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Abstract

Residual vibrations degrade the performance of many systems. Due to the
lightweight and flexible nature of space structures, controlling residual
vibrations is especially difficult. Also, systems such as the Space Shuttle
Remote Manipulator System have frequencies that vary significantly based
upon configuration and loading. Recently, a technique of minimizing
vibrations in flexible structures by command input shaping was developed.
This document presents research completed in developing a simple, closed-
form method of calculating input shaping sequences for two-mode systems
and a system to adapt the command input shaping technique to known
changes in system frequency about the workspace. The new techniques were
tested on a three-link, flexible manipulator.

A closed-form solution was found for calculating sequences for undamped,
two-mode systems. The new sequences will have a time delay up to 25% less
than sequences generated using previous methods. An approximate solution
was found for calculating two-mode sequences for systems with significant
damping. Simplified equations for the multiple-mode cases, based upon the
two-mode solution, are presented, and some possible solution methods are
explained. A similarity between input shaping sequences and windows used
in data acquisition is noticed.

For adapting to frequency variations about the workspace, a method was
developed for determining the system frequencies based upon system
configuration by interpolating values from a table, calculating new sequences
using the two-mode solution, and implementing the sequence. New
sequences are generated in this manner at each time step of the servo loop.

Experiments were performed on the Flexbot, a three-link, flexible
manipulator. The tests showed that the new, two-mode sequences were more
effective at reducing residual vibrations than previous methods of calculating
sequences. Experiments testing the adaptive shaping techniques were
inconclusive. The adaptive scheme was able to significantly improve the
vibration reduction for certain slews but performed worse in other moves.

Thesis Supervisor:
Professor Warren P. Seering
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Introduction

Chapter 1

This thesis presents the development and implementation of an improved
method of reducing residual vibration in flexible systems. The method
presented here is a form of command input shaping. The command input
shaping theory is enhanced to accommodate systems with multiple-modes of
vibration and to adapt to variations in system frequency about the
workspace. This chapter describes the motivation for the work, summarizes
previous research in reducing vibration, and explains the organization for the

rest of the document.

1.1 Motivation and Background

Vibrations are problematic in most mechanical systems. Common
methods of reducing the negative effect of vibrations include structurally
stiffening the system, increasing the damping of the system, and reducing the
speed at which the system operates. With the advent of high-speed computer
control, another method has appeared--minimizing vibrations with computer-

control algorithms. Many applications could be better solved with light, quick

17



Chapter 1: Introduction 18

systems using smart controllers to reduce vibrations, than with massive, slow
structures requiring no control. The high cost of space travel severely limits
the weight of space-based systems, and the large, lightweight nature of space
structures makes them especially prone to vibration problems. For example,
the Space Shuttle’s Remote Manipulator System (RMS) is a fifty-foot arm
that has a lowest vibrational frequency of 0.5 Hz when unloaded. Typically,
50% of the operating time for the RMS is spent waiting for vibrations to
dissipate. A control scheme that allows systems such as the RMS to move
without exciting its vibratory modes would be welcomed. The applications of
such a system are not limited to space structures. A method of minimizing
residual vibrations would permit the design of lighter, faster, and cheaper

systems without the need to worry about vibration problems.

1.2 Previous Work

Controlling flexible structures has been a popular area of study for the
past decade. The proposed space station has pushed even more effort into
finding a successful method of moving flexible systems without exciting
vibrations. The previous research can be split into three main areas. First,
several people have investigated the possibility of incorporating flexible links
and joints into a model.

Asada, Ma, and Tokumaru [1] developed a model of a two-link system,
that accounted for joint and link flexibility. In simulation they were able to
obtain relatively good performance in moving the system without exciting
endpoint vibrations.

Eisler, Segalman, and Robinett [7] derived a model of a two-link, flexible
system that incorporated Finite Element models of the links and joints.
Using this model, they were able to numerically integrate to generate torque
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trajectories that would minimize vibration at the end of the slew. They were
able to increase performance noticeably on a simple two-link system.

Keene [32] has been working to develop a flexible model of the Space
Shuttle Remote Manipulator System (RMS) during maneuvers with large
payloads. The large payload assumption--for example, docking with the
proposed space station--allows the arm to be modeled as a massless spring.
The first attempts showed some promise in using derived end-point feedback,
based upon the flexible model, however the resulting system was very
sensitive to modelling errors.

Most of the attempts at incorporating flexibility into the system model
have proven to be difficult to implement and very sensitive to system
parameters.

The second area of research has been in filtering input commands to avoid
exciting vibrations.

Smith [20] described a method of posicast control that can be used to
eliminate a single frequency of vibration. He split commands into two
discrete pulses, spaced over one-half period of vibration to cancel vibrations.
This method is successful in reducing vibrations, but is sensitive to errors in -
frequency and reduces one mode of vibration only.

Aspinwall [2] uses a finite, Fourier series.expression to modify the forcing
function and reduce vibrations. His attempts were successful, but required a
time delay twice the period of vibration to eliminate vibration.

Farrenkopf [8] generates maneuver profiles that attempt to minimize the
amount of energy dumped into flexing and the magnitude of the flexing
during a move. He uses the Calculus of Variations to generate the

commands. The technique required moves at least 5 times the period of the
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lowest flexural mode to significantly reduce vibrations at the end of the slew
without causing excitation during the move.

Swigert [21] uses a linear model of a flexible system to produce a torque
profile that minimizes the modal amplitude or the derivative of modal
amplitude. When the derivative term is minimized, sensitivity to modelling
errors is decreased.

Meckl [12] derived a shaping method that uses a versine (1- sine) shaped
function to eliminate certain frequencies from the input.

Singer [18] used a linear model of a flexible system to develop a
computationally simple algorithm for constraining the modal displacements
and derivatives of modal displacements to zero at the end of a move. Singer's
algorithm uses discrete impulses to eliminate the vibration. The impulse
sequences cause a time delay of one cycle of vibration. This method, which
has come to be known as input shaping forms the basis of the research
presented in this document, will be described more fully in Chapter 2.

Singhose [19] developed an algorithm based upon Singer's work that
further improved the insensitivity of the shaping technique to modelling
errors at the cost of not constraining the residual vibration to zero at the
desired frequency, but permitting a small amount to remain.

Hyde [10] expanded Singer's equations to numerically solve for impulse
sequences for systems with up to five modes of vibration. His work will also
be discussed in Chapter 2.

Tzes and Yurkovich [23] developed an on line modal identification scheme-
-TTFE--to identify the frequency characteristics of a single-link flexible
structure on-line. In conjunction with Englehart [24], they were able to
significantly reduce the endpoint vibration when input shaping sequences

were used in conjunction with TTFE.
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Magee [11] proposes a smoothing algorithm to account for vibrations
induced when an input-shaping sequence is varied during a move. His efforts
proved successful in driving a 20 ft. two-link, hydraulic robot.

Other people have tested the input shaping theories, including Christian
[6], who compared shaping techniques with controlled acceleration profiles;
Murphy and Watanabe [14], who performed a digital analysis of input
shaping and determined that shaping can be described as a type of notch
filtering that places zeros to cancel the closed-loop system’s poles; Banerjee
[31], who demonstrated that shaping effectively reduced vibration in a
simulation of the Space Shuttle carrying two, 150m flexible antenna; and
Seth, Rattan, and Brandstetter [34], who implemented input shaping on a
Coordinate Measuring Machine with some success.

Finally, there is interdisciplinary research into Controlled Structured
Interaction (CSI). CSI attempts to study the way structures interact, and
concerns itself mainly with space structures. NASA has established a group
that is attempting to find solutions to vibration problems in the proposed
space station. They are using the technologies described above as well as
doing study on active damping methods and designing to minimize vibration
problems [33]. One of the NASA-CSI functions has been developing the Mid-
Deck Active Control Experiment (MACE), a test article for CSI theories. [13].

1.3 Current Research

This document presents research done in two areas. First, a new method
of calculating input shaping sequences for two-frequencies of vibration is
presented. The new method is closed-form, and produces sequences with up
to 25% savings in time delay over previous methods. Second, an adaptive

input shaping method is designed to provide good vibration reduction in
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systems with large variations in frequency. The new sequences and the
adaptive method of shaping are both tested on the Flexbot, a three-joint
spatial manipulator. The remainder of this document is divided into five

chapters.

Chapter 2 describes the basic command input shaping theory as developed by
Singer [18] and Hyde [10].

Chapter 3 presents the theory for the new command input shaping sequences
for two frequencies of vibration. Also a comparison is made between the
shape of certain convolved-sequences and several standard data-

windowing curves.

Chapter 4 describes the Flexbot, the experimental system used for verifying
the new shaping techniques. The variation in vibrational frequency of the
Flexbot is mapped and a method of accessing the frequency data and

implementing the changes on-line using adaptive-shaping is developed.

Chapter 5 presents the results of experiments performed on the Flexbot.
Tests were run comparing the new, two-mode sequences with sequences
generated by previous methods. Experimental data was collected
comparing the method of adaptive shaping to methods that do not account

for variations in frequency.

Chapter 6 discusses the conclusions that arise from the experimental data

and proposed areas for continued research.



Basic Command InPut Sha_ping

Chapter 2

Command input shaping was developed several years ago to provide a
simple algorithm for reducing residual vibration in flexible systems. The
method of input shaping was originally developed by Singer [18]. Several
other researchers have preceded me in continuing the development of input
shaping theory[10, 19]. I have chosen to implement some new techniques in
command shaping theory that will improve the ability of the method to
eliminate vibration with the shortest time delay. Before discussing my new
additions, I will present a brief overview of the general method. This chapter
is not intended to present every detail of input shaping theory. All of the
material presented here is paraphrased from Singer [18] and Hyde[10]. I am
including it to refresh the reader’s memory of the basic theory and to present
the basic constraint equations that form the basis of my derivations in

Chapter 3.

23
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Input shaping is a vibration reducing scheme that uses linear vibration
theory to generate sequences of impulses, which, when convolved with
commands to a plant, result in minimal residual vibration at selected
frequencies. The method imposes a time delay on the system equal to the
length of the sequence used. Input shaping does not require feedback, so it
will not cause stability problems. A block diagram of a typical system is
shown in Figure 2-1, with the input shaper outside the feedback loop. The
commanded inputs are fed open-loop through the shaper to the plant. We see
from this diagram that input shaping depends upon prior knowledge of the
closed-loop system--the user chooses the frequencies at which to eliminate
vibration. If the closed-loop dynamics of the plant change, the input shaping

sequence must account for the change.

2.1 Basic Theory

Singer[18] developed the input shaping technique from a second-order,
linear model of a vibratory system. The response of a second-order system,
with natural frequency @ and damping ratio {, to a single impulse at time ¢;

with amplitude A; is

Controller

Closed-Loop System

Figure 2-1: Block Diagram of System Using Input Shaping
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y(o) = v_':*i_zc'zz-e-c o ¢- 9 sinf(t-)oV1-C ) @-1)
We can now find the response of the same system to a finite series of n
impulses.

Bisin(wt-@)+... Bysin(@t-@) = Bamp sin(wt-y) (2-2)
where

Bi=€%e—wa-m (2-3)

p=toV1-0 @2-4)

To eliminate vibration at the conclusion of a series of impulses, the value of
Bgmp must be zero. This condition is satisfied by independently constraining

both terms inside the square root in Eq. 2-5 to zero.

i Aie'Cm(t" ti)Sin(ti(DV l—cz, =0 (2'7)
iml
3 Aie—C‘”(t°‘i)cos(tim 1-)=0 (2-8)

i=1l
Two additional constraints are added.

tp =0 (2-9)
T A =1 (2-10)

im1

The former minimizes the time delay of the shaper. The latter guarantees
that there will not be a gain associated with the shaper. Singer’s method also
constrains the resulting values of the A; to be positive. This additional
constraint insures that high frequencies will not be excited by the shaper (see
[18]). Each impulse is specified by two values: a time and an amplitude.
With the four constraints listed, we generate a sequence with two impulses
as shown in Figure 2-2.

In an effort to create sequences that are insensitive to modelling errors,

Additional constraints are added by setting the derivative of both Eq. 2-7 and
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Figure 2-2: Two-Impulse Sequence

Eq. 2-8 with respect to frequency equal to zero, we will decrease the resulting

sequence’s sensitivity to modelling errors:

$ Ate-tot-WsinlcoV1-C) =0 2-11)
im=1
i Aitie-cw(“ti)cos(ti(o‘v l—Cz) =0 (2-12)

i=l

Taking the derivative of Eqs. 2-7 and 2-8 with respect to damping ratio
results in the same equations. The sequence generated with these two
additional constraints will have three impulses as shown in Figure 2-3. The
sequences can be made “arbitrarily insensitive” to modelling errors by adding
higher order derivative terms. For a complete derivation of these equations

see [18].

2.2 Sensitivity of Input Shaping to Modelling Errors
Sensitivity of the shaping sequences to modelling errors is an important
issue. The frequencies of vibration are likely to change with position and

loading of the robot, and damping ratio is difficult to measure accurately.
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Figure 2-3: ‘Three-Impulse Sequence

Singer defines the insensitivity to frequency errors for the single-frequency
,J L . 2 a 2
I[%:]a .[gAie{MSm(th)] + [EAie{mcos(nmﬁ-?)] (2-13)

Insensitivity corresponds to the amplitude of residual vibration that will
remain in a system with natural frequency o and damping ratio (s when a
Slter with times ¢; and amplitudes A; calculated for natural frequency oy and
damping ratio {sis implemented. The insensitivity of both a two impulse
sequence and a three impulse sequenoeis_hs_hgwninFigure 2-4. The two-
impulse sequence will keep the residual vibration below 5% of the unshaped
amplitude ﬁor frequency-modelling errors of less than §%. A three-impulse
sequence wxﬁ provide comparable vibration reduction for modelling errors of
15%. ‘

2.3 Multlple-Mode Formulations
Singer addresses the issue of systems with more than one frequency of
vibration. Since input shaping is a linear operation, shapers can be convolved
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Figure 2-4: Comparison of the Insensitivity of Undamped
Two-Impulse and Three-Impulse Sequences.

together. In this manner many different frequencies can be eliminated
simultaneously. Unfortunately, the number of individual impulses in the
resulting sequence, N, will grow exponentially with the number of
frequencies being shaped, m.
N=nm (2-14)

A sequence for four modes generated in this fashion is shown in Figure 2-5.

Another drawback of this method is that the total time delay of the
sequence is equal to the sum of the damped periods of vibration. A sequence
for m modes generated by convolving three-impulse shapers together will

have a time delay of

-3 2%
N ,?1 o e

where wj and {j are the frequency and damping of the jt» mode and ty is the

(2-15)
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Figure 2-5: Sequence for Four Modes Generated by Convolving Three-

Impulse Sequences for 1.0, 2.3, 3.9, and 4.8 Hz.

time of the last impulse. Hyde[10] presents a new method for calculating

sequences for multiple-mode systems. He begins with the six basic constraint

equations, Egs. 2-7 - 2-12. He repeats the simple and derivative constraint

equations for each mode.

) Aie_gmj(t“ti)sm(ti(ﬂjv 1—§§, =0
im]

i Aje-G ‘Di(t-ti)cos(ti(oj‘\/ I—Cﬂ =0

i=]

i‘, AitiC'Ci“’i("‘i)sin(ti(oj‘V I—C,?) =0
i=1
3 Aite-G mj(t-ti)COS(ti(DjV I—Cﬂ =0

is1l

(2-16)
(2-17)
(2-18)
(2-19)

There are now 4 m + 2 equations, where m is the total number of modes to

cancel. Hyde’s sequences will therefore have

N=2m+1

(2-20)

impulses, thereby avoiding the exponential growth in the number of impulses

that Singer noticed. To solve the equations simultaneously, Hyde uses an

optimization routine and GAMS [4] and Mathematica [30], two programs

with non-linear equation solvers. With this method, he is able to find
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sequences for a wide range of multiple-frequency systems. A multiple-mode
sequence generated using Hyde’s method is shown in Figure 2-6.

Another benefit of direct-solution sequences is their length. Hyde found
that the sequences he generated were generally shorter than the comparable
convolved sequences Unfortunately, the savings in time is often gained at
the expense of insensitivity. Multiple-mode, direct-solution sequences found
using Hyde’s method are also less robust to errors in modelling and are often
difficult to calculate. Problems with low insensitivity are especially
pronounced for sequences generated for systems with large frequency ratios.
An insensitivity curve for a four-mode solution is shown in Figure 2-7. The
insensitivity of the sequence generated by convolution for the same four
modes is shown in Figure 2-8. The direct-solution sequence is 30% shorter,
but there is a noticeable difference in the insensitivity of the sequence as
compared to the convolved sequence. Calculation intensity is another issue
with Hyde’s method. If sequences are to be generated on-line as a system
changes, the optimization method could prevent direct-solution sequences

from being implemented.

025F

0.20 |

0.15F

Amplitude

0.10 |

0.05 |

0 0.50 1.0 1.5 2.0
Time (Sec)

Figure 2-6: Sequence for Four Modes Generated by Direct-Solution of
Simple and Derivative Constraints for 1.0, 2.3, 3.9, and 4.8 Hz.
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2.4 Conclusions

In this chapter we have presented the current theory of input shaping.
Command shaping has been proven to be a simple, robust method of reducing
residual vibrations. Implementation on single-mode systems is easy..
Unfortunately, application to systems with many modes of vibration and

large variations of frequency over the workspace requires further advances to
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Figure 2-7: Insensitivity of Direct-Solution Sequence
Shown in Figure 2-6.

avoid the exponential growth in the number of impulses in Singer’s sequences
or the intense calculations necessary for Hyde’s method of solving the direct-

solution problem.
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Expansion of Input Shaping Theory

Chapter 3

3.1 Direct Solutions for Multiple Modes

There is a desire for a method of calculating input shaping sequences for
systems with multiple frequencies that does not require the optimization
routines of Hyde’s method[10]. Analytic solutions for multiple-mode
sequences would be useful to take advantage of the time savings that direct-
solution sequences have over convolved solutions. This chapter describes the |
development and analysis of a direct solution method found for undamped
systems with two frequencies of vibration. It also includes a description of
possibilities for finding direct solutions for systems with more vibratory
modes and systems with significant damping. An analysis of the similarities
between input shaping and some standard data-windowing shapes is

included as well.

33
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Figure 3-1: Examples of Sequences found using Hyde’s method

3.2 The Two-Mode, Symmetric Solution

In an effort to determine a method for calculating multiple-mode
sequences, we examine the solutions generated by Hyde’s optimization
routines [10]. Observe shows that many of the sequences generated by this
method are symmetric (Figure 3-1). The undamped systems have sequences
that are symmetric in both time and amplitude, while the systems with
damping have sequences that are symmetric only in time. A simple two-

mode, zero-damping example is developed to investigate this phenomenon.
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Fxgure 3-2 '1‘1me-Sh1fted Symmetnc Sequenee for Two Modes,
Using Sxmple Constraints

8.2.1 Solution for Simple Constraints
We start with the standard constraint equations for an undamped, two-

Ampdmmqsﬂz-l w2n4)
}_‘, A,mn(nu)j) = 3-1)
i)_;l Ajcos () = | ‘32)
I Ai=1 (3-3)
t, =0 (3—4:)

where Egs. 3-1 and 3-2 are repeated for each mode, j = 1,2. These six
constraint equations will yield # = 3 impulses. We assume that the sequence
will be symmeﬁ'ic in both time and amplitude, and we shift the time origin to
the right so that ¢2 = 0. The time-shifted, symmetric sequence is shown in
Figure 3-2. The symmetry assumption redﬁces the number of unknowns in
the problem by making Eq. 3-1 trivial. Using this construct for our sequence,
the remaining constraint equations can be sxmphﬁed Comblmng Eq. 32
with Eq. 3-3 yields two equations with two unknowns: A; and 7;.
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Figure 3-3: Three-Impulse, Direct-Solution Sequence for Two Modes.

1_ A, sin? (S’ﬁ) L i

y A; sin 5] 1,2 (3-5)

From these two equations we can solve for #; as a function of w; and ;.
t1=—2EZ ze{...-1,0,1,... ) (3-6)

]+

We are searching for the shortest sequences, so we select the smallest
positive value of t;. Simplify by converting from rad/sec to Hz.

o=2xnf (3-7)
Using Eqs. 3-3 and 3-5, we calculate the values for the amplitudes. The
resulting sequence is shown in Figure 3-3. We now have an analytic solution
for two-mode, zero-damping sequences using only the simple constraints.
The amplitude equations do not depend upon the actual values of the
frequencies, but only upon the ratio of the frequencies, r. The formulas for
the impulse amplitudes also show that the amplitudes are continuous with
variations in frequency ratio--an issue that is important when varying the

shaping sequences during a move.
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Figure 3-5: Five-Impulse, Direct-Solution Sequence for Two Modes.

1_ A, sin2 {80 2 (it2) -
4 Aj sin 5 + Aj sin 5 ,j=1,2 (3-10)
The final constraint (Eq 3-8) simplifies to:

0=ty A;sin (O)jtl) + tp Ay sin ((Djtz), j=12 (3-11)

Solving the remaining four equations for ¢; and 1, provides the same impulse
spacing as was found in the simple constraint problem.
tj=—2E2Z ze{...-1,0,1,... ) (3-12)
W] £
Again, since we are searching for the shortest sequences, so we select the two
smallest, positive values for 17 and #: z = 2 and 2z = 1, respectively, and

convert from rad/sec to Hz.

=2 -
3] fl n f2 (3 13)
ty = f+5 (3-14)

We see that the two-mode sequence with derivative constraints is not only
symmetric, but is also evenly spaced. Using these values for the 1, we can
solve for the A;. and shift the time axis back to the left so that r; = 0. The
resulting sequence is shown in Figure 3-5. We now have a closed-form

solution for two-mode, zero-damping systems.
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3.3 Analytic Solutions for the Higher-Mode Problem

We have found a method for calculating symmetric sequences for two-
mode systems. Although the equations can be expanded to the higher-mode
case. solutions to the equations are not easily found. This section presents
the general matrix equations for the multiple-mode, zero-damping system.
These equations have been solved for the two-mode case, as shown above.
They also reduce to Singer’s original equations in the single-mode case.
Presently, the author has not found analytic solutions for systems with more
than two-modes. Some observations on proposed solution methods are noted.
The equations presented here satisfy both the simple and derivative
constraints for each mode, Egs. 3-1 - 3-4 and Eqgs. 3-8 - 3-9, respectively.

The general form of the solution is

{A}=[M]"! (R} (3-15)

where {A} is the vector of impulse amplitudes, {R} is a vector of constants, and
[M] is a modally dependent matrix. For a system with number of modes = m,
the number of constraint equations will equal 4m + 2. Therefore our solution
will have n = 2m + 1 impulses, the same number that Hyde specified Our
symmetry assumption specifies the existence of a center impulse, leaving m
symmetric impulses. Inspection of the equafions developed above, reveals
that each additional mode will add a repetition of Egs. 3-9 and 3-10 for the
additional frequency wn, and an extra term to Eqgs. 3-9 and 3-10 for each
additional impulse Ap, t, required by the extra frequency. We can specify the
components of Eq. 3-15 as follows. (A} is the vector of symmetric impulse
amplitudes:

B

a5
W=

(3-16)
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The matrix [M] is assembled from the coefficients of the 2m non-trivial Egs.

3-9 and 3-10.

[ [M,] }
[Mml]
where
Sinz(ijtl-) . sin? (mjztm)
[Mj] = (3-18)
t1 sin (o t1) .o t1 sin (0; tm)

The vector {R} contains constants--the values from the left side of Eqs. 3-9
and 3-10.

Ry
{R)={ : } (3-19)
Rn
where
1
(Rj)={* (3-20)
0

The two-mode case is solved by equating the elements of the [M;] to find the
and then solving the linear matrix equation for the A;,
{A})=[M]]"1{R;},j=1lor2 (3-21)
This solution method fails for systems with more than two modes. The |
difficulty in solving Eq. 3-21 arises because the equations are a non-linear
function of the #;. Once the ¢; are found, the resulting system of equations can
be solved. Hyde [10] developed his optimization routine to find approximate
values for the f; and A;. He then used GAMS[4] and Mathematica[30], two
non-linear equation solvers to find the corresponding exact solution. Analysis
of Hyde’s sequences and the two-mode sequences developed above, suggests

that we can approximate the sequence length, ¢,.
b = 102 (3-22)
2

=t
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This formula is exact for the one and two mode cases but only an
approximation for higher mode cases. Using the approximate value for z,, we
can calculate values for the 1; in Eq. 3-18 which can be used as starting points
for an equation solver such as the FindRoot command in Mathematica[30].
This method of solving the multiple-mode case works for many systems of
frequencies. It is not as likely as Hyde’s original program to find a solution,
but in cases where a solution can be found, it reduces the amount of

calculation considerably over Hyde’s method.

3.4 Domain of Direct-Solution Sequences
We showed above that we can calculate undamped, two-mode sequences
using simple equations. We must consider what range of frequencies will

generate sequences that meet all the constraints we have set.

8.4.1 Sequences with Positive Impulses

During the derivation of the two-mode equations, we neglected one of
Singer’s original constraints:

Ai20 (3-23)

This constraint is included to prevent the shaping sequences from exciting
higher frequencies--the effect of removing this constraint will be discussed
below. This section examines the range of frequencies that yields acceptable
sequences.

We begin by examining the formulas for the pulse amplitudes that were

developed above. A three-impulse, two-mode sequence will have the following

values
: = i = -
t —1-——1—f1 ¥t (3-24)
A =A3= 4—1—187 (3-25)
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Figure 3-6: Variation of Second Impulse Amplitude with Frequency Ratio:
Three-Impulse Sequence

Ap=482-2 (3-26)
452
where
= cin2(_E -
S =sin (1 +r) 3-27)
=02 (3-28)
f

We see from Eq. 3-25 that A; and A3 are non-negative. Figure 3-6 shows the
variation of A; with the frequency ratio, r. From the figure we see that A is
negative for r > 3 and r < 1/3. An examination of the sequence length, ¢,
shows that the total sequence length becomes shorter than the half-period of
the lower frequency at these values of . This discovery reiterates Singer’s
statement that the shortest sequence for a frequency with all positive
impulses will be as long as the half-period of the frequency [18].

We can similarly examine the variation in pulse amplitude in the two-
mode, direct-solution sequences developed with derivative constraints. The

five impulsgs are defined

i =-d=l (3-24)
f1 + fz
Ayp=—— (3-29)

16 S?
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Ay=25-1 (3-30)
482
As= 8%88_3& (3-31)

where S is defined in Eq. 3-27. The five-impulse sequence has three impulses
that are always positive: Aj, A3, and As. Each of these three has its minimum
value at 7 = 1. The remaining two impulses are not always positive. As the
five-impulse sequence is exactly twice as long as the three-impulse sequence,
we expect the amplitude of A, to become zero at the same values of r that we
found to be critical for the three-impulse sequence. Our expectation is
verified as is seen in Figure 3-7 illustrating the variation of A, with r.

Due to the constraint that impulses not be negative, the two-mode, direct-
solution appears to be limited to systems with frequency ratios of less than 3.
However, we can find direct-solution sequences with all positive impulses for
frequency ratios outside these limits. Examining Eq. 3-12, recall that our
time step, ¢;, results in the shortest possible sequence. We can choose other
values for z which will lengthen the sequence and keep the impulse
amplitudes positive. This possibility will be discussed completely in section

3.5.
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Figure 3-7: Variation of Second Impulse Amplitude with Frequency Ratio:
Five-Impulse Sequence
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Figure 3-8: Two-Mode Sequence for 1.0 and 3.7 Hz,
with Negative Impulses

3.4.2 Sequences with Negative Impulses

Another option to avoid the critical frequency ratio of 3 is to relax Singer’s
constraint that all impulse amplitudes be positive. The equations developed
above for two-modes will generate sequences for frequency ratios larger than
3, however some of the impulse amplitudes will be negative. We can propose
a more relaxed constraint that will permit negative impulse amplitudes, but
will continue to prevent the shaping filter to amplify the system input. Our
new constraint is

k
Y. Ails 1,forallke {1,..,n } (3-32)

i=1

Figures 3-6 and 3-7 show that negative pulses occur naturally for certain
frequency ratios. Using the new constraint, we can generate sequences for
frequency ratios lower than 3.7668 for a five-impulse sequence and 5 for a
three-impulse sequence--the values of r where A7 = -Ag2. A benefit of
sequences with negative impulses is their length. A sequence with negative
impulses for 1.0 and 3.7 Hz will have a time delay of 0.85 sec, compared to

the convolved sequence delay of 1.27 sec, a savings of 33%. An example of a
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Figure 3-9: Insensitivity of Two-Mode Sequence for 1.0 and 3.7 Hz,
with Negative Impulses

negative sequence that satisfies Eq. 3-32 is shown in Figure 3-8. The
insensitivity of the negative sequence (Figure 3-9) shows two problems with
negative sequences: the sequence is sensitive to modelling errors and there
will be excitation of specific frequencies.

From Figure 3-9, we see that the negative sequence shown will keep
vibrations below 5% of the unshaped magnitude with up to a 12% error in
frequency. A three-impulse, one-mode shaper gives the same results with up
to 15% errors in modelling (Figure 2-4). The robustness of the negative
sequences continues to decrease as the magnitude of the negative impulses
grows and the frequency ratio increases.

The insensitivity curve for the negative sequences shows that higher
frequencies can be excited. The even spacing of the impulses in the two-
mode, direct-solution sequences causes excitation of the frequencies who are
in phase with the impulses. We can solve for the frequencies that will be
excited and the amplitude of the excitation.
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g =20t l)z(fl *f) cef01,.. ) (3-33)
Amp= 3 |A] (3-34)
i=1

Amp represents the gain of the shaping sequence at the frequencies fc. For a
truly linear system this excitation should not be problematic as the system
will absorb energy from narrow frequency bands only. If we shape for all the
vibrational frequencies in a linear system, then no vibration will result.
However, in real systems that are not completely linear, the excited-
frequency energy could match a previously unknown resonance of the system
or be shifted into a mode of the system, thereby deteriorating the benefits of
the input shaping.

3.5 Time Delay of Direct-Solution Sequences

8.5.1 Comparison of Direct-Solution and Convolved Sequences

One of the benefits of the direct-solution shapers is their shorter time
delays as compared to convolved sequences. Hyde found that direct-solution
sequences can be up to 25% shorter than convolved sequences, however, he
was not able to predict what the time savings would be for a given set of
frequencies. Using the two-mode, zero-damping solution, we can calculate
the sequence length for any pair of frequencies and determine the time
savings.

A multiple-mode sequence generated by convolving together two single-
mode two-impulse shapers has a known length.

tn =§171+2—1f-2- (3.35)

A sequence generated for two modes using the direct-solution method

described above also has a known length.
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—_ 2 -
th = 45 (3-36)

Comparing the values of 1, we see that the direct solution is shorter than the

convolved solution except for the case r = 1, where the time delays are equal.
Figure 3-10 shows the time savings of the direct-solution as a function of
frequency ratio, r. When r = 3 or r = 1/3, the direct-solution sequence will
provide the greatest time savings of 25% for sequences with strictly positive
impulses. At these values of r, the direct-solution sequence will be exactly
the same as a single-mode sequence for the lower-frequency mode. The
insensitivity curve illustrates why the direct-solution sequence generates this
solution. Figure 3-11 shows the insensitivity for a three-impulse shaper. The
insensitivity drops to zero at every odd multiple of the original frequency.

3.5 -\ \
\
3 \\ 1 Convolved
—~ 25 N\ ~ = Direct-Solution
RO A\
>
= 2
&) ,
[ Sy
—
.[g 1.5 \\-W___
\ —~
1 n \__
—t —— -
0.5
0
0 05 1 15 2 25 3 3.5 4

Frequency Ratio (-? )
1

Figure 3-10: Comparison of Time Delay Caused by Convolved
and Direct-Solution Shapers--Generated with both
Simple and Derivative Constraints
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The direct-solution method uses this fact in its sequences for the critical

valuesof r =3 andr = 1/3.

3.5.2 Lengthening Sequences to Keep Positive Impulses

As mentioned above, we can lengthen the sequences by changing the
factor z in Eq. 3-12 for frequency ratios greater than 3. For any pair of
frequencies, a value of z exists that will keep all the pulse amplitudes
positive. However, we cannot guarantee a time savings when other values of
z are used, in fact, most direct-solution sequences are longer than the
convolved sequences for frequency ratios greater than three. Figure 3-12
shows how the factor z affects sequence length as a function of r.

If we plot the insensitivity curves for sequence generated using
alternative values for z, we see an interesting result: the selection of z
determines which of the zeros of the insensitivity curve matches the desired
frequency. For example, the insensitivity curve for a sequence generated for
1.0 Hz and 2.5 Hz with z =1 and z = 2, is shown in Figure 3-13. If we change
the values of z to 1 and 3 and calculate a sequence for 1.0 Hz and 4.5 Hz, we
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Figure 3-11: Insensitivity of a Three-Impulse Shaper: The Insensitivity
is Zero at Odd Multiples of the Sequence Frequency
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Figure 3-12: Variation of Time Delay with Choice of Z.
Time Delay < 1 Yields Negative Impulses

get an interesting result: the two sequences are identical. By changing the
value of 2 we merely change the choice of zeros of the insensitivity curve. The
shortest sequences using z = 1 and z = 2 select the first two zeros of the
insensitivity curve. Other values for z correspond to the other frequencies
where the insensitivity is also zero.

This phenomenon can explain the lack of insensitivity that Hyde noticed
in his sequences for systems with large frequency ratios. In Figure 3-13, we
see that the insensitivity curve of the two-mode case repeats itself every f1 +
f2 Hz. Around f; we will have +/- 15 % insensitivity for this sequence with
simple and derivative constraints. As we move to the higher zeros of the
insensitivity curve, the shape of the curve that permits frequency errors of +/-

15% at the low frequency only allows +/- 7% error at the next zero of 2.5 Hz
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and +/- 4% at 4.5 Hz. The percent insensitivity will continue to decrease as

we move to higher zeros.
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Figure 3-13: Insensitivity Curve for Five-Impulse Sequence
for 1.0 and 2.5 Hz.

We can use the knowledge that the insensitivity curve repeats itself every
f1 + f2 Hz to derive an expression for all the locations on the curve that will
have zero insensitivity. Rearranging Eq. 3-12 to solve for all the ap that will
result in the same impulse spacing as a function of z, we find

f(z) =z(f; + f2)- f1, or

f(2)=z(f) +f)-f2,ze {1,2, ---}. (3-37)
This equation allows us to calculate all the frequencies at which our sequence
should eliminate residual vibrations. Using a sequence generated for low
frequencies to cancel higher-frequency vibrations may not provide the
shortest possible sequence, nor will it have as good insensitivity as at the low
frequency, but it can be effective in reducing the vibration of the higher-mode.

Previous research by Hyde [10] has noticed that direct-solution sequences
do not have good insensitivity at the higher frequencies. Concurrent research
by Chang{5] has also shown that direct-solution sequences have poor

insensitivity when the frequency ratios are large. Convolution may prove to
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Figure 3-14: Two-Mode Convolved Sequence, 1.0 and 2.5 Hz.

be the best method of shaping for systems with large frequency ratios and for
systems with many frequencies. The sequences are often shorter than the
direct-solution sequences and they generally have better insensitivity. Figure
3-14 shows a nine-impulse sequence, found by convolution, generated for 1.0
and 2.5 Hz. Figure 3-15 shows a direct-solution sequence for the same
frequencies.

The insensitivity of each of these two sequences are shown in Figures 3-16
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0.0 0.2 04 0.6 0.8 1.0 1.2 14
Time (Sec)

Figure 3-15: Two-Mode Direct-Solution Sequence, 1.0 and 2.5 Hz.
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Figure 3-16: Insensitivity of Convolved Sequence for 1.0 and 2.5 Hz,
from Figure 3-14.

and 3-13, respectively. For this set of frequencies, with r = 2.5, the two
sequences have similar insensitivity around the first frequency, but the
convolved sequence has better insensitivity around the 2.5 Hz frequency than
the direct-solution.

We can use the increased insensitivity of convolved solutions to our
advantage when generating sequences for multiple-mode systems. Using the
two-mode solution developed above, we can convolve together two-mode
equations to shape for any number of modes. The number of impulses will
increase exponentially as Singer noticed [18] but more slowly than the single-
mode convolved sequence. Figure 3-17 shows a sequence generated by
convolving together two symmetric, two-mode sequences for the same four
modes as in the sequences in Figures 2-5 to 2-8. Compare the insensitivity of
this convolved sequence, shown in Figure 3-18, with the direct-solution
sequence in Figure 2-8. The time delay of the convolved, symmetric sequence
is 1.672 sec, compared with 1.336 for the direct solution in Figure 2-6 and

1.900 for the convolved sequence in Figure 2-5. We can gain some of the time
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Figure 3-17: Sequence Generated by Convolving Two-Mode, Symmetric
Solutions for 1.0 and 2.3 Hz and 3.9 and 4.8 Hz.
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Figure 3-18: Insensitivity of Sequence in Figure 3-17.

savings of the direct-solution method, while keeping the high robustness to

modelling errors by convolving two-mode sequences.
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3.6 Approximate, Damped Solution

Above, we derived the direct-solution method for two-modes without
damping. Unfortunately, when damping is included, the constraint equations
become intractable. Using an empirical analysis of the effect of damping on
Singer’s single-frequency solution, we can develop an approximate sequence
for the two-mode system with damping.

We start with a two-impulse sequence generated for one mode with zero

damping.
A=Ay = % (3-38)
t0=0,1 = % (3-39)

We can add damping to the sequence by overlaying a decaying exponential

curve on the undamped sequence. The eprnential curve is generated from

Eq. 3-1.
y(t)=e- G0t (3-40)
If we increase the time step between impulses to correspond to the damped
time step
4 =—r—, (3-41)
oVvl-§

multiply the amplitude of each pulse, A;, by the corresponding value ofy (t),
and normalize the amplitudes so that i‘, A; = 1, the result is exactly the same

i=1

as Singer’s sequence for a single, damped frequency.

=1 =K -

Ay D’ Ay D (3-42)
-Cn

K=e¥1'¢  D=1+K (3-43)

Performing the same sequence of operations on the three-impulse sequence
yields the same result--adding the damping to the sequence has the same
effect as calculating the sequence with the damping ratio known. We can
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attempt to expand this method of calculating sequences for damped systems
to the two-mode case. Mathematically, the solution method is not exact for
two-modes. The results we will show are individual cases, where the
damping has been added to a known sequence. We can find the solution
using a non-linear equation solver as described above We will judge the
damped sequences based on their insensitivity curves.

Adding damping to a two-mode solution has several effects. First, the
pulse amplitudes and times change. The method outlined above
approximates these changes in amplitude and time. When derivative
constraints are included, the time spacing in the exact solution is no longer
even. Impulses 2 and 4 move away from the center impulse. This
phenomenon is not accounted for in the approximation. Adding damping to a
multi-mode sequence requires the selection of an effective damping and an
effective frequency, two values that do not exist. After some experimentation
we can determine that the average damping ratio should be used as well as
the average frequency in implementing Eq 3-40.

We start with the undamped, five-impulse sequence for 1.0 Hz and 2.5 Hz
shown in Table 3-1. Add a damping ratio of 0.1 to the 1.0 Hz mode and 0.05
to the 2.5 Hz mode to our system. The insensitivity of the undamped
sequence to the damped system is shown in Figure 3-19, and the insensitivity
of the exact sequence is in Figure 3-21 We now calculate the approximate
damped sequence using the method outlined above--with effective damping =
0.05 and effective frequency = 1.0 Hz. The resulting sequence is shown in
Table 3-2. The exact solution for the damped system is shown in Table 3-3.
Comparing the insensitivity of the approximate sequence (Figure 3-19) and
the undamped sequence (Figure 3-20), we see that the approximation is closer

to the exact than the undamped sequence (Figure 3-21).
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Table 3-1: Direct-Solution, Five-Impulse Sequence
for 1.0 Hz, 2.5 Hz, Zero-Damping

[ Impulse Time Amplitude
1 0.0000 0.1672
2 0.2857 0.1489
3 0.5714 0.3677
4 0.8671 0.1489
5 1.1428 0.1672

Table 3-2: Approximate, Five-Impulse Sequence for 1.0 Hz,
0.10 damping and 2.5 Hz, 0.05 damping

[ Impulse Time Amplitude
1 0.0000 0.2564
2 0.2865 0.1802
3 0.5730 0.3514
4 0.8596 0.1123
5 1.1461 0.0997

Table 3-3: Exact, Five-Impulse Sequence for 1.0 Hz,
0.10 damping and 2.5 Hz, 0.05 damping

[ Impulse Time Amplitude
0.0000 0.2407
0.2958 0.1727
0.5745 0.3577
0.8683 0.1175
1.1458 0.1131

O ] COFDOf =
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Figure 3-19: Insensitivity of Undamped Sequence
from Table 3-1.
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3.7 Similarities of Input Shaping and Windowing

As command input shaping becomes a widely accepted method of reducing
residual vibration, we must investigate how this new method compares to old,
accepted filtering methods. This section investigates the similarities between
command shaping sequences and the shape of the windows used in standard
data-windowing techniques. If the standard windows can reduce frequency
aliasing of data, the shapes that are used might be useful in minimizing
vibrations. Two windows that are often used are the square window and the
Parzen window, both of which are shown in Figure 3-22 [17].

The two-impulse and three-impulse, single-mode sequences have the same
general form as the standard windows. We can increase the similarity by
convolving sequences for higher frequencies. We select the higher
frequencies based upon the insensitivity curves. Figure 3-11, above, shows
the insensitivity curve for a three-impulse, one-mode sequence, for a
frequency f1. The lowest frequency that does not benefit from this sequence

is 2 f1. If we convolve two sequences--one for f7 and the second for 2 f1, we see

- Parzen Window
s -
-‘3 -
E‘ — Square Window
| | | | | | | |
Time

Figure 3-22: Parzen and Square Windows
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that 4 f7 is now the lowest frequency with an insensitivity of 1.0. By
convolving together sequences for all the frequencies that are powers of two
times the lowest frequency, we can shape for a wide range of frequencies.
Mathematically, if we convolve N sequences for all the f;,

fa=2"fy,ne {0,1,..N ) (3-44)
we will eliminate vibration for all the system frequencies, fs.

fo<f,<2N*1_f, (3-45)
The sequences generated using this method approach the form of the
continuous windows mentioned above. Figure 3-23 shows a three-iinpulse
convolved sequence where N = 4, and Figure 3-24 shows a two-impulse
convolved sequence for N = 4. The insensitivity curves for these two
sequences are shown in Figure 3-25 and 3-26 respectively.

When convolved in this manner, the two-impulse convolved sequence
approximates a square window. Itsinsensitivity does not stay below the 5%
threshold for all the frequencies in the range f;. The time delay caused by
this sequence will be less than twice the length of the original sequence. The
three-impulse, convolved sequence gives much better results. It
approximates a Parzen, or triangular, window. For the entire range of fs, the
insensitivity of the sequence remains below 5%. The time delay of this
sequence is 1.875 sec, for a sequence that eliminates all frequencies between
1 and 15 Hz. This result suggests that for the shortest sequences, we should
not convolve together sequences for frequencies that are closer than a ratio of
two.

If we increase N until the time step between the impulses reaches the
servo frequency of our system, we should be able to eliminate vibration in all

frequencies up to the Nyquist frequency of the system. Implementing the
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Figure 3-24: Two-Impulse Convolved Sequences
for 1.0, 2.0, 4.0, and 8.0 Hz

Parzen window in this fashion allows for simple algorithms to generate the

filtered output.
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Implementation on a Real System

Chapter 4

4.1 Introduction

The previous chapters presented a description of input command shaping
as a method of minimizing residual vibrations. With the mathematic
machinery in hand, we will now discuss the experimental setup used to test
the vibration reducing ability of the new command shaping techniques and
issues involving implementation of the theory. We selected the Flexbot, a
three-degree-of-freedom, flexible system, as the test bed for the new shaping
theories. This chapter presents an overview of the Flexbot, including issues
of control and vibration characterization. The ‘sharp variation of vibrational
frequency with joint angle requires some additional modifications to the input
shaping technique. A frequency mapping of the Flexbot workspace is

completed, and discretization effects are discussed.

63
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4.2 Selection of a Flexible System

Much of the prior research in input shaping theory focused on simulation.
The research has as one of its long-term goals, application of the shaping
techniques to the Space Shuttle Remote Manipulator System (RMS). The
RMS is a fifty-foot long, fifteen-inch diameter arm. It is designed exclusively
for use in space, as it cannot lift itself against the force of gravity. The RMS
suffers from extreme vibration problems due to thg long, lightweight design.
Typically, 30% of the arm’s running time is spent waiting for vibrations to
dissipate [33]. The cost of many thousands of dollars per hour to maintain
the Space Shuttle in orbit motivates NASA to eliminate time spent waiting
for the arm to stop vibrating.

Unfortunately, the RMS is not an accessible test facility. The Flexbot
provides a flexible structure that closely resembles the first three joints of the
RMS. It was designed and built by Christian[6] for the purpose of providing a
system for studying vibration control methods. The Flexbot has similar
variations in frequency as the RMS[32], although the frequencies are not as

low as the Shuttle Arm.

4.3 The Flexbot as a Flexible System
This section describes the changes in comi)uter hardware and software
that were completed during my research. The authoritative document on the

Flexbot remains Christian’s thesis[6].

4.3.1 Hardware Changes:
The computer control has changed quite a bit from the original design.
The Condor system[16] Christian describes has been replaced by a VXworks

system. VXworks provides a low level operating system for interfacing with
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the robot [28, 29]. We are using three parallel processing boards to control
the system. The processing boards are housed in a VMEbus expansion bus.
The expansion bus contains three processing boards, a digital to analog
converter, an analog to digital converter, two optical encoder cards, and a
digital /O card. A description of the boards in the VMEbus is found in Table
4-1. The processing boards are accessed directly from a Sun SPARCstation, a
UNIX based workstation. Wiring the front plane of the new mounting rack
for the Flexbot was one of my tasks. Most of the computer control changes
are not visible to the user, and the operation of the Flexbot remains

consistent with [6].

4.3.2 Software Changes:

Many aspects of the software have remained unchanged through my
reconfiguration. The change to VXworks required many low level changes in
the code, but did not dramatically affect the front-end of the program. I have
chosen to keep the basic structure of the control program the same as it was.
A schematic of the computer control is shown in Figure 4-2. The first
processor board, Aruba, controls the interface with the user. The user
specifies the type of prefilter to use, the velocity limits, the desired positions,
and the choice of joint or Cartesian control through the keyboard or the
joystick. The control program is completely menu driven off of Aruba.
During most operations, Aruba runs on a 125 Hz timing loop. The position
commands entered by the user are translated into acceptable commands
based upon the current velocity limit and passed to the second processor

board, Bahamas. The joystick signals are also processed at 125 Hz.
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Figure 4-1: The Flexbot.
Taken from [6].
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Table 4-1: Description of Boards in VMEDbus.

[15, 25, 26, 27]

Board Function Quantity
MVME 147 Processor Board 4
DT1402 8 A/D, 2 D/A, 16DIO 1
DT1406 8 D/A 1
Whedco 3570 2 Encoder Channels 2
MPP 80 DIO 1

oopooo
oaoaa
oooooo
Joystick Commands e
Shaping Switches Keyboard
Commands
A 4 1
User Interface
Aruba Velocity Limited Commands
Choose Shaping Sequences
Joint or Cartesian Move
Read Joystick
Raw Position Input Shaping Flag
Commands Cartesian Flag
Bahamas Command Shaping
Cartesian Transformations
Data Storage
Shaped, Joint »
Position Commands Current Position
Cayman Joint Servoing
Gravity Compensator
Joint Joint
Commands Positions

Figure 4-2: Interaction of Boards in VMEbus
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Bahamas performs three tasks: Cartesian transformations, input
command shaping, and data storage. It typically runs on a 125 Hz timing
loop, processing each command from Aruba. The Cartesian transformation
and data storage have remained unchanged from the original code. The new
implementation of command input shaping will be described completely in
section 4.4. The third processor board, Cayman, does the actual servoing of
the three joints. It runs a 500 Hz servo loop that takes the commands from
Bahamas as input to a PD servo with estimated velocities. The controllers
are based upon those used by Christian [6]. However, the reduced servo rate,
caused due to the overhead of the VXworks operating system, necessitated
recalculating the gains. During each servo cycle, Cayman reads the encoder
position of each joint, reads the desired position from Bahamas, calculates the
observer position and velocity, adds a gravity compensation factor, and sends
commands to the joints.

The gravity compensation attempts to offset any joint position error due to
gravitational forces. It does not account for flexing of the links due to gravity.
The compensator values were found experimentally by measuring the output

to the amplifier that was necessary to hold a given position. The equations

used are
Gy =-[ Wy + Wa cos (@, sin (©4) (4-1)
Gy =- Wy sin (0, + ©,) 4-2)

where the 6; are defined as in Figure 4-3, and W; and Wy are the current
commands necessary to support the elbow-joint and the payload, respectively.
The gravity compensator terms are added directly to the PD terms
Voltage Out =K (Oes - Our) + KOs - Oser) - G 4-3)
An instability due to a 38 Hz mode of the base joint caused problems with

the controller. The low damping of the joint and the slow servo rate caused
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the joint to limit cycle. This problem was solved by moving the poles of the
observer for the base joint and slowing the controller. However, the joint still
limit cycles--it does not cause stability problems in the system, however, it
may have an effect on the vibration reduction of the inputs shaping scheme.
Concurrent research by Avery[3] explains the problem of this type of limit
cycle in terms of quantization error due to the encoders and time delays due

to the digital nature of the control.

4.4 Analysis of Vibrational Workspace

Christian [6] showed that there is considerable variation in the vibrational
frequencies as the Flexbot moves about its workspace. A variation of +/- 25%
was found for each of the first three modes. In hopes of improving the effect
of command input shaping, a method was developed to account for known
frequency variations with the workspace. The method requires a knowledge

of the frequency variation as a function of position. The first four frequencies

N |

Figure 4-3: Definition of Flexbot Joint Angles
Taken from [6].
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of the Flexbot were mapped throughout the workspace of the robot. Moving
about the workspace in 20 degree increments, two symmetries appeared.
First, the base angle does not affect the vibrational frequencies. Second, the
system is symmetric about the vertical position. The reduced workspace was
mapped, using knowledge of these symmetries.

To measure the vibrational frequencies, all three joints were excited using
pseudo-white noise. The noise was generated using ran2(), a random-number
generator algorithm from Numerical Recipes in C [17]. The random number
generator provided position commands and were sent to the servo loop. To
measure the vibrations produced by the white noise, two accelerometers were
attached to the elbow joint of the Flexbot--one in-plane with the shoulder and
elbow motors and one out-of-plane. Bruel & Kjaer Type 4371 Accelerometers
were connected to Bruel & Kjaer Type 2651 Charge Amplifiers. The
amplified signal was fed to a Hewlett-Packard 3563A Control Systems
Analyzer [9]. The analyzer sampled the signal at 9.77 ms intervals for 100
seconds. The resulting time sample was processed and displayed as a
frequency response.

Figures 4-4 - 4-7 show the results of the mapping exercise. The first and
third frequencies are characterized as being in-plane with the shoulder and
elbow joints. These two frequencies have significant damping from the motor
servos and the backlash in the elbow joint. They are primarily a function of
elbow position as the elbow position changes the inertia seen by the shoulder
joint. The first frequency varies from 2.05 Hz when the robot is pointing
straight up to 3.15 Hz down near the base. The third frequency has its
minimum, 4.70 Hz, near the bottom of the workspace and its maximum, 6.45
Hz, at the top. The second and fourth frequencies are primarily out-of-plane
with the joints. They are almost completely undamped and vary with both
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elbow and shoulder position. The second frequency is 2.85 Hz when the robot
is vertical, compared to 3.85 at the bottom. The fourth frequency changes
from a minimum 5.80 Hz near the base to a maximum 7.95 Hz when the
robot points straight up. The frequency map was consolidated into a 14 x 14
grid, covering the whole workspace. When the system is used, the resulting
array of frequencies is loaded into the Flexbot control program so the

frequencies can be accessed constantly while running the system.
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4.5 Implementation of Command Shaping Techniques

4.5.1 Varying Frequencies

Unfortunately, the implementation of an adaptive-preshaping technique is
not simple. There are many of issues to consider when designing the system
controller. The frequency map illustrates that the Flexbot vibrational
frequencies vary considerably around the workspace. The insensitivity plots
presented in Section 2.3, show that input shaping should be robust to
modelling errors of 15% for simple and derivative constraint sequences. All
four of the Flexbot frequencies vary as much as 20% over the workspace. (see
Figures 4-4 -- 4-7). In the adaptive-shaping scheme, the sequences will be
calculated at each time step, based upon the system configuration. At each
time step, we must determine the frequencies , calculate the sequences for
those frequencies, and convolve the current command with the new sequence.
We chose to vary the sequences at each time step, instead of changing at
specific intervals, to reduce any possibility of inducing vibration in the system

due to abrupt changes in the sequences.

4.5.2 Accessing Frequency Data

The method of accessing the frequency data is simple. The frequency map
is loaded into an array on Bahamas when the control program is started. The
array contains the four frequencies as a function of the elbow and shoulder
positions. At each time step, the processor board reads the actual positions
from the servo board, and performs a two-degree linear interpolation of each
frequency. The four frequencies are then used to calculate new sequences for

the current command.
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4.5.3 Discretization Problems

The discrete nature of the control systems can cause problems from
instability of the system to inducing vibration due to timing errors of the
shaping sequences. Although the Bahamas timing loop runs at 125 Hz,
errors in timing due to the discrete nature adversely affect the vibration
reduction scheme. This problem is especially troublesome when we adapt to
frequency changes continuously.

If we ignore the discretization issue and place the impulses of the
sequence in the nearest discrete time step, a discontinuity in the shaper
output occurs when the frequency changes enough to switch the last impulse
from one time step to another. Two sequences discretized using this “Nearest
Neighbor” approach are shown in Figures 4-8 and 4-9--a 0.001 Hz difference
in frequency causes the third impulse to move from the 17th cycle to the 16th.
Figure 4-10 shows the shaped commands for a step input where the sequence
is changed from the one in Fig. 4-8 to the one in Fig 4-9 after 1.0 Sec.
Magee[11] also noticed that changing frequencies causes problems. He
describes a method of adding or subtracting impulses, depending on the sign

of the variation, to attempt to compensate for the vibration induced by the
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Figure 4-8: Sequence for 7.576 Hz Discretized to
125 Hz Timing Loop
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Figure 4-9: Sequence for 7.575 Hz Discretized to
125 Hz Timing Loop

switching of sequences.

We can eliminate the discontinuity caused by changing shaping sequences
if we can continuously vary the shapers from one time step to the next. By
using a linear extrapolation on the continuous sequence, splitting each
impulse into two impulses placed in the two nearest neighbors, we will create
sequences that vary continuously with changes in frequency. The discrete
pulse amplitudes are calculated as follows. The extrapolation method is
shown in Figure 4-11. The amplitude of the new impulses is calculated using:
a linear weighting of the time offset of the discrete time from the continuous
impulse. Figure 4-12 shows a continuous sequence for 7.575 Hz--the highest
Flexbot frequency. Figure 4-13 shows the extrapolated version of the same
sequence onto a 125 Hz time step. The respective insensitivity curves are
shown in Figures 4-14 and 4-15. The two insensitivity curves are virtually
identical for the continuous and extrapolated sequences. The extrapolated
sequence is limited in its ability to cancel the higher frequencies that the
continuous sequence will cancel. Discretization reduces the vibration

reduction effect on the higher frequencies by changing the timing of the
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pulses. The timing change may be effective at the low frequency, but the
same change in time at the low frequency causes a greater phase shift at the

higher frequencies.
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The insensitivity curves for the two sequences found by the “Nearest
Neighbor” approach are shown in Figure 4-16. One of the sequences, from
Figure 4-8, shows good insensitivity, although the frequency of the sequence
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is not the desired frequency. The “Nearest Neighbor” technique will shift the
actual frequency, in this case from 7.575 Hz to 7.813 Hz. The second
“Nearest Neighbor” sequences shows very poor insensitivity. The low ratio of
timing loop frequency to sequence frequency degrades the performance of this
shaper. Since the direct-solution method derived above generates impulse
amplitudes that are continuous with variations in frequency, the shaped-

commands generated from our continuously varying shaper will be smooth.
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Figure 4-16: Insensitivity Curves for 7.575 and 7.576 Hz Sequence Moved to
Closest Time Step, 125 Hz Timing Loop

4,54 Buffering Method

To minimize the number of calculations per time step, a new buffering
technique was developed for storing the shaped commands. Instead of
convolving each sequence together, thereby multiplying the number of
impulses, we choose to run our sequences in series, only sending the current
impulse from the first shaper to the second shaper. Using this method, we

can effectively add the number of impulses in all the shapers being used to
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find the number of calculations per time step. Figure 4-16 shows the
buffering technique. At each time step, a raw command enters the shaper. It
is convolved with the first sequence, and the resulting 'partial-shaped
commands are stored in the first buffer. The first buffer contains partial
commands for a small amount of time into the future. At the next time step,
the buffer will shift down one step and the new command will be entered.
When a partial-shaped command reaches the bottom level, is the output for
the first shaper for the current time step. It is then sent to the next buffer
where the process is repeated. The number of calculations required by the
new buffering scheme is roughly 1/5 the number for a convolved sequence for

four modes.

4.6 Conclusions
There are many important issues to confront when implementing
command input shaping on a real system. The Flexbot is a complex piece of

hardware that is well suited to input shaping. Its three-degree-of-freedom
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design generates complex mode shapes not found in planar manipulators.
The Flexbot also has vibration characteristics somewhat similar to the
Shuttle RMS and other space structures. The issues of large frequency
variation over the workspace and discretization will arise in other systems
when input shaping is applied. The methods derived in this chapter will
allow us to implement a smooth and continuous input shaping scheme that
will allow us to compensate and adapt to the changes in frequency over the

workspace.



ExPerimentation and Results

Chapter 5

5.1 Introduction

In the previous chapters we developed a new method for implementing
command input shaping techniques. The new method is designed to
effectively use shaping techniques on a system with large frequency
variations over its work space. The symmetric, two-mode solution developed
above allows us to take advantage of the time savings of direct-solution
sequences in an application that requires on-line calculation of sequences.
This chapter presents the results of experiments performed on the Flexbot.
Tests were run comparing the new, direct-solution technique with previous
methods of calculating sequences. Experiments in which shaping sequences
are calculated on-line, adapting to the frequencies of the current position,
were also completed and this new method of command input shaping is

compared with the constant valued shaping tests.

83
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5.2 Experimental Set Up

For an accurate comparison of the various command input shaping
methods, consistency in data collection is important. All of the tests were
performed with the apparatus shown in Figure 5-1. Two accelerometers were
positioned on the Flexbot in the same manner as described in Section 4.3.
The Bruel & Kjaer Type 4371 Accelerometers were connected to Bruel &
Kjaer Type 2651 Charge Amplifiers. The amplified signal was fed to a
Hewlett-Packard 3563A Control Systems Analyzer. The analyzer sampled
the signal at 9.77 ms intervals and recorded the acceleration trace for 20
seconds. A software triggering method was used to synchronize the timing of
the analyzer’s collection with the VXworks program--the analyzer was
triggered as the computer began sending commands to the robot. Two sets of
data were collected for each test. The first set comes from the computer and
consists of the desired position command, shaped position command, actual
position, and voltage signal for each joint. The second set of data is the

acceleration signals from the analyzer.

Acceleration
Time Trace

Command
1and Sequencef;
VXworks}: Data
System

Figure 5-1: Data Collection in Experimental Set Up
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Figure 5-2: Joint Position Data: Note Lack of Position Resolution

The computer data allows us to see the time delay introduced by the input
shaping and the vibration left in the joints at the end of a move. Due to the
PD controller’s high damping, relatively little vibration is left in the joints
after a move. Figure 5-2 shows the position of the shoulder joint during a
shaped and an unshaped test. The time delay is noticeable in the figure, but
the vibration amplitude is very small. Most of the residual vibration resides
in the flexing of the links. The flexing causes vibrations at the joints, but,
typically, these vibrations are on the order of the encoder resolution. During
tests with adaptive sequences, the variations in the sequences are recorded.

We also collect acceleration data, which is useful for two reasons. The
first is to compare the time-traces of the acceleration for different sequences.
The second is for calculating the Fast Fourier Transform (FFT) [17]. The
magnitude of the FFT shows the amplitude of the acceleration at a specific
frequency. In a linear system, the acceleration amplitude is a constant
multiple of the position amplitude. Comparing the magnitude of the FFT of

an unshaped response to a shaped system response allows us to gauge what
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percent of the vibration amplitude was eliminated by the shaping procedure.
Since command shaping attempts only to reduce the level of residual
vibration in a system, we want to calculate the FFT only for the data collected
after the end of the move. Therefore the data is processed as follows: the DC
bias of the charge amplifiers from the acceleration signal is removed (about
0.02 m/s2), the first 1024 data points after the completion of the move are
selected, and the FFT is calculated. The resulting FFT yields frequency data
for 0 to 40 Hz at 0.10 Hz increments. Figure 5-3 shows what portion of a
typical acceleration profile is being used for the FFT.

To accurately compare the different methods of command shaping, several
tests were performed. The first tests involve maneuvers along lines of
constant frequency. We compare the two-mode, direct solution sequences
with the convolved sequences based on the results of these tests. Second, we
performed several non-constant frequency tests. These tests will allow
comparison of the new method of adapting to frequency changes to the

current method of constant-valued sequences.
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Figure 5-3: Data Used for FFT Calculation
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Five different shaping sequences were compared in these tests. The
different types are described in Table 5-1. I will refer to the different
sequences by the abbreviations listed in Table 5-1. Each constant-valued
shaper is generated for the four frequencies when the shoulder and elbow are
both at 30°. These frequencies are 2.35, 3.15, 5.80, and 7.60 Hz, all with zero
damping. The four frequencies represent the first four modes of the Flexbot.
In different configurations, the system frequency values will change, but the
constant-valued shapers will always be calculated for these values. The
adaptive shapers will be continuously updated based upon current position.
The time-delay of the adaptive shapers will depend upon the final
configuration of the system but will be close to the approximate value listed
in the table.

When comparing the different sequences, two values are checked: the
time delay of the sequence and the magnitude of the peaks of the acceleration
FFT. The very low damping of the two out-of-plane modes is a cause for
concern, since any disturbance will remain in the systém for an extended
period of time. Command shaping does not presume to eliminate existing
vibrations in a system, so the amount of residual vibration depends upon the
vibration that exists in the system at the beginning of the move and the
vibration caused by forces other than the actuators. For the most part these
exogenous disturbances are small, but they can influence the data.

To show the affect of noise on the data, Figures 5-4 to 5-6 show details of
the acceleration signal measured during three tests. The first two are
immediately following slews with shaping; the final one is from the idle robot,
after an extended period of time with no commanded motion. The residual
vibration present after the adaptive shaping move is virtually

indistinguishable from the idle noise. Much of this noise is due to the limit
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cycle described in Section 4.3.2, as the 38 Hz signal can be seen in the
acceleration data. The noise level in Figure 5-6 will be the base for all
vibration measurements. The percent residual vibration is included in the
results. This value is calculated from the FFT magnitude. Typically, the idle
values are close to 5.0% of the unshaped values for the tests. Any shaped
response that is close to this value has eliminated as much vibration as is

possible.

5.3 Constant-Frequency Moves

One objective of the tests is to compare the new, two-mode sequences with
single-mode sequences. Two constant-frequency moves were performed using
a variety of different shaping sequences. As mentioned above, the base angle
does not affect the vibrational frequencies of the system, so the test motions
were movements of the base joint alone. The vibration reduction ability of
each is noted. The first test was performed with sequences tuned to the robot
configuration. For the second test, the Flexbot was configured so that the
sequences that were tuned to the system vibrational characteristics in the
first experiment were no longer accurate. The system frequencies are
between 17% and 34% different from the sequence frequencies in the second
test. In both tests, the shapers are also compared to the varying-mode

sequences which are constantly tuned to the system position.

5.3.1 Move with Tuned Shapers

The first set of tests consisted of a slew along a line of constant frequency.
The shoulder and elbow joints were both set to 30°, and the base joint was
moved from 30° to -30°. The velocity limit was set to 15°/sec. We selected a
low velocity limit to minimize the inertial forces on the system. This move

primarily excites the two out-of-plane vibratory modes, so data was collected
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Table 5-1: Types of Shaping Sequences Used in Tests

Type of Sequence Total Time Abbreviation
Impulses Delay

Four Single-Mode, Three-Impulse 81 1.048 1M3

Sequences for 2.35, 3.15, sec

5.80, and 7.60 Hz

Two Three-Impulse, Two-Mode 9 0.440 Short-2M3

Sequences. sec

First for 2.35 and 5.80 Hz,

Second for 3.15 and 7.60 Hz

Two Three-Impulse, Two-Mode 9 0.528 Long-2M3

Sequences sec

First for 2.35 and 3.15 Hz,

Second for 5.80 and 7.60 Hz

Two Five-Impulse, Two-Mode 25 0.872 Short-2M5

Sequences sec

First for 2.35 and 5.80 Hz,

Second for 3.15 and 7.60 Hz

Two Five-Impulse, Two-Mode 25 1.016 Long-2M5

Sequences sec

First for 2.35 and 3.15 Hz,

Second for 5.80 and 7.60 Hz

One Four-Mode, Nine-Impulse 9 0.848 4M9

Sequence for 2.35, 3.15, sec

5.80 and 7.60 Hz

from the out-of-plane accelerometer. Figures 5-7 and 5-8 show acceleration

time-traces for the unshaped move and one shaped slew.
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Figure 5-8: Accelerometer Time Trace for Constant Frequency Move,
Long-2M3 Sequence.

Figures 5-9 and 5-10 show the FFT data for the same sequences. The rest
of the data are presented in Table 5-2. The data show that one of the shortest
sequences, the Long-2M3, gives the best vibration reduction. However all the
sequences bring the vibration close to the idle level. Since the longer
sequences are more robust to modelling errors, we might expect them to
result in less vibration. However, the sequences used during this test were
tuned to the frequencies of the test configuration. The sequences were

calculated using out-of-plane frequencies of 3.15 and 7.60 Hz. From the FFT
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magnitude data collected, we see that the actual frequencies were 3.10 and
750 Hz, within 1.6%. This accuracy in frequency modelling should yield

comparable results for all the different sequences.
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Figure 5-9: FFT Magnitude of Unshaped, Constant Frequency Move
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Figure 5-10: FFT Magnitude of Constant Frequency Move
Using Long-2M3 Sequence.

The low insensitivity of the Short-2M3 sequence to the higher frequency,
as discussed in Section 3.5, can be seen in the data. Comparing the new
method of calculating direct-solution sequences to Singer’s method [18], we
see, from Table 5-2, that the direct-solution sequences yield better results.
The three-impulse single-mode shaper gives slightly poorer results than the
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five-impulse, two-mode shapers. Chang [5] noticed in his work on the Mid-
deck Active Control Experiment, that short sequences with a small number of
impulses often work better than long sequences. This helps explain the good
performance of the Long-2M3 sequence and the relatively poor performance
of the 1M4--convolved Singer-- sequence. The data from tests done with the
adaptive sequences is also included in Table 5-2. Although the frequency
should not change during this move, the varying sequences result in slightly

larger residual vibrations than do the constant-valued sequences.

5.3.2 Constant-Frequency Move with Poorly Tuned Sequences

We have seen how well the new, direct-solution sequences perform when
they are properly tuned. The next test is a constant-frequency maneuver in a
position where the sequences are not tuned. For the new test, the shoulder
and elbow joints are both set at 80°, and the base is moved from 30° to -30°.
This configuration is far enough from the tuned-frequency-position that the
actual system frequencies will differ significantly from the constant-valued
sequence frequencies. We will be able to discern from this test how robust
the different sequences are to errors in frequency modelling. The speed limit
will be set to 50°/sec for this test. Again, we run the test twice for each of the
five different shaping sequences as well as unshaped. The results of the test
are shown in Table 5-3. All the shapers keep the vibration close to the idle
limits. Within this limit, this test shows that the robustness of the longer
sequences helps when the modelling error of the frequencies is large. The
sequences are the same as above--generated for 2.35, 3.15, 5.80, and 7.60 Hz.
However, the system frequencies have changed significantly. From the
unshaped FFT, Figure 5-11, we see that the two out-of-plane frequencies are

now 2.7 and 4.9 Hz. These measured frequencies differ from those found in
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the white-noise tests discussed in Section 4.4. The data supports the theory
that sequences with derivative constraints are better at reducing the
vibration when the frequency modelling error is large than are the sequences
generated from simple constraints alone.

The varying-sequence data is also included in Table 5-3. In this case the
varying shapers appear to minimize vibrations below the constant-shaper

values, even in a constant frequency move. Since the varying-shapers will be
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Table 5-2: Vibration Reduction in Constant Frequency Move,

{30,30,30} to {-30,30,30} at 15°sec.

Type of Shaper| Time Delay |3.3 Hz Residual] 7.0 Hz Residual
(sec) Vibration (%) | Vibration (%)

Unshaped 0.00 100 100
Short-2M3 0.440 1.81 15.29
Long-2M3 0.528 0.87 3.28
Short-2M5 0.872 2.82 4.75
Long-2M5 1.016 2.67 4.32

1M3 1.048 1.92 10.73
Short-2M3, 0.44 4.47 14.26
Varying approx

Long-2M3, 0.52 1.78 6.37
Varying approx

Short-2M5, 0.87 8.39 3.49
Varying approx

Long-2MS5, 1.02 5.96 10.44
Varying approx

calculated for frequencies closer to the actual frequencies than the constant

sequences, the adaptive-sequences are more successful in reducing residual

vibrations.
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Table 5-3: Vibration Reduction in Constant Frequency Move,
{30,80,80} to {-30,80,80} at 50°/sec

Type of Shaper| Time Delay |3.3 Hz Residual] 7.0 Hz Residual
(sec) Vibration (%) | Vibration (%)

Unshaped 0.00 100 100
Short-2M3 0.440 5.04 9.67
Long-2M3 0.528 3.02 5.50
Short-2M5 0.872 1.14 1.81
Long-2M5 1.016 1.50 0.75
Short-2M3, 0.44 6.83 4.70
Varying approx

Long-2M3, 0.53 2.70 2.00
Varying approx

Short-2M5, 0.87 0.77 1.22
Varying approx

Long-2M5, 1.02 0.34 1.40
Varying approx

We have seen how the different types of sequences compare in two

constant-frequency test maneuvers. The results have proven to be quite

consistent with the theory. When the frequencies are very well known, as in

the first experiment, sequences generated from simple-constraints alone yield

acceptable results. As the modelling error of the frequencies grows, the

sequences with derivative constraints prove to be more robust to these errors.

Not all the data appears to be consistent with the theory, however. The tests
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show that the 1M4--convolved, three-impulse sequence--with 81 impulses,
does not reduce the vibrations as much as the direct-solution sequences, with
many fewer impulses. _

We have also seen that the adaptive method of command shaping does not
perform as well as the congtant-valued sequences when the sequences are
tuned to the correct position. Once the system has varied from the tuned
position, the adaptive sequences show an improvement over the constant
shapers. The ability of the adaptive sequences to reduce vibration during a

move with varying frequencies will be discussed in the next section.

5.4 Varying-Frequency Moves

The next step in comparing the different methods of implementing
command input shaping is performing maneuvers that causes the system
frequencies to vary. Two different tests will be completed. In the first test,
the base joint will move from 30° to -30°, the shoulder will move from 60° to
10° and the elbow will move from 10° to 60°. This test will be repeated at
three different joint velocities: 15°sec, 30%/sec, and 50°/sec. The Flexbot will
pass directly through the tuned-frequency position during this maneuver.
The second test will be performed well away from the tuned-frequency
position. The second maneuver will move the base joint from 0.0° to 30°
while the shoulder and elbow both move from 80° to 45°. This test was
performed with a joint velocity limit of 50°/sec. The actual paths of the robot
in the frequency-space of the system are shown in Figure 5-13. The test
paths are marked to show how the third frequency will change during the

slews.
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Figure 5-13: Variation of Third Frequency with Position
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Before viewing the test results, let’s examine how one of the shaping
sequences actually varies during a slew. Figure 5-14 shows the variation in
one of the two-mode, three-impulse sequences of the Long-2Ms3 filter during a
50°/sec run of the first test. A slice of the three-dimensional figure at a
specific move-time corresponds to a plot of a sequence’ s impulses, as in
Figure 4-15. Figure 5-14 shows the impulses varying significantly during the
move. Each of the three impulses in the sequence is discretized using the
method described in Section 4-5. As the frequency varies during the move,
both the timing and the amplitude of the impulses change. The frequencies
for this sequence are 6.23 and 7.55 Hz at the beginning of the move and 5.35
and 7.05 Hz at the end of the move. This variation in frequency causes a

lengthening of the sequence from 0.145 sec. to 0.161 sec. At our digital time
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Figure 5-14: Variation in Filtering Sequence During 30°/sec Slew
from {30,60,10} to {-30,10,60}.

frequency of 125 Hz, the change in time delay moves the last impulse from
the 18th and 19th time steps to the 20th and 21th time steps. The
discretization of the impulses insures that the change in the sequences is

smooth as the frequency varies.

5.4.1 Varying-Frequency Move Close to Tuned-Frequency Position
The first varying-frequency test consists of a slew of all three axes
concurrently. The base joint will move from 30° to -30°, the shoulder will
move from 60° to 10° and the elbow will move from 10° to 60°. The tuned-
frequency position is located within the trajectory of this slew, as seen in
Figure 5-13. All the sequences in Table 5-1 were tested at 15°/sec and
30%sec. The results are listed in Table 5-4. The results offer no conclusive
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evidence that varying the shapers reduces the residual vibration more than
using a constant-valued shaper, as several different tests are within the idle
noise limit. The two best sequences were the 4M9--a direct-solution sequence
for four modes--and the varying Long-2M3, both of which keep both modes of
vibration below 10% of the unshaped value. The Long-2M3 has the benefit of
being 38% shorter than the 4M9 (0.528 sec compared to 0.848 sec), as well as
being calculated in real time. Acceleration data are shown for three different

moves in Figures 5-15 to 5-17.
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Table 5-4: Vibration Reduction in Variable Frequency Move,
{30,60,10} to {-30,10,60} at 15°%sec.

Type of Shaper] Time Delay |3.3 Hz Residual] 7.0 Hz Residual
(sec) Vibration (%) { Vibration (%)

Unshaped 0.00 100 100

Short-2M3 0.440 2.47 37.78

Long-2M3 0.528 6.88 24.13

Short-2M5 0.872 2.44 10.84

Long-2M5 1.016 6.33 21.67

4M9 0.848 4.44 7.38

1M3 1.048 2.81 44.77

Short-2M3, 0.44 5.15 30.27

Varying approx

Long-2M3, 0.52 6.51 6.93

Varying approx

Short-2M5, 0.87 0.29 19.23

Varying approx

Long-2M5, 1.02 8.61 10.44

Varying approx
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When the velocity limit is increased and the same test is performed, the

results, shown in Table 5-5, are similar. Most of the sequences give good

results. We do notice that the shortest sequences--the Short-2M3--give the

poorest results. The longest sequences tend to be unable to eliminate the 7.0

Hz mode.

Table 5-5: Vibration Reduction in Variable Frequency Move,
{30,60,10} to {-30,10,60} at 30°/sec.

Type of Shaper| Time Delay |3.3 Hz Residual} 7.0 Hz Residual
(sec) Vibration (%) | Vibration (%)
Unshaped 0.00 100 100
Short-2M3 0.440 12.31 24.60
Long-2M3 0.528 4.97 4.77
Short-2M5 0.872 6.53 14.20
Long-2M5 1.016 7.25 15.15
4M9 0.848 7.68 18.95
1M3 1.048 3.32 24.90
Short-2M3, 0.44 16.48 16.42
Varying approx
Long-2M3, 0.52 10.76 10.76
Varying approx
Short-2M5, 0.87 5.41 2.16
Varying approx
Long-2M5, 1.02 8.04 39.37
Varying approx
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At this point we will present some of the accelerometer data from the in-
plane accelerometer. Due to a large amount of backlash in the elbow joint
and the damping in the elbow and shoulder controllers, the signal from the
in-plane accelerometer is not as crisp as the out of plane. Figures 5-18 -- 5-20
show accereration time-traces for the unshaped, Long-2M5, and Adaptive-
Long-2MS5 filters during the 30°/sec move from {30,60,10} to {-30,10,60}. The
vibrations dissipate much faster than those seen by the out of plane
accelerometer. The time history graphs show significant reduction of
vibration when the input is shaped. However, the gain on the FFT is not as
clear, as can be seen in Figures 5-21 -- 5-23, which show the FFT magnitude
for the residual vibration for these same tests. The lack of clear peaks on the
FFT Magnitude for the unshaped maneuver can be attributed to backlash in
the elbow joint. When the vibration amplitude is large, the joint will bounce
back and forth across the backlash. During a shaped maneuver, the vibration
amplitude will be too small to overcome the preload on the joint due to
gravity, and the joint will not pass through the backlash during the vibration.
This phenomenon can explain the presence of sharp peaks in shaped slews
where therg are broad peaks in the unshaped slews. Backlash in the elbow

will cause this phenomenon during the final set of varying-frequency tests.
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Figure 5-18: In-Plane Acceleration from Unshaped move from
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Figure 5-19: In-Plane Acceleration from Long-2M5 move from
{30,60,10} to {-30,10,60} at 30°/sec.
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Figure 5-22: FFT Magnitude of In-Plane Acceleration of Long-2M5
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Figure 5-23: FFT Magnitude of In-Plane Acceleration of Adaptive-
Long-2M5 Move from {30,60,10} to {-30,10,60} at 30°/sec.
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Table 5-6;: Vibration Reduction in Variable Frequency Move,
{30,60,10} to {-30,10,60} at 50°/sec.

Type of Shaper| Time Delay |3.3 Hz Residualj 7.0 Hz Residual
(sec) Vibration (%) | Vibration (%)
Unshaped 0.00 100 100
Long-2M3 0.528 13.77 3.22
Short-2M5 0.872 14.52 6.75
Long-2M3, 0.52 9.97 12.24
Varying approx
Short-2M5, 0.87 5.43 8.46
Varying approx

5.4.2 Varying-Frequency Move not at Tuned-Frequency Position

The final tests were performed at a different configuration of the system,

where the tuned-frequency position is not within the trajectory. This

maneuver moves the base joint from 0° to 30° while the shoulder and elbow

move from 80° to 45°. The velocity limit is set to 50°/sec. This slew ends

almost at the tuned-frequency position. Figure 5-24 shows the FFT

magnitude for the unshaped response. We see that the FFT for this

maneuver is no longer the sharp spike seen in all the above responses. It

shows a large amount of noise from the in-plane vibration. The shaped

response for an Adaptive-Long-2M3 slew is shown in Figure 5-25, and the
response for a Long-2M3 slew is shown in Figure 5-26. The data is difficult to

tabulate, as the shaped response virtually eliminates the wide-frequency

band of noise, but produces a spike at a frequency that was not excited during

the unshaped move. The shaped-frequency response produces spikes at the
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frequencies predicted by the frequency mapping exercise of Section 4.4.
These results show that the adaptive filtering is less effective than constant-
valued filtering. The other filters perform similarly, with the adaptive filters

leaving more residual vibration than the constant-valued shapers.
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Figure 5-24: FFT Magnitude of Unshaped Response:
50°/sec Velocity Move from {0,80,80} to {30,45,45}.
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Figure 5-25: FFT Magnitude of Adaptive-Long-2M3 Shaper:
50°/sec Velocity Move from {0,80,80} to {30,45,45}.

5.5 Effect of Varying Prefiltering Sequences

The adaptive shaping technique developed shows promise in reducing the
residual vibration in systems with large frequency variations. The method
needs further work before it can be used with confidence. One issue that has

not been addressed is stability. With the adaptive shaping technique, the



Chagter 5: Exeerimentation and Results 109

12
1-¢
o 0.8 :
3 C
Eos .
04
02§ A \
¢ 2 4 6 10 12

Frequency (Hz)

Figure 5-26: FFT Magnitude of Long-2M3 Shaper:

50°/sec Velocity Move from (0,80,80} to {30,45,45}.
input shaping is inside a feedback loop, so stability can be a problem. The
slow variation of the shaping sequence with position suggests that the chance
of instability is small. As the rate of change in frequency as a function of
position rises, the sequences will vary faster, increasing the possibility of
instability. While testing the method, the varying method only caused

problems near the limit of the workspace, where the frequencies change

fastest.

5.6 Comparison of Windowing Sequences.

In Chapter 3, we showed that input shaping algorithms are similar to
Parzen and square windows. Several tests were performed comparing an
input shaping window resembling a Parzen window. The sequence used is
shown in Figure 5-27. The results of the testing are shown in Table 5-7. The
triangular sequence has a time delay of 0.959 sec., an 8.5% savings over the
1M3 sequence. The triangular sequence could prove to be useful when many
different frequencies need to be canceled. The Parzen window has been
commonly used for this purpose in the past in windowing data without -

aliasing data [17]. Due to the large time delay when compared to the Short-
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Table 5-7: Results of Windowing Tests.

" Type of Move | 3.3 Hz Residual | 7.0 Hz Residual
Vibration (%) { Vibration (%)

15°/sec

{-30,30,30} to 4.02 7.72
{30,30,30}

50°/sec

{-30,80,80} to 2.17 0.54
(30,80,80)

15°/sec

{30,60,10} to 2.66 6.56
{-30,10,60}

30%/sec

{30,60,10} to 14.61 8.36
{-30,10,60}

2M3, Long2M3, or Short-2M5 sequences, the proper implementation may be
to convolve a single two-impulse filter (Figure 2-3) with a Parzen window, to

eliminate many different frequencies.

5.7 Conclusions
The results of the tests show that the direct-solution sequences developed

in Chapter 3 reduce the residual vibration as well as the direct-solution
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sequences that Hyde developed[10]. In many tests, short sequences
performed well compared to longer, supposedly more robust, sequences. The
highest frequency, the 7.0 Hz mode, is often difficult to control. Chang [5]
shows that controller bandwidth has a strong effect on the ability to reduce
vibrations. Previous experience with the Flexbot showed that with a low-
damping, low-bandwidth, controller on the base joint, the shaping algorithms
gave very poor results.

The new adaptive shaping technique was able to significantly reduce
residual vibrations in some tests. The Long-2M3 and Short-2M5 were the
adaptive sequence most successful in reducing vibrations. Experimental

evidence does not show that the results are improved for all types of motions.
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Conclusions

Chapter 6

6.1 Summary

This document addressed several issues in implementing input command
shaping techniques on flexible systems. First, an analytical solution was
derived for calculating input command shaping sequences for two, undamped
modes of vibration. The new sequences can be calculated for a wide range of
frequencies. A method was developed to find approximate solutions for
systems with two, damped frequencies. The limitations of the new solution
method are addressed with attention focused on the frequency range that is
applicable to the method and the time savings of the new sequences. The
equations for calculating multiple mode sequences (more than two) are
analyzed and some possible solution methods are proposed. The two-mode
sequences were shown to have comparable robustness to modelling errors as
previously-developed sequences, while providing a significant time savings.
A simple analysis of negative-impulse sequences that can be found by

adjusting the all-positive-valued-impulse constraint was performed,

113
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addressing the issues of insensitivity to modelling errors and time savings.
Also, a comparison between several standard data windowing techniques and
input shaping sequences was performed. Two window shapes that are
commonly used for data windowing can be applied in the same manner as
input shaping seqﬁences to reduce residual vibrations.

Second, problems involving the application of input command shaping to
physical systems were addressed. A new shaping technique was developed to
compensate for the large variation in system frequency over the workspace
that exists in many systems. The adaptive shaping technique calculates a
new shaping sequence at each time step of the digital controller. The
sequences are calculated based upon the current system position, using an
on-line map of the system frequencies. Discretization problems were
discussed and a method for eliminating discretization errors was developed.

Finally, the new-sequences and the adaptive shaping technique were
tested on the Flexbot, a three-degree-of-freedom, flexible manipulator located
in the MIT Artificial Intelligence Laboratory. The new sequences were shown
to be more effective at reducing residual vibration than comparable convolved
sequences, while providing a significant time savings. The adaptive shaping
technique successfully reduced the vibrations. Compared to constant-valued
shapers, adaptive shaping provided improved performance in several tests,
comparable vibration reduction for others tests, and worse results for some.
Stability remains as an issue that needs to be addressed. Accuracy of the
frequency map, speed of the move, and rate of change of frequency with
position all effect the performance of the adaptive system. Several sequences
designed to mimic data windows were tested and found to provide good

results, although not as good as most of the sequences.
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6.2 Suggested Work

The success of the two-mode sequences in reducing residual vibration
suggests that effort be continued in finding easier methods of calculating
sequences for higher mode systems. Also, an investigation of the nature of
the negative-impulses sequences that are generated by the direct-solution
technique was performed. Negative sequences will be shorter than positive
sequences, but will excite other frequencies and, as a result, will have poor
robustness to modelling errors.

The adaptive shaping technique show definite promise. The current
implementation is not perfect. The experimental results show that it can be
effective in certain configurations. Several issues to address are stability of
the system and how velocity, servo rate, and frequency variation affect the
stability; possible implementations that reduce the short drift that presently
occurs at the end of a move; and on line identification of frequencies an in
Tzes and Yurkovich [23] to allow for greater flexibility of the system.

Other important issues remain to be addressed. Designing systems to
take the most advantage of the vibration reduction ability of preshaping, the
effectiveness of command shaping on non-linear systems, and the effect of the
closed-loop dynamics on the ability to successfully control vibrations all
remain to be investigated fully.
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