
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARTIFICIAL INTELLIGENCE LABORATORY

A.I. Technical Report No. 1377 July 1993

A Parallelizing Compiler Based on Partial
Evaluation

Rajeev Surati

Copyright c
 Massachusetts Institute of Technology, 1993

This report describes research done at the Arti�cial Intelligence Laboratory of the Massachusetts

Institute of Technology. Support for the laboratory's research is provided in part by the Advanced

Research Projects Agency of the Department of Defense under O�ce of Naval Research contract

N00014-92-J-4097, and by the National Science Foundation under grant number MIP-9001651.

2

i

A Parallelizing Compiler Based on Partial Evaluation

by

Rajeev J. Surati

Submitted to the Department of Electrical Engineering and Computer Science

on May, 1992, in partial ful�llment of the

requirements for the degree of

Bachelor of Science

Abstract

This thesis demonstrates a compiler that uses partial evaluation to achieve outstand-

ingly e�cient parallel object code from very high-level source programs. The source

programs are ordinary Scheme numerical programs, written abstractly, with no at-

tempt to structure them for parallel execution. The compiler identi�es and extracts

parallelism completely automatically; nevertheless, it achieves speedups equivalent to

or better than the best observed results achieved by previous supercomputer compilers

that require manual restructuring of code.

This thesis represents one of the �rst attempts to capitalize on partial evaluation's

ability to expose low-level parallelism. To demonstrate the e�ectiveness of this ap-

proach, we targeted the compiler for the Supercomputer Toolkit, a parallel machine

with eight VLIW processors. Experimental results on integration of the gravitational

n-body problem show that the compiler, generating code for 8 processors, achieves a

factor of 6.2 speedup over an almost optimal uniprocessor computation, despite the

Toolkit's relatively slow interprocessor communication speed. This compares with an

average speedup factor of 4.0 on 8 processors obtained at University of Illinois using

manual code restructuring of a suite of benchmarks for the Cray YMP.

Thesis Supervisor: Hal Abelson

Title: Professor of Computer Science andEngineering

ii

To my parents, Sudha and Jayantilal, and my brother, Sanjeev.

iii

Acknowledgements

I would like to thank Andrew Berlin for his support and encouragement. He was the

originator of the idea for this thesis project.I am most grateful to him for this and the

countless hours he spent helping me with it. I would also like to acknowledge Prof.

Hal Abelson, my thesis advisor, for being so supportive.

Most of the ideas contained within are the result of an e�ort to build the Super-

computer Toolkit. Gerry Sussman, Hal Abelson, Jacob Katzenelson, Willy McAllis-

ter, Guillermo Rozas, and Andrew Berlin were all involved with that e�ort and have

all been a tremendous amount of help in helping develop the parallelizing compiler.

Many of the ideas relating to scheduling discussed herein, implemented by me, are

the product of work done by Andy Berlin and Guillermo Rozas. Prof. Sussman

contributed the test application for the compiler.

I appreciate the time Prof. Hal Abelson, Andrew Berlin, and Elmer Hung placed

in aiding me in writing this document and providing me with valuable advice.

I would also like to acknowledge Brian LaMacchia, Henry Wu , Chris Hanson,

Arthur Gleckler, Franklyn Turbak, Vijay Balusubramanian, and Mark Friedman for

all the help they have given me in answering my questions about Scheme, Unix, Latex

and Computer Architecture.

Hewlett-Packard is to be thanked for donating the computer equipment on which

this work was performed.

iv

Contents

1 Introduction 1

2 The Compiler 5

2.1 The Partial Evaluator : 6

2.2 Region Division : 9

2.3 Region Scheduling : 10

2.4 Instruction Scheduling : 13

2.5 Summary : 18

3 The Supercomputer Toolkit 19

3.1 The Toolkit Processing Nodes : 19

3.2 Interconnection Network and Communication : : : : : : : : : : : : : 22

3.3 Synchronization : 23

3.4 Summary : 23

4 Experimental Results 25

4.1 The n-body Problem : 25

4.2 Theoretical Parallelism : 26

4.3 Results : 26

4.4 Summary : 29

v

vi CONTENTS

5 Comparison With Other Work 35

5.1 Trace Scheduling : 35

5.2 Software Pipelining : 36

5.3 Vectorizing : 37

5.4 Iterative Restructuring : 37

5.5 Handcoding : 38

5.6 Summary : 38

6 Conclusions and Future Work 41

6.1 Conclusions : 41

6.2 Suggestions for Future Work : 42

List of Tables

4.1 Table of Speedups of applications running on 8 processors : : : : : : : : : : 27

vii

viii LIST OF TABLES

List of Figures

2-1 Four phase compilation process that produces parallel object code from Scheme

source code. : 7

2-2 The data dependency graph of a computation which takes the sum of the squares

of three numbers, one of which is 3.14. : 9

2-3 A data dependency graph for simple-example with its regions circled. : : : : : 11

2-4 The region dependency graph representation of this data dependency graph. : : 11

2-5 A portion of an region dependency graph with 4 regions. : : : : : : : : : : : 16

2-6 The instruction schedule if the region ordering is maintained. : : : : : : : : : 16

2-7 The instruction schedule if lookahead is used. : : : : : : : : : : : : : : : : : 16

3-1 This is the overall architecture of a Supercomputer Toolkit processor node, con-

sisting of a fast
oating-point chip set, a 5-port register �le, two memories, two

integer alu address generators, and a sequencer. : : : : : : : : : : : : : : : : 20

4-1 Parallelism pro�le of a 9 body Stormer integration[4] : : : : : : : : : : : : : 30

4-2 Parallelism pro�le of a 9 body 4th order Runge Kutta integration : : : : : : : 31

4-3 Speedup graph of Stormer integrations. : 32

4-4 Speedup graph of Runge Kutta integrations. : : : : : : : : : : : : : : : : : 33

4-5 Bus Utilization vs Processors for ST9. : 34

ix

x LIST OF FIGURES

Chapter 1

Introduction

One of the major challenges faced by supercomputer compilers is the question of how

to identify and exploit the underlying parallelism in a computation. Most numerical

code has quite a bit of inherent parallelism. However, this parallelism is often not

apparent in complex programs where the actual parallelism may be hidden within

the quirks of the original source code. Currently, the most widely used methods

for extracting such parallelism involve a lengthy combination of pro�ling computa-

tions, identifying processes that can be run in parallel, and manually restructuring

the original source code to expose the parallelism in the computation. Since these

computations are fundamentally parallelizable, however, there must be a way to au-

tomatically extract the computations that can be done in parallel. The reason why

people have not succeeded with this in the past is that most compilers today optimize

based on the structure of a program. Basically this means that these compilers at-

tempt to produce the best object code that does most everything the original program

does (within limits). The problem is that this method of compilation also reproduces

ine�ciencies present in the original program. For example, the original source code

might contain ine�cient methods for creating and manipulating various data struc-

1

2 CHAPTER 1. INTRODUCTION

tures. These ine�ciencies might, in turn, hide parallelism that might be present in the

underlying computations. Thus, for many numerical programs, optimization based

on the structure of a program is not strong enough to expose the inherent parallelism

in a computation.

What is needed instead is a compiler that asks \What are the actual computations

being expressed by this program?" and attempts to parallelize the computation based

on any inherent parallelism. Partial evaluation is a promising compiler technique

that can do just that. Partial evaluation collapses all the data structures and data

manipulations in a program into the relevant computations that must be done in

order for the program to produce the desired output. Thus, it automatically sifts

through the complex data structures of a program, so that it is readily apparent which

computations can be done in parallel. Thus, partial evaluation is able to expose the

inherent parallelism in a program much more e�ciently than ordinary compilation

techniques.

This thesis demonstrates a compiler that uses partial evaluation to achieve out-

standingly e�cient parallel object code from very high-level data independent source

programs. The compiler that we implemented attains parallel execution and overall

performance equivalent to or better than the best observed results from the manual

restructuring of code. Although partial evaluation has been used successfully to com-

pile e�cient sequential code for uniprocessor machines, this thesis represents one of

the �rst attempts to capitalize on partial evaluation's ability to expose low-level par-

allelism. New static scheduling techniques are developed to utilize the �ne grained

parallelism on a multiprocessor machine. The compiler accepts ordinary Scheme

programs as source, and generates code for the Supercomputer Toolkit, a parallel

computer with 8 VLIW processing nodes. The compiler maps the computation graph

resulting from partial evaluation onto the Toolkit's architecture.

3

On a scienti�c program written in Scheme that integrates the trajectories of the

planets in the solar system, commonly referred to as an n-body problem, the com-

piler was able to automatically parallelize the computation onto an eight-processor

con�guration of the Supercomputer Toolkit and achieves a factor of 6.2 speedup over

a uniprocessor version which is running code that is executing a
oating point opera-

tion(FLOP) on 99% of the cycles. The speedup is impressive because the Supercom-

puter Toolkit has a low communication bandwidth. A value can be transmitted from

any one processor every eighth cycle. The latency is also quite high for a statically

scheduled architecture. Each transmission has an ALU to ALU latency of 6 clock

cycles.

An example of typical speedups for manually restructured(hand optimized) code

is given with the Perfect Benchmarks [7]. This set of benchmarks is provided by the

Center for Supercomputing Research and Development at the University of Illinois at

Urbana Champaign. They report that by manually restructuring there benchmarks

and using the Cray YMP compilers, they can achieve an average speedup factor

of 4 for an 8 processor Cray YMP over a uniprocessor Cray YMP. The compiler

demonstrated here can achieve similar speedups automatically.

By reconstructing the data dependencies of a computation expressed by a program,

partial evaluation succeeds in \exposing the low level parallelism in a computation by

eliminating inherently sequential data-structure references." [5] This is crucial for the

the exploitation of parallelism across a multiprocessor. Partial evaluation eliminates

all of the data independent conditional branches in a program and thus produces huge

sequences of easily parallelizable straight-line code [3]. A basic block is essentially a

sequence of operations in a computation that must be executed once the sequence of

instructions is entered. These huge sequences of straight line numerical code would

be considered basic blocks. The large blocks produced by partial evaluation are

4 CHAPTER 1. INTRODUCTION

several thousands of instructions long. In more traditional compilers, basic blocks

are normally 10 to 20 instructions long. Huge blocks are important because their

predictability makes them easy to parallelize.

On multiprocessor systems, basic blocks are usually executed serially because they

are usually quite small. To properly exploit the �ne-grained parallelism available in a

large basic block, the basic block should be scheduled across a multiprocessor instead.

The partial evaluation parallelization technique is compared with other more tra-

ditional optimization methods like trace scheduling and software pipelining. Since the

technique can eliminates sequential data-structure references which the other meth-

ods do not take advantage of, it can only serve to enhance the already excellent

performance of the traditional methods.

Presented in the following chapters are the methods of construction and results

from utilization of this compiler in the context of the Supercomputer Toolkit. Chap-

ter 2 begins by discussing the general structure of the compiler. It then describes

each of the elements of the compiler in greater detail. Chapter 3 presents the manner

in which the compiler takes advantage of the Supercomputer Toolkit Architecture.

Chapter 4 presents the experimental results of the compiler on some scienti�c appli-

cations related to the n-body problem. Chapter 5 compares and contrasts this novel

compilation technique against other common techniques. Finally, in Chapter 6, the

conclusions of this thesis are presented along with suggestions for future work.

Chapter 2

The Compiler

The compilation process has four phases: partial evaluation, division into regions,

assignment of regions to processors, and the scheduling of instruction. This process

is depicted in Figure 2-1.

The Scheme source program must represent a computation which is data-independent.

The computation may not change based on the input data. Computing a croos prod-

uct is an example of a data-independent computation since the computation remains

the same even though the input vector data may change. The partial evaluator pro-

duces a data dependency graph that represents a computation at the operator(+, - ,

* , sqrt, etc...) level. The data dependency graph is too �ne grained to divide on a

node-by-node basis because of the communication latency. Its granularity is a little

greater than one cycle per operation whereas a communication takes slightly more

than six cycles. The granularity is made slightly coarser by dividing the graph into

regions which couple computations which should occur on the same processor because

of the communication cost. The region dependency graph is then divided amongst

various processors using a graph multisection technique similar to list scheduling. Fi-

nally the individual regions are scheduled at the instruction level onto the architecture

5

6 CHAPTER 2. THE COMPILER

to form the parallel object code for the Toolkit. The inner workings of each of the

phases is presented in the rest of the chapter.

2.1 The Partial Evaluator

The partial evaluator is used to eliminate data abstractions and compound data struc-

tures at compile time. This leaves only the numerical computation data dependency

graph. It also results in an order of magnitude speedup of scienti�c codes [5]. The

partial evaluator utilized by this compiler was written by Andrew Berlin. A more

thorough discussion of the partial evaluator is contained in [5].

Berlin accomplishes partial evaluation through a technique that uses placeholders

to propagate intermediate results. The placeholders are also used to represent data

which is not known at compile time in the input data structures. It is then possible,

by using these placeholders in the place of actual data, to symbolically evaluate the

computation with respect to the input data. An operation is computed if the input

data is actually available. Otherwise, a new placeholder is created to symbolically

represent the result of that computation and the evaluation may proceed. A data

dependency graph of the computation is constructed by keeping track of all the op-

erations which are performed on the data and the intermediate values. A simple

example1 to illustrate this follows:

1This example appears in [5]

2.1. THE PARTIAL EVALUATOR 7

Code

Parallel
Object

Instruction

Scheduler

Scheduler

Source
Scheme Partial

Evaluator

Region

Divider

Region

Figure 2-1: Four phase compilation process that produces parallel object code from Scheme

source code.

8 CHAPTER 2. THE COMPILER

(define (square x)

(* x x))

(define (sum-of-squares L)

(apply + (map square L)))

(sum-of-squares (list (make-placeholder 'a)

(make-placeholder 'b)

3.14))

In the above code the sum of the square of three numbers, one of which is known,

is computed. The data dependency graph of the computation that is produced by

the partial evaluator is shown in Figure 2-2. The partial evaluator eliminates the

data abstraction and reduces the computation to the minimum number operations

necessary: two adds and two multiplies(3.14 is a known input, its square is computed

at compile time.)

In addition to producing the computation's data dependency graph, the partial

evaluator employs a number of other optimizations that are now possible because of

the elimination of data structures. Examples of this are dead code elimination and

constant folding. Dead code elimination removes operations from a computation if

they do not contribute to the net result of a computation. Constant folding might

reduce an expression like2

(* 10 x 5)

to:

(* 50 x)

2In Scheme a multiplication with multiple arguments is commutative.

2.2. REGION DIVISION 9

+

9.8596

ba

* *

+

Figure 2-2: The data dependency graph of a computation which takes the sum of the squares of

three numbers, one of which is 3.14.

The end result of all of the partial evaluation is a data dependency graph which

represents the actual numerical operations needed to compute the results based on

the input information and program presented to the compiler.

2.2 Region Division

The cost of communications on the Supercomputer Toolkit is e�ectively six clock

cycles. The data dependency graph's granularity is such that most instructions are

computed in one cycle. The granularity is too �ne, because it is not implicit that some

operations should be computed on the same processor.3 In order to make such things

implicit, a coarser grain graph called a region dependency is created. Operations in

the data dependency graph are collapsed into regions. A region is a computation

which ends with a transmission. The only things that should be transmitted are

3One attempt at addressing this issue is discussed in [10].

10 CHAPTER 2. THE COMPILER

values which are inputs to more than one operation.

A simple algorithm creates a region dependency graph from a data dependency

graph. A region ends in an operation whose result is used by more than one other

operation. A region has only one such operation. A course grained region depen-

dency graph may be created out of a data dependency graph by simply labeling each

operation node in the data dependency graph as a region and then combining each

of the operations (temporarily labeled as a region) with a single dependent into the

region of that dependent. This leaves a region for each operation that either has

multiple dependents or results in an output. output. Each region has dependencies

on regions that contain operations that the operations the region encompasses have

dependencies on.

An example is shown in Figures 2-3 and 2-4, where the data dependency graph

for the following code is shown and turned into a region dependency graph.

(define (simple-example A B C D)

(let ((E (/ B C)))

(* (- (* A B) E)

(+ D E))))

The algorithm places the multiplications, additions and subtractions into one re-

gion. The division operation is placed into another region because multiple operations

are dependent upon it. The granularity of the graph is made closer to the desired

coarseness through region division.

2.3 Region Scheduling

After the data dependency graph is collapsed into a coarser grained region depen-

dency graph, it is possible to schedule the regions onto a multiprocessor. This is the

2.3. REGION SCHEDULING 11

1

R2

R1

D

CBA

/

_

5

11
+

1*

*

Figure 2-3: A data dependency graph for simple-example with its regions circled.

5

4

D

CB

A

R1

R2

Figure 2-4: The region dependency graph representation of this data dependency graph.

12 CHAPTER 2. THE COMPILER

traditional multiprocessor scheduling problem of scheduling tasks on processors such

that execution time is minimized. This is known to be a \strong" NP-hard problem

[16]. Purely heuristic methods are justi�ed on such a problem, as long as they do

well on average. The heuristic used here relies on a critical path weighting Scheme

and very akin to list scheduling. There are two steps to this heuristic:

1. Each region is assigned a weight which is the latency of the longest path from

the region to the regions which end the graph. This is the sum of the latencies

of the regions along that path. The latency of the region is the sum of the

operations it contains, since they will all occur on the same processor.

2. Schedule the regions

� If there are no more regions to be scheduled, quit.

� Compute the ready regions and order them by weight. The ready regions

are the ones that are not only ready to be executed, but have a weight

that is approximately equivalent to the weights of the the regions ready to

execute with the largest weights.

� If there are more ready regions than processors not executing a region,

take a processor and schedule the region which requires the least amount

of communication to execute on that processor.

� If there are less regions then processors, schedule the region on the proces-

sor on which it requires the least amount of communication to execute.

� Continue scheduling.

The communication cost of a region on a processor is the number of regions which

that region is dependent on whose results are not in the processor's memory.

A set of regions ordered in sequence of execution is produced for each processor.

When a region's result value has been computed, it is necessary to transmit the

2.4. INSTRUCTION SCHEDULING 13

value to the other processors which have regions waiting to be executed dependent on

this result. If all of the dependent regions happen to be on the same processor, the

transmission is unnecessary. Otherwise, it will cost six cycles to transmit the result

to the other processor.

The next step is to schedule the individual instructions within the regions them-

selves. Before going into explicit detail about the scheduling of instructions, an as-

sumption made during region scheduling must be made clear. The assumption is

that a region's resultant value that is transmitted will be available as soon as it is

computed. To closely approximate this, the transmissions have the highest priority in

scheduling. As soon as an operation that produces a value that should be transmitted

is scheduled, the transmission is immediately scheduled on the earliest cycle possible.

2.4 Instruction Scheduling

The instruction scheduler maps instructions in each scheduled region onto each pro-

cessor at the instruction level. In the case of the Supercomputer Toolkit, Very Long

Instruction Words(VLIW) must be generated for each processor. This task is not

trivial, since it requires the scheduler to order the numerical operations onto the ar-

chitecture so that the total execution time is minimized. This is tough to do because

the ordering of operations can e�ect the number of cycles necessary to complete the

program. For example, suppose there is a value required by several other operations

on other processors. The later the value is produced, the later the other operations

can occur. This can be a big problem on a parallel processor since it is possible that

a processor will waste cycles while waiting for one of these values. Another e�ect is

more subtle. The registers in a machine are used to store temporary results. The

more often a particular value in a register is used while it is there means fewer loads

and stores may be necessary from and to memory, thereby reducing the chance that

14 CHAPTER 2. THE COMPILER

the processor will become idle waiting for memory transactions.

Most compilers for VLIW machines attempt to minimize execution time by con-

sidering either of the issues mentioned above, but not both simultaneously. The

instruction scheduler deals with both of these issues through operation reordering

and a technique for register allocation that attempts to minimize memory references.

Two phases of scheduling are required. During phase one an instruction ordering

is suggested and a plan for register use is created for the minimization of instruc-

tion references. During phase two the plan developed in phase one is followed, and

instructions are reordered to better match the architecture.

During phase one, an instruction ordering is generated within the bounds of the

region imposed ordering. Regions couple computations which contain intermediate

results which will be used only once. This is because the operations encompassed

in a region have a single dependent. Placing these instructions close together in the

code is good because it guarantees that the intermediate values of each region will

never have to be stored and loaded to memory. The ordering goes a long way toward

minimizing instruction stores and loads as it is and is a good �rst order solution to

the problem.

Traditional register allocation is performed during phase one. The region ordered

instruction ordering is followed precisely without any consideration being made to

a pipeline or other architectural speci�c features. Register instruction groups are

created which indicate what instructions were scheduled that use a value while that

value was in a register. Each time the value is placed into a register, a new register

instruction group is added to that value's set of groups. The groups are used by the

second phase to determine which registers are free to use on a given cycle as well as

which register has the value whose earliest use is farthest in the suggested instruction

ordering. This is useful when determining which register to place a value in when all

2.4. INSTRUCTION SCHEDULING 15

the registers are occupied by other values that are needed by operations still waiting

to be executed. The instructions groups are the plan that is followed to load and

store registers during phase two. The stores are known as register \spilling."

An example of an instruction register group might be helpful. Suppose B is a result

which is an input operand to three operations numbered 20, 21, and 300 (where a

greater number implies the later it should be scheduled) Suppose B is placed in a

register on cycle 19 and is spilled during the register planning allocation in phase one

between instruction 21 and 300. The instruction register instruction groups for B

would be f20 21g and f300g.

Phase two takes phase one's instruction ordering and optimizes it for the archi-

tecture. It schedules in the suggested instruction ordering, looking ahead only when

the instruction that should be scheduled according this ordering is not ready to be

executed on that cycle. This reduces execution time because it �lls in what would

have been NOPs(No Operation) cycles. There are two reasons there might be empty

NOPs. One reason is that the dependencies of regions may require such a delay. The

other is that architectural issues like pipelining may leave a result inaccessible for a

cycle and this wasn't a consideration in phase one.

The advantage can be explained better with an example that show one way phase

two is able to optimizes. In Figure 2-5 are four regions which are part of a larger

region dependency diagram. The regions are being scheduled onto a two processor

con�guration over the course of 8 cycles. R4 is composed of three instructions which

each take a cycle to execute, one is dependent on R1 and the others on R2. Figure 2-6

shows the schedule if the instructions were scheduled in exactly the ordering imposed

by regions, since the other two instructions in R4 are dependent only on R2 �nishing,

they may be executed in the two free cycles after R2 �nishes, thereby possibly reducing

the execution time on processor 2. Figure 2-7 shows this optimization. Thus it is

16 CHAPTER 2. THE COMPILER

R1 R2

R3 R4

5 3

33

Figure 2-5: A portion of an region dependency graph with 4 regions.

Processor 1 Processor 2

1

2

3

4

5

6

7

8

Cycle

R1

R2

R3 R4

Figure 2-6: The instruction schedule if the region ordering is maintained.

Processor 1 Processor 2

1

2

3

4

5

6

7

8

Cycle

R1

R2

R3

R4

Figure 2-7: The instruction schedule if lookahead is used.

2.4. INSTRUCTION SCHEDULING 17

easy to �ll in these NOPS with instruction further down in the ordering.

When instruction reorderings occurs, the planning contained in the register in-

struction groups becomes useful. Register spilling is scheduled for all values which

the the register planner spilled. This means a value is immediately stored in memory

as soon as it is produced if it was spilled in phase one's preallocation. Thus, any

spilling that occurs in excess to this is due to the instruction reordering and the val-

ues it produces. Register groups provide a means to �gure out which of such values

in the registers should be spilled. The other register are �lled with values which are

intended to be there by the phase one allocation and that should will remain there.

It is only the remaining registers from which a value must be spilled. This can be

done because the register groups of a value are dynamically updated to re
ect the

execution of an operation each time an operation is performed The register groups

thus contain up to date information about when an operand will be needed in the

phase one ordering. Instruction executed out of order are eliminated from the groups

as soon as they are executed. Thus, one can spill the register that is used the latest

in the old instruction ordering of the remaining instructions to be executed. In these

cases, two memory cycles are lost(one to store one to load). At worst one NOP is

caused because of this loss of memory cycles and the gain of a FLOP cycle from

having prescheduled the operation that produced this value is lost. It may mean that

a memory operation is gained because some other instructions using that value have

already occurred while that value was in a register. One less reference to the value

is made and this allows a register to become free sooner than it was in the region

ordered instruction. Execution time is thus shortened by taking advantage of the

holes in the region imposed instruction ordering that was used in an e�ort to try to

minimize memory references.

18 CHAPTER 2. THE COMPILER

2.5 Summary

In this section a method of parallelization based on partial evaluation was presented.

The method's compilation process results in some highly compacted parallel object

code that executes a basic block across a parallel computer to try and take advantage

of �ne grain parallelism.

Chapter 3

The Supercomputer Toolkit

The purpose of this chapter is to provide an overview of the Supercomputer Toolkit so

that the compilation results may be understood. The Supercomputer Toolkit is not a

general purpose computing machine. It is optimized heavily for the static and data-

independent nature of numerical problems. Thus, the Toolkit has no operating system

and is a backend processor for a workstation, much like WARP [6]. The Toolkit is an

8 processor MIMD machine. It is composed of eight separate VLIW processing nodes.

A thorough explanation of the technical details of the Supercomputer Toolkit may

be found in [1] A detailed explanation of the compiler's view of the toolkit processor

boards , the interconnection network, and the synchronization mechanism follows.

3.1 The Toolkit Processing Nodes

Figure 3-1 shows the architecture of each processing node. It is symmetric and de-

signed to take advantage of a lot of instruction level parallelism. Each node has

a 64-bit-
oating-point chip set, a �ve-port 32x64-bit register �le, two separately ad-

dressable data memories, two address generators for those memories, two I/O ports, a

19

20 CHAPTER 3. THE SUPERCOMPUTER TOOLKIT

I / OI / O

ADDRESS
GEN

MEMORY
16k x 64

REGISTER FILE

32 x 64

+

ADDRESS
GEN

MEMORY

16k x 64

SEQUENCER

CONTROL STORE
16k x 168 bits

Figure 3-1: This is the overall architecture of a Supercomputer Toolkit processor node, consist-

ing of a fast
oating-point chip set, a 5-port register �le, two memories, two integer alu address

generators, and a sequencer.

sequencer, and a separate instruction memory. A Toolkit Processing Node is pipelined

and thus capable of executing the following instructions in parallel: a left memory-I/O

operation, a right memory-I/O operation, an FALU operation, an FMUL operation,

and a sequencer operation, all on a single clock cycle. The Toolkit is completely syn-

chronous and clocked at 12.5 Mhz. When both the FALU and FMUL are utilized, the

Toolkit is capable of a peak rate of 200 Mega
ops, 25 on each board. The compiler

as it is currently written can only harness 1/2 of this capability because it utilizes

either the FMUL or FALU, but not both, on any cycle. When the compiler is used,

the peak computation rate is 100 Mega
ops

The compiler's interpretation of the 32 register �le is that 26 are available for

3.1. THE TOOLKIT PROCESSING NODES 21

scheduling computations. An additional two of the registers are reserved for commu-

nication purposes. The remaining are reserved for hardware purposes and are thus

unavailable.

The
oating point chips can compute many di�erent functions, the ones utilized

by the compiler are:

FLOP Latency

+ 1

- 1

* 1

/ 5

sqrt 9

The
oating point chips have a three stage pipeline whereby if an operation is

scheduled on cycle N, the result must be latched on cycle N+L(where L is the latency

of the computation) and can then be placed in a register on any of the following cycles

up until the the next latch on that 1/2 of the chipset. There are feedback paths for

the chips which allow operands produced while in the pipeline to be fed back in on

the next cycle. The compiler takes advantage of these feedback mechanisms and �nds

them particularly useful for the intermediate values which have only one dependent.

If the path is utilized no register needs to be used to store the value. This can save

memory cycles.

A single basic block is scheduled by the compiler. This means there is no control

ow. Thus the compiler can simply schedule sequencer instructions which increment

the program counter on each node.

Since partial evaluation eliminates data structures in a computation, the only way

to address a value is its memory location on a Toolkit Processing Node. Thus the

22 CHAPTER 3. THE SUPERCOMPUTER TOOLKIT

address generators are simply used to generate the hard coded addresses for these

values on any instruction.

The compiler's notion of memory management is simply to put the inputs and

constants of a computation at the bottom of memory. There are copies of them

on both sides making it easier for these values to be accessed as there are thus two

paths for a value to the register �le. Everything above the constants and inputs

are intermediate values and outputs. Spills due to phase one scheduling alternate

between memories. It should also be noted that on any one side, either a memory

load or store, or an I/O transmission or reception on any one cycle may be scheduled.

3.2 Interconnection Network and Communication

The toolkit allows for
exible interconnection among the boards through its two I/O

ports. The interconnection scheme is not �xed and many con�gurations are possible.

The compiler, however, currently views this network as two separate buses: a left and

a right bus. Each toolkit is connected to these buses through its left and right I/O

ports. This con�guration was chosen given the number of processors as a reasonable

network to evaluate the compiler on.

Here is an example of the statically scheduled communications transactions that

are possible on the toolkit. A value is sent from Processor A to Processor B on clock

cycle 1. Processor B will execute an instruction that receives that value on clock cycle

3. Thus, the latency of any communication, once it is sent, is always 3 clock cycles.

During the interim cycle(2) when the transmission is sent no other transmission on

that bus may occur.

The compiler does all of the static scheduling and operates within the constraints

of the toolkit. It also adds the extra constraint of storing all of the values that are

transmitted immediately after the value is received This ensures that the register

3.3. SYNCHRONIZATION 23

allocation and instruction scheduling strategies are not interfered with by communi-

cation. The latency of a communication is thus e�ectively 6 cycles from ALU to ALU.

It take 6 cycles from the time a values is produced, put in a register, and sent on the

bus until it is available in one of the computation registers of another processor. Also,

because there are 8 processors and two busses that each take two cycles to transmit

over the e�ective bandwidth available to a processor is one send every eight cycles.

This is an extremely low bandwidth machine.

3.3 Synchronization

In order to coordinate processors to execute a basic blocks within the constraint of

synchronized instructions, a mechanism is necessary to get the processor to operate

in lockstep. The processors are operating on a single global clock, this does not

guarantee that they are operating in lockstep however. They need to be synchronized

precisely so the static transactions with implicit send and receive protocol will work.

The toolkit provides a global
ag and subroutine that allows the boards to be brought

into lockstep. The compiler uses this mechanism to get the processors operating in

lockstep at the start of the basic block. Since the blocks are so large, any cycle wasted

on synchronization are statistically irrelevant.

3.4 Summary

A detailed description of the Supercomputer Toolkit hardware and its capabilities as

utilized by the compiler was presented. In the next chapter the result of using this

compiler for the Supercomputer toolkit are illustrated on the n-body problem.

24 CHAPTER 3. THE SUPERCOMPUTER TOOLKIT

Chapter 4

Experimental Results

The performance of the compiler has been evaluated on the Supercomputer Toolkit by

compiling two scienti�c applications. These two scienti�c applications are simulations

of the n-body problem. The compiler is able to achieve substantial speedups despite

the low bandwidth interprocessor communications of the Toolkit. In this chapter,

I present the theoretical parallelism possible for each application and the compiler

measured exploitation of that parallelism on the Supercomputer Toolkit. The region

scheduling compiler technique though suitable for small multiprocessors is shown not

to scale well.

4.1 The n-body Problem

The n-body problem is the computation of trajectories of n particles with each parti-

cle exerting 1

r
2 central force on each of the other the bodies. Numerical simulation of

the n-body problem is important for a number of research applications [2]. Though

the two application represent simulations of the same problem, they represent signif-

icantly di�erent numerical computations. This is because they utilize two di�erent

25

26 CHAPTER 4. EXPERIMENTAL RESULTS

numerical integrators. One integration method is known as Stormer and the other

as Runge Kutta. They both represent data independent computations. Both ap-

plications calculate the positions of planets in the solar systems. Thus, the masses

of the bodies are known at compile time. The programs are essentially integration

steps that need to be iterated over and over again. Each integration step produces

new positions and velocities of the planets which are then used as inputs for future

steps. Simulations that take hundreds of hours of CPU time are often performed

using programs like these.

4.2 Theoretical Parallelism

A parallelism pro�le of a 9 body stormer integration and a 9 body 4th order Runge

Kutta integration are shown in Figures 4-1 and 4-2. Both �gures represent the maxi-

mal parallelism in these problems. They show how quickly the computations could be

computed if there were an in�nite number of processors , in�nite communication and

memory bandwidth, and instantaneous communication among processors. Because

the number of processors utilized on each cycle is greater than 10 in these pro�les,

there is plenty of underlying �ne grain parallelism in the actual computation that

could be exploited by this compiler on an eight processor machine like the toolkit.

The major di�erence between the parallelism pro�les of the two computations, is that

the Stormer integration has substantially more parallelism available at the start of

the computation.

4.3 Results

Four di�erent computations have been compiled in order to measure the perfor-

mance of the compiler: a 6 body stormer integration(ST6), a 9 body stormer in-

4.3. RESULTS 27

tegration(ST9), a 12 body stormer integration(ST12), and a 9 body fourth order

Runge Kutta integration. The speedup measured is the single processor execution

time of the computation divided by the total execution time on the multiprocessor.

The number of single processor cycles are compared with the eight processor number

of cycles in Table 4.1 along with the number of NOP cycles and the e�ciency of

utilization. Because of the partial evaluation, the single processor e�ciency �gures

are extremely close to optimal.

Program 1 Processor NOP Cycles Single Processor Eight Processors Speedup

cycles e�ciency cycles

ST6 5811 16 99.7 % 954 6.1

ST9 11042 32 99.7% 1785 6.2

ST12 18588 32 99.8% 3095 6.0

RK9 6329 15 99.7% 1228 5.2

Table 4.1: Table of Speedups of applications running on 8 processors

Such e�ciency indicates that the speedup measurement shows precisely the gain

in actual
oating point computation by scheduling onto a multiprocessor like the

Supercomputer Toolkit. The gain due to these techniques which automatically par-

allelized the computation are very much in line with what one expects when running

computations on an 8 processor machine like the Supercomputer Toolkit.

Figures 4-3 and 4-4 show the speedups that were attained on toolkit con�gurations

with di�erent number of processors. As indicated above, the speedups are �ne for

an eight processor machine since the graphs seem to show reasonable gains up to

about eight processors. It is clear in the graphs that the scheduler is not doing too

well for more processors than that. There are two reasons that account for this

drop o�. One is that the Supercomputer Toolkit has an extremely low interprocessor

communication bandwidth. The other reason is that the region scheduling does not

28 CHAPTER 4. EXPERIMENTAL RESULTS

scale well beyond eight processors.

Bandwidth is a problem because the amount of communication necessary tends to

increase as the computations are spread out over more processors. With a bandwidth

such that of each processor is only allowed a send every eight cycles, the speedups

are very impressive. To address the bandwidth issue, bus utilization data was col-

lected for all the programs. The results are shown for ST9 in Figure 4-5 and are

characteristic of the other programs. The bus utilization measurement indicates the

percentage of cycles the buses are busy. It is the sum of the cycles that each bus is

busy divided by the twice the total number of cycles executed (twice because there

are two buses). The bus utilization graph coupled with the speedup graph of this

computation suggest that the two bus architecture is indeed quite inadequate after

about 10 processors. If the busses are utilized more than 90% of the time there is an

extremely high probability that sends which were instantaneously scheduled by the

region scheduler are being delayed a lot. This is bad because the region scheduler

assumed instantaneous communication. In the bus utilization diagram, the drop o�

in speedup occurs when there is about 70% bus utilization. Interestingly, in the data

for the RK7 and ST6 and ST12 this is also true. This may suggest that 70% utiliza-

tion makes the bus busy enough so that transmissions su�er from longer delays until

transmission than when less processors were being scheduled.

Another problem is that region scheduling does not seem to work well for more

than eight processors. The region scheduler partitions the regions and turns a 6329

cycle RK9 into 854 cycle RK9 on an 11 processor ideal machine(ideal because it has

instantaneous communications). This is a very big problem because that 854 cy-

cles represents the best that can be done by the region scheduler if all the values are

available as soon as they are produced. That is only a factor of 7.8 speedup for 11 pro-

cessors. There is more parallelism available than that. This can be seen quite clearly

4.4. SUMMARY 29

in Figure 4-1. Luckily, the instruction scheduler is able to reorder the instructions

suitably such that the e�ect is reduced and RK9 is turned into a 780 cycle computa-

tion. Nonetheless, for more processors than eight, the region scheduling doesn't seem

to work well. It is unable to extract the fundamental parallelism as demonstrated

by these computations far below where it should for more processors.Compiling for

larger computers than the Toolkit this could be a very big problem.

4.4 Summary

By compiling two applications it has been shown that the compiler is more than

adequate for compiling basic blocks on an eight processor machine like the Super-

computer Toolkit. The compiler, however, has di�culty on larger multiprocessors.

There are two things that lead to this di�culty: the architecture imposed low band-

width communications and the inability of the region scheduling method to work well

on larger multiprocessors.

30 CHAPTER 4. EXPERIMENTAL RESULTS

0

100

200

300

400

500

600

700

800

900

N
u

m
b

er
 O

f
O

p
er

at
io

n
s

0 5 10 15 20 25 30 35
Cycle number

Figure 4-1: Parallelism pro�le of a 9 body Stormer integration[4]

4.4. SUMMARY 31

0 20 40 60 80

Clock Cycle

0

100

200

300

N
um

be
r

of
 P

ro
ce

ss
or

s

Runge Kutta 9 body Parallelism Profile

Figure 4-2: Parallelism pro�le of a 9 body 4th order Runge Kutta integration

32 CHAPTER 4. EXPERIMENTAL RESULTS

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

 Ideal Linear

ST6

ST9
ST12

PROCESSORS

S
P

E
E

D
U

P

SPEEDUP VS PROCESSORS
N-body Stormer Integrator

Figure 4-3: Speedup graph of Stormer integrations.

4.4. SUMMARY 33

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Processors

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Sp
ee

du
p

 Ideal Linear

RK9

RUNGE KUTTA

SPEEDUP VS PROCESSORS

Figure 4-4: Speedup graph of Runge Kutta integrations.

34 CHAPTER 4. EXPERIMENTAL RESULTS

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Number of Processors

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

ag
e

U
ti

liz
at

io
n

of
 B

ot
h

B
us

se
s

Total Bus Utilization vs Processors

Figure 4-5: Bus Utilization vs Processors for ST9.

Chapter 5

Comparison With Other Work

This compiler's approach to parallelizing numerical programs is fundamentally di�er-

ent from the approach taken by other compilers. This compiler speci�cally optimizes

the computation contained within a program. Other compilers are more general and

are designed to optimize the execution of the program. In order to put this work into

perspective, �ve di�erent approaches including trace scheduling, software pipelining,

vectorizing and iterative restructuring are all compared and contrasted with this com-

piler's methodology.

5.1 Trace Scheduling

Trace scheduling [9] is a popular technique used by parallelizing compilers. The tech-

nique creates traces of the most frequently used path of basic blocks in the control

structure of a program. The basic blocks are typically on the order of 10 to 20 in-

structions. Run time information that keeps track of the various traces through the

program is used to determine which trace should be optimized. This trace is then

heavily optimized as if it were a huge basic block. What this approach does not take

35

36 CHAPTER 5. COMPARISON WITH OTHER WORK

into account is that many of the branches it selects are data independent and can be

predicted based on compile time information. These branches can be eliminated.

The partially evaluating parallelizing compiler approach is able to collapse data-

independent portions of the program into large basic blocks without these branches.

The partially evaluating compiler can guarantee that the right set of branches in these

portions of code are taken by simply eliminating them. This is better than trying to

probabilistically determine the branch direction. Another shortcoming of the trace

scheduling approach is that it lacks partial evaluation's ability to remove inherently

sequential data-structure references. This means that the trace scheduling technique

by itself will not be able to take advantage of the all the inherent parallelism in a

computation.

One thing that trace scheduling is good at is optimizing data dependent branches.

Run time information can be used to reliably predict which way the branches typically

go and substantial optimization may be performed on the resulting trace. A good

strategy would be to couple both techniques. Partial evaluation would do a good job

optimizing data independent portions of the computations, whereas trace scheduling

would do well with the data dependent portions.

5.2 Software Pipelining

Software pipelining [11] optimizes a particular �xed size loop structure so that several

iterations of the loop are started on di�erent processors at constant intervals in time.

This increases the throughput of the computation. Using partial evaluation on such

a loop structure would result in the loop being completely unrolled with all the data

structures references removed and the total parallelism of the operations executed in

that loop becoming available and visible for parallelization.

5.3. VECTORIZING 37

5.3 Vectorizing

Vectorizing is a commonly used optimization for vector supercomputers. Matrix

multiplies are an example of computations which can be done quickly on machines

like these. Vectorizing compilers look for speci�c operations on arrays of numbers in

memory. The compiler can then vectorize to execute these operations in parallel on

the numbers in the arrays. These computations need to be expressed in a particular

manner so that the compiler can identify the vectors which can be operated on in

parallel. These machines and compilers do very well when the structures of the

programs for computations match the architecture they are written for. Computations

not structured in this manner do very poorly on these architectures. It would be

very hard to get a partially evaluating compiler to identify vectorizable computations

because memory location is not a notion the partial evaluation computation graphs

give a sense of. An interesting thing that may be said about the parallelizing partially

evaluating compiler, however, is that it is good at scheduling �ne grained parallelism

on MIMD like architectures where it is possible to utilize this �ne grained parallelism

5.4 Iterative Restructuring

Iterative restructuring represents the manual approach to parallelization. Remark-

ably there are now many utilities for pro�ling and analyzing parallelism that allow

programmers to �nd bottle necks in their code. One such utility is known as Max-

Par [7] which essentially deduces the data dependency graph after the computation

is completed and shows the parallelism available and that being exploited in various

portions of the programs. A user can then use this to deduce which routines are

parallelizable and may then rewrite the program so the compiler can identify and

exploit this parallism.

38 CHAPTER 5. COMPARISON WITH OTHER WORK

The example given in the introduction of the Perfect Benchmark performance on

the Cray-YMP should be noted, because this type of manual optimization was done

in order to get those benchmarks into a form that the Cray YMP compilers could

exploit parallelism on. The compiler in this thesis can do these things automatically.

In the compiler introduced here, the data dependency graph does not ever need to

be seen by the programmer. It is automatically generated and used by the compiler

as an e�ective tool for exploiting the underlying parallelism in a computation.

5.5 Handcoding

Hand produced code for a computation will look much di�erent from the compiler's

code. The hand coding will localize many related computation in a particular piece of

code. This may or may not occur on the compiler which spreads out the computation

across the processors during a cycle. This is arguably better than hand coding because

handcoding a complex computation on these statically scheduled architectures would

undoubtedly drive someone nuts. The compiler, in its in�nite patience, can search

for open slots on a processor and spread out the computation across the processors.

5.6 Summary

In this section it has been shown that the use of partial evaluation in a parallelizing

compiler in comparison to other techniques represents some de�nite advantages in or-

der for the exploitation of underlying parallelism in numerical computations. Other

methods do not seem to be able to exploit the underlying parallelism basically be-

cause using their methods, they can't �nd some of it. Thus partial evaluation should

be coupled with some of the already good techniques so that the compiler can identify

all of the underlying parallelism in a computation and exploit it. Some manual meth-

5.6. SUMMARY 39

ods were also shown. One was surprisingly similar to what the partially evaluating

parallelizing compiler tries to do automatically.

40 CHAPTER 5. COMPARISON WITH OTHER WORK

Chapter 6

Conclusions and Future Work

6.1 Conclusions

Automatic parallelizing compilers for supercomputers would bene�t greatly if they

included partial evaluation as part of their optimization. Besides providing an order

of magnitude improvement for sequential code, the technique exposes inherent par-

allelism in a program by recreating the data dependency graph for the computation

in the program. By utilizing the newly exposed parallelism, it has been shown here

that parallelizing compilers utilizing this technique can achieve performance as good

as or even better than that achieved by manual means.

We have implemented a basic block compiler which utilizes partial evaluation

and static scheduling techniques to show how the resulting �ne grain parallelism

may be exploited. The exploitation techniques have been evaluated on two di�erent

highly abstracted programs written in Scheme which simulate n-body problems which

are important in the �elds of celestial mechanics and particle physics. The results

reveal that it is possible to automatically achieve a factor of 6.2 speedup on an eight-

processor con�guration of the Supercomputer Toolkit from a single processor version

41

42 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

of the program. This is impressive because the Supercomputer Toolkit utilized by the

compiler has extremely low bandwidth, allowing a processor to send a value e�ectively

every 8 cycles with a latency of 6 cycles. It was also found that the simple heuristic

technique of region scheduling does not scale well for larger parallel processors, though

it does work well on a computer the size of the Supercomputer Toolkit.

Other techniques utilized by parallelizing compilers do not include a mechanism

that allows the compiler to examine the computations data dependency graph in or-

der to �gure out how to parallelize the computation. These other techniques could

easily be complemented by partial evaluation resulting in dramatic speedups of a

computation, even data dependent ones. It is believed that all automatic paral-

lelizing compilers should have a mechanism to view the underlying parallelism in a

computation.

6.2 Suggestions for Future Work

There are two ways to improve the compiler. One way involves extending the com-

piler's capabilities. The compiler could be extended to handle branches and sub-

routines so that it may handle data dependent computations. The other way is to

increase the level of optimization that is performed. A possible optimization is to

�nd a better method of exploiting the �ne grain parallelism than region division that

will work well on larger architectures. Perhaps a method like task fusion [10] should

be attempted. Another optimization that could be added involves computing values

redundantly across processors because it is cheaper than transmitting these values in

some cases.

Bibliography

[1] H. Abelson, A. Berlin, J. Katzenelson, W. McAllister, G. Rozas, G. Sussman, \The

Supercomputer Toolkit and its Applications," MIT Arti�cial Intelligence Laboratory

Memo 1249, Cambridge, Massachusetts.

[2] J. Applegate, M. Douglas, Y. G�ursel, P. Hunter, C. Seitz, G.J. Sussman, \A Digital

Orrery," IEEE Trans. on Computers, Sept. 1985.

[3] A.V. Aho, R. Sethi and J.D. Ullman,Compilers: Principles, Techniques and Tools

Addison Wesley, 1988

[4] A. Berlin and D. Weise, \Compiling Scienti�c Code Using Partial Evaluation," to

appear in IEEE Computer. Also see MIT Arti�cial Intelligence Laboratory Memo

number 1145, July, 1989.

[5] A. Berlin, \Partial Evaluation Applied to Numerical Computation", in proceedings of

the 1990 ACM Conference on Lisp and Functional Programming. Also see \A Com-

pilation strategy for numerical programs based on partial evaluation," MIT Arti�cial

Intelligence Laboratory Technical Report TR-1144, July, 1989.

[6] S. Borkar, R. Cohen, G. Cox, S. Gleason, T. Gross, H.T. Kung, M. Lam, B. Moore,

C. Peterson, J. Pieper, L. Rankin, P.S. Tseng, J. Sutton, J. Urbanski, and J. Webb,

\iWarp: An Integrated Solution to High-speed Parallel Computing," Supercomputing

'88, Kissimmee, Florida, Nov., 1988.

43

44 BIBLIOGRAPHY

[7] G. Cybenko, J. Bruner, S. Ho, \Parallel Computing and the Perfect Benchmarks."

Center for Supercomputing Research and Development Report 1191., November 1991

[8] J. Ellis, Bulldog: A Compiler for VLIW Architectures. PHD thesis, Yale University,

1985.

[9] J.A. Fisher, \Trace scheduling: A Technique for Global Microcode Compaction." IEEE

Transactions on Computers, Number 7, pp.478-490. 1981.

[10] Kasahara, Hironori, Honda, Hiroki, Narita, Seinosuke, \Parallel Processing of Near

Fine Grain Tasks Using Static Scheduling on OSCAR", Supercomputing 90, pp 856-

864, 1990

[11] Monica Lam, \A Systolic Array Optimizing Compiler." Carnegie Mellon Computer

Science Department Technical Report CMU-CS-87-187., May, 1987.

[12] C. Heinzl, \Functional Diagnostics for the Supercomputer Toolkit MPCU Module",

S.B. Thesis, MIT, 1990.

[13] P. Hut and G.J. Sussman, \Advanced Computing for Science," Scienti�c American,

vol. 255, no. 10, October 1987.

[14] H. Printz, \Automatic Mapping of Large Signal Processing Systems to a Parallel Ma-

chine," Carnegie Mellon Computer Science Department Technical Report CMU-CS-

91-101., May, 1991.

[15] G. J. Sussman and J. Wisdom, \Numerical Evidence that the Motion of Pluto is

Chaotic," Science, Volume 241, 22 July 1988.

[16] J. D. Ullman, \NP-Complete Scheduling Problems", Journal of Computer and System

Sciences,vol. 10 (1975),pp 384-393.

