
Using Recurrent Networks for Dimensionality Reduction

by

Michael J. Jones

Submitted to the

Department of Electrical Engineering and Computer Science

in partial ful�llment of the requirements

for the degree of

MASTER OF SCIENCE

in Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 1992

c
Massachussetts Institute of Technology 1992

All rights reserved

1

Using Recurrent Networks for Dimensionality Reduction

by

Michael J. Jones

Submitted to the Department of Electrical Engineering and Computer Science

on August 14, 1992 in partial ful�llment of the requirements

for the Degree of Master of Science in Computer Science

ABSTRACT

This thesis explores how recurrent neural networks can be exploited for learning

certain high-dimensional mappings. Recurrent networks are shown to be as powerful

as Turing machines in terms of the class of functions they can compute. Given this

computational power, a natural question to ask is how recurrent networks can be used

to simplify the problem of learning from examples. Some researchers have proposed

using recurrent networks for learning �xed point mappings that can also be learned

on a feedforward network even though learning algorithms for recurrent networks

are more complex. An important question is whether recurrent networks provide

an advantage over feedforward networks for such learning tasks. The main problem

with learning high-dimensional functions is the curse of dimensionality which roughly

states that the number of examples needed to learn a function increases exponentially

with input dimension. Reducing the dimensionality of the function being learned is

therefore extremely advantageous. This thesis proposes a way of avoiding the curse of

dimensionality for some problems by using a recurrent network to decompose a high-

dimensional function into many lower dimensional functions connected in a feedback

loop and then iterating to approximate the high-dimensional function. This idea is

then tested on learning a simple image segmentation algorithm given examples of

segmented and unsegmented images.

Thesis Supervisor: Professor Tomaso Poggio

Title: Uncas and Helen Whitaker Professor, Dept. of Brain and Cognitive Sciences

2

ACKNOWLEDGEMENTS

I would like to thank my advisor, Tommy Poggio, for his encouragement and direction

while working on this thesis. His energy and enthusiasm kept my research moving

forward.

I would also like to thank Federico Girosi, John Harris, Jim Hutchinson and Charles

Isbell for helpful discussions during the course of this work.

Finally, thanks to my parents for their support throughout the years.

This report describes research done at the Arti�cial Intelligence Laboratory of the

Massachusetts Institute of Technology. This research is sponsored by a grant from the

Arti�cial Intelligence Center of Hughes Aircraft Corporation (LJ90-074) and by O�ce

of Naval Research contract N00014{89{J{3139 under the DARPA Arti�cial Neural

Network Technology Program. Support for the A.I. Laboratory's arti�cial intelligence

research is provided by the Advanced Research Projects Agency of the Department

of Defense under Army contract DACA76{85{C{0010, and in part by ONR contract

N00014{91{J{4038. The author was sponsored by a graduate fellowship from the

National Science Foundation.

3

Contents

1 Introduction 6

2 Learning and neural networks 8

2.1 Sigmoidal networks : 8

2.2 Radial Basis Function networks : 10

2.3 Curse of dimensionality : 11

2.4 Recurrent networks : 12

2.5 Avoiding the curse of dimensionality : : : : : : : : : : : : : : : : : : 13

3 Related work 16

3.1 Hop�eld networks : 16

3.2 Recurrent backpropagation : 18

3.3 Learning �nite state machines : 20

3.4 Cellular automata : 22

4 Computational power of recurrent networks 24

4.1 Formal de�nition of a recurrent network : : : : : : : : : : : : : : : : 24

4.2 Formal de�nition of a Turing machine : : : : : : : : : : : : : : : : : : 25

4.3 Simulation of a Turing machine by a recurrent network : : : : : : : : 26

5 Using recurrent networks for dimensionality reduction 29

5.1 The curse of dimensionality : 29

5.2 Image segmentation example : 30

5.3 A recurrent network architecture for function decomposition : : : : : 31

4

6 Learning algorithms for recurrent networks 34

6.1 Recurrent gradient descent : 34

6.2 Random step algorithm : 37

6.3 Setting the initial parameters : 38

7 Example: Image segmentation 40

7.1 Hurlbert's image segmentation algorithm : : : : : : : : : : : : : : : : 40

7.2 Learning one-dimensional segmentation : : : : : : : : : : : : : : : : : 42

7.3 Learning two-dimensional segmentation : : : : : : : : : : : : : : : : : 49

7.4 Learning image segmentation on a feedforward network : : : : : : : : 56

7.5 The e�ect of smoothness on learning with recurrent networks : : : : : 57

7.6 Discussion of learning with recurrent networks : : : : : : : : : : : : : 59

8 Conclusion 61

5

Chapter 1

Introduction

Neural networks can be viewed as a framework for learning. In this framework,

learning is a process of associating inputs to outputs. This abstract notion of learning

can be made more concrete with a simple example. A child learning to catch a

ball must use the visual inputs he is getting of the ball traveling toward him and

learn to instruct his arms and hands to move to intercept and grasp the ball. In

this case the inputs are visual images and the outputs are motor instructions, and

the child must learn to produce the correct motor outputs for the visual inputs he

receives. It is also desired that the learning process generalize to handle inputs that

are not exactly like the ones already experienced. Under this view, learning is a

matter of function approximation - �nding a function that maps a given set of inputs

to their corresponding outputs. Neural networks then are simply a technique for

doing function approximation. A neural network (or simply a network) is a function

containing parameters that can be adjusted in order to map inputs that are presented

to the network to the desired outputs. The process by which the parameters are

adjusted is called the learning procedure. The task for the network is to approximate

the function that is partially de�ned by the input-output examples. Accepting this

view of learning allows one to draw on the rich �eld of approximation theory. This is

the viewpoint that will be adopted in this thesis.

There are two main classes of networks, feedforward networks and recurrent net-

works. Both types will be described in the next chapter. The main focus of this thesis

is investigating recurrent networks for function approximation. Recurrent networks

6

are more powerful than their feedforward counterparts, but the learning procedures

for recurrent networks are more complex and more di�cult to use. The use of recur-

rent networks has been proposed for problems that can also be solved by feedforward

networks ([Pin87]), but there do not seem to be any good arguments for why a re-

current network should be used over a feedforward network. This thesis explores this

question and presents an idea for taking advantage of the power of recurrent networks

for learning certain high-dimensional mappings.

The rest of this thesis is organized as follows. Chapter 2 describes feedforward

networks and recurrent networks in detail. The main idea of this research of us-

ing recurrent networks to learn high-dimensional mappings is then presented brie
y.

Chapter 3 discusses related work and tries to show where this research �ts within

the greater body of work. Chapter 4 presents the theoretical aspects of recurrent

networks and shows that they are equivalent to Turing machines in computational

expressiveness. Chapter 5 goes into detail about using recurrent networks over feed-

forward networks for learning some high-dimensional mappings. Chapter 6 describes

two di�erent learning algorithms for training recurrent networks. Chapter 7 presents

experiments on using a recurrent network to learn a simple image segmentation algo-

rithm. Lastly, chapter 8 concludes with some �nal thoughts on learning with recurrent

networks.

7

Chapter 2

Learning and neural networks

2.1 Sigmoidal networks

There are various di�erent types of neural networks. The di�erences mainly lie in

the type of function used at each unit of the network and where the adjustable pa-

rameters are. The most common type of network used by researchers is the sigmoidal

network or multilayer perceptron. An example of a sigmoidal network is shown in �g-

ure 2.1. It consists of a number of layers each containing many computational units.

Each unit contains a sigmoidal function such as the logistic function (�(x) = 1
1+e�x

).

The units from a lower layer are connected to units in the next higher layer. The

connections among units contain weights that determine how one unit a�ects another.

The output of a unit is computed by applying the sigmoidal function to a weighted

sum of its inputs. To formalize this, let xi denote the output of unit i and let cij be

the weight on the connection from unit i to unit j. If units i and j are not connected

then cij = 0. The output of unit j can then be written as

xj = �(
X
i

cijxi): (2:1)

The topmost units whose outputs do not connect to any other units are called output

units. The bottommost units which do not have any units feeding into them are

called input units. All other units are known as hidden units. An input vector is

presented to the network by initializing each input unit to some value. Each unit

then computes its output after all of the units feeding into it have computed their

outputs. The output of the network is the vector of outputs from the output units.

8

Hidden
Units

Outputs

Inputs

Figure 2.1: Typical sigmoidal network

An important property of sigmoidal networks is that any continuous function can

be uniformly approximated arbitrarily well on a �nite, compact set by a network with

a single hidden layer containing a �nite number of units ([Cyb89]). This property

guarantees that most functions can be represented accurately by a sigmoidal network,

but it does not say anything about how to �nd a good representation. The problem

of �nding a good representation for the function being learned is the task of the

learning algorithm. The most commonly used learning algorithm is backpropagation

([RHW86]). Backpropagation, as well as many other learning algorithms, attempts

to minimize an error function that expresses the distance between the training output

examples and the actual outputs of the network. The error function can be thought of

as a surface in parameter space. Backpropagation follows the negative gradient of this

surface in order to �nd parameters that minimize the error. The problem with this

approach is that the algorithm can get stuck in local minima. Various solutions to the

problem of local minima have been used with varying degrees of success ([KGV83]).

9

∑ ∑ ∑

G G G G GCenters

Outputs

Inputs

Figure 2.2: Typical radial basis function network with activation function G

2.2 Radial Basis Function networks

Another type of network that has been studied is the radial basis function (RBF)

network ([BL88], [PG89], [PG90b]). This three layer network consists of a layer

of input units, a layer of radial basis function units and a layer of output units.

Each radial basis function unit has a vector of parameters, ~ti, called a center. The

connection from RBF unit i to output unit j is weighted by the coe�cient cij . The

value of output unit j is given by

yj =
nX
i=1

cijG(k~x� ~tik2); (2:2)

where G is a radial basis function and k~xk represents the L2 norm of ~x. Figure 2.2

illustrates a typical RBF network. Examples of radial basis functions include the

gaussian, G(x) = e��x
2

, and the multiquadric, G(x) =
p

2 + x2.

The number of RBF units is equal to the number of training examples with each

center ~ti being equal to one of the input vectors in the training set. This means that

the only parameters in the RBF network that must be learned are the coe�cients cij.

Finding the coe�cients is a simple linear problem which can be solved by a matrix

inversion ([BL88]).

10

RBF networks can be generalized by allowing fewer centers than training exam-

ples. This scheme was named Generalized Radial Basis Functions or GRBFs for short

by Poggio and Girosi ([PG89]). The centers can either be �xed or adjustable during

learning. If the centers are �xed to some initial values then an overconstrained system

of linear equations for the coe�cients arises and an exact mapping from input vectors

to output vector cannot be found. However, a mapping with the smallest possible L2

error on the training examples can be found by using the pseudo-inverse ([BL88]).

GRBF networks can be further generalized by adding another set of weights to the

connections from input units to RBF units. The resulting scheme is called HyperBF

networks by Poggio and Girosi ([PG90a]). It corresponds to using a weighted norm

k~x� ~tik2W = (~x� ~ti)
TW TW (~x � ~ti) in place of the L2 norm. Here, W is the matrix

of weights.

Radial basis function networks can be derived from a technique known as reg-

ularization theory for changing an ill-posed problem (such as learning a function

from input-output examples) into a well-posed problem by imposing smoothness con-

straints. For details on regularization theory and its relation to RBF networks, see

[PG89]. Like sigmoidal networks, RBF networks can also approximate any continu-

ous function arbitrarily well on a �nite, compact set. In fact, radial basis functions

are equivalent to generalized splines which are a powerful approximation scheme.

2.3 Curse of dimensionality

Sigmoidal networks and radial basis function networks are known to be able to ap-

proximate any smooth function well, but this is not the end of the story. The question

of how many input-output examples are required to achieve a given degree of accu-

racy has not been addressed. This problem has been studied and some results are

known. In [Sto82], it was shown that in general, the number of examples required

to achieve a particular approximation accuracy grows exponentially with the input

dimension of the function being approximated, although this e�ect is mitigated by the

smoothness of the function. This presents a major problem in approximating high-

dimensional functions. Often the number of examples required can be unreasonably

11

Centers

Outputs

Inputs

Figure 2.3: Example of a recurrent network

large so that not enough data is available to approximate the function well. Also, the

learning procedure often runs in a time dependent on the number of examples which

can become impractically long with too many examples. This is a central problem in

approximation theory and is known as the curse of dimensionality.

Although the curse of dimensionality is a fundamental problem in approximation

theory, there may be methods of avoiding it in practice. It will be shown that recurrent

networks may be used to overcome the curse of dimensionality for some problems.

Before this idea is presented, recurrent networks in general will be discussed.

2.4 Recurrent networks

The networks discussed so far have been feedforward networks. These networks

are called feedforward because each layer is only connected to the following layer

and there are no loops in the connections. Computing the output of a feedforward

network only requires each unit to calculate its output once. When connections are

added from higher layers in a network to lower ones, a recurrent network results.

An example of a recurrent network is shown in �gure 2.3. In a recurrent network,

each unit calculates its output whenever its inputs change. Hence, the feedback

connections introduce iteration to the network. A recurrent network that is given

12

an initial input and then allowed to iterate continuously can exhibit a number of

behaviors. The simplest case is that it can converge to a �xed point, which means

that after enough iterations the output of each unit in the network will stop changing.

Another possibility is that the network may get into a limit cycle. This means that

the outputs of the units go through a repeating pattern. A recurrent network can

also become chaotic, meaning that its outputs never get into a pattern. This thesis is

concerned with the case in which the network converges to a �xed point. A number

of researchers have presented algorithms for teaching recurrent networks to converge

to a desired �xed point given an input pattern. An interesting observation is that

this task is the same as that for which a feedforward network is used. Very little has

been o�ered in the way of motivation for using recurrent networks over feedforward

networks. The obvious question in this case is whether recurrent networks a�ord an

advantage over feedforward networks for this type of problem. Although there have

been some examples of recurrent networks outperforming feedforward ones on the

same task ([QS88] and [BGHS91]), very little has been published on this subject.

This thesis explores an idea of how the iteration inherent in recurrent networks may

be taken advantage of for learning �xed points, thus providing some motivation for

using a recurrent network over a feedforward network in some cases. This idea will

be presented brie
y here and then discussed in greater detail later.

2.5 Avoiding the curse of dimensionality

We would like to take advantage of the power gained from iteration in recurrent

networks in order to improve the ability to approximate functions in recurrent net-

works as compared to feedforward networks. Since the major problem in approxima-

tion theory is the curse of dimensionality, then a method that uses the characteristics

of a recurrent network to reduce the dimensionality of the function being learned

would demonstrate a clear advantage to using recurrent networks over feedforward

networks. It is in fact possible to use recurrent networks in this manner for some

high-dimensional functions. The idea is that a high dimensional function ~F may be

expressed in terms of iterating a lower dimensional function f , and then f can be

13

f f f f f. . .

Figure 2.4: Recurrent network for dimensionality reduction. Each box contains a
function f which is actually a feedforward network.

learned instead of ~F . This approach attempts to avoid the curse of dimensionality by

only learning low dimensional mappings. Here we are concerned with vector functions

~F which take a vector as input and return a vector as output. If ~F can be computed

by iterating many copies of a simpler function f on pieces of the input vector, then f

can be learned instead of ~F , in e�ect reducing the dimensionality of the function that

must be learned. This can be understood most easily by looking at �gure 2.4. This

network consists of many identical copies of the function f , each taking as input a

di�erent subset of the whole input. The output from each f forms a vector which is

the output of the whole network. This output vector is fed back to the inputs on each

iteration until the outputs converge. The function f itself is actually a feedforward

network like those discussed earlier. Thus, the free parameters which must be learned

in this recurrent network are entirely contained in the representation for f . Because

of its lower dimensionality, f should be easier to learn than ~F . Once f is learned then

F can be calculated by iterating the network containing f . By taking advantage of

iteration in a recurrent network, the problem of learning a high dimensional mapping

~F can be reduced to learning a lower dimensional mapping f . This particular recur-

rent network architecture is intended for learning mappings that act on an array of

elements and can be described by local, uniform interactions among the elements. By

14

local, it is meant that the value of an element at time t depends only on neighboring

elements at time t-1. By uniform, it is meant that the same local function is used to

compute the new values of all elements at each time step. Examples of such mappings

include problems in vision such as image segmentation and stereo disparity and many

physical phenomena such as modeling gases.

It should be noted that the recurrent network just described is Turing universal

given an in�nite number of copies of f . It can compute any function computable on

a Turing machine, although it is intended for computing functions that are local and

uniform. A proof for the Turing universality of this framework is given in chapter 4.

15

Chapter 3

Related work

It is very informative to brie
y review some of the related work by other researchers

studying recurrent networks both because it puts the current research in perspective

and because it provides some motivation for why this research was carried out in the

�rst place. This research came about largely in response to the question \Why use

recurrent networks?" How can the properties of recurrent networks be exploited for

approximating functions? It seems that in many cases this question has been left

unaddressed.

3.1 Hop�eld networks

Hop�eld is credited with the idea of associating local minima with memories in a re-

current network. In 1982, Hop�eld published a paper which describes how a network

of threshold units with feedback connections can be used to implement a content ad-

dressable memory ([Hop82]). Each threshold unit outputs either a 1 or a 0 depending

on whether the input to the unit is greater than 0 or less than 0, respectively. The set

of threshold units in the network are connected by weighted connections with each

weight being a real number. Unconnected units have a weight of zero for the connec-

tion between them. The input to a unit is computed as in a sigmoidal network, by

summing the output multiplied by the connection weight of each of the other units.

Hop�eld later extended his work to use sigmoidal units in place of threshold units.

The resulting network has essentially the same behavior as before ([Hop84]).

A Hop�eld network is used to store a number of \memories" which are simply

16

patterns of outputs over the units. The weights on the connections are set according

to a simple equation dependent on the particular memories that are to be stored.

Setting the weights does not involve an iterative process, but rather is a one-step

calculation. Once the weights are set, a memory is recalled by initializing each unit

to some value from 0 to 1 and then letting the network iterate until the outputs

converge to a �xed point. This �xed point should be one of the stored memories. The

idea is that the memory that is output is the one closest to the initial input pattern.

The Hop�eld net can be viewed as computing a function whose surface contains many

local minima. The particular function that the Hop�eld network computes depends

on the values of the weights on the connections. The weights are picked in such a way

that each memory corresponds to a local minima of the network. Hop�eld proved

that as the network is iterated, the outputs will converge to one of the local minima

much like a ball rolling on a hilly surface will eventually come to rest in a valley.

Hop�eld networks are limited in the number of memories that a network can store at

any one time. For a network with N units, approximately 0:15N memories can be

stored.

The Hop�eld network takes advantage of the nature of recurrent networks by hav-

ing a partial memory pattern converge to the whole pattern as the network iterates.

This task would probably be di�cult for a feedforward network to emulate. It could

be trained to map input patterns to themselves, but this would result in the network

learning the identity function. A partial pattern that was presented to the feedfor-

ward network would most likely map to itself instead of to the training example that

it most closely resembled.

Hop�eld's approach is similar to the one that is taken in this thesis in that we

are interested in using a recurrent network to converge to a particular output given a

particular input. However, the functions considered in this thesis can have an in�nite

range as opposed to the �nite number of memories used in Hop�eld networks. Also,

the functions considered here do not have to map input patterns to themselves.

17

3.2 Recurrent backpropagation

A learning algorithm for recurrent networks called recurrent backpropagation has

been developed independently by Pineda and Almeida ([Pin87], [Pin89], [Alm87],

[Pea88]). As its name suggests, recurrent backpropagation extends the feedforward

backpropagation algorithm of [RHW86] to recurrent networks. The algorithm works

on networks whose continuous time dynamics are described by the equation

dxi=dt = �xi + gi(
X
j

wijxj) + Ii (3:1)

where ~x is the vector of activation values for each unit of the recurrent network, gi

is a di�erentiable function which is usually a sigmoid, wij is a real-valued connection

weight and Ii is a constant input ([Pin87]). The network's task is to converge to a

particular output vector for each input vector it is given. To train the network to do

this, an error measure is de�ned as

E =
1

2

NX
i=1

J2
i (3:2)

where Ji = (Ti� x1i) and
~T is the target output vector. The recurrent backpropaga-

tion procedure attempts to adjust the weights so that the error is minimized. To do

this it performs gradient descent in E according to the equation

dwij=dt = �� @E

@wij

(3:3)

where � is a constant learning rate. Pineda derives the following simple form for

dwij=dt ([Pin87]):

dwij=dt = �y1i x
1

j (3:4)

where x1i is a �xed point of equation 3.1 and is obtained by iterating the network

until convergence and y1i is an error vector which is a �xed point of the dynamical

system

dyi=dt = �yi + g0i(
X
j

wijx
1

j)(
X
k

wikyk + Ji): (3:5)

The above equations are for a single input-output training example. For multiple

examples, the total error is de�ned as

ETOT =
X
�

E[�] (3:6)

18

which sums over all input-output pairs. The gradient descent equation then becomes

dwij=dt = �
X
�

y1i [�]x1j [�] (3:7)

Using these equations, recurrent backpropagation proceeds as follows. When an

input vector is given to the network, x1j is approximated by doing a �nite number

of iterations of equation 3.1. Next, y1 is approximated by iterating equation 3.5 a

�nite number of times. The weights are then updated according to equation 3.7.

Recurrent backpropagation is distinct from Hop�eld networks because arbitrary

associations can be made instead of only being able to associate a pattern with itself.

With recurrent backpropagation, a network can be taught to converge to a pattern

y given an input pattern x that is di�erent from y. After being trained the network

could also converge to y given input patterns that were close to but not equal to x. In

this sense the recurrent network can act as a content addressable memory. This seems

to be the only really useful task that recurrent backpropagation can do that cannot be

done easily on a feedforward network. No real motivation has been provided for why

one would want to use recurrent backpropagation over feedforward backpropagation

on a typical function approximation task.

There are a couple of examples of recurrent backpropagation being used success-

fully that are worth mentioning. Qian and Sejnowski ([QS88]) used recurrent back-

propagation to train a network to learn to compute stereo disparity in random-dot

stereograms ([MP76]). Their network was successful, but they used an architecture

for the network that was designed especially for the problem. They comment that

\using a fully connected network with the hope that the learning algorithm will �nd a

good solution automatically is unlikely to succeed for a large-scale problem. ([QS88])"

Another interesting paper compared the performance of recurrent backpropaga-

tion to feedforward backpropagation on a character recognition task ([BGHS91]). The

recurrent and feedforward networks used were identical three-layer networks except

the recurrent network had feedback connections from the hidden layer to the input

layer and from the output layer to the hidden layer. The input to each network was

a 16 by 16 array of pixels which contained a representation of a numeral from 0 to

9. The network had 10 outputs. The task of the network was to output a 1 on the

19

output unit corresponding to the numeral represented on the input image. [BGHS91]

report that recurrent backpropagation performed slightly better than feedforward

backpropagation in terms of the number of epochs needed to reach a certain level of

generalization on test images. They do not o�er any explanation of how the network

took advantage of the iterative nature of the recurrent network.

Despite some success with recurrent backpropagation, it would seem in general

that there is no good reason for using recurrent backpropagation over a feedforward

learning algorithm for time independent learning tasks except for the case of content

addressable memories. Why use the more complicated recurrent backpropagation on a

learning task that can be accomplished with a feedforward network? The properties

unique to a recurrent network are not being exploited in such a task. However,

a technique such as brie
y presented in section 2.5 which uses a speci�c class of

recurrent networks in order to exploit iteration for learning high-dimensional functions

by reducing the dimensionality of the function being learned may be very useful. This

will be the major topic in the remaining chapters of this thesis.

3.3 Learning �nite state machines

There is another use of recurrent networks that deserves attention which takes a

di�erent approach from those discussed so far. This approach is to use recurrent

networks to learn context sensitive mappings that are dependent on past inputs as

well as the current input ([SSCM88], [Jor86], [Elm90], [GMC+92]). The standard

example of this approach is learning to predict the next letter of a string belonging to

a �nite state grammar. The basic idea is for the network to receive as input on each

time step a representation of the current letter of the string as well as the outputs of

some of the other units in the network from the last time step (feedback) and then to

use this to predict the next letter of the string. Since there may be multiple letters

that follow according to the rules of the grammar, the output of the network is usually

an assignment of probabilities to each letter in the grammar indicating the likelihood

of that letter to be the next one in the string. In [SSCM88], a recurrent network with

three layers that used the network architecture from [Jor86] was employed for learning

20

a �nite state grammar. The network's �rst layer was divided into two parts. The �rst

part was called the context units and were connected in a feedback loop to the hidden

units. There was one context unit for each hidden unit. These units could be used

by the network to provide an encoding for the current state of a �nite state machine

that recognized the grammar being learned. The second part of the �rst layer was

called the input units and these units received the current letter of the input string.

The current letter was encoded by having one input unit correspond to each letter of

the grammar. The second layer in the network contained the hidden units which were

connected in a feedforward manner with the input units and in a feedback loop with

the context units. Finally, the output layer was connected in a feedforward manner

with the hidden layer and contained one unit for each letter of the grammar just like

the input units. The training examples were generated by inventing a �nite state

grammar and selecting a number of strings from this grammar. To train the network,

the �rst letter of the current training string was loaded on the input units and the

context units were initialized to zero. The output of the network was then computed

and this output was used to generate an error signal by comparing it to the next letter

of the string. The error signal was then backpropagated through the network and the

weights were adjusted before the next letter was presented. Subsequent time steps

proceeded similarly except that the context units were set equal to the activations of

the hidden units from the previous time step. [SSCM88] found that such a recurrent

network could successfully learn simple �nite state grammars.

A similar scheme has been used for learning time series such as stock market prices

or sun spot activity ([FS88]). In this case, a series of data points are given to the

network as input and trained to predict the next data point. The network can then

be iterated in order to produce predictions further into the future.

Using recurrent networks for problems such as learning �nite state grammars

makes sense because the inputs and outputs of the network vary over time and are

dependent on previous inputs and outputs. The need for the network to keep some

kind of representation of previous inputs makes the problem context sensitive and

hence not suited for a feedforward network which keeps no record of the past. This

21

type of problem makes good use of the properties of the recurrent network.

This framework for using recurrent networks is very di�erent from the approach

that is taken in this thesis. In the work by [SSCM88], the recurrent network gets a

new input on every time step as well as a target output on every time step that is

used to train the network. This thesis is concerned with the problem of learning on

a recurrent network which receives a single input and then iterates until it converges

to a �xed point which is taken to be the output of the network. No target output is

available on intermediate time steps to train the network. This makes the learning

task for the network more di�cult as compared to learning a �nite state grammar.

3.4 Cellular automata

Another area of research that is related to the class of recurrent networks described in

section 2.5 is the �eld of cellular automata ([Wol86], [Gut90]). A cellular automata is

a matrix of cells that can assume a �nite number of states and a rule for computing the

next state of a cell. The next state function is a local function that depends on a cell's

current state and the state of certain neighboring cells. The same next state function

is used for all cells of the matrix. An example of a cellular automata is the game of

Life invented by John Conway ([BCG82]) which simulates the population dynamics

of a bacterial colony. Cellular automata are similar to the class of recurrent networks

described in section 2.5 in that they both use local, uniform functions to compute the

next state for an array of discrete elements. The outputs of each feedforward network

contained in the recurrent network can be viewed as states. The two approaches are

di�erent in the fact that the cells of a cellular automata can only have a �nite number

of states while the outputs of the recurrent network can take on a continuous range of

values. The recurrent networks of section 2.5 are a generalization of cellular automata

since a cellular automata can be implemented by a recurrent network by having the

function computed by the feedforward networks approximate the next state function

of the cellular automata.

Cellular automata have been used to model a number of physical processes. One

example is modeling gas laws. In this application, each cell of the cellular automata

22

represents an area of space which may contain gas particles. The interaction of gas

particles is then modeled by the next state function of the cellular automata. The next

state function will typically model movement of particles from one area to another

and collisions between particles. Such a model may be used to test various theories

about gases by comparing the behavior of the model against what is predicted by

theory.

Although the mechanisms of cellular automata and recurrent networks are very

similar, the intended purpose of each is di�erent. The main emphasis in cellular au-

tomata research is on modeling various processes (often physical phenomena) in order

to gain a better understanding of the underlying physics involved. The emphasis in

recurrent network research is on learning various mappings from examples. The mod-

els run on cellular automata are usually designed by people, while the functions that

a recurrent network computes are learned by the network. In interesting question is

whether a recurrent network can learn the mapping computed by a cellular automata

given initial states and �nal states after some �nite number of iterations. This is very

similar to the main problem considered in the rest of this thesis. Experience shows

that the answer depends on the smoothness of the next state function of the cellular

automata as well as the number of examples used to train the recurrent network.

23

Chapter 4

Computational power of recurrent

networks

There are two main questions that arise in the study of recurrent networks. One is the

question of their computational power. What set of functions can be represented by a

recurrent network? The other is the question of how to go about learning functions on

a recurrent network. The question of the computational power of recurrent networks

is addressed in this chapter, while the remaining chapters address the problem of

learning.

It turns out that recurrent networks are very powerful indeed. A recurrent network

can simulate a Turing machine and can thus compute any function computable on a

Turing machine. This has been proven for recurrent networks with sigmoidal units by

[SCLG91]. Here, the focus is on the class of recurrent networks informally described

in section 2.5. To prove this result for this class of recurrent networks, the formal

de�nitions of a recurrent network and a Turing machine will be given and then a

constructive proof for simulating a Turing machine on a recurrent network will be

presented.

4.1 Formal de�nition of a recurrent network

Let I be a set of input variables. A recurrent network de�ned on I is a triple N =

(D;G; f) where

� D is the domain of each input variable.

24

� G = (I, E) is a graph de�ning the connectivity of the network. E is a set of lists

fEvi : vi 2 Ig where each list Evi = (vj1 ; vj2; : : : ; vjn) speci�es the variables that

vi depends on. Each list is ordered so that it may be used as a list of arguments

to a transition function. The size of each list, n, must be the same.

� f : Dn ! D is a transition function that maps values of variables at time t to

a value at time t+1.

The recurrent network operates by simultaneously updating each variable on each

time step according to the transition function. In particular,

vt+1
i f(Evi) 8vi 2 I

where vti represents the value of vi at time t. One should keep in mind �gure 2.4 to

make this de�nition clear.

In this de�nition, f is simply an arbitrary function. It is not necessarily a radial

basis function. We are not concerned here with learning the function f .

Note: a cellular automata is a recurrent network with the restrictions that D is a

�nite set and the graph G is translation invariant (i.e. Evi = (vj1; vj2; : : : ; vjn) i�

Evi+k
= (vj1+k; vj2+k; : : : ; vjn+k)).

4.2 Formal de�nition of a Turing machine

A Turing machine consists of a one-way in�nite tape and a �nite control. On each time

step, the �nite control reads the symbol from the tape under the current position of

the read head and then based on its current state and the symbol that is read, writes

a new symbol on the tape, enters a new state and moves the read head either left or

right on the tape. The components of a Turing machine can be formally described by

the following de�nition which is taken from Hopcroft and Ullman's book, Introduction

to Automata Theory, Languages and Computation ([HU79]).

A Turing machine is a 7-tupleM = (Q;�;�; �; q0; B; F) where

� Q is the �nite set of states,

25

� � is the �nite set of allowable tape symbols,

� B, a symbol of �, is the blank,

� �, a subset of � not including B, is the set of input symbols,

� � is the transition function, a mapping from Q� � to Q� � � fL;Rg,

� q0 in Q is the start state,

� F � Q is the set of �nal states.

4.3 Simulation of a Turing machine by a recur-

rent network

Using the above de�nitions, we can now construct a recurrent network that simulates

a particular Turing machine given the 7-tuple describing the Turing machine. This

construction is similar to the one in [GM90] showing how a cellular automata can

simulate a Turing machine.

GivenM = (Q;�;�; �; q0; B; F), de�ne N = (D;G; f) as follows:

� I = (v1; v2; v3; : : :)

� D = ((Q [�)� �) where � 62 Q.

� G = (I;E) where E = fEv1 ; Ev2; Ev3 ; : : :g and
Evi = (vi�1; vi; vi+1) for 2 � i � l

Ev1 = (v1; v1; v2)

� The initial values of the variables are de�ned from the Turing machine's initial

tape as follows:

v1 = (q0; t1) and

vi = (�; ti) for i > 1

where q0 is the start state of M and ti is the ith symbol on the tape of the

Turing machine.

26

� The network's transition function is de�ned as:

f((�; x); (q; y); (�; z)) = (�; w) where �(q; y) = (q0; w; d)

f((q; x); (�; y); (�; z)) =
(
(q0; y) if �(q; x) = (q0; w;R)

(�; y) if �(q; x) = (q0; w; L)

f((�; x); (�; y); (q; z)) =
(
(�; y) if �(q; z) = (q0; w;R)
(q0; y) if �(q; z) = (q0; w; L)

f((�; x); (�; y); (�; z)) = (�; y)

f((q; x); (q; x); (�; y)) = (�; w) where �(q; x) = (q0; w; d)

where x; y; z; w 2 �, q; q0 2 Q, and d 2 fL;Rg.
The variables of the recurrent network N store the contents of the Turing ma-

chine's tape as well as keeping track of the state of the �nite control and the position

of the read head. This is accomplished by having each variable of the recurrent net-

work store an ordered pair. The �rst member of the ordered pair contains either

a state or the symbol �. The second member of the ordered pair contains a tape

symbol. Variable vi holds the i
th tape symbol. The variable in the recurrent network

corresponding to the read head's current position contains the current state while all

other variables contain a � in the �rst position of their ordered pair. The task for the

function f in the recurrent network is to keep track of the current state and the read

head's position as well as the contents of the tape by mimicking the Turing machine's

transition function and updating the values of the recurrent network's variables ac-

cordingly. To do this, variable vi gets the value of f evaluated on vi�1, vi and vi+1.

The de�nition of f is split into �ve cases. The �rst case is for the read head being

on vi which is signi�ed by the �rst component of the ordered pair containing a state

symbol as opposed to a �. In this case, vi gets the value (�; w) where � signi�es that
the read head is no longer at vi and w is the symbol written onto the tape. The

second case is for when the read head is to the left of vi at vi�1. In this case, the �rst

component of vi's ordered pair becomes the new state q0 if the read head is instructed

to move right, otherwise vi's value is unchanged. The third case is the same as the

second except the read head is to the right of vi at vi+1. The fourth case covers the

27

situation in which the read head is not on any of vi�1, vi or vi+1. In this case, vi is

unchanged. The �nal case is a special case for v1. Since v1 has no left neighbor, the

connectivity of the recurrent network de�ned by G causes f to be evaluated on v1, v1

and v2. This case simply covers the possibility that the read head is on v1.

This construction is able to use a fairly straightforward simulation of a Turing

machine on a recurrent network because there is no restriction on the function f in

the recurrent network. This allows f to implement � almost directly. By showing that

a recurrent network can simulate a Turing machine, we have proven that a recurrent

network is as powerful as a Turing machine in terms of the set of functions it can

compute. The next chapters will investigate how the power of a recurrent network

can be exploited for learning functions from examples.

28

Chapter 5

Using recurrent networks for

dimensionality reduction

5.1 The curse of dimensionality

As mentioned earlier, the di�culty of learning high dimensional mappings is the

major problem in approximation theory. Stone has studied this problem by �nding

the optimal rate of convergence for approximating functions which is a measure of

how accurately a function can be approximated given n samples of its graph ([Sto82]).

He showed that using local polynomial regression the optimal rate of convergence of

the error is �n = n�
p

2p+d where n is the number of examples, d is the dimension of the

function and p is the degree of smoothness of the function or the number of times it

can be di�erentiated. This means that the number of examples needed to approximate

a function grows exponentially with the dimension. To put this in perspective using

an example from Poggio and Girosi ([PG89]), for a function of two variables that is

twice di�erentiable, 8000 examples are required to obtain �n = 0:05. If the function

depends on 10 variables, however, then 109 examples are needed to obtain the same

rate of convergence. Because of the curse of dimensionality, any method for reducing

the input dimension of a function is an important tool for learning. The main point

of this research is to study how to take advantage of recurrent networks for function

approximation by reducing the dimensionality of the function being learned. As

previously discussed, the idea that we will explore is that a high-dimensional mapping

~F may be expressed in terms of iterating a lower dimensional function f , and then f

29

can be learned instead of ~F .

5.2 Image segmentation example

To make this idea more concrete, consider the following example. The problem of

image segmentation is to take an image consisting of a matrix of pixels and output

an image in which each object in the image is separated from surrounding objects.

One way to do this is to simply average the values of all pixels within an object and

assign each pixel in the object the average value. Di�erent objects can be distin-

guished from each other by using the assumption that there is a sharp change in the

values of pixels (colors) across object boundaries. The problem of training a feedfor-

ward network to learn a segmentation mapping that takes as input an image with

thousands of pixels and outputs the segmented image is impractical because of the

extremely high input dimension. However, a simple image segmentation mapping can

be implemented as an iterative procedure which breaks the function into many low

dimensional functions. This algorithm taken from [Hur89] works as follows. On each

time step, the value of each pixel is replaced by the average of all neighboring pixels

whose values are within some threshold of the original pixel's value. This process

eventually converges to an image in which each object is colored with its average

gray-scale value. Overlapping objects must be of di�erent shades of gray in order to

be separated. This iterative procedure only requires a low dimensional function that

takes as input a small neighborhood of pixel values and outputs the average of all

values that are within some threshold of the central pixel's value. In this case the

high-dimensional function for mapping an unsegmented image to a segmented image

can be broken up into many low-dimensional functions that work in parallel and are

iterated so that they converge to the original high-dimensional function. In a sense,

the time to compute the desired segmentation function has been traded o� against

the dimension of the function.

30

5.3 A recurrent network architecture for function

decomposition

The iterative mapping for image segmentation just described can be implemented on

a recurrent network such as in �gure 5.1 which uses many copies of a low dimensional

function and may take many iterations to converge. This contrasts with the one-shot

algorithm that can be implemented on a feedforward network such as in �gure 2.2.

It is a high-dimensional function, but can be computed in one step.

To formalize this idea, consider a vector function ~F which takes a vector ~x as

input and returns a vector ~y as output. Suppose ~F can be expressed as the result of

iterating many copies of a simpler function f on pieces of the input vector. In other

words, let

~ut+1 =< f(P1~u
t); f(P2~u

t); : : : ; f(Pn~u
t) > for t � 0 (5:1)

and

~u0 = ~x (5:2)

where Pj is an m�n matrix that maps from Rn to Rm and m < n. (In other words,

Pj is a linear operator which extracts a piece of ~ut.) ~F can be expressed as

~F (~x) = lim
t!1

~ut: (5:3)

The above notation simply means that the output vector ~y = ~u1 is computed by �rst

computing a number of intermediate ~ut's. Element j of the vector ~ut+1 is computed

by evaluating f on input Pj~u
t. Since Pj is an m� n matrix, Pj~u

t is simply a vector

that is a piece of the vector ~ut.

Because of its lower dimensionality, many fewer examples are needed to learn f

than to learn ~F . As discussed earlier, this can be very important for making the

learning task tractable. Once f is learned, ~F can be calculated by iterating the

network containing f . Thus, by taking advantage of iteration in a recurrent network,

the problem of learning a high-dimensional mapping ~F can be reduced to learning a

lower dimensional mapping f .

The class of functions de�ned by equations 5.1-5.3 can be represented directly on

a recurrent network such as that shown in �gure 5.1. This network consists of many

31

f f f f f. . .

u1[t] u2[t] u3[t] u4[t] um[t]

u1[t+1] u2[t+1] u3[t+1] u4[t+1] um[t+1]

Figure 5.1: Recurrent network for dimensionality reduction. Each box contains a
function f which is actually a feedforward network.

identical copies of a feedforward network that approximates f . The Pj matrices are

represented by the connections from input units to the inputs of each copy of f . The

outputs from each copy of f form the output of the entire recurrent network at each

time step. This output is fed back to the inputs at the end of each iteration. The

operation of the network proceeds as follows. The input units are �rst initialized

and then on each iteration the outputs are computed by evaluating each copy of f

simultaneously on its local input. The outputs are fed back to the inputs and this

process repeats until the outputs converge to a �xed point. In practice, the network

is iterated for a �xed number of steps so that problems with divergence do not occur.

It should be noted that the connectivity of the network shown in �gure 5.1 is

intended as an example and alternative topologies are possible. Also, there is nothing

preventing f from having multiple outputs instead of the single output pictured. The

particular function being learned will dictate such details. In this research all of

the networks studied use a function with a single output for f . In the remainder

of this thesis, the term recurrent network will refer to a network with the particular

architecture typi�ed by �gure 5.1.

It may be unclear how copies of a low-dimensional function are being used to

32

t

t+1

t+2

1 2 3 4 5

Figure 5.2: See text for explanation.

compute a high-dimensional function that is dependent on all of its inputs. The trick

is in the iteration. Consider �gure 5.2 which represents the �ve output units of a

recurrent network at time steps t, t+1 and t+2. Assume the network topology is

such that the value of an output at time t+1 depends on the values of itself and its

two closest neighbors at time t. This means that at time t+2, the value of output 3

depends on the values of outputs 2, 3 and 4 at time t+1. Because of the dependencies

of outputs 2, 3 and 4 at time t+1 on the outputs 1, 2, 3, 4 and 5 at time t, output 3

at time t+2 actually depends on outputs 1, 2, 3, 4 and 5 at time t. Hence, the de-

pendencies of each output element in the network spreads as the iteration progresses.

This spreading allows the iteration of local functions to compute a global function.

Using such a network, the learning problem is to �nd the function f such that the

recurrent network converges to ~F as it iterates. The training examples given to the

learning algorithm are input vectors ~xi and output vectors ~yi such that ~yi = ~F (~xi).

Examples for f are not given - only examples for ~F . Thus, the learning task is to

somehow use examples for ~F to learn the lower dimensional function f . The next

chapter presents two learning algorithms that solve this problem.

33

Chapter 6

Learning algorithms for recurrent

networks

6.1 Recurrent gradient descent

Many of the algorithms used to train neural networks are based on a gradient descent

search. The recurrent networks described in the previous section can also be trained

by a straightforward gradient descent procedure similar to the algorithm described in

[WZ89]. Let the network be as in �gure 5.1 and consist of m inputs and m outputs.

Let each feedforward network, f , be an GRBF net with l inputs and n centers along

with linear and constant units. (A sigmoidal network could also be used for f , but

an GRBF net was chosen since it is used later for running experiments.) The inputs

to the recurrent net at time t are denoted by

~u[t] = fu1[t]; u2[t]; :::; um[t]g: (6:1)

The input vector ~u[t] refers to the inputs that are fed back from the outputs at time

t� 1. These are not external inputs which are injected into the network at each time

step. The only external input comes from initializing ~u[0] with a given input vector.

After that, the network runs until its outputs converge. It does not receive further

inputs from the outside. Since the vector of outputs from the feedforward networks

at time t is fed back to the inputs at time t+ 1, the ith element of the input vector

can be expressed as

ui[t+ 1] = f(Pi~u[t]); t � 0 (6:2)

34

where Pi is an l �m matrix which picks out a vector of length l from input vector

~u which is of length m. Pi is simply a notational convenience that encodes the

connections from the inputs of the whole recurrent network to the inputs of the ith

copy of f . Since f has been chosen to be an GRBF network with linear and constant

terms, it can be expressed as

f(~v) =
nX
i=1

ciG(k~v � ~tik2) +
lX

i=1

cn+ivi + cn+l+1 (6:3)

where G is the basis function being used, ~ti is the ith center, and ci is the ith coe�-

cient. In this work, the centers are chosen a priori and remain �xed during learning

so that the only free parameters to be learned are the coe�cients.

Equations 6.1 - 6.3 de�ne the dynamics of the recurrent network. Now an error

measure is needed such that the optimum coe�cients yield the minimum error. Let

f~xjgNj=1 and f~yjgNj=1 denote the training set of N input and output examples, respec-

tively. The task that the recurrent network must learn is to converge to output ~yj

given input ~xj. Let E be an error function de�ned as

E =
1

2

NX
j=1

mX
k=1

(yjk � ujk[1])2: (6:4)

The vector ~uj[1] is computed by iterating the network given the initial condition

~uj[0] = ~xj. To �nd a local minimum of E, the negative gradient with respect to the

coe�cients can be followed. Computing the derivative of E with respect to ci yields

@E

@ci
= �

NX
j=1

mX
k=1

(yjk � u
j
k[1])

@ujk[1]

@ci
: (6:5)

This partial derivative can then be used to change the coe�cients so that the error,

E, decreases. The weight change for an individual coe�cient ci is thus

ci ci � �
@E

@ci
(6:6)

where � is the learning rate which should be chosen to be a small positive real number.

Now it just remains to write an expression for
@u

j

k
[t]

@ci
. Although a bit messy, it is

35

computed by di�erentiating equations 6.2 and 6.3.

@u
j
k[t+ 1]

@ci
=

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

Pn
j=1[cjG

0(k~v � ~tjk2)(2Pl
p=1(vp � tjp)

@vp
@ci

)]

+G(k~v � ~tik2) +Pl
p=1 cn+p

@vp

@ci
if i � n

Pn
j=1[cjG

0(k~v � ~tjk2)(2Pl
p=1(vp � tjp)

@vp
@ci

)]

+vi�n +
Pl

p=1 cn+p
@vp
@ci

if n+ 1 � i � n+ l

Pn
j=1[cjG

0(k~v � ~tjk2)(2Pl
p=1(vp � tjp)

@vp
@ci

)]

+
Pl

p=1 cn+p
@vp
@ci

+ 1 if i = n + l+ 1

(6:7)

where ~v = Pk~u
j[t] and G0(x) denotes the derivative of G with respect to x. The three

cases in equation 6.7 correspond to ci being a coe�cient of a basis function term, a

linear term or the constant term. The base case for this recurrence equation is

@ujk[0]

@ci
= 0: (6:8)

Pseudo code for the recurrent gradient descent algorithm can now be written as

follows.

until the error is low enough do

for j=1 to the number of training examples N do

~uj[0] = ~xj

@~uj[0]

@ci
= ~0 8i

for t=1 to the time that the output converges do

for k=1 to number of outputs m do

for i=1 to number of coe�cients n+l+1 do

Compute
@u

j

k
[t+1]

@ci
using equation 6.7 given

the partial derivatives of ~uj at time t.

Compute u
j
k[t+ 1] by evaluating the GRBF

network for f given ~uj[t].

for i=1 to number of coe�cients n+l+1 do

Compute @E
@ci

using equation 6.5

Update coe�cient ci using equation 6.6.

36

The pseudo code says that the loop over t continues until the output of the recur-

rent net has converged. In practice, however, this loop is terminated after some �xed

number of steps by which time the network is assumed to have converged.

The main problem with the gradient descent approach is that it requires calculat-

ing a complicated derivative each time the coe�cients are updated. This calculation

is computationally expensive and so the algorithm can be rather slow. Also, as with

all gradient descent algorithms, it is vulnerable to getting stuck in a local minima.

6.2 Random step algorithm

In order to avoid the time consuming calculation of the gradient, a simple nondeter-

ministic algorithm has been developed by Caprile and Girosi ([CG90]. Their algorithm

can be used to �nd the optimum parameters for a neural network as follows. To each

parameter of the network add a random amount of noise chosen from the interval

(�!; !). If the error of the network on its training set has decreased, then retain the

changes to the parameters. Otherwise return the parameters to their previous values.

If the change decreases the error then double !, otherwise halve !. This changes

the magnitude of the noise that will be added to the parameters on the next itera-

tion. Continue this process of randomly perturbing the parameters until the error is

suitably low. The idea is to expand the search when the changes cause the error to

decrease and to narrow the search when the changes cause it to increase. Note that

the error for the network can only decrease with this scheme since any changes that

cause it to increase are discarded. If ! gets very small so that the changes to the

parameters are too small to a�ect the error, ! can be reset to some larger number.

The random step algorithm can be used with the recurrent architecture described

earlier by using the output of the recurrent network after some �xed number of itera-

tions (instead of in�nite iterations) in equation 6.4. Since the feedforward networks,

f , that compose ~F are identical, only one set of parameter changes are made, and

these changes happen to each copy of f so that they remain identical.

Caprile and Girosi report that the random step algorithm performs comparably

to gradient descent on some typical function approximation problems. An iteration

37

of the random step algorithm is much faster than an iteration of the gradient descent

algorithm, but many iterations of the random step algorithm result in no improvement

to the error since some of the random changes to the parameters are not helpful. So the

speed of each iteration is o�set somewhat by the need to do many more iterations as

compared to gradient descent. The random step algorithm does have the advantage of

being able to avoid local minimumwhich is a problem with straight gradient descent.

It is also much easier to implement. Another advantage of the random step algorithm

is that there is no learning rate that must be �ne tuned in order for the algorithm to

work well as with gradient descent. In practice on the experiments run for the work

in this thesis, the random step algorithm has worked better than the gradient descent

algorithm mainly because of local minima.

The random step algorithm is very simple to parallelize on a SIMD parallel ma-

chine such as the Thinking Machines CM 2. One approach to parallelizing this al-

gorithm is as follows. Each processor keeps its own copy of the parameters for the

network. On each iteration, each processor picks random changes to its set of param-

eters in parallel. Each processor then calculates the error of its network with the new

parameters. The processor that has the network with the lowest error is found. If this

error is less than the previous lowest error then each processor is given the parameters

for the best network. Otherwise, all processors keep the old, unchanged parameters.

The magnitude of the noise is updated accordingly and the process repeats. This ap-

proach in e�ect tries many random changes to the parameters at once and keeps the

best changes. The parallel random step algorithm has been implemented and used

for this research and as expected is signi�cantly faster than the sequential version.

6.3 Setting the initial parameters

The problem of how to initially set the parameters of the recurrent network (the

centers and coe�cients in the case of GRBF networks within the recurrent net) is an

important question. Learning procedures for recurrent networks, such as those just

presented, are relatively slow and a clever choice of where to start the parameters can

result in a large time savings. In this work, the centers of the GRBF are initialized

38

and then kept �xed while the coe�cients are learned. To set the centers, it usually

su�ces to pick them to be a subset of the input examples or to form a regular grid.

Picking the coe�cients is more di�cult. One idea is to �rst train f as a feedforward

net by treating the output vectors for ~F as outputs after one iteration instead of

an in�nite number of iterations. To do this, an input-output pair (~x; ~y) such that

~F (~x) = ~y is split up according to the connectivity of the recurrent network into many

examples for the feedforward net f . To make this explicit, suppose that ~F has �ve

inputs and �ve outputs and f has three inputs and one output. Also suppose that

the connectivity of the recurrent network is as in �gure 5.1. Let (x1; x2; x3; x4; x5) be

an input example and (y1; y2; y3; y4; y5) be the corresponding output example. The

following examples could then be created to train f as a feedforward network:

(x1; x2; x3)! y2;

(x2; x3; x4)! y3;

(x3; x4; x5)! y4:

Also, since the output examples for ~F are �xed points, these provide further

training examples for the feedforward network f . In other words, since ~F (~y) = ~y, the

pair (~y; ~y) can be used as a training example and split up into examples for training

f . Training f simply involves computing a pseudo-inverse to solve for the optimal

coe�cients as described in chapter 2 since the centers are assumed to be �xed.

The idea behind initializing the coe�cients of f with this technique is that we are

trying to have the network approximate ~F in one shot without iteration. Although it

should not be able to do this extremely accurately, it should provide a good starting

point in many cases.

39

Chapter 7

Example: Image segmentation

The previous sections have described a motivation for using recurrent networks over

feedforward networks to learn �xed point mappings. It remains to be shown that this

motivation is justi�ed in practice. In order to test the performance of a recurrent net-

work for learning high dimensional mappings, the problem of learning a simple image

segmentation mapping was chosen. The particular segmentation algorithm used is

taken from [Hur89]. In this chapter, the term recurrent network refers speci�cally to

the class of recurrent networks composed of many copies of a feedforward network

whose outputs feed back to the inputs as illustrated in �gure 5.1.

7.1 Hurlbert's image segmentation algorithm

As brie
y mentioned earlier, the basic idea of the image segmentation algorithm is to

take an image which is represented as a table of gray scale pixels and update the value

of each pixel with the average of the values of all the immediately surrounding pixels

whose gray scale values are close enough to the original pixel's value. This process

is repeated until it converges to the segmented image. Simply stated, the algorithm

smooths out the values of all pixels within the same object in the image while not

smoothing over object boundaries. The algorithm can be written algebraically as

follows:

ut+1
x;y =

1

n(N t)

X
l;m2N(utx;y)

utl;m (7:1)

40

a b

Figure 7.1: a) The white pixels to the left and right of the black pixel comprise
the neighborhood of the black pixel for one-dimensional segmentation. b) For two-

dimensional segmentation, the four white pixels form the neighborhood of the black

pixel.

10 20 30 40

0.2

0.4

0.6

0.8

1

10 20 30 40

0.2

0.4

0.6

0.8

a b

Figure 7.2: Typical training pair for the one-dimensional segmentation problem. Fig-
ure (a) is the input vector and (b) is the output obtained by running Hurlbert's
segmentation algorithm on the input.

where utx;y is the value of pixel x; y at time t, and N(utx;y) is the set of n(N
t) pixels

among the neighbors of x; y that di�er from utx;y by less than some threshold. The

neighborhood of a pixel in a two dimensional image is simply the pixels above, below,

to the left, and to the right. This algorithm can also be applied to a one-dimensional

\image" in which the pixels to the left and to the right of a pixel comprise its neigh-

borhood. The neighborhoods for a one and two-dimensional mapping are illustrated

in �gure 7.1.

41

7.2 Learning one-dimensional segmentation

The ability of the recurrent network to learn the segmentation mapping, was �rst

tested by training it on the one-dimensional problem. The task that the recurrent

network had to learn was to output a segmented one-dimensional image after some

number of iterations given an unsegmented image as input. The recurrent network

was given a number of unsegmented input images and the corresponding segmented

output images as training examples. The training examples were chosen to be 16

pixels long and each pixel had a real value that was scaled to be between 0.0 and

1.0. The input vectors were randomly generated by a simple program and the output

vectors were computed by running the actual image segmentation algorithm on the

input vectors. This process created as many training examples as needed. Figure 7.2

shows a typical input vector used and the corresponding output vector.

Hurlbert's image segmentation algorithmmaps directly into the recurrent network

architecture shown in �gure 7.3. Each box contains a GRBF network that must learn

to approximate the function described by equation 7.1. Since the neighborhood for

one-dimensional segmentation contains three pixels, each GRBF net has three inputs.

The three input segmentation function can be written explicitly as

ut+1
x = f(utx�1; u

t
x; u

t
x�1) =

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(utx�1 + utx + utx+1)=3 if jutx � utx�1j � T and

jutx � utx+1j � T
(utx�1 + utx)=2 if jutx � utx�1j � T and

jutx � utx+1j > T
(utx + utx+1)=2 if jutx � utx�1j > T and

jutx � utx+1j � T

utx if jutx � utx�1j > T and
jutx � utx+1j > T

(7:2)

where T is a threshold value which was chosen to be 0.2 in the experiments described

later and utx is the value of pixel x at time t. Equation 7.2 is a way of rewriting

equation 7.1 given the particular neighborhood for each pixel that has been chosen.

A slice of the graph of this function is shown in �gure 7.4. The graph shows

that the surface is composed of many di�erent discontinuous planes. These discon-

tinuities make the function much more di�cult to learn in terms of the number of

examples and GRBF centers required. After many attempts of trying to approxi-

42

f f f f f f f f f f f f f f f f

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Inputs

Outputs

Figure 7.3: This recurrent network was used to learn the one-dimensional segmenta-
tion mapping in which the input and output images were 16 pixels long. Each box

represents a copy of the same GRBF network which takes a neighborhood of pixels
as input and outputs the value of the middle pixel on the next time step.

0

0.2

0.4

0.6

0.8

1 0

0.2

0.4

0.6

0.8

1

0

0.25

0.5

0.75

1

0

0.2

0.4

0.6

0.8

1 0

0.2

0.4

0.6

0.8

1

0

.25

0.5

75

1

x2

x1

f (x1,x2,.5)

Figure 7.4: A slice of the graph of f(x1; x2; x3) as de�ned in equation 7.2 with x3 = 0:5.

43

x1

x2

f (x1,x2)

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.

Figure 7.5: Graph of f 0(x1; x2) de�ned by equation 7.4.

mate this function using an GRBF network with gaussian units, it was found that

the network generalized poorly even with 625 centers. It appears that an extreme

number of centers and examples are needed to learn this function because of the lack

of smoothness. In order to overcome this problem, the three-input function was split

into two two-input functions by taking advantage of the symmetry inherent in the

mapping. The function f of equation 7.2 can be approximated by

f(utx�1; u
t
x; u

t
x+1) � f 0(utx; u

t
x�1) + f 0(utx; u

t
x+1) (7:3)

where

f 0(utx; u
t
y) =

(
(utx + 2uty)=6 if jutx � utyj � T

utx=2 if jutx � utyj > T .
(7:4)

A graph of this function is shown in �gure 7.5. The surface of the graph is

composed of three discontinuous planes, and it proved to be much easier for a GRBF

network to learn this than the three-input function. A GRBF network with 144

44

+ f

f ’ f ’

Figure 7.6: This �gure shows how f was split into two identical GRBF networks, f 0,
by taking advantage of the symmetry of the image segmentation mapping. The f 0

boxes contain the same GRBF network; only the inputs di�er. The outputs of each

f 0 are summed together to produce the output for f . This construction is used by
the recurrent network of �gure 7.3.

gaussian centers plus linear and constant terms can do a good job of approximating

it.

Although f 0 + f 0 is only an approximation to f , the �xed points of the recurrent

network that uses f 0+ f 0 are the same as the �xed points for one that uses simply f .

This is important because the output of the recurrent network is a �xed point.

The recurrent network used to learn the segmentation mapping in this research

took advantage of the symmetry by using two feedforward networks whose outputs

were added together to approximate f . Figure 7.6 shows how f was represented as

the sum of two identical GRBF networks in the recurrent network.

To train the network, good initial parameters were �rst chosen. It proved very

important to start the parameters of the network in a good place as opposed to

starting them randomly in order for the segmentation mapping to be successfully

learned. This point and the limitations it causes are discussed in section 7.6. The

centers of the GRBF network were picked to form a 12 by 12 grid covering the square

[0; 1] � [0; 1]. The centers were kept �xed during the learning phase. To set the ini-

45

tial coe�cients, 300 input/output examples for one-dimensional segmentation were

randomly generated with each example containing 16 pixels. The initial coe�cients

were then selected using the technique discussed in section 6.3 of treating the out-

put training examples as if they were outputs after one iteration instead of many

iterations and then extracting input-output examples for the GRBF network that

approximated f 0. In e�ect, the training examples for the recurrent network were used

to generate approximate training examples for the GRBF network. The coe�cients

for the GRBF network were then calculated using the approximate training examples

and taking the pseudo-inverse as discussed in section 2.2. The result of this is that the

initial recurrent network before training attempted to approximate the segmentation

mapping in one step. In practice, the resulting network had good initial values for

the coe�cients, but left plenty of room for improvement.

After the initial parameters for the GRBF network were selected, the recurrent

network was trained using 14 of the input/output examples. The number of iterations

that the recurrent network did each time the output of the net was calculated was

arbitrarily chosen to be eight. The major consideration that led to choosing eight

iterations was that calculating the output of the net is time consuming and repeatedly

done during training. In order to allow the training of the recurrent network to

complete in a reasonable amount of time, a relatively small number of iterations

had to be used. Both recurrent gradient descent and the random step algorithm

were tested, and the random step algorithm proved to work better on this particular

problem. Figure 7.7 shows the surface of the best f 0 function learned by the network

after 2000 iterations of the random step algorithm on a Sun 4 and 20 iterations on a

CM 2 using 4096 processors. The performance of the recurrent network after training

is shown in �gures 7.8 and 7.9. These �gures show the output of the recurrent network

learned for doing one-dimensional image segmentation on two di�erent input vectors

each containing 48 pixels. One of these test vectors was created by combining three

input examples on which the recurrent network had been trained. The other test

vector was created by combining three input examples on which the network had

not been trained. Using length 48 vectors instead of length 16 vectors to test the

46

0
0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8

1

0

0.2

0.4

0
0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8

1

0

0.2

0.

x1

x2

f (x1,x2)

Figure 7.7: Graph of the function f 0 learned by the recurrent network for one-

dimensional segmentation.

performance of the network serves two purposes. First, it allows more information to

be displayed at once. Secondly and more importantly, it ilustrates the fact that the

recurrent network is scalable. This means that the recurrent network can be used to

segment images that are a di�erent size from the training images. This is possible

because the recurrent network is made up of identical GRBF networks which can be

added as more inputs are desired. The property of scalability is another advantage

of this framework over feedforward networks.

To demonstrate that iteration improved the performance of the network, the out-

put of the network is shown in �gure 7.10 after one iteration and two iterations given

the same input vector used in �gure 7.8. By comparing these outputs and the output

shown in �gure 7.8, one can see that iterating the network improves its approximation

to the actual segmentation mapping.

47

10 20 30 40

0.2

0.4

0.6

0.8

1

10 20 30 40

0.2

0.4

0.6

0.8

10 20 30 40

0.2

0.4

0.6

0.8

1
a b c

Figure 7.8: a) Input vector obtained by combining three length 16 input vectors

which the recurrent network was trained on. b) Target output vector. c) Output of

the recurrent network that was trained to learn one-dimensional segmentation. The
network was iterated for eight time steps to get this output.

10 20 30 40

0.2

0.4

0.6

0.8

1

10 20 30 40

0.2

0.4

0.6

0.8

10 20 30 40

0.2

0.4

0.6

0.8

1
a b c

Figure 7.9: Input vector obtained by combining three length 16 vectors which the
recurrent network was not trained on. b) Target output vector. c) Output of the

recurrent network after iterating for eight time steps.

10 20 30 40

0.2

0.4

0.6

0.8

1

10 20 30 40

0.2

0.4

0.6

0.8

1

10 20 30 40

0.2

0.4

0.6

0.8

1
a b c

Figure 7.10: a) Input vector given to the trained recurrent network. b) Output of the
recurrent network after one iteration. c) Output of the recurrent network after two

iterations. This demonstrates that each iteration improves the output and therefore

that the network is taking advantage of iteration instead of trying to approximate

the function in one step.

48

7.3 Learning two-dimensional segmentation

After successfully learning the one-dimensional segmentation mapping, another re-

current network was tested on its ability to learn the two-dimensional mapping. The

inputs to the recurrent network for the two-dimensional problem were the matrix of

pixels composing an image. Each GRBF network contained in the recurrent network

computed the output for one pixel at the next time step given the current value of

the pixel and its four neighbors. The GRBF network thus had �ve inputs. As in

the one-dimensional case in which the GRBF network had three inputs, this highly

non-smooth function that the GRBF networks had to approximate required too many

centers and training examples to be practical to learn. However, the same technique

of using the symmetry inherent in the function can be employed to circumvent this

problem. Thus, the �ve input function, f , described by equation 7.1 can be broken

up so that

ut+1
x;y = f(utx;y; u

t
x;y+1; u

t
x+1;y; u

t
x;y�1; u

t
x�1;y)

� f 0(utx;y; u
t
x;y+1) + f 0(utx;y; u

t
x+1;y) + f 0(utx;y; u

t
x;y�1) + f 0(utx;y; u

t
x�1;y)(7.5)

where the two input function f 0 is de�ned as

f 0(utx;y; u
t
z;w) =

(
(utx;y + 4utz;w)=20 if jutx;y � utz;wj � T

utx;y=4 if jutx;y � utz;wj > T .
(7:6)

Since f can be approximated by the summation of four simpler functions, the

feedforward networks that make up the recurrent network are four identical GRBF

networks whose outputs are summed. This scheme was used in the recurrent network

and is illustrated in �gure 7.11. As with the one-dimensional case, an GRBF network

with 144 gaussian centers was used to learn f 0. Ten iterations of the recurrent network

were used to get its output.

To train the recurrent network to learn the two-dimensional segmentation map-

ping, six by six unsegmented images were generated for the input training examples

and the corresponding segmented images were computed for the output examples.

Since each image had 36 pixels, the recurrent network had 36 inputs. Such small

49

+

f ’ f ’ f ’ f ’

f

Figure 7.11: This �gure is analogous to �gure 7.6 and shows how f was split into four
identical GRBF networks, f 0, to be used in the recurrent network for learning two-

dimensional segmentation. The outputs of each copy of f 0 are summed to produce
the output for f .

50

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 1920 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Outputs

Inputs

1 2 3 4 5 6

7

13

8 9 10 11 12

14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

a

b

Figure 7.12: a) The pixels of a 6 � 6 image were numbered as shown so that the
images could be given to the recurrent network as one-dimensional vectors. b) This
recurrent network was used to learn the two-dimensional segmentation mapping. Each
box contains a copy of the function f whose representation is shown in �gure 7.11.

Only the connections for three of the f boxes are shown so that the �gure is less

cluttered. The f boxes for boundary pixels such as 18 and 36 that are missing some
neighbors compensate by having extra inputs from themselves. Also, the feedback

connections from outputs to inputs are not shown.

\images" were chosen in order to make the training time reasonable. The architec-

ture of the recurrent network used is shown in �gure 7.12. A typical training example

pair is shown in �gure 7.13.

The 144 centers of the GRBF network were chosen exactly as in the one-dimensional

case: they formed a grid covering the square [0; 1]�[0; 1]. The initial coe�cients of the

network were selected by extracting two-input, one-output examples from the train-

ing images as described in section 6.3 in order to train the GRBF network to give a

rough approximation to f 0. Once the initial parameters of the network were set, the

recurrent network was trained on 10 input-output image pairs using the random step

algorithm on a Sun 4 for 1700 iterations and then on a CM 2 with 4096 processors for

51

1
2

3
4

5
61

2
3

4
5

60
0.25
0.5

0.75
1

1
2

3
4

5
61

2
3

4
5

60
5
5
5
1

1
2

3
4

5
61

2
3

4
5

60
0.2
0.4
0.6
0.8

1
2

3
4

5
61

2
3

4
5

60
2
4
6
8

a b

Figure 7.13: Typical two-dimensional training example. Figure (a) is the input image
and (b) is the output image obtained by running Hurlbert's algorithm on the input.

0
0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8

1

0

0.1

0.2

0
0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8

1

0

0.1

0.

x1

x2

f (x1, x2)

Figure 7.14: Graph of the function f 0 learned by the recurrent network.

52

1
2

3
4

5
61

2
3

4
5
60

0.25
0.5

0.75
1

1
2

3
4

5
61

2
3

4
5
60

5
5
5
1

1
2

3
4

5
61

2
3

4
5
60

0.25
0.5

0.75

1
2

3
4

5
61

2
3

4
5
60

5
5
5

1
2

3
4

5
61

2
3

4
5
60

0.2
0.4
0.6
0.8

1
2

3
4

5
61

2
3

4
5
60

2
4
6
8

a b c

Figure 7.15: a) Input image used in training the recurrent network. b) Target output

image. c) Output of the recurrent network trained to learn two-dimensional segmen-

tation. The network was iterated for ten time steps.

a b c

1
2
3

4
5

61
2

3
4
5
60.2

0.4
0.6
0.8

1
2
3

4
5

61
2

3
4
5
62

4
6
8

1
2
3

4
5

61
2

3
4
5
6

0.4

0.6

0.8

1
2
3

4
5

61
2

3
4
5
6

4

6

8

1
2
3

4
5

61
2

3
4
5
6

0.4
0.6
0.8

1
2
3

4
5

61
2

3
4
5
6

4
6
8

Figure 7.16: a) Input image not used in training the recurrent network. b) Target
output image. c) Output of the recurrent network trained to learn two-dimensional
segmentation. The network was iterated for ten time steps.

31 iterations. The surface of the function learned by the GRBF networks is shown in

�gure 7.14. The performance of the recurrent network on two di�erent training im-

ages is shown in �gures 7.15 and 7.16. These �gures show that the recurrent network

has done a good job of learning the two-dimensional segmentation algorithm.

As in the one-dimensional case, the output of the recurrent network approximates

the desired segmentation mapping more closely as the network is iterated. The im-

provement of the network's output as it iterates is shown in �gure 7.17. This shows

that the recurrent network is taking advantage of iteration in order to approximate

the image segmentation mapping.

The trained recurrent network was also tested on an actual image that was 320

53

1
2
3

4
5

61
2

3
4
5
60.2

0.4
0.6
0.8

1
2
3

4
5

61
2

3
4
5
62

4
6
8

1
2
3

4
5

61
2

3
4
5
60.2

0.4
0.6
0.8

1
2
3

4
5

61
2

3
4
5
62

4
6
8

1
2
3

4
5

61
2

3
4
5
60.2

0.4
0.6
0.8

1
2
3

4
5

61
2

3
4
5
62

4
6
8

a b c

Figure 7.17: a) Input image b) Output of the recurrent network after one iteration.

c) Output of the recurrent network after two iterations.

by 200 pixels in size. To do this, the GRBF network which was previously learned

was put into a new recurrent network with 64000 (= 320 � 200) inputs and hence

64000 copies of the GRBF network. The same pattern of connectivity was used as

in the 36 input recurrent network. This illustrates once again that the recurrent

network is scalable. The original image given to this recurrent network as input

is shown in �gure 7.18. The output of the recurrent network after 300 iterations

is shown in �gure 7.19. Figure 7.20 shows the result of running Hurlbert's actual

segmentation algorithm on the original image. Comparing the network's output to

the original image shows that the network has done a descent job of segmenting the

image. The rightmost three quarters of the face are mostly one shade of gray while

the shadow on the left quarter has been kept separate. The face has retained the nose

and mouth features. Looking at the output from Hurlbert's algorithm in �gure 7.20

reveals more smoothing than the output from the recurrent network. The nose and

mouth have been mostly smoothed over. It appears that the threshold learned by the

recurrent net is smaller than the one used by Hurlbert's algorithm which results in

more features remaining distinct from others. This indicates that the function learned

by the recurrent network is not exactly the one it was being trained on. However, the

network still performs reasonably well.

54

Figure 7.18: Real image given as input to the trained recurrent network.

Figure 7.19: Output of the recurrent network after 300 iterations.

55

Figure 7.20: Output of Hurlbert's algorithm after 300 iterations.

7.4 Learning image segmentation on a feedfor-

ward network

The claim has been made that the recurrent network for learning image segmentation

is superior to a feedforward network. This claim is supported by the theoretical

results of [Sto82] concerning the curse of dimensionality since the recurrent network

need only learn a low-dimensional function. This claim can also be veri�ed by a

simple experiment.

To test the ability of a feedforward network to learn the image segmentation

mapping and compare it against the recurrent network, an RBF network with 16

inputs, 16 outputs and 283 gaussian centers along with linear and constant units

was used. The same 300 training examples used with the recurrent network for

learning one-dimensional image segmentation were used to train the RBF network.

The centers were chosen to be the �rst 283 examples (each of which was a vector of

length 16). With the centers �xed, the equation for the optimal coe�cients is linear

and thus, a matrix inversion was used to �nd the best coe�cients. This method

resulted in the RBF network learning the training examples perfectly. However, the

network exhibited very poor generalization. An example of a typical output for the

56

0 2.5 5 7.5 1012.515

0.2

0.4

0.6

0.8

1

0 2.5 5 7.5 1012.515

0.2

0.4

0.6

0.8

1

2.5 5 7.5 10 12.5 15

0.2
0.4
0.6
0.8
1

1.2

a b c

Figure 7.21: a) Input vector given to the trained feedforward network. b) Desired
output of the network. c) Actual output of the network. This shows very poor

generalization by the trained RBF network.

RBF network given an input vector on which the network was not trained is shown

in �gure 7.21. The �gure shows that the RBF network performs very poorly on this

non-training example. The poor performance of the feedforward network trained on

300 examples indicates that many more training examples are needed for this network

to successfully learn the one-dimensional image segmentation mapping. Hence, the

recurrent network has a clear advantage for this problem. It should also be noted

that the feedforward network is not scalable. If one wanted to use inputs vectors of

length 48, a new feedforward network would have to be trained.

7.5 The e�ect of smoothness on learning with re-

current networks

One question that the experiments using recurrent networks raise is how much of the

di�culty of learning image segmentation is due to the fact that the mapping is discon-

tinuous and how much is due to the fact that the network is iterated many times to

get an output. In order to explore this question, a smooth version of the segmentation

mapping was used to generate smooth output examples for one-dimensional segmen-

tation given the same input vectors used before. To accomplish this, the function f 0

shown in �gure 7.5 was smoothed according to the equation

f 0s(x; y) = �(�jx� yj+ T) (x+ 2y)=6 + �(jx� yj � T) (x=2) (7:7)

57

0
0.2

0.4
0.6

0.8

1

0
0.2

0.4
0.6

0.8

1

0

0.2

0.4

0
0.2

0.4
0.6

0.8

1

0
0.2

0.4
0.6

0.8

1

0

0.

0

x1

x2

f’s(x1,x2)

Figure 7.22: Graph of the function f 0s used for the smooth segmentation mapping.

where T is a threshold (picked to be 0.2) as before and � is the logistic function,

�(x) =
1

1 + e�10x
: (7:8)

This function is pictured in �gure 7.22. The three input, one output function, fs that

calculates a pixel's next value given the neighborhood of pixels around it can then be

expressed as

fs(u
t
x�1; u

t
x; u

t
x+1) = f 0s(u

t
x; u

t
x�1) + f 0s(u

t
x; u

t
x+1) (7:9)

which is the smooth analog of the function f in equation 7.2. The function fs was then

used as f was before to calculate output vectors for smooth segmentation. A typical

training example is shown in �gure 7.23. The output vectors for smooth segmentation

were generated after iterating the smooth segmentation mapping for eight iterations

as opposed to iterating until convergence in the case of normal segmentation. This

is due to the fact that smooth segmentation will smooth over object boundaries if

iterated enough.

Two identical recurrent networks, each starting with the same initial parameters,

were trained concurrently. Both networks were given the same input vectors, but

58

10 20 30 40

0.2

0.4

0.6

0.8

1

10 20 30 40

0.2

0.4

0.6

0.8

1

a b

Figure 7.23: Typical training pair for smooth segmentation. Figure (a) is the input
vector and (b) is the corresponding output vector.

the output vectors for the two networks were di�erent. Network 1 was given output

vectors segmented normally while network 2 was given output vectors created using

the smooth segmentation mapping. The initial L2 error for network 1 was 0.30 while

the initial error for network 2 was 0.85. This means that the initial parameters were

closer to approximating the normal segmentation mapping than the smooth one.

After training each network for the same number of iterations using the random step

algorithm, the �nal error for network 1 was 0.09 and for network 2 it was 0.11. The

error for network 2 improved much more than network 1 in the same amount of time,

but network 1 still had a lower �nal error. This probably means that learning to

approximate a smooth mapping is easier, but the iterative nature of the recurrent

network also adds to the di�culty of the learning task. More experiments are needed

to explore this issue further.

7.6 Discussion of learning with recurrent networks

The previous sections have shown that a recurrent network using the architecture of

�gure 5.1 can learn the image segmentation mapping given examples of unsegmented

and segmented images. This provides some motivation for using recurrent networks

over feedforward networks for learning high dimensional �xed point mappings. In

order to learn the image segmentation mapping, however, a number of a priori as-

59

sumptions were made. First of all, the connectivity of the recurrent network and the

number of centers to use in the GRBF nets was predetermined instead of learned.

The problem of learning the network architecture and number of units to use is not

particular to this research, and has been studied by other researchers in other con-

texts ([Pla91], [MS89]). Currently, there does not seem to be a principled way of

overcoming this di�culty. Other a priori knowledge that was used to learn segmenta-

tion was the method of initializing the parameters of the network intelligently and the

use of symmetry to break up f into lower dimensional functions. The e�ectiveness

of the method of initializing the parameters presented in section 6.3 depends on the

particular �xed point mapping being learned. In the case of image segmentation it

provided a good starting point although in other problems this method of initializing

the parameters may not result in a good starting point. The use of output to output

examples as well as input to output examples to generate the training examples for

initializing the GRBF net will be valid in general for learning any �xed point function

since the output vectors by de�nition map to themselves. One should keep in mind

that �nding good initial parameters can greatly simplify the learning task, but not

starting with good initial parameters does not make the problem impossible. It just

makes the learning process much slower.

The use of symmetry, on the other hand, was speci�c to the image segmentation

mapping and will not apply to all functions. It is important to realize the di�culty

of the task that the recurrent network is being asked to perform. The network is

given an input vector from which to start and is told by way of the output vector

where it should end up, but it is not given any hint of the intermediate steps that it

must go through to get there. The network must discover for itself a way of getting

from the starting point to the ending point and the way it discovers must work for

all input-output pairs it is given as well as generalizing to ones it has not seen. One

might compare this to learning to build an engine by being given all the parts of

an engine along with an already constructed engine and being told to learn all the

steps needed to build the engine oneself. It is not too surprising that some a priori

knowledge is important for succeeding at this task.

60

Chapter 8

Conclusion

This thesis has studied the ability of recurrent networks to learn �xed point map-

pings. Recurrent networks have been proposed for learning �xed point mappings

by a number of researchers, however, since this task can also be accomplished using

a simpler feedforward network, the question of why a recurrent network should be

used over a feedforward network arises. This question has received little attention

in the literature. This thesis addresses this question by proposing a way of using

recurrent networks that takes advantage of their properties in order to ease the prob-

lem of learning high-dimensional �xed point mappings. The idea is to decompose

a high-dimensional function into many identical low-dimensional functions and then

use iteration to converge to the original high-dimensional mapping. Two learning al-

gorithms were presented for training such a recurrent network and experiments were

run to test a recurrent network on the problem of learning an image segmentation

mapping. The recurrent network learned this mapping reasonably well by taking

advantage of some a priori knowledge. The use of a priori knowledge such as assump-

tions about symmetries was found to be important and may limit the usefulness of

using recurrent networks for learning some high-dimensional mappings.

This work can be extended in a number of ways. One extension would be to try

learning a di�erent mapping such as stereo disparity to see if the recurrent network

performs similarly. Also, di�erent types of feedforward networks such as sigmoidal

networks could be tested in the recurrent network in place of the RBF networks that

were used in this research. A longer range and more ambitious idea is to study how

61

any function (not just local and uniform functions) can be represented and learned by

a recurrent network. Since recurrent networks have been shown to be able to compute

any function computable by a Turing machine, it should be possible for a recurrent

network to learn any such function.

62

Bibliography

[Alm87] Luis Almeida. A learning rule for asynchronous perceptrons with feed-
back in a combinatorial environment. In Proceedings of the IEEE First

International Conference on Neural Networks, volume 2, pages 609{618,

1987.

[BCG82] Elwyn R. Berlekamp, John H. Conway, and Richard K. Guy. Winning

ways, for your mathematical plays. Academic Press, 1982.

[BGHS91] H. Behrens, D. Gawronska, J. Hollatz, and B. Schurmann. Recurrent and
feedforward backpropagation for time independent pattern recognition. In
International Joint Conference on Neural Networks, pages II:591{II:596,
1991.

[BL88] D.S. Broomhead and David Lowe. Multivariable functional interpolation
and adaptive networks. Complex Systems, (2):321{355, 1988.

[CG90] Bruno Caprile and Federico Girosi. A nondeterministic minimization al-
gorithm. A.I. Memo 1254, MIT, 1990.

[Cyb89] G. Cybenko. Approximation of superpositions of a sigmoidal function.

Neural Networks, 1989.

[Elm90] J.L. Elman. Finding structure in time. Cognitive Science, 14:179{211,
1990.

[FS88] J. Doyne Farmer and John J. Sidorowich. Exploiting chaos to predict the

future and reduce noise. Technical report, Los Alamos National Labora-
tory, 1988.

[GM90] Eric Goles and Servet Martinez. Neural and Automata Networks: dynam-

ical behavior and applications. Kluwer Academic, 1990.

[GMC+92] C.L. Giles, C.B. Miller, D. Chen, G.Z. Sun, H.H. Chen, and Y.C. Lee.

Extracting and learning an unknown grammar with recurrent neural net-
works. In J.E. Moody, S.J. Hanson, and R.P. Lippmann, editors, Advances

in Neural Information Processing Systems, pages 317{324, San Mateo,
CA, 1992. Morgan Kaufmann.

63

[Gut90] Howard Gutowitz. Cellular Automata: theory and experiment. MIT Press,

1990.

[Hop82] J.J. Hop�eld. Neural networks and physical systems with emergent col-

lective computational abilities. Proceedings of the National Academy of

Sciences, 79:2554{2558, April 1982.

[Hop84] J.J. Hop�eld. Neurons with graded response have collective computational
properties like those of two-state neurons. Proceedings of the National

Academy of Sciences, 81:3088{3092, 1984.

[HU79] John Hopcroft and Je�rey Ullman. Introduction to Automata Theory,

Languages and Computation. Addison-Wesley, 1979.

[Hur89] Anya C. Hurlbert. The computation of color. A.I. Technical Report 1154,
MIT, 1989.

[Jor86] Michael I. Jordan. Attractor dynamics and parallelism in a connectionist
sequential machine. In Proceedings of the Eight Annual Conference of the

Cognitive Science Society, pages 531{546, Hillsdale, NJ, 1986. Erlbaum.

[KGV83] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi. Optimization by
simulated annealing. Science, 220:671{680, May 1983.

[MP76] David Marr and Tomaso Poggio. Cooperative computation of stereo dis-
parity. Science, 194:283{287, 1976.

[MS89] Michael C. Mozer and Paul Smolensky. Skeletonization: A technique
for trimming the fat from a network via relevance assessment. In D.S.
Touretzky, editor, Advances in Neural Information Processing Systems,
pages 107{115, New York, 1989. AIP.

[Pea88] Barak A Pearlmutter. Dynamic recurrent neural networks. Technical
Report CMU-CS-88-191, Carnegie Mellon University, 1988.

[PG89] Tomaso Poggio and Federico Girosi. A theory of networks for approxima-

tion and learning. A.I. Memo 1140, MIT, 1989.

[PG90a] Tomaso Poggio and Federico Girosi. Extensions of a theory of networks

for approximation and learning: dimensionality reduction and clustering.
A.I. Memo 1167, MIT, 1990.

[PG90b] Tomaso Poggio and Federico Girosi. Regularization algorithms for learn-
ing that are equivalent to multilayer networks. Science, 247:978{982,

February 1990.

[Pin87] Fernando J. Pineda. Generalization of backpropagation to recurrent neu-
ral networks. memoS1A-63-87, Johns Hopkins Universitu Applied Physics

Laboratory, 1987.

64

[Pin89] Fernando J. Pineda. Recurrent backpropagation and the dynamical ap-

proach to adaptive neural computation. Neural Computation, 1:161{172,

1989.

[Pla91] John Platt. A resource-allocating network for function interpolation. Neu-
ral Computation, 3:213{225, 1991.

[QS88] Ning Qian and Terrence J. Sejnowski. Learning to solve random-dot stere-
ograms of dense and transparent surfaces with recurrent backpropagation.

In Proceedings of Spring Cold Harbor Summer School on Neural Networks,

pages 435{442, 1988.

[RHW86] D.E. Rumelhart, G.E. Hinton, and R.J. Williams. Learning internal rep-
resentations by error propagation. In Parallel Distributed Processing, Vol

I. MIT Press, 1986.

[SCLG91] Guo-Zheng Sun, Hsing-Hen Chen, Yee-Chun Lee, and C. Lee Giles. Turing

equivalence of neural networks with second order connection weights. In
International Joint Conference on Neural Networks, pages II:357{II:362,

1991.

[SSCM88] David Servan-Schreiber, Axel Cleeremans, and James McClelland. En-
coding sequential structure in simple recurrent networks. Tech Report
CMU-CS-88-183, Carnegie Mellon University, 1988.

[Sto82] Charles J. Stone. Optimal global rates of convergence for nonparametric
regression. The Annals of Statistics, 10(4):1040{1053, 1982.

[Wol86] Stephen Wolfram. Theory and applications of cellular automata. World
Scienti�c Publishing, Singapore, 1986.

[WZ89] Ronald J. Williams and David Zipser. A learning algorithm for continually

running fully recurrent neural networks. Neural Computation, 1:270{280,
1989.

65

