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Abstract

Alignment is a prevalent approach for recognizing three-dimensional objects in two-dimensional

images. Current implementations handle errors that are inherent in images in ad hoc ways. This

thesis shows that these errors can propagate and magnify through the alignment computations,

such that the ad hoc approaches may not work. In addition, a technique is given for tightly

bounding the propagated error, which can be used to make the recognition robust while still

being e�cient. Further, the error bounds can be used to formally compute the likelihood that

a set of hypothesized matches between model and image features is correct.

The technique for bounding the propagated error makes use of a new solution to a fundamen-

tal problem in computer recognition, namely, the solution for 3D pose from three corresponding

points under weak-perspective projection. The new solution is intended to provide a fast means

of computing the error bounds. In deriving the new solution, this thesis gives a geometrical

interpretation to the problem, from which the situations are inferred where the solution does

not exist and is unstable.

Previous analyses of alignment have indicated that the approach is sensitive to false posi-

tives, even in moderately-cluttered scenes. But these analyses applied only to point features,

whereas almost all alignment systems rely on extended features, such as line segments, for

verifying the presence of a model in the image. This thesis derives a new formula for the

\selectivity" of a line feature. Then, using the technique for computing error bounds, it is

demonstrated experimentally that the use of line segments signi�cantly reduces the expected

false positive rate. The extent of the improvement is that an alignment system that correctly

handles propagated error is expected to remain reliable even in substantially-cluttered scenes.

Thesis Supervisor: W. Eric L. Grimson

Title: Associate Professor, Department of Electrial Engineering and Computer Science



2

Acknowledgments

I would like to thank my advisor Eric Grimson for the direction he gave me, which

was essential for completing this thesis. In addition, I have bene�ted immensely from

conversations with my friends at the AI Lab, particularly Ronen Basri, Todd Cass, David

Chanen, David Jacobs, Jose Luis Robles, Brian Subirana, Kah Kay Sung, Paul Viola,

Sandy Wells, and Steve White. I am especially grateful to Jose Luis Robles, for providing

great company to me innumerablymany days and nights, and to my two o�cemates, Kah

Kay Sung and Sandy Wells, for always being so helpful and so nice. I want to mention my

good friends Ronen Basri and Ibrahim Hajj-ahmad, for the many memorable adventures

we have had during my time at MIT. Finally, I thank my parents, Ronald and Arlene

Alter, for the endless support and love they have given me my whole life, and I thank

my brothers Robin and Roy, just for being the great brothers they are.

This report describes research done at the Arti�cial Intelligence Laboratory if the Mas-

sachusetts Institute of Technology, and was funded in part by a National Defense Science

and Engineering Graduate Fellowship, and in part by the Defense Advanced Research

Projects Agency of the Department of Defense under Army contract number DACA76-

85-C-0010 and under O�ce of Naval Research contract N00014-85-K-0124.



Contents

1 Introduction 7

1.1 Problem De�nition : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 11

1.2 Representation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 11

1.3 Approach : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 13

1.4 Background : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 15

1.5 Overview : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 19

2 3D Pose from 3 Points using Weak-Perspective 21

2.1 The Perspective Case : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 23

2.2 Summary of 3D Pose and Direct Alignment : : : : : : : : : : : : : : : : 25

2.3 Discussion of 3D Pose : : : : : : : : : : : : : : : : : : : : : : : : : : : : 27

2.4 Existence and Uniqueness : : : : : : : : : : : : : : : : : : : : : : : : : : 28

2.4.1 The true solution for scale : : : : : : : : : : : : : : : : : : : : : : 32

2.4.2 The inverted solution for scale : : : : : : : : : : : : : : : : : : : : 33

2.5 Special Con�gurations of the Points : : : : : : : : : : : : : : : : : : : : : 35

2.5.1 Model triangle is parallel to the image plane : : : : : : : : : : : : 35

2.5.2 Model triangle is perpendicular to the image plane : : : : : : : : 35

2.5.3 Model triangle is a line : : : : : : : : : : : : : : : : : : : : : : : : 36

2.6 Stability : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 37

3



4 CONTENTS

2.7 Derivation of Direct Alignment : : : : : : : : : : : : : : : : : : : : : : : 38

2.8 Review of Previous Solutions : : : : : : : : : : : : : : : : : : : : : : : : : 41

2.9 Presentation of Three Previous Solutions : : : : : : : : : : : : : : : : : : 43

2.9.1 Overview : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 44

2.9.2 Ullman's method : : : : : : : : : : : : : : : : : : : : : : : : : : : 45

2.9.3 Huttenlocher and Ullman's method : : : : : : : : : : : : : : : : : 47

2.9.4 Grimson, Huttenlocher, and Alter's method : : : : : : : : : : : : 50

2.9.5 Summary of the three computations : : : : : : : : : : : : : : : : : 53

2.10 Conclusion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 55

3 Uncertainty in Point Features 57

3.1 Bounded Error Model : : : : : : : : : : : : : : : : : : : : : : : : : : : : 58

3.2 Uncertainty Circles for Bounding Uncertainty Regions : : : : : : : : : : : 58

3.3 Cases Where Errors Are Greatest : : : : : : : : : : : : : : : : : : : : : : 63

3.4 Computing Uncertainty Circles : : : : : : : : : : : : : : : : : : : : : : : 68

3.5 Expected Selectivity of Point Features : : : : : : : : : : : : : : : : : : : 72

4 Uncertainty in Line Features 75

4.1 Line Uncertainty Regions : : : : : : : : : : : : : : : : : : : : : : : : : : : 75

4.2 Selectivity of Line Features : : : : : : : : : : : : : : : : : : : : : : : : : : 76

4.2.1 Non-overlapping uncertainty circles : : : : : : : : : : : : : : : : : 76

4.2.2 Overlapping uncertainty circles : : : : : : : : : : : : : : : : : : : 82

4.2.3 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 85

4.3 Expected Selectivities of Line Features : : : : : : : : : : : : : : : : : : : 86

5 Sensitivity to False Positives 89

5.1 Limits on Scene Clutter : : : : : : : : : : : : : : : : : : : : : : : : : : : 90



CONTENTS 5

5.2 Accepting a Partial Match : : : : : : : : : : : : : : : : : : : : : : : : : : 90

5.3 Conclusion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 91

6 Likelihood of a Hypothesis 93

6.1 Formula for the Likelihood : : : : : : : : : : : : : : : : : : : : : : : : : : 94

6.2 Modi�ed Formula for the Likelihood : : : : : : : : : : : : : : : : : : : : 96

6.3 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 98

6.4 Precomputing the Likelihoods : : : : : : : : : : : : : : : : : : : : : : : : 99

6.5 Discussion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 100

7 Conclusion 101

8 Future Work 103

A Rigid Transform between 3 Corresponding 3D Points 105

B Solving for the Scale Factor 107

B.1 Biquadratic for the Scale Factor : : : : : : : : : : : : : : : : : : : : : : : 107

B.2 Two Solutions for Scale : : : : : : : : : : : : : : : : : : : : : : : : : : : : 108

B.3 One Solution for Scale : : : : : : : : : : : : : : : : : : : : : : : : : : : : 109

B.4 No Solutions for Scale : : : : : : : : : : : : : : : : : : : : : : : : : : : : 110

B.5 Simplifying b2 � ac : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 110

C Generating Random Image and Model Points 113

C.1 Random Image Triples : : : : : : : : : : : : : : : : : : : : : : : : : : : : 113

C.2 Random Model Triples : : : : : : : : : : : : : : : : : : : : : : : : : : : : 114

C.3 Random Models : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 114

D Computing Areas of the True Uncertainty Regions 115



6 CONTENTS

E Areas and Volumes of Line Uncertainty Regions 117

E.1 True Area of a Line Uncertainty Region : : : : : : : : : : : : : : : : : : 117

E.2 Integrating Areas to Volumes : : : : : : : : : : : : : : : : : : : : : : : : 120

F Recurrence Relation for the Likelihood of a Hypothesis 121



Chapter 1

Introduction

Computer vision is devoted to describing the contents of images obtained by any process

that involves vision. Such processes include sensing intensity images with CCD video

cameras and building depth maps using laser range-�nders. Object recognition is a

sub�eld of computer vision whose goal is to �nd known objects in images, such as chairs,

machine parts, and people. Identifying an object as being one of a class, like \chair,"

turns out to be very hard. This is largely because it is di�cult to describe precisely what

is a chair, since chairs come in many forms and are identi�ed partly by their shape and

partly by their function. Even though it may be possible to describe a chair in terms

of qualitative properties like \has a back," such descriptions are not precise enough for

computer recognition.

To circumvent this problem, researchers attempt to recognize speci�c objects and,

particularly, objects that are rigid or have rigid parts, like chairs and machine parts;

Figs. 1-1 and 1-2 show some example objects. Additionally, researchers assume they are

given precise models for the objects they wish to recognize. These models are expected

to contain geometric information about the features on the objects, such as corners and

edges. The information should include how the features are connected together and

how they appear when seen from di�erent viewpoints. Recognizing objects from such

geometrically-de�nedmodels is known as \model-based" object recognition. Model-based

recognition has been the paradigm for most object recognition research, and will be for

this work as well.

Given a set of object models, the task is to determine which of the modeled objects

are in the image, if any, and where they are. If there are not many models, recognition

7
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Figure 1-1: Objects that are rigid or have rigid parts
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Figure 1-2: Objects that are rigid or have rigid parts
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can proceed by looking for the objects one at a time. Even if there is only one object to

recognize as being present or not, there are several factors that make doing so di�cult.

The �rst is that an object appears di�erently depending on what viewpoint it is seen from,

and every appearance of the object corresponding to some viewpoint must be recognized

as an instance of the object. In addition, the features in images corresponding to the

model contain error, due to artifacts such as inaccuracies in the imaging process, the

e�ects of illumination, and ambiguities in feature locations. For instance, in Fig. 1-1

the poor focus and lighting make it di�cult to see the 3D shape of the bookend, and

the telephone edges that surround the keypad are several pixels wide. Furthermore, the

object of interest may be partially occluded, or may be di�cult to discern because other

objects or the background look similar to it. For example, in Fig. 1-2 the telephone is

partially occluded by the clamp and the 
ashlight, and, in addition, the back edges of

the phone blend in with the white background.

One popular approach to model-based recognition that attempts to account for these

problems is the \alignment" method, as described by Huttenlocher and Ullman [Hut-

tenlocher88] [Huttenlocher90]. The general idea of alignment is to break the recognition

process into two stages. The �rst stage uses limited information to hypothesize view-

points from where an object might have been seen. For each viewpoint, the second stage

computes how the model would appear in the image if seen from that viewpoint, and

then examines the image to verify if the corresponding hypothesis is correct.

Brie
y, the alignment approach uses the following mechanisms to address the prob-

lems mentioned above. To handle the fact that any view of the object could appear

in the image, the method tries all possible minimal sets of matches between model and

image features for hypotheses, where a minimal set contains just enough matches to

compute the viewpoint from which the model was seen. To account for error in the

image features, veri�cation is performed by checking that the predicted appearance of

the model matches the image only approximately. The problem of occlusion is handled

by generating hypotheses using features from the model and the image that are robust

to partial occlusions, such as corner points and pieces of line segments. To deal with

spurious features that arise from other objects and from the background, a bottom-up

process is assumed that groups together image features that are likely to come from the

same object.

There are two major problems with these mechanisms, however. First, the types of

features used for generating hypotheses are easily confused with similar features from

other objects, from shadows, and from the background. For example, any un-modeled
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object in Fig. 1-1 or Fig. 1-2 can contribute spurious line segments, as can the wood-

grain on the table in Fig. 1-1 and the highlights on the pencil sharpener in Fig. 1-2.

This may place an excessive burden the grouping process, or alternately, may lead to a

combinatorial explosion in the number of minimal sets of matches to be veri�ed.

The second problem is with the method used to account for error in the locations of

image features. The problem is that the error can propagate and magnify through the

computations of the viewpoint and the appearance of the model from the viewpoint. As

a result, the predicted appearance of the model may not be approximately the same as

the image, but instead can be very di�erent.

1.1 Problem De�nition

In light of the mentioned problems, the objective of this thesis is to incorporate error

analysis into alignment-style recognition and use the error analysis to show how to build

an alignment system that is robust and e�cient. As suggested above, the system is

intended to recognize a restricted but wide class of 3D objects, speci�cally, rigid objects

with sharp edges. The objects are represented by a set of geometric models, which are

described in the next section. For simplicity, the system works with a small set of objects,

so they can be dealt with sequentially. As input, the system is given a 2D intensity image,

which may contain instances of the modeled objects. The goal is �nd all instances of the

modeled objects in the image, or else state that none are there.

1.2 Representation

For models, the system expects to be given three data sets for each object: (1) a list

of distinguished points (corners, maxima, minima, and zeros of curvature), (2) a list of

extended edge features (line segments and curve segments), and (3) a complete edge

description. The �rst data set is for generating hypotheses, the second for checking them

quickly, and the third for verifying them carefully.

The third data set, the complete edge description, should consist of a small number

of point-by-point, viewer-centered, 3D edge maps. The edge maps can be obtained

automatically from edge-based stereo or motion, or by a laser range-�nder with a 3D edge

detector. In addition to shape information, the edge maps should include information
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about surface markings, which show up in intensity images. At this stage, there should

be little thresholding on the magnitudes and lengths of edges. The edge descriptions shall

be dense and noisy, but should contain enough useful information so that the object is

easily identi�ed.

About �ve views of each object probably are su�cient, in order to make sure at least

one view covers every part of the object. More views will be necessary if an object has

concavities that can only be seen from a few viewpoints; still, in this case small images

should be su�cient to represent these aspects, and so not much additional storage is

required. In order to predict the appearance of the object from a novel viewpoint, it may

be necessary to combine information from di�erent views. A simple way to do this is to

project the entire contents of all the nearby views. The main problem with this is that

the generated view may contain edges that should not be visible. On the other hand, if

the edge maps contain su�cient 3D information for eliminating most hidden edges, then

this problem will be minor.

The second data set, the extended edges, can be obtained by �tting relatively long

straight lines and curves to the 3D edge maps. The purpose of this stage is to �nd model

features that individually are useful for identifying the object. Compared to the density

of a complete edge map, there will be very few of this type of feature.

For the extended edges, the representation is expected to be object-centered, which

means that features shared by di�erent views must be combined. Also, the viewpoints

from which the features were seen should be stored with the features, so that self-occlusion

can be largely accounted for. Combining features from di�erent views may not be easy

unless the views are well-registered. Even if they are not, it is possible to do this step by

hand, since model-building is o�-line and there are not many extended features.

As a note on smoothly curved objects, the silhouettes should not be used in obtaining

the extended features, although they may give strong edges. The reason is that the

silhouettes of smooth objects are not stable, that is, they can change as the object rotates.

The extended features, on the other hand, are object-centered and may be seen from

widely di�erent viewpoints.

Finally, the features for �rst data set, distinguished points, can be extracted from

the extended edges, either by intersecting lines or by �nding extrema and in
ection

points on curves. There is a separate data set containing point features because they are

straightforward to match between a model and an image. In contrast, extended features

are likely to be broken up by the feature detector or be partially occluded. The particular

point features used here (corners, extrema, and in
ection points) were chosen because
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they are stable, i.e., can be identi�ed, under projection over a wide range of views (Note

double meaning \stable" here and above.)

1.3 Approach

The algorithm for recognition that I propose is as follows, and is an extension of Hutten-

locher and Ullman's:

1. Form groups of image and model features, and extract distinguished points from

these groups.

2. Until there are no remaining pairs of triples, hypothesize a correspondence between

three grouped model points and three grouped image points.

(a) Compute the 3D pose of the model from the three-point correspondence.

(b) Predict the image positions of the extended features of the model using the

3D pose.

(c) Given the error in the image points, compute a region of uncertainty for each

predicted model feature that bounds the range of locations where the feature

could actually lie.

(d) Assign the three-point hypothesis a likelihood based on the uncertainty re-

gions, using a Bayesian inference mechanism.

(e) If the likelihood is high, select the edge maps of the model that were imaged

from nearby viewpoints. Then perform a careful veri�cation by transforming

and projecting all of them into the image, which requires merging edges that

are the same and eliminating edges that are hidden. Using uncertainty prop-

agation as a guide, count how much of the projected model contour occurs in

the image.

(f) If the hypothesis veri�es, remove all the distinguished image points that have

been accounted for by the model from the current set of distinguished image

points.

3. Return the veri�ed hypotheses.
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In this algorithm, triples of feature points are used to form hypotheses and compute

poses. When such features are obtained from an image, they often come with local

orientation information, which this algorithm does not make use of. For example, a

feature point that is actually a corner might come with the line segments that were

intersected to �nd the corner, or a feature point that is actually a maximum or minimum

point on a curve segment, might come with an estimate of the tangent vector at that

maximum or minimum. This information could in theory be used to further constrain

the pose, or to do indexing (which is discussed below), so that all possible corresponding

model features would not have to be examined. Although these steps would be worthwhile

if properly done, it should be noted that local point features, even with orientation

information, are not very distinguishing. Indexing with such features would provide a

useful preprocessing step, but the brunt of the recognition problem would still remain;

so this is what the above algorithm concentrates on.

For the careful-veri�cation stage (step 2e), the edge maps that were imaged from the

nearest viewpoints are used to predict the appearance of the model in the image. For

most edges, this is done by transforming and projecting the edge map point-by-point.

But for edges on the silhouettes of smooth objects, this does not work, since the bounding

contour changes even for small rotations. For these situations, Basri and Ullman have

suggested a method that can be used to bring the silhouettes into the image when the

change of viewpoint is not too large [Basri88].

There are two basic di�erences between the algorithm listed above and Huttenlocher

and Ullman's. First, Huttenlocher and Ullman's method has no formal notion of uncer-

tainty in the feature data, whereas here handling uncertainty formally is an integral part

of the algorithm. This is necessary because a small perturbation in a few point features

can lead to a very di�erent appearance of the model in the image. Although this situation

could be avoided by choosing points that are far apart on the object, current grouping

systems tend to locate points that are nearby. Consequently, sets of nearby points arise

often and would cause a system that deals with error in an ad hoc way to break.

The second di�erence from Huttenlocher and Ullman's method is the use of Bayesian

inference to throw away hypotheses that are unlikely. Huttenlocher and Ullman used a

heuristical approach to prune hypotheses quickly. In contrast, the method here will be

derived from �rst principles, using knowledge of how uncertainty propagates. As a result,

the method here is expected to be considerably more reliable.



1.4. BACKGROUND 15

1.4 Background

The algorithm described in the preceding section for recognizing three-dimensional ob-

jects grew out of a number of approaches attempted in the past. Perhaps the best way

to argue for its e�cacy, then, is to present the development that led to its selection.

To begin, let us consider the choice of features for generating hypotheses. Early

attempts used relatively large features to obtain an initial match between a model and

an image. Examples of such features include convex polygons [Roberts65], projections

of generalized cones [Brooks81] [Biederman85], and moments of inertia of closed regions

[Cyganski85] [Reeves89]. The advantages of large features are that there are only a

few of them in an image and they have few matches in the model. There is, however, a

fundamental problem with these types of features: They are sensitive to partial occlusions

and, as a result, cannot be extracted reliably from images.

To avoid this problem, it is common for recognition systems to extract small, local

features, such as points and line segments, and then to group these together to get sets

of features from the same object [Clark79] [Bolles82] [Bolles83] [Lowe85] [Thompson87]

[Horaud87] [Linainmaa88] [Lamdan88a] [Huttenlocher90]. Although many systems look

only for small groups of features, some of them try to �nd large ones. Finding large groups

is a distinct problem and has received much attention [Lowe85] [Jacobs87] [Mohan88]

[Horaud90] [Jacobs92]. As with large features, the advantage of large groups of features

is that there are few of them in the image and the model. Ideally, a system would gather

large groups of features, use them to index into a model database, and pull out exactly

those models that contain features that can project to the features in that group. This

approach could lead to very fast recognition, and has been examined for point features

[Jacobs92].

Despite the potential gains from grouping and indexing with large groups, realistically

the chances are that groups will contain spurious features and be missing correct features,

and partial occlusions will make this problem much worse. In order to minimize the

chance of having spurious features in groups, most systems look for groups that are

small, though large enough to determine the pose of the model with respect to the data.

For example, these groups can be pairs of corners [Thompson87], three-line junctions

[Horaud87], triples of points [Linainmaa88] [Lamdan88a] [Huttenlocher90], and triples of

lines [Clark79] [Lowe85].

Even if only small groups are available, indexing is needed to rapidly handle small to

medium-sized libraries of objects. Given small groups, a model index table can be built
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such that all model groups which could produce a given image group can be immediately

extracted. For groups containing triples of points, any model point triple can produce

any image point triple under projection [Fischler81] [Huttenlocher90], and so indexing

cannot help. For image groups with corners and junctions, the corresponding model

groups will be somewhat constrained, but not substantially, since even these groups are

not very distinguishing.

Still, it is possible to use the idea of Geometric Hashing to gain more power from

indexing [Lamdan88b]. To apply Geometric Hashing to 3D recognition from 2D images,

�rst project each model orthographically from all di�erent points on a viewing sphere

to reduce the problem to identifying 
at models. Then, for each projection, take every

triple of model points and, with respect to each triple, store coordinates of all the other

model points in an index table, along with the model triple, the viewpoint, and the

model. At recognition time, take every triple of image points and, with respect to each

triple, use the coordinates of every other image point to index into the table and pull

out all the model triples with those coordinates. To make the process more reliable, the

look-up table should be built with points drawn from groups in the model and indexed

with points drawn from large groups in the image.

Although performing indexing this way may often provide considerable �ltering of hy-

potheses, it often will not, since, as mentioned, point features are not very distinguishing.

The problem is that small sets of point features are easily confused with randomly-placed

points when there is a signi�cant amount of clutter in the scene, which means that \false

positives" are likely. ([Grimson92b] gives an analysis of the likelihood of false positives

in Geometric Hashing for 
at objects.) The chance of false positives is further increased

by taking all views of the model and, for each view, using all triples. As a consequence

of false positive problems, an indexing system should be backed up with a system that

tries all possible correspondences of model and image groups to �nd an initial match.

It may seem like a lot of work to try all possible corresponding model and image

groups. For point features matched between a 3D model and a 2D image, for instance,

the minimal size of a group is three [Fischler81] [Huttenlocher90]; so using points means

trying all pairs of model and image triples, which, for mmodel points and s image points,

is an O(m3s3) process. Nevertheless, consider again instead the possibility of using large

groups. Recall that the trouble with large groups is they are not reliable enough to do

indexing. Instead of using the groups for indexing, we can select triples of points from

them, as was suggested for Geometric Hashing. The idea is that an unreliable group

from the correct object should have at least three correct points. This would reduce the
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number of triples to try to a manageable level, because m would be the average number

of points in a model group and s would be the average number of points in an image

group. As a result, although the asymptotic complexity of O(m3s3) is considerable, with
grouping we can expect the number of possibilities in practice to be small enough that it

will be the constant time for checking a single match that decides whether the method

is feasible. More generally, this is the argument that for real recognition problems, the

constant factors often make the di�erence in whether an algorithm is e�cient or not

[Grimson90a].

For the reasons mentioned, bootstrapping recognition by considering all pairs of mini-

mal sets of features is very popular. Since a minimal set of matched features is insu�cient

to identify an object, the minimal sets are used to �nd larger sets. Most techniques that

do this can be divided into two broad classes, constrained search and transform cluster-

ing. Constrained search starts from each minimal hypothesis and repeatedly uses the

current set of matches to constrain the search for an additional match, until a large set

of matches is found [Clark79] [Brooks81] [Bolles82] [Goad83] [Grimson84] [Lowe85] [Ay-

ache86] [Horaud87]. Transform clustering, on the other hand, uses every correspondence

between a minimal set of model and image features individually to compute a model-

to-image transformation, and then counts the number of times each transformation is

repeated [Ballard81] [Turney85] [Thompson87] [Linainmaa88] [Cass90].

It is informative to review the motivations behind these two classes of recognition

techniques. The idea of constrained search is clear, namely, to use a set of known matches

to �nd more matches. Due to uncertainty in the positions of the features, however,

this process can be di�cult, since for each unmatched model feature there typically are

several image features to which it can match. To handle this reliably, many systems use

an extensive backtracking search [Bolles82] [Goad83] [Grimson84] [Horaud87].

The transform clustering approach avoids extensive search by noting that each cor-

rect match will independently vote for the correct transformation, so we can just let

all the matches vote and then take the transformation with the most votes. Usually,

this method is implemented by dividing transformation space into buckets, having each

match increment a counter in a bucket, and searching the space for the buckets with the

highest counts. In this form, the method is known as the \generalized Hough transform"

[Ballard81].

As a recognition technique, the generalized Hough transform has several di�culties:

(1) Unless the buckets are very small, the bucketing can lead to false peaks (false positives)

in transformation space, since buckets combine together di�erent transforms. (2) A more
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serious di�culty is that for 3D recognition from 2D images, a transformation has six

degrees of freedom, which implies transformation space is six-dimensional; such a space

is impractical to store and to search. For this reason, these systems do not perform

a full Hough transform, but instead use separate spaces for subsets of the parameters.

The e�ect of using separate spaces is to increase again the likelihood of false positives.

(3) An additional problem is that the local features that typically are used to compute

transformations between 2D images and 3D models are prone to being confused with

spurious features in the image, which also can make the method prone to false positives.

(4) Furthermore, it is di�cult to handle uncertainty in the image features used to compute

the transformation. Grimson et al. provide a way of obtaining bounds on the uncertainty

in transformation space [Grimson92a], but such overestimates further increase the false

positive probability. (See [Grimson90b] for an analysis of the false positive rates involved

with applying the generalized Hough transform.)

For the reasons mentioned, a more reasonable use of the Hough transform is as a coarse

�lter to produce sets of possibly corresponding model and image features [Grimson87].

Such a stage could help considerably when looking for matches between the model and

an entire image, but it may, however, not be useful if e�ective grouping is available.

The preceding techniques do a lot work after they are given an initial match in order to

�nd a large set of matches. Intuitively, this seems peculiar, since, up to some uncertainty

in the data, the initial match determines the pose of the model. It would seem, then,

that the preceding techniques are just pinning down the model pose more precisely. As

mentioned above, the reason this process is di�cult is that each predicted model feature

potentially matches a number of image features. Nevertheless, to resolve this ambiguity it

may not be necessary to resort to constrained search or transform clustering. Instead, the

ambiguity could be resolved for all model features simultaneously, by physically moving

them in unison around the image. This can be done by moving the matched image

features around their error regions, while continually updating the image locations of

the predicted model features. The predicted model features are moved until a position

is found that consistently matches most of them to within the error regions of image

features. This method is equivalent to the currently-used techniques, in the sense that it

will �nd the same set of consistent matches. At the same time, it should avoid the search

through correspondence space or transformation space that they incur.

Another way to improve on earlier recognition methods is to make use of the fact

that once the pose of the object is known, in theory the object's entire appearance in

the image can be predicted. That is, complete edge maps could be used, instead of just
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a sparse set of features. This observation is the basis of Ullman's idea of using pictorial

descriptions to recognize objects [Ullman89], and is one of the main ideas behind the

recognition system built by Huttenlocher and Ullman [Huttenlocher88] [Huttenlocher90].

Although considerably more accurate recognition can be achieved if complete edge

maps are used for veri�cation, the expense in time of such an extensive veri�cation would

be prohibitive if it had to be done for all hypotheses. Instead, it is possible to �rst use the

set of sparse model features to �lter out a large percentage of the hypotheses. Importantly,

we can do this without resolving for each predicted model feature to which of its nearby

image features it corresponds. Speci�cally, we can compute a Bayesian estimate of the

probability that a hypothesis is correct given the situation in the image (see Chapter 6).

Then, once most of the hypotheses have been �ltered, careful veri�cation using complete

edge maps can be performed.

In sum, a viable approach to recognition begins by locating large groups of local

features in the image and the model. Then hypotheses can be formed by selecting

triples of points from the groups and matching them. These matches are �rst checked

quickly using Bayesian inference to decide how likely they are. Then they are veri�ed

carefully using detailed, viewer-centered edge maps. Also, this careful veri�cation should

be augmented to account for uncertainty in the data by trying various projections of the

model.

1.5 Overview

Section 1.3 gave an algorithm for performing alignment-based recognition. The major

modules of the pro�ered alignment algorithm are (1) grouping, (2) 3D pose computation

and alignment of model features, (3) computing the likelihood of a hypothesis, and (4)

careful and accurate veri�cation.

This thesis focuses on the second and third modules. In the alignment algorithm,

these modules constitute steps 2a-2d. The reason the grouping stage is not studied

is that, as noted earlier, it is a distinct problem which is receiving much attention in

the literature. By showing how to build a reliable recognition system independent of

grouping, we may be able to infer how much is expected from a grouping stage in terms

of reliable groups.

The fourth module is also a distinct problem, because it uses a di�erent representation

than the second and third modules use. In particular, the second and third modules use
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sparse, object-centered features, such as points and line segments, to generate hypotheses,

to compute poses, and to assign likelihoods. In contrast, the fourth module uses detailed,

viewer-centered edge maps to perform careful veri�cation. In fact, the �rst three modules

comprise an alignment system by themselves, since for many objects a sparse set of

extended features is su�cient to identify them.

Chapter 2 gives a new method for computing 3D pose from three corresponding

points and aligning a model to an image. The method is intended to be faster than

earlier approaches, which is important because the pose computation is repeated many

times. In addition, the solution is proved to be correct and is explained geometrically.

Furthermore, earlier solutions to the problem are presented and compared. In addition,

the stabilities of both the new and earlier solutions are analyzed.

Chapter 3 shows how to compute uncertainty regions for point features, and their

selectivities. Computing the uncertainty regions quickly depends critically on the fast

3D pose computation of Chapter 2. Chapter 4 extends the analysis to line segments.

Chapter 5 discusses how to use the expected selectivities for deriving formal thresholds

for veri�cation and for deciding how much scene clutter is acceptable. Chapter 6 derives

a measure for ranking the hypotheses, using the selectivity formulas of Chapters 3 and 4.

Lastly, Chapter 7 is the conclusion, and Chapter 8 mentions future work.



Chapter 2

3D Pose from 3 Points using

Weak-Perspective

This chapter gives a new method for performing steps 2a and 2b of the alignment algo-

rithm (Section 1.3). Speci�cally, this chapter shows how to compute the 3D pose of a

model from three corresponding model and image points (step 2a), and how to use the

pose solution to compute the image position of any unmatched model point. For step

2b, the image positions of the extended model features can be computed using points,

like the endpoints of a line segment. In addition, the next chapter shows that the so-

lution for the image position of an unmatched model point is also useful for step 2c of

the alignment algorithm, in which the uncertainty regions for the predicted model fea-

tures are computed. More generally, the pose solution is useful for many approaches to

object recognition, such as constrained search and transform clustering (pose clustering)

(Section 1.4). This is because these approaches frequently use correspondences between

minimal sets of model and image features to compute poses of the model.

For computing poses of 3D objects from 2D images, a model of projection must

be selected, and typically either perspective or \weak-perspective" projection is chosen.

Weak-perspective projection is an orthographic projection plus a scaling, which serves

to approximate perspective projection by assuming that all points on a 3D object are at

roughly the same distance from the camera. The justi�cation for using weak-perspective

is that in many cases it approximates perspective closely, in particular if the size of

the model in depth is small compared to the depth of the model centroid. For both

perspective and weak-perspective, the minimal number of points needed to compute a

21
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model pose up to a �nite number of solutions is three [Fischler81] [Huttenlocher90]. For

point features, then, the problem is to determine the pose of three points in space given

three corresponding image points. When perspective projection is the imaging model,

the problem is known as the \perspective three-point problem" [Fischler81]. When weak-

perspective is used, I shall call the problem the \weak-perspective three-point problem."

Although perspective (central) projection is a more accurate model, numerous re-

searchers have used weak-perspective projection instead [Roberts65] [Kanade83] [Cygan-

ski85] [CyganskiOrr88] [Thompson87] [Ullman86] [Ullman89] [Lamdan88a] [Lamdan88b]

[Huttenlocher88] [Basri88] [Huttenlocher90] [Ullman91] [Jacobs91] [Grimson92a] [Grim-

son92b]. The reason is that there are some advantages to using weak-perspective instead

of perspective. In particular, computations involving weak-perspective often are less com-

plicated. In addition, the weak-perspective math model is conceptually simpler, since it

uses orthographic instead of perspective projection. Another advantage is that we do

not need to know the camera focal length or center point. Further, the e�ect on ob-

ject recognition of errors in the image points has been studied only for weak-perspective

projection [Costa90] [Jacobs91] [Lamdan91] [Rigoutsos91] [Grimson92a].

This chapter provides a new approach to recovering the pose for weak-perspective

projection, which leads to a solution (method) that is intuitively simpler than earlier

methods [Kanade83] [Huttenlocher87] [Cyganski88] [Huttenlocher90] [Grimson92b]. The

approach here is motivated geometrically, whereas earlier methods typically are based

on algebraic constraints derived from the rigidity of 3D rotations. Additionally, the

geometric approach makes it easier to view what happens for special con�gurations of

the points (Section 2.5).

A review of previous methods along with a uni�ed presentation of their solutions is

given in Sections 2.8 and 2.9. Huttenlocher and Ullman [Huttenlocher90] proved that the

pose solution exists and is unique, which also is done here (Section 2.4). The solution

here most resembles Ullman's [Ullman86] [Huttenlocher87], in that both end up having

to solve the same biquadratic equation, although each derives the biquadratic di�erently.

Unlike Ullman's solution, this chapter resolves which of the two non-equivalent solutions

to the biquadratic is correct. Also, it explains graphically why the solutions arise and to

what geometry each corresponds (Section 2.4).

In addition to providing a geomtric interpretation, the solution in this chapter leads

to direct expressions for the three matched model points in camera-centered coordinates

as well as an expression for the image position of any additional, unmatched model point

(Section 2.7). In contrast, earlier methods all require the intermediate computation of
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a model-to-image transformation. Speci�cally, earlier solutions compute an initial trans-

formation that brings the model into image coordinates, and then compute an additional

transformation to align the matched model points to their corresponding image points.

This is meaningful because many recognition systems (including the alignment algorithm

in Section 1.3) calculate the 3D pose solution many times while searching for the correct

pose of the model [Fischler81] [Thompson87] [Huttenlocher87] [Linnainmaa88] [Hutten-

locher90] [Jacobs91] [Ullman91]. Consequently, avoiding the intermediate calculation of

the transformation could cause such systems to run faster.

2.1 The Perspective Case

There is an intrinsic geometry that underlies the perspective three-point problem; it

is shown in Fig. 2-1. In the �gure, the three model points, ~m0, ~m1, and ~m2, are being

perspectively projected onto three image points,~i0,~i1, and~i2, via lines through the center

of projection (center point), ~p. The task is to recover ~m0, ~m1, and ~m2. The essential

information is contained in the side lengths and angles of the surrounding tetrahedron.

As pictured in Fig. 2-1, I will work in camera-centered coordinates with the center

point at the origin and the line of sight along the z axis. Looking at the essential

parameters, the distances R01, R02, and R12 come from the original, untransformed model

points. Also, the angles �01, �02, and �12 can be computed from the positions of the image

points, the focal length, and the center point. To see this, let f equal the focal length,

and let the image points ~i0, ~i1, ~i2 be extended as follows: (x; y)! (x; y; f). Then

cos �01 = bi0 � bi1; cos �02 = bi0 � bi2; cos �12 = bi1 � bi2; (2:1)

where in general bv denotes the unit vector in the direction of ~v. The problem is to

determine a, b, and c given R01, R02, R12, cos �01, cos �02, and cos �12. From the picture,

we see by the law of cosines that

a2 + b2 � 2ab cos �01 = R2
01 (2.2)

a2 + c2 � 2ac cos �02 = R2
02 (2.3)

b2 + c2 � 2bc cos �12 = R2
12 (2.4)

Over time, there have been many solutions to the problem, all of which start with the

above equations. The solutions di�er in how they manipulate the equations when solving
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Figure 2-1: Model points ~m0, ~m1, and ~m2 undergoing perspective projection to

produce image points ~i0, ~i1, and ~i2. a, b, and c are distances from the center point,

~p, to the model points.
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for the unknowns. Recently, Haralick et al. reviewed the various solutions and examined

their stabilities [Haralick91].

Given a, b, and c, we easily can compute the 3D locations of the model points:

~m0 = abi0 ~m1 = bbi1 ~m2 = cbi2: (2:5)

If a 3D rigid transformation is desired, it can be determined from the original 3D model

points and the 3D camera-centered model points just computed. A simple method for

doing so is given in Appendix A; for a least-squares solution, see [Horn86].

2.2 Summary of 3D Pose and Direct Alignment

Similar to the perspective case, there is an intrinsic geometry underlying the weak-

perspective three-point problem, shown in Fig. 2-2. The picture shows the three model

points being projected orthographically onto the plane that contains ~m0 and is parallel

to the image plane, and then shows them being scaled down into the image. In addition,

the picture shows the model points �rst being scaled down and then projected onto the

image plane. In each case, the projection is represented by a solid with right angles as

shown. The smaller solid is a scaled-down version of the larger. The relevant information

consists of the side lengths of the solids and the scale factor.

For reference, this section summarizes how to compute the locations of the three

matched model points and the image location of any additional, unmatched model point.

The expressions will be discussed in Section 2.3 and derived in Secs. 2.4 and 2.7. Let the

distances between the model points be (R01; R02; R12), and the corresponding distances

between the image points be (d01; d02; d12). Also let

a = (R01 +R02 +R12)(�R01 +R02 +R12)(R01 �R02 +R12)(R01 +R02 �R12)

b = d201(�R
2
01 +R2

02 +R2
12) + d202(R

2
01 �R2

02 +R2
12) + d212(R

2
01 +R2

02 �R2
12)

= R2
01(�d

2
01 + d202 + d212) +R2

02(d
2
01 � d202 + d212) +R2

12(d
2
01 + d202 � d212)

c = (d01 + d02 + d12)(�d01 + d02 + d12)(d01 � d02 + d12)(d01 + d02 � d12)

� =

(
1 if d201 + d202 � d212 � s2(R2

01 +R2
02 �R2

12);
�1 otherwise.

Then if a 6= 0 (otherwise see Section 2.5.3), the unknown parameters of the geometry in
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Figure 2-2: Model points ~m0, ~m1, and ~m2 undergoing orthographic projection plus scale

to produce image points ~i0, ~i1, and ~i2.

Fig. 2-2 are

s =

s
b+

p
b2 � ac

a
(2.6)

(h1; h2) = �
�q

(sR01)2 � d201; �
q
(sR02)2 � d202

�
(2.7)

(H1;H2) =
1

s
(h1; h2) (2.8)

(In practice, jb2 � acj should be used for the inner radicand in Equation 2.6, because

numerical roundo� error can cause it to become negative.)
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Given image points~i0 = (x0; y0),~i1 = (x1; y1), and~i2 = (x2; y2), the pose solution can

be used to compute the 3D locations of the model points in camera-centered coordinates:

~m0 =
1

s
(x0; y0; w) ~m1 =

1

s
(x1; y1; h1 + w) ~m2 =

1

s
(x2; y2; h2 + w); (2:9)

where w is an unknown o�set in a direction normal to the image plane. It is worth noting

that if the 3D rigid transform that brings the model into camera-centered coordinates

is desired, it can be computed from these three camera-centered model points and the

original three model points. The unknown o�set w drops out when computing the rota-

tion and remains only in the z coordinate of the translation, which cannot be recovered.

As mentioned in Section 2.1, a simple method for computing the transform is given in

Appendix A, and a least-squares solution is given in [Horn86].

Next, I give an expression for the image location of a fourth model point. Originally,

the models points are in some arbitrary model coordinate frame. Also, the image points

are in a camera-centered coordinate frame in which the image serves as the x-y plane.

Denote the original, untransformed model points by ~pi, to distinguish them from the

camera-centered model points ~mi shown in Fig. 2-2. Using ~p0, ~p1, and ~p2, solve the

following vector equation for the \extended a�ne coordinates," (�; �; 
), of ~p3:

~p3 = �(~p1 � ~p0) + �(~p2 � ~p0) + 
(~p1 � ~p0)� (~p2 � ~p0) + ~p0 (2:10)

Let x01 = x1 � x0, y01 = y1 � y0, x02 = x2 � x0, and y02 = y2 � y0. Then the image

location of the transformed and projected ~p3 is

(�x01 + �x02 + 
(y01H2 � y02H1) + x0; �y01 + �y02 + 
(�x01H2 + x02H1) + y0): (2:11)

2.3 Discussion of 3D Pose

Section 2.4 will show the following results, in addition to deriving the 3D pose solution

given in the last section. The pose solution has a two-way ambiguity unless h1 and h2
are zero (Equation 2.7). The ambiguity corresponds to a re
ection about a plane parallel

to the image plane. When h1 = h2 = 0, the model triangle (the triangle de�ned by the

three model points) is parallel to the image triangle (the triangle de�ned by the three

image points). As a note, a and c measure sixteen times the squares of the areas of

the model and image triangles, respectively. Further, the solution fails when the model
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Figure 2-3: Orthographic projection plus scale of a model triangle into an image.

triangle degenerates to a line, in which case a = 0; in fact, this is the only instance in

which a solution may not exist (Section 2.5.3). Note that no such restriction is placed on

the image triangle; so the image points may be collinear. Note also that no restriction

is placed on the shape of the triangles, although the triangles in Fig. 2-2 are acute. For

illustration, Fig. 2-3 right shows a picture for when the model triangle is acute and the

image triangle is not, along with the smaller solid from Fig. 2-2.

Next, notice that all that is pertinent to recovering the 3D pose of the model are the

distances between the model and image points, not their locations. Previous solutions

have used the actual locations of the points to compute the pose, after �rst applying a

rigid transformation to put the three model points in the image plane [Huttenlocher87]

[Huttenlocher90] [Grimson92a].

In terms of the ordering of the points, the symmetry in Equations 2.6-2.6 shows that

the scale factor is the same, independent of the ordering. Previous methods that are based

on the coordinates of the points after some initial transformations make this symmetry

unclear. For the altitudes H1 and H2 (or h1 and h2), we can see from Fig. 2-2 how the

di�erent orderings are related: In Fig. 2-2 the solution is based at ~m0, and the altitudes

are H1 for ~m1, H2 for ~m2, and 0 for ~m0. For a solution based at ~m1, the altitudes become

0 for ~m1, H2 � H1 for ~m2, and �H1 for ~m0. For a solution based at ~m2, the altitudes

become H1 �H2 for ~m1, 0 for ~m2, and �H2 for ~m0.

2.4 Existence and Uniqueness

This section derives the 3D pose solution and shows that the solution exists for all sets of

model and image points except when the model points are collinear, and that the solution
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is always unique. In deriving the 3D pose solution, I start with the basic geometry for the

weak-perspective three-point problem, shown in Fig. 2-3. There are three right triangles

in each solid, from which three constraints can be generated:

h21 + d201 = (sR01)
2 (2.12)

h22 + d202 = (sR02)
2 (2.13)

(h1 � h2)
2 + d212 = (sR12)

2 (2.14)

The distances R01, R02, R12, d01, d02, d12 and the scale factor s are all positive, but the

altitudes h1, h2 along withH1,H2 are signed. Since h1 and h2 are signed, having \h1�h2"
in the third equation is an arbitrary choice over \h1 + h2"; it was chosen because, when

h1 and h2 are positive, it directly corresponds to the pictures in Fig. 2-3.

Multiplying the third equation by �1 and adding all three gives

2h1h2 = s2(R2
01 +R2

02 �R2
12)� (d201 + d202 � d212): (2:15)

Squaring and using the �rst two equations again to eliminate h21 and h
2
2, we have

4(s2R2
01 � d201)(s

2R2
02 � d202) =

�
s2(R2

01 +R2
02 �R2

12)� (d201 + d202 � d212)
�2
; (2:16)

which, after some manipulation, leads to a biquadratic in s (for details see Appendix B.1):

as4 � 2bs2 + c = 0; (2:17)

where

a = 4R2
01R

2
02 � (R2

01 +R2
02 �R2

12)
2

= (R01 +R02 +R12)(�R01 +R02 +R12)(R01 �R02 +R12)(R01 +R02 �R12)

b = 2R2
01d

2
02 + 2R2

02d
2
01 � (R2

01 +R2
02 �R2

12)(d
2
01 + d202 � d212)

= d201(�R
2
01 +R2

02 +R2
12) + d202(R

2
01 �R2

02 +R2
12) + d212(R

2
01 +R2

02 �R2
12)

= R2
01(�d

2
01 + d202 + d212) +R2

02(d
2
01 � d202 + d212) +R2

12(d
2
01 + d202 � d212)

c = 4d201d
2
02 � (d201 + d202 � d212)

2

= (d01 + d02 + d12)(�d01 + d02 + d12)(d01 � d02 + d12)(d01 + d02 � d12)

In Fig. 2-2, let � denote the angle between ~m1� ~m0 and ~m2� ~m0, and let  be the angle
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between~i1 �~i0 and ~i2 �~i0. Notice by the law of cosines that

a = 4R2
01R

2
02 � (2R01R02 cos �)

2 = 4(R01R02 sin �)
2 (2.18)

b = 2R2
01d

2
02 + 2R2

02d
2
01 � (2R01R02 cos �)(2d01d02 cos )

= 2(R2
01d

2
02 +R2

02d
2
01 � 2R01R02d01d02 cos � cos ) (2.19)

c = 4d201d
2
02 � (2d01d02 cos )

2 = 4(d01d02 sin )
2 (2.20)

Further, 1
2
R01R02 sin � equals the area of the model triangle, so that a measures sixteen

times the square of the area of the model triangle. Analogously, c measures sixteen times

the square of the area of the image triangle.

The biquadratic in Equation 2.17 is equivalent to the one originally derived by Ullman.

But Ullman made no attempt to interpret or decide among its solutions, which will be

done here. We are interested only in positive, real solutions for s, the scale factor. In

general, the positive solutions of the biquadratic are given by

s =

s
b�

p
b2 � ac

a
(2:21)

Depending on the radicands, there will be zero, one, or two real solutions. Particularly,

we are interested in whether each number of solutions can arise, and, if so, to what the

solutions correspond geometrically.

In what follows, I assume that the model triangle is not degenerate, that is, not simply

a line or a point. This situation is the only time the solution is not guaranteed to exist

(see Section 2.5.3). Note that this assumption implies that a 6= 0 and � 6= 0; �.

To begin, let us determine the signs of a, b, and c. From Equations 2.18 and 2.20,

clearly a > 0 and c � 0. From Equation 2.19, it is straightforward to see that b > 0,

since

b = 2(R2
01d

2
02 +R2

02d
2
01 � 2R01R02d01d02 cos � cos )

> 2(R2
01d

2
02 +R2

02d
2
01 � 2R01R02d01d02); since cos � < 1; cos � 1

= 2(R01d02 �R02d01)
2 � 0

Via some algebra (given in Appendix B.5), it can be shown that

b2 � ac = 4(R01d02)
4
�
t2 � 2 cos(�+  )t+ 1

� �
t2 � 2 cos(��  )t+ 1

�
; (2:22)
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where t = R02d01
R01d02

; which leads to b2� ac � 0 (see Appendix B.4). From this fact and that

a > 0, b > 0, and c � 0, we can derive that there are in general two solutions for s with

a single special case when b2 � ac = 0, which can be seen as follows:

b2 � ac � 0 =) b�
p
b2 � ac � 0; since b > 0 and ac � 0

=)
b�

p
b2 � ac

a
� 0; since a > 0

Hence s =
q

b�
p
b2�ac
a

; which gives one or two solutions for the biquadratic, depending

on whether b2 � ac is equal to zero or is positive.

Next I show that of the two solutions for the scale, exactly one of them is valid, that

is, corresponds to an orthographic projection of the model points onto the image points.

Furthermore, the other solution arises from inverting the model and image distances in

Fig 2-2. In addition, there being one solution for scale corresponds to the special case in

which the model triangle is parallel to the image plane. The following proposition will

be used to establish these claims.

Proposition 1: Let

s1 =

s
b�

p
b2 � ac

a
s2 =

s
b+

p
b2 � ac

a
: (2:23)

Then

s1 �
d01

R01

;
d02

R02

� s2: (2:24)

Proof: s1 and s2 are solutions to the biquadratic in Equation 2.17. Since a > 0,

the quadratic function in s2 on the left-hand side of Equation 2.17 is concave up and,

consequently, is negative exactly in the interval between the zeroes s21 and s
2
2. Further,

by substitution it can be seen that this function takes on negative values for s2 =
�
d01
R01

�2
and s2 =

�
d01
R01

�2
(see Appendix B.2). Since the scale factors and the distances are non-

negative, this immediately gives that d01
R01

and d02
R02

lie between s1 and s2.
2
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2.4.1 The true solution for scale

Here it is shown that exactly one of the two solutions for scale can satisfy the geometry

shown in Fig. 2-2, and it is always the same one. If the two solutions are the same, then

both solutions can satisfy the geometry (this case is discussed in Section 2.5.1). As will

be seen, the valid solution is

s = s2 =

s
b+

p
b2 � ac

a
: (2:25)

Note that proving this statement establishes the existence and uniqueness of the pose

solution.

In Fig. 2-3, (sR01)
2 � d201 = h21 � 0 and (sR02)

2 � d202 = h22 � 0, which implies that

any solution s satis�es d01
R01

� s and d02
R02

� s: Consequently, Proposition 1 implies that s2
is the only possible solution.

The question remains whether s2 is itself a solution. The fact that it satis�es the

biquadratic is not su�cient since the squaring used to obtain Equation 2.16 from Equa-

tion 2.15 may not be reversible. Yet we do know s2 satis�es Equation 2.16, because the

steps from Equation 2.16 to Equation 2.21 are reversible. Consequently, Equation 2.15

will be satis�ed if the sign of h2 relative to h1 is chosen accordingly. Let � be the sign of

h2 when the sign of h1 is 1, and �� be h2's sign when h1's sign is �1. Then unless the

right-hand side of this equation is 0, Equation 2.15 is satis�ed by

� =

(
1 if d201 + d202 � d212 < s2(R2

01 +R2
02 �R2

12);

�1 if d201 + d202 � d212 > s2(R2
01 +R2

02 �R2
12):

If on the other hand s2(R2
12 �R2

01 �R2
02) = d212 � d201 � d202, then Equation 2.15 implies

h1 or h2 is 0, so that the sign of h2 relative to h1 is arbitrary.

Notice that the collective sign of h1 and h2 is still free, and so there is a two-way

ambiguity in the pairs (h1; h2) and (H1;H2). As can be seen in Fig. 2-2, the ambiguity

geometrically corresponds to a 
ip of the plane containing the space points ~m0, ~m1, and

~m2. The 
ip is about a plane in space that is parallel to the image plane, but which

plane it is cannot be determined since the problem gives no information about o�sets of

the model in the z direction. Due to the re
ection, for planar objects the two solutions

are equivalent, in that they give the same image points when projected. On the other

hand, for non-planar objects the two solutions project to two di�erent sets of points.
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There is a special case, as mentioned above, when the sign of h2 is arbitrary relative

to the sign of h1. In this case, the right-hand side of Equation 2.15 is zero, and this

implies that h1 or h2 is zero also. Looking at Fig. 2-2, geometrically what is occurring

is that one of the sides of the model triangle that emanates from ~m0 lies parallel to the

image plane, so that the re
ective ambiguity is obtained by freely changing the sign of

the non-zero altitude.

2.4.2 The inverted solution for scale

Of the two solutions for scale that satisfy the biquadratic, we know that s2 corresponds
to the geometry in Fig. 2-2, but what about s1? Using a similar argument to that used

to prove s2 is a solution for the weak-perspective geometry, we can infer a geometric

interpretation for s1. Consider, then, s = s1. The interpretation I will derive satis�es

the equations,

H2
1 +R2

01 = (rd01)
2 (2.26)

H2
2 +R2

02 = (rd02)
2 (2.27)

(H1 �H2)
2 +R2

12 = (rd12)
2; (2.28)

where r = 1
s
. Observe that r = 1

s1
and s2 have similar forms (compare to Equation 2.25):

r =

s
a

b�
p
b2 � ac

=

s
b+

p
b2 � ac

c
: (2:29)

To begin the derivation, Proposition 1 gives that d201�(sR01)
2 � 0 and d202�(sR02)

2 �
0, which implies we can set h21 = d201� (sR01)

2 and h22 = d202� (sR02)
2. Dividing through

by s2 gives Equations 2.26 and 2.27. Since s1 satis�es Equation 2.16 (for the same reason

s2 did), we can substitute into Equation 2.16 with h21 and h22 to obtain (h1 � h2)
2 =

d212�s
2R2

12; where the sign of h2 relative to h1 is 1 if d
2
01+d

2
02�d

2
12 � s2(R2

01+R
2
02�R

2
12),

and �1 otherwise. Dividing through by s2 gives Equation 2.28, and so the derivation is

completed.

Geometrically, Equation 2.26 forms a right triangle with sides H1 and R01, and hy-

potenuse rd01. Analogously, Equations 2.27 and 2.28 imply right triangles as well. The

interpretation is displayed in Fig. 2-4. Another way to see what is occurring geometrically

is to note that the roles of the model and image distances from Equations 2.12-2.14 are
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RR0101

R12R12

02  R02  R

m2

m0m0

mm11

H2

H1

01 rd

12 rd
02 rd

Figure 2-4: Geometrically interpreting the inverted solution for scale

RR0101
R12R12

02  R02  R m2m0m0

mm11
H2

H1

02
01

12

 rd

 rd

 rd

Figure 2-5: Geometrically interpreting the inverted solution for scale

inverted in Equations 2.26-2.28. In e�ect, what is happening is that instead of scaling

down the model triangle and projecting it orthographically onto the image triangle, the

image triangle is being scaled up and projected orthographically onto the model triangle,

where orthographically means projected along rays that are perpendicular to the model

triangle. This means we can rotate the solid in Fig. 2-4 so that the three model points

are in the image plane, and, as shown in Fig. 2-5, obtain for the inverted solution a

weak-perspective geometry that is analogous to the true geometry.
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2.5 Special Con�gurations of the Points

2.5.1 Model triangle is parallel to the image plane

The two solutions for the scale factor are the same when b2� ac = 0, and here I demon-

strate that geometrically this corresponds to the plane containing the three model points

being parallel to the image plane. Before proving this, let us establish the existence of

the solution for scale in this special case of b2 � ac = 0. Looking at Equation 2.21,

b2 � ac = 0 =) b�
p
b2 � ac = b =) s =

s
b

a
(2:30)

is a solution to the biquadratic since a > 0 and b > 0.

Using Equation 2.22, it can be shown that b2 � ac = 0 exactly when � = � or

� = � + � and d01
R01

= d02
R02

(see Appendix B.3). From this result and Equations 2.18

and 2.20,

s =

s
b

a
=

vuutp
c

p
a

=

vuut jd01d02 sin �j
jR01R02 sin j

=
d01

R01

=
d02

R02

(2:31)

=) h1 =
q
(sR01)2 � d201 = 0; h2 =

q
(sR02)2 � d202 = 0:

Thus b2 � ac = 0 only if the model triangle is parallel to the image plane. Conversely, if

the model triangle is parallel to the image plane, it must be that � =  . Further, in this

case h1 = h2 = 0, so that s = d01
R01

= d02
R02
; which implies that b2 � ac = 0.

Since the two solutions are the same, we know that s1 = s2 =
1
r
. Notice in Fig. 2-3 left

and Fig. 2-4 that the geometric interpretations for the two solutions for scale collapse to

the same solution when h1 = h2 = H1 = H2 = 0 and s = 1
r
. As a result, when there is

one solution for scale, there is also one solution for (h1; h2) and (H1;H2), albeit (0; 0).

2.5.2 Model triangle is perpendicular to the image plane

The situation where the model triangle is perpendicular to the image plane is of interest

since the projection is a line. Note, however, that the solution given earlier makes no

exception for this case as long as the model triangle is not degenerate. As for what
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d01

i0i0 i 1i 1

s m2

01sR
sR

01sR
sR

s m2

mm11s

m0m0s,

mm11s

02

02

Figure 2-6: Special case where model triangle is a line. The repeated labels correspond

to two di�erent solutions for the position of the model that leave sm1 projecting onto i1.
For both solutions sm2 projects onto the same image point.

happens in this case, since the image triangle is a line, we know  = 0 or  = �=) c =
0 =) Equation 2.21 becomes

s =

s
b�

p
b2

a
=

s
2b

a
; 0: (2:32)

From Section 2.4, of the two solutions for scale, the true one is
q

2b
a
and the inverted one

is 0.

To see why the inverted solution is zero, recall that the solution can be viewed as

scaling and projecting the image triangle onto the model triangle, using for scale r = 1
s
,

which in this case does not exist. Since the image triangle is a line, graphically this

amounts to trying to scale a line so that it can project as a triangle, which is not possible.

2.5.3 Model triangle is a line

This is the one case where the solution for the scale fails, and it fails because a, which is

a measure of the area of the model triangle, is zero. Despite this fact, we can determine

when a solution exists. First, we know that the image triangle must be a line as well. To
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see if this condition is enough, consider looking for a 3D rotation and scale that leaves

sm1 orthographically projecting onto i1 as in Fig. 2-6. Observe that every such rotation

and scale leaves sm2 projecting onto the same point in the image. This means that for a

solution to exist, it must be that d01
R01

= d02
R02

: Even when the image triangle is a line, this

in general is not true. When it is true, there is an in�nity of solutions corresponding to

every scaled rotation that leaves sm1 projecting onto i1.

Another way to look at this situation is to notice that the model triangle being a line

when using the true solution is analogous to the image triangle being a line when using

the inverted solution. From Section 2.5.2, the scale factor for the inverted solution does

not exist unless a = 0, which supports that in this case the scale factor does not exist

unless c = 0.

2.6 Stability

This section points out two situations to be careful of when using the pose solution.

The �rst is when the model points are nearly collinear, because the solution is near a

singularity (Section 2.5.3).

The second situation is when the model triangle is parallel to the image plane. Since

the pose solution is unique for any pair of model and image triangles, for each of the

three image points there is always some direction in which it can move such that its

corresponding model point undergoes 3D rotation without scale (see Fig. 2-7 left). In

general, when a model point is rotating in space around a line in the image plane, a

movement by its corresponding image point by an amount �x causes the altitude of the

model point to change by an amount �h (see Fig. 2-7 right), according to

x2 + h2 = (x��x)2 + (h+�h)2 (2:33)

Expanding gives �h2 + 2h�h� 2x�x+�x2 = 0; which we can solve for �h:

�h = �h�
p
h2 + 2x�x��x2 (2:34)

When �x is small and h = 0, we have �h = �
p
2x�x : Thus, depending on

p
2x, a

small change in x could lead to a large change in h, which may cause instability. Note

that this instability is inherent in the problem, and so care should be taken when using

any solution for 3D pose.
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i0i0 m0m0s, ii mms,1 1

ii mms,2 2

x

x
x∆

h

h ∆h+

Figure 2-7: Unstable situation. Left: Looking straight down at the image. If ~i2 moves

along the perpendicular to the line between~i0 and~i1 while the other points remain �xed,

then s~m2 will rotate in space around that line to follow~i2. Right: Looking from the side.

One of the model points is rotating in space around a line in the image plane.

2.7 Derivation of Direct Alignment

To compute the position in the image of a fourth model point, I �rst use the weak-

perspective pose solution to compute its 3D position in camera-centered coordinates. I

then project the camera-centered model point under weak-perspective and obtain the

image position without having to calculate a model-to-image transformation. Let the

image points be ~i0 = (x0; y0), ~i1 = (x1; y1), and ~i2 = (x2; y2). Given s, h1, h2, we can

invert the projection to get the three model points:

~m0 =
1

s
(x0; y0; w) ~m1 =

1

s
(x1; y1; h1 + w) ~m2 =

1

s
(x2; y2; h2 + w); (2:35)

where w is an unknown o�set in a direction normal to the image plane.

Given three noncollinear 2D points, ~q0, ~q1, and ~q2, a fourth 2D point ~q3 can be

uniquely represented by its a�ne coordinates [Graustein30], (�, �), which are given by

the equation ~q3 = �(~q1 � ~q0) + �(~q2 � ~q0) + ~q0: Given three noncollinear 3D points, ~p0,
~p1, and ~p2, we can uniquely represent any other 3D point ~p3 in terms of what I shall call

its \extended a�ne coordinates," (�; �; 
):

~p3 = �(~p1 � ~p0) + �(~p2 � ~p0) + 
(~p1 � ~p0)� (~p2 � ~p0) + ~p0 (2:36)

Let (�; �; 
) be the extended a�ne coordinates of the fourth model point in terms of
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the matched three, which I assume are noncollinear. Let x01 = x1 � x0, y01 = y1 � y0,
x02 = x2 � x0, and y02 = y2 � y0. Then, using the three camera-centered model points

such that ~p0 = ~m0, ~p1 = ~m1, and ~p2 = ~m2,

~p1 � ~p0 =
1

s
(x01; y01; h1) (2.37)

~p2 � ~p0 =
1

s
(x02; y02; h2) (2.38)

(~p1 � ~p0)� (~p2 � ~p0) =
1

s2
(y01h2 � y02h1; x02h1 � x01h2; x01y02 � x02y01) : (2.39)

Next, substitute Equations 2.37-2.39 into Equation 2.36 to get the 3D location of the

fourth point:

~m3 =
1

s
�(x01; y01; h1) +

1

s
�(x02; y02; h2)

+

1

s2
(y01h2 � y02h1;�x01h2 + x02h1; x01y02 � x02y01) +

1

s
(x0; y0; w)

=
1

s
(�x01 + �x02+ 


y01h2 � y02h1

s
+ x0;

�y01 + �y02 + 

�x01h2 + x02h1

s
+ y0;

�h1 + �h2 + 

x01y02 � x02y01

s
+ w) (2.40)

Let � represent an orthogonal projection along the z axis. To project, multiply by the

scale factor s and drop the z coordinate:

�(s ~m3) = (�x01 + �x02+ 
(y01H2 � y02H1) + x0;

�y01 + �y02 + 
(�x01H2 + x02H1) + y0) (2.41)

Notice that the unknown o�set w has dropped out. This expression computes the image

position of ~p3 from its extended a�ne coordinates, from the image points, and from H1

and H2, the altitudes in the weak-perspective geometry. It should be kept in mind that

the altitudes H1 and H2 depend on the speci�c imaging geometry; that is, they depend

on the pose of the model.

Equation 2.35 gives the three matched model points in camara-centered coordinates

without having to compute a rigid 3D transformation. This should reduce the cost of
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computing the camera-centered locations of these points, which will speed-up recognition

systems to the extent this computation is important. Further advantages of the direct

method are that it is more intuitive because it is more directly connected to the geometry,

and it may be simpler to use.

It may be worthwhile to observe that Equation 2.41, the expression for the fourth

point, can be rewritten as a weighted sum of the three image points:

�(s ~m3) = (�x01 + �x02+ 
(y01H2 � y02H1) + x0;

�y01 + �y02 + 
(�x01H2 + x02H1) + y0)

= (�x1 + 
H2y1; �y1 � 
H2x1)� (�x0 + 
H2y0; �y0 � 
H2x0) +

(�x2 � 
H1y2; �y2+ 
H1x2)� (�x0 � 
H1y0; �y0 + 
H1x0) +

(x0; y0)

=

"
1 � �� � 
(H1 �H2)

�
(H1 �H2) 1 � �� �

# "
x0
y0

#
+"

� 
H2

�
H2 �

# "
x1
y1

#
+

"
� �
H1


H1 �

# "
x2
y2

#

Let R� represent a 2D rotation matrix that rotates by an angle �. Then

�(s ~m3) = �0R�
0

~i0 + �1R�
1

~i1 + �2R�
2

~i2; (2:42)

where

�0 =
q
(1� �� �)2 + (
(H1 �H2))2 (2.43)

�1 =
q
�2 + (
H2)2 (2.44)

�2 =
q
�2 + (
H1)2 (2.45)

cos �0 =
1����
�0

sin �0 =
�
(H1�H2)

�0

cos �1 =
�

�1
sin �1 =

�
H2

�1

cos �2 =
�

�2
sin �2 =


H1

�2

(2:46)

Thus, we can view the computation as a 2D rotation and scale of each image point

separately followed by a sum of the three. It is important to keep in mind, however, that
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the rotations and scales themselves depend on the image points, because of H1 and H2.

When the model is planar, the form of Equation 2.42 facilitates understanding the

e�ects of error in the image points. Error in the locations of the matched image points

leads to uncertainty in the image location of the fourth model point. Suppose that the

true locations of the matched image points are known to be within a few, say �i, pixels

of their nominal locations, for i = 0; 1; 2. Let~ii and ~ci be the true and nominal locations

of an image point, for i = 0; 1; 2. Then, for some ~e0, ~i0 = ~c0 + ~e0, where k ~e0 k= �0, and

similarly for ~i1 and ~i2. Then

�(s ~m3) = �0R�
0

~i0 + �1R�
1

~i1 + �2R�
2

~i2

= (�0R�
0
~c0 + �1R�

1
~c1 + �2R�

2
~c2) + (�0R�

0
~e0 + �1R�

1
~e1 + �2R�

2
~e2)

When the fourth point is in the plane of the �rst three, 
 = 0, so that the scales, �0, �1, and
�2, and 2D rotations, R�

0
, R�

1
, and R�

2
, are all constant (see Equations 2.43-2.46). This

means that the �rst term in parentheses is just the nominal image location of the fourth

model point. Since ~e0, ~e1, and ~e2 move around circles, the 2D rotations in the second

term can be ignored. Further, since these error vectors move independently around their

error circles, their radii simply sum together. Therefore, the region of possible locations

of the fourth model point is bounded by a circle of radius �0�0+�1�1+�2�2 that is centered
at the nominal point. By plugging 
 = 0 into Equations 2.43-2.45, we get that

�0 = j1� �� �j ; �1 = j�j ; �2 = j�j ;

Assuming �0 = �1 = �2 = �, this implies that the uncertainty in the image location of

a fourth point is bounded by a circle with radius (j1 � �� �j+ j�j + j�j)� and with its

center at the nominal point, which repeats the result given earlier by Jacobs [Jacobs91].

Although the non-planar case clearly is more complicated, since the scales and 2D

rotations are no longer constant, Equation 2.42 may prove useful for obtaining bounds

on the e�ects of error in this situation as well.

2.8 Review of Previous Solutions

There have been several earlier solutions to the weak-perspective three-point problem,

notably by Kanade and Kender [Kanade83], Cyganski and Orr [Cyganski85] [Cygan-

ski88], Ullman [Ullman86] [Huttenlocher87], Huttenlocher and Ullman [Huttenlocher88]
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[Huttenlocher90] [Ullman89], and Grimson, Huttenlocher, and Alter [Grimson92a]. All

the previous solutions compute the 3D pose by going through a 3D rigid transformation

or a 2D a�ne transformation relating the model to the image. A 2D a�ne transform is

a linear transform plus a translation, and it can be applied to any object lying in the

plane. All but Ullman's and Grimson, Huttenlocher, and Alter's solutions compute an

a�ne transformation between the three model and image points. Also, all but Kanade

and Kender's solution compute a model-to-image rigid transformation, either via a rota-

tion matrix or via Euler angles.

Not all of the solutions directly solve the weak-perspective three-point problem. The

earliest solution, which was given by Kanade and Kender in 1983, applies Kanade's

skewed-symmetry constraint to recover the 3D orientation of a symmetric, planar pat-

tern [Kanade83]. More precisely, Kanade and Kender showed how to compute the 3D

orientation of the plane containing a symmetric, planar pattern from a 2D a�ne trans-

form between an image of the pattern and the pattern itself. To apply this result to

the weak-perspective three-point problem, the three points can be used to construct a

symmetric, planar pattern, and a 2D a�ne transform can be computed from two sets of

three corresponding points. The solution was shown to exist and to give two solutions

related by a re
ective ambiguity, assuming that the determinant of the a�ne transform

is positive.

The remaining methods all concentrate on computing the 3D rigid transform from the

model to the image. In 1985, while presenting a system for recognizing planar objects,

Cyganksi and Orr showed how to use higher-order moments to compute a 2D a�ne trans-

form between planar regions [Cyganski85] [CyganskiOrr88]. Given the a�ne transform,

they listed expressions for computing the 3D Euler angles from the 2D a�ne transform1.

They did not, however, discuss how they derived the expressions.

The next method is the solution given by Ullman in 1986 [Ullman86], which appeared

again in [Huttenlocher87]. The paper included a proof that the solution for the scale

factor is unique and the solution for the rotation matrix is unique up to an inherent two-

way ambiguity. (This corresponds to the ambiguity in H1 and H2.) Yet Ullman did not

show the solution exists. When it does exist, Ullman described a method for obtaining

the rotation matrix and scale factor.

In 1988, Huttenlocher and Ullman gave another solution, and, in the process, gave

1The expressions that appear in [Cyganski85] contain typesetting errors, but are listed correctly

in [Cyganski88].
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the �rst complete proof that the solution both exists and is unique (up to the two-way

ambiguity) [Huttenlocher88] [Huttenlocher90] [Ullman89]. Like Kanade and Kender, and

Cyganski and Orr, Huttenlocher and Ullman's solution relies on a 2D a�ne transform.

The solution itself is based on algebraic constraints derived from rigidity, which are used

to recover the elements of the scaled rotation matrix.

The last solution, which was published this year, was developed by Grimson, Hut-

tenlocher, and Alter for the purpose of analyzing the e�ects of image noise on error in

transformation space [Grimson92a]. Towards this end, the method facilitates computing

how a small perturbation in each transformation parameter propagates to uncertainty

ranges in the other parameters.

2.9 Presentation of Three Previous Solutions

The solutions discussed in the previous section di�er signi�cantly in how they compute

the transformation, and, as a result, each one can provide di�erent insights into solving

related problems, such as error analysis in alignment-based recognition and pose cluster-

ing. It seems useful, then, to present the previous solutions in detail, so they conveniently

can be referred to and compared.

The �rst method presented is Ullman's solution, which the �rst part of this chapter

extended. After that, I give Huttenlocher and Ullman's solution. Lastly, I present the

method of Grimson, Huttenlocher, and Alter. I do not present Kanade and Kender's

method nor Cyganski and Orr's, because Kanade and Kender did not directly solve

the weak-perspective three-point problem, and Cyganski and Orr did not detail their

solution.

It should be pointed out that the presentations here di�er somewhat from the ones

given by the original authors, but the ideas are the same. Basically, the presentations

emphasize the steps that recover the 3D pose while being complete and concise.

In the following presentations, we are looking for a rigid transform plus scale that

aligns the model points to the image points. In all methods, we are free to move rigidly

the three image points or the three model points wherever we wish, since this amounts

to tacking on an additional transform before or after the aligning one. For example, this

justi�es the assumption made below that the plane of the model points is parallel to the

image plane.
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For consistency, the same notation as in Sections 2.2 and 2.4 is used in the proofs

that follow: Let the model points be ~m0, ~m1, ~m2 and the image points be ~i0, ~i1, ~i2, with

the respective distances between the points being R01, R02, and R12 for the model points,

and d01, d02, and d12 for the image points.

2.9.1 Overview

Initially, all three methods compute a transformation that brings the model into image

coordinates, such that the plane of the three matchedmodel points is parallel to the image

plane and such that ~m0 projects onto ~i0, which has been translated to the origin. The

three methods then compute the out-of-plane rotation and scale that align the matched

model and image points. In so doing, the methods all end up solving a biquadratic

equation.

In Ullman'smethod, the model and image points are further transformed via rotations

around the z axis to align ~m1 and ~i1 along the x axis. Then the 3D rotation matrix for

rotating successively around the x and y axes is expressed in terms of Euler angles.

This leads to a series of three equations in three unknowns, which are solved to get a

biquadratic in the scale factor. To get the elements of the rotation matrix, the solution

for scale factor is substituted back into the original three equations.

Instead of further rotating the model and image points, Huttenlocher and Ullman

compute an a�ne transform between them, which immediately gives the top-left sub-

matrix of the scaled rotation matrix. Then by studying what happens to two equal-

length vectors in the plane, a biquadratic is obtained. The scale factor and the remaining

elements of the scaled rotation matrix are found using the algebraic constraints on the

columns of a scaled rotation matrix.

Like Ullman did, Grimson, Huttenlocher, and Alter rotate the model further to align

~m1 and ~i1. The desired out-of-plane rotation is expressed in terms of two angles that

give the rotation about two perpendicular axes in the plane. Next, Rodrigues' formula,

which computes the 3D rotation of a point about some axis, is used to eliminate the scale

factor and obtain two constraints on the two rotation angles. The two constraints are

solved to get a biquadratic in the cosine of one of the angles. Its solution is substituted

back to get the other angle and the scale factor, which can be used directly by Rodrigues'

formula to transform any other model point.

As mentioned in the introduction, Ullman's solution is incomplete because it does
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not show which of the two solutions for the scale factor is correct; actually, the solution

is completed by the result given in Section 2.4.1 of this chapter. Similar to Ullman's

method, Grimson, Huttenlocher, and Alter's solution has the same drawback of not

showing which solution to its biquadratic is correct. Huttenlocher and Ullman, on the

other hand, have no such problem because it turns out that one of the two solutions to

their biquadratic is obviously not real, and so it immediately is discarded.

2.9.2 Ullman's method

This section gives Ullman's solution to the weak-perspective three-point problem. The

main idea is �rst to transform the three model points to the image plane and then solve

for the scale and out-of-plane rotation that align the transformed points.

Speci�cally, the model points �rst are rigidly transformed to put the three model

points in the image plane with ~m0 at the origin of the image coordinate system and

~m1 � ~m0 aligned with the x axis. After rigidly transforming the model points, the

resulting points can be represented by (0; 0; 0), ( �x1; 0; 0), and ( �x2; �y2; 0). Similarly, let

the image points be rigid transformed to put~i0 at the origin and~i1�~i0 along the x axis,
and let the resulting image points be (0; 0; 0), (x1; 0; 0), and (x2; y2; 0).

Next, we break the out-of-plane rotation into a rotation around the x axis by an

angle � followed by a rotation around the y axis by an angle �, as pictured in Fig. 2-8.

The corresponding rotation matrix is

R =

264 cos � 0 sin�

0 1 0

� sin� 0 cos �

375
264 1 0 0

0 cos � � sin �

0 sin � cos �

375

=

264 cos � sin� sin � sin � cos �

0 cos � � sin �
� sin� cos � sin � cos� cos �

375 (2.47)

After rotation and scale, (0; 0; 0), ( �x1; 0; 0), and ( �x2; �y2; 0) become (0; 0; 0), (x1; 0; z1), and
(x2; y2; z2), respectively, where z1 and z2 are unknown. Thus, we need to �nd �, �, and

s such that

sR( �x1; 0; 0) = (x1; 0; z1)

sR( �x2; �y2; 0) = (x2; y2; z2)
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Figure 2-8: Interpreting the out-of-plane rotation angles in Ullman's method.

Expanding the �rst two rows of R yields three equations in three unknowns:

s �x1 cos� = x1 (2.48)

s �y2 cos � = y2 (2.49)

s �x2 cos �� s �y2 sin � sin � = x2 (2.50)

Fig. 2-8 gives a graphical interpretation of the �rst two equations. Substituting Equa-

tions 2.48 and 2.49 along with expressions for sin� and sin � into Equation 2.50 yields a

biquadratic in the scale factor s:

as4 � bs2 + c = 0; (2:51)

where

a = �x1
2 �y2

2 (2.52)

b = x21( �x2
2 + �y2

2) + �x1
2(x22 + y22)� 2x1x2 �x1 �x2 (2.53)

c = x21y
2
2 (2.54)

The positive solutions for s are given by

s =

s
b�

p
b2 � 4ac

2a
(2:55)

In general there can be one, two, or no solutions for s. Ullman makes no further attempt



2.9. PRESENTATION OF THREE PREVIOUS SOLUTIONS 47

to determine when or if each solution arises, except to refer to a uniqueness proof he gives

earlier in the paper. The uniqueness proof implies there can be at most one solution for

s, but does not say which solution it is or whether it can be either one at di�erent times.

Given s, the rotation matrixR is obtained using cos � = x1
s �x1

and cos � = y2
s �y2

in Equa-

tion 2.47. One di�culty with this is that we do not know the signs of sin � and sin�; this

leaves four possibilities for the pair (sin �; sin�). In his uniqueness proof, Ullman points

out that the inherent re
ective ambiguity corresponds to multiplying simultaneously the

elements r13, r23, r31, and r32 of R by �1. In Equation 2.47, the signs of those elements

also are inverted when both sin � and sin� are multiplied by �1, which, visually, corre-
sponds to re
ecting the model points about the image plane (Fig. 2-8). Still, we have no

way to know which of the two pairs of solutions is correct. One way to proceed is to try

both and see which solution pair aligns the points.

2.9.3 Huttenlocher and Ullman's method

First, assume the plane containing the model points is parallel to the image plane. Then

subtract out ~m0 and ~i0 from the model and image points, respectively, to align them

at the origin. Let the resulting model points be (0; 0; 0), ( �x1; �y1; 0), and ( �x2; �y2; 0), and
the resulting image points be (0; 0), (x1; y1), and (x2; y2). At this point, what is left is

to compute the scaled rotation matrix that brings ( �x1; �y1; 0) and ( �x2; �y2; 0) to (x1; y1; z1)
and (x2; y2; z2), respectively, where z1 and z2 are unknown. That is, we need

sR( �x1; �y1; 0) = (x1; y1; z1)

sR( �x2; �y2; 0) = (x2; y2; z2):

Letting l11 = sr11, l12 = sr12, etc., and focusing on the �rst two rows of the rotation

matrix, we get two sets of equations:

l11 �x1 + l12 �y1 = x1 (2.56)

l11 �x2 + l12 �y2 = x2 (2.57)

l21 �x1 + l22 �y1 = y1 (2.58)

l21 �x2 + l22 �y2 = y2; (2.59)
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Figure 2-9: Projecting two orthogonal same-length vectors in Huttenlocher and

Ullman's method.

which give

"
l11 l12
l21 l22

#
; the top-left sub-matrix of the scaled rotation matrix. Note that

this step fails if the determinent, �x1 �y2 � �x2 �y1, equals zero.

Next, we make a digression to consider what happens to two orthogonal, equal-length

vectors in the plane, ~e1 and ~e2. Since ~e1 and ~e2 are in the plane, we can apply the

sub-matrix just computed to obtain the resulting vectors, ~e1
0 and ~e2

0:

~e1
0 =

"
l11 l12
l21 l22

#
~e1; ~e2

0 =

"
l11 l12
l21 l22

#
~e2 (2:60)

When a model is transformed, ~e1 and ~e2 undergo a rigid transformation plus scale before

projection. As shown in Fig. 2-9, after transformation these vectors become ~e1
0+c1bz and

~e2
0 + c2bz. Since a scaled, rigid transform preserves angles and ratios of lengths between

vectors, and since ~e1 � ~e2 = 0 and k ~e1 k=k ~e2 k, it must be that

(~e1
0 + c1bz) � (~e20 + c2bz) = 0

k ~e10 k +c21 =k ~e2
0 k +c22:

These two equations simplify to

c1c2 = k1

c21 � c22 = k2
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where

k1 = �~e10 � ~e20 (2.61)

k2 = k ~e20 k � k ~e10 k (2.62)

Substituting for c2 =
k1
c1

in the second equation leads to a biquadratic in c1:

c41 � k2c
2
1 � k21 = 0 (2:63)

The general solution is

c1 = �

s
1

2

�
k2 �

q
k22 + 4k21

�
:

Conveniently, the inner discriminant always is greater than or equal to zero. Furthermore,

since 4k21 � 0, the real solutions are given by

c1 = �

s
1

2

�
k2 +

q
k22 + 4k21

�
; (2:64)

since otherwise the outer discriminant is less than zero.

These two solutions for c1 give two corresponding solutions for c2, which from Fig. 2-9

can be seen to correspond to a re
ection about the image plane.

The solution for c2 does not work when c1 = 0. In this case,

c2 = �
q
�k2 = �

q
k ~e10 k � k ~e20 k : (2:65)

This gives two solutions for c2, if it exists, which can be seen as follows. Since c1 = 0,

~e1 ends up in the plane, so that that the length of ~e1 is just scaled down by s, whereas
the length of ~e2 reduces both by being scaled down and by projection. Consequently,

k ~e20 k�k ~e10 k, and, therefore, c2 exists.

Given c1 and c2, we can recover two more elements of the scaled rotation matrix.

Since ~e1 and ~e2 are in the plane, we know that sR~e1 = ~e1
0 + c1bz and sR~e2 = ~e2

0 + c2bz.
Focusing on the last row of the scaled rotation matrix, we get the two equations l31 = c1
and l32 = c2.

At this point, we have the �rst two columns of sR, and, from the constraints on the

columns of a rotation matrix, we can get the last column from the cross product of the
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�rst two. In total, this gives

sR =

264 l11 l12
1
s
(c2l21 � c1l22)

l21 l22
1
s
(c1l12 � c2l11)

c1 c2
1
s
(l11l22 � l12l21)

375 (2:66)

Since the columns of a rotation matrix have unit length, we know

s =
q
l211 + l221 + c21 =

q
l212 + l222 + c22 : (2:67)

Notice that the ambiguity in c1 and c2 inverts the signs of the appropriate elements of

the rotation matrix as discussed in Section 2.9.2.

2.9.4 Grimson, Huttenlocher, and Alter's method

Grimson et al. gave another solution to the weak-perspective three point problem in

order to get a handle on how small perturbations a�ect the individual transformation

parameters.

To start, assume the plane containing the model points is parallel to the image plane.

Next, rigidly transform the model points so that ~m0 projects to~i0 and ~m1� ~m0 projects

along ~i1 �~i0. Let � represent an orthogonal projection along the z axis, and in general

let ~v? be the 2D vector rotated ninety degrees clockwise from the 2D vector ~v. Then the

translation is ~i0 ��~m0, and the rotation is about bz by an angle  given by

cos = cm01 � bi01; sin = �cm01 � bi?01:
(see Fig. 2-10).

At this point, assign ~m01 = ~m1� ~m0, ~m02 = ~m2� ~m0,~i01 =~i1�~i0, and~i02 = ~m2� ~m0.

Also, consider the out-of-plane rotation to be a rotation about bi01 by some angle � followed

by a rotation about bi?01 by some angle �. Let us compute where the vectors bi01 and bi?01
project to after the two rotations and scale. To do this, we use Rodrigues' formula: Let

Rbv;�~p represent a rotation of a point ~p about a direction bv by an angle � . Rodrigues'

formula is

Rbv;�~p = cos �~p+ (1 � cos � )(bv � ~p)bv + sin � (bv � ~p): (2:68)
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Figure 2-10: After the rotation by  in Grimson, Huttenlocher, and Alter's

method, the plane of the model points is parallel to the image plane, ~m0 projects

onto ~i0, and ~m1 � ~m0 projects along ~i1 �~i0.

Using the formula, we can compute

Rbi?
01
;�
Rbi01;�bi01 = cos�bi01 � sin�bz (2.69)

Rbi?
01
;�
Rbi01;�bi?01 = sin � sin�bi01 + cos �bi?01 + sin � cos�bz:

Initially, ~m01 was rotated about bz to align it with~i01. In order for the scaled orthographic
projection of ~m01 to align with ~i01, Equation 2.69 implies that

s =
k~i01 k
k ~m01 k

1

cos�

=
d01

R01

1

cos�
: (2.70)

Then

s�Rbi?
01
;�
Rbi01;�bi01 =

d01

R01

bi01 (2.71)

s�Rbi?
01
;�
Rbi01;�bi?01 =

d01

R01

1

cos �
(sin � sin�bi01 + cos �bi?01) (2.72)
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Next, we use the expressions in Equations 2.71 and 2.72 to constrain � and � such

that ~m02 projects along~i02. When we aligned ~m01 and~i01, ~m02 rotated to Rbz; ~m02. Since

~m02 has no bz component (by assumption), we can represent Rbz; ~m02 by

R02 cos �bi01 +R02 sin �bi?01;
where � is a known angle. Consequently, the transformed, projected, and scaled ~m02,

which must equal ~i02, is

s�Rbi?
01
;�
Rbi01;�(R02 cos �bi01 +R02 sin �bi?01)

= R02 cos �(s�Rbi?
01
;�
Rbi01;�bi01) +R02 sin �(s�Rbi?

01
;�
Rbi01;�bi?01)

= R02 cos �

 
d01
R01

bi01
!
+R02 sin �

 
d01
R01

1

cos �
(sin � sin�bi01 + cos �bi?01)

!

=
d01

cos �

R02

R01

(cos � cos �+ sin � sin� sin �)bi01 + d01

cos�

R02

R01

(sin � cos �)bi?01:
Similar to Rbz; ~m02, we can represent ~i02 as

~i02 = d02 cos!bi01 + d02 sin!bi?01;
where ! is known. By equating terms we get

d01

d02

R02

R01

(cos � cos �+ sin � sin� sin �) = cos� cos! (2.73)

d01

d02

R02

R01

(sin � cos �) = cos� sin!: (2.74)

These two equations can be solved to get a biquadratic in cos �:

sin2 ! cos4 �� (t2 + 1 � 2t cos! cos �) cos2 �+ t2 sin2 � = 0; (2:75)

where

t =
R02d01

R01d02
: (2:76)

Since Rbz; ~m01 is aligned with ~i01, we need cos � to be positive so that ~m01 projects in
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the same direction as ~i01. The positive solutions are given by

cos � =
1

jsin!j

r
� �

q
�2 � t2 sin2 ! sin2 � (2:77)

with

� =
1

2
(1 + t2 � 2t cos! cos �):

This equation gives up to two solutions, but Grimson et al. make no further attempt to

show which solutions exists when, except to say the equation gives real solutions only if

� � 0 or

cos! cos � �
1 + t2

2t
: (2:78)

Given �, Equations 2.73 and 2.74 provide �:

cos � =
sin! cos �

t sin �
(2.79)

sin � =
cos �(cos! � t cos �)

t sin � sin�
(2.80)

Given any model point ~m, we can use the computed angles along with Rodrigues'

formula to �nd its image location. In particular, once ~m0 and ~i0 have been subtracted

out, only the scale and 3D rotation are left. The scale is given by Equation 2.70, and, as

shown above, the rotation is

Rbi?
01
;�
Rbi01;�Rbz; : (2:81)

As with Ullman's method (Section 2.9.2), we do not know the signs of sin � and sin�, but

only that inverting both signs simultaneously corresponds to the re
ective ambiguity.

2.9.5 Summary of the three computations

Here I summarize how each method can be used to compute 3D pose from three corre-

sponding points. To begin, transform the model and image points so that (1) the model

points lie in the image plane, (2) ~m0 and ~i0 are at the origin of the image coordinate

system, and (3) ~m1 � ~m0 and ~i1 �~i0 lie along the x axis. Then use one of the three

methods to compute the scale factor and out-of-plane rotation, as follows:
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� Ullman's method

1. Use Equations 2.52-2.54 to get a, b, and c.

2. Substitute a, b, and c into Equation 2.55 to get s.

3. Calculate cos� = x1
s �x1

and cos � = y2
s �y2

.

4. Calculate sin� =
p
1� cos2 � and sin � =

p
1� cos2 �.

5. Construct the rotation matrix R using Equation 2.47.

� Huttenlocher and Ullman's method

1. Solve Equations 2.56 and 2.57 for l11 and l12, and Equations 2.58 and 2.59 for

l21 and l22.

2. Let ~e1 = (0; 1) and ~e2 = (1; 0). (Any orthogonal, equal-length vectors can be

used.)

3. Use Equation 2.60 to get ~e1
0 and ~e2

0.

4. Substitute ~e1
0 and ~e2

0 into Equations 2.61 and 2.62 to get k1 and k2.

5. Substitute k1 and k2 into Equation 2.64 to get c1.

6. If c1 6= 0, calculate c2 =
k1
c1
. Otherwise get c2 from Equation 2.65.

7. Use Equation 2.67 to get s.

8. Use Equation 2.66 to get sR. Divide through by s if R is desired instead of

sR.

� Grimson, Huttenlocher, and Alter's method

1. From the model points, compute R01, R02 and �, and, from the image points,

compute d01, d02, and !.

2. Use Equation 2.76 to get t.

3. Use Equation 2.77 to get cos �.

4. Use Equation 2.70 to get s.

5. Calculate sin� =
p
1� cos2 �.

6. Use Equations 2.79 and 2.80 to get cos � and sin �.

7. To transform any point ~p, substitute cos�, sin�, cos �, sin �, and ~p into Ro-

drigues' formula, Equation 2.68, to get R~p = Rbi?
01
;�
Rbi01;�~p.
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2.10 Conclusion

The weak-perspective three-point problem is fundamental to many approaches to model-

based recognition. In this chapter, I illustrated the underlying geometry, and then used

it to derive a new solution to the problem, and to explain the various special cases that

can arise; the special cases determine when there are zero, one, and two solutions. Also,

I discussed earlier solutions to the problem in detail.

The new solution is based on the distances between the matched model and image

points, and is used to obtain an expression for a direct alignment of a model to an image.

As a result, the solution given here may be easier to use, and, for recognition systems

that repeat the computation of the model pose many times, may be more e�cient.

Furthermore, the geometric approach in this chapter provides additional insights into

the problem. First, it was demonstrated that the pose solution may be unstable either

when the model points are nearly collinear or when the plane of the matched model

points is parallel to the image plane. This property is not particular to the pose solution

given here, but is inherent in the underlying geometry. Second, this chapter resolves

which solution to Ullman's original biquadratic is correct, and, speci�cally, showed that

the false solution corresponds geometrically to inverting the roles of the model and image

points. Also, this chapter makes evident the symmetry of the solution with respect to

the ordering of the points. In general, the geometric approach has been useful in gaining

understanding of the basic problem, and may prove useful for providing insights when a

related problem needs to be solved.
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Chapter 3

Uncertainty in Point Features

As discussed in Chapter 1, features derived from an image invariably contain errors. The

approach in Section 1.3 uses triples of matched point features to generate hypotheses, and

then uses model features such as points, line segments, and curve segments for deciding

which hypotheses are correct. To decide correctness, the algorithm uses the matched

point triples to predict the image locations of the model features (step 2b). Errors in

the locations of the image points, however, lead to uncertainty in the predicted locations

of these model features. Consequently, in step 2c of the algorithm, the hypothesized

three-point match is used to compute search regions for �nding matches to the model

features.

In the past, to account for the uncertainty, people tried considering all image features

as candidate matches [Grimson84]; however, the combinatorics of such an approach are

prohibitive [Grimson90a]. In addition, people tried looking for matches in a region of

�xed size and shape about each predicted feature [Huttenlocher88], but this assumes the

size and shape do not signi�cantly change. If this assumption is wrong, it can lead to

correct hypotheses being discarded and incorrect hypotheses being accepted; occurrences

of which are known as false negatives and false positives, respectively.

Using a standard model for error in the image points (Section 3.1), this chapter shows

that the shapes of the uncertainty regions for point features generally do not change,

but the sizes can change considerably. Further, it is demonstrated that the uncertainty

regions generally are circular (Section 3.2), and a method is given for �tting \uncertainty

circles" to them (Section 3.4). In addition, the situations where the uncertainty regions

are not circular are described (Section 3.3). Lastly, the uncertainty circles are compared
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to previous uncertainty propagation techniques (Section 3.5).

3.1 Bounded Error Model

The errors in the image points arise from several sources, including the optics used to

obtain the image, the edge detector, and the process for �nding distinguishing points

from edges. The e�ect of these errors is to alter the locations of the image points. These

locations will be altered by at most some amount �, which empirically seems to be about

�ve pixels. Circles of radius � can then be used to bound the error in the sensed or

nominal locations of the image points. This approach to modelling error is known as

a \bounded error model," and has been used often for performing robust recognition

[Grimson84] [Baird85] [Ellis87] [Cass90] [Jacobs91].

3.2 Uncertainty Circles for Bounding Uncertainty

Regions

To see how well uncertainty circles do for bounding the errors in the image locations of

predicted model points, this section runs two experiments that compare the true regions

to the circular �ts. The radii of the circles is computed by taking the maximum distance

from the nominal point to a point on the boundary. To compare the regions, we need

a measure of error between the true region and the approximation. When the circular

approximations are poor, the circles will badly over-bound the true regions. One measure

is what fraction of the circle the true region leaves uncovered. Let At equal the area of

the true region and let Ac equal the area of the approximating circle. Then the fraction

just mentioned is given by Ac�At
Ac

. When the approximation is good, however, we want to

know the relative error from the true value, which is given by jAt�Acj
At

. Using the fraction

of the area when the uncertainty circle over-bounds the true region and using the relative

error when it does not, the error measure is(
Ac�At
Ac

if Ac � At;

� jAt�Acj
At

otherwise,
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where the sign is used to discriminate the two cases. This expression is the same as

Ac �At

max(Ac; At)
: (3:1)

In this expression, the max is needed even though in theory Ac > At, because the method

used below to compute At can overestimate it a little when the circular approximation

is good.

Experiment 1: Accuracy of uncertainty circles for random models

If we are using uncertainty circles in a recognition system, we wish to know how often to

expect the uncertainty circles to be correct. In terms of the error measure (Equation 3.1),

we wish to know what percent of the time the maximum value of the error measure will

be at most, say 1%, or 10%. Conversely, what will be the maximum error 90% of the

time, 95% of the time, or 99% of the time?

To estimate these numbers, I ran a series of trials to simulate an actual system and

computed the error measure for each. The percent of time the error measure is expected

to satisfy some criteria is estimated by the fraction of trials over which it satis�es that

criteria. For an actual system, I consider an alignment algorithm that selects triples of

points from an image and matches them to triples of points from a model. I assume

that the points in the image e�ectively arise at random, which is reasonable if the image

contains signi�cant clutter.

Method

This experiment runs one hundred trials where a model is projected into an image

and the error measure of Equation 3.1 is computed for each model point. In each trial,

a random triple of image points is matched to a random triple of model points taken

from a randomly-generated model (see Appendix C for details). The three-point match

is used to project the model into the image, which gives the nominal image locations of

the model points. As described in Chapter 2, except for model points in the plane of the

matched model points, there are two possibilities for each nominal image location.

Using � = 5, the �-circles around the three image points are sampled uniformly at

twenty-�ve points each (see Fig. 3-3). Every triple of points between the samples on the

uncertainty circles is matched to the three model points. Each match is used to compute

the image locations of all the model points. This results in a set of boundary and interior

points for uncertainty regions. The area of each region is computed by scanning its points

into an image and counting the number of pixels within the resulting image boundary
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(this step is explained further in Appendix D). There are two sets of boundary points

corresponding to the two weak-perspective solutions (Chapter 2), which results in two

areas per uncertainty region (see Appendix D).

Given the boundary points for an uncertainty region, the radius of the corresponding

uncertainty circle is obtained by taking the maximum distance from the nominal point

to a boundary point. For a radius r, the area of the circle is �r2.

Results and Discussion

Over the 100 trials, 1163 uncertainty regions were tested. The average area was 583.53

for the correct uncertainty regions and 662.43 for the approximating circles. Fig. 3-1

shows a histogram of the percent errors in the circular approximation (using the error

measure). The largest peak of the histogram is at 0. The average percent error is �10:82,
the median is between �11 and �12, and the range is [�35:11; 81:65]. Negative errors

occur because, when the �t is good, the method used to compute the true regions may

actually overestimate them a little (Appendix D). The large negative errors are all for

situations where the circles are very small (radii between �ve and eight pixels); the error

measure is sensitive to these cases because of the slight overestimation in the method for

computing regions. The errors of particular concern are large positive errors, which arise

when the uncertainty circles are large overestimates. As will be seen next, such errors

occur rarely.

By summing up to an index in the histogram and then dividing by the total number

of entries, we get the fraction of time that the error was less than that index. Doing so

gives that 96.73% of the time the error between the true region and the approximation

was less than 1%, and 97.94% of the time the error was less than 10%. Conversely, the

maximum error 90% of the time was 1%, 95% of the time it was also 1%, 98% of the

time it was 10%, and 99% of the time it was 51%. These results suggest that uncertainty

circles are generally very accurate.

Experiment 2: Accuracy of the uncertainty circles for the telephone model

The experiments on random models indicate that for most objects the circular approx-

imations are good. To see how accurately random models re
ect true objects, I took a

model of typical object for the system to handle, a telephone (Fig. 3-2), and re-ran the

same set of trials. The telephone model was built by hand. The model points are listed

in Table 3.1. The �rst eight points were measured in inches on the actual object, and

the last two were added to make the appearance of the model more complete.
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Figure 3-1: Histogram for 1163 uncertainty regions using random models
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Figure 3-2: A telephone and a model of a telephone
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x y z

1 0 0 0

2 9 0 0

3 9 4.625 0

4 0 4.625 0

5 0 0 1.625

6 3.5 0 3.5

7 3.5 4.625 3.5

8 0 4.625 1.625

9 9 0 3.5

10 9 4.625 3.5

Table 3.1:

Points on the telephone model.

Method

The method is the same as in Experiment 1, except that the telephone model was

used at every trial instead of a new, random model (Fig. 3-3).

Results and Discussion

For 100 trials with the phone model, 1092 uncertainty regions were generated. The

average area was 495.59 for the correct uncertainty regions and 450.13 for the approxi-

mating circles. Notice that this time the average area for the overestimates is lower than

for the exact areas. This is because, as mentioned earlier, the method used to compute

the true regions can overestimate them a little when the �t is good (Appendix D). This

e�ect turned out to be stronger than the overestimate in the circular �t, because very

few of the circular �ts were poor.

The resulting histogram for the phone model is shown in Fig. 3-4, overlayed with

the histogram for random models. The distributions are similar, with the phone model

having a smaller range of values. The average percent error is �10:72, the median is

between �11 and �12, and the range is [�31:37; 27:02]. Observe that the average and

median errors are very close to those for random models.

For the phone model, 98.01% of the time the error between the true region and the

approximation was less than 1%, and 99.08% of the time it was less than 10%. As before,

the maximum error 90% and 95% of the time was 1%. This time, however, the maximum

error 98% was also 1%. Further, 99% of the time the maximum error was 10% instead
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Figure 3-3: Propagated uncertainty regions for a telephone model (both solutions are shown).

The two small, un�lled circles are sampled �-circles (the third one is occluded). Observe that

the propagated regions appear circular.

of 51%. So it appears the circular �ts work better for the speci�c model of a telephone.

3.3 Cases Where Errors Are Greatest

This section looks closely at the cases where the errors are large. Doing so may help

to infer the situations where circles are poor approximations, which is important for

knowing when the uncertainty circles badly overestimate the true regions. Also, knowing

when the approximation breaks would allow for avoiding these cases or handling them

specially.

Of the one hundred trials on random models, there were two which had errors greater

than 25%. For each trial, Fig. 3-5 displays the uncertainty region and uncertainty circle

that had the largest error. For one trial, the largest error was 78.8%. The model point

with this error had extended a�ne coordinates (2:037;�2:227; :01368) (extended a�ne

coordinates were de�ned in Chapter 2). For this trial, the three matched model points

were (15;�74;�112), (�48; 57;�7), and (�3; 59;�70), and the three matched image

points were (296; 416), (132; 230), and (120; 336). More interestingly, the angles between
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Figure 3-4: Histograms for 1163 uncertainty regions using random models and

1092 uncertainty regions using telephone model.
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Figure 3-5: Largest errors for random models: 81.7% (upper left), 78.8% (bottom

right)

these points are

24:39�; 107:03�; 48:58� for the model points

24:15�; 107:99�; 47:86� for the image points

Notice that these angles are very close. Geometrically, this means the plane of the model

points is almost parallel to the image, a situation which Chapter 2 warned was unstable.

For the other trial, the largest error was 81.7%, and the extended a�ne coordinates of

the corresponding model point were (�:7151; 1:404; :002413). The three matched model

points were (9;�19; 170), (�3; 35; 6), and (�83; 2; 57). The three matched image points

were (272; 191), (34; 198), and (101; 314). The angles between the points are

35:40�; 86:50�; 58:10� for the model points

34:04�; 84:28�; 61:67� for the image points

Again the angles are very close, which means the plane of the matched model points is

almost parallel to the image. These cases suggest that we should be cautious with the
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Figure 3-6: Largest error for the telephone model: 27.0%

uncertainty circles when the model plane is nearly parallel to the image.

The true uncertainty regions pictured in Fig. 3-5 have strange shapes. The concavity

in the larger region is due to the interior of the region not being �lled, which is a result of

sampling only the boundaries of the error regions of the matched image points. Ignoring

the concavity, there is an almost straight line bounding part of the region. The source of

this line is the way the uncertainty regions are computed. As explained in Appendix D,

the propagated points are separated into two groups in order to handle the two solutions

for pose (see Chapter 2). The points are separated according to whether H1 or H2 from

the pose solution is positive or negative. For Fig. 3-5, if all the points from both solutions

were plotted, then a smoothly curved boundary for the entire region could be expected.

For the phone model, there was only one trial out of the one hundred which had

errors greater than 25%, and the largest error in this case was 27.0%. The uncertainty

region and uncertainty circle are shown in Fig. 3-6. The extended a�ne coordinates of

the point with largest error were (:02475; :3641;�:000032), and the angles between the

model and image points were
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Figure 3-7: Smallest Errors: -31.4% and -35.1%

32:80�; 57:20�; 90:00� for the model points

77:07�; 61:36�; 81:57� for the image points

Two of the angles are close, but not as close as they were for random models. At the

same time, the worst-case error is not nearly as bad as for random models.

Fig. 3-7 displays the regions with the largest negative errors for the trials on random

models and the phone model. Recall that negative errors arise because there may be

extra pixels counted along the boundaries of the true regions when computing the areas

(see Appendix D). From the �gure, negative errors can be as small as �35% and the

approximation visibly be good.

In summary, we can infer that, in an alignment system that tries many or all pairs

of point triples for aligning a model to the image, situations with large errors could

be avoided by checking whether the angles between the points are similar. However,

this may lead to relying on an arbitrary threshold. Consequently, it perhaps would be

better to handle these cases specially by using another technique such as that used in the

experiments, namely, to sample extensively and then walk the boundaries of the resulting

regions.
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3.4 Computing Uncertainty Circles

Given that circles centered at the nominal points approximate well the uncertainty region

boundaries, all that is needed is to compute the radii of the circles. Since only one

boundary point is needed to compute the radius, a straightforward approach is to sample

points from the error circles around the matched image points and take the maximum

distance from the nominal point as the radius. This process will be e�cient if few sample

points are required.

Experiment 3: Using fewer sample points for random models

To see how few sample points are needed, this experiment tests, for various numbers of

points, n, and for a series of trials, the percent of time (fraction of trials) that the error in

using n points instead of twenty-�ve is less than some limit. Twenty-�ve is the number

of points used in the last two experiments.

Method

A series of one hundred trials are run using random image triples matched to random

model triples from randomly-generated models, using the same method as in Experi-

ment 1. For each trial, the error circles around the matched image points are sampled

uniformly at twenty-�ve points and ten points. For each propagated uncertainty region,

the error in using the smaller number of samples to using twenty-�ve samples is computed.

This is repeated for nine, eight, and seven sample points as well.

Results and Discussion

The results are shown in Table 3.2. It may be observed that the percentages do not

strictly decrease as fewer sample points are used. This can be explained by the fact

that the circles around the image points are sampled uniformly, so that using di�erent

numbers of sampled points can give di�erent samples on the circles. Consequently, when

the percentages are close, there may be cases where fewer sample points do better. Nev-

ertheless, this e�ect should be small. Notice that the average percent error does indeed

increase monotonically.

We can use Table 3.2 to pick a reasonable number of points for sampling the image

error circles. From the table, if we permit 5% error, then using eight sample points

instead of twenty-�ve can be expected to be accurate over 99% of the time. Also, the

average error in using eight points is very small (1.137%).

A better feel for how accurate is the use of fewer sample points is given by statistics
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1% 2% 3% 4% 5% 6% ave max min

10 72.06 93.12 98.61 99.13 99.22 99.56 0.684 21.97 -.34

9 57.27 84.16 98.00 98.70 98.87 99.04 1.031 31.60 -.37

8 55.61 75.98 90.43 98.87 99.39 99.57 1.137 17.12 -.49

7 46.30 63.27 77.89 91.65 97.91 98.61 1.670 25.53 -.31

Table 3.2:

Percentage of time error was less than 1%-6% for di�erent numbers of sample points. Also shown are

the average, maximum, and minimum percent errors over all the trials. Results are based on 1149

propagated uncertainty regions using random models.

ave max min ave percent max percent min percent

10 .05 2.55 -.05 .344 11.67 -.17

9 .08 3.87 -.03 .521 17.30 -.18

8 .08 3.24 -.05 .573 8.96 -.24

7 .13 4.21 -.02 .844 13.70 -.16

Table 3.3:

Di�erences in radii for di�erent numbers of sample points. Results are based on 1149 propagated

uncertainty regions using random models.

on the radii, shown in Table 3.3. From the table, the average di�erence in the radii for

eight sample points was .08 pixels, and the worst case di�erence was 3.24 pixels. Relative

to the radius for twenty-�ve points, the average di�erence is .573%, and the maximum

di�erence is 8.96%.

Experiment 4: Using fewer sample points for telephone model

Method

This experiment is the same as Experiment 3, except that the phone model is used

instead of random models.

Results and Discussion

Tables 3.4 and 3.5 give the results. From Table 3.4, we again can use eight points

to limit errors to 5% over 99% of the time. From observing both tables, it appears that

using fewer sample points works slightly better with the phone model than with random

models.

To illustrate the use of uncertainty circles, Fig. 3-8 shows an example of the propa-
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1% 2% 3% 4% 5% 6% ave max min

10 66.40 91.91 99.37 99.55 99.64 99.64 0.726 8.55 -.33

9 60.83 84.19 98.02 99.46 99.55 99.55 0.913 13.19 -.33

8 62.15 91.91 99.37 99.55 99.64 99.64 0.981 11.76 -.30

7 46.46 64.24 80.32 92.81 98.38 99.55 1.532 12.80 -.33

Table 3.4:

Percentage of time error was less than 1%-6% for di�erent numbers of sample points. Also shown are

the average, maximum, and minimum percent errors over all the trials. Results are based on 1113

uncertainty regions using the telephone model.

ave max min ave percent max percent min percent

10 .05 0.69 -.05 .365 4.37 -.17

9 .06 1.30 -.02 .459 6.83 -.17

8 .07 1.12 -.03 .494 6.07 -.25

7 .10 1.23 -.03 .772 6.62 -.16

Table 3.5:

Di�erences in radii for di�erent numbers of sample points. Results are based on 1113 uncertainty regions

using the telephone model.
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Figure 3-8: Propagated uncertainty in a real image, which was provided by David Jacobs. The three

smallest circles correspond to assumed errors in the matched image points, and, given those errors, the

larger circles show the sets of possible locations of the other corner points of the telephone.

gated uncertainty circles, where eight sample points were used. The three smallest circles

correspond to the assumed errors in the matched image points, which in this example

were matched correctly. For the unmatched model points, the other circles show the

regions to be searched for matching image points. The self-occluded model points were

removed beforehand. Still, some of the remaining corner points are occluded by other

objects, and the uncertainty regions provide a means to reason that this is so after a

relatively small amount of search in the image.

Notice that the sizes of the propagated uncertainty regions vary considerably for

di�erent model points. Consequently, an approach that relies on �xed-sized error bounds,

as in [Huttenlocher88], can lead to correct matches being missed (when the bounds are

too small), and incorrect matches being accepted (when the bounds are too large and

include spurious image points).
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Method Models Type �

Uncertainty Circles Random Solid .003722

Uncertainty Circles Phone Solid .003747

Bounding Polygons Random Solid .008279

Exact Circles Random Planar .002783

Table 3.6:

Expected selectivities of point features.

3.5 Expected Selectivity of Point Features

The probability that a feature distributed randomly over an image falls into an uncer-

tainty region is known as the selectivity of the region [Grimson92b]. This quantity is

useful for analyzing the reliability of recognition systems [Grimson92a] [Grimson92b],

including, as will be seen in Chapters 5 and 6, the system proposed here. For point

features, the selectivity is the area of the region divided by the image area, A

A
I

, where

the area of the region takes into account the uncertainty in the unmatched image points

by expanding the propagated region outwards by �.

In the past, the concept of selectivity has been applied to alignment where the models

are 
at [Grimson92b], and also to alignment with solid models but using a di�erent un-

certainty propagation technique [Grimson92a]. When the models are 
at, the propagated

uncertainty regions can be computed exactly. It would be interesting to see how much

the chance of a false positive increases from planar to solid models. Also, it would be

useful to know how the uncertainty propagation technique used here compares to the one

in [Grimson92a]. We can use the expected selectivity to make these comparisons.

Experiments 5 and 6: Expected selectivity of point features

Method

To compute the expected selectivity, I re-ran 1000 trials of the same type as in Ex-

periments 3 and 4, except �ve was added to each radius before computing the area, in

order to account for expanding the uncertainty region outwards by � = 5 pixels.

Results and Discussion

Using random models with eight sample points over 1000 trials gave 11349 propagated

regions with average area 973.25 square pixels. Using the phone model with eight sample

points over 100 trials gave 11085 propagated regions with average area 979.78 square
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pixels. For an image of size 454 � 576, the resulting selectivities along with those for

[Grimson92a] and [Grimson92b] are shown in Table 3.6. The expected selectivity for the

uncertainty circles is about half that for [Grimson92a], which implies that the uncertainty

circles should give signi�cantly better performance. Furthermore, it appears that the

selectivities of solid models are only slightly greater than for planar ones. We can infer

from this that, when point features are used, recognizing solid objects with alignment is

a only a little more sensitive to false positives than recognizing planar objects.
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Chapter 4

Uncertainty in Line Features

The preceding chapter dealt with uncertainty in the predicted locations of point features

(step 2c of the alignment algorithm of Section 1.3). A set of distinguished points, however,

usually is not reliable at identifying a model in an image. Consequently, recognition

systems often use more extended features such as line segments for veri�cation [Bolles82]

[Goad83] [Lowe85] [Ayache86] [Horaud87] [Huttenlocher90]. This chapter extends the

uncertainty analysis of the preceding chapter to line features (Section 4.1). Furthermore,

a formula is derived for selectivity for line features (Section 4.2). The selectivity for lines

is demonstrated to be signi�cantly less than for points (Section 4.3).

4.1 Line Uncertainty Regions

Section 3.2 showed how to compute uncertainty circles to bound the propagated uncer-

tainty in predicted model points. We can use this result to bound the uncertainty in

predicted model line segments. First, for each model line segment, calculate the uncer-

tainty circles for its endpoints. Next, if we ignore fragmentation and partial occlusion, an

overestimate of the set of image line segments that could match a model line segment is

given by the set of all line segments connecting pairs of points in the two circles. To then

allow for some fragmentation and occlusion, we would also accept any sub-segment of

one of these line segments. We can �nd all candidates for a given model segment by �rst

gathering all image line segments that lie entirely within the uncertainty region formed

by the uncertainty circles and their common outer tangents (see Fig. 4-1). Then we will

75
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R
r

Figure 4-1: Region to search for candidate line segments

keep only the line segments that can be extended to intersect both of the uncertainty

circles.

4.2 Selectivity of Line Features

The selectivity of a line uncertainty region is the chance that a spurious line segment

randomly falls into it. Ideally, the line selectivity could be estimated by the chance

that the endpoints of a random line segment fall within the point uncertainty regions

of a predicted model segment's endpoints. With fragmentation and occlusion, however,

the endpoints of the corresponding image segment may not appear in those regions. To

allow for either endpoint to be occluded, the last chapter treated every model point

independently. By so doing, at least one of the endpoints is required to be unoccluded.

In addition, the constraint from the orientation of a model segment is lost. Instead of

looking for endpoints, we can look for pieces of the predicted model segments, as described

in Section 4.1. If pieces of line segments are used, which still constrain the orientation

and partially constrain the length, the selectivity for line segments can be expected to

be much less than for points.

4.2.1 Non-overlapping uncertainty circles

This section considers the case in which the uncertainty circles for the endpoints do not

overlap, which is the most common situation. Consider an image segment of known

length and orientation. There is a set of translations that place the segment within

the image. The line selectivity equals the fraction of these translations that place the

segment within the line uncertainty region. As a note, the set of translations of a line
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Figure 4-2: Region of translations with orientation constraint and rectangular

upper bound.

segment of known length and orientation is the same as its con�guration space [Lozano-

P�erez87], since a translation determines the position of every point on the line segment.

The con�guration space of an image segment with respect to an uncertainty region can

be obtained by shrinking the region along the segment's orientation and by its length.

Examples of the constraint from an image segment's orientation are illustrated by the

shaded regions in Fig. 4-2. The �gure shows two cases, distinguished by the orientation

of the image segment relative to the orientation of the common outer tangent, which

from Fig. 4-3 is given by

�1 = sin�1
R � r

L
(4:1)

As shown in Fig. 4-4, the orientation of an image segment within the uncertainty region

is bounded by the orientations of the common crossed tangents of the uncertainty circles.

Letting �2 be the maximum allowed orientation of a candidate image segment, from the

�gure

�2 = sin�1
R + r

L
(4:2)
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r
R

θ
L

Figure 4-3: Orientation of the common outer tangents to the circles.

r

R

r

θ
L

Figure 4-4: Orientation of the common crossed tangents of the circles. This is the

maximum possible angle of a line segment with an endpoint in each circle.

Note that �1 exists i� L � R � r, and �2 exists i� L � R + r. If the uncertainty circles

do not overlap, then L � R+ r.

Starting from the region of translations with orientation constraint, a set of transla-

tions with length constraint also is obtained by shrinking the shaded region in Fig. 4-2

by the length of the image segment. The area of the region can be computed by moving

the image segment perpendicular to its orientation, as shown in Fig. 4-5, parameterized

by u. The area is given by summing the distances between (x1; y1) and (x2; y2) over the
range of u. Let ` be the length of the image segment. Appendix E.1 shows the area is

given by,

A =

8>><>>:
R umax
�r

�
�`+ L cos � +

q
R2 � (u+ L sin �)2 �

p
r2 � u2

�
du

if L sin � � R + r;
0 otherwise.

(4:3)
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Figure 4-5: Computing the area of a region of translations for an image line

segment of known length and orientation.

where umax involves a solution to a quadratic equation whose coe�cients are given by

complicated expressions.

Computing the line segment selectivity with this formula is messy, and so instead I

compute a close overestimate. Fig. 4-6 shows a rectangular box which can be used to

bound the range of translations. For comparison, Fig. 4-2 shows the rectangular box

surrounding each corresponding line uncertainty region. From Fig. 4-6, the base of the

rectangle is R+ r+ L cos �. Further, the height of the rectangle is 2r for the top picture

where 0 � � � �1, and R+ r�L sin � for the bottom picture where �1 � � � �2. Observe
that for an image segment of length ` to �t in the rectangle, ` must be less than or equal

to the base, R+ r + L cos �. After shrinking the rectangle along the base by `, the area
of the region is

A =

8><>:
(R + r + L cos � � `)2r if � 2 [0; �1]; ` � R + r + L cos �;
(R + r + L cos � � `)(R + r � L sin �) if � 2 [�1; �2]; ` � R + r + L cos �;

0 otherwise.

(4:4)
Note that R + r � L sin � � 0, since � � �2 = sin�1 R+r

L
.

With respect to the image, Fig. 4-7 shows that the area of translations for the same

image segment is

AI = (w � ` cos �I)(h� ` sin �I) (4:5)

The selectivity of a random line segment of known length and orientation is A

A
I

.

In general, there will be several line segments that fall within a line uncertainty

region, and the line segments will have di�erent lengths and orientations. To account

for orientation, we can assume that random line segments are equally likely to fall at

any angle. Then we can integrate the formulas for A and AI over their respective ranges



80 CHAPTER 4. UNCERTAINTY IN LINE FEATURES
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Figure 4-6: Dimensions of the rectangular upper bound on the region of transla-

tions of a line segment with orientation constraint.
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Figure 4-7: Region of translations of a line segment over an image.
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of allowable orientations to get volumes of allowable positions of a random line segment

(with known length). Integrating the two area expressions in Equation 4.4 over an

arbitrary range [!1; !2] gives two corresponding volume expressions (see Appendix E.2):

v1(!1; !2) = (R + r � `)2r(!2 � !1) + 2rL(sin!2 � sin!1) (4.6)

v2(!1; !2) = (R + r � `)(R + r)(!2 � !1) + (R + r � `)L(cos!2 � cos!1)

+(R + r)L(sin!2 � sin!1)�
1

2
L2(sin2 !2 � sin2 !1) (4.7)

From Equation 4.4, the range of � is divided into two intervals at � = �1. Also in

Equation 4.4, the length of the image segment constrains the range of orientations such

that ` � R + r + L cos �, or equivalently, cos � � `�(R+r)
L

, or � � �, where

� = cos�1
 
`� (R + r)

L

!
: (4:8)

Note that � exists i� R + r � L � ` � R + r + L. The �rst inequality holds since the

circles do not overlap, and the second must be true for the image segment to �t in the

uncertainty region (Fig. 4-1). From these constraints, the volume V that corresponds to

the area A in Equation 4.4 is given by

V = 2

8>>><>>>:
v1(0; �) if � � �1; l � R + r + L;

v1(0; �1) + v2(�1; �) if �1 � � � �2; l � R + r + L;

v1(0; �1) + v2(�1; �2) if �2 � �; l � R + r + L;
0 otherwise.

(4:9)

Integrating AI (Equation 4.5) from �I = ��=2 to �I = �=2 gives

VI = �wh� 2`(w + h) + `2 (4:10)

The selectivity equals V
V
I

.

These equations assume that the length ` of the image line segment is known. It would

be convenient to integrate out the length as I did for orientation, but in real images it is

not fair to assume that all lengths are equally likely. One possibility is to measure the

distribution of image segment lengths over a large set of typical images, and integrate

over the distribution. A simpler approach is to measure the average length of an image

segment and use the average length for ` in the above equations. Alternatively, it may

be possible to estimate the percentage, say �, of a model segment that is broken up by
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the feature detector; this gives ` = (1 � �)L [Grimson91].

4.2.2 Overlapping uncertainty circles

Occasionally the uncertainty circles may overlap, either by intersection or inclusion. The

uncertainty circles intersect if R � r � L � R + r. In this case �2 is unde�ned, unless
L = R+ r (Equation 4.2). Also, � will be unde�ned if ` < R+ r�L (Equation 4.8), but

in this situation the length constraint is reached after � > �=2. To avoid redundancy, we

are only interested in orientations of the image segment that are in the range [0; �=2]. So
for convenience we de�ne � to be �=2 whenever ` < R+ r � L. As with the situation of

non-overlapping uncertainty circles, there are two cases for the height of the rectangle,

depending on whether the orientation of the image segment is less than or greater than

�1 = sin�1
�
R�r
L

�
(see Fig. 4-8). In addition, however, there are two cases for the base

of the rectangle (Fig. 4-8), depending on whether the orientation is less than or greater

than

�01 = �=2� �1 = cos�1
�
R � r

L

�
(4:11)

There are two basic rules for computing the height and base of the rectangle: (1) When

� � �1, use 2r for the height; otherwise use R + r � L sin �. (2) When � � �01, use
R+r+L cos � for the base; otherwise use 2R. These two rules lead to four area formulas:

a1 = (R+ r + L cos � � `)2r (4.12)

a2 = (R+ r + L cos � � `)(R + r � L sin �) (4.13)

a3 = (2R � `)2r (4.14)

a4 = (2R � `)(R + r � L sin �) (4.15)

To get the corresponding volume formulas, we need to integrate these formulas over the

range of �. Notice that the �rst two formulas appear in Equation 4.4; consequently,

v1(!1; !2) and v2(!1; !2) are given by Equations 4.6 and 4.7, respectively. From Ap-

pendix E.2, we have that

v3(!1; !2) = (2R � `)2r(!2 � !1) (4.16)

v4(!1; !2) = (2R � `)(R + r)(!2 � !1) + (2R � `)L(cos!2 � cos!1) (4.17)
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a b

c d

e

Figure 4-8: Cases where uncertainty circles intersect. The orientation of the image

segment increases from picture a to picture e. Let r be the radius of the smaller

circle, R be the radius of the larger circle, L be the distance between the center

points, � be the orientation of the image segment, b be the base of the rectangle,

and h be the height of the rectangle. Then

a. � � �1; b = R + r + L cos �; h = 2r
b. � = �1; b = R+ r + L cos �; h = 2r = R+ r � L sin �
c. �1 � � � �=2 � �1; b = R + r + L cos �; h = R + r � L sin �

d. � = �=2� �1; b = R+ r + L cos � = 2R; h = R + r � L sin �

e. �=2� �1 � �; b = 2R; h = R + r � L sin �
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Rules 1 and 2 apply while � � �; otherwise the image segment is too long to �t in

the rectangular box. However, this constraint only applies if � � �0, because as soon as

� � �0, the base of the bounding rectangle does not change any more (see cases d and e

in Fig. 4-8). Therefore, if � � �0, the length of the image segment does not constrain

the range of orientations, in which case the maximum orientation of the image segment

is �=2 since the uncertainty circles intersect.

As a �nal constraint, there exists some volume of translations as long as ` � R+r+L,

because then the image segment �ts in the rectangular box when � = 0, which is when

the orientation of the image segment is the same as the orientation of the model segment.

Otherwise the volume of translations is zero.

Putting these constraints together with the volume expressions,

V = 2

8>>>>>>>><>>>>>>>>:

v1(0; �) if � � �1; �
0
1; l � R + r + L;

v1(0; �1) + v2(�1; �) if �1 � � � �01; l � R + r + L;

v1(0; �1) + v2(�1; �
0
1) + v4(�

0
1; �=2) if �1 � �01 � �; l � R + r + L;

v1(0; �
0
1) + v3(�

0
1; �=2) if �01 � � � �1; l � R + r + L;

v1(0; �
0
1) + v3(�

0
1; �1) + v4(�1; �=2) if �01 � �1 � �; l � R + r + L;

0 otherwise.

(4:18)

If the circles overlap but do not intersect, then the smaller circle is contained in the

larger, as in Fig. 4-9. In this case, L � R � r. After shrinking by ` along the base, the

rectangle in the �gure has area (2R � `)2r. Integrating this expression gives

V =

(
2�r(2R � `) if ` � 2R,
0 otherwise.

(4:19)

When the uncertainty circles overlap, the selectivities for lines may be larger than

for points. This is in part because for lines we did not insist that the endpoints be

unoccluded. In addition, when the circles overlap the rectangular upper bound is not as

tight an estimate. Since we are using line features to improve on points, we could prevent

lines from doing worse by instead using the selectivities of the endpoints whenever their

average selectivity is less than the line selectivity. In e�ect, this insists that the endpoints

be unoccluded if the predicted model edge is short enough that the endpoint uncertainty

regions overlap.
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2R

2r

Figure 4-9: Rectangular upper bound for when the smaller uncertainty circle is

contained in the larger, or when L � R � r.

4.2.3 Summary

Given a model line segment, we can compute its selectivity, �, as follows. Let r and R
be the radii of the two uncertainty circles for the endpoints of the line segment, such

that r � R. r and R can be computed using the technique given in Chapter 3 or else,

if the models are planar, using the known analytic solution. Next, let L be the distance

between the centers of the two circles, and let ` be the expected length of a random line

segment in the image. De�ne

v1(!1; !2) = (R + r � `)2r(!2 � !1) + 2rL(sin!2 � sin!1)

v2(!1; !2) = (R + r � `)(R + r)(!2 � !1) + (R + r � `)L(cos!2 � cos!1)

+(R + r)L(sin!2 � sin!1)�
1

2
L2(sin2 !2 � sin2 !1)

v3(!1; !2) = (2R � `)2r(!2 � !1)

v4(!1; !2) = (2R � `)(R + r)(!2 � !1) + (2R � `)L(cos!2 � cos!1)

If R + r � L, let

�1 = sin�1
R� r

L
; �2 = sin�1

R + r

L
; � = cos�1

 
`� (R + r)

L

!
:

Otherwise, if R � r � L � R � r, let

�1 = sin�1
R� r

L
; �01 = cos�1

R� r

L
; � =

(
cos�1

�
`�(R+r)

L

�
; if ` � R + r � L;

�=2 otherwise.
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Next, if R + r � L;

V = 2

8>>><>>>:
v1(0; �) if � � �1; l � R + r + L;

v1(0; �1) + v2(�1; �) if �1 � � � �2; l � R + r + L;
v1(0; �1) + v2(�1; �2) if �2 � �; l � R + r + L;

0 otherwise.

Otherwise if R � r � L � R + r;

V = 2

8>>>>>>>><>>>>>>>>:

v1(0; �) if � � �1; �
0
1; l � R + r + L;

v1(0; �1) + v2(�1; �) if �1 � � � �01; l � R + r + L;
v1(0; �1) + v2(�1; �

0
1) + v4(�

0
1; �=2) if �1 � �01 � �; l � R + r + L;

v1(0; �
0
1) + v3(�

0
1; �=2) if �01 � � � �1; l � R + r + L;

v1(0; �
0
1) + v3(�

0
1; �1) + v4(�1; �=2) if �01 � �1 � �; l � R + r + L;

0 otherwise.

Otherwise if L � R � r;

V =

(
2�r(2R � `) if ` � 2R,
0 otherwise.

Finally,

VI = �wh� 2`(w + h) + `2

� =
V

VI

4.3 Expected Selectivities of Line Features

To compare the e�ect of line segments versus points, the next experiment estimates the

expected selectivity of line features for the telephone model. The expected selectivity for

random models should be similar.

Experiment 7: Expected selectivity of line features for the telephone model

Method

To compute the expected selectivity, I used the formula given in the last section. I ran

a series of the same trials from Experiments 5 and 6 when the selectivity of point features

was computed. For each trial, I used each pair of uncertainty circles that corresponds

to a line segment in the telephone model (Fig. 3-2) and computed the line segment

selectivities. This was repeated for various lengths of the average image line segment and

for various amounts of fragmentation, �.
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Length �

5 .001618

10 .001577

20 .001491

30 .001396

40 .001286

50 .001166

60 .001033

70 .0009125

80 .0008085

90 .0007057

100 .0006231

Table 4.1:

Expected selectivities of line features for various lengths of an image segment, using the telephone model.

� �

0.00 .000647

0.25 .001017

0.50 .001311

0.75 .001550

1.00 .001750

Table 4.2:

Expected selectivities of line features for various amounts of fragmentation,�, using the telephone model.

Results and Discussion

For 1000 trials, the selectivities of 9560 line uncertainty regions were computed and

averaged. Tables 4.1 and 4.2 give the results. As expected, the selectivities for lines are

much less than for points (compare to Table 3.6). For the telephone, we can see that the

largest selectivity using line features, .001750, is less than half the selectivity using point

features, .003722.
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Chapter 5

Sensitivity to False Positives

There are a number of important questions we would like to answer which depend on

the selectivity of a model feature. In particular, given that there is occlusion, what

percent of the total length of the model features must be matched in order to keep the

probability of a false positive less than some limit? How does this percentage vary with

the numbers of model and image features? Also, how many image features can there be

before the probability of a false positive exceeds some limit, that is, how much clutter

can the system withstand?

Grimson et al. have shown how to use the expected selectivity of the uncertainty

regions to answer the above questions [Grimson91] [Grimson92a] [Grimson92b], and so

I will apply their analysis here. Let � be the expected selectivity, let s be the number

of unmatched features in the image, let m be the number of unmatched features in the

model, and let m0 be the number of point features in the model that are used for gener-

ating hypotheses. Assuming that the s unmatched image features occur independently

and at random, the probability of at least one image feature appearing in a propagated

region with selectivity � is

p = 1� (1 � �)s (5:1)

The probability of exactly k of the m propagated regions having at least one random

feature is

qk =

 
m

k

!
pk(1� p)m�k (5:2)

The probability of at least k of the m propagated regions having at least one random

89
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feature is

wk = 1�
k�1X
i=0

qi = 1�
k�1X
i=0

 
m

i

!
pi(1� p)m�i (5:3)

wk is the probability of a false positive of size k. If we match a �xed image triple to all

possible model triples, the probability that at least one of the matches leads to a false

positive of size k is

ek = 1 � (1� wk)
(m

0

3 ) (5:4)

5.1 Limits on Scene Clutter

A recognition scheme based on extended model features will su�er from false positives

if a scene becomes extremely cluttered. It would be useful, then, to know how much

clutter a recognition system can accommodate before the probability of a false positive is

signi�cant. We can use Equation 5.4 to estimate this limit. To allow for partial occlusion,

let f be the fraction of model features that must be matched to keep the probability of

a false positive at most �, where � is a preset limit. Substituting mf for k, we want to
�nd the maximum s such that emf � �. This inequality can be solved numerically to get

the maximum s.

Table 5.1 shows the results for � = :001 (the numbers for � = :01 and � = :0001
are similar). Real images can easily contain as many as 500 features. The limits for the

uncertainty propagation technique of [Grimson92a] are very low. Although the numbers

are greatly improved using uncertainty circles, it is only when line segments are used that

numbers of features are in the range of images with substantial amounts of scene clutter.

5.2 Accepting a Partial Match

When the extended features of a model are used for veri�cation, we would like to know

what percent of the extended features must be matched before we can stop looking for

more matches. We can use Equation 5.3 to set a threshold on this percentage such that

the chance that a false positive will arise is less than a preset limit. Speci�cally, given a

three-point match, can compute the minimum f such that wmf � �2, where �2 is preset.

Table 5.2 shows the results for line segments. For comparison, the recognition system of

[Huttenlocher88] used f = :5 as a threshold on the percentage of the model to verify;
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Method � f = 0:25 0.50 0.75

Line Uncertainty Regions 0.00 161 537 1200

Line Uncertainty Regions 0.25 102 341 763

Line Uncertainty Regions 0.50 79 265 592

Line Uncertainty Regions 0.75 67 224 500

Line Uncertainty Regions 1.00 59 198 443

Uncertainty Circles { 31 97 216

Grimson92a { 15 43 95

Table 5.1:

Approximate limits on the number of sensory features for di�erent amounts of fragmentation �, and

for di�erent fractions f of unoccluded model features. Table is for � = 5, � = :001, for line segments

m = m
0 = 200 (line uncertainty regions), and for points m = 197 and m

0 = 200 (uncertainty circles and

[Grimson92a]).

� �2 = :01 .001 .0001

0:00 .36 .38 .41

0:25 .49 .51 .54

0:50 .57 .60 .62

0:75 .63 .66 .68

1:00 .67 .70 .72

Table 5.2:

Predicted termination thresholds for di�erent amounts of occlusion �, and for di�erent limits �2 on the

false positive probability. Table is for � = 5, m = m
0 = 200, and s = 500.

this agrees with the table when the amount of fragmentation is � = 25%.

5.3 Conclusion

The expected selectivities of model features can be used to estimate two important quan-

tities. The �rst is a limit on the number of spurious features there can be before the

likelihood of false positive becomes signi�cant. With such a limit, we can tell in advance,

given a model and an image, whether the recognition system is likely to succeed in �nding

the model in the image.
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The second quantity is a threshold on the percentage of model features to match.

Such a threshold can be used actively by a veri�cation system to cut short the search for

matches.



Chapter 6

Likelihood of a Hypothesis

In this chapter, I give a criterion which can be used to rank a hypothesis of three matched

model and image points, according to how likely it is of being correct. This step is similar

in purpose to the quick check used by Huttenlocher at the beginning of his veri�cation

stage [Huttenlocher88]. Huttenlocher used simple heuristics to �lter hypotheses, whereas

here I utilize the uncertainty propagation analysis to rank hypotheses formally, based on

a probabilistic model.

At the point where likelihoods are assigned (step 2d of the algorithm of Section 1.3),

the alignment system has hypothesized a pairing between three model and image points,

and the basic question is whether or not the pairing is correct. To make this deter-

mination, the system looks for additional matches to con�rm the three suggested ones.

Using the hypothesis, the extended model features (points, line segments, segments of

curves) are transformed and projected into the image. Then the correct search regions

are computed and searched for additional matches. Once the additional matches have

been collected, line segments that are nearly collinear and have proximate opposite end-

points should be combined. Also, curve segments should be combined if they appear

broken. Given a set of candidate image features for each predicted model feature, we

wish to estimate how likely it is that the hypothesis is correct.

93
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6.1 Formula for the Likelihood

To compute the likelihood, assume in general that all features in the image that do not

come from the model arise at random. In truth, such features arise from clutter in the

scene, occluding objects, and noise; so I am assuming the features these events introduce

e�ectively occur at random. This assumption has been made before for analyzing the

veri�cation stage of recognition and has yielded accurate results [Grimson91]. In addition,

I assume that none of the uncertainty regions overlap. Let M be the event that the

particular matches for the model features were found, and let H be the event that a

given three-point match is correct. Then the probability that the matches arose when

the model was present is p(M jH). Similarly, the probability that the matches arose at

random is the probability that the matches arose when the hypothesis is wrong, which

is p(M jH). However, we are interested in the probability of H given the eventM . From

Bayes' rule,

p(HjM) =
p(M jH)p(H)

p(M)
=

p(M jH)p(H)

p(M jH)p(H) + p(M jH)p(H)

=
1

1 + p(M jH)

p(M jH)
( 1
p(H)

� 1)
(6.1)

Notice that we also need to compute p(H), the a priori probability that the three

point match is correct. Let Hm be the event that the three matched model points are

visible, and let Hi be the event that the three matched image points were produced by

the three model points. Then p(H) = p(HijHm)p(Hm). If we have information about

self occlusion, we may be able to estimate p(Hm) for di�erent triples of model points.

Otherwise we can assume that the model is transparent, in which case p(Hm) is the same

for triples of the model, and hence equals the probability that the model appears in the

image.

As for p(HijHm), this is the probability that the three model features project to within

the error bounds of their corresponding image features. We could estimate this o�-line

for every triple of model features by sampling the viewing sphere and computing the

fraction of viewpoints from which the projected model points can be scaled, rotated in

2D, and translated in 2D to lie within the uncertainty regions of the three image points.

Alternatively, we could estimate p(HijHm) at run-time, using the pose-space analysis

in [Grimson92a]. More simply, we could assume that for the most part pose space is
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uniformly distributed. Then p(HijHm) is the probability that any point in pose space

gives a triple consistent with the image points. Since there is a point in pose space for

every image triple, this probability is
�
��2

A
I

�3
, where � is the error bound for the matched

image points and AI is the area of the image.

We still need to determine
p(M jH)

p(M jH)
. As mentioned, p(M jH) is the chance the matches

occurred at random. Let r equal the number of unmatched image features. Further, let

�i denote the selectivity of region Ri, and ri be the number of features found in Ri, for

i = 1; 2; : : : ; k. (Selectivity was de�ned in Section 3.5.) Also, let

rk+1 = r �
kX
i=1

ri (6.2)

�k+1 = 1�
kX
i=1

�i (6.3)

From the assumption that the regions do not intersect, �k+1 is the selectivity of the

background. For non-intersecting regions, the chance of r1 features landing in R1, r2
landing in R2,: : : , rk landing in Rk, and rk+1 landing in the background is �r11 �

r2
2 � � ��

r
k+1

k+1 .

The number of ways to choose r1; r2; : : : ; rk features from r is given by the multinomial

coe�cient,  
r

r1; r2; : : : ; rk+1

!
=

r!

r1!r2! � � � rk+1!
;

so that

p(M jH) =

 
r

r1; r2; : : : ; rk+1

!
�r11 �

r2
2 � � ��

r
k+1

k+1 (6:4)

Next, assume that if the hypothesis is correct, then the model features the system found

matches for were not actually occluded. Then we get p(M jH) by just subtracting one

feature from every propagated region:

p(M jH) =

 
r � k

r1 � 1; r2 � 1; : : : ; rk � 1; rk+1

!
�r1�11 �r2�12 � � ��rk�1k �

r
k+1

k+1 (6:5)

Dividing Equation 6.4 by 6.5,

p(M jH)

p(M jH)
=

r!

(r � k)!r1r2 � � � rk
�1�2 � � ��k (6:6)
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6.2 Modi�ed Formula for the Likelihood

Equation 6.1 with Equation 6.6 gives the correct likelihood according to the assumptions,

but did those assumptions gives us we want? According to the formula, when an uncer-

tainty region is small relative to the size of the image, the chance that a hypothesis is

correct increases as the number of matched features in a region goes up. This is because

it is unlikely for more and more features to randomly fall in the same small region. The

problem is that it is unclear that this behavior is desired. When there happen to be

many features in a region, then there probably exists some image event that violates the

assumption that the features arose at random. This event most likely is not due to the

object we are seeking, in which case we would not want the probability of the hypothesis

to increase with the number of features in the region.

A safer approach is to not use the actual numbers of features in the regions, but only

the fact that potential matches exist. For this approach, I re-de�ne M to be the event

that matches exist in those same uncertainty regions. As before, we assume that the

model features represented by M are not actually occluded, so that p(M jH) = 1. By so

doing, some hypotheses will be ranked higher than they should. If a threshold is used

to take the best-ranking hypotheses, then there simply will be more hypotheses to verify

later. With p(M jH) = 1, Equation 6.1 becomes

p(HjM) =
1

1 + p(M jH)(1=p(H) � 1)
(6:7)

In this formula, p(M jH) is the probability of a random conspiracy, that is, the probability

that at least one random image feature falls in every region represented by M . The

likelihood of this happening is the sum of the probabilities of all the ways random features

can fall in the regions. For r uniformly-distributed features, the chance that r1 fall in

region R1, r2 in R2,: : : , rk in Rk is given by Equation 6.4, which happens to be for the

old p(M jH). As before, let �k+1 = 1�
Pk
i=1 �i. Also, de�ne

rk+1(r1; r2; : : : ; rk) = r �
kX
i=1

ri:

I will abbreviate rk+1(r1; r2; : : : ; rk) by rk+1, but keep in mind that rk+1 is a function

while �k+1 is constant. Summing over all possible values of the ri's, for i = 1; 2; : : : ; k,
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the chance of a random conspiracy is

p(M jH) =
r�k+1X
r1=1

r�k+2�r1X
r2=1

� � �
r�r1�r2����rk�1X

r
k
=1

 
r

r1; r2; : : : ; rk+1

!
�r11 �

r2
2 � � ��

r
k+1

k+1 (6:8)

This formula involves a large number of computations of the expression from Equa-

tion 6.4. The number of computations is exponential in r and k, where r is the number

of unmatched image features and k is the number of predicted model features for which

potential matches exist. Appendix F derives a recurrence relation that computes one

minus the same result. Let S1; S2; : : : ; Sk be the \sizes" of the uncertainty regions, and

let SI be the \size" of the image. For points, the sizes are gives by the areas of the

uncertainty regions, and for lines the sizes are given by the volumes. The recurrence is,

qr(SI ;S1; : : : ; Sk) =

8>>><>>>:
Qr(SI;Sk) (1� qr(SI � Sk;S1; : : : ; Sk�1)) + qr(SI ;S1; : : : ; Sk�1)

if k > 1;
Qr(SI;S1) if k = 1 and S1 � SI ;
0 otherwise.

(6:9)
where

Qr(SI ;S) =

�
1�

S

SI

�r
(6:10)

This expression has repeated sub-problems at every recursive call, such that only one

additional subproblem is generated at each level. At the bottom level, there are k ex-

pressions to evaluate, namely Q(SI ; Si), for i = 1; : : : ; k, which are the only times r is

used. Dynamic Programming, then, can be used to compute the result of the recurrence

in time quadratic in k. Further, since r is the exponent in the equation for Qr(SI ;S),
the time is that needed to compute the power, which is logarithmic in r.

We may ask where this approach is likely to fail. The real trouble for the method is

regions where there exist potential matches, but the true feature is either hidden or was

not detected. Such regions will give positive evidence for the hypothesis, even though

the correct feature is not there. In these cases, I generously assigned p(M jH) = 1. As a

result, there may be many high-ranked hypotheses instead of a few. This situation seems

likely for point features, since spurious points can arise almost anywhere. For extended

features, on the other hand, such as line segments and segments of curves, it is much less

likely for a long feature to randomly fall in an uncertainty region, and so the chance of

the true feature being covered up while random ones appear is expected to be small.
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6.3 Summary

The goal of the last two sections was to provide a means for distinguishing a few, most-

probable hypotheses, using the extended features of a model. For ease of use, I will

summarize the method for line segments. It should be straightforward to apply the

method to points, since they are a simpler case. I chose line segments since points are

less useful for veri�cation, and line segments are used more commonly.

Given a three-point hypothesis, project the model line segments into the image and

compute their line uncertainty regions, making sure to expand out the boundaries by

�. In detail, for each endpoint of a model line segment, �rst compute its uncertainty

circle: The center point is at the nominal point and the radius r equals the maximum

distance from the nominal point to one of the 83 = 512 sample points, plus �. The

line uncertainty region is de�ned by the uncertainty circles for the endpoints and their

common outer tangents (Fig. 4-1). Next, search the uncertainty regions to see which

ones have candidate matches. Use the method of Chapter 4 to compute the volumes V

of each line uncertainty region and the volume VI of the image. Also, let s be the total

number of image features, let r = s� 3, and let

p(H) =

 
��2

wh

!3

To use the approach of Section 6.1, next calculate the line selectivities using � = V
V
I

.

Then compute
p(M jH)

p(M jH)
=

r!

(r � k)!r1r2 � � � rk
�1�2 � � � �k;

from which the likelihood of the hypothesis is

p(HjM) =
1

1 +
p(M jH)

p(M jH)
( 1
p(H)

� 1)
:
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To use instead the approach of Section 6.2, de�ne the recurrence relation,

qr(SI ;S1; : : : ; Sk) =

8>>><>>>:
Qr(SI;Sk) (1� qr(SI � Sk;S1; : : : ; Sk�1)) + qr(SI ;S1; : : : ; Sk�1)

if k > 1;
Qr(SI;S1) if k = 1 and S1 � SI ;

0 otherwise.

with

Qr(SI ;S) =

�
1�

S

SI

�r
Using the recurrence, compute qr(VI ;V1; : : : ; Vk). Then let

p(HjM ) = 1� qr(VI ;V1; : : : ; Vk)

and, �nally, the likelihood of the hypothesis is

p(HjM) =
1

1 + p(M jH)(1=p(H) � 1)

6.4 Precomputing the Likelihoods

For 
at models, it is known that the size of the uncertainty region for a predicted model

feature does not change with viewpoint, that is, the size does not change as di�erent image

points are hypothesized to match the same triple of model points. For solid models, it

may be the case that the size of an uncertainty region changes only a little with viewpoint,

if the model is not very elongated. In this case, it would be possible to pre-compute the

uncertainty regions for each triple of model points. In addition, for each such triple,

the likelihoods could be computed in advance for di�erent subsets of the corresponding

propagated regions. Then the model triples could be ordered in advance according to

how likely they are of having a subset of propagated regions with a high likelihood of

being correct. Despite the possibilities, it must �rst be determined how sensitive are the

uncertainty regions for out-of-plane model features to changing viewpoint.
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6.5 Discussion

In deciding on a three-point match, the main mechanism we are banking on is that it is

unlikely for features to arise at random in the uncertainty regions. And so the more model

features for which we �nd potential matches, the more likely it is that the hypothesis is

correct. For the approach of Section 6.1, note that generally the ratio in Equation 6.6

decreases as k, the number of model features for which candidate matches were found,

increases. From Equation 6.1, this causes p(HjM) to increase, as is desired.

There is a secondary e�ect that realizes that �nding candidate matches for many

model features may not imply that the hypothesis is correct. In particular, if matches

are found within uncertainty regions that are very large, then the matches could just as

easily have arisen randomly. It is important to know when we are in such a situation,

and to reduce our con�dence in the hypothesis. This e�ect depends on the sizes of

the uncertainty regions, which depend on which three points from the model are being

used in the hypothesis and where the model is being viewed from. For the approach of

Section 6.1, larger uncertainty regions cause the �i in Equation 6.6 to increase. From

Equation 6.1, this causes p(HjM) to decrease, as is desired.

A tertiary e�ect on the likelihood of a hypothesis is the chance that the three model

points projected to their hypothesized corresponding image points. Although it may seem

related, this issue is orthogonal to the issue of the e�ect on the sizes of the uncertainty

regions due to where the model is viewed from. To see this, note that if the model triple

is equally likely to project to any image triple, it could still be that which image triple it

projects to makes a big di�erence in the sizes of the uncertainty regions. If we suppose

the model triple is equally-likely to be seen from any direction, then it may be that

some image triples are very unlikely to arise, despite the fact that every image triple is

possible. The reason this issue is important is that it may be possible to have a match

for several model features that is unlikely to have arisen at random, but at the same time

the model triple has almost a zero chance of projecting to its hypothesized image triple.

Using p(H), the analysis above gives us a way of trading o� these e�ects.



Chapter 7

Conclusion

This thesis has four main contributions. The �rst is a geometric understanding of a fun-

damental problem in computer recognition, namely, the solution for 3D pose from three

corresponding points under weak-perspective projection (Chapter 2). A new solution

to the problem was given, and the situations where there is no solution and where the

solution is unstable were described. In addition, the new solution was put in perspective

with previous solutions, and the three most related earlier solutions were presented in

detail and compared.

In addition, Chapter 2 showed how the image position of an unmatched model point

can be computed e�ciently using the solution for 3D pose. In particular, Chapter 2 gave

an expression for the fourth point image position that did not involve going through

a model-to-image transformation, but instead computed the position directly from the

distances between the three matched points. This is important for alignment-style recog-

nition, since the image positions of the unmatched model points are computed many

times while searching for the correct pose of the model.

The second major contribution of this thesis is an error analysis of point features

for alignment-style recognition of 3D models from 2D images (Chapter 3). The earlier

analysis of [Grimson92a] was conservative in its bounds on the propagated uncertainty,

and Chapter 3 showed we can do better. In fact, the analysis in Chapter 3 is almost

always a solution, which means its bounds are exact, notably except where the 3D pose

solution is inherently unstable. Chapter 3 showed pictures of what the true uncertainty

regions look like when the bounds are not exact. In these cases, the bounds conservatively

overestimate the exact bounds.
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Even though the error propagation technique in Chapter 3 is generally accurate,

the technique has the disadvantage of being numerical. Nevertheless, so was the only

previous error propagation technique. Moreover, for most recognition problems, the time

to compute the solution is e�ectively constant, as though the solution were analytic.

Another contribution of this thesis is a formula for the selectivity of line features

(Chapter 4). The selectivity of a feature can be used to infer the expected performance

of recognition systems. It can also be used to set a threshold on how much of a model

must be identi�ed in an image before the object is recognized (Chapter 5). To date, a

selectivity formula for line features has been provided for recognition involving 2D models

and 2D data, and for 3D models and 3D data [Grimson91]. The formula derived here is

the �rst for recognition involving 3D models and 2D data.

The fourth major contribution is a formula for the likelihood of a hypothesized three-

point match (Chapter 6). The formula applies to point or line features, and relies on

their associated uncertainty regions. The formula is intended to be used actively during

recognition to quickly �lter hypotheses that have little support from the image.

These four contributions tie together well for building a fast and robust alignment

system. The uncertainty analysis provides the correct minimal search regions to guar-

antee that no correct hypotheses are lost, which makes the recognition insensitive to

false negatives. Further, the uncertainty regions can be computed quickly using the er-

ror propagation technique and the fast solution for the image position of an unmatched

model point. Once computed, the uncertainty regions usually are small enough to be

searched rapidly for candidate image features. Then, using the likelihood formula, the

current hypothesis can be evaluated.



Chapter 8

Future Work

Having theoretically studied the alignment system proposed in Chapter 1, the next step

is to build an alignment system that uses just the extended features of a model to select

best hypotheses. The system would be based on geometric features, particularly points

and line segments. Furthermore, the system would be compared to other hypothesize-

and-test techniques that also use 3D models and 2D images, notably [Lowe85] and [Hut-

tenlocher88].

Another worthwhile study would be to build the complete models suggested in Chap-

ter 1. This requires obtaining complete 3D edge maps and extracting extended features

from them. Given the edge maps, it would be useful to show that they can be used to

reliably verify the presence or absence of the model when the model pose is known up to

uncertainty in the data.

Another problem is to discover the correct shapes and distributions of the uncertainty

in image features, instead of just bounding them. Jacobs observed that simply adjusting

the size of the bounded error threshold makes a big di�erence in the e�ectiveness of his

grouping system [Jacobs89]. It would be useful, then, to be able to set this threshold

automatically. More generally, it is expected that the errors in features di�er signi�cantly

across images, as well as across a single image, and that they are dependent. It would

be of interest to study the feature detection process from image formation on up to see

how errors can alter the features of a model.

Lastly, the proposed system expects a minimal amount of grouping to be performed.

Grouping is an area that has both received much attention and has much potential for
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improvement. Many approaches attempt to do grouping with just line segments, but

after line segments have been extracted, too much information has been lost. There are

many techniques for segmenting images into regions based on intensities [Haralick85],

but typically these simply cluster similar intensities and do not take advantage of higher-

level shape information at edges. Grouping should be performed using intensity images

together with their edges.



Appendix A

Rigid Transform between 3

Corresponding 3D Points

This appendix computes a rigid transform between two sets of three corresponding points

using right-handed coordinate systems built separately on each set of three points. A

right-handed system is determined by an origin point, ~o, and three perpendicular unit

vectors, (bu; bv; bw). Given three points in space, ~p0, ~p1, ~p2, we can construct a right-handed

system as follows: Let ~p01 = ~p1 � ~p0 and ~p02 = ~p2 � ~p0. Then let

~o = ~p0

~u = ~p01

~v = ~p02 � (~p02 � bp01)bp01
~w = ~u� ~v

Let (~o1; bu1; bv1; bw1) and (~o2; bu2; bv2; bw2) be the coordinate systems so de�ned for the original

and camera-centered points, respectively.

Given a coordinate system (~o; bu; bv; bw), a rigid transformation that takes a point in

world coordinates to a point in that coordinate system is given by (R;~t), where

R = [bu bv bw]; ~t = ~o

(see for example [Craig55]); the transformed ~p is R~p + ~t. Then we can bring a point ~p
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from the original system to the world and then to the camera-centered system using

R2

�
R1

T (~p� ~t1)
�
+ ~t2 = R2R1

T~p+ ~t2 �R2R1
T~t1

where
R1 = [bu1 bv1 bw1]; ~t1 = ~o1
R2 = [bu2 bv2 bw2]; ~t2 = ~o2:

Consequently a rigid transformation (R;~t) that aligns the two coordinate systems is

R = R2R1
T ; ~t = ~t2 �R2R1

T~t1: (A:1)



Appendix B

Solving for the Scale Factor

B.1 Biquadratic for the Scale Factor

This appendix shows

4(s2R2
01 � d201)(s

2R2
02 � d202) =

�
s2(R2

12 �R2
01 �R2

02)� (d212 � d201 � d202)
�2

(B:1)

is equivalent to a biquadratic in s.

Expanding Equation B.1,

4
�
s4R2

01R
2
02 � s2(R2

01d
2
02 +R2

02d
2
01) + d201d

2
02

�
=

s4(R2
01 +R2

02 �R2
12)

2 � 2s2(R2
01 +R2

02 �R2
12)(d

2
01 + d202 � d212)

+(d201 + d202 � d212)
2

s4
�
4R2

01R
2
02 � (R2

01 +R2
02 �R2

12)
2
�

�2s2
�
2R2

01d
2
02 + 2R2

02d
2
01 � (R2

01 +R2
02 �R12)(d

2
01 + d202 � d212)

�
+
�
4d201d

2
02 � (d201 + d202 � d212)

2
�
= 0

as4 � 2bs2 + c = 0;
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where

a = 4R2
01R

2
02 � (R2

01 +R2
02 �R2

12)
2

b = 2R2
01d

2
02 + 2R2

02d
2
01 � (R2

01 +R2
02 �R2

12)(d
2
01 + d202 � d212)

c = 4d201d
2
02 � (d201 + d202 � d212)

2:

B.2 Two Solutions for Scale

The following lemma completes the proof of Proposition 1:

Lemma : Let f be either
�
d01
R01

�2
or
�
d02
R02

�2
. Then

af2 � 2bf + c � 0: (B:2)

Proof:

af2 � 2bf + c

= 4(R01R02 sin�)
2f2 �

2
�
2(R2

01d
2
02 +R2

02d
2
01 � 2R01R02d01d02 cos� cos )

�
f +

4(d01d02 sin )
2; from Equations 2.18, 2.19, and 2.20

= 4
�
R2

01R
2
02(1� cos2 �)f2�

(R2
01d

2
02 +R2

02d
2
01 � 2R01R02d01d02 cos� cos )f +

d201d
2
02(1� cos2  )

�
(B.3)

Suppose that f =
�
d01
R01

�2
. Then B.3 becomes

4

 
�
R2

02d
4
01

R2
01

cos2 �+ 2
R02d

3
01d02

R01

cos � cos � d201d
2
02 cos

2  

!
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= �4R2
02d

2
01

 
d01

R01

cos��
d02

R02

cos 

!2

Suppose instead that f =
�
d02
R02

�2
. Then B.3 becomes

4

 
�
R2

01d
4
02

R2
02

cos2 �+ 2
R01d

3
02d01

R02

cos � cos � d201d
2
02 cos

2  

!

= �4R2
01d

2
02

 
d02

R02

cos��
d01

R01

cos 

!2

Either way, af2 � 2bf + c � 0:

2

B.3 One Solution for Scale

In the \one solution" case, we wish to know when and if b2 � ac = 0 holds. Using the

result of Appendix B.5, this means that

4(R01d02)
4
�
t2 � 2 cos(�+  )t+ 1

� �
t2 � 2 cos(��  )t+ 1

�
= 0:

For this to hold, either

t2 � 2 cos(�+  )t+ 1 = 0 or t2 � 2 cos(��  )t+ 1 = 0:

Solving for t gives

t = cos(�+  )� i sin(�+  ) or t = cos(��  )� i sin(��  ); (B:4)

where i =
p
�1. Consequently, there are real values of t that make b2 � ac = 0 only if

sin(�+ ) = 0 or sin(�� ) = 0. These situations occur when � = � and � = � + �.

Substituting into Equation B.4 gives that b2 � ac = 0 i� both � = � or � = � + �

and t = 1, where t = 1 is the same as d01
R01

= d02
R02

.
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B.4 No Solutions for Scale

This appendix shows that there always exists a solution to the biquadratic by showing

that b2 � ac � 0. From Appendix B.5,

b2 � ac = 4(R01d02)
4
�
t2 � 2 cos(�+  )t+ 1

� �
t2 � 2 cos(��  )t+ 1

�
� 4(R01d02)

4
�
t2 � 2t+ 1

� �
t2 � 2t+ 1

�
= 4(R01d02)

4(t� 1)4

� 0

B.5 Simplifying b
2
� ac

In this appendix, I derive that

b2 � ac = 4(R01d02)
4
�
t2 � 2 cos(�+  )t+ 1

� �
t2 � 2 cos(��  )t+ 1

�
; (B:5)

where

t =
R02d01

R01d02
:

From Equations 2.18, 2.19, and 2.20,

a = 4(R01R02 sin�)
2

b = 2(R2
01d

2
02 +R2

02d
2
01 � 2R01R02d01d02 cos� cos )

c = 4(d01d02 sin )
2

Then

b2 = 4(R4
02d

4
01 � 4R3

02d
3
01R01d02 cos� cos + 2R2

01R
2
02d

2
01d

2
02 +

4R2
01R

2
02d

2
01d

2
02 cos

2 � cos2  � 4R3
01d

3
02R02d01 cos� cos +R4

01d
4
02)

ac = 16R2
01R

2
02d

2
01d

2
02 sin

2 � sin2  

b2 � ac = 4
�
R4

02d
4
01 � 4R3

02d
3
01R01d02 cos � cos +
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(2 + 4 cos2 � cos2  � 4 sin2 � sin2  )R2
01R

2
02d

2
01d

2
02 �

4R3
01d

3
02R02d01 cos � cos +R4

01d
4
02

�

= 4(R01d02)
4
�
t4 � 4 cos � cos t3 + (2 + 4 cos2 � cos2  � 4 sin2 � sin2  )t2�

4 cos � cos t+ 1) ; where t = (R02d01)=(R01d02)

= 4(R01d02)
4
�
t4 � 2 (cos(�+  ) + cos(��  )) t3+

(2 + 4 cos(�+  ) cos(��  )) t2 � 2 (cos(�+  ) + cos(��  )) t+ 1
�

= 4(R01d02)
4
�
t2 � 2 cos(�+  )t+ 1

� �
t2 � 2 cos(��  )t+ 1

�
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Appendix C

Generating Random Image and

Model Points

This appendix describes how I generated random triples of image points, random triples

of model points, and random point models.

C.1 Random Image Triples

Image triples were formed by randomly selecting three 2D locations from an image; the

image had dimensions 454 � 576. I selected image points within a margin of 20 pixels

from the boundary. The reason for the margin is that in Experiment 1 (Section 3.2), I

discarded propagated uncertainty regions that overlapped the boundary. In order to save

time, I used the margin to avoid generating such regions. This basically assumes that

image points close to the boundary can be ignored.

In addition to the constraint from the margin, another restriction I applied was to

pick image points that were at least 25px apart and at most 250px apart. The minimum

distance is used to avoid degenerate point triples, and the maximum distance is used to

re
ect the expected size of an object found in an image. To get three points that were

between 25px and 250px apart, I began by placing the �rst point at the origin, (0,0). To

get a point at most 250px away from the �rst, the second point was chosen at random

from a square centered at the origin of side 2 � 250 + 1 = 501px. This step was repeated

until a point was at least 25px away and at most 250px away from the �rst point was
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selected. The third point was repeatedly chosen at random from the same square until

a point at least 25px and at most 250px from both of the �rst two points was selected.

This gave an arbitrary triangle within the given distance bounds.

In order to allow the triangle to arise anywhere in the image, the triangle was then

randomly translated by putting the �rst point at a location randomly chosen from within

the margin of the image, until a translation was found that left all three points within

the margin.

C.2 Random Model Triples

Given a list of model points, which could come from a random model or a true model,

�rst two di�erent points in the list were selected randomly. Then a third point was

repeatedly selected at random until a point was found that was non-collinear with the

�rst two. Three points were considered to be collinear if the triangle formed by the three

had any angle greater than 175�.

C.3 Random Models

All the generated models had ten points. Ten was chosen because it is a low bound on

the number of points in a model, or, equivalently, the number of propagated regions per

trial. I wanted a low bound in order to conservatively estimate how well the uncertainty

circles �t. A low bound leads to generating more propagated regions with di�erent poses.

Trying more poses increases the chance of hitting cases where the uncertainty circles are

�t poorly.

To re
ect the �nal appearance of the model in the image, the model points were all

chosen to be within 25px and 250px apart. Note that the initial scale of the model is

irrelevant, since scale is computed in the pose solution. To get a 3D model, the �rst point

was put at the origin. Then the other model points were selected at random from a cube

centered at the origin with side 501px. In addition, each new model point was repeatedly

chosen until it was at least 25px and at most 250px from all the current model points.

As with scale, the initial translation of the model is arbitrary, since translation is solved

for when the pose is computed.



Appendix D

Computing Areas of the True

Uncertainty Regions

This appendix describes how the true uncertainty regions are computed from a model

and three matched model and image points. First each model point is tested for whether

it is in the plane of the three matched model points. If so, its area is computed from the

known analytic solution for this case [Jacobs91].

In general, the model points will not lie in the plane of the matched model points.

In these cases, the true regions are computed by uniformly sampling twenty-�ve points

along the circle boundaries of the three matched image points. This gives 253 = 15625

samples for each propagated uncertainty region. To obtain the area, �rst the propagated

sample points are written to an image. Then the outer boundary de�ned by the points

in the image is traversed in a four-connected walk. Lastly, all the pixels inside this outer

boundary are counted to get the area. Observe that this method can cause the true area

to be overestimated because the pixels inside the four-connected boundary can include

eight-connected pixels that are not part of the region.

There are two solutions for each pair of model and image triples, which correspond

to a re
ection about a plane parallel to the image (Chapter 2). In the pose solution of

Chapter 2, H1 and H2 represent the di�erences in the z coordinates between the �rst

model point and the second and third model points, respectively; the di�erences for the

re
ected solution are therefore �H1 and �H2. To distinguish the two sets of points

corresponding to the two weak-perspective solutions, I use the nominal values of H1 and

H2, which occur when the matched image points are at their nominal locations. If the
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nominal H1 is larger, I take all the solutions with the same sign for H1 as being from

the same region. I do the opposite if the nominal H2 is larger. For the most part,

this method works to separate the two regions as long as they do not overlap. If the

propagated regions do overlap, there really is one region, and this method will cause it

to split.



Appendix E

Areas and Volumes of Line

Uncertainty Regions

E.1 True Area of a Line Uncertainty Region

Given a line segment of known orientation and length, the area of the uncertainty region

in Fig. 4-2 can be computed by moving the line segment perpendicular to its orientation.

This is shown in Fig. 4-5 parametrized by u. This section computes the uncertainty

region area. For simplicity, I assume the uncertainty circles for the endpoints do not

intersect.

For a given o�set u, we are interested in the distance between the outer intersection

points of the line and the circles. From the �gure, this distance equals

k (x1; y1)� (x2; y2) k =
x2 � x1

cos �
=

y2 � y1

sin �
:

Putting the origin at the smaller circle, the equations of the line and circles are

�x sin � + y cos � = u (E.1)

x2 + y2 = r2 (E.2)

(x� L)2 + y2 = R2 (E.3)
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Assuming cos � 6= 0, we can solve for y in Equation E.1 and substitute into Equation E.2:

x2 +

 
u+ x sin �

cos �

!2

= r2

=) x2 cos2 � + (u+ x sin �)2 � r2 cos2 � = 0

=) x2 + 2u sin � x+ u2 � r2 cos2 � = 0

=) x = �u sin � �
p
r2 � u2 cos �

=) x1 = �u sin � �
p
r2 � u2 cos �; from Fig. 4-5.

Note that the discriminant is non-negative, since juj � r from Fig. 4-5. Next, substitute

for y from Equation E.1 into Equation E.3:

(x� L)2 +

 
u+ x sin �

cos �

!2

= R2

=) (x� L)2 cos2 � + (u+ x sin �)2 �R2 cos2 � = 0

=) x2 + 2(�L cos2 � + u sin �)x+ u2 + L2 cos2 � �R2 cos2 � = 0

=) x = L cos2 � � u sin � �
q
R2 � (L sin � + u)2 cos �

=) x2 = L cos2 � � u sin � +
q
R2 � (L sin � + u)2 cos �; from Fig. 4-5.

Again, the discriminant is non-negative: The maximum value of u = min(r;R� L sin �)

(see Figs. 4-5 and 4-6), and so

u � R � L sin � =) u+ L sin � � R

=) (u+ L sin �)2 � R2; since juj � R:

Given x1 and x2,

x2 � x1

cos �
= L cos � +

q
R2 � (u+ L sin �)2 �

p
r2 � u2 (E:4)

The area A of the shaded region in Fig. 4-2 equals the integral of Equation E.4 from

u = �r to u = min(r;R � L sin �), if the region exists. The region exists if the image

segment's orientation is within the bounds of the line uncertainty region, that is, if
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L sin � � R+ r (Fig. 4-4). Thus

A =

8>><>>:
Rmin(r;R�L sin �)
�r

�
L cos � +

q
R2 � (u+ L sin �)2 �

p
r2 � u2

�
du

if L sin � � R + r;

0 otherwise.

(E:5)

This is not the area we are interested in, however. Instead, we want this area shrunk

by the length of the image segment. Let ` be the length of the image segment. To

compute the desired area, subtract ` from the term being integrated, Equation E.4. In

addition, we must change the upper limit of the integration, since it is constrained by `.

In particular, we need to know if and where term being integrated crosses zero, which is

where

� `+ L cos � +
q
R2 � (u+ L sin �)2 �

p
r2 � u2 = 0: (E:6)

This equation leads to a quadratic in u:

(k21 + 1)u2 + 2k1k2u+ k22 � r2 = 0 (E:7)

where

k1 =
L sin �

L cos � � `
(E.8)

k2 =
`2 + L2 �R2 + r2 � 2`L cos �

2(L cos � � `)
(E.9)

Then

u =
�k1k2 �

q
(k21 + 1)r2 � k22

k21 + 1
(E:10)

The term being integrated crosses zero if the discriminant is non-negative. There are

two solutions because squaring was used in the algebra to obtain Equation E.7 from

Equation E.6. If the discriminant is non-negative, let u� be the u from Equation E.10

that satis�es Equation E.6, and let umax = min(u�; r; R + r � L sin �); otherwise let

umax = min(r;R+ r � L sin �). Then the area of translations is

A =

8>><>>:
R umax
�r

�
�`+ L cos � +

q
R2 � (u+ L sin �)2 �

p
r2 � u2

�
du

if L sin � � R+ r;

0 otherwise.

(E:11)
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E.2 Integrating Areas to Volumes

v1 =

Z
(R+ r + L cos � � `)2r d� =

Z
(R+ r � `)2r d� +

Z
2rL cos � d�

= (R + r � `)2r� + 2rL sin � (E.12)

v2 =

Z
(R+ r + L cos � � `)(R + r � L sin �) d�

=

Z
(R+ r � `)(R + r) d� �

Z
(R + r � `)L sin � +

Z
(R+ r)L cos � d�

�
Z
L2 cos � sin � d�

= (R + r � `)(R + r)� + (R + r � `)L cos � + (R + r)L sin � �
1

2
L2 sin2 � (E.13)

v3 =

Z
(2R � `)2r d� = (2R � `)2r� (E.14)

v4 =

Z
(2R � `)(R + r � L sin �) d� =

Z
(2R � `)(R + r) d� �

Z
(2R� `)L sin � d�

= (2R � `)(R + r)� + (2R � `)L cos � (E.15)



Appendix F

Recurrence Relation for the

Likelihood of a Hypothesis

Let Ni be the event that none of the uniformly distributed image features landed in

region Ri. Then the probability that at least one image feature landed in every region is

p(M jH) = p(N1 ^ � � � ^Nk);

which implies

p(M jH) = p(N1 _ � � � _ Nk)

= p(N1 _ � � � _ Nk�1) + p(Nk)� p ((N1 _ � � � _Nk�1) ^Nk)

= p(N1 _ � � � _ Nk�1) + p(Nk) (1 � p(N1 _ � � � _Nk�1jNk)) (F.1)

p(N1 _ � � � _ Nk) is a function of the uncertainty region sizes, Si, for i = 1; 2; : : : ; k, the

maximum size, SI , and the number of uniformly distributed features, r. For points, the

sizes are gives by the areas of the uncertainty regions, and for lines the sizes are given by

the volumes. To make the dependency explicit, de�ne

qr(SI ;S1; : : : ; Sk)
def
= p(N1 _ � � � _Nk)

Therefore in Equation F.1, p(N1 _ � � � _ Nk�1) = qr(SI ;S1; : : : ; Sk�1).

Next, let us consider p(N1 _ � � � _Nk�1jNk). If event Nk occurs, that is, if no features

land in the kth region, then all of the features are distributed over the rest of the image,
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so that

p(N1 _ � � � _Nk�1jNk) = qr(SI � Sk;S1; : : : ; Sk�1)

Lastly, p(Nk) is the probability that all the features missed the kth region, which

equals (1� S
S
I

)r. De�ne

Qr(SI ; Sk)
def
= p(Nk):

Plugging into Equation F.1, p(M jH) is given by qr(SI ;S1; : : : ; Sk), which is deter-

mined by the recurrence relation,

qr(SI ;S1; : : : ; Sk) =

8>>><>>>:
Qr(SI;Sk) (1� qr(SI � Sk;S1; : : : ; Sk�1)) + qr(SI ;S1; : : : ; Sk�1)

if k > 1;
Qr(SI;S1) if k = 1 and S1 � SI ;
0 otherwise.

where

Qr(SI ;S) =

�
1�

S

SI

�r
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