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Abstract

To be practical , recognition systems must deal with uncertainty. Positions of image
features inscenes vary. Features sometimes fai l to appear because of unfavorable i l lu-

mination. In this work, methods of statistical inference are combinedwith empirical
models of uncertaintyinorder to evaluate andre�ne hypotheses about the occurrence
of a knownobject in a scene.

Probabi l i stic models are used to characterize image features and their correspon-
dences. A statistical approach is taken for the acquisi tion of object models from

observations in images: Mean Edge Images are used to capture object features that
are reasonably stable with respect to variations in i l lumination.

The Al ignment approachto recognition, that has beendescribedbyHuttenlocher

andUl lman, is used. The mechanisms that are employedto generate initial hypothe-
ses are distinct fromthose that are used to veri fy (and re�ne) them. In this work,
posterior probabi l i ty and MaximumLikel ihood are the cri teria for evaluating and

re�ning hypotheses. The recognition strategy advocated in this work may be sum-
marizedas Align Re�ne Veri fy, whereby local searchinpose space is uti l izedto re�ne

hypotheses fromthe al ignment stage before veri�cation is carried out.
Two formulations of model -based object recognition are described. MAPModel

Matching evaluates joint hypotheses of match and pose, whi le Posterior Marginal

Pose Estimation evaluates the pose only. Local search in pose space is carried out

with the Expectation{Maximization (EM) algorithm.
Recognition experiments are describedwhere the EMalgorithmis used to re�ne

andevaluate pose hypotheses in2Dand3D. Initial hypotheses for the 2Dexperiments
were generated by a simple indexing method: Angle Pair Indexing. The Linear

Combination of Views method of Ul lman and Basri i s employed as the projection

model in the 3Dexperiments.
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Chapt er 1

Int r oduct ion

Visual object recognition is the focus of the researchreported inthis thesis. Recogni -

tionmust deal withuncertaintyto be practical . Positions of image features belonging

to objects in scenes vary. Features sometimes fai l to appear because of unfavorable

i l lumination. In this work, methods of statistical inference are combinedwith empir-

ical models of uncertainty in order to evaluate hypotheses about the occurrence of a

knownobject ina scene. Other problems, suchas the generationof initial hypotheses

and the acquisi tion of object model features are also addressed.

1.1 The Problem

Representative recognitionproblems and their solutions are i l lustrated inFigures 1-1

and1-2. The problemis to detect and locate the car indigitized video images, using

previouslyavai lable detai ledinformationabout the car. Inthese �gures, object model

features are superimposedover the video images at the positionandorientationwhere

the car was found. Figure 1-1 shows the results of 2Drecognition, whi le Figure 1-2

i l lustrates the results of 3Drecognition. These images are fromexperiments that are

described in Chapter 10. Practical solutions to problems l ike these wi l l improve the


exibi l i ty of robotic systems.
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12 CHAPTER1. INTRODUCTION

Figure 1-1: Representative RecognitionProblemandSolution (2D)

Figure 1-2: Representative RecognitionProblemandSolution (3D)
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Inthis work, the recognitionproblemis restrictedto�ndingoccurrences of a single

object in scenes that may containother unknownobjects. Despite the simpl i�cation

and years of research, the problemremains largely unsolved. Robust systems that

canrecognize smoothobjects having sixdegrees of freedomof position, under varying

conditions of i l lumination, occlusion, andbackground, are not commercial lyavai lable.

Much e�ort has been expended on this problemas is evident in the comprehensive

reviews of research in computer-based object recognition by Besl and Jain [5], who

cited 203 references, and Chin and Dyer [18] , who cited 155 references. The goal of

this thesis i s to characterize, as wel l as to describe howto �nd, robust solutions to

visual object recognition problems.

1.2 The Approach

In this work, statistical methods are used to evaluate and re�ne hypotheses inobject

recognition. Angle Pair Indexing, a means of generating hypotheses, i s introduced.

These mechanisms are used inanextensionof the Al ignment method that includes a

pose re�nement step. Eachof these components are ampl i�ed below.

1.2.1 Statistical Approach

Inthis research, visual object recognitionis approachedviathe principles of Maximum

Likel ihood (ML) and MaximumA-Posteriori probabi l i ty (MAP). These principles,

along with speci�c probabi l i stic models of aspects of object recognition, are used to

derive objective functions for evaluatingandre�ning recognitionhypotheses. TheML

andMAPcriteriahave alonghistoryof successful appl icationinformulatingdecisions

and in making estimates fromobserved data. They have attractive properties of

optimal i ty and are often useful whenmeasurement errors are signi�cant.

In other areas of computer vision, statistics has proven useful as a theoretical

framework. The work of Yui l le, Geiger and B�ultho� on stereo [78] i s one example,
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whi le in image restoration the work of Geman andGeman [28] , Marroquin [54] , and

Marroquin, Mitter and Poggio [55] are others. The statistical approach that is used

in this thesis converts the recognition probleminto a wel l de�ned (althoughnot nec-

essari ly easy) optimization problem. This has the advantage of providing an expl ici t

characterizationof the problem, whi le separating it fromthe description of the algo-

ri thms used to solve it. Adhoc objective functions have beenpro�tablyused insome

areas of computer vision. Such an approach is used by Barnard in stereo matching

[2] , Blake andZisserman [7] in image restoration andBeveridge, Weiss andRiseman

[6] in l ine segment based model matching. With this approach, plausible forms for

components of the objective function are often combinedusing trade-o�parameters.

Such trade-o�parameters are determined empirical ly. An advantage of deriving ob-

jective functions fromstatistical theories i s that assumptions become expl ici t { the

forms of the objective functioncomponents are clearly relatedto speci�c probabi l i stic

models. If these models �t the domainthenthere is some assurance that the resulting

cri teria wi l l performwel l . Asecondadvantage is that the trade-o�parameters in the

objective function can be derived frommeasurable statistics of the domain.

1.2.2 Feature-Based Recognition

This workuses a feature-based approachto object recognition. Features are abstrac-

tions l ike points or curves that summarize some structure of the patterns inanimage.

There are several reasons for using feature based approaches to object recognition.

� Features can concisely represent objects and images. Features derived from

brightness edges cansummarize the important events of an image inawaythat

is reasonably stable with respect to scene i l lumination.

� In the al ignment approach to recognition (to be described shortly), hypotheses

are veri�edby projecting the object model into the image, then comparing the

prediction against the image. By using compact, feature-based representations
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of the object, projection costs may be kept low.

� Features also faci l i tate hypothesis generation. Indexing methods are attractive

mechanisms for hypothesis generation. Such methods use tables indexed by

properties of smal l groups of image features to quickly locate corresponding

model features.

Object Features fromObservation

Amajor issue that must be faced in model -based object recognition concerns the

origin of the object model i tsel f. The object features that are used in this work are

derivedfromactual image observations. This methodof feature acquisi tionautomat-

ical ly favors those features that are l ikely to be detected in images. The potential ly

di�cult problemof predicting image features fromabstract geometric models i s by-

passed. This prediction problemis manageable in some constrained domains (with

polyhedral objects, for instance) but it i s often di�cult, especial ly with smooth ob-

jects, lowresolution images and l ighting variations.

For robustness, simple local image features are used in this work. Features of this

sort are easi ly detected in contrast to extended features l ike l ine segments. Extended

features have been used in some systems for hypothesis generation because their ad-

ditional structure provides more constraint thanthat o�eredbysimple local features.

Extended features, nonetheless, have drawbacks in being di�cult to detect due to

occlusions and local ized fai lures of image contrast. Because of this, systems that rely

on distinguished features can lose robustness.

1.2.3 Alignment

Hypothesize-and-test, or alignment methods have proven e�ective in visual object

recognition. Huttenlocher and Ul lman [43] used search over minimal sets of corre-

sponding features to establ i sh candidate hypotheses. In their work these hypotheses,
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or al i gnments, are tested by projecting the object model into the image using the

pose (position and orientation) impl ied by the hypothesis, and then by performing a

detai led comparison with the image. The basic strategy of the al ignment method is

to use separate mechanisms for generating and testing hypotheses.

Recently, indexing methods have become avai lable for e�ciently generating hy-

potheses in recognition. These methods avoida signi�cant amount of searchbyusing

pre-computed tables for looking up the object features that might correspond to a

groupof image features. The geometric hashingmethodof LamdanandWolfson[49]

uses invariant properties of smal l groups of features under a�ne transformations as

the look-up key. Clemens and Jacobs [19] [20] , and Jacobs [45] described indexing

methods that gain e�ciency by using a feature grouping process to select smal l sets

of image features that are l ikely to belong to one object in the scene.

Inthis work, asimple formof 2Dindexing, Angl e Pai r I ndexi ng, i s usedtogenerate

initial hypotheses. It uses an invariant property of pairs of image features under

translation, rotation and scale. This i s described inChapter 9.

The Hough transform[40] [44] i s another commonly used method for generating

hypotheses in object recognition. In the Houghmethod, feature-based clustering is

performed in pose space, the space of the transformations describing the possible

motion of the object. This method was used by Grimson and Lozano-P�erez [36] to

local ize the search in recognition.

These fast methods of hypothesis generationprovide ongoing reasons for using the

al ignment approach. They are often most e�ective when used in conjunction with

veri�cation. Veri�cation is important because indexing methods can be susceptible

to table col l i sions, whi le Hough methods sometimes generate false positives due to

their aggregationof inconsistent evidence inpose space bins. This last point has been

argued byGrimson andHuttenlocher [35] .

The usual al ignment strategymaybe summarizedas al i gn veri fy. Al ignment and

veri�cation place di�ering pressures on the choice of features for recognition. Mech-
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anisms used for generating hypotheses typical ly have computational complexity that

is polynomial in the number of features involved. Because of this, there is signi�cant

advantage to using lowresolution features { there are fewer of them. Unfortunately,

pose estimates basedon coarse features tend to be less accurate than those based on

high resolution features.

Likewise, veri�cation is usual ly more rel iable with high resolution features. This

approachyields more detai led comparisons. These di�ering pressures maybe accom-

modated by employing coarse-�ne approaches. The coarse-�ne strategy was uti l ized

successful ly in stereo by Grimson [33] . In the coarse-�ne strategy, hypotheses de-

rived fromlow-resolution features l imit the search for hypotheses derived fromhigh-

resolution features. There are some potential di�culties that arise when applying

coarse-�ne methods in conjunction with 3Dobject models. These may be avoided

by using view-based alternatives to 3Dobject model ing. These issues are discussed

more ful ly inChapter 4.

AlignRe�ne Veri fy

The recognition strategy advocated in this work may be summarized as al i gn re�ne

veri f y. This approach has been used by Lipson [50] in re�ning al ignments. The key

observation is that local search in pose space may be used to re�ne the hypothesis

fromthe al ignment stage before veri�cation is carried out. In hypothesize and test

methods, the pose estimates of the initial hypotheses tendtobe somewhat inaccurate,

since theyare basedonminimal sets of corresponding features. Better pose estimates

(hence, better veri�cations) are l ikelyto result fromusingal l supporting image feature

data, rather thana smal l subset. Chapter 8 describes a method that re�nes the pose

estimate whi le simultaneously identi fying and incorporating the constraints of al l

supporting image features.
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1.3 Guide to Thesis

Brie
y, the presentation of the material in this thesis i s essential ly bottom-up. The

early chapters are concernedwith bui lding the components of the formulation, whi le

the main contributions, the statistical formulations of object recognition, are de-

scribed in Chapters 6 and 7. After that, related algorithms are described, fol lowed

by experiments and conclusions.

In more detai l , Chapter 2 describes the probabi l i stic models of the correspon-

dences, or mapping between image features and features belonging to either the ob-

ject or to the background. These models use the principle of maximum-entropywhere

l i ttle information is avai lable before the image is observed. In Chapter 3, probabi l i s-

tic models are developed that characterize the feature detection process. Empirical

evidence is described to support the choice of model .

Chapter 4 discusses a way of obtaining average object edge features froma se-

quence of observations of the object inimages. Deterministic models of the projection

of features into the image are discussed in Chapter 5. The projectionmethods used

in this workare l inear in the parameters of the transformations. Methods for 2Dand

3Dare discussed, including the Linear Combinationof Views method of Ul lmanand

Basri [71] .

InChapter 6 the abovemodels are combinedinaBayesianframeworkto construct

a cri terion, MAP Model Matchi ng, for evaluating hypotheses in object recognition.

In this formulation, complete hypotheses consist of a description of the correspon-

dences between image and object features, as wel l as the pose of the object. These

hypotheses are evaluatedby their posterior (after the image is observed) probabi l i ty.

Arecognitionexperiment is describedthat uses the cri teria to guide a heuristic search

over correspondences. AconnectionbetweenMAPModel Matching andamethodof

robust chamfer matching [47] i s described.

Bui lding on the above, a second criterion is described in Chapter 7: Pos t er i or

Mar gi nal Pos e Es t i mat i on (PMPE). Here, the solution being sought is simply the
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pose of the object. The posterior probabi l i ty of poses is obtained by taking the

formal marginal , over al l possible matches, of the posterior probabi l i ty of the joint

hypotheses of MAPModel Matching. This results in a smooth, non-l inear objective

function for evaluating poses. The smoothness of the objective function faci l i tates

local search in pose space as a mechanismfor re�ning hypotheses in recognition.

Some experimental explorations of the objective function inpose space are described.

These characterizations are carriedout in two domains: video imagery and synthetic

radar range imagery.

Chapter 8 describes use of the the Expectat i on-Maximi zat i on (EM) algorithm[21]

for �nding local maxima of the PMPEobjective function. This algorithmalternates

between the Mstep { a weighted least squares pose estimate, and the Estep { re-

calculation of the weights based on a saturating non-l inear function of the residuals.

This algorithmis used to re�ne and evaluate poses in 2Dand 3Drecognition ex-

periments that are describedinChapter 10. Initial hypotheses for the 2Dexperiments

were generated by a simple indexing method, Angl e Pai r Indexi ng, that is described

inChapter 9 . The Linear Combinationof Views methodof Ul lmanandBasri [71] i s

employed as the projectionmodel in the 3Dexperiments reported there.

Final ly, some conclusions are drawninChapter 11. The notationusedthroughout

is summarized inAppendix A.
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Chapt er 2

Modeli ng Feat ur e Cor r es pondence

This chapter is concernedwithprobabi l i stic models of feature correspondences. These

models wi l l serve as priors in the statistical theories of object recognition that are

described inChapters 6 and 7, andare important components of those formulations.

Theyare usedtoassess the probabi l i tythat features correspondbefore the image data

is compared to the object model . They capture the expectation that some features

in an image are anticipated to be due to the object

Three di�erent models of feature correspondence are described, one of which is

used in the recognition experiments described inChapters 6, 7, and 10.

2.1 Features andCorrespondences

This research focuses on feature-based object recognition. The object being sought

and the image being analyzed consist of discrete features.

Let the image that is to be analyzed be represented by a set of v-dimensional

point features

Y = fY1; Y2; : : : ; Yng ; Yi 2 Rv
:

Image features are discussed inmore detai l inChapters 3 and 5.

21
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The object to be recognized is also described by a set of features,

M =fM 1;M2; : : : ;Mmg :

The features wi l l usual lybe representedbyreal matrices. Additional detai l s onobject

features appears inChapters 4 and 5.

In this work, the interpretation of the features in an image is represented by the

variable �, whichdescribes the mapping fromimage features to object features or the

scene background. This i s also referred to as the cor r es pondences .

�=f� 1;�2; : : : ;�ng ; �i 2M[ f?g :

Inan interpretation, eachimage feature, Y i, wi l l be assignedeither to some object

feature M j, or to the background, which is denoted by the symbol ?. This symbol

plays a role simi lar to that of the nul l character inthe interpretationtrees of Grimson

andLozano-P�erez [36] . Aninterpretationis i l lustrated inFigure 2-1. �is a col lection

of variables that is indexed in paral lel with the image features. Each variable � i

represents the assignment of the corresponding image feature Y i. It may take on as

value anyof the object features M j, or the background, ?. Thus, the meaning of the

expression� 5 =M 6 i s that image feature �ve is assignedto object feature six, l ikewise

�7 =?means that image feature seven has been assigned to the background. In an

interpretationeach image feature is assigned, whi le some object features maynot be.

Additional ly, several image features maybe assignedto the same object feature. This

representational lows image interpretations that are implausible { other mechanisms

are used to encourage metrical consistency.
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2.2 An Independent Correspondence Model

In this section a simple probabi l i stic model of correspondences is described. The

intent is to capture some informationbearing oncorrespondences before the image is

comparedto the object. This model has beendesignedtobe a reasonable compromise

between simpl ici ty and accuracy.

In this model , the correspondence status of di�ering image features are assumed

to be independent, so that

p(�) =
Y
i

p(� i) : (2:1)

Here, p(�) is a probabi l i ty mass function on the discrete variable �. There is

evidence against using statistical independence here, for example, occlusion is local ly

correlated. Independence is used as anengineering approximation that simpl i�es the

resulting formulations of recognition. It may be justi�ed by the good performance

of the recognition experiments described in Chapters 6, 7, and 10. Fewrecognition

systems have used non-independent models of correspondence. Breuel outl ined one

approachinhis thesis [9] . Arelaxationof this assumptionis discussedinthe fol lowing

section.

The component probabi l i ty function is designed to characterize the amount of

clutter in the image, but to be otherwise as non-committal as possible:

p(� i) =

8><>:
B i f �i =?
1�B
m

otherwise
: (2:2)

The joint model p(�) is the maximumentropy probabi l i ty function that is con-

si stent with the constraint that the probabi l i ty of an image feature belonging to the

backgroundis B. Bmaybe estimatedby taking simple statistics on images fromthe

domain. B=:9 wouldmean that 90 % of image features are expected to be due to

the background.

Having Bconstant during recognition is an approximation. The number of fea-



2. 3. AMARKOVCORRESPONDENCEMODEL 25

tures due to the object wi l l l ikelyvaryaccording to the size of the object inthe scene.

Bcouldbe estimatedat recognitiontime bypre-processingmechanisms that evaluate

image clutter, and factor in expectations about the size of the object. In practice,

the approximationworks wel l in control led situations.

The independent correspondence model i s used in the experiments reported in

this research.

2.3 AMarkov Correspondence Model

As indicatedabove, one inaccuracy of the independent correspondence model i s that

sample real izations of � drawn fromthe probabi l i ty function of Equations 2.1 and

2.2 wi l l tend to be overly fragmented in their model ing of occlusion. This section

describes a compromise model that relaxes the independence assumption somewhat

by al lowing the correspondence status of an image feature (� i) to depend on that of

i ts neighbors. In the domain of this research, image features are fragments of image

edge curves. These features have a natural neighbor relation, adjacency along the

image edge curve, that may be used for constructing a 1DMarkov RandomField

(MRF) model of correspondences. MRF's are col lections of randomvariables whose

conditional dependence is restricted to l imited size neighborhoods. MRFmodels are

discussed by Geman and Geman [28] . The fol lowing describes an MRFmodel of

correspondences intended to provide a more accurate model of occlusion.

p(�) =q(� 1)q(� 2) : : : q(� n) r1(�1;�2)r2(�2;�3) : : : rn�1(�n�1;�n) ; (2:3)

where

q(� i) =

8><>:
e1 i f �i =?

e2 otherwise
(2:4)
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and

ri(a; b) =

8>>>>>>>><>>>>>>>>:

8>>>>><>>>>>:
e3 i f a=?andb=?

e4 i f a 6=?andb 6 =?

e5 otherwise

9>>>>>=>>>>>;
i f features i and i+ 1 are neighbors

1 otherwise :

(2:5)

The assignment of indices to image features should be done in such a way that

neighboring features have adjacent indices. The functions r i(�; � ) model the interac-

tion of neighboring features. The parameters e 1 : : : e5 may be adjusted so that the

probabi l i ty function p(�) is consistent with observed statistics on clutter and fre-

quency of adjacent occlusions. Additional ly, the parameters must be constrained so

that Equation 2.3 actual ly describes a probabi l i ty function. When these constraints

are met, the model wi l l be the maximumentropyprobabi l i tyfunctionconsistent with

the constraints. Satisfying the constraints i s a non-trivial selectionproblemthat may

be approachediteratively. Fortunately, this calculationdoesn't needto be carriedout

at recognitiontime. Goldman[30] discusses methods of calculating these parameters.

The model outl ined in Equations 2.3 { 2.5 is a general ization of the Ising spin

model . Ising models are used in statistical physics to model ferromagnetism[73] .

Samples drawn fromIsing models exhibit spatial clumping whose scale depends on

the parameters. In object recognition, this clumping behavior may provide a more

accurate model of occlusion.

The standard Isingmodel i s shownfor reference inthe fol lowing equations. It has

been restricted to 1D, and has been adapted to the notation of this section.

�i 2f�1; 1g

p(� 1�2 : : : �n) =
1

Z

q(� 1)q(� 2) � � � q(�n) r(� 1; �2)r(� 2; �3) � � � r(�n�1; �n)
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q(a) =

8><>: exp( �H

kT
) i f a=1

exp(� �H

kT
) otherwise

r(a; b) =

8><>: exp( J

kT
) i f a=b

exp(� J

kT
) otherwise :

Here, Z i s a normal ization constant, � i s the moment of the magnetic dipoles,

H i s the strength of the appl ied magnetic �eld, k i s Boltzmann's constant, T i s

temperature, andJ i s a neighbor interaction constant cal led the exchange energy.

The approach to model ing correspondences that is described in this section was

outl ined inWel ls [74] [75] . Subsequently, Breuel [9] described a simi lar local interac-

tionmodel of occlusioninconjunctionwithasimpl i�edstatistical model of recognition

that used boolean features in a classi�cation based scheme.

The Markovcorrespondence model i s not used inthe experiments reported inthis

research.

2.4 Incorporating Sal iency

Another route tomore accurate model ing of correspondences is to exploit bottom-up

sal iency processes to suggest which image features are most l ikely to correspond to

the object. One suchprocess in described byUl lman and Shashua [66] .

For concreteness, assume that the sal iency process provide a per-feature measure

of sal iency, S i. To incorporate this information, we construct p(� i =?j S i). This may

be conveniently calculated via Bayes' rule as fol lows:

p(� i =?j S i) =
p(S i j �i =?)p(� i =?)

p(S i)
:

p(S i j �i =?) and p(S i) are probabi l i ty densities that may be estimated from

observed frequencies in training data. As in Section 2.2, we set p(� i =?) =B.
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Afeature speci�c backgroundprobabi l i tymay then be de�ned as fol lows:

Bi � p(� i =?j S i) =
p(S i j �i =?)

p(S i)
B:

In this case the complete probabi l i ty function on � i wil l be

p(� i) =

8><>: Bi i f �i =?
1�Bi

m
otherwise

: (2:6)

This model i s not used in the experiments described in this research.

2.5 Conclusions

The simplest of the three models described, the independent correspondence model ,

has beenusedtogoode�ect inthe recognitionexperiments describedinChapters 6, 7,

and10. Insome domains additional robustness inrecognitionmight result fromusing

either the Markov correspondence model , or by incorporating sal iency information.



Chapt er 3

Model i ng Image Feat ur es

Probabi l i stic models of image features are the topic of this chapter. These are an-

other important component of the statistical theories of object recognition that are

described inChapters 6 and 7.

The probabi l i tydensityfunctionfor the coordinates of image features, conditioned

oncorrespondences andpose, i s de�ned. The PDFhas two important cases, depend-

ing on whether the image feature is assigned to the object, or to the background.

Features matched to the object are modeled with normal densities, whi le uni form

densities are usedfor backgroundfeatures. Empirical evidence is providedto support

the use of normal densities for matchedfeatures. Aformof stationarity is described.

Many recognition systems impl ici tly use uni formdensities (rather than normal

densities) to model matched image features (bounded er r or models). The empirical

evidence of Section 3.2.1 indicates that the normal model may sometimes be better.

Because of this, use of normal models mayprovide better performance inrecognition.

29
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3.1 AUniformModel for BackgroundFeatures

The image features, Y i, are vdimensional vectors. Whenassignedto the background,

they are assumed to be uni formly distributed,

p(Y i j �; �) =
1

W1 � � � Wv
i f �i =? : (3:1)

(The PDFis de�ned to be zero outside the coordinate space of the image features,

whichhas extentW i along dimension i. ) �describes the correspondences fromimage

features to object features, and �describes the position and orientation, or pos e of

the object. For example, i f the image features are 2Dpoints in a 640 by 480 image,

thenp(Y i j ?; �) = 1
640�480

, withinthe image. For Y i, this probabi l i ty functiondepends

only on the i' th component of �.

Providinga satisfyingprobabi l i tydensityfunctionfor backgroundfeatures is prob-

lematical . Equation 3.1 describes the maximumentropy PDF consistent with the

constraint that the coordinates of image features are always expected to l ie within

the coordinate space of the image features. E.T. Jaynes [46] has argued that maxi-

mumentropydistributions are themost honest representationof a state of incomplete

knowledge.

3.2 ANormal Model for MatchedFeatures

Image features that are matched to object features are assumed to be normal ly dis-

tributed about their predicted position in the image,

p(Y i j �; �) =G  ij
(Yi �P(M j; �)) i f � i =M j : (3:2)

Here Y i, �, and�are de�ned as above.

G ij
i s the v-dimensional Gaussian probabi l i ty density function with covariance
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Figure 3-1: Fine Image Features andFine Model Features

matrix i j,

G ij
(x) =(2�) �

v
2 j  i jj�

1

2 exp(� 1

2
x
T
 
�1
i j
x) :

The covariance matrix  i j i s discussedmore ful ly in Section 3.3.

When � i =M j, the predicted coordinates of image feature Y i are given by

P(M j; �), the projection of object feature j into the image with object pose �. Pro-

jection and pose are discussed inmore detai l in Chapter 5.

3.2.1 Empirical Evidence for theNormal Model

This section describes some empirical evidence fromthe domain of video image edge

features indicating that normal probabi l i tydensities are goodmodels of feature 
uc-

tuations, and that they can be better than uni formprobabi l i ty densities. The ev-

idence is provided in the formof observed and �tted cumulative distributions and

Kolmogorov-Smirnovtests. The model distributions were �ttedto the data using the

MaximumLikel ihoodmethod.

The data that is analyzed are the perpendicular and paral lel deviations of �ne

andcoarse edge features derivedfromvideo images. The �ne andcoarse features are

shown inFigures 3-1 and 3-3 respectively.

The model features are fromMean Edge Images, these are described in Section

4.4. The edge operator usedinobtaining the image features is ridges inthemagnitude
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Figure 3-2: Fine Feature Correspondences

Figure 3-3: Coarse Image Features andCoarse Model Features
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Figure 3-4: Coarse Feature Correspondences
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of the image gradient, as discussed inSection4.4. The smoothing standarddeviation

used in the edge detectionwas 2.0 and 4.0 pixels respectively, for the �ne and coarse

features. These features were also used in the experiments reported in Section 10.1,

and the correspondences were used there as training data.

For the analysis in this section, the feature data consists of the average of the

x and y coordinates of the pixels fromedge curve fragments { they are 2Dpoint

features. The features are displayed as circular arc fragments for clari ty. The edge

curves were brokenarbitrari ly into 10 and 20 pixel fragments for the �ne and coarse

features respectively.

Correspondences fromimage features to model features were establ i shed by a

neutral subject using a mouse. These correspondences are indicated by heavy l ines

in Figures 3-2 and 3-4. Perpendicular and paral lel deviations of the corresponding

features were calculated with respect to the normals to edge curves at the image

features.

Figure 3-5 shows the cumulative distributions of the perpendicular and paral lel

deviations of the �ne features. The cumulative distributions of �ttednormal densities

are plottedas heavydots over the observeddistributions. The distributions were�tted

to the data using the MaximumLikel ihoodmethod { the mean and variance of the

normal densityare set to the meanandvariance of the data. These �gures showgood

agreement between the observed distributions, and the �tted normal distributions.

Simi lar observedand�tteddistributions for the coarse deviations are showninFigure

3-6, again with good agreement.

The observed cumulative distributions are shown again in Figures 3-7 and 3-8,

this time with the cumulative distributions of �tted uni formdensities over-plotted

in heavy dots. As before, the uni formdensities were �tted to the data using the

MaximumLikel ihoodmethod{ inthis case the uni formdensities are adjustedto just

include the extreme data. These �gures showrelatively poor agreement between the

observedand�tted distributions, in comparison to normal densities.
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CDF and Normal Distribution for Fine Perpendicular Deviations
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Figure 3-5: ObservedCumulative Distributions and Fitted Normal Cumulative Dis-

tributions for Fine Features
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CDF and Normal Distribution for Coarse Perpendicular Deviations
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Figure 3-6: ObservedCumulative Distributions and Fitted Normal Cumulative Dis-

tributions for Coarse Features
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CDF and Uniform Distribution for Fine Perpendicular Deviations
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Figure 3-7: ObservedCumulative Distributions andFittedUni formCumulative Dis-

tributions for Fine Features
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CDF and Uniform Distribution for Coarse Perpendicular Deviations
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Figure 3-8: ObservedCumulative Distributions andFittedUni formCumulative Dis-

tributions for Coarse Features
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Normal Hypothesis Uni formHypothesis

Deviate N Do P (D� D o) Do P(D�D o)

Fine Perpendicular 118 .0824 .3996 .2244 .000014

Fine Paral lel 118 .0771 .4845 .1596 .0049
Coarse Perpendicular 28 .1526 .5317 .2518 .0574

Coarse Paral lel 28 .0948 .9628 .1543 .5172

Table 3.1: Kolmogorov-SmirnovTests

Kolmogorov-Smirnov Tests

The Kolmogorov-Smirnov (KS) test [59] i s one way of analyzing the agreement be-

tween observed and �tted cumulative distributions, such as the ones in Figures 3-5

to 3-8. The KS test i s computed on the magnitude of the largest di�erence between

the observed and hypothesized (�tted) distributions. This wi l l be referred to as D.

The probabi l i tydistributiononthis distance, under the hypothesis that the datawere

drawnfromthe hypothesizeddistribution, canbe calculated. Anasymptotic formula

is givenby

P(D�D o) =Q(
p
NDo)

where

Q(x) =2
1X
j =1

(�1) j �1exp(�2j 2
x

2) ;

andD o i s the observedvalue of D.

The results of KS tests of the consistency of the data with �tted normal and

uni formdistributions are shown in Table 3.1. Lowvalues of P(D�D o) suggest

incompatibi l i ty between the data and the hypothesized distribution. In the cases

of �ne perpendicular and paral lel deviations, and coarse perpendicular deviations,

refutation of the uni formmodel i s strongly indicated. Strong contradictions of the

�tted normal models are not indicated in any of the cases.
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3.3 Oriented Stationary Statistics

The covariance matrix  i j that appears in the model of matched image features in

Equation 3.2 is al lowed to depend on both the image feature and the object feature

involvedinthe correspondence. Indexing oni al lows dependence onthe image feature

detectionprocess, whi le indexing in j al lows dependence on the identity of the model

feature. This i s useful when some model features are knowto be noisier thanothers.

This 
exibi l i ty is carriedthroughthe formal ismof later chapters. Althoughsuch
ex-

ibi l i ty can be useful , substantial simpl i�cation results by assuming that the features

statistics are stationary in the image, i .e.  i j= , for al l ij. This could be reason-

able i f the feature 
uctuations were isotropic in the image, for example. In its strict

formthis assumptionmay be too l imiting, however. This section outl ines a compro-

mise approach, oriented stationary statistics, that was used in the implementations

described inChapters 6, 7, and 8.

This method involves attaching a coordinate systemto each image feature. The

coordinate systemhas its origin at the point location of the feature, and is oriented

with respect to the direction of the underlying curve at the feature point. When

(stationary) statistics on feature deviations are measured, they are taken relative to

these coordinate systems.

3.3.1 EstimatingtheParameters

The experiments reported inSections 6.2, 7.1, andChapter 10 use the normal model

and oriented stationary statistics for matched image features. After this choice of

model , i t i s sti l l necessary to supply the speci�c parameters for the model , namely,

the covariance matrices,  i j, of the normal densities.

The parameters were estimated fromobservations on matches done by hand on

sample images fromthe domain. Because of the stationarityassumption it i s possible

to estimate the common covariance,  ̂, by observing match data on one image. For
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this purpose, amatchwas done withamouse betweenfeatures fromaMeanEdge Im-

age (these are described inSection4.4) anda representative image fromthe domain.

During this process, the pose of the object was the same in the two images. This

produced a set of corresponding edge features. For the sake of example, the process

wi l l be described for 2Dpoint features (described inSection5.2). The procedure has

also beenusedwith2Dpoint-radius features and2Doriented-range features, that are

described in Sections 5.3 and 5.4 respectively.

Let the observed image features be described by Y i, and the corresponding mean

model features by Ŷi. The observedresiduals betweenthe \data" image features, and

the \mean" features are � i =Y i � Ŷi.

The features are derived fromedge data, and the underlying edge curve has an

orientation angle in the image. These angles are used to de�ne coordinate systems

speci�c to each image feature Y i. These coordinate systems de�ne rotationmatrices

Ri that are usedto transformthe residuals intothe coordinate systems of the features,

in the fol lowing way: � 0

i
=R i�i.

The stationary covariance matrix of the matched feature 
uctuations observed

in the feature coordinate systems is then estimated using the MaximumLikel ihood

method, as fol lows,

 ̂=
1

n

X
i

�0

i
�0 T

i
:

Here T denotes the matrix transpose operation. This technique has some bias, but

for the reasonably large sample sizes involved (n� 100) the e�ect is minor.

The resulting covariance matrices typical ly indicate larger variance for deviations

along the edge curve than perpendicular to it, as suggested by the data in Figures

3-5 and 3-6.
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3.3.2 SpecializingtheCovariance

At recognitiontime, i t i s necessaryto special ize the constant covariance to eachimage

feature. This i s done by rotating it to orient it with respect to the image feature.

Acovariance matrix transforms l ike the fol lowing product of residuals:

�0

i
�0 T

i
:

This is transformedback to the image systemas fol lows,

R
T

i
�0

i
�0 T

i
Ri :

Thus the constant covariance is special izedto the image features inthe fol lowingway,

 i j=R
T

i
 ̂R i :
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Model i ng Object s

What is neededfromobject models? For recognition, the main issue l ies inpredicting

the image features that wi l l appear inanimage of the object. Shouldthe object model

be a monol i thic 3Ddata structure? After al l , the object i tsel f i s 3D. In this chapter,

some pros and cons of monol i thic 3Dmodels are outl ined. An alternative approach,

interpolation of views, i s proposed. The related problemof obtaining the object

model data is discussed, and it i s proposed that the object model data be obtained

by taking pictures of the object. An automatic method for this purpose is described.

Additional ly, a means of edge detection that captures the average edges of anobject

i s described.

4.1 Monol i thic 3D Object Models

One motivation for using 3Dobject models in recognition systems is the observation

that computer graphics techniques can be used to synthesize convincing images from

3Dmodels in any pose desired.

For some objects, havinga single 3Dmodel seems anatural choice for arecognition

system. If the object i s polygonal , andis representedbya l i st of 3Dl ine segments and

vertices, thenpredicting the features that wi l l appear ina givenhigh resolution view

43
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i s a simple matter. Al l that is needed is to apply a pose dependent transformation to

each feature, and to performa visibi l i ty test.

For other objects, suchas smoothly curvedobjects, the si tuation is di�erent. Pre-

dicting features becomes more elaborate. Invideo imagery, occluding edges (or l imbs)

are often important features. Calculating the l imbof a smooth 3Dsurface is usual ly

compl icated. Ponce and Kriegman [58] describe an approach for objects modeled

by parametric surface patches. Algebraic el imination theory is used to relate image

l imbs to the model surfaces that generated them. Brooks' vision system, Acronym

[10] , also recognized curved objects fromimage l imbs. It used general ized cyl inders

to model objects. Adrawback of this approach is that it i s awkward to real i stical ly

model ing typical objects, l ike telephones or automobi les, with general ized cyl inders.

Predicting reduced resolution image features is another di�cultywithmonol i thic

3Dmodels. This i s a drawback because doing recognition with reduced resolution

features is anattractive strategy: with fewer features less searchwi l l be needed. One

solution would be to devise a way of smoothing 3Dobject models such that simple

projection operations would accurately predict reduced resolution edge features. No

suchmethod is known to the author.

Detecting reduced resolution image features is straightforward. Good edge fea-

tures of this sort may be obtained by smoothing the grayscale image before using an

edge operator. This method is commonly used with the Canny edge operator [13] ,

andwith the Marr-Hi ldreth operator [53] .

Analternative approachis to doprojections of the object model at ful l resolution,

and then to do some kind of smoothing of the image. It i sn't clear what sort of

smoothing wouldbe needed. One possibi l i ty is to do photometrical ly real i stic projec-

tions (for example by ray tracing rendering), performsmoothing in the image, and

then use the same feature detection scheme as is used on the images presented for

recognition. This methodis l ikelyto be tooexpensive for practical recognitionsystem

that need to performlarge amounts of prediction. Perhaps better ways of doing this
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wi l l be found.

Sel f occlusion is an additional complexity of the monol i thic 3Dmodel approach.

In computer graphics there are several ways of deal ing with this i ssue, among them

hidden l ine and z-bu�er methods. These methods are fairly expensive, at least in

comparison to sparse point projections.

In summary, monol i thic 3Dobject models address some of the requirements for

predicting images for recognition, but the computational cost may be high.

4.2 Interpolation of Views

One approachto avoiding the di�culties discussed inthe previous section is to use an

image-basedapproachto object model ing. Ul lmanandBasri [71] have discussedsuch

approaches. There is some biological evidence that animal visionsystems have recog-

nition subsystems that are attuned to speci�c views of faces [25] . This may provide

some assurance that image-based approaches to recognition aren't unreasonable.

An important issue with image-based object model ing concerns howto predict

image features in a way that covers the space of poses that the object may assume.

Bodies undergoing rigid motion in space have six degrees of freedom, three in

translation, andthree inrotation. This sixparameter pose spacemaybe spl i t intotwo

parts { the �rst part being translationandinimage-plane rotations (four parameters)

{ the second part being out of image-plane rotations (two parameters: the \view

sphere").

Synthesizing views of an object that span the �rst part of pose space can often

be done using simple and e�cient l inear methods of translation, rotation, and scale

in the plane. This approach can be precise under orthographic projection with scal -

ing, and accurate enough in some domains with perspective projection. Perspective

projection is often approximated in recognition systems by 3Drotation combined

with orthographic projection and scal ing. This has been cal led the weak perspect i ve
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approximation [70] .

The second part of pose space, out of plane rotation, i s more compl icated. The

approach advocated in this research involves tesselating the viewsphere around the

object, and storing a viewof the object for each vertex of the tesselation. Arbitrary

views wi l l thenentai l , at most, smal l out of plane rotations fromstoredviews. These

views may be synthesized using interpolation. The Linear Combination of Views

method of Ul lman andBasri [71] , works wel l for interpolating betweennearby views

(andmore distant ones, as wel l ).

Conceptual ly, the interpolationof views methodcaches pre-computedpredictions

of images, saving the expense of repeatedly computing themduring recognition. If

the tesselation is dense enough, di�culties owing to large changes in aspect may be

avoided.

Breuel [9] advocates a view-based approach to model ing, without interpolation.

4.3 Object Models fromObservation

Howcan object model features be acquired for use in the interpolation of views

framework? If a detai led CADmodel of the object i s avai lable, then views might be

synthesizedusinggraphical rendering programs (this approachwas usedinthe (single

view) laser radar experiment described in Section 7.3).

Another method is to use the object i tsel f as i ts ownmodel , and to acquire views

by taking pictures of the object. This process canmake use of the feature extraction

method that is used on images at recognition time. An advantage of this scheme is

that anaccurate CADstylemodel i sn't needed. Using the run-time feature extraction

mechanismof the recognition systemautomatical ly selects the features that wi l l be

sal ient at recognition time, which is otherwise a potential ly di�cult problem.

One di�culty with the models fromobservation approach is that image features

tendtobe somewhat unstable. For example, the presence andlocationof edge features
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is in
uencedby i l luminationconditions, as i l lustrated inthe fol lowing �gures. Figure

4-1 shows a series of nine grayscale images where the only variation is in l ighting. A

corresponding set of edge images is shownin4-2. The edge operator usedinpreparing

the images is described in Section 4.4. The standard deviation of the smoothing

operator was 2 pixels.

4.4 MeanEdge Images

It was pointedout above that the instabi l i ty of edge features is a potential di�culty

of acquiring object model features fromobservation. The MeanEdge Image method

solves this problemby making edge maps that are averaged over variations due to

i l lumination changes.

Brightness edges may be characterized as the ridges of a measure of brightness

variation. This i s consistent with the common notion that edges are the 1Dloci of

maxima of changes inbrightness. The edge operator used inFigure 4-2 is anexample

of this style of edge detector. It i s a ridge operator appl ied to the squared discrete

gradient of smoothed images. Here, the squared discrete gradient is the measure of

brightness variation. This style of edge detectionwas described byMercer [57] . The

mathematical de�nitionof the ridge predicate is that the gradient is perpendicular to

the directionhaving the most negative seconddirectional derivative. Another simi lar

de�nitionof edges was proposedHaral ick [37] . For a general surveyof edge detection

methods, see Robot Vi si on, byHorn [39] .

The precedingcharacterizationof image edges general izes natural lytomeanedges.

Meanedges are de�nedto be ridges in the average measure of brightness 
uctuation.

In this work, average brightness 
uctuation over a set of pictures is obtained by

averaging the squared discrete gradient of the (smoothed) images.

Figure 4-3 shows the averagedsquaredgradient of smoothedversions of the images

that appear inFigure 4-1. Recal l that onlythe l ightingchangedbetweenthese images.
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Figure 4-1: Grayscale Images
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Figure 4-2: Edge Images
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Figure 4-3: AveragedSquaredGradient of Smoothed Images

Figure 4-4 shows the ridges fromthe image of Figure 4-3. Hysteresi s thresholding

based on the magnitude of the averaged squared gradient has been used to suppress

weakedges. Suchhysteresi s thresholding is usedwiththe Cannyedge operator. Note

that this edge image is relatively immune to specular highl ights, incomparisonto the

individual edge images of Figure 4-4.

4.5 Automatic 3DObject Model Acquisi tion

This section outl ines a method for automatic 3Dobject model acquisi tion that com-

bines interpolationof views andMeanEdge Images. The method involves automati -

cal ly acquiring (many) pictures of the object under various combinations of pose and

i l lumination. Aprel iminary implementationof themethodwas usedto acquire object

model features for the 3Drecognition experiment discussed in Section 10.4.
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Figure 4-4: Ridges of Average SquaredGradient of Smoothed Images
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Figure 4-5: APentakis Dodecahedron

The object, a plastic car model , was mounted on the tool 
ange of a PUMA560

robot. Avideo camera connected to a Sun Microsystems VFCvideo digitizer was

mountednear the robot.

For the purpose of Interpolation of Views object model construction, the view

sphere aroundthe object was tesselated into32 viewpoints, the vertices of a pentakis

dodecahedron(one is i l lustratedinFigure 4-5). At eachviewpoint a\canonical pose"

for the object was constructedthat orientedthe viewpoint towards the camera, whi le

keeping the center of the object in a �xed position.

Nine di�erent con�gurations of l ighting were arranged for the purpose of con-

structing Mean Edge Images. The l ighting con�gurations were made by moving a

spotl ight to nine di�erent position that i l luminated the object. The lamp positions

roughly covered the viewhemisphere centeredon the camera.

The object was moved to the canonical poses corresponding to the 21 vertices in
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the upper part (roughly 2/3) of the object' s viewsphere. At each of these poses,

pictures were takenwith eachof the nine lamppositions.

Mean Edge Images at various scales of smoothing were constructed for each of

the canonical poses. Object model features for recognition experiments described in

Chapter 8 were derived fromthese Mean Edge Images. Twenty of the images from

one such set of MeanEdge Images are displayed in Figures 4-6 and 4-7.

Two of these Mean Edge Images were used in an experiment in 3Drecognition

using a two-viewLinear Combinationof Views method. This method requires corre-

spondences amongfeatures at di�eringviews. These correspondences were establ i shed

by hand, using a mouse.

It i s l ikely that such feature correspondence could be derived fromthe results

of a motion program. Shashua's motion program[65] , which combines geometry

and optical 
ow, was tested on images fromthe experimental setup and was able

to establ i sh good correspondences at the pixel level , for views separated by 4.75

degrees. This range could be increased by a sequential bootstrapping process. If

correspondences canbe automatical ly determined, thenthe entire process of bui lding

view-basedmodels for 3Dobjects can be made ful ly automatic.

After performing the experiments reportedinChapter 10, i t became apparent that

the views were separatedby too large of anangle (about 38 degrees) for establ i shing

a goodamount of feature correspondence betweensome views. This problemmaybe

rel ievedbyusingmore views. Usingmore views also makes automatic determination

of correspondences easier. If the process of model construction is ful ly automatic,

having a relatively large number of views is potential lyworkable.

The work of Taylor and Reeves [69] provides some evidence for the feasibi l i ty of

multiple-view-based recognition. They describe a classi�cation-based vision system

that uses a l ibrary of views froma 252 vertex icosahedron-based tesselation of the

viewsphere. Their views were separated by 6.0 to 8.7 degrees. They report good

classi�cation of aircraft si lhouettes using this approach.
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Figure 4-6: MeanEdge Images at Canonical Poses
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Figure 4-7: MeanEdge Images at Canonical Poses
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Chapt er 5

Model i ng Proj ect i on

This chapter is concernedwith the representations of image andobject features, and

with the projection of object features into the image, given the pose of the object.

Four di�erent formulations are described, three of which are used in experiments

reported in other chapters.

The �rst three models described in this chapter are essential ly 2D, the trans-

formations comprise translation, rotation, and scal ing in the plane. Such methods

may be used for single views of 3Dobjects via the weak perspective approximation,

as described in [70] . In this scheme, perspective projection is approximated by or-

thographic projection with scal ing. Within this approximation, these methods can

handle four of the six parameters of rigid bodymotion { everything but out of plane

rotations.

The method described in Section 5.5, i s based on Linear Combination of Views,

a view-based 3Dmethod that was developed byUl lman andBasri [71] .

5.1 Linear ProjectionModels

Pose determination is often a component of model -based object recognition systems,

includingthe systems describedinthis thesis. Posedeterminationis frequentlyframed

57
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as an optimization problem. The pose determination problemmay be signi�cantly

simpl i�ed i f the feature projectionmodel i s l inear inthe pose vector. The systems de-

scribed in this thesis use projectionmodels having this property, this enables solving

the embedded optimization problemusing least squares. Least squares is advanta-

geous because unique solutions may be obtained easi ly in closed form. This i s a

signi�cant advantage, since the embeddedoptimizationproblemis solvedmanytimes

during the course of a search for an object in a scene.

Al l of the formulations of projectiondescribedbeloware l inear in the parameters

of the transformation. Because of this theymay be written in the fol lowing form:

�i =P(M i; �) =M i� : (5:1)

The pose of the object i s represented by �, a column vector, the object model

feature byM i, a matrix. � i, the projection of the model feature into the image by

pose �, i s a columnvector.

Although this particular formmay seemodd, i t a natural one i f the focus is on

solving for the pose and the object model features are constants.

5.2 2DPoint Feature Model

The �rst, and simplest, method to be describedwas usedbyFaugeras andAyache in

their vision systemHYPER[1] . It i s de�ned as fol lows: � i =M i�, where

�i =

264 p
0

i x

p
0

i y

375 Mi =

264 pi x �p i y 1 0

pi y pi x 0 1

375 and �=

2666666664

�

�

tx

ty

3777777775
:

The coordinates of object model point i are p i x and p i y. The coordinates of the
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model point i, projectedintothe image bypose �, are p 0

i x
andp 0

i y
. This transformation

is equivalent to rotation by �, scal ing by s, and translation byT, where

T=

264 tx

ty

375 s=
q
�
2 +� 2

�=arctan

 
�

�

!
:

This representation has an un-symmetrical way of representing the two classes

of features, which seems odd due to their essential equivalence, however the trick

faci l i tates the l inear formulation of projection given inEquation 5.1.

In this model , rotation and scale are e�ected by analogy to the multipl ication of

complexnumbers, whichinduces transformations of rotationandscale inthe complex

plane. This analogy may be made complete by noting that the algebra of complex

numbers a+ib i s i somorphic with that of matrices of the form

264 a b

�b a

375
.

5.3 2DPoint-Radius Feature Model

This section describes an extension of the previous feature model that incorporates

informationabout the normal andcurvature at a point ona curve (inadditionto the

coordinate information).

There are advantages in using richer features in recognition { they provide more

constraints, and can lead to space and time e�ciencies. These potential advantages

must be weighedagainst the practical i tyof detecting the richer features. For example,

there is incentive to construct features incorporating higher derivative informationat

apoint onacurve; however, measuringhigher derivatives of curves derivedfromvideo

imagery is probably impractical , because eachderivative magni�es the noise present
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P

C
i

i

Figure 5-1: Edge Curve, Osculating Circle, andRadius Vector

in the data.

The feature describedhere is a compromise betweenrichness anddetectabi l i ty. It

i s de�ned as fol lows � i =M i�, where

�i =

2666666664

p
0

i x

p
0

i y

c
0

i x

c
0

i y

3777777775
Mi =

2666666664

pi x �p i y 1 0

pi y pi x 0 1

ci x �c i y 0 0

ci y ci x 0 0

3777777775
and �=

2666666664

�

�

tx

ty

3777777775
:

The point coordinates and�are as above. c i x and c i y represent the radius vector

of the curve's osculating circle that touches the point on the curve, as i l lustrated

in Figure 5-1. This vector is normal to the curve. Its length is the inverse of the

curvature at the point. The counterparts in the image are givenby c 0

i x
and c 0

i y
. With

this model , the radius vector c rotates and scales as do the coordinates p, but it does

not translate. Thus, the aggregate feature translates, rotates and scales correctly.

This feature model i s used in the experiments described in Sections 6.2, 7.4, and
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10.1 When the underlying curvature goes to zero, the length of the radius vector

diverges, and the direction becomes unstable. This has been accommodated in the

experiments by truncating c. Although this violates the \transforms correctly" cri te-

rion, the model sti l l works wel l .

5.4 2DOriented-Range Feature Model

This feature projectionmodel i s very simi lar to the one described previously. It was

designedfor use inrange imagery insteadof video imagery. Like the previous feature,

i t i s �tted to fragments of image edge curves. In this case, the edges label discon-

tinuities in range. It i s de�ned just as above in Section 5.3, but the interpretation

of c i s di�erent. The point coordinates and � are as above. As above, c i x and c i y

are a vector whose direction is perpendicular to the (range discontinuity) curve frag-

ment. The di�erence is that rather than encoding the inverse of the curvature, the

lengthof the vector encodes insteadthe inverse of the range at the discontinuity. The

counterparts in the image are given by c 0

i x
and c 0

i y
. The aggregate feature translates,

rotates andscales correctlywhenusedwithimagingmodels where the object features

scale according to the inverse of the distance to the object. This holds under per-

spective projectionwith attached range labels when the object i s smal l compared to

the distance to the object.

This model was used in the experiments described in Section 7.3.

5.5 Linear Combinationof Views

The technique used inthe abovemethods for synthesizing rotationandscale amounts

to making l inear combinations of the object model with a copy of i t that has been

rotated 90 degrees in the plane.

In their paper, \RecognitionbyLinear Combinationof Models" [71] , Ul lman and

Basri describe a scheme for synthesizing views under 3Dorthography with rotation
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and scale that has a l inear parameterization. They showthat the space of images of

an object i s a subspace of a l inear space that is spannedby the components of a few

images of anobject. Theydiscuss variants of their formulationthat are basedontwo

views, and on three andmore views. Recovering conventional pose parameters from

the l inear combination coe�cients is described in [60] .

The fol lowingis abrief explanationof the two-viewmethod. The reader is referred

to [71] for a ful ler description. Point projectionfrom3Dto 2Dunder orthography, ro-

tation, andscale i s a l inear transformation. If two(2D) views are avai lable, alongwith

the transformations that produced them(as in stereo vision), then there is enough

data to invert the transformations and solve for the 3Dcoordinates (three equations

are needed, four are avai lable). The resulting expression for the 3Dcoordinates wi l l

be a l inear equation in the components of the two views. New2Dviews may then

be synthesized fromthe 3Dcoordinates by yet another l inear transformation. Com-

pounding these l inear operations yields anexpression for new2Dviews that is l inear

in the components of the original two views. There is a quadratic constraint on the

3Dto2Dtransformations, due to the constraints onrotationmatrices. The usual Lin-

ear Combination of Views approachmakes use of the above l inearity property whi le

synthesizing newviews withgeneral l inear transformations (without the constraints).

This practice leads to two extra parameters that control stretching transformations

in the synthesized image. It also reduces the need to deal with camera cal ibrations {

the pixel aspect ratio may be accommodated in the stretching transformations.

The fol lowingprojectionmodel uses a twoviewvariant of the Linear Combination

of Views methodto synthesize views withl imited3Drotationandscale. Additional ly,

translation has been added in a straightforwardway. � i =M i�, where

�i =

264 �i x

�i y

375 Mi =

264 pi x 0 q i x 0 p i y 0 1 0

0 p i y 0 q i y 0 p i x 0 1

375
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and

�=

�
�0�1�2�3�4�5�6�7

�
T

:

The coordinates of the i ' th point in one vieware p i x and p i y; in the other view

they are q i x and q i y.

When this projectionmodel i s used, �does not in general describe rigid transfor-

mation, but it i s nevertheless cal led the pose vector for notational consistency.

This method is used in the experiment described in Section 10.4.
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Chapt er 6

MAPModel Mat chi ng

MAPModel Matching 1 (MMM) is the �rst of two statistical formulations of object

recognition to be discussed in this thesis. It bui lds on the models of features and

correspondences, objects, andprojection that are described in the previous chapters.

MMMevaluates joint hypotheses of matchandpose in terms of their posterior prob-

abi l i ty, given an image. MMMis the starting point for the second formulation of

object recognition, Posterior Marginal Pose Estimation (PMPE), which is described

inChapter 7.

The MMMobjective function is amenable to search in correspondence space,

the space of al l possible assignments fromimage features to model and background

features. This style of search has been used in many recognition systems, and it i s

used here in a recognition experiment involving lowresolution edge features.

It i s shown that under certain conditions, searching in pose space for maxima of

the MMMobjective function is equivalent to robust methods of chamfer matching

[47] .

1Early versions of thi s work appeared in [74] and [75] .
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6.1 Objective Function for Pose and Correspon-

dences

In this section an objective function for evaluating joint hypotheses of match and

pose using the MAPcriterion wi l l be derived.

Brie
y, probabi l i ty densities of image features, conditioned on the parameters of

match and pose (\the parameters"), are combined with prior probabi l i ties on the

parameters using Bayes' rule. The result i s a posterior probabi l i tydensity on the pa-

rameters, givenanobservedimage. Anestimate of the parameters i s thenformulated

by choosing themso as to maximize their a-posteriori probabi l i ty. (Hence the term

MAP. See BeckandArnold's textbook [4] for a discussionof MAPestimation.) MAP

estimators are especial ly practical when usedwith normal probabi l i ty densities.

This research focuses on feature based recognition. The probabi l i stic models of

image features described inChapter 3 are used. Initial ly, image features are assumed

to be mutual ly independent (this i s relaxed in Section 6.1.1). Additional ly, matched

image features are assumedtobe normal lydistributedabout their predictedpositions

in the image, and unmatched (background) features are assumed to be uni formly

distributed in the image. These densities are combined with a prior model of the

parameters. When a l inear projectionmodel i s used, a simple objective function for

matchandpose results.

As described in Chapter 2, the image that is to be analyzed is represented by a

set of v-dimensional columnvectors.

Y=fY 1; Y2; : : : ; Yng ; Yi 2R v
:

The object model i s denoted byM,

M=fM 1;M2; : : : ;Mmg :
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Whenl inear projectionmodels are used, as discussedinChapter 5, the object features

wi l l be representedby real matrices: M j 2R v�z (z i s de�nedbelow).

The parameters to be estimated in matching are the correspondences between

image and object features, and the pose of the object in the image. As discussed in

Section 2.1, the state of match, or correspondences, i s described by the variable �:

�=f� 1;�2; : : : ;�ng ; �i 2M[f?g :

Here � i =M j means that image feature i corresponds to object model feature j, and

�i =?means that image feature i i s due to the background.

The pose of the object i s a real vector: �2R z. Aprojection function, P(), maps

object model features into the v-dimensional image coordinate space according to the

pose,

P(M i; �) 2R v
:

The probabi l i stic models of image features described inChapter 3maybe written

as fol lows:

p(Y i j �; �) =

8><>:
1

W1W2�� � Wv
i f �i =?

G ij
(Yi �P(M j; �)) i f � i =M j

(6:1)

where

G ij
(x) =(2�) �

v
2 j  ij�

1

2 exp(� 1

2
x

T
 

�1
i
x) :

Here  i j i s the covariancematrixassociatedwithimage feature i andobject model

feature j. Thus image features arising fromthe backgroundare uni formlydistributed

over the image feature coordinate space (the extent of the image feature coordinate

space along dimension i i s given byW i), and matched image features are normal ly

distributedabout their predictedlocations inthe image. Insome appl ications  could

be independent i f i and j { an assumption that the feature statistics are stationary

in the image, or  may depend only on i, the image feature index. The latter i s the

case when the oriented stationary statistics model i s used (see Section 3.3).
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Assuming independent features, the joint probabi l i ty density on image feature

coordinates may be written as fol lows

p(Y j �; �) =
Y
i

p(Y i j �; �) =
Y

i :�i=?

1

W1W2 � � � Wv
Y

i j : �i=M j

G ij
(Yi �P(M j; �)) :

(6:2)

This assumption often holds when sensor noise dominates in feature 
uctuations.

The next step in the derivation is the construction of a joint prior on correspon-

dences andpose. InChapter 2, probabi l i stic models of feature correspondences were

discussed. The independent correspondence model i s used here for simpl ici ty. Use of

the Markov correspondence model i s discussed in the fol lowing section. The proba-

bi l i tythat image feature i belongs to the backgroundis B i, whi le the remainingprob-

abi l i ty is uni formly distributed for correspondences to the m object model features.

In some situations, B i maybe a constant, independent of i. Recal l ing Equations 2.1

and 2.6,

p(�) =
Y
i

p(� i) and p(� i) =

8><>: Bi i f �i =?
1�Bi

m
otherwise :

(6:3)

Prior information on the pose is assumed to be suppl ied as a normal density,

p(�) =G  �
(��� 0)

where

G �
(x) =(2�)

�z
2 j  �j�

1

2 exp(� 1

2
x

T
 

�1
�
x) :

Here  � i s the covariance matrix of the pose prior and z i s the dimensional i ty of

the pose vector, �. With the combinationof normal pose priors and l inear projection

models the systemis closed in the sense that the resulting pose estimate wi l l al so

be normal . This i s convenient for coarse-�ne, as discussed in Section 6.4. If l i ttle i s

knownabout the pose a-priori , the prior maybe made quite broad. This i s expected

to be often the case. If nothing is knownabout the pose beforehand, the pose prior
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maybe left out. In that case the resulting cri terion for evaluating hypotheses wi l l be

based onMaximumLikel ihood for pose, and onMAPfor correspondences.

Assuming independence of the correspondences and the pose (before the image is

compared to the object model), a mixed joint probabi l i ty functionmaybe writtenas

fol lows,

p(�; �) =G  �
(��� 0)

Y
i : �i=?

Bi

Y
i : �i 6=?

1�B i

m

:

This a good assumption when view-based approaches to object model ing are used

(these are discussed in Chapter 4 and used in the experiments described in Chapter

10). (With general 3Drotation it i s inaccurate, as the visibi l i ty of features depends

onthe orientationof the object. ) This probabi l i ty functiononmatchandpose is now

usedwith Bayes' rule as a prior for obtaining the posterior probabi l i ty of �and�:

p(�; �j Y) = p(Y j �; �)p(�; �)
p(Y)

; (6:4)

where p(Y) =
P

�

R
d� p(Y j �; �)p(�; �) i s a normal ization factor that is formal ly

the probabi l i tyof the image. It i s a constant withrespect to �and�, the parameters

being estimated.

The MAPstrategy is used to obtain estimates of the correspondences and pose

bymaximizing their posterior probabi l i tywith respect to �and �, as fol lows

d�; �=argmax
�;�

p(�; �j Y) :

For convenience, anobjective function, L, i s introduced that is a scaled logarithm

of p(�; �j Y). The same estimates wi l l result i f the maximization is instead carried

out over L. d�; �=argmax
�; �

L(�; �)

where

L(�; �) �ln
 
p(�; �j Y)

C

!
: (6:5)
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The denominator in Equation 6.5 is a constant that has been chosen to cancel con-

stants fromthe numerator. Its value, which is independent of �and � i s

C=
B1B2 � � � Bn

(W1W2 � � � Wv)n
(2�)

�z
2 j  �j

�1

2

1

p(Y)
:

After some manipulation the objective functionmay be expressed as

L(�; �) =� 1

2
(��� o)

T
 
�1
�
(��� 0)+

X
i j : �i=M j

[�i j�
1

2
(Yi�P(M j; �))

T
 
�1
i j
(Yi�P(M j; �))]

(6:6)

, where

�i j=ln

 
1

(2�)
v
2m

(1�B i)

Bi

W1W2 � � � Wv
j  i jj

1

2

!
: (6:7)

When a l inear projection model i s used, P(M j; �) =M j�. (Linear projection

models were discussed in Chapter 5.) In this case, the objective function takes the

fol lowing simple form

L(�; �) =� 1

2
(��� o)

T
 

�1
�
(��� 0)+

X
i j : �i=M j

[�i j�
1

2
(Yi�M j�)

T
 

�1
i j
(Yi�M j�)] : (6:8)

When the background probabi l i ty is constant, and when the feature covariance

matrix determinant is constant (as when oriented stationary statistics are used), the

formulas simpl i fy further {

�=ln

 
1

(2�)
v
2m

(1�B)
B

W1W2 � � � Wv
j ̂j 1

2

!
; (6:9)

and

L(�; �) =� 1

2
(��� o)

T
 
�1
�
(��� 0)+

X
i j : �i=M j

[�� 1

2
(Yi�M j�)

T
 
�1
i
(Yi�M j�)] : (6:10)

Here,  ̂ i s the stationary feature covariance matrix, and  i i s the special ized

feature covariance matrix. These were discussed in Section 3.3.
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The �rst termof the objective function of Equation 6.8 expresses the in
uence of

the prior on the pose. As discussed above, when a useful pose prior i sn't avai lable,

this termmaybe dropped.

The second termhas a simple interpretation. It i s a sumtaken over those image

features that are matched to object model features. The � i j are �xed rewards for

making correspondences, whi le the quadratic forms are penalties for deviations of ob-

served image features fromtheir expectedpositions in the image. Thus the objective

function evaluates the amount of the image explained in terms of the object, with

penalties for mismatch. This objective function is particularly simple in terms of �.

When�is constant, �and its (posterior) covariance are estimatedbyweighted least

squares. When using an algorithmbased on search in correspondence space, the es-

timate of �can be cheaply updated by using the techniques of sequential parameter

estimation. (See BeckandArnold [4] . ) The � i j describe the relative value of amatch

component or extension in a way that al lows direct comparison to the entai ledmis-

matchpenalty. The values of these trade-o�parameter(s) are suppl ied by the theory

(inEquation 6.7) and are given in terms of measurable domain statistics.

The formof the objective function suggests an optimization strategy: make cor-

respondences to object features inorder to accumulate correspondence rewards whi le

avoiding penalties for mismatch. It i s important that the � i j be positive, otherwise a

winning strategy is be tomake nomatches to the object at al l . This conditionde�nes

a cri tical level of image clutter, beyondwhichthe MAPcriteria assigns the feature to

the background. � i j describes the dependence of the value of matches on the amount

of background clutter. If background features are scarce, then correspondences to

object features become more important.

This objective function provides a simple and uni formway to evaluate match

and pose hypotheses. It captures important aspects of recognition: the amount of

image explained in terms of the object, as wel l as the metrical consistency of the

hypothesis; and it trades themo�ina rational waybasedondomainstatistics. Most
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previous approaches have not made use of both criteria simultaneously in evaluating

hypotheses, thereby losing some robustness.

6.1.1 UsingtheMarkovCorrespondenceModel

Whenthe Markovcorrespondence model of Section2.3 is usedinsteadof the indepen-

dent correspondence model , the functional formof the objective functionof Equation

6.6 remains essential ly unchanged, aside fromgaining a newtermthat captures the

in
uence of the interaction of neighboring features. The names of some of the con-

stants changes, re
ecting the di�erence betweenEquations 2.2 and 2.4. Noting that

p(�; � j Y) i s l inear in p(�), i t can be seen that the newtermin the logarithmic

objective functionwi l l be:
n�1X
i =1

lnri(�i;�i +1) :

As before, whenanalgorithmbasedonsearchincorrespondence space is used, the

estimate of �cansti l l be cheaplyupdated. Achange inanelement of correspondence,

some � i, wi l l nowadditional ly entai l the update of two of the terms inthe expression

above.

6.2 Experimental Implementation

In this section an experiment demonstrating the use of the MMMobjective function

is described. The intent is to demonstrate the uti l i ty of the objective function in a

domain of features that have signi�cant 
uctuations. The features are derived from

real images. The domainis matchingamongfeatures fromlow-resolutionedge images.

The point-radius feature model discussed in Section 5.3 is used. Oriented stationary

statistics, as described in Section 3.3, are used to model the feature 
uctuations, so

that � i j=� i.
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6.2.1 SearchinCorrespondenceSpace

Good solutions of the objective function of Equation 6.8 are sought by a search in

correspondence space. Searchover the whole exponential space is avoidedbyheuristic

pruning.

Anobjective functionthat evaluates a con�gurationof correspondences, or match

(described by �), may be obtained as fol lows:

L(�) =max
�

L(�; �) :

This optimization is quadratic in�andis carriedout by least squares. Sequential

techniques are used so that the cost of extending a partial match by one correspon-

dence is O(1) .

The space of correspondences maybe organizedas adirected-acycl ic-graph(DAG)

by the fol lowing parent-chi ld relation onmatches. Apoint in correspondence space,

or match i s a chi ldof another match i f there is some i suchthat � i =?in the parent,

and � i =M j , for some j, in the chi ld, and they are otherwise the same. Thus, the

chi ldhas onemore assignment to themodel thanthe parent does. This DAGis rooted

in the matchwhere al l assignments are to the background. Al l possible matches are

reachable fromthe root. Afragment of an example DAGof this kind is i l lustrated

inFigure 6-1. Components of matches that are not expl ici t in the �gure are assigned

to the background.

Heuristic beamsearch, as describedin[64] , i s usedto searchover matches for good

solutions of L. Success depends on the heuristic that there aren't many impostors in

the image. An impostor is a set of image features that scores wel l but isn't a subset

of the optimummatch impl iedby the objective function. Another wayof stating the

heuristic i s that the best match to n+1 object features is l ikely to contain the best

match to nobject features.

The searchmethod used in the experiments employs a bootstrapping mechanism
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Γ =⊥ ∀
i

i

Γ = Μ 1 3
Γ = Μ 2 7
Γ = Μ 9 12

Γ = Μ 1 3
Γ = Μ 2 7

Γ = Μ 2 7

Figure 6-1: Fragment of Correspondence Space DAG

based on distinguished features. Object features 1, 2 and 3 are special , and must

be detected. The scheme could be made robust by considering more initial triples

of object features. Alternatively, indexing methods could be used as an e�cient and

robust means to initiate the search. Indexingmethods are describedbyClemens and

Jacobs [19] , and in Section 9.1.

The algorithmthat was used is outl ined below.

Beam-Search(M, Y)

Current  f�: exactly one image feature is matched to each of M 1 M2 andM 3g

; ; the rest are assigned to the background.

Prune Current according to L. Keep 50 best.

Iterate to Fixpoint:

Add toCurrent al l chi ldrenof members of Current

Prune Current according to L. KeepNbest.

;; Ni s r educed f r om20 t o 5 as t he s ear ch pr oceeds .
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Figure 6-2: Images used for Matching

Return(Current)

Sometimes an extension of a match wi l l produce one that is already in Cur-

rent, that was reached in a di�erent sequence of extensions. When this happens,

the matches are coalesced. This condition is e�ciently detected by testing for near

equal i tyof the scores of the items inCurrent. Because the features are derivedfrom

observations containing some randomnoise, i t i s very unl ikely that two hypotheses

having di�ering matches wi l l achieve the same score, since the score is partly based

on summed squared errors.

6.2.2 Example SearchResults

The searchmethoddescribedinthe previous sectionwas usedto obtaingoodmatches

in a domain of features that have signi�cant 
uctuations. The features were derived

fromreal images. Al inear projectionmodel was used.

Images used for matching are showninFigure 6-2. The object model was derived

froma set of 16 images, of whichthe image onthe left i s anexample. Inthis set, only

the l ight source position varied. The image features used in the searchwere derived

fromthe image on the right.

The features used for matchingwere derivedfromthe edge maps showninFigure
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Figure 6-3: Edge Maps used for Matching

6-3. The image on the left shows the object model edges and the image on the right

shows the image edges. These edges are fromthe Canny edge detector [13] . The

smoothing standard deviation is eight pixels { these are lowresolution edge maps.

The object model edges were derivedfromaset of 16 edgemaps, corresponding to the

16 images described above. The object model edges are essential ly the mean edges

with respect to 
uctuations induced by variations in l ighting. (Lowresolution edges

are sensitive to l ighting.) They are simi lar to the Mean Edge Images described in

Section 4.4.

The features used in matching are shown in Figure 6-4. These are point-radius

features, as described in Section 5.3. The point coordinates of the features are indi -

catedbydots, whi le the normal vector andcurvature are i l lustratedbyarc fragments.

Each feature represents 30 edge pixels. The 40 object features appear in the upper

picture, the 125 image features lower picture. The distinguished features used in the

bootstrap of the search are indicated with circles. The object features have been

transformed to a newpose to insure general i ty.

The parameters that appear in the objective function are: B, the background

probabi l i ty and  ̂, the stationary feature covariance. These were derived froma

matchdone byhandinthe example domain. The orientedstationarystatistics model

of Section 3.3 was used here. (Anormal model of feature 
uctuations is impl ici t in
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Figure 6-4: Point-Radius Features used for Matching



78 CHAPTER6. MAPMODEL MATCHING

Figure 6-5: Pose Prior used in Search

the objective function of Equation 6.8. This was found to be a good model in this

domain.)

Aloose pose prior was used. This pose prior i s i l lustrated inFigure 6-5. The prior

places the object in the upper left corner of the image. The one standard deviation

intervals of positionandangle are i l lustrated. The one standarddeviationvariationof

scale i s 30 percent. The actual pose of the object i s withinthe indicatedone standard

deviationbounds. This prior was chosento demonstrate that the methodworks wel l

despite a loose pose prior.

The best results of the beamsearch appear in Figure 6-6. In the upper image,

the object features are del ineated with heavy l ines. They are located according to

the pose associatedwith the best match. In the lower image, the object features and
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image features are i l lustrated, whi le the 18 correspondences associatedwith the best

matchappear as heavy l ines anddots.

The object features located according to the poses associated with the �ve best

matches are seen in Figure 6-7. The results are di�cult to distinguish because the

poses are very simi lar.

6.3 Search inPose Space

This sectionwi l l explore searching the MMMobjective function in pose space. Con-

nections to robust chamfer matching wi l l be described.

Apose estimate is sought byorderingthe searchfor maximaof theMMMobjective

function as fol lows,

�̂=argmax
�

max
�

L(�; �) :

Substituting the objective function fromEquation 6.6 yields

�̂=argmax
�

max
�

X
i j : �i=M j

[�i j�
1

2
(Yi �P(M j; �))

T
 
�1
i j
(Yi �P(M j ; �))] :

The pose prior termhas been dropped in the interest of clari ty. It would be easi ly

retained as an additional quadratic term.

This equationmay be simpl i�edwith the fol lowing de�nition,

Di j(x) �
1

2
x

T
 

�1
i j
x :

Di j(x) may be thought of as a general ized squared distance between observed and

predicted features. It has been cal led the squaredMahalonobis distance [22] .

The pose estimator may nowbe written as

�̂=argmax
�

max
�

X
i j : �i=M j

[�i j�D i j(Yi �P(M j; �))] ;
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Figure 6-6: Best MatchResults: Pose andCorrespondences
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Figure 6-7: Best Five MatchResults

or equivalently, as a minimization rather that maximization,

�̂=argmin
�

min
�

X
i j : �i=M j

[Di j(Yi �P(M j; �))�� i j] :

The sumis taken over those image features that are assigned to model features

(not the background) in the match. It may be re-written in the fol lowing way,

�̂=argmin
�

X
i

min
�i

8><>: 0 i f �i =?

Di j(Yi �P(M j; �))�� i j i f �i =M j

;

or as

�̂=argmin
�

X
i

min(0; min
j

Di j(Yi �P(M j; �))�� i j) :

If the correspondence rewardis independent of the model feature (this holds when

oriented stationary statistics are used), � i j =� i. In this case, � i may be added to
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each termin the sumwithout a�ecting the minimizing pose, yielding the fol lowing

formfor the pose estimator,

�̂=argmin
�

X
i

min(� i; min
j

Di j(Yi �P(M j; �))) : (6:11)

This objective function is easi ly interpreted { it i s the sum, taken over image

features of a saturated penalty. The penalty (before saturation) is the smal lest gen-

eral ized squared distance fromthe observed image feature to some projected model

feature. The penalty min j Di j(x�P(M j; �)) has the formof a Voronoi surface, as

described by Huttenlocher et. al . [42] . They describe a measure of simi lari ty on

image patterns, the Hausdor� distance, that is the upper envelope (maximum) of

Voronoi surfaces. The measure usedhere di�ers inbeing saturated, andbyusing the

sumof Voronoi surfaces, rather than the upper envelope. In their work, the upper

envelope o�ers some reduction in the complexity of the measure, and faci l i tates the

use of methods of computational geometry for expl ici tly computing the measure in 2

and 3 dimensional spaces.

Computational geometry methods might be useful for computing the objective

function of Equation 6.11. In higher dimensional pose spaces (4 or 6, for example)

KD-tree methods may be the only such techniques currently avai lable. Breuel has

usedKD-tree searchalgorithms in feature matching.

Next aconnectionwi l l be shownbetweenMMMsearchinpose space andamethod

of robust chamfer matching. First, the domainof MMMis simpl i�ed in the fol lowing

way. Ful l stationarity of feature 
uctuations is assumed (as covered in Section 3.3).

Further, the feature covariance is assumed to be isotropic. With these assumptions

we have  i j=�
2
I, andD i j=

1
2�2
j xj2. Additional ly, assuming constant background

probabi l i ty, we have � i j =�. The pose estimator of Equation 6.11 may nowbe
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written in the fol lowing simpl i�ed form,

�̂=argmin
�

X
i

min(�; min
j

(
1

2� 2
j Yi �P(M j; �)j 2)) :

When the projection function is l inear, invertible, and distance preserving, (2D

and3Drigidtransformations satisfythese properties), the estimator maybe expressed

as fol lows,

�̂=argmin
�

X
i

min(�; min
j

(
1

2� 2
j P�1(Yi; �)�M jj2)) :

This may be further simpl i�ed to

�̂=argmin
�

X
i

min(�; d 2(P�1(Yi; �))) ; (6:12)

by using the fol lowing de�nition of a minimumdistance function.

d(x) � 1p
2�

min
j

j x�M j j : (6:13)

Chamferingmethods maybe usedtotabulate approximations of d 2(x) inanimage-

l ike array that is indexed by pixel coordinates. Chamfer-based approaches to image

registration problems use the array to faci l i tate fast evaluation of pose objective

functions. Barrowet al . [3] describe an early method where the objective function

is the sumover model features of the distance fromthe projected model feature to

the nearest image feature. Borgefors [8] recommends the use of RMSdistance rather

than summed distance in the objective function.

Recently, Jiang et al . [47] described a method of robust chamfer matching. In

order to make the method less susceptible to disturbance by outl iers and occlusions,

they added saturation to the RMS objective function of Borgefors. Their objective
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function has the fol lowing form

1

3
(
1

n

X
j

min(t 2
; d

2
j
))

1

2 ;

where d 2
j
i s the squared distance fromthe j' th projected model point to the near-

est image point. Aside fromthe constants and square root, which don't a�ect the

minimizing pose, this objective function is equivalent to Equation 6.12 i f the role of

image andmodel features is reversed, and the sense of the projection function is in-

verted. Jiang et al . showimpressive results using robust chamfer matching to register

multi -modal 3Dmedical imagery.

6.4 Extensions

MAPModel Matching performs wel l on low resolution imagery in which feature

uncertainty is signi�cant. It could be used to bootstrap a coarse-�ne approach to

model matching, yielding good results with reasonable running times. Coarse-�ne

approaches have proven successful in stereo matching appl ications. (See Grimson

[33] and Barnard [2] . ) Acoarse-�ne strategy is straightforward in the framework

described here. In a hierarchy, the pose estimate fromsolving the objective function

at one scale i s used as a prior for the estimation at the next. Having a goodprior on

the pose wi l l greatly reduce the amount of searching required at high resolution.

Finding a tractable model that incorporates pose dependent visibi l i ty conditions

wouldbe useful for applying MMMinnon view-based recognition.

6.5 RelatedWork

The HYPERvision systemof Ayache and Faugeras [1] uses sequential l inear-least-

squares pose estimation as wel l as the l inear 2Dpoint feature and projectionmodel

describedinSection5.2. HYPERis describedas a searchalgorithm. Di�erent cri teria
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are used to evaluate candidate matches and to evaluate competing \whole" hypothe-

ses. An ad hoc threshold is used for testing a continuous measure of the metrical

consistency of candidate match extensions. Whole match hypotheses are evaluated

according to the amount of image feature accounted for { although not according to

overal l metrical consistency. HYPERworks wel l on real images of industrial parts.

Goad outl ined a Bayesian strategy of match evaluation based on feature and

backgroundstatistics inhis paper onautomatic programming for model -basedvision

[29] . In his system, searchwas control led by thresholds on probabi l i stic measures of

the rel iabi l i ty andplausibi l i ty of matches.

Lowe describes ingeneral terms the appl icationof Bayesiantechniques inhis book

on Visual Recognition [51] . He treats the minimization of expected running time of

recognition. In addition he discusses selection among numerous objects.

Object recognitionmatching systems oftenuse a strategythat canbe summarized

as a search for the maximal matching that is consistent. Consistency is frequently

de�nedtomeanthat thematchingimage feature is within�nite bounds of i ts expected

position(boundederror models). Cass' system[14] i s one example. Suchanapproach

may be cast in the framework de�ned here by assuming uni formprobabi l i ty density

functions for the feature deviations. Pose solution with this approach is l ikely to be

more compl icated than the sequential l inear-least-squares method that can be used

when feature deviations have normal models. Cass' approach e�ectively �nds the

global optimumof its objective function. It performs wel l onoccludedor fragmented

real images.

Beveridge, Weiss andRiseman[6] use anobjective function for l ine segment based

recognition that is simi lar to the one described here. In their work, the penalty for

deviations is quadratic, whi le the reward for correspondence is non-l inear (exponen-

tial ) in the amount of missing segment length. (By contrast, the rewarddescribed in

this paper is, for stationary models, l inear in the length of aggregate features. ) The

trade-o� parameters in their objective function were determined empirical ly. Their
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systemgives goodperformance in a domain of real images.

Burns andRiseman [12] andBurns [11] describe a classi�cationbasedrecognition

system. They focus onthe use of descriptionnetworks for e�ciently searching among

multiple objects with a recursive indexing scheme.

HansonandFua [27] [26] describe a general objective functionapproach to image

understanding. They use a minimumdescription length (MDL) criterion that is

designedtoworkwithgeneric object models. The approachpresentedhere is tai lored

for speci�c object models.

6.6 Summary

AMAPmodel matching technique for visual object recognition has been described.

The resulting objective function has a simple formwhen normal feature deviation

models and l inear projection models are used. Experimental results were shown

indicating that MAPModel Matching works wel l in lowresolutionmatching, where

feature deviations are signi�cant. Relatedworkwas discussed.



Chapt er 7

Pos t er i or Margi nal Pos e

Es t i mat i on

Inthe previous chapter onMAPModel Matching the object recognitionproblemwas

posed as an optimization problemresulting froma statistical theory. In that formu-

lation, complete hypotheses consist of a description of the correspondences between

image and object features, as wel l as the pose of the object. The methodwas shown

to provide e�ective evaluations of matchandpose.

The formulationof recognitionthat is describedinthis chapter, Posterior Marginal

Pose Estimation 1 (PMPE), bui lds onMAPModel Matching. It provides a smooth

objective function for evaluating the pose of the object { without commitment to a

particular match. The pose is the most important aspect of the problem, inthe sense

that knowing the pose enables grasping or other interactionwith the object.

In this chapter, the objective function is explored by probing in selected parts of

pose space. The domain of these experiments is features derivedfromsynthetic laser

radar range imagery, and grayscale video imagery. Al imited pose space search is

performed in the video experiment.

In Chapter 8 the Expectation { Maximization (EM) algorithmis discussed as a

1An early version of thi s work appeared in [76]

87
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means of searching for local maxima of the objective function in pose space.

Additional experiments in object recognition using the PMPEobjective function

are described in Chapter 10. There, the EMalgorithmis used in conjunction with

an indexing method that generates initial hypotheses.

7.1 Objective Function for Pose

The fol lowingmethodwas motivatedbythe observationthat inheuristic searches over

correspondences with the objective function of MAPModel Matching, hypotheses

having implausible matches scored poorly in the objective function. The impl ication

was that summingposterior probabi l i tyover al l thematches (at a speci�c pose) might

provide a goodpose evaluator. This has proven to be the case. Although intuitively,

this might seeml ike an oddway to evaluate a pose, i t i s at least democratic in that

al l poses are evaluated in the same way. The resulting pose estimator is smooth,

and is amenable to local search in pose space. It i s not tied to speci�c matches {

it i s perhaps in keeping withMarr's recommendation that computational theories of

vision should try to satisfy a principle of least commitment [52] .

Additional motivation was provided by the work by Yui l le, Geiger and B�ultho�

on stereo [78] . They discussed computing disparities in a statistical theory of stereo

where a marginal i s computed over matches.

InMAPModel Matching, joint hypotheses of match andpose were evaluatedby

their posterior probabi l i ty, given an image { p(�; � j Y). � and � stand for cor-

respondences and pose, respectively, and Y for the image features. The posterior

probabi l i ty was bui l t fromspeci�c models of features and correspondences, objects,

and projection that were described in the previous chapters. The present formula-

tion wi l l �rst be described using the independent correspondence model . Use of the

Markov correspondence model wi l l be described in the fol lowing section.

Here we use the same strategy for evaluating object poses: they are evaluated
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by their posterior probabi l i ty, given an image: p(� j Y). The posterior probabi l i ty

densityof the pose maybe computedfromthe joint posterior probabi l i tyonpose and

match, by formal ly taking the marginal over possible matches:

p(�j Y) =
X
�

p(�; �j Y) :

In Section 6.1, Equation 6.4, p(�; �j Y) was obtained via Bayes' rule fromprob-

abi l i stic models of image features, correspondences, and the pose. Substi tuting for

p(�; �j Y), the posterior marginal may be written as

p(�j Y) =
X
�

p(Y j �; �)p(�; �)
p(Y)

: (7:1)

Using equations 2.1 (the independent feature model) and6.2, we mayexpress the

posterior marginal of � in terms of the component densities:

p(�j Y) = 1

p(Y)

X
�1

X
�2

� � �
X
�n

Y
i

p(Y i j �; �)
Y
i

p(� i)p(�)

or

p(�j Y) = p(�)

p(Y)

X
�1

X
�2

� � �
X
�n

Y
i

[p(Y i j �i; �)p(� i)] :

Breaking one factor out of the product gives

p(�j Y) = p(�)

p(Y)

X
�1

X
�2

� � �
X
�n

"
n�1Y
i =1

[ p(Y i j �i; �)p(� i)]

#
p(Y n j �n; �)p(� n) ;

or

p(�j Y) = p(�)

p(Y)

X
�1

X
�2

� � �
X
�n�1

"
n�1Y
i =1

[ p(Y i j �i; �)p(� i)]

# 24X
�n

p(Y n j �n; �)p(� n)

35
:
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Continuing in simi lar fashion yields

p(�j Y) = p(�)

p(Y)

Y
i

24X
�i

p(Y i j �i; �)p(� i)

35
:

This may be written as

p(�j Y) = p(�)

p(Y)

Y
i

p(Y i j �) ; (7:2)

since

p(Y i j �) =
X
�i

p(Y i j �i; �)p(� i) : (7:3)

Spl i tting the � i suminto its cases gives,

p(Y i j �) =p(Y i j �i =?; �)p(� i =?) +
X
Mj

p(Y i j �i =M j; �)p(� i =M j) :

Substituting the densities assumed in the model of Section 6.1 in Equations 6.1 and

2.2 then yields

p(Y i j �) =
1

W1 � � � Wv
Bi +

X
Mj

G ij
(Yi �P(M j ; �))

1�B i

m

: (7:4)

Instal l ing this into Equation 7.2 leads to

p(�j Y) = B1B2 � � � Bn
(W1W2 � � � Wv)n

p(�)

p(Y)

Y
i

241+ X
Mj

W1 � � � Wv
m

1�B i

Bi

G ij
(Yi �P(M j; �))

35
.

As inSection6.1 the objective function for Posterior Marginal Pose Estimation is

de�ned as the scaled logarithmof the posterior marginal probabi l i ty of the pose,

L(�) �ln
"
p(�j Y)

C

#
;
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where, as before,

C=
B1B2 � � � Bn

(W1W2 � � � Wv)n
(2�)

�z
2 j  �j

�1

2

1

p(Y)
:

This leads to the fol lowing expression for the objective function(use of a normal pose

prior i s assumed)

L(�) =� 1

2
(��� o)

T
 

�1
�
(��� 0)+

X
i

ln

241+ X
Mj

W1 � � � Wv
m

1�B i

Bi

G ij
(Yi �P(M j; �))

35
(7:5)

.

This objective function for evaluating pose hypotheses is a smoothfunctionof the

pose. Methods of continuous optimization may be used to search for local maxima,

although starting values are an issue.

The �rst termin the PMPEobjective function (Equation 7.5) is due to the pose

prior. It i s a quadratic penalty for deviations fromthe nominal pose. The second

termessential lymeasures the degree of al ignment of the object model withthe image.

It i s a sumtakenover image features of a smooth non-l inear function that peaks up

positivelywhenthe pose brings object features intoal ignment withthe image feature

in question. The logarithmic termwil l be near zero i f there are no model features

close to the image feature in question.

In a straightforward implementation of the objective function, the cost of evalu-

ating a pose is O(mn), since it i s essential ly a non-l inear double sumover image and

model features.

7.2 Using the MarkovCorrespondence Model

When the Markov Correspondence model of Section 2.3 is used instead of the in-

dependent correspondence model , the summing techniques of the previous section

no longer apply. Because of this, a computational ly attractive closed formformula
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for the posterior probabi l i ty no longer obtains. Nevertheless, i t wi l l be shown that

the posterior probabi l i ty at a pose can sti l l be e�ciently evaluated using dynamic

programming.

Referring to Equation 7.1, and using the independence of match and pose in the

prior (discussed in Section 6.1), the posterior marginal probabi l i ty of a pose may be

written as fol lows,

p(�j Y) =
X
�

p(Y j �; �)p(�)p(�)
p(Y)

:

Using Equations 2.3 and 6.1,

p(�j Y) = p(�)

p(Y)

X
�

p(Y 1 j �1; �)p(Y 2 j �2; �) � � � p(Yn j �n; �) q(� 1)q(� 2) � � � q(�n)

r1(�1;�2)r2(�2;�3) � � � rn�1(�n�1;�n)

This may be re-written as fol lows,

p(�j Y) = p(�)

p(Y)

X
�1�2:: : �n

"
nY
i =1

ci(�i)
n�1Y
i =1

ri(�i;�i +1)

#
; (7:6)

where

ci �p(Y i j �i; �)q(� i) :

Here, the dependence of c on�has been suppressed for notational brevity.

Next it wi l l be shownthat p(�j Y) may be written using a recurrence relation:

p(�j Y) = p(�)

p(Y)

X
�n

hn�1(�n)cn(�n) ; (7:7)

where

h1(a) �
X
b

c1(b)r 1(b; a) (7:8)

and

hn+1 (a) �
X
b

hn(b)c n+1 (b)r n+1 (b; a) : (7:9)
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Expanding Equation 7.7 in terms of the recurrence relation,

p(�j Y) = p(�)

p(Y)

X
�n

24X
�n�1

hn�2(�n�1)cn�1(�n�1)rn�1(�n�1;�n)

35
cn(�n) ;

or

p(�j Y) = p(�)

p(Y)

X
�n�1 �n

hn�2(�n�1)
nY

i =n�1

ci(�i) rn�1(�n�1;�n) :

Again using the recurrence relation,

p(�j Y) = p(�)

p(Y)

X
�n�1 �n

24X
�n�2

hn�3(�n�2)cn�2(�n�2)rn�2(�n�2;�n�1)

35

�
nY

i =n�1

ci(�i) rn�1(�n�1;�n) ;

or

p(�j Y) = p(�)

p(Y)

X
�n�2 �n�1 �n

hn�3(�n�2)
nY

i =n�2

ci(�i)
n�1Y
i =n�2

ri(�i;�i +1) :

Continuing in simi lar fashion leads to

p(�j Y) = p(�)

p(Y)

X
�2�3: : : �n

h1(�2)
nY
i =2

ci(�i)
n�1Y
i =2

ri(�i;�i +1) ;

andnowusing the base expression for h 1(� ),

p(�j Y) = p(�)

p(Y)

X
�2�3: : : �n

24X
�1

c1(�1)r1(�1;�2)

35 nY
i =2

ci(�i)
n�1Y
i =2

ri(�i;�i +1) ;

or �nal ly,

p(�j Y) = p(�)

p(Y)

X
�1�2: : : �n

"
nY
i =1

ci(�i)
n�1Y
i =1

ri(�i;�i +1)

#
;

which is the same as Equation 7.6. This completes the veri�cation of Equation 7.7.

Next, a dynamic programming algorithmwil l be described that e�ciently evalu-

ates an objective function that is proportional to the posterior marginal probabi l i ty
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of a pose. The objective function is
p(Y )

p(�)
p(� j Y) . The algorithmis a direct imple-

mentationof the recurrence de�ned inEquations 7.7, 7.8 and7.9, that bui lds a table

of values of h i(� ) fromthe bottomup. Note that h i(b) onlyhas twovalues, depending

onwhether b=?or not. In the fol lowing description, the symbol > i s used to stand

for an anonymous model feature. H � �denotes array locations that store values of h i,

andH(� ; � ; � ) i s an access function, de�nedbelow, that accesses the stored values.

; ; ; Us e Dynami c Pr ogr ammi ng t o eval uat e PMPEwi t h Mar kov Cor r es pondence Model .

Evaluate-Pose(�)

H1?  
P
b
C(1; b; �)r 1(b;?)

H1>  
P
bC(1; b; �)r 1(b;>)

For i 2 ToN�1

Hi ? 
P
b
H(i�1; b)C(i; b; �)r n+1 (b;?)

Hi > 
P
b
H(i�1; b)C(i; b; �)r n+1 (b;>)

Return (
P
bH(N�1; b)C(n; b; �))

; ; ; De�ne t he auxi l i ar y f unct i on C.

C(i; b; �)

Return(p(Y i j b�)q(b))

; ; ; Acces s val ues of H s t or ed i n a t abl e .

H(a,b)

If b=?Return (H a?)

Else Return (H a>)

The loop in Evaluate-Pose executes O(n) times, and each time through the

loop does O(m) evaluations of the summands, so the complexity is O(mn). This
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has the same complexityas a straightforwardimplementationof the PMPEobjective

functionwhen the Markovmodel i s not used (Equation 7.5).

The summing technique used here was described by Cheeseman [17] in a paper

about using maximum-entropymethods in expert systems.

7.3 Range Image Experiment

Anexperiment investigating the uti l i ty of Posterior Marginal Pose Estimation is de-

scribed in this section. Additional experiments are described inChapter 10.

The objective functionof Equation7.5was sampledinadomainof synthetic range

imagery. The feasibi l i ty of coarse-�ne searchmethods was investigated by sampl ing

smoothed variants of the objective function.

7.3.1 Preparationof Features

The preparation of the features used in the experiment is summarized inFigure 7-1.

The features were oriented-range features, as described in Section 5.4. Two sets of

features were prepared, the \model features", and the \image features".

The object model features were derived froma synthetic range image of anM35

truck that was created using the ray tracing programassociatedwith the BRLCAD

Package [23] . The raytracer was modi�edto produce range images insteadof shaded

images. The synthetic range image appears in the upper left of Figure 7-2.

In order to simulate a laser radar, the synthetic range image describedabove was

corrupted with simulated laser radar sensor noise, using a sensor noise model that

is described by Shapiro, Reinhold, and Park [62] . In this noise model , measured

ranges are either val id or anomalous. Val idmeasurements are normal ly distributed,

and anomalous measurements are uni formly distributed. The corrupted range image

appears inFigure 7-2 on the right. To simulate post sensor processing, the corrupted

image was \restored" via a statistical restoration method of Menon andWel ls [56] .
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Figure 7-1: Preparation of Features
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Figure 7-2: Synthetic Range Image, Noisy Range Image, andRestoredRange Image
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Figure 7-3: Model Features, Noisy Features, and Image Features
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The restored range image appears in the lower position of Figure 7-2.

Orientedrange features, as described inSection5.4, were extracted fromthe syn-

thetic range image, for use as model features { and fromthe restored range image,

these are cal ledthe noisyfeatures. The features were extractedfromthe range images

in the fol lowing manner. Range discontinuities were located by thresholding neigh-

boring pixels, yielding range discontinuity curves. These curves were then segmented

into approximately 20-pixel -long segments via a process of l ine segment approxima-

tion. The l ine segments (eachrepresenting a fragment of a range discontinuitycurve)

were thenconvertedinto orientedrange features inthe fol lowingmanner. TheX and

Y coordinates of the feature were obtained fromthe mean of the pixel coordinates.

The normal vector to the pixels was gotten via least-squares l ine �tting. The range

to the feature was estimated by taking the mean of the pixel ranges on the near side

of the discontinuity. This information was packaged into an oriented-range feature,

as described in Section 5.4. The model features are shown in the �rst image of Fig-

ure 7-3. Each l ine segment represents one oriented-range feature, the ticks on the

segments indicate the near side of the range discontinuity. There are 113 suchobject

features.

The noisy features, derived fromthe restored range image, appear in the second

image of Figure 7-3. There are 62 noisy features. Some features have been lost due

to the corruption and restoration of the range image. The set of image features was

preparedfromthe noisy features byrandomlydeleting hal f of the features, transform-

ing the survivors according to a test pose, and adding su�cient randomly generated

features so that 1
8
of the features are due to the object. The 248 image features appear

in the third image of Figure 7-3.

7.3.2 SamplingTheObjectiveFunction

The objective function of Equation7.5 was sampledalong four straight l ines passing

through the (known) location in pose space of the test pose. Oriented stationary
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statistics were used, as described in Section 3.3. The stationary feature covariance

was estimatedfroma handmatchdone withamouse betweenthe model features and

the noisy features. The background rate parameter Bwas set to 7
8
.

Samples taken along a l ine through the location of the true pose in pose space,

paral lel to theXaxis are showninFigure 7-4. This corresponds tomoving the object

along the Xaxis. The �rst graph shows samples takenalong a 100 pixel length (the

image is 256 pixels square). The second graph of Figure 7-4 shows samples taken

along a 10 pixel length, and the third graph shows samples taken along a 1 pixel

length. The Xcoordinate of the test pose is 55.5, the third graph shows the peak of

the objective function to be in error by about one twentiethpixel .

Samples takenalong a l ine paral lel to the �axis of pose space are showninFigure

7-5. This corresponds to a simultaneous change in scale and angular orientation of

the object.

Eachof the above graphs represents 50 equal ly spaced samples. The samples are

joinedwith straight l ine segments for clari ty. Sampl ing was also done paral lel to the

Y and � axes with simi lar results.

The sampl ing described inthis sectionshows that inthe experimental domainthe

objective functionhas a prominent, sharppeak near the correct location. Some local

maxima are also apparent. The observed peak may not be the dominant peak { no

global searching was performed.

Coarse-Fine Sampl ing

Additional sampl ing of the objective of Equation7.5 was performedto investigate the

feasibi l i ty of coarse-�ne search techniques. Acoarse-�ne search method for �nding

maxima of the pose-space objective function would proceed as fol lows. Peaks are

initial ly located at a coarse scale. At each stage, the peak fromthe previous scale i s

used as the starting value for a searchat the next (less smooth) scale.

The objective function was smoothed by replacing the stationary feature covari -
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Figure 7-4: Objective Function Samples Along X-OrientedLine ThroughTest Pose,

Lengths: 100 Pixels, 10 Pixels, 1 Pixel
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Figure 7-5: Objective Function Samples Along �-OrientedLine ThroughTest Pose,

Lengths: .8, .1, and .01
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ance matrix  ̂in the fol lowingmanner:

 ̂  ̂+ s :

The e�ect of the smoothing matrix  s i s to increase the spatial scale of the co-

variance matrices that appear in the objective function.

Probes along theXaxis throughthe knownlocationof the test pose, withvarious

amounts of smoothing are shown in Figure 7-6. The smoothing matrices used in the

probing were as fol lows, in the same order as the �gures.

DIAG((:1) 2
; (:1)2; (10:0) 2

; (10:0) 2) ;

DIAG((:025) 2
; (:025) 2

; (2:5) 2
; (2:5) 2) ;

and

DIAG((:01) 2
; (:01) 2

; 1:0; 1:0) :

where DIAG(� ) constructs diagonal matrices fromits arguments. These smoothing

matrices were determined empirical ly. (No smoothing was performed in the fourth

�gure.)

These smoothed sampl ing experiments indicate that coarse-�ne search may be

feasible in this domain. In Figure 7-6 it i s apparent that the peak at one scale may

be used as a starting value for local search in the next scale. This indicates that a

�nal l ine searchalong theXaxis coulduse the coarse �ne strategy. It i s not su�cient

evidence that such a strategy wi l l work in general . As before, there is no guarantee

that the locatedmaximumis the global maximum.
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X Probes of Objective Function
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Figure 7-6: XProbes in SmoothedObjective Function
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7.4 Video Image Experiment

In this section, another experiment with the PMPEobjective function is described.

The features are point-radius features derived fromvideo images. Alocal search in

pose space is carried out, and the objective function, and a smoothed variant, are

probed in the vicinity of the peak.

7.4.1 Preparationof Features

The features used in this experiment are the same as those used in the MAPModel

Matching correspondence searchexperiment reported inSection6.2. They are point-

radius features, as described in Section 5.3. The features appear inFigure 6-4.

7.4.2 SearchinPoseSpace

Asearchwas carried out in pose space froma starting value that was determinedby

hand. The search was implemented with Powel l ' s method [59] of multidimensional

non-l inear optimization. Powel l ' s methodis simi lar to the conjugate-gradient method,

but derivatives are not used. The l ine minimizations were carried out with Brent's

method [59] , which uses successive parabol ic approximations. The pose resulting

fromthe search is i l lustrated in Figure 7-7. This result i s close to the best result

fromthe MAPModel Matching correspondence search experiment. That result i s

reproduced here inFigure 7-8. It i s comforting that these two substantial ly di�erent

searchmethods (combinatorial versus continuous) provide simi lar answers in, at least,

one experiment.

7.4.3 SamplingTheObjectiveFunction

Samples were taken along four straight l ines passing through the peak in the objec-

tive function resulting fromthe search in pose space reported above. (In the range

experiment, sampl ing was done through the known true pose.) The results are i l lus-
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Figure 7-7: Results of Search inPose Space

Figure 7-8: Best Results fromMAPModel Matching Correspondence Search
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Figure 7-9: Probes of Objective FunctionPeak

trated in Figure 7-9. The peak in this data is not as sharp as the peak in the range

experiment reported in the previous section. This i s l ikely due to the fact that the

features used in the video experiment are substantial ly less constraining that those

used in the range experiment { whichhave good range information in them.

Sampl ing of the objective function with smoothing was also performed, as in

Section 7.3.2.
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Smoothing was performed at one scale. The smoothing matrix was

DIAG((:03) 2
; (:03) 2

; (3:0) 2
; (3:0) 2) :

Probing, performed in the same manner as in Figure 7-9 was performed on the

smoothed objective function. The results are shown in Figure 7-10. In comparison

to the range image experiment, local maxima are more of an issue here. This maybe

partly due to the backgroundfeatures here havingmore structure than the randomly

generated background features used in the range image experiment. Because of this,

anomalous pose estimates (where the pose corresponding to the global maximumof

the objective function is seriously in error) may be more l ikely in this domain than

in the range experiment.

7.5 Relation to Robust Estimation

This section describes a relationship between PMPE and robust estimation. By

simpl i fying the domain a robust estimator of position is obtained. Aconnection

between the simpl i�ed robust estimator andneural networks is discussed.

Consider the fol lowing simpl i�cations of the domain:

� drop the pose prior

� the object has one feature

� the image is one-dimensional withwidthW

� the pose is a scalar

� the projection function translates: P(� ; �) =�

.
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Figure 7-10: Probes of SmoothedObjective Function
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With these simpl i�cations, the observationmodel of Equation 6.1 becomes

p(Y i j �; �) =

8><>:
1
W

i f �i =?

G�(Yi ��) otherwise
;

where

G�(x) =
1p
2��

exp

 
� x

2

2� 2

!
:

In this simpl i�ed domain �may be interpreted as a col lection of variables that de-

scribe the val idity of their corresponding measurements in Y. Thus, � i 6 =?may be

interpretedas meaning that Y i i s val id, and� i =?as Y i being inval id. p(Y i) i s de�ned

to be zero outside of the range [ �W

2
;
W

2
] .

The prior on correspondences of Equation 2.2 takes the fol lowing form

p(� i) =

8><>: B i f � i =?

1�B otherwise
:

UsingBayes' rule andthe independence of � i and�al lows the fol lowingprobabi l i ty

of a sample and its val idity,

p(Y i;�i j �) =p(Y i j �i; �)p(� i) =

8><>:
B

W
i f �i =?

(1�B)G �(Yi ��) otherwise
: (7:10)

The probabi l i ty of a sample maynowbe expressed by taking a marginal over the

probabi l i ty inEquation 7.10, as fol lows,

p(Y i j �) =
X
�i

p(Y i;�i j �) =
B

W

+(1�B)G �(Yi ��) :

De�ning an objective function as a log l ikel ihood of �

L(�) =ln

"Y
i

p(Y i j �)
#
;



7. 5. RELATIONTOROBUSTESTIMATION 111

leads to the analog of the PMPEobjective function for this simpl i�ed domain,

L(�) =
X
i

ln

�
B

W

+(1�B)G �(Yi ��)
�
: (7:11)

This may also be written

L(�) =
X
i

S(Y i ��) (7:12)

where

S(x) =ln
�
B

W

+(1�B)G �(x)
�
;

This is the MaximumLikel ihood objective function for estimating the mean of a

normal populationof variance � 2, that is contaminatedwitha uni formpopulationof

widthW, where the fraction of the mixture due to the uni formpopulation is B.

The function S(x) i s approximately quadratic when the residual i s smal l , and

approaches a constant whenthe residual i s large. WhenBgoes to zero, S(x) becomes

quadratic, and the estimator becomes least squares, for the case of a pure normal

population. When �S(x) i s viewed as a penalty function, i t i s seen to provide a

quadratic penalty for smal l residuals, as least squares does, but the penalty saturates

when residuals become large. Robust estimation is concerned with estimators that

are, l ike this one, less sensitive to outl iers that least squares. As with many robust

estimators, the resulting optimization problemis more di�cult than least squares,

since the objective function is non-convex. This estimator fal l s into the class of re-

descending M-estimators as discussed byHuber [41] .

PMPEis somewhat di�erent fromrobust estimation inthat the saturating aspect

of the objective function not only decreases the in
uence of \outl iers" (by analogy,

the background features), i t also reduces the in
uence of image features that don't

correspond to (are not close to) a givenobject feature.



112 CHAPTER7. POSTERIORMARGINAL POSE ESTIMATION

7.5.1 ConnectiontoNeural NetworkSigmoidFunction

There is an important connection between the estimator of Equation 7.12 and the

sigmoid function of neural networks,

�(x) =
1

1+exp(�x) :

The sigmoid function is a smooth variant of a logical switching function that has

been used for model ing neurons. It has been used extensively by the neural network

community in the construction of networks that classi fy and exhibit some forms of

learning behavior. The NETtalk neural network of Sejnowski and Rosenberg [61] i s

a wel l knowexample.

It turns out that, under some conditions on the parameters, the sigmoid function

of x2 i s approximatelyequal toS(x), ignoring shi fting andscal ing. This near equal i ty

is i l lustrated inFigure 7-11.

The two functions that are plotted in the �gure are

f(x) =2:0[�(x 2)�:5] and g(x) =
ln[ :25+:75exp(�x 2)]

ln[ :25]
:

The upper graphshows f(x)andg(x) plottedtogether, whi le the lower graphshows

their di�erence. It can be seen that they agree to better than one percent.

Because of this near equal i ty, for a special case of the parameters, a network that

evaluates the MLestimator of Equation 7.12 for a contaminated normal population

wi l l have the formi l lustrated inFigure 7-12.

This network, with its arrangement of sigmoid and sumunits seems to �t the

de�nition of a neural network.

The robust estimator of Equation7.12, andits neural networkapproximation, are

(approximately) optimal for locating a Gaussian cluster in uni formnoise.

Asimi lar neural network real ization of the PMPEobjective functionwould l ike-

wise be near optimal for locating an object against a uni formbackground.
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Figure 7-11: f(x) and g(x), and f(x)�g(x)
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Figure 7-12: Network Implementationof MAPEstimator for ContaminatedNormal
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7.6 PMPEE�ciency Bound

This sectionprovides a lower boundonthe covariancematrixof the PMPEestimator.

Estimators of vector parameters (l ike pose) may be characterized by the covariance

matrix of the estimates they produce. The Cramer-Rao bound provides a lower

l imit for the covariance matrix of unbiased estimators. Unbiased estimators that

achieve this bound are cal l e�ci ent estimators. Discussions of estimator e�ciency

andCramer-Rao bounds appear in [63] and [72] .

The Cramer-Rao bound on the covariance matrix of estimators of � based on

observations of Xi s givenby the inverse of the Fisher informationmatrix,

COV( �̂) �I �1
F
(�) :

Here, COV(� ) denotes the covariance matrix of the randomvector argument. This

matrix inequal i tymeans that COV( �̂)�I �1
F
(�) i s positive semi-de�nite.

The Fisher informationmatrix is de�ned as fol lows,

IF (�) �E X([r� lnp(Xj �)] [r � lnp(Xj �)] T )

where r � i s the gradient with respect to �, whichyields a column-vector, andE X(� )

stands for the expected value of the argument with respect to p(X).

The covariance matrix, and the Cramer-Rao bound, of the PMPEestimator are

di�cult to calculate. Instead, the Cramer-Rao bound and e�ciency wi l l be deter-

mined for estimators that have access to both observed features Y i, and the corre-

spondences � i. The Cramer-Rao bound for these \complete-data" estimators wi l l be

found, and it wi l l be shownthat there are no e�cient complete-data estimators. Be-

cause of this, the PMPEestimator is subject to the same boundas the complete-data

estimators, and the PMPEestimator cannot be e�cient. This fol lows, because the

PMPEestimator can be considered to be technical ly a complete-data estimator that
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ignores the correspondence data.

In terms of the complete-data estimator, the Fisher informationhas the fol lowing

form,

IF (�) �E Y; �([r� lnp(Y;�j �)] [r � lnp(Y;�j �)] T ) : (7:13)

Assuming independence of feature coordinates and of correspondences, the prob-

abi l i ty of the complete-data is

p(Y;�j �) =
Y
i

p(Y i;�i j �) :

Using Bayes rule and the independence of �and�,

p(Y i;�i j �) =p(Y i j �i; �)p(� i) : (7:14)

Referring to Equations 6.1 and6.3, andusing constant backgroundprobabi l i tyB,

and l inear projection, the complete-data component probabi l i ty may be written as

fol lows,

p(Y i;�i j �) =

8><>:
B

W1W2: : : Wv
i f �i =?

1�B
m

G ij
(Yi �M j�) i f � i =M j :

Workingtowards anexpressionfor the Fisher information, wedi�erentiate the complete-

data probabi l i ty to obtain

r� lnp(Y;�j �) =r � ln
Y
i

p(Y i;�i j �) =
X
i

r�p(Y i;�i j �)
p(Y i;�i j �)

:

When� i =?, r �p(Y i;�i j �) =0, otherwise, in the case � i =M j,

r�p(Y i;�i j �) =r �

1�B
m

G ij
(Yi �M j�) :



7. 6. PMPEEFFI CI ENCYBOUND 117

Di�erentiating the normal density (a formula for this appears in 8.3), gives

r�p(Y i;�i j �) =(�)
1�B
m

G ij
(Yi �M j�)M

T

j
 
�1
i j
(Yi �M j�) ;

so that

r�p(Y i;�i j �)
p(Y i;�i j �)

=�M T

j
 

�1
i j
(Yi �M j�) when � i =M j :

Then the gradient of the complete-data probabi l i tymay be expressed as

r� lnp(Y;�j �) =�
X

i j : �i=M j

M
T

j
 
�1
i j
(Yi �M j�) :

Note that setting this expression to zero de�nes the MaximumLikel ihood estimator

for � in the complete-data case, as fol lows:

X
i j : �i=M j

M
T

j
 
�1
i j
Yi =

X
i j : �i=M j

M
T

j
 
�1
i j
Mj �̂ ;

or

�̂=

0@ X
i j : �i=M j

M

T

j
 

�1
i j
Mj

1A�1 X
i j : �i=M j

M

T

j
 

�1
i j
Yi : (7:15)

This estimator is l inear in Y. The inverse has been assumed to exist { it wi l l exist,

providedcertainl inear independence conditions aremet, andenoughcorrespondences

tomodel features appear inthe match. This typical ly requires two to four correspon-

dences in the appl ications described here.

Returning to the Fisher information, we need to evaluate the expectation:

IF =E Y; �

0B@
24 X
i j : �i=M j

M

T

j
 

�1
i j
�i j

35 24 X
i j : �i=M j

M

T

j
 

�1
i j
�i j

35T
1CA ;
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where the ij' th residual has beenwritten as fol lows,

�i j�Y i �M j� :

Re-naming indices andpul l ing out the sums gives

IF =E Y; �

0@ X
i j : �i=M j

X
i
0

j
0: �i0=M j0

M

T

j
 

�1
i j
�i j�

T

i0j0
 

�1
i
0

j
0
Mj0

1A
:

Referring to Equation 7.14, the expectationmay be spl i t andmovedas fol lows,

IF =E �

0@ X
i j : �i=M j

X
i0j0: �i0=M j0

M

T

j
 

�1
i j
EY j�(�i j�

T

i0j0
) �1

i0j0
Mj0

1A
:

The inner expectation is over mutual ly independent Gaussian randomvectors, and

equals their covariance matrix when the indices agree, and is zero otherwise, so

IF =E �

0@ X
i j : �i=M j

X
i0j0: �i0=M j0

M

T

j
 

�1
i j
 i j�i i0�j j0 

�1
i0j0
Mj0

1A
:

This expression simpl i�es to the fol lowing:

IF =E �

0@ X
i j : �i=M j

M
T

j
 
�1
i j
Mj

1A
:

The summaybe re-written in the fol lowingwaybyusing a delta function comparing

�i andM j,

IF =
X
i j

E�

�
��iMj

�
M

T

j
 
�1
i j
Mj =

X
i j

E�i

�
��iMj

�
M

T

j
 
�1
i j
Mj :

The expectation is just the probabi l i ty that an image feature is matched to some

model feature. This i s 1�B
m

, so the Fisher informationmaybe written inthe fol lowing
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simple form,

IF =
X
i j

1�B
m

M
T

j
 
�1
i j
Mj ;

or as,

IF =(1�B)n 1

mn

X
i j

M
T

j
 
�1
i j
Mj :

This is anattractive result, andmaybe easi ly interpreted, inrelationto the Fisher

information for the pose when the correspondences are �xed (a standard l inear esti -

mator). The Fisher information in that case is
P
i j
M

T

j
 
�1
i j
Mj, i t may be interpreted

as the sumover matches of the per-matchFisher information.

In l ight of this, the complete-data Fisher information is seen to be the average

of the per-match Fisher information, multipl ied by the expected number of features

matched to the model , (1�B)n.

An e�cient unbiasedestimator for the complete-data exists i f and only i f

�̂=�+I �1
F
(�)r � lnp(Y;�j �) :

This requires that the right hand side be independent of �, since the estimator �̂

(Equation 7.15) is not a function of �. Expanding the right hand side,

�+

24(1�B)n 1

mn

X
i j

M

T

j
 

�1
i j
Mj

35�1 X
i j : �i=M j

M

T

j
 

�1
i j
(Yi �M j�) :

This is not independent of �. One wayto see this i s tonote that the factor multiplying

� in the second termis a function of �. Thus, no e�cient estimator exists in the

complete-data case, and consequently, no e�cient estimator exists for PMPE.

7.7 RelatedWork

Green [31] and Green and Shapiro [32] describe a theory of MaximumLikel ihood

laser radar range pro�l ing. The research focuses on statistical ly optimal detectors
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and recognizers. The single pixel statistics are described by a mixture of uni form

and normal components. Range pro�l ing is implemented using the EMalgorithm.

Under some circumstances, least squares provides an adequate starting value. A

continuation-style variant is described, where a range accuracy parameter is varied

betweenEMconvergences froma coarse value to its true value. Green [31] computes

Cramer-Rao bounds for the complete-data case of MaximumLikel ihoodrange pro�le

estimator, and compares simulated and real -data performance to the l imits.

Cass [16] [15] describes an approach to visual object recognition that searches

in pose space for maximal al ignments under the bounded-error model . The pose-

space objective function used there is piecewise constant, and is thus not amenable

to continuous searchmethods. The search is based on geometric formulation of the

constraints on feasible transformations.

There are some connections betweenPMPEandstandardmethods of robust pose

estimation, l ike those described byHaral ick [38] , andKumar andHanson [48] . Both

can provide robust estimates of the pose of an object, based on an observed image.

The maindi�erence is that the standardmethods require speci�cationof the feature

correspondences, whi le PMPEdoes not { byconsidering al l possible correspondences.

PMPErequires a starting value for the pose (as do standardmethods of robust pose

estimation that use non-convex objective functions).

As mentioned above, Yui l le, Geiger and B�ultho� [78] discussed computing dis-

parities in a statistical theory of stereo where a marginal i s computed over matches.

Yui l le extends this technique [79] to other domains of vision and neural networks,

among themwinner-take-al l networks, stereo, long-range motion, the travel ing sales-

man problem, deformable template matching, learning, content addressable memo-

ries, andmodels of brain development. Inaddition to computing marginals over dis-

crete �elds, the Gibbs probabi l i ty distribution is used. This faci l i tates continuation-

style optimization methods by variation of the temperature parameter. There are

some simi lari ties betweenthis approachandusing coarse-�ne with the PMPEobjec-



7. 7. RELATEDWORK 121

tive function.

EdelmanandPoggio [24] describe a methodof 3Drecognition that uses a trained

General izedRadial Basis Function network. Their method requires correspondences

to be known during training and recognition. One simi lari ty between their scheme

andPMPEis that both are essential ly arrangements of smooth unimodal functions.

There is a simi lari ty between Posterior Marginal Pose Estimation and Hough

transform(HT) methods. Roughly speaking, HTmethods evaluate parameters by

accumulating votes in a discrete parameter space, based on observed features. (See

the survey paper by Il l ingworthandKittler [44] for a discussion of Houghmethods.)

In a recognition appl ication, as described here, the HTmethodwould evaluate a

discrete pose by counting the number of feature pairings that are exactly consistent

somewhere within the cel l of pose space. As stated, the HTmethod has di�culties

with noisy features. This i s usual ly addressed by counting feature pairings that are

exactly consistent somewhere nearby the cel l in pose space.

The uti l i ty of the HTas a stand-alone method for recognition in the presence of

noise is a topic of some controversy. This i s discussed by Grimson in [34] , pp. 220.

Perhaps this i s due to an unsuitable noise model impl ici t in the HoughTransform.

Posterior Marginal Pose Estimation evaluates a pose by accumulating the loga-

ri thmof posterior marginal probabi l i ty of the pose over image features.

The connectionbetweenHTmethods andparameter evaluationvia the logarithm

of posterior probabi l i tyhas beendescribedbyStephens [67] . Stephens proposes to cal l

the posterior probabi l i ty of parameters given image observations \The Probabi l i stic

Hough Transform". He provided an example of estimating l ine parameters from

image point features whose probabi l i ty densities were described as having uni form

and normal components. He also states that the method has been used to track 3D

objects, referring to his thesis [68] for de�nition of the methodused.
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7.8 Summary

Amethodof evaluating poses inobject recognition, Posterior Marginal Pose Estima-

tion, has been described. The resulting objective functionwas seen to have a simple

formwhen normal feature deviationmodels and l inear projectionmodels are used.

Limited experimental results were shownindicating that ina domainof synthetic

range discontinuityfeatures, the objective functionmayhave aprominent sharppeak

near the correct pose. Some local maxima were also apparent. Another experiment,

inwhichthe features were derived fromvideo images, was described. Connections to

robust estimationandneural networks were examined. Bounds onthe performance of

simpl i�edPMPEestimators were indicated, andrelationto other workwas discussed.



Chapt er 8

Expect at i on { Maxi mi zat i on

Al gor i t hm

The Expectation{ Maximization (EM) algorithmwas introduced in its general form

byDempster, RubinandLaird in1978 [21] . It i s oftenuseful for computing estimates

indomains having two sample spaces, where the events inone are unions over events

in the other. This si tuation holds among the sample spaces of Posterior Marginal

Pose Estimation(PMPE) andMAPModel Matching. Inthe original paper, the wide

general i ty of the EMalgorithmis discussed, along with several previous appearances

in special cases, and convergence results are described.

In this chapter, a speci�c formof the EMalgorithmis described for use with

PMPE. It i s used for hypothesis re�nement in the recognition experiments that are

described inChapter 10. Issues of convergence and implementationare discussed.

8.1 De�nition of EMIteration

In this section a variant of the EMalgorithmis presented for use with Posterior

Marginal Pose Estimation, whichwas describedinChapter 7. The fol lowingmodel ing

assumptions were used. Normal models are used for matched image features, whi le

123
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uni formmodels are usedfor unmatched(background) features. If aprior onthe pose is

avai lable, i t i s normal . The independent correspondence model i s used. Additional ly,

a l inear model i s used for feature projection.

In PMPE, the pose of an object, �, i s estimated by maximizing its posterior

probabi l i ty, given an image.

�̂=argmax
�

p(�j Y) :

Anecessary condition for the maximumis that the gradient of the posterior prob-

abi l i ty with respect to the pose be zero, or equivalently, that the gradient of the

logarithmof the posterior probabi l i ty be zero:

0=r � lnp( �̂j Y) : (8:1)

InSection7.1, Equation7.2 the fol lowingformulawas givenfor the posterior prob-

abi l i tyof the pose of anobject, givenan image. This assumes use of the independent

correspondence model .

p(�j Y) = p(�)

p(Y)

Y
i

p(Y i j �) :

Imposing the condition of Equation 8.1 yields the fol lowing,

0=r �

"
ln

1

p(Y)
+lnp( �̂) +

X
i

lnp(Y i j �̂)
#

or

0=
r�p( �̂)

p( �̂)
+
X
i

r�p(Y i j �̂)
p(Y i j �̂)

: (8:2)

As in Equation 7.3, we may write the feature PDFconditioned on pose in the

fol lowing way,

p(Y i j �) =
X
�i

p(Y i j �i�)p(� i) ;

or, using the speci�c models assumedinSection7.1, as re
ected inEquation7.4, and
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using a l inear projectionmodel ,

p(Y i j �) =
Bi

W1W2 � � � Wv
+
1�B i

m

X
j

G ij
(Yi �M j�) :

The zero gradient condition of Equation 8.2 may nowbe expressed as fol lows,

0=
r�p( �̂)

p( �̂)
+
X
i

1�Bi

m

P
j
r�G ij

(Yi �M j�̂)
Bi

W1W2� � � Wv
+ 1�Bi

m

P
j G ij

(Yi �M j�̂)
:

With a normal pose prior,

p(�) =G  �
(��� 0) ; and r �p(�) =�p(�) �1

�
(��� 0) :

The gradient of the other normal density is

r�G ij
(Yi �M j�) =�G  ij

(Yi �M j�)M
T

j
 

�1
i j
(Yi �M j�) : (8:3)

Returning to the gradient condition, andusing these expressions (negated),

0= �1
�
(�̂�� 0) +

X
i

1�Bi

m

P
j
G ij

(Yi �M j �̂)M
T

j
 
�1
i j
(Yi �M j�̂)

Bi

W1W2� � � Wv
+ 1�Bi

m

P
j
G ij

(Yi �M j�̂)
:

Final ly, the zero gradient conditionmay be expressed compactly as fol lows,

0= �1
�
(�̂�� 0) +

X
i j

Wi jM
T

j
 

�1
i j
(Yi �M j �̂) ; (8:4)

with the fol lowing de�nition:

Wi j=
G ij

(Yi �M j�̂)
Bi

1�Bi

m

W1W2� � � Wv
+
P
j
G ij

(Yi �M j �̂)
: (8:5)

Equation8.4 has the appearance of being a l inear equationfor the pose estimate �̂

that satis�es the zero gradient conditionfor being amaximum. Unfortunately, i t i sn't
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a l inear equation, because W i j (the \weights") are not constants, they are functions

of �̂. To �nd solutions to Equation 8.4, the EMalgorithmiterates the fol lowing two

steps:

� Treating the weights, W i j as constants, solve Equation 8.4 as a l inear equation

for a newpose estimate �̂. This i s referred to as the Mstep.

� Using the most recent pose estimate �̂, re-evaluate the weights, W i j, according

to Equation 8.5. This i s referred to as the Estep.

The Mstep is so named because, in the exposition of the algorithmin [21] , i t

corresponds to a MaximumLikel ihood estimate. As discussed there, the algorithm

is also amenable to use inMAPformulations (l ike this one). Here the Mstep corre-

sponds to aMAPestimate of the pose, giventhat the current estimate of the weights

is correct.

The Estep is so named because calculating the W i j corresponds to taking the

expectationof some randomvariables, giventhe image data, andthat the most recent

pose estimate is correct. These randomvariables have value 1 i f the i' thimage feature

corresponds to the j' th object feature, and 0 otherwise. Thus, after the iteration

converges, the weights provide continuous-valued estimates of the correspondences,

that vary between 0 and 1.

It seems somewhat ironic that, having abandoned the correspondences as being

part of the hypothesis in the formulation of PMPE, a good estimate of themhas

re-appeared as a byproduct of a method for search in pose space. This estimate, the

posterior expectation, i s the minimumvariance estimator.

Being essential ly a local method of non-l inear optimization, the EMalgorithm

needs good starting values in order to converge to the right local maximum. It may

be started on either step. If i t i s started on the Estep, an initial pose estimate is

required. When started on the Mstep, an initial set of weights is needed.

An initial set of weights can be obtained froma partial hypothesis of correspon-
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dences in a simple manner. The weights associated with each set of corresponding

features inthe hypothesis are set to 1, the rest to 0. Indexingmethods are one source

of suchhypotheses. InChapter 10, Angle Pair Indexing is usedto generate candidate

hypotheses. In this scenario, indexing provides initial al ignments, these are re�ned

using the EMalgorithm, then they are veri�edby examining the value of the peak of

the PMPEobjective function that the re�nement step found.

8.2 Convergence

In the original reference [21] , the EMalgorithmwas shownto have goodconvergence

properties under fairlygeneral ci rcumstances. It i s shownthat the l ikel ihoodsequence

produced by the algorithmis monotonic, i . e. , the algorithmnever reduces the value

of the objective function (or in this case, the posterior probabi l i ty) fromone step to

the next. Wu [77] claims that the convergence proof in the original EMreference is


awed, and provides another proof, as wel l as a thorough discussion. It i s possible

that it wi l l wander along a ridge, or become stuck in a saddle point.

In the recognition experiments reported in Chapter 10 the algorithmtypical ly

converges in 10 { 40 iterations.

8.3 Implementation Issues

Some thresholding methods were used speed up the computation of the Eand M

steps.

The weights W i j provide a measure of feature correspondence. As the algorithm

operates, most of the weights have values close to zero, since most pairs of image and

object feature don't al ign wel l for a given pose. In the computation of the Mstep,

most terms were left out of the sum, basedonathresholdforW i j. Some representative

weights froman experiment are displayed inTable 10.1 inChapter 10.

Inthe Estep, most of the workis inevaluatingthe Gaussianfunctions, whichhave
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quadratic forms in them. For the reasonstatedabove, most of these expressions have

values very close to zero. The evaluation of these expressions was made conditional

on a threshold test appl ied to the residuals Y i �M j�. When the (x,y) part of the

residual exceededa certain length, zero was substi tuted for the value of the Gaussian

expression. Tables indexedby image coordinates might provide another e�ective way

of implementing the thresholding here.

The value of the PMPEobjective function is computed as a byproduct of the E

step for l i ttle additional cost.

8.4 RelatedWork

The work of Green [31] and Green and Shapiro [32] that is discussed in Section 7.7

describes use of the EMalgorithmin a theory of laser radar range pro�l ing.

Lipson [50] describes a non-statistical methodfor re�ning al ignments that iterates

solving l inear systems. It matches model features to the nearest image feature under

the current pose hypothesis, whi le the method described here entertains matches to

al l of the image features, weighted by their probabi l i ty. Lipson's methodwas shown

to be e�ective and robust in an implementationthat re�nes al ignments under Linear

Combinationof Views.



Chapt er 9

Angl e Pai r I ndexi ng

9.1 Description of Method

Angle Pair Indexing is a simple method that is designed to reduce the amount of

searchneededin�ndingmatches for image features in2Drecognition. It uses features

having location and orientation.

An invariant property of feature pairs i s used to index a table that is constructed

aheadof time. The propertyusedis the pair of angles betweenthe feature orientations

and the l ine joining the feature's locations. These angles are � 1 and � 2 inFigure 9-1.

The pair of angles i s clearly invariant under translation, rotation, and scal ing in the

plane.

Using orientations as wel l as point locations provides more constraint than point

features. Because of this, indexing may be performed on pairs of simple features,

rather than groups of three or more.

The table is constructed fromthe object features in a pre-processing step. It i s

indexed by the angle pair, and stores the pairs of object features that are consistent

with the value of the angles, within the resolution of the table. The algorithmfor

constructing the table appears below.

Adistance threshold is used to suppress entries for features that are very close.

129
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F1

F2

θ 1

2θ

Figure 9-1: Angles for Indexing

Suchfeatures pairs yieldsloppy initial pose estimates andare poor initial hypotheses

for recognition.

; ; ; Gi ven an ar r ay model -features and a t abl e s i ze , n

; ; ; �l l s i n t he 2 i ndex ar r ay Angle-Pair-Table by s i de- e�ect .

Bui ld-Angle-Table(model -features, n, distance-threshold)

m Length(model -features)

; ; Fi r s t c l ear t he t abl e .

For i  0 Tom

For j  0 To m

Angle-Pai r-Table[ i , j]  ;

; ; Now�l l i n t he t abl e ent r i es .

For i  0 Tom

For j  0 To m

If i 6 =j

f1 model -features[ i ]

f2 model -features[ j]
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If Di stance(f1, f2) > distance-threshold

< q r > Calculate- Indi ces(f1, f2, n)

Angle-Pai r-Table[q, r]  Angle-Pai r-Table[q, r] [<i j >

The fol lowing function is used to calculate the table indices for a pair of features.

Note that the indexing wraps around when the angles are increased by �. This

was done because the features used in the recognition experiments described in this

researchare oftenstraight edge segments, and their orientations are ambiguous by�.

; ; ; Cal cul at e i ndi ces i nt o Angle-Pai r-Table f or a pai r of f eat ur es .

Calculate- Indi ces(f1, f2, n)

�� �

n

i  (b �1

��
cmod n)

j  (b �2

� �
cmod n)

return(<i j >)

The fol lowing algorithmis used at recognition-time to generate a set of pairs of

correspondences fromimage features to object features that have consistent values of

the angle pair invariant. The indexing operation saves the expense of searching for

pairs of object model features that are consistent withpairs of image features. Table

entries fromadjacent cel l s are included among the candidates to accommodate angle

values that are \on the edge" of a cel l boundary.

; ; ; Map over t he pai r s of f eat ur es i n an i mage and gener at e

; ; ; candi dat e pai r s of f eat ur e cor r es pondences

Generate-Candi dates(image-features, n)

candidates  ;

m Length(image-features)
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For i  0 Tom

For j  i +1 to m

<q r > Calculate- Indi ces (image-features[ i ] , image-features[ j] , n)

For �q -1 to 1

For �r -1 to 1

For <k l >2Angle-Pai r-Table[ ((q+�q) modn); ((r+�r) modn)]

candidates  candidates [<<i k><j l >>

Return(candidates)

9.2 Sparsi�cation

In the recognition experiments described belowand in Section 10.1, an additional

technique was used to speed up recognition-time processing, and reduce the size of

the table. As the table was bui l t, a substantial fraction of the entries were left out

of the table. These entries were selected at random. This strategy is based on the

fol lowing observation: For the purpose of recognizing the object, i t i s only necessary

for some feature pair fromthe object tobe bothinthe table andvisible inthe image. If

a reasonable fractionof the object i s visible, a substantial number of feature pairs wi l l

be avai lable as potential partners in a candidate correspondence pair. It i s unl ikely

that the corresponding pairs of object model features wi l l al l have been randomly

el iminatedwhen the table was bui l t, even for fairly large amounts of sparsi�cation.

9.3 RelatedWork

Indexing based on invariant properties of sets of image features has been used by

Lamdan andWolfson, in their work on geometric hashing [49] , and by Clemens and

Jacobs [19] [20] , Jacobs [45] , and Thompson and Mundy [70] . In those cases the
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invariance is with respect to a�ne transformations that have eight parameters. In

this work the invariance is with respect to translation, rotation, and scale in 2D,

where there are four parameters. ThompsonandMundy describe an invariant cal led

ver t ex pai r s . These are based on angles relating to pairs of vertices of 3Dpolyhedra,

andtheir projections into2D. Angle Pair Indexing is somewhat simi lar, but is simpler

{ being designed for 2Dfrom2Drecognition.

Clemens and Jacobs [19] [20] , and Jacobs [45] use grouping mechanisms to select

smal l sets of image features that are l ikely to belong to the same object in the scene.
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Chapt er 10

Recogni t i on Exper i ment s

This chapter describes several recognition experiments that use Posterior Marginal

Pose Estimation with the EMAlgorithm. The �rst i s a complete 2Drecognition

systemthat uses Angle Pair Indexing as the �rst stage. In another experiment, the

PMPEobjective function is evaluated on numerous randomal ignments. Addition-

al ly, the e�ect of occlusions on PMPEare investigated. Final ly, re�nement of 3D

al ignments is demonstrated.

In the fol lowing experiments, image edge curves were arbitrari ly subdivided into

fragments for feature extraction. The recognitionexperiments basedonthese features

showgood performance, but the performance might be improved i f a more stable

subdivision technique were used.

10.1 2DRecognitionExperiments

The experiments described in this section use the EMalgorithmto carry out local

searches in pose space of the PMPEobjective function. This i s used for evaluating

and re�ning al ignments that are generated by Angle Pair Indexing. Acoarse { �ne

approachis used inre�ning the al ignments producedbyAngle Pair Indexing. To this

end, two sets of features are used, coarse features and�ne features.

135
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Figure 10-1: Grayscale Image
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Figure 10-2: Coarse Model and Image Features
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Figure 10-3: Fine Model and Image Features
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The video image used for the recognition experiment appears inFigure 10-1. The

model features were derived fromMean Edge Images, as described in Section 4.4.

The standard deviation of the smoothing that was used in preparing the model and

image edge maps was 3.97 for the coarse features, and1.93 for the �ne features. The

edge curves were brokenarbitrari ly every 20 pixels for the coarse features, and every

10 pixels for the �ne features. Point-radius features were �tted to the edge curve

fragments, as described in Section 5.3. The coarse model and image features appear

inFigure 10-2, the �ne model andimage features appear inFigure 10-3. There are 81

coarse model features, 334 coarse image features, 246 �ne model features, and 1063

�ne image features.

The oriented stationary statistics model of feature 
uctuations was used (this

i s described in Section 3.3). The parameters (statistics) that appear in the PMPE

objective function, the background probabi l i ty and the covariance matrix for the

oriented stationary statistics, were derived frommatches that were done by hand.

These training matches were also used in the empirical study of the goodness of

the normal model for feature 
uctuations discussed in Section 3.2.1, and they are

described there.

10.1.1 GeneratingAlignments

Initial al ignments were generatedusingAngle Pair Indexing (described inChapter 9)

on the coarse features. The angle pair table was constructedwith 80 by 80 cel l s, and

sparsi�cationwas used { 5 percent of the entries were randomly kept. The distance

threshold was set at 50 pixels (the image size is 640 by 480). The resulting table

contained 234 entries. With these values, uni formly generated randomangle pairs

have .0365 probabi l i ty of \hitting" in the table.

Whenthe image feature pairs were indexedintothe table, 20574 candidate feature

correspondence pairs were generated. This i s considerably fewer that the 732 mil l ion

possible pairs of correspondences in this si tuation. Figure 10-4 i l lustrates three of
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the candidate al ignments by superimposing the object in the images at the pose

associatedwith the initial al ignment impl iedby the pairs of feature correspondences.

The indicatedscores are the negative of the PMPEobjective functioncomputedwith

the coarse features.

10.1.2 ScoringIndexer Alignments

The initial al ignments were evaluated in the fol lowing way. The indexing process

produces hypotheses consisting of a pair of correspondences fromimage features to

object features. These pairs of correspondences were converted into an initial weight

matrix for the EMalgorithm. The Mstep of the algorithmwas run, producing a

rough al ignment pose. The pose was then evaluated using the E step of the EM

algorithm, which computes the value of the objective function as a side e�ect (in

addition to a newestimate of the weights). Thus, running one cycle of the EM

algorithm, initial ized by the pair of correspondences, generates a rough al ignment,

and evaluates the PMPEobjective function for that al ignment.

10.1.3 Re�ningIndexer Alignments

This section i l lustrates the method used to re�ne indexer al ignments.

Figure 10-5 shows a closer viewof the best scoring initial al ignment fromAngle

Pair Indexing. The initial al ignment was re�nedbyrunning the EMalgorithmto con-

vergence using the coarse features and statistics. The result of this coarse re�nement

is displayed inFigure 10-6. The coarse re�nement was re�nedfurther by running the

EMalgorithmto convergence with the �ne features and statistics. The result of this

�ne re�nement is shown in Figure 10-7, and over the video image inFigure 10-8.

Ground truth for the pose is avai lable in this experiment, as the true pose is the

nul l pose. The pose before re�nement is

[ :99595;�0:0084747;�0:37902; 5:0048] T
;



10. 1. 2DRECOGNI TI ONEXPERIMENTS 141

Score: -84.9719

Score: -69.1905

Score: -39.7645

Figure 10-4: Poses andScores of Some IndexedHypotheses
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Score: -84.9719

Figure 10-5: Best Al ignment fromIndexer, withCoarse Score

Score: -91.2349

Figure 10-6: Coarse Re�nement, withCoarse Score
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Score: -355.069

Figure 10-7: Fine Re�nement, withFine Score

Figure 10-8: Fine Re�nement withVideo Image
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Figure 10-9: Correspondences withWeight Larger than .5

and after the re�nement it i s

[1:00166; 0:0051108; 0:68621;�1:7817] T
:

The encodingof these poses is describedinSection5.3 (the nul l pose is [1; 0; 0; 0] T . )

The initial pose is in error by about .01 in scale and 5 pixels in position. The �nal

pose errs by about .005 in scale and 1.8 pixels in position. Thus scale accuracy is

improved by a factor of about two, and position accuracy is improved by factor of

about three. Anexperiment showingmore dramatic improvement is describedbelow,

in Section 10.4.1.

In these experiments, less that 15 iterations of the EMalgorithmwere needed for

convergence.

10.1.4 Final EMWeights
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As discussed in Section 8.1, a nice aspect of using the EMalgorithmwith PMPEis

that estimates of feature correspondences are avai lable in the weight matrix. Figure

10-9 displays the correspondences that have weight greater than .5, for the �nal

convergence showninFigure 10-7. Here, the image andmodel features are displayed

as thin curves, and the correspondences between themare shown as heavy l ines

joining the features. Note the strong simi lari ty between these correspondences, and

those that the systemwas trained on, shown in Figure 3-2.

Table 10.1 displays the values of some of the weights. The weights showhave

value greater than .01. There are 299 weights this large among the 413,507 weights.

The 39 weights shownare those belonging to 20 image features.

10.2 Evaluating RandomAlignments

An experiment was performed to test the uti l i ty of PMPEin evaluating randomly

generated al ignments. Correspondences among the coarse features described in Sec-

tion 10.1 having assignments fromtwo image features to two model features were

randomly generated, and evaluated as in Section 10.1.2. 19118 randomal ignments

were generated, of which 1200 had coarse scores better than -30.0 (the negative of

the PMPEobjective function). Among these 1200, one was essential ly correct. The

�rst, second, third, fourth, �fth, and �fteenth best scoring al ignments are shown in

Figure 10-10.

With coarse { �ne re�nement, the best scoring randomal ignment converged to

the same pose as the best re�nement fromthe indexing experiment, showninFigure

10-7, with �ne score -355.069. The next best scoring randomal ignment convergedto

a grossly wrong pose, with �ne score -149.064. This score provides some indication

of the noise level in the �ne PMPEobjective function in pose space.

This test, thoughnot exhaustive, producedno false positives, inthe sense of a bad

al ignment witha coarse score better thanthat of the correct al ignment. Additional ly,
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Image Index Model Index Weight

90 86 0.022738026840027032

90 101 0.014615921646994348

90 102 0.807966693444096
90 103 0.09581539482455806

91 103 0.9633441301926663
92 85 0.24166197059125494

92 103 0.19778274847425015
93 87 0.02784697957543993

93 88 0.37419218245379466

94 87 0.7478667723520142
95 87 0.44030413275215486
96 86 0.6127902576993082

97 85 0.9293665165549775

98 85 0.8621763443868999
99 84 0.9634827438267516

100 5 0.6499527214931725
100 84 0.19705210016850308
101 0 0.011400725934573982

101 67 0.9559675939354566
102 66 0.9194110795990801
102 67 0.0541643593533511
103 64 0.04765362703894284

103 65 0.8454128520499249

103 66 0.05787873660955701
104 63 0.05270908685541295

104 64 0.8854088356653954
104 65 0.014744194821866506

105 62 0.06158503222464117

105 63 0.9139939556525918

106 61 0.09270729594689026
106 62 0.8635739185353283

106 63 0.010447389024937672

107 61 0.9108899984969661
107 62 0.021204649868405194

108 60 0.861831671427887
108 61 0.049220125250993084

109 58 0.018077232316743887

109 59 0.9257311183042934
109 60 0.015434004217119308

Table 10.1: Some EMWeights
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Score:  -71.079 Score: -55.6623

Score: -54.6592 Score: -53.6342

Score: -49.4516

Figure 10-10: RandomAlignments
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the �ne score of the re�nement of the most promising incorrect randomal ignment

was signi�cantly lower than the �ne score of the (correct) re�ned best al ignment.

10.3 Convergence withOcclusion

The convergence behavior under occlusionof the EMalgorithmwithPMPEwas eval -

uatedusing the coarse features described inSection10.1. Images features simulating

varyingamounts of occlusionwere preparedbyshi ftingavaryingportionof the image.

These images, along with results of coarse { �ne re�nement using the EMalgorithm

are shown inFigure 10-11.

The starting value for the pose was the correct (nul l ) pose. The re�nements

converged to good poses in al l cases, demonstrating that the method can converge

fromgood al ignments withmoderate amounts of occlusion.

The �nal �ne score in the most occluded example is lower than the noise level

observed in the experiment of Section 10.2. This indicates that as the amount of

occlusion increases, a point wi l l be reachedwhere the method wi l l fai l to produce a

goodpose having a score above the noise level . In this experiment it happens before

the method fai l s to converge properly.

10.4 3DRecognitionExperiments

10.4.1 Re�ning3D Alignments

This sectiondemonstrates use of the EMalgorithmwithPMPEto re�ne al ignments

in 3Drecognition. The l inear combinationof views method is used to accommodate

a l imited amount of out of plane rotation. Atwo-viewvariant of LCV, described in

Section 5.5, i s used.

Acoarse { �ne approach was used. Coarse PMPE scores were computed by

smoothingthePMPEobjective function, as describedinSection7.3.2. The smoothing



10. 4. 3DRECOGNI TI ONEXPERIMENTS 149

Score:  -338.03 Score:  -326.13

Score: -203.142 Score: -163.979

Score: -136.814

Figure 10-11: Fine Convergences withOcclusion
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Figure 10-12: Grayscale Image

matrix was

DIAG((7:07) 2
; (3:0) 2) :

These numbers are the amounts of additional (arti�cial) variance added for paral lel

andperpendicular deviations, respectively, inthe orientedstationarystatistics model .

The video test image is shown in Figure 10-12. It di�ers fromthe model images

by a signi�cant 3Dtranslation and out of plane rotation. The test image edges are

shown inFigure 10-13.

The object model was derived fromthe twoMeanEdge Images shown in Figure

10-14. These were constructed as described in Section 4.4.

The smoothing used in preparation of the edge maps had 1.93 pixels standard

deviation, and the edge curves were broken arbitrari ly every 10 pixels. Point-radius

features were �tted to the edge curve fragments, as described in Section 5.3, for

purposes of displayandfor computing the orientedstationary statistics, al thoughthe

features usedwithPMPEandthe EMalgorithmwere simplytheXandY coordinates

of the centroids of the curve fragments. Both views of the model features are shown
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Figure 10-13: Image Edges

in Figure 10-15. The l inear combination of views method requires correspondences

among the model views. These were establ i shedbyhand, andare displayedinFigure

10-16.

The relationshipamong the viewpoints in the model images and the test image is

i l lustrated in Figure 10-17. This represents the region of the viewsphere containing

the viewpoints. Note that the test image is not on the l ine joining the two model

views.

The oriented stationary statistics model of feature 
uctuations was used (this i s

describedinSection3.3). As inSection10.1, the parameters (statistics) that appear in

the PMPEobjective function, the backgroundprobabi l i ty and the covariance matrix

for the oriented stationary statistics, were derived frommatches done by hand.

Aset of four correspondences was establ i shed manual ly fromthe image features

to the object features. These correspondences are intended to simulate an al ignment

generated by an indexing system. Indexing systems that are suitable for 3Drecogni -

tionare describedbyClemens andJacobs [19] andJacobs [45] . The roughal ignment

and score were obtained fromthe correspondences byone cycle of the EMalgorithm,
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Figure 10-14: Model MeanEdge Images
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Figure 10-15: Model Features (BothViews)
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Figure 10-16: Model Correspondences

36.6 Test View

Model Views

Figure 10-17: Model andTest Image ViewPoints

Figure 10-18: Initial Al ignment
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Score: -10.8428

Figure 10-19: Coarse Re�nedAl ignment andCoarse Score

Score: -17.2661

Figure 10-20: Fine Re�nedAl ignment andFine Score
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Figure 10-21: Fine Re�nedAl ignment withVideo Image
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as described above in Section 10.1.2. They are displayed in Figure 10-18, where the

four corresponding features appear circled. Acoarse al ignment was then obtained

by running the EMalgorithmto convergence with smoothing, the result appears in

Figure 10-19. This al ignment was re�nedfurther byrunning the EMalgorithmagain,

without smoothing. The resulting al ignment and score are showninFigure 10-20. In

these �gures, the image features are shown as curve fragments for clari ty, although

only the point locations were used in the experiment. The image features used are a

subset taken froma rectangular region of the larger image.

Figure 10-21 displays the �nal al ignment superimposed over the original video

image. Most of the model features have al ignedwel l . The discrepancy in the forward

wheel wel l may be due to inaccuracies in the LCVmodel ing process, perhaps in the

feature correspondences. This �gure demonstrates goodresults for al igning a smooth

3Dobject havingsixdegrees of freedomof motion, without the use privi legedfeatures.

10.4.2 Re�ningPerturbedPoses

This sectiondescribes anadditional demonstrationof local searchinpose space using

PMPEin 3D.

The pose corresponding to the re�ned al ignment displayed in Figure 10-20 was

perturbed by adding a displacement by 4.0 pixels in Y. This pose was then re�ned

by running the EMalgorithmto convergence. The perturbed al ignment and the

resulting coarse { �ne re�nement is shown in Figure 10-22. The result i s very close

to the pose prior to perturbation.

Asimi lar experiment was carried out with a larger perturbation, 12.0 pixels in

Y. The results of this appear in Figure 10-23. This time the convergence is to

a clearly wrong al ignment. The model has been stretched to a thin con�guration,

and mismatched to the image. The resulting �ne score is lower than that of the

good al ignment in Figure 10-21. This i l lustrates a potential drawback of the l inear

combination of views method. In addition to correct views, LCVcan synthesize
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Figure 10-22: Mi ldly PerturbedAl ignment andResulting Re�nement
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Score: -15.4685

Figure 10-23: PerturbedAl ignment andResulting Re�nement withFine Score
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Score: -11.3126

Figure 10-24: BadAl ignment andResulting Re�nement with Fine Score
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views where the model i s stretched. LCV, as used here, has 8 parameters, rather

than the 6 of rigidmotion. The two extra parameters determine the stretching part

of the transformation. This problemcan be addressed by checking, or enforcing, a

quadratic constraint on the parameters. This i s discussed in [71] .

Another simi lar experiment was performed starting with a very bad al ignment.

The results appear in Figure 10-24. The algorithmwas able to bring some features

into al ignment, but the score remained low.
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Chapt er 11

Concl us i ons

Visual object recognition { �nding a known object in scenes, where the object i s

smooth, i s viewedunder varying i l lumination conditions, has six degrees of freedom

of position, i s subject to occlusions and appears against varying backgrounds { sti l l

presents problems. In this thesis, progress has been made by applying methods of

statistical inference to recognition. Ever-present uncertainties are accommodated

by statistical characterizations of the recognition problem: MAPModel Matching

(MMM) and Posterior Marginal Pose Estimation (PMPE). MMMwas shown to be

e�ective for searchingamong feature correspondences andPMPEwas showne�ective

for searches inpose space. The issue of acquiring sal ient object features under varying

i l luminationwas addressed by using MeanEdge Images.

The al ignment approach, which leverages fast indexing methods of hypothesis

generation, i s uti l i zed. Angle Pair Indexing is introduced as an e�cient 2Dindexing

method that does not depend on extended or special features that can be hard to

detect. An extension to the al ignment approach that may be summarized as al i gn

re�ne veri f y i s advocated. The EMalgorithmis employedfor re�ning the estimate of

the object' s pose whi le simultaneously identi fying and incorporating the constraints

of al l supporting image features.

Areas for future research include the fol lowing:
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� Indexingwas not usedinthe 3Drecognitionexperiments. Identi fying a suitable

mechanismfor this purpose that meshes wel l withthe type of features usedhere,

wouldbe an improvement.

� Too fewviews were used in model construction. Ful ly automating the model

acquisi tionprocess, as described inChapter 4, andacquiring models frommore

views wouldhelp.

� Extending the formulations of recognitiontohandle multiple objects i s straight-

forward, but identi fying suitable search strategies i s an important and non-

trivial task.

� Incorporating non-l inear models of projection into the formulationwouldal low

robust performance in domains having serious perspective distortions.

� Using image-l ike tables couldspeedthe evaluationof the PMPEobjective func-

tion.

� Investigating the use of PMPEin object tracking or in other active vision do-

mains might prove fruitful .

More work in these areas wi l l lead to practical and robust object recognition

systems.
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Not at i on

Symbol Meani ng De�ni ng Sect i on

Y=fY 1; Y2; : : : ; Yng the image 2.1

n number of image features

Yi 2R v image feature 2.1

M=fM 1;M2; : : : ;Mmg the object model 2.1

m number of object features

Mj model feature, frequentlyM j 2R v�z 2.1

? the background feature 2.1

�=f� 1;�2; : : : ;�ng correspondences 2.1

�i 2M[f?g assignment of image feature i 2.1

�2R z pose of object 5.1

P(M j; �) projection into image 5.1

G (x) Gaussian probabi l i ty density 3.2 6.1

 i j covariance matrix of feature pair 3.3

 ̂ stationary feature covariance matrix 3.3

 � covariance matrix of pose prior 6.1

B; B i backgroundprobabi l i ty 2.2 2.4

Wk extent of image feature dimension k 3.1

�i j; � correspondence reward 6.1

x̂ estimate of x

p(� ) probabi l i ty (see below)

Probabi l i ty notation is somewhat abused in this work, in the interest of brevity.

p(x) maystandfor either a probabi l i tymass functionof a discrete variable x, or for a

probabi l i tydensity function of a continuous variable x. The meaning wi l l be clear in
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context basedonthe type of the variable argument. Additional ly, mixedprobabi l i ties

are describedwith the same notation. For example p(�; �j Y) stands for the mixed

probabi l i ty function that is a probabi l i ty mass function of � (the discrete variable

describing correspondences), anda probabi l i tydensity functionof �(the pose vector)

{ both conditioned onY (the image feature coordinates).
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