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Abstract

In numerous current and future applications ranging from autonomous navigation of
mobile robots to collision avoidance systems for cars, an imaging system (installed
on a moving vehicle) takes 2D images of an environment with the aim of finding the
motion of the vehicle (translational and rotational velocities) as well as the structure
of the environment (shape). In machine vision, this problem is referred to as the
general motion vision problem.

This thesis introduces a direct method called fization for solving this general mo-
tion vision problem, arbitrary motion relative to an arbitrary environment. Avoiding
feature correspondence and optical flow has been the motivation behind this direct
method which uses the spatio-temporal brightness gradients of the images directly.
The fization method results in a linear constraint equation (Fization Constraint Fqua-
tion) which explicitly expresses the rotational velocity in terms of the translational
velocity. The combination of this constraint equation with the Brightness-Change
Constraint Equation (a fundamental equation which relates the motion to the bright-
ness gradients at any image point) solves the general motion vision problem.

In contrast to previous direct methods, the fixation method does not impose any
severe restrictions on the motion or the environment. Moreover, the fixation method
neither requires tracked images as its input nor uses tracking for obtaining fizated
images. Instead, it introduces a novel technique called the pizel shifting process to
construct fizated images for any arbitrary fization point. This is done entirely in
software without any need to move the imaging system for tracking.

This fixation method has been successfully tested in the real world environment
for the recovery of the motion and shape in the general case. The experimental results
are presented and the implementation issues and techniques are discussed.

Thesis Supervisor: Dr. Berthold K. P. Horn
Title: Professor of Electrical Engineering and Computer Science
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Introduction

Chapter 1

One of the principal objects of theoretical research in
any department of knowledge is to find the point of view
from which the subject appears in its greatest simplicity.

-Josiah Willard Gibbs

A little thought about the role of vision in the tasks that humans perform in their
everyday life leaves no doubt about its importance. For the past several decades,
physiologists and psychophysicists have been striving to understand the underlying
mechanisms of human vision. On a parallel track, computer vision scientists have
been working on the development of artificial systems for performing different visual

tasks.
1.1 Motion Vision

In many applications, an imaging system (installed on a moving vehicle) takes 2D
images of the environment. In motion vision, the goal is to find the motion of the
moving vehicle (translational and rotational velocities) as well as the shape (structure
of the environment), using a sequence of time varying images such as those shown in
fig. 1-1.

Like many other vision problems, motion vision is extremely hard to accomplish.

The difficulties stem from three major sources:

11



12 . Chapter 1: Introduction

Figure 1-1: A sequence of real images where the motion between two images is a
combination of translation and rotation. '

¢ Underconstrained:

Deriving 3D information (motion and shape) from 2D data (images) is a severely
under constrained problem (i.e. an infinite number of solutions are potentially con-
sistent with the given data).

¢ Huge Amount of Data:

Processing even a single regular size image (512 x 512 pizels) requires handling
of about a quarter million pixels worth of data.

¢ Noise: Real image data are very noisy.




1.2: Previous Work (Main Approaches) 13

1.1.1 Problem statement

The problem which we have addressed in this thesis can be summarized as follows:

Finding the motion (relative translation and rotational velocities), and
shape (environment structure) from a sequence of two real images by a
direct method (not using either optical flow or feature correspondence)

in the general case (without restricting the motion or shape).

1.2 Previous Work (Main Approaches)

People have been working on motion vision problems for several decades using three
major techniques which are optical flow, feature correspondence, and direct method.

A survey of previous literature on machine vision is given in {11] and a partial list
of last year papers in computer vision is compiled in [51]. Some of the current issues in
image flow theory and motion vision are discussed in [88, 4, 55]. Much of the earlier
work on recovering motion has been based on either establishing correspondences
between the images of prominent features (points, lines, contours, and so on) in an
image sequence, the so called feature correspondence [48, 80, 81, 35, 3] or establishing
the velocity of points over the whole image, commonly referred to as the optical flow
8, 14, 2.

Each of the main approaches (optical flow, feature correspondence, and direct
methods) are described briefly in this section and an example is given for each case

using the real image sequence in fig. 1-1.

1.2.1 Optical flow

The computation of the local flow field exploits a constraint equation between the
local brightness changes and the two components of the optical flow. This only gives
the components of flow in the direction of the brightness gradient. To compute the

full flow field, one needs additional constraints such as the heuristic assumption that
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the flow field is locally smooth [30, 28]. This leads to an estimated optical flow field
which may not be the same as the true motion field.

Figure 1-2 shows an optical flow field for the image sequence given in fig. 1-1.
The size and direction of the apparent velocity at any pixel is shown by an arrow.
Instead of the original images, such optical flow fields are used as a primary source
of information in the optical flow techniques.

The irregular optical flows on the upper edge of this map are probably due to the

noise and inherent errors involved in the computations at the image borders.
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Figure 1-2: The optical flow map for the given real image sequence. The arrows show
the magnitude and direction of the apparent motion at each point.

1.2.2 Feature correspondence

In general, identifying features here means determining gray-level corners. For images
of smooth objects, it is difficult to find good features or corners. Furthermore, the
correspondence problem has to be solved, that is, feature points from consecutive
frames have to be matched.

Figure 1-3 shows the edge map for the top image in fig. 1-1. Several correspondence
methods use such edge maps as the basic source of data instead of the original image.

Then, they try to find some common features in different edge maps and relate them

together.
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Figure 1-3: The edge maps for each of the images in the sequence.

1.2.3 Direct methods

The use of optical flow or correspondence techniques for solving motion vision prob-
lems has proven to be rather unreliable and computationally expensive [84, 83, 34].

These techniques spend a lot of effort on transforming the original images to the
optical flow or the edge maps. The assumptions made in these procedures result in
errors and loss of some useful information which exists in the original images.

These problems have motivated the investigation of direct methods which use the
image brightness information directly to recover the motion and shape without any
need to preprocess the original image.

Previous work in direct motion vision has used the Brightness-Change Constraint
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Equation (BCCE) for rigid body motion {44]

-t
Et+v~w+s7=0 (1.1)

to solve special cases such as known depth [30], pure translation or known rotation
[31], pure rotation [31], and planar world [44]. Chapter 2 describes the details of this
nonlinear equation which relates depth Z, translational velocity t, and rotational
velocity w together.

All these direct methods are restricted in the types of motion or shape that they
can handle. Our aim is to solve the motion vision problem in the general case using a
direct method but without restricting either the motion or the shape to any special

case.

1.3 Fixation Approach

This thesis presents a direct method called fization for solving the motion vision
problem in the general case without placing any restrictions on the motion or the
shape [65, 69, 60]. The fixation method is based on the theoretical proof that for a
sequence of fixated images (a sequence of images with one stationary image point in
them), the 3D rotational velocity w can always be explicitly expressed in terms of a

linear function of the 3D translational velocity t. Namely,

A 1 -
w=wr,Ro + 75—(t xR,) (1.2)
IRl ’
where R, is the unit vector along the position vector of the fization point (a point
in the image plane which stays stationary) and wg, is the component of rotational
velocity about the fixation axis R,.
It should be emphasized that we do not need to know the real fixation point, if

there is any, to take advantage of this fization constraint equation (FCE), eqn. 1.2. In
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fact, our algorithm allows us to choose virtually any point as the fixation point and
obtain a sequence of fixated images [65, 69] by a simple software manipulation of one
of the original images

The combination of the Fization Constraint Equation (FCE), eqn. 1.2, and the
BCCE, eqn. 1.1 offers a solution to the motion vision problem of arbitrary motion
relative to an arbitrary rigid environment. That is, it allows recovery of the depth
map Z, total 3D rotational velocity, and 3D translational velocity t without placing

severe restrictions on the motion or the shape [65, 69].

1.4 Contributions

A summary of the principal contributions of this thesis are as follows.

o Derivation of the Fization Constraint Equation:
Deriving a strong constraint equation called the fization constraint equation (FCE).
This constraint equation has a solid mathematical foundation. It expresses that for a
sequence of fixated images, the rotational velocity can always be explicitly expressed
as a linear function of translational velocity [69, 62, 61]. This equation is general and
no hidden assumptions were made in its derivation.

o Obtaining a solution to the general motion problem:
Introducing a direct method called the fization method which provides a solution for
the general motion vision problem and has the following properties [69, 60, 63] :
- Finds the motion (translational and rotational velocities), and shape (the environ-
ment structure) from two monocular images.
- Does not restrict the motion or shape,
- Does not use either optical flow or feature correspondence.
- Is computationally simple.

o Tracking without moving the camera:

Presenting a novel method called the pizel shifting process for constructing a sequence
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of firated (tracked) images from any arbitrary image sequence, [65, 64]. It allows an
arbitrary choice of fization point, is fully software based, and does not require moving
the camera for tracking.

o Autonomous choice of an optimum fization patch size:
Finding a technique for autonomous choice of an optimum fization patch size which
results in good estimates for the motion parameters. This technique is based on
defining a norm called normalized error and has been successfully implemented and
tested on real images [68, 72, 66].

o Autonomous choice of an appropriate fization point location:
Some regions of a given image are better for using a fixation patches. We have
developed a method for autonomous choice of an appropriate fization point location
(67, 72].

e Rotation axis calibration:
Introducing a procedure for the calibration of a rotation axis in imaging systems. This
technique is simple but useful and results in avoiding potential implementation errors
[70, 72].

o Representing image gradients:
A novel method has been presented for visual representation of the spatio-temporal
gradients. These intensity gradient maps allow one to visually understand the char-
acteristics and significance of the brightness gradients [73, 70].

o Constructing firated (tracked) image sequences:
Using the pizel shifting process and a bilinear interpolation technique we have con-
structed fixated images from real images [73, 70].

o Depth map recovery from two monocular real images:
We have recovered good depth maps from two monocular real images using the fixa-

tion method [71, 70].
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1.5 Thesis Structure

This work comprises of three parts: Theory, Implementation, and Appendices.

1.5.1 Part I: Theory

This part covers the mathematical background of direct methods and the detailed
theory of fization.

e Chapter 2
We begin with a description of the camera model and coordinate system used in
this work. Then, the brightness change constraint equation (BCCE) used by direct
methods is explained.

e Chapter 3
This chapter presents the main idea behind our fization method. It shows how the
Fization Constraint Equation (FCE) is derived and how it can be combined with the
BCCE in order to solve for the translational velocity t, rotational velocity w, and the
depth Z at any image point.

e Chapter 4
In an arbitrary image sequence, a point chosen as the fization point does not neces-
sarily stay stationary in the image plane. This chapter introduces the algorithms for
the estimation of the apparent velocity at the fixation point (fization velocity) which
are required for the construction of a sequence of fixated images. Simultaneously,
these algorithms find an estimate for the component of the rotational velocity along
the fixation axis, wr,, which appears in the FCE.

e Chapter 5
The fixation method requires a sequence of fixated images. This chapter shows how
a sequence of fixated images can be constructed from an arbitrary image sequence
using the components of the fixation velocity.

e Chapter 6
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This chapter ends the basic theoretical part of the thesis by giving an overview of the

main modules involved in the fixation method.

1.5.2 Part II: Implementation

This part presents the experimental results of applying the algorithms given in Part
I to real image sequences. The implementation issues are described along with tech-
niques for dealing with some practical problems.

e Chapter 7
The spatio-temporal brightness gradients of the images are the primary source of
data used in our fixation method. This chapter introduces a novel technique for
representing the gradients of real images. Such representations allow us to have a
better insight about the characteristics and significance of gradients.

e Chapter 8
The experimental results in this chapter show that the estimated values for the com-
ponents of the fixation velocity and wgr, depend heavily on the size of the image
patch used in the computation. It will be shown that depending on the image, and
the fixation point location, there are some patch sizes which result in good estimates
for the desired motion parameters.

e Chapter 9
This chapter presents a novel and reliable technique for autonomous choice of an
optimum fization patch size that results in good estimations for the motion parameters
from real noisy images.

¢ Chapter 10
The fixation method does not place any restrictions on the choice of the fixation
point and virtually any point can be chosen as the fixation point. However, some
considerations should be taken into account when choosing a fixation point. For
example, choosing a point at the center of a patch which has uniform brightness is not

good because the motion is not detectable. This chapter introduces an autonomous
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technique for choosing an appropriate fixation point.

e Chapter 11
Not only in our fixation technique but also in many other methods there is a substan-
tial need for a sequence of fixated (tracked) images. This chapter introduces a novel
method (pizel shifting process) for constructing a sequence of fixated images from an
arbitrary image sequence using the components of the fixation velocity.

e Chapter 12
Using the estimated motion parameters and the constructed sequence of fixated im-
ages, this chapter describes the issues involved in recovering depth maps. Detailed
techniques are presented for overcoming practical problems such as noise and inherent
image deficiencies.

e Chapter 13
Camera calibration is usually an unavoidable requirement for working with real im-
ages. This chapter discusses some of the calibration issues that we faced in this
work.

e Chapter 14
We conclude this work by giving a summary of the fixation method, results, features,
assumptions, shortcomings, relation to other works, and finally some thoughts on the

possible future extensions.

1.5.3 Part III: Supplements

Some of the relevant theoretical proofs and formulations are summarized in this part.
e Appendix A

Provides a detailed derivation of the BCCE.
e Appendix B

Presents the formulations for computing the spatio-temporal gradients.
e Appendix C

Describes a technique for computing the depth at the fixation point, Z,.
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Direct Methods

Chapter 2

Images are usually obtained from a regular electronic camera where the projection
is perspective. In this chapter, we first describe the camera model and the coordi-
nate system used in this work. Then, a mathematical background of the BCCE is

presented.

2.1 Modeling and Coordinate System

As shown in fig. 2-1, the coordinate system is attached to the camera so that its origin
is located at the projection center.

The image plane is where the environment image is projected to. In an electronic
camera, a CCD (Charge Coupled Device) plays the role of the image plane. The CCD
is an electronic light-sensitive plane. It consists of a tessellation of small rectangular
or square photo-sensitive cells which are called pixels. Each pixel of the CCD is
electronically charged depending on the number of the photons it receives. Thus, the
charge level of each pixel is a representation of the brightness at the corresponding
point in the image plane. By reading and appropriate conversion of the camera charge
level of all pixels, the image can be written in a file or displayed on a screen.

The image plane in our coordinate system is parallel to the X — Y plane and is
located at a distance equal to the focal length from it. The optical axis Z pierces the
image plane at a point which is called the principal point. Any environment point R

is projected to an image point r in this coordinate system.

23
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Projection center
(Focal Point)

Focal Length

Image Plane
(CCD)

Principal Point

Optical Axis
Environment

Figure 2-1: The coordinate system is attached to the camera and the projection is
perspective.

2.2 Basic Definitions

Using a viewer-centered coordinate system which is adopted from Longuet-Higgins &
Prazdny [36] is very common in direct motion vision. Figure 2-2 depicts the coordinate
system under consideration.

In such a coordinate system, a world point
R=(XY 2)T (2.1)

is imaged at

r=(zy )T (2.2)

That is, the image plane has the equation Z = 1 or in other words the focal length

fis 1. The origin is at the projection center and the Z-axis runs along the optical
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Figure 2-2: Under the effect of translational velocity of the viewer is t = (U V w)T
and rotational velocity is w = (A B C)T, any environment point R has the velocity
R, from the observer’s point of view.

axis. The X and Y axes are parallel to the z and y axes of the image plane. Image
coordinates are measured relative to the principal point, the point (0 0 1)T where the
optical axis pierces the image plane. The position vectors r and R are related by the

perspective projection equation

XY Z\T R

where Z denotes the unit vector along the Z—axis and R-z = Z.
When the observer moves with instantaneous translational velocity t = (U V W)7
and instantaneous rotational velocity w = (A B C)7 relative to an environment, then

the time derivative of the position vector of a point in the environment, R, relative



26 Chapter 2: Direct Methods

to the observer can be written as

The motion of the world point R results in the motion of its corresponding image
point r. It can be shown that the motion field in the image plane is obtained by
differentiating eqn. 2.3 with respect to time as in [44]

_d R aiX(RtXr) a9 K
rt‘%(R-z)“ Rz (2:5)

Substituting for R, r and R; from equations 2.1, 2.2, and 2.4 into eqn. 2.5 gives
(36, 14]

& =UteW } Agy — B(z?+ 1)+ Cy
re=|y =] 2% -Bay+ Ay’ +1)-Cz |- (2.6)
Zt 0

This result is just the parallaz equations of photogrammetry that occur in the incre-
mental adjustment of relative orientation [23, 42]. It shows how, given the environ-

ment motion, the motion field can be calculated for every image point.

2.3 The Brightness Change Constraint Equation

Image brightness changes are primarily due to the relative motion between an en-
vironment and an observer provided that the surfaces of the objects have sufficient
texture and the lighting condition varies slowly enough both spatially and with time.
In such cases (which may occur in practical applications), brightness changes due to
the variations in the surface orientation and illumination can be neglected. Conse-
quently, we may assume that the brightness of a small patch on a surface in the scene

does not change during motion. As shown in appendix A, when the motion is small
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the expansion of the total derivative of brightness E leads to

dE
E = Et + .’L'tEa; -+ ytEy = O] (27)

known as the Brightness Change Constraint Equation (BCCE) where (E., E,) and
E, are spatial and temporal gradients of the image brightness at any given pixel
[30, 54, 29].

Note that eqn. 2.7 does not hold for the special case that the viewer and the
light source are stationary and the environment moves relative to them because the

brightness of a surface patch does not remain constant in this case.

2.3.1 Rigid body motion

In rigid body motion, there is only one relative motion between the observer and the
environment. For this case, we can substitute for z; and y; from eqn. 2.6 into eqn. 2.7,

to obtain the brightness-change constraint equation for the rigid body motion [44] as

-t
E,+v-w+$7=0. (2.8)

This equation is nonlinear in terms of unknowns rotation w, translation t, and depth

Z. The auxiliary vectors s and v are known at any pixel (z,y) and are defined as

s = —Ey (2.9)
B, +yE,

1To account for smooth variations in the image brightness due to other factors such as shading,
spatial and temporal illumination changes, and variations in reflectance properties, the BCCE can
be extended to

Et + .’L‘tEx + ytEy = mtE-i- Cy¢

where in general m, and c; are time and position dependent [21, 45]. Cornelius & Kanade [17] also

propose a method which allows gradual changes in %. These extensions are not discussed here.
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and
+E, + y(a?E'x + yEy)

v=| —E,—z(eE.+yE,) |- (2.10)
yE, —zE,

Sinces:r =0, v:-r =0 and s-v = 0, the vectors r, s, and v form an orthogonal triad;
see fig. 2-3. The vectors s and v represent inherent properties of the image. Also it
can be shown that v = r xs. The vector s indicates the direction in which translation
of a given magnitude will contribute maximally to the temporal brightness change of

a given picture cell. The vector v plays a similar role for rotation.

v=rxs

Figure 2-3: At any pixel, vectors r (pixel position), s, and v form an orthogonal triad.
Alsov=r Xxs.

The BCCE, eqn. 2.7, does not change if we scale both Z and t by the same factor.
Consequently, we can determine only the direction of translational velocity and the
relative depth of points in the scene. This ambiguity is known as the scale-factor
ambiguity in motion vision.

Equation 2.7 is obtained under the following assumptions:

¢ No noise,

¢ Sufficient surface texture,



o Slow spatio-temporal variations in lighting, -

¢ Small motions between frames.

Inrealnmages,wohhoaofanydﬂwanmqmm 2.7 not to be
held at any single pixel. However, later we will s how Mq&aﬁm can be used in
a least squares methodfmweweryof:h&pea&mmm image sequetices.

e







Fixation Formulation

Chapter 3

Our common visual experience suggests that fixation may play an important role
in the analysis of moving objects. When we want to understand the motion of an
object, we do not keep our eyes and head stationary in front of the moving object.
Instead, our head and/or eyes follow the moving object, in order to keep the image
of a point of interest stationary in the retina. There are also some formal studies
that support such observations [6, 7, 9]. In this computer vision work, the fization is
defined as:

Given two subsequent images, st and 2nd initial images, and an arbitrary
point in the 1st initial image, find a new image, a 2nd fizated image, such
that the image of the selected point in the new image is located at its

original position as in the 1st initial image.

This definition of fixation is shown schematically in fig. 3-1. If we choose point 1
in the Ist initial image as the fization point, its image in the 2nd initial image may
move to a new location such as 2. In chapter 5, we introduce a simple technique for
converting the 2nd initial image in order to bring image point 2 to the same physical
location as point 1. This process will construct the 2nd fizated image and form a
sequence of images fixated at point 1.

As shown in fig. 3-2, we refer to this arbitrary selected image point as the fization

point, ro, and to its corresponding point on the object as the interest point, R..

31
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Fixation Point

A Sequence of Fixated Images

(at Point 1)
-
=T
- /
- /
/
: /
1st Initial Image /
/
/
/
/
1
\\
\\\ —
\\\\\2
Ny
2nd Initial Image 2nd Fixated Image

Figure 3-1: A schematic interpretation of fization point and fizated image sequence.

3.1 Derivation of the General Fixation Constraint

Equation

For a sequence of two fixated images, at the fixation point r, we should have

ot = 0 (3.1)
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vh

Fixation Point Fixation Axis

Figure 3-2: In the fization method, the image of the interest point, the fization pont,
is kept stationary in the image plane despite the relative motion between the camera
and the environment.

where r; is the time derivative of the fixation point vector and similar to eqn. 2.5 it

can be written as
z X (Rot X 10)

3.2
R. .2 (3:2)

Tot =

R, is the time derivative of the interest point vector. Combination of equations 3.1

and 3.2 shows that for fixation we need to have

z x (Rot X To) = 0. (3.3)

In other words, we want to find out when R, X 1, is zero or parallel to z. For Re; X1,
to be parallel to 2, we should have r, perpendicular to z which is not possible with a

finite field of view, so only R, x r, = 0 applies. Consequently, considering that R,
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and r, have the same direction, eqn. 3.3 is simplified as
Ro, xR, =0 (3.4)
Now substituting for R,; = —t —w x R,, eqn. 2.4, into eqn. 3.4 gives
(wxRo) xRo+t xR, =0. (3.5)
Expansion of eqn. 3.5 by using (a x b) x ¢ = (c-a)b — (c- b)a results in
(Ro-w)Ro — (Ro - RoJw+t xR, =0. (3.6)

As long as the translational velocity t is neither zero nor parallel to the interest
point vector R, then any vector, including w, can be expressed in terms of the triad

of vectors R,, t X R, and t. So we can write w in its general form as
w=aR,+ 4t x R,) +1t (3.7)

where o, 3 and v are parameters to be determined. Later in this section we will
consider the special cases where t is zero or parallel to R, by defining w based on
another triad of vectors.

Substituting for w from eqn. 3.7 into eqn. 3.6 gives
(1 — B(Ro- R)](t x Ro) + 7(Ro - t)Ro — 7(Ro - Ro)t = 0. (3.8)

Now, we should find the parameters § and 4 such that eqn. 3.8 holds without placing
any restrictions on either R, or t. We start by finding the dot product of eqn. 3.8
with t x R, which results in

[1 - B(R,-Ro)]|It x Ro||* = 0. (3.9)
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Equation 3.9 will hold without restricting either R, or t if

1

f=er
N

(3.10)

Another possibility for satisfying eqn. 3.9 is to have ||t x Ro]| = 0 which implies that
either t or R, is zero, or t is parallel to R,. But R, cannot be zero and also we
assumed that here t is neither zero nor parallel to R,. As a result, ||t X Ro|| cannot
be zero.

Similarly the dot product of eqn. 3.8 with t gives
¥(Ro - t)(Ro - t) — v(Ro - Ro)(t - t) = 0. (3.11)

Knowing that (axb)-(cxd) = (c-a)(b-d)—(b-c)(d-a), eqn. 3.11 can be simplified
as

7|t x Ro||* = 0. (3.12)

We discussed that ||t x R,|| cannot be zero here, so eqn. 3.12 is satisfied only if 7 is

zero

v =0. (3.13)

Substituting for B from eqn. 3.10 and v from eqn. 3.13 into eqn. 3.7 gives

w=aR (t x R,) (3.14)

L
T IR
where « is still unknown. This means that the component of the rotational velocity
along R, cannot be determined by the fization formulation. Physically this makes
sense because the rotational velocity along R, denoted by wr,, does not move the
fixation point. This observation leads us to find wg, in a separate step before using

the fixation formulation results. Derivation of wgr, will be shown in chapter 4.
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As a result, the fization constraint equation (FCE) is written as

A 1 A
w=wr,Ro+ —=—(t xR,) (3.15)
IR, |
where t is the translational velocity and R, = £, is the unit vector along the position
vector of an arbitrary fixation point, an arbitrary point in the image chosen for
fixation. Equation 3.15 shows that after fization, the rotational velocity w can be

explicitly expressed as a linear function of the translational velocity t.

3.1.1 Derivation of special fixation constraint equation

When the translational velocity t is zero or parallel to the interest point vector Ro,

eqn. 3.6 is simplified as
(Ro - w)Ro — (R - Ro)w = 0. (3.16)
This time, w is defined based on the triad consisting of vectors R,, X, and X x R, as
w= IR, +m(x x R,) + nX (3.17)

where [, m, and n are parameters to be determined. Here we assume that R, is not
parallel to X. This is a reasonable assumption because otherwise we should at least
have a field of view of 180° to be able to choose an awkward interest point along the
X-axis, which results in a fixation point at an infinite distance from the principal
point and near the border of an infinite image plane.

Substituting for w from eqn. 3.17 into eqn. 3.16 gives

n(Ro - %)Ro — m(R, - Ro)(% x Ro) — n(Rs - Ro)k = 0. (3.18)
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The dot product of eqn. 3.18 with (X x R.,) results in
—m(R, - Ro)||% x Re||? = 0. (3.19)

Considering that R, cannot be either zero or parallel to X, eqn. 3.19 is satisfied only
if m is zero

m = 0. (3.20)

Substituting for m into eqn. 3.18 and finding its dot product by X results in
n(Ro - X)(Ro - X) — n(Ro - Ro)(%x - %X) = 0. (3.21)
Using (a x b)- (¢ xd) = (c-a)(b-d)— (b-c)(d-a), eqn. 3.21 can be written as
n||% x Ro||* = 0. (3.22)

Again R, cannot be either zero or parallel to X. As a result, eqn. 3.22 will hold for

arbitrary R, if n = 0. Substituting for n and m into eqn. 3.17 gives
w=IR, (3.23)

where [ is still unknown. We can substitute wRoﬁo for [R,. The procedure for
computing the component of rotational velocity along the fixation axis, wr,, will be
given in chapter 4. Consequently, for the special cases we obtain the special fization
constraint equation (SFCE) as

A

w =wr,Ro (3.24)

which means that when the translational velocity t is zero or parallel to R, then the
corresponding rotational velocity may only have a component along R..

This procedure for deriving the SFCE, eqn. 3.24, is not essentially different from
what we did for deriving the FCE, eqn. 3.15. In fact, eqn. 3.24 is a special case of
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eqn. 3.15. But we did not directly derive eqn. 3.24 from eqn. 3.15 because eqn. 3.15
was derived based on the assumption that t is neither zero nor parallel to R,. As a
result, for implementation it is enough to use the FCE, eqn. 3.15, without knowing

whether the present condition is a special case or not.

3.1.2 Interpretation of the FCE

We gave a detailed mathematical proof for derivation of the fization constraint equa-
tion (FCE), eqn. 3.15. This constraint equation indicates that for a sequence of
fixated images, the rotational velocity w can always be expressed as a linear function
of the translational velocity t. This section examines whether the FCE makes sense
phsically.

The first term wg, R, says that w can have an unrestricted component along the
fixation axis R,. This is correct because such a component does not cause the fixation
point to move and as a result the fixation is not violated.

The term of the FCE, uTl.,u(t X ﬁo), conveys two points:

e The translation t can have an arbitrary component along the fixation axis R,
because such a component does not move the fixation point in the image plane.

e The rotational velocity w should have a component perpendicular to R, and be
large enough to compensate for the component of the translational velocity t which

is perpendicular to R, in order to keep the fixation stationary in the image plane.

We can conclude that the FCE has a meaningful physical interpretation.

3.2 Solving the General Direct Motion Vision Prob-
lem

At this stage, we assume that a sequence of two fixated images have been constructed.
In other words, we have made the fixation point stationary in the image plane. This

can be done first by finding the fization velocity, the apparent velocity at the fixation
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point in the Ist image, as shown in chapter 4. Then the pizel shifting process explained
in chapter 5 can be used for constructing a new image, the 2nd fizated image, in which
the image of the interest point is positioned at the same point as in the lst initial
1mage.

We start by studying the general case where the translational velocity t is neither
zero nor parallel to the interest point vector R,. The special cases of t will be
discussed later.

Substituting for w from the fixation constraint equation 3.15 into the brightness-

change constraint equation 2.8 gives

A 1 ~ ].
Ei+wr,v-Ro+ —=—[v- (t xR,)]+ 5(s-t)=0. (3.25)

Knowing that a- (b x ¢) = (a x b) - ¢ and doing some manipulations on eqn. 3.25
results in

1 N

E4]os——(vxR) - t=0 (3.26)

"7 R

where F; is a notation for E, + wr, v - R, which is computable at any pixel assuming
that wgr, is known. In chapter 4, we will introduce a technique which finds a good
estimate for wg,.

In general, eqn. 3.26 can be solved numerically for t and Z using images of any
size and with any field of view. For a small patch around the fixation point, called a

fization patch, eqn. 3.26 can be simplified as

1 1

Ej+ (5~ 5)(s )= 0. (3.27)

1Considering that ||R,|| = Z,||ro|| and v = r x s, the term i L i (v x R,) from eqn. 3.26, let’s

call it K, can be expanded as
_ 1 r,
K= zqeq(xs) x @iy
Further expansion of K by using the relation (a x b) x ¢ = (¢ -a)b — (¢ - b)a, results in

K= Z_oﬂlﬁ.“[[f[(n -r)s — (r, - 8)r].
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As described in the footnote, the approximation made here is based on a purely
geometric assumption and is not related to the image properties. For example, we
are not making any assumptions about the depth topology. We simply assume that
motion parameters can be obtained using a small fization patch. As shown in fig. 3-3,

the smallness of such a patch translates into the smallness of an angle . Numerous

Fixation Patch )

/’T-'.P\‘
3

Fixation Point

Figure 3-3: A schematic interpretation of fization point and fizated image sequence.

experimental results in chapter 9 show that indeed good motion estimates are obtained
using optimum patch sizes with a field of view small enough to justify this assumption.

In analogy to the pure translation case of [31], we can find the translational velocity
t. Equation 3.27 shows that 1/(3 — ) = —%. At the points where E| is very small,
even a small error in computing t will result in large error in 1/(7 — Zlo) which

translates into large error in the estimation of depth Z. Considering this fact, the

true translational velocity t can be found from eqn. 3.27 by minimizing

-t

1 1 S
J=[[(5 = =) 2dedy = [[(3FVdad 3.28
(5~ 7)oty = [ [ oy (3.25)
It is clear that at the fixation point, wherer =r, and s =s,, K = 71:s° and for the points near the

1 1 "y L
fixation point K =~ 7 S-
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with respect to t. In other words, we are looking for the true motion t which minimizes
the sum of squares of %—? over the fixation patch. Note that this minimization does
not force Z towards Z, because at Z = Z, the value of J becomes infinite.

We also put the ||t|| = 1 constraint on this minimization problem to avoid the
trivial solution t = 0. This is a valid constraint on t because due to the scale factor

ambiguity we can only find the direction of t. This constraint on t can be written as
tTt = 1. (3.29)

Moreover we can rewrite J as
J=tTMt (3.30)

where M is a fully computable 3 x 3 symmetric matrix

m=f (Ei£)2ssdedy. | (3.31)

Minimizing J in eqn. 3.30 under the constraint eqn. 3.29 is an ordinary calculus

constrained minimization problem which can be solved by minimizing
I(t, \) =tTMt + A1 - tTt) (3.32)

with respect to t and the Lagrange multiplier A\. Then, we will obtain

ol
—_— —_— = 3.
= = 2Mt—2Xt =0 (3.33)

which is simplified as

Mt = \t. (3.34)

Equation 3.34 is an eigenvalue problem where ) is an eigenvalue of the known matrix
M and t is the corresponding eigenvector. The eigenvalues of M are real and nonnega-

tive because M is a positive semidefinite Hermitian matrix. Substituting for Mt from
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eqn. 3.34 into eqn. 3.32 gives I = X which implies that under the given constraint,
tT Mt is minimized when the smallest of three real and nonnegative eigenvalues is
used for computing the eigenvector t.

It is shown that the fixation method can be used for solving the motion vision
problem in its general case. The translational velocity t is obtained from eqn. 3.34
by using the smallest eigenvalue and computing its corresponding eigenvector. Then

we can use eqn. 3.26 for finding the depth map, a depth at each image point, as

(s-t) (3.35)

2= Raor o
0)° !
SR — E

Then, eqn. 3.15 gives the partial rotational velocity w

A 1 «
—wr Rod — (tx R, 3.36
w wWR, + ||Ro||( X ) ( )

where ||R,|| = Z,||r.]| and Z, is the depth at the fixation point. Appendix C intro-
duces a technique for estimating Z,.

The total rotational velocity of the observer relative to the environment is obtained
by adding w to the equivalent rotational velocity € given in chapter 5. It can be seen
that for the general case, the fization formulation lets us find the shape and motion

by choosing virtually any point as the fixation point.

3.2.1 Special cases: t is zero or parallel to R,

When the translational velocity t is zero, we showed that the partial rotational ve-
locity w has only a component about the fixation axis R,, eqn. 3.24. The technique
for computing this component of rotational velocity is given in chapter 4. For this
special case, pure rotation, there are also methods for finding the total rotational
velocity using the initial unfixated images [31]. In the case of t = 0, we basically

cannot obtain any estimation for the depth Z.
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For the other special case that t is parallel to R,, we substitute for w from eqn. 3.24
into the BCCE eqn. 2.8 to obtain

1
E; + E(s t) =0 (3.37)

where Ej is again a notation for the computable term F; + wgr,v - R.. Because no
approximation is involved in deriving eqn. 3.37, an exact closed form solution exists
for t and Z without any restriction on the field of view or the size of fixation patch.
This exact solution for finding t and Z is the same as the solution given in the general
case, starting from eqn. 3.28, except that J is defined as [f Z2dzdy for this special

case.
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Computing the Fixation Velocity
and Rotational Component WR,

Chapter 4

In an arbitrary image sequence, a point chosen as the fization point does not
necessarily stay stationary in the image plane. We use the term fization velocity to
refer to the apparent velocity at the fixation point in the initial 1st image. As shown
in fig. 4-1, the z and y components of the fixation velocity are represented by u, and
v, respectively.

The fixation method requires a sequence of two fixated images in which the fixation
point stays stationary, ro; = 0. A fixated image sequence can be obtained by first
finding u, and v,, and then using these components to construct a new image, the
fizated 2nd image. The technique for the construction of the fixated 2nd image (pizel
shifting process) is explained in chapter 5.

We also saw that the component of the rotational velocity along the fixation axis,
WR,, cannot be obtained from the fixation formulation because this component does
not move the fixation point.

In this chapter, we will introduce an algorithm for obtaining not only the rotation

wr, but also the components of the fixation velocity, u, and v..

45
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Ay

Fixation Axis

Fixation Point

Figure 4-1: In general, for any point chosen as the fization point, there is an associated
apparent velocity (fization velocity), and a rotational component along the fization
azis, wr,. The components of fization velocity are shown by (uo, vo).

4.1 Algorithm

The motion field velocity due to the rotational velocity component wr, is given by
—(wRr, x1) = —wgr, (R, x 1) = —%ll(ro x r), where R, = #, is the unit vector
along the fixation axis r,. Considering a small patch around the fixation point, and
substituting r, = (2, ¥o 1)7 and r = (z y 1)T, the components of the total motion

field velocity due to the fixation velocity and wr,, are given by

€

R A —

ro= = Ry (o) = b Em (- %) a
WR A —

Yy = vo—“Toﬁy-(roxr) = v, —WR, (T — T)

where X and ¥ are the unit vectors along the z and y axes and wg, is a notation for

“Ro
lIrol}*

gives

Substituting for z, and y, from the above equations into the BCCE, eqn. 2.7,

[t + OR, (¥ — ¥o)| Ee + [vo — WR, (z — 20)] By + £, = 0. (4.2)
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Due to noise, eqn. 4.2 does not necessarily hold for any point (z,y). Thus, we try
to find ., v, and OR, by minimizing the sum of squares of errors over the fixation

patch. In other words we want to minimize

[ [+ Gr,( = yo)) Be + (v = Gm, (2 = <)) B, + Ededy  (43)

with respect to u,, v, and wr,. This results in a system of three linear equations

that can be solved for the three unknowns

ap; dyz a13 Uo (4]
a1 G2 a3 Vo = C2 |- (4~4)
asz a3y dass WR, c3

Matrix A is symmetric and its elements are given by

a2 = [[E.E,dzdy
a1z = [[ E[Es(y —yo) — Ey(z — zo)]dx dy
ags = [[ EyEo(y — yo) — Ey(z — z0)]dz dy

(4.5)
ay = [[EZdzdy
ax = [f Ejd:v dy
azs = [[[Eo(y — yo) — Ey(z — xo)]*dx dy
and the components of vector C are as follows:
o = —f[EE.dxdy
c2 = —[[EE,dxdy (4.6)
ca = —[[EE:(y — o) — Ey(z — xo)]dz dy.

Considering that the fixation point coordinates z, and y, are known, the sets of
equations 4.5 and 4.6 show that the elements of matrix A and the components of

vector C are fully computable.
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4.2 Discussion

When the spatio-temporal gradients are zero, matrix A is irreversible because all of its
elements are zero. As a result, we will not be able to compute the motion components
in such a case. Chapter 10 explains how to avoid this by an autonomous choice of
an appropriate fixation point that is not located in a patch with uniform brightness.
Furthermore, for implementation we make sure that the determinant of matrix A is
nonzero before advancing into the computations.

In the special case where the fixation point is at the principal point, z, = y, = 0,

elements of matrix A are simplified as

ai = Jf B.E,dzdy
wis = ff Bu(yE. — oB,)dz dy
azs = [[E,(yE; —zE,)dzdy

(4.7)
ayn = [[Eldcdy
ax = [f E§d$ dy
| ass = [f(yE; —zE,)*dzdy
and components of vector C are given as follows
g = —ffEE.dzdy
e = —f[EE,dzdy (4.8)
ez = —[[E(yE; —zE,)dz dy.

After finding @R, , we can easily compute wr, = @r,\/z% + y2 + 1. Clearly, when

the fixation point is at the principal point, wr, becomes equal to wg,.
The algorithm given in this chapter has been successfully implemented on real
images and good estimates have been obtained for the fixation velocity components

and wg,. Chapter 8 describes the implementation results.



Constructing a Sequence of
Fixated Images

Chapter 5

The fixation method requires a sequence of two images in which the fixation point
is kept stationary. However, the input can be an arbitrary sequence of two images
that we shall call the st initial and 2nd initial images. The Ist initial image is used
directly as the Ist firated image but we need to find a 2nd fizated image using the
2nd initial image.

Physical rotation of the camera relative to the observer base is a hardware solution
to this problem which is basically a tracking problem. Considering that in general
the interest point has a motion relative to the observer, the 2nd fixated image cannot
be obtained in one step. As a result, a feedback control loop is required for the
camera rotation system to compensate for the errors resulting from the new position
of the fixation point. This tracking approach is to be avoided not only because of the
potential errors involved but also because of concern about real time applications.

In this chapter, we will show how a 2nd fixated image can be constructed by a
purely software technique, the pizel shifting process. It involves applying an imaginary
rotation to the vision system and determining the corresponding transformation which

affects the 2nd initial image.
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5.1 Equivalent Rotational Velocity

If point 1 is chosen as the fixation point in the Ist initial image, then in general its
corresponding image point in the 2nd initial image moves to a new location such as

point 2; see fig. 5-1.

Fixation Axis

Figure 5-1: An imaginary rotation opposite to the equivalent rotational velocity, —2,
is applied to the vision system to bring point 2 to point 1. This rotation transforms
the 2nd initial image into the 2nd fizated image.

Determining the location of point 2 is equivalent to the estimation of the fixation
velocity. Chapter 4 introduced a technique for the estimation of the fixation velocity.
The experimental results in chapters 8 and 9 will also show that the fixation velocity
can be estimated reliably even from real and noisy images. As a result, it is assumed
here that the fixation velocity has been already computed from eqn. 4.4.

There are infinite combinations of translations and rotations which can be ap-
plied to the vision system or camera to bring the image point at 2 to the location 1.

Among all these combinations, we choose to accomplish the task by a pure rota-
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tion. To find the desired rotation, we first introduce an equivalent rotational velocity,
Q = (Q,9,,9.), as a rotation which can result in the same fixation velocity (uo,v,)
at the fixation point (2.,%.). According to eqn. 2.6, the components of { must satisfy

the following set of equations

Uo = xoona: - (£§+1)Qy + onz

(5.1)
vo = (Yi+1)Q, — Toyofly — xS0,

There are also infinite configurations of ) that satisfy the system of equations in 5.1.
However, we choose the only one that does not introduce any new rotational velocity
along the fixation axis r,. Mathematically it is equivalent to having Q- r, = 0 which

results in an extra constraint on the components of {2,

2oy + Yo$ly + 2, = 0. (5.2)

This constraint guarantees that the value of wg, obtained by applying the system of
equations 4.4 to the two initial images is also valid for the fixated images. As a result,
no adjustment in wg, is needed before using it in equations 3.35 and 3.36 which must
be applied to a sequence of fixated images.

Considering that the fixation velocity (uo,v,) and the fixation point coordinates
z, and y, are known here, the equivalent rotational velocity {2 is obtained by solving
the combination of three linear equations in 5.1 and 5.2. For example, in the case
that the fixation point is at the principal point, z, = y, = 0, the equivalent rotational

velocity becomes,

Q = (vo, — o, 0). (5.3)

However, it should be emphasized that fixation point is not restricted to the principal

point and virtually any point can be chosen as the fixation point.
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5.2 Constructing the 2nd Fixated Image

After obtaining the equivalent rotational velocity (), the task of constructing the

2nd fixated image is equivalent to finding the transformation experienced by the 2nd

initial image when the imaginary rotation —$ is applied to the vision system.
Considering eqn. 5.1, the following set of equations give the component of the

corresponding shifting vector (u, v) for any pixel (z, y) of the 2nd initial image

u = —zyQ, + (22+1)Q, — yQ,

(5.4)
v = —(yz—}-l)ﬂac + zyQdy, + Q..

Here Q,, 0, and 2, are known values. As a result, the shifting vector (u,v) can be
obtained for every pixel of the 2nd initial image.
Figure 5-2 shows the process of constructing the 2nd fixated image using the 2nd

initial image, called the pizel shifting process. The brightness at pixel (z,y) of the 2nd

X—=Tu X
t :
y
() e p? i
y-Tv Z
—ﬂ
2nd Initial Image 2nd Fixated Image

Figure 5-2: The pizel shifting process for constructing the fizated 2nd image from the
2nd initial image.

fixated image is the same as the brightness at the corresponding point (z—T'u,y—Tv)
in the 2nd initial image, where T is the time interval between two initial images. In

general, a computed original point is not located at the center of a pixel in the 2nd



5.2: Constructing the 2nd Fizated Image 53

initial image. As a result, its brightness cannot be read directly from the image file
and should be computed by averaging, bilinear interpolation or bicubic interpolation
of the brightnesses at its neighboring pixels.

It should be clear by now that we neither require the fixated images to be pro-
vided in advance nor do we use mechanical tracking for obtaining the fixated images.
Construction of the 2nd fixated image is based on the pizel shifting process. This is
done entirely in software and no tracking is involved in this technique. In chapter 11,
we will show the results of implementing this purely software based technique for

constructing a sequence from fixated images for several real image sequences.
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An Overview of the Fixation

Method

Chapter 6

The algorithms and formulations presented in the previous chapters show how to
solve directly for the motion and shape in the general case. In contrast to previous
work done in the area of motion vision, our technique is general and does not put
any severe restrictions on the motion or the environment. More importantly, the
fixation method uses neither optical flow nor feature correspondence. Instead, image
information such as temporal and spatial brightness gradients are used directly. This
method neither requires tracked images as input nor uses tracking for obtaining fixated
images. Instead, it introduces a pizel shifting process for constructing fixated images
at any arbitrary fization point. This process is done entirely in software without
moving the camera for tracking.

In the previous chapters, we gave the theory underlying the fization method in
detail. This chapter presents a summary of the main steps involved in the firation

method.

6.1 Main Modules

Figure 6-1 shows a block diagram of the ideas behind our fixation based motion
vision system. Referring to this figure, the fixation method can be implemented in
the following steps:

e Step I: Finding the fization velocity components (u,, v,) and the component of

%)
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Figure 6-1: The modules of the fization based general motion vision system.

rotational velocity along R,, wr,, by applying the system of eqn. 4.4 to the brightness
gradients from two initial images.

e Step 2: Knowing the fixation velocity components (u,, v,) the 2nd fizated image
is constructed by the pizel shifting process explained in chapter 5. This is done entirely
in software without any need to move the camera for tracking. This step also results
in the estimation of the equivalent rotational velocity ).

e Step 3: Knowing wr,, and using the fixation constraint equation 3.15, the Ist
initial image, and the 2nd fixated image, the method presented in chapter 3 can be
used for recovering the translational velocity t, the partial rotational velocity w, and
the depth Z at all image points.

e Step 4: The total rotational velocity wy, is obtained simply by adding the equiva-
lent rotational velocity ), from equations 5.1 and 5.2, to the partial rotational velocity
w from eqn. 3.15.

In the following chapters, we apply our fixation based motion vision system to
the real world environment to recover motion and shape in the general case. At
every step, we discuss the implementation issues and introduce practical techniques

for dealing with them.



Spatial and Temporal Brightness
Gradients

Chapter 7

Brightness gradients are the primary source of information for direct method al-
gorithms. Appendix B describes the formulations for obtaining spatial brightness
gradients E, and E,, and the temporal brightness gradient F; from a sequence of two
time varying images.

This chapter applies those formulations to two real image sequences to obtain the
corresponding brightness gradients. Then, we will introduce a technique for the visual
representation of the brightness gradients and finally, we will study those representa-

tions to explain the significance and characteristics of brightness gradients.
7.1 Visual Representation

Two successive frames of the landscape image sequence (taken at the Imaging Labo-
ratory of Carnegie Mellon University) are shown in fig. 7-1. These are 8 — bt images
but the last two digits are usually too noisy to be reliable.

The true motion between these frames is a combination of translation and rotation.
The real rotation is 0.3 deg about the optical axis Z and the real translation is 2 mm
along the horizontal axis X.

Using the formulation in appendix B, we can compute the brightness gradients.
The corresponding spatial and temporal brightness gradients for the landscape image

sequence are shown in figures 7-2 and 7-3, respectively.
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Figure 7-4 shows another image sequence (cup image sequence) used in the experi-
ments. The motion between these successive frames is a 3D translation of (2.5, 0, 4) mm.
The spatial and temporal gradients for the cup image sequence are shown in figures 7-5
and 7-6, respectively.

In these maps, larger gradient values are shown brighter. Such gradient maps
suggest a way of visually representing the brightness gradients which renders them

more intuitively meaningful.

7.2 Interpretation and Significance

The top gradient maps in figures 7-2, and 7-5 show that horizontal gradients (E,’s)
capture the vertical lines and feature in the images. Similarly, the bottom gradient
maps in these figures demonstrate that vertical gradients (E,’s) pick up the horizontal
lines and feature in the image.

These experimental results show that the spatial gradients capture the geometric
and shading characteristics of the images. It is important to notice that the compu-
tation behind spatial gradients is very simple. However, they indirectly capture the
edges, features, and boundaries of the scene.

The temporal brightness gradient in fig. 7-3 tells us about the motion between
two landscape images. First of all, the vertical lines and features are seen all over this
temporal gradient map. This observation indicates that the motion has a horizontal
translation component.

Secondly, there are also horizontal lines in this gradient map but they become
weaker as they get close to the left side of the map (this argument becomes more
obvious if one compares the horizontal lines in here with those of E, in fig. 7-2). This
means that motion has a rotational component which is centered in the left side of
the image. In section 13.2, we will show that this is really the case.

Also, we can observe that at any vertical stripe of the spatial gradient map,
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the horizontal lines become stronger as their distance from the center of the stripe
increases. This observation indicates that the rotation center is located in the middle
of the image.

Figure 7-6 shows that the temporal brightness gradient map captures the vertical
edges and features in the cup image sequence. The uniform strength of the vertical
lines in fig. 7-6 is an indication of the fact that the motion in the cup image sequence

is a pure horizontal translation.

7.3 Summary

The gradient maps and discussions presented in this chapter show that the spatial
gradients capture the geometric and shading characteristics of the images and the
temporal gradients contain important information about the motion.

As shown in appendix B, the computational procedure behind gradient estimation
is very simple. In fact, it only involves the subtraction of neighboring pixel values.
Such a simple computation indirectly results in capturing the motion and detecting
the features, edges, and boundaries in the images.

However, we should emphasize that we neither intended to obtain such edges and
features nor did we use such representation of the gradient maps in our algorithms.
The intention was to demonstrate that the brightness gradient maps not only contain
the motion information (which is usually represented by the optical flow maps) but
also have a flavor of features and edges (used in edge maps and feature correspondence

algorithms).
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Figure 7-1: The first and second frames in the landscape image sequence. The true
motion is a 0.3 deg rotation about the nominal optical axis Z, and a 2 mmm translation
along the horizontal axis X.
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Figure 7-2: The visual representation of the spatial brightness gradients for the land-
scape image sequence in the horizontal direction (top) and vertical direction (bottom),
E, and E,. The horizontal gradient map (top) has captured the vertical edges and
features in the image. Similarly, the vertical gradient map (bottom) has picked up
the horizontal edges and features.




62 Chapter 7: Spatial and Temporal Brightness Gradients

Figure 7-3: The visual representation of the temporal brightness gradient for the
landscape image sequence, E;. The vertical edges with relatively uniform strength
suggest that motion has a horizontal translation component. The horizontal edges
with decreasing strength towards left indicate that there is also a rotation centered
at the left of the image center. '
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Figure 7-4: The first and second images in the cup image sequence. The true motion
between these frames is a 3D translation of (2.5, 0, 4) mm.
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Figure 7-5: The visual representation of the spatial brightness gradients for the cup
images in the horizontal direction (top) and vertical direction (bottom), E, and E,.
The horizontal gradient map (top) has captured the vertical edges and features in the
image. Similarly, the vertical gradient map (bottom) has picked up the horizontal
. .edges and features.



AR S T

7.3: Summary 65

Figure 7-6: The visual representation of the temporal brightness gradient for the cup
image sequence, E;. The presence of relatively uniform vertical edges and features
here indicates that the motion is predominantly a horizontal translation
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The Effect of Fixation Patch Size

Chapter 8

Finding the fixation velocity (velocity at the fixation point), and the component
of rotational velocity about the fixation axis, wr,, is the most important part of
our fixation based method for recovering the shape and motion from an arbitrary
sequence of input images. This is because in our method a pizel shifting process
uses the fixation velocity to construct a sequence of fixated images from an arbitrary
sequences of input images (chapter 5). We also need wg, for computing the total
rotational velocity (chapter 3).

In chapter 4 we introduced the algorithms for recovering the fixation velocity and
wr, using the information from the fixation patch (an image patch around the fixation
point). In this chapter, we study the effect of the fixation patch size on the estimation
of the desired motion parameters using two different sequence of images where the

motion is a combination of translation and rotation.

8.1 Images with Moderate Relative Depth Changes

Here, we have used a sequence of real images acquired at the Imaging Laboratory of
Carnegie Mellon University. Figure 7-1 shows two of these 576 x 384 pixels images.
The relative depth is moderate (1250 mm to 1625 mm, about 30% change) in the
image portion used in our computations. The camera has a nominal focal length of
24 mm, and a pixel size of 0.02 x 0.02 mm. The calibrated principal point has been

used as a fixation point. The calibration technique is explained in section 13.1.
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In a raster format system (origin at the top left corner of the image), the calibrated
principal point is located near the center of image, pixel (275,205). The frontal depth
of this point is about 1450 mm.

The real motion between these two images has both translational and rotational
components. The real rotation is —0.3 deg about the optical axis Z and the real
translation is —2 mm along the horizontal axis X. Testing our algorithms using
such real images is valuable because the observed motion is relatively large (more
than subpixel motion in the image plane). For very large motions it is enough to
use higher frame grabbing rates. These days, there are commercially available frame
grabbers which are capable of capturing up to 7,500 frame per second at 12 bits gray
scale resolution on personal computers [82].

Using the algorithm described in chapter 4 we can find the horizontal and vertical
translations and the rotational component wgr, for any given fixation patch size. The
corresponding plots are shown in figures 8-1, 8-2 and 8-3. It is evident that these
estimations strongly depend on the fixation patch size especially when the fixation
patch is small. Figure 8-1 shows that the horizontal translation converges to its real
value (—2 mm). On the other hand, the vertical translation (fig. 8-2) converges to
0.9 mm which is not its true value. The reason for this disparity is described in
section 13.2.

Figure 8-3 shows that for small patch sizes (less than 30 x 30 pixels in this case) the
estimated value for wg, oscillates wildly and results in unacceptable values. As the
patch size increases, the estimated wr, converges towards the real value of rotation.
For large patch sizes (around 100 x 100 pixels in this case) the estimated rotation,

—0.309 deg, becomes roughly the same as the real rotation, —0.3 deg.
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Figure 8-1: The estimated value for the horizontal translation versus the fixation

patch size for the landscape image sequence. The true horizontal translation is
—2 mm.

8.2 Images with Significant Relative Depth Changes

In this section we will study another image sequence (cup images) which have consid-
erable relative depth changes within the fixation patch (584 mm to 914 mm, about
60% difference). Figure 7-4 shows two of these 227 x 280 pixels images (cup images).

The real motion of the viewer is a horizontal translation of 2.5 mm to the right.
The camera has a nominal focal length of 18.66 mm, pixel-width of 0.032 mm, and
pixel-height of 0.029 mm. We have used the nominal principal point (image center)
as our fixation point.

Figure 8-4, shows the estimates for the horizontal translation, vertical translation,
and the rotational velocity component wgr,. It is obvious that the estimated values
depend strongly on the size of the fixation patch. We can find good estimates for

these motion parameters if we use the right fixation patch size.



70 Chapter 8: The Effect of Fization Palch Size

085} - fp----- b e e SO P R

Vertical Translation {mm]

-1,5

60 80 100 120 140
Patch Size [pixel]

Figure 8-2: The estimated value for the vertical translation versus the fixation patch
size for the landscape image sequence. The true vertical translation is zero which is
apparently different from the experimental results (about &= —0.9 mm). In chapter 13,
we will show that this considerable difference is due to a calibration problem.

8.3 Finding a Good Estimate for wg, Autonomously

It can be seen that the size of fixation patch has a critical effect on the estimated
values of the component of rotational velocity about the fixation axis, wr,. A small
patch size results in a value for wgr, which is usually far distant from the true value.
This is possibly because in a small patch, small translations can be interpreted as
large rotations. Figure 8-5 shows a hypothetical situation where (a) and (b) are a
sequence of a small 3 x 3 pixels patch. The real motion in this case is most likely
a pixel high vertical translation. But if we try to interpret it as a rotation about
the patch center we will end up with a 45 deg rotation which is not acceptable,
considering the assumed small motion between images.

As a conclusion, we can autonomously find a good estimate for the rotational

velocity component wr, simply by using a relatively large fixation patch size.
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Figure 8-3: The estimated value of the component of rotation velocity about the
fixation axis, wR, , versus the fixation patch size for the landscape image sequence. For
large patch sizes, the estimated value of wg, (about —0.309 deg) converges towards
the real value of wr,, —0.3 deg.

8.4 Updating the Fixation Velocity Using wg,

In the previous section, we saw that a good estimate for wr, can be found using a
relatively large patch but the corresponding fixation velocity estimate from such a
large patch is usually not reliable. This observation suggests that we may be able to
obtain better estimates for the fixation velocity components if we use the estimated
value of wr, and recompute the fixation velocity.

Using only the estimate for wr, from a large patch, we can compute the total

motion field at any point (z,y) on a small patch around the fixation point (fization
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Figure 8-4: The estimated values for the horizontal and vertical translations and the
rotational component wr, versus the fixation patch size for the cup image sequence.
The true motion is a horizontal translation of 2.5 mm.

patch). As we showed in chapter 4

“R
p— —_— —
T Uo + /_-:v%+—y.§+l (y yo) (81)
vt ve w242 +1 (2= =)
where (o, y,) is the position of fixation point (located in the image plane), and

(o, v,) is the fixation velocity that we are about to estimate. After substituting z;

and y; into the BCCE, eqn. (2.7), we will have

(uo + ——WL——-(y - yo)) E.+ (vo - A—(w — :co)) E,+E, =0. (8.2)

\/$3+3;§+1 Vel +yi+1

However, due to noise, the above equation does not necessarily hold for any pixel. As

a result, we can find u, and v, by minimizing the sum of the errors over the whole
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(a) (b)

Figure 8-5: Using small fixation patch can result in wrong interpretation of large
rotation. In a patch of 3 x 3 pixels, a pixel high vertical translation can be interpreted
as 45 deg rotation which is not an acceptable answer at all, considering the finite
motion between images.

fixation patch, namely by minimizing

2

dzr dy

(o ) (- e e

with respect to u, and v,. This will result in the following system of linear equations,

(8.3)

Jf, Eldz dy JI, EzEydz dy Uo

I, EzEydzdy [], Eldx dy Vo

1, (Re (0 = 20) By = (4 = 90 Be) = B ) Budady o
15, (oBa (o = 2B, = (v = ) Bx) = ) Bydady

that can be solved for the two unknowns u., and v,. Note that wr, has been already

computed and is a known value in this equation.
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8.4.1 Improved estimations

Here, we use the updated algorithms (which take advantage of a good wr, estimation)
to find estimations for the translational components of the fixation velocity.

Figures 8-6 and 8-7 compare the updated and previous estimations of the horizon-
tal and vertical translations in the landscape images. These figures show that there
are some improvements in the updated estimations especially for the vertical transla-

tion (fig. 8-7). The improvements in the updated estimations are more pronounced
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Figure 8-6: The updated and previous estimations of the horizontal translation, along
the X-axis, versus the fixation patch size for the landscape image sequence.

in the plots corresponding to the cup images (figures 8-8 and 8-9). Note that we have
better improvements where there is the most need for it, namely in the cup images
where relative depth variations is large compared to the landscape images.

Despite improvements, the dependency of the updated translational components
on the fixation patch size is still quite clear in these figures. However, we can find good

estimates for these motion parameters if we choose the right fixation patch size. In
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Figure 8-7: The updated and previous estimations of the vertical translation, along
the Y-axis, versus the fixation patch size for the landscape image sequence.

practice, we do not know the real fixation velocity, and therefore we cannot select an
appropriate fixation patch size by checking the computed values of the translational

components. The next chapter introduces a technique for autonomous choice of an

optimum fixation patch size.
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Figure 8-8: The updated and previous estimations of the horizontal translation, along
the X-axis, versus the fixation patch size for the cup image sequence.
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Figure 8-9: The updated and previous estimations of the vertical translation, along
the Y-axis, versus the fixation patch size for the cup image sequence.



Autonomous Choice of an
Optimum Fixation Patch Size

Chapter 9

The experimental results and explanations in the previous chapter suggest that
relatively large patch sizes should be used in order to get a good estimate for the
component of the rotation along the fixation axis, wr,. On the other hand, we know
that in general using a very large patch size will result in a wrong estimate for the
fixation velocity because depth variations usually increase as the patch size increases.

Figures 8-1 and 8-4 showed that for any image sequence, there is an optimum
patch size which results in good estimates for the fixation velocity components. The
corresponding optimum patch size is about 100 x 100 pixels for the landscape image
sequence (fig. 8-1) and about 50 x 50 pixels for the cup image sequence (fig. 8-4).

In this chapter, we will describe an autonomous technique for finding the optimum
fixation patch size which results in good estimates for the fixation velocity components

for any image sequence.
9.1 Normalized Error

We showed that for any given size of the fixation patch, we can find the fixation veloc-
ity components, u, and v,. Also the component of the rotational velocity about the
fixation axis, wr,, can be estimated reliably using a relatively large patch. Knowing
these values, the motion field velocity (z;, y:) at any point (z,y) in the image plane is

given by eqn. 8.1. Ideally, for any given image point (z,y) the BCCE, eqn. 2.7, must

7
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be satisfied. However, in practice we are dealing with real images which are noisy and
as a result, the term z,E, + y,E, + F; does not usually become zero. This term can
be considered as an error term for the corresponding pixel. In a patch of size p x p

pixels, we can add these error terms to define the normalized error, e, as

o = Zlzle +yiBy + B (9.1)

p2

This definition allows us to compare the performance of different patch sizes by study-
ing the behavior of the normalized error e with respect to the changes in the patch

size p.

9.2 Optimum Patch Size

In this section, we show how the normalized error can be used for finding an optimum
patch size which results in good estimates for the components of the fixation velocity.
Any patch of a real image may include a substantial depth range. In general, there are
two main groups of images. In the first group, there are moderate changes in depth
variation as the patch size increases. The second group represents images where the

depth variation increases significantly as the patch size increases.

9.2.1 Moderate changes in relative depth

Figure 9-1 shows the normalized error versus the fixation patch size for the landscape
image sequence. Although this plot corresponds to a specific image and motion, 1t
shows one of the two typical representations of the normalized error behavior as the
patch size increases. As shown in this figure, the normalized error first increases with
the patch size, reaches a peak and then dips down.

This is because initially for the smallest patch size (3 x 3 pixels) the algorithm

finds the motion estimates that makes the BCCE error term (z.E, + y:Ey + E;) as
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Figure 9-1: The estimated value of the normalized error e versus the fixation patch size
for the landscape image sequence. The optimum patch size occurs around 100 pizels.

small as possible. The algorithm does a good job in minimizing the total of 9 error
terms in this small patch but the motion estimates are usually very bad at this level
because basically there are not enough data available to the algorithm.

In the next level, we have a patch of 5 x 5 pixels size which provides more data.
While there is still not enough data for the algorithm to come up with good motion
estimates, it finds parameters which minimize the sum of the BCCE error terms.
However, the algorithm is not usually as successful as it was for the 3 x 3 pixels patch
size because it has to deal with more error terms and this results in higher normalized
error.

As we increase the patch size, the struggle between providing more data to the
algorithm and satisfying more error terms continues. For relatively small patch sizes,
this results in higher normalized error. The normalized error increases until it reaches
a peak where the role of extra input data becomes more important than satisfying

more error terms. Then by increasing the patch size, we are providing more data
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to the algorithm and this gives a better motion estimate and results in a smaller
normalized error.

After dipping down, the normalized error stays roughly the same in this case,
because the relative depth variation does not change much with the patch size, (fig. 9-
1). The optimum patch size in this example occurs around 100 x 100 pixels which
corresponds to the start of the small slope in normalized error, a roughly flat portion
after the first peak. In this example, relative depth changes are moderate (1250 mm
to 1625 mm, about 30% difference) and stay roughly the same as the patch size

increases.

9.2.2 Significant changes in relative depth

The normalized error for the cup image sequence is shown in fig. 9-2. As before, the
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Figure 9-2: The normalized error versus fixation patch size for the cup image sequence.
The optimum patch size occurs around 50 przels.

normalized error first increases and after reaching a peak it dips down and then grows

with the patch size again. This is because in the beginning, insufficient information
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results in extremely wrong estimates and this causes the normalized error to increase
with the patch size. As we are providing more and more data to the algorithm, we
obtain better estimates for the motion components and this decreases the normalized
error. If we increase the patch size beyond an optimum size, which occurs at about
50 pixels in this example, the normalized error starts increasing again. In this 50 x 50
pixels patch, we have a considerable amount of relative depth changes (from 584 mm
to 914 mm, about 57% increase). Such significant relative depth variation leads
to larger errors in the fixation velocity estimates which in turn results in a larger

normalized error as p grows.

9.3 Autonomous Choice of Optimum Patch Size

As one might expect, the optimum fixation patch size depends on the patch topology
and texture which may vary from image to image. However, the general pattern of
the normalized error allows us to autonomously find an optimum fixation patch size
which gives good estimates for the fixation velocity components.

In the case where considerable changes in the relative depth occur with patch size
increase, as in the cup image sequence, the optimum fixation patch size corresponds
to the minimum normalized error that occurs after the peak value of the normalized
error. And in cases where the relative depth does not change significantly with patch
size, as in the landscape image sequence, the optimum fixation patch size is where
the normalized error does not change considerably as the patch size increases.

A human operator may not have much problem identifying the optimum patch
size on the normalized error plots. But our aim is to come up with a simple algorithm
which allows a machine to autonomously find the optimum patch size from any given

normalized error data set.
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9.3.1 Algorithm

This section describes the algorithm for obtaining the optimum fixation patch size
from any normalized error data set. The general algorithm is composed of the fol-
lowing steps:

e Step 1: Setting the patch size bounds

All the experimental results unanimously show that the motion estimates from a
small patch are not reliable at all. As a result, we can put a lower bound on the patch
size. By taking into account the camera parameters and the image size, we have used
a 15 x 15 pixel patch as the lower bound of the patch size. Moreover, the square
shape of the patch, the location of the fixation point, and the image size dictates an
upper bound on the patch size. As a result, we have used 140 x 140 pixels as the
upper bound in our experiments.

e Step 2: Computing the normalized error slope

Denoting the normalized error at patch ¢ as e[¢], we define the slope at patch z as

eli-+1] = eli]

Sl = =5

(9.2)
The slope S[i] is dimensionless and shows the relative change of the normalized error
as the patch i changes to patch z + 1.

o Step 3: Setting a slope index

By searching through the slope space, we can find the steepest (most negative)
slope and denote it as Smaz. This definition allows the algorithm to get a sense of
steepness (or flatness) at any point on the normalized error curve. We define the slope
index Sind as a small percentage (about 15%) of the steepest slope Smaz. Study
of many normalized errors plots has shown that this choice of the Sind allows us to
identify relatively flat portions in a typical normalized error curve.

e Step 4: Searching for the optimum patch size

We choose the lower bound patch size as the first candidate for the optimum size.
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Then, we move to the next patch size and select it as the new nominated optimum
patch size if it satisfies the following two conditions:

- First condition: Its normalized error e[i] should be less than the normalized error
value of the previously nominated optimum point.

- Second condition: Its corresponding slope 5[] should be steeper (more negative)
than the slope index, Sind.

We continue this search process until we reach the upper bound of the patch size.

o Step 5: Locating the optimum patch size

After checking all the data, the point immediately after the last nominated point

is selected as the optimum point.

9.3.2 Experimental results

The above algorithm has been applied to the normalized error data set of the land-
scape and the cup image sequences (figures 9-1 and 9-2) to obtain the optimum patch
sizes. The corresponding experimental results of locating the optimum patch size are
shown in figures 9-3 and 9-4. In these figures, the nominated optimum points are
shown by small circles on the normalized error curves. It can be seen that for both
cases the algorithm finds the optimum points correctly.

Figure 9-3 shows that the optimum patch size for the landscape image sequence is
selected at 101 pizels which corresponds to a small field of view (about 2 x 2.4 deg).
If we go back to figures 8-6 and 8-7 again, we see that one of the best estimations
for the translational components occur at this optimum patch size (101 pizels). The
optimum patch size for the cup image sequence is selected at 47 pizels (fig. 9-2).
Similarly, figures 8-8 and 8-9 show that we obtain one of the best combined motion
estimates at this optimum point (47 pizels). This optimum patch size for the cup im-
age sequence makes approximately the same field of view as the one for the landscape
image sequence (about 2 x 2.4 deg). This is an important observation considering

that we have obtained roughly the same optimum field of view for two totally different
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Figure 9-3: Searching process of finding the optimum patch size for the landscape
image sequence. The nominated points are shown by small circles. The last point
represents the optimum point which occurs at 101 pizels in this case.

images, cameras, and focal lengths.

9.3.3 Further results

In order to test our algorithm further, we have run it on many other image sequences
with smaller and larger motions. The algorithm has worked successfully in finding
the optimum patch sizes in all cases. Some of the corresponding experimental results
are shown in figures 9-5, 9-6, 9-7, and 9-8.  These experimental results for the other
images sequences show that the corresponding optimum patch sizes are close but not
necessarily the same as the values we obtained before. However, in every case the
obtained optimum point represents the patch size which results in one of the best

motion estimates.
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Figure 9-5: Searching process of finding the optimum patch size for the landscape20-
80 image sequence. The motion is two times as large as before (—4 mm translation
and —0.6 deg rotation). The nominated points are shown by small circles. The last
point represents the optimum point which occurs at 101 pizels in this case.
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Autonomous Choice of an
Appropriate Fixation Point

Chapter 10

In general, our fixation algorithms do not place any restrictions on the choice
of the fixation point location and virtually any point can be chosen as the fixation
point. Among all points, the choice of principal point (image center) makes the
formulations simpler. However, in practice, one should take some more considerations
into account while choosing an appropriate fixation point. Most significantly, the
motion of the chosen fixation point should be detectable using the information from
its corresponding patch. To clarify this, we can consider a patch which has a uniform
brightness. Choosing the center of such a patch as the fixation point will not be
useful, because the motion of such a point is irrecoverable using only the information
from that patch. This chapter introduces a technique for autonomous choice of an

appropriate fixation point.
10.1 Algorithm

Similar to chapter 4 (when using wg, = 0), the least squares method can be applied
to the BCCE terms to obtain the following system of linear equations for the uniform
motion field (u,v) on a patch as

ffp Eidz dy ffp E.E,dz dy u —ffp Ei\E.dx dy (10.1)

I, EzEdzdy [], Ejdm dy v —JI, E.E,dx dy
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It is obvious that the solution for (u,v) exists (i.e. motion is detectable) if the deter-

minant of the above matrix

D= (//,, Eda dy) (//p E*dx dy) - (//,, E.E,ds dy)2 (10.2)

is not zero. However, this is not a reliable criteria for real images because due to noise
we may have D # 0 but it does not guarantee that the patch is an appropriate one.

If we denote the smaller eigenvalue of the coefficient matrix in eqn. 10.1 by A,

A =3 (ffp(Ei + E2)dz dy — \/[f,(E2 — E2)*de dy + 4(J, EcE,da dy)z)  (10.3)

then we can define a good fixation point as a point whose corresponding patch has
the largest A,. Using such a patch not only guarantees a solution (D # 0) but also
ensures that our solution (u,v) is not sensitive to noise errors in the coefficient matrix
of eqn. 10.1.

The reasoning behind using the largest A, is the form of the characteristic poly-

nomial of the coefficient matrix in 10.1,

F(\) = A2—2 (//p(E2 + E?)da dy) M (//,, Ede dy) (//,, Edz dy>—<//p E.E,dv dy)2.

(10.4)
When A is large, small errors in the coefficients results in negligible error in F'(})
compared to the case when A is small. This implies that in patches with larger
), the apparent motion components (u,v) are less sensitive to small errors in the

coeflicients which may occur due to noise.

10.2 Discussion

It is easy to implement the ), criteria for autonomous choice of a good fixation point.

This criteria results in reliable choices for the fixation point even in real noisy images.
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For patches with relatively uniform brightness the A, is small which means that we
should avoid choosing the fixation point in such a patch. We will get larger and larger
\,’s as we choose patches with more features and brightness variations.

We have addressed the question of finding an appropriate fixation point (the center
of a fixation patch) among a number of given patches. But which patches should we
check in the first place? We can search the whole image for a globally optimum
location of a fixation point in the following steps:

e Step I: Divide the whole image into 4 quadrants and find the corresponding A,
for each quadrant.

e Step 2: Use the quadrant with the largest A; as a new base image.

e Step 3: Repeat steps 1 & 2 until reaching a quadrant with an acceptable size.

However, performing such a comprehensive search may not always be necessary.
Instead, we can check a limited number of neighboring patches (near the principal
point, for convenience) and choose the center of the one with the largest As as the

fixation point.
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Tracking without Moving the
Camera

Chapter 11

The fixation method requires a sequence of fixated (tracked) images as its input.
However, in general the acquired image sequences may not be fixated at any point
and even if they are it is not easy to find that fixation point.

Our fixation method does not depend on how the fixated images are obtained.
But along the course of this thesis work, we were confronted with the challenge of
constructing a sequence of fixated (tracked) images from an arbitrary image sequence.

This chapter describes the experimental results and the implementation issues in-

volved in constructing sequences of fixated images from several real images sequences.
11.1 Background

The task of constructing a sequence of fixated images is, in essence, the well known
tracking problem. People have been working on different aspects of this problem using
various techniques for many years [43, 22, 53]. For example, Aloimonos & Tsakiris
[5] propose a method for tracking a foveated target of known shape; Bandopadhay et
al. [10] use optical flow and feature correspondence for tracking the principal point
in order to find the motion in a special case (they assume that there is no rotation
along the optical axis) without considering noise; and Sandini & Tistarelli [52] use
an optical flow based tracking method for finding the depth in a special case (no

rotation along the optical axis). All these methods use optical flow and/or feature
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correspondence and address only special cases. There has also been some work on
using visual tracking for finding the trajectory of an object moving in an environment
[15, 90].

Traditionally, tracking has been associated with mechanically moving the camera
to keep the image of a particular point stationary at the image center. Some tech-
niques even rely on such a system. For example, Thompson [74] introduces an optical
flow method for recovering the motion in special case where the rotational velocity
along the optical axis is zero. His method requires a sequence of tracked images at the
principal point but he acknowledges that the actual implementation of such tracking
requirement in engineering systems is not possible yet.

Hardware tracking is done by physically moving the camera with respect to the
environment. Considering that in general the point of interest has a motion relative
to the observer, the 2nd fixated image cannot be obtained in one step. As a result,
feedback control loop is required for the camera rotation system to compensate for
the errors resulting from the new position of the fixation poiht [46, 20, 24, 37, 89,
19]. These difficulties and other problems such as expense, real time response, and
potential errors involved make mechanical tracking unattractive especially for our

vision system.

11.2 Pixel Shifting Process

Here, we use the pizel shifting process described in chapter 5 for constructing a se-
quence of fixed images from an arbitrary image sequence. This method solves the
tracking problem in its most challenging case. In other words, it does not require
any knowledge about the motion or shape. Furthermore, the fixation point is not
restricted to the principal point (image center) and virtually any point can be chosen
as the fixation point. The pizel shifting process is done purely in software without any

need to mechanically move the camera for tracking. It is computationally simple and
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uses neither optical flow nor feature correspondence. Instead, brightness gradients of

the initial input images are used directly.

11.2.1 Bilinear Interpolation

We showed that constructing a fixated image is the same as finding the brightness £
for any pixel (z,y) of such an image, (see chapter 5). We proved that the brightness
E at pixel (z,y) of the 2nd fixated image is the same as the brightness at the pixel
(z — Tu,y — Tw) of the 2nd initial image where the shifting vector (u, v) is given by
eqn. 5.4 and T is the time interval between two initial images.

In practice, the point (z — T,y — Tv) does not exactly coincide with any pixel.
Instead it is usually surrounded by four pixels whose brightnesses may be denoted by

E;;, Eij+1, Eiprj, and Eigy jia, fig. 11-1. In this figure, p and ¢ are the horizontal

Figure 11-1: The mapped point in the 2nd initial image does not usually coincide
with any single pixel. Instead it is usually surrounded by four pixels.
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and vertical distances of the mapped point from pixel (z,7). Considering that this

can happen for any pixel, the average 2(E; ; + E; j41+ Eiy1,; + Eit1,541) is not a good

estimation for E because it corrupts the constructed image by introducing aliasing.
Bilinear interpolation of the surrounding brightness levels has proven to be a very

good estimate for E which is given as,

E=(1-p)(1—qE:i; +p(1 —@)Eijs1+q(1 —p)Eir1,; + paEisr 01 (11.1)

As shown in fig. 11-1, p and ¢ represent the horizontal and vertical distance of the
mapped point from pixel (3,7). Such an algorithm gives the largest weight to the
pixel closest to the mapped point and results in the exact brightness value when it
coincides with any pixel, p = ¢ = 0.

All the constructed images in this work are obtained using bilinear interpolation.
Our experimental results have shown that such interpolation is quite satisfactory.
There are some other techniques such as bicubic interpolation [1, 13, 32, 49, 50] which
are much more expensive, however we did not find that we needed to use them in this

work.

11.3 Construction of Fixated Images

The landscape and cup image sequences in figures 7-1 and 7-4 are used as input
(initial) images in the following experiments. As we discussed earlier, the 1st initial
images (top images) in those figures are directly used as the Ist fixated images. Then
the pizel shifting process and the bilinear interpolation are applied to the 2nd initial
images (bottom images in figures 7-1 and 7-4) to construct the 2nd fixated images,
figures 11-2 and 11-3. These constructed images are quite good and look as natural
and crisp as the original images do. We will describe the quality of these images
further in the following sections.

Depending on the size and direction of the equivalent rotational velocity  (see
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Figure 11-2: The constructed, 2nd fizated, image for the landscape image sequence.

chapter 5), the brightness E at some border pixels are not computable because they
are mapped to points outside the initial images domain. The brightness at su‘ch
bordering pixels are given an arbitrary value of 0 which causes the appearance of
bold black lines at the border of constructed images. This should not concern us
because in general the results near the image borders are not considered reliable

anyway.

11.4 Spatial and Temporal Gradient Maps

The gradient maps are good measures for studying the quality and characteristics of
fixated image sequences. This section examines the gradient maps of two different

fixated image sequences that we have constructed from real image sequences.
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Figure 11-3: The constructed, 2nd fizated image, for the cup image sequence.

11.4.1 Landscape fixated image sequence

The combination of the 1st initial image (top image in fig. 7-1) and the 2nd fixated
image in fig. 11-2 form the landscape fixated image sequence. The corresponding spa-
tial gradient maps in fig. 11-4 show that these gradients contain valuable information.
The vertical and horizontal features of the initial images are indirectly represented in
the spatial gradients.

The temporal gradient map of the landscape fixated image sequence is shown in
fig. 11-5. This map contains very important information. First of all it clearly shows
the characteristic of a fixated image sequence. It is clear that both the horizontal
and vertical features of the image sequence become more obvious as their distance
from the fixation point location (image center in this case) increases. Secondly, the
appearance of the horizontal and vertical lines here provides hints about the existence
of a rotational component about the fixation axis. And finally the dominant vertical

lines are an indication that the equivalent rotational velocity has a major component
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about the vertical axis.

11.4.2 Cup fixated image sequence

The fixated cup image sequence consists of the top image in fig. 7-4 (as the Ist
fixated image) and the 2nd fixated image in fig. 11-3. Figure 11-6 shows the spatial
gradient maps for this image sequence. The horizontal gradient map (top) identifies
the vertical edge-like features and the vertical gradient map (bottom) detects the
horizontal edge-like features in the image. We should emphasize here that we neither
intended to find edges nor have we used those. However, it is important to observe
that spatial gradients (simple horizontal and vertical differences) of fixated images
indirectly capture important features of the images.

Figure 11-7 represents the temporal gradient map of the fixated cup image se-
quence. This map is dominated by vertical lines which indicate that the rotational
component about the fixation axis is negligible and the equivalent rotational veloc-
ity has only a component about the vertical axis. Furthermore these vertical lines
become more evident as their distance from the image center increase which is an

indication that the fixation point is located near the image center.

11.5 Summary

The experimental results in this chapter show that the pizel shifting process can be
easily used for constructing a sequence of images fixated at any arbitrary point. This
software based technique is computationally simple and does not require moving the
camera for tracking the desired fixation point.

The novel representation of the spatio-temporal gradients by their corresponding
maps showed that gradients not only preserve the image features but also capture the

motion in a unique way which reflects the characteristics of fixated image sequences.
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Figure 11-4: The spatial gradient maps of the fizated landscape image sequence in
x direction (top) and y direction (bottom).
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Figure 11-5: The temporal gradient map of the fizated landscape image sequence.
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Figure 11-6: The spatial gradient maps of the fizated cup image sequence in
z direction (top) and y direction (bottom)



11.5: Summary | , 105

Figure 11-7: The temporal gradient map for the fizated cup image sequence.
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Depth Map Recovery

Chapter 12

This chapter describes how depth maps are recovered from real image sequences.
It also describes implementation issues and the techniques used in the recovery of

depth maps.

12.1 Introduction

Earlier in chapter 3, we proved that ideally the depth at any point of a fixated image
is given by eqn. 3.35,

_ (st (12.1)
VHXI:TI t_ B — WR,V - R,

where R, is the unit vector along the fixation axis and s and v are the known vector
functions of pixel position (z,y) and spatial gradients (E,, E,) as given in equations
2.9 and 2.10.

The translational velocity t is obtained by finding the eigenvector corresponding
to the smallest eigenvalue of matrix M in eqn. 3.31. The optimal patch size found in
chapter 9 is used for the estimation of t.

All the computations in this chapter are performed using the data from the fixated

image sequences that we constructed in chapter 11.
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12.2 Detecting the Depth Flaws

It is well known that depth recovery from real images is not perfect because of noise
and other characteristics of real images. This section describes the techniques for
detecting pixels where depths are not acceptable.

Using the notations Num and Denom as,

Num = (s-t)(s-t) (12.2)
and )
Denom = ((V—ITRR_I]M ~FEi—wr, v fio) (s-t). (12.3)

equation 12.1 can be written as,

Num (12.4)

Denom’

Using this equation, we can compute depth Z at any single pixel in the image. How-
ever, the recovered depth is not always reliable. We call a depth Z unacceptable if it
satisfies any of the following cases.

e Case 1: Denom is negative.

This condition results in a negative depth which should not happen in our vision
system. This usually happens where the data is noisy.

e Case 2: Denom is zero.

This case results in an irrecoverable depth (Z = 2) or wrong depth (Z = 00).

It may occur due to many reasons such as zero translational velocity, in case the
pixel is in a patch with uniform brightness (zero gradients), or when the apparent
motion is in a direction perpendicular to the spatial gradients.

Figure 12-1 shows the depth flaw map for the fixated cup image sequence obtained
by using the above criteria for detecting the points with unacceptable depth. Any

black point in this map represents a pixel whose computed depth is not acceptable.
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It is quite obvious from this figure that if we compute the depth using only the data

Figure 12-1: The flaws in the depth map for the fixated cup image sequence. The
pixels with unacceptable depth are shown in black.

from a single pixel, then we will end up with considerable number of pixels where

depths are not acceptable.

12.3 Constructing a Primary Depth Map

Figure 12-2 shows the depth map where each depth value is computed using only the
data from its corresponding pixel. Using such a method leave us with many pixels of
unacceptable depths which are left blank (white) in this depth map.

This is a primary depth map and obviously is not very informative because depth
information is missing in many areas. In the next section the first effort is made for

estimating the depth at such points.
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Figure 12-2: The initial depth map for the fixated cup image sequence. The areas
close to the viewer are bright and the pixels whose depths are not acceptable are left
blank (white).

12.3.1 Filling in the Missing Depths

At any pixel where the depth information is missing (depth is unacceptable), we can
find a depth estimate by averaging the reliable depths at its surrounding pixels. The
notation r; is used for the radius of such a patch. This radius is defined in a way
that forms a square patch whose side has a length of (2 x ry + 1) pizels. Figure 12-3
shows the corresponding completed depth map. A maximum patch size of radius
r¢ = 6 pizels has been used for finding an estimate for the points where depths were
not known in the initial depth map, fig. 12-2. Although this primary depth map is not
perfect, it delivers very useful clues about the boundary of objects in the environment

(books, cup, and spoon).
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Figure 12-3: The completed depth map for the fixated cup image sequence with
r; = 6 pizels. The areas close to the viewer look brighter.

12.4 Improving the Depth Map

We can considerably improve the depth map by using the data from a surrounding
patch for computing the depth at any pixel point. We denote the radius of such patch
with 7,. Similar to 7y, the radius 7, is defined in a way to form a square patch whose
side has a length of (2 x r, + 1) przels.

Applying such a simple technique decreases the number of depth flaws and in-
creases the quality of depth map considerably. Figure 12-4 shows the results when a
patch of 1 pizel in radius is used for depth computation at any pixel (r, = 1 pizel).
Although the depth flaws (in the top of the fig. 12-4) have not disappeared, they have
shrunk noticeably when compared to the previous case.

The initial depth map is shown in the middle of fig. 12-4 where the pixels with
unreliable depth estimates are left blank (white). The completed depth map is given
at the bottom of fig. 12-4 where a patch of maximum 9 pizels in radius (r; = 9 pizels)

is used for finding depth estimates at points where depths were not known in the initial
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depth map. The shape of the objects in the image have started to become identifiable
in this completed depth map.

12.5 Even Better Depth Maps

The depth maps can be further improved by using larger patches for depth estimation
at any single pixel. Figures 12-5 through 12-7 show the depth flaw, initial depth, and
completed depth maps for cases with patch sizes of radius r, = 2, 3, & 4 pizels. The
maximum radial patch size for completing the depth map have been ry = 11, 15,,
and 17 pizels respectively. These maps show that the environment objects (books,
spoon, cup, and even the background poster) become more identifiable and smoother.

The experimental results show that if a relatively large initial patch size r, is used

then depth map may loose some of its fine details.

12.6 Subsampling the Fixated Images

In this section, we have subsampled each of the fixated images by a factor of 2 before
using them for depth recovery. This is done by substituting a patch of 2x2 neighboring
pixels with a new pixel whose brightness is an average of 4 initial pixels. This is the
smallest symmetric subsampling which can be done on an image. We expect to gain
a better depth map because subsampling usually leads to a decrease in noise.

The depth flaw (top), initial depth (middle), and complete depth (bottom) maps
for the subsampled image sequence with 7, = 0 are shown in fig. 12-8. These maps
indicate that some improvements are made by subsampling. This becomes clear if
we notice that in the depth flaw map (top of fig. 12-8) there are less regions with
unacceptable depths than in the corresponding depth map obtained from images
which were not subsampled (fig. 12-1). The initial depth map (middle) is not very
informative here. As before, the pixels with unacceptable depths are left blank (white)

in the initial depth map. A patch of maximum 4 pizels in radius (r; = 4 pizels) is
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used for completing the initial depth map. Even this completed depth map (bottom
of fig. 12-8) offers only a very vague intuition about the boundaries of the objects in
the image.

In the next step, we have used a patch of 1 pizel in radius (r, = 1) for the depth
estimation at any single pixel. The results are shown in fig. 12-9. As expected, the
depth flaws have not fully disappeared (top). These points are left blank (white) in
the initial depth map (middle). For obtaining the complete depth map (bottom), a
patch of maximum 6 pizels in radius (r; = 6) is used in this case. Considering the
subsampling size of 2 x 2 pizels, these results are located somewhere between the
results of nonsampled images with r, = 2, and r, = 3 (figures 12-5, and 12-6).

Figure 12-10 shows the results for the subsampled images for the case with r, =
2 pizels, and ry = 9 prxels.

A careful observation shows that there are not many differences between sampled
and nonsampled results from the point of view of identifying different objects in the
environment. However, the depth maps of subsampled images have much better
quality and are relatively free from the systematic noise. This is quite clear if we
notice that the vertical black lines between the books which were seen in previous
depth maps are absent here. These lines represent narrow but deep vertical gaps
between the books which did not actually exist in the environment.

Furthermore, due to the printer grey level limitation, quality depth maps cannot
be printed out. The computed depth maps are much better than what are shown here.
For example each book has its relatively uniform depth which clearly distinguishes it

from its neighboring books when there is a depth change in the real environment.

12.7 Summary

This chapter combined the individual results that we had obtained in previous chap-

ters and used them in the recovery of depth maps. The recovered depth maps are
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quite good considering that the input to the system was only two unrestricted frames.
These images were real and noisy. Furthermore, the motion was not known in ad-
vance, and the recovered motion was used in the computations. It is also important
to notice that simple computations have been involved in all the steps.

The experimental results show that by subsampling the initial images, much better
depth maps are obtained. This is due to the fact that subsampling acts as a low pass
filter and eliminates the high frequency noise which is inherent in real images.

An overall study of the experimental results in this chapter shows that depth maps
obtained by using an r, = 2 or 3 pixels seem to be a good choice. This is probably
because of the fact that a mask of 2 x 2 pixels is used for the computation of gradients.
As a result, using smaller r, will not give a good depth map. On the other hand,
using larger r,’s may result in the elimination of some fine details of the depth map
and does not improve the overall quality of the depth map.

It should also be pointed out that we do not have any control over choosing 7.
The algorithm automatically chooses an r; large enough to include pixels with reliable
depths in order to find estimates for depths at pixels where depths were missing in
the initial depth map.

All the results in this chapter were constructed by using a single r; for obtaining
depth estimate at any pixel point with an unacceptable depth value. An adaptive
approach which chooses r, appropriately at any desired pixel point will result in

smother depth maps.
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Figure 12-4: The depth flaw (top), initial depth (middle), and completed depth (bot-
tom) maps for the fixated cup image sequence with r, = 1 pizel, and ry =9 pizels.
The areas close to the viewer look brighter.
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Figure 12-5: The depth flaw (top), initial depth (middle), and completed depth (bot-
tom) maps for the fixated cup image sequence with r, = 2 pizels, and r; = 11 pizels.
The areas close to the viewer are shown brighter.
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Figure 12-6: The depth flaw (top), initial depth (middle), and completed depth (bot-
tom) maps for the fixated cup image sequence with r, = 3 pizels, and ry = 15 prrels.
The areas close to the viewer look brighter.
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Figure 12-7: The depth flaw (top), initial depth (middle), and completed depth (bot-
tom) maps for the fixated cup image sequence with r, = 4 pizels, and r; = 17 pizels.
The areas close to the viewer look brighter.
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Figure 12-8: The depth flaw (top), initial depth (middle), and completed depth (bot-

tom) maps for the subsampled (by 2) fixated cup image sequence with r, = 0, and
r; =4 pizels. The areas close to the viewer look brighter.
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Figure 12-9: The depth flaw (top), initial depth (middle), and completed depth (bot-
tom) maps for the subsampled (by 2) fixated cup image sequence with r, = 1, and
rs =6 pirels. The areas close to the viewer look brighter.
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Figure 12-10: The depth flaw (top), initial depth (middle), and completed depth
(bottom) maps for the subsampled (by 2) fixated cup image sequence with r, = 2,
and r; = 9 pizels. The areas close to the viewer look brighter.






Calibration Issues

Chapter 13

Camera calibration is an important area of research involving the study of tech-
niques for obtaining reliable estimates for the required internal and external param-
eters of a camera in a vision system.

For many years, computer vision scientists have been working on different aspects
of camera calibration problems such as focal length (principal distance) [77, 86, 87],
principal point (image center) {33, 86], scale factor (difference between the scanning
frequency of the camera sensor plane and the scanning frequency of the image cap-
turing board frame buffer) [33, 47], intrinsic parameters (camera internal geomet-
ric and optical characteristics) [77], extrinsic parameters (the 3D position and ori-
entation of the camera coordinate relative to a certain world coordinate system)
[77, 85, 87, 18, 16, 86], and the hand-eye transform system (the 3D position and ori-
entation of a camera relative to the last joint of a robot manipulator in an eye-on-hand
configuration) [78, 79, 12].

In the previous chapters we saw that some parameters such as focal length and
principal point have important role in the formulations. Manufacturers usually give
a nominal value for the focal length but this nominal value is not always sufficiently
accurate to be used in the computations. Some other important parameters such as
the true principal point are not given at all...

In this chapter, some of the calibration techniques used in this work will be de-

scribed.
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13.1 Principal Point Calibration

The principal point is where the optical axis intersects the image plane; see fig. 2-1.
Ideally, the principal point is located at the center of the image plane. However, in
off-the-shelf cameras the principal point is not necessarily located at the center of the
image plane. Finding the true location of the principal point is important because
those values appear in our algorithms.

For the cup images the nominal image center was used as the principal point
because the camera was not accessible to be calibrated. On the other hand, in the
case of the landscape images the true principal point was obtained using a direct
optical method [33].

The experimental results showed that the true principal point was considerably
off from the nominal image center. It was located at about 13 pixels to the left and

13 pixels below the nominal image center.

13.1.1 Direct optical method

The direct optical method is a very simple and accurate calibration technique for
finding the principal point. This method requires only a laser. The lens assembly is
used as a reflecting surface and therefore, the lens can remain mounted on the camera.

When a laser beam is pointed at a lens assembly, part of the light is reflected
when the beam enters the glass and also when it leaves it. Multiple reflections occur
when the beam is reflected within the lens and can be observed on a piece of paper
attached to the front of the laser with a small hole for the primary beam. With some
experimental skill the laser can be adjusted relative to the lens so that all reflections
coincide with the primary beam, indicating that it is aligned with the optical axis.
Once aligned, an attenuation filter is placed in the optical path, the camera is turned
on and the center of the light spot observed can be used as the image center.

This method is commonly used in experimental optics to align lens assemblies and
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gives reproducible results. If the lens is removed, the reflection from the surface of
the image sensor will also give an indication of its perpendicularity with respect to
the optical axis. When a low power laser (< 10mW) is used, no harm is done to a
discrete array camera sensor (CCD). However, vidicon tubes might be damaged by

burning in.

13.2 Calibration of the Rotation Axis

In the landscape experiments, we did not explicitly apply any vertical translation
(along Y axis). However, fig. 8-2 show a considerable vertical translation of about
—0.9 mm. This is mainly because the real rotation axis does not pass through the
center of projection’. |

To clarify this, we should mention that in motion vision, it is assumed that the
rotation axis passes through the origin of the viewer centered coordinate system, i.e
the center of projection. But at the CMU Imaging Laboratory, the rotation mechanism
was not set up to align the Z axis of rotation with the optical axis. The CMU vision
system was equipped with several cameras and evidently the camera used for taking
the landscape images was set off center. However, for obtaining the experimental
results, we have employed algorithms which erroneously assume that the rotation
axis passes through the center of projection.

According to the basic kinematics, the compensating translation which results

from shifting the rotation axis is given by
V,=-wxB (13.1)

where B is a vector extending from a point on the real (desired) rotation axis to a point

1]f the CCD edges are not accurately aligned with the horizontal and vertical axes of the camera
frame, i.e. the CCD is mounted at an angle with respect to the camera coordinate system, such
kind of errors happen in both vertical and horizontal directions. But it is not the case here because
the inaccuracy of motion estimation has occurred only in the vertical direction.
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on the assumed rotation axis; see fig. 13-1. In our experiment, V, = —(w%) x (bZ)

vk

Real rotation axis

Assumed rotation axis

Figure 13-1: In motion vision the assumption is that the rotation axis passes through
the center of projection (origin). In the landscape image sequence, the true rotation
is parallel to the optical axis but does not pass trough the origin. This will result in
a translation which should be compensated for.

where V, = —0.99 mm, and w = —0.3 degree. As a result, the real rotation axis was
located at about b= —(—0.9)/((=0.3 x 7)/180) = —172 mm perpendicular distance

from the optical axis in the horizontal plane.

13.2.1 Generalization

A similar method can be used for the calibration of the rotation axis which is parallel
to the optical axis in a camera system arrangement in the general case.

In order to find the real location of the rotation axis, the following steps should
be taken:

e Step I: Apply a pure rotation about the axis which is supposed to be the optical
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axis.

e Step 2: If rotation wgr, is not accurately known, compute it by applying eqn. 4.4
to a relatively large patch around the principal point.

e Step 3 Estimate the apparent motion (u.,v,) at the principal point using the
eqn. 8.4 or 4.4.

e Step 4: The real location of the rotation axis is given by,

by = —pl
*“Ro (13.2)
by = +ZowRD

where Z, is depth at the principal point, and f is the focal length of the camera.
Point (b,, b,) represents the location where the real rotation axis (which is parallel

to the optical axis) intersects the image plane.

13.3 Summary

Focal length, principal point, and the rotation axzis position are the three most impor-
tant factors which can effect the computations in our motion vision algorithms.

The experimental results show that we may be able to get away with using the
nominal focal length as the focal length, and using the image center as the principal
point. However, we have to calibrate the system for finding the real rotation axis and
compensate for the resultant translation if the rotation axis does not pass through
the projection center. The calibration technique introduced in this chapter offers an

easy and reliable solution to this important problem.
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Conclusions

Chapter 14

This thesis introduced a general motion vision system which takes any sequence
of images as its input and recovers the motion and shape without any need to check,
choose, and adjust parameters. A complete implementation of this motion vision
system has been tested on real images and the critical issues involved in the its
autonomous implementation have been studied. This chapter makes some concluding

remarks about this fixation based motion vision system.

14.1 Features

e In contrast to previous work done in the area of motion vision, our solutions are
general and do not impose any severe restrictions on the motion or the structure of
the environment.

e The fixation method uses neither optical flow nor feature correspondence. In-
stead, it directly employs the image brightness gradients.

e Our motion vision system neither requires tracked images as input nor uses
hardware tracking for obtaining fixated images. Instead, it introduces a pizel shifting
process for constructing fixated image sequences at any arbitrary fixation point. This
process is done entirely in software without moving the camera for tracking.

e The fixation method does not restrict the fixation point and virtually any point
can be chosen as the fixation point.

e The algorithms and formulations presented in the fixation method are simple
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and have been successfully implemented on real images.

14.2 Results

¢ Good estimations for motion parameters can be obtained using optimum patch sizes
(see chapter 8).

e The novel introduction and use of normalized error has enabled us to find opti-
mum patch sizes which result in good estimates for motion parameters. This technique
has been implemented on many real image sequences (see chapter 9).

e The novel pizel shifting process for constructing fixated (tracked) images has
been successfully tested on several real image sequences (see chapter 11).

e The experimental results in chapter 12 show that good depth maps can be
obtained using only two monocular real images. If we use the data from a single pixel
for recovering the corresponding depth, the reliable depth map will be sparse. Using
the information from several pixels in a surrounding patch for finding the depth at
its central point results in a relatively dense map of reliable depths. We can obtain
even better results by subsampling the initial images. Subsampling acts as a low pass
filter and overcomes some of inherent high frequency noise in real images.

e We may get away with using the nominal focal length and principal point in the
fixation formulations, but we have to make sure to calibrate the imaging system for
the real rotation axis. The method described in chapter 13 offers a simple solution to
this important practical problem which can result in considerable motion estimation
errors if it is not detected and compensated for.

e The implementations were done on a Sun SPARCstation IPX using C codes.
Despite not using either parallel or optimized programs, the actual run-time for find-
ing the motion parameters and the depth map for an image of 227 x 280 pizels was

about a fraction of second and a few seconds respectively.
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14.3 Assumptions

e In the process of solving the general motion vision problem and writing the eqn. 3.27,
we assumed that motion parameters can be obtained using a small patch around
the fixation point. This is a pure geometric assumption and does not place any
restrictions on the depth topology. Numerous experimental results in chapter 9 show
that optimum patch sizes are small enough to justify our assumption.

e This work assumes- that there is one rigid motion between the environment
and the observer. However, small deviations from rigidity is tolerated by the system
because it is treated as noise and the least squares methods finds the best solution

which fits the whole data.

14.4 Shortcomings

e The fixation method fails if the fixation point is located at the center of a uniform
brightness patch because in such a case, motion will be undetectable. However, we
have presented a mechanism for preventing this from happening by introducing an
autonomous technique which chooses an appropriate location for the fixation point

(see chapter 10).

14.5 Relation to Other Works

e As oppose to other work done in area of direct methods, our fixation technique
estimates both the motion and shape for the general case [69, 60].

e In recent years, many Kalman filter based techniques have tried to improve the
depth estimations over time by using more than two frames [38, 39, 40, 56, 57, 58, 59,
25]. These techniques not only need to know. the motion in advance but also require
a good initial guess for the depth map in order to converge to a solution. Despite

these major advantages of Kalman filter methods, the depth maps recovered by our
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fixation method are far more superior compared to those obtained by the Kalman
filtering methods even after several iterations {26, 27].

e Recently, Tomasi and Kanade [76, 75] introduced a feature based technique for
recovering the motion and shape from a sequence of images. Their method is different
from our work in the following sense:

- It assumes orthographic projection which handicaps the system when dealing
with close by objects.

- It uses feature correspondence.

- It requires choosing and tracking many feature points.

- Depth is obtained only at the feature points.

- It is computationally very expensive.

14.6 Future Extensions

¢ The motion estimates obtained from fization method are quite satisfactory. However,
the depth maps may be improved by using more than two image frames in a Kalman
filter based system as follows:

- Converting the input images to a sequence of fixated images at a desired fixation
point using the pizel shifting process.

- Obtaining the motion estimates from the fixation method if it is not known.

- Using the depth map estimates from the fixation method as the initial guess for
the Kalman filter system.

Employing such a hybrid system can potentially improve the depth map and
accelerate the convergence rate of the Kalman filter.

e The algorithms and formulations in the fixation method are very well suited
to parallel implementation. Such an approach overwhelmingly improves the system
performance because most of the operations are simple additions and subtractions

which are done independently but all over the image.
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Derivation of Brightness Change
Constraint Equation

Appendix A

The brightness change constraint equation (BCCE) relates the change in the image
brightness at a point (z,y) to the apparent velocity (u,v) of the brightness pattern
at that point in the image. This appendix describes in detail the steps involved in
the derivation of the BCCE (30, 54, 29].

Let E(x,y,t) denote the image brightness at time ¢ at the image point (z,y).
Then, if u(z,y) and v(z,y) are the z and y components of the apparent velocity at
the point, we expect that the brightness will be the same at time ¢ + 0t at the point
(z + éz,y + dy), where 6z = uét and by = vét. In other words,

E(z,y,t) = E(z + uét,y + vét,t + 6t) (A.1)

for small time interval 6t. The underlying assumption in writing the eqn. A.1 is slow
spatio-temporal variations in lighting which is true for many practical applications.
If brightness varies smoothly with z, y, and ¢, we can expand the right hand side

of the above equation in a Taylor series to obtain

oF 0E oE
E(z,y,t) = E(:v,y,t)+5:c%+6ya—y +5ta+6 (A.2)

where ¢ includes second- and higher-order terms in §z, 8y, and ét. Canceling F(z,y,1),
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dividing through by é¢, and taking the limit as §t — 0, we obtain

deQE  dydE  OE

dz0E  dydE  OF _ A3
Gor T woy T Y (A-3)

which is actually just the expansion of the total derivative of E with respect to time

into its partial derivatives, in other words

dE
— =0. A4
7 (A.4)
Using the abbreviations
ry = do
dt (A.5)
dy
Yo = %
and
F = 2
_ 3E
E, = & (A.6)
oK
Et = “5
equation A.3 can be written as
Et + .'13th + ytEy =0. (A?)

The above equation is called the brightness change constraint equation because it
expresses a constraint on the components x; and y; of the apparent velocity at a point
(z,y) in the image.

In appendix B, we will show how the derivatives E,, E,, and E, are estimated at

any image point.



Computation of Brightness
Gradients

Appendix B

The spatial and temporal derivatives of the image brightnesses are the basic data
blocks in the direct methods. This appendix describes the formulations behind the
estimation of the brightness gradients in images [30, 29].

The spatial brightness gradients E,, E,, and temporal brightness gradient F; are
computed simply by using the first differences of image brightness values on a cubic
grid; see fig. B-1.

Using the indices ¢, 7, and k to represent z, y, and time t respectively, the estimates

of spatial gradients E, and E, are give by:

1
E, ~ Zé?;((Ei+l,j,k + Eiv1641 + Eiv1j416 + Eigaj41,k41)
—~(Eijk+ Eijrs1 + Eijr 6+ Eiji1k41))s (B.1)
and
1
E, ~ Z(‘S;((Ei,j+l,k + Eijy1h41 + Eig1j416 + Ei+1,j+1,lc+1)
—(Eijk + Eijksr + Eiz1k + Ei1,k41)), (B.2)
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Figure B-1: The first brightness derivatives required in the direct methods can be
estimated using first differences in a 2 x 2 x 2 cube of brightness values. The estimates
apply to the point where four neighboring pixels in an image meet, and at a time
halfway between two successive images.

and the temporal gradient E; is

1

Ey = m((Ei,j,kﬂ + Eijr1p41 + Bk + Eigajike1)

—(Eijk + Eijire + Biprjn + Eigri416))- (B.3)

These formulations give the brightness gradients at a point lying between four neigh-
boring pixels, and between successive images.

Considering the fact that we perform spatial tessellation by using pixels and tem-
poral tessellation by employing individual time varying frames, the above algorithms

compensate for part of the tessellation errors involved in discrete digitized images.



Depth at Fixation Point

Appendix C

The results in chapter 3 show that after obtaining the translation t, we need to find

Z, (depth at the fixation point) in order to estimate a depth Z at any point (z,y) in

the image plane. This appendix introduces an algorithm for finding the depth Z,.
At the fixation point, eqn. 3.26 is exactly expanded to

1 1

Et+wR°vo-ﬁo+(—Z——7)(so-t) =0 (C.1)

which is similar to eqn. 3.27. Theoretically, all terms of the eqn. C.1 vanish because
E, is zero at the fixation point, and v-r = 0 applies to all points including the fixation
point which means v, - R, = ﬁ,o—r“*l = 0. As a result, we cannot directly obtain the
depth Z, from eqn. 3.26. However, at any point ¢ around the fixation point, depth

Z,; can be obtained from eqn. 3.26 as

1 Vi X Ty
Zoi = —EZ ( Si) - 1. (CQ)

aLLN
[l

By averaging N of such neighboring depths, we can estimate the depth Z, as

1 =N ( Vi X o — |Iro]|?si )
Zy=——t- > C.3
Nlro ||~ £ Eylro]l + wr, (Vi To) (€3)

=1

where s;, v;, and E;; are computed for N points around the fixation point. In eqn. C.2,

it is assumed that Z,; &~ Z, which is valid considering the averaging in eqn. C.3.
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