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Albstrat

To be practical, recognition systera mst deal with uncertainty. Rsitions of image
features inscenes vary. Features somtimas fail to appear becawse of unfavorable 111w
mnation. Inthis vork, mthods of statistical inference are conhined wth enpirical
mdel s of uncertaintyinorder to eval vate and refine hypotheses about the occurrence

of a known object in a scene.

Robahilistic mdels are wsed to characterize image features and their correspon
dences. A statistical approach is taken for the acquisition of object mdels from
olservations in images: Mean FEdge Images are wed to capture object features that
are reasonahl y stable wth respect to variations inillumnation.

The Aignrent approach to recognition, that has been described by Huttenl ocher
and Ullman, is wed. The nachani sm that are enpl oyed to generate initial hypothe-
ses are distinct fromthose that are wed to verify (and refine) them In this vork,
posterior probahility and MaximmIikelihood are the criteria for eval vating and
refini ng hypotheses. The recogni tion strategy advocated in this vork my be sum
rarized as Align Refine Veri fy, vhereby local searchinpose space is utilized to refine
hypotheses fromthe alignmant stage before verificationis carried out.

To forml atiors of nodel - based object recogni tion are described. MP Mdel
Mtching eval uates joint hypotheses of match and pose, vhile Rsterior Mrginal
Rse Etimtion eval uates the pose only. local search in pose space is carried out
with the FpectationMxi mzation (EM al gori thm

Recogni tion experimants are described vhere the FMal gori thmis wed to refine
and eval uate pose hypotheses in2Dand 3D Initial hypotheses for the 2Dexperi rarts
vere generated by a simple indexing mathod:  Awgle Rur Indexing.  The linear
(onhination of Views mathod of Ulman and Basri is employed as the projection
mdel in the 3Dexperi rants.
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Chapter 1

Int roduct ion

Vsual object recognitionis the focus of the researchreportedinthis thesis. Recogni-
tionmmst deal wthuncertainty to be practical. Rsitioms of image features bel onging
to objects in scenes vary. Ieatures somtimes fail to appear because of unfavorable
illumnation. Inthis vork, mathods of statistical inference are conhined with enpir-
ical models of uncertainty in order to eval uate hypotheses about the occurrence of a
known object inascene. Qher problem, suchas the gererationof initial hypotheses
and the acquisition of object mdel features are also addressed.

1.1 The Probem

Representati ve recogni tion problers and their solutions are illwtrated in B gures 1-1
and 1-2. The problemis to detect and locate the car in dig tized vi deo i mages, wing
previowsly avai l abl e detailed i nformation about the car. Inthese figures, object mdel
features are superi nposed over the vi deo images at the position and orientation vhere
the car vas found. Hgure 1-1 show the results of 2Drecognition, vhile Hgure 1-2
illwstrates the results of 3Drecognition. These inages are fromexperivants that are
described in (hapter 10. Hactical solutiorns to problem like these wll improwe the

flexihility of robotic systers.

11
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Egure 1-1: Representative Recogni tion Broblemand Sol ution (2D

Eegure 1-2: Rpresentative Recogni tion Broblemand Sol ution (3D
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Inthis vork, the recogni tion probl emis restricted to findi ng occurrences of asingle
object in scenes that may contain other unknown objects. I¢spite the sinplification
and years of research, the problemremairs largel y usolved Rohust systers that
can recogni ze stoth obj ects having six degrees of freedonof position, under varying
condi tions of 111umnation, occlwsion, and background, are mot comarcial l y avail abl e.
Nich efort has been expended on this problemas is evidert in the conprehensi ve
revievs of research in conpiter-hased object recognition by Bsl and Jain [3], vho
cited 203 references, and (hin and Der [18], who cited 155 references. The goal of
this thesis is to characterize, as vell as to describe howto find, robust solutioms to

visual object recogni tion probl ems.

1.2 The »proach

Inthis vork, statistical mthods are wed to eval vate and refine hypotheses in object
recognition. Awgle Ruir Indexing, a means of gererating hypotheses, is introdiced
These machani sta are wsed in an extension of the Aignrent rethod that includes a
pose refinerant step. Fach of these components are anplified bel ow

1.2.1 Saisticd Hpad

Inthis research, visual object recognitionis approachedviathe principles of Mxi num
likelihood (MI) and MximmARsteriori probability (MP). These principles,
along wth specific probahilistic mdels of aspects of object recognition, are wed to
derive obj ective functiors for eval uati ng and refini ng recogni tion hypotheses. The ML
and MPcriteria have along hi story of successtul applicationinforml ating decisiors
and in making estimtes fromobserved data. They have attractive properties of
optinality and are often wseful vhen reasurerant errors are signi ficant.

In other areas of conmter vision, statistics has proven weful as a theoretical
framvork. The vork of Yuille, (¢iger and Bilthoff on stereo [78] is ore exarple,
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vhile ininage restoration the vork of (énan and (eman [28], Mrroquin [3], and
Mrroquin, Nltter and Regio [55] are others. The statistical approach that is wed
inthis thesis conwerts the recognition probleminto a vell defined (al though mot nec-
essarily easy) optinzation problem This has the advantage of providing an explicit
characterization of the problem vhile separating it fromthe description of the al go-
rithm wed tosolweit. Adhoc objective functions have been profitabl y ssed in som
areas of conputer vision. Such an approach is wed by Bunard in stereo mtching
[2], Bake and Zisserman [7] ininage restoration and Beveridee, Wiss and Rsenan

[6] inlire segrant based model matching, Wih this approach, plawsible form for
comporents of the objective function are of ten conbi ned 1si ng trade- off pararaters.
Such trade-off paramaters are determned enpirically. A advartage of deriving ob-
jective functiors fromstatistical theories is that assunptions becom explicit — the
form of the objective function components are clearl y rel ated to specific probahilistic
mdels. If these mdel s fit the domai nthenthere is som assurance that the resulting
criteria wll performvell. Asecond advartage is that the trade-off paramaters in the

objective function can be derived frommeasurable statistics of the donain.

122 Feture Based Rogitian

This vork wses a feature-based approach to object recognition. Ieatures are abstrac-
tions like poirts or curves that summarize some structure of the patterns inaninage.

There are several reasors for wing feature based approaches to object recognition.

o Ieatures can concisely represent objects and images. Ieatures derived from
brightness edges can sunmari ze the inportant everts of aninage in a vay that

is reasonably stable wth respect to scene illumnation.

o Inthe aligmant approach to recognition (to be described shortly), hypotheses
are verified by projecting the object mdel into the image, then corparing the
predi ction against the image. By using compact, feature-hased representati ons
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of the object, projection costs may be kept low

o Ieatures also facilitate hypothesis generation. Indexing mathods are attractive
machani sta for hypothesis gereration.  Such methods wse tables indexed by

properties of small groups of image features to quickly locate corresponding
mdel features.

yject Ratures fromOservati on

Amajor issue that mst be faced in mdel-based object recognition concerns the
origin of the object mdel itself. The object features that are wsed in this vork are
derived fromactual 1mage observations. This mathod of feature acquisition autorat-
ically favors those features that are likely to be detected in imges. The potentially
difiad t problemof predicting image features fromabstract georatric mdels is by
passed. This prediction problemis manageable in some constrained domins (wth

pol yhedral objects, for imnstance) bt it is often diflidt, especially with smoth ob-
jects, lowresolution images and 11 ghting variatiors.

For robustness, sinple local 1mage features are wsed inthis vork Fatures of this
sort are easily detected in cortrast to extended features like line segrants. Fxtended
features have been wsed in some system for hypothesis gereration becaise their ad
ditional structure provides more comstraint than that offered by sinple local features.
Edended features, nonetheless, have dravbacks in being difliult to detect dve to
occlwsioms and localized failures of 1mage contrast. Bcawse of this, systema that rely
on di stingui shed features can lose robistness.

123  Aigmat

Hmpothesize-and-test, or alignnent mathods have proven eflective in visual object
recognition. Hittenlocher and Ulman [43] wed search over mininal sets of corre-
spondi ng features to establish candi date hypotheses. Intheir vork these hypotheses,
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or al i gnments, are tested hy projecting the object mdel into the image wing the
pose (position and oriertation) inplied by the hypothesis, and then by perforning a
detailed conparison wth the inage. The hasic strategy of the alignmant method is

to we separate machani sta for gererating and testing hypotheses.

Recently, indexing mathods have becorn available for efliiently generating hy-
potheses in recognition. These mathods avoi d a si gni ficart anount of search by wsing
pre-commted tables for 1ooking up the object features that mght correspond to a
group of image features. The geomtric hashing mathod of Landan and W fson [49)]
wes invariart properties of small groups of features under affie transformations as
the lookup key:  (Terars and Jacobs [19] [20], and Jacobs [45] described indexing
mthods that gain eflii ency by wsing a feature grouping process to select small sets
of image features that are likely to bel ong to one ohject in the scene.

Inthis vork, asinple formof 2Dindexing, Angl e Pair Indexi ng, is wsedto gererate
initial hypotheses. It wes an imariant property of pairs of image features under
translation, rotation and scale. This is described in (hapter 9.

The Fough transform[40] [44] is another comonly wed mthod for generating
hypotheses in object recognition In the Fbugh mathod, feature-hased clistering is
performad in pose space, the space of the trarstormations describing the possible
motion of the object. This mathod vas wed by Giinson and Tozano-lrez [36] to
localize the search in recogni tion.

These tast mathods of hypothesis generation provi de ongoi ng reasors for wsing the
alignmant approach. They are often most eflective vhen wed in conjunction wth
verification. Vrification is important because indexing mathods can be susceptible
to table collisioms, vhile Fbugh mathods somatimes gererate false positives due to
their aggregationof inconsistent evidence inpose space hins. This last point has been
argued by Giirson and Hettenl ocher [39)].

The wual alignmart strategy may be sumarized as al ¢ gn veri fy. Aignrent and
veri fication place diflering pressures on the choice of features for recognition. Mch
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ani st wsed for generating hypotheses typi cally have conmtational conplexity that
is polynomal inthe muher of features imwolved Recase of this, there is significant
advantage to wsing lowresol ution features — there are fever of them hfortunately,
pose estimates based on coarse features tend to be less accurate than those based on
hi gh resol ution features.

likewse, verification is wually nore reliable wth high resolution features. Ths
approach yiel & more detailed conparisoms. These diflering pressures may be accorn
mdated by enpl oying coarse-fine approaches. The coarse-fine strategy vas utilized
successfully in stereo by Gimson [33]. In the coarse-fine strategy, hypotheses de-
rived froml owresol ution features 1imt the search for hypotheses derived fromhi gh
resolution features. There are soma potential difkiulties that arise vhen applying
coarse-fine rathods in conjunction wth 3Dobject mdels. These may be avoi ded
by wsing viewbased al ternatives to 3Dobject madeling, These issues are discussed
rore fully in GQapter 4.

Aign Rfire Verify

The recogni tion strategy advocated in this vork may be sumarized as al i gn refine
verify. s approach has been wsed by lipson [50] in refining aligmants. The key
ohservation is that local search in pose space my be wsed to refine the hypothesis
fromthe alignnart stage before verification is carried out. In hypothesize and test
mthods, the pose estimates of the imtial hypotheses tend to be somavhat 1 naccurate,
since they are based on mni mal sets of corresponding features. Rtter pose estimates
(hence, better verificatioms) are likel ytoresult frommsingall supportinginage feature
data, rather than a small subset. (hapter 8 describes a mathod that refines the pose

estimate vhile simnltaneowsly identifying and incorporating the corstrairts of all

supporting image features.
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1.3 Guide to Thesis

Biefly, the presertation of the material in this thesis is essentially bottomup. The
early chapters are concerned wth buil ding the conponents of the forml ation, vwhile

the main cortributiors, the statistical formlatiors of object recognition, are de-
scribed in (hapters 6 and 7. Ater that, related al gorithm are described, folloved

by experi nants and concl wsiors.

In more detail, (hapter 2 describes the probabilistic mdels of the correspon
dences, or mapping betveen image features and features bel onging to either the ob-
ject or to the backeround. These mdel s 1se the princi ple of naxi nmmentropy vhere
little informationis available before the imge is observed In (hapter 3, probahilis-
tic mdels are devel oped that characterize the feature detection process. Hpirical
evidence is described to support the choice of model.

(apter 4 discusses a vay of obtaining average object edee features froma se-
quence of observations of the object ininages. I¢termmnistic mdels of the projection
of features into the image are discussed in (apter 5. The projection mthods wsed
inthis vork are linear in the paramters of the tramsformations. Mthods for 2Dand
JDare discussed, including the linear (orhination of Wews mathod of Ulnan and
Bsri [71].

In (hapter 6 the above mdel s are conhi nedin a Biyesi an frarnevork to comstruct
a criterion, MAP Mdel Mt ching, for eval uating hypotheses in object recognition.
In this formlation, conplete hypotheses corsist of a description of the correspon
dences betveen image and object features, as vell as the pose of the object. These
hypotheses are eval vated hy their posterior (after the image is olserved) probahility.
Arecogni tion experimant is described that wses the criteriato guide a hewristic search
over correspondences. Aconnection betveen MP Mdel Mt chi ng and a rathod of
robust charfier matching [47] is described

Bilding on the above, a second criterion is described in (apter 7: Posterior
Marginal Pose Fstination (INH). Rre, the solution being sought is simply the
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pmse of the object. The posterior probahility of poses is obtained by taking the
fornal marginal, over all possible mtches, of the posterior probability of the joint
hypotheses of MP Mdel Mtching. This results in a smoth, non-linear objective
function for eval vating poses. The smothness of the objective function facilitates
local search in pose space as a machanismfor refining hypotheses in recognition.
Sore experi mantal expl oratiors of the objective functionin pose space are described
These characterizatioms are carried out in tvo donaims: video imagery and synthetic
radar range inagery.

(hapter 8 describes we of the the Frpect at i on- Mixi i zat i on (FN al gori thm[ 21]
for finding local maxima of the PNBEobjective function. This al gori thmal ternates
betveen the Mstep — a vei ghted least squares pose estimate, and the Estep — re-
cal cul ation of the veights based on a saturating norrlinear function of the residials.

This al gorithmis wed to refine and eval vate poses in 2Dand 3Drecogni tion ex
perinants that are describedin (hapter 10. Initial hypotheses for the 2Dexperi rents
vere gererated by a sinple indexing method, Angle Fair Indexing, that is described
in (apter 9. The linear (onhi nation of Wevs mthod of Ulman and Bwsri [71] is
erpl oyed as the projection mdel in the 3Dexperimants reported there.

Hnally, som conclusiors are dravnin (hapter 11. The motation wsed throughout
is summarized in Appendix A
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Chapter 2

Modeli ng Feat ure Correspondence

This chapter is concerned with probabilistic mdel s of feature correspondences. These
mdels wll serve as priors in the statistical theories of object recognition that are
described in (Qapters 6 and 7, and are inportant conponents of those forml ations.
They are wsed to assess the probabi lity that features correspond before the i mage data
is compared to the object model. They capture the expectation that som features
in an image are antici pated to be due to the object

Three difierent mdels of feature correspondence are described, one of vhichis
wed 11 the recogni tion experinants described in (hapters 6, 7, and 10.

2.1 Featuwes and Correspondences

This research focises on feature-based object recognition. The object being sought
and the image bei ng anal yzed comsist of discrete features.
let the image that is to be anal yzed be represerted by a set of v-dimarsional

point features

Y = {1/171/2771/71} ) 1/2 e R .
Inage features are discussed in nore detail in (Ghapters 3 and 5.

21
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The ohject to be recognized is al so described by a set of features,

M:{M17M27"'7Mm} '

The features wll wually be represented by real matrices. Alditional details onobject
features appears in (hapters 4 and 5.

Inthis vork, the interpretation of the features in animge is represerted by the
variable I', vhi ch describes the mappi ng fromi nage features to object features or the
scere backeround. This is also referred to as the correspondences.

F:{F 17F27"'7Fn} ) FZEM{J—} :

Inaninterpretation, eachinage feature, ¥ i, Wil be assigred either to som object
featwre M ;, or to the background, vhichis demoted by the synhol L This synhol
plays arole simlar to that of the null character inthe interpretationtrees of Giimon
and Tozano- Rrez [36] . Aninterpretationis illwtratedin Hgure 2-1. T'is a collection
of variables that is indexed in parallel wth the imge features. Fach variable T’
represents the assignnant of the corresponding image feature ¥ ;. 1t may take on as
valte any of the object features M, or the background, L This, the maning of the
expression ' 5 =M ¢ is that 1mage feature five 1s assigned to object feature six, likewse
I'; =L mars that image feature seven has been assigned to the background. In an
interpretation each image feature is assigned, vhile som object features nay mot be.
Alditionally, several image features may be assi gred to the same object feature. Ths
representation allovs image irterpretatiors that are inplawsible — other machani sma

are wsed to encourage matrical comsistency.
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2.2 Ao Independert (Orrespondence Model

In this section a sinple probahilistic model of correspondences is described.  The
intert is to capture some informtion bearing on correspondences before the image is
compared to the object. This mdel has been desi gned to be a reasonabl e conpromse
betveen sinplicity and accuracy.

In this mdel, the correspondence statws of diflering imge features are assuad
to be independent, so that

p(0) = T[AT ) - (21)

Rere, 1) is a probability mass function on the discrete variable I There is
evi dence agai st wsing statistical independence here, for example, occlwionis locally
correl ated. Independence is wsed as an engi neering approxi nation that sinplifies the
resulting formlatiors of recognition It may be justified by the good performance
of the recognition experinants described in (hapters 6, 7, and 10. Fewrecogni tion
system have wed non-independent models of correspondence. Beuel outlined one
approachinhis thesis [9]. Arelaxationof this assumtionis discussedinthe followng
section.

The comporent probehility function is designed to characterize the amout of
clutter in the image, but to be otherwise as non-coomnttal as possiHe:

i) = (22)
% otherwse

{B T =L

The joint model #1) is the naxi mmentropy probahility function that is con
sistent wth the corstraint that the probahility of an image feature bel onging to the
backgroundis B Bray be estimated by taki ng sinple statistics onimages fromthe
domain. B=.9 voul d man that 90 % of image featwres are expected to be dve to
the background

Hwing Beorstant during recognition is an approximation. ‘The mmher of fea-
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tures due to the object wll likel y vary according to the size of the object inthe scere.
Beoul d be estimated at recogni tion tine by pre- processi ng rachani sta that eval vate
imge clutter, and factor in expectations about the size of the object. In practice,
the approxination vorks vell in controlled situations.

The independent correspondence model is wed in the experimants reported in

this research.

2.3 AMrkov (orrespondence Mdel

A indi cated above, one inaccuracy of the independent correspondence mdel 1s that
sample realizations of 1" drawn fromthe probahility function of Kpations 2.1 and
2.2 wll tend to be owerly fragranted in their modeling of occlusion. This section
describes a conpromse mdel that rel axes the independence assunption sonavhat

by alloving the correspondence status of an image feature (I ;) to depend on that of
its neighbors. Inthe domain of this research, image features are fragrants of imge
edge curves. 'These features have a natural neighbor relation, adjacency along the
image edge curve, that may be wed for corstructing a 1D Mrkov RindomEi el d

(M) model of correspondences. NRs are collectiors of randomvariables vhose
condi tional dependence is restricted to limted size nei ghborhoods. MR nodel s are
disassed by (¢man and (énan [28].  The following describes an MR model of
correspondences intended to provide a more accurate model of occlusion.

#D) =¢(I' )T 2)...qUn)ri(Ty, Do)ra(Te, Us) o oorpea (Ug, ) (2.3)

where

ey otherwise

eq 1f L =L
;) = { (24)
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and
e 1l a=landb=L
eq if a#landb /=L if features ¢ andz 4 1 are neighbors
rife,b) = es otherwse
1 otherwse .
(2.5)
The assignent of indices to imge features should be done in such a vay that
rei ghboring features have adjacent indices. The functions r (+,+ ) model the interac-
tion of neighboring features. The paramaters e 1...e5 may be adjwted so that the

probability function 1) is comsistent with observed statistics on clutter and fre-
quency of adjacent occlusions. Additionally, the paramters mst be constrained so
that Fuation 2.3 actually describes a probahbility function. Wen these comstraints
are mat, the model wll be the naxi nmentropy probability function consistent wth
the corstraints. Satisfying the corstraints is anontrivial selection probl emthat may
be approachediterativel y. Tortunately, this cal cul ation doesn’t need to be carried out
at recognition tima. (&l dnan [30] discusses mthods of cal cul ating these paramaters.
The model outlined in Kuations 2.3 — 2.5 1s a gereralization of the Ising spin
mdel.  Ising mdels are wed in statistical physics to mdel ferromgpetism[73].
Saples dravn fromlsing mdels exhibit spatial clumping whose scale depends on
the pararaters. In object recognition, this clunping behavior may provide a rore
accurate mdel of occlwsion.
The standard Ising mdel is shom for reference inthe followng equations. It has
been restricted to 11) and has been adapted to the notation of this section.

o; € {—1, 1}

Ho109...0,) = %9(01)9(02)‘ o dq) Hor,00)(0g,08) - 1{go, 0n)
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) if a=1
exp( — k—H) otherwise

exp( %) if a=b
{ exp(— %) othervise .

Hre, Zis a normalization comstant, g is the momant of the magretic dipoles,

H is the strength of the applied magretic field, k& 1s Bltznamn's comstant, 7' is
terperature, and J is a neighbor interaction corstant called the exchange erergy.

The approach to mdeling correspondences that is described in this section vas
outlinedin Wls [] []. Susequently, Beuvel [9] described a simlar local interac-
tionmdel of occlwsioninconunctionwthasinplifedstatistical mdel of recognition
that wsed bool ean features in a cl assi fication based schem.

"The Mrkov correspondence model is not wsed in the experi nants reportedinthis

research.

2.4 Incorporating Saliency

Aother route to more accurate nodel ing of correspondences is to exploit bottomup
saliency processes to suggest vhich image features are mst likely to correspond to
the object. Qve such process in described by Ulran and Shashia [ 66] .
For concreteness, assum that the saliency process provide a per-feature masure
of saliency, S;. Bincorporate this infornation, ve construct I’ . =lS ;). This my
be conveni ertl y cal cul ated via Biyes” rule as follovs:

ey S =l =)
M= HSi)

£S5 | L =D ad S ;) are probability demsities that may be estimated from
observed frequencies in training data. & inSection 2.2, ve set I’ ;=) =B
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Afeature specific background probahility may then be defined as follovs:

£ 1] T =)
Bi=ogl', =] §,)=———F"8.
HS )
Inthis case the complete probahility function on I' s wll be
AT B, if L=
Z I_TB" otherwse

This model is mot wedin the experimants described inthis research.

2.5 (oncl vsiors

The simplest of the three mdels described, the independent correspondence nodel
has been wsed to good eflect 11 the recogni tion experi rants descri bed i n (hapters 6, 7,
and 10. Insorma domai ns addi tional robistness inrecogni tion mght result fronusing
either the Mrkov correspondence mdel, or by incorporating saliency information.

(2.6)



Chapter 3

Mbdel i ng Image Features

Robahilistic mdels of image features are the topic of this chapter. These are an
other important component of the statistical theories of ohject recognition that are
described in (hapters 6 and 7.
The probahility dersityfunctionfor the coordinates of inage features, conditioned
on correspondences and pose, 1s defined. The HF has tvo inportant cases, depend
ing on vhether the image feature is assigred to the object, or to the backeround.
Fatures mtched to the object are mdeled wth normal demsities, while unform
dersities are wedfor hackground features. Hmpirical evidence is provi ded to support
the wse of normal demsities for matched features. Aformof stationarityis described.
Mny recognition system inplicitly we wiformdersities (rather than nornal
dersities) to nodel matched image features (bounded error mdels). The enpirical
evidence of Section 3.2.1 indicates that the normal model may soretimes be better.

Becaise of this, wse of normal mdel's may provi de better perfornance in recogni tion.
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3.1 AUniformMdel for Backgroud atures

The image features, Y ;, are vdimansional vectors. Wen assigned to the background,
they are assumad to be uni fornhy distri buted,

1 A

(The H¥is defired to be zero outside the coordinate space of the image features,
vhi ch has extent W ; along dinarsion . ) I'describes the correspondences fromi mage
features to object features, and 3 describes the position and orientation, or pose of
the object. Ior exanple, if the image features are 2Dpoints in a 640 by 480 i mage,
thenf{Y ; | LA = gpoges, Wthintheimge. TorY , this probahility function depends
only on the " th conponent of I

Rovi ding a satisfying probahility densityfunction for background features is prob-
lematical. Hpation 3.1 describes the maxi mimentropy H¥ corsistent wth the
corstraint that the coordinates of image features are al vays expected to lie wthin
the coordinate space of the image features. KT Jaynes [46] has argued that naxi-

murentropy di stributions are the most honest representationof astate of inconpl ete

knowt edge.

3.2 ANorml Mdel for Mtched Features

Image features that are mtched to object features are assumd to be normally dis-
tributed about their predicted positionin the image,

wY: | LA =G y,(Yi=P(M;,8) ifli=M; . (3.2)

Rre Y ;, I, and Bare defined as above.
Gy, is the v-dimarsional (aussian probahility dersity function wth covariance
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mtrix Y ; ;

The covariance matrix

Wen I

v 1 1
Gy, (2) =(27) ~2|dh 72 ep(— Sty

2

i ;18 discussed more fully in Section 3.3.

; =M ;, the predicted coordinates of image feature Y

; are given hy

AM ;, 3, the projection of object feature j into the image with object pse 4 Ro-

jection and pose are dis

321 Egind F

cwssed in ore detail in (hapter 5.

idyee fa tle Nard MH

This section describes som empirical evidence fromthe donain of video i mage edge

features indi cating that normal probahility dersities are good mdels of feature fhuc-

tuations, and that they can be better than wniformprobability dersities.

The ev-

idence is provided in the formof observed and fitted cuml ative distributions and
Il mogorov- Smrmnov tests. The model distributiors vere fitted to the data wsing the
Mxd nimli kel 1 hood et hod.
The data that is anal yzed are the perpendicular and parallel deviations of fine
and coarse edge features derived fromvi deo images. The fire and coarse features are

shomnin Hgures 3-1 and 3-3 respectivel v
The mdel features are fromMan Klee Tmages, these are described in Section

4.4, "The edge operator wsedin obtai ning the i mage features is ridges inthe magni tude
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of the image gradient, as discussedin Section4.4. The smoothi ng standard devi ation
wed in the edge detection vas 2.0 and 4.0 pixels respectivel y; for the fine and coarse
features. These features vere also wsed in the experinants reported in Section 10.1,
and the correspondences vere wsed there as training data.

For the anal ysis in this section, the feature data comsists of the awerage of the
xrand y coordinates of the pixels fromedge curve fragmants — they are 2D point
featwres. The features are displayed as circular arc fragments for clarity. The edge
curves vere broken arbitrarily into 10 and 20 pixel fragparts for the fine and coarse
features respectivel y.

(orrespondences fromimage features to mdel features vere established by a
reutral subject wing a muse. These correspondences are indi cated by heavy lines
in Hgures 3-2 and 3-4. Rerpendicular and parallel deviations of the corresponding
features vere cal culated wth respect to the normals to edge curves at the imge
features.

Hegue 3-5 show the cumlative distributions of the perpendicular and parallel
deviations of the fine features. The curml ative distributiors of ftted normal dersities
are plotted as heavy dots over the observed distributions. The distri butions vere fitted
to the data wing the Mxi rimli kel i hood method — the mean and vari ance of the
normal density are set to the maan and vari ance of the data. These figures showgood
agreerant betveen the observed distributions, and the ftted nornal distributions.
Sl ar observed and fitted di stributions for the coarse devi ations are shownin K gure
3-6, again wth good agreenart.

The observed cuml ative distributions are shown again in Hgures 3-7 and 3-8,
this tima wth the cumlative distributions of fitted wiformdersities over-plotted
in heavy dots. A& before, the wniformdersities vere fitted to the data wsing the
Mxi nomli kel 1 hood nathod —in this case the uniformdensities are adjwsted to just
include the extrem data. 'These figures showrel ativel y poor agreemart betveen the
ohserved and fitted di stributions, in conmparison to normal densities.
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CDF and Normal Distribution for Fine Perpendicul ar Deviations

-4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.Q
Pi xel s

CDF and Normal Distribution for Fine Parallel Deviations

i
-6.0 -4.0 -2.0 0.0 2.0 4.0 6.0
Pi xel s

Haure 3-5: Oserved Gunl ative Dstributions and Ftted Nrmal Gl ative Ds-

tribtions for Ere Ieatures



36 CHAPTER 3.  MODELI NG I MAGE FEATURES

CDF and Normal Distribution for Coarse Perpendicul ar Deviations

Pi xel s

CDF and Normal Distribution for Coarse Parallel Deviations

Pi xel s

Hagure 3-6: Oserved Gunl ative Dstributions and Ftted Nrmal Gl ative Ds-
tribitions for (oarse Fatures



3. 2. ANORMAL MODEL FOR MATCHED FEATURES

CDF and Uni form Distribution for Fine Perpendicul ar Deviations

: : : ; :
-4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.Q
Pi xel s

CDF and Uniform Distribution for Fine Parallel Deviations

i
-6.0 -4.0 -2.0 0.0 2.0 4.0 6.0
Pi xel s

Hagure 37 Oserved Gl ative Dstributions and Htted Ui formGil ative Tds-

tribtions for Ere Ieatures
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CDF and Uni form Di stribution for Coarse Perpendicul ar Deviations

i i i i
-4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0
Pi xel s

CDF and Uniform Distribution for Coarse Parallel Deviations

Pi xel s

Hagure 3-8 Oserved Gl ative Dstributions and Htted thi formGiml ative Tds-
tribitions for (oarse Fatures
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Normal Hpothesis Uhi formHrpot hesi s
[#vi ate N D, | P(D>D ,)| D, rRD>D )
K re Rerpend cul ar 118 | .0824 . 3996 L2214 . 000014
Hre Purallel 18 | .07l A845 . 15% . 0049
(varse Rerpend cul ar R | .15%6 CD3LT L2518 L0574
(varse Parallel R | .0948 9628 1543 D172

Bhle 3.1: Il nogorov- Smirnov Ests

Kol nogorov-Smrnov Tests

The Tl nogorov- Smrnov (1) test [59] is ore vay of anal yzing the agreerant be-
tveen observed and fitted cuml ative distributions, such as the ores in Hgures 3-5
to 3-8 The IS test is conputed on the magnitude of the largest diflerence betveen
the olserved and hypothesi zed (fitted) distributions. This wll be referred to as D
The probability distributiononthis distance, under the hypothesis that the data vere
dravn fromthe hypothesi zed di stribution, can be cal culated. A asynptotic forml a

is given hy
RD=D ) =Q( VND,)
vhere
@ =2 () en(2 )

and D , 1s the observed valve of 1)

The results of IS tests of the comistency of the data wth fitted normal and
ui formdistributions are show in Bhle 3.1, Towvalues of RD> D o) suggest
incompatibility betveen the data and the hypothesized distribution. In the cases
of fine perpendicular and parallel deviations, and coarse perpendicular deviations,
refutation of the uniformnodel is strongly indicated Strong cortradictions of the
fitted normal models are not indicated in any of the cases.
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3.3 Qiernted Satiomary Statistics

The covari ance matrix ; ; that appears in the model of matched irage features in
Kypation 3.2 1s alloved to depend on both the image feature and the object feature
invol vedinthe correspondence. Indexing on allovs dependence on the i mage feature
detection process, vhile indexing in j allovs dependence on the identity of the mdel
feature. This is weful vhen som mdel features are knowto be noisier than others.
This flexibilityis carried through the formalismof later chapters. Athough such flex
ihility can be weful, substantial sinplification results by assumng that the features
statistics are stationary in the image, i.e. ¢ ;=9 for all 5. This could be reason
able if the feature fhctuations vere isotropic in the image, for example. Inits strict
formthis assurption nay be too limting, hovever. This section outlines a compro-

mse approach, oriented stationary statistics, that was wed in the inplenantations
described in (hapters 6, 7, and 8.

This mathod imvol ves attaching a coordi nate systemto each image feature. The
coordi nate systemhas its origin at the point location of the feature, and is oriented
wth respect to the direction of the underlying curve at the feature point. Ween
(stationary) statistics on feature deviatioms are measured, they are taken relative to

these coordi nate system.

331 Etimtig tle Paadas

The experimants reportedin Sectioms 6.2, 7.1, and (hapter 10 we the normal model

and oriented stationary statistics for matched imge features. Ater this choice of
mdel, it is still recessary to supply the specific paramters for the mdel, namaly,
of the normal dersities.

the covariance matrices, ¥
The paramaters vere estimated fromohservations on mtches done by hand on
sarpl e 1 mages fronthe domin. Bcaise of the stationarity assumptionit is possible

to estimate the comon covari ance, ;/; by observi ng match data on ore image. Ior
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this purpose, a match vas done wth a nouse betveen features froma Man Kige I

age (these are described in Section 4.4) and a representati ve i nage fromthe domain.
Dring this process, the pose of the object vas the sam in the tvo images. This
produced a set of correspondi ng edee features. for the sake of exarple, the process
wll be described for 2Dpoint features (describedin Section 5.2). The procedure has
al so been wed wth 2Dpoi nt-radi us features and 2Dori ented range features, that are
described in Sections 5.3 and 5.4 respectivel y.

Let the observed image features be described by Y i, and the correspondi ng maan
mdel features by V:. The observed residual's betveen the “data” image features, and
the “mean” features are A ;=Y ; — YZ

The features are derived fromedee data, and the underlying edge curve has an
orientation angle in the imge. These angles are wed to define coordinate system
specific to each image feature Y ;. These coordi nate system define rotation matrices
R; that are wsed to trarsformthe resi dual s 1 nto the coordinate system of the features,
inthe followng vay: A ! =R ;A,.

The stationary covariance matrix of the matched feature fluctuations observed
in the feature coordinate systern is then estimated wing the Mxi numli kel i hood
mthod, as follovs,

T l I Al T
=T

Rre T denotes the matrix tramspose operation. This techni que has som hias, but
for the reasonably large sanple sizes invol ved (na 100) the eflect is mmor.

The resul ting covariance natrices typicallyindi cate larger variance for deviatiors
along the edge curve than perpendicular to it, as suggested by the data in Hgures
35 and 3-6.
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332 Seadizig tle Coaiare

X recognitiontim, it is necessary to specialize the comstant covari ance to eachimge
feature. This is dore by rotating it to orient it wth respect to the image feature.
Acovari ance matrix tramsform like the followng product of residuals:

AIALT
This is tramsformad back to the inage systemas follows,
RIAINR;
Ths the comstant covariance is speci alized to the inage features inthe fol l owng vay,

i =R TR
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Mbdel i ng Objects

Wt 1s needed fromohject mdel s? Tor recogni tion, the minissue lies inpredicting
the image features that wll appear inanimage of the object. Shoul d the object model

be a monolithi ¢ 3Ddata structure? Ater all, the object itself is 3D Inthis chapter,
som pros and cors of monolithic 3Dmdels are outlined. An al ternative approach,
interpolation of views, is proposed. The related problemof obtaining the object
mdel data is discwssed, and it is proposed that the object mdel data be obtai ned
by taking pictures of the object. An autoratic rathod for this purpose 1s described
Alditionally, a means of edge detection that captures the average edges of an object

is described.

4.1 Mmolithic 3D (bject Mdels

Qe motivation for wsing 3Dobject mdels in recogni tion systern is the observation
that conmter graphi cs techni ques can be wed to synthesize convi ncing i mages from
3Drodel s in any pose desired.

Ior som obj ects, havinga single 3Dmdel seern amatural choi ce for arecogni tion
system If the object is pol ygonal, andis represerted by alist of 3Dlire segmnts and
vertices, then predicting the features that wll appear in a gi ven hi gh resol ution view

43
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is asinple mtter. Al that is neededis to apply a pose dependent tramsformation to
each feature, and to performa visihility test.

For other objects, such as stoothly curved objects, the situationis diferent. Be-
di cting features beconas rore el aborate. In video imagery, occluding edges (or [ inbs)
are of ten inportart features. (@l culating the linb of a smoth 3Dsurface is wually
complicated. Ponce and Kiegnan [58] describe an approach for objects mdeled
by parametric surface patches. Agebraic elimnation theory is wed to rel ate 1mage
linhs to the model surfaces that generated them Books” vision system Acronym
[10], also recognized curved objects frominage linhs. It wed gereralized cylinders
to mdel objects. Adravback of this approachis that it is avkvard to realistically
mdeling typical objects, like telephones or aitombiles, wth generalized cylinders.

Redi cting rediced resol ution i mage features is another difiulty wth ronolithic
3Dmdels. This is a dravback becaise doing recognition wth reduced resol ution
features is an attractive strategy: wth fever features less search wll be needed. Qe
solution voul d be to devise a vay of smothing 3Dobject models such that simple
proj ection operations voul d accuratel y predi ct rediced resol ution edge features. N
such method is know to the anthor.

[#tecting reduced resol ution image features is straightforvard (eod edge fea-
tures of this sort my be obtai ned by smothing the grayscal e i mage before wsing an
edge operator. This mathod is comonly wed with the Gumy edge operator [13],
and with the Mrr- Hl dreth operator [53].

A al ternative approachis to do projectiors of the object model at full resol ution,
and then to do som kind of smothing of the image. It isn't clear vhat sort of
smoothi ng voul d be needed. (ke possihilityis to do photoratrical ly realistic projec-
tioms (for exanple by ray tracing rendering), performsmothing in the image, and
then wse the samm feature detection schem as is wsed on the images presented for
recogni tion. This mathodis likel y to be too expersive for practical recognitionsystem
that need to performl arge anmunts of prediction. Rerhaps better vays of doing this
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wll be found

Self occlusion is an additional complexity of the monolithic 3Dmdel approach.
In conmter graphics there are several vays of dealing wth this issuve, amng them
hidden line and z huffer mathods. These mathods are fairly expensive, at least in
conpari son to sparse point projections.

In sumary, monolithic 3Dobject mdels address soma of the requirerants for
predi cting 1mages for recognition, bt the comptational cost may be high.

4.2 Interpolation of Views

Qe approach to avoi ding the difld ties discissed in the previows sectionis to wse an
inage- based approach to object modeling, Ulnan and Bsri [71] have di scussed such
approaches. There is som hiol ogical evidence that animal visionsystem have recog-
ni tion subsystem that are attuned to specific vievs of faces [25]. This may provide
som assurance that inage-based approaches to recognition aren’t unreasonabl e.

A inportant issue wth image-based object mdeling concerrs howto predict
image features in a vay that covers the space of poses that the object may assum.

Bxdies undergoing rigid mtion in space have six degrees of freedom three in
tramsl ation, andthreeinrotation. This six paramater pose space nay be split into tvo
parts —the first part bei ng trarsl ation andinimage-plare rotations (four paramaters)
— the second part being out of image-plane rotations (tw paramters: the “View
sphere”).

Synthesizing views of an object that span the first part of pose space can of ten
be dore wsing sinple and efliient linear mathods of tramslation, rotation and scale
inthe plane. This approach can be precise under orthographi ¢ projection wth scal -
ing, and accurate enough in some donai s wth perspective projection. Rrspective
projection is often approximated in recognition system by 3D rotation conhined
wth orthographi ¢ projection and scaling, This has been called the weak perspective
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approxi nation [ 70].

The second part of pose space, out of plane rotation, is more conplicated. ‘The
approach advocated in this research imol ves tessel ating the viewsphere around the
object, and storing a viewof the object for each vertex of the tesselation. Ahitrary
vievs wll thenentail, at nost, small out of plane rotations fromstored views. These
views may be syrthesized wsing interpolation. The linear (onhination of Vevs
mathod of Ulrman and Bisri [71], vorks vell for interpolating betveen nearby vi evs
(and rore distant ones, as vell).

(onceptual 'y, the interpol ation of views mathod caches pre- conpted predi ctiors
of images, saving the experse of repeatedy conpiting themduring recognition If
the tesselationis dense enough, difitulties owng to large changes in aspect may be
avol ded.

Bewl [9] advocates a view based approach to mdeling, without interpol ation.

4.3 pject Mdels fromQOxervation

FBw can object model features be acquired for we in the interpolation of views
framavork? If a detailed CADmodel of the object is available, then vievs mght be
synthesi zed wsing graphi cal rendering programs (this approach vas wsedinthe (single
view) laser radar experinant described in Section 7.3).

Aother mathod is to wse the object itself as its ommodel, and to acquire views
by taking pictures of the object. This process can nake wse of the feature extraction
mthod that is wed on imges at recognition time. An advartage of this scherma is
that an accurate (Wstyle model 1sn't needed. 131 ng the runtine feature extraction
mechani smof the recogni tion systemaitomati cally selects the features that wll be
salient at recognition tine, vhichis otherwse a potertially difkult problem

Qe difiulty wth the models fromobservation approach is that image features
tend to be soravhat unstable.  For exanple, the presence andlocationof edge features
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is inflienced by 111umnation condi tions, as illwtrated inthe followng figures. Hgure
4-1 shovs a series of nire grayscal e images vhere the only variationis inlighting. A
correspondi ng set of edge images is shomin4-2. The edge operator wsedin preparing
the images is described in Section 4.4, 'The standard deviation of the smothing

operator vas 2 pixels.

4.4 Man Edge Imges

It vas pointed out abowe that the imstahility of edge features is a potential difkulty
of acquiring object model features fromobservation. The Man Kige Inage mathod

sol ves this problemby making edee maps that are averaged over variations due to
i1Tumnation changes.

Bightress edges may be characterized as the ridges of a masure of brightness
variation. This is comsistent wth the common notion that edges are the 1Dloci of
maxina of changes in brightness. The edge operator wsedin Hgure 4-21s an exarmpl e
of this style of edge detector. It is a ridge operator apfied to the squared discrete
gradient of smothed images. Hre, the squared discrete gradient is the masure of
bri ghtness variation. This style of edge detection vas described by Mrcer [57]. The
matherati cal definition of the ridge predicate is that the gradient is perpendi cul ar to
the direction having the mst negative second directional derivative. Awther simlar
defini tion of edges vas proposed Hiralick [37]. Tor a gereral survey of edge detection
mathods, see Robot Vision, by Hbrn [39].

The precedi ng characteri zationof 1mage edges generalizes natural | y to nean edges.
Man edges are defired to be ridges in the average masure of brightness fluctuation.

In this work, average brightress fluctuation over a set of pictures is obtained by
averaging the squared discrete gradient of the (smothed) inages.

F gure 4-3 shovs the averaged squared gradi ent of smoothed versiors of the i nages
that appear in K gure 4-1. Recall that only the 11 ghting changed bet veen t hese 1 mages.



CHAPTER 4. MDELI NG OBJECIS

Hgure 4-1: Gayscal e Inages
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Hawe 4-3: Aeraged Squared Gadient of Smothed Trages

H gure 4-4 shows the ridges fromthe image of Hgure 4-3. Hsteresis threshol ding
hased on the magni tude of the averaged squared gradiernt has been wsed to suppress
veak edges. Such hysteresis threshol ding is wsed wth the (anny edge operator. Note
that this edge image is rel ativel y e to specul ar highlights, in conparison to the
individual edge irages of Hgure 4-4.

4.5 Atfomtic 3Dhject Mdel Aquisition

This section outlines a mathod for autormatic 3Dobject model acquisition that com
hines interpol ation of views and Man Klge Images. The mathod 11wvol ves antonati -
cally acqui ring (rany) pictures of the object under variows conhinations of pose and
illumnation. Aprelimmary inplenantationof the mthod vas wsed to acquire object
nodel features for the 3Drecogni tion experinant discissed in Section 10. 4.
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Hguwre 4-4: Rdees of Aerage Squared Gadient of Smothed Tnages
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Hguwe 4-5: ARntakis Iddecahedron

The object, a plastic car mdel, was nounted on the tool flnge of a PVAB60
robot. Avideo camara comected to a Sun Nlcrosystera MCvideo digitizer vas
murted near the robot.

Ior the purpose of Interpolation of Wevs object model corstruction, the view
sphere around the object vas tessel ated into 32 viewpoints, the vertices of a pentakis
dodecahedron (oneis illwtratedin K gure 4-5). A eachviewpoint a “canoni cal pose”
for the object vas constructed that oriented the viewpoint toverds the camara, vhile
keepi ng the center of the object in a fixed position.

Nre diferent configurations of lighting vere arranged for the purpose of conr
structing Man Klee Tmages. The 1ighting configurations vere nade by noving a
spotlight to nine diflerent position that illumnated the object. The lanp positiorns
roughl y covered the viewhemsphere certered on the carara.

The object vas moved to the canonical poses corresponding to the 21 vertices in
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the upper part (roughly 2/3) of the object’s viewsphere. A each of these poses,
pictures vere taken wth each of the nine lanp positiors.

Man Klee Inages at variows scales of smothing vere corstructed for each of
the canonical poses. (hject mdel features for recognition experimarnts described in
(hapter 8 vere derived fromthese Man Iege Images. Terty of the images from
one such set of Man Klee Images are displayed in Hgures 4-6 and 4-7.

To of these Man Kle Images vere wed in an experinant in 3Drecogni tion
wing a tvo-viewlinear (onhination of Wevs mathod This mathod requires corre-
spondences arong features at difering vievs. "These correspondences vere establ i shed
by hand, 1sing a nose.

It is likely that such feature correspondence could be derived fromthe results
of a mtion program Shashia’s mation program[65], which combines geomtry
and optical fow ves tested on images fromthe experinmtal setup and vas able
to establish good correspondences at the pixel level, for views separated by 4.75
degrees. This range could be increased by a sequential hootstrapping process. If
correspondences can be autonatically determned, then the entire process of huilding
view hased model s for 3Dobjects can be made fully autoratic.

Xter pertformng the experimants reportedin (hapter 10, it becara apparent that
the views vere separated by too large of an angle (about 38 degrees) for establishing
a good amrt, of feature correspondence betveen sore vievs. This probl emmay be
relieved by using more vievs. [$ing nore vievs al so makes autonatic determnation
of correspondences easier. If the process of mdel comstructionis fully atomatic,
having a rel ativel y 1 arge mmher of vievs is potentially vorkable.

The vork of Bylor and Reves [69] provides som evidence for the feasihility of
ml ti ple-viewhased recognition. They describe a classification based vision system
that wes a library of views froma 252 vertex icosahedron based tessel ation of the
viewsphere. Their view vere separated by 6.0 to 8.7 degrees. 'They report good
classification of aircraft silhovettes wing this approach.
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Chapter 5

Mydeli ng Projection

This chapter is concerned wth the representations of image and object features, and
wth the projection of object features into the imge, given the pose of the object.
Iour diflerent formlations are described, three of vhich are wed in experinants
reported in other chapters.

The first three models described in this chapter are essentially 2I) the trans-
formatiors comprise tramslation, rotation, and scaling in the plane. Such methods
may be wed for singe view of 3Dohjects via the veak perspective approxi mation,
as described in [70]. In this schemm, perspective projection is approxi mated hy or-
thographi ¢ projection wth scaling. Wihin this approximation, these mathods can
handle four of the six paramaters of rigid body motion — everything bt out of plare
rotatiors.

The rathod described in Section 5.5, is based on linear (onhination of Vevs,

a view based 3Dmathod that vas devel oped by Ulman and Bsri [ 71].

5.1 Linear Rojection Mdels

Rse determnation is often a conporent of nodel - based ohject recogni tion system,
including the system describedinthis thesis. Rse determmationis frequentl yframad

57
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as an optimzation problem The pose determmnation problemnay be signi ficant] y
sinplifiedif the feature projectionmodel is linear inthe pose vector. The system de-
scribed inthis thesis we projection mdels having this property; this enables sol ving
the erhedded optimzation problemising least squares. least squares is advarta
geows becaise unique solutions may be obtaired easily in closed form This is a
si gni ficant advartage, since the enhedded opti mzation probl emis sol ved many ti nes
during the course of a search for an object in a scere.

Al of the forml ations of projection described bel oware linear in the paramaters
of the trarsformtion. RBcase of this they my be wittenin the followng form

ni =AM ;0 =M ;3. (5.1)

The pose of the object is represented by 3 a colum vector, the object model
feature by M ;, amatrix n ;, the projection of the madel feature irto the image hy
pose 3 is a col um vector.

Athough this particular formmay seemodd, it a natural ore it the focws is on

solving for the pose and the object mdel features are corstants.

52 2DBint ature Mdel

The first, and sinplest, mathod to be described vas wed by Fwgeras and Aache in

their vision systemBMAR[1]. It is defined as follows: 5 ; =M ;3 vhere
7
: iz iy 10 v

L ty i

The coordinates of object model point ¢ are p ipandp ;.. The coordinates of the
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mdel point 2, projectedintothe image by pose 3 are p tpandp . s tramsfornation
is equivalert to rotation by 8, scaling by s, and tramslation by I, vhere

This represertation has an un-symmatrical wvay of representing the tvo classes
of features, vhich seem odd due to their essential equivalence, hovever the trick
facilitates the linear formlation of projection givenin Kpation 5. 1.

Inthis mdel, rotation and scale are eflected by anal ogy to the mal tiplication of
compl ex murhers, Wi chinduces transformations of rotationandscale inthe complex
plare. This anal ogy may be made complete by noting that the al gebra of conplex
muhers a+2b1s isonorphic wth that of matrices of the form

5.3 2DBint-Rd v EBature Mdel

This section describes an extemsion of the previows feature model that incorporates
information about the normal and curvature at a point on a curve (in addition to the
coordi nate inforration).

There are advartages in wsing richer features in recognition — they provi de mre
corstraints, and can lead to space and time efliiencies. These potential advartages
st be vel ghed agai st the practicalityof detectingthe richer features. or exanple,
there is incentive to comstruct features incorporating hi gher derivative infornation at
apoirt ona curve; hovever, measuri ng hi gher derivatives of curves derived fronwi deo

imagery is probably inpractical, becaise each derivative nagnifies the noise present
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Hagmre 51: Kige Grve, Gculating Grcle, and Radivs ¥ctor

inthe data.
The feature described here is a conpromse betveen richness and detectahility. It
is defined as follow n  ; =M ;3 vhere

] [ pie iy 10 ]
p = Piy M= piy Pz 01 al e v
ch Gy <€iy 00 1,
| <y ¢y ciz 00 ] |ty
The point coordi nates and Fare as abowe. ¢ i and e, represent the radivs vector

of the curve’s osculating circle that touches the point on the curve, as illwstrated
in Hgue 51. This vector is normal to the curve. Its length is the imerse of the
curvature at the point. The comterparts in the image are given by ¢ rpande |, Wth
this model, the radius vector erotates and scales as do the coordinates p but 1t does
not tramslate. Ths, the agoregate feature trarsl ates, rotates and scales correctly:

This feature mdel is wed in the experivants described in Sectioms 6.2, 7.4, and
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10.1 Wen the underl ying curvature goes to zero, the length of the radiws vector
diverges, and the direction becoras wstable. This has been accommodated in the

experiants by truncating ¢ Athough this viol ates the “tramsform correctly” crite-
rion, the nodel still vorks vell.

5.4 2DQierted Range Feature Mdel

This feature projection model is very simnlar to the one described previowsly. It vas
desigred for wse inrange imagery imstead of video imagery. like the previows feature,

it 1s fitted to fragmnts of image edge curves. In this case, the edges label discon
timities inrange. It is defined jist as above in Section 5.3, but the interpretation

of cis difierent. The point coordinates and 3 are as above. A above, ¢ ipand ¢ gy
are a vector vhose directionis perpendicular to the (range discontimity) curve frag-

mant. The diference 1s that rather than encoding the inverse of the curvature, the

length of the vector encodes imstead the imverse of the range at the discontimity. The
counterparts in the inage are given by ¢ tpand e b The aggregate feature translates,
rotates and scal es correctly vhen ised wth i magi ng model s vhere the object features

scale according to the imverse of the distance to the object. This holds under per-
spective projection wth attached range l1abel s vhen the object is small compared to

the distance to the object.

This mdel vas wsedin the experiants described in Section 7. 3.

55 TIinear (Ol mation of Mevs

The techni que used 1 n the above mathods for syrthesizi ng rotation and scal e anourts
to making linear conhinations of the object mdel wth a copy of it that has been
rotated 90 degrees in the plare.

In their paper, “Recognition by linear (onhinationof Mdels” [71], Ulman and
Bsri describe a scherr for synthesizing vievs under 3Dorthography wth rotation
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and scale that has alinear paramaterization. They showthat the space of images of
an object is a subspace of a linear space that is spanned by the conponents of a few
images of anobject. They disciss variants of their forml ation that are hased on two
vievs, and on three and nore vievs. Recovering convertional pose paramaters from
the linear conhination coefliierts is described in [60].

The followngis ahrief explanation of the tvo-viewrathod. ‘The reader is referred
to[71] for afuller description. Rint projectionfronBDto 2Dunder orthography, ro-
tation, andscaleis alivear transformation. If tvo (2]) vievs are awilabl e, al ong vith
the trarsformations that produced them(as in stereo vision), then there is enough
data to invert the transformations and sol ve for the 3Dcoordinates (three equations
are needed, four are available). The resul ting expression for the 3Dcoordinates will
be a lincar equation in the componerts of the tvo views. Nw2Dviews may then
be synthesized fromthe 3Dcoordi nates by yet another lirear tramsformtion (dm
poundi ng these linear operations yiel ds an expressionfor rew2Dvievs that is linear
in the comonents of the original tvo vievs. There is a quadratic comstraint on the
3Dto 2Dtrarsformations, due to the constrai nts onrotation natrices. The wsual lin
ear (onhination of Wevs approach makes wse of the above linearity property vhile
synthesi zi ng newvi evs wth gereral linear tramsformations (without the corstraints).
This practice leak to two extra paramaters that control stretching tramsformations
in the synthesizedimage. It also reduces the need to deal wth carara calibratioms —
the pixel aspect ratio may be acconmdated in the stretching transformatiors.

The fol lowng projection mdel wses atvo viewvari art of the Tinear (onhi nation
of Wevs mthod to synthesize vievs wthlimted 3Drotation and scale. Alditionally,
transl ation has been added in a strai ghtforvard vay. 7 . =M ;3 vhere

i@ iz 0 qin 0 p;y 0 10
e | Moo |7 q Piy

Niy 0 piy 0 ¢y O p;x 01
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and
T

p= BoB1823334 85 36 7
The coordinates of the i’th point in one ieware p ;wand p ;, inthe other view
they are ¢ ;,andq i,
Wen this projection mdel is wed, Fdoes not in general describe rigid tramsfor-
mation, but it is nevertheless called the pose vector for motational consistency.
This mathod is wsed in the experimant described in Section 10. 4.
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Chapter 6

MAP Mbdel Nt chi ng

MP Mdel Mtching L (MM is the first of tw statistical formlatiomns of object
recognition to be discissed in this thesis. It bulds on the mdels of features and
correspondences, objects, and projection that are described inthe previows chapters.
Ml eval uates joirt hypotheses of match and pose in term of their posterior prob-
ability, given an image. MMis the starting point for the second forml ation of
object recognition, Rsterior Mrginal Rse Fstimation (PNBE), vhichis described
in (Qapter 7.

The MAobjective function is amnable to search in correspondence space,
the space of all possibe assignmants fromimge features to mdel and background
features. This style of search has been wsed in many recognition systers, and it is
wed here 1n a recogni tion experirart imol ving lowresol ution edge features.

It is shown that under certain conditions, searching in pose space for maxima of
the Mobjective function is equivalent to robst mathods of chanfier matching
[47].

'Early versiors of this work appeared in [74] and [75].

65
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6.1 pjective Riction for Rse and (orrespon-

dences

In this section an objective function for evalvating joint hypotheses of match and
pose wing the MPcriterion wll be derived

Biefly, probahbility demsities of image features, conditioned on the paramters of
natch and pose (“the paramaters”), are conhived with prior probabilities on the
paramaters wsing Byes” rule. The result is a posterior probability density on the pa-
ramaters, given anobservedimge. Anestimte of the paramaters is then forml ated
by choosing themso as to maximze their aposteriori probability. (Hnce the term
MAP. See Reck and Aol d's textbook [4] for a discussionof MPestimation. ) MP
estimtors are especially practical vhen wsed wth nornal probability densities.

This research focwses on feature based recognition. e probahilistic mdels of
image features described in (hapter 3 are wed Initially, inage features are assumad
to be mtually independent (this is relaxed in Section 6.1.1). Additionally, matched
image features are assumd to be normal l y distri buted about their predi cted positiors
in the image, and umatched (background) features are assunad to be wniforrhy
distributed in the imge. 'These demsities are conhined wth a prior mdel of the
pararaters. Wen a lirear projection mdel is wsed, a simple objective function for
match and pose resul ts.

& described in (hapter 2, the image that is to be anal yzed is represented by a

set of »dimamsional colum vectors.
Y={Y 1,Y5,....Y,} . Y;ERY .
The object mdel is denoted by M

Me{M My, ..., M} .
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Wen linear projectionmodel s are wsed, as discussedin (hapter 5, the object features
wll be represerted by real matrices: M ; € RV*% (2 is defined bel ow).

The paramaters to be estimted in matching are the correspondences betveen
image and object features, and the pose of the object inthe imge. A discssedin
Section 2.1, the state of match, or correspondences, is described by the variable I}

F:{F 17F27"'7Fn} ) FZEM{J—} :

Iere I' ; =M ; mans that inage feature ¢ corresponds to object mdel feature j, and
I'; =L mears that image feature ¢ 1s due to the background.
The pose of the object is areal vector: S€R #. Aprojection function, (), naps
object mdel features into the v dimarsional image coordi nate space according to the
pose,
AM;, 3R " .

The probahilistic mdels of 1mage features described in (hapter 3 nay be written

as Tollows:
— 1 if I =L
HYi| L= MW . (6.1)
G%(Yz’ —77(M jv@) if I'; :Mj
where

v 1 1
Gu (9 =20 ~F Ul Fep(— 5oy

Rere v ; ;is the covari ance matri x associ ated wthinage feature ¢ and object model
feature 5. This 1 mage features arising fromthe background are uni fornhy distri hited
over the imge feature coordinate space (the extent of the image feature coordinate
space along dirersion ¢ is given by W ;), and mtched image features are normally
distributed about their predictedlocations inthe image. Insom applications tcou d
be independent it ¢ and j — an assunption that the feature statistics are stationary
inthe inage, or ¥nay depend only on ¢, the image feature index. The latter is the
case vhen the orierted stationary statistics model is wed (see Section 3.3).
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Asumng independent features, the joint probability dersity on image feature

coordinates may be witten as follows

1
HY| Lj= 1:[11(5/2' | LA = Z}:L mj:g]wj Gy, (Yi =AM ;,3) .
(6.2)

This assunption often hol ds vhen sersor noi se domnates in feature fluctuatiors.

The next stepin the derivation is the corstruction of a joint prior on correspon
dences and pose. In (hapter 2, probabilistic mdels of feature correspondences vere
discussed. The i ndependert correspondence model 1s wsed here for simplicity e of
the Mrkov correspondence model is discussed in the followng section. The proba-
hility that image feature ¢ bel ongs to the backeroundis B i, vhile the renai ning prob-
abilityis umfornhy distributed for correspondences to the m object mdel features.
Insom situatiors, B ; may be a comstart, independent of 2. Recalling Kuations 2.1

and 2.6,

B; if I =L
D) = HF(FZ') and  pl ;) = { (6.3)

=B Gthervise .
m

Rior information on the pose is assumd to be supplied as a nornal dersity,

3 =Gy, (65 o)

where

Go, =29 Tl Fe(— Jaluig's

Rere ¢ 5 is the covariance matrix of the pose prior and zis the dimansionality of
the pose vector, 3 Whh the conhi nationof normal pose priors and linear projection
mdels the systemis closed in the semse that the resulting pose estimate wll also
be normal. This is conveniert for coarse-fine, as discussed in Section 6.4. If little is
known about, the pose a-priori, the prior my be nade quite broad. This is expected
to be often the case. If nothing is known about the pose betforehand, the pose prior



6. 1. OBJECII VE FUNCIT ON FOR POSE AND CORRES PONDENCES 69

may be left out. Inthat case the resulting criterion for eval uating hypotheses wll be
hased on Mxi nomli kel i hood for pose, and on MPfor correspondences.

Asumng i ndependence of the correspondences and the pose (before the image is
compared to the object model ), a nixed joint probability function may be written as

follovs,

QiF=l iR
This a good assunption vhen view based approaches to object mdeling are wsed
(these are discssed in (hapter 4 and wsed in the experimants described in (hapter
10). (Wth gereral 3Drotationit is inaccurate, as the visihility of features depends
on the oriertationof the object.) This probability function on natch and pose is now
wed wth Biyes’ rule as a prior for obtaining the posterior probability of I'and 3

1Yl LAL 3
i) ’

vhere YY) = Y [dBHY | L AKL B is a normalization factor that is formally
the probability of the image. It is a corstant wthrespect to ['and 4 the paramaters

HL Bl Y) =

bei ng estimated.
The MP strategy is wed to obtain estimtes of the correspondences and pose
by naxi mzing their posterior probability wth respect to I'and 3 as follows

[ p=argrax T3] Y)

For conveni ence, an objective function, L, is introduced that is a scaledlogarithm
of fI; 3] Y). The sam estimtes wll result if the naximzation is instead carried

out over L

[} f=arg max " JANe

T

where

(6.4)

(6.5)
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The denomnator in Kuation 6.5 is a comstant that has been chosen to cancel con
stants fromthe mmarator. Its value, vhichis independent of I'and (is

Ble. . E
i, - an(@ 7l 7 F(YJ

O =

Xter som nani pul ation the objective function my be expressed as

1

LA == (88 )'v5' (BF o)+ ZM:W M S YiAM 5, 3) T} (ViR 5, )]
: (6.6)
, vhere
L 1 (1-B ) WWy- - -
A=l ((% 5 T W) : (6.7)

Wen a linear projection mdel is wed, A M »B =M ;4 (Lirear projection
mdels vere discussed in (hapter 5.) Inthis case, the objective function takes the
followng sinple form

LG = 558 103 (09 o0 X Dy (L0 T (VM A] - (69

15 :d=M

Wen the backeround probability is constant, and vhen the feature covariance
natTix determnant is constant (as vhen oriented stationary statistics are wed), the
forml as sinplify further —

o 1 (1-B WiW,- -
ey e B "

and
1
LG == (B8 )W (B8 o+ > | Y M ;8 T (Yi=M ;8] . (6.10)
15 :d=M
Hre, ;/A)is the stationary feature covariance matrix, and ; 1s the specialized

feature covariance matrix These were discussed in Section 3. 3.
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The first termof the objective function of Kpuation 6.8 expresses the i nflence of
the prior on the pose. A& discussed above, vhen a weful pose prior isn't available,
this termnay be dropped.

The second termhas a simple interpretation It is a suntaken over those imge
features that are matched to object mdel features. The A ; ; are fixed revards for
raki ng correspondences, vhile the quadratic form are penal ties for deviatiors of ob-
served i mage features fromtheir expected positions inthe imge. Ths the objective
function eval uates the amunt of the inage explaired in term of the object, wth
penal ties for msmatch. This objective functionis particularly sinple in term of 3
Wen [Mis constant, Sandits (posterior) covariance are estinated by vei ghted | east
squares. Wen wing an al gori thmbased on search in correspondence space, the es-
timate of [Fcan be cheapl y updated by wsing the techni ques of sequential paramater
estimation. (See Bckand Anold[4].) The A ; j describe the rel ative valve of amatch
component, or extersion in a vay that allow direct comparison to the entailed ms-
natch penal ty. The val ues of these trade-off paramater(s) are supplied hy the theory
(in Kpation 6.7) and are gi venin terms of masurable domain statistics.

The formof the objective function suggests an optimzation strategy: make cor-
respondences to object features in order to accuml ate correspondence revards while
awi ding penal ties for msmatch. It is important that the A ; j be positive, otherwse a
wni ng strategy is be to make no natches to the object at all. This condition defines
acritical level of image clutter, beyond vhi ch the MPcriteria assigns the feature to
the backgromd A ; ; describes the dependence of the valve of matches on the anount
of hackground clutter. If background features are scarce, then correspondences to
object features becor nore inportant.

This objective function provides a simple and wniformvay to eval uate match
and pose hypotheses. It captures important aspects of recognition: the amount of
imge explained in term of the object, as vell as the mtrical comsistency of the
hypothesis; and it trades themoffin a rational way based on domainstatistics. Mst
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previows approaches have mot made wse of both criteria simnl taneousl y in eval uating
hypotheses, thereby 1 osing some robistness.

6.11 Usiig tle Mkor Grespachee MH

Wen the Mrkov correspondence nadel of Section 2. 31s wsedirmstead of the i ndepen-

dent correspondence mdel , the functional formof the objective function of Kpation
6.6 remims essentially unchanged, aside fromgaining a newtermthat captures the
inflence of the interaction of neighboring features. The namas of som of the con
stants changes, reflecting the diflerence betveen Fations 2.2 and 2.4. Noting that
fL 4] Y) is livear in gI), it can be seen that the rew termin the logari thnc

objective function wll be:
n—1

Z IHTZ'(FZ', Fz _|_1) .
=
5 betore, vhen an al gori thmbased on searchin correspondence space is wsed, the
estimate of Scanstill be cheapl y updated. Achange in an el enant of correspondence,
som ' ;, wll nowadditiomallyentail the update of tvo of the term inthe expression

above.

6.2 Kperinatal Inpl enartation

Inthis section an experimant deronstrating the wse of the NIlobjective function

is described. The intert is to deromstrate the utility of the objective functionina
domain of features that have significart fhictuations. The features are derived from
real images. The dominis matchi ng anong features fronl owresol ution edge 1 mages.

The point-radius feature mdel discussed in Section 5.3 1s wed. Qiented stationary
statistics, as described in Section 3.3, are wed to mdel the feature flctuations, so
that A, ;=\ ;.
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(¢od solutions of the objective function of Kpation 6.8 are sought hy a search in
correspondence space. Searchover the vhol e exponential space is avoi ded by heuristic
pruni ng;

A objective function that eval uates a configuration of correspondences, or natch
(described by 1), may be obtai ned as follovs:

£(1) = AL

This optimnzationis quadratic in fandis carried ot by least squares. Sequential
techni ques are wsed so that the cost of extending a partial match by one correspon
dence is O(1) .

The space of correspondences nay be organi zed as a di rected-acycli c- graph (D
by the followng parent-child rel ation on matches. Apoint in correspondence space,
or mat chis achildof another matchif there is som ¢ such that T’ ; =Linthe parert,
and I' ; =M ;, for som j, inthe child and they are otherwise the sam. Ths, the
chil dhas one rore assi gnnant, to the model thanthe parent does. This IXGis rooted
in the match vhere all assignmants are to the background. Al possible mtches are
reachabl e fromthe root. Afragrent of an exarple IXGof this kindis illwtrated
inHgue 6-1. (dnporents of natches that are mot explicit in the figure are assigned
to the background.

Reuristic beansearch, as describedin [64], is wed to searchover mtches for good
solutiors of £ Success depends on the heuristic that there aren’t many inpostors in
the image. Aninpostor is a set of image features that scores vell bt isn't a subset
of the optinmmmatch inplied by the objective function. Awther vay of stating the
heuristic is that the best match to n+1 object features is likely to contain the best
match to nobject features.

The search mathod wed in the experinarts enpl oys a bootstrappi ng nechani sm
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Hegure 6-1: Hagmant of (orrespondence Space NG

based on distinguished features. (hject features 1, 2 and 3 are special, and st
be detected. The schema could be made robist by corsidering more initial triples
of object features. Atermatively, indexing mathods coul d be wsed as an efliient and
robust mearms to initiate the search. Indexing mathods are described by Jerans and
Jacots [19], andin Section 9. 1.

The al gori thmthat vas wed is outlined bel ow

BEAM-SEARCH(MY)
CURRENT « {I! exactly ore image feature is matched to each of M 1 My and M 5}
;5 the rest are assigned to the background
Rure CURRENT according to £ Ieep 50 best.
[terate to Hxpoint:
Ald to CURRENT all children of manhers of CURRENT
Rure CURRENT according to L. Ieep Nbest.

;; Nis reduced from20to 5 as the search proceeds.
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Hagure 6-2: Tmages wed for Mtching

Rtuwn CURRENT)

Soretites an extersion of a match wll produce ore that is already in CUR-
RENT, that vas reached in a diferent sequence of extensions. Wen this happers,
the matches are coalesced. This condition is eftiently detected by testing for near
equalityof the scores of theitera in CURRENT. Recaise the features are derived from
olservations contai ning som randommoise, it is very wlikely that tvo hypotheses
havi ng difleri ng matches wll achieve the sam score, since the score is partly based

on sunmad squared errors.

622 Kape SadhRsdts

The search method described inthe previ ous section vas wsed to obtai n good mat ches
in a domain of features that have significant fluctuations. The features vere derived
fromreal images. Alivear projection mdel vas wsed.

Inages wed for matching are shomin Hgure 6-2. The object mdel vas derived
froma set of 16 1mges, of whichthe inage onthe left is anexample. Inthis set, only
the light source position varied. The inage features wed in the search vere derived
fromthe imge on the right.

The teatures wsed for matching vere derived fromthe edge naps shownin K gure
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Haure 6-3: Kee Mps wed for Mtching

6-3. The image on the left shows the object madel edges and the image on the right
shovs the image edges. These edges are fromthe CGamy edge detector [13]. e
smothing standard deviation is eight pixels — these are lowresol ution edge maps.
The object mdel edees vere deri ved froma set of 16 edee raps, corresponding to the

16 images described above. The object madel edges are essentially the mean edges
with respect to fluctuations induced by variatiors inlighting (Towresol ution edges
are sersitive to lighting. ) They are simlar to the Man Klee Inages described in
Section 4. 4.

The features wed in matching are shown in Hgue 6-4. These are point-radiws
features, as described in Section 5.3. The poirt coordinates of the features are indi-
cated by dots, vhile the normal vector and curvature are illwtrated by arc fragrants.
Fach feature represents 30 edee pixels. The 40 object features appear in the upper
picture, the 125 image features lover picture. The distingu shed features wsed inthe
bootstrap of the search are indicated wth circles. The object features have been
transformad to a newpose to imsure generality.

The paramaters that appear in the objective function are: B the background
probahility and ;/; the stationary feature covariance. These vere derived froma
match done by hand in the exanpl e domai n. "The ori ented stationary statistics nodel
of Section 3.3 vas wed here. (Anormal model of feature flictuations is inplicit in
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Hgure 6-5: Rse Rior wed in Search

the objective function of Kpation 6.8. This vas found to be a good mdel in this

domin. )

Aloose pose prior vas wsed. This pose prior is illwstratedin K gure 6-5. The prior

places the object in the upper left corner of the image. The ore standard deviation

interval s of positionandangle areillwstrated. The ore standard devi ation vari ation of

scaleis 30 percent. The actual pose of the object is wthinthe indi cated ore standard
devi ation bounds. This prior vas chosen to denomstrate that the mathod vorks vell

despite a loose pose prior.

The best results of the beamsearch appear in Hgure 6-6. In the upper image,

the object features are delineated wth heavy lines. They are located according to

the pose associ ated wth the best match. Inthe lover image, the object features and
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image features are illwstrated, vhile the 18 correspondences associ ated wth the best
match appear as heavy lines and dots.

The object features located according to the poses associated wth the five best
natches are seen in Hgure 6-7. The results are difliult to distinguish becase the

poses are very siml ar.

6.3 Searchin Bse Space

This section wll explore searching the MMobj ective function in pose space. (onr
rectiors to robst chanfier matching wll be described.
Apose estimate is sought by ordering the searchfor maxima of the NIVbbj ective

function as follows,

f=agrax = rmx ALA .

Substituting the objective function frombuation 6.6 yiel ds

N

6:»31’ng mx Z Y qM ]7@) T¢2](Y qM]7@)]
B r 2
INERE/
The pose prior termhas been dropped in the interest of clarity. It vould be easily
retained as an additional quadratic term
This equation nay be sinplified wth the followng definition,
1

D; (0 = §$T¢z’_j1$ :

D; (1) may be thought of as a gereralized squared distance betveen ohserved and
predicted features. It has been called the squared Mhal onohis distance [22].

The pose estinator nay nowbe witten as

N

P=argrax X Z T Z]Y p(MJv@)]

B FZJI_JW
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Hgure 6-6: Best Mtch Results: Rse and (orrespondences
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or equivalertly, as a mmnimzation rather that naxi mzation,
Pmargrin - win > [DiYi =AM . 4) A ]
QG EM

The sumis taken over those inage features that are assigned to mdel features
(not the background) in the match. It nay be re-written in the followng vay,

2 . . 0 if I =L

f=argmn Zrmn ,
O N DifYiAM ) =) gy i L =M

or as

B:argﬂimﬁ Z (0, i, D (Y; =AM ;,8) =\ i) -

If the correspondence revardis independent of the model feature (this hol ds vhen

oriented stationary statistics are wed), A ;; =X ;. Inthis case, A\; my be added to

8l
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each termin the sumwthout aflecting the mmni mzing pose, yielding the followng
formfor the pose estimator,

Bzargfﬁmﬁ > (A, e D (Y; =AM ;,3)) . (6.11)

This objective function is easily interpreted — it is the sum taken over imge
features of a saturated penalty. The penal ty (before saturation) is the smallest gen
eralized squared distance fromthe observed i mage feature to som projected mdel
featwre. The penalty min ;D (=AM ;, ) has the formof a VWromoi swface, as
described by Httenlocher et. al. [42]. 'They describe a masure of simlarity on
inage patterms, the Husdorff distance, that is the upper emvelope (naximmy of
Vronol surfaces. The mrasure wed here diflers in being saturated, and by wsing the
sumof Vromoi surfaces, rather than the upper emvelope. In their vork the upper
envel ope offers som reduction in the conplexity of the masure, and facilitates the
we of mthods of conputational georetry for explicitly conpting the maasure in 2
and 3 di ransional spaces.

(onputational geomatry mathods mght be weful for conmting the objective
function of Kpation 6.11. In higher dinamsional pose spaces (4 or 6, for exanple)
tree mthods may be the only such techn ques currently available. Beuel has
wed D tree search al gori thm in feature matching,

Next a comectionwll be shown betveen Mlearchin pose space and a nathod
of robust chanfier matching. Frst, the domain of M¥is sinplifiedin the followng
vay. Ril stationarity of feature fluctuations is assuad (as covered in Section 3.3).
Hrther, the featuwre covariance is assurad to be isotropic. Wih these assunptiors
ve have i ;=0 21, add D ; ;= 55| a*. Additionally, assurmng comstant background
probability, ve have A ;; =X 'The pose estimator of Kation 6.11 may now be
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witten in the fol lowng sinplified form
5 . ) ) 1
Pargrin > vim(} min (o [ ¥ AM 5, 417)) -

Wen the projection function is linear, inwertible, and distance preserving, (2D
and 3Dri gj dtransformations satisfy these properties), the estimator may be expressed

as follows,

5 . ) . 1

f=argmn > nim( A . (52 | PHYL B M )
This may be further sinplified to

Bmargrim 37 () dA(PTH(YLA) (6.12)
by wing the followng definition of a mni rimdi stance function.

da) = JLQU tin | oM | (6.13)
(hartheri ng rat hods ray be wsed to tabul ate approxi matiors of d ?(2) inaninage-
like array that 1s indexed by pixel coordinates. (harher-based approaches to image
registration probern wse the array to facilitate fast evaluation of pose objective
functions. Burowet al. [3] describe an early mathod were the objective function
is the sumover model features of the distance fromthe projected mdel feature to
the nearest image feature. Brgefors [§ recomands the we of R\ distance rather
than summad di stance in the objective function.
Recently, Jiang et al. [47] described a mathod of robwst chanfier matching. In
order to make the mathod less susceptible to disturbance by outliers and occl wsiors,
they added saturation to the RM objective function of Brgefors. Their objective
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function has the followng form
11 . 2 72\\1
g(gzﬂﬂﬂ(t 7))
J

vhere d ? is the squared distance fromthe 5’th projected mdel point to the near-
est imge point. Aide fromthe comstants and square root, which don’t aflect the
mni mzing pose, this objective function is equivalert to Kuation 6.12 it the role of
image and mdel features is reversed, and the serse of the projection functionis in

verted. Jianget al. showinpressive resul ts using robist chanfier matchi ng to register
ml ti-nodal 3Dradical imagery.

6.4 Ktersiors

MP Mdel Mtching performa vell on low resolution imagery in which feature
uncertainty is significant. It could be wed to bootstrap a coarse-fine approach to
rodel matching, vielding good results wth reasonable ruming timas. (darse-fine
approaches have proven successful in stereo mtching applications. (See Gimson
[33] and Bunard [2].) A coarse-fine strategy is straightforvard in the framvork
described here. Ina hierarchy, the pose estimate fromsol ving the objective function
at one scale is wsed as a prior for the estimation at the next. Having a good prior on
the pose wll greatly reduce the amount of searching required at hi gh resol ution.
Hnding a tractable nadel that incorporates pose dependent visihility conditions

vould be wseful for applyi ng MVin non vi ew based recogni tion.

6.5 Rlated Work

The MR vision systemof Avache and Fugeras [1] wes sequential 1inear-1east-
squares pose estimation as vell as the lincar 2Dpoint feature and projection nodel
describedinSection 5. 2. HhPFRis described as a searchal gorithm Diferent criteria
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are wed to eval uate candi date matches and to eval uate conpeting “whol €” hypot he-

ses. /A ad hoc threshold is wsed for testing a continmows measure of the matrical
corsistency of candi date match extersions. Wole match hypotheses are eval uated
according to the amunt of 1mage feature accounted for — al though not according to
owerall mtrical corsistency. HMFRvorks vell on real imges of indistrial parts.

(9ad outlined a Biesian strategy of match eval uation based on feature and
background statistics in his paper on autonatic progranmng for mdel - based vi sion
[29]. Inhis system search vas controlled by threshol ds on probabilistic masures of
the reliability and plawsihility of matches.

Tove describes in gereral term the application of Biyesian techn ques inhis book
on Wsual Recognition [51]. H treats the mni mization of expected ruming tine of
recogni tion. In addition he discusses sel ection anong muerows objects.

(j ect recogni tion natching system of ten wse a strategy that can be surmari zed
as a search for the raximal matching that is comsistent. (omsistency is frequently
defined to mean that the matchi ng i mage feature is wthi nfin te bounds of its expected
posi tion (bounded error model s). (ass” systen 14] is one example. Such an approach
may be cast in the framavork defined here by assumng uni formprobabi lity dersity
functions for the feature deviations. Rwe solution wth this approachis likely to be
more conpli cated than the sequential 1inear-1east-squares mathod that can be wsed
vhen feature deviations have normal mdels. (ass’ approach eflectivel y finds the
global optinumof its objective function. It performa vell onoccluded or fragmanted
real images.

Reveri dee, W ss and Rseran [6] wse an objecti ve function for 1ine segrant based
recogni tion that is simlar to the one described here. In their vork the penalty for
deviations is quadratic, vhile the revard for correspondence is non-linear (exponen
tial ) in the anount of mssing segrant length. (Br contrast, the revard describedin
this paper is, for stationary nodels, linear in the length of aggregate features.) The
trade-off paramaters in their objective function vere determmned empirically. Their
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systemgi ves good performance in a domain of real inages.

Burrs and Rseman [12] and Buens [11] describe a classi ficati on based recogni tion
system They focus on the wse of description netvorks for efkii entl y searchi ng anong
ml tiple objects wth a recursi ve 1 ndexi ng schera.

Huson and R [27] [26] describe a gereral objective function approach to inage
understanding.  They we a mini nimdescription length (ML) criterion that is
desi gred to vork wth gereric object madel s. The approach presented here is tail ored
for specific object nodels.

6.6 Sunmary

AMP mdel matching techni que for visual object recognition has been described.
The resulting objective function has a simple formvhen nornal feature deviation
mdels and linear projection mdels are wed  Fperinantal results vere shown
indicating that MP Mdel Mtching vorks vell in lowresol ution mtching, vhere
feature deviations are significart. Rl ated vork vas discussed.



Chapter 7

Posterior Mirgi nal Pose

Estination

Inthe previous chapter on MPMdel Mtching the object recogni tion probl enwas
posed as an opti mzation probl emresul ting froma statistical theory. Inthat forme
lation, conplete hypotheses corsist of a description of the correspondences betveen
image and object features, as vell as the pose of the object. The mathod vas shown
to provi de eflective eval vations of match and pose.

The formal ationof recogni tionthat is describedinthis chapter, Rsterior Mrginal
Rse Btimtion ' (PMA), bilds on MP Mdel Mtching, Tt provides a smoth
objective function for eval uating the pose of the object — wthout conmtrent to a
particular match. The pose is the most inportant aspect of the problem inthe semse
that knowng the pose emables grasping or other interaction wth the object.

Inthis chapter, the objective function is explored by probing in sel ected parts of
pose space. The domain of these experimants is features derived fromsynthetic laser
radar range imagery, and grayscale video imagery. Alimted pose space search is
performad in the vi deo experinant.

In (apter 8 the Fpectation — Mximzation (EM al gorithmis discussed as a

L An early version of this vork appeared in [ 76]

87



8 CHAPTER 7. POSTERI OR MARGI NAL POSE ES'TT MATT ON

maans of searching for local maxima of the objective function in pose space.

Alditional experinants in object recognition wsing the PNBEobjective function
are described in (Japter 10. There, the FMal gorithmis wsed in conjunction wth
an indexi ng mathod that gererates initial hypotheses.

7.1 pjective Kiction for Rxse

The foll owr ng rathod vas moti vated by the observationthat 1n heuristi c searches over
correspondences wth the objective function of MP Mdel Mtching, hypotheses
havi ng i npl awsi e matches scored poorly in the objective function. The implication
vas that sunming posterior probahilityover all the mtches (at a specific pose) mght
provide a good pose eval uator. This has proven to be the case. Athough intuitively,
this mght seemlike an odd vay to eval uate a pose, 1t is at least democratic in that
all poses are evaluated in the same vay. The resulting pose estimator is smoth,
and is ammable to local search in pose space. It is not tied to specific mtches —
it is perhaps in keeping wth Mrr’s recommendation that conmtational theories of
vision should try to satisfy a principle of least conmtnant [52].

Alditional motivation vas provided by the vork by Yille, (&iger and Bi thoff
on stereo [78]. They discussed conpting disparities in a statistical theory of stereo
vhere a marginal is computed over matches.

In MP Mdel Mtching, joint hypotheses of match and pose vere eval uated by
their posterior probability, given an image — gL 3| V). T and Fstand for cor-
respondences and pose, respectively, and Y for the image features. The posterior
probahility vas built fromspecific mdels of features and correspondences, objects,
and projection that vere described in the previows chapters. The present formul a-
tion wll first be described wsing the independert correspondence mdel . (e of the
Mrkov correspondence model wll be described in the followng section.

Hre ve wse the sam strategy for evaluating object poses: they are eval uated
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by their posterior probahility, given animage: f3| Y). The posterior probahility
demsity of the pose may be conputed fromthe joint posterior probahility on pose and
match, by formally taking the narginal over possible matches:

Holy) = ZFIF(EM Y.

In Section 6.1, Kpation 6.4, g1, 3| Y) vas obtained via Bies’ rule fromprob-
abilistic mdels of image features, correspondences, and the pose. Substituting for
#L 8| Y), the posterior marginal may be written as

1B Y) = a )

$ing equations 2.1 (the independent feature nodel ) and 6.2, ve may express the

posterior marginal of finterm of the conporent dersities:

1ol Y) = ZZ ZHF(Y N HF(F

or

HolY) = ZZ D ITIHY: | I BKT 5]

I | P

Breaki ng ore factor out of the product gives

{3 1) = ZZ Zlnl AR >]]zm| L AT )

n

or

18 ¥) = %ZZ- 5 [ﬁlmm I AT »]] AV | T )
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(ontiming insimlar fashion yiel ds

_ K3 T |

This may be witten as

_ 1y
Holy) = Y] 1:[de| 4, (7.2)

s11ce

wYil 4= %:F(Yi | 5,81 ) (7.3)

Plitting the I' ; sumintoits cases g ves,
Kol A=Y | T=Lpul =)+ D fYi| L=M;, A6l i =M ;) .
M]

Substituting the densities assunad in the model of Section 6.1 in Kpatioms 6.1 and
2.2 then yiel ds

1-B

m

Y| D = Bt SO, (0P ) (1)

Irstalling this into Kyation 7.2 leads to

Wy W1-B;

BBy - - B d@

o,y L2

M;

HolY) =

Gd/z‘] (YZ —77(M 79 @)

& inSection 6.1 the objective function for Rsterior Mrginal Rse Istinationis
defined as the scal ed 1 ogari thmof the posterior marginal probahility of the pose,

14 =In [MICW ] 7
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where, as before,

B1B2""B 1

C= (W, - WJ”(% TI%ITZM

This leads to the folloving expression for the objective function (wse of a normal pose

prior is assumd)

13 = %(M ) UGBS o)+ In 14

Thi's objective function for eval uating pose hypotheses is a stooth function of the
pose. Mthods of contimows optimzation nay be wsed to search for local naxima,
al though starting val ves are an issue.

The first termin the PNBEobj ective function (Kuation 7.5) is due to the pose
prior. It is a quadratic penalty for deviations fromthe nommnal pose. The second
termessential | y raasures the degree of alignmant of the object mdel wth the i mage.

It is a sumtaken over inage features of a smoth nonlinear function that peaks up
posi tivel y vhen the pose brings object features into alignnent wth the image feature
in question. The logarithme termwll be near zero if there are mo model features
close to the image feature in question

In a strai ghtforvard i npl erentation of the objective function, the cost of eval
ating apose is @), since it is essentially anon-linear double sumover image and
mdel features.

7.2 Uing the Mrkov (orrespondence Mdel

Wen the Mrkov (érrespondence mdel of Section 2.3 i1s wed imstead of the in
dependent correspondence model, the summnng techni ques of the previows section
no longer apply. Bcase of this, a conmtationally attractive closed formformla
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for the posterior probahbility no longer obtaims. Nevertheless, it wll be shom that
the posterior probability at a pose can still be efliiently eval vated wsing dynamc
Progranmug,

Referring to Kpation 7.1, and wsing the independence of match and pose in the
prior (discussedin Section 6.1), the posterior marginal probahility of a pose may be

witten as foll ovs,

 «—HY] LAKDKA
el = 3% 0

r

ing Kpations 2.3 and 6.1,

HolY) = 1? Z #Yu | 5, Y o | I, A- - - Y | Ly B (T 1)dl2) - - - ()

TI(FDFQ)TQ(F%FS) e 'Tr—l(rn—lvrn)

ﬂ(

This may be re-written as follovs,

W =M s e T nmar | . (76
HY) M. . L L= i

vhere

Hre, the dependence of ¢ on Fhas been suppressed for notational brevity:
Next it wll be showm that i 3| Y) may be witten wing a recurrence rel ation:

0 c
WA= 5 Sha(Tar) (1)

vhere
) = 201 r1(b,q) (7.8)

and

h (@) = D b (B)e s (D7 (Ba) (7.9)

b
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Bpandi ng Kation 7.7 in term of the recurrence rel ation,

CRER -S> LZ hn_m_l>cn_1<rn_1>rn_1<rn-1,m] ell)

or
Z(ﬂ| Y): Z hn 2 n 1 H cz i Fn—lvrn) .
Z(Y) | t=n—1
Arain wsing the recurrence rel ation,
Z(6| Y) = Z Z hn 3 Fn Q)Cn Q(Fn Q)Tn Q(Fn 27Fn 1)
Z(Y) | PR P [

. H cz(rz) rn—l(rn—lvrn) 9
t=n—1

or

ey SRS
Ho Y) = AY) Fn_22 hp—s(Tn_2) H e(I H ri(Ti Ty )

I'n11Tn T =n—2 1 =n—2

(ontiming insimlar fashionlead to

i ey T
Z(6| Y)_ 7(1/) F2ZH hl 21__[2 1 21_:[2 FHFZ-I-I) )

and nowusing the base expression for h 1(+),

n—1

Wg = A3 5 [ch(Fl)rl(Fl,Fz)]ﬁci(ri)l:_[n(ri,riﬂ),

di/) I'ss. . 0| I'h 1 =2

or finally,

n—1

o) T rrrin]

= =

.
KBl Y) = Y DZ

oo

vhichis the same as Kuation 7.6. This conpletes the verification of Kuation 7.7.
Next, a dynammc progranmng al gori thmwll be described that efidiently eval v
ates an objective function that is proportional to the posterior marginal probability
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of a pose. The objective function is %})p(m Y) . The al gorithmis a divect inple-
rartationof the recurrence defired in Rpatiors 7.7, 7.8 and 7.9, that hiilds a table
of valwes of A ;(-) frombhe bottomup. Note that & ;(b) only has tvo values, depending
on viether b=Lor not. In the folloving description, the syrhol T is wsed to stand

for an anonynois mdel feature. H . .denotes array locations that store values of h i
and i ,-,-) is an access function, defined below that accesses the stored val ves.

;;; Use Dynam ¢ Progranmi ng to eval uate PMPE wit h Mirkov (brrespondence Mdel .
EVALUATE- POSE(f)
Hip < 3, QL6 Br 1(b ]
Hit X, QL6 Br 1(b7T)
Ior ¢ <20 N-1
H; 3 He =1, i, b fr i (B4
H;r 3 Hi =1, i, b Br i (B T)
RETURN (3, HN-1,5({nb 3)

;;; Define the auxiliary function C
{69
RETURN(AY ;| 09¢(D)

;15 Access values of Hstoredin a table.
Ha,b)
Ir b=LReTURN (H 1)

FrLsE ReTURN (H ,71)

The loop in EVALUATE- POSE executes ) timas, and each time through the
loop does (Irp eval vations of the sumands, so the complexity is @m). This
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has the same conplexi ty as a strai ghtforvard i npl enantation of the PN obj ecti ve
function vhen the Mrkov model is mot wed (Fuation 7.5).

The suming techn que wed here vas described by (heeseran [17] in a paper
about wsing maxi nmertropy nathods 1n expert systers.

7.3 Ringe Imge Fkperinart

A experimant 1mvestigating the utility of Rsterior Mrginal Ree Istimationis de-
scribed inthis section. Additional experivants are described in (apter 10.

The ohj ective function of Fuation 7.5 vas sanpledin a domai nof synthetic range
imgery. The feasihility of coarse-fine search mathods vas imvestigated by sanpling
smoothed vari ants of the objective function.

7.31 Ramdiond Etues

The preparation of the features wsed in the experinent is sumarized in Hgure 7-1.
The features vere oriented range features, as described in Section 5.4. Bo sets of
features vere prepared, the “model features”, and the ‘i mge features”.

The object mdel features vere derived froma synthetic range image of an Mb
truck that was created wsing the ray tracing programassoci ated wth the BL (AD
Pckage [23]. The ray tracer vas mdified to produce range images imstead of shaded
images. The synthetic range image appears in the upper left of Hgure 7-2.

In order to siml ate a laser radar, the synthetic range image described above vas
corrupted wth siml ated laser radar sersor moise, wing a sersor moise mdel that
is described by Shapiro, Rinhold, and Puk [62]. In this moise model, masured
ranges are either valid or anomalows. \lid measurerants are normally distributed,
and anomal ous measurenants are uni fornhy distributed. The corrupted range image
appears in Hgure 7-2 on the right. © simnl ate post semsor processing, the corrupted
image vas ‘“restored’ via a statistical restoration rathod of Mnon and W 1s [56].
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Hguwre 7-2: Synthetic Rnge Trage, Noisy Ringe Irage, and Restored Range Irage
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The restored range image appears in the lover position of Hgure 7-2.

Qiented range features, as described in Section 5.4, vere extracted fromthe syn-
thetic range inage, for wse as mdel features — and fromthe restored range image,
these are called the noisy features. 'The features vere extracted fromthe range 1 mages
in the followng ranrer. Ringe discontimities vere located by threshol di ng nei gh-
boring pixels, yiel ding range discontinity curves. These curves vere then segranted
into approxi matel y 20- pi xel -1ong segrants via a process of line segmant approxi ma-
tion. The line segrarts (each representing a fragnant of a range discontimity curve)
vere then converted i nto oriented range features inthe followng manrer. The X and
Y coordinates of the feature vere obtained fromthe mean of the pixel coordinates.
The mormal vector to the pixels was gotten via least-squares lire fitting. The range
to the feature vas estimated by taking the mean of the pixel ranges on the near side
of the discontimity This information vas packaged into an oriented range feature,
as described in Section 5.4. The model features are show in the first image of He
we 7-3. Fach line segrant represents ore orientedrarge feature, the ticks on the
segrants 1ndi cate the near side of the range discontimuty. There are 113 such object
features.

The moi sy features, derived fromthe restored range image, appear in the second
image of Hgue 7-3. 'There are 62 moisy features. Sorm features have been lost due
to the corruption and restoration of the range image. The set of image features vas
prepared fronthe roi sy features by randonhy del eting hal f of the features, tramsform
ing the survivors according to a test pose, and adding sufitient randonhy gererated
features so that é of the features are due to the object. The 248 i mge features appear
inthe third imge of Hgue 7-3.

732 Sagirg Tle Qyedtive Ktian

The ohjective function of Kpation 7.5 vas sanpled al ong four straight 1ines passing
through the (known) location in pose space of the test pose. Qierted stationary
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statistics vere wed, as described in Section 3.3. The stationary feature covariance
vas estimted froma hand match done wth a nouse betveen the model features and
the noi sy features. The background rate parareter Bwas set to %.

Sarples taken along a line through the location of the true pose in pose space,
parallel tothe Xaxis are shomnin Hgure 7-4. This corresponds to moving the object
along the Xaxis. The first graph shovs samples taken along a 100 pixel length (the
image is 296 pixels square). 'The second graph of Hgure 7-4 shows samples taken
along a 10 pixel length, and the third graph showe samples taken along a 1 pixel
length. The Xcoordinate of the test pose is 55.5, the third graph shovs the peak of
the objective function to be inerror by about one tvertieth pixel.

Sarpl es takenal ong a lire parallel to the paxis of pose space are shomin K gure
7-5. This corresponds to a siml taneous change in scale and angul ar orientation of
the object.

Fach of the above graphs represents 50 equally spaced sarples. The samples are
joined wth strai ght 1ine segrants for clarity Sanpling vas also done parallel to the
Y and v axes wth simlar resul ts.

The sanpling described in this section show that inthe experimantal domainthe
objective function has a promnent, sharp peak near the correct location. Sore 1ocal
maxim are also apparent. The observed peak nay not be the domnant peak — no
global searching vas performad

(barse- Hne Sanpling

Additional sampling of the objective of Kpation 7.5 ves performed to i nvesti gate the
feasibility of coarse-fine search techni ques. A coarse-fire search method for finding
mxim of the pose-space objective function vould proceed as follows. Reaks are
initially located at a coarse scale. A each stage, the peak fromthe previows scale is
wed as the starting val ve for a search at the rext (less smooth) scale.

The objective function vas smothed by repl acing the stationary feature covari-
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ance matrix ;/A)inthe foll owng ranner:
b b

The eflect of the smothing natrix s 18 to increase the spatial scale of the co-
variance matrices that appear in the objective function.

Robes al ong the Xaxis through the knownlocation of the test pose, wth variows
anounts of smoothing are show in Hgure 7-6. The smoothing matri ces wsed in the
probing vere as follove, in the same order as the figures.

OAG(.D) 2, (D)2, (10.0) 2, (10.0) %) ,

ODAG(.025) 2, (.025) 2, (25) %, (25)?) ,

DAG(.01)  2(.01) % 1.0, 1.0) .

vhere TXAG- ) comstructs diagonal matrices fromits argumants. These smoothing
natrices vere determned enpirically. (N smoothing vas perforrad in the fourth
fre.)

These smothed sampling experients indicate that coarse-fine search my be
feasible inthis domin In Kgwe 7-6 it is apparent that the peak at one scale my
be wed as a starting valve for local searchin the next scale. This indicates that a
final lire search along the Xaxis coul d wse the coarse fine strategy. It is not sufkient
evidence that such a strategy wll vork in gereral. & before, there is mo guarantee
that the located maximumis the global maxi rom
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X Probes of Cbjective Function X Probes of Objective Function
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Hguwre 7-6: XHobes in Smothed By ective Hinction
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7.4 Mdeo Imge Fxperi nart

Inthis section, amother experimant wth the PMBE objective function is described.
The features are point-radius features derived fromvideo images. Alocal searchin

pose space is carried out, and the objective function, and a smoothed variant, are
probed inthe vicinty of the peak

74.1 Ramdiond e

The features wsed in this experinart are the sam as those wsed in the MP Mdel
Mt chi ng correspondence search experinant reported in Section 6.2. They are poi nt-
radiws features, as describedin Section 5.3. The features appear in Hgure 6-4.

742 SardhinIkse Sace

Asearch vas carried out in pose space froma starting val ue that vas determned by

hand  The search ves implenanted vith Rwell’s method [59) of ml tidi nensional
nort 11 near optimzation. Rovell’s mathodis simlar to the conj ugate- gradi ent rathod,

but derivatives are not wsed. The 1ine mnimzatiors vere carried ot wth Bent’s
mathod [59], which wes successive parabolic approximations.  The pose resulting
fromthe search is illwtrated in Hgure 7-7. This result is close to the best result
fromthe MP Mdel Mtching correspondence search experiment. That result is
reproduced here in Hgure 7-8. 1t is conhorting that these tvo substantially diflerent
searchmathods (conhi natorial versus contimiows) provi de simnl ar ansvers in, at least,

one experiart.

743 Sagirg Te Qyetie Hitin

Sanpl es vere taken al ong four straight lines passing through the peak in the objec-
tive function resu ting fromthe search in pose space reported above. (In the range
experivant, sampling vas dore through the known true pose. ) The results are illus-
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Hguwe 7-7: Results of Searchin Rse Space

——— e e ——

( /f
PR/
0O wfv\ )
/n,if ™ f v/\m\
%w b
,f y
_ OV e
S N
\
AN

Hgwre 7-8 Rest Rsults fromMP Mdel Mtching (orrespondence Search



7.4. VI DEOI MAGE EXPERI NENT' 107
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Hguwre 7-9: Hobes of Oyective Hinction Rak

trated in Kgure 7-9. The peak in this data is not as sharp as the peak in the range
experimant reported in the previows section. This is likely due to the fact that the
features wsed in the video experivant are substartially less corstraining that those
wed in the range experinant — vhi ch have good range information in them

Sampling of the objective function wth smothing vas also performad, as in
Section 7.3.2.
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Soothi ng vas performad at one scale. The smoothi ng matri x vas

IAG03)  2,(.03)2 (3.0)2,(30)2) .

Rohing, performad in the same mamner as in Hgure 7-9 vas perforrad on the
smothed objective function. The results are shown in Hegure 7-10. In conparison
to the range i mge experimant, local naxima are more of anissue here. This may be
partly dve to the background features here havi ng more structure than the randonhy
gererated background features 1sed in the range 1mage experimant. Bcawse of this,
anoml ows pose estimates (vhere the pose corresponding to the global naxi nomof
the objective function is seriowly in error) may be more likely in this domain than

in the range experinant.

7.5 Rlation to Bt FBtimtion

This section describes a relationship betveen PNBE and robust estimation. By
simplifying the domin a robuwst estimator of position is obtained. A comnection
betveen the sinplified robust estimator and neural netvorks is discussed.

(omsider the followng sinplifications of the domain:

e drop the pose prior

the object has one feature

o the imge is one-dirarsional wth wdth W

o the pose is a scalar

the projection function tramsl ates: A+, J =5
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Hgure 7-10: Hobes of Smothed Oy ective Hinction
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Whh these simplifications, the observation nadel of Kyation 6.1 becoras

if I =L

1
wY: | L= v
G,(Y; = othervise

where

In this sinplified domain I may be interpreted as a collection of variables that de-

scribe the validity of their corresponding measurerants in Y. s, T ; /=L may be
interpretedas meanng that Y ;isvalid andl' ; =Las Y ; beingimalid fY ;) is defined
to be zero outside of the range [ =¥, X,

The prior on correspondences of Kyuation 2.2 takes the followng form

B if I'; =L
) = ,
1 —B otherwse
($ing Biyes” rul e and the i ndependence of T’ ; and Fal lovs the fol lowng probahility

of asample andits walidity,

if L=
1-=BG (Y =3 othervise

=

HY o, Ui | A=Y | L, 3L ) = { (7.10)

~~

The probahility of a sample nay mowbe expressed hy taking a marginal over the
probability in kpation 7. 10, as follovs,

B
MY A= YT A= 1 BG (Y
Iy
[fini ng an ohjective function as a log likelihood of 3

B I 9]
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leads to the anal og of the PN objective function for this sinplified domain,

K= St H1-BG (-

This may al so be witten

K= Y4V

were
9 <n [H1-pG (@] .

This is the Mxi mumli kel i hood objective function for estimating the mean of a
nornal popul ation of variance o 2 that is contamnated wth a uni formpopul ation of
wdth W vhere the fraction of the mxture due to the wniformpopul ationis B

The function §a) is approxinately quadratic vhen the residml is small, and
approaches a constant vhen the resi dual is large. Wen Boes to zero, ) becoras
quadratic, and the estimator becoms least squares, for the case of a pure normal
popdlation. Wen —{a) is vieved as a penalty function, it is seen to provide a
quadratic penal ty for small residuals, as least squares does, but the penal ty saturates
when residuals becorm large. Robust estimation is concerned wth estimators that
are, like this one, less sersitive to outliers that least squares. A wth many robust
estimators, the resulting optimzation problemis rore difiiult than least squares,
since the objective function is non-convex. This estimator falls into the class of re-
descending Mestinators as discussed by Hber [41].

PN s soravhat diflerent fromrobust estimationinthat the saturating aspect
of the objective fuxction not only decreases the inflience of “outliers” (hy anal ogy,
the background features), it also reduces the inflience of inage features that don’t

correspond to (are ot close to) a gi ven object feature.

(7.11)

(7.12)
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7.5.1 @mdtimto Nud NMwak Sgud hitian

There is an important connection betveen the estimator of Kuation 7.12 and the

sigmid function of neural netvorks,

1

T e

The sigmid function is a smoth variant of a logical swtching function that has
been wsed for modeling neurors. It has been sed extensivel y by the neural netvork
commi ty in the comstruction of netvorks that classify and exhibit som form of
learning behavior. The Nefal k newral netvork of Sejnovski and Rsenberg [61] is

a vell knowexanpl e.

It turms out that, under sore conditions on the paramaters, the signoid function
of 2 is approxiratel y equal to {2, ignoring shifting andscaling This near equality
is illwtrated in K gure 7-11.

The tvo functiors that are plotted in the figure are

1n[. 25+ Hexp(—=  ?)]
1n[.25]

flo =20z *) =5 ad g9 =

The upper graph shovs flayadf(a) plotted together, while the lover graphshovs
their diflerence. It can be seen that they agree to better than one percert.

Becase of this near equality, for aspecial case of the paramaters, a netvork that
eval uates the Ml estimator of Kuation 7.12 for a contamnated normal popul ation
wll have the formillwstrated in Hgure 7-12.

This retvork, wth its arrangenant of sigmid and sumunits seem to fit the
defmition of a neuwral netvork

The robist estimator of Kuation 7.12, andits neural netvork approxi mation, are
(approximatel y) optinal for locating a Gussian clwster in uni formnoi se.

Asimlar neural netvork realization of the PMAE objective function vould 1ike-
wse be near optimal for locating an object against a uniformbackground.
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f(x) and g(x)

f(x) - 9(x)

Feuwe 7-11: flo) and ¢(a), and fla) —o(®)
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Haguwe 7-12: Netvork Inpl enantation of MP Istimator for (ontamnated Normal
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7.6 INHE Hfici ency Bund

Thi s sectionprovides alover bound on the covari ance matrix of the PMPEestimator.
Ktimtors of vector paramaters (like pose) may be characterized by the covariance
matrix of the estimtes they produce. The Gramar-Fo bound provides a lover
limt for the covariance matrix of unbiased estimators. Uhbiased estimators that
achieve this bound are call efficient estimators. DIscussions of estimator effdiency
and Granar- Ro bounds appear in [63] and [72].

The Garar- Ro bound on the covariance matrix of estimators of [ based on

olservations of Xis given by the imverse of the Ksher information mtrix,

O A= 73 -

Rere, (O(-) demotes the covariance matrix of the randomvector argunant. This
natTix inequal ity neans that (O 5) —1I (3 is positive seri- defini te.
The K sher information matrix is defined as follovs,

Ip(A =E x([VslngX B[V sl X 3] )

where V' is the gradient v th respect to @ vhich yields a col um vector, and
stands for the expected val te of the argumnt v th respect to Y.

The covari ance tatrix, and the Gaar-Ro bound, of the PN estimator are
dffdt to calcdate. Iistead, the Ganr-Rio bound ad effiency wll be deter-

mned for estimators that hawe access to both observed features Y i» and the corre-

spondences I' ;. The (arar- R bound for these “conpl ete-data” estimtors wll be
found, andit wll be shown that there are no efltient conpl ete-data estimators. B-
cawse of this, the FMBEestimtor 1s subject to the sam bound as the conpl ete- data
estimtors, and the PN estimator cammot be efiient. This follovs, because the
PN estinator can be corsidered to be techni cally a conplete-data estimator that
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ignores the correspondence data.
Interm of the complete-data estimator, the Hsher information has the followng

form
Ir(A =E v, ([Vs IngXT| BI[V slog¥T] 5] 7).

Asumng 1 ndependence of feature coordinates and of correspondences, the prob-
ability of the conplete-data is

HYT| 3= HF(YZ',FH A .

($ing Biyes rule and the independence of T"and /3

AY Ui | =AY | L, 810 &) .

Referring to Kpations 6.1 and 6.3, and wsing corstant background probability B
and linear projection, the conplete-data conponent probahility may be witten as

follovs,
T if I =L
Z(Y“FZ | @ — WiWws. . . W
EEGy, (Yi-M ;5 ifTi=M; .
VWtki ng tovards anexpressionfor the H sher information, ve diflerenti ate the conpl ete-

data probahility to obtain

VY, Ty |
VelngXT| 4=V sIn[[dY: 15| =3 ;é T | @@

Wenl' ;=L V Y, 1| 3 =0, otherwise, inthe case ' , =M

7

1-B

m

VY, Ii | 3=V 4 Gy, (Ys =M ;5 .

(7.13)

(7.14)
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Dflerentiating the normal dersity (a formlafor this appears in 8.3), gives

1-B

VoY, Ui | 5 =(-) TG%(YZ' =M 3 M Forf (V=M

so that

VY, Ii | 3 -1
— M Ty MY, -M,;H wen T ;=M
HY LT 3 g =M e Z

Then the gradient of the corplete-data probahility nay be expressed as
VelngYT| g =— > M7 (Yi-M;5 .
iji M,

Note that setting this expression to zero defines the Mxi mamli kel i hood estimator
for Bin the conplete-data case, as follove:

o MIulYi= Y MIurMp,
FREUE FREE

or

SR RTINS W

ijiEM ijiEM

This estimator is linear in Y. 'The imverse has been assumd to exist —it wll exist,

provi ded certainlinear i ndependence condi tiors are mat, and enough correspondences
tomdel features appear inthe match. This typically requires tvo to four correspon
dences in the applications described here.

Returning to the Hsher information, ve need to eval uate the expectation:

Ir =B Y,r(

T
Z M]T@Z)i_jleijll Z Mf¢;j16iJ] ) )

PG M ijiEM

117

(7.15)
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vhere the ¢5"th residual has been witten as follows,
GZ'J‘EYZ' —M]ﬂ .

Re- namng indi ces and pulling out the summ gi ves

Ir =E v,r| 3. > MivTe gy My
(GTEM i TEM
Referring to Kuation 7. 14, the expectation nay be split and moved as follovs,
Ir =E r ( > > M]‘T%/)Z'_;Ewr(ﬁiﬁgj/)%/%_/]‘lfMj’)

(GEM G A,

The inner expectation is over mtually independent (aussian randomvectors, and

equal s their covariance matrix vhen the indices agree, and is zero otherwse, so
Ir =E ( > > M]T¢f]1¢ij5¢i5jf¢¢7]1/Mj')
GG, T
This expression simplifies to the followng
Ir =E r ( > MjT;z;;;Mj)
PG EM
The sumnay be re-vwrittenin the fol lowng vay by wsing a del ta function conpari ng

Ty and M,

Ir =Y Er (5riM]) M]'T%/ijle => Er, (5riM]) M]‘T%/)f]‘le

[ [

The expectation is jwst the probability that an image feature 1s matched to som
mdel feature. This is %, so the Hsher information may be witteninthe followng
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simple form
1-B _
ij

or as

1 _
Ir =(1—Bn — > MM,
i

This is anattractive result, and nay be easilyinterpreted, inrel ationtothe Hsher
information for the pose vhen the correspondences are fived (a standard linear esti-
nator). The Ksher informtion in that case is ZijMf;b;]le,it may be interpreted
as the sumover matches of the per-match Ksher information.

Inlight of this, the complete-data Ksher informtion is seen to be the average
of the per-match Ksher information, miltiplied by the expected mmher of features
natched to the model, (1—Bn

A effii ent unhi ased estimator for the conpl ete-data exists if and only if

N

B=B+1 1AV slng¥XT| 3 .

This requres that the right hand side be independent of 3 since the estimator
(Kpation 7.15) is not a function of 4 Fpanding the right hand side,

-1

s |0-Bn S Mgl S MM

ijiEM

This is ot 1 ndependent of 3 (be vay to see this is tonote that the tactor mol tiplying
Fin the second termis a function of I Ths, no efitient estimtor exists in the

compl ete-data case, and consequently, no efitient estimtor exists for PMAE

7.7 Rlated Wk

Green [31] and Gleen and Shapiro [32] describe a theory of Mxinumli kelihood
laser radar range profling. The research focises on statistically optimal detectors
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and recognizers. The single pixel statistics are described by a mixture of uniform
and normal corponents. Ringe profling is inpleranted wing the FMal gorithm

lhder soma circumtances, least squares provides an adequate starting value. A
continationstyle variart is described, where a range accuracy parameter is varied
bet veen EMconvergences froma coarse val ve to its true valve. Gleen [31] computes
(anar- Fio bounds for the compl ete- data case of Mxi rimli kel i hood range profie
estimator, and conpares sinnl ated and real - data performance to the limts.

Gass [16] [15] describes an approach to visual object recognition that searches
in pose space for maximal alignmants under the bounded-error mdel. The pose-
space objective function wed there is piecewse comstant, and is thus not amamnable
to contimows search mathods. The search is based on georatric formlation of the
corstraints on feasi bl e tramsformations.

There are som comections bet veen PMEand standard nathods of robust pose
estimation, like those described by Hralick [3§], and Kmar and Huson [48]. Bth
can provide robust estimates of the pose of an object, hased on an ohserved inage.
The main difierence is that the standard mathods require specification of the feature
correspondences, vhile PMPF.does not — by considering all possible correspondences.

N requires a starting val ve for the pose (as do standard nethods of robust pose
estimation that use non convex objecti ve functions).

& mantioned above, Yille, (eiger and Bilthoff [78] discussed comuting dis-
parities in a statistical theory of stereo vhere a marginal is conpited over natches.
Yille extends this technique [79) to other domins of vision and newral netvorks,
arong themw nner-take-all retvorks, stereo, 1ong range mtion, the traweling sal es-
man problem deformable terpl ate matching, learning, content addressable ram-
ries, and nodel s of brain devel oprant. In addition to conpting narginals over dis-
crete fiel ds, the Gbbs probability distributionis wed Ths facilitates contimation
style optimzation mathods by variation of the temperature paramater. 'There are
som simnl arities betveen this approach and wsing coarse-fine wth the PMPF.objec-
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tive function.

Kl man and Roggjo [ 24] describe a mathod of 3Drecogni tion that wes a trained
(¢reralized Radial Bsis Hmction netvork. Their mathod requires correspondences
to be known during training and recognition. (e simlarity betveen their schem
and PN i s that both are essentially arrangenarts of smoth unimodal functiors.

There is a simlarity betveen Rsterior Mrginal Rse Ktimtion and Hugh
tramsform(HI) mathods. Roughly speaking, HI mathods eval uate paramaters hy
accuml ating votes in a discrete paramater space, based on observed features. (See
the survey paper by I11ingvorth and Kttler [44] for a discussion of Fugh methods. )

In a recogni tion application, as described here, the Hl'mathod voul d eval vate a
discrete pose by comting the mmher of feature pairings that are exactly corsistent
somvhere wthin the cell of pose space. A stated, the Hl'mathod has difhiul ties
wth noisy features. This is wually addressed by counting feature pairings that are
exact]y comsistent, somvhere nearby the cell in pose space.

The utility of the Hl'as a standal one mathod for recognition in the presence of
noise is a topic of som controversy. This is discuwssed by Gimonin [34], pp. 220.
Rerhaps this is due to an unsui table noise model inplicit in the Fugh Tarsform

Rsterior Mrginal Rse Istimation eval uates a pose hy accuml ating the 1oga-
rithmof posterior marginal probability of the pose over image features.

The connection betveen Hl'mathods and paramater eval uation via the 1ogari thm
of posterior probability has been descri bed hy Stephers [67]. Stephens proposes to call
the posterior probability of pararmters givenimge observations “Ihe Rohabilistic
Hugh Tastormi. R provided an example of estimating live paramaters from
imge point features vhose probahility demsities vere described as having uniform
and nornal conporerts. e also states that the mathod has been wed to track 3D
objects, referring to his thesis [68] for definition of the mthod wsed

121
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7.8 Sumary

Amathod of eval vating poses in object recognition, Rsterior Mrginal Ree Etima-
tion, has been described. The resul ting ohjective function vas seen to have a simple
formvhen normal feature devi ation mdels and linear projection mdels are wsed.

[i mted experinartal results vere shown indi cating that in a domain of synthetic
range discontimnity features, the objective function may have a promnent sharp peak
near the correct pose. Som local maxima vere also apparent. Awther experivarnt,
in vhi ch the features vere derived fromvi deo 1 nages, vas described. (onnectiors to
rohwst estinationand newral netvorks vere examned. Bunds on the perfornance of
sinplified PMPEestimators vere indi cated, and rel ationto other vork vas discussed.



Chapter 8

Expectation — Mixi ni zation

Al gorithm

The Fxpectation — Mxi nization (FM al gori thmves irntroduced inits gereral form
by brpster, Ribinand lairdin 1978 [21]. It is often wseful for comuting estimtes
in dorai s having tvo sanpl e spaces, vhere the everts inone are uniors over everts
in the other. This situation holds armong the sample spaces of Rsterior Mrginal
Rxe Ftination (M) and MPMdel Mtching, Inthe original paper, the vide
gererality of the FVhl gorithmis discissed, along wth several previous appearances
inspecial cases, and convergence results are described.

In this chapter, a specific formof the FMal gorithmis described for we wth
PN Tt is wed for hypothesis refinerant in the recognition experinants that are
described in (hapter 10. Issues of convergence and i mplerantation are discissed.

81 Dinition of EMIteration

In this section a variant of the FMal gorithmis presented for we wth Rsterior
Mrginal Rxse Istination, vhichvas describedin (hapter 7. The fol lowng model i ng
assuntions vere wed. Nrmal mdels are wed for matched image features, vhile

123
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uni formmodel s are used for wmat ched (background) features. If aprior onthe poseis
awailable, 1t 1s normal. The independent correspondence model i1s wsed. Additionally;
alinear mdel is wed for feature projection.

In PMPE, the pose of an ohject, 3 is estimated by maximzing its posterior
probability, given aninage.

N

p=agrax Holy) .

Arecessary condi tionfor the maxi nuimi s that the gradient of the posterior prob-
ability wth respect to the pose be zero, or equvalertly, that the gradient of the
logari thmof the posterior probahility be zero:

0=V slng 3| V) . (8.1)

InSection 7.1, Kpation 7.2 the foll owng forml a vas gi venfor the posterior prob-
abilityof the pose of anobject, givenaninage. Ths assumas wse of the i ndependent
correspondence mdel .

_ 19 |

Inposing the condition of Kuation 8.1 yields the followng,

1 R R
0=V ;|ln—— Hng 9+ Zlnr(Yi | 5
1Y) i
or ) )
\Y% VY,
o= Yo +ZM . (8.2)
1A oYl
& in Kpation 7.3, ve may wite the feature HF conditioned on pose in the
foll owing vay;

nY:| 4= ;F(Yi | LAl &)

or, wing the specific nadel s assurad in Section 7.1, as reflected in Fuation 7.4, and
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wing a linear projection nodel

B; 1-B;
Y, = : : Gy (Y, =M .05 .
Z( | @ W1W2‘ L. W—I_ m ZJ: %( ]@

The zero gradient condition of Kpuation 8.2 may nowbe expressed as follovs,

O R e
Wih a normal pose prior,
KA =G 4, (BB o) , ad VA =uBL (5B o) .
The gradient of the other normal dersityis
VG, (Yi =M ;8 ==G , (Y; =M ;9M o7 (Y, =M ;3 . (83)

Returning to the gradient condition, and wsing these expressions (negated),

SO =M AM T} (Y =M
W1W2 . ermB Z Gw”(Y MJ@

0= ;'(3-5 o) +z

Hnally, the zero gradient condition my be expressed compactly as follovs,

_¢ _1 ﬂ ﬂ —I_ZWJ‘M] 2]( M]@ Y (84)
wth the followng defini tion:
Gy, (Yi =M ;3
m]: 11/”( ]@

BB W1W2 . W*‘Z qu(Yz —M ; @

Kyation 8.4 has the appearance of being alinear equationfor the pose estimate
that satisfies the zero gradient conditionfor being anaxinum Uhfortunatel y; 1t isn't



126 CHAPTER 8.  EXPECTAIT ON— MAXI M ZAIT ON ALGORI THM

alinear equation, becaise W ; (the “veights”) are mot corstants, they are functioms
of B B find sol utions to Kpation 8.4, the FMal gori thmi terates the fol lowng tvo
steps:

o Teating the veights, W ;;as comstants, solve Kpation 8.4 as a linear equation
for a newpose estimate B This is referred to as the Mstep.

o [$ing the mst recent pose estimate B re-eval uate the veights, W, according
to Kuation 8.5. This is referred to as the Estep.

The Mstep is so namad becaise, in the exposition of the algorithmin [21], it
corresponds to a Mximomlikelihood estimate. & discissed there, the al gorithm
is also ammable to we in MPformlatiors (like this ore). Rere the Mstep corre-
sponds to a MPestimate of the pose, giventhat the current estimte of the vei ghts
is correct.

The Estepis so namad becase cal cul ating the W ; j corresponds to taking the
expectation of som randonwariables, giventhe image data, and that the most recent
pose estimate is correct. These randomwvari abl es have val ve 11t the 2" thimage feature
corresponds to the 77th object feature, and O otherwse. Ths, after the iteration
converges, the veights provide continuows-val ued estimates of the correspondences,
that vary betveen 0 and 1.

It seern somavhat ironic that, having abandoned the correspondences as being
part of the hypothesis in the formlation of PME a good estimate of themhas
re-appeared as a byproduct of a mathod for search in pose space. This estimte, the
posterior expectation, is the mmi nomvari ance estimator.

Bing essertially a local mathod of non-livear optimzation, the FMal gorithm
needs good starting val ves in order to comerge to the right local maxinum It may
be started on either step. If it is started on the Estep, an initial pose estimate is
required. When started on the Mstep, aninitial set of veights is needed.

Ainitial set of veights can be obtained froma partial hypothesis of correspon



§. 2. CONVERGENCE 127

dences in a sinple manner. The veights associated wth each set of corresponding
features inthe hypothesis are set to 1, the rest to 0. Indexing mathods are one source
of such hypotheses. In (hapter 10, Agle Rur Indexingis wed to generate candi date
hypotheses. In this scemario, indexing provides initial alignmants, these are refined
wing the Vil gorithm then they are verified by examni ng the val ve of the peak of

the PMBE obyj ecti ve function that the refinenant step found.

82 (orvergernce

Inthe original reference [21], the EMal gori thmvas show to have good convergence
properties under fairly general circumtances. It is shownthat the 11kelihood sequence
produced by the al gorithmis monotonic, i.e., the al gori thmnever reduces the val ve
of the objective function (or inthis case, the posterior probahility) fromore step to
the next. W[77 claim that the convergence proof in the original FMreference is
flaved, and provides another proof, as vell as a thorough discussion. It is possible
that 1t wll vander along a ridge, or becom stuck in a sadd e point.

In the recognition experimants reported in (hapter 10 the al gorithmtypically

comverges 1n 10 — 40 iteratiors.

83 Inplemrtation Issues

Sore threshol ding rathods vere wed speed up the comptation of the Eand M
steps.

Te veights W, ; provide a maswre of feature correspondence. /& the al gorithm
operates, 1ost of the veights have val ues close to zero, since mst pairs of inage and
object feature don't align vell for a given pose. Inthe commtation of the Mstep,
rost terma vere left ot of the sum based ona threshol dfor W ; 7 Som represertative
vel gits froman experirant are displayedin Bhle 10.1 in (Qapter 10.

Inthe Estep, mst of the vorkis ineval uating the Gussian functions, vhi ch have



128 CHAPTER 8.  EXPECTAIT ON— MAXI M ZAIT ON ALGORI THM

quadratic form inthem Ior the reason stated above, mst of these expressions have
val ves very close to zero. The eval uation of these expressions vas nade condi tional
on a threshold test applied to the residwls Y, —M ;4 Wen the (x,y) part of the
residual exceeded a certainlength, zero vas substituted for the val ve of the (aussian
expression. Rbles indexed by i nage coordi nates mght provi de another eflecti ve vay
of inplenanting the threshol ding here.
The val ve of the PN objective function is conputed as a byproduct of the E
step for little additional cost.

8.4 Rlated Wk

The vork of Gleen [31] and Green and Shapiro [32] that is discussed in Section 7.7
describes we of the FMal gorithmin a theory of 1aser radar range profiling.

lipson [30] describes anorrstatistical mathod for refini ng aligments that iterates
solving linear system. It matches model features to the nearest image feature under
the current pose hypothesis, vhile the mthod described here ertertains matches to
all of the image features, veighted by their probability. Tipson’s method vas shown
to be eflecti ve and robust in an inpl enantation that refines alignnarts under Iinear
(onhi nation of Wevs.



Chapter 9

Angl e Pair Indexing

9.1 I2scription of Mthod

Apgle Par Indexing is a simple mathod that is designed to redice the amunt of
searchneeded 1 n findi ng nat ches for 1 mage features in 2Drecogni tion. [t wses features
havi ng 1 ocation and orientation.

Ao invari ant property of feature pairs is wed to index a table that is comstructed
ahead of time. The property wsedis the pair of angles betveenthe feature orientations
and the lire joining the feature’s locations. These angles are 1 and d 5 inHgure 9-1.
The pair of angles is clearly imvariant under tramslation, rotation, and scaling in the
plane.

$ing orientations as vell as point locations provides more constraint than point
featwres. Bcase of this, indexing may be performad on pairs of sinple features,
rather than groups of three or nore.

The table is comstructed fromthe object features in a pre-processing step. It is
indexed by the angle pair, and stores the pairs of object features that are corsistent
wth the valwe of the angles, wthin the resolution of the table. The al gorithmfor
corstructing the table appears bel ow

Adistance thresholdis wed to suppress entries for features that are very close.
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Fgre 91: Agles for Indexing

Such features pairs yieldsloppyinitial pose estimtes and are poor initial hypotheses
for recogni tion.

;;; Gven an array mdel-featwes and a table size, n
;;; fills inthe 2 index array ANGLE- PAIR- TABLE by si de- effect.
BUI L.D- ANGLE- TABLE(model -features, n, distance-threshol d)
m«—LENGTH(nodel - features)
;; First clear the table.
Iori «0bm
Iorj «0bm
ANGLE- Pa1 R- TABLE[i, j] «¥
;; Nowfill inthe table entries.
Iori «0bm
Iorj «0bm
Ifi /=
f1 —andel -features[i]
{2 —andel -featwres|j]
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If D1sTANCE(f1, £2) > distance-threshold
< qr >—CALCULATE- I NDI CES (f1, {2, n)

ANGLE- Pa1 R- TABLE[q, 1] «-ANGLE- PAT R- TABLE[q, 1] U< ] >

The followng functionis wed to cal culate the table indices for a pair of features.
Nte that the indexing waps around vhen the angles are increased by = This
vas dore becaise the features wed in the recogni tion experimants described in this
research are often strai ght edee segnants, and their orientations are anhi guous by ©

;;; Calculate indi ces i nto ANGLE- PAT R- TABLE for a pair of features.
CALCULATE- I NDI CES (f1, {2 n)

He— =

n

i (| $lmdu)
i ([ $Jmodn)

retun(<i j 3

The followng al gorithmis wsed at recognition-tima to gererate a set of pairs of
correspondences fromimage features to object features that have consistent val ves of
the angle pair invariart. 'The indexing operation saves the experse of searching for
pairs of object model features that are corsistent wth pairs of image features. Thle
entries fromadjacent cells are included arong the candi dates to acconmdate angle
val ves that are “onthe edge” of a cell boundary:

;;; Mip over the pairs of features in an i nage and generate
;;; candidate pairs of feature correspondences
GENERATE- CANDI DATES (image-features, n)

candi dates «4)

m«—LENGTH(i nage- features)
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Iri «0Dbm
krj < +1tom
<qr >CALCULATE- I NDI CES (image-features[i], image-features[j], n)
Fr &g —1tol
or or—1tol
Ior <kl >€ ANGLE- PAI R- TABLE[((¢+dg) md n), ((r+6r) nod )]
candi dates «—candi dates U << k ><j 1 >>

Return( candi dates)

9.2 Sparsification

In the recognition experimants described belowand in Section 10.1, an additional
techni que vas wed to speed up recogni tion-time processing, and reduce the size of
the table. /& the table vas huilt, a substantial fraction of the entries vere left out
of the table. These entries vere selected at random This strategy is based on the
followng observation: Tor the purpose of recognizing the object, it is only necessary
for somm feature pai r fronthe object tobe bothinthe table andvisibleintheimge. If
areasonable fractionof the object is visible, a substantial mmher of feature pairs wll
be awailable as potential partners in a candi date correspondence pair. It is unlikely
that the corresponding pairs of object model features wll all have been randonhy
elimnated vhen the table vas huilt, evenfor fairly large amounts of sparsification.

9.3 Rlated Wk

Indexing hased on invariant properties of sets of imge features has been wed by
Landan and W fson, in their vork on geomatric hashing [49], and by (erars and
Jacots [19][20], Jacobs [45], and Thomson and Mindy [70]. In those cases the
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invariance 1s wth respect to affie transformations that have eight paramters. In
this vork the imvariance is wth respect to tramslation, rotation, and scale in 2)
vhere there are four paramaters. Thonpson and Mindy descri be an invari ant called
vertex pairs. These are based on angles rel ating to pairs of vertices of 3Dpol yhedra,
and their projections into 2D) Augle Rur Indexing is somavhat simlar, bt is sinpler
— being desi gned for 2Dfrom2Drecogni tion.
(erars and Jacobs [19] [20], and Jacobs [45] wse grouping rachani sma to sel ect
small sets of image features that are likel y to bel ong to the same ohject in the scere.
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Chapter 10

Recogniti on Experinents

This chapter describes several recognition experinarts that wse Rsterior Mrginal
Rse Ktimtion wth the EMAgorithm The first is a complete 2D recognition
systemthat wes Agle Rir Indexing as the first stage. In another experimant, the
PN ohyj ective function is eval uated on mmarows randomal i gnrents.  Addi tione
ally, the eflect of occlwsions on PN are investigated Hnally, refmerant of 3D
alignmants is denostrated.

In the followng experimants, inage edge curves vere arbitrarily subdivided into
fragnants for feature extraction. The recogni tion experi nants based on these features
show good performance, bt the perfornance mght be inproved if a rore stable
subdi v sion techni que vere wsed.

10.1 2DRecognition Fkperi marts

The experinants described in this section we the FMal gorithmto carry out local
searches in pose space of the PN objective function. This 1s wed for eval vating
and refining alignrants that are gererated by Agle Rur Indexing. Acoarse — fine
approach is wsed inrefining the al i gnents produced by Agle Fuir Indexing. B this

end, tvo sets of features are wed, coarse features and fine features.

135
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Hguwe 10-1: Glayscal e Image



10. 1.

2D RECOGNI 'IT ON EXPERI NENIS

///‘/::\ 7
pd
/*\ s T2
Pt U2 S
e S T /
c J /
I \}\{\\ ///; //
L_\\ /// r
\\\\\\ 7
~5
Ve
+++++++++++++++++ P
' - «*r:‘\ﬂ,
- { | 11*4/) C_r {{
I | C (: R // |
: o~ ~ 7 \\:: — s {
\ [ G //’;// Gl {
t CrN e f —— |
| { \ A o /r S e X
| { (\ \\ J 4 ( - o= (\./‘k
* ) NN H Lo ~
{ | SOV H TS
i AR ~ -
{ ot (o
y T T S AN fy
Tl ' b i
\ o \ | **1 ~
\ \ \ S RPN -
Ak\**"*\\ \*)\\\ : — } \\j O A \]
o - AN
\ ]
U U S SR

Hguwe 10-2 (darse Mdel and Tmage Teatures

137



CHAPTER 10. RECOGNI TI ON EXPERI MENIS

138

1

e h h e aaa sk

r

'
i

e mm b a ey

&

o
ars

Fyae s

’

4
! o
> .
n R
~ W 227
A JRPE Y

.
[l
'
.
[

Hre Mdel and Tmage Fatures

Hgwe 10-3



10. 1. 2D RECOGNI 'TT ON EXPERI MENIS 139

The vi deo i mage wsed for the recogni tion experinant appears in Hgure 10-1. The
rodel features vere derived fromMan Klge Images, as described in Section 4.4.
The standard deviation of the smothing that vas wsed in preparing the mdel and
11age edge naps vas 3.97 for the coarse features, and 1.93 for the fire features. The
edge curves vere broken arhitrarily every 20 pixels for the coarse features, and every
10 pixels for the fire features. Rirt-radivs features vere fitted to the edge curve
fragmants, as described in Section 5.3. The coarse model and inage features appear
in Hgure 10-2, the fine model and inage features appear in K gure 10-3. There are 81
coarse mdel features, 334 coarse image features, 246 fie model features, and 1063
fine 1age features.

The oriented stationary statistics nodel of feature fhctuations vas wed (this
is described in Section 3.3). The paramaters (statistics) that appear in the PMPE
objective function, the background probahility and the covariance matrix for the
oriented stationary statistics, vere derived frommatches that vere done by hand
These training matches vere also wed in the empirical study of the goodress of
the normal model for feature flctuations discissed in Section 3.2.1, and they are
descri bed there.

10.11 Gauadig Aigrats

Initial aligments vere generated wsing Agle Rir Indexing (describedin (hapter 9)
on the coarse features. The angle pair table vas comstructed wth 80 by 80 cells, and
sparsi fication vas wed — 5 percent of the entries vere randorhy kept. The distance
threshold vas set at 50 pixels (the image size is 640 by 4%0). The resulting table
contained 234 entries. Whh these valves, unifornhy gererated randomangle pairs
have . 0365 probability of “hitting” inthe table.

Wen the 1 mge feature pairs vere indexedinto the table, 20574 candi date feature
correspondence pairs vere generated. This is comsiderably fever that the 732 mllion
possible pairs of correspondences in this situation. Hgure 10-4 illwstrates three of
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the candidate alignents by superinposing the object in the images at the pose
associ ated wth the initial alignmant inplied by the pairs of feature correspondences.
The indi cated scores are the negative of the PNBEobj ecti ve function conpted wth

the coarse features.

1012 Soig Inber Aignats

The intial alignarts vere eval uated in the followng vay  The indexing process
produces hypotheses comsisting of a pair of correspondences fromimge features to
object features. These pairs of correspondences vere comverted into aninitial veight
matrix for the FMalgorithm The Mstep of the al gorithmwas run, producing a
rough alignant pose. The pose vas then eval uated wing the Estep of the FM

al gorithm vhich conptes the value of the objective function as a side efiect (in
addition to a rewestimte of the veights). Ths, ruming one cycle of the M
algorithm initialized by the pair of correspondences, generates a rough alignnernt,
and eval uates the PN obj ective function for that alignmant.

1013 Rfing Inbar Aigrats

This section illstrates the mathod wsed to refine i ndexer alignnarts.

FHgure 10-5 shows a closer viewof the best scoring initial aligmant fromAugle
Far Indexing. Theinitial alignrent vas refined by runni ng the EMEl gori thito con
vergence wsing the coarse features and statistics. The result of this coarse refinenant
is displayedin K gure 10-6. The coarse refinerant vas refined further by runni ng the
EME gori thmto comvergence wth the fine features and statistics. The result of this
fine refinerant is shown in Hgure 10-7, and over the video image in K gure 10-8.

Ground truth for the pose is available in this experimart, as the true pose is the
mil pose. The pose before refinenant is

[.99505, —0.0034747, —0.37902, 5.0048] T
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-84.9719

Score:

-69. 1905

Score:

-39. 7645

Score:

Rses and Scores of Sore Indexed Hpot heses

Hgwe 10-4
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Hagure 10-9: (orrespondences wth V& ght Targer than .5

and after the refierant it is
[ 1.00166, 0.0051108, 0.68621, —.7817] T

The encoding of these poses is describedinSectionb. 3 (the mll poseis [1, 0,0, 0]
The initial pose is inerror by about .01 in scale and 5 pixels in position. The final
pose errs by about . 005 in scale and 1.8 pixels in position. Ths scale accuracy is
inpoved by a factor of about two, and position accuracy is inproved by factor of
about three. Anexperinant showng rore dramatic i nproverart is described bel ow
in Section 10.4. 1.

In these experimants, less that 15 iteratiors of the FVhl gori thmvere needed for

cormer geree.

014 Ed BVMghs
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A discssed in Section 8.1, a nice aspect of wing the EMal gori thmwth PN s
that estimates of feature correspondences are available in the veight matrix Hgure
10-9 displays the correspondences that have veight greater than .5, for the final
comvergence shownin Hgure 10-7. Here, the image and model features are displ ayed
as thin curves, and the correspondences betveen themare showmn as heavy lines
joining the features. Nte the strong simnlarity betveen these correspondences, and
those that the systemvas trained on, showin K gure 3-2.

Bhe 10.1 displays the values of some of the veights. The veights show have
val ve greater than .0l. There are 299 veights this large anong the 413,507 vei ghts.
The 39 vei ghts shown are those bel onging to 20 image features.

10.2 Bal wting RindomA i gnnarts

A experinant vas performad to test the wility of PMPEin eval vating randonhy
gererated alignants. (orrespondences anong the coarse features described in Sec-
tion 10.1 having assignoarts fromtvo image features to tvo model features vere
randonhy generated, and eval uated as in Section 10.1.2. 19118 randomal i gnrant's
vere gererated, of vhich 1200 had coarse scores better than -30.0 (the negative of
the PAIFES obyj ecti ve function). Awng these 1200, one was essentially correct. The
first, second, third, fouwrth, fifth, and fifteerth best scoring alignments are shown in
E gure 10-10.

Wh coarse — fine refinerant, the best scoring randomalignmant converged to
the sam pose as the best refinerant fromthe i ndexi ng experimant, shownin K gure
10-7, wth fine score -355.069. The rext best scoring randomal i gnnant. converged to
a grossly wong pose, wth fine score -149.064. This score provides som indication
of the noise level in the fine PN obj ective function in pose space.

This test, though ot exhaistive, produced o fal se positives, inthe serse of a bad
alignmant wth a coarse score better thanthat of the correct alignnant. Additionally,
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Image Index Mdel Index W ght
0 86 0. 022738026840027032
N 101 0. 014615921646994348
0 102 0. 8079666934440%
0 103 0. 09581539482455806
91 103 0. 9633441301926663
92 85 0. 2416619705912494
92 103 0. 19778274847425015
9B 87 0. 02784697957543993
9B 8 0. 37419218245379466
XU 87 0. T478667723520142
% 87 0. 44030413275215486
% 86 0. 6127902576993082
97 85 0. 9293665165549775
9% 85 0. 862176:3443368999
9 81 0. 627438267516
100 5 0. 6499527214931725
100 81 0. 19705210016850308
101 0 0. 011400725934573932
101 67 0. 9559675939354506
102 66 0. 9194110795990801
102 67 0. 0341643593533511
103 64 0. 04765362703894284
103 65 0. $454128520499249
103 66 0. 0578787:3660955701
104 63 0. 05270908685541295
104 64 0. 8354088350065394
104 65 0. 01474419821 866506
105 62 0. 06158503222464117
105 63 0. 9139939556525918
106 61 0. 09270729594689026
106 62 0. 8635739185353283
106 63 0. 010447389024937672
107 61 0. 9108399984969661
107 62 0. 021204649868405194
108 60 0. 861831671427837
108 61 0. 049220125250993084
109 53 0. 018077232316 743887
109 59 0. 9257311183042934
109 60 0. 01543400421 7119308

THe 10.1: Sore FMW ghts
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the fine score of the refinerant of the most promsing incorrect randomalignnent
vas si g ficant]y lover than the fine score of the (correct) refined best ali gmmant.

10.3 (omvergence wth (@cl wsion

The comvergence behavi or under occl wsion of the FVEL gori thnw th PMPFvas eval -

uated wsing the coarse features described in Section 10. 1. Trages features sirml ating
varyl ng anounts of occl usion vere prepared by shifting a varyi ng portionof the i mage.
These images, along wth results of coarse — fine refinerant wsing the FMal gori thm
are showm in K gure 10-11.

The starting value for the pose vas the correct (mill) powse. The refienants
converged to good poses in all cases, deromstrating that the method can converge
fromgood al i gnnents wth moderate amunts of occl usion.

The final fine score in the mst occluded exanple is lover than the noise level
olserved in the experinant of Section 10.2. This indicates that as the anount of
occl wsion increases, a point wll be reached vhere the mthod wll fail to produce a
good pose having a score above the noise level. Inthis experivant it happers before
the mathod fails to converge properly:

10.4 3DRecogni tion Fxperimarts

1041 Rfing3D Aigmats

This section derorstrates we of the Vil gori thmwth PNBEto refine al i gnnents
in 3Drecogni tion. The linear conhination of vievs mathod is wed to accormdate
a limted anount of out of plane rotation. Atvo-viewvariant of IV described in
Section 5.5, is wsed.

A coarse — fire approach vas wed. (oarse PNFE scores vere conputed by
stoothi ng the PNIEobj ecti ve function, as describedinSection7.3.2. The stoothi ng
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10. 4.

-338.03

Score

-203.142

Score

Fgure 10-11: FHre (omvergences wth (¢cl usion
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Hgure 10-12: Glayscale Image

matrix vas
NDAR(7.01)  2,(3.0)%) .

These muhers are the anounts of additional (artificial ) variance added for parallel
and perpendi cul ar devi atiors, respectively; inthe oriented stationary statistics nodel.
The video test image is shownin Hgure 10-12. It diflers fromthe nodel 1nages
by a significant 3Dtranslation and out of plane rotation The test image edges are

show in K gure 10-13.

The object mdel vas derived fromthe tvo Man Klee Tmages shown in K gure
10-14. These vere constructed as described in Section 4. 4.

The smothing wsed in preparation of the edge maps had 1.93 pixels standard
deviation, and the edge curves vere broken arhitrarily every 10 pixels. Ioint-radiws
features vere fitted to the edge curve fragnants, as described in Section 5.3, for
purposes of display and for conpuiting the oriented stationary statistics, although the
features wed wth PNIFCand the FIVR gori thnwere si npl y the Xand Ycoordi nates
of the centroids of the curve fragmants. Bth vievs of the mdel features are shomn
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Hguwre 10-13: Inage Kiges

in Hgure 10-15. The linear combination of vievs mathod requires correspondences
arong the model vievs. These vere established by hand, and are displayedin Hgure
10-16.

The rel atiorshi p anong the vievpoints in the mdel images and the test image is
illwtrated in Hgure 10-17. This represents the region of the viewsphere containing
the viewpoints. DNte that the test image is mot on the lire joining the tvo mdel
Vi eve.

The oriented stationary statistics model of feature fluctuations vas wed (this is
describedinSection3.3). A inSection 10. 1, the paramters (statistics) that appear in
the PNIECobj ecti ve function, the backeground probability and the covariance matrix
for the orierted stationary statistics, vere derived frommatches done by hand.

Aset of four correspondences vas established mamully fromthe image features
to the object features. These correspondences are intended to siml ate an al i gnnant
gererated by an i ndexing system Indexi ng system that are suitable for 3Drecogni-
tion are described by Qenars and Jacobs [19] and Jacobs [49]. The rough ali gnnert
and score vere obtai ned fromthe correspondences by ore cycle of the FVhl gori thm

151
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Hgure 10-14: Mdel Man Kige Images
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Eegure 10-15: Mdel Fatures (Bth Vews)
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Hgure 10-21:
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Fire Refined Aignrent wth Wdeo Inage
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as described above in Section 10.1.2. They are displayed in Hgure 10-18, vhere the
four corresponding features appear circled A coarse alignment vas then obtained
by runni ng the FMal gori thmto convergence wth smothing, the result appears in
FHgure 10-19. This aligment vas refined further by runni ng the EVRI gori thimagai n,
wthout smothing. The resul ting alignnant and score are shownin Hgure 10-20. In
these figures, the image features are shown as curve fragments for clarity, although
only the poirt locatioms vere wsed in the experivant. The image features wsed are a
sulset taken froma rectangul ar region of the larger inage.

Hegue 10-21 displays the final alignrent superinposed over the original video
imge. Mst of the model features have aligred vell. The discrepancy in the forvard
vheel vell may be due to imaccuracies in the I{Vnodel ing process, perhaps in the
feature correspondences. Thi s figure deromstrates good results for aligning a smoth
3Dobj ect havi ng six degrees of freedonof mtion, wthout the use privileged features.

1042 Rfiirg rtubed Pses

Thi's section describes an additional derorstrationof local searchin pose space wsing
PMEin 3D

The pose corresponding to the refined alignmant displayed in Hegure 10-20 ves
perturbed by adding a displacerant by 4.0 pixels in Y. This pose vas then refined
by rumning the FMal gorithmto comvergence. The perturbed alignmernt and the
resul ting coarse — fine refinerant is shown in Hgure 10-22. The result is very close
to the pose prior to perturbation.

Asimlar experinant vas carried ot wth a larger perturbation, 12.0 pixels in
Y. Te results of this appear in Hgure 10-23. This time the comergence is to
a clearly wong alignment. The nodel has been stretched to a thin configuration,
and msmatched to the imge. 'The resulting fine score is lover than that of the
good alignant in Hgure 10-21. This illustrates a potential dravback of the linear
combination of view mathod In addition to correct views, I(V can synthesize
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Haure 10-24: Bd Aignnant and Resul ting Refinerant wth Fre Score
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views vhere the model is stretched [ as wed here, has 8 paramters, rather
than the 6 of rigid mtion. The tw extra paramters determne the stretching part
of the tramsformation. This problemcan be addressed by checking, or enforcing, a
quadratic corstraint on the paramaters. This is discussedin[71].

Aother simlar experinant vas performad starting wth a very bad alignnent.
The results appear in Hgure 10-24. The al gori thmwas abe to bring som features
into alignmant, it the score remined low
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Chapter 11

Concl usi ons

Vsual object recognition — finding a known object in scenes, where the object is
smoth, is vieved under varying illumnation conditions, has six degrees of freedom
of position, is subject to occlusions and appears agai st varyi ng backegrounds — still
presents problem. In this thesis, progress has been made by applying methods of
statistical inference to recogntion. Fer-present uncertainties are accormodated
by statistical characterizatiors of the recognition probllem MP Mdel Mtching
(MM and Rsterior Mrginal Rse Etination (ENE). MMvas show to be

eflective for searchi ng anong feature correspondences and PMPEvas shown eflecti ve

for searches in pose space. The issue of acquiring salient object features under varying
ilTumnation vas addressed by wsing Man klge Tmages.

The alignmant approach, which leverages fast indexing mathods of hypothesis
gereration, is utilized. Awgle Rir Indexing is introduced as an efliient 2Dindexing
mthod that does mot depend on extended or special featwres that can be hard to
detect. A extersion to the alignmant approach that may be sumarized as al ¢ gn
refine veri fyis advocated. The FMal gorithmis enpl oyed for refini ng the estimate of
the object’s pose vhile siml taneowsly i dentifyi ng and i ncorporating the constraints
of all supporting image features.

Aeas for future research include the foll owng;
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o Indexi ng vas not wsed in the 3Drecogni tion experivants. Identifying asutable
mchani snfor this purpose that mashes vell wththe type of features wed here,
voul d be an i nprovenart,.

o Bo fewview vere wed in mdel corstruction. Hilly aitormating the nodel
acqui sition process, as described in (hapter 4, and acquiring model s frommore
vievs voul d hel p.

o Etending the forml ations of recognition to handle mltiple objects is strai ght-
forvard, bt identifying suitable search strategies is an important and non
trivial task

o Incorporating norrlinear mdels of projectioninto the forml ation voul d allow

robust performance in domai rs havi ng seriows perspective distortiors.

o Uingimage like tables coul d speed the eval uationof the PNBEoby ecti ve func-

tion

o [mestigating the wse of PNBEin object tracking or in other active vision do-
mai s mght prove fruitful.

Mre vork in these areas wll lead to practical and robist object recognition

systers.
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Not ation

Synbol Mani ng Defining Section
Y=Y ,Y,,.... Y.} the inage 2.1
n nurher of image features

Y;eR" image feature 2.1
ME{M |, My,....,M,,} the object model 2.1
m mher of object features

M; model featwre, frequently M ; e RV** 2.1
1 the background feature 2.1
r={r ,Iy,.... T} correspondences 2.1

I e Mo{ 1} assignant of 1nage feature ¢ 2.1

BER * pose of object 5.1
AM;, 0B projection itto inage 5.1

Gy (2 (aussian probahility dersity 3.26.1
Vi covari ance matrix of feature pair 3.3

;/A) stationary feature covariance matrix 3.3

Vg covari ance matrix of pose prior 6.1
BB, background probahility 2.22.4
Wy extent of inage feature dimarsion & 3.1

Aijy A correspondence revard 6.1

T estimate of x

") probahility (see bel ow

Robahility notation is somvhat abused in this vork, in the interest of hrevity.
{2 may stand for either a probahility mass function of a discrete variable z; or for a
probability dersity function of a contimows variable 2 The mraning wll be clear in



context based on the type of the variabl e argunent. Additionally, mxed probahilities
are described with the same motation. for example 1) 3| Y) stands for the mixed
probability function that is a probability mass function of I' (the discrete variable
descri bing correspondences ), and a probahility dersity function of 3(the pose vector)

— both condi tioned on Y (the inage feature coordinates).
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