer Method
(logxor (binteger)®):integer Method

These methods perform bitwise logical operations. When called on booleans, they perform
the same operations as not, and, or, and xor, respectively. When called on integers, they
perform the corresponding operations bitwise on semi-infinite two’s complement representa-
tions of the integers, treating 0 as false and 1 as true. The integers do not have to be in-
ternally stored in the two’s complement form; all that is necessary is that these operations
act as if they were. When supplied with no arguments, logand returns -1, while logor and
logxor return 0.

162

Appendix A Concurrent Smalltalk Reference

A.11. Locks

Locks are used to synchronize processes. A lock can be acquired by only one process at a
time, and the acquiring operation is atomic. After a process has acquired a lock, it can pro-
ceed to perform whatever exclusive operations it wants to do. When it is done, it should re-
lease the lock to make it available again. If a process attempts to acquire a lock that is busy
(acquired), it will wait until the lock is available.

Two built-in lock classes are provided: simple-lock and queueing-lock. Simple-lock
is a very cheap and fast implementation intended for situations in which a lock is not ac-
quired for long periods of time and there is little contention for the lock. Simple-locks are
adequate for most purposes. Queueing-locks are heavy-duty locks for use in situations
where there may be significant contention for a lock.

Lock Operations
(new-simple-lock) :simple-lock Function
(new-queueing-lock) :queueing-lock Function

New-simple-lock creates a new simple lock, while new-queueing-lock creates a new
queueing lock. The lock is initially available.

(init 1:simple-lock) :null Method
(init 1l:queueing-lock) :null Method

Init reinitializes the lock, making it available regardless of its previous state.

(acquire 1:lock):null Abstract Method

Acquire acquires the lock. If the lock is busy, acquire waits until the lock is available be-
fore acquiring it and returning.

(release 1l:lock):null Abstract Method

Release releases the lock. If the lock is already available, release signals an error.

(busy? 1l:lock) :boolean Abstract Method

Busy? returns t rue if the lock is busy and false otherwise.

(with-locks ((1:ock)*) body) Macro

With-locks first acquires all of the locks listed, in the order in which they are listed, then
evaluates body, and finally releases all of the locks. It returns the value of body.

163

Concurrent Smalltalk on the Message-Driven Processor

A.12. Strings and Arrays

Strings and arrays are the primitive data structures for keeping track of indexed collections
of data. All primitive strings and arrays are subclasses of the class array. The subclasses of
class array can be implemented as arrays, but implementations are encouraged to pack in-
teger-arrays, strings, and boolean-arrays to conserve space and time.

Creating Arrays

(new-simple-array size:integer) :simple-array Method

New-simple-array creates a new simple array of arbitrary objects. Size specifies the
number of elements in the array; the elements are numbered 0 through size-1. The array’s
elements are not initialized.

(new-integer-array size:integer low, high:integer) iinteger-array Method

New-integer-array creates a new array of integers in the range between low and high,
inclusive. Low must be less than or equal to high. Size specifies the number of elements in
the array; the elements are numbered 0 through size-1. The array’s elements are not ini-
tialized.

(new-string size:integer) :string Method

New-string creates a new array of characters, also called a string. Size specifies the num-
ber of elements in the array; the elements are numbered 0 through size-1. The array’s ele-
ments are not initialized.

(new-boolean-array size:integer) :boolean-array Method

New-boolean-array creates a new array of booleans. Size specifies the number of ele-
ments in the array; the elements are numbered 0 through size-1. The array’s elements are
not initialized.

Operations on Entire Arrays

(£i11 a:array wvalue).array Abstract Method

Fill destructively writes value to every element of the given array. If the array is an in-
teger-array, a string, or a boolean-array, the value must have the correct type and, in
the case of integer-array, it must be in the range specified when the array was created;
otherwise, the results are unspecified. Fill returns the updated array.

(init a:array f£:funct):array Abstract Method

Init concurrently calls £ on integers between 0 and the size of a minus one, inclusive, and
stores the results in the corresponding elements of a. If £ or any other function tries to read
an element of a, it will wait until the value is available. It is an error for £ or any other func-
tion to try to alter the values of elements of a before init returns. Init returns the a array
after all calls to £ have returned.

(map src:array dst:array £:iunct) :array Abstract Method

Map concurrently calls £ on each element of the src array and stores the results in the corre-
sponding elements of the dst array. The sizes of the two arrays must be equal. If srcisa
simple-array, so must be dst. Src and dst may be the same array. If £ or any other
function tries to read an element of the dst array, it will wait until the value is available. It

164

Appendix A Concurrent Smalltalk Reference

is an error for £ or any other function to try to alter the values of elements of the dst array
before map returns. Map returns the dst array after all calls to £ have returned.

(for-each a:array f£:funct):array Abstract Method
(nfor-each a:array g£:funct):array Abstract Method

Both of the above methods concurrently call £ on each element of the array and then return
the array without modifying it. Nfor-each does not wait until any of the calls to £ return,
while for-each does.

Accessing Arrays

[a:array pos:integer] :object Abstract Method
(get a:array pos:integer) :object

Get returns the element at position pos of the given array. Get signals an error if pos is
outside the bounds of the array. The results of accessing an uninitialized element are un-
specified.

(set [a:array pos:integer] value:object) :array Abstract Method
(put a:array pos.integer value:object) :array

put destructively writes value at position pos of the given array. Value is not touched.
Put signals an error if pos is outside the bounds of the array. If the array is an integer-
array, a string, or a boolean-array, the value must have the correct type and, in the
case of integer-array, it must be in the range specified when the array was created; oth-
erwise, the results are unspecified. Put returns the updated array.

(size a:array):integer Abstract Method

Size returns the size of the array, as specified when the array was created.

165

Concurrent Smalltalk on the Message-Driven Processor

A.13. Input and Output

Streams

Streams are sources and sinks of data. A stream is usually a connection to a terminal or to a
file, but other uses of streams are possible. Concurrent Smalltalk defines a general class
stream as well as a specific implementation of streams, system-stream. Other user-de-
fined stream classes may be defined as subclasses of st ream.

Operations on General Streams

Reading

(read-stream-char s:stream) :object Abstract Method
Read-stream-char reads a character from stream s and returns it. If there is no more in-
put available on the stream, read-stream-char returns nil.

(read-stream-line s:stream) :object Abstract Method

Read-stream-line atomically reads a line from stream s and returns it in the form of a
string (without the trailing line terminator). If there is no more input available on the
stream, read-stream-line returns nil,

(read-stream s:stream) :object Abstract Method

Read-stream reads some representation of a Concurrent Smalltalk object from stream s
and returns it. If there is no more input available on the stream, read-stream returns the
constant end-of-file.

end-of-£file:object Constant

This unique constant is returned when read-stream-object encounters an end of file.

(stream-char-ready? s:stream):boolean Abstract Method
St ream-char-ready? returns true if a character is ready to be read from stream s. It is
not guaranteed to return false otherwise, so an implementation that always returns true
is acceptable.

Writing

(write-stream-char s:stream ch:character):null Abstract Method

Write-stream-char writes character ch onto stream s.

(write-stream-string s:stream string:string) :null Method

Write-stream-string writes string string onto stream s. Write-stream-st ringis
equivalent to calling write-stream-char on each character in string except that string
is written atomically.

(write-stream s:stream (o:object)*) :null Method

Write-stream writes some representation of the given Concurrent Smalltalk objects onto
stream s. It uses print to format objects it does not know about. Care should be taken
when writing circular structures to make sure that write-stream terminates.

166

Appendix A Concurrent Smalltalk Reference

(display-stream s:stream (o:object)*):null Method

Display-stream writes some representation of the given Concurrent Smalltalk objects onto
stream s. Strings and characters are written literally, without escape characters. Care
should be taken when writing circular structures to make sure that di splay-stream termi-
nates.

Atomicity

(split s:stream) :stream Abstract Method

Split returns a new stream that can be used for atomic writing to s. Anything written to
the returned stream is atomically written onto s when join is called on the returned stream.

(join s:stream) :null Abstract Method

Join joins s back to a stream from which it was split. It is an error to call join on a stream
not returned by split or to call it more than once on such a stream.

Input and Output Streams

terminal-stream:system-stream Global

Terminal-stream is the system-stream used for interaction with the terminal.

(read-char) :object Function
(read-line) :object Function
(read) :object Function
(char-ready?) :boolean Function
(write-char ch:character) :null Function
(write-string string:string) :null Function
(write (o:0bject)*):null Function
(display (o:0bject)*):null Function
(split-terminal) :stream Function

These functions are the terminal equivalents of the general stream methods above.
Formatting

{print o:object s:stream) :null Abstract Method
Print is used for formatting arbitrary objects for the purposes of write-stream. Print
should output some readable representation of object o onto stream s.

(display-print o:object s:stream):null Method

Display-print is used for formatting arbitrary objects for the purposes of display-
stream. Display-print should output some readable representation of object o onto
stream s, avoiding escape characters where possible.

167

Concurrent Smalltalk on the Message-Driven Processor

A.14. Macros

Concurrent Smalltalk provides a macro facility which can be used to extend the language. A
macro consists of a pattern, an optional guard, and a replacement. The pattern can contain
variables or literals (a literal is an identifier). Ifit matches with an expression and the guard
is satisfied, that expression is replaced by the replacement, which can be either another pat-
tern or a Common Lisp function.

(defmacro pattern [guard] replacement) Top-level Macro
pattern ::= literal | 2name | 'name | (pattern* [pattern . pattern]) | @pattern

replacement ::= r-pattern | lisp-statement

r-pattern ::= literal | 2name | 'name | (r-pattern* [r-pattern . r-pattern}])

guard ::= &guard lisp-statement

lisp-statement ::= #L lisp

The macro pattern is a nested list of literals and macro variables. Variables are preceded by
question marks (?) or exclamation points (!). Question-mark variables can match identifiers,
numbers, and lists, while exclamation-point variables can only match identifiers. The dotted
notation at the end of a list indicates that the rest of the list should match the pattern after
the dot. When a pattern is matched to a candidate statement, all instances of the same vari-
able have to match identical forms. The pattern can be as simple as ?x, which will match
any statement.

If an @ symbol precedes a pattern, the form to which the pattern would match is macro-ex-
panded before it is matched to the pattern. To avoid infinite loops, @ should not be the first
symbol in a macro pattern.

The guard, if present, is a Common Lisp statement that returns a boolean value. If the value
returned is t rue, the macro replacement is substituted for the pattern; if not, the macro is
not expanded. The values of the ? and ! variables are bound in a Common Lisp scope just
outside the statement, so the Common Lisp statements can refer to the matched values of the
variables just by referring to the correct variable names (including the leading 2 or !).

Replacement can be either another pattern or another block of Common Lisp statements. If
replacement is a pattern, the values of the macro variables are substituted in it, and the re-
placement pattern replaces the original pattern in the code. If replacement is a Common Lisp
statement, it is expected to return a list which replaces the original pattern in the code. As
in the case of a guard, the Common Lisp statement has access to the matched values of the
macro variables.

The macro replacement pattern can be another macro. Macros are expanded until the result-
ing form does not satisfy any of the existing macro patterns and guards. When several
macros match a form, the form is expanded using the macro that was most recently defined.

168

Appendix A Concurrent Smalltalk Reference

A.15. Environment

Errors

(error (msg:.object)") Function

Error signals a run-time error. The arguments, if any, should contain descriptive informa-
tion about the error. The interpretation of the arguments’ values is implementation-depen-
dent.

(halt) Function

Halt halts execution of the current program due to a run-time error. Debugging information
about the function or method in which the halt took place may be printed.

Utilities

(include “file-name") Top-level Primitive

Include reads the definitions in the file named file-name, as if that file were included in
place of the include primitive.

Options

(pragma ...) Top-level Primitive
Pragma is a general compiler declaration and can contain any implementation-dependent in-
formation.

(declare option value) Top-level Primitive

Declare sets the compiler option named option to the value specified. Value must be a legal
value for the option; most compiler options are booleans, and for these value must evaluate to
either true or false. Value must be a constant expression.

(option option) Primitive

Option returns the compile-time value of the specified compiler option.

169

Appendix B. Using Optimist II

This appendix describes the procedure for using the Optimist II compiler on a Macintosh II to
compile Concurrent Smalltalk programs. In addition, a few helpful non-standard Concurrent
Smalltalk features implemented by Optimist II are described.

Starting the Compiler

To start the compiler, load the image containing the compiler and the Common Lisp envi-
ronment. If such an image is not available, load Common Lisp, PCL, the Loop macro, and
the Optimist.Lisp file. Execute the (optimist:compile-optimist) command to compile
and load the compiler, or, if it was already compiled, use (optimist:load-optimist) to
load the compiler.

The compiler provides only one useful external Lisp function. It is (interactive-cst).
Typing (interactive-cst) will enter an interactive Concurrent Smalltalk listener loop.

Top-Level Commands

Utility Commands

(begin body) Top-Level Primitive

Due to constraints in the compiler, a select few forms such as include and defclass (but
not all of the top-level primitives; most of the primitives listed as top level really only re-
quire that they not be included in any function or method) must be present at the top level.
However, sometimes it is desirable to emit sequences of those directives as results of macros;
to allow this, a special form of begin was provided. If begin appears at the top level, every
form inside it is also evaluated at the top level.

(set name expression) Top-Level Macro

set normally sets the variable name to the value of expression. However, if it is placed at
the top level, it is also allowed to create a new global variable name if one does not exist al-
ready. Thus, at the top level, set acts as either set or defglobal, depending on whether
the global variable name already exists.

(include) Top-Level Primitive

Include, when passed no file argument, will let the user interactively choose a text file and
then include it. This feature is only available on the Macintosh version of Optimist II.

Viewing Objects

While the listener loop is active, any Concurrent Smalltalk command will be immediately
evaluated, and the results displayed in the listener window. The resulting object may be
displayed in a somewhat strange syntax; for example, integers may be displayed as
#<Integer 5>, and booleans as #<True> or #<False>. The following commands may be
used to show the internal structure of objects:

(show o:object) :object Top-Level Primitive

Show shows as a side effect the Optimist II internal representation of an object. If the object
is a function, its hcodes are shown; if the object is a complex object, some of its structure may
be shown. The output is controlled by the CLOS show generic function. The value of the
show directive is the object itself, so the object is usually printed normally after it is shown.

170

Appendix B Using Optimist 11

Please note that the hcodes shown for a function are only an approximation of the actual
hcode data structure used internally to represent the function. Some of the more esoteric
fields are not shown, and sometimes a function may have two variables with the same name,
which leads to confusing output. Variable names were included for human readability only;
Optimist II does not use them internally. It is able to keep the variables distinct regardless
of their names. Also, since a digraph is a nonlinear structure, pseudo-hcodes such as jump
labels in]conditionals and jump, label, and break hcodes are inserted into the output to make
it readable.

(describe o:0bject) :object Top-Level Primitive

Describe describes as a side effect the Optimist II internal representation of an object. It is
just like show except that the information displayed is longer and more detailed.

(show-hcode £:function [#Llisp-function-name}) :function Top-Level Primitive

Show-hcode calls the Optimizer’s non-MDP-specific optimizations to optimize the function
and shows the resulting hcode. Show-hcode may invoke global optimizations and try to in-
line the functions called by f, so this directive may take some time to execute. When the
progress option is true (the default), progress information is displayed in the listener win-
dow while this directive is executing. Detailed progress can be obtained by setting the de-
tailed-progress option. Show-hcode performs no side effects on the Concurrent
Smalltalk environment, and it does not do a treewalk of the Concurrent Smalltalk program.
Show-hcode returnsf as its result.

If lisp-function-name is provided, instead of showing the optimized hcode, show-hcode calls
the Lisp function lisp-function-name with the optimized hcode as an argument. Describe-din-
odes is a useful Lisp function that will describe the compiled hcode in a little more detail.

Show-hcode will not optimize a selector. If viewing optimized method code is desired, the
method must be extracted explicitly using the Concurrent Smalltalk method primitive.

(show-mdp-hcode £:function [#Llisp-function-name]) :function Top-Level Primitive

Show-mdp-hcode is just like show-hcode except that it also performs the MDP-specific
hcode optimizations.

(show-asm £:function [#Llisp-function-name]) function Top-Level Primitive

Show-asm compiles the function f all the way to assembly code and prints the resulting
MDPSim-compatible text. If lisp-function-name is supplied, it is assumed to be a lisp function
and called with the assembly language module as its only argument.

Compiling Programs

(compile f£:object ["output-file-name"]) .object Top-Level Primitive

Compile compiles and treewalks the Concurrent Smalltalk data structures starting with f as
a root. Normally f is a function, in which case it is compiled to assembly language along with
any other functions that it might need. If output-file-name is specified, the MDPSim file is
written to a new file named output-file-name; otherwise, the output is sent to the listener.
When the progress option is true (the default), progress information is displayed in the lis-
tener window while this directive is executing. Detailed progress can be obtained by setting
the detailed-progress option.

Options

As described in Section A.15, Concurrent Smalltalk options can be set using the declare
Concurrent Smalltalk primitive and examined using the option primitive. The options cur-
rently provided by Optimist II are listed in Table B-1.

171

Concurrent Smalltalk on the Message-Driven Processor

Table B-1. Options

Option Default Action

n-nodes 4 Define the number of nodes of a simulated J-Machine. This
option only affects Optimist’s internal interpreter; the com-
piled code is generic and will work on a J-Machine of any
size (as long as the dimensions are powers of two).

precise false Inhibit optimizations that would affect the semantics of fu-
tures and lazy-futures in a few esoteric cases. If following
precise Concurrent Smalltalk semantics is not important,
disabling this option can produce significant performance
improvements.

delete-dead-defs true Remove assignments to variables that will not be used
again.

delete-moves true Try to remove unnecessary move statements.

delete-touches true Try to remove unnecessary touch statements.

vilow-optimizations true Calculate dataflow information and use it to perform a vari-
ety of optimizations such as changing x«y=0, branch if x
false sequences to BNE instructions.

fold-constants true Fold constants. For example, replace 1+2 by 3. Also remove
conditional branches when it can be determined that the
condition is always true or always false.

fold-global- true Fold constants globally. For example, replace a call through

constants a selector with a call of the method when the method can be
determined using type analysis. This option is relevant only
when fold-constants is true.

forward-tails true Enable the altering of application hcodes immediately fol-
lowed by returns into tail-forwarded applications which al-
low the process to be deallocated and the answer directly
forwarded to the caller. This is the equivalent of tail recur-
sion.

merge-code true Merge common pieces of code wherever possible.

inline true Inline small functions.

inline-size-cutoff 12 Set the size cutoff for automatically deciding whether to in-
line a function. Increasing this number causes larger func-
tions to be inlined.

optimize-built-ins true Perform local built-in optimizations such as changing mul-
tiplications to shifts.

compact-vars true Compact variables in the context to use as few slots as pos-
sible.

reg-variables true Assign variables to registers whenever possible.

Iru-register- true Use the least-recently-used algorithm to allocate temporary

allocation registers during code generation.

frame-touches true Accumulate information about which variables are touched
and optimize touches when the variables are known to be
touched.

frame-regs true Keep track of variables in the registers during code genera-
tion and use values from the registers instead of from mem-
ory whenever possible.

frame-migrate true Keep track of whether it is possible for the instance object to
have migrated away. Don’t force it if it could not have mi-
grated away.

lazy-ivar-access true Don’t XLATE the instance object if there are no references
to it.

lazy-contexts true Don'’t allocate a context unless it is actually used.

fast-contexts true Use fast contexts whenever possible.

172

Appendix B

optimize-send-self
fast-apply
compact-sends

compact-DCs
delete-locals

warn-free-refer-
ences

progress
detailed-progress
permanent-
definitions

print-pc
lisp-break

true

true

true

true
true

false

true
false
false

true
true

Using Optimist I

Send message to the current node if the receiver is self and
it is not atomic.

Use ApplyFunction and ApplySelector instead of Apply
whenever possible.

Try to combine SENDs and SENDEs into SEND2s and
SENDZ2ES.

Try to align DCs on word boundaries whenever possible.
Delete local variables in an intermediate stage of the compi-
lation. This makes no difference in the final output, but
makes the hcode look prettier and may speed up code gen-
eration.

Emit a warning every time a free reference is found in a
method or function.

Print progress reports.

Print very long progress reports.

Use defconstant instead of defparameter when compil-
ing function and method definitions. When this option is set,
a warning is emitted every time a free reference is found in
a method or function regardless of the setting of warn-free-
references.

Print program counter values as comments in output.

Enter a Lisp break loop upon a Concurrent Smalltalk warn-
ing or error.

173

Appendix C. Using Cosmos

Loading Cosmos

To use Cosmos, launch MDPSim using the Cosmos.m file as an argument. You may also
wish to specify the J-Machine’s dimensions as arguments to MDPSim. Use -x x -y y -z
z, where x,y, and z are integers; they should be powers of two. To avoid using too much
memory, you may wish to allocate less memory per MDP with the -msize mem option.

When Cosmos.m is assembled by MDPSim, it will automatically load the operating system
onto the MDPs and initialize the MDPs. This process may take anywhere from a few seconds
to a few minutes depending on how many MDPs are present and the speed of the host com-
puter.

Loading User Programs

Once Cosmos is ready, a user program compiled by Optimist II can be loaded. Use the
MDPSim INCLUDE command to load the program generated by Optimist II. Keep in mind
that Cosmos puts MDPSim into the case-sensitive mode, so the case of identifiers and com-
mands matters; MDPSim recognizes commands which are either all upper case or all lower
case characters.

MESSAGE fib4
MSG:msgBpply |5
{fFib}

4

IONODE

0

END

Figure C-1. An Injected Application Message

This message calls the fFib function with the argument 4. The message itself can be injected by executing the
command INJECT fib4. The 5 is the length of the message, (fFib) is Optimist II's output name for the func-
tion to be called (see the Optimist Il output file if you are unsure about the name), 4 is the argument, and TONODE
and 0 are magic numbers that cause the Reply message to be printed by MDPSim. More than one one argument
can be specified, as long as the length of the message (the 5) is increased appropriately.

Once the user program has been loaded, it is a good idea to build a few templates for mes-
sages to be injected into the program. An application message should have the format shown
in Figure C-1. If the messages will be used for several sessions, it might be appropriate to
put them into a file and INCLUDE that file. Application messages should never be injected
before the program is installed.

Instead of issuing the INCLUDE commands manually, you can also specify the files on
MDPSim’s command line, as was done in the example in Figure 5-14.

Running Programs

To run a program, execute the INJECT command on the message on which the program
should be called and then RUN the program. Remember to specify the processor onto which
INJECT should inject the application message; otherwise, INJECT will inject a copy of the
message to every processor, and as many copies of the program will execute simultaneously
as there are processors in the simulated system.

174

Appendix C Using Cosmos

MDPSim allows statistics to be gathered about programs which are executed on it. If the
statistics should only include data about the running program, they should be reset after the
program is downloaded and before it is run. See the current MDPSim manual [25] and
Figure 5-14 of this document for more details.

When you finish the desired program runs, use the QUIT command to exit the simulator and
the quit menu item to exit MPW. In an emergency, command-shift-period can be used to
abort MDPSim; command-period aborts the running MDP program and returns to MDPSim’s
command line (use control-C on UNIX machines).

175

Appendix D. MDP Architecture Summary

This appendix is a summary of the current version of the MDP architecture. A slightly obso-
lete full version of the architecture can be found in [16]. Many details have been simplified
in order to keep this Appendix to a reasonable length.

Introduction

The Message-Driven Processor is a processing node for the J-Machine, a message-passing
concurrent computer. The MDP is designed to provide support for fine-grained concurrent
computation. Towards this goal the processor includes hardware for message queueing, low-
latency message dispatching, and message sending. The same chip also contains a network
interface and a router to allow the routing of messages throughout the network without any
processor intervention.

The size of the MDP’s register set is limited to minimize context-switching time. Much of the
memory is on the chip to improve performance and reduce the chip’s pin count and the chip
count for the concurrent computer. Having memory on chip allows more flexibility in the use
of memory than in designs with off-chip memory. For example, a portion of memory may be
designated as a two-way set-associative cache to be used by the XLATE instruction. Never-
theless, since current technological limitations restrict the size of the on-chip memory to
about 4096 words, an external memory interface has been provided to allow access to slow,
off-chip DRAM.

The MDP is also designed to efficiently support object-oriented programming. Every MDP
word consists of 32 data bits and a 4 bit tag that classifies the word as an integer, boolean,
address, instruction, pointer, or other data. The MDP’s four address registers include both
base addresses and lengths, so all memory accesses are bounds checked. Normally the ad-
dress registers point to objects, so, since absolute memory addressing is not allowed except by
the operating system, memory references can only be made to objects relative to their begin-
nings. Having tags and no absolute references permits the use of garbage collection and
transparent migration of objects to other MDP nodes on the network.

The MDP is almost completely message-driven. It is controlled by the messages arriving
from the network that are automatically queued and processed. There are two priority levels
to allow urgent messages to interrupt normal processing. There is also limited support for a
background mode of execution when no messages are waiting in the queues.

Processor State

The processor state of the MDP is kept in a set of registers shown in Figure D-1. There are
three independent copies of most registers for each of the two priorities of the MDP, allowing
easy priority switches while keeping the integrity of the registers. The registers are symboli-
cally represented as follows:

RO-R3 general-purpose data registers
A0-A3 address registers

ID0-ID3 ID registers

Q,MUF1I,P,B flags

P instruction pointer register

FIR faulted instruction register

FIP faulted instruction pointer register
FOPO, FOP1 faulted operand registers

QBM queue base/limit register

QHL queue head/tail register

176

Appendix D MDP Architecture Summary

TBM translation base/mask register
NNR node number register
MAR memory address register

The Q flag controls message queue access through register A3, while the M flag guards against
inter-priority message deadlocks. Setting the U (unchecked mode) flag disables type and
overflow faults. Setting the F (faulted) flag vectors all faults to the CATASTROPHE vector; this
flag is often set in critical sections of fault handlers. Setting the I (interrupt) flag prevents
higher-priority interrupts. The B and P flags encode the current priority level.

Priority Level 1 l I

3532 31 0
tag
tag
tag
tag
31 29 10 9 0 3532 31
ri base A0 length | tag
r|i
rii
3532 31 0
rli
tag
tag
T
3532 31 0
tag IDO =
2829 10 9 0
ta
9 d| base QBM | mask
ta
2 head QHL
tag
|
20 0 15 0 29 10 9 0

base TBM mask

Figure D-1. The MDP Register Set.

177

Concurrent Smalltalk on the Message-Driven Processor -

Data Types

The data types that may be used in a word are shown in Figure D-2. All data types except
FUT and CFUT may be moved, compared with EQ and NEQ, XLATEd and ENTERed, RTAGged,
wTaGged, CHECKed, and executed. Executing a non-INST word causes it to be loaded into RO.
Some data types allow additional operations, which are listed in detail in the description of
the instruction set.

3 3332 11 1

5 2109 76 09 0

0000 value (0=NIL) SYM
0001 two's complement value INT
001 o0fo olo] BOOL
001 1]rli base length ADDR
010 o]ulf offset plajo .. 0 IP
010 tjulf offset length MSG
0110 user-defined CFUT
0111 user-defined FUT
1000 user-defined TAGS
1001 user-defined TAG9
1010 user-defined TAGA
1011 user-defined TAGB
11100 first instruction second instruction INSTO
110 1 first instruction second instruction INST1
11|10 first instruction second instruction INST2
11)11 first instruction second instruction INST3

Figure D-2. The MDP Data Types.

- syM contains an atomic symbol. EQUAL and NEQUAL are allowed on symbols. If the data
portion of a symbol contains all zeroes, the word takes on the value of NIL. Cosmos re-
names SYM as TAGO and inserts a subtag in bits 28 through 31 to distinguish between a
few more types.

. INT contains a two's complement integer between -231 and 231-1, inclusive. Al arith-
metic, logical, and comparison operations are allowed on INTS.

« BOOL contains a boolean value, which is either true (b=1) or false (b=0). All logical and
comparison operations are allowed on BoOLs; false is considered to be less than true.

« ADDR contains a base/length pair that may be loaded into either one of the address regis-
ters or OBM, QHL, or TBM. The uses of bits 30 and 31 vary among these registers.

= IP contains a value appropriate for loading into the IP.

« MSG is the header of a message. It is similar to an 1p. Due to a shortage of tags, Cos-
mos also uses this tag under the name OBJ as an object header.

« CFUT contains a context future. Almost all operations fault on context futures. They are
not meant to be MovEable. CFuTs are used as placeholders for unavailable values to be
computed in parallel by other processes; an attempt to read a CFUT before its value is
available will fault, and the operating system will suspend the current process until the
value is available.

178

Appendix D MDP Architecture Summary

. FUT is a standard future. FUTs may be moved, and their tags may be read and written,
but they may not participate in any primitive operations such as addition or checking for
equality. As with CFUTSs, an attempt to use a FUT in a primitive operation will cause a
fault, and the operating system will have to provide the appropriate value for the FUT.

« TAGS through TAGB are tags for operating system-defined words. They cause faults on
all primitive operations except EQ, NEQ, BNIL, and BNNIL. Cosmos renames these tags
as ID, DID, TAGA, and FLOAT, respectively.

« INSTO through INST3 are tags for instructions. The two instructions in a word occupy a
total of 34 bits, so two tag bits are also used to encode them.

Network Interface

Incoming messages are queued in message queues before being dispatched and processed.
There are two message queues, one for each priority level. When a message arrives, register
A3 is set up to point to it in the message queue, and execution begins at the address specified
by the message header. A message may be processed as soon as its first word arrives; the
processor does not wait until the entire message is present before processing it. Memory ac-
cesses to the message are checked to make sure that the processor does not try to access a
word in the message before it arrives; if the processor tries to access a word too early, it waits
until the word has arrived.

The SUSPEND instruction informs the hardware that the processing of the current message is
done and that it should fetch the next message.

Message Transmission

The SEND, SEND2, SENDE, and SEND2E instructions are used to send messages. The first
word sent specifies the node number of the destination node (i.e. the destination node’s NNR
value) in the low 16 bits. The SEND instruction will use the current node’s NNR and the desti-
nation node number to find the relative offsets in the X and Y dimensions that the network
controllers will use in routing the messages through the network. There are actually two fla-
vors of each SEND instruction: SENDO, SEND20, SENDEO, and SEND2EO send words of priority
0 messages, while SEND1, SEND21, SENDE1, and SEND2E1 send words of priority 1 messages.
The priority of the message is independent of the priority of the process that is sending it.

The initial routing word is followed by a number of words which the network delivers verba-
tim to the destination node. The network does not examine the contents of these words. The
message is terminated by a SENDE or SEND2E instruction, which send the last one or two, re-
spectively, words of it and inform the network to actually transmit the message. The first
word that arrives at the destination node (the second word actually sent since the routing
word is only used by the network and doesn’t arrive at the destination node) must be tagged
MSG. It contains the length of that message including that word but not including the routing
word preceding it. It also contains the initial value of the 1P at which execution is supposed
to start. The destination node will fault MSG if this word is incorrect.

The total time between the first SEND and the SENDE should be as short as possible to avoid
blocking the network. For the same reason, faults should be avoided while sending.

Fault Processing

When a fault occurs, the instruction that caused the fault is saved in the FIR register, the
current IP (which points one instruction beyond the faulting instruction) is saved in the FIP
register, and the values of the instruction operands, if any, are saved in the FOP0 and FOP1
registers. If the fault occurred while fetching an instruction, the FIR is set to NIL and the
FIP points to the instruction. The IP is then fetched from the memory location whose ad-
dress is equal to the fault number plus the base of the fault vector table of the current prior-
ity. If the F bit was, the 1P is loaded from the CATASTROPHE vector instead. The U, A, and F
flags receive their new values from the loaded 1p. The faults are listed in Table D-1.

179

Concurrent Smalitalk on the Message-Driven Processor

Table D-1. MDP Faults

Name

CATASTROPHE
INTERRUPT
QUEUE

SEND
ILGINST
DRAMERR
INVADR

LIMIT
ADRTYPE
EARLY
MSG
XLATE
OVERFLOW
CFUT
FUT
TAGS
TAGY
TAGA
TAGB
TYPE

Fault

Number

$00
$01
$02
$03
$04
$05
$06

$07
$08
$09
$0A
$08B
$0C
$0D
$0E
$0F
$10
$11

$12
$13

$14-$1F

Description

e — e —————————————————————————

Double fault,bad vector, or other catastrophe.

Interrupt pin has gone active.

Message queue about to overflow.

Send buffer full.

lllegal instruction.

Double bit error in the external RAM.

Attempt to access data through address register with 1 bit
set.

Attempt to access object data past limit.

index in indexed addressing mode not tagged INT.
Attempt to access data in message queue before it arrived.
Bad message header.

XLATE missed.

Integer arithmetic overflow.

Attempted operation on a word tagged CFUT.

Attempted operation on a word tagged FUT.

Attempted operation on a word tagged TAGS.

Attempted operation on a word tagged TAG9.

Attempted operation on a word tagged TAGA.

Attempted operation on a word tagged TAGB.

An operand or a combination of operands with a bad tag
type used in an instruction.

Reserved for future faults.

If multiple faults occur simultaneously the fault vector chosen is the one that has the highest precedence. Each
fault is assigned a precedence by its fault number; lower fault numbers correspond to higher precedence.

Instruction Encoding

The program executed by the MDP consists of instructions and constants. A constant is any
word not tagged INSTO through INST3 that is encountered in the instruction stream. When
a constant word is encountered, that word is loaded into RO and execution proceeds with the
next word (the assembler syntax for including a word in the code stream is DC).

Every instruction is 17 bits long. Two 17-bit instructions are packed into a word. Since a
word has only 32 data bits, two tag bits are also used to specify the instructions. The in-
struction in the high part of the word is executed first, followed by the instruction in the low
part of the word. As a matter of convention, if only one instruction is present in a word, it
should be placed in the high part, and the low part of the word set to all zeros.

The format of an instruction is as follows:

16 11 10 9 8 7 6 0
2nd 1st
Opcode reg reg Addressing mode
#
op2 op1 op0

The opcode field specifies one of 64 possible instructions. The other fields specify three
operands; instructions that don’t require three operands ignore some of the operand fields.
Operands 1 and 2 must be data registers; their numbers (0 through 3) are encoded in the Ist

180

Appendix D

MDP Architecture Summary

reg # and 2nd reg # fields. Operand 2, if used, is always the destination of an operation and

operand 1, if used, is always a source.

6 0
Normal
Addressing Mode
R SR R |]

0 0 0 0 0] Rn
0 0 0 0 1| An
0 0 0 110 0 O
0 0 0 110 0 1
0 0 0 110 1 O
0 0 0 1}j]0 1 1
0 0 0 1|12 0 O
0 0 0 111 0 1
0 00 111 1 O
0 0 0 111 1 1
0 0 1] Rx An
0 1 imm

1 imm An

Syntax
Rn

An

NIL
FALSE
TRUE
$80000000
SFF
$3FF
SFFFF
SFFFEFF
[Rx, An]
imm

[imm, An]

Addressing Mode

Data register Rn

Address register An

Immediate constant NIL (SYM:0)
Immediate constant FALSE (BOOL.:0)
Immediate constant TRUE (BOOL:1)
Immediate constant INT:$80000000
Immediate constant INT:$000000FF
Immediate constant INT:$000003FF
Immediate constant INT:$0000FFFF
Immediate constant INT:$000FFFFF
Offset Rx in object An

Immediate imm (signed)

Offset imm (unsigned) in object An

Figure D-3. The MDP Normal Addressing Modes.

The immediate constants are eight immediate values outside the range INT:-16..INT:15. They are provided for

convenience and code density improvement. The $FF and $FFFF constants are useful for masking bytes and
words, while the $3FF and $FFFFF constants may be used for masking lengths and addresses.

Operand 0 can be used as a source or a destination in an instruction. It can hold two possible
encodings. A normal instruction has op0 address mode encodings as shown in Figure D-3.
The register-oriented op0 mode is used only by three variants of the MOVE instruction. If an
instruction uses the register-oriented op0, the encodings are as in Figure D-4.

Instruction Set Summary

The instructions supported by the MDP are summarized in Table D-2. The Types column
specifies the types on which the instruction operates; if the arguments have different types,
the instruction faults. Except for a MOVE to memory, all instructions fault when any of their
operands are tagged CFUT. Also, except for MOVEs and SENDs, all instructions fault when any

of their operands are tagged FUT.

181

Concurrent Smalltalk on the Message-Driven Processor

6 0

Register:Oriented

AddreslsmgI Mode , Syn tax
B|P|O0O O O] Rn Rn
Bi{P|0O O 1] An An
-|P|0 1 O] IDn IDn
B|PJO 1 1§10 0 FIP
-|p|0 1 1}0 1 FIR
-lPlo 1 1)1 0 FOPO0
-|{P{0 1 1 }]1 1 FOP1
-|/PJ|1 0|0 O O OBM
-l1P|1 00 O 1 QHL
Bip|l 00 1 O IP
-]-}1 00 1 1 TBM
-l/-f1 O0J1 O O NNR
-1-1]1 01 0 1 MAR
-{-11 0J1 1 O
-|-11 01 1 1
-1-11 110 0 O P
-]-1]1 110 0 1 B
-]1-]1 110 1 O I
BiPJ|1 1|0 1 1 F
B|p]1 1|1 0 O U
-/PJ1 1|1 0 1 Q
-}j-11 11 1 O
-j-11 111 1 1

Addressing Mode

Data register Rn

Address register An

ID register IDn

Trapped Instruction pointer

- Trapped Instruction register

Trapped OPO register
Trapped OP1 register

Queue Base/Mask register
Queue Head/Length register
Instruction Pointer register
Translation Base/Mask register
Node Number register
Memory Address Bus register

Unused (ILGINST fault)
Unused (ILGINST fault)

Priority Level flag
Background Execution flag
Interrupt flag

Fault flag

Unchecked flag

A3 Queue flag

Unused (ILGINST fault)
Unused (ILGINST fault)

Figure D-4. The MDP Register Oriented Addressing Modes.

B and P represent the priority of the register being accessed XORed with the current priority. For example, 00
indicates the current priority, while 01 would let priority 1 access priority O's registers, and 11 would let priority 1
access the background registers. The assembler syntax for specifying a register belonging to the other priority is
the register name followed by a B to flip the B bit and/or a backquote () to flip the P bit.

Table D-2. MDP Instructions

Instruction Brief Description Types
General Movement and Type Instructions

MOVE Src,Rd Rd « Src. Src may be aregister addressing mode. Al
MOVE Rs,Dst Dst « Rs. Dst may be a register addressing mode. All
MOVE Src,IP IP - Src. Src may be aregister addressing mode. All

182

MDP Architecture Summary

Rd « INT:H{ag{Src)
Rd ¢« SrcRs
Rd < BOOL:ag(Rs)=Src

Arithmetic and Logical Instructions

Rd ¢--Src

Rd ¢~ Rs+Src

Rd ¢~ Rs-Src

Rd « Carry from the addition of Rs and Src

Rd ¢ Rs'Src

Rd « High 32 bits of 64-bit unsigned product of Rs and src
Rd « Rs shifted left arithmetically by S rc bits
Rd « Rs shifted left logically by S rc bits

Rd « Rs rotated left by src (mod 32) bits

Rd « 31-position of leftmost bit of rRs differing from bit 31.
Rd « NOT src

Rd ¢ Rs AND Src

Rd«RsORSrc

Rd « Rs XOR Src

Rd ¢~ BOOL:Rs<Src

Rd ¢ BOOL:Rs<Src

Rd ¢ BOOL!Rs>Src

Rd ¢- BOOL:Rs2Src

Rd ¢~ BOOLRs=SrcC

Rd ¢« BOOL:Rs#SrcC

Rd « BOOL:Rs=Src (Pointer comparison only)
Rd « BOOL:Rs#Src (Pointer comparison only)

Send s xc onto the network

Send src onto the network and terminate message

Send Rs and Src onto the network

Send Rs and Src onto the network and terminate message

Associative Lookup Table Instructions

Appendix D

RTAG Src,Rd
WTAG Rs,Src,Rd
CHECK Rs,Src,Rd
NEG Src,Rd
ADD Rs,Src,Rd
SUB Rs,Src,Rd
CARRY Rs,Src,Rd
MUL Rs, Src,Rd
MULH Rs,Src,Rd
ASH Rs,Src,Rd
LSH Rs, Src,Rd
ROT Rs, Src,Rd
FFB Src,Rd
NOT Src,Rd
AND Rs, Src,Rd
OR Rs,Src,Rd
XOR Rs, Src,Rd
LT Rs, Src,Rd
LE Rs, Src,Rd
GT Rs, Src,Rd
GE Rs,Src,Rd
EQUAL Rs,Src,Rd
NEQUAL Rs,Src,Rd
EQ Rs, Src,Rd
NEQ Rs, Src,Rd
Network Instructions
SEND Src

SENDE Src

SEND2 Rs, Src
SEND2E Rs, Src
XLATE Rs,Dst,C
ENTER Src,Rs
PROBE Src,Rd
Special Instructions
NOP

INVAL

SUSPEND

CALL Src
Branches

BR Src

BNIL Rs, Src
BNNIL Rs,Src

BF Rs,Src

BT Rs,Src

BZ Rs, Src
BNZ Rs, Src

Dst « associative lookup in the associative lookup table of Rs
Enter (Src, Dst) into the associative lookup table
Rd ¢« BOOL:Src isin the associative lookup table

No operation

Invalidate all relocatable address registers

Terminate current process and fetch another message
Call system routine numbered Src

Branch forward Src words

Branch forward Src words if Rs iS NIL
Branch forward Sxc words if Rs iS Nt NI L
Branch forward src words if Rs is false
Branch forward Src words if Rs is true
Branch forward Src words if Rs is zero
Branch forward s rc words if Rs is non-zero

183

All
Al
Al

INT

INT

INT

INT

INT

INT

INT

INT

INT

INT

INT, BOOL
INT, BOOL
INT, BOOL
INT, BOOL
INT, BOOL
INT, BOOL
INT, BOOL
INT, BOOL
SYM, INT, BOOL
SYM, INT, BOOL
All

All

All
Al
Al
Al

Al
All
Al

All

Al
BOOL
BOOL
INT
INT

avausConcurrent Smalltalk on the Message-Driven ProoRssor e i1« 1 e i st wisthd 5 15 wiis™ vi o

Appendix E. Optimist 11 Listing
ol ST o e S g witcd s e

184

Appendix F. Cosmos Listing

MDP Operating System

ks
2
i

version 2.3

written by
Waldemar Horwat

Master‘s thesis under Prof. William Dally

March 28, 1989
May 1991

H Send problems and comments to
: waldemargéhx.lcs.mit.edu.

Copyright 1989, 1990, 1991 Waldemar Horwat

-— — - -t
;| Parameters |
st +
:These parameters are used to customize Cosmos. You can override the default settings of
;these parameters by using -d REALMODE=1, etc. command line options.

;REALMODE is true if the code should be compiled for a real J-Machine instead of MDPSim.
:This turns off the STOP instruction (this means you can‘t use RUN).
IF !Defined (REALMODE)
LABEL REALMODE = 0
END

;FASTSIM is true if the loop that clears memory to CFUTs should be skipped.
IF !Defined (FASTSIM)

LABEL FASTSIM = 1
END

:DEBUG is true if extra debugging code should be run.
IF !Defined(DEBUG)

LABEL DEBUG = 1
END

;Equates

LABEL LogNNodes = LGNNODES
LABEL NNodes = 1<<LogNNodes

LABEL nFastContexts = 8 :Number of fast context to allocate.

+ -+

Memory Map

LABEL GlobalsOStart = 0
LABEL GlobalsOEnd = $40
LABEL Globalslstart = $40
LABEL GlobalslEnd = $80
LABEL ADR FaultsOstart = $80
LABEL ADR FaultsOEnd = SAO
LABEL ADR FaultslStart = SAO
LABEL ADR FaultslEnd = $CO
LABEL ADR CallsStart = $CO
LABEL ADR CallsEnd = $100
LABEL ADR QueuelStart = $100
LABEL ADR QueuelEnd = $100
LABEL ADR QueuelStart = $100
LABEL ADR QueueQEnd = $200
LABEL ADR XlateStart = $200
LABEL ADR XlateEnd = $400
LABEL BRATLenLog = 6

LABEL BRATLength = 1<<BRATLenLog
LABEL ADR BRATStart = $400
LABEL ADR BRATEnd = BRATStart+BRATLength
LABEL ADR HeapEnd = MEMSIZE

-+

;| Tags !
4 +
LABEL TAG TAGO = 0 ;Immediate object tag.

LABEL TAG OBJ = MSG ;Objects and messages have the same tag.

LABEL TAG CS = INSTL ;Class/selector.

185

Concurrent Smalltalk on the Message-Driven Processor

;Subtags of TAGO:

LABEL subtagN = 28 :Subtag offset.

LABEL subtagL = 4 :Subtag length.

LABEL subtagM = (l<<subtaglL)-l ;Subtag mask.

LABEL subSYM = 0 ;Symbol.

LABEL SubCLASS = 1 :Class,

LABEL SubSEL = 2 :Selector.

LABEL SubCHAR = 3 ;Character.

i| Types |

;

:Address bits

LABEL lengthN = 0 ;Length field offset.
LABEL lengthL = 10 ;Length field length.
LABEL lengthM = (1<<lengthL)-1 :Length field mask.
LABEL baseN = 10 ;Base field offset.
LABEL baseL = 20 :Base fleld length.
LABEL baseM = (1<<baseL)-1 ;Base field mask.
LABEL invalidN = 30 :Invalid address.
LABEL invalid = 1<<invalidN

LABEL relN = 31 ;Relocatable address.
LABEL rel = l<<relN

LABEL disableN = 30 ;Disable bit of QBM regs.
LABEL disable = 1<<disableN

:IP bits

LABEL absN = 8 ;Absolute IP.

LABEL abs = 1<<absN

LABEL phaseN = 9 ;IP phase bit.

LABEL phase = l<<phaseN

LABEL offgsetN = 10 ;Offset field offset.
LABEL offsetL = 20 ;0ffset field length.
LABEL faultN = 30 :Fault flag.

LABEL fault = l<<faultN

LABEL uncheckedN = 31 :Unchecked mode flag.
LABEL unchecked = l<<uncheckedN

;ID bits

LABEL homeNodeN = 0 :Home node.

LABEL homeNodeL = 16

LABEL homeNodeM = (l<<homeNodel)-1

LABEL serialN = 16 :Serial number.

LABEL seriall = 15

LABEL serialM = (l<<seriall)-1

LABEL distobjMemberN = 31 ;Distributed object member flag.
LABEL distobiMember = l<<distobjMemberN

:DID bits

LABEL initialNodeN =~ 0 :Initial node.

LABEL initialNodelL = 11

LABEL initialNodeM = {l<<initialNodel)-1

LABEL logStrideN = 11 :2's complement lg{#nodes/#constituents)
LABEL logStridelL = 5

LABEL logStrideM = (l<<logStridel)-1

;Class/Selector bits

LABEL csSelectorN = 0 :Selector.
LABEL csSelectorlL = 16

LABEL csSelectorM = (1<<csSelectorlL)-1l

LABEL csClassN = 16 :Class.
LABEL csClassL = 16

LABEL csClassM = (l<<csClassL)-1

:xyz bits

LABEL xN = 0

LABEL xL = LGXNODES
LABEL xM = (1<<xL)-1
LABEL XMC = (1<<5-xL)-1
LABEL yN = 5

LABEL yL = LGYNODES
LABEL yM = (1<<yL)-1
LABEL yMC = (1<<S-yL)-1
LABEL zN = 10

LABEL 2L = LGZNODES
LABEL 2zM = (l<<zL)-1
LABEL zMC = {1<<6-zL)-1

field offset.

field length.

field mask.

complement field mask.
field offset.

field length.

field mask.

complement field mask.
field offset.

field length.

field mask.

complement field mask.

DR B BT e X XXX

;These constants are used to fashion serial and node numbers for precompiled objects.
LABEL mX = xM

LABEL sX = 0

LABEL mY = yM<<xL

LABEL sY = yN-xL

LABEL m2 = zM<<xL+yL

LABEL 82 = zN-xL-yL

LABEL mS = serialMc<<xL+yL+zL
LABEL 8S = serialN-xL-yL-zL

;The nth object is stored at (n&mX)<<sX| (némY)}<<sY|(n&émZ)<<s2{{n&ms)<<ss

:These constants are used to fashion numbers for precompiled classes and selectors

;80 as to distribute them evenly throughout the J-Machine.

LABEL m3 = xXMC<<xL+yL+zL

LABEL 83 = -yL-zL

LABEL m4 = yMC<<xN+yL+zL

LABEL 54 = ~-zL

LABEL m5 = zZMC<<xN+yN+zL

LABEL 85 = 0

:The nth object is stored at (nEmX) <<sX| (NEmMY) <<s¥| (némZ)<<sZ| {n&m3)<<s3| (n&md) <<s4| (n&m5) <<s5

LABEL nodeMask = 2zM<<zZN|yM<<yN|xM<<xN sMask for generating random node numbers.

LABEL RandomSeedIncrement = 5<<zN=-2|3<<yN-1}1<<xN

186

Appendix F Cosmos Listing Cosmos.i

;Hardwired classes:

LABEL classPrimitiveClass = (2&mX)<<sX|(2&mY)<<sY|{(2&m2)<<82]{24m3)<<s3|(26m4)<<s84]|(24m5)<<s5
LABEL classStandardClass = (35mx)<<sX|(3&mY)<<sY|(3£mZ)<<sZ|(36m3)<<s3|(3&m4)<<:4|(3&m5)<<s$
LABEL classDistributedClass = (4&mX)<<sX|(4&m¥)<<s¥:(45m2)<<sZ|(45m3)<<sa|(4&m4)(<34|(46m5;<<55
LABEL classObject = (56mX) <<8X| (55mY) <<sY| {56mZ) <<s8Z} (56m3) <<s83{ (56md)<<s4| (5&m5) <<s5

LABEL classNull = (6&mX)<<sX| (6&mY)<<sY|(6&mZ)<<sZ{ (6§m3)<<s3](64md)<<sd|(6&m5)<<sS

LABEL classSymbol = (76mX) <<8X| (76mY) <<sSY| (7&mZ)<<sZ| {7&m3) <<s3| (76md) <<34| {76m5) <<85

LABEL classClass = (8&mX)<<sX| (8&mY)<<sY{ (8&mZ)<<s2j (8&m3)<<s3| (8sm4)<<sd| (8&m5)<<s5

LABEL classSelector = (9&mX)<<sX|{94mY)<<sY|(94mZ)<<sZ|(94m3)<<s3|(94m4)<<s4|(9&m5)<<s5

LABEL classCharacter =~ (loamx)<<sX|(10&mY)<<sY|(105m2)<<szl(10nm3)<<53|(105m4)<<s4|(10&m5)<<ss
LABEL classInteger = (11&mx)<<sx|(11&mY)<<sY|(116m2)<<sZ|(116m3)<<s3|1115m4)<<541(115m5)<<ss
LABEL classBoolean = (12£mX)<<sX|(12&mY)<<sY|(12&mZ)<<sZ|(12&m3)<<331(126m4)<<sd|(125m5)<<s$
LABEL classFalse = (13&mX)<<sX| (13&mY)<<sY| (13&mZ)<<sZ| (13em3)<<s3|(13émd)<<sdj (13&m5)<<s5
LABEL classTrue = (ldimX)<<sx|(145mY)<<sY|(145m2)<<sZ|(144m3)<<53|(145m4)<<34|(146m5)<<95
LABEL classFloat = (156mx)<<sx|(155mY)<<3Y|(156mZ)<<sZI(15&m3)<<sJI(156m4)<(s4|(15£m5)<<55
LABEL classFunction = (16&mX)<<le(166mY)<<sYl(165mZ)<<sZ|(16£m3)<<s3l(16&m4)<<s4](166m5)<<35
;] Objects

LABEL objectHeader = 0

LABEL objectID = 1

;Object header bits:

LABEL hdrLengthN = 0 :Length field offset.

LABEL hdrLengthL = 10 ;Length field length.

LABEL hdrLengthM = (l<<hdrLengthL)-1; ;Length fleld mask.

LABEL hdrClassN = 10 ;Class field offset.

LABEL hdrClassL = 16 :Class field length.

LABEL hdrClassM = (l<<hdrClassL)-1; ;Class field mask.

LABEL hdrFastN = 26 ;Fast context.

LABEL hdrFast = 1l<<hdrFastN

LABEL hdrDeletedN = 27 ;Free object.

LABEL hdrDeleted = l<<hdrDeletedN

LABEL hdrCopyableN = 28 :Immutable copyable object.

LABEL hdrCopyable = l<<hdrCopyableN

LABEL hdrPurgeableR = 29 ;Purgeable object.

LABEL hdrPurgeable = l1<<hdrPurgeableN

LABEL hdrLockedN = 30 :Locked object.

LABEL hdrLocked = l<<hdrLockedN

LABEL hdrMarkedN = 31 ;Purgeable object marked by sweeper.

LABEL hdrMarked = l1<<hdrMarkedN

;Class objects:

LABEL oClassWord = 2 ;Header word for objects of this class.

LABEL oClassNAllSupers = 3 :Count of all superclasses for this class.

LABEL oClassAllSupers = 4 ;List of all superclasses for this class.
:Selectors:

LABEL oSelNMethods = 2 :Number of methods defined for this selector.
LABEL oSelMethods = 3 :List of class/method pairs for this selector.
:Functions:

LABEL oFunctionNArgs = 2 ;Number of arguments or NIL.

LABEL oFunctionCode = 3 ;Code of function.

:Closures:

LABEL oClosureNArgs = 2 ;Number of arguments or NIL.

LABEL oClosureCode = 3 :Faulting instruction.

LABEL oClosureFunct = 4 ;Function to be called.

LABEL oClosureDisplay = 5 ;Additional display arguments.

:Distobjs:

LABEL oDistobijGroup = 2 ;DID of a distributed object.

LABEL oDistobjIndex = 3 ;Constituent number of a constituent.

LABEL oDistobjLogicalLimit = 4 ;Logical number of constituents in a distributed object.
it +
;1 Contexts |
s+ +
LABEL contextHeader = 0

LABEL

contextID = 1

;Context message and locals are in locations 2 through 15.

LABEL
LABEL
LABEL
LABEL
LABEL
LABEL
LABEL
LABEL
LABEL

LABEL
:More

contextR) = 16

contextRl = 17

contextR2 = 18

contextR3 = 19

contextIDO = 20

contextID2 = 21

contextiB3 = 22

contextIP = 23

contextNext = 24 :Next context in a chain.
;Also used to store NIL or next context number when waiting
:for an object, or zero when waiting for a cfuture.

contextSize = 25§ ;Size of a fast context.

locals may follow here.

;| Messages t

:Apply message:

LABEL
LABEL
LABEL

applyHeader = 0
applyFunct = 1
applyReceiver = 2

;Reply message:

LABEL
LABEL
LABEL
LABEL

replyHeader = 0
replyID = 1
replySlot = 2
replyValue = 3

187

Concurrent Smalltalk on the Message-Driven Processor

:RestartContext message:
LABEL restartHeader = 0
LABEL restartID = 1

:NewObject message:

LABEL newObjHeader = 0
LABEL newObjClass = 1
LABEL newObjReplyID = 2
LABEL newObjReplySlot = 3

:Dispose message:
LABEL disposeHeader = 0
LABEL disposeID = 1

:DisposeBRAT message:

LABEL disposeBRATHeader = 0

LABEL disposeBRATID = 1

:LookupMethod message:

LABEL LLockupMethod = ID: {1<<30]{0&mX)<<sX|{0&mY)<<sY|{D&mZ)<<sZ| (06mS)<<s5)
REF REV LookupMethod = LLookupMethod

LABEL lookMethSelector = 2
LABEL lookMethClass = 3
LABEL lookMethReplyID = 4

:MethodReply message:

LABEL methodReplyHeader = 0

LABEL methodReplyID = 1
LABEL methodReplyvalue = 2

;RequestObject message:
LABEL reqObjHeader = 0
LABEL reqObjID = 1

LABEL reqObjReplyNode = 2

;UpdateHome message:
LABEL updtHomeHeader = 0
LABEL updtHomelID = 1
LABEL updtHomeNocde = 2

:Unlock message:
LABEL unlockReader = 0
LABEL unlockID = 1

LABEL msgAcknowledgeObject = l<<offsetN

Globals

LABEL ADR TempDiv_Count = 4
LABEL ADR LimitOverride = 5
LABEL ADR FastContextQueue = 6

LABEL ADR TempCH RO = 7
LABEL ADR FirstFree = 8
LABEL ADR LastFree = 9
LABEL ADR BRATFree = 10

LABEL ADR LastObjectID =~ 11
LABEL ADR NextDistobjID = 12

LABEL ADR SerialNode = 13

LABEL ADR NodeMask = 15
LABEL ADR Heapstart = 16
LABEL ADR RandomSeed = 17

;Divide temporary.

:NIL or IP to which a limit fault should jump (one

:Quene of fast contexts.
:CompactHeap temporary.

;Pointer to first free heap word.

;Pointer to last free heap word plus one.
;Pointer to free BRAT links.

;ID of last object to be allocated.

;ID of next distributed object to be allocated.

;This node's serial number.

:The nodeMask constant.

;Pointer to the beginning of the relocatable heap.

:Random number seed.

LABEL
LABEL
LABEL
LABEL
LABEL
LABEL
LABEL
LABEL
LABEL
LABEL
LABEL
LABEL
LABEL
LABEL
LABEL
LABEL
LABEL
LABEL
LABEL
LABEL
LABEL
LABEL
LABEL
LABEL
LABEL
LABEL
LABEL
LABEL

ADR
ADR
ADR
ADR
ADR
ADR
ADR
ADR
ADR
ADR
ADR
ADR
ADR
ADR
ADR
ADR
ADR
ADR
ADR
ADR
ADR
ADR
ADR
ADR
ADR
ADR
ADR
ADR

TempXLATE_RO = 18
TempXLATE_R1 = 19
TempXLATE_R2 = 20
TempXLATE_FIP = 21
TempXLATE_FIR = 22
TempXLATE_Temp = 23
TempDO_FIP = 24
TempNC_FIP = 25
TempNC_ID2 = 26
TempNC_R2 = 27
TempNC_R3 = 28
TempCH_FIP = 29
TempCH_R2 = 30

TempCH R3 = 31
TempCH_A3 = 32
TempCH_ID3 = 33
TempCH_Lock = 34
TempCH_Src = 35
TempANO_FIP = 36
TempEB_Key = 37
TempLM_FIP = 38
TempINITM_Context = 39
TempTOf_FIP = 40
TempDiv_R2 = TempTOf_FIP
TempDiv_R3 = 41
TempDiv_80000000 = 42
TempNC1l_FIP =~ TempDiv_R2
TempDealloc FIP = 43

:XLATE fault handler temporaries.

;DisposeObject temporary.
:NewContext temporaries.

:CompactHeap temporaries.

:AllocNewObject temporary.
:EnterBinding temporary.
:LookupMethod temporaries.
;InitializeMDP temporary.
;ClassOf temporary.
;Divide temporaries.

:NewClosure temporary.

:DeallocateObject temporary.

188

time only).

Appendix F

Cosmos Listing

{ Fault Numbers

B

LABEL VECTOR suspend = $00

LABEL VECTOR blockMove = $01

LABEL VECTOR blockSend = $02

LABEL VECTOR compactHeap = $03
LABEL VECTOR allocObject = $04
LABEL VECTOR enterBinding = $05
LABEL VECTOR lookupBinding = $06
LABEL VECTOR deleteBinding = $07
LABEL VECTOR purgeBinding = $08
LABEL VECTOR newLocalObject = $09
LABEL VECTOR allocNextObject = $0A
LABEL VECTOR allocNewObject = $0B
LABEL VECTOR newContext = $0C
LABEL VECTOR disposeContext = $0D
LABEL VECTOR disposeObject = SOE
LABEL VECTOR deallocateObject = $0F
LABEL VECTOR newObject = §10

LABEL VECTOR classCf = §11

LABEL VECTOR typeOf = $12

LABEL VECTOR objectNode - §$13

LABEL VECTOR preferredConstituent = $14

LABEL VECTOR co = $15

LABEL VECTOR lockupMethod = $16
LABEL VECTOR lookupMethodU = §17
LABEL VECTOR divide =~ $18

LABEL VECTOR newClosure = $19
LABEL VECTOR callClosure = $1A

XLATE Fault Codes

+
!

- +

LABEL objectXLATE = 0
LABEL internalXLATE = 1
LABEL loCalXLATE = 2
LABEL restoreXLATE = 3

:Find and bring the object here.
:Same as localXLATE but also works for classes and selectors.

Cosmos.i

;Return the object address, lts node number, or NIL if it is a constant.

;Restore an address register from a saved ID value.

| Halt Codes

LABEL haltFault0 = 0
LABEL haltFaultl = 1
LABEL haltFuture = 2
LABEL haltOverflow =
LABEL haltType = 4
LABEL haltUser = 5
LABEL haltRange ~ ©
LABEL haltCall = 7
LABEL haltInvalidAl = 8
LABEL haltReply =~ 9

LABEL haltUninitvar = 13
LABEL haltTypeOf = 14

LABEL haltXLATE = 15

LABEL haltBRATType = 18
LABEL haltBRATMissing = 17
LABEL haltBRATDelete = 18
LABEL haltClassType = 19
LABEL haltInternalType = 20
LABEL haltBRATFull = 21
LABEL haltMemFull = 22
LABEL haltApply = 23

LABEL haltHeap = 24

LABEL haltLimit = 25

LABEL haltDiv0 = 26

- +

;General priority 0 fault.

:General priority 1 fault.

;Futures are not implemented yet.

:Bignums are not implemented yet.

;Overriding built-in selectors is not implemented yet.
;Halt by user program.

:Range exceeded in a primitive operation.

:Undefined system call.

;Al invalid.

;Reply to a bad slot.

:An uninitialized variable was referenced.
;Nonexistent or incorrectly tagged object passed to typeOf.
:Nonexistent or incorrectly tagged object is XLATEd.
;An object's BRAT entry is missing or mistyped.

:An object's BRAT entry is missing.

;Attempt to delete a missing BRAT entry.

:Incorrectly tagged word used as a class.

:A non-CST-tagged word used as an object.

:The BRAT is full.

;Memory is full.

;Attempt to apply an incorrectly tagged word.

;Heap is in an inconsistent state during a compaction.
;An object's limit is exceeded.

:Division by zero.

189

Concurrent Smalltalk on the Message-Driven Processor

Cosmos.m

MDP Operating System
version 2.3

written by
Waldemar Horwat

Master's thesls under Prof. William Dally

March 28, 1989
May 1991

Send problems and comments to
waldemaréhx.lcs.mit.edu.

Copyright 1989, 1990, 1991 Waldemar Horwat

INCLUDE “Cosmos.i*

;Each routine and section of code has an attribute called criticality. A criticality is
:a number between 0 and 7 with the following meanings:

All operations allowed. Caller's registers not preserved.

Caller's registers preserved. May suspend, so caller's globals are not preserved.
No suspending faults, no modification of context state.

No suspending faults, no modification of context state, no object migration.

No message sends, no object migration.

No heap compaction, no message sends.

No faults, no heap compaction, no message sends.

No priority 1 interrupts, no faults, no heap compaction, no message sends.

NOUVBWN O

A routine‘'s criticality is no greater than the criticality of any of its components, subroutines,
or fault handlers. The criticality of a fault handler can be no greater than 5.

Each fault handler‘'s code starts at criticality 6 until the state in the fault registers is saved.
Dereferencing an address register (other than A0 in absolute mode) has criticality at most 5 unless
t

A

F

he code has criticality 5 and the address register is known to be valid.
routine that uses a global must have criticality at least 2.

aults that save registers should start in unchecked mode because a register might contain a CFUTure.

@0..NNodes-1

MODULE

ENTRY ALL

ORG $400 :Reset IPB location.
be InitializeMDP-(*+2) ;Go initialize!

BR RO

ORG BRATEnd

Osstart:

190

Appendix F Cosmos Listing Cosmos.m

cHERHERRERTR R R ER B RS
21 +H
;4% Fault Handlers #¢4
1 i
CRRRRRRENERNRNRIERRRRER

i+ +
i) Crash on a general priority 0 or 1 or undefined system call fault. |
Crash(: HALT haltFault0
Crashl: HALT haltFaultl
CrashCall: HALT haltCall
fltCrash0 = IP:abs|faultjunchecked|Crash0<<cffsetN
fltCrashl = IP:absifaultlunchecked|Crashl<<offsetN
fltCrashCall =~ IP:abs|fault|unchecked|CrashCall<<offsetN
i+ +
:| Crash on a general future or type fault. |
ERs +
CrashFuture: HALT haltFuture
CrashType: HALT haltType
fltcrashFuture = IP:abs|faultlunchecked|CrashFuture<<offsetN
fltCrashType = IP:abs|fault|unchecked{CrashType<<offsetN
Handle the early or send fault by re-trying the operatlion. |
- - +
21
:icriticality S.
5l
RetryHandler: MOVE RQ,FOPOQ :Save RO. Criticality 6.
MOVE FIP,RO ;Back up FIP by one instruction.
ROT RO, -phaseN, R0
SUB RO, 1,R0
ROT RO, phaseN, RO
MOVE RO,FIP
MOVE For0, RO ;Restore RO.
MOVE FipP, 1P
fltEarly = IP:abs|faultjunchecked|RetryHandler<<offsetN
fitSend = IP:abs|faultiunchecked|RetryHandler<<offsetN
i+ -—— +
;| Handle a limit fault. Halt unless LimitOverride was set, in which case clear it and |
;1 jump to the override routine. RO and Rl are altered when LimitOverride is used. !
i+ +
s
slCriticality 5.
H|
LimitHandler: MOVE [LimitOverride, A0],RO :Criticality 6.
BNIL RO, “Limit_Halt ;Halt unless LimitOverride was set.
MOVE NIL,Rl :Clear LimitOverride.
MOVE R1, [LimitOverride, AO]
MOVE RO, IP :Go to the override routine.
Limit Halt: HALT haltLimit
fltLimit = IP:abs|faultiunchecked|LimitHandler<<offsetN
st +
:| Handle a CFUTure fault. |
B T e e DT +
st
sjcriticality 1.
il
A e et o e — -+
;1 Save the current state in the context, suspend, and allocate a new fast context for |
;| the next message. Various entry points are provided depending on how much save has |
;| to be saved. These routines do not return. |
; - +
|
;|Entry: SaveStateID023 (IDG, ID2, ID3, and the message, if any, have to be saved.)
;|Entry: SaveStateID0O3 {(IDO, ID3, and the message, if any, have to be saved.)
:|Entry: SaveState (No registers have to be saved.)
s
: |Unchecked absolute non-fault mode required.
H
CFUT_Halt: HALT haltUninitvar ;An uninitialized variable was referenced.
CFUTHandler: MOVE RO, [contextRO,Al]) :Save RO and Rl. Criticality 6.
MOVE R1, [contextRl,Al]
MOVE R2, [contextR2,Al)
MOVE R3, ([contextR3,Al]
MOVE FOPO,R3
IF DEBUG
GT R3,0,R0
BF RO, *CFUT_Halt ;Halt if an uninitialized variable was referenced.
END
MOVE R3, [contextNext,Al]
MOVE FIP,R1 :Back up F1P by one instruction.
MOVE R1,F sCriticality 2.
ROT R1, -phaseN,Rl
suB R1,1,R1
ROT R1,phaseN, Rl
MOVE R1, [context1P,Al] ;Save 1P, R2, R3, IDO, ID2, and ID3 in the context.
SaveStateID023: MOVE iD2,R0O :Save 1DO0, 1ID2, and ID3 in the current context.

MOVE RO, {contextID2,Al}

191

Concurrent Smalltalk on the Message-Driven Processor

SaveStateID03: MOVE IDO,RO :Save ID0 and ID3 in the current context.
MOVE RO, [contextIDO,Al]
MOVE Q, R0 :Check whether the message should be copied into the context.
BF RO, “SaveState_Msg :Don't copy if A3 didn't point into the queue.
MOVE 16,R0 :Copy the message into the context.
SUB RO, {0,A3],RO ;Jump into the appropriate place in the copy code.
AND RO, lengthM, RO
BR RO
: MOVE [15,A3),R0
MOVE RO, {15,A1]
: MOVE [14,A3],R0
MOVE RO, {14,A1)
H MOVE (13,A3),R0
MOVE RO, {13,A1}
: MOVE {12,A3],R0O
MOVE RO, [12,Al}
H MOVE {11,A3],R0
MOVE RO, [11,Al]
H MOVE [10,A3],R0
MOVE RO, [10,Al]
H MOVE [9,A3],R0
MOVE RO, (9,Al]
H MOVE [8,A3],R0
MOVE RO, (8,A1]
H MOVE [(7,A3],R0
MOVE RO, {7,Al]
H MOVE (6,A3},R0
MOVE RO, (6,A1)
H MOVE {5,A3},R0
MOVE RO, [5,Al])
H MOVE {4,A3),R0
MOVE RO, [4,Al])
: MOVE (3,A3],R0
MOVE RO, [3,A1)
H MOVE [(2,A3),R0
MOVE RO, [2,A1]
s MOVE ID1,RO
MOVE RO, ID3
SaveState_Msg: MOVE ID3,RO
MOVE RO, fcontextiD3,Al]
Savestate: MOVE [FastContextQueue,A0},R0 ;Allocate a new fast context.
BNIL RO, “AllocFastContext :There are no more.
XLATE RO, objectXLATE, Al
MOVE [contextNext,Al), RO ;Unlink it.
MOVE RO, [FastContextQueue, AD)
SUSPEND sCriticality 1.
i+ ———— +
;1 Allocate and initialize a new fast context to be used by the next message. This 1
;| routine does not return. 1
H
: |Entry: AllocFastContext
H
; lunchecked absolute non-~fault mode required.
:
AllocFastContext: DC OBJ:hdrLocked|contextSize
CALL allocNextObject ;Create the context object.
MOVE ipz,R1 :Point Al and IDl to the new context.
XLATE R1,objectXLATE, Al
SUSPEND
;| Suspend; if a slow context was used, deallocate it and replace it with a fast one. |
:| This routine does not return. |
|
:1Call: suspend
s
JHIn: AID1 Context.
i
:iCriticality 0.
31
Suspend: MOVE [contextHeader, Al}, RO ;Criticality 3.
ROT RO, -hdrFastN,RO ;Check whether this was a fast context.
BT RO, “Suspend Fast :Yes.
MOVE ID1,R0O :No. Dispose this context and allocate a new one.
CALL disposeObject
BR ~SaveState
Suspend_Fast: SUSPEND
fl1tCFUT = IP:abs|faultiunchecked|CFUTHandler<<offsetN
fltSuspend = IP:abs|unchecked|Suspend<<offsetN
B etttk bttt dedetededededad et btb bbbt bl +
;| Handle an INVADR fault. If the object is on this node, store its address in the |
;| address register; if it is not on this node, bring it here. |
D R T it e ittt okl - -+t
|
slcriticality 1.
i
INVADRHandler: MOVE R1, [TempXLATE_R1,A0] :Save Rl. Criticality 6.
MOVE FIR,R1
AND R1,3,R1 ;FIR contains the correct address reglster number,
LSH R1,2,R1 seven when FIR=NIL.
BNZ R1,R1 ;6o to one of four handlers.
MOVE IDG,R1
PROBE R1,R1 :Check the xlate cache first.
BNIL R1, “INVADR_MissQ ;Jump into the objectXLATE handler if missed.

MOVE R1,AQ
MOVE FIR,R1
BNIL R1, “INVADR _Rstrt2 ;:If the FIR was NIL, don't back up the FIP.

192

Appendix F Cosmos Listing Cosmos.m

MOVE FIP,R1

BR ~INVADR_Restart
H HALT haltInvalidal
INVADR_Miss: MOVE RO, [TempXLATE_RC,A0Q] ;Save RO, R2, and FIP.

MOVE FIP,RO
MOVE RO, [TempXLATE_FIP,A0]
MOVE R2, [TempXLATE_R2,A0]

MOVE RO,F ;Criticality 5.

BR ~XLATE_TaoObject ;Jump into the objectXLATE handler if missed.
H MOVE IDZ,R1

PROBE R1,R1 ;Check the xlate cache first.

BNIL R1, “INVADR_Miss2 :Jump into the objectXLATE handler if missed.

MOVE R1,A2
MOVE FIP,R1

BR “INVADR Restart
INVADR_Miss2: MOVE 1p2,R1 ~
BR “INVADR_Miss
: MOVE 1D3,R1
PROBE R1,R1 ;Check the xlate cache first.
BNIL R1, “INVADR_Miss3 ;Jump into the objectXLATE handler if missed.

MOVE R1,A3
MOVE FIP,R1

INVADR_Restart: ROT R1l,~-phaseN,R1 :Restart the instructioen.
SUB R1,1,R1
ROT R1l,phaseN,R1
MOVE R1,FIP

INVADR_Rstrt2: MOVE {TempXLATE_R1,A0],R1

MOVE FIP,IP

INVADR_MissQ: MOVE FIR,R1
BNNIL R1, “INVADR_MO_2

MOVE FIP,R1 ;Advance the FIP if the FIR was NIL.
ROT Rl, ~phaseN, Rl
ADD R1,1,R1
ROT R1, phaseN,R1
MOVE R1,FIP
INVADR_MO_2: MOVE D0, R1
BR ‘INVADR_MLSS
INVADR_MisBS: MOVE iD3,R1
BR ‘INVADR_Miss

Handle an XLATE fault.
Two bits of the instruction are used to determine what to do. The possible actions
a

|

]

| are:

| objectXLATE: Return an ADDR containing the object's address. If the object is not
| on this node, bring it here. Rs must be an ID, a DID, a class, or a selector.
| localXLATE: If Rs represents an object on this node, return its address; if Rs is
| a constant, return NIL; otherwise, return the number of a node likely to
| contain the object. This mode can be used only when Rd is a data register. Rs
i must be an ID, DID, a class, a selector, or a constant.

| internalXLATE: Same as localXLATE except that treats futures as if they were
1

|

1

I

|

|

|

|

|

i

i

t

objects instead of constants.
restoreXLATE: Invalidate Rd by storing an invalid address there. Of course, if
the XLATE table hits, the value associated with Rs ls stored in Rd instead.
XLATE should be made to fault on FUTures or CFUTures: this can be accomplished by
calling XLATE in checked mode

e ——— %

The criticalities are as follows:
objectXLATE: Criticality 1 (criticality 5 if the object is known to reside on this node).
internalXLATE: Criticality §.
localXLATE: Criticality §.
restoreXLATE: Criticality 5.

XLATEHandler: MOVE RO, [TempXLATE_RO,A0) ;Save RO, R1, R2, FIP, and FIR. Criticality 6.
MOVE R1, [TempXLATE_R1,A0]
MOVE R2, [TempXLATE R2,A0]
MOVE F1P,RO -
MOVE RO, [TempXLATE_FIP,A0)
MOVE FIR,R2
MOVE FOP1,R1

MOVE RO, F ;Criticality 5.
ROT R2, -9, R0
AND R2,7,R2 :Save the destination addressing mode in R2.
AND RO, 3,R0O
BR RO
: BR ~XLATE_ToObject :Get the object.
H BR “XLATE_Internal ;Go to the internal code.
H BR ~XLATE_Local :Go to the local code.
: ole} ADDR:rel|invalid ;RestoreXLATE: Invalidate the address register.
XLATE Result: ROT R2,1,R2 :Store RO in the destination of the XLATE. Rl contains the
- BR R2 :value of Rs and is stored in the ID register. R2 contains the
H MOVE [TempXLATE_R2, A0}, R2 ;addressing mode from the XLATE instruction.
MOVE [TempXLATE_R1,A0],R1
MOVE {TempXLATE FIP,6AQ}, IP
1 MOVE RO, R1 -
MOVE [TempXLATE_R2,A0],R2
MOVE [TempXLATE_RO,A0], RO
MOVE [TempXLATE _FIP,AQ],IP
: MOVE RO, R2 -
MOVE [TempXLATE_R1,A0),R1
MOVE [TempXLATE_RO,AQ],RO
MOVE {TempXLATE_F1P, A0}, IP
: MOVE RO,R3
BR “XLATE R Done
pC 0 -
: MOVE RO, AQ
BR ~“XLATE R _Done
DC 0 T
: MOVE RO, Al
BR ~XLATE_R_Done
DC [o
: MOVE RO, A2
BR “XLATE R Done
DC 0 T

193

Concurrent Smalltalk on the Message-Driven Processor

H MOVE RO, A3
MOVE R1,1ID3

XLATE_R_Done: MOVE [TempXLATE_R2,A0),R2
MOVE {TempXLATE_R1,AQ],R1
MOVE {TempXLATE_RO,A0], RO
MOVE [TempXLATE_FIP,AC], IP
XLATE_L_TAGO: AND RO, subtagM, R0 :1f the value is a class, pretend it is an ID.
SUB RO, sSubCLASS, RO
BZ RO, “XLATE_I_SC
SUB RO, sSUbSEL~subCLASS, RO
B2 RO, “XLATE I_SC
BR “XLATE_L_NIL
XLATE_ToObjeCt: CHECK R1,ID,RO
BR *XLATE~Object
XLATE_Internal: CHECK R1,FUT,RO ;XLATE_Internal is the same as XLATE_Local for values which
BT RO, "XLATE_I_sSC saren't futures.
XLATE_Local: RTAG R1,R0O ;Dispatch on the tag of the object.
BR RO
: ROT R1, -subtagN, RO s TAGO
BR ~XLATE_L_TAGO
XLATE_L_NIL: MOVE NIL,RO SINT
BR “XLATE_Result
H MOVE NIL,RO :BOOL
BR “XLATE_Result
3 HALT haltXLATE : ADDR
H HALT haltXLATE s IP
: HALT haltXLATE :MSG / OBJ
s HALT haltXLATE :CFUT
H HALT haltXLATE :FUT.
XLATE_I_SC: MOVE R2, [TempXLATE_FIR,A0] ;ID. Save the FIR.
BR ~XLATE_L_ID
H MOVE R2, [TempXLATE_FIR,A0] :DID. Save the FIR.
BR ~XLATE_L_DID
: MOVE NIL,RO : TAGA
BR “XLATE_Result
H MOVE NIL,RO : FLOAT
BR “XLATE_Result
H HALT haltXLATE :INSTO
H HALT haltXLATE : INST1
H HALT haltXLATE : INST2
XLATE_Halt: HALT haltXLATE : INST3
XLATE_L_DID: MOVE R1,R2 :5ave the DID.
CALL preferredConstituent ;Get an 1D from the DID.
PROBE R1,RO :;Check if the constituent ID is in the cache.
BNIL RO, “XLATE_L_ID
ENTER R2,R0O ;1f so, enter and return it.
BR ~XLATE_L_2
XLATE_L_ID: CALL lookupBinding :Look for a binding of the object on
BNIL RO, “XLATE_L_Miss :this node.
CHECK RO, INT,R2 ;If an integer was found, it is the object's current
BT R2,“XLATE_L_2 :node number.
CHECK RO, ADDR, RZ
BF R2, “XLATE_L_Cxt
MOVE RO, [TempXLATE Temp,Al] :Save RO.
ROT RO, -baseN, R2
AND R2,baseM, R2
MOVE [R2,A0},RO :Fetch the object's header and clear the marked flag in it.
OR RO, hdrMarked, RO
XOR RO, hdrMarked, RO
MOVE RO, [R2,A0)
MOVE [TempXLATE_Temp, A0},R0 :Restore RO.
ENTER R1,RO ;Found such a binding. Enter it in the XLATE table.
BR ~XLATE_L_2
XLATE_L Miss: MOVE (NodeMask,A0],RO ;Did not find a binding. Extract the node number from
AND RO,R1,RO :the ID and go return it.
MOVE NNR, R2 :If the node number is this node, halt because this is
EQUAL RO,R2,R2 ;supposed to be the home node, yet it doesn't know where the
BT R2, “XLATE_Halt ;object is.
XLATE_L_2: MOVE {TempXLATE_FIR,A0],R2 :Go return the result in RO.
BR ~XLATE_Result
XLATE_L_Cxt: CHECK RO, ID,R2 ;The ID is bound to a context. Dereference the centext and
BF R2, "XLATE_Halt ;read its contextNext field.
MOVE Rl,[TemprATE_Temp,AO] ;Save the object ID.

MOVE RO, R1
CALL lookupBinding

MOVE [TemprATE_Temp,AO],Rl ;Restore the object ID.
CHECK RO, ADDR, R2
BF R2, “XLATE_Halt
ROT RO, -baseN, R2
AND R2,baseM,R2
MOVE contextNext, RO
ADD R2,R0,R2
MOVE [R2,A0},RO
BNIL RO, “XLATE_L Miss ;Miss if it was NIL.
CHECK RO, INT,R2 ;If an integer was found, it is the object's current
BF R2, “XLATE_L_Cxt ;node number; otherwise there is another context linked.
BR “XLATE_L 2
XLATE_O_Access: MOVE RO,[TemeLATE_Temp,AO} :Save RO.
ROT RO, -baseN,R2
AND R2,baseM,R2
MOVE {R2,A0],R0 ;Fetch the object's header and clear the marked flag in it.
OR RO, hdrMarked, RO
XOR RO, hdrMarked, RO
MOVE RO, {R2,AD]
MOVE [TempXLATE_Temp,A0]),R0 ;Restore RO.
ENTER R1,RO ;Found a binding. Enter it in the XLATE table and
MOVE [TempXLATE R2,A(],R2 :restart the XLATE (or address-faulted) instruction.
XLATE_O_Rebind: DC phase -
MOVE [{TempXLATE_FIP,A0],R1
suB R1,R0,R1
MOVE Rl, [TempXLATE_FIP,A0]
MOVE [TempXLATE_R17A0],R1
MOVE [TempXLATE RO, AQ],R0O

194

Appendix F

MOVE [TempXLATE _FI1P,A0], IP
IF DEBUG
XLATE_O_2: CHECK R1, TAGO,R0O
BF RO, “XLATE_Halt_2
ROT R1,-subtagN,RO
AND RO, subtagM,R0
suB RO, SUbCLASS, RO
Bz RO, “XLATE _O_ID
suB RO, SUbSEL-subCLASS, RO
BZ RO, “XLATE_O_ID
END
XLATE_Halt 2: HALT haltXLATE
XLATE_Object: BT RO, “XLATE_O_ID
CHECK R1,DID,RO
BF RO, “XLATE_O_2
MOVE R1,R2
CALL preferredConstituent
PROBE R1,R0
BNIL RO, “XLATE_O_ID
ENTER R2,R0
MOVE {TempXLATE_R2,A0],R2
BR ~XLATE_O_Rebind
IF !DEBUG
XLATE_O_2:
END
XLATE_O_ID: CALL lookupBinding
BNIL RO, “XLATE_O_Miss
MOVE R2, [TempXLATE_Temp, A0}
CHECK RO, ADDR, R2
BT R2, “XLATE_O_Access
CHECK RO, INT,R2
BT R2, “XLATE_O_Point
MOVE [TempXLATE_Temp, A0}, R2
BR “XLATE_O_Fetch
XLATE_O-POint: MOVE [TempXLATE_Temp, A0}, R2
SENDOQ RO
DC MSG:msgRequestObject+3
SENDO RO
MOVE NNR, RO
SEND2EQ R1,R0O
BR ~XLATE_O_Fetch
XLATE_O_Miss: DC MSG:msgRegquestObject+3
AND R1l, [NodeMask, AQ}, R2
SEND20 R2,RO
MOVE NNR, RO
SEND2EO R1,R0
EQUAL RO,R2,R2
BT R2, "XLATE_Halt_2
MOVE NIL,R2
XLATE_O_Fetch: MOVE {TempXLATE_RO,AQ], RO
MOVE RO, {contextRO,Al]
MOVE {TempXLATE_R1,A0],RO
MOVE RO, {contextR1,Al]
MOVE {TempXLATE R2,AQ0],R0O
MOVE RO, {contextR2,Al}
MOVE {TempXLATE_FIP,A0}, R0
ROT RO, -phaseN, RO
SUB RO, 1,R0
ROT RO, phaseN, RO
MCOVE RO, [contextIP,Al)
MOVE R3, [contextR3,Al)
MOVE 1D2,R0
MOVE RO, [contextID2,Al)
MOVE ID1,RO
BNNIL R2, “XLATE_O_Append
MOVE R2, [contextNext, Al]
CALL enterBinding
XLATE_Suspend: DC SaveStatelID03-(*+2)
BR RO
XLATE_O_Append: MOVE [(R2,A0] ,R3
MOVE R3, {contextNext,Al}
MOVE RO, (R2,A0}
BR “XLATE_Suspend

Cosmos Listing

:Classes and selectors are also objects and are
streated as if they were ID's.

:Dispatch on the tag of the object.

;Save the DID.
:Get an ID from the DID.
;Check if the constituent ID is in the cache.

;1f so, enter and return it.

;Look for a binding of the object.

;Save the binding's address.
;1f the object's address was found, return it.

:1f the object's current node was found, send a requestObject
;message there.

;Otherwise someone is already waiting for the object.

;Append this context to the walting queue.

;Send a message requesting the object to the object's
;current location.

;Send a message requesting the object to the object's
:home.

:However, if this node is supposed to be the object's home,
;halt because the object doesn't appear to exist.

:R2 being NIL means no one else is waiting for the object.
:Save state in the context.

:Criticality 3.
;Back up IP to point to the XLATE instruction.
:Save IP, RO-R3, and ID3 in the context.

D0, IDZ,

:Make a binding indicating that the context in ID1 is
;jwaiting for the object in Rl.
:Save the rest of the state and suspend.

:Append the binding to the linked list headed by R2.

fl1tINVADR = IP:abs|fault|uncheckediINVADRHandler<<offsetN
f1tXLATE = IP:abs{fault|unchecked|XLATEHandler<<offsetN

195

Cosmos.m

Concurrent Smalltalk on the Message-Driven Processor

SHEREREREERRREER RO R
T hé +H
;44 Heap Manager #¢4

H

ihe
CHERRERERRRRRRIRRRENY

as a limit fault is reached.
not have to correspond to the values in the ID registers.

The objects are copied from the bottom up, so, if they overlap, the destination must
start before the source.
RO can be a number smaller than 32 indicating the offset of the first word in each
object which should be copied: words with indices smaller than RO are not copied.

Copy the object pointed by A3 into the object pointed by A2. The copy stops as soon
A2 and A3 are guaranteed not to be XLATEd, so they do

——————— ¢

In: RO
A2
A3

Criticality §.

|
|
|
|
|
1
1
t
t
|
|
|
|
|
|
|
|Alters RO/R1.
|

BlockMove:

BM_MoveRest:

Call: blockMove

Offset of first word to copy.
Destination object pointer.
Source object pointer.

MOVE
MOVE
MOVE

MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MCVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
ADD
MOVE
MOVE
ADD
MOVE
MOVE
ADD
MOVE
MOVE
BR

FIP,R1

R1l, [LimitOverride, A0)
R1,F

RO
[0,A3),RO
RO, [0,A2]
[1,A3],R0
RO, {1,A2)
{2,A3],R0
RO, {2,A2]
(3,A3},R0
RO, [3,A2)
{4,A3),R0
RO, [4,A2)
{5,A3],R0
RO, {5,A2)
(6,A3],R0
RO, [6,A2]
[7,A3),R0
RO, {7,A2)
(8,A3],RO
RO, [8,A2)
(2,A3),R0
RO, [9,A2]
{10,A3),R0
RO, [10,A2]}
[11,A3],R0
RO, (11,A2}
[12,A3],R0
RO, (12, A2)
[13,A3],R0
RO, {13,A2)
(14,A3),R0
RO, [14,A2)]
(15,A3],R0
RO, [15,A2]
{16,A3],R0
RO, [16,A2]
{17,A31,R0
RO, [17,A2]}
[18,A3],R0
RO, [18,A2]
[19,A3],R0
RO, (19,A2)
[20,A3},R0
RO, [20,A2)
{21,A3],R0
RO, [21,A2)
[22,A3],R0
RO, {22,A2]
[23,A3],R0
RO, [23,A2}
(24,A3)},R0
RO, [24,A2)
(25,A3],R0O
RO, [25,A2)
126,A3),R0
RO, [26,A2)
127,A3),R0
RO, {27,A2]
[28,A3],R0
RO, {28, A2]
[(29,A3],R0
RO, [29,A2]
{30,A3],R0
RO, (30, A2]
{31,A3],R0
RO, [31,A2)
32,R1
[R1,A3},R0
RO, [R1,A2]
R1,1,R1
[R1,A3],R0
RO, [R1,A2}
R1,1,R1
[R1,A3],RO
RO, {R1,A2]
R1,1,R1
[R1,A3], R0
RO, (R1,A2)
“BM_MoveRest

:Criticality 6.
;Override the Limit fault for the duration of this routine.
;Criticality 5.

;Move the rest of the object.

196

Appendix F Cosmos Listing Cosmos.m

fltBlockMove = IP:abs|fault|unchecked]|BlockMove<<offsetN

Send the object pointed by A2. The send stops as soon as a limit fault is reached.
A2 is guaranteed not to be XLATEd, so it does not have to correspond to the value in
ID2. RO should be one of the following:

0: Words are sent starting from offset 1 in the object.
: wWords are sent starting from offset 3 in the object.
: Words are sent starting from offset 5 in the object.

——————+

Call: blockSend

In: RO Encoded offset of first word to send.
A2 Source object pointer.

Criticality 5.

Alters RO/R1/A2.

BlockSend: MOVE FIP,Rl :;Criticality 6.
MOVE Rl, [LimitOverride, AQ) ;Override the Limit fault for the duration of this routine.
MOVE R1l,F ;Criticality 5.
BR RO
H SENDO [1,A2]
SENDO (2,A2]
H SENDO (3,A2]
SENDO [4,A2]
: SENDO 15,A2}

SENDO (6,A2}
SENDO (7,A2]

SENDO (8,A2]
SENDO (9, A2])
SENDO [(10,A2]
SENDO (11,A2]
SENDO (12,A2)

SENDO [13,A2]
SENDO [14,A2)
SENDO [15,A2)

SENDO [16,A2]
SENDO (17,a2})
SENDO [18,A2]

SENDO (19,A2)
SENDO {20,A2}
SENDO [21,A2)
SENDO {22,A2)
SENDO {23,A2)
SENDO [24,A2)

SENDO (25,A2]
SENDO (26,A2]
SENDO 127,A2)

SENDO [28,A2)
SENDG {29,A2]
SENDO {30,A2}
SENDO {31,A2)
MOVE 32,R0

BS_SendRest: SENDO [RO, A2} ;Sends more words of the object.
ADD RO, 1,R0O
SEND{Q (RO, A2}
ADD RO,1,R0O
SENDO [RO,A2]
ADD RO, 1,R0
SENDO [RO, A2)
ADD RO,1,R0
BR ~BS_SendRest

fltBlockSend = IP:abs|fault|unchecked|BlockSend<<offsetN

Compact the node's heap, trying to free at least Rl words of memory. Halt if this i
much memory is not available.

;

- +

Call: compactHeap

In: RO Number of words needed.

Criticality 3.

Alters RO/R1/AID2.

CompactHeap: INVAL ;Ccriticality 6. Invalidate all relocatable address registers.
MOVE RO, (TempCH_RO,AD) ;Save FIP, RO, R2, R3, Q, A3, and ID3.
MOVE R2, {TempCH_R2,A0)
MOVE R3, [TempCH R3,A0]
MOVE FIP,RO -
MOVE RO, [TempCH_FIP,AQ)

MOVE RO,F ;Criticality 3.
MOVE Q,RO
BT RO,"CH Q
MOVE 1D3,R0™
CH_Q: MOVE RO, [TempCH_1D3,A0}
MOVE A3,RO
MOVE RO, [TempCH_A3,A0)
MOVE NIL,R3 :R3 will contain NIL for the duration of the xlate flush.
MOVE R3, [TempCH_Lock, Al} :Indicate that this is the first time the heap is compacted.
MOVE R3,Q :Disable queue wraparound.
DC IP:abslunchecked|CH 2<<offsetN
MOVE RO, [LimitOverride,AD) sOverride the Limit fault for the duration of this routine.
MOVE -1,R2
pC ADDR: {XlateStart<<baseN) +XlateEnd-XlateStart
MOVE RO, A2
CH_FlushXlate: ADD R2,2,R2 ;Check every entry in the XLATE table whether it contains

197

Concurrent Smalltalk on the Message-Driven Processor

MOVE [R2,A2],R0 :a relocatable ADDR. If it does, replace it with NIL.
CHECK RO, ADDR, R1
BF R1, “CH_FlushXlate
AND RO, rel,R1
B2 R1l, “CH_FlushXlate
MOVE R3, {R2,A2)
BR “~CH_FlushXlate
CH_2: MOVE {HeapStart,AQ],R2 :R2 is the source heap scanner.
MOVE R2,R3 ;R3 is the destination heap scanner.
BR ~CH_Compact
CH_Compact2: MOVE [R2,A0],R0O ;Get the next object at the source.
ROT R0, ~hdrLockedN, R1 ;Let it live if it is locked.
BT R1,~CH_Live
ROT RO, -hdrDeletedN,R1 :Kill it if it is deleted.
BT R1l, “CH_Die
ROT RO, ~hdrMarkedN, R1 ;Purge it if is is marked.
BF Rl,”CH_MarkLive
ADD R2,1,RI ;Read the object's ID into Rl.
MOVE [R1,A0],R1
CALL deleteBinding :No need to purge the xlate table.
MOVE [R2,A0),R0O
CH_Die: AND RO, hdrLengthM, RO ;Skip the source heap scanner past the removed object.
ADD R2,R0,R2
CH_Compact: GE R2, [FirstFree,A0],RO ;Check whether the entire heap was scanned.
BF RO, “"CH_Compact2
EQUAL R2, [FirstFree,A0],RO ;I1f so, then R2 must match FirstFree exactly.
BF RO, “CH_AlignError
MOVE R3, [FirstFree,A0] ;Update FirstFree.
MOVE {LastFree,A0],R0D
sSUB RO,R3, RO :Check whether there is now enough room to satisfy the allocation
GE RO, [TempCH_RO,AO},RO ;request.
BT RO, “CH_Done ;Leave if so.
MOVE [TempCH_Lock, A0}, RO
MOVE TRUE, R1 ;1f not, compact the heap again unless it was just compacted.

MOVE R1, [TempCH_Lock, A0]
BNIL RO, ~CH_2

HALT haltMemFull ;:Give up if two successive compactions don't free enough space.
CH_Done: MOVE Al,RO :Make sure that Al is valid.
ROT RO, -invalid,RO
BF RO, “CH_A1lValid
MOVE ID1,RO :If not, re-xlate it,.
XLATE RO, objectXLATE, Al
CH_AlValid: MOVE {TempCH_A3,A0],RO :Restore A3, Q, and ID3.
MOVE RO, A3
MOVE [TempCH _ID3,A01,R0
EQ RO, TRUE, R1
BT R1, “CH_DoneQ
MOVE RO, ID3
MOVE {TempCH_R2,A0],R2 ;Restore R2.
BR ~CH_Done2
CH_DoneQ: MOVE RO, Q
MOVE [TempCH_R2,A0]},R2 ;Restore R2.
CH_Done2: MOVE [TempCH_R3,A0),R3 ;Restore R3 and return.
MOVE [TempCH_FIP,AQ],IP
CH_MarkLive: ROT RO, -hdrPurgeableN, R1 ;1f this object is purgeable, mark it so that it will be purged
BF R1,“CH_Live ;on the next scan.
OR RO, hdrMarked, RO
MOVE RO, (RZ,A0Q]
CH_Live: AND RO, hdrLengthM, RO :Store the length of the object in RO.
ROT R3, baseN,Rl ;Point A2 to the destination object.
ADD R1,R0,R1
MOVE R1,A2
ROT R2,baseN,R1 ;Point A3 to the source object.
ADD R1,R0,R1
ADD R2,R0,R2 ;Advance the source and destination scanners.
ADD R3,R0,R3
EQUAL R2,R3,R0 :There is no need to move an object if the source and destination
BT RO, “CH_Compact raddresses are the same.
MOVE R1,A3
MOVE [objectID, A3} ,R1 ;Update the object's binding in the BRAT.
MOVE R2, [TempCH_Src,AQ) ;Save R2.
CALL lookupBindIng
CHECK RO, ADDR, R1 :Make sure that the binding is an ADDR.
BF R1, "CH BRATError
MOVE A2,RO
OR RO, rel,RO

MOVE RO, [R2,A0]
MOVE 0,RO

CALL blockMove :Move the object to its destination locatlon.
MOVE [TempCH_Src,A0],R2 :Restore R2.
BR ~CH_Compact

CH_AlignError: HALT haltHeap
CH_BRATError: HALT haltBRATType
fltcCompactHeap = IP:abs]fault|unchecked|CompactHeap<<offsetN

198

Appendix F

Cosmos Listing

Cosmos.m

are needed.

Fad +
:1 Allocate and initialize a new heap object. RO contains the word to be stored as the |
;| first word of the object. The length is extracted from RQ, and the flags in the |
;1 high bits of RO should be set to benign values. R! contains the ID for the object. |
;1 The cbject is not entered in the XLATE and the BRAT tables. |
:t +
2
:1Call: allocObject
H
s1In: RO First word of object.
Fa] Rl 1D of the object.
3
;l0ut: AID2 ~“Object.
3 RO ADDR pointing to object.
i
slcriticality 3.
Ix
; IAlters RO/R2/R3/AID2.
H
AllocObject: MOVE RO,R3 ;Save RO. Criticality 6.
MOVE R1,ID2 :Store the object’s ID in ID2.
AO_Retry: MOVE [FirstFree,AD],R1 :Advance the heap scanner.
AND R3, hdrLengthM, R2
ADD R1,R2,R2
MOVE [LastFree,AD),RO ;Always leave three words on the heap in case a BRAT entry
SUB RO, 3,R0 ;needs to be allocated for this object.
GT R2,R0,R0O :Check whether the heap overflowed.
BF RO, “AO_1
AND R3, hdrLengthM, RO ;If it did, compact the heap, telling the compactor that
ADD RO, 3,R0O ;at least three plus the length of the object words
MOVE FIP,R2
MOVE R2,F ;Criticality 3.
CALL compactHeap
MOVE TRUE, RO
MOVE RO,F ;Criticality 6.
MOVE R2,FIP
BR ~AQ_Retry :Go try the allocation again.
AO 1: MOVE R2, [FirstFree, A0}
ROT R1l,baseN,R1l ;Create a base/address pair for the object.
AND R3,hdrLengthM, RO
OR R1,R0,RO
OR RO, rel,RO :Mark the object as relocatable.
WTAG RO, ADDR, RO
MOVE RO, A2 ;Store a pointer to the object in A2.
MOVE iD2,R1
MOVE R3, {objectHeader, A2] ;Write the object's header and ID.
MOVE R1, {objectID,A2]
MOVE Fip, 1P

fltAllocObject = IP:abs|fault|uncheckediAllocObject<<offsetN

199

- Concurrent Smalltalk on the Message-Driven Processor

SHAAAEEREEEEINIINIILY
1 (1}
;44 BRAT Manager ##

s (14
HERERAEERRERINEIHR Y

Enter a binding of Rl to RO in the BRAT. The BRAT should not have an existing
binding of Rl. It may also be appropriate to enter the object into the xlate table.

+—_—

Call: enterBinding

sIn: RO Data.
H Rl Key.
slcriticality 3.
:|Alters RO-R3/AID2.
EnterBinding: MOVE RO,R3 :Criticality 6. Save data in R3.
MOVE R1, [TempEB_Key, AO] ;Save the key.
EB_1: ROT R1,-BRATLenLog*4, R2 ;Calculate the hash code for the key.
XOR R1,R2,R2 :The hash code is the XOR of the BRATLenLoq—bit fields of
ROT R2,-BRATLenLog*2, RO ;the key.
XOR R2,R0,R2
ROT R2, -BRATLenLog, RO
XOR R2,R0,R2
MOVE BRATLength-1,R0
AND R2,R0,R2 :R2 contains a hash code between 0 and BRATLength-l.
DC BRATStart
ADD R2,R0,RO ;RO points to the head of the BRAT chain.
MOVE {BRATFree,A0},R2 ;R2 points to a free BRAT link.
BNIL R2,~“EB_BRATFull :Compact the heap if the BRAT is full.
EB 2: MOVE [TempEB_Key,A0],R1
MOVE R1, [R2,A0] ;Store the key in the link.
MOVE [(RO,AD),R1 ;Save the second link in the chain in R1.
MOVE R2, {RO,AD) :Make this link be the first in the chain.
ADD R2,1,R2
MOVE R3, [R2,AQ] :Store the data in the link.
ADD R2,1,R2
MOVE {R2,A0),R0 sPut the next free link in BRATFree.
MOVE RO, [BRATFree, AQ)
MOVE R1, [R2,A0) :Link with the second link in the chain.
MOVE Fip, IP
EB_BRATFull: MOVE (LastFree,A0),R2 :Attempt to allocate three words from the back of the heap.
suB R2,3,R2
GE R2, [FirstFree, A0),R1
BF R1, “EB_HeapFull :Go compact the heap if it was full,
MOVE R2, [LastFree,A0]
ADD R2,2,R2 :Store a NIL in the link word of the new entry and go
MOVE NIL,R1 ;allocate this entry in the BRAT.
MOVE R1, [R2,A0]
SUB R2,2,R2
BR ~EB_2
EB_HeapFull: MOVE FIP,R2 :Save the FIP.
MOVE 3,R0 ;AL least three free words are needed on the heap.
MOVE R2,F ;Criticality 3.
CALL compactHeap
MOVE TRUE, RO
MOVE RO,F :Criticality 6.
MOVE R2,FIP :Restore the FIP.
MOVE {TempEB_Key,AQ],R1 ;Restore the key and go back to the beginning.
BR ~“EB 1

fltEnterBinding = IP:absjfault|unchecked|EnterBinding<<offsetN

Lookup a binding of Rl in the BRAT. Return the binding or NIL if there isn't any. |
| Also return the absolute address of the binding in the BRAT so that it can be

Criticality 5.

Alters RO/R2.

:! modified. |
s+ -t
R
:{Call: lookupBinding
EX|
;1In: R1 Key.
H
;|Out: RO Data or NIL if none.
s R2 Absolute address of data in the BRAT (valid only when RO<>NIL).
i
i
|
|
I

LookupBinding: ROT R1, -BRATLenLog*4,R2 ;Criticality 6.
XOR R1,R2,R2 :Calculate the hash code for R1.
ROT R2, -BRATLenLog*2, R0 :The hash code is the XOR of the four bytes of Rl,
XOR R2,R0,R2 :the same as the XLATE hash code.
ROT R2, -BRATLenlog, RO
XOR R2,R0,R2
MOVE BRATLength-1,R0
AND R2,R0,R2 :R2 contains a hash code between 0 and BRATLength-1.
DC BRATStart-2
ADD R2,R0, RO
LB_Next: ADD RO, 2,R0O
MOVE [RO,AD}, RO ;Follow the linked list of BRAT entries starting with
BNIL RO, “LB_Done ;the one in RO. Leave if RO is NIL.
EQ R1l, [RO,AQ],R2 :Compare the key against R1.
BF R2, “LB_Next ;Check the next entry if it doesn't match.
ADD RO, 1,R2 ;Otherwise return this entry's data.

MOVE (R2,A0},RO
MOVE FIP, 1P

200

Appendix F

LB_Done: MOVE

fltLookupBinding = IP:abs|fault|unchecked!LookupBinding<<offsetN

Fie, 1P

Cosmos Listing

Delete a binding of Rl in the BRAT.
The purgeBinding entry point also purges the binding

Halt if no such binding existed.
from the xlate table.

- -+

Call: deleteBinding
Call: purgeBinding

In: Rl Key.

Criticality 5.

Alters RO.

e —————— —— +

PurgeBinding: MOVE

DeleteBinding: MOVE

DB _Next: ADD
- MOVE
BNIL
EQ
BF
ADD
MOVE
MOVE
MOVE
MOVE
SUB
MOVE
MOVE
MOVE
MOVE
DB_Halt: HALT

NIL, RO

R1,R0 -

R2,FOPO

R3,FOP1

R1, -BRATLenlog*4,R2
R1,R2,R2

R2, -BRATLenlog*2,R0
R2,R0,R2
R2,~BRATLenLog, RO
R2,R0,R2
BRATLength-1,R0
R2,R0,R2
BRATStart-2
R2,R0,R2

R2,2,R0
{RO,A0],R2
R2,“DB_Halt

R1, [R2,A0),R3

R3, “DB_Next
R2,2,R2
[R2,AD),R3

R3, (RO, AD)
[BRATFree,A0},R3
R3, {R2,A0}
R2,2,R2

R2, {BRATFree, A}
FOP1,R3

FOPO,R2

FIP, IP
haltBRATDelete

;Criticality 6.

:Criticality 6.

Cosmos.m

Purge the object's binding from the XLATE table.

Save R2 and R3.

:Calculate the hash code for Rl.

:The hash code is the XOR of the four bytes of Rl,

:the same as the XLATE hash code.

;R2 contains a hash code between 0 and BRATLength-1.

;Follow the linked list of BRAT entries starting with

sthe one in RO,

Leave if RO is NIL.

;Compare the key against R1.

;Check the next entry if it doesn't match.

;Otherwise delete this entry.

fltPurgeBinding = IP:abs|faultjunchecked|PurgeBinding<<offsetN

fltDeleteBinding = 1P:abs|faultjunchecked|DeleteBinding<<offsetN

201

Concurrent Smalltalk on the Message-Driven Processor

R R RN R s R R R e R R R R A R R R R R R AR R 2]
4t 11
:#¢ Object and Context Manager ##

+

21
CHEBERRRRRHERARR NN REER DI

;1 Allocate and initialize a new object on the local heap and enter it in the XLATE and |
;1 BRAT tables. RO contains the class of the object. |
st +
IR]
;ICall: newLocalObject
s
s1In: RO Object's class.
B
;lout: RO Object's ID.
i
:iCriticality 1.
8|
; |Alters RO-R3/AID2.
B
;1 Allocate and initialize a new object on the local heap and enter it in the XLATE and |
;1 BRAT tables. RO contains the word to be stored as the first word of the object.
;| The length is extracted from R0, and the flags in the high bits of RO should be set |
;1 to benign values. The object gets the next unused ID. |
sl
;|1Call: allocNextObject
s
s 1In: RO First word of object.
|
:jout: AID2 ~Object.
H| RO Object‘'s ID.
s
;iCriticality 3.
|
; |Alters RO-R3/AID2.
H
s+ +
;| Allocate and initjalize a new object on the local heap and enter it in the XLATE and |
;1 BRAT tables. RO contains the word to be stored as the first word of the object. |
;| The length is extracted from RO, and the flags in the high bits of RO should be set |
;| to benign values. Rl contains the ID to be used for the object. 1
:+ - —-—— +
|
:1Call: allocNewObject
H
s1In: RO First word of object.
il R1 Object's 1ID.
HE
;lout: AID2 ~Object.
I RO Object's ID.
il
slcriticality 3.
H
; |Alters RO-R3/AID2.
i
NewLocalObject: MOVE FIP,R2 :Criticality 6.
MOVE R2,F ;Criticality 1.
XLATE RO, objectXLATE, A2 :Get the object's first word.
MOVE [oClassWord,A2),R0
MOVE [LastObject1D,AD],R1 ;Get the next object ID.
ADD R1, {1<<serialN)-1,R1
ADD R1,1,R1
MOVE R1l, [LastObjectiD, A0} ;Advance the object ID counter.
BR ~ANO
AllocNextObject: MOVE [LastObjectID, AD},R1 ;Criticality 6. Get the next object ID.
ADD R1, (1<<serialN)-1,R1
ADD R1,1,R1
MOVE R1l, [LastObjectID, A0) ;Advance the object ID counter.
AllocNewObject: MOVE FIP,R2 ;Criticality 6. Save FIP.
MOVE R2,F sCriticality 5.
ANO 2: MOVE R2, [TempANO_FIP,A0]
CALL allocObject ;Allocate the object.
ENTER R1,RO ;Put it into the xlate cache and the BRAT table.
CALL enterBinding
MOVE 1D2,R0O ;Load the object's ID into RO
MOVE [TempANO FIP,AQ}, IP

fltNewLocalObject ~ IP:abs!faultjunchecked|NewLocalObject<<oftsetN
fltAllocNextObject = IP:abs|faultjuncheckedjAllocNextObject<<offsetN
fltAllocNewObject = IP:abs|fault|unchecked{AllocNewObject<<offsetN

context that should be deallocated: however, if A3 no longer peints to the message,
before that context is deallocated, its locals in locations 2 through 15, inclusive,
are copied into the new context.

¥
Allocate and initialize a new context. If IDl is non-NIL on entry, it points to a 1
|
|
|

————

e m e mrE o — e e ——————— +

Call: newContext

:1In: RO First word of context, including desired length.
H AID1 ~context or NIL if none already exists.
;fout: AID1 New context.

criticality 2.

Alters RO/R1/AID1.

202

Appendix F Cosmos Listing Cosmos.m

NewContext: MOVE FIP,R1 ;Criticality 6. Save R2, R3 and the FIP.
MOVE R1l, [TempNC FIP,A(]
MOVE R1,F - :Criticality 3.
MOVE R2, {TempNC_R2,A0]
MOVE 1D2,R1 ;Save 1D2 in TempNC_ID2.

MOVE R1, {TempNC_1ID2,A0)

MOVE R3, [TempNC _R3,A0]

CALL allocNextObject ;Create the context object.
MOVE 1D1, RO

BNIL RO, “NC_NoOldCxt

MOVE Q,RO

BT RO, “NC_HadMessage

MOVE [2,Al1],RO ;If A3 did not point to a message, copy the old context's
MOVE RO, [2,A2) :locals into the new context.

MOVE {3,A1),R0

MOVE RO, {3,A2)

MOVE {4,A1),RO

MOVE RO, {4,A2)

MOVE [5,A1],R0

MOVE RO, [5,A2]
MQVE {6,A1),R0
MOVE RO, [6,A2]

MOVE (7,A1],R0

MOVE RO, (7,A2)

MOVE 18,Al},RO

MOVE RO, [8,A2])

MOVE [9,Al],RO

MOVE RO, [9,A2]

MOVE [10,A1],RO

MOVE RO, [10,A2]

MOVE f11,A1],R0

MOVE RO, [11,A2}

MOVE [12,A1],R0

MOVE RO, {12, A2]

MOVE (13,A1],RO

MOVE RO, {13,A2)

MOVE {14,A1},R0

MOVE RO, {14,A2}

MOVE {15,A1},RO

MOVE RO, [15,A2]
NC_HadMessage: CALL disposeContext :;Then dispose the old context.
NC_NoOldCxt: MOVE ID2,R1 :Point Al and ID1 to the new context.

XLATE R1,objectXLATE, Al

MOVE [TempNC_1D2,A0},R2 ;Restore A2 and ID2.

XLATE R2,restoreXLATE, A2

MOVE (TempNC_R2,A0},R2 :Restore R2 and R3.

MOVE (TempNC_R3,A0],R3

MOVE [TempNC_FIP,A0), IP

fltNewContext = IP:abs|fault|unchecked|NewContext<<offsetN

-- --- +

Deallocate a context, which may be either a fast context or a heap context. |

Call: disposeContext

In: AID1 Context.

Criticality 3.

Alters RO-R2/AID1.

:

|
|
|
!
1
|
|
|
|
|
|
|
|
|
|
|
!
!
I
I
t

: +
;| Dispose an object. If the object is locked, it is deleted as soon as the unlock
;| message comes in. |
: - - +
;1Call: disposeObject
;{In: RO Object .
slcriticality 3.
;lAlters RO-R2.
DisposeFastContext: MOVE [FastContextQueue,A0),R0 ;Criticality 6.
MOVE RO, [contextNext, Al} ;Put the context back on the context gueue.
MOVE ID1,RO
MOVE RO, [FastContextQueue, Al]
MOVE FIP, IP
DisposeContext: MOVE [contextHeader,Al],RO ;Criticality 6. Check whether this was a fast context.
ROT | RO, -hdrFastN,RO
BT RO, “DisposeFastContext :Yes.
MOVE ID1,RO :No. Deallocate a normal object.
DisposeObject: MOVE FIP,R2 ;Criticality 6.
MOVE R2,F ;Criticality 3.
XLATE RO, localXLATE,R1 ;Get the object location into R1.
BNIL R1, “DC_Done ;Exit if the object was a constant.
MOVE R2, [TempDO_FIP,AQ) :Save the FIP.
CHECK R1, INT,R2
BT R2, “DO_Remote ;Go send a Dispose message if the object is remote.
MOVE TRUE, R2 ;Enter unchecked mode.
MOVE R2,U
MOVE iD2,R2
MOVE RO, ID2
MOVE R1,A2 ;I1f the object is local, point AID2 to it.
MOVE [objectHeader, A2],R1 :Can't delete a locked object.
ROT R1l, -hdrLockedN, Rl
BT R1, "DO_Locked
AND RO, [NodeMask,AQ],R1
MOVE NNR, RO ;Check whether this is the object's home.
EQUAL RO,R1,RO
BT RO, “DO_Home

203

Concurrent Smalltalk on the Message-Driven Processor

MOVE ID2,R1 ;If not, send a message to the object‘'s home to delete
DC MSG:msgDisposeBRAT+2 ;its BRAT entry.
SEND20 R1,R0O
SENDEO R1
DO_Home: CALL deallocateObject :Deallocate it.
XLATE R2, restorexLATE, A2 ;Restore AID2.
MOVE [TempDO_F1P,A0),IP
DO_Done: MOVE R2, IP
DO_Remote: MOVE RO, R2 :Send a Dispose message to the object's node.
SENDO R1
DC MSG:msgDisposet+2
SEND2EO RO, R2
MOVE (TempDO_FIP,A0], IP
DO_Locked: ROT R1, hdrLockedN-hdrDeletedN, RO
OR RO,1,R0O :1f the object is locked, mark it as deleted but do not
ROT RO, hdrDeletedN, RO ;delete it yet.
MOVE RO, {[objectHeader,A2]
MOVE [TempDO_FIP,A0),IP

fltDisposeContext = IP:abs|faultjunchecked|DisposeContext<<offsetN
fltbisposeObject = IP:abs|fault|DisposeObject<<offsetN

+— +

| Execute a Dispose message.

Dispose: MOVE [disposeID,A3), RO ;Criticality 2.
CALL disposeObject :Dispose the object.
SUSPEND

msgDispose = Dispose<<offsetN

| Execute a DisposeBRAT message. If the object was present on its home node, it is |
;| disposed; otherwise, only the object's home BRAT entry ls deleted. |

DisposeBRAT: MOVE [disposeBRATID, A3], Rl :Criticality 2.
XLATE R1l, localXLATE, R2 ;Check if the object is here too.
CHECK R2,ADDR,R3
BT R3, "DBRAT_Here :I1f so, dispose it.
CALL purgeBinding ;Purge the object's binding from the XLATE table and
SUSPEND :from the BRAT.
DBRAT_Here: MOVE R1,RO
CALL disposeObject :Dispose the object.
SUSPEND

msgDisposeBRAT = DisposeBRAT<<offsetN

- -+

Deallocate an object residing on this node. The object must not be locked. i
-

Call: deallocateCbject

In: AID2 Object.

DeallocateObject: MOVE FIP,R] ;Criticality 6. sSave the FIP.
R1, {TempDealloc FIP,A0]
DC OBJ:hdrDeleted
MOVE R1,F ;Criticality 4.
OR RO, [objectHeader,A2],R0 ;Set the deleted flag in the object header.
MOVE RO, [objectHeader, A2)
MOVE [objectID,A2],R} :Delete the object's binding from the BRAT and the xlate table.

CALL purgeBinding

MOVE NIL,RO

MOVE RO, ID2 ;Clear 1D2.
MOVE {TempDealloc_FIP,A0],IP

fltDeallocateObject = IP:abs|faultjunchecked|DeallocateObject<<offsetN

204

Appendix F

s 4

Cosmos Listing

R X R R R R R R R AR AR AR AL
e

:4¢ Clobal Object Manager ##

e

11

SHRRRRR RN E I AU R BB Db

Cosmos.m

that node‘'s XLATE and BRAT tables.

Allocate and initialize a new object on the heap of a random node and enter it in
RO contains the class of the object.

+——+

Call:

out:

newObject
RO Object's class.
RO Object's ID.

riticality 1.

[
Alters RO/R1.

NewObject: MOVE

MOVE
MOVE
MOVE
MOVE
MOVE
DC
MOVE
ADD
MOVE
AND

jolof
SEND20
MOVE
SEND20
SENDEO
DC
MOVE
MOVE
DC

BR

FIP,R1

R1,F

R1, [context1P,Al]}
R2, [contextR2,Al])
R3, [contextR3,Al]
RO,R3
RandomSeedIncrement
[RandomSeed, AD],R2
R2,R0,R2

R2, [RandomSeed, AQ])
R2, [NodeMask,AO],R2
MSG:msgNewObject +4
R2,R0

iDl,R2

R3,R2

contextRO
CFUT:contextRO

RO, [contextNext,Al]
RO, [contextRO,Al]
SaveStatelD023-(*+2)
RO

;Criticality 6.
:Criticality 3.
:Save the state in the context.
:Save the class in R3.
:Generate a random node number.

:Advance the random node counter and return its new value.

:Send a NewObject message to that node.

fltNewObject = IP:abs|fault|unchecked|NewObject<<offsetN

:Tell the context to wait for the quasi-cfuture in RO.
:Store a cfuture in RO
;Go save the context and suspend.

+
!

Execute a NewObject message.

Return the object's ID to the caller.

NewObjectM: MOVE

CALL
MOVE
DeC
MOVE
SEND20
SENDO

SEND2EO [newObjReplySlot,A3l,R2

SUSPEND

[(newObijClass,A3], RO
newLocalObject

RO, R2

MSG:msgReply+4
{newObjReplyID,A3],R1
R1,RO

R1

msgNewObject = NewObjectM<<offsetN

;Criticality ©O.
;Allocate the object locally.

:Reply with the object‘s 1ID.

;| Return the class of an object. TypeOf returns the class as an integer, while
;|1 classOf wraps it as a class. The argument of TypeOf must not be a future.
;1Call: classOf

;1Call: typeOf

H RO Object.

ut

i
|
|
1C
ic
1
{In:
|
b
I
I
g
|

ClassOf:

TOf_2:

[l
Criticality 1.
A

RO The object's class.

lters RO/R1/AID2.

MOVE
MOVE
BNNIL
MOVE
CALL
MOVE
ROT
OR
WTAG
MOVE

FIP,R1

R}, F

RO, “TOf 2

R1, {TempTOf FIP,AD]
typeOf -
subCLASS,R1

R1l, subtagN, Rl
RO,R1,R0O

RO, TAGO, RO
{TempTOf_FIP,A0),IP

fltClassOf = IP:abs)faultiClassOf<<offsetN

TypeOf:

RTAG
BR
ROT
BR
BR
BT
BR
HALT
HALT
HALT
HALT
HALT

RO,R1

R1

RO, -subtagN,R1
~TOf_TAGO
~TOf_Integer
RO, “TOf True
~TOf_False
haltTypeOf
haltTypeOf
haltTypeOf
haltTypeOf
haltTypeOt

;Criticality 6.
:Criticality 1
:Force the argument.

;Save the FIP in memory
:Get the integer type and write its tag and subtag.

:Criticality 6.

: TAGO

:INT
: BOOL

:ADDR

;1P

MSG / OBJ
;CFUT
tFUT.

205

Save the FIP.

o

Dispatch on the tag of the object.

Concurrent Smalltalk on the Message-Driven Processor

H MOVE FIP,R]1 ;ID, Save the FIP.
BR ~TOf_Object

: MOVE FIP,R1 :DID. Save the FIP.
BR ~TOf_Object

H HALT haltTypeOf : TAGA

H BR ~TOf_Float : FLOAT

: HALT haltTypeof S INSTO

: HALT haltTypeOf ;INST1

: HALT haltTypeOf ;INST2

: HALT haltTypeOf ;INST3

TOf_Integer: DC classlnteger :Return the integer class.
MOVE FIP, 1P

TOf_True: DC classTrue :Return the true class.
MOVE FIP,IP

TOf_False: DC classFalse ;Return the false class.
MOVE Fip,1P

TOf_Float: DC classFloat ;Return the float class.
MOVE F1P,IP

TOf_Object: MOVE Ri,F :Criticality 1.
XLATE RO, objectXLATE, A2
MOVE [objectHeader,A2],R0 ;Extract the class from the object header.
WTAG RO, INT,RO
ROT RO, -hdrClassN,R0O
AND RO, hdrClassM,R0O ;RO now contains the class.
MOVE R1,IP

TOf_TAGO: AND R1, subtagM, R1 :Dispatch on the subtag.
BR Rl

H BNNIL RO, “TOf_Symbol ;subsYM
BR ~TOf_NIL

H MOVE FIP,R1 ;SubCLASS. Save the FIP.
BR ~TOf_Object
BR “TOf_Selector : SubSEL
BR ~TOf_Character ; SUbCHAR

H HALT haltTypeOf
H HALT haltTypeOf
H HALT haltTypeOf
: HALT haltTypeOf
H HALT haltTypeOf
: HALT haltTypeOf
: HALT haltTypeOf
H HALT haltTypeOf
: HALT haltTypeOf
: HALT haltTypeOf
: HALT haltTypeOf
: HALT haltTypeOf
T

Of_Symbol: pcC classSymbol :Return the symbol class.
MOVE F1P, 1P

TOf _NIL: DC classNull ;Return the null class.
MOVE FIp, 1P

TOf_Selector: DC classSelector ;Return the selector class.
MOVE FIip, 1P

TOf_Character: DC classCharacter :Return the character class.
MOVE FI1P,IP

fltTypeOf = IP:abs|fault|unchecked|TypeOf<<offsetN

Return the node on which the object might reside. If the object is a constant,
return a random node number. If the object is a DID, return a random constituent.

+—— +

Call: objectNode

In: RO Object.

[+]
e

o
o
-

Number of node likely to contain object. The number may not necessarily be
tagged INTeger, and it may contain junk data in the high 16 bits.

criticality 5.

Alters RO/R1.

—_——— e e — e —— ¢

ObjectNode: RTAG RO,R1 :Criticality 6.
BR R1 ;Dispatch on the tag of the object.
: MOVE {RandomSeed, AD),R1 : TAGO
BR ~ON_Random
: MOVE [RandomSeed, AQ),R1 2 INT
BR “~ON_Random
H MOVE [RandomSeed, A0], Rl :BOCL
BR “ON_Random
: HALT haltInternalType :ADDR
: HALT haltInternalType ;1P
H HALT haltInternalType iMSG / OBJ
H RALT haltiInternalType ;CFUT
s MOVE RO, R1 :FUT. Return the FUT: the node number is in the low
MOVE FIP,IP ;16 bits.
: MOVE RO,R1 ;ID. Return the I1D: the node number is in the low
MOVE F1P, IP :16 bits.
: MOVE RO,R1 :DID
BR “RandomConst
H MOVE [RandomSeed, AQ],R1 : TAGA
BR ~ON_Random
MOVE [RandomSeed,A0],R1 :FLOAT
BR ~ON_Random
: HALT haltInternalType :INSTO
H HALT haltInternalType ; INST1
: HALT haltInternalType s INST2
H HALT haltInternalType :INST3
ON_Random: DC RandomSeedIncrement
ADD R1,RO,R1 ;Advance the random node counter and return its new value.
MOVE R1, [RandomSeed, AQ]
AND R1, [NodeMask,A0],R1

MOVE FlpP,IP

206

Appendix F Cosmos Listing Cosmos.m

RandomConst: MOVE R2,FOPO
ROT R1,-(logStrideN+logStrideLl),R2 :R1 has s, the distobj initial node number, in bits 0..10
ASH R2,~16,R2 ;and e, 2's complement logStrlde, in bits 11..15.
ASH R2,logStridelL-16,R2 ;R2:i=e.
MOVE ~1,R0
ASH RO,R2,R2 :R2:=e zeros in LSBs with the MSBs being ones.
MOVE [RandomSeed, A0], RO
ADD RO, 7,R0 ;Advance the random node counter and return its new value.
MOVE RO, (RandomSeed, AD}
AND RO,R2,R2
BR “GetConst

fltObjectNode = IP:absifaultiunchecked|ObjectNode<<offsetN

;| Return the ID of the preferred constituent of a distributed object with the given |
;| DID. |
H
;1Call: preferredConstituent
il
s1In: Rl DID.
H
;{out: Rl ID.
i
slCriticality 5.
|
: |Alters RO/R1.
21
PreferredConst: MOVE R2,FOPO :Criticality 6.
ROT R1,-(logStrideNtlogStrideL),R2 :R1 has s, the distobj initial node number, in bits 0..10
ASH R2,-16,R2 ;and e, 2's complement logStride, in bits 11..15.
ASH R2, logStrideL-16,R2 ;R2:=e.
LE Rr2,0,R0 ;Jump to a faster routine if the distributed object is dense.
BT RO, “PrefCnst Dense
MOVE ~1,R0 -
ASH RO,R2,R2 ;R2:=e zeros in LSBs with the MSBs being ones.
MOVE {serialNode,A0],RO
AND RO,R2,R2 ;R2:=masked serial node number.
GetConst: DC initialNodeM
AND RO, R1,RO
OR RO, R2,R2 ;R2:=serial constituent node number.
DC ID:~homeNodeM
AND RO,R1,R1 ;Rl:=ID:serial number.
AND R2, XM, RO
OR R1,R0,R1 :Store the x node number in Rl.
ROT R2, -xL, RO
AND RO, yM, RO
ROT RO, yN, RO
OR R1,RO,R1 :Store the y node number in R1l.
ROT R2,-{(xL+yL),R2
AND R2,zM,R2
ROT R2, zN,R2
OR R1,R2,R1 ;Store the z node number in Rl.
MOVE FOPO, R2
MOVE FIP, 1P
PrefCnst_Dense: DC ID:~homeNodeM
AND RO, R1,R1 ;Rl:=ID:serial number.
MOVE NNR, RO ;This is a dense distributed object: just use the current node.
OR R1,RO,R1

MOVE FOPO, R2
MOVE Fip, 1P

fltPreferredConstituent = IP:abs|faultunchecked|PreferredConst<<offsetN

i+ - +
;| Return the ID of the nth constituent of a distributed object with the given DID. I
jHmmmmmm et eeammsem—m e m—mm e et emm———————— ———- R
i
;1Call: co
i
s1In: RO n.
i Rl DID.
X
;{out: RI1 ID.
s
slcriticality 1.
i
: |Alters RO-R2.
i

Co: MOVE R2,FOPO sCriticality 6. Save R2 and R3.
MOVE R3,FOP1
CHECK RO, INT,R2

BF R2, “Co_BadType

CHECK R1,DID;R2

BF R2,~Co_BadType

LT RO, 0,R2

BT R2, ~Co_BadRange

ROT R1,-(logStrideN+logStridel),R2 :Rl has s, the distobj initial node number, in bits 0..10
ASH R2,-16,R2 :and e, 2's complement logStride, in bits 11..15.

ASH R2,logStridelL-16,R2 ;R2:=e.

LT R2,0,R3

BF R3, “Co_Sparse :There is at most one constituent per node.

NEG R2,R2 :There are multiple constituents per node.

MOVE -1,R3

ASH R3,R2,R3

NOT R3,R3 ;R3 contains the number of constituents per node minus one.
AND RO, R3,R3 :Modulo n by the number of constituents per node to get the
ROT R3, serialN,R3 ;displacement to be added to the DID's serial number.

ADD R1,R3,R1

NEG R2,R2

ASH RO, R2,R0O ;Divide n by the number of constituents per node.

207

Concurrent Smalltalk on the Message-Driven Processor

Co_Sparse:

Co_BadRange:
Co_BadType:

Co_Future:

0,R2
RO,R3

R3,R2,R3

RO, R2,R2
30-LogNNodes, RO
R3, RO, RO

RO, “Co_BadRange
FOP1,R3
“GetConst

haltRange

RO, FUT,R2
R2,“Co_Future
R1,FUT,R2
R2,“Co_Future
haltType
haltFuture

;Now assume that there is one constituent per node.
;R3:=30-1g(n) .

:R3:=30-1g(noded) .

:R2:=node#.

;RO:=30-1g (NNodes) .

;If either operand was a future, crash with the future fault:
:otherwise, crash with the type fault.

fltCo = IP:abs]|fault(unchecked|Co<<offsetN

|
!

Execute a RequestObject message.
ID, a class or a selector; it cannot be a future, constant, or distributed object.

The

ID passed in the message must be a word tagged

o —

MOVE
XLATE
CHECK

RequestObject:

RO_Resend:

SENDO
SENDEOQ
SUSPEND

MOVE
BR
MOVE
MOVE
MOVE
ROT

BT
AND

DC

ADD
suB
MOVE
SUB
MOVE
SEND20
SENDO
MOVE
CALL
SENDEOQ
ROT

BT
MOVE
AND
MOVE
EQUAL
BT
CALL
SUSPEND
DC

OR
MOVE
MOVE
ENTER
CALL
BNIL
MOVE
SUSPEND
HALT

RO_Locked:

RO_Local:

RO_Copyable:
RO_Home:

RO_NoBinding:

[reqObjID, A3],R3
R3, localXLATE, R1
R1, ADDR, R2

R2, “RO_Local

MSG:msgRequestObject+3

R1, RO
R3

{reqObjReplyNode,

NNR,R1
“RO_Resend
R3,1D2
R1,A2

;Criticality 4.
;Is the object here?

iYes.
:No. Send a message requesting the object to the object's
:1ikely location.

A3}

;Criticality 4. Resend the message back to this node.

;Criticality 5. Point AID2 to the object.

[objectHeader,A2],R2

R2, -hdrLockedN, RO

RO,‘RO_Lccked
R2,hdrLengthM,R3

MSG:msgMigrateObject+1

RO, R3, R0
R3,1,R3
{R3,A2],R3
]1,1,R1
R1,A2

{reqObjReplyNode,
R2

0,RO
blockSend
R3

R2, -hdrCopyableN,

RO, “RO_Copyable
Ipz,R1

R1, [NodeMask, A0),

NNR, R3

R2,R3, R0

RO, “RO_Home
deallocateObject

OBJ:hdrDeleted

RO, [objectHeader,
RO, {objectHeader,

NIL,RD

R1, RO
lookupBinding
RO, “RO_NoBinding
R3, [R2;A0}

haltBRATMissing

:Resend the message back to this node if the object is locked.

:The length of the message is one plus the length of the
sobject.

:Save the last word of the object in R3.

;Shorten the object's limit by one word.
A3},R0 :Send the message header.
:Send the words of the object.

:Send the last word of the object.
RO ;Leave the object here if it is copyable.
;If the object is not copyable, purge 1t from the xlate table
;and from the BRAT, unless this is its home node, in which
;case purge it from the xlate table and replace its BRAT entry
;to suggest that it is present on this node:; messages requesting
;the object will keep cycling at this node until the object's
:new location is known.

R2

A2},R0 :Set the deleted flag in the object header.
A2}

;Pretend that the object is located at this node.

msgRequestObject = unchecked|RequestObject<<offsetN

-—_+

Execute an AcceptObj

ect message.

Make this node the object's home.
must reflect this node as the object‘'s home.

The object's ID |

AcceptObject: MOVE
MOVE
CALL
MOVE
oled

ADD
MOVE
MOVE
CALL
MOVE
BNIL
DC
SEND20
SENDEO

AO_Done: SUSPEND

{2+objectHeader,A3],RD

:Criticality 3. Read the object's header and ID.

{2+objectID,A3],R1

allocNewObject
A2,R1

(- {l<<baseN)+1)*2

Rl,R0,RO
RO, A2

4,R0
blockMove
{1,a3],R3
R3, “AO_Done

;Allocate space for the object.

its limit likewise
words late.

:Decrease A2's base by two words and increase
:because the object starts in the message two

:Copy the object into the heap starting from the fifth word
;of the message (third word of the object).

;Acknowledge the sender if an acknowledgement was requested.

MSG:msgAcknowledgeObject+2

R3,R0
{2+objectID, A3}

msgAcceptObject = unchecked|AcceptObject<<offsetN

208

Appendix F

Cosmos Listing Cosmos.m

If the object is copyable, store a copy of it on

ore it on this node, lock it, and

+———

Read the object's header and ID.

:Clear the purgeable, locked, and marked flags.
:1f the object is copyable, make this copy purgeable.
:This object is noncopyable.

:Check whether this node is the object's home node.
;1€ so, do nothing.

;Otherwise, tell the home node about this object's location
;and lock the object until the home node replies.
;Lock this object.

;Allocate storage for the object and put it into the xlate table.

;Check whether a binding for the object existed in the BRAT.
;If one did exist, save its data in R2 and rebind the BRAT
;entry to point to the object.

;This obeys criticality S because allocObject allocates three
:extra heap words.

;Decrease A2's base by one word and increase its limit
;because the object starts in the message one word late.

;Copy the object into the heap starting from the fourth word
;of the message {third word of the object).

:Leave if there are no contexts to restart.

:Dispose the current context.
sRestart contexts.

;Restart this context if there is only one to be restarted.
;Otherwise send a message back to this node to restart this
;context and go restart the next one now.

;| Execute a MigrateObject message.
;1 this node. If the object is not copyable, st
:{ inform the home node about the object's presence here.
MigrateObject: MOVE (1+objectHeader,A3],R0 :Criticality 3.
MOVE {1+objectiD, A3}, R1
ROT RO, -hdrCopyableN, RO
AND RO, SFFFFFFF1, RO
BT RO, “MO_Copyable
AND R1, (NodeMask,A0),R2
MOVE NNR,R3
EQUAL R2,R3,R2
BT R2, “MO_Noncopyable
MOVE RO, R2 :Save RO.
DC MSG:msgUpdateHome+3
SEND20 R1,RO
SENDZEO R1,R3
OR R2, 1<<(hdrLockedN~hdrCopyableN}, RO
BR “MO_Noncopyable
MO_Copyable: OR RO, 1<< (hdrPurgeableN~-hdrCopyableN), R0
MO_Noncopyable: ROT RO, hdrCopyableN, RO
CALL allocObject
ENTER R1,R0O :Criticality 5.
MOVE RO,R3
CALL lookupBinding
BNIL RO, “MO_Unexpected
MOVE R3, [R2,A0])
MOVE RO, R2
BR ~MO_Expected
MO_Unexpected: MOVE R3,R0O
CALL enterBinding
MOVE NIL,R2
MO_Expected: MOVE A2,R0O
SUB RO, {1<<baseN}-1,R0O
MOVE RO, A2
MOVE 3,R0
CALL blockMove
CRECK R2,1D,RO
BF RO, "MO_Suspend
MOVE [FastContextQueue,AD],RO
MOVE RO, [contextNext, Al}
MOVE ID1,RO
MOVE RO, [FastContextQueue, A}
MO_NextRestart: XLATE R2, objectXLATE, Al
MOVE [contextNext,Al},R1
CHECK R1,1D,R3
BF R3, “Reply_Restart
Dc MSG:msgRestartContext+2
SEND20 R2,RO
SENDEO R2
MOVE R1,R2
BR “MO_NextRestart
MO_Suspend: SUSPEND

msgMigrateObject = uncheckediMigrateObject<<offs

etN

| Execute a RestartContext message.

+— +

Execute a Reply message.

-+

RestartContext: MOVE [FastContextQueue,AD],RO
MOVE RO, [contextNext,Al]
MOVE ID1,RO
MOVE RO, [FastContextQueue, Al}
MOVE [replyID,A3},R0
XLATE RO,objectXLATE, Al
BR “Reply Restart
Reply_2: MOVE R1, [RO, A2]
MOVE (FastContextQueue, AC},RO
MOVE RO, {contextNext, Al}
MOVE ID1,R0O
MOVE RO, {FastContextQueue, AQ)
XLATE R3, ocbjectXLATE, Al
Reply_Restart: MOVE FALSE, RO
MOVE RO,Q
MOVE [contextIDO,Al],RO
XLATE RO, restoreXLATE, AO
MOVE [context1D2,Al},R0
XLATE RO, restoreXLATE, A2
MOVE [contextID3,Al},R0O
XLATE RO, restoreXLATE, A3
MOVE fcontextR3,Al},R3
MOVE [contextR2,Al],R2
MOVE (contextRl,Al],R1
MOVE {contextR0,Al],RO
MOVE [context1P,Al), IP
Reply: MOVE {freplyID,A3],R3
XLATE R3, object XLATE, A2
MOVE freplyslot,A3], R0
WTAG RO, CFUT,RO
MOVE fcontextNext,A2],R1
EQ R1,R0O,R2
MOVE (replyvalue,A3],R1
BT R2, “Reply 2
EQ RO, [RO,A21,R2
BF R2, "Reply Halt
MOVE R1, [RO,A2]
SUSPEND
Reply Halt: HALT haltReply

msgRestartContext = unchecked|RestartContext<<of
msgReply = unchecked|Reply<<offsetN

;Put the fast context back on the context queue.

;Criticality 3.

;Xlate the reply context into Al.
:Store the value replied.

the fast context back on

;Put the context queue.

:Xlate the reply context into Al.

;Turn off A3 queue wraparound.

;Restore the address and ID registers.

;Restore the data registers.

:Resume computation of the message.
:Criticality 3.
:Xlate the reply context into A2.

;:Check whether the process was waiting for this slot.

:Suspend if not.

:Check the previous value from the slot and make
:sure it was the proper cfuture.

;Store the new value there.

fsetN

209

Concurrent Smalltalk on the Message-Driven Processor

;1 Execute an UpdateHome message. Update the BRAT to contain the cobject's new home |
;1 location and send an Unlock message to the object to allow it to move again. |
: +
UpdateHome: MOVE {updtHomelD, A3], Rl ;Criticality 2.

SENDO (updtHomeNode, A3} :Send an Unlock message back to the object.

DC MSG:msgUnlock+2

SEND2E0 RO,R1

CALL locokupBinding ;Look the object up in the BRAT.

BNIL RO, “UH_Halt ;The BRAT entry should be present.

CHECK RO, INT,R3

BF R3,~UH_Waiting

MOVE (updtHomeNode,A3], RO :Change the BRAT entry to reflect the

MOVE RO, {R2,A0] :object*s new location.

SUSPEND
UH_Waiting: CHECK RO, ID,R3

BF R3, “UH_Halt

XLATE RO, objectXLATE, A2

MOVE [contextNext,A2],RO

BNIL RO, “UH_Halt :The BRAT entry should be present.

CHECK RO, INT,R3

BF R3,~UH_Waiting

MOVE {updtHomeNode, A3], R0 :Change the BRAT entry to reflect the

MOVE RO, [contextNext, A2] ;object's new location.

SUSPEND
UH_Halt: HALT haltBRATMissing

msgUpdateHome = UpdateHome<<offsetN

Execute an Unlock message. Unlock the object to allow it to move again. If the |
object was marked deleted, dispose it now. |

----- ———t

—_

Unlock: MOVE {unlocklID,A3],R1 ;Criticality 2.
XLATE R1, objectXLATE, A2 ;Find the object and clear its locked flag.
DC ~hdrLocked
MOVE [objectHeader, A2),R2
AND R2,R0,R2
MOVE R2, [objectHeader, A2]
ROT R2, -hdrDeletedN, R2 :1f the object was marked deleted, dispose it now.
BF R2,~Unlk_Done

MOVE R1,RO
CALL disposeObject
Unlk_Done: SUSPEND

msgUnlock = unchecked|Unlock<<offsetN

210

Appendix F

AR ERERO RN RI R
e
:#4 Method Manager #

X1
cREBBEEERRRRRBEERRRROY

]

i

+

"

+

Cosmos Listing

X4

nd coerced to be an

integer.

eturn the ID of a method associated with the given class and selector.
ntry peint, lookupMethodU, can be used when the class has already been type-checked

The second

|
|
|
+

lookupMethod
lookupMethodU

RO
Rl

O R2
Criticality 1.
A

lters RO-R3/AID2.

LookupMethod: CHECK
BF
WTAG
ROT
AND
EQUAL
BF
ROT
WTAG
AND
OR
WTAG
PROBE
BNIL
MOVE

LookupMethodU:

LM_Halt: HALT
MOVE
MOVE
MOVE
MOVE
MOVE
AND

LM_SendMsg:

SEND20
SEND2EQ
MOVE
MOVE

DC

BR

ID of method or NIL if none.

RO, TAGO, R2
R2,“LM_Halt
RO, INT,RO

RO, -subtagN,R3
RO, csClassM, RO
R3, subCLASS,R3
R3, ~LM_Halt
RO,csClassN,R2
R1, INT,R3
R3,csSelectorM,R3
R2,R3,R3
R3,CS,R3

R3,R2

RZ, ~LM_SendMsg
FIP, IP

haltClassType

FIP,R2

R2,F

R2, [contextIP,Al]

R3, [contextRO,Al]

RO, R3

Rl, (NodeMask, AQ]}, R2
TAGO : subCLASS<<subtagh
RO, R3,R3
MSG:msgApplyFunction+5
R2,R0O

ID1,R2

LLookupMethod

RO, R1

R3,R2

NIL,R1

R1l, {contextNext,Al]
SaveStatelD023-(%+2)
RO

Class (Tagged TAGO:subCLASS if lookupMethod is used, INT if lookupMethodU is used).
Selector (Tagged TAGO:subSEL).

;criticality 6.
:Make sure that RO is tagged as a class.

;Coerce it to an integer.

;Criticality 6. Shift the class to the high 16 bits.

:Make a class/selector pair in R3,

:Get the cached 1D of the method into RO, if there is one.

:Criticality 6.

;Criticality 3.

;Save FIP in the context.

:Save the class/selector pair in RO of the saved context.

:Generate the class ID in R3.

:Send a LookupMethod message asking to lookup the method and
:send a reply back to the context.

:The LookupMethod handler will return the method via a
:MethodReply, which will reply into the R2 slot of the context.
:There is no need to save the data registers in the context.

fltLookupMethod = IP:abs|faultjunchecked|LookupMethod<<offsetN
fltLookupMethodU = IP:abs|faultjunchecked|LookupMethodU<<offsetN

| Execute a MethodReply message.

MethodReply: MOVE
XLATE
MOVE
MOVE
ENTER
MOVE
MOVE
MOVE
XLATE
MOVE
XLATE
MOVE
XLATE
MOVE

[methodReplylD, A3}, RO
RO, objectXLATE, Al

;Criticalivy 3.
;Xlate the reply context into Al.

[methodReplyValue,A3],R2 ;Get the method ID.

[contextR0O,Al],RO

RO, R2

FALSE, RO

R0,Q

{contextIDO, Al},RO
RO, restoreXLATE, AQ
{contextID2,Al],RO
RO, restorexXLATE, A2
[contextID3,Al),R0O
RO, restoreXLATE, A3
{contextIP,Al)}, IP

msgMethodReply = MethodReply<<offsetN

;Enter it into the cache.
;Turn off A3 queue wraparound.

;Restore the address and ID registers.

;Resume computation.

211

Cosmos.m

Concurrent Smalltalk on the Message-Driven Processor

the division overflows.

add it to the dividend:
subtract it from the dividend.

the gquotient is 0.

negate the guotient:
subtract the remainder

Perform the quotient adjustment.
subtract 1 from the quotient;
add 1 to the quotient.

crash with the future fault:

lODdllOOOOOQOOIOD
‘00
;44 Utilities Ol
1 "
'Ollﬂlltllllllllﬁl
;1 pivide R1 by RO. Return the quotient and remainder. The magnitude of the remainder |
:1 is always less than the magnitude of the divisor, and the sign of the remainder is |
;| the same as the sign of the divisor. Halt if the divisor is zero. |
i+ +
it
;iCall: divide
:I
:1In: RO Divisor.
2 Rl Dividend.
H
;10ut: RO Quotient.
s R1 Remainder
I
sicriticality 1.
st
; |1Alters RO/R1.
iR
Divide: MOVE R2, [TempDiv_R2,A0} ;Criticality 6. Save RZ2 and R3.
MOVE R3, [TempDiv_R3, AQ)
CHECK RO, INT,R2 :Check for futures and bad types.
BF RZ,“Dlv_NonInteqer
CHECK R1, INT,R2
BF R2,~Div_Nonlnteger
BZ RO, “Div_2ero ;Halt if the divisor is zero.
BNZ R1,"Div_DividendNZz
MOVE Q,R0 :If the dividend was zero, return a zero quotient and
BR ~Div_Done ;remainder.
Div_DividendN2: LT RO, 0,R2 ;R2 is true if the divisor is negative.
EQUAL R1, $80000000,R3 :TempDiv_ 80000000 is true if the dividend was $80000000.
MOVE R3, [TempDiv_80000000,AQ] -
BF R3,”Div_Norma1
EQUAL RO,-1,R3 :In this case, when the divisor is -1,
BT R3,~Div _Overflow :The dividend is $80000000.
ADD R1,R0,R1 :When the divisor is p051tive,
BF R2,~“Div_Normal .uhen the divisor is negative,
sSUB R1,R0O,R1 :The reverse adjustment will be made on the quotient later.
suB R1,R0,R1
Div_Normal: LT R1,0,R3 ;R3 is true if the dividend is negative.
BF R2,"Div_DivisorPos
NEQUAL RO, $80000000,R2 :The divisor is -$80000000.
BT R2,~Div_DivisorNeg :When the dividend is positive, the quotient is -1,
MOVE 0,RO ;When the dividend i{s negative,
BT R3, ~“Div Donel
MOVE -1,R0 7
ADD R1,580000000,R1
BR ~Div_Donel
Div_DivisorNeg: NEG RO, RO ;If the divisor was negative, negate both it and the dividend.
NEG R1,R1
NOT R3,R3
Div_DivisorPos: BF R3,~Div_DividendPos
NEG R1,R1 :If the dividend is now negative, negate only it.
Div_DividendPos: MOVE R2,FOPO :Now both the divisor and the dividend should be positive
MOVE R3,FOP1 :{and no greater than $7TFFFFFFF).
GT RO,R1,R2
MOVE RO,R3 :Move the divisor to R3.
MOVE a,RO ;From now on RO contains the quotient.
BT R2,“Div_Done3
FFB R1,R2
MOVE R2, [TempDiv_Count,A0]
FFB R3,R2 :R2 contains the number of extra bits of magnitude in the
SUB R2, [TempDiv_Count,A0],R2 :dividend over the divisor.
LSH R3,R2,R3 ;Shift the divisor so that its most significant bit is in the
MOVE R2, [TempDiv_Count,A0] :same position as the dividend‘'s
BR ~piv_Loop 1™
Div_Loop: 5UB R2,1,R2
MOVE R2, [TempDiv_Count, A0}
ADD RO,RO,RO ;Shift the quotient to the left and the divisor to the right.
LSH R3,~1,R3
Div_Loop_1: LT R1,R3,R2 ;Try subtracting the shifted divisor from the dividend.
BT R2, “Div_Loop_2
sup R1,R3,R1
ADD RO, 1,R0 :If successful, increment the quotient.
Div_Loop_2: MOVE [TempDiv_Count,A0},R2
BNZ R2,“Div_Loop
Div_Done3: MOVE FoP1l,R2 :1f the dividend was neqatlve,
BF R2, “Div_Done2 ;if the remainder was positive,
NEG RO, RO ;from the divisor and subtract one from the gquotient to keep the
BZ R1l,“Div_Done2 ‘remainder positive.
sUB RO, 1,RO
sSuB R3,R1,R1
Div_Done2: MOVE FOPO, R2
BF R2, ~Div_Donel
NEG R1,R1 ;If the divisor was negative, negate the remainder.
Div_Donel: MOVE [TempDiv_80000000,A0],R3
BF R3,”Div_50ne
MOVE FOPO,R2 ;The dividend was $80000000.
S5UB RO, 1,R0 :When the divisor was pasitive,
BF R2,“Div_Done :When the divisor was negative,
ADD RO, 2,R0
Div_Done: MOVE [Temlev R2,A0),R2 ;Restore registers and return.
MOVE {TempDiv_R3,A0],R3
MOVE FIP, 1P
Div_zero: HALT haltDiv0
Div_Overflow: HALT haltOverflow
Div_NonInteger: CHECK RO, FUT,R2 ;I1f either operand was a future,

212

Appendix F

BT
CHECK
BT
HALT
Div_Future: HALT

R2, "Div_Future
R1,FUT,R2
R2,~Div_Future
haltType
haltFuture

Cosmos Listing

;otherwise, crash with the type fault.

fltDivide = IP:abs|fault|unchecked|Divide<<offsetN
fltCrashOverflow = IP:abs|fault|unchecked|Div_Overflow<<offsetN

Allocate and initialize a new closure.

Call: newClosure

|
|
|
:1In: RO
H
:10ut: AID2 ~Object.
sl R1
E]
:;icriticality 3.
3
:1Alters RO-R3/AID2.
|
NewClosure: MOVE
MOVE
MOVE
CALL
MOVE
DC
WTAG
MOVE
MOVE

First word of object.

Object's ID.

FIP,Rl

R1,F

R1, {TempNCl FIP,AQ]
allocNextObJect

RO, R1

($11000100000100000] (callClosures$100000)<<4|callClosurests011111)<<17

RO, INST3, R0
RO, [oClosureCode, A2]
[TempNC1_FI1P,A0], IP

;Criticality 6.
:Criticality 3.

:Install the faulter instruction.

fltNewClosure = IP:abs|faultiunchecked|NewClosure<<offsetN

Call the function in a closure.

|
|
{Call: callClosure
|
ICriticality 0.

{

CallClosure: MOVE

ADD
MOVE
SEND20
SENDO
DC
MOVE
SENDQ
SENDO
SENDO
SENDO
SENDO
SENDO
SENDO
SENDO
SENDO
SENDO
SENDO
SENDO
SENDO
SENDO
MOVE
CCl_sendRest: SENDO
ADD
SENDO
ADD
SENDO
ADD
SENDO
ADD
BR
CallClosure 2: AND
MOVE
MOVE
MOVE
CALL
SENDEO
CALL

AO,R3

R3,A2
MSG:msgApplyFunction
foFunctionNArgs, A2}, R1
RO,R1,R0O

A3, R2

R2,lengthM, R2

R2, lengthM, R2
R2,R1,R2

R2,A3

R3,1,R2

R3,lengthM,R3
R3,o0ClosureDisplay,R3
RO, R3, R0

NNR, R1

R1,R0
{oClosureFunct, A2]

sCriticality 5.
;Copy AQ to A2,

;Mask the length of the object pointed by A3
ito nArgs words.

;Put the number of display arguments in R3.
;Update the length of the message.

;Send the message back to this node.
:Send the real function.

IP:abs|uncheckediCallClosure_2<<offsetN

RO, [LimitOverride, A0}
[2,A3)
[3,A3)
[4,A3}
[S,A3]
(6,A3])
(7,A3)
(8,A3]
[9,A3)
[10,A3]
{11,A3)
(12,A3)
(13,A3]
{14,A3]
{15,A3]
16,R0

{RO, A3)
RO, 1,R0O
[RO,A3]
RO, 1,RO
[RO, A3}
RO, 1,R0
{RO, A3)
RO, 1, R0
“CCl_sendRest
R2,lengthM, R3
[R3,A2],R3
R2,A2

2, R0
blockSend
R3

suspend

;Override the Limit fault.
;Send the rest of the arguments.

;Sends more arguments.

;Get the last display argument.
:Decrement the length of the display by one.

;Send the display arguments.

fltCallClosure = IP:absjunchecked|CallClosure<<offsetN

213

Cosmos.m

Concurrent Smalltalk on the Message-Driven Processor

SHERRRREAAERERARREHRINYY
21 (1}

;44 Control Manager #¢
"

shE

;OOOOOIIIDOO!OO!OJ!OOIOO

| Execute an Apply, ApplyFunction, or ApplySelector message.

+ -+

ety ChecK

ApplyFunction: MOVE
XLATE
DC
MOVE

ApplySelector: MOVE
PROBE
BNIL
MOVE
MOVE
MOVE
WTAG
ROT
AND

AS_1: MOVE
CALL
bC
XLATE
MOVE

AS_Miss: CALL
BR

{applyFunct,A3],R1 :Criticality 0. Get the funct.

R1, TAGO,R2 :I1f it has tag 0, assume it is a selector.
R2, “ApplySelector

R1,1D,R2 :I1f it has tag ID, assume it is a function.
R2, “ApplyFunction

haltApply :Otherwise the message was invalid.
[applyFunct, A3}, RO ;criticality 0. Get the function.

RO, objectXLATE, A0

1P:oFunctionCode<<offsetN ;Start executing at the second word of the
RO, IP

[applyReceiver,A3],R0 :Criticality 0. Get the receiver.

RO,R1 ;Probe it, hoping it is an ID or DID.
R1l,~AS_Miss

R1,A2 ;If so, point A2 to the instance object.
RO, ID2

[objectHeader,A2],R0 :Extract the class from the object header.
RO, INT,RO

RO, -hdrClassN,R0O

RO, hdrClassM, RO

{applyFunct,A3],R1 :Get the selector.

lookupMethodU ;RO now contains INT:class

IP:oFunctionCode<<offsetN ;Go execute the method.
R2,0bjectXLATE, AD
RO, 1P

typeOf ;Call the real class-extraction routine.
“AS 1

msgApply = Apply<<offsetN
msgApplyFunction = ApplyFunction<<offsetN
msgApplySelector = ApplySelector<<offsetN

214

function.

Appendix F

R R R R R R AR R R RN A AL]

+

¢+ 1Initialization #4
+ i
L 2 A X2 X X222 22222220

Cosmos Listing

Cosmos.m

Initialize the MDP,

InitializeMDP: DC

MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
WTAG
DC

IMDP_ClrGlobals: SUB

IMDP_ClrXlate: SUB

IMDP_ClrBrat: SUB

IMDP_ClrHeap:

MOVE

ADDR:invalid
RO, AD

RO, Al

RO, A2

RO, A3

RO, AOB

RO, ALB

RO, A2B
RO,A3B

RO, AOB®
RO,A1B"
RO,A2B'
RO, A3B"
NIL,RO

RO, IDO

RO, ID1

RO, ID2

RO, ID2

RO, IDOB
RO, ID1B
RO, ID2B
RO, ID3B
RO, IDOB"
RO, ID1B"
RO, ID2B"
RO, ID3B’
-1,R1
R1,CFUT,R1
64

RO, 1,R0
R1l, [RO,AQ)
RO,*XMDP_Cerlobals

ADDR:QueuelStart<<baseN :Initialize the queues.

RO, QHL"

ADDR:QueuelStart<<baseN| (QueuelEnd-QueuelStart-1)

RO, QBM’

ADDR:QueuelStart<<baseN

RO, QHL

ADDR:Queue0Start<<baseN| {QueuelEnd-QueuelStart-1)

RO, OBM

NIL,R2

ADDR:XlateStart<<baseN{{XlateEnd-XlateStart-1}
R2, [LimitOverride, A0}

RO, TBM

ADDR:XlateStart<<baseN
R2, [FastContextQueue, Al]

RO, A2
XlateEnd-XlateStart
RO, 1,R0

R2, {RO,A2)

RO, “IMDP_ClrXlate
R2, [BRATFree, AQ)

ADDR:BRATStart<<baseN

RO, A2
BRATEnd-BRATStart
RG,1,R0

R2, {RO,A2]

RO, “IMDP CirBrat
FixedHeapStart
RO, [HeapStart,AQ)
RO, [FirstFree, AlD)
RO, R3

HeapEnd

RO, [LastFree,AQD])

IF FASTSIM

MOVE
ADD
GE
BF
END
MOVE
MOVE
BC
MOVE
AND
ROT
AND
ROT
OR
ROT
AND
ROT

IMDP_MakeFast: sSUB

R1, [R3,A0)
R3,1,R3

R3,R0,R2
R2,“IMDP_ClrHeap

NNR, R2

R2, {RandomSeed, AQ}
nodeMask

RO, [NodeMask, A0}
R2,xM,R3

R2, -yN, RO

RO, yM, RO

RO, XL, RO

R3,R0,R3
R2,-2N,RO

RO, ZM, RO

RO, xL+yL, RO
R3,R0,R3

R3, {SerialNode,AD]

- —+

:Clear the user address and ID registers.

;Clear all globals to CFUT:-1.

;R1 contains CFUT:-1.

;R2 contains NIL.

;Initialize LimitOverride.
:Initialize the xlate table.

;Initialize FastContextQueue.

;Clear every entry in the table to NIL.

;Initialize BRATFree.

:Clear the BRAT.

:Initialize the heap.

:Clear the heap to CFUT:-l.

;Initialize RandomSeed,

and SerialNode.

;Calculate this node's serial number from the NNR value.

ID: (nFastContexts~1)<<serialN
;Initialize LastObjectID and NextDistobjID.

RO,R2,RQO
RO,[LastObjectIu,AO]
0,R0

RO, [NextDistobjID, AO]

nFastContexts,R3
R3,1,R3

R3, [TempINITM_Context,Al]

R3,serialN,R1
NNR, R3
R1,R3,R1

:Make nFastContexts fast contexts.

;Save the number of fast contents yet to be made.

;Put the node number intc the context ID.

215

Concurrent Smalltalk on the Message-Driven Processor -

WTAG R1,1ID,R1

DC OBJ:hdrLocked|hdrFast contextSize
CALL allocObject
XOR RO, rel,RO ;Make the fast context ADDRs nonrelocatable.

ENTER R1,RO
CALL enterBinding

MOVE [FastContextQueue, A0], RO

MOVE RO, [contextNext,bA2]

MOVE 1p2,R0

MOVE RO, [FastContextQueue, AD)

MOVE [TempINITM Context,A0],R3

BR2 R3, ~IMDP MakeFast

MOVE RO, ID1B ;Initialize priority 0's AIDl to a fast context.

MOVE A2,R1
MOVE R1,AlB

MOVE [contextNext,A2],R0

MOVE RO, {FastContextQueue, Al]

MOVE {FirstFree,A0],RO :The real heap starts after the fast contexts.
MOVE RO, [HeapStart, A0}

MOVE FALSE, RO :Enable message reception.

MOVE RO, 1
IMDP_Background:
IF !REALMODE

STOP ;Do nothing in the background mode.
END
BR ~IMDP_Background
OSEnd:
FixedHeapStart:
ORG FaultsOStart
:Priority 0 faults:
DC fltCrash0 ; CATASTROPHE
DC fltCrash0 ; INTERRUPT
joled fltCrasho ;QUEVE
DC fltSend ; SEND
DC fltCrash(I ILGINST
be fitCrashoO : DRAMERR
bCc f1tINVADR : INVADR
DC fltCrashType ;ADRTYPE
DC fltlimit JLIMIT
DC fltEarly :EARLY
ple fltCrash0 :MSG
DC f1tXLATE : XLATE
DC fltCrashOverflow : OVERF LOW
bcC fltCFUT :CFUT
bC fltCrashFuture :FUT
DC fitCrashType :TAG8 = ID
DC fltCrashType :TAGY9 = DID
DC fltCrashType : TAGA
DC fltCrashType ; TAGB = FLOAT
DC fltCrashType :TYPE
DC fltCrasho :814
jried fltCrashd 2815
DC fltCrashd ;816
DC fltCrash0 : 517
DC fltcCrash0 1518
DC fltCrash{ 819
nC fltCrash(:S1A
jole} fltCrash0 :$1B
DC fltCrash0 :81cC
DC fltCrash(;81D
DC fltCrash(;$1E
DC fltCrash(i$1F
;Priority 1 faults:
DC fltCrashl ;CATASTROPHE
DC fltCrashl : INTERRUPT
DC fltCrashl :QUEVE
olel fltCrashl : SEND
DC fltCrashl s ILGINST
DC fltCrashl : DRAMERR
DC fltCrashl : INVADR
Dc fltCrashl ;ADRTYPE
DC fltCrashl ;LIMIT
DC fltCrashl :EARLY
DC fltCrashl 1 MSG
DC fltCrashi :XLATE
DC fltCrashl ; OVERFLOW
DC fltCrashl ;CFUT
DC fltCrashl ;FUT
DC fltCrashl ;TAG8 = ID
DC fltCrashl ;s TAG9 =~ DID
bC fltCrashl ; TAGA
joled fltCrashl :TAGB = FLOAT
DC fltCrashl : TYPE
DC fltCrashl :514
DC fltCrashl 315
DC fltCrashl i816
DC fltCrashil 1817
DC fltCrashl ;818
DC fltCrashl 1519
DC fltCrashl :51A
DC fltCrashl :$1B
DC fltCrashl :81C
DC fltCrashl ;81D
DC fltCrashl :$S1E
DC fltCrashl ;$1F
;System calls:
bC fltSuspend ;$00
DC fltBlockMove :801
DC fltBlockSend 1502
DC fltCompactHeap ;503
DC fltAllocObject :604
DC fltEnterBinding ;805
DC fltLookupBinding 306
DC fltbeleteBinding :$07
DC fltPurgeBinding ;508

216

Appendix F

BREAK HAZARDS

IF !REALMODE
BREAK FAULT FaultsQ0Sta
BREAK READ WRITE OSsSta
BREAK FETCH 0..0SStart
IGNORE FETCH $400, $401
BREAK READ WRITE Fault
STEP 300
BREAK FETCH $400,3$401
BREAK READ WRITE 0..3

END

INCLUDE “Runtime.m"
IF !REALMCDE

RUN
END

Cosmos Listing

fltNewLocalObject 1§09
fltAllocNextObject :50A
fltAllocNewObject :$0B
fltNewContext :$0C
fitDisposeContext :$0D
fltDisposeObject :$0E
fltDeallocateObject ;S$OF
fltNewObject $ 510
fltClassOf ;511
f1tTypeOf :$12
fltObjectNode 1813
fltPreferredConstituent :$14
fltCo 1§15
fltLookupMethod ;816
fltLookupMethodU :$17
fitDivide ;818
fltNewClosure ;819
fltCallClosure :$1A
fltCrashCall :$1B
fltCrashCall :81C
fltCrashCall ;81D
fltCrashCall ;S1E
fltCrashCall iS1F
fltCrashCall 1520
fliCrashcall :821
fltCrashCall 1822
fltCrashCall ;523
fltCrashCall ;824
fltCrashCall 825
fltCrashCall ;826
fltCrashCall : 827
fltCrashCall ;828
fltCrashCall ;829
fltCrashCall :82A
fltCrashcall ;828
fltCrashCall ;$2C
fltCrashCall :$2D
fltCrashCall ;1 $2E
fltCrashCall :$2F
fltCrashCall :$30
fltCrashCall :$31
fltCrashCall ;1§32
fltCrashCall :833
fltCrashcall :834
fltCrashCall : 835
fltCrashCall : 836
fltCrashCall :$37
fltCrashCall ;538
fltCrashCall :539
fitCrashCall 3 $3A
fltCrashCall ;538
fltCrashCall ;8$3C
fitCrashCall :$3D
fltCrashCall :$3E
fltCrashCall :§3F

:Break on hazards.

rt,Faultslstart :Break on catastrophic faults.
rt..0SEnd-1 ;Protect operating system code.
:Globals cannot be executed.
:The initialization code, however,
s0Start..CallsEnd-1 ;Fault vectors are protected.
:Allow the operating system to write globals.
;The initialization code is now gone.
:Locations 0 through 3 are not used for anything.

;Load the run-time system.

:Initialize the cperating system.

217

Cosmos.m

Concurrent Smalltalk on the Message-Driven Processor

Runtime.m

MDP Operating System
version 2.3

written by
Waldemar Horwat

Master's thesis under Prof. William Dally

March 28, 1939
May 1991

Send problems and comments to
waldemar@hx.lcs.mit.edu.

Copyright 1989, 1990, 1991 Waldemar Horwat

:The download header is appended to the beginning of every module that is downloaded.
MODULE DOWNLOADHEADER

DC MSG:msgAcceptObject |+2
DC IONODE
END

MODULE LookupMethod

vCurrentClass = 6 ;Class number of superclass currently scanned.
Begin0: DC OBJ:hdrCopyable|classFunction<<hdrClassN|End0-Begin0
DC {LookupMethod}
DC 5
MOVE [lookMethSelector,A3],R0O
XLATE RO, objectXLATE, A2 ;Point AID2 to the selector object.
MOVE [lookMethClass,A3],R3 ;Store the class in R3.
MOVE {lookMethReplyiD,A3),R0 :Save the reply ID in the context.
MOVE RO, {lookMethReplyID, Al]
MOVE FALSE,RO ;Turn off A3 queue wraparound.
MOVE RO, Q
MOVE RO, {vCurrentClass,Al)
MOVE (oSelNMethods, A2)],R2
MOVE oSelMethods, R1
BZ R2,~Missl
Searchl: EQ R3, [R1,A2],RO :Search the class/method associations for the
BT RO, “FoundMethod :class in R3.
ADD R1,2,R1
SUB R2,1,R2
BN2Z RZ,*Searchl
Missl: XLATE R3, objectXLATE, A3 :1f no association was found, scan the class's
MOVE 0,R0O ;superclasses.
Miss2: ADD RO, 1,R0
GE RO, [oClassNAllSupers,A3],R1
BT R1, “MissAll sReturn NIL if an association still wasn't found.
MOVE RO, [vCurrentClass, Al]
ADD RO,0oClassAllSupers, RO
MOVE {RO,A3],R3
MOVE [oSelNMethods, A2],R2
MOVE oSelMethods, R1
Search2: EQ R3, [R1,A2],RO :Search the class/method associations for the
BT RO, "FoundMethod ;class in R3.
ADD R1,2,R1
SuB R2,1,R2
BNZ R2, ~“Search2
MOVE (vCurrentClass,Al],RO
BR “Miss2
MissAll: MOVE NIL,R2 :No method was found, so return NIL.
BR ~FoundMethod2
FoundMethod: ADD R1,1,R1 ;Extract the method ID.
MOVE [R1,A2),R2
FoundMethod2: MOVE [lookMethReplyID, Al],R]1
DC MSG:msgMethodReply+3 ;Return a reply message with the method ID.

SEND20 R1,RO
SEND2EC R1,R2
SUSPEND

End0:
END

:NewDistobj message:

LABEL newDistobjClass = 2
LABEL newDistobjSize = 3

LABEL newDistobjReturnID = §
LABEL newDistobjReturnSlot = 5

LABEL newDistobjTemp = 6 ;Temporary
MODULE f_New_Distobj
Begin: DC OBJ:hdrCopyabletclassFunction<<hdrClassN|End-Begin
joled {f_New _Distobj}
bC 6
MOVE NNR, R1
EQUAL R1,0,R1
BT R1, ~“OnNodel
DC MSG:msgApplyFunctionté
SEND2¢ O,RO ;I1f not, forward this message to node 0.
DC {f_New_Distobj}
SENDOQ RO

218

Appendix F

Cosmos Listing

Runtime.m

SENDO [newDistobjClass, A3]
SENDO (newDistobjsize, A3}
SENDO (newDistobjReturnib, A3)
SENDE0 [newDlstobjReturnslot,A3]
SUSPEND
OnNode0: MOVE [newDistobjsize,A3],R0 :Put max(size,l) into RO.
GT RO, 0,R1
BT R1, ~Positivesize
MOVE 1,R0
Positivesize: SUB RO,1,RO ;Calculate lg(max{size,1)) and store it in RO.
FFB RO, R1
MOVE 31, R0
SUB RO, R1,RO
ADD RO, ~LogNNodes, Rl ;R1 contains -stride.
NEG R1,R3 :R3 contains stride.
MOVE -1,R2
ASH R2,R3,R2
NOT R2,R2
DC ADDR: 64 :Point A2 to the global area.
MOVE RO, A2 ;Criticality 2.
MOVE [RandomSeed, A2} ,R3
ADD R3,3,R3
MOVE R3, [RandomSeed, A2}
AND R2,R3,R2 :R2 contains the offset.
MOVE {NextDistob}ID,A2],R3 ;Get the ID for this distributed object.
MOVE ~1,R0 ;Advance the ID counter by the number of constituents
ASH RO, R1,RO :per node.
NOT RO, RO
ADD RO,1,R0
ADD R3,R0,R3
MOVE R3, [NextDistobjID, A2]
suB R3,R0,R3 ;Criticality 1.
ROT R3,serialN,R3
OR R3,distobjMember, R3 ;Calculate the DID for this distributed object and store it
OR R3,R2,R3 +in R3.
NEG R1,R2
ASH R2, logStrideN,R2
AND R2, {1<<logStrideNtlogStridel)-1,R2
OR R3,R2,R3
WTAG R3,DID,R3
MOVE LogNNodes, R2
ADD R2,R1,R2 ;Put lg{max(size,1)) into newDistobjTemp.
MOVE R2, [newDistobjTemp, Al]
MOVE 0,RO
MOVE R3,R1 :Send a newDistobjTree message to the node that will contain the
CALL co :first constituent of the distributed object.
DC MSG:msgApplyFunction!$
SEND20 R1,R0O
DC {fNewDistobjTreel
SENDO RO
SENDO (newDistobiClass, A3}
SEND20 [newDistobjsize,A3},R3
SENDO [
SENDO {newDistobjTemp, Al]
SENDO [newDistobjReturnlD, A3)
SENDE0 [newDistobjReturnSlot,A3)]
SUSPEND
End:

END
REF REV f New Distobj = ID:{1<<30] (1&mX)<<sX| (1&mY)<<sY|{14m2)<<sZ| (14mS) <<sS)

;NewDistobijTree message:

LABEL newDlistobjTreeClass = 2
LABEL newDistobjTreeSize = 3
LABEL newDistobjTreelID = 4

LABEL newDistobjTreeStart = 5
LABEL newDistobjTreelogDelta = 6

LABEL newDistobjTreeReturnlID = 7
LABEL newDistobjTreeReturnsSlot = 8
MODULE fNewDistobjTree
Begin2: bcC OBJ:hdrCopyablelclassFunction<<hdrClassN{End2-Begin2
DC {fNewDistobjTree}
DC 9
MOVE (newDistobjTreeLoghelta, A3}, R3
BZ R3, "Leaf
SUB R3,1,R3
MOVE NNR, R1
pC MSG:msgApplyFunctioni9
SEND20 R1,R0O ;Call fNewDistobjTree twice, each time on half of the range
DC {fNewDistobjTree} :of constituents.
SENDO RO
SENDO [newDistobjTreeClass,A3]
SENDO [newDistobjTreeSize, A3)
SENDO [newDistobjTreelID,A3]
SEND20 [(newDistobjTreeStart,A3],R3
MOVE 9, R0
SEND2EC [contextID,Al},RO
WTAG RO, CFUT, RO :Make a cfuture in RO.
MOVE RO, [9,Al]
MOVE [newDistobjTreelID, A3},R1
MOVE (newDistobjTreeStart, A3}, RO
MOVE 1,R2
ASH R2,R3,R2
ADD RO, R2, R0
MOVE RO, [11,A1}
CALL co
DC MSG:msgApplyFunction|?
SEND20 R1,R0
DC {fNewDistobjTree}
SENDO RO
SENDO [newDistobjTreeClass,A3]
SENDO [newDistobjTreeSize, A3]
SENDO {newDistobjTreelD, A3]
SEND20 {11,Al],R3
MOVE 10, R0
SEND2EQ [contextID,Al},RO

219

wrngprse s s Concurrent Smalltalk. on the Message-Driven Processopae ar et s 5oy darn . ympetod 088 00y 20

RO, CFUT, RO iMake & cfutuze in RO.-

WTAG
MOVE "o, {10,A1)
nove A1l 00 .:Foxos the sfutures..
o t16,a13,m0 - v ' , PR
Leaf: MOVE o . 1Ans,Ad] , RO
mm ‘m immuuo:.uumujmaotmucm-mmuhu.
| i A3}, N6
GAlLL @0
nove .
CALL
HOVE
nove
Ve
[i
il
[
Return: Ve
"ML
-]
SND29
SENDY
X
:)
nd2s

L4
SEP REV fNewDistobiTrae = ID:{1<CA{2amME) C<oX| (26mY) <CSY| (24m8) << | (26mi) <<a8)

DOWILGAD Laehugtethod
DOMROAD £ umﬁ

[N . E

220

Bibliography

[1]1 Abelson, Harold and Sussman, Gerald J. Structure and Interpretation of Computer
Programs. MIT Press, Cambridge, MA, 1985.

[2] Agha, Gul. Actors: A Model of Concurrent Computation in Distributed Systems. MIT
Press, Cambridge, MA, 1986.

(3] Aho, Alfred V., Sethi, Ravi, and Ullman, Jeffrey D. Compilers: Principles, Techniques,
and Tools. Addison-Wesley, Reading, MA, 1986.

[4] Athas, William C. “Fine Grain Concurrent Computation.” California Institute of
Technology Ph.D. Thesis, 1987.

[5] Atkinson, Robert G. “Hurricane: An Optimizing Compiler for Smalltalk.” Proceedings
of the 1986 Object-Oriented Programming Systems, Languages, and Applications Con-
ference, September 1986.

[6] Bobrow, Daniel G., DeMichiel, Linda G., Gabriel, Richard P., Keene, Sonya E,,
Kiczales, Gregor, and Moon, David A. Common Lisp Object System Specification,
Chapters 1 and 2. X3J13 Document 88-002R, June 1988.

[7] Burke, Glenn and Moon, David. “Loop Iteration Macro.” MIT Laboratory for Com-
puter Science Memo TM-169, January 1981.

[8] Chien, Andrew A. “Concurrent Aggregates (CA): An Object-Oriented Language for
Fine-Grained Message-Passing Machines.” MIT Artificial Intelligence Laboratory
Technical Report 1248, July 1990.

[9] Chien, Andrew A. “The Concurrent Aggregates (CA) Language Report, Version 0.3.”
Working Draft, MIT Concurrent VLSI Architecture Group, April 1989.

[10] Chien, Andrew A. “The Particle-in-Cell Code (PIC): An Application Study for CST.”
MIT Concurrent VLSI Architecture Memo 16, December 1988.

[11] Dally, William J. “Fast Context Switching on the MDP.” MIT Concurrent VLSI Archi-
tecture Memo 13, August 1988.

[12] Dally, William J. “Micro-Optimization of Floating-Point Operations.” Proceedings of
the 3rd International Conference on Architectural Support for Programming Languages
and Operating Systems, April 1989,

[13] Dally, William J. A VLSI Architecture for Concurrent Data Structures. Kluwer,
Boston, MA, 1987.

[14] Dally, William J. et al. “Architecture of a Message-Driven Processor.” Proceedings of
the 14th ACM/IEEE Symposium on Computer Architecture, June 1987, pp. 189-196.

[15] Dally, William J. et al. “The Message-Driven Processor.” Hot Chips III Symposium,
August 1991, p. 2.11-2.21.

[16] Dally, William J. et al. “Message-Driven Processor Architecture, Version 11.” MIT
Concurrent VLSI Architecture Memo 14; MIT Artificial Intelligence Laboratory Memo
1069, March 1988.

[17] Dally, William J. and Chien, Andrew A. “Object-Oriented Concurrent Programming in
CST.” Proceedings of the 3rd Conference on Hypercube Concurrent Computers and Ap-
plications, Pasadena, CA, January 1988.

[18] Deutsch, L. Peter, and Schiffman, Allan M. “Efficient Implementation of the
Smalltalk-80 System.” Conference Record of the Tenth Annual ACM Symposium on
Principles of Programming Languages. 1983.

221

Concurrent Smalltalk on the Message-Driven Processor

[19] Fiske, James Alexander Stuart. “A Reconfigurable Arithmetic Processor.” MIT Mas-
ter's Thesis in Electrical Engineering And Computer Science, December 1988.

[20] Goldberg, Adele and Robson, David. Smalltalk-80: The Language and its Implemen-
tation. Addison-Wesley, Reading, MA, 1983.

[21] Horwat, Waldemar. “A Concurrent Smalltalk Compiler for the Message-Driven Pro-
cessor.” MIT Artificial Intelligence Laboratory Technical Report 1080, May 1988.

[22] Horwat, Waldemar, Chien, Andrew A., and Dally, William J. “Experience with CST:
Programming and Implementation.” Proceedings of the 1989 ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, Portland, OR, June 1989.

[23] Horwat, Waldemar and Totty, Brian. “Message-Driven Processor Architecture, Version
10.” MIT Concurrent VLSI Architecture Memo, March 1988.

[24] Horwat, Waldemar and Totty, Brian. “Message-Driven Processor Simulator, Version
5.0.” MIT Concurrent VLSI Architecture Memo, December 1987.

[25] Horwat, Waldemar. “Message-Driven Processor Simulator, Version 7.0.” MIT Concur-
rent VLSI Architecture Memo 38, May 1991,

[26] Johnson, Ralph E., Graver, Justin O., and Zurawski, Lawrence W. “T'S: An Optimizing
Compiler for Smalltalk.” Proceedings of the 1988 Object-Oriented Programming Sys-
tems, Languages, and Applications Conference, September 1988.

[27] Keene, Sonya E. Object-Oriented Programming in COMMON LISP: A Programmer’s
Guide to CLOS. Addison Wesley, 1989.

[28] Knuth, Donald E. The Art of Computer Programming, Volume 3: Sorting and Search-
ing. Addison-Wesley, Reading, MA, 1973.

[29] Lieberman, Henry and Hewitt, Carl. “A Real-Time Garbage Collector Based on the
Lifetimes of Objects.” Communications of the ACM, June 1983.

[30] Manning, Carl R. “ACORE: The Design of a Core Actor Language and its Compiler.”
MIT Master’s Thesis in Computer Science, May 1987.

[31] Rees, Jonathan and Clinger, William (editors). “Revised Report on the Algorithmic
Language Scheme.” MIT Artificial Intelligence Laboratory Memo 848a, September
1986.

[32] Song, Paul Y. “Design of a Network for Concurrent Message Passing Systems.” MIT
Master’s Thesis in Computer Science, May 1988.

[33] Spertus, Ellen. “Dataflow Computation for the J-Machine.” MIT Artificial Intelligence
Laboratory Technical Report 1233, June 1990.

[34] Spertus, Ellen. “Preliminary Dataflow on the MDP.” MIT Concurrent VLSI Architec-
ture Memo 21, May 1989.

[35] Steele, Guy L. Common Lisp: The Language. Digital Press, Digital Equipment Corpo-
ration, 1984.

[36] Steele, Guy L. “Rabbit: A Compiler for Scheme.” MIT Artificial Intelligence Technical
Report 474, May 1978.

[37] Stroustrup, Bjarne. The C++ Programming Language. Addison-Wesley, Reading, MA,
1987.

[38] Totty, Brian K. “An Operating Environment for the Jellybean Machine.” MIT Artifi-
cial Intelligence Laboratory Memo 1044, October 1988.

[39] Yokote, Yasuhiko, and Tokoro, Mario. “The Design and Implementation of Concur-
rentSmalltalk.” Proceedings of the 1986 Object-Oriented Programming Systems, Lan-
guages, and Applications Conference, September 1986.

222

Bibliography

[40] Yokote, Yasuhiko, and Tokoro, Mario. “Experience and Evolution of Concurrent-
Smalltalk.” Proceedings of the 1987 Object-Oriented Programming Systems, Lan-
guages, and Applications Conference, October 1987.

[41] Wills, D. Scott. “Multi-Model Execution on a Fine Grain Message Passing Substrate.”
MIT Concurrent VLSI Architecture Memo 20, January 1989.

[42] Wills, D. Scott. “Pi: A Parallel Architecture Interface for Multi-Model Execution.”
MIT Artificial Intelligence Laboratory Technical Report 1245, July 1990.

[43] Wulf, William M., Johnsson, Richard K., Weinstock, Charles B., Hobbs, Steven O., and
Geschke, Charles, M. The Design of an Optimizing Compiler. American Elsevier, New
York, 1975.

223

Concurrent Smalltalk Index

1131, 132, 146, 168
132, 133

" 133

#:132,133

#\ 133

#L 168

% 131

& 131, 132
&cas-er 138
&cwriter 138
&guard 168
&immutable 138

&inline 138, 139, 140, 141,

147, 148
&name 140
&no-leak 140
&non-strict 141
&non-strict 144, 145

¬-inline 138, 140, 141,

147, 148
¬-inline-default 139
&predicate 138
&reader 138
&side-effect-free 141
&value 140, 141
&writer 138
‘132
*161
+ 161
-161
/161
/161
: 137, 140, 141, 147, 148
141
; 15, 134
< 160
<= 160
<> 160
= 160
> 160
>= 160
? 131, 132, 149, 168
@ 132, 168
[]148
\ 133
A 131
_ 131, 140, 147
Abstract Class 130
Abstract Method 130
Acquire 163
Add-method 143
And 160

Short-Circuit 161
Application 146

Argument 14, 140
Evaluation Order 145
Passing Convention 140

Array 152, 164
Boolean 164
Integer 164

Ash 162

Become 129

Begin 17, 135, 144, 149, 170

Block 131, 150

BNF 130

Body 144

Boolean 152

Boolean-Array 152, 164

Busy? 163

CAP 149

Car 15

CAS 147, 149

CAS-er Method 138

Cdr 15

Cfuture 19, 144
Semantics 144

Char-ready? 167

Character 133, 152

Class 15, 133, 137, 152
Abstract 130
Assertion 146
Built-in 137, 152

Hierarchy 153
Immutable 138
Inheritance 137
Inline 139
Inquiry 156
Metaclass 152
Predicate 15, 138

Class-kind? 157

Class-of 156

Clet 17, 18, 131, 147
Multiple Value 148

Co 158

Collection 152

Comments 15, 134

Common Lisp 21, 129, 131,

140, 168

Compact-DCs 173

Compact-Sends 173

Compact-Vars 172

Compile 171

Compiler Option 169

Complex Numbers 131

Complex-Number 130

Concurrency 18

Concurrently 18, 149

Conditional 149

224

Cons 15
Constant 135
Expression 135
Predefined 133
Constituent 158
Number 158
Context Future 144
Continuation 141, 150, 151
Copy 156
Cput 148
Cset 17, 18, 147, 148
Multiple Value 148
Cwriter Method 138
Declare 169, 171
Deep-copy 156
Deep-dispose 156
Defclass 15, 131, 137
Defconstant 131, 135
Defglobal 131, 135, 170
Define 131, 136
Defmacro 21, 168
Defmethod 131, 135, 143, 150
Defparameter 135
Defselector 131, 135, 142
Defun 14, 131, 135, 142, 150
Delete-Dead-Defs 172
Delete-Locals 173
Delete-Moves 172
Delete-Touches 172
Describe 171
Detailed-Progress 171, 173
Display 167
Display-print 167
Display-stream 167
Dispose 156
Distarray 20
Distobj 20, 152, 158
Distributed Object 20, 152,
158
Creation 158
Distributed-Class 152
End-of-file 133, 166
Eq 160
Error 169
Evaluation Order 145
Exit 150
Expression 144
Constant 135
False 133, 152
Fast-Apply 173
Fast-Contexts 172
Ffib 14
Fib 14, 121
Fill 164

Float 152
Fold-Constants 172
Fold-Global-Constants 172
For-each 165
Force 19, 144, 146
Formal 140
Inline 140
No-leak 140
Not-inline 140
Value 140
Format 130
Forward-Tails 172
Frame-Migrate 172
Frame-Regs 172
Frame-Touches 172
Funct 152
Function 14, 15, 16, 140, 152
Calling 141, 146
Inline 141
Non-strict 141
Not-inline 141
Predicate 15, 138
Return Value 141, 150
Side-Effect-Free 141
Future 19, 144, 146, 150
Caveats 146
Context 144
Eager 144
Lazy 144
Semantics 144
Get 148, 165
Get-group 159
Global 133, 135
Goals 129
Group 131, 142, 158, 159
Halt 169
Identifier 131
Undefined 133
If 135, 149
Immutable Class 138
Include 169, 170
Index 158
Inheritance 15, 137
Multiple 137
Init 163, 164
Inline 141, 172
Class 139
Formal 140
Instance Variable 138
Inline-Size-Cutoff 172
Input 166
Instance
Object 15, 156
Variable 15, 138
Integer 152
Integer-Array 152, 164
Integer-Length 162
J-Machine 129

Join 167
Lambda 131, 142, 150
Large-Integer 152
Lazy-Contexts 172
Lazy-Future 146, 150
Lazy-Ivar-Access 172
Let 17, 18, 131, 147
Multiple Value 148
Lfib 17
Lisp-Break 173
Local Variable 17
Lock 19, 152, 163
Logand 162
Logical-Limit 158
Lognot 162
Logor 162
Logxor 162
Loop 131, 149, 150
LRU-Register-Allocation 172
Macro 21, 131, 168
Guard 168
Optional 130
Magnitude 152
Map 164
Max 160
Merge-Code 172
Metaclass 152
Method 14, 15, 140, 143, 171
Abstract 130
Built-in 153
Calling 141, 146
CAS-er 138
Cwriter 138
Inline 141
Non-strict 141
Not-inline 141
Overriding 16
Reader 16, 138
Return Value 141, 150
Reverse 153
Side-Effect-Free 141
Writer 16, 138
Method-Lambda 131, 142,
150
Min 160
Mod 161
Multiple Inheritance 137
Multiple Value 141, 148, 150
MV-clet 131, 148
MV-cset 148
MV-let 131, 148
MV-set 148
N-Nodes 172
Name 131
Undefined 133
Name Space 131
Nconcurrently 149
Neq 160

225

Index

New 156, 158
New-boolean-array 164
New-integer-array 164
New-queueing-lock 163
New-simple-array 164
New-simple-lock 163
New-string 164
Nfor-each 165
Nil 133, 152
No-leak Formal 140
Non-strict 141, 144, 145
Not 160
Not-inline 141
Formal 140
Instance Variable 138
Not-inline-default 139
Nparallel 149, 150
Null 133, 152
Number 131, 133, 152
Object 15, 16, 18, 133, 152
Class 156
Constituent 158
Creation 156
Distributed 20, 152, 158
Creation 158
Instance 15, 156
Optimize-Built-Ins 172
Optimize-Send-Self 173
Option 169, 171
Optional 130
Or 160
Short-Circuit 161
Output 166
Overriding 16
Pair 15, 17
Parallel 18, 149, 150
Parameter 14, 135, 140
Passing Convention 140
Permanent-Definitions 173
Physical-Limit 158
Pragma 169
Precise 172
Predicate Function 15, 138
Primitive
Optional 130
Primitive-Class 152
Print 167
Print-PC 173
Program 135
Progress 171, 173
Put 148, 165
Queueing-Lock 20, 152, 163
Quote 133
Read 167
Read-char 167
Read-line 167
Read-stream 166
Read-stream-char 166

Concurrent Smalltalk on the Message-Driven Processor

Read-stream-line 166
Reader Method 16, 138
Real 152
Receiver 14, 142
Reg-Variables 172
Release 163
Repeat 150
Reply 150, 151
Resource 19
Return 151
Return Value 141, 150
Declaration 141
Multiple 141
Return-value-expected? 151
Reverse Method 153
SC-And 161
SC-Or 161
Scheme 129, 140
Scope 131, 132
Static 142
Selector 14
Restricted 153, 154
Redefining 153
Self 14, 131, 142, 158
Set 17, 147, 148, 170
Multiple Value 148
Shallow-copy 156
Shallow-dispose 156
Show 170
Show-Asm 171
Show-Hcode 171
Show-MDP-Hcode 171
Side-Effect-Free 141
Simple-Array 20, 152
Simple-Lock 19, 152, 163
Size 165
Small-Integer 152
Smalltalk-80 129, 140
Split 167
Split-terminal 167
Standard-Class 152
Statement 144
Application 146
Optional 130
Stream 152, 166
Stream-char-ready? 166
String 133, 152, 164
Subclass 17
Subclass? 157
Subtype 17
Superclass 17, 137
Supertype 17
Symbeol 133, 152
System-stream 152, 166
Terminal-stream 167
Tfib 18
Token 131
Top-Level Form 135

Touch 19, 144, 145
True 133, 152
Type 15, 17
Assertion 146
Checking 17
Declaration 18
Undef 136
Value 140, 144
Formal 140
Multiple 141, 148, 150
Return 141, 150
Declaration 141
Variable
Instance 15, 138
Inline 138
Not-inline 138
Local 17
Scope 142
Vflow-Optimizations 172
Warn-Free-References 173
When 21
While 149
With-locks 163
Write 167
Write-char 167
Write-stream 166
Write-stream-char 166
Write-stream-string 166
Write-string 167
Writer Method 16, 138
Xor 161
Zero? 130, 161

226

CS-TR Scanning Project |
Document Control Form Date: S / 13495

Report #_AT- TR~

Each of the following should be identified by a checkmark:
Originating Department:

:B(Aniﬂcial Intellegence Laboratory (Al)
(O Laboratory for Computer Science (L.CS)

Document Type:

X Technical Report MR) [Technical Memo (TM)
O Other:

Document Information Number of pages: L4°(2.45-/ maG«s)
* Notto include DOD forms, printer intstructions, elc... original pages oniy.

Originals are: ‘ Intended to be printed as :
jz Single-sided or (O Single-sided or
O Double-sided X Double-sided
Print type:
[] Typewtter [OffsetPress [] LaserPrint
[0 inksetPrinter [J Unknown [0 other:

Check each if included with document:

:8(DOD Form (x) [0 Funding Agent Form K Cover Page
,B[Spine 3 Printers Notes Photo negatives
O other:
Page Data:
Blank PageSey segs mmbe:

Photographs/Tonal Material ey page numbes:

Other (noke descriplion/page number).
Description : Page Number:

® innGE M (Jo3) up’sD TiTLE, Crpnle ADSTRACT
(4 1Y) PRGES H'ED Ji <Xi and owHsD PLANK
(15 Q90 PACKE 4 FD J-J26
C,l«[; “OZHS} S<An=6yTHS L} Coy &R S [INE RS

¥6- Q4Y) TROTS _ ‘
Scanning Agent Si noff AW ”"452')0 on Topof"most FPRGAS

~
Date Received: °_/ I¥/95 Date Scanned: _J /24195 Date Retumed: O /5115 5175

!
. .) A, T
Scanning Agent Signature: : Rev /04 DSALCS Document Control Form catrform.ved

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of infarmation s estimated 1o average | hour per rasponse, inciuding the time fOr reviewing Instructions, sear<h ng 2xisting data sources,
gathering and maintaining the data needed, and completing ang reviewing the coliection of intormation Send comments regarding this burden estimate oo any other aspect of this
coltection of information, including suggestions for reducing thes burden. (0 Washington Headquarters Services, Directorate for information Operations and Reperts, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4307 and to the Office of Management and Budqet, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
September 199] technical report
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Concurrent Smalltalk on the Message-Driven Processor N00014-87-K-0825
N00014-87-K-0738
6. AUTHOR(S) MIP-8657531

Waldemar Horwat

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Artificial Intelligence Laboratory REPORT NUMBER
545 Technology Square

Cambridge, Massachusetts 02139 AI-TR 1321

9, SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING

AGENCY REPORT NUMBER
Office of Naval Research GENC
Information Systems

Arlington, Virginia 22217 /@ - 455_7 L//'?/

11, SUPPLEMENTARY NOTES
None

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Distribution of this document is unlimited

13. ABSTRACT (Maximum 200 words)

Million-transistor processors are being manufactured today, and soon it will
be possible to put several million transistors on one integrated circuit. While
memory applications of this technology are clear, it is not obvious how best to
use it for computation purposes. One possibility is the architecture of the
Message-Driven Processor (MDP), which consists of a 32+4-bit CPU, memory,
and a network interface together on one chip. MDPs can be connected di-
rectly to each other to form a 65536-processor, message-passing, MIMD, par-
allel computer, the J-Machine. The MDP’s architecture is unusual in that it
provides a very high processing power to memory ratio.

(continued on back)

13 SUBJECT TERMS (key words) 15. NUMBER OF PAGES

compiler message passing 240

parallel processing object oriented 16. PRICE COOE

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION [19. SECURITY CLASSIFICATION [20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI $1d. 23918
298-102

Block 13 continued:

Concurrent Smalltalk is the primary language used for programming the J-
Machine. Concurrent Smalltalk is the the language of choice because it fits
the J-Machine’s fine-grain, message-passing model well. This thesis de-
scribes Concurrent Smalltalk and its implementation on the J-Machine, in-
cluding the Optimist II compiler and Cosmos operating system. Optimist II
can perform global optimization of programs, including inline function expan-
sion, type inference, and global evaluation of constant expressions. Next,
Cosmos and the Concurrent Smalltalk runtime environment are described.
Finally, some quantitative and qualitative results are presented. The grain
size (the average amount of time a method executes before suspending) was
found to be about 60 instructions, and the MDP was found to execute one in-
struction every two or four cycles, depending on whether external DRAM is
used. A number of qualitative issues are described, along with a few prelimi-
nary results for addressing difficult problems such as controlling parallelism.

Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the ML.L.T
Libraries. Technical support for this project was
also provided by the ML.L.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94

