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Abstract

Hidden Markov Models are one of the most popular and successful techniques used
in statistical pattern recognition. However, they are not well understood on a funda-
mental level. For example, we do not know how to characterize the class of processes
that can be well approximated by HMMs. This thesis tries to uncover the source
of the intrinsic expressiveness of HMMs by studying when and why two models may
represent the same stochastic process. De�ne two statistical models to be equiva-
lent if they are models of exactly the same process. We use the theorems proved in
this thesis to develop polynomial time algorithms to detect equivalence of prior dis-
tributions on an HMM, equivalence of HMMs and equivalence of HMMs with �xed
priors. We characterize Hidden Markov Models in terms of equivalence classes whose
elements represent exactly the same processes and proceed to describe an algorithm
to reduce HMMs to essentially unique and minimal, canonical representations. These
canonical forms are essentially \smallest representatives" of their equivalence classes,
and the number of parameters describing them can be considered a representation for
the complexity of the stochastic process they model. On the way to developing our
reduction algorithm, we de�ne Generalized Markov Models which relax the positivity
constraint on HMM parameters. This generalization is derived by taking the view
that an interpretation of model parameters as probabilities is less important than a
parsimonious representation of stochastic processes.
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Chapter 1

Introduction and Basic De�nitions

1.1 Overview

Hidden Markov Models (HMMs) are one of the more popular and successful tech-

niques for pattern recognition in use today. For example, experiments in speech recog-

nition have shown that HMMs can be useful tools in modelling the variability of hu-

man speech.([juang91],[lee88],[rabiner86],[bahl88]) Hidden Markov Models have also

been used in computational linguistics [kupiec90], in document recognition [kopec91]

and in such situations where intrinsic statistical variability in data must be accounted

for in order to perform pattern recognition. HMMs are constructed by considering

stochastic processes that are probabilistic functions of Markov Chains. The under-

lying Markov Chain is never directly measured and hence the name Hidden Markov

Model.1 An example of an HMM could be the arti�cial economy of Figure 1.1. The

economy in this �gure transitions probabilistically between the states Depressed, Nor-

mal, and Elevated. The average stock price in each of these states is a probabilistic

function of the state. Typically, pattern recognition using Hidden Markov Models is

carried out by building HMM source models for stochastic sequences of observations.

1Hidden Markov Models are also closely related to Probabilistic Automata. Appendix A discusses
the connections in detail and shows that with appropriate de�nitions of equivalence, HMMs can be
considered a subclass of probabilistic automata.

7
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=   transition between states with probability x

This artificial economy is always found in one of three
states: Depressed, Normal or Elevated.   Given that it is
in one of these states it tends to stay there.  The average
daily price of stocks is a probabilistic function of the
state.   For example, when the economy is Normal, the 
average price of stocks is $10 with probability 0.6, and
is $5 with probability 0.15.

Figure 1-1: A Hidden Markov Model Economy

A given sequence is classi�ed as arising from the source whose HMM model has the

highest a posteriori likelihood of producing it. Despite their popularity and relative

success, HMMs are not well understood on a fundamental level. This thesis attempts

to lay part of a foundation for a more principled use of Hidden Markov Models in

pattern recognition. In the next section I will brie
y describe the history of func-

tions of Markov Chains as relevant to this thesis. I will then proceed to discuss the

motivations underlying this research and the major questions that I address here.

Principally, these questions will involve the development of fast algorithms for decid-

ing the equivalence of HMMs and reducing them to minimal canonical forms. The

chapter will conclude by introducing the basic de�nitions and notation necessary for
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understanding the rest of the thesis.

1.2 Historical Overview

As mentioned in the previous section, Hidden Markov Models are probabilistic func-

tions of Markov Chains, of which the arti�cial economy in Figure 1.1 is an example.

The concept of a function of a Markov Chain is quite old and the questions answered

in this thesis seem to have been �rst posed by Blackwell and Koopmans in 1957 in the

context of related deterministic functions of Markov Chains.[blackwell57] This work

sought to �nd necessary and su�cient conditions that would \identify" equivalent

deterministic functions of Markov Chains, and studied the question in some special

cases. Gilbert, in 1959, provided a more general, but still partial, answer to this

question of \identi�ability" of deterministic functions of Markov Chains.[gilbert59]

The topic was studied further by several authors who elucidated various aspects

of the problem. ([burke58], [dharma63a], [dharma63b], [dharma68], [bodreau68],

[rosenblatt71]) Functions of Markov Chains were also studied under the rubric \Grouped

Markov Chains", and necessary and su�cient conditions were established for equiva-

lence of a Grouped Chain to a traditional Markov Chain.([kemeney65], [iosifescu80])

Interest in functions of Markov Chains, and particularly, probabilistic functions of

Markov Chains, has been revived recently because of their successful applications in

speech recognition. The most e�ective recognizers in use today employ a network

of HMMs as their basic technology for identifying the words in a stream of spoken

language.([lee88],[levinson83]) Typically, the HMMs are used as probabilistic source

models which are used to compute the posterior probabilities of a word, given a model.

This thesis arises from an attempt to build part of a foundation for the principled use

of HMMs in pattern recognition applications. We provide a complete characterization

of equivalent HMMs and give an algorithm for reducing HMMs to minimal canon-

ical representations. Some work on the subject of equivalent functions of Markov
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Chains has been done concurrently with this thesis in Japan.[ito92] However, Ito et

al. work with less general deterministic functions of Markov Chains, and �nd an

algorithm for checking equivalent models that takes time exponential in the size of

the chain. (In this thesis, we achieve polynomial time algorithms in the context of

more general probabilistic functions of Markov Chains.) Some work has been done by

Y.Kamp on the subject of reduction of states in HMMs.[kamp85] However, Kamp's

work only considers the very limited case of reducing pairs of states with identical

output distributions, in left-to-right models. There has also been some recent work

in the theory of Probabilistic Automata (PA) which uses methods similar to ours

to study equivalence of PAs.[tzeng] Tzeng cites the work of Azaria Paz [paz71] and

others as achieving the previous best results for testing equivalence of Probabilistic

Automata.2 Appendix A will de�ne Probabilistic Automata and discuss their con-

nections with HMMs. In Chapter 3 we will de�ne Generalized Markov Models, a new

class of models for stochastic processes that are derived by relaxing the positivity

constraint on some of the parameters of HMMs. The idea of de�ning GMMs arises

from work by L.Niles, who studied the relationship between stochastic pattern clas-

si�ers and \neural" network schemes.[niles90] Niles demonstrated that relaxing the

positivity constraint on HMM parameters had a bene�cial e�ect on the performance

of speech classi�ers. He proceeded to interpret the negative weights as inhibitory

connections in a network formulation of HMMs.

1.3 The Major Questions

Despite their popularity and relative success HMMs, are not well understood on

a theoretical level. If we wish to apply these models in a principled manner to

2Paz's results placed the problem of deciding equivalence of Probabilistic Automata in the com-
plexity class co-NP. It is well known that equivalence of deterministic automata is in P and equiv-
alence of nondeterministic automata is PSPACE-complete. Tzeng decides equivalence of PAs in
polynomial time using methods similar to ours.
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Bayesian classi�cation, we should know that HMMs are able to accurately represent

the class-conditional stochastic processes appropriate to the classi�cation domain.

Unfortunately, we do not understand in detail the class of processes that can be

modelled exactly by Hidden Markov Models. Even worse, we do not know how many

states an HMM would need in order to approximate a given stochastic process to

a given degree of accuracy. We do not even have a good grasp of precisely what

characteristics of a stochastic process are di�cult to model using HMMs.3 There is

a wide body of empirical knowledge that practitioners of Hidden Markov Modelling

have built up, but I feel that the collection of useful heuristics and rules of thumb

they represent are not a good foundation for the principled use of HMMs in pattern

recognition. This thesis arises from some investigations into the properties of HMMs

that are important for their use as pattern recognizers.

1.3.1 Intuitions and Directions

The basic intuition underlying a comparison of the relative expressiveness of Hidden

Markov Models and the well-understood Markov Chains suggests that HMMs should

be more \powerful" since we can store information concerning the past in probability

distributions that are induced over the hidden states. This stored information per-

mits the output of a �nite-state HMM to be conditioned on the entire past history

of outputs. This is in contrast with a �nite-state Markov Chain which can be condi-

tioned only on a �nite history. On the other hand, the amount of information about

the output of an HMM at time t, given by the output at time (t�n), should drop o�

with n. It can also be seen that there are many HMMs that are models of exactly the

same process, implying that there can be many redundant degrees of freedom in a

Hidden Markov Model. This leads to the auxiliary problem of trying to characterize

Hidden Markov Models in terms of equivalence classes that are models of precisely

3We can, however, reach some conclusions quickly by considering analogous questions for Finite
Automata. For example, it should not be possible to build a �nite-state HMM that accurately
models the long-term statistics of a source that emits pallindromes with high probability.
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the same process. Such an endeavour would give some insight into the features of an

HMM that contribute to its expressiveness as a model for stochastic processes. Given

a characterization in terms of equivalence classes, every HMM could be reduced to

a canonical form which would essentially be the smallest member of its class. This

is a prerequisite for the problem of characterizing the processes modelled by HMMs,

since we should, at the very least, be able to say what makes one model di�erent from

another. Furthermore, the canonical representation of an HMM would presumably

remove many of the super
uous features of the model that do not contribute to its in-

trinsic expressiveness. Therefore, we could more easily understand the structure and

properties of Hidden Markov Models by studying their canonical representations. In

addition, a minimal representation for a stochastic process within the HMM frame-

work is an abstract measure of the complexity of the process. This idea has some

interesting connections with MinimumDescription Length principles and ideas about

Kolmogorov Complexity. However, these connections are not explored in this thesis.

1.3.2 Contributions of This Thesis

Keeping the goals described above in mind, I have developed quick methods to decide

equivalence of Hidden Markov Models and reduce them to minimal canonical forms.

On the way, I introduce a convenient generalization of Hidden Markov Models that re-

laxes some of the constraints imposed on HMMs by their probabilistic interpretation.

These Generalized Markov Models (GMMs), de�ned in Chapter 3, preserve the essen-

tial properties of HMMs that make them convenient pattern classi�ers. They arise

from the point of view that having a probabilistic interpretation of HMM parameters

is peripheral to the goal of designing convenient and parsimonious representations

for stochastic processes. The reduction algorithm for Hidden Markov Models will,

in fact, reduce HMMs to their minimal equivalent GMMs. Towards the end of the

thesis, I will also brie
y consider the problem of approximate equivalence of models.

This is important because, in any practical situation, HMM parameters are estimated
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from data and are subject to statistical variability. I have listed the major results of

this thesis below. I have developed:

1. A polynomial time algorithm to check equivalence of prior probability dis-

tributions on a given model.

2. A polynomial time algorithm to check equivalence of HMMs with �xed

priors.

3. A polynomial time algorithm to check the equivalence of HMMs for arbi-

trary priors.

4. A de�nition for a new type of classi�er, a Generalized Markov Model

(GMM), that is derived by relaxing the positivity constraint on HMM pa-

rameters. We will give a detailed description of the relationship between

HMMs and GMMs.

5. A polynomial time algorithm to canonicalize a GMM by reducing it to a

minimal equivalent model that is essentially unique. The minimal repre-

sentation, when appropriately restricted, will be a minimal representation

of HMMs in the GMM framework. The result will also involve a charac-

terization of the essential degree of expressiveness of a GMM.

We will see that all these results are easy to achieve when cast the language of

linear vector spaces. The problems discussed here have remained open for quite a

long time because they were not cast in the right language for easy solution.

1.4 Basic De�nitions

In this section I will de�ne Hidden Markov Models formally, and I will introduce the

basic notation and concepts that will be useful in later chapters.
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1.4.1 Hidden Markov Models

De�nition 1.1 (Hidden Markov Model)

A Hidden Markov Model can be de�ned as a quadruple M = (S;O;A;B) where

si 2 S are the states of the model and oj 2 O are the outputs. Taking s(t) to be

the state and o(t) the output of M at time t, we also de�ne the transition matrix

A and the output matrix B so that Aij = Pr(s(t) = sijs(t � 1) = sj) and Bij =

Pr(o(t) = oijs(t) = sj). In this thesis we only consider HMMs with discrete and �nite

state and output sets. So, for future use we also let n = jSj and k = jOj.

In order for an HMM to model a stochastic process, it must be initialized by

specifying an initial probability distribution over states. The model then transitions

probabilistically between its states based on the parameters of its transition matrix

and emits symbols based on the probabilities in its output matrix. Therefore, we

de�ne an Initialized Hidden Markov Model as follows:

De�nition 1.2 (Initialized Hidden Markov Model)

An Initialized Hidden Markov Model is a quintupleM = (S;O;A;B; ~p). The symbols

S, O, A, and B represent the same quantities as they do in De�nition 1.1. ~p is

probability vector such that pi is the probability that the model starts in state si at

time t = 0. We take ~p to be a column vector. Having �xed the priors, the model

may be evolved according to the probabilities encoded in the transition matrix A and

the output matrix B. If N is a given Hidden Markov Model, we will use the notation

N (~p) to denote the HMM N initialized by the prior ~p.

Figure 1.2 shows an example of a Hidden Markov Model as de�ned above. Our

de�nition is slightly di�erent from the standard de�nition of HMMs which actually

corresponds to our Initialized Hidden Markov Models. In our formulation, an HMM

de�nes a class of stochastic processes corresponding to di�erent settings of the prior

probabilites on the states. An Initialized Hidden Markov Model is a speci�c process

derived by �xing a prior on an HMM.
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0.20.5

0.3

1
1

   a    b    c    a    b    a    b    c

0.3
0.3 0.4 0.5 0.5

0.5
0.3

0.2

0.5  0.2  0.3
0.0  0.0  1.0
0.0  0.0  1.0

A = B =
0.3  0.5  0.5
0.3  0.5  0.3
0.4  0.0  0.2

1 2 3

S = { 1, 2, 3 }                     O = { a, b, c }

Figure 1-2: A Hidden Markov Model

1.4.2 Variations on The Theme

It should be pointed out that many variants of Hidden Markov Models appear in

the literature. Authors have frequently used models in which the outputs are as-

sociated with the transitions rather than the states. It can be shown quite easily

that it is always possible to convert such a model into an equivalent HMM accord-

ing to our de�nition.4 However, for somewhat technical reasons, converting from a

hidden-transition HMM to a hidden-state HMM requires, in general, an increase in

the number of states. The literature also frequently uses models with continuously

varying observables. These are easily de�ned by replacing the \ouput matrix" B by

continuous output densities. HMMs with Gaussian output densities are related to

the Radial Basis Functions of [poggio89].5 Some authors also designate \absorbing

states" which, when entered, cause the model to terminate production of a string.

4This is analogous to the equivalence of Moore and Mealy Finite State Machines
5Suppose M is a Hidden Markov Model with states S = fs1; s2; � � � ; sng and Gaussian output

distributions fGs1
; Gs2

; � � � ; Gsn
g associated with the states. Also let x = (o(1); o(2); � � � ; o(t)) is an
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The analysis of such absorbing models is somewhat di�erent from that of the HMMs

in De�nition 1.1 for uninteresting technical reasons. For the substantive problems of

pattern recognition an absorbing model can always be \simulated" in our formula-

tion by creating a state which emits a single special output symbol and loops with

probability 1 onto itself.

1.4.3 Induced Probability Distributions

As described in the de�nition of Initialized HMMs, a stochastic process can be mod-

elled using Hidden Markov techniques by constructing an appropriate HMM, initial-

izing it by specifying a prior probability distribution on the states, and then evolving

the model according to its parameters. This evolution then produces output strings

whose statistics de�ne a stochastic process over the output set of the model. In

recognition applications we are usually interested in the probability that a given ob-

servation string was produced by a source whose model is a given HMM. We quantify

this by de�ning the probability distribution over strings induced by an Initialized

Hidden Markov Model:

De�nition 1.3 (Induced Probability Distributions)

Suppose we are given an HMMM = (S;O;A;B) and a prior distribution ~p. Borrow

the standard notation of the theory of regular languages, and let O� denote the set of

all �nite length strings that can be formed by concatenating symbols in O together.

We then de�ne the probability that a given string x 2 O� is produced by M(~p) as

output string of length t, Then we can use Equation 1.1 to write:

Pr(xjM; ~p) =

X

s(1);���;s(t)

Pr(s(1); � � � ; s(t)jM; ~p) Pr(xjs(1); � � � ; s(t))

=

X

s(1);���;s(t)

Pr(s(1); � � � ; s(t)jM; ~p) Gs(1) [o(1)] � � �Gs(t) [o(t)]

Each of the products of Gaussians in the second equation de�nes a \center" for a Radial Basis

Function. The sum over states then evaluates a weighted sum over the activations of the various

\centers" which are produced as appropriate permutations of the Gsi
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follows. Let m = jxj and let s1; s2 � � � sm 2 S. Then:

Pr(xjM; ~p) � Pr(xjM(~p); jxj) =
X

s1;s2;���sm

Pr(s1; � � � smjM(~p)) Pr(xjs1; � � � sm) (1:1)

Essentially, given a model M, the probability of a string x of length m is the likelihood

that the model will emit the string x while traversing any length m sequence of states.

Because the de�nition conditions the probability on the length of the string, Pr(xjM; ~p)

de�nes a probability distribution over strings x of length m for each postive integer

m. We let � represent the null string and set Pr(�jM; ~p) = 1.

The probability distributions de�ned above specify the statistical properties of the

stochastic process for which the HMM initialized by ~p is a source model. Typical

pattern recognition applications evaluate this \posterior probability" of an observa-

tion sequence given each of a collection of models and classify according to the model

with the highest likelihood.

So an HMM de�nes a class of stochastic processes - each process corresponding

to a di�erent choice of initial distribution on the states. This immediately raises the

question of testing whether two prior distributions on a given model induce identical

processes. In Chapter 2 we will see that there is an e�cient algorithm for deciding

this question. But �rst, in the next section, we will introduce some notation and

techniques that show how to use the basic de�nitions to calculate the quantities of

interest to us.

1.5 How To Calculate With HMMS

The basic quantity we are interested in calculating is the probability a given string will

be produced by a given model. We will see later that for purposes of determining the

equivalence of models and reducing them to canonical forms it also useful to compute

various probability distributions over the states and the outputs. In this section we
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will introduce some notation that will enable us to mechanize the computation of these

quantities so that later analysis becomes easy. The notation and details may become

tedious and confusing and so the reader may wish to skim the section, referring back

to it as necessary.

De�nition 1.4 (State and Output Distributions)

Let M = (S;O;A;B) be an HMM with a prior ~p, n states and k outputs. Let s(t)

and o(t) be, respectively, the state and output at time t. Let ~k(t) be an n-dimensional

column vector such that ki(t) = Pr(s(t) = si; o(1); o(2); � � � ; o(t � 1)jM; ~p). In other

words, ki(t) is the joint probability of being in si at time t and seeing all the previous

outputs. We de�ne mi(t) to be the probability of being in state si after also seeing

the output at time t: mi(t) = Pr(s(t) = si; o(1); � � � ; o(t � 1); o(t)jM; ~p). Finally, let

~l(t) be a column vector describing the probabilities of the various outputs at time t:

li(t) = Pr(o(t) = oi; o(1); o(2); � � � o(t� 1)jM; ~p). From the de�ntion of the B matrix,

we can write this as: ~l(t) = B~k(t).

In order to determine equivalence of HMMs and reduce them to canonical forms

we will need to be able to reason conveniently about the temporal evolution of the

model. Using De�nition 1.4 we can write that ~k(t + 1) = A~m(t). Furthermore, if

o(t) = oj we can factor the de�nition of ~m(t) to write:

mi(t) = Pr(o(t) = oj js(t) = si;M; ~p; o(1); � � � ; o(t� 1)) Pr(s(t) = si; o(1); � � � ; o(t� 1)jM; ~p)

= Pr(o(t) = oj js(t) = si)ki(t)

= Bjiki(t) (1.2)

In order to write Equation 1.2 more compactly, we introduce the following notion of

a projection operator:

De�nition 1.5 (Projection Operators)

Suppose an HMM M = (S;O;A;B) has k outputs. We de�ne a set of projection
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operators fB1;B2; � � �Bkg so that Bi = Diag[ith row of B]. In other words Bi is a

diagonal matrix whose diagonal elements are the row in B corresponding to the output

symbol oi. Sometimes we will use the notation Bo to mean the projection operator

corresponding to the the output o. (i.e. Bo =
P

oi2O
�(o; oi)Bi where �(a; b) is 1 if

a = b and 0 otherwise.) Suppose ~v is a vector whose dimension equals the number

of states of the model. Then multiplying ~v by Bi weights each component of ~v by the

probability that the corresponding state would emit the output oi.

We can use the projection operator notation to compactly write Equation 1.2 as

~m(t) = Bo(t)
~k(t). Now we can write ~k(t+1) = ABo(t)

~k(t) and ~m(t+1) = Bo(t+1)A~m(t).

In order to summarize this we introduce a set of de�nitions for the transition operators

of a Hidden Markov Model.

De�nition 1.6 (Transition Operators)

Given an HMM M = (S;O;A;B) with n states we de�ne the model transition

operators as follows. Let � be the null string. De�ne T(�) = I where I is the n� n

identity matrix. Also, for every oi 2 O de�ne T(ok) = ABo
k
. We can see that T(ok)ij

is the probability of emitting ok in state sj and then entering si. We extend these to

be transition operators on O�as follows. For any output string x = (o1; o2 � � � ot) 2 O
�

let:

T(x) = T(o1; � � � ot) = T(ot)T(ot�1) � � �T(o1) (1:3)

We can interpret these extended transition operators by noticing that T(x)ij is the

probability of starting in state sj, emitting the string x, and then entering state si.

Using the transition operators of De�nition 1.6 we can coveniently write all the quan-

tities we wish to compute. SupposeM is an HMM with n states, k outputs and prior

~p. Take xt to be the output string (o1; o2 � � � ot) and ~1 to be an n-dimensional vector

all of whose entries are 1. Also let xt�1 be the t� 1 long pre�x of xt. Then we can
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see that:

~m(t) = Bot
T(xt�1)~p (1.4)

~k(t+ 1) = A~m(t) = T(xt)~p (1.5)

~l(t+ 1) = B~k(t+ 1) = BT(xt)~p (1.6)

Pr(xtjM; ~p) = ~1 � (T(xt)~p) (1.7)

The reader may wish to verify some of these equations from the de�nitions to ensure

his or her facility with the notation.

1.6 Roadmap

This chapter has developed the background necessary for understanding the results

in this thesis. The basic de�nitions and notation given here are summarized in Ta-

ble 1.1. Chapter 2 discusses the algorithms related to equivalence of Hidden Markov

Models. Chapter 3 de�nes Generalized Markov Models and describes the algorithm

for reducing HMMs to minimal canonical forms. Chapter 3 also contains a funda-

mental characterization of the essential expressiveness of a Hidden Markov Model.

Chapter 4 presents some preliminary ideas concerning several topics including ap-

proximate equivalence and potential practical applications of the results of this thesis.

Finally, Appendix A shows how HMMs, in the formulation of this paper, are related

to Probabilistic Automata.
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Given: an HMMM = (S;O;A;B) with n states, k outputs and prior ~p.

De�nitions:

1. Pr(xjM; ~p) � Pr(xjM(~p); jxj) =P
s1;s2;���sm

Pr(s1; � � � smjM(~p)) Pr(xjs1; � � � sm)

2. Pr(�jM; ~p) = 1 where � is the null string

3. ~k(t) is an n-dimensional vector such that

ki(t) = Pr(s(t) = si; o(1); o(2); � � � ; o(t �

1)jM; ~p)

4. ~m(t) is an n-dimensional vector such that

mi(t) = Pr(s(t) = sio(1); � � � o(t �

1); o(t)jM; ~p)

5. ~l(t) is a k-dimensional vector such that li(t) =

Pr(o(t) = oio(1); o(2) � � � o(t� 1)jM; ~p)

6. The projection operators fB1;B2; � � �Bkg

are de�ned as Bi = Diag[ith row of B]. Also

if o 2 O then we write Bo to denote the pro-

jection operator corresponding to output o.

7. We de�ne transition operators so that:
T(�) = I

T(ok) = ABk;

T(o(1); o(2); � � � o(t)) = T(o(t)) � � �T(o(2))T(o(1))

Model Evolution:

1. Suppose the HMM emits the output xt =

[o(1); o(2); � � � o(t)]. Also use the notation xt�1

to mean the t�1 long pre�x of xt, and the sym-

bol ~1 to mean the n-dimensional vector all of

whose entries at 1. Then we can write:

� ~m(t) = Bo(t)T(xt�1)~p

� ~k(t+ 1) = A~m(t) = T(xt)~p

� ~l(t+ 1) = B~k(t+ 1) = BT(xt)~p

� Pr(xtjM; ~p) = ~1 � (T(xt)~p)

Table 1.1: Summary of Important Notations
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Chapter 2

Equivalence of HMMs

As discussed in the previous chapter, many di�erent Hidden Markov Models can rep-

resent the same stochastic process. Prior to addressing questions about the expressive

power of HMMs, it is important to understand exactly when two modelsM andN are

equivalent in the sense that they represent the same statistics. In Section 2.2 we will

see how to determine when two prior distributions on a given HMM induce identical

stochastic processes. Section 2.3 discusses equivalence of Initialized Hidden Markov

Models. Section 2.4 shows how to determine whether two HMMs are representations

for the same class of stochastic processes. This will lead, in the next chapter, to

a fundamental characterization of the degree of freedom available in a given model.

This characterization will be used to reduce HMMs to minimal canonical forms.

2.1 De�nitions

We begin by de�ning what we mean by equivalence of Hidden Markov Models. First

of all, we should say what it means for two stochastic processes to be equivalent.

De�nition 2.1 (Equivalence of Stochastic Processes)

Suppose X and Y are two stochastic processes on the same discrete alphabet O. For

each x 2 O� let PrX (x) be the probability that after jxj steps the process X has emitted

23
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the string x. De�ne PrY(x) similarly. Then we say that X and Y are equivalent

processes (X , Y) if and only if PrX (x) = PrY(x) for every x 2 O�

In Chapter 1 we discussed the interpretation of an Initialized Hidden Markov Model

(IHMM) as a �nite-state representation for a stochastic process, and we de�ned the

probability distribution over strings induced by the process. We can use these de�ni-

tions to say what we mean by equivalence of Initialized HMMs.

De�nition 2.2 (Equivalence of Initialized HMMs)

LetM and N be two Hidden Markov Models with the same output set, and initialized

by priors ~p and ~q respectively. We wish to say that these initialized models are equiv-

alent if they represent the same stochastic process. So we say that M(~p) is equivalent

to N (~q) (M(~p) , N (~q)) if and only if Pr(xjM; ~p) = Pr(xjN ; ~q) for every x 2 O�.

This is the same as saying thatM(~p), N (~q) exactly when, for every time t, the joint

probability of the output with the entire previous output sequence, is the same for both

models. In the notation of Chapter 1 we can write this as: BMTM(x)~p = BNTN (x)~q

for every x 2 O� [ f�g.

In Chapter 1 we also mentioned that di�erent prior distributions on the same HMM

could induce the same stochastic process. In order to identify the conditions under

which this can occur we make the following de�nition.

De�nition 2.3 (Equivalence of Prior Distributions)

Let ~p and ~q be two di�erent prior distributions on an HMMM = (S;O;A;B). We

say that ~p and ~q are equivalent priors forM (~p
M
= ~q) if and only ifM(~p),M(~q) i.e.,

if and only if the Initialized HMMs derived by �xing the priors on M are equivalent.

We are now ready to de�ne equivalence of Hidden Markov Models. As discussed in

Chaper 1, HMMs can be treated as �nite state representations for classes of stochastic

processes. We would like to say that two HMMs are equivalent if they represent the

same class of processes.
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De�nition 2.4 (Equivalence and Subset Relations for HMMs)

Let M and N be two HMMs with the same output set. Let ~p and ~q denote prior

distributions on M and N repsectively. We say that N is a subset of M (N �

M) if and only if for each ~q on N we can �nd a corresponding ~p on M such that

M(~p) , N (~q). In other words, N is a subset of M if and only if the class of

processes represented by N is a subset of the class of processes represented by M. We

can then write M is equivalent to N (M,N ) exactly when N �M and M� N .

The basic intuition underlying all the results concerning the equivalence of HMMs

is the following: The output distributions of an HMM are linear transformations

that map an underlying dynamics on the states onto a dynamics on the space of

observations. Heuristically, it must be the case that the components of the dynamics

on the states that fall in the null-space of the output matrix must represent degrees of

freedom that are irrelevant to the statistics on the outputs. So, for example, we will

see that two prior distributions on a model are equivalent if and only if their di�erence

falls in a particular subspace of null-space of the output matrix. All the algorithms

discussed in this chapter will achieve their goals by rapidly checking properties of

various vector spaces associated with HMMs.

2.2 Equivalence of Priors

When do two prior distributions on a given model induce the same stochastic process?

This is the most basic question that we would like to answer. Using the notation

developed in Chapter 1, and the de�nition of equivalent Initialized HMMs, we can

write the condition for equivalent priors as follows: ~p
M
= ~q if and only if BT(x)~p =

BT(x)~q for every x 2 O� [ f�g. Let ~� = ~p � ~q. Then we can rephrase this as:

BT(x) [~p � ~q] = BT(x)~� = 0 for every x 2 O� [ f�g. In other words ~p
M
= ~q if and

only if for every string x 2 O� [ f�g we can say that T(x)~� is a vector that falls in

the null-space of the output matrix B. This can be expressed in more geometrical
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terms as follows.

Theorem 2.1 Equivalence of Priors (Geometrical Interpretation) 1

Suppose M = (S;O;A;B) is a Hidden Markov Model with n states and k outputs.

Let ~p and ~q be two prior distributions on Mwith ~� = ~p � ~q. Let N denote the null-

space of the linear transformation B and let I be the largest subspace of N that is

invariant under each of the transformation operators T(oi). Then ~p
M
= ~q if and only

if ~� 2 I.

Proof: First of all suppose ~� 2 I � N . Then because I is invariant under all the

T(oi) we know that T(oi)~� 2 I and, by induction, we can say that for every x =

[o(1); o(2); � � � ; o(t)] 2 O� it is true that T(x)~� = T(ot) � � �T(o1)~� 2 I. We conclude

that T(x)~� 2 N for every x 2 O�[f�g. Therefore, by our earlier discussion, ~p is equiv-

alent to ~q. This proves the su�ciency of our condition for equivalence. Next we prove

necessity. Suppose that ~p
M
= ~q. Then let D =

n
~�(x) : ~�(x) = T(x)~�; x 2 O� [ f�g

o

be the set of all di�erences between T(x)~p and T(x)~q for every string x. If ~�(x) is

any vector in D and T(oi) is any transition operator, then T(oi)~�(x) is also in D.

So D is invariant under the action of the every transition operator and, therefore,

so is Span(D). By assumption of equivalence of priors, every vector in D lies in the

null-space of B. So Span(D) � N . We conclude that Span(D) is a subspace of the

largest subspace of N that is invariant under all the transition operators. This proves

the necessity of our condition for equivalence. 2

In e�ect, the di�erence between equivalent priors is a vector that lies in a subspace

that contributes nothing to the probability distribution over outputs, and remains in

this subspace as the model evolves. It is not enough that ~� simply be in the null-space

1
We remind the reader of the following linear algebraic notions. The null-space of a linear

transformationB fromR
n
to R

k
is the subspace of R

n
that is mapped by B into the k-dimensional

zero vector. An invariant subspace of a linear transformation T from R
n
to R

n
is a subspace V

such that T maps every vector in V into V.
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of B because some of the vectors in the null-space may contribute to the dynamics

of the system and a�ect later distributions over outputs. The fact that ~� lies in an

invariant subspace of the null-space guarantees that ~� will never contribute to the

distribution over outputs, even after the model evolves. Figure 2.1 shows a simple

example in which all the states have the same output distribution, so that the null-

space of B consists of all vectors that sum to zero. Furthermore, for every i, Bi is

proportional to the identity so that T(oi) is proportional to A. Since A is stochastic

it preserves sums and so we see that the space of vectors which sum to zero is an

invariant subspace of everyT(oi). For any priors ~p and ~q we know that ~� = ~p�~q sums

to zero since ~p and ~q are both stochastic. So, as we would expect for this degenerate

case, Theorem 2.1 tells us that all prior distributions on the model induce equivalent

stochastic processes.

Although Theorem 2.1 gives a good understanding of why two priors may be

equivalent for a model, it is not in a form that is immediately useful for developing a

quick algorithm. So we prove another form of the theorem that will be used directly

in the algorithm of Figure 2.2

Theorem 2.2 Equivalence of Priors

Let M = (S;O;A;B) be a Hidden Markov Model. Suppose ~p and ~q are two prior

distributions onM with ~� = ~p�~q. De�ne D =
n
~�(x) : ~�(x) = T(x)~�; x 2 O� [ f�g

o
,

and let V be any collection of vectors in D that forms a basis for the vector space

spanned by the elements of D. Then ~p
M
= ~q if and only every vector in V lies in the

null-space of B.

Proof: First suppose that ~p
M
= ~q. Then V � D and so, from the previous discussion,

every vector in V must fall in the null-space of B, proving the necessity of the theo-

rem. Now suppose that B~vj = 0 for every vector ~vj 2 V. Then, since V is a basis for

the span of D, for every ~�i 2 D there exists a collection of coe�cients fcijg such that

~�i =
PjVj

j=1 cij~vj. So, for every
~�i we can writeB~�i = B

PjVj

j=1 cij~vj =
PjVj

j=1 cij (B~vj) = 0.
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p and q are prior distributions on the states of M.

M = (S,O,A,B)     |S|=3     |O|=2

This probability simplex shows the set 
of valid prior distributions on the three
states of model M.     The dotted arrow
shows the difference between two 
priors.   See text for discussion.

q

p

1

1

1

state1

state2

state3

B = 0.3  0.3  0.3
0.7  0.7  0.7

=
0.3  0.0  0.0
0.0  0.3  0.0
0.0  0.0  0.3

=
0.7  0.0  0.0
0.0  0.7  0.0
0.0  0.0  0.7

0B

1B

Figure 2-1: Geometrical Interpretation of Equivalence of Priors

This is the same as saying that BT(x)~� = 0 for every x 2 O� [ f�g. Consequently,

we have the desired result that ~p
M
= ~q. 2

Theorem 2.2 provides a necessary and su�cient condition for equivalence of priors

on a Hidden Markov Model. We can use it to construct an algorithm by quickly

generating the basis V of the theorem and checking that the elements of the basis fall

in the null-space of B. The algorithm in Figure 2.2 does exactly this.2 We will now

2
Our procedure for checking equivalence of priors can be optimized in various ways. One such

optimization will be presented in the analysis of the running time of the algorithm. We present the

algorithm of Figure 2.2 because it is easier to explain.
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argue that the algorithm is correct and proceed to calculate its running time.

Given: An HMMM = (S;O;A;B)

where jSj = n; jOj = k

And priors ~p and ~q on M

1. V= f g

2. Queue= f ~�g

# Step 1: Find a Basis

3. Until (jQueuej = 0) or (jVj = n) do

4. Let ~f = �rst element in Queue

5. Remove ~f from Queue

6. If ~f 62 Span(V) Then

7. Add ~f to V

8. For each oi 2 O do

9. Add T(oi)~f to Queue

# Step 2: Test the basis
10. For each ~v 2 V do

11. If B~v 6= 0 Then Return(NOT-EQUIVALENT)

12. Return(EQUIVALENT)

Figure 2-2: Algorithm for Detecting Equivalence of Priors

Correctness: The algorithm of Figure 2.2 proceeds in two steps. In Step 1 it

�nds a basis V and, in Step 2, it checks the necessary and su�cient condition for

equivalence given in Theorem 2.2. So, it checks equivalence of priors correctly if V is

indeed a basis for the span of D =
n
~�(x) : ~�(x) = T(x)~�; x 2 O� [ f�g

o
. In order to

analyze the algorithm we will use the terminology that the vector T(oi)~v is a child of

the vector ~v. When the basis �nding step of the algorithm terminates, V contains

a linearly independent collection of vectors. If the step terminated because jVj = n,

we must have a basis for Span(D) since the vectors in D are n-dimensional. Suppose
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now that the basis �nding step terminated because Queue was empty. Each child of

each of the vectors in V was added to Queue by line 9. So each of these children

is either in V or was found to be a linear combination of a set of vectors in V.

Let C denote the set of children of elements of V that are not themselves in V.

Then we can write ~ci =
P

~vj2V
dij~vj for every ~ci 2 C. Suppose now ~v 2 D is not

in V and is not a child of a vector in V. By construction of the algorithm we

can �nd some string x and some ~ci which is a child of a vector in V such that

T(x)~ci = ~v. We wish to show that every such ~v is in the span of V. We will do

this by induction on the length of the string x. If jxj = 1 so that x = ok 2 O,

then for some ~ci we know that ~v = T(ok)~ci = T(ok)
P

~vj2V
dij~vj =

P
~vj2V

dijT(ok)~vj.

So we see that ~v is a linear combination of children of elements of V, which all

necessarily fall in the span of V. Hence ~v falls in the span of V if ~v = T(x)~ci for

any x of length one and any ~ci 2 C. Now assume that for every x such that jxj � t

we know that ~v = T(x)~ci is in the span of V. So we write that ~v =
P

~vj2V
dvj~vj.

Then for every string y = xok of length t + 1 we know that there is a ~cj such that

~u = T(y)~cj = T(ok)T(x)~ci = T(ok)~v = T(ok)
P

~vj2V
dvj~vj. Taking the multiplication

by T(ok) into the sum we see that ~u is a linear combination of vectors in V and their

children, all of which fall in Span(V). So ~u 2 Span(V) also. By induction on t = jxj,

all ~v 2 D are in the span of V. Therefore, as claimed, V is a basis for the span of

the vectors in D. The second step of the algorithm then evaluates the necessary and

su�cient condition of Theorem 2.2 on the basis generated in the �rst step. Therefore,

our algorithm is correct. 2

Running Time: We will now compute the worst case running time of the equiv-

alent priors algorithm asuming unit cost arithmetic operations. Once the basis V is

generated in Step 1, the check performed in Step 2 takes O(n2k) time since jVj � n

and each multiplication by B takes time O(nk). In addition, it takes O(n2k) time to

generate all the T(oi) matrices used in the algorithm from the given A and B ma-

trices. To analyze Step 1, we observe that each multiplication of ~f by T(oi) in line 9
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takes time O(n2). In the worst case the basis V generated in Step 1 will contain n el-

ements. For every ~v 2 V and every oi 2 O, line 9 adds all vectors T(oi)~v to Queue.

So, in all, time O(n2 � nk) = O(n3k) could be spent extending Queue. The �nal

contribution to the running time is from the check in line 6 of the algorithm to see

if ~f should be added to the partially generated basis. We observe that ~f 62 Span(V)

can be tested in time O(njVj2 + jVj3) by standard Gaussian elimination.[press90]

In the worst case, the �rst n � 1 vectors that are tested in line 6 will be added

to the basis, and all the remaining nk � (n � 1) vectors in Queue will have to be

tested to �nd the last basis vector. So, for large k and n, these tests will take time

O(n3) � O(nk) = O(n4k). This gives an O(n4k) running time for the algorithm. We

can do better by being a little more clever about the test in line 6. An optimized

algorithm would maintain, in addition to the basis set V, a set U of orthonormal

basis vectors produced by applying the Gram-Schmidt procedure to V. Every time a

vector ~f is extracted from Queue, it is orthogonalized against the current set U. If

the residue of this procedure is the zero vector, ~f is in Span(U) = Span(V), and so ~f

is thrown away.3 If the residue is non-zero, ~f is added to V and the residue is added

to U. The Gram-Schmidt procedure would take time O(njVj) since it just involves

projection of ~f onto each of the vectors in U and jUj = jVj. Repeating the earlier

analysis gives a worst case running time of O(n3k) for this optimized algorithm.

The next section uses this result concerning equivalence of priors to develop an

algorithm to test equivalence of Initialized Hidden Markov Models.

2.3 Equivalence of Initialized HMMs

In order to develop an algorithm to check equivalence of Initialized Hidden Markov

Models we will utilize a popular trick from the theory of Finite Automata. Given two

models we will build a new HMM whose properties will enable us to check equivalence

3We are using the term \residue" to mean the piece of a vector that is left after removing all

components along vectors in a given set.
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of the two given models easily. (See Figure 2.3) SupposeM = (SM;O;AM;BM) and

N = (SN ;O;AN ;BN ) are two HMMs initialized by priors ~p and ~q respectively. Then

we construct a new HMM Q = (SQ;OQ;AQ;BQ) where SQ = SM[SN and OQ = O.

If M has m states, N has n states and jOj = k we de�ne:

AQ =

2
64 AM 0m�n

0n�m AN

3
75 (2.1)

BQ =

�
BM BN

�
(2.2)

(We are using the notation 0i�i for the i by i matrix whose entries are all zero.) Es-

sentially,Q consists of two disjoint HMMs,M and N , which have been concatenated

together as in Figure 2.3. Let ~pQ =
h
~p;~0N

i
be a prior on Q such that it equals the

prior ~p on the states corresponding to M and is zero on the states corresponding to

N . Also de�ne ~qQ =
h
~0M; ~q

i
similarly. Then, by construction, it must be true for

any x 2 O� [ f�g that Pr(xjM; ~p) = Pr(xjQ; ~pQ) and also Pr(xjN ; ~q) = Pr(xjQ; ~qQ).

So M(~p) , N (~q) if and only if ~pQ and ~qQ are equivalent priors for our new HMM

Q. Therefore, as a corollary of the results from the previous section, we can check

equivalence of two initialized Hidden Markov Models in O((n + m)3k) time if the

models have n and m states respectively and share an output set of size k.

In the next section we will investigate algorithms for deciding subset relations and

and equivalence of Hidden Markov Models.

2.4 Equivalence of Hidden Markov Models

In Chapter 1 we discussed the interpretation of HMMs as representations for classes

of stochastic processes, whose elements are derived by initializing prior distributions

on the models. De�nition 2.4 de�ned an HMMN to be a subset of an HMMM (N �

M) when every process that can be represented by N can also be represented byM.

Equivalence of Hidden Markov Models was de�ned by saying M,N exactly when
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M

N

Q

To test equivalence of two Initialized HMMs, M and N , we �rst construct a larger

HMM Q, which contains M and N as disjoint internal chains. If ~p and ~q are the

�xed priors on M and N respectively, checking equivalence of the priors (~p;~0) and

(~0; ~q) for the model Q should check that M and N are equivalent Initialized HMMs.

Figure 2-3: Checking Equivalence of Initialized HMMs

M � N and N � M. This de�nition partitions HMMs into disjoint equivalence

classes that are representations for the same sets of stochastic processes. (This does

not, of course, partition the stochastic processes representable by HMMs into disjoint

classes since a given process may be representable by non-equivalent HMMs.) Our

goal in the next chapter will be to �nd a way of generating a minimal, canonical

representative of each equivalence class in order to isolate the essential expressive

degrees of freedom in an HMM. Producing such canonical representations will also

reduce the computational overhead involved in the use of large models. As a prelude,

in this section, we will develop an algorithm that will check whether two models

M and N are in a subset relation to each other. A corollary will let us check
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equivalence of Hidden Markov Models. We will build up to the algorithm and the

associated characterization of equivalent HMMs by proving a series of lemmas.

Let M1 = (S1;O;A1;B1) and M2 = (S2;O;A2;B2) be two Hidden Markov

Models. From the de�nitions we see that M2 � M1 exactly when for every prior

~p2 on M2 we can �nd a prior ~p1 on M1 that makes M1(~p1) , M2(~p2). Using the

de�nition of equivalent Initialized HMMs (De�nition 2.2) we can write this as: for

every prior ~p2 on M2 there exists a prior ~p1 on M1 such that 8x 2 O� [ f�g we can

write B1T1(x)~p1 = B2T2(x)~p2. This implies the following lemma which essentially

says that there is a stochastic matrix that transforms the priors on one machine into

equivalent priors on the other.

Lemma 2.1 Transformation of Priors

If M1 = (S1;O;A1;B1) and M2 = (S2;O;A2;B2) then M2 � M1 if and only if

there exists a stochastic matrix4 C such that 8x 2 O� [ f�g; B1T1(x)C = B2T2(x).

Proof: First, suppose M2 � M1. Let ~e2(i) be a prior on M2 with all its mass

on state si. Let ~p1(i) be the corresponding prior on M1 such that 8x 2 O� [

f�g; B1T1(x)~p1(i) = B2T2(x)~e2(i). Such an ~p1(i) exists by assumption ofM2 �M1.

LetC be a matrix whose ith column is ~p1(i). In other words,C = [~p1(1)j~p1(2)j � � � j~p1(n2)]

where n2 is the number of states in M2. It is clear that any prior on M2 can be

written as ~p2 =
Pn2

i=1 pi~e2(i) and that we will have:

8x 2 O� [ f�g; B2T2(x)~p2 = B2T2(x)
n2X
i=1

pi~e2(i)

= B1T1(x)
n2X
i=1

pi~p1(i)

= B1T1(x)C~p2

4By \stochastic matrix" we mean a matrix whose entries are all non-negative and whose columns

sum to one
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Since this is true for any ~p2 we can conclude that ifM2 �M1 then 8x 2 O
�[f�g we

can write B1T1(x)C = B2T2(x). Furthermore, by construction, C is stochastic.

To prove the lemma in the other direction, suppose that the matrix C exists and,

for any prior ~p2 on M2, let ~p1 = C~p2 be the corresponding prior on M1. Then,

by the de�nition of equivalence, M1(~p1) , M2(~p2) since 8x 2 O� [ f�g we can

write B1T1(x) (C~p2) = B2T2(x)~p2. Since this is true for any ~p2 we conclude that

M2 �M1. 2

Lemma 2.1 is not a su�ciently powerful characterization of equivalence of HMMs

to enable us to construct an algorithm to check equivalence. Essentially, we want to

�nd a necessary and su�cient condition that does not require us to examine every

�nite pre�x of outputs of a process in order to check the equivalence of models. Our

previous results achieved this goal by examining the properties of various vector spaces

and checking an equivalence condition on their bases. The next lemma we prove will

tell us how to �nd such a vector space that allows us to relax the equivalence condition

in Lemma 2.1. In order to do this we need to introduce a little additional notation.

De�nition 2.5 Su�x Matrix

LetM = (S;O;A;B) be an HMM. De�ne a su�x matrix �(x) = BT(x) for every

x 2 O� [ f�g. So �(x)ij = Pr(M emits xoijM started in state sj). The name

su�x matrix originates from the observation that if z = xy is a string with pre�x

x and su�x y, then �(z) = �(y)T(x). Suppose y is any string in O�. Then we can

always write y = xoi where oi 2 O and x 2 O� [ f�g. For any y = xoi 2 O� we

will use the notation ~�(y) to mean the ith row of �(x). The jth component of ~�(y)

satis�es the equation �(y)j = Pr(M emits yjM started in state sj).

Lemma 2.1 implies that if M2 � M1, then linear dependence amongst the rows of

�1(x) implies dependence amongst the rows of �2(x). This provides a clue that the

key to equivalence of HMMs lies in comparing the spaces spanned by the rows of the

su�x matrix. Investigating this idea leads to the following lemma.
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Lemma 2.2 Equivalence Condition

Let M1 = (S1;O;A1;B1) and M2 = (S2;O;A2;B2) be two Hidden Markov Models.

Let U1 = f~�1(y) : y 2 O
�g be the set of all rows of the su�x matrices of M1. Let

V = f~�1(x1); ~�1(x2); � � �~�1(xl)g be a basis for Span(U1). Then M2 �M1 if and only

if there exists a stochastic matrix C that satis�es the following conditions:

8oj 2 O; ~�1(ok)C = ~�2(ok) (2.3)

8xi such that ~�1(xi) 2 V; ~�1(xi)C = ~�2(xi) (2.4)

8oj 2 O and 8~�1(x) 2 V; ~�1(x) [T1(oj)C �CT2(oj)] = 0 (2.5)

Prior to proving this lemma it will help to gain some intuition for what it means.

Remember that the matrix C in Lemma 2.1 transforms priors on M2 into priors

on M1, and that the jth component of ~�1(x) is the probability of emitting string

x, having started in state sj. Using these two facts we can see that Equation 2.4

says that that for any choice of priors on M2 there is a prior on M1 such that the

probability of emitting a string y is the same for both models if ~�1(y) is in the basis

for Span (U1). Equation 2.3 says the same thing for all strings of length one. We will

eventually use these two facts in the base case of an induction to prove the lemma.

We will see that Equation 2.5 is a way of saying that if ~�1(x)C = ~�2(x) for some x

then this condition is also satis�ed for any string y that is one symbol longer than x.

We will use this as the induction step in the proof below.

Proof: First we will prove that ifM2 �M1 then Equations 2.3 to 2.5 will be true.

So suppose thatM2 �M1. Then by Lemma 2.1, there is a stochastic matrix C such

that for every x 2 O� [ f�g, every row ~�1(xoi) of �1(x) satis�es ~�1(xoi)C = ~�2(xoi)

where ~�2(xoi) is the corresponding row of �2(x). This at once makes Equations 2.3

and 2.4 true. Then we turn to Equation 2.5. Let x be any string in O� [ f�g and

let y = oix be an jxj + 1 long string with x as a su�x. Then by assumption of

M2 � M1, and using the de�nition of the su�x matrix we can make the following
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series of statements:

~�1(y)C = ~�2(y)

~�1(x)T1(oi)C = ~�2(x)T2(oi)

~�1(x)T1(oi)C = ~�1(x)CT2(oi)

=) ~�1(x) [T1(oi)C�CT2(oi)] = 0 (2.6)

The second equation is derived from the �rst from the de�nition of �(x) and ~�(x).

The third equation simply replaces ~�2(x) by ~�1(x)C by assumption of M2 � M1

and Lemma 2.1. Since Equation 2.6 holds for every oi 2 O and for every x such that

~�1(x) 2 V, we have proven the necessity of the lemma. Next we will prove the lemma

in the other direction. Suppose that a stochastic matrix C satisfying the conditions

of the lemma exists. Then, by Equation 2.3, ~�1(x)C = ~�2(x) for every string x of

length 1. Then assume that for all x of length less than or equal to l we can write

~�1(x)C = ~�2(x). For any such x (jxj � l) we can write ~�1(x) =
PjVj

i=1 di~�1(xi) for

some choice of di, where the ~�1(xi) are elements of the basis V. So, by the induction

assumption, and Equation 2.4, we can write: ~�2(x) = ~�1(x)C =
PjVj

i=1 di~�1(xi)C =
PjVj

i=1 di~�2(xi). But this means that for every output oi, we can use Equation 2.5 to

write:

~�1(oix)C = ~�1(x)T1(oi)C =

jVjX
i=1

di~�1(xi)T1(oi)C (2.7)

=

jVjX
i=1

di~�1(xi)CT2(oi) (2.8)

=

jVjX
i=1

di~�2(xi)T2(oi) (2.9)

= ~�2(x)T2(oi) = ~�2(oix) (2.10)

We go from Equation 2.7 to Equation 2.8 by applying condition 2.5 of the lemma. The

next two lines simply substitute the expression for ~�2(x) obtained from the induction



38 CHAPTER 2. EQUIVALENCE OF HMMS

assumption. The conclusion is that if ~�1(x)C = ~�2(x) for all strings x of length less

than or equal to l, then the same is true for strings of length l + 1. This completes

the induction and proves that for every x, we can write ~�1(x)C = ~�2(x), implying

that 8x 2 O� [ f�g�1(x)C = �2(x). By Lemma 2.1, this shows that M2 �M1. 2

Lemma 2.2 could be used to build a polynomial time algorithm for testing equiv-

alence of HMMs. Such an algorithm would begin by generating the basis V in the

lemma. We would use the e�cient basis-generation technique used in Step 1 of our

algorithm for checking equivalence of prior distributions. Then we would use linear

programming techniques to �nd a matrix C satisfying the conditions of the lemma.5

M2 � M1 only if such a matrix is found. Since linear programming problems can

be solved quickly, such an algorithm would run in polynomial time.([karmarkar84])

However, it is possible to do even better. Some recent results in the theory of proba-

bilistic automata ([tzeng]), that are achieved using methods similar to ours, suggest

that the following lemma should be true.

Lemma 2.3 All C matrices are equivalent

Let C1and C2be any two stochastic matrices satisfying ~�1(xi)C1 = ~�1(xi)C2 for every

~�1(xi) 2 V, where V is the basis in Lemma 2.2. Then, for any string x we can write

~�1(x)C1 = ~�1(x)C2.

Proof: Suppose x is any string. Then for some choice of di we know that ~�1(x) =
PjVj

i=1 di~�1(xi) where the ~�1(xi) are the elements of the basis in Lemma 2.2. Then it

is clear that ~�1(x)C1 =
PjVj

i=1 di~�1(xi)C1 =
PjVj

i=1 di~�1(xi)C2 = ~�1(x)C2. 2

Collecting all our lemmas together, we can �nally state our theorem characterizing

equivalent Hidden Markov Models.

5We need to use linear programming rather than straightforward linear algebra because the

stochasticity constraints on C involve inequalities.
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Theorem 2.3 Equivalence of HMMs

Let M1 = (S1;O;A1;B1) and M2 = (S2;O;A2;B2) be two Hidden Markov Models.

Let U1 = f~�1(y) : y 2 O
�g be the set of all rows of the su�x matrices of M1. Let

V = f~�1(x1); ~�1(x2); � � �~�1(xl)g be a basis for Span(U1). Then M2 � M1 if and

only if the following two conditions hold. (a) There exists a stochastic matrix C such

that for every xi satisfying ~�1(xi) 2 V we can write ~�1(xi)C = ~�2(xi). (b) For any

stochastic C satisfying condition (a), the following must be true:

8oj 2 O; ~�1(ok)C = ~�2(ok) (2.11)

8oj 2 O and 8~�1(x) 2 V; ~�1(x) [T1(oj)C �CT2(oj)] = 0 (2.12)

M1 ,M2 if and only if M2 �M1 and M1 �M2.

Proof: The proof follows easily from Lemmas 2.2 and 2.3. Suppose the conditions

(a) and (b) of our theorem hold, and pick any C satisfying them. This C also satis-

�es the conditions of Lemma 2.2 so that M2 � M1. So conditions (a) and (b) are

su�cient to guarantee that M2 � M1. Next we show that they are also necessary

conditions. So suppose that M2 � M1. First notice that Equation 2.11 says that

~�1(x)C = ~�2(x) for every string x of length 1. Also remember from the proof of

Lemma 2.2 that Equation 2.12 essentially says that if ~�1(x) 2 V, then any string

y = oix satis�es the condition ~�1(y)C = ~�2(y). Lemma 2.3 tells us that if C1 and

C2 both satisfy condition (a), then ~�1(x)C1 = ~�1(x)C2 for any string x. So, if any

C satisi�es condition (a) and the equations of condition (b), then every C satisfying

(a) also satis�es condition (b). By Lemma 2.2 there is a stochastic matrix C satisfy-

ing condition (a) and Equations 2.11 and 2.12. Therefore, as discussed above, every

C ful�lling condition (a) also satis�es the equations of (b). This proves that the (a)

and (b) are necessary conditions for M2 � M1 to be true. We have already shown

that they are su�cient conditions and so our proof of the theorem is complete. 2
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Algorithm: We can use Theorem 2.3 to develop a polynomial time algorithm to test

equivalence of HMMs. We do this by �rst checking if M2 � M1 and then checking

M1 �M2. So suppose we are trying to check that M2 �M1. The subset-checking

algorithm starts by generating the basis of Theorem 2.3 using the method of Step 1

in the algorithm for determining equivalence of priors. It then tries to �nd a matrix

C satisfying the equivalence condition (a) for this basis. If no such matrix can be

found, then M2 6� M1. If a C satisfying condition (a) is found, we check that it

satis�es the equations of condition (b). If it passes this test, Lemma 2.2 tells us that

M2 � M1. We check M1 � M2 similarly and answer the question of equivalence

appropriately. Correctness of this algorithm is immediate from the correctness of our

earlier algorithm to determine equivalence of priors, and from Theorem 2.3.

We will now compute the running time of the HMM equivalence algorithm, as-

suming unit cost arithmetic. First of all, it takes O(k(n21 + n22)) time to generate all

the T1(oi) and T2(oi) matrices from the parameters of the HMMs. From our earlier

analysis, the basis-�nding algorithm takes worst-case time O(n31k) when appropri-

ately optimized. We also need to compute ~�2(xi) corresponding to the ~�1(xi) 2 V.

This can be done at the same time that the basis is generated, simply adding a factor

of 2 to the cost. Once the basis is generated, �nding a matrix C satisfying condi-

tion (a) involves solving a system of n2jVj equations in n1n2 variables, subject to

n2+n1n2 stochasticity constraints. Since the constraints involve only linear inequali-

ties (the columns of C sum to one and 8i; j Cij � 0) we can solve for C using linear

programming.([chvatal80]) Karmarkar ([karmarkar84]) gives a worst-case O(Ln3:5)

time algorithm for linear programming where n is the number of variables and L

is size of the linear program in bits. (This is also competitive in practice with the

simplex algorithm.) It is a somewhat sticky business to translate the bit complexity

in terms of L into a complexity in terms of the number of variables and equations in

the linear program. In rough terms, if we are dealing with a �xed number of bits per

number, we can say that L is of the order of O(mn), where mn is roughly the size of
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the linear programming tableau. Using this, we conclude that we can �nd C, if a solu-

tion exists, in worst-case time O [(n2jV j+ n2 + n1n2)(n1n2)
4:5] = O [(n1n2)

5:5] where

we have used the fact that jVj � n1. Once we have generated a matrix C, checking

that it satis�es Equation 2.11 takes time O(kn1n2) and checking Equation 2.12 takes

time O [n1k(n
2
1 + n22 + 2n1n2)]. (Once again, we have used the fact that jVj � n1.)

Gathering all these terms together, and picking the dominant terms as n1, n2 and

k grow large, we �nd that our algorithm for checking M2 � M1 runs in worst-case

time O (n1k(n
2
1 + n22 + 2n1n2) + (n1n2)

5:5). The complexity of checking M1 � M2

is obtained by exchanging n1 and n2 everywhere in this expression. The algorithm

presented here can be optimized in various ways to do somewhat better, but these

optimizations are less interesting and more complicated to explain.
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Chapter 3

Reduction to Canonical Forms

In the previous chapter we de�ned equivalence of stochastic processes and proved how

and why prior distributions on a model may be equivalent. We used these results to

characterize equivalent Initialized Hidden Markov Models. Finally, we made various

appeals to linear algebraic arguments to develop necessary and su�cient conditions

for the equivalence of HMMs. However, our results concerning equivalent HMMs

did not give a clear intuitive characterization of the intrinsic expressiveness of Hidden

Markov Models. In an e�ort to achieve such a characterization, this chapter will de�ne

the canonical dimension of a model. The de�nition is related to our formulation of

the theorems describing equivalent HMMs, and will lead quickly to an algorithm for

�nding canonical representations of models. All the theorems in this section will

be proven in the context of Generalized Markov Models (GMMs) which relax the

postitivity constraints on the parameters of HMMs. We will see that all processes

that can be modelled exactly by Hidden Markov Models can also be modelled by

Generalized Markov Models. Some kinds of GMMs, with appropriate restrictions

placed on the allowable prior distributions, are equivalent to HMMs. In Section 3.2.1

we will see how the results achieved in this chapter should be modi�ed to apply

to HMMs. We begin by de�ning Generalized Markov Models and discussing their

properties.

43
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3.1 Generalized Markov Models

In this section we will de�ne a new class of models of stochastic processes. Since this

new class contains the processes modelled by traditional Hidden Markov Models, we

will christen it the class of Generalized Markov Models. Essentially, the generalization

involves relaxing the positivity constraint imposed by the probabilistic interpretation

of the parameters describing the underlying Markov Chain of an HMM. First we will

discuss why such a generalization may be a good idea, and then we will proceed to

de�ne GMMs and describe their properties.

3.1.1 Why Should We Invent GMMs?

Empirical Reasons: Our �rst motivation for de�nining GMMs is empirical. L.Niles,

in discussing the connections between stochastic classi�ers and neural network schemes,

describes experiments with an HMM-net, a network implementation of an HMM.[niles90]

He reports that corrective training methods lead to HMM-net parameters that vi-

olate probability constraints, but are more more successful in classi�cation tasks.

Niles points out that relaxing the stochasticity constraint on HMM parameters while

preserving the formal structure1 results in a perfectly valid classi�er and decision-

boundary model. Of course, the Bayesian formulation of classi�cation is lost. How-

ever, Bayesian methods are only optimal if the true distributions are known, and this

is very far from the case in most applications of HMMs. In light of these facts, Niles

suggests that HMMs with \negative parameters" may be interesting because, in the

HMM-net formulation of Hidden Markov Models, they have a natural interpretation

as inhibitory connections. If we wish to follow this lead and investigate the properties

of various HMM-like models we should be able to analytically compare the properties

of the di�erent schemes in order to be able to choose between them in a principled

1By formal structure we mean, for example,the formal manipulations by which posterior proba-

bilities are extracted from the model. Of course, once the model parameters cannot be interepreted

as probabilities, we will be computing some non-probabilistic score.
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manner. This thesis initially arose from an attempt to understand the properties of

HMMs su�ciently well to facilitate comparison with other classi�cation schemes. The

Generalized Markov Models we will de�ne in this chapter are a natural generaliza-

tion of HMMs which follow the empirical lead in [niles90] suggesting that \negative

parameters" may be a good idea. We are able to describe, in detail, the conections

between GMMs and HMMs.

Theoretical Reasons: We are also motivated to de�ne GeneralizedMarkovModels

from a theoretical perspective. First of all, we will take the view that an HMM is

simply an iterative, �nite-state scheme used to represent the statistics of stochastic

processes. The interpretation of the model parameters as probabilities is peripheral

to the actual goal of realizing parsimonious and easily manipulated representations

of wide classes of stochastic processes. Therefore, there is no intrinsic reason why

the paramaters of the model should be probabilities, unless we derive a clear bene�t

from the constraints imposed by such an interpretation. If we discover that allowing

negative parameters in our model permits us to build better models, we should not

allow the probabilistic viewpoint to stop us. Secondly, in vague terms, all the results

from the previous chapter dealt with general linear combinations of elements of vector

spaces as opposed to convex combinations of vectors on simplices. (Probabilistic

parameter spaces normally lead to the latter situation.) It seems natural, therefore,

to ask whether it is really necessary for the parameters of an HMM-like model to be

positive in order to successfully model stochastic processes. For example, we may be

able to de�ne a prior with \negative" parameters, without changing the probability

distributions over outputs that we care about. Suppose ~p is a prior on a model M,

and I is an invariant subspace of the null-space of the output matrix. Then we

can remove the components of a ~p that lie in I and the resulting vector ~p 0 will

induce the same stochastic process on M. (See the theorems in Section 2.2) Notice

that ~p 0 may have negative components, although it must still sum to one since the

vectors in I necessarily sum to zero. Given this fact, de�ne a valid prior to be any (not
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necessarily stochastic) vector that induces a valid stochastic process when it initializes

a model. Clearly, from the above discussion, the set of valid priors extends beyond

the probability simplex. Extending the argument, we could permit the columns of the

transition matrix A of a model to also be pseudo-stochastic.2 A generalized model,

de�ned by relaxing constraints in this fashion, has the potential to model a wider

class of processes with the same number of states. This is particularly important

in pattern recognition applications because it is usually far from clear that the true

model of the system is a probabilistic function of a Markov Chain. Typically, the

best we can hope for is to approximate the statistics of a process as closely as possible

with our model. Therefore, a more expressive formalism could intrinsically provide a

better model.

Reasons of Parsimony: The �nal reason to consider Generalized Markov Models

is basically an argument that a smaller model is usually better. As discused in the

previous paragraph, we would like to have more expressive formalisms for modelling

stochastic processes since we are typically dealing with problems of approximating

a system. However, if the formalism involves too many degrees of freedom, it will

su�er from the curse of dimensionality - it will become very di�cult to estimate

the values of the model parameters from the sparse data that is typically available.

So we basically want to \say more with fewer parameters". We can also make the

computational argument that, in general, the more parameters we have to manipulate,

the slower all our algorithms will be. At the same time, the formal methods of

manipulating HMMs are so easy, intuitive and e�cient that we would love to be

able to keep them. The Generalized Markov Models de�ned in this thesis achieve

both these goals by preserving the formal structure of HMMs, but liberating them

from constraints that limit the class of processes a given number of parameters could

model. Essentially, we attempt to get more mileage from each parameter of a model

2We do not relax the stochastic constraints on the ouput matrix because this makes analysis

considerably harder.
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by allowing it to range over a greater domain in a natural way. We will see, for

example, that the smallest HMM equivalent to a given model may have more states

that its smallest representation in the GMM formalism. This is our principal reason

for de�ning GMMs.

We can see from these arguments that it may be worthwhile to consider gener-

alizations of HMMs as techniques for modelling stochastic processes, specially for

pattern recognition applications. In particular, we have seen that it may be a good

idea to relax the positivity constraint on the parameters of Hidden Markov Models.

We will now de�ne Generalized Markov Models and discuss their properties.

3.1.2 De�nition of GMMs

Our �rst task is to de�ne what we mean by \relaxing the positivity constraint" on

probabilities. To this end we make the following de�nition of a pseudo-stochastic

vector:

De�nition 3.1 Pseudo-probability and Pseudo-stochasticity

De�ne an n-dimensional vector ~v to be pseudo-stochastic if each of its components

is real and
Pn

i=1 vi = 1. Each entry of such a vector is called a pseudo-probability.

Pseudo-probabilities of alternative independent events add just like true probabilities.

Also de�ne a pseudo-stochastic matrix to be one whose columns are pseudo-stochastic

vectors. A pseudo-Markov Chain is a Markov Chain whose transition matrix and

prior distribution are both pseudo-stochastic. In the rest of this chapter we will use

frequently use the term \probability" even when we mean pseudo-probability. The

usage will be obvious from the context.

We will de�ne GMMs by essentially replacing the probabilities describing the under-

lying Markov Chain of an HMM with pseudo-probabilities. We will need to impose

some additional constraints on allowable priors on to ensure that the model describes

valid stochastic processes.
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De�nition 3.2 Generalized Markov Models (GMMs)

A Generalized Markov Model is de�ned as a quadruple M = (S;O;A;B) where S is

a set of n states, O is a discrete set of k outputs and B is a stochastic output matrix

as in the de�nition of HMMs. De�ne an n-dimensional pseudo-probability vector ~v

to be possible for M if the product B~v is a stochastic vector. (In other words ~v is

possible if B maps ~v to a probability distribution over the outputs.) Also de�ne an

n-dimensional vector ~u to be valid forM if ~u induces a valid stochastic process when

M is initialized by ~u and evolved according to the formal rules speci�ed in Chapter 1.

We demand that all n-dimensional stochastic vectors be valid for M. The transition

matrix A of a GMM must then be a pseudo-stochastic matrix whose columns are valid

vectors for M.

We can see that GMMs are very similar to HMMs except that the underlying chain

is a pseudo-Markov Chain. By this de�nition, every HMM is structurally a GMM,

but in the GMM formulation we would be permitted to initialize the model with

valid priors that are not stochastic. De�nition 3.2 is not very constructive in that it

does not characterize what the valid priors on a model look like. The results we will

arrive at in this chapter, including the derivation of canonical forms for GMMs, do

not require such a characterization. We will return to this sticky issue brie
y at the

end of the section.

GMM Evolution: We will evolve a GMM forward in time by treating pseudo-

probabilities formally as if they are true probabilities. In particular projection and

transition operators are formally de�ned exactly as in Table 1.1. The only di�erence

lies in the interpretation of the various quantities. The (ij)th component of the

transition operator T(ok) is now understood to be the pseudo-probability that the

underlying chain will transition from state sj to si, weighted by the true probability

of emitting ok in state sj . All probabilities related to the states in an HMM are

replaced by pseudo-probabilities in a GMM, but we still retain the true probability
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interpretation of distributions over outputs. The su�x matrix of De�nition 2.5 will

be important to us in our discussion of reduction of HMMs. For any string x, the

su�x matrix is de�ned as �(x) = BT(x) where B is the GMM output matrix and

T(x) is the GMM transition operator for string x. In the context of GMMs �(x)ij

is the probability that the model emits the string xoi given a pseudo-probability of 1

that the model started in state sj. The meaning of the vectors ~�(x) in De�nition 2.5

is also appropriately modi�ed. Henceforth, when we speak of transition operators,

su�x matrices or any other quantity originally de�ned for HMMs in the context of

GMMs, we will be referring to these objects interpreted as described above.

3.1.3 Properties of GMMs

The most important observation to make about the properties of Generalized Markov

Models is that all the equivalence results of the previous chapter carry over with only

minor modi�cations. In this section we will describe these modi�cations. First of

all, we de�ne equivalence of GMMs and Initialized GMMs in exactly the same terms

as for HMMs. Priors are equivalent if the induce the same stochastic process on a

model, and initialized models are equivalent if they represent the same stochastic

process. The essential di�erence is just that we will allow pseudo-stochastic priors

and transition matrices. Then, Theorems 2.1 and 2.2 concerning equivalence of prior

distributions on HMMs apply immediately to equivalence of pseudo-priors on GMMS.

We can see this is the case because the proofs of these theorems rely only on the linear

structure of the model and do not depend on any property related to stochasticity.

Consequently, the characterization of equivalent Initialized HMMs applies at once

to Initialized GMMs also. At �rst sight, it appears to be a little more di�cult

to translate the theorems concerning equivalence of HMMs into the GMM context,

because they appear to require various quantities to be stochastic. However, a more

careful examination shows they only depend on the fact that stochastic vectors sum

to one. The positivity of probabilities is not used anywhere. We will use this to state
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the following lemmas concerning equivalent GMMs. We will only sketch the proofs

since they parallel those of Chapter 2 with minor modi�cations that the reader can

easily see. As before, we will say that M2 �M1 if every stochastic process that can

be generated by setting a pseudo-prior on M2 can also be generated byM1.

Lemma 3.1 Transformation of Pseudo-priors on GMMs

If M1 = (S1;O;A1;B1) and M2 = (S2;O;A2;B2) are GMMs, then M2 � M1

if and only if there exists a pseudo-stochastic matrix Csuch that we can write

B1T1(x)C = B2T2(x) for every x 2 O� [ f�g. Furthermore, suppose we know that

C0 is a pseudo-stochastic matrix that transforms the stochastic priors ~p on M2 into

equivalent valid priors ~q onM1. Then C
0 transforms every valid prior on M2 into

an equivalent valid prior on M1, so that M2 �M1.

Proof: The proof of the �rst part of Lemma 3.1 follows the proof of Lemma 2.1.

Essentially, we consider pseudo-priors ~e2(i) with all the mass on a state si of M2.

By assumption of M1 ,M2, there are equivalent pseudo-priors ~p1(i) on M1. The

~p1(i) are necessarily valid for M1 because they induce valid stochastic processes by

assumption. The columns of the transformation matrix C, as in Lemma 2.1, will be

set equal to the ~p1(i). The proof then exactly parallels that of Lemma 2.1. To prove

the second part of the lemma, suppose that C0 transforms stochastic priors onM2 on

equivalent valid priors on M1. Then, it transforms the ~e2(i) into pseudo-stochastic

~p1i = C0~e2(i) such that Pr(xjM2; ~e2(i)) = Pr(xjM1; ~p1i) for every string x. Next,

observe that every valid prior ~p2 onM2 can be written as a linear combination of the

stochastic unit priors ~e2(i): ~p2 =
Pn2

i=1 ai~e2(i). Consequently, we can write for every

x 2 O� [ f�g that:

Pr(xjM2; ~p2) =
n2X
i=1

ai Pr(xjM2; ~e2(i))

=
n2X
i=1

ai Pr(xjM1;C
0~e2(i))
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= Pr(xjM1;
n2X
i=1

aiC
0~e2(i))

= Pr(xjM1;C
0~p2) (3.1)

This indicates that it is always true that M2(~p2),M1(C
0) so long as ~p2 is a valid

prior forM2. Since we only assumed that C0 correctly transformed stochastic priors,

this proves the second part of the lemma. 2

The second part of the lemma essentially says that we get equivalence of GMMs

for free if we can prove that the stochastic priors on a pair of machines can be

transformed into equivalent pseudo-priors on each other. A corollary of this is that

equivalent HMMs are also equivalent GMMs. This is true because we know that if

M2 and M1 are HMMs, and M2 �M1, then we can transform stochastic priors on

M2 into equivalent priors on M1 using the transformation matrix C of Lemma 2.1.

Therefore, Lemma 3.1 tells us that C also transforms all valid priors onM2 into valid

priors onM1, implying thatM2 �M1 even when the models are treated as GMMs.

Finally, we turn our attention to Lemma 2.2 and Theorem 2.3 which proved nec-

essary and su�cient conditions for the equivalence of HMMs. Using Lemma 3.1,

and our earlier discussion of the su�x matrix for GMMs, we can see that these

results can be applied directly in the GMM context. We would simply need to re-

quire that the transformation matrix C they invoked be pseudo-stochastic instead

of stochastic. Having convinced ourselves that all the results characterizing equiva-

lence of HMMs carry over to GMMs also, we see that the algorithms developed in

Chapter 2 can be applied to GMMs also. We only need to modify the algorithm

for checking equivalence of un-initialized HMMs by relaxing the stochasticity require-

ment on the transformation matrix C that it solves for. This actually makes the

algorithm more e�cient since we now only need to solve a system of linear equali-

ties rather than inequalitites. (We no longer need the constraint that the entries of

C should be non-negative.) Standard methods for solving systems of linear equalities
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run in O(m3 +m2n) time where n is the number of variables and m is the number

of equations.[press90] Repeating the analysis of the algorithm for determining equiv-

alence of HMMs, we �nd that, in the worst case, we will need to solve n1n2 equations

in n1n2 variables, subject to n2 pseudo-stochasticity constraints. This would take

time O [(n1n2)
3 + (n1n2)

2n1n2] = O [(n1n2)
3]. We conclude that our algorithm for

decidingM2 �M1, whereM2 andM1 are GMMs, has a worst-case running time of

O (n1k(n
2
1 + n22 + 2n1n2) + (n1n2)

3). This is somewhat better than the running time

achieved in the context of HMMs. As before M1 ,M2 is decided by checking that

M2 �M1 and M1 �M2.

Our discussions of Generalized Markov Models have swept an important issue

under a de�nitional rug. Our formulation of GMMs is not satisfactory since it does

not characterize what makes a given pseudo-stochastic vector valid for a given model.

Consequently, the de�nition is not clear about exactly what forms the transition

matrix A is allowed to take. Since this thesis only compares GMMs with each other,

this does not become a di�culty for us - we will always work with models that are

presumed to be well-de�ned. (Obviously, some such models exist since HMMs are

themselves GMMs with priors restricted to be stochastic.) However, if we want to

build GMMs for practical applications we must have a more constructive method

of evaluating the validity of pseudo-stochastic vectors for a given model. At least

partly because of the non-constructive de�nition of GMMs, we have not discussed

the issue of parameter-estimation and training of these models from data. However,

even without properly understanding the nature of valid vectors for GMMs, we can

make progress towards developing training algorithms. Some relevant ideas will be

presented in the next chapter.
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3.2 Canonical Dimensions and Forms

We will now de�ne the canonical dimension of a GMM. This will be a measure that

characterizes the essential degree of freedom available in the model. As decribed

above, we will freely borrow from the notation de�ned in Chapters 1 and 2 to ma-

nipulate HMMs. Distributions over the outputs of the model will remain stochastic.

However, \distributions" over the states of the model will be pseudo-stochastic. We

will now use the su�x matrix (De�nition 2.5) to de�ne the canonical dimension of a

Generalized Markov Model.

De�nition 3.3 Canonical Dimension

LetM be a Generalized Markov Model with su�x matrices �(x) for every x 2 O�[f�g

as in De�nition 2.5. Also let U = f~�(y) : y 2 O�g be the set of all rows of the su�x

matrices of M as in Lemma 2.2. We de�ne the canonical dimension of M(dM) to

be the dimension of the space spanned by the vectors in U . In other words, dM =

dim [Span(U)].

In order to understand the meaning of the canonical dimension of a model, remember

that if ~�(x) 2 U , then the jth component of ~�(x) is the probability that the model

starts in state sj, and emits the string x. So, in some sense, the canonical dimen-

sion of a model captures the maximal degree of freedom we have to de�ne di�erent

stochastic processes by setting up di�erent valid prior distributions. Our de�nition

is also motivated by the following easy result that equivalent GMMs must have the

same canonical dimension.

Theorem 3.1 Invariance of Canonical Dimensions

LetM1 be a GMM with n1 states and canonical dimension d1. LetM2 be any GMM

with n2 states that is equivalent to M1. Let d2 denote the canonical dimension of

M2. Then it must be the case that d2 = d1 and n2 � d1.
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Proof: If M1 , M2, then M1 � M2 and M2 � M1. Suppose then that

M2 �M1. Then, using Lemma 3.1, and we can write:

8x 2 O� [ f�g : ~�1(x)C = ~�2(x) (3:2)

But we can expand ~�1(x) in terms of a basis f~�1(xi)g for U , the span of f~�1(x)g, to

write:

~�1(x)C =
d1X
i

bi~�1(xi)C (3.3)

=
d1X
i

bi~�2(xi) (3.4)

=) ~�2(x) =
d1X
i

bi~�2(xi) (3.5)

Equation 3.5 shows that the collection of vectors f~�2(xi)g forms a basis for the span

of U2 so that d2 � jf~�2(xi)gj = jf~�1(xi)gj = d1. Similarly, since M1 � M2 also,

we can say that d1 � d2 giving us the result that d1 = d2. Finally, notice that the

canonical dimension of a model M with n states must be less than or equal to n,

since the ~�(x) vectors forM will have only n components. So, ifM2 is equivalent to

M1, n2 � d2 = d1. 2

Theorem 3.1 tells us that we cannot build a GMM equivalent to M1 with less

than d1 states. Next we want to show that if M1has canonical dimension d1 and n1

states, where n1 > d1, then we can e�ectively construct an equivalent modelM0 with

only d1 states. We will prove this by �rst demonstrating how a particular special

type of GMM can be reduced. We will then reduce every GMM to this special form,

thereby proving the desired result.

Lemma 3.2 Reduction of a Special Form

Let M = (S;O;A;B) be a GMM with n states. Let I be the largest subspace of the
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null-space of B that is invariant under each of the transition operators T(ok). Also

let ~Bi and ~Ti(x) denote the i
th columns of Band T(x) respectively. Suppose that there

is a collection of coe�cients ffijg and an index �, 1 � � < n such that:

8 l � � : ~Bl =
nX

j=�+1

fjl ~Bj (3.6)

8ok 2 O and 8 l � � : ~Tl(ok) =
nX

j=�+1

fjl ~Tj(ok) + ~�l(ok) (3.7)

where ~�l(ok) 2 I. We will call the states fs1; s2; � � � s�g the dependent states of

M, and fs�+1; s�+2; � � � sng the independent states of M. We can build a model

M0 = (S 0;O;A0;B0) with n0 = n � � states, such that M0 , M, and S 0 contains

only the independent states of M.

Prior to proving the lemma it will help to have some intuitions for why it should

be true. The lemma basically says that a model can be reduced to a smaller size

if the output distributions are linearly dependent and the corresponding columns of

every T(ok) are dependent with the same coe�cients. The basic idea of the proof

is to realize that passing through one of the states sl for l � � is indistinguishable

from passing through the states sm for m > � with pseudo-probabilities weighted

according to the appropriate linear dependency coe�cients.3 (See Figure 3.2) We can

use this observation to redistribute the priors and the outgoing probabilties from each

state in such a way that the linearly dependent states are never visited and can be

thrown away. The proof below is simply a formalization of this idea.

Proof: In the following discussion we will adopt the convention that variables

indexing the states of M0 will range over � + 1 to n. Our proof will proceed in �ve

steps. First we will de�ne B0 and A0. In the second step we will prove an useful

3This is true up to the vector ~�l(oi). However, ~�l(oi) lies in an invariant subspace of the

null-space of B. Consequently, it never contributes to distributions over the outputs, and can be

ignored.
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1

2 3

A21 A31

A11

A13
A12

A22  +  f2 A21
A33  +  f3 A31

A23 +  f3 A21

A32  +  f2 A31

The �gure shows an HMM for which ~B1 = f2 ~B2 + f3 ~B3 and the T(ok) satisfy Equa-

tion 3.7. (We have suppressed the output distributions in the �gure.) In order to

remove the dependent state s1, we excise the transitions to s1 and add them to the

transitions between the independent states weighted appropriately by f2 and f3. The

priors are redistributed in the same way. If we do this, observe that s1 is never visited

and can be thrown away.

Figure 3-1: Reduction of A Special Form

invariance property of A0. Next we will de�ne a pseudo-stochastic transformation of

the priors onM into priors onM0. Then we will use the invariance property of A0 to

show that M � M0. Finally, we will demonstrate that M0 � M. We will �nd it

convenient to de�ne the following matrix:

F =

2
666666664

f(�+1)1 f(�+1)2 � � � f(�+1)�

f(�+2)1 f(�+2)2 � � � f(�+2)�
...

...
...

...

fn1 fn2 � � � fn�

3
777777775

(3:8)
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So F is an n0 � � matrix whose components are the expansion coe�cients assumed

in the lemma. Note that F must be pseudo-stochastic, since all the vectors on both

sides of Equation 3.6 are stochastic and therefore sum to one. We are now ready to

construct the reduced modelM0.

First of all, we will take the new output matrix B0 to simply be the last n0 = n��

columns of B. Our earlier intutitions concerning A0 said that the transitions to

dependent states should be redistributed according to the weights of the expansion

coe�cients. Putting this idea into symbols gives:

A0
ij = Aij +

�X
l=1

Aljfil (3:9)

We can use the F matrix de�ned earlier to compactly write down the relationship

between A, A0, B and B0:

A0 = [FjIn0�n0 ]A

2
64 0��n0

In0�n0

3
75 (3.10)

B = B0 [FjIn0�n0 ] (3.11)

In0�n0 is the n
0 by n0 identity matrix and [FjIn0�n0 ] is the matrix consisting of F and

In0�n0 concatenated together. 0��n0 is the � � n0 zero matrix. Now suppose that

~P (t; xt�1) is a vector such that Pi(t; xt�1) is the pseudo-probability that the model

M emits the string xt�1 and then enters the state si at time t. (This is the pseudo-

distribution over states before seeing the output at time t.) Then suppose it is also

true that:

~P 0(t; xt�1) = [FjIn0�n0 ]
�
~P (t; xt�1) + ~�

�
(3:12)

where ~� is a vector that lies in I. We claim that if Equation 3.12 holds, then the

joint probability of the output at time t and xt�1 is the same for M and M0. Fur-

thermore, regardless of the output at time t it will be true that ~P 0(t + 1; xt) =

[FjIn0�n0 ]
�
~P (t+ 1; xt) + ~�0

�
, where ~�0 is a vector lying in I, the invariant subsapce of
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the null-space of B. We can prove the �rst part of the claim by observing that:

B0 ~P 0(t; xt�1) = B0 [FjIn0�n0 ]
�
~P (t; xt�1) + ~�

�

= B
�
~P (t; xt�1) + ~�

�

= B~P (t; xt�1) (3.13)

The last equation follows because ~� is in the null-space of B. In order to prove

the second part of the claim we assume without loss of generality that o(t) = ok

and evolve the model forward in time. In order to do this, note that the transition

operator T0(ok) can be written as:

T0(ok) = A0B0
k (3.14)

= [FjIn0�n0 ]A

2
64 0��n0

In0�n0

3
75 [0n0��jIn0�n0 ]Bk

2
64 0��n0

In0�n0

3
75 (3.15)

= [FjIn0�n0 ]A

2
64 0��n

0n0�� In0�n0

3
75Bk

2
64 0��n0

In0�n0

3
75 (3.16)

where we have used the fact that B0
k consists of the last n

0 rows and columns of Bk.

We can simplify this a little further by using the notation ~Ai = ith column of A to

write:

A

2
64 0��n

0n0�� In0�n0

3
75Bk =

h
0n��j ~A�+1j ~A�+2j � � � j ~An

i
Bk (3.17)

=
h
0n��j~T�+1(ok)j~T�+2(ok)j � � � j~Tn(ok)

i
(3.18)

Using this we can conveniently compute ~P 0(t+1; xt) as shown below. We will let ~� and

~� 0 denote vectors in I, the invariant subspace of the null-space of B. For compactness
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of the equations we will also write T�(ok) for
h
0n��j~T�+1(ok)j~T�+2(ok)j � � � j~Tn(ok)

i
.

~P 0(t+ 1; xt) = T0(ok)~P
0(t; xt�1) (3.19)

= [FjIn0�n0 ]T�(ok)

2
64 0��n0

In0�n0

3
75 [FjIn0�n0 ]

�
~P (t; xt�1) + ~�

�
(3.20)

= [FjIn0�n0 ]T�(ok)

2
64 0��n

F In0�n0

3
75
�
~P (t; xt�1) + ~�

�
(3.21)

We can now use the fact that the columns of T(ok) are linearly dependent according

to Equation 3.7 to write:

T�(ok)

2
64 0��n

F In0�n0

3
75 =

h
0n��j~T�+1(ok)j~T�+2(ok)j � � � j~Tn(ok)

i
2
64 0��n

F In0�n0

3
75

= T(ok) +
h
~�1(ok)j~�2(ok)j � � � j~��(ok)j0n�n0

i
(3.22)

= T(ok) + � (3.23)

where we have set � =
h
~�1(ok)j~�2(ok)j � � � j~��(ok)j0n�n0

i
. Observe that for any vector

~x of appropriate dimension, �~x 2 I since every column of � is an element of I, the

invariant null-space of B. Therefore, plugging Equation 3.23 into Equation 3.21, we

�nd that:

~P 0(t+ 1; xt) = [FjIn0�n0 ]
�
T(ok)~P (t; xt�1) + ~�0

�
(3.24)

= [FjIn0�n0 ]
�
~P (t+ 1; xt) + ~�0

�
(3.25)

where ~� 0 is some vector in I.4 Equation 3.25 shows us that if the pseudo-probabilities

onM0 satisfy Equation 3.12 at time t, they do so also at time t+1 and, by induction

on t, for all future times. This invariance property of A will be useful shortly in

4We get Equation 3.24 by using the facts that T(ok)~� 2 I since ~� 2 I, and �~x 2 I for any ~x as

discussed before.



60 CHAPTER 3. REDUCTION TO CANONICAL FORMS

proving that M0 and M are equivalent.

We are �nally in a position to show that M0 � M. If ~p is a prior on M,

let ~p 0 = [FjIn0�n0 ] ~p be the corresponding prior on M0. These prior distributions

cause Equation 3.12 to be satis�ed for t = 0 and x = �. Therefore, by our earlier

discussion, Equation 3.12 is satis�ed for all times t and strings xt�1. We also showed

that if Equation 3.12 is satis�ed, then the two models have the same probabilities of

producing the various outputs. Hence, we can conclude that M0(~p 0),M(~p). Since

[FjIn0�n0 ] is a pseudo-stochastic transformation of priors on M into equivalent priors

on M0, we know that M � M0. To show that M0 � M, we will �rst show that

every stochastic prior onM0 can be transformed into an equivalent valid prior onM.

Lemma 3.1 will then show thatM0 �M. So suppose that ~q 0 is a stochastic prior on

M0. Then, construct a prior ~q on M such that:

~q =

2
64 0��n0

In0�n0

3
75~q 0 = (~0�; ~q) (3:26)

where ~0� is the ��dimensional zero vector. We can see at once that ~q 0 = [FjIn0�n0 ] ~q.

Therefore, our earlier discussion shows that M0(~q 0) , M(~q). So Equation 3.26 de-

�nes a pseudo-stochastic transformation of stochastic priors on M0 into equivalent

valid priors on M. By Lemma 3.1 we can conclude that M � M0. Putting every-

thing together we �nally reach the desired conclusion that M0 ,M. 2

All that remains in our quest to �nd minimal representations for GMMs is a

way of transforming all reducible GMMs into the special form that was reduced in

Lemma 3.2. We will now prove a theorem that shows that all reducible GMMs are

already is the special form of Lemma 3.2. This is then used to reduce GMMs to their

minimal equivalent representations.

Theorem 3.2 Reduction of GMMs to Minimal Representations

LetM1 = (S1;O;A1;B1) be a GMM with n1 states and canonical dimension d1 < n1.
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Then M1 can be reduced to a minimal equivalent model M� with only d1 states. If a

model has only as many states as its canonical dimension, we will call it a minimal

representation for its equivalence class.

Proof: We de�ned the canonical dimension ofM1 to be the dimension of the span

of U1 = f~�1(y) : y 2 O
�g, where the ~�1(y) are rows of the su�x matrices of M. Let

V = f~�1(x1); ~�1(x2); � � � ; ~�1(xdM)g be a collection of vectors in U1 that forms a basis

for Span(U1). Then consider a matrix G whose rows are the elements of V. We can

write:

G =

2
666666664

~�1(x1)

~�1(x2)
...

~�1(xd1)

3
777777775
=

�
~g1 ~g2 � � � ~gn1

�
(3:27)

(In this equation the vectors ~gi represent the columns of G.) G is a d1 � n1 matrix

whose rows are linearly independent. So, it has a row-rank d1 and this means that

its column rank is also d1. So, there are only d1 independent columns in G. Assume,

without loss of generality, that the last d1 columns of G are the independent columns

and let � = n1� d1. There must be a set of coe�cients ffjlg such that we can write:

8 l � � : ~gl =
n1X

j=�+1

fjl~gj (3:28)

We are going to use this fact to showM1 already satisi�es the conditions of Lemma 3.2

and can therefore be reduced to a smaller size. In order to do this we will �nd it

convenient to introduce the following matrix:

F =

2
666666664

f(�+1)1 f(�+1)2 � � � f(�+1)�

f(�+2)1 f(�+2)2 � � � f(�+2)�
...

...
...

...

fn1 fn2 � � � fn�

3
777777775

(3:29)
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This matrix is formally the same as the F matrix used in the proof of the special case

reduction lemma. We will see that the similarity is not coincidental. We can use the

F matrix to rewrite Equation 3.28 more compactly as follows:

G

2
64 �I���

F

3
75 = 0 (3:30)

Remember now that every row of every su�x matrix �1(x) can be written as a linear

combination of the rows of G. This implies that corresponding to every matrix �1(x),

there is another matrix S(x) such that �1(x) = S(x)G. (The ith row of S(x) contains

the coe�cients expressing the ith row of �1(x) as a linear combination of the rows of

G.) Using this we �nd that:

8x 2 O� [ f�g : �1(x)

2
64 �I���

F

3
75 = S(x)G

2
64 �I���

F

3
75 = 0 (3:31)

By picking x = � so that �1(x) = B1, and expanding the matrix notation into a

summation, we �nd that:

8 l � � : ~Bl =
n1X

j=�+1

fjl ~Bj (3:32)

where ~Bi is the ith column of B.one Notice that this is exactly the �rst condition

we need in order to apply our earlier lemma on reduction of certain special types of

GMMs. Next, for notational convenience, we de�ne �(ok) such that:

�(ok) = T1(ok)

2
64 �I���

F

3
75 (3:33)

We will refer to the ith columns of �ok and T1(ok) as ~�i(ok) and ~Ti(ok) respec-

tively. Then, for any string y = okx which starts with the output ok we can write
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Equation 3.31 as:

�1(y)

2
64 �I���

F

3
75 = B1T1(y)T1(ok)

2
64 �I���

F

3
75

= B1T1(x)�(ok) = 0 (3.34)

Since this equality holds for every string x 2 O� [ f�g, we can conclude that the

columns of �(ok) are elements of I, the invariant null-space of B1. By expanding the

de�nition of �(ok) we then �nd that:

8ok 2 O and 8 l � � : ~Tl(ok) =
nX

j=�+1

fjl ~Tj(ok) + ~�l(ok) (3:35)

where the ~�l(ok) 2 I are the columns of �(ok). Now Equations 3.32 and 3.35 are

exactly the conditions that make Lemma 3.2 true. Consequently, any GMM with

canonical dimension d1, has only d1 independent states. The method outlined in the

proof of Lemma 3.2 can then be used to reduce M1 to an model M� with only d1

states. Since Theorem 3.1 tells us that no smaller model can be equivalent to M,

M� is a minimal representation of M. 2

Theorem 3.2 shows how a GMM can be reduced to a minimal representation. We

will discuss how this result applies to Hidden Markov Models in Section 3.2.1. In ad-

dition to �nding minimal models, we also want our representations to be \canonical"

in the sense that they are essentially unique. Next, we will prove two theorems that

provide a deeper understanding of the essential reasons for reducibility of GMMs, and

characterize the relationship between equivalent minimal representations of a given

modelM.

Theorem 3.3 Geometric Characterization of Minimal Represenations

As before, we will call a model a minimal representation if it is the smallest

model in its equivalence class. A model is minimal if and only if its invariant null-
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space I consists of only the zero vector. Hence, priors are equivalent for a minimal

representation only if they are equal to each other.

Proof: Let M = (S;O;A;B) be a Generalized Markov Model with n states. We

remind the reader that the invariant null-space I is the largest subspace of the null-

space of the output matrix B, that is invariant under the action of every transition

operator T(ok). Suppose, �rst of all, that M is a minimal representation. Suppose

also that there is a vector ~� 2 I which has some non-zero components. By de�nition

of being an element of I we can write:

8x 2 O� [ f�g : BT(x)~� = �(x)~� = 0 (3:36)

By picking x = � and x = oky where y is any string we can write:

B~� = 0 (3.37)

8y 2 O� [ f�g : BT(y)
h
T(ok)~�

i
= BT(y)~�(ok) = 0 (3.38)

where we have written ~�(ok) for T(ok)~�. The second equation says that ~�(ok) 2 I,

the invariant null-space of B. Writing this out as an equation for the columns of

B and T(ok), and assuming, without loss of generality, that �1 6= 0, we �nd that:

~B1 =
nX

j=2

�
�j

�1
~Bj (3.39)

8ok 2 O ~T1(ok) =
nX

j=2

�
�j

�1
~Tj(ok) + ~�(ok) (3.40)

(As before, we are writing ~Bi and ~Ti(ok) for the the i
th columns of B and T(ok) re-

spectively.) But this means that s1 is a dependent state, in the sense of Lemma 3.2,

and can be reduced away. This contradicts the assumed minimality of the model.

So we see that ifM is a minimal representation, then I can consist only of the zero

vector. Next we will prove that if I = f~0g, then the model is necessarily minimal. So
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assume that I = f~0g. Then suppose that M is not minimal and therefore n > dM,

where dM is the canonical dimension of M. Theorem 3.2 then tells us that there is

a collection of coe�cients ffijg, not all of which are zero, such that:

8x 2 O� [ f�g : �1(x)

2
64 �I���

F

3
75 = 0 (3:41)

where F is de�ned by Equation 3.29. Let ~� be any column of the matrix to the right

of �(x) in Equation 3.41. Then ~� is a vector with some non-zero components that

lies in I.5 This contradicts our assumption about I, telling us that if I consists only

of the zero vector, the model cannot have more states than the canonical dimension,

and is, therefore, minimal. So we have proved that for a model M to be a minimal

representation, it is necessary and su�cient that its invariant null-space consists only

of the zero vector. Observe that, according to the GMM version of Theorem 2.1, this

implies that equivalent priors on a minimal representation are equal to each other. 2

Theorems 3.1 and 3.2 told us that this minimal model has exactly as many states

as its canonical dimension. The result proven just above showed that a minimalmodel

can be characterized geometrically as having an invariant null-space consisting only of

the zero vector. Furthermore, the invariant null-space of a model with n states has a

dimension n�dM where dM is the canonical dimension of the model. One consequence

of this is that no two unequal priors on a minimal model are equivalent. In other

words, equivalence of priors on a minimal model implies equality of priors. This tells

us that the minimal representation indeed removes every last shred of redundancy

available in a model. Every stochastic process that can be modelled by setting the

priors on the machine is represented precisely once, by a distinct prior. We could use

this to build an algorithm to reduce a model to its minimal representation. First of all,

5This is so because for every string x we know that �(x) = BT(x)~� = 0.
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we would �nd the invariant null-space I via standard methods for decomposing vector

spaces based on their invariance properties under di�erent operators. Then we would

�nd a basis for I, and use the basis vectors as shown in the proof of Theorem 3.3 as

the linear dependency coe�cients required by the reduction lemma. However, we can

build a cleaner algorithm directly from Theorem 3.2. We will do this after proving

one more theorem which characterizes the relationship between equivalent minimal

representations in the GMM formalism for a class of stochastic processes.

Theorem 3.4 Relationship Between Minimal Representations

Suppose M = (S;O;A;B) and M0 = (S 0;O;A0;B0) are two n-state GMMs, both of

which are minimal representations of a class of processes with canonical dimension

dM. Then M and M0 are related by a change of basis for the n-dimensional space of

vectors over the states.

Proof: SinceM andM0 are equivalent models, Lemma 3.1 tells us that there are

two pseudo-stochastic matrices C and C0 such that:

8x 2 O� [ f�g : BT(x)C = B0T0(x) (3.42)

8x 2 O� [ f�g : B0T0(x)C0 = BT(x) (3.43)

Picking x = �, this tells us that BC = B0 and B0C0 = B. Then, substituting

Equation 3.43 back into Equation 3.42, and bringing all terms to the right hand side,

we �nd that:

8x 2 O� [ f�g : B0T0(x) [I �C0C] = �0(x) [In�n �C0C] = 0 (3:44)

This means that the corresponding columns of In�n and C
0C are equivalent priors for

M0. But we know from Theorem 3.3 that priors on minimal models are equivalent

if and only if they are equal. So we conclude that C0C = In�n. Similarly, we �nd

that CC0 = In�n, and so we can say that C0 and C are non-singular matrices and are
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inverses of each other.

Now de�ne the terms state vector space and output vector space to mean the

vector spaces associated with distributions over states and outputs respectively. We

will show that M is the same as modelM0 speci�ed in a di�erent basis for the state

vector space of the model. First all, suppose U is a vector space, and S is a non-

singular transformation matrix describing a change of basis for U. Then the change

of basis is described by the following tranformations:

1. Every ~x 2 U is transformed to S~x

2. Every linear operator O which maps U into U is transformed to SOS�1.

3. Every linear operator P mapping U into any other vector space is trans-

formed to PS�1.

Now let S = C0 and let S�1 = C. Equation 3.43 tells us that the priors on M are

mapped onto the priors on M0 by S(i.e., ~p 0 = S~p). We have already observed that

B0 = BS�1. Next, consider the equation BT(y)T(x)S�1 = B0T0(y)T0(x). Substitut-

ing for BT(y) we �nd that for every y 2 O� [ f�g we can write

B0T0(y)ST(x)S�1 = B0T0(y)T0(x) (3.45)

=) B0T0(y) [ST(x)S�1 �T0(x)] = 0 (3.46)

This implies that the corresponding columns of ST(x)S�1 and T0(x), when appropri-

ately normalized to sum to 1, would be equivalent priors forM0. So, by Theorem 3.3

they are equal to each other and we can write:

T0(x) = ST(x)S�1 (3:47)

From this we also know that �0(x) = B0T0(x) = BS�1ST(x)S�1 = BT(x)S�1 =
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�(x)S�1. Summarizing our conclusions we �nd that:

~p 0 = S~p (3.48)

B0 = BS�1 (3.49)

T0(x) = ST(x)S�1 (3.50)

�0(x) = �(x)S�1 (3.51)

These equations decribe transformations that are formally identical to a basis trans-

formation represented by the matrix S. Furthermore, every quantity used to prove

the theorems of this thesis consisted of sums and products of the quantities in Equa-

tions 3.48 to 3.51. So we conclude that equivalent minimal representations are related

by a basis transformation for the state vector space of the models. 2

Theorem 3.4 tells us that the minimal representation obtained in Theorem 3.2 is es-

sentially unique, up to a change of basis for the state vector space. So we have indeed

achieved a satisfactory characterization of the degree of expressiveness in a GMM and

obtained a minimal, canonical representation for the equivalence classes of GMMs.

We will now describe an algorithm that will canonicalize a model by reducing it to

its minimal, canonical representation.

Reduction Algorithm: In order to construct an algorithm to canonicalize GMMs

we will follow the proof of Theorem 3.2. In order to reduce a modelM to its minimal

equivalent form, we need to generate a basis for the span of U = f~�(x) : x 2 O�g.

Using the methods developed in our very �rst algorithm to check equivalence of prior

distributions, we can generate such a basis in O(n3k) time, where n is the number of

states and k is the number of outputs. Then we use standard Gausian elimination to

�nd the linear dependencies amongst the ~gi vectors de�ned in Equation 3.27. This will

take time O(n3+ n2k).[press90] The proof of Theorem 3.2 shows that the coe�cients

of these linear dependencies are the ffijg required by Lemma 3.2 to reduce the model.
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The reduction procedure takes time O(n2 + nk) since we simply have to set the (at

most) O(n2 + nk) parameters of the reduced model according to the rules speci�ed

in Lemma 3.2. Therefore, for large k and n we can reduce a GMM to its minimal,

canonical representation in worst-case time O(n3k).

3.2.1 Results for HMMs

Hidden Markov Models are derived from the subclass of GMMs with stochastic tran-

sition matrices by restricting the priors to also be stochastic. This restriction on the

priors makes it a little di�cult to compare HMMs directly to GMMs. However, we

can make good progress by saying that a GMMM contains an HMM N if for every

stochastic prior ~p on N , we can �nd an equivalent pseudo-stochastic prior ~q on M.

In other other words, M contains N if every process that can be modelled by HMM

N can also be modelled by GMM M. Now let NG denote the GMM derived by

removing the stochasticity restriction on the priors on N . Clearly, if NG � M then

M contains N , since NG can model every process modelled by N . By de�nition of

containment, it is also clear that if M contains N , then all the stochastic priors on

NG can be mapped to equivalent priors on M. But, by Lemma 3.1 this means that

NG � M. So we see that GMM M contains an HMM N if and only if NG � M

where NG is the GMM derived by removing the stochasticity restriction on the priors

on N . We can use this to state the following theorem.

Theorem 3.5 Minimal Representations of HMMs

Suppose N is an HMM and N � is the smallest HMM equivalent to N . Let NG and

N �
G denote the GMMs derived by removing the stochasticity constraints on N and

N � respectively. Then every GMM M that contains N must satisfy NG � M.

Furthermore, the minimal HMM N � has at least as many states as the smallest GMM

equivalent to NG.
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Proof: First of all, suppose that M is a GMM that contains N . Then we know

that the stochastic priors on NG can be transformed into equivalent priors onM. By

Lemma 3.1 we can then conclude that NG � M. Next, by assumption of N , N �,

the stochastic priors on NG and N �

G can be transformed onto equivalent priors on

each other. Therefore, Lemma 3.1 tells us that NG , N �

G also. Now let M� be

the smallest GMM equivalent to NG. Then, since M
� , N �

G and M� is a minimal

model, we can conclude that N �

G has at least as many states as M�. 2

As a corollary of this theorem we can show that the smallest GMM containing a given

HMM N is the minimal representation for NG. This is because we have shown that

every GMM M containing N must satisfy NG � M. It is easy to show that this

implies that the canonical dimension of M must be at least as large as that of NG.

It can also be shown that if A and B are GMMs with the same canonical dimension

and A � B, then A, B. Putting these facts together we can see that the minimal

representation of NG is the smallest GMM we could possibly pick to contain N .

Theorem 3.5 showed that the minimal HMM representation of a class of processes

will be at least as big as the minimal GMM containing that class. We can also show

that if we insist on having a stochastic interpretation of the parameters of a model,

we may sometimes need many more states than the minimal GMM can achieve. We

can see this as follows. Notice that the space of distributions on outputs spanned by

a k-output HMM de�nes a convex polyhedron on the k � 1 dimensional probability

simplex. The vertices of the polyhedron are de�ned by the convex hull of the output

distributions on the states. By choosing the priors on the model appropriately we can

explore every corner of the polyhedron. In the worst case, the output distributions

of every state may fall on the convex hull, and so it would be impossible to build

a smaller stochastic model of them. However, if we permit ourselves to use general

linear combinations, we may �nd that many of the output distributions are linear

combinations of each other, which leads to potential reducibility. This shows that if

our goal is to �nd parsimonious and easily manipulable representations for stochastic
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processes, using GMMs would appear to be a very reasonable course of action.

If we insist on using models with stochastic parameters, it is possible to de�ne a

stochastic canonical dimension of an HMM. This quantity would represent the number

of \basis vectors" we would need if we only used convex combinations in all the places

where we currently use general linear combinations. Analysis of this de�nition is more

di�cult since the \basis vectors" for convex combinations correspond to vertices of

convex polyhedra and the wealth of results concerning bases for linear vector spaces

is not available. However, a brief consideration of the problem suggests that it is very

likely that an HMM can be reduced to a minimal stochastic representation with only

as many states as its stochastic caonical dimension.

We have now concluded the major portion of this thesis. The next chapter will

discuss further directions of research and point out several questions that were not

su�ciently investigated in this work.
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Chapter 4

Further Directions and Conclusions

In Chapter 3 we de�ned Generalized Markov Models, a new class of �nite-state repre-

sentations for stochastic processes, and saw how the results on equivalence of HMMs

could be extended to GMMs. We used this to de�ne the canonical dimension of a

GMM and developed a complete characterization of the minimal, canonical represen-

tations for these models. We also saw how HMMs are related to GMMs, and observed

that a minimal representation for a stochastic process in the HMM formalism neces-

sarily has at least as many states as the minimal representation in the GMM model.

One issue that was not thoroughly investigated in this thesis involves characterizing

the class of valid priors on a GMM. Since the de�nition of GMMs was not construc-

tive, it is not obvious what the space of valid priors on a model looks like. Hence,

we do not have a characterization of the class of valid transition matrices for GMMs.

One way of trying to understand this issue is to apply the well-worn vector space

techniques of this thesis once again, this time to the task of determining whether a

given pseudo-prior is valid for a model. Similarly, we could determine whether a given

transition matrix is allowable. In addition to the problem of characterizing the valid

priors on a model, there are several other important issues that were not considered

in this thesis. We will discuss these in the sections below.

73
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4.1 Reduction of Initialized HMMs

In Chapter 3 we addressed the problem of reducing GMMs to minimal canonical

forms. We saw that a class of processes with canonical dimension d needed at least d

states in its GMM representation. In many applications, after the stage of training

parameters for a model is completed, we will not actually need the freedom of being

able to set di�erent prior distributions on the model. In other words, we will actually

be dealing with an Initialized GMM. Since the model now represents a single process,

it may be possible to reduce the number of states still further.1 So we should consider

how to reduce an Initialized GMM (M; ~p) to a minimal representation (N ; ~q) such

that N (~q),M(~p) and N has as few states as possible.

4.2 Reduction While Preserving Paths

In some pattern recognition applications of Hidden Markov Models the maximum

likelihood path producing an output sequence x is as important as the probability

that x is produced. In such cases, we will be faced with two new issues that were not

addressed in this thesis. First of all, we will have to give meaning to a \maximum

likelihood path" in a Generalized Markov Model. Secondly, we will have to �nd a

method of model reduction that preserves enough information about them to recover

the identity of paths in the original model from paths in the reduced model. There

are some applications in which we are only interested in passage through some small

number of states rather than the entire path. In such situations, the simplest way of

achieving reduction while preserving paths would be to declare the appropriate states

to be irreducible. Such states would never be merged with others in the reduction

algorithm and so their identity would be preserved in the reduced model.

1For example, suppose a GMM has one state that loops on itself with probability 1, and we

initialize the model with all the mass on the looping state. Then, once we have �xed this prior, all

the other states are clearly unnecessary.
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4.3 Training GMMs

When we de�ned Generalized Markov Models in Chapter 3 we made no mention of

training algorithms for these models. This was partly because the class of valid transi-

tion matrices and priors was not characterized, and this makes it di�cult to evaluate

whether a given set of parameters induces valid stochastic processes. Nonetheless,

there are some options that come to mind immediately. First of all, we could use

corrective training methods, such as gradient descent to minimize a squared error

measure. ( Niles [niles90] suggests such a procedure in the context of his HMM-net.)

Furthermore, despite their exotic underlying chains, GMMs still de�ne true probabil-

ity distributions on their output sequences. Consequently, it still makes sense to think

about Maximum Likelihood methods where we would attempt to set the parameters

of the model to maximize the likelihood of a database of examples. The easiest way

to derive a method for updating the parameters would be to follow the derivation

of Levinson et al., who treat Maximum Likelihood Estimation in the framework of

classical constrained optimization.[levinson83]

4.4 Approximate Equivalence

Although the results of the previous chapter are a complete characterisation of equiv-

alence and reduction of GMMs, they can be a little unsatisfying, as the following

example shows. Suppose M is a model whose transition amplitudes are all equal and

all of whose output distributions are linearly independent of each other. According to

our results, this model is not reducible because there is no degeneracy in the output

distributions. Indeed, it is true that we cannot build a smaller model that agrees with

M at all times. This is because it is always possible to pick priors in such a way as to

explore the entire valid span of the output distributions ofM, while a smaller model

could not span a space of the same dimension. Yet, it is clear that after the �rst

output, the distribution over states will be uniform and the probability of emitting
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various outputs will always be unchanged. We might like to ignore the �rst output,

and say thatM can be reduced to a single state, since what happens in the beginning

is an artifact of the prior. Minor modi�cations to our results would accomodate this

- whenever a theorem evaluated a condition for every x 2 O�[f�g, we would instead

evaluate the condition for fx : jxj > 1g. We would also need to appropriately modify

the vector spaces whose properties were checked in various algorithms developed in

this thesis.

However, this brings up the more general question of approximation algorithms.

Often, we may not care about what happens at early or late times. Or we may not

care if the statistics de�ned by two models are exactly the same so long as they are

close. Approximate equivalence in this sense of \closeness" of models is particularly

important because the parameters of probabilistic models are usually estimated from

data. Consequently, exact equivalence will be a rare event. Equivalence ignoring late

or early times can be easily handled within our methods by various slight modi�ca-

tions of our results. The interesting and di�cult problem is to de�ne \closeness" of

stochastic processes appropriately and to prove under what conditions the two GMMs

are \close" under the de�nition.

4.5 Practical Applications

Finally, we should mention the possible practical applications of this work, particu-

larly since it was originally begun in the context of building better practical classi�ers.

Statitical methods and models are being increasingly used in pattern recognition and

other �elds. The models built in some applications can be very large ([kupiec90]) and

reducing them to equivalent models of smaller sizes would be computationally useful.

However, since the parameters of models are typically estimated from data, they will

very rarely be exactly reducible and the approximation algorithms mentioned in the

previous section will be crucial. Since we do not currently have a provably good al-
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gorithm for approximate reduction, a reasonable preliminary course to take would be

to substitute tests for linear dependence with tests for \almost" linear dependence in

all the algorithms and results of the previous chapters. Of course, it is also possible

to simply simply build a smaller model and retrain it from data rather than reducing

a larger model. However, if the model would take a long time to train (e.g., if the

database of examples is very large), or if the large model was constructed for human

readability and manual �ne tuning ([kupiec90]), reduction of a large model would be

a better course of action. Even if we prefer to retrain a smaller model, the canonical

dimension de�ned in Chapter 3 could be evaluated as a way of testing whether a

smaller model should be built and retrained. The reduction algorithm could also be

used as a way of �nding the structure of a good smaller model that is equivalent or

nearly equivalent to the original. Even if we retrain the parameters of the reduced

model, the reduction step would tell us how many states we are likely to need to get

a good representation of the statistics modelled by the larger model.

Another potential practical application involves the implementation and evalua-

tion of GMMs as pattern classi�ers. There is some reason to suspect that given a

GMM and an HMM with n states each, the GMM could perform better as a pattern

classi�er. This is plausible because, given a �xed number of states, a GMM can model

a wider class of processes than an HMM. In practical applications we are typically

dealing with the problem of approximating stochastic sequences. There may be pro-

cesses modelled by n-state GMMs that are much closer to the true process than the

best approximation we can �nd in the HMM formalism. In order to understand this

question from the theoretical viewpoint we would need to make progress along several

fronts including understanding the approximation properties of HMMs. For example,

we would need to be able to compare how accurately a given stationary process can

be represented by HMMs and GMMs with n states each. This is a di�cult problem

worthy of being studied. From the point of view of practical applications, the question

of the usefulness of GMMs is best resolved empirically in the domain of application.
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4.6 Conclusion

This thesis arose from an attempt to build part of a good foundation for pattern

recognition using Hidden Markov Models. There is a need for analytical tools that

will enable us to compare di�erent formalisms for pattern recognition and in order

to predict their relative e�ectiveness. In this thesis, we have proved several theorems

that uncover the source of the intrinsic expressiveness of Hidden Markov Models. We

have shown how to detect equivalence of prior distributions on a model and given

a geometric characterization of equivalent priors. This led to a characterization of

equivalent Initialized Hidden Markov Models and then of equivalent HMMs. We have

given theorems that detect these equivalencies in polynomial time. Next, empirical

and theoretical motivations led us to de�ne the class of Generalized Markov Models

which contain HMMs as a subclass. We used the de�nition to reduce HMMs and

GMMs to minimal, canonical representations which remove all redundancy from a

model. We also developed a geometric characterization of the minimal representations

that gave insight into the source of the expressiveness of GMMs and HMMs. This

characterization also led to a polynomial time reduction algorithm for Generalized

Markov Models. These results lay part of a foundation for the principled use of

�nite-state models of stochastic processes in pattern recognition.
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HMMs and Probabilistic Automata

There have been some recent results in the theory of Probabilistic Automata (PAs)

that use methods very similar to ours to decide the equivalence of PAs in polyno-

mial time.[tzeng] Tzeng's work also discusses a result on approximate equivalence of

PAs that may provide leads on ways to proceed towards understanding approximate

equivalence of HMMs and GMMs. In this appendix we will show how HMMs and PAs

are related. First of all, we will de�ne Probabilistic Automata in Tzeng's formulation.

De�nition A.1 Probabilistic Automata

LetM(i; j) denote the set of all i�j stochastic matrices. A Probabilistic Automaton

U is a 5-tuple (S;�;M; �; F ), where S = fs1; s2; : : : ; sng is a �nite set of states, � is

an input alphabet, M is a function from � into M(n; n), � is a prior distribution on

the states, and F � S is a �nite set of �nal states. M(�)ji is is the probability that

U moves from state si to sj after reading the symbol � 2 �. We say that x 2 ��1

is accepted by U with probability pU (x) if U ends up in a �nal state with probability

pU (x) on reading x.

It is clear from this de�nition that PAs are closely related to HMMs. The matrices

M(�)ji are similar in meaning to HMM transition operators, barring the complication

1We are using the standard notation that �� is the set all �nite length strings that can be

produced by concatentating symbols in � together.
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of the �nal states, the rest of the model is similar also. We will show that with an

appropriate de�nition of equivalence, Initialized HMMs are a subclass of Probabilistic

Automata.

De�nition A.2 Equivalence of PAs and HMMs

Let U be a Probabilistic Automaton and let (M,~p) be a Hidden Markov Model with

O = �, where O is the output set of M, and � is the input alphabet of U. We will

say that U and M are equivalent (U , (M; ~p)) if Pr(xjM; ~p) = pU (x) for every

x 2 O� [ f�g.

De�nition A.2 says that a Probabilistic Automaton U is equivalent to a Hidden

Markov Model Mwhen U accepts strings with the same probability that M emits

them. We will now show that under this de�nition of equivalence, HMMs are con-

tained in the class of Probabilistic Automata.

Theorem A.1 HMMs � PAs

The class of Hidden Markov Models is contained in the class of Probabilistic Automata

when equivalence is de�ned by De�nition A.2.

The basic idea of the proof is shown in Figure A. Given an HMM M, we will build

a Probabilistic Automaton U with the same states plus one extra state to leak away

excess probabilities. We will then set up the matrices M(�)ji to mimic the action

of the HMM transition operators on the states that the two models share. If every

one of the shared states is a �nal state of U, this will guarantee that M and U are

equivalent.

Proof: Suppose M = (S;O;A;B) is any HMM with prior ~p. Construct a PA

U = (SU ;�;M; �; F ) where:

SU = S [ fsUg (A.1)

� = O (A.2)



81

F = S (A.3)

�i =

8
><
>:

pi if si 2 S

0 otherwise

9
>=
>; (A.4)

M(�)ij =

8>>>>>>>><
>>>>>>>>:

B�iAij if si; sj 2 S

1�
P

si2S
M(�)ij if sj 2 S; si = sU

0 if sj = sU ; si 2 States

1 if si = sj = sU

9>>>>>>>>=
>>>>>>>>;

(A.5)

We will prove by induction on the length of strings x that pU (x) = Pr(xjM; ~p)

for every string x. First of all, both models accept the null string with probability 1,

since both start with all the mass of a stochastic vector on the states S. Furthermore,

Pr(si; �jU) = Pr(si; �jM; ~p). Now suppose that for every string x, such that jxj � t,

it is true that pU (x) = Pr(xjM; ~p) and that for every state si 2 S, Pr(si; xjU) =

Pr(si; xjM; ~p). Then for any symbol � 2 � = O, and every state sj, it will be true

that:

Pr(sj; x�jU) =
jSjX
i=1

(B�iAji Pr(si; xjU)) + Pr(sU ; xjU)M(�)jU (A.6)

=
jSjX
i=1

B�iAji Pr(si; xjM; ~p) (A.7)

= Pr(sj; x�jM; ~p) (A.8)

Furthermore, since the accepting states of U are exactly the states in S it also fol-

lows that pU (x�) =
P

sj2S
Pr(sj; x�jU) = Pr(x�jM; ~p). By induction on t = jxj,

we can conclude that for every string x, the probability that x is produced by M is

equal to the probability that x is accepted by U. Hence, (M; ~p), U and, therefore,

HMMs � PAs. On the other hand, it is easy to show that there are probabilis-

tic automata that cannot be implemented as Hidden Markov Models. For example,

de�ne the support of a PA to the set of strings that are accepted with non-zero prob-

ability. The support of an HMM would be the set of strings that are emitted with
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non-zero probability. Because of the de�nitions of the models, a PA could have a �nite

support, or even a support that consists only of strings longer than a �xed length.

Neither of these two cases is possible for an HMM. Furthermore, the various M(�)

matrices of a PA need not bear any relationship to each other, while the correspond-

ing transition operators of HMMs are closely related to each other, via the A and

B matrices. For this reason also it is possible to de�ne PAs that are not equivalent

to any Hidden Markov Model in our formulation of equivalence. So we conclude that

HMMs � PAs. 2

U

M

su

Given an HMM M, we can construct a Probabilistic Automaton
U that is equivalent to M by copying over the structure of M and
adding one extra state to soak up excess probabilities.   (See text
for discussion.)

Figure A-1: Constructing a Probabilistic Automaton Equivalent to An HMM

Theorem A.1 shows that HMMs can be considered a subclass of Probabilistic

Automata. However, if the number of outputs is large, an n-state PA will require
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many more parameters to describe it than an n-state HMM. W.Tzeng proves results

concerning equivalence of Probabilistic Automata using methods that are similar to

ours.[tzeng] He also discusses the problem of approximate equivalence of PAs and

arrives at some interesting results. Since HMMs and PAs are so closely related, the

methods used by Tzeng to extract results concerning approximate equivalence can

guide us in studying the same question for HMMs.
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