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Abstract

To visually recognize objects, we adopt the strategy of forming groups of image

features with a bottom-up process, and then using these groups to index into a data
base to �nd all of the matching groups of model features. This approach reduces the

computation needed for recognition, since we only consider groups of model features
that can account for these relatively large chunks of the image.

To perform indexing, we represent a group of 3-D model features in terms of

the 2-D images it can produce. Speci�cally, we show that the simplest and most
space-e�cient way of doing this for models consisting of general groups of 3-D point

features is to represent the set of images each model group produces with two lines (1-

D subspaces), one in each of two orthogonal, high-dimensional spaces. These spaces
represent all possible image groups so that a single image group corresponds to one
point in each space. We determine the e�ects of bounded sensing error on a set of
image points, so that we may build a robust and e�cient indexing system.

We also present an optimal indexing method for more complicated features, and

we present bounds on the space required for indexing in a variety of situations. We use
the representations of a model's images that we develop to analyze other approaches
to matching. We show that there are no invariants of general 3-D models, and demon-

strate limitations in the use of non-accidental properties, and in other approaches to
reconstructing a 3-D scene from a single 2-D image.

Convex groups of edges have been used as a middle level input to a number of
vision systems. However, most past methods of �nding them have been ad-hoc and
local, making these methods sensitive to slight perturbations in the surrounding edges.

We present a global method of �nding salient convex groups of edges that is robust,

and show theoretically and empirically that it is e�cient.

Finally, we combine these modules into a complete recognition system, and tests

its performance on many real images.
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Chapter 1

Introduction

The human ability to recognize objects visually is far more powerful and 
exible
than existing techniques of machine vision. People know about tens of thousands of
di�erent objects, yet they can easily decide which object is before them. People can
recognize objects with movable parts, such as a pair of scissors, or objects that are
not rigid, such as a cat. People can balance the information provided by di�erent
kinds of visual input, and can recognize similarities between objects. Machines can

not do these things at present.

There are a variety of di�culties in modeling this human performance. There

are hard mathematical problems in understanding the relationship between geometric
shapes and their projections into images. Problems of computational complexity arise
because we must match an image to one of a huge number of possible objects, in any

of an in�nite number of possible positions. At a deeper level, di�culties arise because
we do not understand the recognition problem. We do not know how to characterize

the output that should follow each possible input. For example, people look at a few

camels, and on the basis of this experience they extract some understanding of what

is a camel that allows them to call some new creature a camel with con�dence. We
do not know what this understanding is.

Because recognition is such a di�cult and poorly understood problem, most work
on object recognition has begun with some formalization of the problem that greatly

simpli�es it. Also, many vision researchers are more interested in constructing useful

machines than in modeling human performance, and many valuable applications re-
quire recognition abilities that are much weaker than those that people possess. For
those interested in human recognition, however, there is the danger that we may solve

simple recognition problems in a way that does not contribute to the solution of more

ambitious problems.

In this work, we have tried to make progress on concrete, simpli�ed recognition

problems in a way that still speaks to the larger di�culties of human vision. Com-

9



10 CHAPTER 1. INTRODUCTION

putational complexity presents tremendous challenges in any current version of the

recognition problem, and it seems that complexity is a fundamental part of the prob-

lem that the human visual system solves. Therefore we have adopted a strategy for

recognition that might be extended to handle problems of arbitrary complexity. A

second deep puzzle of human vision is how we describe an object and an image that

we wish to compare when the object is 3-D and the image is only 2-D. We also address
this problem in this thesis.

We begin this introduction by describing a well-de�ned version of the recognition

problem that still contains the di�cult problems of computational complexity and

the need to compare objects at di�erent dimensions. We then describe a strategy for
handling the complexity of this problem using grouping and indexing. We also show

how the indexing problem forces us to confront the di�cult issue of comparing a 2-D
image to a 3-D model, and describe possible solutions to this problem. But at the

same time this work has been led by our intuitions about humans. After describing
our approach to recognition, we will explain how it �ts these intuitions.

We assume a problem statement that is commonly used in model-based object
recognition. A model of an object consists of precisely known local geometric features.

For example, we might use points to model the corners of an object. Line segments
or curved contours can model sharp edges in an object that often form occluding
contours. 2-D surfaces or 3-D volumes can model larger chunks of the object. Most

of the work in this thesis will use points and line segments. These allow us to fully
describe the edges produced by polyhedral objects, and also to capture much of the

shape of some non-polyhedral objects that contain corners and sharp edges. This

assumption of a precise geometric model is limiting; it is not clear that people possess
such models for the objects they recognize, or how one could apply a method based
on geometric models to recognize members of a class of objects, such as camels, whose
individuals vary considerably. Within this problem statement, however, we still have
all the di�culties of recognizing a large number of complex and realistic objects.

Given a set of such models as background knowledge, the recognition system

operates on a still photograph containing a known object. Using standard techniques

it locates 2-D features that are analogs of our model's 3-D geometric features. The use

of standard low-level vision modules to �nd features ensures that we are using data
that can be derived bottom-up from the image. This means, however, that perhaps
due to limitations in existing low-level vision, we will detect features imperfectly.

We will miss some features in the image and detect spurious features, and we will

encounter signi�cant error in localizing features in the image. So recognition becomes
the problem of matching model features to image features in a way that is consistent
with geometry and with these potential errors.

Figure 1.1 shows an example of such a recognition task. We use line segments

to indicate the location of edges of the phone that frequently produce edges in an
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Figure 1.1: This shows an example of a recognition task in the domain that we con-

sider. On the top left is a picture of a telephone with some objects in the background

and some occluding objects. On the top right, some edges found in this image. On
the bottom, some point features located in the image (circles) have been matched to
some point features representing a model of the phone (squares). The image edges are

shown as dotted lines, while line segments indicated the predicted location of some

portions of the telephone's boundary.
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image. Where two of these line segments indicate a stable vertex, we position a point

feature. This representation ignores much of the volumetric structure of the phone

in order to focus on simple 3-D features that usually show up as 2-D features in an

image. Even these simple features, however, can capture much of the structure of a

real object, such as a telephone.

Why should a version of recognition that is limited to geometry provide insight

into human recognition? Under many circumstances additional information is not
available to humans, and yet their recognition process proceeds, scarcely impaired.

For example, when people are looking at a photograph of an object, or looking at a

natural object that is far away, stereo and motion cues are not available. Frequently,
objects do not have colors or textures that helps us recognize them. It seems that the

visual system is able to take advantage of whatever cues are present, but that it can

also proceed when many potential cues are absent. This thesis attempts to contribute
to an understanding of how shape may be used to recognize objects. Because we seem
able to function smoothly when only this cue is present, it seems plausible that we may
be able to understand the use of shape in isolation, before we attempt to understand
its interaction with other cues.

1.1 Coping with the Cost of Recognition

Once we have modeled an object using simple features we may approach recognition

as a search among possible matches between image and model features. But we
must somehow cope with an extremely large number of possible correspondences.

Furthermore, the problem becomes harder to solve as we consider that we might have
to discriminate between many tens or hundreds of thousands of di�erent objects, and
when we consider objects that have movable parts.

To illustrate the problem of computational complexity, let's consider how one of

the most conceptually simple approaches to object recognition, alignment, requires
more and more computation as our problem domain becomes more challenging. Sup-

pose for simplicity that our geometric features consist just of points. Then, with

alignment, a correspondence is hypothesized between some model and some image
points. We then determine the pose of the object that would cause the model points
in the correspondence to project near the image points to which we have matched

them. To keep the number of poses considered at a minimum, the smallest possible

number of features are matched that will still allow us to determine the pose of the
object. We attempt to verify each pose by determining how well it aligns the features

that are not part of the initial correspondence. Figure 1.2 illustrates this process. In
practice, alignment systems may further re�ne a pose using additional evidence, but

we will ignore this step for simplicity.
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Figure 1.2: This �gure illustrates the alignment approach to recognition. This

example matches a 2-D model to a 2-D image with a transformation that allows

for scaling, and rotation and translation in the plane. In the upper right, the open
circles show some points used as an object model. In the upper left, closed circles

show image points. Lines between the two show two hypothetical matches between
pairs of points. The lower �gures show how each of these matches can be used to

transform the model into a hypothetical image location, where it may be compared

with the image.
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The basic idea of alignment, as I have described it, was introduced by Roberts[91],

in the �rst system to recognize 3-D objects from 2-D images. Fischler and Bolles[43]

stressed the value of using minimalmatches between image and model features. Align-

ment has been further explored in a 2-D domain by Ayache and Faugeras[3] and

Clemens[29], and in 3-D by Lowe[73], Ullman[104], and Huttenlocher and Ullman[57].

Chen and Kak[28] discuss an alignment approach for recognizing 3-D objects using
3-D scene data.

The computational complexity of alignment varies with the domain. When we
assume that a 2-D image includes a 2-D object that has been rotated, translated

or scaled in the plane (a similarity transform) a match between two pairs of points

determines the object's pose. If there are m model points, and n image points, these
give rise to about m2

n
2 possible hypotheses. This is a fairly small number, and helps

explain why 2-D recognition systems have been able to overcome complexity problems,

especially when the problem is further simpli�ed by assuming a known scale. For a
3-D object viewed in a 2-D image with known camera geometry, a correspondence
between two triples of points is required to determine a small number of poses. The
number of hypotheses in this case grows to about n3m3. This number is large, and

existing 3-D alignment systems use techniques that we will discuss later to avoid a
raw search. If there are M di�erent known models, the complexity grows to Mn

3
m

3.
And if an object has a part with a single rotational degree of freedom, such as a

pencil sharpener has, then a correspondence must be established between four points
to determine the pose of the object, increasing the number of hypotheses to Mn

4
m

4.

To place these �gures in perspective, we are interested ultimately in solving problems

in which the number of objects is perhaps in the tens of thousands, and the number
of model and image features are in the hundreds or thousands. Even for rigid objects,
basic alignment methods applied to the recognition of 3-D objects in 2-D images will
give rise to perhaps 1019 hypotheses. Coping with such a large number of possibilities
is far beyond the capabilities of existing or anticipated computer hardware, or current

guesses at the capabilities of the human brain.

We have used alignment to provide a concrete illustration of the cost of recogni-

tion. This cost does not arise from some peculiarities of alignment, however. The cost
of most approaches to recognition is large, and grows as we generalize the problem

by generalizing the set of images compatible with a model. That is, a 3-D model

viewed from an arbitrary position can produce more images than can a 2-D model
viewed from directly overhead. More images are compatible with a library of objects

than with one object, or with a non-rigid object than a rigid object, or with a class of
objects than with a single object model. In the case of alignment, this generality adds

to the complexity because the number of correspondences needed to determine object

pose grows. As Grimson[47] shows, the complexity of constrained search methods
grows considerably as the complexity of the task grows (see in particular Grimson's
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discussion of 2-D recognition with unknown scale) for essentially the same reason,

larger matches are required before any geometric constraints come into play. Exam-

ples of constrained search approaches are found in Grimson and Lozano-P�erez[50],

Bolles and Cain[13], Ayache and Faugeras[3], Goad[46], Baird[4], and Breuel[19]. For

similar reasons, the complexity of other approaches such as methods that explore

transformation space (Ballard[5], Baird[4], Clemens[29], and Cass[26],[27]) and tem-
plate matching (Barrow et al.[6], Borgerfors[14], and Cox, Kruskal and Wallach[35])

will grow as the range of images that a model can produce grows. In fact, these

approaches have usually been applied only to the simpler 2-D recognition problem.

1.2 Our Approach

In this thesis we show how to control this cost by doing as much work as possible

on the image, independent of the model, doing as much work as possible on the
model, independent of the image, and then combining the results of these two steps
with a simple comparison. This approach originates in the work of Lowe[73]. It has
been discussed in Jacobs[60], Clemens[30] and in Clemens and Jacobs[32], and in our

discussion we will freely make use of points made in those papers. This approach

reduces complexity in a number of ways. First, much of the complexity of recognition
comes from the interaction between model and image, so we keep this interaction as

simple as possible. Second, as much work as possible is done o�-line by preprocessing
the model. Third, processing the image without reference to the model can take
the form of selecting portions of the image that are all likely to come from a single,

unknown object. This allows us to remove most possible combinations of image
features from consideration without having ever to compare them to model features.
And because this process is independent of the model, it does not grow more complex
as we consider large libraries of objects, non-rigid objects, or classes of objects.

The �rst step, grouping (or perceptual organization), is a process that organizes

the image into parts, each likely to come from a single object. This is done bottom-

up, using general clues about the nature of objects and images, and does not depend
on the characteristics of any single object model. The idea that people use group-

ing may be prompted by the introspection that when we look at even a confusing

image in which we cannot recognize speci�c objects, we see that image as a set of
chunks of things, not as an unorganized collection of edges or of pixels of varying

intensities. A variety of clues indicate the relative likelihood of chunks of the image
originating from a single source. The gestalt psychologists suggested several clues,

such as proximity, symmetry, collinearity, and smooth continuation between sepa-

rated parts. For example, in an image of line segments, two nearby lines are more
likely to be grouped together by people than are two distant ones, and gestalt psy-
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Relative Orientation Collinearity

Parallelism

Proximity

Figure 1.3: Some of the clues that can be used to group together edges in an image.
In each example, some lines are shown in bold face that a grouping algorithm might

collect into a single group based on one particular clue.
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chologists suggested that this is because they are more likely to come from a single

object (see Kohler[67] and Wertheimer[113] for an overview of this work). Witkin

and Tenenbaum[115] and Lowe[73] have applied this view to computer vision. Other

recently explored grouping clues include the relative orientation of chunks of edges

(Jacobs[60], Huttenlocher and Wayner[58]), the smoothness and continuity of edges

(Zucker[116], Shashua and Ullman[96], Cox, Rehg, and Hingorani[36], Dolan and
Riseman[41]) including collinearity or cocircularity (Boldt, Weiss and Riseman[24],

Saund[93]), the presence of salient regions in the image (Clemens[30]), and and the

color of regions in the image (Syeda-Mahmood[99]). Figure 1.3 illustrates the use of

some of these grouping clues. Our view of the grouping process is that it combines a

wide variety of such clues to identify clumps of image features. These clumps need
not be disjoint, but their number will be much smaller than the exponential number
of all possible subsets of image features.

Grouping can also provide structure to these features. For example, if we group
together a convex set of lines, we have not only distinguished a subset of image lines,
convexity also orders these lines for us.

The second step in our approach to recognition is indexing. We use this as a

general term for any simple, e�cient step that tells us which groups of 3-D model

features are compatible with a particular group of 2-D image features. Grouping will
provide us with sets of image features that contain enough information so that only
a few of the groups of model features will be compatible with them. To capitalize on
this information, indexing must be able to use that information to quickly narrow its

search. Ideally, the complexity of indexing will depend only on the number of correct
matches, avoiding any search among incorrect matches.

The word indexing evokes a particular approach to this problem through table

lookup. In this approach, we store descriptions of groups of model features in a hash
table, at compile time. Then, at run time, we compute a description of an image
group, and use this description to access our table, �nding exactly the set of model
groups compatible with our image group. There are important problems raised by

such an approach in determining how to represent our model and image groups to

make such a comparison. But indexing satis�es our need to use the rich information

provided by grouping to quickly �nd only the feasible matches. It also forces us

to confront one of the key problems in human image understanding: How can we
describe a 3-D object and a 2-D image so that we may compare the descriptions in

spite of the di�erence in dimensionality?

To make this discussion more concrete, I will describe the recognition system that

is presented in this thesis, which is just one possible way of implementing this general
approach. This system proceeds in the following steps:

� At compile time, the model is processed to �nd groups of line segments that
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appear as salient convex groups in images. We then determine every 2-D image

that a pair of these groups could produce from any viewpoint, and store a de-

scription of each of these images in a hash table. One of the main contributions

of this thesis is the development of an e�cient method of representing all these

images.

� The image is processed to �nd similarly salient convex groups of lines. We
choose as our salient groups those in which the length of the lines is large

relative to the distance between the lines. Both analytically and empirically,

we can show that we can �nd these groups e�ciently, and that these groups are

salient in the sense that they are likely to each come from a single object.

� At run time, we compute a description of a pair of convex image groups, and

perform matching by looking in the hash table.

� After grouping and indexing, we have a set of consistent matches between image
and model features which we use to generate hypotheses about the location of
the model.

� We then look for additional model lines in the image to evaluate these hypothe-
ses.

Processing the models is done at compile time, and does not directly a�ect the run
time of the system. Processing the image is e�cient because it does not depend at all
on the complexity or number of models, and because our desire to �nd salient groups
of image features provides us with strong constraints that limit the sets of image
groups we need to consider. The combinatorics of matching models and images is

reduced because the time spent looking in the hash table depends primarily on the
number of valid matches between model and image features, not on the number of
invalid matches that must be ruled out. So with this approach the complexity of

recognition depends entirely on the capability of our grouping system. First of all, it

depends on the cost of the grouping system itself. Second, it depends on the number

of groups produced; the more groups we must consider, the longer recognition will
take. Third, it depends on the size of these groups. The more information a group

provides about the object, the fewer the number of model groups that will match it
by accident. Of course, it is di�cult to quickly produce a small set of large groups,
some of which come from the objects we are trying to recognize. But we may at least

see a path to extending this approach to handle arbitrary problems of computational

complexity. The better our grouping system is, the more di�cult the recognition task
we can handle with it.

Stepping back from this particular instantiation, the general approach that we

advocate is to use grouping to form information-rich subsets of the model and image.
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Grouping has not been extensively explored, but it is clear that there are many clues

available in an image that indicate which collections of image features might come

from the same object. If we can group together enough image features, we have a

good deal of information about the object that produced these features. Grouping is

necessary so that we do not have to search through all combinations of image features.

If we also know what collections of model features tend to produce image features
that we will group together, we can also group the model features at compile time,

limiting the number of model groups we must compare with the image groups. But

to take advantage of the information an image group gives us about an object, we

need a 
exible indexing system that can quickly match these image groups to geomet-

rically consistent model groups. So there are two central problems to implementing
our approach. We must determine how to form large groups, and we must develop
indexing methods appropriate for large groups of features.

1.3 Strategies for Indexing

This thesis approaches indexing by matching a 2-D image of a scene to the 2-D

images that known objects may produce. This di�ers substantially frommost existing

approaches to visual recognition, which attempt a more direct comparison between
the 2-D image and the 3-D model. Direct comparisons to the model can be made if

we �rst infer 3-D properties of the scene from a 2-D image, or if we extract special
features of the image that can be directly compared to a model. Figure 1.4 illustrates
these strategies. There are two main advantages to our approach. First, the image

and the model can be easily compared at the 2-D level. Second, the problem of
organizing the image data becomes much easier when we are not constrained by the
goal of reconstructing 3-D properties of the scene that produced our 2-D data.

We make these points clearer by comparing this approach to some past work.

The main thing we wish to show about previous recognition systems is that they
have been limited by a desire to directly compare a 3-D model to a 2-D image. In

order to accomplish this, they have focused on descriptions of the model that are
view-invariant. That is, a model is described with a property that is really a function
of an image, but which we may associate with the model because the property is true

of all the model's images. Since a model is described with an image property, we may

directly compare the model and image to see if they have the same property. As an

example of a view-invariant property, if two lines are connected in a 3-D model, they

will be connected in any image of that model (disregarding the e�ects of error and
occlusion). We will see how various systems have adopted techniques for comparing

images to the invariant properties of models. At the same time, we will see that

when these systems perform grouping, this grouping has been centered around view-
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Figure 1.4: There are two main approaches to indexing 3-D models (double box in
upper right) from 2-D images (double box, lower left), as shown by the two types of

dashed lines. We may characterize the images a model can produce, and compare

in 2-D. Or we may attempt a direct comparison to the 3-D model. We can do this
by deriving 3-D structure from the 2-D image, or by in some other way creating

structures from the image and model that are directly comparable. Inferences are
shown by single arrows, direct comparisons are shown by double arrows.
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invariant features. If these are the basis of comparisons, then it makes sense for a

grouping system to organize the image into chunks based on which chunks contain

view-invariant features. Grouping and indexing become entangled as grouping strives

primarily to produce chunks of the image that contain the properties suitable for

indexing.

There has been, however, a lack of general methods for describing a model and an

image in directly corresponding ways. There has not been, for example, a comprehen-
sive set of view-invariant features that capture all or even most of the information in

an object model. To overcome this, systems sometimes make restrictive assumptions

about the models. And the use of only a few view-invariant properties has meant
that the clues used for grouping have been limited, since grouping has been based on

these properties. Overall, because the systems su�er from a lack of general methods

of inferring 3-D structure from 2-D images they ignore the 2-D information that they
cannot use, both in the grouping phase and in the indexing phase. Our approach to
indexing compares a 2-D image with the images a 3-D model can produce, instead
of directly comparing to some property of the 3-D model. We justify this approach

by describing how past systems have failed to �nd comprehensive methods of making
direct comparisons, how this has led to indexing that uses only impoverished infor-

mation from the image, and how at the same time grouping has also been caught by
these limitations, and made use of impoverished information as well.

As we look at these systems, it will also be a convenient time to notice the impor-

tance that grouping processes have played in controlling the complexity of recognition
systems. While grouping has made use of limited clues, its performance has been cru-

cial in controlling the amount of computation needed by recognition systems. Even

systems that do not focus on grouping have depended on it to make their algorithms
tractable.

Roberts' work[91] provides a clear demonstration of these points. This early sys-
tem recognized blocks world objects that produced very clear straight lines in images.

Connected lines were grouped together into polygons, and connected polygons were

combined into larger groups. The system started with the largest groups that it could

�nd. For example, it would group together three polygons that shared a vertex. It
would then use the number of lines in each polygon as a viewpoint-independent de-

scription of the group, and match the group only with similar model groups. Each
match was used to determine a hypothetical pose of the object, and the pose was
used to determine the location of additional model features, whose presence in the

image could con�rm the hypothesis. The system began with larger image groups,

which tend to match fewer model groups, but it would continue by trying smaller
and smaller groups until it found the desired object. As a last resort, the system

would consider groups based on a vertex formed by three lines, and including the

three vertices on the other ends of each line. Any image group of four such points
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could match any such model group (given the system's model of projection).

This system is relevant to our discussion in a number of ways. First, Roberts
clearly recognized the importance of grouping in reducing the cost of recognition,

and used groups essentially to index into a data base of objects based on viewpoint-

invariant properties. Roberts also realized that larger groups could provide more

discriminatory power for indexing. Only simple objects, however, could be handled

by this approach to grouping and indexing. Also Roberts did not get a lot of dis-
criminatory power out of some big groups of features. Only the number of sides in

each polygon were used for indexing. As we will see, this is only a tiny part of the

information that is available with such groups. This limitation is a direct consequence
of using only viewpoint-invariant descriptions for indexing.

The ACRONYM system of Brooks[21], which is based on an earlier proposal by

Binford[10], represents 3-D models using a limited form of generalized cones. For

ACRONYM's version of generalized cones there is a simple mapping between prop-
erties of a cone and of its image. These \cones" are volumes which have a straight
central spine. The cross-section of the cone orthogonal to this spine is bounded by
straight lines or circles. As the spine is traversed, this cross-section may grow or

shrink linearly. These parts have the property that their projection onto a 2-D image
always has a simple form, either a quadrilateral (or ribbon) when seen from above,
or elliptical when a circular cross-section is seen end-on. Therefore, a bottom-up

grouping process may be used to �nd ellipses and ribbons in the image, which are
matched to the 3-D generalized cones. Both the model and the image are organized

into information-rich primitives. Much less computation is needed to �nd an object

using this grouping than when simpler primitives, such as points, lines, or individual
edge pixels are used, because only a few primitives must be matched to identify an
object. ACRONYM seems to only need to match two of these image primitives to
comparable model primitives in order to recognize a model. Also, computation is
reduced because an image contains fewer of these primitives than of simpler ones.

Computationally, ACRONYM bene�ts from organizing both the model and the

image into higher level units before comparing the two. But only 3-D primitives that

project to directly analogous 2-D primitives are chosen. This greatly limits the type

of objects that can be modeled. The choice of primitives to use to model objects has
been made not according to the requirements that arise from the need to represent a

variety of objects, but according to strong constraints on what 3-D primitives can be

readily compared to 2-D parts. The grouping system is then based on the fact that a

class of simple model parts project to a class of simple image parts that we can look

for with a bottom-up process. Again, comparison between 3-D and 2-D is made with
simple but not very general properties, and grouping is based on these properties.

Marr and Nishihara[79] also discuss a recognition strategy based on generalized
cones. They do not present an implemented system applied to real images, and so



1.3. STRATEGIES FOR INDEXING 23

some of the details of their approach are vague. A key component of their approach,

however, is the assumption that they can group an image into components produced

by separate generalized cones, and then detect the central axis of each cone from a

single 2-D image. This also implies limiting the models and images handled so that

the projections of cones have a stable central axis. They suggest that the relationships

between a set of these cones will be used to index into a data base of objects. A variety
of properties of the cones and their relationships are suggested for use in indexing,

but it is not clear exactly how this indexing will work. To some extent, Marr and

Nishihara expect to make use of 3-D information derived from stereo, or other sources,

to determine the 3-D relationships between cones. But 2-D clues, such as the relative

thickness of cones, or symmetry in the image, are also suggested.

Marr and Nishihara's proposal, and Marr's[78] work in general is quite impor-

tant to our discussion because of their early stress on the importance of bottom-up
processing for recognition. In Marr's view, a great deal of computation should be
done on the image before we attempt to compare it to a model. This computation
should depend on general properties of the image formation process, not on speci�c

properties of the objects that we expect to see. In Marr and Nishihara's view, an
image is broken up into component parts, and these parts and their relationships are

described in detail before we attempt recognition. This is a prescription for a quite
ambitious amount of grouping in recognition.

We also see in their approach some of the pitfalls of using view-invariance for

grouping and indexing. Generalized cones are suggested as representations primarily
because it is felt that their axes will be stable over a range of viewpoints, not because

of their representational adequacy. And computing viewpoint invariant properties

to use in indexing requires a great deal from the bottom-up processing. Complete,
segmented generalized cones must be found, and 3-D scene information is required to
compute the relationships between these cones.

Lowe's work[73] �rst made many of the points that we have discussed so far, while

his work in turn was in
uenced by Witkin and Tenenbaum[115]. Lowe stressed the

importance of grouping in reducing the complexity of recognition. He also for the �rst

time stressed the value of using viewpoint invariance in grouping and indexing. He
developed probabilistic arguments to support the idea that groups of features with

viewpoint invariant properties are particularly likely all to come from a single object,
and showed how these properties could be used for indexing as well. The primary
example Lowe gives is that of grouping together parallelograms. Parallelism is a

viewpoint-invariant property if we assume orthographic projection, that is, a projec-

tion model with no perspective distortion. In that case, 3-D parallel lines will always
project to 2-D parallel lines, while 3-D lines that are not parallel can only appear

parallel from a tiny range of viewpoints. Connectedness is also a viewpoint-invariant
property. By combining these, we have a strategy for grouping by forming parallel-
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Figure 1.5: A geon-based description of this suitcase is given in the text.

ograms in the image, and indexing by matching these only to parallelograms in the
model. Such matches form a good starting point in the search for an object. Lowe's
recognition system uses this approach to e�ciently locate some common objects, such
as a stapler.

Lowe's work provided the �rst analysis of grouping and how it could be used to
solve recognition problems, and it has had an important in
uence on the work de-
scribed in this thesis. His emphasis on the need for grouping in recognition is the
starting point for this work. In chapter 5 we will have more to say about the view-

point invariant features Lowe used. Here, we simply point out that Lowe's decision

to match 3-D models directly to 2-D images using view-invariant features greatly
limited the extent of grouping possible. Only a few kinds of features were used by his

system to form small image groups, because these were the only features known that
could be easily compared across dimensions. The small groups that are formed with
this approach provide only limited amounts of information about the model, and so

they produce only moderate reductions in the search for models. This approach also

depends on models that contain signi�cant numbers of viewpoint-invariant features,
such as parallelograms.

Biederman[9] built on Lowe's work to produce a more comprehensive model of
human object recognition. Bergevin and Levine[8] have implemented this theory for

line drawings of some simple objects. Biederman suggests that we recognize images
of objects by dividing the image into a few parts, called geons. Each geon is described

by the presence or absence of a few view-invariant features such as whether the part

is symmetric, and whether its axis is straight. Connections between parts are also
described with a few view-invariant features. Together, these provide a set of features
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which Biederman believes will identify classes of di�erent objects, such as suitcases

and co�ee mugs. For example, consider the suitcase shown if �gure 1.5. The case

is one geon, described by four view-invariant features: its edges are straight, it is

symmetric, its axis is straight, and its cross-section along this axis is of constant

size. The handle is a geon with a di�erent description because its edges and axis are

curved. An example of a view-invariant feature of the connection between the two
geons is that the two ends of the handle are connected to a single side of the case. We

can see that computing a description of a geon requires a fair amount of bottom-up

processing. Geons must be segmented in the image, and their axes must be found.

Biederman explicitly makes the claim that view-invariant features can provide
enough information to allow us to recognize objects. Although Biederman does not

completely rule out the possibility of using descriptions that vary with viewpoint,
he does not describe how to use such information, and downplays its importance.

Throughout this section, we have been arguing that on the contrary, reliance on view-
invariance has led to impoverished groups that lack discriminatory power. In chapter
5 we show some limitations to what view-invariant features can capture about the

3-D structure of an object. Here we point out two possible objections to Biederman's
claim that a few parts and a few view-invariant properties can serve to distinguish
objects. These are not logical fallacies of Biederman's theory, but simply empirical

questions that we feel have not been adequately explored.

First, although we have emphasized the importance of grouping, Biederman's ap-
proach places especially strong requirements on grouping and other early processing

modules. Because view-invariant features capture only a fraction of the information

available to distinguish objects, it is natural that a system that relies entirely on these
features will require more e�ective grouping than might otherwise be necessary. One
must reliably segment an image into parts, and su�ciently detect these parts so that
one can determine the viewpoint-invariant properties they possess. It is problematic
whether this can be done in real images with existing early vision techniques, and

Biederman's approach has only been tested on line drawings. However, since Bieder-

man proposes a psychological theory, it is hard to know what to expect of human
early vision and grouping, and so it may be plausible to assume that people can locate

and describe object parts in images. This is an open question. It is not clear whether
people can consistently segment an object into canonical parts whose boundaries do

not vary with viewpoint, and whether we can derive robust descriptions of these parts

if they are partially occluded.

Second, Biederman has not demonstrated that these view-invariant properties are

su�cient to distinguish among a large collection of real objects. His theory claims that

metric information along with any other information that varies with viewpoint plays

no signi�cant role in helping us to identify an object. This claim is still unresolved.

As a �nal example, we consider Huttenlocher and Ullman's[57] application of the
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alignment method to the recognition of 3-D objects in 2-D scenes. This work does

not focus at all upon grouping; rather it analyzes many of the problems that arise

in implementing alignment for 3-D to 2-D matching. However, to get the system

to work in practice, a simple grouping method was used. Pairs of vertices that

were connected by a straight line were combined together. This type of connection

is another viewpoint invariant feature. This example points out the omnipresence
of grouping and indexing based on simple viewpoint invariant features in practical

recognition systems.

Each of these systems uses a di�erent set of view-invariant features to match be-

tween a 2-D image and a 3-D model. In each case we can see that only a small fraction
of an object's characteristics can be used for indexing. Most of an object's appearance

is not view-invariant. One part of an object may be much larger than another in some

images, but this di�erence in relative size may change over views. Shapes in an object
may appear sometimes convex and sometimes non-convex, sometimes sharply curved
and sometimes moderately curved. The approaches discussed above must ignore this
kind of information when doing indexing. As a result, the types of objects that can

be modeled are quite limited. And the groups that are formed in the image tend to
be small because there are few clues available for grouping. Witkin and Tenenbaum

and Lowe have argued that when a set of features produce a view-invariant property
this is a clue that these features come from a single object. But even if this is true,
view-invariance is not the only such clue. However, it is the only clue that tends to

be used for grouping when indexing relies on view-invariance. Forming small groups
using these properties has been a useful step beyond raw search. But these groups
do not contain enough information to discriminate among a large number of possible
model groups. So these systems are left with a good deal of search still to perform.

One could take these comments as a spur to further research in view-invariant
features. With more such features available to us, we could provide coverage for a
wider range of objects, and we could expect to �nd image groups containing many

of these features. In chapter 5 we are able to fully consider this question for the

simple case of objects consisting entirely of point features. We characterize the set
of inferences that we can make about the 3-D structure that produced a particular
2-D image. And we show that any one-to-one mapping from a 2-D feature to a 3-D

feature will have serious limitations, and will require strong assumptions about the
nature of our object library in order to be useful.

This thesis argues that we should transcend the limitations of view-invariant prop-

erties by comparing a 2-D image against the 2-D images that our 3-D models can
produce. We show that these images can be simply characterized. This allows us ex-

plicitly to represent the entire set of image groups that a group of model features can

produce, when viewed from all possible positions. Indexing then becomes the problem

of matching 2-D images, which is relatively easy. As a result, we are able to build
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an indexing system that can use any group of image features to index into a model

base that represents any group of model features. This means that our bottom-up

grouping process is not constrained to produce groups with a special set of features.

Grouping may make use of any clues that indicate which image features all belong to

the same object.

1.4 Grouping and Indexing in this Thesis

In this introduction, we have focused on the combinatoric di�culties of recognizing
objects. We have described how these problems can be overcome by a system that

forms large groups of image features, and then uses these features to index into
a library that describes groups of model features. This gives rise to two di�cult

subproblems: how do we form these groups? and how do we use them for indexing?

There are two criteria that we might use in forming groups of image features.
First we can group together features that all seem likely to come from a single object.
And second we can form groups that contain properties that are required by our

particular indexing scheme. I have described how these two motivations have become
entangled in many existing recognition systems, so that groups are formed only if they
ful�ll both criteria at once. When view-invariant properties are used for matching,
grouping is limited to producing groups that have these properties. In this thesis we

suggest that more extensive grouping can be done when our indexing system allows

us to make use of any clues in the image that indicate that features originate with a
common object.

In chapter 6 we describe a grouping system that makes use of one such clue, by
locating salient convex groups of image lines. Convexity is a frequently used grouping

clue because objects often have convex parts. We de�ne a notion of salient convexity

that allows us to focus on only the most relevant convex groups. We show both

experimentally and analytically that �nding these groups is e�cient, and that such
groups will be likely to come from a single object. This is not meant to suggest that
salient convexity is the only, or even the most important clue that can be used in

grouping. Rather, it is a sample of the kind of work that can be done on grouping.
It is a thorough exploration of the value of one grouping clue out of many.

The second key problem to this approach to recognition is indexing. We have

described two possible approaches to indexing. The �rst approach compares 2-D

structures directly to 3-D structures. This is done using a one-to-one mapping from

2-D to 3-D properties. We have described in this introduction how existing systems

have made use of only a limited set of such properties, and in chapter 5 we thor-

oughly examine such properties, and demonstrate some limitations to their use for
indexing. The second approach to indexing is to compare the model and image at
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a two-dimensional level. The core problem to implementing such an approach is de-

termining the most simple and e�cient possible way of representing the 2-D images

that a 3-D group of features can produce. We solve this problem in a variety of cases

in chapter 2. These results have the additional bene�t of providing a new and very

simple way of looking at the matching problem in recognition. In fact, these results

form the basis for the results described in chapters 3 and 5, in which we explore the
limitations of some other approaches to vision.

We then put these pieces together into a working recognition system. In chapter 4

we show how to build a general indexing system for recognizing real objects. In that

chapter we consider practical problems, such as how to account for image error. We
then combine these pieces into a complete recognition system that �rst forms salient

convex groups, and then use these groups to index into a model base of object groups.

The matches produced by indexing generate hypotheses about the locations of objects
in the image, which are then veri�ed or rejected using additional information about
the model. In chapter 7 we test this system and demonstrate that the combination
of grouping and indexing can produce tremendous reductions in the search required
to recognize objects.

1.5 Relation to Human Vision

In this introduction we have focused on a simpli�ed version of the recognition problem

in which we match local geometric features. Although we noted that it is not clear
that human recognition can be fully described as using precise geometric models,

this formulation of the problem is still quite general, and allows us to see clearly
some of the complexity problems that arise in recognition, and how we may deal with
them. However, I now want to more weakly claim that our approach to recognition
is also a promising one for addressing more ill-de�ned and challenging recognition

tasks. I claim that human vision may perform grouping and indexing, and that
in addressing these problems in a simple domain we are taking steps along a path
towards understanding human vision.

Let us consider an example. It is my intuition that one recognizes something like

a camel by �rst organizing an image of a camel into parts and then noting features
of these parts. The camel's torso might be described as a thick blob, with four long
skinny parts (legs) coming from the bottom corners of this blob, and a hump (or

two) on top of this blob. A long list of such features could 
esh this description out

in greater detail. This idea of recognizing an object using a rough description of its
parts and their relations is not new. It seems to me to be our naive notion of how

recognition would work, and appears as a more technical proposal in the work of Marr

and Nishihara[79], Biederman[9], and Ho�man and Richards[52], for example.
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As I have described above, however, the stumbling block for these proposals has

been a felt need to describe an object's parts in terms of view-invariant properties.

This has resulted in proposals that are simple and direct. A small number of such

properties is proposed which provide a canonical description of the image, which can

be matched directly against known objects. However, it is not clear whether such

features could be rich enough to distinguish one object from all the others, and the
paucity of features used usually implies that they must all be perfectly recovered for

recognition to succeed. In fact, for reasons that are described in detail in this thesis, I

think that the search for an adequate set of view-invariant features which can explain

human recognition is not a promising one.

Instead, I propose that we use 2-D features that need not be view-invariant to
describe each of the images that a model might produce. For example, a camel's legs
are long and skinny, but \long and skinny" is not a view-invariant feature. From a

range of viewpoints, such as many overhead views, the legs will not look long and
skinny. In general, there are some objects that never look long and skinny, and other

objects that look more or less long and skinny some or most of the time. Di�erent
object parts produce this feature, to di�erent degrees, with varying likelihood. It
is my intuition that such non viewpoint-invariant features as the relative size and
general shape of an object's parts are crucial for recognizing it. If this is true, then

we should describe objects that we know about in terms of the 2-D features that

tend to appear in images of those objects. The �rst step in using such features is to
understand the set of images that a model might produce. Once again, the central
problem that we face is to �nd the simplest and most e�cient representation of this

set of images. This will provide us with a means of understanding the extent to which
di�erent sets of 2-D features can capture the shape of a 3-D object.

It is also clear that grouping will be a fundamental problem in this attempt to

model human recognition. The intuitive strategy that I have described will also
depend on some bottom-up process that at least roughly groups together parts of
the image into objects and object parts. This will be a necessary �rst step towards

determining a set of features in the image that all come from one object.

These intuitions form a secondary justi�cation for addressing the problems that

we have in this thesis. I believe that the problems of grouping and of describing the
images a model produces are central ones for developing an understanding of how we

may describe 3-D objects using a set of 2-D features.
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Chapter 2

Minimal Representations of a

Model's Images

2.1 Introduction

In this chapter we discuss optimal methods of representing the set of all images that

a group of object features can produce when we view them in all possible positions.

This is the central problem for our approach to indexing, illustrated in �gure 2.1.
As we describe in chapter 1, we can e�ectively perform indexing by comparing an
image to the set of all images a model can produce. Since it is easy to compare 2-D

images, we can build a general indexing system that uses all the available information
in any groups of image features that we form. This releases us from the limitations

of methods that derive 3-D scene information from a single 2-D image. However, to

index e�ciently we must understand how we can best represent a model's images.
Understanding this question is also valuable for analyzing other approaches to recog-
nition. When we know what images a model can produce, we can determine what it
is that any particular description of a model captures about that model's images.

Throughout this chapter we will be focusing on the problem of matching an or-

dered group of model features to an ordered group of image features. Therefore when
we talk about the model or the image we will not mean the entire model or image, but

only a particular set of features that have been extracted from the image and grouped
together by lower level processes. In chapter 6 we will describe these processes.

We take a geometric approach to the problem of representing a model's images.

This approach is based on work of the author and David Clemens, as described in
Clemens and Jacobs[32]. Related approaches can be found in Bennett, Ho�man and
Prakash[7], and in Richards and Jepson[90]. We describe models using a manifold in

image space. We will only be making use of some elementary properties of manifolds.

So for our purposes, the reader may think of an n-dimensional manifold intuitively
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Figure 2.1: With indexing, all possible 2-D images of a 3-D model are stored in a

lookup table. A hash key is then computed from a new image, and used to �nd any

3-D model that could produce that image.
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as an n-dimensional surface in some space. An image space is just a particular way

of representing an image. If we describe an image using some parameters then each

parameter is a dimension of image space, and each set of values of these parameters

is a point in image space corresponding to one or more images that are described

by this set of parameters. For example, if our image consists of a set of n 2-D

points, then we can describe each image by the cartesian coordinates of these points,
(x1; y1; x2; y2; :::xn; yn). These coordinates describe a 2n-dimensional image space.

There is in this case a one-to-one mapping from the set of possible images to each

point in this image space. Suppose our models consist of sets of 3-D points. As we

look at a model from all possible viewpoints it will produce a large set of images,

and this set of images will map to a manifold in our 2n-dimensional image space. We
will therefore talk about a model group producing or corresponding to a manifold in
image space1. This is illustrated in �gure 2.2.

The most obvious motivation for thinking of these image sets as geometric surfaces
is to discretely represent these surfaces in lookup tables. To do this, we discretize the
image space, and place a pointer to a model in each cell of the discrete space that
intersects the model's manifold. Then a new image will point us to a cell in image
space where we will �nd all the models that could produce that image.

The main advantages of this geometric approach are less tangible, however. It
allows us to visualize the matching problem in a concrete geometric form, particularly
as we are able to describe a model's images with very simple manifolds. Beyond

indexing, we may also use this approach to determine what can be inferred about the
3-D structure of a scene from one or more 2-D images of it. An image corresponds
to a point in image space, so if we know what manifolds include the point or points
corresponding to one or more images, we have a simple characterization of the set of
scenes that could produce them.

Our geometric approach also provides a straightforward generalization of the no-
tion of an invariant. An invariant is some property of an object that does not change
as the object undergoes transformations. Invariants have played a large role in math-

ematics, and in the late nineteenth century geometry began to be viewed as the study

of invariant properties of geometric objects. Invariants have played a signi�cant role

in perceptual psychology and in machine vision, as we will describe later. For some
interesting objects and transformations, however, invariants do not exist. We will
show, for example, that for sets of 3-D features projected into a 2-D image, there are

no invariants. There has been no natural generalization of the notion of invariants

1Actually, it is not necessary that a model's images be represented by an n-dimensional manifold

in image space. For example, one can devise representations of an image in which the dimensionality

of a small neighborhood of images can vary from neighborhood to neighborhood. However, such

representations seem somewhat far-fetched, and so the assumption that a model produces a manifold

in image space does not seem too restrictive.
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Figure 2.2: Each image of 2-D points (on the left) corresponds to a single point in

image space. A model of 3-D points (on the right, lines are included with the model
for reference) corresponds to a manifold in this image space.

for exploring these situations. If we view invariants in vision geometrically, we may
consider them as representations of images that map all of an object's images to a
single point in image space. That is, the image space representation of a model's

image does not vary as the viewpoint from which we create the image does. When

viewed geometrically, invariants have a natural extension. If we cannot represent an
object's images at a single point in image space, we ask for the lowest-dimensional
representation that is possible. We explore that question in this chapter.

There are many di�erent ways of representing an image, and each representation

will cause a model to produce a di�erent kind of manifold in image space. There are

also di�erent ways of modeling the imaging process, using di�erent classes of trans-
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formations such as perspective projection or orthographic projection. The type of

projection used will determine which images a group of model features can produce,

and hence to what manifold a model will correspond. So our goal is to �nd a repre-

sentation of images and a type of projection which will produce the \best" mapping

from groups of model features to manifolds.

In discussing representations of a model's images, we ignore the possible e�ects

of sensing error on these images. Error is omnipresent, and if our indexing system
cannot take account of error it is worthless. However, error can be handled in two

ways. We might represent all the images that a model could produce when both

changes in viewpoint and sensing error are considered. Then we would only have to
compare a novel image against this set of images to perform robust indexing. Instead,

we represent a model's error-free images only. Then, given a new image, we determine

all the images that could be error-free versions of our new image, and compare this
set of images to the error-free images the model could produce. So we may defer
considering the e�ects of error until chapter 4, when we discuss practical aspects of
implementing our indexing system.

For a mapping to be good it should meet several criteria. First, it is most useful if
we can analytically determine the manifold that corresponds to each possible model

group. Second, we would like to describe models with manifolds of the lowest possible
dimension. This will contribute to the conceptual clarity of our representation. It
will also make it easier to discretely represent our image space. In general, when

we discretize image space, the amount of storage space required to represent each
manifold will be exponential in the dimension of the manifold. For example, suppose

we discretize a �nite, 3-D image space by dividing the space into cubes. We can do

this by cutting each dimension of the space into d parts, producing d3 cubes. A line
can pass through no more than 3d cubes, while a plane will pass through at least d2

cubes. Since we will use discretizations of image space to allow us to perform indexing
with table lookup, the dimensionality of models' manifolds and hence the number of

discrete cells they intersect is of great importance. While a particular representation

might cause di�erent models to have manifolds of di�erent dimensions, we will only
judge a representation by the dimensionality of the highest-dimensional manifold it

produces.

Third, we would like a representation that produces no false positive and no false

negative correspondences. False negatives mean that a model's manifold does not rep-

resent all the images that the model can produce, while false positives mean that some

images map to a model's manifold even though the model could not produce those

images. Some of these errors may be implicit in our choice of a projection transfor-
mation. For example, scaled orthographic projection only approximates perspective

projection, and so the set of images a model produces with scaled orthographic projec-

tion does not include all the images that the model could really produce, and includes
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some images the model could not produce. But in addition our representation of im-

ages might introduce some errors. We may choose a mapping whose domain is not

the entire set of images. For example, we can imagine that by choosing a mapping

from images to image space that ignores a small number of images we can reduce the

dimensionality of the manifolds in image space. Models that produce these images

will then �nd that their manifolds do not fully represent them. Or if our mapping
from image to image space is many-to-one and it maps an image that a model could

produce and an image that model could not produce to the same point in image space

this will cause a model's manifold to correspond to images that it could not produce.

We would like to avoid these errors, and in this chapter we will assume that no such

errors are allowed, except for those errors implicit in our choice of a transformation.
In chapter 5 we will explore the trade-o�s that might be achieved by relaxing this
goal in favor of other goals.

Fourth, it will also be useful if our manifolds have a simple form. We �nd it easiest
to reason about a mapping that takes groups of model features to linear manifolds.
Fifth, for a representation of images to be useful it should be continuous. That is,

in the limit, a small change in an image should result in only a small change in
the location of the point in image space that corresponds to the image. Without this

condition, our representation will be unstable when even small amounts of error occur
in sensing our image. Continuity is a very weak condition for an image representation
to meet, but it will turn out to be an important assumption that allows us to prove

that certain representations cannot be obtained.

Sometimes we can better meet these objectives by dividing our image space into

orthogonal subspaces. That is we represent an image with a set of parameters, and

use disjoint subsets of these parameters to form more than one image space. We can
use this technique to represent a class of high dimensional manifolds more e�ciently
as the cross-product of lower dimensional manifolds.

There are a large range of questions we can ask about the best way to map a

model to image space, because the problem can vary in many ways. First, we can

consider di�erent transformations from model to image. Some transformations are

more accurate models of the image formation process, while others are more conve-
nient mathematically, allowing us to derive more powerful results. In this chapter, we

consider four types of projection: perspective projection, projective transformations,
scaled orthographic projection, and linear projection. Second, there are many di�er-
ent kinds of geometric features that we would like to consider as part of an object

model. In this chapter our most extensive results concern point features. We also

consider oriented point features, that is points that have one or more associated ori-
entation vectors. And we look at some non-rigid models, such as models that stretch

along a single axis, or models with parts that can rotate about an axis. Third, since

there is no representation that optimally satis�es all the goals described above, we
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Figure 2.3: Later in this chapter we show how to decompose image space into two

orthogonal parts. Each image corresponds to a point in each of these subspaces. Each

model corresponds to a line in each subspace.
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can explore di�erent trade-o�s. In particular, in chapter 5 we will consider the extent

to which a lower-dimensional representation may be achieved by allowing some false

positives or false negatives in our representation. In this chapter we determine the

lowest-dimensional representation we can get when no such compromises are allowed.

We derive a number of lower bounds on the dimensionality of the manifolds re-

quired to represent a model's images. We show that assuming scaled orthographic

projection, a 2-D manifold is required to represent these images for models consist-
ing either just of point features, or for models consisting of oriented points. These

bounds are independent of the image space that we use to represent a model's images,

as long as the choice of image space does not introduce errors into the representation.
Under perspective projection, a 3-D manifold is needed. We also show that if an

object has rotational degrees of freedom this will increase the dimensionality of the

manifolds. An object with a single part that can rotate about an axis will produce
images that form a 3-D manifold, assuming scaled orthographic projection. Each
additional rotating part will add another dimension to the model's manifold. If we
think in terms of discretely representing these manifolds in a lookup table, we see

that even in the simplest case a good deal of space is required, and that this problem
becomes inherently more di�cult to manage as our recognition task becomes more

complicated.

We then show that for an important case, we can achieve a much simpler result
by decomposing our image space into two orthogonal subspaces. We may represent

models consisting of rigid point features with pairs of 1-D manifolds in these two
spaces, as depicted in �gure 2.3. Moreover, these manifolds are just lines. This is a

big improvement because the amount of space required to represent 1-D manifolds

discretely is much less than the amount required to represent a 2-D manifold. But just
as signi�cant is the fact that we achieve a very simple formulation of the problem of
matching a 2-D image to a 3-D scene. We translate this into the problem of matching
a point in a high-dimensional space to lines in this space. This provides us with a

conceptually simple geometric interpretation of the matching problem, which leads
to many of the theoretical results discussed in chapters 3 and 5.

In considering the images that a model can produce, we assume that our model

consists of just isolated features. We therefore ignore the fact that a real object will
occlude some of its own features from some viewpoints, and we focus on the di�erent
possible geometric con�gurations that model features may produce in an image. Work

on aspect graphs takes exactly the opposite point of view, and determines which

collections of model features may be viewed unoccluded from a single viewpoint while
ignoring changes in the particular images that any given collection of features can

produce. Work on aspect graphs is therefore complementary to and orthogonal to

the work presented in this chapter. Some recent work on aspect graphs can be found
in Gigus, Canny and Seidel[45], Kriegman and Ponce[69], and Bowyer and Dyer[15].
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Figure 2.4: With perspective projection, lines connecting the model points and
corresponding image points all meet at a single focal point.

2.2 Projection Transformations

We consider four di�erent kinds of projection transformations in this chapter. Of
these, perspective projection is the most realistic model of the way that cameras take
photographs, and of the way that images are projected onto the human eye. However,

for mathematical simplicity, we will use scaled orthographic projection as an approx-

imation to perspective projection. We will also use a linear transformation that is
even more convenient mathematically, and that we will show is a good approxima-
tion to the process of photographing an object and then viewing this photograph.

Similarly, a projective transformation captures the process of imaging a planar object
with perspective projection, then viewing the photograph. This section will describe

and compare these projection models, but see Horn[53] for further details on the �rst
two.

2.2.1 Perspective Projection
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To describe perspective projection, suppose that we have a focal point lying behind

an image plane. 3-D points in the world that are on the other side of the plane are

imaged. The place where a line from the focal point to a scene point intersects the

image plane indicates the location in the image where this scene point will appear.

Figure 2.4 illustrates this. We will make use of only this geometric description of

perspective projection, and will not need to model it mathematically.

We will only be considering the case where the focal length is considered one of

the variables of the projection. In that case, the transformation has seven degrees of

freedom because in addition to the focal length there are also six degrees of freedom

in the location of the object relative to the camera. Assuming that we do not know
the focal length is equivalent to assuming that we do not know the scale of the model

we are trying to recognize because the whole world may be scaled without altering
the picture. So if we want to characterize the set of images that a model of variable

size might produce, whether or not we know the camera's focal length we may assume

that the object size is �xed and the focal length is unknown.

2.2.2 Projective Transformations

We will also consider projective transformations of planar models. A projective trans-
formation consists of a series of perspective projections. That is, a planar model, m,

can produce an image, i, if there exists some intermediate series of images, i1; i2; :::in
such that i1 is a perspective image of m, i2 is a perspective image of i1, ..., and i is a

perspective image of in, as shown in �gure 2.5. These images may be taken with any

focal length.

Geometers have long studied projective transformations, and there are many books
on the subject (see Tuller[102] for an introduction). Projective transformations are of

interest because they are related to perspective projection, and at the same time, they

form a group of transformations. Analytic formulations of projective transformations
are well known, but for our purposes the simple geometric de�nition given above will

su�ce, along with a few facts that we will state later. Although we will not prove

this here, it follows from the analytic formulation of projective transformations that
they have eight degrees of freedom, and that, except in degenerate cases, there exists
a projective transformation that will map any four model points to any four image

points.

2.2.3 Scaled Orthographic Projection

Scaled orthographic projection provides a simple approximation to perspective pro-

jection. With this method, each scene point is projected orthogonally from the world
onto the image plane, as shown in Figure 2.6. The resulting image can then be scaled
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Figure 2.5: A projective transformation combines a series of perspective projections.

We must begin with a planar model.
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Figure 2.6: With orthographic projection, parallel lines connect the 3-D model points

with the corresponding image points.
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arbitrarily, to account for the change in the perceived size of an object as its distance

varies. It is convenient to think of this projection as �rst viewing the object from any

point on a surrounding viewing sphere, projecting the object in parallel onto an image

plane that is tangent to the sphere at the viewpoint, and then arbitrarily scaling the

resulting image, and rotating and translating it in the plane. Orthographic projection

does not capture perspective distortion; for example 3-D parallel lines always project
to 2-D parallel lines, while in perspective projection parallel lines converge as they

recede from the viewer. However, orthographic projection is a perfect approximation

to perspective projection when every scene point is equally far from the focal point,

and is a good approximation as long as the relative depth of points in the scene is

not great compared to their distance from the viewer. Orthographic projection has
only six degrees of freedom, that is, an image depends only on the relative location
of the object with respect to the image plane.

To describe orthographic projection mathematically, we assume that the image
plane is the plane z = 0, and that the object is positioned arbitrarily, which is equiv-

alent to assuming that the object is �xed and that we view it from an arbitrary view-
point. To describe the image point produced by a 3-D scene point, p = (px; py; pz), we
assume that the point is arbitrarily rotated and translated in 3-D, and then projected
onto the image plane and scaled. We may describe rotation with the rotation matrix

R, translation with the vector t, and scaling with the scalar s. Assume that:

R =

0
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Multiplying R by a scene point is equivalent to applying a rigid rotation to that
point as long as each row of R has unit magnitude, and as long as these rows are
orthogonal. Projecting the rotated and translated model into the image is equivalent

to removing the model's z component. Let q = (qx; qy) be the image point produced

by p. We �nd:
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One reason that scaled orthographic projection is mathematically convenient is

that for planar models it is equivalent to a 2-D a�ne transformation. We express a
2-D a�ne transformation as an unconstrained 2x2 matrix along with a translation
vector. If our model is planar, we may assume that it lies in the plane z = 0, and

that each model point is expressed p = (px; py). Then, letting:

A =

 
a11 a12

a21 a22

!
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and letting v = (vx; vy), when we view our model from any viewpoint, assuming

scaled orthographic projection, there exists some A and v such that:
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for every model point, and for any A and v there exists some viewpoint of the planar
model that produces the same image as this a�ne transformation. See Huttenlocher

and Ullman[57] for discussion of this fact. This is very convenient, because in general

orthographic projection is not a linear transformation, due to the constraints that
the rotation matrix must meet. However, the fact that this projection is equivalent

to an a�ne transformation in the planar case means that in that case it is a linear

transformation.

2.2.4 Linear Transformations

To gain the advantages of linearity for 3-D models, we can generalize orthographic
projection by removing the constraints that make R a rotation matrix. That is, we

allow:
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to be an arbitrary 3x2 matrix, u = (ux; uy) to be an arbitrary translation vector and
let:  

qx

qy

!
=

0
B@
0
B@
 
s11 s12 s13

s21 s22 s23

!0B@
px

py

pz

1
CA
1
CA+

 
ux

uy

!1CA
This is more general than scaled orthographic projection, because any image that

can be created with a scaled orthographic projection can also be created with this

transformation. To see this, for any R, t and s that de�ne a scaled orthographic

projection, we just let S = sR and let u = t, and we get an equivalent linear
transformation. The reverse is not true. In fact, the linear transformation has eight
degrees of freedom, while scaled orthographic projection has six degrees of freedom.

This means that when we describe the manifold of images that a model produces
with this linear transformation, we are describing a superset of the set of images the

model could produce with scaled orthographic projection.

Due to its mathematical simplicity, this transformation has been used for a number

of studies of object recognition and motion understanding (Lamdan and Wolfson[71],

Ullman and Basri[105], Koenderink and Van Doorn[65], Shashua[95], Cass[26],[27],

Breuel[19]). We now show a new result about this transformation, that it characterizes
the set of images that can be produced by a photograph of an object. We will use this
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result both to understand the transformation better, and to produce a new, useful

representation of this transformation.

Suppose we form an image of a 3-D model using scaled orthographic projection

and then view this 2-D image from a new viewpoint, modeling this second viewing
also as a scaled orthographic projection. Then this second projection is equivalent to

applying an a�ne transformation to the model's image, as we have explained above.
We now show that the set of images produced by such pairs of transformations is

equivalent to the set of images produced by a linear transformation of the model. To

show this, we must show that for any s;A;R; t;v there exist S;u such that:

Sp + u = A(sRp + t) + v

and similarly, that for any S;u there exist s;A;R; t;v so that this equality holds.
The �rst direction of this equivalence is shown by letting S = AsR while letting

u = At+v. To show the second direction of the equivalence, we can let v = u, t = 0

and s = 1. We must then show only that for any S there exist some A;R such that
AR = S. Let S1;S2 stand for the top two rows of S and let R1;R2 stand for the
top two rows of R. Also, let a11; a12; a21; a22 denote the elements of A. That is, let:

S =
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Then:
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The condition, then, for �nding A and R such that

AR =

 
S1
S2

!

is that we can choose R1 and R2 so that we can express both S1 and S2 as linear

combinations of R1 and R2. If we think of R1;R2;S1;S2 as points in a three-
dimensional space, then the origin, S1, and S2 de�ne a plane, so we may choose

R1 and R2 to be any two orthonormal vectors in that plane, and they will span it.
So there will be some linear combination of the two R vectors equal to each of the
S vectors. We have shown that the set of images that can be formed by a linear

transformation is the same as the set that can be formed by scaled orthographic

projection followed by an a�ne transformation. In fact, this latter representation of
the projection is redundant, since both scaled orthographic projection and an a�ne

transformation allow for translation and rotation in the plane, and scaling. So we may

more simply think of this as orthographic projection from some point on the viewing
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sphere, followed by an a�ne transformation, folding all of the planar transformations

into the a�ne transformation.

This result suggests an hypothesis about the human ability to understand pho-

tographs. The fact that people have no di�culty in recognizing objects in photographs

is somewhat puzzling, because a photograph of an object produces an image that the

object itself could never produce. Yet we hardly even notice the distortion that re-
sults when we view a photograph from a position that is di�erent from that of the

camera that took the photograph. Figure 2.7 shows a photograph, and an a�ne

transformation of it, as an example.

Cutting[37] discusses this phenomenon at greater length. He suggests that peo-
ple rely heavily on projective invariants for image understanding, that is, on the

properties of a planar object that do not vary as the object is viewed from di�erent
directions, assuming perspective projection. Such descriptions would be the same for

both a view of a planar object, and for a view of a photograph of the object. Cutting,
however, does not consider nonplanar objects. In this chapter, we show that con-
siderable mathematical convenience is gained by considering linear transformations

as a projection model from 3-D objects to 2-D images. We have just shown that a
side-e�ect of this model is that a characterization of an object's images will include
the images produced by photographs of the object. This suggests that human ability

to interpret photographs may result from the fact that considerable computational
simplicity is gained when one assumes that objects can also produce the images that

could really only come from their photographs.

2.2.5 Summary

We can see that there are a variety of transformations available for modeling the pro-
jection from a model to an image. While perspective projection is the most accurate,

scaled orthographic projection frequently provides a good approximation to it. Scaled
orthographic projection can also be much more convenient to work with mathemat-

ically, particularly when models are planar. The fact that it requires six degrees of

freedom, while perspective projection with an unknown focal length requires seven
degrees of freedom suggests that the set of images produced by scaled orthographic

projection will be smaller, making them easier to characterize at the potential cost
of missing some of the images that a model can produce.

We also see that even greater simplicity can be achieved by also considering the

images that a photograph of an object produces. In the case of scaled orthographic

projection this leads to a linear projection model. When we begin with a planar
model and project it repeatedly using perspective projection we have a projective

transformation. These have been studied extensively by mathematicians. In both

cases, we expand the set of images that we consider a model capable of producing to
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Figure 2.7: On top are edges describing a scene. Below, these edges after applying a

fairly arbitrary a�ne transformation. Although the edges appear somewhat distorted,
the objects in the scene are still recognizable. It is plausible that essentially the same

perceptual strategies are used to understand both images. We hypothesize that in
two images like these, the same image lines are grouped together, and the same basic

properties of these groups are matched to our internal representation of the telephone

in order to recognize it.
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achieve greater simplicity.

This section has largely been a review of material that is well described in many

places in the computer vision literature. However, it is our contribution to show

that a linear projection model describes the images produced by a photograph of
a model, assuming scaled orthographic projection. This provides a more intuitive

understanding of the images produced with the linear projection model, which others
have previously used.

2.3 Minimal Representations

This section contains a variety of results about representations of a model's images,
but we can conveniently divide these results into two parts. First, in the case of a

linear transformation and models with 3-D point features, we show that each model
can be represented by a pair of lines in two orthogonal spaces. This result is really
the centerpiece of this thesis. It is used to derive a variety of theoretical results in
chapters 3 and 5, and it forms the basis of a useful indexing system. However, this is
not the best representation imaginable, and so we lead up to this result with a series

of negative results that show that representations that might be preferable are in fact
impossible to achieve.

Then we consider the case of oriented point features, that is point features that

have one or more directional vectors associated with them, and the case of articulated
objects. These types of models are of practical value, and they are also interesting
because they turn out to be fundamentally harder than the case of rigid point features.
These results will form the basis for negative bounds on the space complexity of

indexing, as well as for negative results about other approaches to recognition. As
objects grow more complex, we will see that existing approaches to recognition grow

inherently more complex.

2.3.1 Orthographic and Perspective Projection

Planar Models

We begin by reviewing existing methods of representing the images produced by

planar models when they are viewed from arbitrary 3-D positions. This discussion
will serve several ends. It will allow us to present a clearly optimal solution to the

image representation problem for an interesting special set of models. It will recast
some existing results in our more general framework. And it will allow us to introduce

some speci�c mathematical results that will be used later.

An optimal solution to the image representation problem may exist when an in-

variant description of models exists, and much is known about invariants of planar
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models from classical mathematics. Tuller[102] describes some of this work from a

mathematical perspective for the case of models consisting of planar points or lines.

For our purposes, we may de�ne an invariant description as a function of the images

that, for any model, is constant for all images of that model.

To express this more formally, we will introduce some useful de�nitions and no-

tations. We will let M stand for the set of all possible models, where a model is a
particular group of features. The type of features should always be clear from con-

text. Similarly, I stands for the set of all comparable images, and T for the set of

all transformations. For example, for planar models under orthographic projection,

an element of T will be a particular a�ne transformation. So an element of T is a

function from M to I. We will use i; t;m as variables indicating elements of their
corresponding sets, and we will use pi to stand for a model feature, and qi to stand
for the corresponding image feature. So for example, \9t such that i = t(m)" means

that i is a possible image of m.

De�nition 2.1 f , a function on I, is an invariant function if 8m 2 M;8t1; t2 2
T ; f(t1(m)) = f(t2(m)).

That is, an invariant function produces the same value when applied to any image

of an object. It is a property of the model's images that does not vary as our viewpoint
varies. (This is the traditional mathematical de�nition of invariance, specialized to
our domain, with the assumption that we are only concerned with invariants of weight

0).

De�nition 2.2 We call f a non-trivial invariant function if it is an invariant

function, and 9i1; i2 2 I; i1 6= i2 such that f(i1) 6= f(i2).

That is, if f is not just a constant function.

De�nition 2.3 We call f a complete invariant function if, 8i1; i2 2 I, 8m 2 M ,

if f(i1) = f(i2) and if 9t1 2 T such that i1 = t1(m) then 9t2 2 T such that i2 = t2(m).

That is, not only do all images of a model have the same value for f , but any image

that has such a value for f must be a possible image of the model.
When an invariant function, f , exists, we can use it to de�ne a representation

of images in which each model's manifold is a single point. Our image space is just

the range of f , that is, we let f be a mapping from images to image space. By
the de�nition of an invariant, all of a model's images are then mapped to the same

point in image space. If f is a complete invariant function that is continuous, then
it provides us with a perfect representation of images. In addition to meeting all our

other criteria, f will introduce no false positive errors, because only images that a

model could have produced will be mapped to that model's representation in image
space.
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Planar point models with scaled orthographic projection

We begin by showing a complete invariant function for models consisting of planar

points when these models are viewed from arbitrary 3-D viewpoints with scaled or-

thographic projection. As we have noted, in this case projection may be modeled as

a 2-D a�ne transformation. This invariant is known from classical geometry, and has
been used for computer vision by Lamdan, Schwartz and Wolfson[70]. Our discussion

of it is modeled on their presentation.

Suppose our model consists of at least four points: p1;p2;p3;p4; :::pn. Assuming

that the �rst three points are not collinear we may use them to de�ne a new coordinate
system for the plane, and represent the remaining points in this coordinate system.

That is, we de�ne the origin, o, and two axes u;v as:

o = p1 u = p2 � p1 v = p3 � p1

Then we describe the i'th point with the a�ne coordinates (�i; �i). These coordinates
describe the vector from o to pi by its components in the directions u;v. That is:

pi � o = �iu+ �iv

Lemma 2.1 The set of a�ne coordinates that describe an image are an invariant

function.

Proof: Let the 2x2 matrix A, and the 2-D vector t de�ne an a�ne transformation,
and let o0;u0;v0, the transformed version of our original basis, de�ne a new basis in
the transformed image. That is we let: (o0;u0;v0) = (q1;q2�q1;q3�q1), and then

describe other transformed image points using this as a coordinate system. Then:

qi = Api + t

= A(o + �iu+ �iv) + t

= A(p1 + �i(p2 � p1) + �i(p3 � p1)) + t

= Ap1 + �iA(p2 � p1) + �iA(p3 � p1) + t

= o0 + �iu
0 + �iv

0

So a�ne coordinates are not changed when the model is viewed from a new angle,

and constitute an invariant function.

Lemma 2.2 Given any 3 non-collinear model points: (p1;p2;p3) and any non-

collinear image points: (q1;q2;q3), there exists an a�ne transformation that maps

the model points to the corresponding image points.
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Proof: The equations:

qi = Api + t

give us six linear equations with six unknowns. The condition for these equations

having a solution is equivalent to the points not being collinear.

Theorem 2.3 The set of a�ne coordinates that describe an image are a complete

invariant function.

Proof: This requires us to show that any image with the same a�ne coordinates
as a model could have been produced by that model. The image is fully described

by (q1;q2;q3;�4; �4; :::; �n; �n). We know from lemma 2.2 that the model could pro-

duce an image with any three points q1;q2;q3. From lemma 2.1 the model's a�ne

coordinates are always preserved. Therefore, a model can produce any image that is
described by the same a�ne coordinates as the model. 2

This result will be quite useful to us in future sections. It has also been used
extensively for the recognition of planar models. This was �rst done by Lamdan,
Schwartz and Wolfson[70]. Their system computes the a�ne coordinates of quadru-

ples of model points at compile time, and stores a pointer to each quadruple in a
2-D image space that represents (�4; �4). Then, at run time they perform matching
by computing the a�ne coordinates of an image quadruple, and then a simple table
lookup provides all model quadruples that could have produced this image quadru-

ple. They combine these lookups using a voting scheme that we will not describe
here. A�ne coordinates are also considered for recognizing planar objects in: Lam-

dan and Wolfson[71], Costa, Haralick and Shapiro[34], and Grimson, Huttenlocher

and Jacobs[49].

Planar point models with perspective projection or projective transforma-

tions

In this section we will present a complete invariant representation of points under pro-
jective transformations. This means that the representation is not changed by a series

of perspective projections, so obviously this will also be an invariant representation

for perspective projection, although not a complete one.
We begin by describing the cross-ratio. This is a function of four collinear points

that is invariant under projective transformations. We will use it to build up a more
general invariant description of coplanar points.

De�nition 2.4 Let A;B;C;D be four collinear points. Let kABk denote the distance
between A and B. Then the value:

kCAk

kCBk

kDAk

kDBk
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is the cross-ratio of the four points.

An important theorem from projective geometry is:

Theorem 2.4 The cross ratio of four points is invariant under projective transfor-

mations.

We omit the proof of this theorem (see Tuller[102], for example). However, we

note that this theorem depends on the fact that a projective transformation preserves
the collinearity of points.

We now present an invariant representation of �ve general planar points. Call

these points: p1;p2;p3;p4;p5. Let Lij stand for the line that connects pi and pj.

Let p01 be the point at the intersection of lines L12 and L34. Let p
0
2 be the point at

the intersection of L12 and L45. See �gure 2.8. Suppose a projective transformation
maps each point pi to a corresponding point qi. Note that because projective trans-

formations preserve collinearity, for any such transformation q01 will still be at the
intersection of the line formed by q1 and q2, and the line formed by q3 and q4. A

similar statement holds for q02. Therefore, given our �ve initial points, we may com-
pute the cross-ratio of the points p1;p2;p

0
1;p

0
2, and this cross-ratio will be invariant

under projective transformations. We will call this invariant 
5. Similarly, we locate

p03 at the intersection of L13 and L25, and p
0
4 at the intersection of L13 and L45, and

compute a second invariant from the cross-ratio of the points p1;p3;p
0
3;p

0
4. We call

this invariant �5. Together, (
5; �5) form a complete invariant description of the �ve

points, but we will not prove the completeness of the description here. We will call
these the projective coordinates of the �fth point.

To handle models with more than �ve points, we may substitute any i'th point
for the �fth point in the above calculations, and compute (
i; �i).

Other planar invariants

There has also been a good deal of work done on invariants of planar objects that are

more complicated than points. There are general, powerful mathematical tools for

deriving invariants of curves under transformations that form a group. However, there
is not always a clear, computationally tractable means of determining these invariants.

So some work has focused on deriving useful invariants in speci�c situations. There

are also many practical problems that must be solved in order to use these invariants
in vision. In particular, a real image must be turned into a mathematical object.

For example, we must �nd derivatives of an image curve, or approximate it with an
algebraic curve. Work has been done to understand and limit the e�ects of sensing

error on these processes. We do not wish to describe this work in detail here because

it is not directly relevant to what follows. Instead, we provide a brief overview so
that the interested reader will know where to �nd more detailed presentations.
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Figure 2.8: Points used to construct a projective invariant description.
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Cyganski and Orr[38] suggested the use of a new, a�ne-invariant curvature. Cy-

ganski, Orr, Cott and Dodson[39] use this to match a model which is a closed curve

to its image by comparing a normalized graph of curvature versus length. In the

error free case the graph of the image curvature is always identical to the graph of

the model's curvature, except for 1-D shifting due to the fact that one does not have

a canonical starting point for the curve.

Van Gool, Kenpenaers and Oosterlinck[106] provide a synthesis of these curvature

invariants and the point invariants used by Lamdan, Schwartz and Wolfson. They

show how information about the position and derivatives of points on a curve may

be combined into a single invariant representation.

Weiss[111] suggests the use in machine vision of a large body of results concerning

projective invariants of plane curves. Since perspective projection and scaled ortho-

graphic projection are special cases of projective transformations, Weiss' discussion
applies to both cases. He provides a useful review of classical work on di�erential
invariants, that is invariants based on local properties of a curve such as derivatives,
and on algebraic invariants, that is, invariants of algebraic curves. Weiss also makes

many speci�c suggestions for applying this classical work to problems in visual object
recognition. This paper has played an in
uential role in bringing mathematical work

on invariants to the attention of computer vision researchers.

In a more recent paper, Weiss[112] has attempted to come to grips with the

practical problems of using invariants in the face of noise and occlusion. He provides
di�erential invariants that require taking the fourth derivative of a curve, compared

to the sixteen derivatives required by classical results. He then suggests methods for

robustly �nding the fourth derivative of a curve in spite of image error.

Forsyth et al.[44] also provide a useful review of general mathematicalmethods for
�nding invariants of planar curves. They then derive projective invariants of pairs of
conics and use these for object recognition. They also consider the problem of �nding
invariant methods of approximating image curves with algebraic curves. Rothwell et

al.[92] describes some further application of these ideas.

Other applications of invariants to vision may be found in a recent collection,

edited by Mundy and Zisserman[85]. Cutting[37] provides a more general discussion
of invariants from the point of view of perceptual psychology.

A number of useful di�erential and algebraic invariants have been derived. There
are two main challenges to applying these invariants to machine vision. First of all, the

e�ects of error on these invariants are not generally well understood. There has been

some work on the stability of these invariants, showing that small amounts of error
have only a small e�ect on the invariant. But it is not understood how to precisely
characterize the e�ects of realistic image error on invariant representations. This is in

contrast to the case of planar points, where we know precisely how a bounded amount

of sensing error can e�ect our invariant description (see chapter 4).
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Invariants of local descriptors of curves use high-order derivatives, and so tend to

be particularly sensitive to error. However, invariants of more global curve descrip-

tions tend to be sensitive to occlusion. As a result, much of the work on invariants

assumes that these curves have been correctly segmented. To handle this problem,

work is needed either on segmenting curves, or on developing invariant descriptions

that are insensitive to occlusion. Essentially, one could say that work has proceeded
on curve indexing without much attention yet to the grouping problem.

3-D Point Models

Unfortunately, there are no invariants when models consist of arbitrary collections of
3-D points which are projected into 2-D images. That is, it is not possible to de�ne

an image space in which each model is described by a single point. In this section,

we determine what is the lowest possible dimension of manifolds in image space that
represent general 3-D point models, assuming that there are no false positive or false
negative errors (beyond any introduced by the projection model). In chapter 5 we
consider what happens when errors are introduced.

An alternative to this approach is the use ofmodel based invariants. Weinshall[110]

has shown that given a particular quadruple of 3-D point features, one may construct
a simple invariant function. Applying this function to a quadruple of image points
tells us whether they could be a scaled orthographic projection of the model points.
This function is an invariant for a restricted set of one model, and a set of such

functions may be combined to handle multiple models that do not share a common
image.

Scaled orthographic projection: Manifolds must be 2-D

Clemens and Jacobs[32] show that in the case of general 3-D models of point features
and scaled orthographic projection, models must be represented by a 2-D manifold

in any image space. In this section we will draw extensively on that discussion,
reworking it only slightly to �t our present context. Hence, this section should be

considered as joint work between the author and David Clemens.
First, we add a de�nition and prove a lemma that will be useful for nonplanar

models.

De�nition 2.5 For nonplanar models, the �rst three model points will de�ne a plane.

We call this the model plane.

Lemma 2.5 Given any nonplanar model, and any a�ne coordinates, (�4; �4), there

is always a viewing direction for which q4 (the image of the fourth model point) has

coordinates (�4; �4) relative to the �rst three image points.
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Figure 2.9: The image points q1, q2, q3, and q4 are the projections of the model

points p1, p2, p3, and p4. The values of the image points depend on the pose of the
model relative to the image plane. In the viewing direction shown, s4 and p4 project
to the same image point. Note that q4 has the same a�ne coordinates as s4.
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Figure 2.10: A model, m, can produce images i1;1 and i2;2, so its manifold must
include the points these images map to in image space, X1;1 and X2;2. Model m2;2

can also produce image i2;2, so its manifold also includes X2;2. Since m2;2 could not

produce i1;1, its manifold must not include X1;1. Therefore, X1;1 6= X2;2, and m's
manifold must include at least two points.

Proof: Let s4 be the point in the model plane that has a�ne coordinates (�4; �4)

with respect to the �rst three model points (see �gure 2.9). When we view the model

along a line joining p4 with s4, both p4 and s4 will project to q4. Since the projection
of s4 will always have a�ne coordinates (�4; �4), p4 will also have these coordinates
when looked at from this viewpoint. 2

We may now show:

Theorem 2.6 For any model, m, that has four nonplanar points, and any mapping

from images to image space that does not introduce errors, m must correspond to a

2-D manifold in image space.

Proof: First we show that for any nonplanar model there must be a one-to-one
mapping from the points in the real plane to distinct points on the model's manifold.

We choose any three points in m as basis points, that is as the points (p1;p2;p3)
that will de�ne the model plane and form an a�ne basis in it. We choose to denote

as p4 any other model point that is not in the model plane. Then let � be a variable

representing the viewing direction, i.e. a point on the unit viewing sphere. We may

let (�4(�); �4(�)) stand for the a�ne coordinates of q4 (the projection of the fourth

model point) as a function of �.

We will �rst show that m's manifold must contain at least two points in image
space, as illustrated in �gure 2.10. Then we will generalize this to prove our theorem.
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By lemma 2.5, there exists some �11 such that �4(�11) = 1 = �4(�11). Let i(1;1)
stand for the entire projection of m when viewed from this orientation. That is, i(1;1)
is the way the model appears when viewed so that its fourth point has the a�ne

coordinates (1; 1). Let X(1;1) be the point in image space to which i(1;1) maps. Then

X(1;1) must be part of m's manifold in image space, by our assumption that the

manifolds must represent the models without error.

Let m(1;1) be a model in which all points are coplanar and equal to the points in
i(1;1). Then clearly m(1;1) can also produce the image points i(1;1). This means that

X(1;1) must also be part of m(1;1)'s manifold.

Now there also exists a viewing direction, �22, for which the image of p4 will have

a�ne coordinates �4(�22) = 2 = �4(�22), as above. Let i(2;2) be the image that m

produces when viewed from this orientation. i(2;2) will map to the point X(2;2) in the

index space, and m's manifold must also include that point. Let m(2;2) be a planar
model that is identical to i(2;2). Then m(2;2)'s manifold must also includeX(2;2). Since
m(2;2) is a planar model, for any projection of M(2;2) its fourth point will have the
a�ne coordinates (2; 2). But in i(1;1), the fourth image point has the a�ne coordinates
(1; 1). By Lemma 2.1, there is no orientation for which m(2;2) can produce the image
i(1;1). If X(2;2) = X(1;1), then i(1;1) maps to modelm(2;2)'s manifold, even though model

m(2;2) could not possibly have produced image i(1;1). So, by our assumption that our
mapping to image space introduces no errors, X(2;2) 6= X(1;1). That is, m(1;1) and
m(2;2) must have disjoint manifolds, while m's manifold must include points in each

manifold. Similarly, for any point in the plane, (i; j), we can create an image i(i;j)
and a model m(i;j). i(i;j) will map to point X(i;j) in the image space, and m(i;j) and

m will each include X(i;j) in their manifold. Also, similar reasoning will tell us that

X(i;j) 6= X(i0;j0), unless i = i
0 and j = j

0. So, there is a one-to-one mapping from
points in the plane to distinct points in m's manifold in image space. We notice a few
things about this proof. It applies equally well if m contains more than four points.
Also, it does not depend on any particular representation of images. Although we use

a�ne coordinates to describe an image, it is not assumed that this representation is
used to de�ne our image space. Finally, we have not so far assumed that our mapping

from images to image space is continuous. If we make that additional assumption,
we may conclude that each nonplanar model's manifold is at least two-dimensional in
image space. This is due to a basic result in topology that any continuous, one-to-one

mapping must preserve dimensionality (see, for example, [114]). Since a slight change

in an image produces a slight change in its a�ne coordinates, we have a continuous
one-to-one mapping from the plane to a portion of each model's manifold. So these

manifolds must be at least 2-D.

In the course of the above proof, we have established the following lemma, which

will be of use later:
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Lemma 2.7 The dimensionality of a model's manifold in any error-free image space

is bounded below by the dimensionality of its manifold in a�ne space, when scaled

orthographic projection is used.

This lemma states that if we consider the set of all collections of a�ne coordinates

that a model may produce in various images, the dimensionality of this set provides
a lower bound on a model's manifold in any image space. In the above proof, we

have shown that a model of rigid point features produces a 2-D manifold in the

space of possible a�ne coordinates, and used that to show that these models must
be represented by a 2-D manifold in any image space that does not introduce errors.

Later we will use this lemma in the case where a non-rigid object can produce a
greater than 2-D manifold of a�ne coordinates.

It is also true that:

Theorem 2.8 For 3-D models and scaled orthographic projection there is an image

space such that each model's manifold is no more than 2-D.

This is accomplished by representing each image in any way that is invariant
with scale, and rotation and translation in the plane. In that case, there is a direct
correspondence between points on a unit viewing sphere and images of the model that
map to di�erent points in image space. So it is not hard to show our theorem using
such a representation. A more careful proof is given in Clemens and Jacobs[32].

Perspective Projection

We may now show an analogous result for perspective projection. The reader should

note that at no point in this section do we make use of the focal length of the projec-
tion. These results apply equally well whether or not the camera geometry, including
focal length, is known or unknown. We show that any error-free mapping must take
a model's images to at least a 3-D manifold in image space. This is of interest be-

cause it shows that the problem of indexing models under perspective projection is

fundamentally more di�cult than it is under scaled orthographic projection. This
also suggests why it may be di�cult to extend the results we will present in section
2.3.2 to the case of perspective projection.

Many of the same techniques may be used for this proof as were used in the case

of scaled orthographic projection. With perspective projection, we may describe an

image using the location of its �rst four points, and the projective coordinates of
the remaining points with respect to these four points. In the case of orthographic
projection we showed that, when viewed from all directions, a model could produce

a 2-D set of a�ne coordinates. That is, the model could produce any values for

(�4; �4). And we showed that two images with di�erent a�ne coordinates would have
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to map to distinct points in image space. The same reasoning shows that in the case

of perspective projection, any two images with di�erent projective coordinates must

map to di�erent points in image space, and we need not repeat that argument here.

It remains to characterize the set of projective coordinates that a 3-D model might

produce when viewed from di�erent directions.

We consider a model with at least six points, (p1;p2;p3;p4;p5;p6). We again

refer to the plane formed by the �rst three points as the model plane. We will also
ignore some degenerate cases. For example, we assume that the lines connecting

p4;p5 and p6 are not parallel to the model plane, and that none of these three points

lie in the model plane.

Since the model has six points, images of it will have four projective coordinates,

5; �5; 
6; �6. In Appendix A we show that any model can produce any set of values

for three of the projective invariants that describe the model's images. However, this

derivation requires some simple tools from analytic projective geometry, and is not
self-contained. So in this section we will use a geometric argument to show that for
any model, and for any values of 
5 and �5, there will be an image of the model that has
those projective coordinates. We will then show that for any pair of 
5; �5 coordinates

there will also be a range of values that 
6 can have. This is su�cient to show that a
model's images map to a 3-D surface in the space of projective coordinates. And the
geometric derivation may provide some useful insight into the problem.

We now de�ne three special points on the model plane. For a �xed focal point, f ,
the viewing lines connecting f to p4;p5 and p6 intersect the model plane at points
that we will call s4; s5 and s6 respectively. As with scaled orthographic projection,
our task now is to determine the set of projective coordinates that can be produced

by the coplanar points: p1;p2;p3; s4; s5; s6. This is exactly the set of projective
coordinates produced by images of the model. Our strategy will be to �rst provide a
geometric description of the possible locations of s4; s5 and s6 in the model plane. We

will use this to show that the projective coordinates (
5; �5) can take on any values.
We also show that the value of �5 is independent of the values of 
5 and 
6. Then we

consider the possible pairs of values that can occur for (
5; 
6). We show that this set

of values is a 2-D portion of the 
5-
6 space. Since for any allowable pair of (
5; 
6)

values we can get any value for �5, this tells us that the set of projective coordinates
a model can produce forms at least a 3-D manifold in the space of possible projective
coordinates (projective space).

First, we note that s4 can appear anywhere in the model plane. A line connecting

any point on the model plane with p4 determines a set of possible locations for f

which will place s4 at that point on the model plane. We now de�ne two new special
points which will help us to determine the compatible locations of s4; s5 and s6. p4
and p5 determine a line. We will call the point at which this line intersects the model

plane r5. Similarly, let r6 stand for the point where the line connecting p4 and p6
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Figure 2.11: On the left, we show the points that lie on the model plane. We

illustrate the constraints that s4, si and ri must be collinear. On the right, we show
the relationship between these points and the related model points, demonstrating
why these collinearity constraints must hold.
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intersects the model plane. Note that r5 and r6 are intrinsic characteristics of the

model that do not depend on the viewpoint. The layout is illustrated in �gure 2.11.

The three points f , p4 and p5 form a plane, which we will call V5. s4 and s5 are

in V5, since they are on the lines connecting f to p4 and p5. The intersection of V5
and the model plane is then the line connecting s4 and s5. Call this line v5. Since

the line connecting p4 and p5 is in V5, this means that r5 is also in V5. Since r5 is

de�ned to be in the model plane, this means that r5 is also on v5. Therefore, once
we specify the location of s4, we have also speci�ed a simple geometric constraint on

the location of s5; we know that it must lie on the line determined by s4 and r5.

Furthermore, s5 can fall anywhere on this line. To see this, we suppose that

s4 and s5 are anywhere in the model plane, subject to the constraint that they be
collinear with r5, and then determine a focal point such that the lines from the focal

point to p4 and p5 includes s4 and s5. From our assumptions, there is a single line

that contains s4, s5 and r5, and another line that connects p4, p5 and r5, and so
together, these �ve points lie in a single plane. This plane will also include the line
that connects s4 and p4, and the line that connects s5 and p5. Therefore, these two
lines either intersect, or are parallel (intersect at in�nity), they cannot be skewed. If

they intersect, their point of intersection provides a focal point from which p4 and
s4 project to the same place in the image, and similarly for p5 and s5. If the lines
are parallel, then assuming a focal point at in�nity, in the direction from s4 to p4,

produces the appropriate projection. We have therefore shown that the images that
the model produces can be described by saying that s4 may be anywhere in the model

plane, and that s5 can be anywhere on the line connecting r5 and s4. Similarly, once

we know the location of s4 we know that s6 can lie anywhere on the line connecting
s4 and r6.

We now show that for any model, and for any values of (
5; �5), there exists a
viewpoint from which the model's image has those projective coordinates. To do

this we do not need to explicitly discuss the viewpoint, but only the locations of
p1;p2;p3; s4 and s5, since the invariant values that these points produce in the

model plane will be preserved in the image. First, we note that the value of 
5 is fully

determined by the location of s4. To see this, recall that 
5 is a cross ratio based on

four points. Two of these points, p1 and p2 are independent of the viewpoint. A
third point, p01, depends on the intersection of the line formed by p1 and p2 with the
line formed by p3 and s4, which is determined by the location of s4. And the fourth

point is dependent on the line formed by s4 and s5. However, since this is also the
line formed by s4 and r5, this line is also determined by the geometry of the model

and the location of s4.

This has two implications. We note that if one of the points used to compute a

cross-ratio varies along all the points of the line while the other three points remain
�xed, then all possible values of the cross-ratio will occur. Now �rst, suppose we
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want to produce a particular value of 
5. We may choose any values of p01 and p02
that produce this cross ratio. Then the intersection of the line from p02 to r5 with

the line connecting p01 and p3 will provide us with a location of s4 that will produce

this value of 
5. Second, note that once we have �xed s4, three of the points used

to compute the cross-ratio �5 are �xed. The remaining point is the intersection of

the line from s5 to p2 with the line connecting p1 and p3. As s5 varies along the
line connecting r5 and s4, this intersection point can appear anywhere on the line

connecting p1 and p2. Therefore, �5 may take on any value. Together we see that

we may choose s4 and s5 to produce any pair of values for (
5; �5).

We conjecture that any model may also produce any values for (
5; 
6), and there-
fore, any values for (
5; �5; 
6), since the values of �5 that can appear in an image are

independent of the values for any 
i (which all depend only on the location of s4).
However, we have not found a simple way of proving this. Furthermore, our primary

goal in this section is to show a weaker result, that a model's images form a 3-D
manifold in projective space. We show that now. As we have noted, it remains only
to show that a model's images �ll up a 2-D portion of 
5-
6 space.

Suppose that s4 varies along a line that includes r5 and p3, but not r6. Then all

the points used to calculate 
5 will remain �xed, and in fact 
5 will always equal 1.
However, as s4 varies along this line, so will the line connecting s4 and r6, and so 
6
will assume all possible values. We may therefore easily choose two unequal values,

c1 and c2, such that our model can produce an image with any pair of projective
coordinates (
5; 
6) such that 
5 = 1 and c1 � 
6 � c2. Our choice of c1 and c2 gives

us a segment of the line connecting r5 and p3. As s4 varies along this line segment,

values of 
6 between c1 and c2 are produced.

Now we choose another line segment parallel to this one, and approaching it very
closely. We consider the values of 
5 and 
6 that are produced as the second line
segment approaches the �rst one. A range of values of 
5 are produced, but this

range collapses down to 1 as the line segments converge. The range of values for 
6
converge to the range of values from c1 to c2. Therefore, for any small �c we can �nd a

�g that is small enough that as the line segments get close and 
5 is always within �g

of 1, then 
6 takes on all values between c1+ �c and c2� �c. That is, we have de�ned
a small rectangle of possible locations for s4 such that, as s4 varies among locations
in that rectangle, 
5 and 
6 take on all pairs of values within a small rectangle of

possible values. This shows that a model can produce a 2-D manifold of values for

the parameters (
5; 
6), and so a 3-D manifold of values for the parameters (
5; �5; 
6).
This demonstrates that indexing with perspective projection will inevitably require us
to represent a higher-dimensional surface than will indexing with scaled orthographic

projection.

We also note that the projective coordinates that a model produces will be no more

than a 3-D manifold. In general, knowing the values of 
5 and 
6 �xes the location
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of s4, and hence of other 
 values, while knowing the value of �5 will determine the

location of the focal point.

2.3.2 Linear Projection

We now turn to the images produced by 3-D point models with a linear projection

model. We will see that, as with orthographic projection, we still need 2-D manifolds
to represent these images in a single image space. But these manifolds may be de-

composed into two 1-D manifolds in two image subspaces. And all of these manifolds
are linear, and easily determined by analytic means. This result, which was �rst

presented in Jacobs[62], essentially reduces the indexing problem to one of matching

points to 1-D lines. Short of a zero-dimensional representation of models' images,
this is the best for which we could hope.

To show this result, we will use the a�ne invariant representation of images intro-
duced in section 2.3.1. We describe each image with the parameters: (o;u;v; �4; �4; :::�n; �n)
denoting an a�ne coordinate frame and then the image's a�ne coordinates.

The �rst three of these parameters provide no information about the model that
produced an image, and so we may ignore them. To see this, suppose that we view our

model, m, with a scaled orthographic transformation which we will call V, followed
by an a�ne transformation we will call A, producing the image, i. That is:

AVm = i

= (o;u;v; �4; �4; :::�n; �n)

Then, for any values of (o0;u0;v0), we want to show that m may produce the image

with parameters: (o0;u0;v0; �4; �4; :::�n; �n). We know from lemma 2.2 that there is

an a�ne transformation, A0 that maps (o;u;v) to (o0;u0;v0) (except for the degen-
erate case of collinearity), and from lemma 2.1 that this will leave the image's a�ne

coordinates unchanged. Therefore,

i0 = (o0;u0;v0; �4; �4; :::�n; �n)

= A0AVm

Since a�ne transformations form a group, we can combine A and A0 into a single
a�ne transformation. This means that there is a linear projection of m that produces

image i0. We may therefore ignore the parameters (o;u;v) in describing the images
that a model can produce, since we know that these may take on any values.

We may also now ignore the a�ne transformation portion of the projection, be-

cause this has no e�ect on the remaining, a�ne-invariant image parameters. We have

therefore shown:
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Lemma 2.9 To describe the images that a model produces with linear projections, we

need only consider the a�ne coordinates produced in images as the model is viewed

from each point on the viewing sphere.

The remaining image parameters form an image space that we will call a�ne space.

An image with n ordered points is mapped into a point in a 2(n � 3)-dimensional

a�ne space by �nding the a�ne coordinates of the image points, using the �rst three
as a basis. We divide the a�ne space into two orthogonal subspaces, an �-space,

and a �-space. The �-space is the set of � coordinates describing the image, and the

�-space is de�ned similarly. The a�ne space is then equal to the cross product of the
�-space and the �-space, and each image corresponds to a point in each of these two

spaces. We now show that the images of any model map to the cross product of lines

in �-space and �-space.

We know from lemma 2.5 that a model can produce an image containing any
values for (�4; �4). We now express the remaining a�ne coordinates of an image as

a function of these values and of a model's properties. Figure 2.12 shows a view of

the �ve points (p1;p2;p3;p4;pj). We will consider degenerate cases later, but for
now we assume that no three points are collinear, and no four points are coplanar.
First we de�ne two new points in the model plane. Let p04 be the point in the model
plane that is the perpendicular projection of p4. That is, the line from p04 to p4

is orthogonal to the model plane. Since p04 is in the model plane, we can describe
it with a�ne coordinates, using the �rst three model points as an a�ne coordinate
system. We call the a�ne coordinates of p04: (a4; b4). Similarly, we de�ne p0j to be the
point in the model plane perpendicularly below pj, with a�ne coordinates (aj; bj).

Let us assume that from the current viewpoint, the fourth image point, q4, has a�ne

coordinates (�4; �4), and so does the point in the model plane s4. That is, the viewing
direction is on a line through s4;p4, and q4. Then a parallel line connects pj with

its image point, qj. We will call the point where this line passes through the model
plane: sj. We will call the a�ne coordinates of sj in the model plane: (�j; �j). So

from the viewpoint depicted in �gure 2.12 the model's image has a�ne coordinates

(�4; �4) and (�j; �j)

We now relate these coordinates. The triangle p4p
0
4s4 will be similar to the

triangle pjp
0
jsj, because the lines p4s4 and pjsj are parallel viewing lines, and the

lines p4p
0
4 and pjp

0
j are both orthogonal to the model plane. If we let rj be the ratio

of the height of p4 above the model plane to the height of pj above the model plane,

than rj is the scale factor between the two triangles. So: (s4�p
0
4) = rj(sj�p

0
j), and

therefore:

(�j; �j) = (aj; bj) +
((�4; �4)� (a4; b4))

rj

: (2:1)
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Figure 2.12: The image points q1, q2, q3, q4, and qj are the projections of the model

points p1, p2, p3, p4, and pj, before the a�ne transform portion of the projection

is applied. The values of the image points depend on the pose of the model relative

to the image plane. In the viewing direction shown, s4 and p4 project to the same
image point. p04 is in the model plane, directly below p4. Note that q4 has the same

a�ne coordinates as s4.
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This equation describes all image parameters that these �ve points may produce.

For any image, this equation will hold. And for any values described by the equation,

there is a corresponding image that the model may produce, since, from Lemma 2.5

we know that for any values (�4; �4), there is a view of p4 that produces these values.

A model produces a series of these equations, which, taken together, describe a 2-D

plane in a�ne space.
Taking the � component of these equations, we get the system of equations:

�5 = a5 +
(�4 � a4)

r5
:

:

:

�n = an +
(�4 � a4)

rn

Since the values: a4; :::; an and r4; :::; rn are constant characteristics of the model,
these are linear equations that describe a line in �-space. Similarly, we get:

�5 = b5 +
(�4 � b4)

r5
:

:

:

�n = bn +
(�4 � b4)

rn

These equations are independent. That is, for any set of � coordinates that a model
may produce in an image, it may still produce any feasible set of � coordinates.

Notice that for any line in �-space, there is somemodel whose images are described
by that line. It is not true that there is a model corresponding to any pair of lines in

�-space and �-space because the parameters rj are the same in the equations for the

two lines. This means that the two lines are constrained to have the same directional
vector, but they are not further constrained.

There are also degenerate cases in which this derivation does not hold. If some

of the model points are coplanar, than some of the rj are in�nite, and the lines
are vertical in those dimensions. If all the model points are coplanar, the a�ne

coordinates of the projected model points are invariant, and each model is represented
by a point in a�ne space. If the �rst three model points are collinear, then the lines

are unde�ned.

This is the lowest-dimensional complete representation possible of a model's im-
ages, assuming a linear projection transformation. The same proof used in the scaled
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orthographic case shows that a continuous 2-D manifold must be represented in the

linear case. And it is not possible to decompose such a surface into the cross-product

of zero-dimensional manifolds. So any complete representation must involve at least

the cross-product of two 1-D manifolds.

2.3.3 Linear Projections of More Complex Models

We now consider two ways of making our models more complex: one in which point
features have one or more directional vectors attached to them, a second in which

objects have rotational degrees of freedom. These are important generalizations. A

number of recognition systems use oriented point features, and many real objects

have rotational degrees of freedom. It is also valuable for us to consider new kinds
of models in order to get an idea of how well the results we have developed might

extend to more challenging domains. We will see that it is possible to analytically
characterize the images produced by models with oriented points. However we will
also see that our most valuable results do not extend to this case. Models of oriented

points map to 2-D hyperboloids in image space. We prove that these hyperboloids

may not be decomposed into pairs of 1-D manifolds as we have done before. This
places a quadratic bound on the space required to index oriented points using our

straightforward, index table approach. Then we show that as rotational degrees
of freedom are added to a model of point features, the dimensionality of a model's
manifold grows. We show that this dimensionality cannot be reduced even by allowing

false positive matches. These results tell us that the indexing problem becomes
inherently much more di�cult as we consider more complex, realistic objects.

3-D Oriented Point Models

The manifolds are hyperboloids

By an oriented point we mean a point with one or more directional vectors attached to

it. For example, we might detect corners in an image for which we know not only the

location of the corner, but also the directions of the two or three lines that intersect
to form the corner. Alternately, we might distinguish special points on curves such

as curvature discontinuities or extrema, and make a feature from the location of that
point combined with the curve tangent. These two situations are illustrated in �gure
2.13. In both cases we can consider our model as having 3-D vectors of unknown

magnitude associated with each 3-D point. We then consider our image as containing

the 3-D projections of these features.
Oriented points have been used in a variety of recognition systems. For example,

Thompson and Mundy[100], Huttenlocher and Ullman[57], Bolles and Cain[13], and

Tucker, Feynman and Fritzsche[101] use vertices as features. Other systems have used
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Figure 2.13: This �gure shows simple examples of images with three oriented points
each. Above, the points are vertices, shown as circles. For each point, we know
two directional vectors from the lines that formed the vertex. Below, we assume

that we can locate some distinguished points along the boundary of a curve, and can

determine the tangent vector of the curve at those points.
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Figure 2.14: The three points shown are used as an a�ne basis, and the slopes of
the vectors are found in this coordinate system.

points and tangents to characterize curves, such as Asada and Brady[1], Marimont[76],

Mokhtarian and Mackworth[82], Cass[26],[27], and Breuel[20]. These features are
valuable because they are local and powerful. It doesn't take too much of the image
to reliably locate a point and its orientation, but this feature provides us with more

information than a point feature alone.
We now derive the manifolds in image space that describe such models' images.

To do this, we �rst extend our a�ne invariant representation to handle oriented
points. Then we show that using this representation, each model corresponds to a

2-D manifold in image space that is a hyperboloid when we consider three dimensions
of the image space.

To simplify our representation, we assume that each model contains at least three

oriented points. We then use the images of these three points to de�ne an a�ne

basis as we did before, and describe the points' orientation vectors using this basis.
Our image consists of points with associated vectors. The location of these vectors

is irrelevant, so without loss of generality we may locate them all at the origin (see

�gure 2.14). We describe any additional image points using their a�ne coordinates,
and we describe each orientation vector by its a�ne slope.

De�nition 2.6 To �nd the a�ne slope of a vector at the origin, we just take the

a�ne coordinates (�; �) of any point in the direction of the vector, and compute
�

�
.

It is easily seen from the properties of a�ne representations that the a�ne slope

of a vector is well de�ned and is invariant under a�ne transformations. This repre-
sentation of vectors is equivalent to an a�ne invariant representation derived by Van
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Gool et al.[106] using di�erent methods. We use a�ne slope to de�ne a new image

space that combines point and vector information. We describe an image with the

a�ne coordinates of any points beyond the �rst three, (�4; �4; :::�n; �n), and with the

a�ne slopes of all vectors, which we will call (�0; :::; �m). Together these values pro-

duce an a�ne slope space. As before, the problem of determining a model's manifold

becomes one of determining the set of a�ne-invariant values it may produce when
viewed from all points on the viewing sphere.

We solve this problem using the following strategy. First we introduce some

special point features, called ri, that are related to the vectors that we really need

to consider. We then determine the manifolds produced by the combination of these

new points and the points in the model. Since we have only point features to deal
with, this manifold can be represented as a simple pair of lines in some � and �

spaces. We then use these manifolds to determine the manifolds in a�ne slope space

that represent our actual model.
We begin by introducing some special 3-D points. With every vector, vi, we asso-

ciate some point, ri that is in the direction vi from the origin. We denote the points of
the model by pi. We will describe images of the points (p1;p2;p3;p4; :::pn; r0; :::rm)
by the a�ne coordinates: (�p4; :::�

p

n
; �

r

0; :::�
r

m
) and (�p4; :::�

p

n
; �

r

4; :::�
r

m
). Now we may

use our previous results to describe these images using lines in these � and � spaces.

We will call these lines A and B respectively.

We can describe A with a parameterized equation of the form:

A = a + kw

a is any point in � space on the lineA. We denote the coordinates of a as: (ap4; a
p

5; :::a
p

n
;

a
r

0; a
r

1; :::a
r

m
). w is a vector in � space that expresses the direction of A, and we denote

its coordinates as: (wp

4; :::w
p

n
; w

r

0; :::w
r

m
). k is a variable. As k varies, we get the points

on the line A. Similarly, we let:

B = b+ cw

Note that w is the same in both equations, because A and B must have the same
directional vector.

However, in practice we cannot know the images of the points ri. The vectors
that we detect in the image will provide us only with the direction to the ri points'

images, not their actual location. So A and B are not directly useful, we must use

them to determine the a�ne slopes that can occur in an image. To do this, we note

that if the pi and ri points together can produce an image with a�ne coordinates:

(�
p

4; �
p

4; :::�
p

n
; �

p

n
; �

r

0; �
r

0; :::�
r

m
; �

r

m
), then the pi points and the vi vectors can produce

an image that is described in a�ne slope space as: (�p4; �
p

4; :::�
p

n
; �

p

n
;

�
r

0

�
r

0

; :::

�
r

m

�rm
).

We will now derive a set of equations that describe a model's manifold in the
a�ne slope space (�4; �4; :::�n; �n; �0; :::; �m). These equations will express the set of
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a�ne coordinates and slopes that a model can produce as a function of �0; �1, and

the characteristics of the model. We start with the equations:

�i =
�
r

i

�
r

i

=
a
r

i
+ kw

r

i

b
r

i
+ cw

r

i

�j = �

p

j
= a

p

j
+ kw

p

j

�j = �

p

j
= b

p

j
+ cw

p

j

for any choice of k and c, and over all values of i and j. That is, we pick any set

of a�ne coordinates that can be produced by the model points and the constructed

ri points, and use these to determine a�ne coordinates and slopes that we could

actually �nd in the image.
We ignore the degenerate cases where �r0 and �

r

0 are constant over the lengths of

the lines A and B. These are the cases in which the �rst model vector is coplanar
with the �rst three model points. Then we may choose for a and b those points on
A and B for which ar0 = 0 and br0 = 0, This gives us the equation:

�0 =
a
r

0 + kw
r

0

b
r

0 + cw
r

0

=
k

c

This implies

c =
k

�0

We can use this to get:

�1 =
a
r

1 + kw
r

1

b
r

1 +
kw

r

1

�0

�1(b
r

1�0 + kw
r

1) = a
r

1�0 + kw
r

1�0

k(wr

1�1 � w
r

1�0) = a
r

1�0 � b
r

1�0�1

k =
�0(a

r

1 � �1b
r

1)

w
r

1(�1 � �0)

So we can express k and c in terms of the �rst two a�ne slopes we detect in the

image and properties of the model. This allows us to express each remaining image
parameter, both a�ne slopes and the � and � coordinates that describe other image

points, as a function of these �rst two a�ne slopes and properties of the model. We

�nd:

�

p

j
= a

p

j
+ w

p

j
k

= a

p

j
+
w

p

j
�0(a

r

1 � �1b
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1)

w
r

1(�1 � �0)
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�
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So we have an analytic form describing all images of the model. We now show in
the case of 3 points and 3 vectors that this form describes a 2-D hyperboloid in a 3-D
image space.

We introduce the following abbreviations:

c1 = a
r

1w
r

2

c2 = a
r

2w
r

1

c3 = b
r

1w
r

2

c4 = b
r

2w
r

1

x = �0

y = �1

z = �2

We note that c1; c2; c3; c4 are properties of the model, and that models may be chosen
to produce any set of these values. So, the set of manifolds that can be produced is

precisely described by:

z =
�c3xy + (c1 � c2)x+ c2y

�c4x+ (c4 � c3)y + c1

� c4xz + (c4 � c3)yz + c1z + c3xy � (c1 � c2)x� c2y = 0 (2:2)

Adopting the notation of Korn and Korn (pp. 74-76)[68] we �nd:

I = 0

D = �2c3c4(c4 � c3)

A = (c1c4 � c2c3)
2 � 0
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Figure 2.15: A solution to equation 2.2 is an hyperboloid of one sheet, shown in this
�gure.
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This tells us that when we look at three dimensions of a�ne slope space, we �nd

that a model's manifold is a hyperboloid of one sheet (see �gure 2.15). We also see

that we can �nd a model corresponding to any hyperboloid that �ts equation 2.2.

For our purposes, we do not need to consider the degenerate cases in detail.

We have shown that the images of a model of oriented points can be described by

a 2-D manifold. We can see that at least a 2-D manifold is needed if we use a single

image space, with the same argument we used in section 2.3.1. To summarize this
argument, we can show that for any non-degenerate model there exists a viewpoint

which will produce any values for �0 and �1. At the same time, planar models produce

constant values of �0 and �1. Thus, every image of the model with di�erent values of
�0 and �1 must map to a di�erent point in image space.

The manifolds cannot be decomposed

We now show that there is no way of dividing image space to decompose these mani-
folds into two 1-D surfaces in two image subspaces. Our proof will assume that each

model contains at least three points, and three or more vectors. We assume that any
con�guration of points and vectors is a possible model. We also assume a continuous
mapping from images to our image space, and to any image subspaces. We show
that if such a decomposition of image space exists, that this restricts the kinds of

intersections that can occur between manifolds, and that the class of manifolds pro-

duced by oriented point models do not meet these restrictions. By considering just
the intersections in image space that occur between manifolds of di�erent models, we

get a result that will apply to any choice of image space, since the intersections of
manifolds re
ect shared images that will map to the same place in any image space.

We will suppose the opposite of our proposition, that there exist two images
subspaces such that any model maps to a 1-D curve in each space. Then when two

manifolds intersect in image space, we can determine the places where they intersect

by taking the cross product of the intersections of their 1-D manifolds in the two

image subspaces. Suppose that two models' manifolds intersect in image space in a

1-D curve. Then our decomposition of image space must represent this curve as the

cross product of a 1-D curve in one image space, and a point in the second image
space. This means that in one of the two image subspaces, the two curves that

represent the two models must overlap, so that their intersection is also a curve and

not just a point.

This observation allows us to formulate a plan for deriving a contradiction. We

pick a model, M , with manifold H. We then choose a point P on H (that is, P
corresponds to an image of M). We de�ne p and p0 as the points that correspond to

P in the �rst and second image subspaces respectively. We will construct �ve new,

special models,M1;M2;M3;M4;M5. Each of these model's manifolds will intersect H
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in a 1-D curve in image space. We call these curvesK1;K2;K3;K4;K5. Each of these

curves will contain P , by construction. Then, since each curve maps to a curve in one

image subspace, and a point in the other, we may assume without loss of generality

that K1;K2; and K3 map to the curves k1; k2; and k3 in the �rst image subspace, and

to the points r1; r2 and r3 in the second image subspace. Then, in order for the curves

K1, K2, and K3 to all include the point P , it must be that r1 = r2 = r3 = p
0, and

that k1; k2; and k3 all intersect at the point p in the �rst image subspace. We will call

the curve that represents M in the �rst image subspace k. k1; k2; and k3 must all lie

on k because they come from the intersection of M and other models. It is possible

that two of these curves intersect only at p if they end at p, and they occupy portions

of k on opposite sides of p. But with three curves, two at least (suppose they are k1
and k2) must intersect over some 1-D portion of k 2 . Since they both intersect at
p
0 in the other image space, this will tell us that K1 and K2 intersect over some 1-D

portion of image space. We will then derive a contradiction by showing that in fact all
of the curves, K1;K2;K3;K4;K5, intersect each other only at a single point, P . So,

to summarize the steps needed to complete this proof, we will: construct the point
P and the models M;M1;M2;M3;M4;M5 so that each additional model's manifold
intersects M 's in a 1-D curve that includes P . We will then show that these curves
intersect each other only at P , that is, that M and any two of the other models have

only one common image.

For these constructions, we will choose our models to be identical and planar, ex-
cept for their �rst three orientation vectors. Therefore, in considering the intersection
of these models' manifolds, we need only consider their intersection in the coordinates

(�0; �1; �2), since their remaining coordinates will always be constant, and will be the
same for each model. Therefore, when we speak of a the coordinates of a point in

image space, we will only consider these three coordinates. And to describe the values
for (�0; �1; �2) that a model can produce, we need only give the values for c1; c2; c3; c4
that will describe the model's hyperboloid in (�0; �1; �2) space.

It is easy to see from equation 2.2 that, in general, any two of these hyperboloids
will intersect in a set of 1-D surfaces, and any three hyperboloids will intersect only

at points, and in the line �0 = �1 = �2, as noted above. Therefore, any general

set of six hyperboloids chosen to intersect at a common point will ful�ll our needed
construction.

2Actually, we are glossing over a somewhat subtle point. To prove that k1 and k2 must intersect

over a 1-D portion of k requires the use of a theorem from topology which states that connectivity is

a topological property. Brie
y, a 1-D curve is connected if there are no \holes" in it. For example,

the curve y = 0 is connected, but if we remove the point (x; y) = (0; 0), it is not. Since the set of

images that a model produces is connected in a�ne space, we can show that the curves k1 and k2

must be connected, and from that we may show that they must both contain the same 1-D region

on one side of p.
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We can also prove this result another way, which will perhaps strengthen the

reader's intuitions about these hyperboloids. LetH be a 3-D hyperboloid, and P be an

arbitrary point on it. We derive a contradiction after assuming that we can decompose

H into two 1-D curves in two image subspaces. Suppose that P is represented again

by the two points p and p
0 in the two image subspaces. Choose any other point Q

on H. Referring to equation 2.2 we see that knowing two points of a hyperboloid
gives us two linear equations in the four unknowns that describe the hyperboloid.

Therefore, we may readily �nd a second hyperboloid, H 0, that also includes P and Q,

but that does not coincide with H. As noted above, in general H and H 0 intersect in

a 1-D curve, which must correspond to a curve in one image space, and to either p

or p0 in the other. In particular, this means that Q must correspond to either p or p0.
Since Q is an arbitrary point, all points on H must correspond to either p or p0. This
contradicts our assumption that H is represented by the cross-product of two curves.

Articulated Models

We now consider the manifolds produced by articulated objects. In particular, this
section will consider objects composed of point features with rotational degrees of
freedom. We assume that an object consists of some parts. Each part has a set of
point features that are rigid relative to each other. However, there may be a �xed

3-D axis, about which a part may rotate. We assume this axis is de�ned by a 3-
D line, implying a single degree of freedom in the rotation. Since we cannot know
from a single image whether an object is articulated or rigid, we assume that any
representational scheme we consider must handle both rigid and non-rigid objects.

We consider just rotations for simplicity, however it will be clear that our main results

will extend to a variety of other object articulations.

Many real objects have rotational degrees of freedom. For example, when we
staple with a stapler, or when we open it to add staples, we are rotating a part of the

stapler about an axis. Similarly, a pair of scissors or a swivel chair have rotational
degrees of freedom, and much of the articulation in an animal's limbs can be modeled

as rotational degrees of freedom. So this is a practical case to consider.

It is also important to push our approach into a more challenging domain such
as this in order to see how far it can be taken. We �nd that as the number of

rotational degrees of freedom of our model increases, so does the dimensionality of
our objects' manifolds. This tells us that �guring out how to index such complex

objects is not simply a matter of determining an object's manifold. Because of their

high dimensionality, signi�cant challenges remain to uncover methods of e�ciently
representing the relevant information that these manifolds convey.
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Figure 2.16: The simplest example of an interesting planar articulated object. The

fourth point rotates in a circle in the plane, as the other three points are �xed.

Planar models

We begin with the case of planar models with rotational degrees of freedom, such as
a pair of scissors. We assume in this case that even as the object rotates, all of its

points remain coplanar. In the simplest case, we have a base part of three points,
which we can consider rigid, and a rotating part that consists of just one point. This
rotating point is coplanar with the base points, but may rotate in a circle about any
point in the plane. This simple case is illustrated in �gure 2.16.

We �nd the a�ne coordinates these four points may produce in an image by

rewriting the equation for a euclidean circle in the a�ne coordinate frame de�ned by

the base points. This is equivalent to transforming the model so that it's �rst three
points map to the points (0; 0); (1; 0); (01) in the plane, and �nding the equation for
the transformed circle. From elementary a�ne geometry we know that a applying an

a�ne transformation to a circle will produce an ellipse. So every object with rotations

maps to an ellipse in a�ne space while rigid objects continue to map to points.

If we allow more points in the base of the object, our model's images have more

parameters in a�ne space. These additional parameters are constant. If we add more
points to the rotating part, these points' a�ne coordinates each trace an ellipse in

a�ne space. Together, they map to a 1-D curve in a�ne space that is elliptical in
each component.

The same reasoning used above allows us to see that this is a bound on the
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dimensionality of the manifolds. Again, we may not compress together two points in

a�ne space without confusing two rigid objects, and so we may not compress these 1-

D curves in a�ne space into points. This shows that there are no complete invariants

for rotating planar objects. In fact, we may show that the only invariants available for

such objects are the invariants that might be computed separately from the objects'

parts. If we do not know which points of the object belong to which parts, we may
not compute any invariants at all.

If we increase the number of rotating parts, the dimensionality of the manifolds

increases also. For example, when an object has two rotating parts with one point

each, its images are described by an ellipse in �4-�4 space for the �rst point, and by
an ellipse in �5-�5 space for the second point. Together these give us a 2-D manifold

in a 4-D a�ne space. As we allow additional rotational degrees of freedom in our
model, the dimensionality of the model's manifold increase by one in a similar way.

In all these cases, we may decompose these manifolds into a series of 1-D manifolds,
one for each rotating part, as long as we can tell from the image which points come
from which parts.

Nonplanar Models

We now consider 3-D models with parts that have rotational degrees of freedom. We

begin by proving that a general 3-D object with two parts must be represented by

a 3-D manifold in image space. We then show that we can generalize this result to
show that an object with n parts must be represented by an n-D manifold.

We �rst suppose that an object has two parts, P1 and P2. Assume that P1 contains
at least three points which we use to de�ne the model plane, and whose projection
we will use as our a�ne basis. Assume also that P2 contains at least two points, p1
and p2, and is allowed to rotate about some axis line that we will call L. We refer

to any particular rotation of P2 as a con�guration of the model. We �rst show that

for almost any object, there are two con�gurations of the object whose manifolds

intersect at most at a single point in a�ne space.

For any con�guration of the model, its images will correspond to a plane in a�ne

space and to lines in � and � space. The slope of these lines will be the height of
p1 above the model plane divided by the height of p2 above the model plane. If

the lines corresponding to two di�erent con�gurations have di�erent slopes in these
a�ne coordinates, then the lines of the con�gurations can intersect in at most a

single point. Suppose that p1, p2 and L are not all coplanar. Then as p1 and p2
rotate about L, there will be a point at which p1 is receding from the model plane,
while p2 is approaching the model plane. This means that the ratio of their heights

must be changing, and so the slope of the lines corresponding to these con�gurations

will be changing. So we can readily �nd two model con�gurations whose manifolds
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correspond to lines with di�erent slopes and intersect in at most a point in a�ne

space. Suppose now that p1, p2 and L are planar. Let r1 be the distance from p1
to L, and let r2 be the distance from p2 to L. As P1 rotates about L, the two points

are displaced in the same direction with a magnitude that depends on their distance

from L. So the change in p1's height above the model plane will be r1k and the

change of p2's height will be r2k, for some k. This means that the ratio of the two
heights will be held constant only when that ratio is r1

r2
. Again, if this ratio changes

then the model will have two con�gurations that produce at most one common set

of a�ne coordinates. So in general, the only case in which a rotating model does not

correspond to two separate planes in a�ne space is when the model's second part is

completely planar with its axis of rotation, and the ratios of the heights of all the
points in this part are equal to the ratios of their distance from the axis of rotation.

We now show that except for this special case, a rotating model will correspond to
at least a 3-D manifold in a�ne space. We know the model's manifold will include two
planes that intersect at only a point. We also know that intermediate con�gurations
of the model will correspond to a continuous series of planes. This continuous series

of planes will form a 3-D manifold. We now have from lemma 2.7:

Theorem 2.10 Except in a special degenerate case, a model with a rotating part must

correspond to a 3-D manifold in any error-free image space.

We note that this proof may be extended in a straightforward way to handle
additional parts. For example, if a model has three parts, we know that holding one

part rigid, the model produces a 3-D manifold in image space. We can then show
that rotating that part produces a second 3-D manifold that intersects this manifold
at most in a 1-D manifold. Therefore, we see that as both parts rotate they produce
a 4-D manifold. In general, a model with n rotating parts corresponds to an n-D

manifold in any image space.

Open Questions

There remain unanswered a number of interesting questions related to the ones we
have addressed in this chapter. While we have shown that the most space-e�cient
way of representing a 3-D model's images produced by a linear transformation is

with 1-D manifolds, we do not know whether 1-D manifolds can describe a model's

images under the non-linear projection models, scaled orthographic projection and
perspective projection. Such a decomposition of the non-linear manifolds would be

quite useful, because it would allow us to match a rigid object to an image using

an indexing system that requires essentially the same amount of space as the system
described in this thesis, while also distinguishing between an image of an object and an
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Table of Results

Model Projection Space Lower bound Analytic
lower bound when space description

divided of manifold

3-D Points Orthographic 2-D
Perspective 3-D

Linear 2-D 1-D Linear

Oriented Orthographic 2-D 2-D

3-D Points Linear 2-D 2-D Hyperboloid

Points, with Orthographic (N+2)-D

N rotating Linear (N+2)-D

parts.

Table 2.1: A summary of this chapter's results.

image of a photograph of the object. We also have not shown whether the manifolds

of non-rigid objects can be decomposed.

We have also presented a very simple representation of a model's images as a 2-D
plane, or a pair of lines, when our projection model is linear. Is it possible to represent
a model's images with a 2- or 3-D linear surface when the projection model is scaled
orthographic or perspective projection? If it is, reasoning about matching problems
under these projection models might be greatly simpli�ed. Weinshall[110] has shown

interesting related results which from our point of view express a model's manifold
as a linear subspace when scaled orthographic projection is used. This subspace
is of a higher dimension than that which is needed to describe a model's manifold

non-linearly, however.

Finally, there is much work to be done in understanding the manifolds that rep-
resent the 2-D images of 3-D curves. We have characterized these manifolds when

the location of a point on a curve and the �rst derivative of the curve at that point
are known, but not when additional derivatives are known, nor when a polynomial

representation of an entire curve is known. We expect that these manifolds will be
2-D when a linear transformation is used, but we do not have an analytic description
of them, and we do not know whether they might be decomposed.

2.4 Conclusions

In this chapter, we have explored the problem of �nding the simplest representation

possible of a model's images under a variety of circumstances. In doing so we have

produced two kinds of results, which we summarize in table 2.1. On the one hand, we
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have derived simple, analytic descriptions of the set of images that models of point,

or oriented point features may produce under a linear transformation. On the other

hand, we have shown lower bounds on the manifolds that these and other models

produce under a variety of transformations. These two kinds of results serve two

di�erent ends.

The �rst set of results are the most directly useful, and we explore their con-

sequences throughout much of the rest of this thesis. We have shown that we can
represent a 3-D point model's images as a pair of 1-D lines in two high-dimensional

spaces. This is especially useful for indexing, and a signi�cant improvement on past

results. In chapter 4 we show how we can use it to build a practical indexing sys-
tem. We also show that even with this representation of a model's images, space is

at a premium, suggesting that indexing using a 2-D manifold to represent a model's
images is not very practical.

We also show that a 3-D model consisting of oriented points may be represented by
a 2-D hyperboloid in a high-dimensional space. Both of these representations can help
us to understand other approaches to recognition and matching. They provide us with
a simple, geometric formulation of the matching problem as one of comparing points

in a high-dimensional space to manifolds for which we have an analytic description. In
chapters 3 and 5 we demonstrate some of the power of this formulation of the problem
by analyzing several di�erent approaches to recognition and motion understanding.

We also demonstrate a variety of lower bounds on the space required to represent
a model's images. These bounds make two points. First, they show that the analytic
results that we have derived are optimal. We need at least two 1-D manifolds to
represent the images of a 3-D model of point features, and at least a 2-D manifold to

represent a model of oriented point features. Also, although our results are derived for
linear projections, we show that using scaled orthographic projection instead would
not reduce these space requirements. Our picture is not quite complete, however.

We know we cannot get better representations using scaled orthographic projection,
but perhaps we could derive representations that are just as good. This would be

useful since scaled orthographic projection is a more accurate model of the process of

forming a single image from a 3-D model. Except for this issue, though, we know that

for two interesting kinds of models we have derived the best possible representations
of their images.

Our lower bounds are also interesting because they tell us that some indexing
tasks are fundamentally more di�cult than others. Images of oriented points must

be represented with a 2-D manifold that cannot be decomposed, while the manifold

produced by simple points can be constructed from manifolds that are only 1-D. We
also see that indexing with perspective projection necessarily requires us to represent

a model by representing a 3-D manifold, while only a 2-D manifold is required for

scaled orthographic or linear projections. We do not know whether this 3-D manifold
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can be decomposed into smaller sub-manifolds. And we see that representing the

images of objects with rotational degrees of freedom inherently requires more and

more space as the number of rotational degrees of freedom grows. Even as we have

produced useful solutions to some indexing problems, we have shown that others may

become very di�cult. We have a concrete method of characterizing the di�culty of

an indexing problem, and we have shown how hard some problems may be.
This chapter is also of interest because it demonstrates how one may generalize

the notion of an invariant. Invariant representations have attracted a great deal

of attention from mathematicians, psychologists, photogrammetrists and computer

vision researchers. For the situations of greatest interest, projection from 3-D to 2-D,

there are no invariant descriptions, however. We suggest that an invariant may be
thought of as a 0-D representation of the set that results from transforming an object.
When invariants do not exist, it seems natural to generalize them by pursuing the

lowest dimensional representation that is possible. We have shown that interesting
tight bounds may be found when invariants do not exist.
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Chapter 3

Implications for Other

Representations

In this chapter we consider some results of others that are related to those presented
in chapter 2. This serves several purposes. We acknowledge the relationship of some
past work to our present results. Also, since our results are more powerful, we may
rederive some of these past results more simply, or at least in a di�erent way. At the

same time, since this past work had applied only to point features, we may now see
what happens when we try to extend these results to oriented points.

3.1 Linear Combinations

3.1.1 Point Features

Ullman and Basri[105] show that any image of a model of 3-D points can be expressed
as a linear combination of a small set of basis images of the object. That is, given a

few views of an object, i1:::in, and any new view, ij, we can �nd coe�cients a1::an so

that:

ij =
nX

k=1

akik

where we multiply and sum images by just multiplying and summing the cartesian

coordinates of each point separately. This idea is re�ned independently by Basri and

by Poggio[89] into the following form.

Suppose we have a model,m, with n 3-D points. i1 and i2 are two images ofm. We
describe each image with cartesian coordinates, and assume there is no translation in

the projection. Let x1 be an n-dimensional vector containing all of i1's x coordinates,

and let y1 be an n-dimensional vector of its y coordinates. Similarly, de�ne x2 and

85
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y2 for i2. Take any new image of m, ij, and de�ne xj and yj. Then Basri and Poggio

show that there exist a0; a1; a2 and b0; b1; b2 such that:

xj = a0x1 + a1y1 + a2x2

yj = b0x1 + b1y1 + b2x2

This tells us that the x and y coordinates of a new image are a linear combination

of one and a half views of the object, that is, of the x and y coordinates of one view,
and either the x or the y coordinates of a second view. Another way to think of this

result is that x1;y1;x2 span a 3-D linear subspace in Rn that includes all sets of x or

y coordinates that the object could later produce. We omit a proof of this, but note

that the proof is based on a linear transformation. That is, when an arbitrary 3x2

transformation matrix is used instead of a rotation matrix, as described in section
2.2, then we can show that these 3-D linear subspaces precisely characterize the sets
of x and y coordinates that the model can produce.

We now show how a similar result is evident from our work. We have shown

that in the space formed by the a�ne basis and a�ne coordinates of an object,
(o;u;v;�4; �4; :::�n; �n), each model's images lie in an 8-d linear subspace, that in-

cludes a plane in �-� space, and any possible values for o;u;v. Similarly, when
translation is included, the linear combinations approach shows that a model's im-
ages form an 8-d linear subspace in cartesian coordinates, which is an equivalent

representation. The di�erence between the approaches is that we ignore the o;u;v
parameters, producing a 2-D linear subspace which may be factored into two 1-D
linear subspaces. In the linear combinations approach, the 8-D subspace may be fac-
tored into two 4-D subspaces. Our approach also implies a result similar to the one
and a half views result described above. Given the � coordinates of any two views of

a model, we may determine the line in � space that describes all the � coordinates
the model might produce. In fact, any point on this line is a linear combination of
the original two points used to determine the line. And since the directions of the �

and � lines are the same, if we are given the � coordinates of two images of a model,
and the � coordinates of one image, we may also determine the line in � space that

describes the model.

The primary di�erence between our result and linear combinations, then, is the
dimensionality of the linear spaces we produce. This is in fact the crucial problem of
indexing; how can we most e�ciently represent the images a model produces? The

linear combinations work does not address this problem because it is not concerned

with indexing. The linear combinations result is used rather for representing models
and reconstructing new views of these models.

In addition to the implications for indexing, there is also a signi�cant gain in

conceptual clarity when we lower the dimensionality of our representation of images.
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It is hard to formalize this, but it is often easier to visualize the matching problem

if we can talk in terms of matching points to lines instead of matching them to 3- or

4-D linear subspaces. And if we attempt to make use of tools from computational

geometry in performing this matching, we can expect that the complexity of these

tools may well depend on the dimensionality of the objects we are matching.

3.1.2 Oriented Point Features

We now use results from chapter 2 to show that the linear combinations result can

not be extended to oriented points. To do this it will be su�cient to consider the

case where each model consists of three points and three vectors. Recall that in this

case we may in general represent a model's images with a 2-D hyperboloid in a 3-D
space. It might seem obvious from this that the linear combinations idea will not
apply. Given a 2-D hyperboloid in a 3-D space, it is easy to pick four points on the

hyperboloid that span the entire 3-D space. This means that in general, any four
images of any model can be linearly combined to produce any possible image, and

the linear combinations idea is true only in the trivial sense that with enough images
we may express any other image as a linear combination of those images.

However, things are not this simple. Linear combinations might be true of one
representation of images, but not true of another. For example, with point features
the cartesian coordinates of one image are linear combinations of other images of
the same model, but this might not be true of polar coordinates. So we must prove

that all images of a model are not a linear combination of a small set of images,
regardless of our choice of representation for an image. Since we know that the three
basis points of the image convey no information about the model, the real question is

whether some alternate representation of a�ne slope might map each model's images
into a linear subspace. So we ask whether there is a continuous, one-to-one mapping

from a�ne slope space, that is the space de�ned by (�0; �1; �2), into another space
which maps every hyperboloid in a�ne slope space into a linear subspace. From

elementary topology we know that any continuous one-to-one mapping will map our

3-D a�ne slope space into a space that is also 3-D, and that it will map every 2-D
hyperboloid into a 2-D surface. So the question is whether these hyperboloids might

map to 2-D planes in a 3-D space? That is, can we choose a di�erent a�ne invariant
representation of orientation vectors so that a model's images form a 2-D plane in

the new space given by this representation?

To answer this, we must look at the particular set of hyperboloids that correspond

to possible models. We assume that an appropriate mapping exists for linear combi-
nations, and derive a contradiction. First, we recall that the line �0 = �1 = �2 is part

of the equation for each hyperboloid corresponding to a possible model. Call this

line L. L is a degenerate case; the actual set of images a model produces does not
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include L, but it includes images that are arbitrarily close to L. Suppose we apply

a continuous one-to-one mapping, call if f , that takes one of these hyperboloids, H,

to a plane, f(H). Then f(L) is a 1-D curve such that for any point on the curve,

there is a point on f(H) arbitrarily close to that curve point. This can only happen

if f(L) lies on f(H). That is, we can omit f(L) from a model's manifold without

problems, but we have shown that if this manifold is linear, then the requirement
that our representation be continuous tells us that f(L) must lie in this linear space.

Since L is part of every model's hyperboloid, this means the f(L) must be a 1-

D curve at which all models' manifolds intersect, in our new space. If all models'

manifolds are 2-D planes in this new space, they can only intersect in a line. So f(L)

must be a line at which all models' planes intersect. But this means that no models'
planes can intersect anywhere else in our new space. However, we have already shown

that in general all the hyperboloids that represent models intersect at other places
than the line L. f must preserve these intersections, so a contradiction is derived.

This tells us that it is never possible to represent the images produced by a model of
oriented points using linear combinations, except in the trivial sense.

The implications of this result, however, depend on what one thinks is important
about the linear combinations result. If it is the linearity of the images, then our
result concerning oriented points is a signi�cant setback. It does seem that part of

the impact of the linear combinations work is that the linearity of a model's images

was unexpected and striking. And it is certainly true that linear spaces can lead
to simpler reasoning than non-linear ones. However, a large part of the importance
of the linear combinations work is that it provides a simple way of characterizing a
model's images in terms of a small number of images, without explicitly deriving 3-D

information about the model. And we may still do that with oriented points. Our
computations are no longer linear, but we may still derive a simple set of equations
from a few images of oriented points that characterize all other images that could be

produced by the model, without explicitly determining this model's 3-D structure.
We explore this further in the next section.

3.2 A�ne Structure from Motion

3.2.1 Point Features

Koenderink and van Doorn[65] and Shashua[95] have also noted that two views of

an object can be used to predict additional views, and have applied this result to
motion understanding. Koenderink and van Doorn show that the a�ne structure

of an object made of 3-D points can be derived from two views, assuming scaled

orthographic projection. A�ne structure is that part of the object's geometry that
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remains unchanged when we apply an arbitrary 3-D a�ne transformation to the

object's points. For example, given two views of �ve corresponding points, they

compute a 3-D a�ne invariant representation of the �fth point with respect to the

�rst four. Then, given the location of the �rst four points in a third image, the location

of the �fth point may be determined. This result is particularly signi�cant because

it is known (Ullman[103]) that three views of an object are needed to determine the
object's rigid structure when images are formed with scaled orthographic projection.

Our representation of a models' images as lines in � and � space is fundamentally

equivalent to Koenderink and van Doorn's 3-D a�ne invariant representation of a

model. First, both representations factor out the e�ects of translation. Our repre-

sentation then considers the set of images that a model can produce when a general
3x2 matrix is applied to the model points. Koenderink and van Doorn assume that
the model may be transformed with a general 3x3 matrix and then projected into the

image. Projection eliminates the e�ects of the bottom row of the matrix. Therefore
the set of images that a model can produce with our projection model is the same as

the set of images that a model can produce when it is transformed with a 3-D a�ne
transformation and then projected into an image with scaled orthographic projection.
The two methods represent the same information, but Koenderink and van Doorn's
representation makes explicit what we know about an object's 3-D structure, while

we make explicit what we know about the images that a model can produce.

For this reason, it is easy for us to rederive Koenderink and van Doorn's appli-
cations of this result to motion. As we pointed out above, two views of an object
(actually, 11

2
views) su�ce to determine the images that the object can produce.

Given the location of four points in a third view we may determine (�4; �4) in this
view. These values can be used to determine the a�ne coordinates of all remaining

points, because they determine a single point on each line in � and � space.

3.2.2 Oriented Point Features

We may now consider what happens when we try to extend Koenderink and van

Doorn's result to oriented point features. We �nd that four views are needed to
determine the a�ne structure of some oriented points. We consider a model with
three points and three orientation vectors; larger models may be handled similarly.

From chapter 2 we know that for any hyperboloid of the following form:

�c4xz + (c4 � c3)yz + c1z + c3xy � (c1 � c2)x� c2y = 0

there is a model whose images are described by this hyperboloid, where x; y; z are
the a�ne slopes of the three image vectors, and c1; c2; c3; c4 are parameters of the

model, which may take on any values. Determining the a�ne structure of the model

is equivalent to �nding the values of c1; c2; c3; c4. If we do not know these values, we
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do not know the set of images that the model can produce and so we can not know

the model's a�ne structure.

Every image of the model gives us a single equation like the one above, which is

a linear equation in four variables. We need four independent equations to solve for

these variables, and hence we need at least four views of the object to �nd its a�ne

structure. Given three views of the object, there will still be an in�nite number of
di�erent hyperboloids that might produce those three images, but that would each

go on to produce a di�erent set of images.

This result is easily extended to four or more oriented points. However, it only

takes three views to determine the rigid structure of four or more oriented points. To

compute this, we can �rst use the locations of the points in three views to determine
their 3-D location, as shown by Ullman[103]. This tells us the 3-D location of each
oriented point and each viewing direction, but not the 3-D direction of the orientation

vectors. A view of an orientation vector at a known 3-D location restricts that vector
to lie a plane. That is, the vector in the image gives us the x and y, but not the z

coordinates of the unknown 3-D vector in the scene; and so all vectors that �t these x
and y coordinates lie in a plane. So, for each orientation vector, two views tell us two
di�erent planes that include the vector. As long as our viewpoints are not identical,
these planes intersect in a line, which tells us the direction of the orientation vector.

It might seem paradoxical that from three views we can determine the rigid struc-

ture of oriented points, while we need four views to determine their a�ne structure.
But keep in mind that a view of an object provides us with less information about
the object if we assume the view was created with a linear transformation than if we

assume scaled orthographic projection.
This result is interesting because it demonstrates a signi�cant limitation to ex-

tending the a�ne structure from motion work. Koenderink and van Doorn suggested

that a�ne structure is an intermediate representation that we can compute with less
information than is required to determine rigid structure. However, we see that this
is not always true.

3.3 Conclusions

We see that our results from chapter 2 subsume some past work that has been done

with linear transformations. Both linear combinations and a�ne structure from mo-
tion are obvious implications of our results, which also provide a low-dimensional rep-

resentation of a model's images. We also see that just as indexing is fundamentally
harder with oriented point features than with simple points, other results derived for

point features cannot be extended to oriented point features. This calls into question
the relevance of these results to the interpretation of complex images.



Chapter 4

Building a Practical Indexing

System

Until now we have discussed indexing rather abstractly. We have focused on deter-
mining the best continuous representation of a model's images in the absence of error.

To perform indexing with a computer we must represent these images discretely. For

our system to work on real images we must account for sensing error. This chapter
will address these issues.

To take stock of the problems that remain for us, let us review the steps that are
performed by the indexing system that we have built.

1. We apply lower-level modules to images of the model at compile time, as part
of the model building process, and to images of the scene at run time. These

include:

(a) Edge detection.

(b) Straight-line approximations to edges.

(c) Grouping. We use line segments to locate groups of point features that
are likely to come from a single object. The grouping module described
in chapter 6 outputs groups of points along with some information about

how they should be ordered.

2. At compile time:

(a) We �nd ordered collections of point features in the model that the grouping

system is likely to group together in images.

(b) We determine the lines in � and � space that describe the images that

each ordered sequence of points can produce, using the results of chapter

2.
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(c) We discretely represent these images in hash tables.

3. At run time:

(a) We �nd ordered groups of points in an image.

(b) For each ordered group, we look in the hash tables to �nd matching groups
of model points.

(c) Indexing produces matches between a small number of image and model
points, which we use to determine the location of additional model features.

We use these extra features to verify or reject the hypothesized match.

We will discuss grouping in chapter 6. In this chapter, we describe the remaining

issues: points 2b, 2c, 3b, and 3c. We �rst show how to fully account for the e�ects
of error in our system by analytically characterizing the models that are compatible
with an image when we allow for bounded amounts of sensing error. This allows us
to build an indexing system which is guaranteed to �nd all feasible matches between

an image group and groups of model features. We then discuss some of the issues
involved in discretizing our index spaces. Finally, we show that our representation

of a model's images lends itself to a simple method of determining the appearance of
the model based on the location in the image of a few of its points.

We use these results to build an indexing system, and then we measure its per-
formance. We answer four questions: how much space does the system require? how
much time does it require? how many matches does it produce? and is the system
accurate? The space requirements of the system are easily measured. In addition to
some �xed overhead, the run time of the system will depend on how many cells we

must examine in index space in order to account for error. The number of matches
that the system will produce tells us the speedup that indexing can provide over a
raw search through all possible model groups. Additionally, we measure the e�ect

on this speedup of a number of di�erent simpli�cations that we have made. We
use a linear transformation instead of scaled orthographic projection. Since a linear

transformation is more general, a set of model points might be matched to a set of
image points with a linear transformation, but not a scaled orthographic transforma-
tion. And we make some simpli�cations in order to handle error. We also simplify

when we discretize our space. So we run experiments to individually determine the

e�ects of each of these choices. Finally, we need to check that our indexing system

will produce the correct matches, that it will match real image points to the model

points that actually produced them. We are assured that this will happen if our
assumptions about error are true in the world, but we need to test these assumptions

empirically. In the end, we have a practical indexing system whose performance we

can characterize both theoretically and empirically.
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4.1 Error

In chapter 2 we described how to represent a model's images as if there were no

sensing error. To handle real images and models, though, we must account for some

error. We choose a simple bounded error model. We assume that there is uncertainty

in the location of each image point, but that this uncertainty is no more than � pixels.

That is, the actual, error-free image point must lie within � pixels of the sensed point.
We do not attempt to make any use of a probability distribution on the amount of

error, or to characterize it in any other way. Of course we expect that occasionally

this bounded error assumption may be violated, causing us to miss a potential match,

just as we expect to miss other possible matches through occlusion or through failures
in feature detection. We also assume that our model of the object is essentially error-

free. This is partly because we can form very good models of the 3-D structure of
an object by measuring it, if necessary, and partly because we assume that any error
that does occur in the model can be thought of as contributing a small additional

error to the image points.

One could imagine now extending our previous work by characterizing the set of

images that a model can produce from all viewpoints, considering all possible amounts
of error. Then we could represent all those images in a lookup table, and given a new
image, look at a single point to �nd all the models that could produce exactly that
image. This would not be a good idea. The problem is that our reduction in the

dimensionality of an model's manifold in image space would not be applicable if we

also allowed for error. We saw that we could characterize all the � coordinates that
a model can produce without reference to the actual location of the model's �rst

three points in the image, or to the model's � coordinates. However, the e�ect of a
small amount of error on these a�ne coordinates depends very much on the particular
location of the image points used as an a�ne basis. For example, if our �rst three
image points form a right angle and are far apart, then a small change in the location

of one of these points may have only a small e�ect on the a�ne coordinates of a
fourth point. If our �rst three image points are nearly collinear, then a small change
in one of the points can make them arbitrarily close to collinear, which causes the

a�ne coordinates of another point to grow arbitrarily large. Figure 4.1 illustrates
this e�ect. If we cannot ignore the locations of our �rst three image points, then the

dimensionality of our models' manifolds will have to grow in order to include all this
information. We could not possibly represent such big manifolds discretely.

So instead we account for error at run time. Then when we consider the e�ect

of error we only have to deal with the scale and particular con�guration of points

in a single known image, and determine volumes in a�ne space that represent all

the images consistent with that image and bounded error. That is, these volumes
represent all the a�ne coordinates that our image could produce when its points are
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Figure 4.1: On the top, we show a fairly stable basis. A small change in p3 (upper

right) has a small e�ect on the a�ne coordinates of p4. On the bottom an equally
small change in p3 has a much larger e�ect on these a�ne coordinates.
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perturbed within error discs. If we account for error exactly, then the results are

equivalent whether we consider error at compile time, matching a thickened manifold

to a point, or at run time, matching a manifold to a thickened point. Either way, an

image would be matched to a model if and only if the model could produce that image,

allowing for perturbations from error. The di�erence between accounting for error at

compile time or run time then lies in the ease of implementing either approach, and
in a trade-o� of space for time. Accounting for error at compile time would require

more space, but would allow us to index at a single point instead of over a volume.

While in general we prefer to accept a space penalty to save run time, in this case the

space required to account for error at compile time is too great; it is not practical to

attempt to represent high-dimensional manifolds that have been thickened by error.

We determine the exact a�ne coordinates that are consistent with a noisy image
only for the case of four image points. The di�culty with handling more points is
that perturbations in the �rst three points will a�ect the a�ne coordinates of the
other points all at once. So while we can determine what a�ne coordinates the
fourth point has as we perturb the �rst three points, and we can determine what

a�ne coordinates the �fth point has, we do not determine which a�ne coordinates
they both produce at once, and which ones they can each produce, but not at the
same time. Our results do allow us to provide a conservative bound on the a�ne
coordinates compatible with an image, because we can individually bound the a�ne
coordinates of each point. For each point, we determine the maximum and minimum

� and � coordinates it can produce. We combine these bounds to �nd rectanguloids

in � and � space that contain all the � and � coordinates that could be compatible
with the image. This process is shown schematically in �gure 4.2. This allows us to

build an indexing system in which we analytically compute volumes in index space.
By looking in these volumes for models to match an image, we are guaranteed to �nd
all legitimate matches to the image. But we may also �nd super
uous matches as

well.

4.1.1 Error with Four Points

We use a somewhat round-about route to �nd the a�ne coordinates that four points
can produce when perturbed by bounded error. We begin by considering a planar

model of four points, and an image of three points. Projection of the planar model is

described by an a�ne transformation, and the a�ne coordinates of the fourth model

point are invariant under this transformation. Given a match between three image

and model points, it is simple to determine the nominal location that the fourth
model point should have, in the absence of error. We then describe the locations it

may have when we account for bounded error in each image point. We call this set of

locations the potential locations of the point. We show that the potential locations of
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Figure 4.2: Without error, the fourth and �fth image points have individual a�ne
coordinates, as shown on top. When we precisely account for error in each point

separately, we �nd regions of �4-�4 space consistent with the fourth point, and regions
of �5-�5 space consistent with the �fth point. We simplify by placing rectangles about

these regions. Then we may represent this error equivalently with rectangles in �4-�5

space and �4-�5 space.
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a fourth model point are described by a surprisingly simple expression which depends

only on the a�ne coordinates of the point. Using this expression, we can determine

whether a set of four model points is compatible with four image points. We show

that this is equivalent to determining which a�ne coordinates the four image points

can produce.

Consider four model points, p1, p2, p3, p4, and three image points, q1 q2, and
q3. We match the three image points to the corresponding model points (q1 matched

to p1 etc...). Let �4 and �4 be the a�ne coordinates of the fourth model point with

respect to the �rst three model points, which are de�ned because the model is planar.

Let us describe the sensing error with the vectors �ei. This means that the \real"

location to which the i'th model point would project in the absence of sensing error
is qi + ei. Let q0i = qi + ei. Then our assumptions about error are expressed as:
jjeijj � �. Let u0 = q2 � q1 and v0 = q3 � q1. Let r4 = q1 + �4u

0 + �4v
0. That is,

if we use the match between the �rst three image and model points to solve for an
a�ne transform that perfectly aligns them, and apply this transform to p4, we will

get r4.
Let q04 stand for the \real" location of p4 in the image, that is, the location at

which we would �nd p4 in the absence of all sensing error. p4 will actually appear
in the image somewhere within a circle of radius � about q04, because of the error

in sensing p4's projection. So, our goal is to use q1;q2;q3;p1;p2 and p3 to �rst

determine the set of potential locations of q04, and then thicken this set by � to �nd
all the potential locations where we might sense the projection of p4.

For a particular set of error values,

q04 = (q1 + e1) + �4((q2 + e2)� (q1 + e1)) + �4((q3 + e3)� (q1 + e1))

This is because (q1+e1;q2+e2;q3+e3) are the locations of the error-free projections
of the model points in the image. So we can �nd q04 using these three points as a
basis, knowing that q04 will have the same a�ne coordinates with respect to this basis

that p4 has with respect to a basis of (p1;p2;p3).

q04 = q1 + e1 + �4q2 + �4e2 � �4q1 � �4e1 + �4q3 + �4e3 � �4q1 � �4e1

q04 = q1 + �4(q2 � q1) + �4(q3 � q1) + e1 + �4e2 � �4e1 + �4e3 � �4e1

= r4 + e1(1� �4 � �4) + e2�4 + e3�4

When we allow the ei to range over all vectors with magnitude less than �, this de�nes

a region of potential locations of q04. Note that r4 depends only on the location of

the image points, and is independent of the error vectors.

In the above expression, r4 is �xed and the expressions involving e1; e2; and e3
can each alter the values of q04 within circles of radii �j1� �4 � �4j, �k�4j, and �j�4j
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respectively. Since each of these expressions is independent of the others, adding

them together produces a circle centered at r4 whose radius is the sum of the radii of

each of the individual circles, that is, a circle of radius: �(j1� �4 � �4j+ j�4j+ j�4j).

When we consider that we may have an error of � in sensing the fourth image

point as well, this expands the region by �. We �nd that the potential locations of

the fourth image point, such that there exists some orientation and bounded sensing

error that aligns the image and model points, is a circle, centered at r4, with radius
�(j1� �4 � �4j+ j�4j+ j�4j+ 1)

This result has a surprising consequence. For a given set of three model points

matched to three image points, the size of the space of potential locations of a fourth

model point in the image will depend only on the a�ne coordinates of the fourth
point. It will not depend on the appearance of the �rst three model points. That

is, it will not depend on the viewing direction. Even if the model is viewed nearly

end-on, so that all three model points appear almost collinear, or if the model is
viewed at a small scale, so that all three model points are close together, the size of
the potential locations of the fourth model point in the image will remain unchanged.

However, since the viewing direction does greatly a�ect the a�ne coordinate sys-
tem de�ned by the three projected model points, the set of possible a�ne coordinates

of the fourth point will vary greatly. For example, changes in the scale of projection
simply shrink the a�ne coordinate frame, and so multiply the size of the feasible

region for the fourth image point in this frame. We must account for this variation in
a�ne coordinates in order to perform indexing. The fact that this variation depends
on the con�guration of the image points that are used as a basis explains why it is
convenient to account for error at run time, when the locations of the image basis

points are known.

Partial solutions to the problem of determining the e�ect of error on planar model
matching have previously been produced in order to analyze the performance of dif-
ferent recognition algorithms. In Huttenlocher and Ullman[57], the a�ne transform

is found that aligns three image and model points. This is used to �nd the pose of
a three-dimensional model in the scene. Remaining model points are then projected

into the image, and matching image points are searched for within a radius of 2� of
the projected model points. To analyze the e�ectiveness of using an error disc of 2�
when matching projected model points to image points, Huttenlocher[56] considered

the case of planar objects, as we have. He was able to show bounds on the poten-

tial locations of model points in the image in certain simple cases. These bounds

depended on assumptions about the image points. Here we have shown exact bounds

on the potential location of model points, and we show that these bounds do not
depend on characteristics of the image points. For example, we may now see exactly

when a circle of 2�, which alignment uses, is the correct description of the potential

location of a projected model point (when 0 < �4; �4 and �4 + �4 < 1), and when it
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is too small.

In order to analyze the geometric hashing approaches to recognition of Lamdan,

Schwartz and Wolfson[70], researchers have also considered the e�ects of error on

the a�ne coordinates that are compatible with four image points. Recall that in

geometric hashing, the invariance of the a�ne coordinates of four planar models

is used for indexing. Lamdan and Wolfson[72] and Grimson and Huttenlocher[48]
have placed bounds on the set of a�ne coordinates consistent with an image under

special assumptions, and used these bounds to analyze the e�ectiveness of geometric

hashing. Costa, Haralick, and Shapiro[34] have also discussed methods for estimating

the potential numerical instability of a�ne coordinates, and suggested ways of dealing

with this instability. We are now in a position to precisely characterize the set of a�ne
coordinates that are consistent with a set of image points, assuming bounded error.
This characterization has also been used to analyze the e�ectiveness of alignment and

geometric hashing, in Grimson, Huttenlocher and Jacobs[49].
Suppose we have image points, q1;q2;q3 and q4. Let the a�ne coordinates of q4

with respect to (q1;q2;q3) be (��; ��). If a fourth model point has a�ne coordinates
(�4; �4) with respect to the three other model points, we would like to know whether
the model could match the image. If we match the �rst three image and model
points, we know that the fourth model point will match any image point within

�(j1��4��4j+ j�4j+ j�4j+1) of r4, where here r4 = q1+�4(q2 � q1)+�4(q3 � q1).

So the model and image can match if and only if the distance from r4 to q4 is less
than or equal to: �(j1� �4 � �4j+ j�4j+ j�4j+ 1). That is, if and only if:

jjq4 � (q1 + �4(q2 � q1) + �4(q3 � q1))jj � �(j1� �4 � �4j+ j�4j+ j�4j+ 1)

that is:

jj(q1 + ��(q2 � q1) + �
�(q3 � q1))� (q1 + �4(q2 � q1) + �4(q3 � q1))jj

= jj(��� �4)(q2 � q1) + (�� � �4)(q3 � q1)jj

� �(j1� �4 � �4j+ j�4j+ j�4j+ 1)

Following Grimson, Huttenlocher and Jacobs, if we let u = jjq2 � q1jj; v =
jjq3 � q1jj and let  be the angle formed by the vectors from q1 to q2 and q3,

then the above equation becomes:

((��� �4)u)
2 + ((�� � �4)v)

2 + 2(��� �4)( �� � �4)uv(cos )

� �
2(j1� �4 � �4j+ j�4j+ j�4j+ 1)2

Note that all the values in this equation are derived from the four image points,

except for �4 and �4. So this equation tells us which a�ne coordinates a model may

have and still match our image, to within error bounds. This is the same as telling
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Figure 4.3: There are seven di�erent expressions without absolute values that de-
scribe the radius of the error regions. Which expression applies to a model depends
on whether �� < 0, �� < 0 and �� + �

� < 1.

us which a�ne coordinates our image may produce if we perturb each image point

by no more than � pixels. So this equation describes a region of �4-�4 values that
correspond to models that could produce our image.

We now wish to deal with the pesky absolute value signs in this equation, so
that we can describe the boundary it gives. These absolute values mean that if we

divide the �-� plane into seven parts, then the radius of the error circle for a model

is described by a simple expression without absolute values which depends on which
region its a�ne coordinates fall in, as shown in �gure 4.3. We can �nd the boundary

of a�ne coordinates consistent with an image by combining seven di�erent, simpler
boundaries.

As an example, for a particular image we just consider the models for which �4 > 0,

�4 > 0 and �4 + �4 > 1. In that case, the radius of the error region associated with
the model is 2�(�4 + �4). So for a given image, one possible set of models consistent

with that image are the models for which �4 > 0; �4 > 0; �4 + �4 > 1 and

((��� �4)u)
2 + ((�� � �4)v)

2 + 2(�� � �4)( �� � �4)uv(cos )

= �
2(�(1� �4 � �4) + �4 + �4 + 1)2

= 4�2�2
4�

2
4

This is the equation for a conic in �4; �4. Combined with the inequalities constraining
�4 and �4 we get the intersection of a conic and a region in �4-�4 space, where this

intersection may well be empty. In general, we can remove the absolute value signs

by writing down seven di�erent conic equations, and intersecting each one with a
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di�erent region of �4-�4 space. When we intersect each conic with the appropriate

region of �4-�4 space, we get a set of (�4; �4) values consistent with the image. The

union of these seven sets of values gives us the entire set of values consistent with the

image.

4.1.2 Error for Our System

We use this precise bound on the e�ects of error with four points to compute a

conservative error volume for indexing. To do this, given an image group with n

points, for each a�ne coordinate of �4, ... �n, �4, ... �n we compute the minimum
and maximum value that coordinate can have. For each point, we compute the

intersection of each of the seven conics with the appropriate region in a�ne space,
and �nd the maximumand minimum� and � values that point can have over all seven
possibilities. Taking the � and � values separately, we have two rectanguloids in � and

� space. We use each rectanguloid to separately access each of the spaces. Looking
at all the cells in index space that the � rectanguloid intersects, we are guaranteed
to �nd all the models that could have produced � values compatible with our image.

We �nd all the models with compatible � values as well, and then intersect the results
to �nd all models consistent with our image. In principle the need for intersection

reduces the asymptotic performance of our system, because the � values alone will

have less discriminatory power than both � and � values combined. But in practice
this intersection takes very little time.

This indexing method will produce unnecessary matches for two reasons. First,

we are assuming that the a�ne regions compatible with each additional image point

are independent. We do not take account of the fact that as one of the three basis
points is perturbed by error, it will a�ect all the image's a�ne coordinates at once.

Understanding the nature of this interaction is a di�cult problem that has not been
solved. Second, we are bounding each � value independently of its corresponding �

value. This is equivalent to putting a box around the conics that describe a point's

compatible � and � coordinates, a box whose sides are parallel to the � and � axes.
These conics describe ellipses in most cases. If an ellipse is elongated, and on a

diagonal to the � and � axes, then putting a box around it is a very conservative
bound. This second simpli�cation makes it easier to decide how to access our lookup

table, but in principal we could compute which cells in � space are compatible with

a particular set of cells in � space, and make our lookup more precise.

4.2 Building the Lookup Table
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Figure 4.4: An example of the grid spacing used in the lookup table, for a two-

dimensional table.
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We have now described how to analytically map both images and models to regions

in � and � space where we can match them. To implement this approach in a

computer, we must divide � and � space into discrete cells so that we can �nitely

represent these continuous regions. We do this in a straight-forward way, dividing each

dimension of each space into discrete units, so that the entire spaces are tesselated

into rectanguloids. The only question that arises with this approach is in how an
individual dimension of each space should be divided.

Because the error regions grow larger as the a�ne coordinates grow larger, we do

not discretize the a�ne spaces uniformly. To decide how to discretize the spaces, we

note that the size of our error regions is directly dependent on the location of the �rst
three image points, which we cannot know at compile time, and on the expression:

�(1 + j1 � �4 � �4j + j�4j + j�4j). Let us consider how this second expression varies
with �4 for the simple case where �4 = 0. This expression is a constant 2� if the �4

coordinate is between 0 and 1. Outside that region it grows linearly. So although the
size of the error rectanguloids depends on many factors, we can determine the way
in which their size varies with �4 when other variables are held constant. We choose

to discretize � and � space according to this variation. Therefore, we uniformly
discretize each coordinate of the a�ne spaces for values between 0 and 1, and then
discretize into ranges that grow linearly with the a�ne coordinate for other values.

Figure 4.4 illustrates this discretization for a two-dimensional a�ne space.

We also can only represent a �nite portion of the space, so we ignore all a�ne
coordinates with an absolute value of 25 or greater. This threshold is set fairly

arbitrarily, but it is easy to see that if a set of image points have a�ne coordinates

greater than 25, then the size of the error regions they give rise to will also be quite
large.

We ran an experiment to show that this is a good way to discretize the space.
We randomly formed sets of four image points, by picking four points from a uniform

distribution inside a square 500 pixels wide. For each set of four points, we computed
the range of � values with which it was consistent, assuming error of �ve pixels. In

Figure 4.5 we plot the middle of these ranges against their width, after averaging

together ranges with similar middle values. This shows that it is true that the error
ranges with which we will access the table are fairly constant between 0 and 1, and
grow linearly outside those values. Note that the width of the error rectangles plotted

in Figure 4.5 dip downward as � approaches 25 or �25, because we excluded � ranges

that would not �t entirely in the lookup table. These experiments also show that we
will access the extreme parts of the table with bigger rectanguloids, so it would be
wasteful to discretize these parts �nely.

Given our discretization of a�ne space, we then just compute which cells are

intersected by each line that represents a model's images. At those cells we place a

pointer to the group of model points that the line represents. Although groups of
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Figure 4.5: These graphs show how the size of error regions grow in one of their

dimensions as a function of one of the a�ne coordinates of the fourth image point.

The bottom �gure is a blowup of the graph, near 0. We can see from the above �gures
that the size of error rectangles is constant for 0 � �4 � 1, and grows linearly outside

that range.
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di�erent sizes are represented by lines in spaces of di�erent dimensions, we physically

store all active cells in a single � and a single � hash table.

We could compute the lines in � and � space that describe a group of point features

easily from their 3-D structure. Instead, it is more convenient to determine the lines

directly from a series of 2-D images of the object. We use the system described in

chapter 6 to �nd groups of point features of an object in a number of di�erent images.

We then establish a correspondence between these point features by hand. Therefore,
for a particular group of ordered model points, we have available the 2-D locations of

these points in a set of images. In all images we use the same three points as a basis,

and �nd the a�ne coordinates of the other points with respect to this basis. We are
deferring until chapter 7 a discussion of how we order these groups of points, and how

we choose points for the basis of the groups. For each image, then, we have a set of

a�ne coordinates that we may treat as a point in � space and a point in � space.
We then �t a line to the points in each of these spaces. This gives us two lines that
describe all the images that the model could produce. We use a simple least squares
method to do this line �tting. We could perhaps do better by taking into account
the fact that the stability of each a�ne coordinate of each image is di�erent, but we

have not found that necessary.

4.3 Performing Veri�cation

We have now described how to build and access our indexing table. We may also
make use of some of the tools that we have developed to e�ciently verify hypothetical

matches produced by our indexing system (step 3c in the outline at the beginning of
the chapter). Above, we show that we can build our lookup table without deriving
an explicit model of the 3-D structure of an object. In the same way, we can also
generate new images of the object, in order to perform veri�cation. This is quite

similar to the linear combinations work of Ullman and Basri[105]. The basic idea is

that given a match between some image and model points, we have a point in a�ne
space matched to a line in a�ne space. Due to image error, the point produced by

the image will not fall exactly on the line corresponding to the model. By projecting
the point onto the line, we can �nd a set of a�ne coordinates which the model could

have produced, and which are near the a�ne coordinates found in the image. We can
then use these a�ne coordinates to determine the a�ne coordinates of all the other

model points.

To implement this, we �rst select line segments in images of the model that come
from the object. We match the end points of these line segments by hand. Then we

construct lines in � and � space, separate from the lines we use for indexing, which

represent all the points on the object, including the ones we use for indexing and the
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endpoints of the line segments that model the object. For every triple of points that

we will use as a basis for indexing, we also use this triple as a basis for describing all

the points.

Let us illustrate this with an example. Suppose indexing matches model points

p1, p2, p3, p4, p5, p6 to image points q1;q2;q3;q4;q5;q6, and suppose based on

this match we wish to project model points p1;p2; :::pn into the image. At compile

time, we use the points p1;p2;p3 as a basis, and compute the two lines in the a�ne
spaces that describe all images of the model when the image of these three points

are used as a basis. (This is done at compile time for all possible basis triples).

Call these two lines L1 and L2. These lines are in (n� 3)-dimensional a�ne spaces,
(�4:::�n) and (�4:::�n), because they represent the locations of n� 3 points using the

�rst three points as a basis. Our six matched image points map to two points in

the 3-dimensional a�ne spaces (�4; �5; �6) and (�4; �5; �6). Call these points a1 and
b1. By projecting L1 and L2 into these lower dimensional spaces, we get lines that
describe the possible images that the �rst six model points can create. By �nding
the point on the projection of L1 closest to a1 we �nd the � coordinates of the image
of the model that best match the image points. Similarly, we �nd the appropriate

� values. These values determine locations on L1 and L2 that tell us the a�ne

coordinates of all the model points in the image that will best �t the matched image
points. Without explicitly computing the viewing direction we have computed the
appearance of the model, when seen from the correct viewing direction. (A di�erent
method must be used if the matched model points are coplanar, because in that case

their a�ne coordinates provide no information about viewing direction).

In addition to determining the e�ects of the viewing direction on the image, we
must also allow for the e�ects of the a�ne transformation portion of the projection.

However, once we have determined the a�ne coordinates of all the projected model
points, it is straightforward to apply a least squares method to �nd the a�ne trans-
formation that optimally aligns the image points with the projected model points.

4.4 Experiments

This section describes experimentsmeasuring the performance of the indexing system.

The main issue at compile time is the space required during step 2c, when the hash
table is built. At run time, we will measure the number of steps required to access

the table during step 3b, and the number of matches that this step produces. In the
experiments described in this section, we represented a model of a telephone in our

indexing tables. In chapter 7 we will describe how we formed groups of point features

on the telephone. For our purposes in this chapter, it is su�cient to say that we

explicitly represented 1,675 di�erent groups of between six and eleven ordered point
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Indexing Space

Group Number
Size Entries

6 110

7 128

8 154

9 198

10 230

11 270

Table 4.1: This table shows the average amount of space required to represent the
lines that correspond to our model's images, with d = 50. Each row of the table

shows the average number of cells intersected by a line corresponding to a group of a

particular number of points. This is the number of cells intersected in just one space,
� or �.

features from the telephone, and measured the performance of the indexing system
with this collection of groups.

We can analytically bound the space required by the indexing system. It will be at

most linear in the discretization of the lookup table, and in the dimensionality of the
space. A line passing through a high-dimensional space is monotonically increasing
or decreasing in each dimension. Therefore, if we cut each dimension of the table

into d discrete intervals, each time the line passes from one cell to another, one (or
more) of the dimensions is changing value. There can only be d such transitions in

each dimension, for a total of (n � 3)d transitions in the n� 3 dimensional space in

which a group with n points is represented. Therefore, the maximum space required
to represent a group with two lines in two spaces is 2(n � 3)d. In table 4.1 we show
the actual number of table entries made in experiments with d = 50. We can see that

our bound on the space requirements is correct, and a reasonable approximation to
the amount of space actually used.

The time required to perform indexing will depend on the number of cells at
which we must look in the index table, and the number of entries found in these

cells. The number of cells examined is exponential in the dimensionality of the table,

because the volume of a rectanguloid grows exponentially in its dimension. If the
side of a rectanguloid is typically smaller than the width of a cell in the table, than

�ner discretization will not increase the number of cells examined, but in general
the number of cells examined grows with the level of discretization. Assuming for

purposes of exposition that each side of each rectanguloid has width r, and that the

whole index space has width M , than a rectanguloid will intersect (d rd
M
e)n�3 cells.

This gives us a rough idea of the actual behavior of the system. In practice, we �nd
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that for d = 100 and � = 5 pixels, a rectanguloid typically intersects about 6n�3

cells in the table. This is starting to grow quite large, indicating that we should

not tesselate the space any �ner than this, and perhaps not quite so �nely. On the

other hand, keep in mind that the work performed for each cell is simply a hash table

lookup.

We also �nd that occasionally we may index using a group of image points with an
unstable basis or high a�ne coordinates. This can produce a very large rectanguloid

that intersects a large number of cells. Looking at all these cells may require excessive

computation. One solution is to simply ignore such image groups, which are likely

to be less useful for recognition in any case. A better solution might be to discretize

the space into several separate tables, using several di�erent values of d. Then at
run time, when we know the size of the rectanguloid that a particular group of image
features produces, we may choose to look in a table with the appropriate resolution

for that rectanguloid. This would guarantee both that we do not need to look in too
many cells, and that our discretization would not introduce too much error.

When looking up a rectanguloid in an a�ne space, we have to take the union
of everything we �nd in every cell at which we look. We then have to take the
intersection of the result of looking in two rectanguloids in two spaces. These unions
and intersections take time that is linear in the number of entries we �nd. If table

entries are uniformly distributed throughout the lookup space, then, given that there

are dn�3 cells in a space, and about d(n � 3) entries per model group, if there are N
model groups than there is an average of

N(n� 3)

d
n�4

entries in each cell, for a total number of objects looked at by a rectanguloid of about:

N(n� 3)d

�
r

M

�
n�3

For the values mentioned above (d = 100; dr
M

= 6) and for n = 7, and N = 1000, we

would expect about �ve objects to be found by each rectanguloid. This should be an

underestimate, however, because in reality objects will not be uniformly distributed
about the index space. We would expect both models and images to form clusters.

Overall we can see that indexing requires reasonable amounts of time if we are

careful when deciding how to discretize the table. Space requirements are also modest

for a single group of model points, although they may become an issue if we need to
represent large numbers of model groups.

Until now, our discussion just shows that indexing can be practical in terms of

space and time. The most important question, though, is how useful can indexing
be? How much can we gain by using a lookup table to �nd geometrically consistent
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matches instead of explicitly considering all matches. To determine this we want to

measure the speedup provided by indexing, that is, for a group of n image points,

we want to know the likelihood that a group of n model points that did not produce

these image points will still be matched to them by indexing. We will call the inverse

of this likelihood the speedup the system provides, because this is the reduction in the

number of matches that we consider with indexing, as compared to raw search.

There are several factors that might reduce the speedup of our system, and we
wish to measure them individually. First, we are using a linear transformation for

indexing, which will match an image to more models than would scaled orthographic

or perspective projection. Second, we make two somewhat di�erent approximations

when we use rectanguloids as the volumes that access the lookup table: we are placing

a rectangle about the error region associated with four points, which is typically

an ellipse, and we are assuming that error has an independent e�ect on the a�ne

coordinates of each image point. Third, by representing the lookup table discretely,
we will make approximations. We may match an image to a model because the
model's line and the image's rectanguloid intersect the same cell, but do not intersect
each other. So our goal is to determine the overall speedup that our system provides,

and to separately measure the e�ect of each of these approximations.

We begin with some analytic comments on this speedup, and then present the

results of experiments.

We �rst consider the speedup that an ideal indexing system can produce when
images formed with scaled orthographic projection contain a bounded amount of

sensing error.1 The expected speedup will depend on n, and we denote it s(n). We
show that there are constants k and j such that kn�3 � s(n) � j

n�3, in the case
where image points are chosen independently from a uniform random distribution on
the image.

First we show that s(n) � k
n�3. The speedup for a given image group will depend

on the number of model groups that can appear like the image group, within error
bounds. Suppose n is four. We know that at least one pose of the model exists which

will perfectly align the �rst three model points with the �rst three image points.

About this pose will be a set of poses for which the three model points project to
within �xed error bounds of the image points. As the �rst three points gyrate through

this set of poses, the projection of the fourth model point sweeps out some region
of the image. Call this region I4 (this is the potential location, for 3-D models and

scaled orthographic projection). If the fourth image point is within error bounds of
I4, then a pose exists that makes the model look like the image. Let I 04 be those

locations of the fourth point such that it is within error bounds of I4. Under the

1The following analysis appeared in Clemens and Jacobs[32], and is joint work between the author

and David Clemens.
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uniform distribution assumption, the probability that a random image point will fall

within I 04 is the area of I
0
4 divided by the image area. The inverse of this is the speedup

produced by indexing with four points, compared to checking all models. We call this

ratio k.

Suppose n = 5. The average speedup from indexing will be at least k2. To see

this, we can form a region I 05 for the �fth model point in just the same way we formed

I
0
4. That is, I

0
5 does not depend on the fourth model point or the fourth image point.

There is a pose that aligns the image and model groups to within error bounds only

if the �fth image point falls inside I 05, and the fourth image point lies in I 04. Call this

event A2. Since the two regions are constructed independently, and since the image

points are chosen independently, the probability of A2 is equal to the product of the
probability of each event occurring separately. This implies a speedup of k2. However,

the speedup is even greater: event A2 is a necessary condition by construction of I 04
and I 05, but not a su�cient condition, since it must also be the case that there is a
single pose that aligns both points. In general, indexing will produce a speedup of at
least kn�3.

We now show that for some j, s(n) � j
n�3. The speedup of indexing can only

be decreased by accounting for error. Therefore, if we ignore the error in the �rst

three image points, but consider the error in subsequent points, we may derive a loose
upper bound on s(n). Even without varying the pose that aligns the �rst three points,

there is an error region in the image due to the error in the fourth point. This error
region will occupy some proportion, 1=j, of the image area. For each additional point
there is another error region of the same size, since error in each point is independent.

Analogous to the lower bound, the upper bound is therefore jn�3.

j is just ��
2

A
, where A is the image's area. Suppose, for example, that the error

bounds on each image point are a circle of radius �ve pixels, and the image is 500

pixels by 500 pixels. Then j � 3200. With radius three, j � 8800.2

This same argument applies equally well to a linear transformation, if we replace
the number 3 with the number 4, since a correspondence between four points is needed

to determine an object pose in this case. So in general we see that the potential
speedup of indexing increases exponentially with the group size.

Intuitively, the fact that one more point is needed to determine a linear trans-

formation than to determine a rigid transformation suggests that in using a linear
transformation we will forfeit the extra speedup that would be produced by using

one extra point. That is, we would expect a group of size n with scaled orthographic

projection to produce the same speedup as a group of size n+ 1 with a linear trans-
formation.

We now perform some experiments to determine these actual speedups. We per-

2This ends the extract from Clemens and Jacobs.
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Num. � Ideal Ideal Analytic Table Table Num.

Pts. Bound Bound Compar- d = 50 d = 100 Possible
Orth. Linear ison Matches

4 5 Ran. 270 60,000
Real 46 60,000

5 3 Ran. 10; 000 < 78.1 23.1 42.4 10,000

5 Ran. 12; 500 <1 1; 1102 39:72 16:22 262 12; 5001

10; 0002

Real 2,500 10,000
7 Ran. 1,110 26.2 12.4 18.0 10,000
10 Ran. 385 17.5 8.88 12.5 10,000

6 3 Ran. 10; 000 < 1,250 357 178 10,000

5 Ran. 10; 000 < 526 189 303 10,000

Real 244 7
7 Ran. 10; 000 < 233 106 156 10,000
10 Ran. 10; 000 < 122 60 85 10,000

7 3 Ran. 10; 000 < 3,330 1,670 3,330 10,000

5 Ran. 10; 000 < 1,110 769 1,000 10,000
Real 3,470 5

7 Ran. 10; 000 < 5,000 714 1,430 10,000
10 Ran. 10; 000 < 385 222 294 10,000

Table 4.2: This table shows the results of tests on the e�ectiveness of indexing. Each column

shows the speedup produced by indexing under various circumstances, where speedup is de�ned to

be the total number of possible matches between image and model groups, divided by the number

of matches produced by that type of indexing. Column one gives the number of points per group in

the experiment. Column two gives the amount of error allowed in matching. Column three indicates

whether the model and image were randomly generated, or came from real objects and images. The

\Ideal" methods indicate that we explicitly compared each group of image and model points, used a

least-squares method to optimally align them, and then determined whether this matched the points

to within �. The fourth column shows this for a scaled orthographic projection, the �fth for a linear

transformation. Column six shows the result of analytically comparing the lines that represent a

model's images to the rectanguloids that represent an image with bounded error. Columns seven

and eight show the results of comparing these objects via a lookup table, where each dimension

of the table is divided into d discrete ranges. Column nine shows the number of possible matches

between image and model groups for that set of experiments. When di�erent values in the same

row were based on di�erent numbers of matches, we use footnotes to identify which values belong

together.
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form experiments with randomly generated models and images in which we excluded

particularly unstable images, and also with real models and images in which image

and model groups were formed by hand. In table 4.2 we compare speedups that were

derived in several di�erent ways. We �rst show experiments performed by Clemens

and Jacobs to bound the maximum possible speedup for scaled orthographic projec-

tion. In this experiment, instead of �nding models by indexing, we matched each
group of image points to permutations of each model group, and tested each match

to determine if the model could appear like the image. Newton's method was used

to �nd the model pose that minimized the distance from the image points to the

projected model points (see Lowe[73] for a discussion of the application of Newton's

method to this problem). If in this pose, each model point projects to within error
bounds of each image point, then a correct indexing system would have to produce
this match. This allowed us to determine a lower bound on the number of correct

false positive matches, that is, matches that are geometrically consistent, although
the matched model points did not actually produce the image points. We did the

same thing with the linear transformation, using the method described above to �nd
a least squares �t between image and model points. In the next experiment we ana-
lytically compared the a�ne lines that describe a model with the rectanguloids that
describe an image. This is just like our table lookup, except we avoid the e�ects of

discretization by explicitly comparing each line and rectanguloid to see if they are

compatible. Finally, we compared table lookup with di�erent values of d.

We also need to check that our indexing system �nds the correct matches. The

mathematics guarantees that we will �nd the right answers if our assumptions about

error are met, but we need to check that these assumptions hold in real images. In
chapter 7 we will present experiments with the entire recognition system, but we have
also tested the indexing system using automatically located point features that we
grouped by hand. Out of fourteen such groups, two produced rectanguloids outside
the bounds of our lookup table, but the other twelve groups were in each case matched

to the correct model groups, allowing for �ve pixels of error when indexing, and using

a table in which d = 100. Figure 4.6 shows two groups of image features, the groups
of model features to which the indexing system matched them, and the resulting

hypotheses about the location of the object. Table 4.2 also shows the speedups
achieved with these groups.

There are several conclusions that we can draw from these experiments. Most im-
portantly, they show that our indexing system can produce signi�cant reductions in

search, especially when we use groups of seven or more points. This demonstrates the
tremendous potential of indexing, provided that we can produce a reasonably small

number of candidate groups in both the model and the image without sacri�cing reli-

ability. We also see the speedups that we give up by making various approximations.
It does appear that using a linear transformation is giving up at most the constraint
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Figure 4.6: On the top are two scenes containing the phone. Underneath each

scene is a hypothetical projection of the model considered by the recognition system.

Both are correct. In the hypotheses, edges are shown as dotted lines, projected line
segments appear as lines, circles represent the image corners in the match, and squares

show the location of the projected model corners.
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Num. � Ideal Analytic Table Table Table Table Num.

Pts. Bound Compar- d = 50 d = 100 d = 200 d = 400 Possible

Linear ison Matches

5 3 Random 2; 500 < 52.1 14.5 27.2 37.9 43.9 2,500

5 Random 357 28.4 13.5 19.5 23.8 26.6 2,500

7 Random 833 21.7 9.8 14.5 17.7 20.2 2,500

6 3 Random 2; 500 < 833 625 833 833 833 2,500

5 Random 2; 500 < 278 132 208 227 227 2,500

7 Random 2; 500 < 167 80.6 119 147 156 2,500

Table 4.3: This table shows further results of tests on the e�ectiveness of indexing,

similar to those shown in table 4.2.

that is available in one image point; our least squares bound on the speedups of linear
transformation indexing for �ve points provides a speedup that is a bit larger than

the speedup we get for four points with scaled orthographic projection. We also see
that bounding error with a rectanguloid results in a signi�cant loss of power in the
system, and we would expect this loss to grow with the size of the group. So if we

are concerned with increasing the speedups provided by indexing, it might be useful
to attempt to use a tighter bound on the error regions.

Our results do not show much of a loss in speedup due to table discretization.
It is time-consuming to run experiments with a �ne discretization, because many

table cells must be accessed in lookup in those cases. However, table 4.3 shows some
additional results. In these experiments, the same models and images were compared

with d = 50; 100; 200; 400. We can see that with d = 400 there is almost as good

performance with the lookup table as with the analytic matching. But given the
run-time and space costs of a higher value for d, it seems reasonable to choose d = 50
or d = 100.

The signi�cance of our results will depend on how we intend to use indexing. If we
expect that grouping can provide a small number of groups with many point features,

then we do not need to be too concerned with increasing the speedups provided by
simple hash table lookup. If we want to try to take advantage of groups with only four,
�ve or six points for indexing, we can see the importance of taking care with issues

such as the projection model used, table discretization, and error. This is pointed

out at greater length in Grimson, Huttenlocher, and Jacobs[49]. This lesson may also
be relevant to invariant based indexing systems that use projective transformations

and perform indexing with the smallest sized groups possible, such as Weiss[111],

Forsyth[44], and Rothwell[92].
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4.5 Comparison to Other Indexing Methods

Previous systems have also performed feature matching using hash table lookup.

This has been done for the recognition of 2-D objects in 2-D images by Wallace[107],

Schwartz and Sharir[94], Kalvin et al.[63], Jacobs[60], and Breuel[17], and for the

recognition of 3-D objects from 3-D data by Schwartz and Sharir[94] and by Stein
and Medioni[98]. However, in these domains, invariant descriptions of the models are

available, and so the issues involved in indexing are very di�erent. In this thesis we

have focused on the problems of representing a 3-D model's 2-D images, and in this

chapter, on the problem of accounting for the e�ects of error in this domain.

There has been past work in this domain, which is more directly relevant to our
current work. Previous authors have noticed that one could represent all of a model's

images under scaled orthographic projection by sampling the viewing sphere, and

representing in a lookup table each image that the model produces from each point
on the viewing sphere. By representing these images in a way that is invariant under
scale changes and 2-D translation and rotation all possible images of the model are
represented. For example, if a group of image features includes two points, then one
can assume that these points have coordinates (0; 0) and (1; 0), and then describe all

remaining features in terms of the coordinate system that this gives us. With such
a representation, one automatically factors out the e�ects of four degrees of freedom
in the viewing transformation, and need only be concerned with the two degrees of

freedom captured in the viewing direction. The set of all images produced by di�erent
viewing directions will therefore form a 2-D manifold. By sampling the set of possible
viewing directions, one is therefore implicitly sampling the 2-D manifold of images

that a model can produce.

Thompson and Mundy[100] use this approach to represent model groups consisting

of pairs of vertices. For each pair of 3-D vertices in a model, they sample the set of

possible images that the vertices may produce, and store these images in a lookup
table, along with the viewing direction. Then, given a pair of image vertices at run

time, table lookup is used to determine the viewpoint from which each pair of model
vertices might produce a particular pair of image vertices. Thompson and Mundy

therefore use lookup primarily to quickly determine the viewpoint implied by a match
between the model and the image, not to select valid matches.

Lamdan and Wolfson[71] similarly describe a system that samples the viewing

sphere and then creates a separate model for each view. Again, this implicitly samples
the 2-D set of images that a 3-D model can produce. Then, a 2D indexing scheme
based on invariants is used.

Breuel[17] also proposes an indexing scheme based on sampling the viewing sphere.

Breuel's system uses vertex features, making use of the angles of the lines that form

the vertices. In this work, the potential e�ect of changes of viewpoint on the angle
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of a vertex is determined. This is used to bound the number of di�erent viewpoints

needed to �nd all views of the model that will be represented in di�erent table buckets.

Therefore, the number of table entries needed to describe the images that a group of

vertices may produce can be bounded.

Clemens and Jacobs[32] also implement an indexing system based on sampling

the viewing sphere in order to test the potential speedups provided by indexing. This

system represents images of point features in a lookup table.

These approaches provide some of the inspiration for our method, in which we

represent all images of a model created from all points on the viewing sphere, using
a representation that is invariant under a�ne transformations. One of the main

advantages of our approach, as a method of hash table lookup is that we are able to

represent a model's images with two 1-D lines, while previous approaches determined

the models' potential images by sampling the viewing sphere, and implicitly were

representing a 2-D manifold of images corresponding to the 2-D surface of the viewing
sphere3.

We can see some of the advantages of our approach from some of the reported
results. Thompson and Mundy's system required 2,500 table entries to represent the

images of a pair of model vertices. Clemens and Jacobs' system required over 5,000

table entries to represent a group of �ve model points. Lamdan and Wolfson report
sampling the viewing sphere at a rate of every ten degrees. The space required by
our system is one or two orders of magnitude less. This signi�cantly increases the
number of groups of model features that we can hope to represent in a lookup table.

Moreover, our approach extends gracefully to handle larger groups of model features,
with modest additional space requirements. It is not clear how growth in group size
will a�ect the space required by other approaches; as groups grow larger, more images
must be sampled because the chances are greater that some of the model features will

be signi�cantly e�ected by small changes in viewpoint.

Also, our approach allows us to analytically construct a lookup table that is guar-

anteed to be correct. Most of the systems described above uniformly sampled the
viewing sphere, with no guarantees about how much inaccuracy this might introduce
into the lookup table. Breuel was able to bound this inaccuracy in the case where

only the angle between two lines was used as a model feature.

Finally, we have presented a method of accounting for image error at lookup time
that guarantees that we will �nd all matches that �t a bounded error assumption.

Most of the above systems rely on the discretization of the index space to account for

error.

On the other hand, we have paid for these advantages by using a more general
projection transformation that introduces two more degrees of freedom into the pro-

3Breuel[18] mentioned explicitly that a 2-D manifold is represented by this method.
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jection. This may be a liability if we do not require the added capability of recognizing

photographs of objects viewed from new positions.

We should also stress that while there are considerable practical advantages to our

approach to indexing, the greatest di�erence between our approach and previous ones

is more conceptual. We have rephrased indexing as a geometric matching problem

between simple objects that we can analytically compute.

4.6 Conclusions

Aside from some smaller implementation points, there are two main conclusions of
this chapter. First, we show that we can carefully understand the e�ects of error on
point feature matching. We have shown the precise e�ects of error on matching four

planar points with alignment or geometric hashing, and then shown how this can
also bound the e�ects of matching 3-D objects under linear transformations. These

results therefore have relevance to the implementation and analysis of a wide range
of approaches to recognition.

We can also see that understanding the e�ects of error matters. In some indexing
systems (Lamdan, Schwartz and Wolfson[70], Thompson and Mundy[100], Lamdan

and Wolfson[71], Forsyth et al.[44]) ad-hoc methods are used to handle error, such

as counting on the use of discrete cells to match images and models that are a little
di�erent. In the case of point features we can see how inaccurate that can be. Using
discretization to handle error means e�ectively putting a fairly arbitrary rectangle

about the images in index space, and matching them to all models that map to
somewhere in that rectangle. And the rectangles are all the same size. In the case of

four points, we can see that the true error regions are usually elliptical, and that their

size and orientation can vary quite a bit. When there are more than four points, the
variation in a�ne coordinates of di�erent points can also be great. This means that
an arbitrary treatment of error is likely to miss many matches, or to be so sloppy as

to greatly reduce the e�ectiveness of indexing.

We also see experimentally that indexing can be of great value when grouping
provides us with large collections of image features. But we see that indexing is of
quite limited value when small groups of image features are used. It is especially in

those cases that a careful treatment of error is needed to squeeze all the power we
can from the indexing system.
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Chapter 5

Inferring 3-D Structure

5.1 Introduction

In the introduction to this thesis we described two possible approaches to indexing. In

the approach that we have pursued so far, we characterize the set of 2-D images that
a 3-D model can produce, and then match between 2-D images. A second approach

is to derive 3-D information from a 2-D image and perform a comparison in 3-D. The
advantage of such an approach is that since the 3-D structure of a model does not

depend on the viewpoint, only a single representation of the model is needed. In this
chapter we examine the extent to which we might hope to recover 3-D information
about an image of point features.

We need not derive explicit 3-D information about the scene to gain the advantages

of a 3-D comparison. If we can derive some viewpoint invariant property of the scene

from an image, we have implicitly determined something about its 3-D structure,
because we have determined something that depends only on this structure, and not

on the viewpoint. Therefore, invariants can be viewed as a representation of the 3-D
scene information. So when we discuss invariants in this chapter, we are at the same

time discussing 3-D scene reconstruction.

In chapter 2 we showed that there are no complete invariant functions for general

3-D objects. Recall that a complete invariant function is a function of a single image
that captures all the information about the model that could e�ect the images that
it can produce. This tells us that indexing by recovering 3-D information, implicitly

or explicitly, can never make use of all available information, and can never be as

complete as indexing by characterizing a model's images.

However, the advantages of performing indexing using 3-D information are poten-
tially great, because of the space savings and conceptual simplicity gained by using

only a single 3-D model. So it is worth considering whether we can do any useful

indexing in this way. There are several ways in which we might try to get around

119
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the results of chapter 2. First, we might consider allowing our invariant functions,

which implicitly contain 3-D information, to introduce errors. We �rst show that al-

lowing false positive errors is of no help. That is, we show that there are no invariant

functions at all, even ones which might throw away some of the useful information

in the image. Then we consider whether invariant functions may exist if we allow

false negative errors, that is, if we allow functions that occasionally match an image
to a model that could not have produced it. We show that when small numbers of

false negative errors are allowed, there are still no invariant functions. These results

tell us that we may not infer 3-D information from point features even if we allow an

occasional mistake.

We then consider whether we might �nd invariant functions for limited libraries of

models. We show under what circumstances a particular set of models might give rise

to an invariant. Finally, we turn to non-accidental properties. These are individual
properties of an image that are unlikely to occur by chance. It has been thought that
these special properties o�er a method of inferring 3-D structure when they occur.
We show that in the case of point features, however, these properties are of limited

value.

A number of researchers have considered methods of inferring 3-D structure from

a 2-D image that contains richer features than the simple points that we analyze. Of
course there is an extensive literature on stereo and motion understanding, situations
where more than one image of the scene is available. There has also been work on

deriving 3-D information from the shading or texture of a single image. And there
has been extensive work on determining 3-D structure from line drawings. These

drawings usually contain either connected line segments or closed curves, the idealized

output of an edge detector that would locate all scene discontinuities without gaps or
errors. Some of this work on line drawings has derived qualitative 3-D information
from images, for example by parsing lines into objects, or determining the meaning
of each line (is a line an occluding contour or an orientation discontinuity? does a

line indicate a convexity or a concavity in 3-D?). Early work along these lines was
done by Guzman[51], Hu�man[55], Clowes[33], and Waltz[108]. More recent work
is described in Koenderink and Van Doorn[66], Malik[75] and Nalwa[86]. We will

discuss in more detail work that makes inferences using non-accidental properties,
including that of Binford[11], Kanade[64], and Lowe[73]. And while some of this work
makes de�nite inferences from an image, other work, realizing that many di�erent 3-

D scenes are compatible with certain images, attempts to �nd methods of preferring

some interpretations over others. This is done, for example, in Brady and Yuille[16],
Marill[80], and Sinha[97].

When so much work has been expended in examining the problem of scene recon-

struction in a more complex image, we must explain why we consider this problem for
images of just point features. One reason is that much of the above work assumes ide-



5.2. SCALED ORTHOGRAPHIC AND PERSPECTIVE PROJECTION 121

alized input, especially in assuming curves without gaps. When working with broken

curves, it may be more useful to see what can be inferred from more isolated features,

as we do. Second, the above work has achieved only partial success. It may be useful

to more thoroughly examine a simpler kind of image. And some of our results may

be extended to more complex domains. In particular, our analysis of non-accidental

properties is easily applied to properties of lines such as parallelism and symmetry.

The primary conclusions of our work is that there are strong limitations on the

3-D inferences that we can make from a single image of point features. These results

strengthen the sense that the representations of a model's images derived in chapter

2 are indeed optimal. Whenever we show that we cannot derive viewpoint-invariant
information about a model, we have shown that it is not possible to represent that

model with a single point in some image space, which would capture that viewpoint

invariant data. Our results also provide greater insight into non-accidental properties
as an approach to recovering 3-D information about a scene. It remains to be seen,
however, to what extent stronger 3-D inferences can be made when we have richer
image information available.

5.2 Scaled Orthographic and Perspective Projec-

tion

5.2.1 There Are No Invariants

In chapter 2 we showed that there are no non-trivial, complete invariant functions
of images. In this section, we show that there are no non-trivial invariant functions

at all. This is equivalent to showing that there is no mapping from images to image
space for which every model's manifold is a point unless image space consists of a

single point to which all images are mapped. We �rst present a proof from Clemens
and Jacobs[32] which applies only to scaled orthographic projection, and then a proof

discovered by Burns, Weiss and Riseman[24] and by Moses and Ullman[84] which

applies to all projection models. The results of Clemens and Jacobs[31] and Burns,
Weiss and Riseman[22] appeared simultaneously. The work of Moses and Ullman[83]

appeared later, but was performed independently.

Following Clemens and Jacobs[32] we proceed by �rst considering the case in
which models have four points. If an invariant function, f , exists, we can use it to

partition this set of models into equivalence classes. If f is an invariant function,

then it assigns the same value to all images of a single model. We may therefore
speak unambiguously of f assigning a value to the model itself. We then say that

two models are equivalent if and only if f assigns them the same value. Clearly two

models will be equivalent if they produce a common image. If f partitions the models



122 CHAPTER 5. INFERRING 3-D STRUCTURE

into a trivial equivalence class where all models are equivalent, this means that f is

a trivial invariant function which assigns the same value to all images.

We now show that any two four-point models, m1 and m2 are equivalent. We

proceed by showing that they are each equivalent to a third model. Let m(1;1) denote

the planar model with a�ne coordinates (1; 1). Recall that the a�ne coordinates of

point in a set of planar points are its coordinates when the �rst three planar points are

used as a basis, and that these coordinates are invariant under a�ne transformations.
Theorem 2.3 tells us that the planar modelm(1;1) can produce any image of four points

that has a�ne coordinates (1; 1). We know from lemma 2.5 that m1 can produce an

image with a�ne coordinates (1; 1). Therefore this image will be produced by both
m(1;1) and m1, and the two models are equivalent. Similarly, m(1;1) is equivalent to

m2, because, again by lemma 2.5, it may produce an image with a�ne coordinates
(1; 1). So m1 and m2 are equivalent.

Suppose now that models have more than four points. Let m1 be a model with
n points. We can use a similar technique to show that m1 is equivalent to any
planar model with n points. Pick some such planar model, with a�ne coordinates
(�4; �4; :::�n; �n). We'll call this model pn. Then we know that there is some viewpoint

from whichm1 produces an image with a�ne coordinates �4; �4, and some other a�ne
coordinates we call �05; �

0
5; :::�

0
n
; �

0
n
. Call a planar model with these a�ne coordinates

p4. m1 is equivalent to p4 because because m1 can produce an image with the same

a�ne coordinates as p4, and p4 can produce all such images, by theorem 2.3. We now
create another model,m5, which is the same as p4 except in its �fth point, which is not

coplanar with the others. m5 is equivalent to p4 because we can view it to produce

a�ne coordinates �05; �
0
5 in its fourth point, while all its other a�ne coordinates

always match those of p4. Similarly, m5 is also equivalent to a planar model p5 that
has a�ne coordinates (�4; �4; �5; �5; �

0
6; �

0
6; :::�

0
n
; �

0
n
). So m1 is equivalent to p4 which

is equivalent to m4 which is equivalent to p5. We can continue this process until we
have a chain of equivalent models which connects m1 to pn. Then, since we have

shown that any 3-D model is equivalent to any planar model, we may conclude that

any two 3-D models are equivalent to each other. Figure 5.1 illustrates this argument.
This means that any invariant function that applies to all possible models must be

trivial. By the way, the above proof assumes that points of m1 are not coplanar, but
removing this assumption introduces no special di�culty.

We now present the related proofs of Burns, Weiss and Riseman[24] and Moses

and Ullman[84]. because they provide a somewhat di�erent way of thinking about the
problem than the one described above, and because they are more general, applying

to perspective projection as well as scaled orthographic projection. As the two proofs
are similar, we describe them together here.

Given two models of n points each, m1 and m2, we construct a chain of inter-
mediate models, m0

1, ... m
0
n
such that each adjacent pair of models in the sequence
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Figure 5.1: The two models on the left and right are connected by a set of inter-
mediate models. We form an arbitrary planar model, model 30, and show that each
model is equivalent to it. We begin by taking an image (image 1) of model 1 whose

fourth point has the same a�ne coordinates as the fourth point of model 30. Then we

create model 10, a planar model identical to image 1. Model 20 is identical to model

10 except for its �fth point, which is any point not coplanar with the others. Then
both models 10 and 20 can create image 2, which is the image of model 20 that has

the same a�ne coordinates as model 10, since model 20's �fth point may appear with

any a�ne coordinates. For this reason, model 20 can also create an image in common
with model 30. We connect model 2 to model 30 in a similar fashion.
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m1;m
0
1, ... m

0
n
;m2 can produce a common image. Then all the models are equivalent,

and any invariant function is trivial.

To construct this sequence we �rst show a simple lemma.

Lemma 5.1 If two models are identical except for a single point, then they produce

a common image from some viewpoint.

Proof: To �nd this viewpoint, we just orient the two models so that all their com-
mon points are in the same place. A line connecting their two di�erent points then

describes a possible viewpoint. When seen from that viewpoint, the points that are

di�erent in the two models line up in the same place in the image. All the other
model points coincide in 3-D space, so they appear in the same places in the image

regardless of viewpoint. This proof applies equally to orthographic or perspective
projection, because in either case, given a line through two points, we can view the
points along that line so that they create the same image point. 2

Now we can create a sequence of intermediate models easily. Let m0
i
be identical

to m1 in the �rst n � i points, and identical to m2 in the last i points. Then each

model in the sequence di�ers from the previous one in only a single point, because
m

0
1 di�ers from m1 in only the last point, mi di�ers from mi�1 in only the i'th point,

and m0
n
is identical to m2.

These results tell us that allowing false positives in our representation will not
allow us to produce invariants, for in these proofs we allow a model to match an
image that it could not produce. So we cannot create an image space in which each

model's manifold is 0-D. We now ask what is the lowest-dimensional representation
possible when we allow false positive errors? Since a model's images are continuously
connected, then any continuous mapping from images to image space must map these
images to a continuously connected manifold of image space. If this manifold is
not a single point, then it must be at least one-dimensional. We have already seen

such a one-dimensional representation in chapter 2. If we just consider the set of

� coordinates of the images that a model can produce, we know that each model

corresponds to a 1-D line in this � space. Before we spoke of decomposing an image
space into an � subspace and a � subspace, but we may also consider � space as the
entire image space. To do this introduces false positives because two models might

produce images with the same set of � coordinates but with di�erent � coordinates.
But we have a non-trivial representation in which each model's manifold is 1-D, and

this is the lowest dimensional representation possible when we allow false positives.

5.2.2 No Invariants with Minimal Errors

The purpose of this section is to strengthen the results of the previous section. The
proofs that there are no invariants depend on the assumption that any invariant
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applies to all models, and produces no false negative errors. This is a compelling

result because there has been a great deal of work done in mathematics on invariants

that meet these conditions. We now know that this work will not apply directly to

the problem of recognizing a 3-D object from a single 2-D image. However, this result

does not prove that there can be no useful functions that are in some sense almost

invariant. To address this question we ask what happens when we allow all kinds of
errors, but such a small number of errors that they are of no practical signi�cance?

We alert the reader to the fact that this section my be somewhat slow going, and

that it can be skimmed or skipped without loss of continuity.

We ask two questions: will accepting some errors allow us to �nd an invariant

function? and will it allow us to represent each model at a single point in some

image space? When no errors are allowed, we showed that these two questions were
identical. This is no longer obvious when we allow errors, so we treat the two questions
separately. We must also explain what we mean by a small number of errors. So we
begin by de�ning these two questions more carefully. Then we show that when we

allow errors, the existence of 0-D representations of models still implies the existence

of an invariant function. Then we show that even with a small number of errors
allowed, there is no such invariant function, and hence no such 0-D representation.

First of all, we make the following de�nitions.

De�nition 5.1

� As before, let M be the set of all models, let I be the set of all images, and let

f be a function from images to an image space, S. And let T be the set of all

legal projections from M to I. Our proofs will apply equally to perspective or

scaled orthographic projections.

� Let g be a function from M to S that we will specify later.

� Let gf(i) = fmjg(m) = f(i)g. That is, gf(i) is the set of all models such that

g maps these models to the same point in S to which f maps i.

� Let p(i) = fmj9t 2 T such that t(m) = ig. That is, p(i) is the set of all models

that can produce image i.

� Let h(m) be a function from M to all subsets of T . That is, the function h

describes a particular set of views for each model.

� Let TM stand for the set of all pairs of transforms and models. That is, (t;m)

is a typical member of TM. Let TMi indicate the set of all (t;m) 2 TM such

that t(m) = i. Therefore, TM =
S
i2I TMi.
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We will ask whether allowing an in�nitesimal number of errors might improve our

indexing system. This notion can be made more formal using basic concepts from

measure theory, but it should be briefer and clearer to present these proofs using

simple intuitive notions. For example, we might allow a function, instead of being

invariant for all models, to be invariant for all but an in�nitesimal number of models.

If M0 is a subset of the set of all models, M, we will say that M0 is in�nitesimal

with respect to M if, when selecting a model, m, from M at random, there is a

0 probability that m 2 M0. This de�nition implies that we have some probability

distribution for the set of models in M. We will assume that the points of each

model are chosen independently and uniformly from a cube of �xed size. We can

assume similar distributions for images and transformations that allow us to de�ne
in�nitesimal subsets of them. As an example, let M be the set of models with 5
points, and let M0 be the set of planar models in M. Then M0 is in�nitesimal in

M. On the other hand, if M0 contains all but an in�nitesimal set of M's members,
we will say that M0 is almost all of M.

In practice, our choice of a probability distribution on the models, images and
transformations is not important to the proofs that follow. We only rely on the
following properties of the distribution that we have chosen.

1. If I 0 is almost all of I, then M0 is almost all of M, if we de�ne M0 = fm 2
Mj9t 2 T such that t(m) 2 I 0g. That is, if we have a set of almost all the

images, then the set of models that could produce these images is almost all
the models.

2. Similarly, if M0 is almost all of M, and h is de�ned so that 8m 2 M0
; h(m) is

almost all of T , then I = fij9m 2 M0
; t 2 h(m) such that i = t(m)g is almost

all of I. That is, if we have a set of almost all the models, and for each model

we consider almost all the viewpoints of that model, we will produce almost all
the images.

3. If M0 is almost all of M and T 0 is almost all of T then T 0M0 is almost all of
TM.

4. Suppose TM0 is non-in�nitesimal in TM, and let I 0 be the set of all images

such that i 2 I 0 if and only if TM0 \ TMi is non-in�nitesimal in TMi. Then

I 0 is non-in�nitesimal in I. This is really fairly simple, in spite of the obscure
de�nitions. It just means that if on the one hand there is a non-zero probability

that a randomly chosen model-transformation pair is in TM0, then if we ran-

domly select an image there will be a non-zero chance that a randomly chosen

model-transformation pair that can produce that image will also be in TM0.
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All of these conditions essentially just depend on the fact that the probability

distribution we have chosen assigns a 0 probability to selecting what intuitively seems

like an in�nitesimal set of images or models or transformations. For example, we do

not want any one image to have a �nite probability of occurring.

We will now de�ne our two questions for the case where we allow errors to occur

with only in�nitesimal probability. If a result leads to an indexing method in which
the set of situations that gives rise to an error is in�nitesimal, this means that in

practice where we have only a �nite number of models and images, such errors will

never occur.

One might ask if this condition is too strong. We might be satis�ed with a system

in which errors occur only rarely, instead of never. However, there are two reasons for
examining the strong requirements described here. First, it is easier to show negative
results about these requirements than about looser requirements, while these results

still help to strengthen our understanding of the di�culty of ful�lling even looser

requirements. Secondly, we are still considering the idealized case where there is
no sensing error. One may have the intuition that any approach that allows for real
errors in this case is likely to produce a great many errors when we account for sensing
uncertainties.

Question 5.1 Does there exists some X � I, where X is in�nitesimal in I, and
some g and some f , such that: 8i 2 I; i =2 X , the following two conditions hold:

1. gf(i) is in�nitesimal in M

2. gf(i) \ p(i) is nearly all of p(i)?

This question asks whether we can make one entry in image space for each model
without having problems on a greater than in�nitesimal set of images. The function
g describes these entries by mapping each model to a point in image space, while f
maps the images to image space. gf(i) tells us which models are mapped to the same

place in image space as is the image i. There are two ways we can have problems with

an image, given as the two conditions above. First, if the image is matched to all
the right models, but this matching is unhelpful because it produces too many false

positive matches. In the absence of error an image is geometrically compatible with

an in�nitesimal subset of models; that is, the probability that an arbitrary model
could produce an arbitrary image is zero (see Clemens and Jacobs[32] for further

discussion of this). So condition one states that our indexing system should re
ect
this by matching an image to an in�nitesimal set of models. Second, a problem arises

if the image is not matched via image space to almost all of the models that could

have produced the image. This seems like a reasonable way of de�ning a map to
image space that introduces few errors. If such an f and g existed, we could use them
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for indexing, and for a randomly selected image of a randomly selected model, with

probability 1 our indexing system would match the image to the right model, and to

no other models in any �nite, randomly chosen data base of models.

We now de�ne question two:

Question 5.2 Does 9Y � M, where Y is in�nitesimal in M, and 9f; h such that

the following two conditions hold:

1. 8m 2 M;m =2 Y then h(m) is almost all of T , and 8t; t0 2 h(m) then f(t(m)) =
f(t0(m))

2. f is non-trivial in the following sense. There exist I
0
and I

00
, two non-in�nitesimal

subsets of I, such that, 8i0 2 I 0 and 8i00 2 I 00, f(i0) 6= f(i00)?

This question asks whether there is a \nearly invariant" function, f . So we say

that the function might not be invariant for an in�nitesimal subset of models. Then
the �rst condition above says that for each remaining model, the function must be
invariant for almost all images of the model. That is, when we view the model from
almost all possible viewpoints, the function doesn't vary over all the images that are

produced. The second condition requires that the function be non-trivial in the sense

that it cannot be constant over almost all images.

We prove that both of these questions must be answered negatively. To do this,
we �rst show that if question 5.1 is true, question 5.2 is true. Then we show that
question 5.2 is false.

We begin by making a couple of de�nitions based on the premises of question
5.1. First, we will say that f is either correct or incorrect for a particular element

of TM. We say f is correct for (t;m) 2 TM if f(t(m)) = g(m), and incorrect
otherwise. That is, given f and g, we can tell for a particular model, and a particular

transformation, whether f and g will map the model and its image to the same place
in image space, resulting in correct indexing. We also de�ne TM0 to be the subset

of TM for which f is incorrect. We de�ne TM0
i
to be the subset of TMi for which

f is incorrect.

Given the assumption that X, f , and g satisfy the conditions of question 5.1, we
show that we can satisfy the conditions of question 5.2. Let h be de�ned so that

h(m) is the set of transformations for which, together with m, f is correct. That is,

t 2 h(m) if and only if f(t(m)) = g(m). Also, let f in question 5.2 just be the same

f that worked in question 5.1. Finally, let Y be the set of all models for which f is

not constant over almost all transformations. That is, m 2 Y if and only if h(m) is
not almost all of T . Then we must show three things to establish question 5.2.

First, we must show that for any m =2 Y , h(m) is almost all of T . This follows

immediately from the de�nition of Y . Second, that f is non-trivial, in the sense given
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in question 5.2. If this were not true, f would be constant over almost all images,

and, for any of these images, gf(i) would have to include almost all models.

Third, we must show that Y is in�nitesimal. If Y were not in�nitesimal, this

would mean that for a non-in�nitesimal set of models, there are a non-in�nitesimal

set of transformations, such that f is incorrect on these model-transformation pairs.

This means that TM0, the set of incorrect model-transformation pairs would be
non-in�nitesimal as well. Since TM0 is the union of all TM0

i
, if TM0 is non-

in�nitesimal in TM, then there must be a non-in�nitesimal set of TM0

i
that are

all non-in�nitesimal in the corresponding TMi. Therefore, since X is in�nitesimal,

there must be some image, i =2 X such that TM0
i
is not in�nitesimal in TMi. That

is, there must be some image beyond the ones we expect wrong answers from, for

which we still get wrong answers on a non-in�nitesimal subset of the set of model-
transformation pairs that produce that image. This will mean that we will not match

the image to almost all of the models that could produce the image.

We now prove that question 5.2 is false.

We make two de�nitions. If two models have the same number of points, and are

identical except in one point, we will call them neighbors. A neighborhood is the set of
points that all di�er from each other in only one point. That is, if we �x all but one

point in a model, and let the last point appear anywhere, this de�nes a neighborhood.
It should be clear that a model with n points is in n di�erent neighborhoods.

Our strategy now is to extend the set of excluded models, Y , while keeping it

in�nitesimal. We will extend it to the set Y 0, then we will extend Y 0 to be Y 00. For
any model not in Y 00, we know that f is constant as the model is viewed from almost

any viewpoint. We will then show that f has the same constant value for any two
models not in Y 00, which means that f is constant over almost all images.

Let N stand for the set of all neighborhoods. Let N 0 stand for the set of all
neighborhoods in which a non-in�nitesimal portion of the models are in Y . That is,
if n0 2 N

0 this means that n0 \ Y is non-in�nitesimal in n0. We now want to show

that the set of models in all the neighborhoods in N
0 is in�nitesimal in M . Each

model in Y can only appear in n di�erent neighborhoods. Since each neighborhood

contains an in�nitesimal portion of the models, it is possible for some neighborhoods

to be dominated by models in Y . But overall, there can only be an in�nitesimal set
of neighborhoods, out of the set of all neighborhoods, for which a non-in�nitesimal
portion of the models come from Y . To make this more concrete, suppose we randomly

select a neighborhood (by randomly selecting a model with n � 1 points), and then

randomly select a model in that neighborhood (by randomly selecting the n'th point).
We know that the probability of this model belonging to Y is zero. That means that

the probability must be 1 that once we have selected the initial neighborhood, there

is 0 probability that we will select a model in that neighborhood that belongs to the
set Y . This is just another way of saying that N 0 is an in�nitesimal subset of N ,
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and so all the neighborhoods in N 0 can together contain only an in�nitesimal set of

models. We now de�ne Y 0 to be the set of models that can be found in N 0.

We would now like to show for any two models that are not in Y 0 and that are

in the same neighborhood, call the models m1 and m2 and the neighborhood n
�,

that f has the same value both for the images created when m1 is viewed with any

transformation in h(m1) or when m2 is viewed with the transformations of h(m2).

We can not do this by just claiming that the two models have an image in common.
The two models di�er in one point, so there are only an in�nitesimal set of viewpoints

from which m1 produces an image that m2 can also produce, and it could be that

none of these viewpoints belong to h(m1). However, since h(m1) contains almost
all viewpoints, we know that m1 will have an image in common with almost all the

models in n
�. So one of these models must have an image in common with m2,

unless it happens that the allowable viewpoints of almost all the models in n
� are

constructed so that none of them can produce an image in common with m2. This
can happen. But only for an in�nitesimal subset of n�. Therefore, we create the new
set, Y 00 which contains all models in Y 0, and all models that belong to a neighborhood
in which they do not share an image with almost all of their neighbors. Y 00 will still
be in�nitesimal. And now, if we assume that m1 and m2 do not belong to Y 00, then
we know that they must each share a legal image with almost all their neighbors. In

particular there must be a neighbor with which each shares an image.

Finally, if we take two models that do not belong to the same neighborhood, we
can create an intermediate sequence of models, in which all the models in the sequence
di�er by one point, and so they do share a neighborhood. This tells us that f will be

constant over all images of all models, m, as long as m =2 Y 00 and the image is formed
by a transformation in h(m). Since f is constant for almost all images of almost all
models, it must be constant for almost all images.

We have therefore shown that even if we allow an in�nitesimal number of errors

to be made, there can be no invariant functions and no indexing performed using 0-D
manifolds for each model. Moses and Ullman[84] have addressed this question from

a di�erent perspective, and, under a stronger set of assumptions they show that any

invariant function must produce a much larger set of mistakes than we have consid-
ered. Collectively, this work makes it seem unlikely that we can produce invariant

functions by excluding a small set of uninteresting situations from our domain.

5.3 Linear Transformations

We now focus on linear transformations. In chapter 2 we showed that when this

transformation is used, the images that a model produces correspond to a plane in

a�ne space, which is decomposed into lines in � and � space. This result will make
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it much simpler to determine under what circumstances an invariant function exists,

because we can tell whether two models produce a common image by seeing whether

their planes in a�ne space intersect. We begin by allowing false positive errors, but

no false negative errors. In that case there are no invariants for general models, but we

consider whether a less general library of models might produce an invariant function.

We show that if there is an invariant function, the set of allowable objects must be
very restricted. We then consider the case in which small number of false negative

errors can be made.

5.3.1 False Positive Errors

When we consider a linear transformation, and allow only false positive errors, then
there can be no invariants for general 3-D objects. Our proof of this for scaled
orthographic projection applies equally well to linear transformations. However, we

begin by introducing a simpler proof for this case. This proof also illustrates some
general principles that we can use to determine, for any speci�c library of models,

whether there is an invariant function.

Previous proofs that there are no invariants relied on connecting any two models

with a sequence of intermediate ones which all share an image. We can present a
proof that requires only two intermediate models. Suppose model m1 corresponds to
the two lines, a1 and b1 in �-space and �-space respectively. Similarly, suppose model
m2 corresponds to a2 and b2. Then there are an in�nite number of lines that intersect

both a1 and a2. Choose one of these, a
0
1. Choose b

0
1 as any line that is parallel to a01,

and intersects b1. then there is a model, m0
1 that corresponds to the lines (a

0
1, b

0
1). m

0
1

has an image in common with m1, since a1 intersects a
0
1, and b1 intersects b

0
1. We may

then construct m0
2 and its lines, (a02; b

0
2), so that b02 intersects b

0
1 and b2, and so that

a
0
2 passes through the point where a01 and a2 intersect. So m

0
2 will have an image in

common with m0
1 and m2. This is illustrated in Figure 5.2. Therefore, any invariant

function must have the same value for any image of any of the four models.

This proof shows us in general how to tell whether a particular library of objects

has a possible invariant function. As Moses and Ullman[84] point out, there will be
invariant functions for a particular set of 3-D models if the models can be divided
into non-trivial equivalence classes, where two models are equivalent if they have

an image in common, or are both equivalent to another model. From our previous

work, it becomes easy to form these equivalence classes for a particular set of models,

because we can tell that two models produce a common image if their corresponding

lines in �-space and in �-space intersect, that is, if their 2-D planes in a�ne space
intersect. Therefore, there will be a non-trivial invariant function if and only if the

planes that represent our models in a�ne space do not form a completely connected

set of images.
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Figure 5.2: Two models, m1 and m2 correspond to the pairs of lines (a1; b1) and
(a2; b2) respectively. We construct the models m0

1 and m
0
2, which correspond to the

lines (a01; b
0
1) and (a02; b

0
2) respectively. Whenever the � and � lines of a two models

both intersect the models produce a common image. So we can see that the two
constructed models link the two original models with a series of common images.
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Figure 5.3: This �gure illustrates the fact that when models consist of �ve points,
the images they produce are linked into a continuous set unless all the height ratios

are the same, and hence all the lines to which they correspond are parallel.
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An interesting special case in which to see this is that of models containing �ve

points. This is the smallest group of points that can produce invariants, because

in general any four model points can appear as any four image points under a lin-

ear transformation. Most systems based on invariants have used the smallest possible

model groups, in order to limit the combinatoric or grouping problem involved in con-

sidering all possible image groups (this is true of Lamdan, Schwartz and Wolfson[70],
Forsyth et al.[44], and Van Gool, Kenpenaers and Oosterlinck [106], for example). A

set of model groups of �ve points will each produce a pair of lines in 2-D �-space and

�-space (see �gure 5.3). Furthermore, recall that these two lines will have the same

slope, which means that two di�erent models will produce lines that are either paral-

lel in both spaces, or that intersect in both spaces. Therefore, an invariant function
for groups of �ve points is possible only when all lines produced by all models are
parallel. For example, if one model produces lines not parallel to the others, it will

have an image in common with each of them, implying that the invariant function
must be constant over all images produced by all models. The lines produced by all

models will be parallel only when r5, (see equation 2.1), is the same for all models,
that is, when the ratio of the height above the model plane of the fourth point to the
height of the �fth point is always the same.

When models consist of �ve points, only an in�nitesimal subset of the set of all
possible models will give rise to an invariant function. This is not true for models

with more points. Here we give an example of a function that will be invariant for
a greater than in�nitesimal set of possible models in the case where models have

six points. This function will be de�ned by an hourglass shaped region of � space.

That is, the function will give one value for any image with � coordinates in this
region, and a di�erent value for any other image. (Since we are allowing false positive
errors, we may consider a function that ignores the � coordinates of the images.
Such a function cannot distinguish between two models that produce the same �
coordinates but di�erent � coordinates). By an hourglass shaped region, we mean,

for example, the section of �-space formed by all lines that intercept the �4 = 0

plane over some disc, and which are within a few degrees of being orthogonal to
this plane. Figure 5.4 illustrates this. If we consider the set of possible models that

intersect a bounded portion of �-space, then the set of models which correspond
to lines completely inside this hourglass region is non-in�nitesimal. There is also a

non-in�nitesimal set of models that do not intersect this region. So we can pick two

non-in�nitesimal sets of models for which this hourglass function is an invariant.

At this point we brie
y return to the question of complete invariant functions, that
is, functions without false positives, considering now restricted libraries of objects.

We consult our representation of a model's images as planes in a�ne space rather

than as lines in � space and � space. There is a complete invariant function for a

speci�c set of models if and only if no two planes that correspond to two models
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Figure 5.4: An hourglass shaped region of � space.
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intersect without completely coinciding. If this condition is met, we may construct

an invariant function that assigns a common value to all the images that fall on a

model's plane of images, and assigns a di�erent value to any two images that lie on

the planes of di�erent models. Then, any model that can produce one image with

a particular value of the invariant function will be able to produce exactly the set

of images that have that value of the invariant function. If, on the other hand, two
planes intersect and do not coincide, then all images that either plane contains must

have the same value for any invariant function, but neither object can produce all

these images, so false positives will occur.

We can now see that a speci�c set of models can have an invariant function with
no false positives only if it is an in�nitesimal subset of the set of all possible models,

because any set of non-intersecting planes is an in�nitesimal subset of the set of all
planes that correspond to models. For example, if we have a restricted set of models

corresponding to a set of non-intersecting planes in a�ne space, this means that any
point in a�ne space can belong to only one of these planes, although it belongs to
uncountably many planes that correspond to some model.

5.3.2 False Negative Errors: Non-Accidental Properties

We now turn to a topic closely related to invariants: non-accidental properties (NAPs).

When used for recognition this is a property of an image that is true of all images of
some objects, and is false of all or almost all images of the remaining objects. Thus
an NAP can be thought of as an invariant, in which some false negative conclusions

are drawn, because images are not matched to models that rarely produce them.
With NAPs, the connection between invariants and 3-D scene reconstruction is clear.
NAPs in an image are used to infer 3-D properties of the scene that produced the
image.

The theoretical results that we have built up will allow us to draw simple and

general conclusions about the capabilities of NAPs, although the reader must always
keep in mind that our results will only directly apply to the case of a linear transfor-

mation applied to models consisting of point features. After reviewing some of the
past work on NAPs, we will show how to characterize the set of all possible NAPs as

particular subsets of image space. This will make clear that there are an in�nite set

of possible NAPs, and that any one NAP is only valuable if we make speci�c assump-
tions about the particular class of object models that we are interested in detecting.

We then discuss limitations that exist in attempting to make use of an ensemble of
di�erent NAPs.

The importance of some now commonly used NAPs was �rst discussed by some of

the gestalt psychologists, who noted that properties such as proximity or symmetry

tend to make a group of image features salient. We perceive a set of symmetric
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points in an image as a single whole, for example. Kohler[67] and Wertheimer[113]

summarize some of this work. Lowe[73] also provides a useful discussion of gestalt

and other early work on perceptual organization.

In computer vision, much work on perceptual organization has focused on NAPs.

In general, an NAP is taken to be some property of the image that seems very

unlikely to occur by accident, and so reveals the presence of some underlying non-

random process. This idea is discussed and applied to a variety of vision problems by
Witkin and Tenenbaum[115]. It is suggested that NAPs be used to infer 3-D structure

from a 2-D image by Binford[11] and Kanade[64]. Kanade states the NAP criteria

as: \Regularities in the picture are not by accident, but are some projection of real
regularities". He suggests, for example, that parallel lines in the image come from

parallel lines in the scene because, when scaled orthographic projection is assumed,
parallel scene lines always project to parallel image lines, while non-parallel scene lines

can project to parallel image lines from only an in�nitesimal set of possible views.

Lowe[73] takes a more explicitly probabilistic approach to applying NAPs to ob-
ject recognition. He also selects as NAPs properties of a 2-D image that some 3-D
scenes will produce from a large range of viewpoints. We have mentioned that parallel

scene lines always produce parallel image lines, with scaled orthographic projection.
Similarly, if 3-D lines are connected, they will always be connected in the image.
Since we can not expect noisy images to produce perfect examples of these proper-

ties, however, we must also make use of approximate instances of parallelism or group
together lines that are nearby rather than connected. Lowe computes the likelihood

of such approximate features occurring by chance, assuming some random distribu-

tions of image features. Then a property is useful when its presence in the scene
guarantees its presence in the image; and is more useful the less likely it is to arise by
chance. Lowe is using NAPs to infer scene properties from image properties, and the
probabilistic machinery allows his system to determine the relative strength of each
possible inference, which in turn orders his recognition system's search for objects.

As described in more detail in chapter 1, Biederman[9] takes Lowe's work as a

starting point, and uses NAPs as the basis for a recognition system that attempts to

cope with large libraries of objects. Burns and Riseman[23] also incorporate NAPs

into a recognition system. NAPs have also been explored by Denasi, Quaglia, and
Renaudi[40], and they have been used in a stereo system by Mohan and Nevatia[81].

This past work on NAPs has left a number of open questions. First, although

past work has pointed out a number of examples of NAPs, they do not provide us

with an exhaustive list of possible NAPs. We can not tell, for example, whether there

are a small number of NAPs, or an in�nite set of possible NAPs. We also lack a

basic geometric insight into NAPs. What is it about certain geometric con�gurations

that make them an NAP? We will provide a precise answer to this question. Second,
it is not completely clear whether the value of an NAP depends on the particular
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Figure 5.5: If an image corresponds to the point (0; 0) in �-space, that means that
the last two points in the image are collinear with the �rst and the third points. This

is shown above, where the �rst three points are shown as dots, and the second two
points, shown as open circles, must lie somewhere on the dashed line.

distribution of object models that we assume. Witkin and Tenenbaum seem to suggest
that NAPs are useful only if we assume that processes in the world tend to produce
certain types of scenes. On the other hand, Lowe seems to suggest that the usefulness
of parallelism can be justi�ed without assuming that models are particularly likely to
contain parallel lines. The view that NAPs are inherently important cues is bolstered

by the fact that the NAPs that have been used in vision are particularly salient,
perceptually. Parallelism, collinearity, and symmetry, for example, can jump out of
an image at the viewer. However, we show that this perceptual salience cannot come

from the non-accidentalness of these properties. An in�nite set of NAPs exist, and
they are mostly not perceptually salient. We then show that NAPs are only useful

if we make special assumptions about the models that produce images. Finally, as

only a small set of NAPs have been used for recognition, one wonders whether one

could achieve greater coverage of a wider set of images and models by using a large
collection of NAPs. We will show that this strategy has signi�cant limitations.

We begin by showing how NAPs may be considered within our geometric frame-
work. A feature of any sort may be thought of as a subset of image space. Image

space is just our representation of images, and the set of all images that contain a
particular feature will map to some subset of image space. To illustrate this fact, we

will consider the feature collinearity. Suppose that an image has �ve points, and the

fourth and �fth points are collinear with the �rst and third points, as shown in �gure

5.5. Such an image will have (�4; �5) coordinates (0; 0), because the vector from the
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�rst image point to the fourth and �fth image points is entirely in the direction of

the vector from the �rst to the third image point. The image might have any values

for (�4; �5). Therefore, we can describe this kind of collinearity by pointing out that

all images with this collinearity will map to a single point at the origin of � space.

As another example, if the fourth image point is collinear with the �rst and second

points, then �4 = 0, while the other a�ne coordinates may have any values. Therefore
this collinearity is described by a line in � space. More generally, any image feature

is described by some region in an image space. If we consider features that are in-

variant under a�ne transformations, then these features may be described by regions

in a�ne space. We have given examples of features that may be even more simply

described by regions in � and � space. It seems reasonable to focus on a�ne-invariant
features. This amounts to assuming that the features we wish to use in describing a
photograph will be the same when we view the photograph from di�erent directions.

A non-accidental property may be de�ned as a feature that some objects always
produce, and that other objects produce from only an in�nitesimal portion of possible
viewpoints. The collinearity feature that we described with the point (0; 0) in � space

is one example of such a feature. Using the type of reasoning that Kanade or Lowe
did, we can show this by pointing out that an image with four collinear points can

occur in two ways. A model with four points that are collinear in 3-D would always
produce an image with this collinearity. Or, a model with four coplanar points could
produce this collinearity when it is viewed from a point within this plane, which is

only an in�nitesimal set of viewpoints. From our perspective, we can see the non-
accidentalness of collinearity by noting that an image described by coordinates (0; 0)
in � space could be produced in two ways. A planar model with these � coordinates
would always produce an image with these coordinates. Or, a non-planar model

that corresponded to a line in � space that went through the origin could produce
such an image. But in this latter case, the image with collinearity would be only an

in�nitesimal point on the line that describes all the � coordinates of all the images
that the model can produce. These two analyses are equivalent. Note that if four

model points are collinear, then the �ve model points will be coplanar, and have �

coordinates (0; 0). And there is a simple mapping from the set of all viewpoints of a
model to the set of all images that the model produces.

However, our new view of NAPs as portions of a�ne space makes clear some
questions that were previously obscure. For example, what is the set of NAPs? Any

subset of a�ne space is an NAP if a plane that corresponds to any model is either

entirely contained in this subset of a�ne space, or intersects it in only an in�nitesimal
part. For example, any point in � space corresponds to an NAP. Or, if our models
have �ve points, then any 1-D curve in the 2-D � space will also be an NAP, while

any 2-D subset of � space will not be an NAP.

Let's consider an example of a new NAP that we can discover in this way. Suppose
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Figure 5.6: If the image corresponds to (2; 3) in �-space, the points must fall on the
two lines shown.

models have �ve points. The point (2; 3) in � space corresponds to a new NAP. If
an image has this NAP, it means that the fourth image point falls somewhere on a
line parallel to the line connecting the �rst and third points. The distance to this

line is twice the distance to the second image point. The �fth point is somewhere
on another parallel line, that is three times as far away as the second image point.
Figure 5.6 illustrates this.

This new property is as much an NAP as collinearity: both can be produced
either by a planar model with the right � coordinates, which always produces an

image with this property, or by a non-planar model that passes through a particular
point in � space, and only rarely produces an image with this property. However,
our new NAP appears to have no special perceptual saliency. In fact there is an NAP

that corresponds to every possible image, the NAP formed by that image's a�ne

coordinates. Not all these NAPs could be perceptually salient. This addresses the

second question we raised above. The salience of properties such as collinearity or
symmetry can not be explained by their non-accidentalness as we have de�ned it. It

is clear that an NAP that is equivalent to a point in � or � space is limited. Using
such an NAP amounts to inferring that the scene is planar, and such an NAP can
only apply to an in�nitesimal set of images, and hence to only an in�nitesimal set

of models. Such an NAP may be useful, but only if we make assumptions about the

particular domain in which we are trying to recognize objects. Such an NAP is useful
if we know that some such image property really does arise a lot, for example, if we

know that real objects often do have parallel lines. That is, an NAP is useful when we

assume a special distribution on possible models in which sets of models that produce
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an in�nitesimal set of images actually occur with �nite probability.

NAPs need not be restricted to a single point in � or � space, however. If we

de�ned an NAP with a line in � space, this NAP would always be produced not only

by a set of planar models, but also by the 3-D models that corresponded to that

line. We might also hope to de�ne a collection of NAPs that might together be more

useful than they would be individually. So the question that still remains is whether
a more complex NAP, or an ensemble of NAPs might have some useful properties.

The limitations of either of these approaches is best understood by considering an

NAP as a commitment to infer 3-D structure from a 2-D image.

An image, in our domain, corresponds to a single point in a�ne space. Without
NAPs we can readily characterize the models that could produce this image: it could

be a planar model with the right a�ne coordinates or it could be a 3-D model that

corresponds to a plane that goes through the right place in a�ne space. When we
use an NAP, we are choosing to accept some of these models as plausible matches
to the image, while rejecting other models. If we have no prior knowledge about
the likelihood of di�erent models being correct, then there is only one meaningful
distinction that we may make between the di�erent models that could produce this

image. That is the distinction between the planar model that always produces the

same a�ne coordinates, and the 3-D model that rarely does 1. This tells us that there
is no criteria we can use to infer that the image came from one 3-D object rather than
another. And it tells us that when we generalize the use of NAPs, we have a strategy
that says: in the absence of other clues, assume that the model is planar, and then

use an a�ne-invariant indexing strategy appropriate for planar models. This can be
a useful strategy for locating planar parts of 3-D objects. Lowe used it successfully.
However, it will never allow us to use information that comes from non-planar parts

of an object to do indexing.

Let us return to the three questions we asked earlier in this section. First, we have
a simple criteria that describes the in�nite set of possible NAPs. Second, we can see

that if we have no prior knowledge about which model properties are likely to occur,

the only inference that we can reasonably make from an image is that a planar model
is more likely than a non-planar model to have produced it. This is a generalization

of such NAPs as parallelism or symmetry. But in generalizing these NAPs, we see
how weak they are to begin with. This does not mean that past work on perceptual
organization is not useful. Certain image properties are perceptually salient, and past

work has pointed out the value to recognition of understanding this salience and using
it for object recognition or for other visual tasks. However, we can not understand this

salience from its non-accidentalness alone. We must understand what 3-D structures

1This is a bit of a simpli�cation. We could also show that the closer a model is to planar, the

more likely it is to produce a�ne coordinates like the ones in the image. This nuance does not a�ect

the basic structure of our argument, however.
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tend to occur in the world in order to explain why certain inferences about 3-D

structure from a 2-D image are more valid than others. If we do not want to be

stuck just inferring planarity we must look beyond the geometry of our features for

regularities in the world that make certain features especially useful. Finally, with

regard to our third question, we have shown that as we generalize NAPs it becomes

clear that we do not have a viable strategy for recognizing 3-D objects, but only for
handling planar portions of these objects.

5.4 Conclusion

In order to draw together the work in this chapter and in chapter 2 we must return

to the themes that were laid out in the introduction to this thesis. We stressed the
value of grouping and indexing, and suggested that there were two approaches that
we can take to indexing. We can either try to characterize all the 2-D images that

a 3-D model can produce, or we can try to infer 3-D structure from a single 2-D
image. By understanding the best ways of characterizing a model's images, we have
provided ourselves with the tools needed to show the limitations of trying to infer

3-D structure from a single 2-D image.

In chapter 2 we derived an optimal, error-free representation of a model's images
as two lines in two high-dimensional spaces. In this chapter we have strengthened

that result, by showing that when we consider representations that introduce small

amounts of error we do not gain much. Small numbers of false positive and false
negative errors will not give us invariant representations. And non-accidental prop-

erties, which allow small numbers of false negative errors, although they may be used
e�ectively to index planar models, do not provide us with coverage over a wide range
of 3-D model libraries. This shows us that if we want to design an indexing method
capable of handling any collection of object models without introducing errors, then

the best representation of a model's images to use is the one developed in chapter 2.

At the same time, this representation has provided us with a simple geometric

interpretation of indexing that shows the limitations of attempts to infer 3-D structure
from a 2-D image. Such inferences have been attempted with invariant descriptions

in special domains, or with NAPs, which are properties that are invariant as long as

one ignores models which can produce them from only a small set of views. However,
in the absence of special assumptions about our model library, there is a symmetry

to this problem that precludes such inferences. An image is a point in some space, a
model may correspond to any line, so there is no reason to prefer any one line over

another. The only sensible inference about 3-D structure from a 2-D image in our

domain is the inference that the model must correspond to a point or a plane in a�ne
space that includes the point that corresponds to the image.
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We must keep in mind two important limitations of this work, however. Our

goal has been to thoroughly explore a simple indexing problem. Therefore, we have

primarily assumed that models consist merely of points, and that we have no domain-

dependent knowledge. Our results might be taken to mean that no inference about

3-D structure is possible, and that no method of perceptual organization is to be

preferred over another. Neither of these conclusions seem true. We have meant to
show the limitations to using simple domain-independent geometric knowledge when

performing perceptual organization or structural inference.

It is clear that we can infer more about 3-D structure if we assume that models

consist of surfaces, or if we have access to shading or texture clues. More importantly,

as in much of Arti�cial Intelligence, the limitations of domain-independent knowledge
provide an impetus for understanding the structure of our domain. Surely symmetry
is a valuable clue in perceptual organization because the world contains so much

symmetry. We believe that in general our work supports the view that to understand
images we must understand the regularities of the world that produces them, and

not just the geometry and physics of the image formation process. Researchers have
usually avoided this task, because it is di�cult to formalize or to prove anything
about the regularities that happen to exist in our world. It seems much easier to
understand the regularities that must exist due to the laws of physics and the truths

of geometry. Our goal in this chapter has been to show that while it is important to

reason about images, there is a limit to what we can conclude about images without
also incorporating a knowledge of the world.
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Chapter 6

Convex Grouping

In the introduction we presented an overall strategy for recognition that combined

grouping and indexing. But until now, we have focused only on indexing. We have
seen that to be e�ective our indexing system requires groups of six, seven or more

point features. It is not practical to consider all possible groups of image features of
that size. So to be useful, our indexing system requires a grouping system that will

select and order collections of point features that are particularly likely to come from
a single object.

It has long been recognized that grouping is a di�cult problem, which perhaps
explains its relative neglect. Marr[77] said:

The �gure-ground \problem" may not be a single problem, being instead

a mixture of several subproblems which combine to achieve �gural sep-

aration, just as the di�erent molecular interactions combine to cause a
protein to fold. There is in fact no reason why a solution to the �gure-
ground problem should be derivable from a single underlying theory.

Marr recommended focusing on problems that have a \clean underlying theory",

instead. These simpler problems included shape-from-shading, edge detection, and

object representation. More recently, Huang[54] has stated:

Everyone in computer vision knows that segmentation is of the utmost

importance. We do not see many results published not because we do not
work on it but because it is such a di�cult problem that it is hard to get

any good results worthy of publication.

However, in addition to its importance for indexing and for other visual processes,

grouping deserves attention because even partial progress can be quite valuable. A

grouping system need not fully decompose the scene into �gure and background to
be useful. Far from it. Without grouping, we must perform an exhaustive search. If
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grouping collects together features that are more likely to come from a single object

than a random collection of features, than it will improve our search by focusing it.

Many recognition systems now work on simple images by using very simple grouping

techniques. Any extension in our understanding of grouping will extend the range of

images in which a grouping system can make recognition feasible.

The grouping work described in this chapter serves two purposes. First, group-

ing and indexing are interdependent; we cannot demonstrate indexing as part of a
fully functioning recognition system without automatically locating groups of point

features in an image. Second, we describe some concrete progress on the grouping

problem. We show how to e�ciently locate salient convex groups in an image, and
we show that these groups may be used to recognize objects in realistic scenes.

There are many di�erent types of clues available for �nding portions of an image

likely to come from a single object, such as the distance between features, the relative

orientation of lines, and the color, texture and shading of regions in an image. Which
of these clues is most useful varies considerably from image to image, so ideally
they should be integrated together, to build a grouping system that can make use of
whichever clues are appropriate. In this chapter, however, we explore just one clue.

We show how we can e�ciently form salient collections of convex lines in an image.
While in the worst case this is an inherently exponential problem, we show both
theoretically and experimentally that we can e�ciently �nd subgroups in practice.

And we show that these groups are su�ciently powerful to support recognition in
some realistic scenes.

We have given less attention to some of the steps that are intermediate between
�nding these convex groups and indexing with them. We present a simple method

for robustly �nding point features, starting with convex groups of line segments.
We also present a simple method for selecting the most salient convex groups for
use in indexing. We need to combine pairs of these groups in order to have enough

information for indexing, but we have not developed a method of doing this, and so we
simply perform indexing using all pairs of salient convex groups. Our research strategy

has been to thoroughly explore one important aspect of the grouping problem, �nding

convex groups, and then to hook this together with our indexing system in a fairly

simple way so that we may explore the interaction between the two processes.

After our exploration of indexing, we are in a much better position to explain

the interrelationship of grouping and indexing than we could in chapter 1, and so
we begin by showing why grouping is necessary for any recognition system based on

indexing. We then discuss the value of convex groups for recognition. We present our

method of �nding convex groups, with a theoretical and experimental analysis of its
performance. Finally, we �ll in the remaining pieces needed to connect this grouping

system to our indexing system, and demonstrate the performance of the complete

grouping program.
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6.1 Why Indexing needs Grouping1

We can make the relationship between grouping and indexing clear by returning to

the combinatorics of recognition with point features, reviewing and extending the

analysis given in chapter 1. In that chapter we showed how a simple recognition

strategy, alignment, developed problems of computational complexity in challenging
domains. We presented a formal analysis for recognition using point features. In

that case, for 3-D recognition from 2-D images, alignment involves determining the

object's pose using matches between triples of image features and triples of model
features. We will now show that in this domain, grouping and indexing together can

dramatically reduce our search, while either one individually is of only limited value.

Suppose that we have N image features, M model features, and n points in a

group. Let s(n) again stand for this average speedup, that is, the total number of
model groups that could possibly match an image group of size n, divided by the
average number of model groups matched to an image group through indexing. s(n)

is the reduction in the amount of search required when we compare an exhaustive
search to one guided by indexing. We want to determine the number of hypothetical
matches between image and model features that we must consider when we take
various approaches to recognition.

Recall that with alignment we consider all possible matches between three image

points and three model points. Each such match allows us to determine two possible
poses of the model in the scene. The total number of such matches is approximately
(N3

M
3)

3!
, because there are

�
N

3

�
image groups,

�
M

3

�
model groups, and 3! ways of

matching three image points to three model points.

The main implication of both the experimentally and theoretically determined
speedup factors that we found for indexing in chapter 4 is that a recognition system
based on indexing alone is not a practical alternative to alignment. First, indexing

using no grouping and large values of n is clearly not feasible, because
�
N

n

�
image

groups will have to be explored, no matter what speedup is produced by indexing.

Second, for smaller values of n, it is not possible to attain signi�cant speedup, in

comparison to the combinatoric explosion of matching all groups. If we try all combi-
nations of image and model features, the overall number of matches will be � M

n
N
n

n!s(n)
,

for n�M;N , since there are
�
M

n

��
N

n

�
n! possible matches between image and model

groups containing n points, and indexing will weed out 1
s(n)

of these matches. There-

fore, to determine the e�ect of incrementing n, we should compare MN

n
, the increase

in the number of possible matches, to s(n)

s(n�1)
, the increase in speedup. As we will see,

1This section is a modi�ed version of material appearing in Clemens and Jacobs[32], and should

be considered joint work between the author and David Clemens.
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this comparison is unfavorable, and so it is more practical to use the minimum size

of n = 3, which does not make use of indexing.

For example, with an image containing 100 points and a model with 50 points,
there would be 1250 times as many matches of four points as there would be matches

of three points, and 1000 times as many matches of �ve points as four points. First,

from theoretical arguments, we found in chapter 4 that s(n) < j
n�3, where j is the

size of a region describing the error in sensing a point divided by the size of the

image. This implies that s(n)

s(n�1)
< j. For � = 5, and a 500 by 500 pixel image, j

is about 3200. Thus, even using this loose upper bound, increasing n from three

to four, or from four to �ve will only decrease the number of matches found by

indexing by approximately a factor of three. Furthermore, we did experiments to
bound the possibilities of indexing by explicitly comparing image and model groups

with a least squares method, to �nd matches that any correct indexing system must
produce. From these experiments, we found that for scaled orthographic projection,
s(4)

s(3)
ranges from 46 to 270, and s(5)

s(4)
ranges between roughly 46 and 54. With a linear

transformation, we found s(5)

s(4)
to be 1,100. These experiments do not contain enough

data to draw �rm conclusions about the exact speedups possible with indexing, and

we might produce better results by assuming smaller amounts of image error. But
we can see that the speedups provided by indexing will provide little if any overall
speedup in a recognition system that does not use grouping. Essentially, as the size
of our groups grow, the number of geometrically consistent matches between groups
of image and model points will either rise, or fall by only a small amount.

In this analysis, we are comparing alignment and an indexing approach that gen-

erates hypotheses that we must then evaluate. We should note two important excep-
tions to this analysis. First, one might use more complex features than simple points,

such as vertices, curves, or collections of points. Indexing with such complex features
should produce greater speedups. In our view, such complex features are the output

of a grouping process, and in arguing for the value of grouping, we are equivalently

arguing for the value of complex, rather than simple features. Second, we note that
in the geometric hashing approach of Lamdan, Schwartz and Wolfson[70], indexing

with quadruples of points can produce a more e�cient system than alignment, be-

cause essentially the veri�cation process is performed at the same time as indexing.
The e�ciency of the system comes because it does not need to separately verify each
possible hypothesis, as alignment does.

Our experiments do, however, also indicate that indexing can result in greatly
reduced recognition time when combined with some grouping. Grouping alleviates

the need to form all combinations of features. Instead, groups of features that are

likely to come from a single object are found. Let P (n) be the number of image groups

produced by a grouping method, and Q(n) be the number of model groups. In order
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for grouping to be useful, P (n)Q(n), the number of all matches between groups, must

be much less than Nn
M

n, the number of possible combinations of features.

With grouping alone, and no indexing, recognition must consider P (n)Q(n)n!

matches if grouping provides us with no information about the ordering of the points

in a group. This quantity increases as n increases, partly because we expect that P (n)

and Q(n) will increase with n. So it is still more desirable to generate hypothetical

matches using small groups, as we see in Lowe's system[73]. However, when we

combine grouping with indexing, the number of matches is
P (n)Q(n)n!

s(n)
. Since s(n)

increases exponentially in n, this quantity will decrease as n increases, as long as
n! � s(n). Thus, with indexing and grouping used together, larger groups may be

used to signi�cantly speed up recognition.

Furthermore, these �gures assume that even with grouping, we must consider

matching all permutations of an image group to a model group, because they assume
that a group is just an unstructured collection of points. As we will see, grouping can

also provide information on the order of points in a group that we can use to rule
out most permutations. As a simple example, if we group lines into parallelograms,
as Lowe did, and use the corners as point features, we know the order of the points
around the parallelogram. There are only four di�erent ways to match the points of

two parallelograms, compared to twenty-four di�erent ways of matching two general

collections of four points each. This still does not mean that larger groups will be
useful to a system that uses grouping without indexing, but it means that grouping
and indexing combined can achieve even better performance.

6.2 Convex Grouping

Much work on grouping has focused on Non-Accidental Properties, and we have dis-

cussed that work in chapter 5. We mention here that Lowe �rst stressed the impor-
tance of using grouping when recognizing objects. His system estimated the likelihood

that image lines approximating a parallelogram came from a model parallelogram us-

ing the proximity of the endpoints of the lines and the degree of parallelism in the

image group. There has also been a good deal of work on image segmentation that
focuses on dividing up an image into regions based on clues such as color and tex-
ture. Most segmentation work focuses on using regional intensity patterns to divide

on image into its component parts. Recently Clemens[30] has considered methods of

using regional intensity to form groups in the image for use in recognition, and Syeda-
Mahmood[99] has considered using color-based segmentation to guide a recognition
system.

Jacobs[60, 59] proposes using the relative orientation of edges to guide a grouping

system that is combined with indexing. In this system, the proximity and relative ori-
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entation of two convex collections of line segments are used to estimate the likelihood

that these two groups came from a single object. If one assumes that objects are made

of convex parts, then one can show that the mutual convexity of collections of lines is

a strong clue that they came from a single object, and one can estimate the strength

of this clue from the overall shape of the lines. These grouping clues guide a search

for an object in which the groups are tried in the order provided by the likelihood
that they come from a single object. This system explicitly combined grouping and

indexing, and it demonstrated that by building larger and larger groups, grouping

combined with indexing could produce signi�cant reductions in search. This system

provides some of the justi�cation for our current method of �nding salient convex

groups.

Convexity has also played an important role in a number of recognition systems

that rely implicitly on some grouping process. Acronym[21] modeled objects using
generalized cylinders that were convex. These convex parts projected to convex col-
lections of edges in the image. A bottom-up grouping system then located ribbons
and ellipses, the convex groups generated by the types of generalized cylinders used.

Kalvin et al.[63] describes a two-dimensional recognition system that indexed into a
library of objects. It began by �nding unoccluded convex curves in the image, which

it used for indexing. A variety of authors have proposed more general recognition sys-
tems that rely on �nding the convex parts of objects. Ho�man and Richards[52], for
example, suggest dividing objects into parts at concave discontinuities. Pentland[88]

also suggests recognizing objects by recovering their underlying part structure using
superquadrics. And Biederman[9] suggests performing recognition using the invari-
ant qualities of an object's parts and their relations. While these parts need not be
convex, in all examples the edges of a part are either convex, or are formed by joining

two convex curves (as in the curved tail of a cat or the outline of part of a doughnut).
In fact, in implementing a version of Biederman's work, Bergevin and Levine[8] rely

on convexity to �nd the parts of an object.

Convexity may be useful for other types of matching problems, such as motion

analysis or stereo. Mohan and Nevatia[81], for example, perform stereo matching
between groups of line segments that form partial rectangles in each image.

In sum, the use of convexity for bottom-up aggregation is quite pervasive in recog-
nition systems. It clearly can contribute to the perceptual saliency of a group of lines.

Past work has shown that convexity can be a valuable grouping clue to combine with

our indexing system. It also can provide information about the order of points within

a group. At the same time, a thorough treatment of convexity can provide a middle-

level vision module that would be useful to many other systems. For although many
systems rely on �nding convex edges in images, they �nd these convex groups through

ad-hoc methods that either rely on the particular kind of convex shape being sought,

or that rely on having data with clear, connected or nearly connected edges and few
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distracting edges. In this chapter we present an algorithm that �nds all collections of

convex line segments in an image such that the length of the line segments accounts

for some minimum proportion of the length of their convex hull. This promotes ro-

bustness because all convex curves are found provided that a su�cient percentage of

the curve is visible in the image. The algorithm is not stumped when there are gaps

in a curve due to occlusion, due to a curve blending into its background, or due to
failures in edge detection. And spurious line segments will not distract the algorithm

from �nding any convex groups that are present. We also show that this algorithm

is e�cient, �nding the most salient convex groups in approximately 4n2 log(2n) time

on real images.

While many vision systems that use convex groups have developed simple ad-hoc

methods for �nding them, there has also been some work that speci�cally addresses

this grouping problem. Our own previous work on grouping, which focused on com-
bining pairs of convex connected, or nearly connected, collections of edges, used a
simple method to produce the convex groups that formed the initial input to our
primary grouping system. Lines were connected if they were mutually convex, and

if their end points were closer to each other than to any other lines. Because this
initial grouping step was based on a purely local decision, it was sensitive to noise,

and could combine lines that seemed good locally, but poor when viewed from a more
global perspective.

Huttenlocher and Wayner[58] also present a local method for �nding convex

groups. They begin with each side of each line segment as a convex group, and
then extend a group if its nearest neighbor will preserve its convexity. By only mak-

ing the best local extension to each group, they guarantee that the output will be

linear in the size of the input. And by using a Delauney triangulation of the line
segments, they guarantee that nearest neighbors are found e�ciently, and that total
run time is O(n log(n)). They also can e�ciently form groups in which the best exten-
sion is judged di�erently, for example, extending groups by adding a nearby line that

minimizes the change in angle of the group. However, convex groups are still formed

using purely local judgements that do not optimize any global grouping criteria.

In both systems, a line may be the best local addition to a neighboring line, but
may lead nowhere, causing each system to miss a better overall group. Figure 6.1

illustrates the sensitivity of these local methods of �nding convexity. In the top left

picture, the side of the box that says \ICE" is a closed rectangle. The local and
global methods will all identify this rectangle as a convex group. On the left, we

see two pictures in which the local methods for �nding convexity will fail to �nd
this rectangle. The top picture in the leftmost set shows that local methods may be

sensitive to small gaps between edges if there are nearby distracting edges, while the

bottom picture illustrates the fact that neither local method is resistant to occlusion.
On the right, and on the bottom, we see some of the groups that a local method
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Figure 6.1: In the top left, we show a simple line drawing. Local methods can

�nd the rectangle containing the word \ICE", as shown on the top right. In the two
pictures on the left, these methods will fail. The three pictures on the right and on

the bottom shows some of the groups that a local method might �nd in place of the

central rectangle.
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might �nd in place of the rectangle surrounding the word \ICE". In the case of our

previous work on grouping, the failure that would occur in these images in the initial

local grouping phase would have led to failure in the subsequent global grouping step.

However, the convex grouping system presented in this chapter will succeed on all the

images shown, because the gaps and occlusions in the �gures will only slightly reduce

the salience fraction of the foremost rectangle; it will still stand out as quite salient.

Shashua and Ullman[96] present a di�erent kind of grouping system that is in some
sense local and global. Their system �nds curves that globally minimize a weighted

sum of the total curvature of the curve and the total length of gaps in the curve. Their

system optimizes a global criteria e�ciently and �nds perceptually salient curves. But
it is only able to do this because their global criteria is reducible to a local one. The

e�ect that adding a curve segment has on a group only depends on the previous curve
segment, and is independent of the overall structure of the curve.

Along these lines, a number of other systems attempt to extract meaningful curve
segments from an image. Mahoney[74] describes an algorithm for extracting smooth
curves. The focus of this work is on developing an e�cient parallel algorithm, and
on deciding between competing possibilities when two curves overlap. Cox, Rehg,

and Hingorani[36] describe a system that will partition the edges of an image into
collections of curves. These curves will tend to be smooth, and may contain gaps. A
Bayesian approach is used to �nd the curves that are likeliest to be the noisy images

of smooth, connected curves in the scene. Zucker[116] and Dolan and Riseman[41])
also group together smooth image curves with small gaps. Other systems have found
curves in the image that may be grouped together based on collinearity, (Boldt, Weiss

and Riseman[24]), or cocircularity (Saund[93]).

These grouping systems all apply local criteria for grouping because it seems
necessary for e�ciency. In this chapter we show that a global criteria can be enforced
in an e�cient system.

6.3 Precise Statement of the Problem

Here we describe precisely the convex sequences of line segments the algorithm will

produce, and introduce some useful notation.

The system begins with line segments that we obtain by running a Canny edge

detector[25] (in the experiments shown, � = 2), and then using a split-and-merge al-

gorithm based on Horowitz and Pavlidis[87] to approximate these edges with straight

lines. This system approximates curves with lines whose end points are on the curves,
such that the curves are no more than three pixels from the line segments.

We call a line segment \oriented" when one endpoint is distinguished as the �rst
endpoint. If li is an oriented line segment, then li;1 is its �rst endpoint, and li;2
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Figure 6.2: The thick lines represent the lines in a group. The thin lines show the
gaps between them. The salience fraction is the sum of the length of the thick lines

divided by the sum of the length of all the lines.

is its second. The image contains n line segments, and so it has 2n oriented line

segments. The convexity of a set of oriented line segments depends on their having
the appropriate orientation. That is, a set of oriented line segments is convex if for

each oriented line segment, all the other line segments are on the same side of the
oriented line segment as its normal, where we de�ne the normal as pointing to the
right when we face in the direction from the line segment's �rst endpoint to its second

endpoint.

Let Sn be the cyclic sequence of oriented line segments: (l1; l2; :::ln), that is, l1
follows ln. We de�ne Li to be the length of li, and Gi to be the distance between li;2
and li+1;1, where Gn is the gap between ln;2 and l1;1. We then let L1;n =

P
n

i=1 Li and

G1;n =
P

n

i=1Gi. We say that Sn is valid if and only if connecting the line segments

in sequence would create a convex polygon, and if L1;n

L1;n+G1;n
> k for some �xed k. We

call the fraction L1;n

L1;n+G1;n
the salience fraction of the convex group (see �gure 6.2).

Often, many of the subsets or supersets of a valid sequence will also be valid. To

avoid excessive search that merely produces many similar sequences, the algorithm
will not produce some sequences when valid subsets or supersets of those sequences
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are produced for which the salience fraction is higher. With this caveat, the algorithm

produces all valid sequences of oriented line segments.

The important thing about the output of this algorithm is that it is guaranteed to

satisfy a simple, global criteria. One way to think of the salience fraction is that if the

lines forming a group originally came from a closed convex curve, the salience fraction

tells us the maximum fraction of the curve's boundary which has shown up in the
image. Use of a global salience criteria means that if a group is salient, adding more

distracting lines to an image cannot prevent the algorithm from �nding it, although a

new line could be added to a salient group to make it even more salient. Occlusion can

a�ect the salience of a group by covering up some of its edges, but will not otherwise
interfere with the detection of the group.

6.4 The Grouping Algorithm

In this section we present an algorithm for �nding these salient convex groups. We

begin by presenting a basic back-tracking algorithm. We are able also to analyze this
algorithm theoretically in order to predict its expected run time and the expected
size of the output. We show that the actual results of running the algorithm match
our theoretical predictions. We then make some modi�cations to the basic algorithm,

which make it more robust, but which would make a complexity analysis more com-
plicated. So we use experiments to show that these modi�cations do not signi�cantly
a�ect the algorithm's performance.

6.4.1 The Basic Algorithm

In order to �nd all sequences of line segments that meet our criteria, we perform a
backtracking search through the space of all sequences. While such a search in the

worst case has an execution time that is exponential in the number of line segments,
this search is e�cient in practice for two reasons. First of all, we are able to formulate
constraints that allow us to prune away much of the potential search space. Second,

much of the work needed to check these constraints can be computed once, at the
beginning of the algorithm in O(n2 log(n)) time, and stored in tables. This makes
the work required to explore each node of the search tree small.

Constraints for a backtracking search

Our problem de�nition is in terms of global constraints on the groups of line segments

we seek. To perform an e�ective backtracking search, we must convert these into local

constraints as much as possible. That is, we need constraints that determine whether
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a sequence of line segments could possibly lead to a valid sequence, so that we may

prune our search.

First, we will list the constraints we use to decide whether to add an oriented

line segment to an existing sequence of oriented line segments. We call a sequence

acceptable if it passes these constraints. Then we will show that searching the space of

acceptable sequences will lead to all valid sequences. These constraints may, however,
produce some duplicate sequences or some sequences that are subsets of others. These

may be eliminated in a post-processing phase. We provide the following recursive

de�nition of an acceptable sequence, assuming that Si is acceptable.

1. Any sequence of a singleton oriented line segment is acceptable.

2. Si+1 is acceptable only if li+1 62 Si.

3. Si+1 is acceptable only if the oriented line segments in it are mutually convex.
This will be the case if the sum of the angles turned is less than 2� when one
travels from the �rst endpoint of the �rst line to each additional endpoint in

turn, returning �nally to the �rst endpoint.

4. Si+1 is acceptable only if: Gi <
L1;i(1�k)

k
�G1;i�1. This is equivalent to stating

that
L1;i

L1;i+G1;i
> k.

It is obvious that (1) and (2) will not eliminate any valid convex sequences. (3)
guarantees that all the sequences we �nd are convex without eliminating any convex

sequences. (4) states that if we are seeking a sequence of line segments with a favorable
ratio of length to gaps between them, we need only consider subsequences that have
the same favorable ratio. This trivially ensures that the �nal sequence will not have
gaps that are too large, since the ratio of length to gaps is checked for the �nal

sequence.

We must show that constraint (4) does not eliminate any valid sequences, however.
To show this, we �rst notice that our backtracking search will try to build a valid

sequence starting with each of the line segments in the sequence. In some cases this

will cause our search to reproduce the same sequence of line segments, as we start at

each line segment, tracing out the remaining segments of the convex sequence. To
ensure that a valid sequence is always found, we must show that using at least one of
the sequence's line segments as a starting point, constraint (4) will not apply to any

of the subsequences we produce on the way to �nding the entire sequence.

We will talk about subsequences, Si;j consisting of (li:::lj). If j < i, we will
mean the subsequence li:::lnl1:::lj. We say for Si;j that its \ratio is acceptable" i�

Li;j

Li;j+Gi;j

> k. We call (li:::lj) continuable if for all r, such that lr is between li and lj
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in the sequence, Sir's ratio is acceptable. Then constraint (4) will not eliminate any

valid sequence, Sn, if for some i, Si;i�1 is continuable.

First we show that if two continuable sequences of line segments, Si;j and Si0;j0

overlap or if Si0;j0 begins with the line segment that follows the last line segment of

Si;j, then their union, Si;j0 is continuable. To show this we must show that Si;r has an

acceptable ratio when lr is between li and lj0. Clearly this is true when lr is between li
and lj. If lr is between lj and lj0, then Si;r = Si;j [Si0 ;r. Si;j and Si0;r have acceptable
ratios, and since Li;r = Li;j + Li0 ;r and Gi;r = Gi;j + Gi0;r, Si;r also has an acceptable

ratio.

We can form the set of maximal continuable subsequences, i.e. no sequence in the

set is a proper subsequence of another continuable subsequence. If this set has just one
subsequence that covers the entire sequence of line segments, we are done. Otherwise,

suppose Si;j is a maximal continuable subsequence. Then lj+1 must not belong to
any continuable subsequence or this sequence and Si;j would together form a larger
continuable subsequence. Si;j+1 must not have an acceptable ratio or it would be a

continuable subsequence. So we may divide the sequence into disjoint subsequences
consisting of each maximal continuable subsequence and the line segment that follows

it. Each of these subsequences has an unacceptable ratio, so the sequence as a whole
must, a contradiction.

So we can �nd all valid collections of oriented line segments by searching through
all sets of acceptable line segments. The constraints that de�ne an acceptable se-

quence prove su�cient to greatly limit our search.

Pre-processing for the search

To further reduce the run time of our algorithm we notice that some computations
are re-used many times in the course of such a search, so we precompute the results

of these computations and save them in tables. In particular, we often wish to know
whether two oriented line segments are mutually convex, and if they are we want to
know the distance from the end of one segment to the beginning of the other. It is

also convenient to keep, for each oriented line segment, a list of all other line segments

that are mutually convex with it, sorted by the distance that separates them. Finally,

we precompute the angle that is turned when going from one oriented line segment
to another. Calculating this information takes O(n2 log(n)), because we must sort 2n

lists that can each contain up to n items.

We may now describe the backtracking search in more detail, noting how these

results are used. The search begins by trying all oriented line segments in turn as
singleton sequences. Given an Si, we calculate

L1;i(1�k)

k
�G1;i�1. From constraint (4),

we know that we only want to consider adding a line, li+1, when the distance from li2

to li+1;1 is less than or equal to this quantity. Clearly we only want to add li+1 if it
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Figure 6.3: A salient convex group may be formed by choosing any line from each

of the four sides.

is mutually convex with li. So we can �nd all candidates to add to the sequence by
referencing our precomputed list of line segments that are convex with li. Since these

lines are sorted by their distance from li we may loop through them, stopping once
we reach line segments that are too far to consider. By limiting ourselves to these
candidates, we have enforced constraint (4). In addition, we check that li+1 is convex
with l1 using our precomputed results.

We can then enforce constraint (3) by keeping a running count of the angles turned
as we traverse the line segments in Si. A table lookup will tell us the angles added
to go from li to li+1 and from li+1 to l1. Therefore, we can ensure that the entire
sequence is mutually convex by checking that the angles turned in traversing it sum

to 2�. And constraint (2) is simply checked explicitly.

6.4.2 Complexity Analysis of the Basic Algorithm

In the worst case, this search will be exponential in both run time and in the size
of its output. As a simple example of this, in �gure 6.3 we show eight lines formed
into a squarish shape. Even for fairly high values of k, we may form a salient convex

group using either of the two lines on each side of the square. This gives us a total of

24 di�erent square groups. If instead of a square we formed n-tuples of lines around

an m sided convex polygon, we could easily construct an image with an output of

at least mn groups. By making the sides' endpoints close together, we can ensure

that these groups are judged salient for any value of k less than 1. And the work
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required by the system is at least equal to the size of the output, so this would also

be exponential.

However, we have found our algorithm to be fast in practice, and we can under-

stand this by making an expected time analysis instead of a worst-case one. To do

this, we need some model of the kinds of images on which the system will run. We

model our image simply as randomly distributed line segments, and then compare
the results of this analysis to its performance on real images.

There are many di�erent random worlds that we could use to describe the image

formation process. Our goal is to choose something simple and realistic. These

goals are often in con
ict, however, so we will often sacri�ce realism for simplicity.
We will also have to choose between several alternatives which may seem equally

plausible. In making these choices and trade-o�s, we will try to ensure that we

provide a conservative estimate of our algorithm's performance.

We assume that an image consists of n line segments whose length is uniformly
distributed from 0 to M , the maximum allowed length. This distribution is conser-
vative because real images seem to produce shorter line segments more often than
longer ones, while the presence of longer lines causes our algorithm to perform worse,

since longer lines contribute to more salient groups.

Our overall strategy for this analysis is to derive two saliency constraints which
may be considered separately. We use these to determine the likelihood that a ran-
domly located line segment can be legitimately added to an existing group. We will

assume that all line segments have angles of orientation drawn from a uniform dis-
tribution, and that the beginning point of a new oriented line segment is uniformly

distributed within a circle of �xed radius, R, centered at the second endpoint of the

last oriented line segment in the current sequence. A circle is the worst shape for our
algorithm, because randomly distributed lines are closest together when distributed
in a circle, again leading to more saliency. This likelihood will vary with the size
of the group. By determining these likelihoods, we compute the number of partial

groups that our search will have to explore at each level, which tells us how much

work the search must perform overall. In the course of this analysis, we will make
several more simpli�cations that will serve to make the analysis further overestimate
the algorithm's run time.

First, let us illustrate the two constraints assuming that a group contains just one
line, as shown in �gures 6.4 and 6.5. We will call the length of this line m1. We

assume that the connection between the �rst line, l1, and the second line, l2 is made

between the second point in the �rst line, l12 and the �rst point in the second line,
l21. Then from condition (4), given above, we know that the distance from l12 to l21
must be less than m1k

0, where we let k0 = 1�k
k
. This determines a circle around l12

where l21 must appear to preserve our saliency constraint.

Next, we have a constraint on the angle and location of l2. Let us use ai to
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Figure 6.4: l21 must appear within the dashed circle to satisfy the distance constraint

derived from the requirement that groups be salient.

Figure 6.5: The dashed circular wedges show where l21 must lie in order to satisfy

the distance and convexity constraints.
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denote the angle of the vector from li1 to li2, where the angle of (�1; 0) is taken as

0, angles increase as we rotate clockwise, and without loss of generality we assume

that l1 has an angle of 0. Then the angle of l2 restricts the location at which l21

can appear while maintaining convexity with l1. For example, if l2 has an angle of
�

2
it must appear in the upper left quarter of the circle determined by the distance

constraint. In general, as shown in �gure 6.5, for a2 < �, the angle formed by l1 and
the connecting line from l12 to l21 must be between � and � � a2. If a2 > � a convex

connection may still be made, but only if this angle is less than 2� � a2. In either

event, l21 must be above l1 to maintain convexity when connecting the lines. This

derivation is a bit conservative; it does not capture all the possible constraint in our

de�nition of convexity. In particular, it does not ensure that the connection from l22

to l11 preserves convexity.

If we consider groups with more than one line, these constraints change only

slightly. The distance constraint reverts to the more general formulation: Gi <

L1;ik
0 �G1;i�1. The angle constraint remains unchanged, because it re
ects the con-

straint that the two lines be mutually convex. But we must add to it a constraint
that all the lines be convex together. We can require that as we go from one line to
the next in the group, we do not rotate by more than 2�, which we can express as:P

n

i=2 ai � ai�1 � 2�.

We now outline our strategy for computing the probability that an ordered group

of n line segments will form a string that satisfy our salient convexity constraints.

First we determine the probability that the distance constraint is met each step of
the way, and take the product of these probabilities. Then given that the distance

constraint is met at one step, and so li1 falls in an appropriate circle about l(i�1)2,
we compute the probability that it will fall in the right part of the circle to produce
convexity. We also take the product of these probabilities over all steps. Finally, we

�nd a probability distribution for the sum of the angles our lines have turned, and
use this to �nd the probability that the n lines will not have together turned by more
than 2�. One thing that makes these computations much simpler is that they are

essentially independent. Once we assume that the distance constraint is met, this

does not e�ect the probability distribution of the slope of a line, or the angle to it

from the previous line. Therefore, the angle constraints may be treated in the same
manner every step of the way.

The Distance Constraint

As we have noted, the distance constraint requires li1 to fall somewhere in a circle

of some radius, call it ri, so that the gap created is not too large. We also assume

that the point is located somewhere in a circle of radius R according to a uniform
distribution. Therefore, the probability of the distance constraint being met at any
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one step is the ratio of the area of these two circles. To �nd this, we need to compute

the distribution of the radius of the �rst circle. As mentioned above, r2 = k
0
m1. Let

h(ri) denote a probability density function on ri.

It is useful to think of ri in the following way. The ratio of the lengths of the lines

in a group to the gaps must always be held above some threshold. ri is the gap that

is currently allowed between l(i�1)2 and li1. However, if the distance from l(i�1)2 to li1
is less than ri, than this gap isn't all used up. The excess gap may be carried over to

the next line that we add on. In addition, the length of li (mi) will make k0mi more

gap available to us. Therefore, we can recursively compute h(ri) by alternating two

steps. When we add the �rst line to the group, this increases the allowed gap by k0m1.

So we compute h(r2) using the distribution of m1. Then when we attach another line
to the group, we use up some of this allowed gap. Let si stand for the gap that is
left over, that is si = ri � jjl(i�1)2li1jj. Let g(si) stand for its probability distribution.

Then we can readily compute g(si) from h(ri). We then compute h(ri+1) from g(si)
by taking account of the fact that the length, mi will allow some more gap.

To begin, we have assumed that the lengths of the line segments are uniformly
distributed between 0 and M . Therefore the distribution function of mi is

1
M
, and

the distribution: h(r2) = k
0
m1 =

1
Mk0

.
Given a distribution for h(ri) we will want to compute two quantities. First, we

will compute the probability that li1 falls inside a circle of radius ri. We indicate this

as:

Pr(jjl(i�1)2li1jj � ri) =
Z

R

0
h(ri)

r
2
i

R
2
dri

Second, we want to use h(ri) to determine g(si), given that li1 does fall in a circle of
radius ri. For a �xed value of ri, and for some value si � ri:

Pr(si � sijri) = 1�
(ri � si)

2

r
2
i

=
2si

ri

�
si

2

r
2
i

Taking the derivative, we �nd:

g(sijri) =
2

ri

�
2si

r
2
i

Note that this equation holds only when si � ri, since the probability that si > ri is

always 0.

To compute g(si) we must consider all values of ri greater than si, and for each,

determine the likelihood of such an si occurring. That is:

g(si) =
Z max(ri)

si

h(ri)

 
2

ri

�
2si

r
2
i

!
dri
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where max(ri) is the largest possible value of ri. ri is bounded by (i� 1)k0M , which

is the maximum length of a group of (i� 1) lines, times k0. ri is also bounded by R.

Next, given g(si), we want to determine h(ri+1). For a given si, ri+1 = si + k
0
mi.

The distribution of the sum of two values is found by convolving the distributions

of each value. In this case, since k0mi is at most k0M and no less than 0 we only

consider values of si between ri+1 � k
0
M and ri+1, so:

h(ri+1) =
Z
ri+1

max(0;(ri+1�k0M))

g(si)

Mk
0
dsi

In fact, this integral is a bit of a simpli�cation, because ri may never be bigger than R.
If we ignore this e�ect, we are only exaggerating the likelihood of an additional line

meeting the distance constraint, and hence overestimating the work that the system
performs.

Given these relationships, we may compute any h(ri). This means that given that
we have a group of i lines, we may compute the probability that another line will ful�ll

our distance constraints. While we could in principal �nd these values analytically,

the integrals quickly become complicated, and so it is more convenient to compute
these values numerically.

The Angle Constraint

There are two parts to our treatment of the angle constraint. First, we consider the

probability that a line that passes the distance constraint will be locally convex with

just the previous line. When a line, li, passes the distance constraint, we know that
li1 will be uniformly distributed in a circle about l(i�1)2. As we mentioned above, the
location of li1 in this circle is constrained to lie in a wedge, and so the probability
of this occurring depends only on the angle of the wedge, and is independent of the

radius of the circle. The wedge's angle is ai � ai�1, the angle of li relative to li�1,
provided that ai � ai�1 � �. Otherwise, the wedge's angle is 2� � (ai � ai�1). For

a given angle of li, the likelihood of li being compatible with li�1 is just the angle of
this wedge divided by 2�. So integrating over all angles, which we've assumed are
uniformly distributed, we �nd that there is a probability of 1

4
that the lines will be

compatible.

We must also consider the probability that a sequence of i lines will be mutually

convex. We derive a distribution on the sum of the angles that must be turned as we

go from one line to the next, and use this to determine the probability that this sum

is less than 2�. This is a necessary, though not a su�cient condition on convexity.

The distribution on each such angle is independent of the others and of the distance
between the lines. So we need only consider the distribution on one of these changes
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of angle, and then convolve this distribution with itself i times to �nd the distribution

on the sum of i such angles.

We know that the angle of one line relative to the previous one is uniformly

distributed between 0 and 2�. We also know the relationship between the angle of

the line and the probability that it is compatible with the previous line. So this

probability of compatibility gives us a distribution on the relative angle of a new line,
once we normalize it. If we let f be a probability density function on the change in

angle of a new line, we have:

f(ai � ai�1) =

(
ai�ai�1

�2
if ai � ai�1 � �

2��(ai�ai�1)

�2
if ai � ai�1 > �

Convolving this distribution with itself is perhaps facilitated by noticing that

this distribution is the convolution of a uniform distribution from �

2
to 3�

2
. This

convolution is straightforward to perform analytically, but for our convenience we
take it numerically.

Expected Work of the Algorithm

We are now in a position to determine the expected work our algorithm must do.
As we have stated, there is a �xed overhead of O(n2 log(n)) work. In addition, we

sum over all i the amount of work that must be done when we consider extending all
groups of i lines by an additional line.

Since we are interested in the expected amount of work, we need to know the
expected number of groups of length i that we will build. This is just the number

of possible groups of that length times the probability that any one of them will

pass our salient convexity constraints. If our image contains n line segments, we
must consider two possible directional orderings for each line segment, so there are

2n(2n� 2):::(2n� 2i+2) possible ordered sequences of i line segments. Let �i be the

probability that the i0th line will pass the distance constraint, given that the previous
lines have, and let �i be the probability that a group of otherwise compatible lines

will have angles that sum to less than 2�. Then the expected number of groups of
size i that we must consider, which we will call Ei, is:

Ei = �i2n(2n � 2):::(2n� 2i+ 2)�2:::�i

�
1

4

�i�1

where E1 = 2n.

For each group we reach with i lines, there are potentially 2n � 2i lines that we

must consider adding to the group. However, our preprocessing has sorted these lines,
so that we only need to explicitly consider the ones that meet the distance constraints
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and that are convex with the last line in our group. We call the expected number of

possible extensions to a group of size i, Xi, and:

Xi =
1

4
(2n � 2i)�i+1

The total amount of work that we must perform in the course of our search is
proportional to the number of times that we must consider extending a group. This

work is given by:
nX
i=1

EiXi

This expression allows us to see that asymptotically, even the expected amount
of work is exponential in n, because our run time is of the form:

c1n+ c2n
2 + c3n

3
:::

where the ci values are constants that are independent of n. This type of asymptotic
behavior is uninteresting, though. It only tells us that as the image becomes arbitrar-
ily cluttered, the number of salient groups becomes unmanageable. But of course we
know that at some point, as an image becomes arbitrarily cluttered, recognition will

be impossible. The key question is: when will this happen? An alternative approach
is to perform an analysis of the algorithm's asymptotic behavior by assuming that as
n grows the size of the image grows so as to maintain a constant density of lines in

the image. Instead, we simply compute the expected run time for a variety of realistic
situations.

To compute these values, we simplify the distance constraint by assuming that

ri is never larger than R. This is reasonable, because the maximum total length of
lines in a group can never exceed 2�R, and so ri can never exceed k02�R. So this
limitation will have no e�ect when k0 < 1

2�
, and will otherwise only e�ect rare groups

that have very long lines with little gap between them. With this simpli�cation

made, R appears only when we use h(ri) to compute the likelihood that a random
line segment end will fall inside a circle of radius ri; we can ignore R in computing the

values of h(ri) and g(si). We can further simplify by choosing all distances in units
of k0M . By assigning k0M the value 1, we may compute all h(ri) and g(si) once only,

without any variables. We only need to make up for this when solving the equation:

Pr(jjl(i�1)2li1jj � ri) =
Z

R

0
h(ri)

r
2
i

R
2
dri

At this point, we replace R with its value written in units of k0M , that is, with R

k0M
.

In table 6.1 we list the numerically computed values for the �rst 12 �s and �s3. The

� values are computed with k0M = :25 and R = 1. In practice, to �nd the � values for a

3All data in this section shows the �rst three signi�cant digits only.
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Constant Probabilities

of Adding a Line

�1 1.00 �1 .021

�2 0.500 �2 .035

�3 0.0805 �3 .041

�4 0.00614 �4 .044

�5 0.000278 �5 .044

�6 0.00000848 �6 .045

�7 0.000000186 �7 .045

�8 3.10 x10�9 �8 .045

�9 4.04 x10�11 �9 .046

�10 4.28 x10�13 �10 .046

�11 3.65 x10�15 �11 .046

�12 2.64 x10�17 �12 .046

Table 6.1: The constant probabilities used to determine the likelihood that a random

line can be added to a salient convex group.

di�erent value of R, sayR0, we simplymultiply the above values by ( R
R0
)2. In principal,

things are not this simple, because while this re
ects the change in the value inside the
above integral, it does not take account of the change in the limits of the integral. In
practice, however, this e�ect is tiny because the function we are integrating becomes

very small before reaching the limits of integration. We have therefore shown that
after numerically computing one set of constants, we can then analytically compute

all relevant probabilities, making only unimportant approximations.

An important question is whether we can compute the expected work of the system
without having to consider every value in the summation, that is, whether EiXi

becomes negligible as i grows larger. As an example, with n = 500 and R = 1, the
�rst twelve terms of the summation are:

5; 180 + 45; 200 + 231; 000 + 401; 000 + 337; 000 + 170; 000

+57; 600 + 14; 200 + 2; 640 + 386 + 45:6 + 4:44

In this case we can see that the trailing values become small, relative to the total.
Intuitively, we can also see why the trailing values of the summation will continue
to shrink. When taking the i'th value of the summation, we multiply the previous

value by something less than 2n times 1
4
, �i, and

�i

�i�1
. While �i rises as i increases, it

quickly approaches an equilibrium point at which the average gap used up in adding

a line to a group equals the average gap allowed by adding a typical line. �i is just
being repeatedly convolved (twice at each iteration) with a constant function, causing
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Expected Work, for M = R

Number k

of lines .6 .65 .7 .75 .8 .85 .9

200 1.99 x107 2,270,000 346,000 65,800 15,100 4,280 1,650

300 5.82 x108 4.14 x107 4,200,000 561,000 93,200 19,000 5,200

400 8.73 x109 4.23 x108 3.04 x107 3,020,000 386,000 61,000 12,700

500 8.53 x1010 3.05 x109 1.62 x108 1.24 x107 1,260,000 162,000 26,800

700 3.45 x1012 8.09 x1010 2.65 x109 1.29 x108 8,830,000 791,000 90,700

1000 2.25 x1014 3.76 x1012 7.54 x1010 2.11 x109 8.77 x107 5,060,000 378,000

Table 6.2: This table shows the expected work required to �nd convex groups. As the
number of lines in the image and the salience fraction, k, varies, we show the number

of nodes in the search tree that we expect to explore. The table does not show the

number of steps spent in a preprocessing step. ByM = R we indicate that the length

of lines are distributed according to a uniform distribution, with a maximum length
equal to the radius of the image.

Ratio of search to preprocessing, for M = R

Number k

of lines .6 .65 .7 .75 .8 .85 .9

200 14.4 1.65 .25 .048 .011 .003 .001

300 175 12.5 1.26 .169 .028 .006 .002

400 1,410 68.6 4.92 .489 .063 .010 .002

500 8,560 306 16.3 1.25 .127 .016 .003

700 168,000 3,950 130 6.28 .431 .039 .004

1000 5,140,000 85,800 1,720 48.2 2.00 .115 .009

Table 6.3: This table is an adjunct to Table 6.2. It shows the expected number of

nodes explored in the search tree divided by the number of steps in a preprocessing
phase, for various image sizes and salience fractions.

it's tail to shrink at a faster than exponential rate. So overall, once 2n�i�i
4�i�1

is less than

one, the terms in the summation continue to shrink.

We now use these values to compute some sample run times for the system. We

compute two sets of examples. First we suppose thatM = R, that is, that the longest

line is the length of the radius of the image. This seems a reasonable upper bound on

the length of the lines. Table 6.2 shows the expected work of the system as n and k

vary. Table 6.3 shows the amount of work of the system divided by (2n)2 log(2n). This
tells us roughly the proportion of the system's work is spent in search, as opposed to
�xed overhead, although one step of overhead is not directly comparable to one step

of search. When this ratio is low, the run time is well-approximated by (2n)2 log(2n).
In tables 6.4 and 6.5 we show the same values for M = R

2
.
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Expected Work, for M =
R
2

Number k

of lines .6 .65 .7 .75 .8 .85 .9

200 65,800 21,200 8,090 3,650 1,970 1,280 983

300 561,000 141,000 42,900 15,400 6,700 3,600 2,420

400 3,020,000 623,000 158,000 47,800 17,400 7,930 4,700

500 1.24 x10
7

2,150,000 468,000 123,000 38,700 15,300 8,030

700 1.29 x10
8

1.64 x10
7

2,750,000 571,000 143,000 44,300 18,700

1000 2.11 x10
9

1.83 x10
8

2.21 x10
7

3,440,000 658,000 155,000 49,400

Table 6.4: This table is similar to Table 6.4, except that the lines are assumed to
have lengths drawn from a uniform distribution between zero and half the radius of
the image. It shows the expected number of nodes explored in the search tree to �nd
all salient groups.

Ratio of search to preprocessing, for M = R
2

Number k

of lines .6 .65 .7 .75 .8 .85 .9

200 .0476 .0153 .00585 .00264 .00143 .000927 .000711

300 .169 .0426 .0129 .00465 .00202 .00108 .000728

400 .489 .101 .0256 .00775 .00282 .00129 .000762

500 1.25 .216 .0469 .0123 .00388 .00153 .000805

700 6.28 .803 .134 .0279 .00697 .00216 .000915

1000 48.2 4.18 .504 .0785 .0150 .00353 .00113

Table 6.5: The companion to Table 6.4, this shows the expected number of nodes

explored in the search tree divided by the number of preprocessing steps. This allows

us to see roughly when each component of the algorithm will dominate the overall
run time.
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Actual work for random lines, M = R

Number k
of lines .6 .65 .7 .75 .8 .85 .9

200 347,000 112,000 31,300 8,590 2,270 601 123

300 3,120,000 892,000 208,000 45,600 8,760 1,670 306

400 17,400,000 4,970,000 1,130,000 172,000 27,000 4,050 692

Table 6.6: This table shows the actual number of nodes in the search tree that were

explored when �nding convex groups in randomly generated images. The lengths of
the lines were generated from a uniform distribution from zero to half the width of

the image. The points were then randomly located in a square image.

Later, we will compare this to the results of the full system on real data. For now,
we compare this theoretically derived estimate of the system's work to simulated data,

to determine the a�ects of various approximations that we have made. Our primary
approximation has been to assume that the end point of one line will be uniformly

distributed in a circle about the end point of a previous line, when even in simulation,
lines will be uniformly distributed in a �xed image. Also, we do not apply the full
convexity constraints in our analysis, because we do not ensure that a newly added

line is convex with the �rst line in our group. It is possible that connecting these two
lines would cause a concavity. We expect that these approximations should make our
analysis conservative, overestimating the work required.

In this test we �rst generate collections of random line segments in a square. To do

this, we choose the length of the line segment from a uniform distribution between 0

and half the width of the square, and we choose the angle from a uniform distribution.
Then we generate possible locations of the line by picking its �rst end point from a
uniform random distribution over the square. If the entire line segment �ts in the

square, we keep it, otherwise, we use the same length and angle, but generate a new

location for the line until we �nd one that is inside the square. Table 6.6 shows the

results of these experiments for a few di�erent values of k, and of the number of lines.
Comparing this table with table 6.2, we see that our analysis does conservatively
estimate the work needed for grouping. It overestimates this work by between a

factor of six and a factor of twenty, roughly.

We will discuss some additions to the algorithm that make it more suitable for

real images, and then describe experiments run on real images before we discuss the
signi�cance of the system's run time. But �rst, we consider the size of its output.
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Expected Size of the Output

The size of the output of our algorithm is also important to consider, but its im-

portance depends on how we intend to use our grouping system. For example, if we

want to try indexing using all pairs of groups that are produced by grouping, it is

important that the number of groups be small, or forming all pairs of them could take

too much time. On the other hand, if we intend to select the 20 or 30 most salient
groups produced by the system, then the number of groups produced is not important

to the e�ciency of the system. Given a set of salient groups, we can readily �nd the

most salient ones.

Since we in fact intend to use only the most salient groups for indexing, we want

to estimate the size of the output for two reasons other than e�ciency. First, if a

random image will produce many highly salient groups, this is a sign that convex
grouping will not be e�ective. It means that the \real" groups that re
ect the actual
structure of the scene are likely to be drowned out by random groups. Second, if we
can predict the size of the output ahead of time, we can use this to decide how high
to set our salience threshold based on the number of lines in the image. We want to

avoid wasting time by picking a low salience value that will produce many random
groups which we will only discard when we select the most salient groups. Therefore
we can set our threshold to produce an appropriate output, reducing the work that
we perform �nding less useful groups.

The expressions above for Ei tell us the expected number of groups of any par-
ticular length that we will encounter in our search. We could use this as a bound on
the size of the output, but this is an oversimpli�cation. As we have noted, the values
for Ei are exaggerations because they are not based on all the constraint provided by

the convexity requirement. But in addition, just because a group is reached in our
search does not mean we will accept it. When we reach a group of length i in our
search, we have yet to take account of the length of the i'th line, or the gap between

the i'th line and the �rst one. It is di�cult to determine the probability distribution
of this �nal gap, because it is dependent on the combination of i previous processes

that built up our group. But we can approximate it very simply by just assuming

that the last end point in the group is randomly distributed with respect to the �rst
end point. Using that approximation, the expected number of groups of size i that
the system will produce is:

1

4
�i+1Ei

To �nd the total number of groups expected, we just sum all these values for i from

2 up. We ignore groups of size one because such groups are never salient unless the

salience fraction is less than or equal to :5.

Tables 6.7 and 6.8 show the number of groups that we expect to �nd using this
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Expected number of groups produced, for M = R

Number k

of lines .6 .65 .7 .75 .8 .85 .9

200 51,400 5,850 885 166 36.3 8.75 2.09

300 996,000 70,600 7,120 946 154 28.8 5.62

400 1.12 x107 539,000 38,600 3,820 484 72.8 11.8

500 8.69 x107 3,100,000 165,000 12,500 1,270 158 21.7

700 2.50 x109 5.86 x107 1,920,000 92,800 6,340 561 57.8

1000 1.14 x1011 1.90 x109 3.80 x107 1,060,000 44,100 2,530 179

Table 6.7: This table shows the expected number of salient convex groups that we

expect our algorithm to produce, as the size of the image and the salience fraction
vary.

Expected number of groups produced, for M = R
2

Number k

of lines .6 .65 .7 .75 .8 .85 .9

200 166 51.9 18.4 7.16 2.90 1.15 .395

300 946 236 69.2 22.9 8.12 2.91 .934

400 3,820 783 195 56.1 17.7 5.81 1.74

500 12,500 2,170 466 118 33.7 10.1 2.86

700 92,800 11,800 1,970 403 95.2 24.4 6.15

1000 1,060,000 92,300 11,100 1,720 320 67.2 14.4

Table 6.8: This table shows the expected number of salient convex groups that we

expect our algorithm to produce, as the size of the image and the salience fraction

vary.

Actual number groups for random lines, M = R

Number k
of lines .6 .65 .7 .75 .8 .85 .9

200 7,500 2,590 782 234 70 15 5

300 45,800 13,800 3,540 867 159 32 5

400 189,000 55,500 13,300 2,300 392 58 6

Table 6.9: The actual number of salient groups that were found in images of randomly

generated line segments.
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method. Table 6.9 shows the number of groups that we found in experiments with

random line segments. There is a close �t between the predictions and the result of

simulations, both for the system's run time and the size of the output. In particular,

all these results show that the system will begin to break down at about the same

time. The key point is that our analysis and experiments all agree on the values

of k for which the system will run in a reasonable amount of time and produce a
reasonable sized output. We will now discuss how we apply this algorithm to real

data, and defer discussion of the implications of our analysis until we have presented

experiments on real images.

6.4.3 Additions to the Basic Algorithm

Up until now we have presented our algorithm in its simplest form, to facilitate

an analysis of its performance. We now discuss some modi�cations that make the

system more robust by �nding groups that are nearly convex, and that reduce the
size of the system's output by eliminating groups that are similar or identical. Since
these modi�cations make analysis di�cult, we present experiments to show the e�ect
that they have on the algorithm's performance.

Error in sensing or feature detection can cause lines that are convex in the world to
appear nearly convex in an image. Two lines may be almost collinear, so as to create

a slight concavity when joined in a group. To account for this, we decide that two
lines are mutually convex when they are slightly concave, but nearly collinear. Or,
one line, when extended might intersect the end of a second line, forcing a concavity

when the lines are joined (see �gure 6.6). To handle this possibility, we allow a portion
of a line to participate in a convex group. This also allows us to �nd convex regions
of edges even when some of these edges are approximated by a long segment that
doesn't �t the region. We also may use just a portion of a line in a group even if

using the whole line would still produce a convex group, if using just a portion of the

line will make the group more salient by reducing the gaps between lines.

Our system will often �nd a number of similar convex groups. It will produce

duplicates of a group if that group can be found starting with di�erent lines. Subsets
of a group will often pass our saliency constraint. For example, if four lines form

a square, and the saliency fraction, k, is :75, then a group of all four lines will
be duplicated four times, and four additional groups will appear containing every

combination of three of the lines. These duplications are most easily handled in a

post-processing stage. As long as our algorithm produces a reasonably small output,
we can quickly sort through the groups it produces. When duplicates occur, we keep

only one copy. If one group is a proper subset of another that was produced, we

throw away the subset.

The system can also produce groups that are spurious supersets of other groups.
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Figure 6.6: Four groups that our basic algorithm would not �nd. On the left, two

of the lines in the group are nearly collinear, but not quite. In the middle, the upper

line extends a little too far to the left to maintain convexity. On the right, the bottom
line is not convex with the middle ones, but the central part of the bottom line can

help form a strong convex group. In the bottom example, we can form a much more
salient group by including only part of the top line.
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Figure 6.7: Edges from two of the real edges used to test the grouping system.

Often, a strong group will have added to it some combinations of additional small
lines that reduce its saliency without changing the basic structure of the group. To

avoid this, if our search has produced a string with lines: ABC, we do not consider
the string ABXC if the latter string has a lower salience than the former. Since only
the salience of a string and its �rst and last line e�ect what other lines we may add

to it, we are guaranteed that any group that is formed from the sequence ABXC will
also be formed from the sequence ABC.

The additions described above allow our algorithm to handle sensing error and to
omit some groups that will be redundant in the recognition process. Since we will
use these groups to derive stable point features, two groups with nearly identical sets

of lines are likely to give rise to the same set of stable features, and we will not want
to use both of them in recognizing an object.

After making these additions to our algorithm, we reran our experiments to deter-
mine the e�ect they have on the runtime of the system and on the size of its output.
We ran both the basic algorithm and the augmented algorithm on a set of real images,

so that in comparing these results to our previous results we can tell how much of
the change is due to the use of real images, and how much is due to the additional
constraints.

Figure 6.7 shows examples of two of the images we used. Table 6.10 shows the
number of nodes explored in the search, for both the basic and full systems on these

and similar images. Table 6.11 shows the number of groups produced both both
variations of the algorithm on these images. Finally, �gure 6.8 graphically compares

the previous results of our analysis and tests on random images to these new results.

Comparing these results to previous tables shows a good �t between our theoretical

predictions and the actual performance of the algorithm. We expect �rst of all that
our analysis will overestimate the amount of work required by the system. Second,

since we are overestimating the constants in an exponential series, we expect to have

more and more of an overestimate as the later expressions in the series become more
important. That is, we are overestimating the number of pairs of lines that our search
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Actual work for real images

No. Alg. k

lines Type .6 .65 .7 .75 .8 .85 .9

183 basic 1,800,000 548,000 133,000 28,900 7,030 2,000 613

complete 284,000 166,000 75,000 37,000 15,400 6,710 2,470

265 basic 5,630,000 1,660,000 420,000 102,000 27,200 6,370 1,410

complete 496,000 288,000 136,000 55,300 18,200 7,440 2,800

271 basic 816,000 193,000 47,000 9,740 1,590

complete 106,000 59,400 24,200 9,810 3,840

296 basic 7,200,000 1,820,000 429,000 93,300 16,300 3,350 946

complete 273,000 163,000 89,400 41,800 14,800 6,170 2,900

375 basic 689,000 226,000 78,600 27,100 9,620 3,410 1,390

complete 201,000 104,000 54,600 31,300 18,500 9,610 3,610

450 basic 2,090,000 696,000 227,000 69,000 21,300 6,420 2,160

complete 295,000 163,000 92,500 48,400 24,800 11,400 4,440

461 basic 72,000 26,700 9,970 3,560 1,250

complete 105,000 37,500 19,300 8,200 3,130

Table 6.10: This is the number of nodes explored in the search tree for some real

images. The second column indicates whether we used the modi�cations to the al-
gorithm described in the text to make it more robust, or whether we used just the
basic algorithm.
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Figure 6.8: This graph compares the expected and actual number of nodes explored
in the search for salient convex groups. The number of nodes are graphed on a log
scale as k varies, for four cases: our theoretical predictions of expected work when

M = R; the number of nodes actually searched with randomly generated images; the

number of nodes searched on real images with the basic system; and the number of
nodes searched on real images by the complete system. Only a sample of the results

are graphed here, for clarity. Di�erent cases are graphed with di�erent brushes. On
the right, N indicates the number of lines in the image. These are 200 and 400 for

the analysis and random images, and 183 and 296 for the real images.
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Actual number of groups found for real images

No. Alg. k
lines Type .6 .65 .7 .75 .8 .85 .9

183 basic 16,300 4,760 1,170 248 110 60 35

complete 2,160 1,190 494 315 134 69 31

265 basic 32,300 8,930 1,850 404 182 98 51
complete 1,750 982 542 276 120 47 27

271 basic 5,600 598 148 64 36

complete 540 291 157 65 34

296 basic 47,400 12,800 2,670 474 136 73 42
complete 2,040 1,180 620 312 152 85 42

375 basic 23,100 11,100 5,250 2,390 1,020 406 163

complete 1,680 1,020 536 331 188 122 48

450 basic 74,100 37,900 18,500 7,840 2,960 965 293
complete 2,160 1,340 797 430 235 125 52

461 basic 754 376 194 96 49
complete 863 368 178 84 34

Table 6.11: This table shows the number of salient convex groups produced by the

two variations of our algorithm, when applied to a number of real images.

will encounter by underestimating the e�ects of our constraints. When we consider

the number of triples of lines encountered, this overestimate gets compounded. We

expect the overestimate to become more extreme in situations in which the higher
order terms of our series come into play. This occurs as k shrinks and as N grows,

when the number of larger groups considered becomes substantial.

This is in fact what happens. Although there is considerable variation in the size
of the search from image to image, our theoretical analysis generally overestimates

the amount of work to be done, even when we assume M = R

2
, that is, a distribution

of line segments in which the longest segment is half the radius of the image. And as

k shrinks, the gap between our theoretical estimate and actual performance grows.

All in all, we see that in real images we may use salience fractions of about :7 without
causing the search to dominate our computation. We �nd that the real images produce
somewhat more groups than our analysis predicts, assuming M = R

2
. The numbers

are of the same order of magnitude except when our analysis predicts a very small

number of groups; it seems that in these images there is usually a minimum number

of groups that will be found for each salience fraction, re
ecting the basic structure

that is present to a comparable extent in all the images. Looking at the size of the

output to be produced, we �nd that a salience fraction of about :7 will also produce
an output of roughly the same size as the input, making the output reasonable to
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work with.

There are two signi�cant ways in which real images di�er from the random images

that we have analyzed. First, the real images contain many more short than long line

segments; our assumption about the distribution of the lengths of lines was quite

conservative. Second, real images contain much more structure than random images.

While the structure of real images might cause considerable extra search, this does
not seem to happen. One reason for this is that most of the system's search is spent

�nding that one cannot form salient groups from lines in well separated parts of the

image. It is not surprising if, even in real images, collections of lines from separate

sections of the image are well modeled as having random relative orientations and
locations.

We also measured the actual run time of our implementations of the grouping sys-
tem. However, because these programs have not been carefully optimized, numbers

concerning actual run times should be regarded with some skepticism. The system ran
on a Symbolics 3640 Lisp Machine. On an image with 246 lines, the basic algorithm
spent 48 seconds on preprocessing overhead. The search tree was explored at a rate

of between 450 and 2,300 nodes per second. Our implementation of the complete al-
gorithm was approximately a factor of 20 slower. Preprocessing was particularly slow
in the complete algorithm. However, our implementation of the complete algorithm

was simple and ine�cient, and we believe that most of the additional time it required
could be eliminated in a more careful implementation. These numbers indicate that

the overall system could be expected to run in a few minutes or less in a practical

implementation, and that the di�erence in cost between a step of preprocessing and
a step of search is about one order of magnitude.

6.4.4 Conclusions on Convex Grouping

We begin with a very simple, global de�nition of what constitutes a salient group.
Although �nding such groups is intractable in the worst case, we have shown that it

is practical in real situations. Our constraints on salient convexity allow us to prune

our search tree extensively, e�ciently �nding the most salient groups.

Although our experiments and analysis are long, they all support the same simple
conclusion. In images with several hundred to a thousand lines, our algorithm is
e�cient if we set the salience fraction between :7 and :85. In these cases, run time

will be roughly proportional to 4n2 log(n), and the size of the output will be roughly

n. In fact, we see that the size of the output becomes unreasonable at about the
same point at which the run time does. One way to condense all these numbers into

a simple form is to ask how much computation is required to �nd the m most salient

groups in any particular image. For although we cannot anticipate exactly how many
groups will satisfy a particular salience fraction in a particular image, our analysis
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Figure 6.9: This graph shows the amount of work required to �nd the m most
salient groups in an image, when we use our analysis to choose an appropriate salience

fraction given the number of lines in the image, and m. The thick line shows the cost

of our preprocessing phase, which is the same for any value of m. The other lines

show the number of nodes we expect to explore in the search tree to �nd the desired

number of salient groups. Note that the graph is at a log scale.
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does predict this to good accuracy. So we may �rst use our analysis to estimate the

salience fraction required to produce a particular number of groups, given the size of

the image, and then use it to determine the cost of �nding the groups in the image

with that salience fraction. This allows us to capture the main points of the cost

of our system in one graph. Figure 6.9 shows the variation in the number of steps

of computation required to �nd a �xed size output, as n varies. The graph shows
how many preprocessing steps are required, as n varies. Then, for di�erent values

of m, we use the above analysis to determine the value of k which will produce m

salient groups. k varies with n. Then, we use these values of k and n to determine

the expected number of nodes we will explore in our search. This graph shows quite

clearly that for any reasonable sized output, the computation of the algorithm will
be dominated by our initial preprocessing step.

This tells us that in practice, the limitation of salient convex grouping is that

for extremely cluttered images, a very high salience measure must be used or we
will not �nd a small number of salient groups. We have therefore demonstrated a
simple salience clue that may be e�ciently used in many real situations, while at the

same time we can see the need for using stronger and di�erent kinds of evidence of
perceptual salience to handle especially large or cluttered images.

Although the algorithm stands or falls with its performance on real images of
interest, we believe there is much value to a theoretical analysis of the algorithm's

behavior. Our analysis has predictive value, it allows us to see when the system will
break down. We can tell that as images become more cluttered, our system will

continue to work if we demand greater salience in the groups that it produces. This

allows us to set the salience threshold dynamically, if we wish, to ensure that our
system will run quickly and produce a reasonably small output.

Hopefully this theoretical analysis also provides insight into the problem which can
be used to improve on our algorithm. We know that salient convexity is not the end-all

of perceptual grouping. It is too weak a condition, because it will not provide a small
number of salient groups in a complex image. It is too strong a condition, because

perceptually salient groups are not always convex. But understanding our algorithm

well should be helpful in showing us how to extend it. For example, our salience

measure does not pay attention to the angle between connected lines. If adjacent
lines in a group are nearly collinear, the group will appear more salient than if they

are at right angles, all other things being equal. And our analysis shows us exactly

how much less likely collinear lines are to occur by accident than are perpendicular

lines. So, while our current algorithm will add any line to a group that is within a

circle of the end point of the group, we can imagine using an elliptical region that
accounts for the fact that the less the angle between two lines, the farther apart they

can be while still being equally unlikely to appear convex by chance.

In sum, by carefully analyzing and testing our system, we can determine exactly
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when it will be useful. We �nd that it will be of value in many realistic situations.

We also can understand where the e�ciency of the system originates. This should be

especially valuable as we attempt to modify or add to it.

6.5 Stable Point Features

Our indexing system requires point features, not line segments. At compile time we

must �nd groups of 3-D points to represent in our lookup table. At run time we must

�nd the projections of these groups in the image. Our indexing system �nds matches
between image points and groups of model points that could have produced exactly

those image points, no more and no fewer. A model group will not match an image
group if some of the model groups' points are occluded, or if they are not found by

the feature detector. It also will not produce a match if an image group contains
extraneous points. We can make some allowances for occlusion by representing some
subsets of model groups in our table. But we need to �nd 3-D points that consistently
project to 2-D points that we can detect. The greatest di�culty in doing this is
stability. If small amounts of sensing error or small changes in viewpoint can make a

point feature appear or vanish, then the set of points that characterize a convex group
will be always changing, and we would need to represent every possible combination
of these points in our indexing table in order to recognize an object. If error causes

the locations of points to shift drastically, then we cannot enforce reasonable bounds
on the error that occurs in locating a point.

Our strategy is based on locating points at the intersections formed by the lines
that a group's line segments lie on, as shown in �gure 6.10. So we �rst focus on

evaluating the stability of these potential point features, and then show how this
stability measure is used to derive points from a group. We ask: Can small amounts

of errors in the line segments have a large e�ect on the location of these intersection

points? and: Can small changes in the location of edges obliterate a point altogether
by merging the two line segments that form the point into a single line segment?

We handle these questions in two ways, depending on whether or not the two line

segments are connected. If the intersection point is formed by an actual connection
between the line segments, then we know that the segments are adjacent lines in the

approximation of a string of edge pixels. In this case we may base our analysis on
some properties of the straight-line approximation. Otherwise, we use a more general

model of the error in locating our line segments to determine the error in locating

their intersection point.

Suppose �rst that we have two unconnected line segments, which we call l1 and

l2, with points numbered l11; l12; l21; l22 as usual. Their nominal intersection point is
the intersection of two rays, with endpoints at l12 and l21, and with directions given
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Figure 6.10: We show the lines of a possible group of features. Circles indicate the

possible location of corner features. We have placed a question mark next to some
corners that are possibly unstable. We label the end points of two of the lines that

generate a corner point.
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by the vectors from l11 to l12 from l22 to l21. We assume that there is some error in

locating the endpoints of each line segment, and see how this translates into error in

the location of the intersection point of their corresponding rays.

We assume a �xed bounded error in the two points that are furthest apart, l11
and l22. We call the amount of this error �1, and we have set it to �ve pixels. While

these two points are usually widely separated, the points l12 and l21 may be quite close

together, and allowing �xed errors in their locations may exaggerate the relative error

that will occur. For example, if the points are only �ve pixels apart, it will often be an
exaggeration to assume that they might be �fteen pixels apart. This is based on the

empirical observation that relative uncertainty in locating features is often correlated

when the features are nearby. Therefore, for the error in these points, we use either

�1 or 10% of the distance between the two points, whichever is smaller.

If we think of the intersection point as arising from two rays, then we may sepa-

rately bound the maximum e�ect these errors can have on the angle of the rays and
on their location. Since the rays are located at l12 and l21, the error in these points
bounds the error in the rays' locations. The error in their direction is maximized as

the points l11 and l22 are displaced normal to the line, while the other end points are
�xed. Thus, the maximum variation in angle is given by arctan( �1

m1
) and arctan( �1

m2
),

where we recall that mi is the length of li
4.

With these bounds on the location and direction of the two rays, we �nd the

maximum distance between their possible intersection point and their nominal inter-
section point by considering all combinations of extreme values for their angles and

locations. If for any possible angles the rays do not intersect, this means that for some
error values they are parallel, and the instability in the location of their intersection
point is in�nite. The maximum variation in the intersection point is then used as an

estimate of a point's instability.

Suppose now that the two line segments intersect at a point, that is, that l12 = l21.

Then the problem becomes one of determining how much an anchor point can vary in
the split-and-merge algorithm for straight-line approximations. With this algorithm,

a curve is approximated by a straight line segment, which is recursively split into two

segments that better approximate the curve by locating an intermediate endpoint at
the point on the curve that is farthest from the line segment that approximates it.

After the curve is su�ciently well approximated, adjacent line segments are merged
back together if the resulting single line segment does not di�er too much from the

underlying curve. The variation of line segment endpoints due to variation in the
underlying curve is hard to characterize with this algorithm because it can depend

on events far from that anchor point. If distant parts of the edge that we are approx-

imating are occluded or noisy, this can e�ect the entire approximation. This is easy

4Actually we approximate this by ignoring the arctan in the expression
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to see when we consider approximating a circle, where the choice of anchor points is

essentially arbitrary, and can change greatly with slight deformations in the circle.

However, we approximate this variation simply by assuming that the endpoints

l11 and l22 are held �xed. We then allow the underlying curve to di�er from the two

line segments that approximate it by as much as �2. We set �2 to twice the amount

that we allowed our approximation to di�er from the underlying curve, that is to six
pixels, since we know that even without sensing error, our straight line approximation

may have introduced three pixels of error. We then ask how much the location of l12
can vary while keeping the original line segments to within �2 pixels of the new line

segments.

We allow l12 to shift either forward along l2, rotating l1, or backward along l1,

rotating l2, until the rotated line is �2 pixels from the original location of l12. As

shown in �gure 6.11, if the angle formed by the two line segments, call it a0 is acute,
then the amount that l12 can shift along either direction is limited by �2 pixels. If a

0

is obtuse and l12 is shifted forward, we let a = � � a
0, and we let b equal arcsin( �2

m1
)

(which we again approximating by ignoring the inverse trigonometric function). Then

the distance that l12 can shift forward is either in�nite if a < b, or is �2

sin(a�b)
. We

compute the amount that the corner can shift backward similarly. The instability in

the point is then taken to be the maximum of the amount that it could shift forward
or backward.

Finally, we also want to take account of the fact that a slightly di�erent approx-
imation of the edges could eliminate a corner altogether, merging l1 and l2 into one

line. So if a corner could forward more than the length of l2, or backward more than

the length of l1, we automatically rule out that corner.

This process gives us a single number for each corner which estimates its insta-
bility. We must now set a threshold for ruling out some of these corners as unstable.
We could set this threshold at the maximum error that our indexing system allows,
but our determination of maximum instability is quite conservative, and such a strict

threshold would rule out many reasonable corners. Also, in computing the instability

of corners, we have used several fairly arbitrary constants, and so the absolute insta-
bility that we compute is probably not that reliable, although the relative instability
that we compute between corners is useful. So we set a stability threshold of 15 pixels,

which is just based on our experience with the system.

There is one more possibility we take account of in computing corners, illustrated

in �gure 6.12. It may happen that a pair of lines with a rounded corner is approx-

imated by two long straight lines separated by a short line. In that case, the two
corners produced by the short line will be unstable. In cases such as that, where a

sequence of one or more lines do not contribute to a stable corner, we check whether

the neighboring two lines can produce a stable corner. If so, we make use of that.

We now have a method of deriving corner points from a group of line segments.
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Figure 6.11: Two examples, for acute (below) and obtuse (above) angles, in which

l1 rotates so that it deviates from the original line by E pixels.



186 CHAPTER 6. CONVEX GROUPING

Figure 6.12: In the group shown above, a rounded corner's approximation contains
a small line at the corner. If this line does not contribute to a stable corner, we may
ignore it and form a corner from its neighboring lines. Edges are shown with a lighter

weight, line approximations are shown in heavy weight. Circles show where we would
like to �nd corners.

Since this is the only information about a group that we actually use for indexing,
there is no distinction to be made between two groups that produce the same cor-
ners, so we once again remove duplicate groups and groups that are subsets of other
groups, this time making these judgements based on the groups' points, not their line

segments. To facilitate this process, we will also merge together points that are quite

close together.

6.6 Ordering Groups by Saliency

After detecting groups in an image, we wish to use their salience to order our search
for an object. There are two factors of which we would like to take account, but so far

we have addressed only one of these. What we have not done is to look at the factors
that make two groups seem particularly likely to come from the same object. It is

necessary to form pairs of groups because a single group does not typically provide

enough points for indexing. There are plenty of clues available to tell us which pairs

of groups are especially likely to lead to successful recognition. For example, 3-D

objects often produce pairs of groups that share a line. Other clues are explored in
Jacobs[60, 59]. But we have not had a chance to explore the use of these clues in this

thesis.
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Since we have not worked on deciding which pairs of groups go particularly well

together, we decide which groups are best individually, and order our search for an

object by starting with the best groups. We have already de�ned the saliency of

groups, and we use this salience to order them, with one caveat. In spite of our

precautions, it often happens that the same lines participate in several similar salient

groups. We loop through all the convex groups, in order of their saliency. If none
of the lines in a group appear in a previously selected group, we select that group

now. A line has a particular orientation in a group, so we do allow one side of the

line to appear in one group, and the other side to appear in another group. On the

�rst pass, then, we collect together the most salient groups that come from di�erent

regions of the image. We then repeat this process as many times as we like.

6.7 The Overall System

The most important thing about our grouping system, of course, is not its e�ciency

but whether it produces useful groups. There are several ways to judge this. For our
indexing system, the important thing is that the grouping system �nds some groups
repeatedly in di�erent pictures of an object. In chapter 7 we will show experiments

that measure under what circumstances our grouping system is adequate for recogni-
tion. But we would also like to get a sense of how useful our convex grouping system
might be as a starting point for further work on grouping. For example, we know that
our method of locating point features is rather simple, and we would like to know
whether the convex groups that we form might be a good basis for a better point

�nder. And we would like to know whether adding constraints to our system might
winnow out some spurious groups. One way to judge the potential of our current

system is to just see some examples of the output that it produces.

Figures 6.13 and 6.14 show the most salient groups found by the grouping system
on an isolated telephone. Many of the groups found here show up reliably in other

pictures of the phone, taken from slightly di�erent viewpoints or distances.

In �gures 6.16 and 6.17 we see some groups found in the scene shown in �gure

6.15. Almost all the telephone's convex groups are at least partially occluded in this
picture. However, we �nd unoccluded portions of these groups, many useful groups
from the stapler, and some of the salient structure of the mugs. Figures 6.19, 6.20,

and 6.21 show groups found in a similar scene, which is shown in �gure 6.18.

Figures 6.23 and 6.24 show the results on a di�erent scene, shown in �gure 6.22,

which was taken at the CMU calibrated image lab. Although the edges are noisy
and hard for a person to interpret, we can see that the system �nds much of the

rectangular structure inherent in the buildings in the scene.

In each of the pictures shown, many of the most salient groups come entirely from
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Figure 6.13: This shows the most salient groups in an image of a telephone. These

groups have a salience fraction of at least :75, and each group contains line segments

that do not appear with the same orientation in any more salient group. The dotted
lines show the edges of the image. There is a box around each separate group. Solid

lines show the lines that form the group. Circles show the corners found in the group.



6.7. THE OVERALL SYSTEM 189

Figure 6.14: This shows the second pass through the convex groups. The lines

segments in each group may have appeared in one previously selected group, but not

in two.
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Figure 6.15: A scene with the telephone and some other objects.
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Figure 6.16: Similarly, the most salient groups found in a scene.
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Figure 6.17: The second most salient groups found.
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Figure 6.18: Photograph of another scene.
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Figure 6.19: This shows the most salient groups in an image of a telephone. These

groups have a salience fraction of at least :75, and each group contains line segments

that do not appear with the same orientation in any more salient group. The dotted
lines show the edges of the image. There is a box around each separate group. Solid

lines show the lines that form the group. Circles show the corners found in the group.
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Figure 6.20: This shows the second pass through the convex groups. The lines

segments in each group may have appeared in one previously selected group, but not
in two.
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Figure 6.21: This shows the third pass through the convex groups.
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Figure 6.22: A picture from the CMU calibration lab, which was randomly selected
from David Michael's directory.
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Figure 6.23: First pass through the CMU picture.
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Figure 6.24: Second pass through the CMU picture.
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the convex structure of a single object, making them potentially useful for recognition.

We also see many remaining challenges to grouping, because many of the groups found

either do not appear perceptually salient, or appear to combine either lines from two

di�erent objects, or to combine strong lines from one object with noisy or unstable

lines.

6.8 Conclusions

Convexity is just one potential grouping clue, but it is an important one to under-
stand thoroughly. Objects often contain at least some convex parts, especially in two

important application areas, recognition of buildings and of manufactured objects.
For such objects convexity has often been used e�ectively to assist recognition, or

other matching problems. But convexity has usually been handled in ad-hoc ways
that are sensitive to local perturbations of the image.

This chapter shows that a simple, global salience measure can be used to e�ciently
�nd convex parts of an image. A global de�nition of our output has the strong
advantage of allowing us to anticipate our output, independent of unrelated context.
However, local methods have been used previously because global methods appear

ine�cient. We show here that much of the global constraint provided by salient
convexity can be converted into a form in which it can be applied at each step of the
search, and that this allows us to build an e�cient system.

We demonstrate the system's e�ciency both empirically and theoretically. Our
analysis provides a quantitative understanding of when our system will be e�ective,
with both theory and practice leading to the same basic conclusions. We also see
under what circumstances salient convex grouping itself will be useful.

In addition, we draw attention to some important problems in bridging the gap

between grouping and indexing. When dealing with real images, one must avoid cre-
ating spurious point features that are sensitive to noise. This is particularly important

when these features will be used for indexing, because we must assume that all, or
most of the features found in a group actually come from the object for which we are
looking. We show how to estimate the instability of features from basic assumptions

about the error in our edge and line detection, and that this makes the output of our
grouping system much more robust.

We also show that it is important to recognition to more carefully determine both
the salience of a particular group, and the relative salience of pairs of groups. We

refer the reader to Jacobs[60, 59], however, for a more thorough treatment of this

topic.

In chapter 7 we will examine the contribution that this grouping system can

make to a complete recognition system. Grouping will reduce the combinatorics of



6.8. CONCLUSIONS 201

recognition by focusing our search for an object on subsets of the image that are likely

to all come from a single object, and by providing us with a canonical ordering of the

features in a group. It is not necessary that every group of lines that we �nd in the

image actually comes from the object for which we are looking. It is su�cient if we

can locate enough image groups to allow us to recognize an object without having

to consider too many image groups, that is, our groups need to provide points that
are more likely to come from the object for which we are looking than are randomly

selected groups. The greater this likelihood is, the more grouping will help us.

Some of the motivation for using salient convexity as a grouping clue are given

in work that we reference. Some of the motivation is the obvious fact that objects

often have convex parts that frequently produce convex edges in the image. But our
theoretical analysis also helps us to see when salient convexity will be useful. If a
random process is unlikely to produce many salient convex groups, than the groups

that we do �nd will be likely to re
ect some of the underlying structure of the scene.
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Chapter 7

A Recognition System

7.1 Linking the Pieces Together

We have now described the main components of a recognition system. We have shown
how to form groups of image points, how to use these groups to index into a data
base, matching them to geometrically consistent groups of model points, and how to

use these matches to generate hypothetical poses of additional model features. In this
chapter we link these pieces together to see how they interact. This will give us some
idea of the potential value to a complete recognition system of both our indexing and

our grouping system. It will also point out areas where further study is required.

We begin by describing how we combine the modules that we have developed into
a complete system. In the course of this description, we will mention a number of
thresholds that are used. We give the values of these thresholds together, at the end

of the description.

In the preprocessing stage we must represent groups of model points in a lookup
table. We do this with the following steps. First we take a series of photographs

of an isolated object. Then we run our grouping system on each photograph. We

look at the most salient groups found in each image, along with their point features,

to determine, by hand, which groups are found consistently. This step is somewhat
subjective, although it could be automated if we had a CAD model of the object, and

knew the viewing direction of each picture. Then, by hand, we match the points that
these groups produce between all the images. We now have a list of groups of model
points, and for each group we have the location of the points in a number of images.

We form some additional groups from subsets of these groups. If a group produces at

least four point features, we may form new groups of points by removing one of the
points in the initial group. This will allow us to match that group if one of its points

is not detected in the image. The choice of which subsets of groups to represent in

our lookup table is also subjective, and based on a judgement of which groups are

203
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likely to be detected in an image with a missing point feature. These model groups

typically produce three to �ve point features, which are not enough with which to

perform indexing. So we form all pairs of these groups, giving us group-pairs that

contain six or more points.

For each group-pair, there are only some orderings of the point features that we

need to represent in our lookup table. First of all, we know the order of points
around the perimeter of each convex group. We consider each point in the group a

potential starting point in ordering the whole group, but then given a starting point,
the order of the remaining points is determined by just proceeding clockwise about

the group. If one of the groups in a group-pair has more point features, we put this

group's points �rst, knowing that we will be able to impose the same ordering at run
time. If the groups have the same number of point features we must consider putting

either group �rst. So if the two groups have n1 and n2 points, the total number

of possible orderings of these points is n1n2 if n1 6= n2, and is 2n1n2 if n1 = n2.
Thus we see that grouping allows us to reduce the total number of possible orderings
signi�cantly; without grouping there would be (n1 + n2)! orderings to consider. For
any ordering of the points, the �rst three points are used as a basis for computing the

a�ne coordinates of the remaining points, with the second point used as the origin of
this basis. If we represent all of these orderings of each group-pair in our table, then
we may perform indexing using any one of these orderings of a pair of image groups,

and we are guaranteed to �nd the matching ordering of the model points in our table.
In practice, in some of our experiments we explicitly represent in the table only one

of the n2 possible orderings of the second group in the pair, in order to save compile

time and space. This requires us to perform indexing by considering all possible
orderings of the points in the second group of a pair of image groups, and to combine
the results. These two methods will produce the same output, because they each
compare all matches between the image and the model points. While in a working
recognition system we would not want to sacri�ce run time e�ciency for compile time

e�ciency and space savings, this can be a useful trade-o� when experimenting with

a system.

As described in chapter 4, given a series of images of each ordered set of points,
we compute the a�ne coordinates of the points in each image, and then determine

the lines in � and � space that correspond to this group-pair. We determine which

cells these lines intersect in a discretized version of these a�ne spaces. The method
of discretization is also described in chapter 4. In each intersected cell, we place a

pointer to the group-pair. Accessing a cell, then, produces a list of model group-pairs
that could produce an image with a�ne coordinates that fall somewhere in that cell.

These steps produce two hash tables that represent the � and � spaces. Each cell in

the two spaces that is not empty is represented in the appropriate table, hashed by
its coordinates.
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We must also represent a model's line segments during preprocessing, so that we

may use them to verify hypotheses. To do this we choose by hand a small set of line

segments that represent some of the boundary of the object, and that have endpoints

that reliably appear in our images of the isolated model. This process could also be

automated. In the tests below, we choose line segments whose endpoints all belong

to the model groups that we have chosen. Chapter 4 describes how we use images
of the endpoints of these line segments to derive lines in � and � space. We derive

a di�erent pair of lines for each triple of points that we have used as a basis for

computing the a�ne coordinates of one of the group-pairs. So for every three points

that we might use as a basis for computing the a�ne coordinates of image points

for indexing, we have also used those points as a basis for representing the model's
line segments. Therefore, whenever indexing produces a match between model and
image points, we may use that match to determine the location of the endpoints of

the model's line segments.

We may also represent more than one object in our indexing tables in just the
same way that we represent a single object.

At run time, we begin by applying our grouping system to an image of a scene

that contains the object that we seek. This provides us with a set of convex groups,
along with a saliency fraction that measures the value of each group. We drop convex
groups if the total length of their line segments falls below some threshold. There

are then many di�erent ways that we could order pairs of these groups for indexing.
We choose a simple method that demonstrates some of the value of these groups.
As described in chapter 6, we make one pass through the convex groups, picking the
most salient ones subject to the constraint that each side of each line segment can
appear in only one convex group. This typically produces between ten and twenty-

�ve di�erent convex groups for an image of moderate size. Then we form all pairs
of these convex groups. We now have some freedom as to how to order the points
in this group-pair. If the two convex groups each have the same number of points,

we may put either one �rst, otherwise we put the group with the most points �rst.

And we may pick any point as the starting point in the �rst convex group, which

determines the three points that we will use as a basis. Of all the possible orderings
available to us, we choose the one that seems to provide the most stable a�ne basis.

As a simple way of judging the stability of an a�ne basis, we consider how the a�ne
coordinates of a point described in that basis will change if we perturb them slightly.
Then, if we have only made an entry for one ordering of the second convex groups in

the index tables, we must perform lookups with all orderings of those points at run

time. Note that when we change the ordering of points in the second convex group
this will not a�ect the basis points, and so we only need to reorder the indices we

use in the lookup, we do not need to recompute a�ne coordinates, or the e�ects of

error. We perform indexing with each set of points, as described in chapter 4. This
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associates a list of matching sets of model points with each group-pair found in the

image. We then order these group-pairs based on the number of matches found for

each.

Beginning with the image group-pair that matches the fewest sets of model points,

we generate hypotheses about the location of the model in the scene. When an

image group-pair matches more than one model group-pair, we order these matches

arbitrarily. For each match, we use the techniques described in chapter 4 to �nd the
position of the endpoints of the model's line segments in the image implied by a least

squares �t between the model and image points that indexing has matched. We then

use these line segments to get an overall idea of the value of a hypothesis. First,
we only consider a hypothesis if it results in projected model line segments whose

cumulative length is above some threshold. This guards against the possibility that a

match will cause the model to project to a very small area of the image, where most
of its edges could be matched to texture or noise. We then match each model line
segment to an image line segment if the image segment is completely within some �xed
distance of the projected model segment, and if the angles of the two line segments

are similar. More than one image segment may be matched to a model segment,
but the total length of the matching image segments cannot exceed the length of

the matching model segment. We then divide the length of the image segments
that we have matched to the model by the length of the projected model segments,
determining what fraction of the model we have matched. In the experiments below,

we have examined hypotheses for which this fraction was above some threshold.

This method of verifying an hypothesis is designed to be an easy method of de-

ciding whether we have the right match. It could certainly be improved. Most

importantly, in veri�cation, and also in indexing, we have not taken advantage of the
fact that not all features of the model are visible from all viewpoints. In indexing,
this means that we assume that the model points come from a wire-frame model,
and we may match image points to model points with the implicit assumption of a

viewpoint from which the model points would not actually be visible. In veri�cation,

this means that we make no e�ort to perform hidden line elimination. This can result
in hypotheses that produce impossible projections of the model. Our goal, however,

has been to demonstrate just the essentials of a recognition system.

The system that we have described requires us to choose a number of thresholds,

which we have mentioned throughout the text. We summarize these choices here. We

used a single set of values for these thresholds in all the experiments we describe in

this chapter. In running the Canny edge detector, we used a � of two for Gaussian

smoothing. In the split-and-merge algorithm, which we describe in chapter 6, we
approximated edges with line segments such that the edges were all within no more

than three pixels of the line segments. When grouping, we used a saliency fraction

of :75. In chapter 6 we show why that is a good choice in terms of e�ciency and of
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the size of the output. Some thresholds are also used when determining whether two

lines are nearly collinear, for in that case we allow a slight concavity in the convex

groups. However, we do not discuss our method of judging near-collinearity. When

determining the stability of corner features, we assume that the endpoints of line

segments are allowed to vary by �ve pixels. The variation in the relative position

of two endpoints is additionally limited to be at most 10% of the distance between
them. When determining the stability of corners formed by pairs of connected line

segments, we assume that the underlying curve may di�er by up to six pixels from

the approximating line segments. We compute the possible variation in the location

of a corner due to these errors, and only make use of corner features whose location

can vary by �fteen pixels or less. If two or more corners are within two pixels of each
other, we compress them into a single corner, located at their average. This allows
us to eliminate groups of points that are nearly identical. We only use groups for

indexing if they contain at least three point features, and if the sum of the length of
their line segments exceeds one hundred pixels. In indexing, we divide each dimension

of the index space into �fty parts. These intervals are not uniform, and are described
in chapter 4. We only represent sections of a�ne space between twenty-�ve and minus
twenty-�ve. When indexing, we allow for an error of �ve pixels in the location of point
features. When performing veri�cation we require a projected model's lines to have

a collective length of at least one hundred pixels. We match a model line to an image

line if the entire image line is within ten pixels of the model line, and if their angles
di�er by no more than �

10
. Although a signi�cant number of thresholds are used in

the entire system, the core components contain few important thresholds. The basic

grouping system has just one threshold, the salience fraction, and we have shown
both analytically and experimentally how this may be chosen. Several thresholds are

used in building the indexing table; these determine the accuracy with which we will

represent a�ne space. And a single threshold is used when indexing to measure our
uncertainty about the location of features.

7.2 Experiments

We have run some experiments with this system to provide the reader with an idea

of the kinds of images that it can handle. Our main goals are to provide examples

of when the grouping system will be su�cient to help recognize an object, to show

that the indexing system provides correct matches when the grouping system �nds

correct image groups, and to provide some idea of the overall reduction in search that
grouping and indexing can provide. We also want to give an example of the kind of

interactions that can occur between grouping and indexing. Finally, we want to see

where the overall system breaks down. This can help tell us which aspects of this
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system are attractive candidates for additional work.

In these experiments the system recognizes a telephone. This is an object that
contains many signi�cant convex parts. On the other hand, the telephone that we use

is still quite challenging to our system because it contains many curved edges as well.

Some of these curves are gentle, for example the corners of the phone are generally

rounded. But even these gentle curves can cause unstable corner points.

Figure 7.1 shows edges found in two images of the isolated telephone used to build

a model of the phone. Circles in these images show corner features that appear in
salient convex groups. The ones that are used in the model are numbered for reference.

Figures 6.13 and 6.14 in chapter 6 show some of the more salient convex groups found

in one of these images. Figure 7.2 shows another example of these groups, including
some of the groups used in building the model. We only model the portion of the

telephone that can be seen from the front, right side, to alleviate problems caused by

the lack of hidden line elimination, and to simplify model building. We form groups
whose point features have the following indices: (14 15 16 18) (13 3 35 36) (31 32 33
34) (11 17 19 20 21) (11 17 19 21) (11 17 19 20) (11 17 20 21) (11 19 20 21) (17 19 20
21) (9 10 17 11 22) (9 10 17 11) (9 10 17 22) (9 10 11 22) (9 17 11 22) (10 17 11 22)

(9 10 11) (10 17 11) (10 17 22) (9 10 17) (0 1 11 22) (0 17 11 22) (1 13 12) (0 1 2 3 4
22) (0 1 2 3 4) (1 2 3) (41 42 43) (19 50 51 20) (20 50 51) (19 50 51). For veri�cation,
we represent the model with line segments that connect the points: (0 1) (1 2) (2 3)

(3 4) (0 9) (9 10) (9 11) (11 17) (10 17) (3 13) (13 12) (12 4) (14 15) (15 16) (16 18)
(18 14) (1 13) (10 12) (17 19). Examples of the projection of these line segments are

shown later on, when we show examples of the system running. These segments only

describe part of the phone's boundary; since our focus is not on accurate veri�cation
we have built only a simple model of some of the phone's line segments, which serves
to tell us when we have a reasonably good match.

To test the system, we have taken several series of photographs. In each series we

begin with the isolated telephone, and add objects to the foreground and background
to make the scene progressively more complex. This gives us an idea of when the

system will work, and when it will break down. We begin by showing each scene,

the edges found in it, and the correct answer, when it is also found. We will then

describe more details of the algorithm's performance, and analyze its successes and
failures more carefully.

For example, �gure 7.3 shows a picture of the isolated telephone and the edges

found in this image. Figure 7.4 shows the 83'rd hypothesis that the system generates

about the location of the telephone in the scene, which is correct. In this �gure,

lines indicate the hypothesized location of model line segments. The edges found in

the image are shown with dots. Figure 7.5 shows the same scene, with some objects

added to the background. The �gure also shows the edges found in this scene. Figure
7.6 shows the correct hypothesis, which was found for that image. In �gure 7.7 we
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Figure 7.1: Edges from two of the images used to build models of the telephone.

Circles show all the point features that appear in a convex group with saliency greater

than :75. The numbered circles are the points that appear in groups that are actually
used in our model of the telephone. Although numbers between 0 to 51 are used,

there are only 29 numbered points.
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Figure 7.2: This shows the most salient groups found in one of the images of the
telephone. These groups have a saliency fraction of at least :75, and each group

contains line segments that do not appear with the same orientation in any more

salient group. Dotted lines connect all the lines that were used to form a convex
group. There is a box around each separate group. Circles show the corners found in

the group. This shows examples of groups formed using points with the indices: (14
15 16 18), (9 10 17 22), (31 32 33 34), (41 42 43), and (19 50 51 20). See �gure 7.1

for a key to these corner numbers.
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add an occluding object, in front of the telephone. The system again �nds the correct

hypothesis, which is shown in �gure 7.8. It is interesting to note that this correct

hypothesis is slightly di�erent from the one found in the previous images; one less

point is matched. This appears to be due to slight variations in the output of the edge

detector, which cause one corner to disappear. In �gure 7.9 we add another occluding

object, to make the image a little more di�cult. Again, �gure 7.10 shows the correct
answer. Figure 7.11 shows an additional occlusion, which causes the system to fail.

In this image, one of the groups used to generate the previous correct hypotheses is

partially occluded. Two more series of tests are shown in �gures 7.12 through 7.22.

These tests give us a rough idea of the kinds of images on which the system will

work. We see that our system can tolerate moderate amounts of occlusion, because
many local groups are represented in the lookup table, and only two must be found
in the image to make recognition possible. We would also like to get some idea of

the speedup with which grouping and indexing can provide us for these images. We
can determine this partly by recording the number of incorrect hypotheses that the

system had to consider before reaching a correct hypothesis. The system correctly
recognized the telephone in eight of the �gures above, �gures 7.3, 7.5, 7.7, 7.9, 7.12,
7.14, 7.17, and 7.19. In these images, the correct hypothesis was the 83'rd, 62'nd,
165'th, 80'th, 2nd, 168'th, 525'th, and 545'th hypothesis considered. In �gure 7.13 we

show a second correct hypothesis, which was the 8th one found. These �gures show

that grouping and indexing together can reduce the amount of costly veri�cation
required to a small amount. For comparison, consider what might happen if we
used simple alignment without grouping or indexing. The images shown produce

hundreds of point features, of which perhaps ten or twenty might actually come from
point features in the model. Therefore we would expect to have to search through

thousands of triples of image features before �nding three that could all match points

in our model. For each of these triples of image points we would have to consider
all triples of model points. Since we use about thirty model points, we would have
to match each triple of image points to tens of thousands of triples of model points.

Our total expected search, then, before �nding a correct match could be in the tens

of millions. Our experiments also show that the amount of work required tends to

grow with the complexity of the scene, but again, more slowly than would a simple
alignment system.

Although we already have a system that can recognize objects in moderately com-
plex scenes, in some ways this is still a preliminary system. It is therefore particularly

important to understand problems that may exist in the current system, and how we
might work to overcome them. We will mention three di�culties. First, and most

importantly, we ask why the system fails in some cases to recognize objects. These
failures always occur because the grouping system has not located more than one

convex group in the image that it can match to the model. Second, we examine
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Figure 7.3: On top, an isolated picture of the telephone, from the �rst series of

recognition tests performed. Below, the edges found in the image.
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Figure 7.4: This shows the correct hypothesis, which the system found, for the

image shown in the previous �gure. Lines, which indicate the hypothetical location

of model lines, are shown superimposed over a dotted edge map of the image. Circles
indicate the location of image points that were used for indexing. Squares show the

hypothesized location of the corresponding model points.
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Figure 7.5: On top, a picture of the telephone with some other objects in the

background, from the �rst series of recognition tests performed. Below, the edges

found in the image.
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Figure 7.6: This shows the correct hypothesis, which the system found, for the image

shown in the previous �gure.
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Figure 7.7: On top, a picture of the telephone in which some occlusion is added,

from the �rst series of recognition tests performed. Below, the edges found in the

image.
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Figure 7.8: This shows the correct hypothesis, which the system found, for the image
shown in the previous �gure.
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Figure 7.9: On top, a picture of the telephone with some additional occlusion, from

the �rst series of recognition tests performed. Below, the edges found in the image.
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Figure 7.10: This shows the correct hypothesis, which the system found, for the

image shown in the previous �gure.
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Figure 7.11: On top, a picture of the telephone in which some occlusion is added,

from the �rst series of recognition tests performed. Below, the edges found in the

image. The correct hypothesis was not found for this image.
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Figure 7.12: On top, an isolated picture of the telephone, from the second series of

recognition tests performed. Below, the edges found in the image.
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Figure 7.13: This shows two correct hypotheses, which the system found, for the

image shown in the previous �gure.
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Figure 7.14: On top, a picture of the telephone with some objects in the background,

and some occluding objects, from the second series of recognition tests performed.

Below, the edges found in the image.
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Figure 7.15: This shows the correct hypothesis, which the system found, for the
image shown in the previous �gure.
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Figure 7.16: On top, a picture of the telephone in which some occlusion is added,

from the second series of recognition tests performed. Below, the edges found in the

image. The correct hypothesis was not found for this image.
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Figure 7.17: On top, a picture of the telephone with some other objects in the

background, from the third series of recognition tests performed. Below, the edges

found in the image.
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Figure 7.18: This shows the correct hypothesis, which the system found, for the

image shown in the previous �gure.
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Figure 7.19: On top, a picture of the telephone in which some occlusion is added,

from the third series of recognition tests performed. Below, the edges found in the

image.
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Figure 7.20: This shows the correct hypothesis, which the system found, for the

image shown in the previous �gure.
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Figure 7.21: On top, a picture of the telephone in which some occlusion is added,

from the third series of recognition tests performed. Below, the edges found in the

image. The correct hypothesis was not found for this image.
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Figure 7.22: On top, a picture of the telephone in which some occlusion is added,

from the third series of recognition tests performed. Below, the edges found in the

image. The correct hypothesis was not found for this image.
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the performance of the indexing system now that it is coupled to a grouping system.

Finally, we will show some relatively minor problems that occur due to our simplistic

method of veri�cation. These �nal problems should be easily resolved.

In examining the failures in our grouping system, we �nd a number of simple

problems that could be easily �xed to improve the system's performance. We also

�nd a few intriguing failures, that illustrate some di�cult problems that remain.

Occlusion is one of the main reasons that we may fail to �nd a group in an image.

Of course if a corner point is occluded, there is no way to �nd it. We partially
compensate for this by including some subsets of the groups in our lookup table, but

this is only e�ective if the occlusion is not too great. Our grouping system may also

be e�ective if part of a group that does not contribute to a corner point is occluded,
but again, if the occlusion is too great, the salience of the group may be signi�cantly

lowered. Figure 7.10 shows an example of a partly occluded group that is still found
and used to recognize an object.

A pervasive problem in the examples that we have shown is that many potentially
useful groups are found in the image which we have not represented in our lookup

table. For example, each row of buttons on the front of the telephone tends to produce
a salient parallelogram in the image. Also, we did not represent the front rectangle

of the telephone, which includes points: (1 2 3 13) (�gure 7.1 shows the locations
of all numbered points), because the line from point 1 to point 13 usually did not
appear when we were building our model. However, this group was found in the
image shown in �gure 7.21, for example, as is shown in �gure 7.32, and the presence

of that group in the model would have allowed the system to recognize the telephone
in that image. A number of other salient groups contain corners that came entirely
from the telephone, but were not represented in the lookup table. There is some
danger in representing too many groups in our model. Since all pairs of groups must

be entered in the lookup table, increasing the number of groups produces quadratic

growth in the space requirements of the system, in the compile time requirements
of the system, and presumably in the number of spurious matches produced by the

system. However, it seems that signi�cantly better performance could be achieved
without too great a cost by perhaps doubling the number of groups used.

We should also mention that the failure of the system to �nd some convex groups

appears to be due problems in the system that we have not diagnosed. Also, the
system eliminates small groups from consideration, and this seems in practice to have

caused it to bypass some useful groups, particularly the ones with points (31 32 33
34).

Overall, it seems that with some quite straightforward e�ort the system could

succeed in recognizing the telephone in all the images shown in this chapter. We can

also see, however, that the system fails to �nd some groups due to problems that
would be more challenging to address. One such problem is that a salient, potentially
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useful group can be overshadowed by a more salient, but spurious group that uses

some of the same lines. For example, in �gures 7.26 and 7.27 we can see that the

group of lines forming the inner square of the keypad, which produces points (14 15

16 18), appears among the set of the second most salient groups in the image, because

an occlusion produces a more salient group that contains some of the same lines. The

general problem of determining which groups are most meaningful and should be used
to attempt recognition is quite a challenging one. Our salience fraction provides only

a rough and simple solution.

Also, sometimes an extraneous or occluding line may be included in a group,

contributing to an extra point feature. For example, if one closely examines the group
in �gure 7.30 that appears to produce points (10 17 11), one sees that point 11 is not

found, but that an occlusion produces a new point near this location. This group,
although slightly incorrect, does contribute to the successful recognition of the object.

To handle these sorts of problems, one would need to reason about which points in
a group re
ect some essential structure, and which points come from occluding or
spurious lines. This problem seems quite di�cult.

We can also see examples in which the instability of point features can cause

di�culties. There are several examples of groups in which one or more point features
do not appear due to slight changes in the underlying edges. For example, if one
closely compares the correct hypotheses shown in �gures 7.6 and 7.8, one sees that

point 22 disappears in the second image, even though the underlying scenes and edges
appear almost identical. In this case, the problem is handled because we represent

that group in the model both with and without this point. As another example, in

�gure 7.30, we can see that in the group containing points (1 2 3 13) there are two
nearby corner points where we would expect point 1 alone to be found. In both these
cases, slight variations in the edges can lead to changes in the resulting line segments
that either produce or eliminate a corner. While we partially handle this problem,
our solution is still not complete.

Overall, we can see that our convex grouping system is quite successful at �nding

salient convex collections of lines that can be used to recognize objects. More work

could be done, however, to determine the best ways of making use of these groups.
This includes the problems of determining which point features are due to some stable
underlying structure, the problem of determining which groups are most salient and

most likely to be useful, and the problem of determining which groups should be

paired together.

Our experiments also demonstrate the e�ectiveness of our indexing system. We
found no examples in which indexing failed to match a group-pair of image features
to the appropriate model features. And by indexing with many image group-pairs

and beginning our search with the ones that matched the fewest model group-pairs

we also produced short searches.
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We can also see some potential for interference, though, between the speedups

provided by grouping and the speedups provided by indexing. Indexing using groups

provided by our grouping system produced lower speedups than indexing using ran-

dom point features did in our earlier tests. It is not hard to see why. Our grouping

system will produce collections of model points and collections of image points that

will cluster in certain portions of our lookup tables. For example, the �rst four points
in a group-pair often come from a single convex group. If these four points are mu-

tually convex, this restricts the set of possible a�ne coordinates that can describe

them. If four points come from a single convex group, than the fourth point cannot

have a�ne coordinates that are both negative, or that are both positive and sum

to less than one, for example. Also, our grouping system frequently produces pairs
of groups in which the points in each group are nearby, and the points in di�erent
groups are widely separated. This again causes both models and images to cluster

in certain parts of the lookup table, reducing the potential speedups of indexing. In
e�ect, grouping is doing some of the same work as indexing. Since we only consider

matching image points collected together by our grouping system to model points col-
lected together by grouping, grouping is causing us to only consider matches that are
more likely to be geometrically consistent than are random image and model groups.
This means that when indexing precisely enforces geometric consistency, some of the

constraint in this consistency has been already more roughly used by the grouping

system.
Finally, we mention that our recognition system produces some incorrect hypothe-

ses that nevertheless pass the thresholds used by our veri�cation system. One reason

for this is the simple nature of our veri�cation module. Since we use a few line seg-
ments to model the telephone, and since we do not perform hidden line elimination,

there are some quite incorrect poses that match a signi�cant number of image lines.

An example of this is shown in �gure 7.36. This could be handled by a more careful
veri�cation system. A second problem can occur if we generate a hypothesis that is
almost, but not quite correct, as shown in �gure 7.37. In this case, the inner square

of the keypad in the image is matched to the outer square of the keypad in the model.

In order to handle this problem, we would need some method of improving our esti-

mate of pose by changing it slightly. We have not attempted to address problems of
veri�cation in this work, however.
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Figure 7.23: Some of the most salient groups found in the image shown in �gure 7.3.

These are the groups with the highest salience fraction, given that no line segment is

allowed to appear in more than one group with the same orientation. These groups
are continued in the next �gure. It is this set of groups that is used in our recognition
tests.
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Figure 7.24: The rest of the most salient groups found in the image shown in �gure

7.3.
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Figure 7.25: A set of the next most salient groups found in the image in �gure 7.3.

These groups contain lines that may have appeared in a previously chosen salient
group. These groups were not used in our recognition tests.
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Figure 7.26: This shows the most salient groups found in the image shown in �gure
7.11.
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Figure 7.27: This shows the second most salient groups found in the image shown

in �gure 7.11.
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Figure 7.28: The most salient groups found in the image shown in �gure 7.17. These

are the groups with the highest salience fraction, given that no line segment is allowed

to appear in more than one group with the same orientation. It is this set of groups

that is used in our recognition tests.
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Figure 7.29: The set of the second most salient groups found in the image shown in
�gure 7.17. These groups were not used in the recognition tests.
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Figure 7.30: This shows the most salient groups found in the image shown in �gure
7.19.
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Figure 7.31: This shows the second most salient groups found in the image shown
in �gure 7.19.
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Figure 7.32: This shows the most salient groups found in the image shown in �gure

7.21.
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Figure 7.33: This shows the second most salient groups found in the image shown
in �gure 7.21.
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Figure 7.34: This shows the most salient groups found in the image shown in �gure
7.22.



7.2. EXPERIMENTS 247

Figure 7.35: This shows the second most salient groups found in the image shown

in �gure 7.22.
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Figure 7.36: More than half of this incorrect hypothesis still matches image line
segments, due to the simplicity of the model that we use for veri�cation. As a result,

this hypothesis passes our veri�cation threshold.
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Figure 7.37: In this hypothesis, the inner square on the keypad of the phone in the

image is matched to the outer square in the model. This results in a hypothesis that
is just a little wrong.
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7.3 Conclusions

This chapter has shown that the grouping and indexing systems that we have built

can form useful components of a complete recognition system. Our indexing system

provides correct matches while using point features located in noisy images by a real
feature detector. Our grouping system �nds many salient groups that are useful for

recognition. Together, we have shown that these two subsystems have the potential

to dramatically reduce the amount of search required to locate objects.
One implication of this is that the systems we have built can serve as major

components for a practical recognition system in certain domains. Our grouping
system will support recognition of objects that have a number of convex parts, at

least some of which appear unoccluded in images. And in some domains simple

methods of pairing convex groups, using connectivity or proximity for example, may
quickly provide pairs of groups that come from a single object. The recognition
of buildings using aerial imagery, or the recognition of many manufactured parts in
factory environments are two examples of domains in which our grouping system may
be adequate as it is, or with simple modi�cations. And we have demonstrated that

our indexing system is su�ciently robust to be useful whenever grouping can provide
us with groups of image points that come from the points of a precompiled model
group.

Our system also demonstrates the potential of a recognition strategy based on
grouping and indexing. The e�ectiveness of this strategy is limited by our grouping

system's ability to produce groups of many image point features that all come from a

single object. There is much work to be done before such grouping can be performed
reliably in many realistic domains. We have pointed out some of these challenges,

already. We must integrate many di�erent grouping clues to achieve robustness when
salient convexity alone is insu�cient. We must learn to combine small groups into
larger groups e�ectively. And we must robustly derive point features from groups

of edges that are often curved or noisy. The greatest potential of indexing will be
realized only as we learn to produce larger groups of point features that more reliably

match our models. But we have shown that our present grouping system is already
su�cient to produce signi�cant speedups in a variety of real situations. As methods

of grouping improve, the e�ectiveness of our strategy will be increased further.
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Conclusions

This thesis considers both di�cult long-term questions of visual object recognition
and more practical short-term questions involved in building useful applications. To
do this we have developed an understanding of recognition in a domain of simple
features. In this domain, we have shown that achieving human performance requires

a strategy that can control the complexity of the problem, and that grouping and
indexing together have the potential to do this. We have also developed tools that
allow us to come to grips with some fundamental questions of recognition, such as:
\How should we describe a 2-D image so that we can use this description to access
our memory of 3-D objects?", and we have provided an example of how the di�cult

problem of grouping can be approached. At the same time, we have produced some
tools that can be of practical value in building recognition systems of more limited
scope. We have developed a useful grouping system and an e�cient indexing system

for point features, and we have broadened our understanding of the e�ects of error on
recognition systems. Our goals in this chapter are to describe the connection between
our analysis of a simple domain and the larger problem of general object recognition,

and to describe the strengths and limitations of our practical tools, making it clear
where more work is needed.

8.1 General Object Recognition

In the introduction, we sketched a view of general object recognition that involves

isolating interesting chunks of the image and describing them in a way that can trigger
our memories. This approach to recognition gives rise to di�cult questions. How do
we divide the image into usable pieces? How do we describe these pieces of the image?

Is the description in 2-D, 3-D or some mixture of the two? Why would we want to

capture some properties of an image in our description, while ignoring others? What

251
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is the role of context, prior knowledge, and the needs of the particular situation in

determining what is a good description? And perhaps most importantly, why might

this overall strategy provide a good way of recognizing objects? In this thesis we have

considered a simpli�ed domain where it is easier to thoroughly understand some of

these questions.

We can see in our domain that computational complexity presents a tremendous

challenge to object recognition systems. Moreover, this does not seem to be an
arti�cial problem produced by the simplicity of the domain, for it appears that as

we make our domain more realistic, problems of complexity will only grow worse.

We have also shown the relationship between grouping and indexing. Each of these
tools has only limited potential by itself to control complexity. Grouping limits our

search within the image, but does not reduce the number of models that we must

compare to an image group. Indexing can only signi�cantly reduce our search if we
can perform indexing with large groups of image features. Without grouping, we
have no e�cient way of �nding a reasonable number of groups with which to perform
indexing. Although a strategy of using grouping and indexing for recognition may

seem obvious, it is useful to see the necessity of this strategy in a concrete domain.
Also, there has been much work on indexing using invariants in recent years. and

relatively little work on grouping. It is important to stress that this work on indexing,
while valuable, is only half the picture. Without more e�ective grouping techniques,
indexing may be applied to only very simple kinds of images, in which very simple

grouping methods will work.

The center of this thesis has been devoted to characterizing the images that a

model can produce, and to showing the value of simple solutions to this problem.

We have shown that indexing models that consist of point features is equivalent
to matching a pair of points, in two image spaces, to pairs of lines that represent
possible groups of model points. The spaces are simple Euclidean ones, and any
point can correspond to an image, while any line can correspond to a model. By

reducing indexing to a simple, symmetric form, we have produced a powerful tool for

analyzing various approaches to recognition.

This work allows us to see the limitations in our domain of attempts to infer 3-D
structure from a single 2-D image. We see that there are no invariant functions for
general 3-D models, that there are no sure inferences of 3-D structure, and that the

arguments sometimes put forward to explain the value of perceptually salient struc-

tures such as parallelism and symmetry have signi�cant limitations. These results

have clear implications for recognition within our domain. They do not settle the

issue for more complicated domains. We cannot infer 3-D structure in a world of
point features in which we make no assumptions about the a priori distribution of

objects. This does not mean that this structure cannot be inferred in more realistic

domains. But we have shown that explanations of 3-D inference, or of the special role
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of perceptually salient structures must lie outside the domain that we have studied.

Many past approaches to understanding these problems have been so general as to

apply to any domain, and we can see that these explanations must fail.

We have not directly addressed the question of why one description of an image

should be used to access memory instead of another. But our conception of visual

memory as a problem of geometric matching in some image space provides a frame-

work for addressing this question. A vocabulary for describing images can be a way
of creating an image space and decomposing it into equivalence classes that medi-

ate matching. When we describe an image with a set of quantitative values, we are

de�ning an image space. When we describe an image qualitatively, we are making a
commitment to treating that image as the same as other images that have the same

description. That is, we are dividing image space up into chunks, and treating im-

ages that map to the same chunk of image space in the same way. A simple, analytic
description of the images that a model can produce in an image space provides us
with a tool for understanding the value of any particular choice of image space, or
any method of decomposing that space qualitatively.

At the same time, the symmetry of the geometric problem that underlies recog-
nition seems to preclude an answer to this problem in our domain. For example, it is

this symmetry that undermines attempts to explain the value of descriptions based
on non-accidental properties such as collinearity; it turns out that collinearity is no
di�erent from an in�nite number of other features. In a similar way, any attempt

to prefer one way of describing an image over another seems to be vulnerable to the
symmetry of the simple geometric problem that is equivalent to visual memory.

This means that to provide an answer to some of the questions that we have
raised, we must push forward into more complex domains. There seem to be two

particularly important ways in which our current domain is too simple. First, we
assume that models consist of collections of local features instead of surfaces. By
expanding our work to surfaces we would be able to describe a world consisting of

arbitrary polyhedral objects, a domain of considerable complexity. It is of great
interest whether the 3-D structure of a scene may be inferred from a single image

of polyhedral objects. As we have pointed out, there has been much work on this
problem, but it remains challenging. It is particularly di�cult and important to
incorporate a notion of error and feature detection failures into such a world. Second,

we have implicitly assumed that there is no structure to the kinds of objects that

our world contains. We assume that all collections of point features are possible

objects, and make no attempt to make use of hypotheses about the likelihood of

di�erent possible objects actually occurring, that is, we make no assumptions about
prior distributions of objects in the world. In the real world objects are solid and

self-supporting, they grow or evolve or are constructed to function in a world that has

many physical constraints. Categories of objects exist naturally; for example there
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are inherent ways in which all camels are similar, and only certain ways in which

they may di�er. All these e�ects cause signi�cant patterns in the kind of objects that

actually exist. It may be that these patterns account for the kinds of representations

that people use in recognizing objects. There are many possible sources of constraint

that could contribute to the superiority of some methods of describing images for

recognition. Do these constraints lie only in the imaging process? do they lie in the
requirement that objects be solid and connected? do they lie in the nature of our

physical world? or do they lie in the history of evolution, in the particular set of

objects that nature has placed in our world, and in the particular way that categories

of these objects may vary? We have looked at only the simplest source of possible

constraints, and found it inadequate. We have ignored other elements of the real
world of considerable importance. In particular, we mention that our work makes no
attempt to explain how we recognize new instances of a category of object with which

we are familiar, and that we have considered only the simplest instances of non-rigid
objects. But gaining a �rmer understanding of a simple domain should provide a

useful step in understanding these more complex ones.

Grouping is also a di�cult problem. We simplify it signi�cantly by focusing
on only a single grouping clue, salient convexity. It seems clear that ultimately

we should combine many clues into a grouping system. By choosing one clue we
bypass the problem of understanding others, and the particularly di�cult problem of
integrating multiple clues. We have used a probabilistic analysis to show under what

circumstances convex groups may be salient and worth using in recognition. This
analysis and our experiments also show that these groups may be located e�ciently.
By thoroughly understanding some individual grouping clues, we can contribute to a
more complete approach that integrates these clues.

Finding convex groups may be useful also because they provide us with regions of
the image that might be used to focus an analysis of color, texture or other region-
based descriptions. For example, it has proven di�cult to segment an image solely

using texture, but if convex regions are found using our methods �rst, it may be
easier to use cues such as texture to decide which groups are useful, and to decide

which ones should be paired together. Also, if we intend to integrate many clues,
it is especially important to be able to characterize the performance of each module
that makes use of an individual cue. So in thoroughly exploring one grouping clue,

we have attempted to produce work that will be useful to a more ambitious e�ort.

We have also used this grouping system to help us explore the interaction between

grouping and indexing. We �nd that even an imperfect grouping system may be of

value to a recognition system. We also show how a grouping system can simplify
the problem of �nding a correspondence between an image and a model group by

providing additional information about the groups. In our case, convex groups provide

information about how to order the point features that we �nd. This can be used to
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limit the number of matches that we must consider.

There are many aspects of grouping that are still poorly understood. We have
mentioned that we have not explored other grouping cues, or the problem of inte-

grating di�erent cues. We have also not studied the use of some prior knowledge of

what we expect to see in a scene, which might vary from situation to situation. In

addition, we should stress that many problems remain in determining just how to use

shape to perform grouping. There are many object parts that are not convex, such
as the tail of a cat, or a banana. Convexity is only one salient shape; we do not have

a good characterization of what makes a set of image edges appear to form a part of

an object. Furthermore, even when using convexity for grouping, the role played by
context is not well understood. We showed in chapter 6 that purely local methods of

�nding convex groups run into problems, missing good, globally salient groups. But
it is also clear that the lines surrounding a convex group can a�ect its salience, and

our approach does not fully take account of this.

We have attempted to support the idea that ambitious recognition problems are
best handled with grouping and indexing by showing that this strategy is practical
and useful in a simple domain. At the same time, by exploring indexing thoroughly

in a simple domain, and by exploring a simple grouping clue thoroughly, we hope to

create theoretical and practical tools that can help lead us to a solution to the larger
problems of recognition. By characterizing the images that a model can produce,
we have created a powerful new tool for understanding the advantages of and the
limitations to various ways of describing an image so that we can remember the
object that produced it.

8.2 Practical Object Recognition

In the previous section we traced the connections between this thesis and approaches

to understanding the process of recognizing objects with the capabilities of a human.
There are many less ambitious recognition problems of considerable practical value.
We have shown that in these domains, simple grouping techniques and indexing using

point features can combine to overcome some current di�culties.

It is quite computationally intensive to even recognize a single rigid 3-D object
in a realistic image. Techniques for doing this are usually either slow or apply to

a domain in which simple grouping or indexing methods are useful. By expanding

the range of useful grouping and indexing techniques we can expand the range of

application domains within which we can recognize objects. Some indexing systems

have been applied to 3-D recognition, but actually use indexing to match planar parts

of an image to planar parts of a model. Other 3-D indexing methods require large

amounts of space, and may introduce errors. We have developed an indexing system



256 CHAPTER 8. CONCLUSIONS

that can handle arbitrary groups of 3-D points, and we have shown how to account for

error in this system. Moreover, we have shown how to represent models for indexing

in the most space-e�cient possible way. This provides us with a method of indexing

that should be more complete, more accurate, and more e�cient than previous ones.

At the same time, there is certainly room for improvement in our basic system. As

we have pointed out, since error can a�ect di�erent image groups to varying extents,
one should represent the index table at several di�erent levels of discretization, to

allow one to look in the table quickly with either large or small error regions. This is
an implementation detail. A more challenging improvement to our system would be

to more carefully account for the e�ects of image error. We simplify the problem by

placing a rectanguloid about what is actually a more complicated error region. We
have shown, however, that there is the potential to achieve greater speedups from

the indexing system if we remove this simpli�cation. These changes would be clear

improvements to the basic system that we have presented.

This basic system relies on representing models' lines using a simple tessellation of
index space. There are a number of ways that we might improve upon that method.
First, if the number of model groups represented is not too great, it might be simpler

and cheaper to just explicitly compare a group of image points to each group of model
points. In that case, our representation gives us a very quick method of comparison;
we need only �nd the distance between a point and a line in a high dimensional space

to get a measure of the compatibility of an image and model group. Second, there is no
reason to think that a simple tesselation of image space is the best way to represent
image space. The problem of matching a rectangle to lines in a high-dimensional
space has the familiar 
avor of other computational geometry problems that have
been solved more accurately and e�ciently using other methods of representing a

Euclidean space. We can also imagine that even if we want to tesselate the space, that
it might prove more e�cient, and su�ciently accurate, to represent lower-dimensional
projections of the high-dimensional image spaces that we use. We have not explored

these paths, however. Third, our system requires considerable space in order to

account for partial occlusions of image groups, and uncertainties in the ordering

of points in these groups. For example, if we form a pair of convex groups that
each produce four feature points, we must consider thirty-two di�erent orderings for

these points. We might instead use a canonical ordering of points. An example
of a canonical ordering for a di�erent indexing method can be found in Clemens
and Jacobs[32]. We might also try to �nd ways of representing groups of points

so that we can quickly match them to subgroups found in the image, even when

these subgroups are missing some of the model points due to occlusion. In general,
the space requirements of our current system can be rather high because we must

represent some permutations and subsets of each group of model points. So work

aimed at limiting the need to represent all these variations on a single basic group
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could be of practical value.

If we could �nd more space-e�cient methods of representing image space we could
also hope to e�ciently perform indexing with more complicated features whose man-

ifolds may not decompose into 1-D submanifolds. For example, it seems that if we

simply tessellate image space we will need large amounts of space to handle oriented

point features. These features could be quite valuable, however. Vertices contain sig-

ni�cantly more information about the object than do simple point features. Thomp-
son and Mundy[100] have built an e�ective system using vertices, but the space that

their system requires to represent even a small number of groups of vertex features is

quite high.

Even oriented point features are relatively simple, and it might also be valuable to

understand how to index more complicated image features. For example, it could be
quite useful to determine how to represent the images that a 3-D curve can produce

when viewed from all directions. We have analyzed non-planar models of points or
oriented points by using invariant descriptions of planar models, and then character-
izing the set of planar models that can produce the same a�ne invariant description
as a single 3-D model. There are already invariant descriptions available for planar
curves, but we do not know how to characterize the set of a�ne-invariant descrip-

tions that a 3-D curve may produce. Then too, all of the above features assume that
some �xed portion of a 3-D model will project to a corresponding image feature as the
viewpoint changes. That is, these are all essentially wire-frame models. When objects

have curved surfaces, di�erent portions of the object create contours in the image as
the viewpoint changes. So it would be particularly valuable to understand how to

characterize the edges that a curved 3-D surface can produce from di�erent view-

points. That problem goes well beyond what we have done in this thesis, but might
be accomplished using the same basic strategy of characterizing the a�ne invariant
feature descriptions that a 3-D model may produce. This work seems essential if we
are to e�ciently recognize complex objects that do not contain some simple point

features that can be reliably located in images.

Perhaps the biggest bottleneck in recognition systems lies in the grouping problem,

and we are far from understanding how to build good general grouping systems.
But it is not hard to build a useful grouping system for a limited domain, and any

improvement in these methods widens the range of applications for our vision systems.

For example, practical systems have been built that rely on grouping together vertices
connected by a line, or that rely on �nding parallelograms in an image. These systems

are useful for locating objects that produce such groups, when occlusion is limited.
We have attempted to push forward the range of objects that grouping can handle

by �nding general convex groups of lines. And we have focused on improving the

robustness of grouping systems by optimizing a global criteria that measures the
salience of these groups. Salient convexity will not be an e�ective grouping method
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for all objects or all types of images. But we are able to characterize when it will be

e�ective by determining the level of salience that a group must possess for our system

to be able to e�ciently locate it.

One of the things that proves di�cult in using grouping to recognize an object

is that grouping is most e�ective when we may assume that all of the features in an

image group come from the object for which we search. This can cause two types of
problems. First, if a group is partially occluded, we must sort out which part of the

group comes from the object for which we are looking, and which part comes from

the occlusion. This is quite di�cult, although Clemens[30] provides one example of

such reasoning. The second problem is that even if grouping provides us with a set

of edges that all come from a single object, we must reliably turn those edges into
features. Simple methods of �nding lines or vertices in edges may work when objects
are completely polyhedral. But even real objects that appear polyhedral usually

contain many curves. These can result in lines or vertices that appear or disappear
due to changes in the viewpoint or due to small amounts of sensing error. We need a

method of detecting local features that will �nd the same features from a set of edges
regardless of error or changes in viewpoint. We have made some progress on this
problem, but our methods could stand considerable improvement. And improved
methods of �nding local 2-D features robustly from the projections of 3-D models

would be of value to many other approaches to recognition, as well as to stereo or

motion systems.

8.3 A Final Word

In conclusion, we view this thesis as an initial formulation of a strategy for under-

standing how to recognize objects as well as humans do, including some concrete steps
towards implementing that strategy. Often the best way to clarify a di�cult problem
is to attack it in a simple domain where some real understanding may be gained. This

is only true, however, if we continue to ask the hard questions even as we answer some

easier versions of them. For this reason, although this thesis has provided answers
to some questions of practical importance, we want to stress the questions that are
raised and perhaps brought into sharper focus by this thesis. The most important of

these questions is: How can we describe an image so that this description can remind
us of an object? In this thesis we have attempted to provide some tools that can help

us to analyze di�erent possible answers to this question.



Appendix A

Projective 3-D to 2-D

Transformations

In Chapter 2 we show geometrically that when a group of 3-D points form an im-

age under perspective projection, that the set of images they can produce must be
represented by at least a 3-D surface in any index space. Here we derive a slightly

stronger result algebraically. We show that for any 3-D model, three of the projective

invariants of the model's images can take on any set of values. This appendix will rely
on some knowledge of elementary analytic projective geometry. The interested reader
may refer to many introductory books on geometry, including Tuller[102]. Our de-
scription of the analytic formulation of projection from 3-D to 2-D will closely follow

Faugeras[42].

In projective geometry we analytically represent points in the plane using three

coordinates, which we will call x; y and w. This representation has the property that
(x0; y0; w0) represents the same point as (x1; y1; w1) if and only if there exists some
non-zero value k such that (x0; y0; w0) = k(x0; y0; w0). We similarly represent 3-d
points using quadruples of coordinates, which we will call x; y; z and w.

A projective transformation can be de�ned as one which applies any perspective

projection to a set of 3-D points, and then applies any 2-D projective transformation
to the resulting 2-D points. In this case, a group of 3-D points, p1; p2; :::pn can produce

a set of 2-D points, q1; q2; :::qn if and only if there exists a four by three matrix, M ,
and a set of scalars, k1; k2; :::kn such that, for all i, kiqi = Mpi. In brief, this is
allowable because a 3-D projective transformation can map any �ve points to any

other �ve points, while a 2-D transformation maps any four points to any other four

points.

If we assume that there are no degeneracies in the model or image, then without

loss of generality we may set: p1 = (1; 0; 0; 0); p2 = (0; 1; 0; 0); p3 = (0; 0; 1; 0); p4 =

(0; 0; 0; 1); p5 = (1; 1; 1; 1), and q1 = (1; 0; 0); q2 = (0; 1; 0); q3 = (0; 0; 1); q4 = (1; 1; 1).
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The remaining points may take on any values, and we denote them as: p6 = (px6; p
y

6; p
z

6; p
w

6 ); q5 =

(qx5 ; q
y

5; q
w

5 ); q6 = (qx6 ; q
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w

6 ).

This implies that the matrixM has the form:

M =

0
B@
k1 0 0 k4

0 k2 0 k4

0 0 k3 k4

1
CA

The values of k1; k2; k3; k4 can only be determined up to a multiplicative factor,

because any two matrices that are identical up to a multiplicative factor will produce

the same images, since two points are identical when their coordinates are multiples.

So, without loss of generality we can set k4 to 1, leaving three unknowns.
From the projection of the �fth and sixth points we �nd that:
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The question becomes, for a particular set of values for px6; p
y

6; p
z

6; p
w

6 , which provides

all information about the projective shape of the model points, what values can be
produced for qx5 ; q

y

5; q
w

5 ; q
x

6 ; q
y

6; q
w

6 , which tells us the projective shape of the image
points, given that k1; :::k6 can take on any values.

Except for degenerate cases, if we choose any values for qx5 ; q
y

5; q
w

5 ; q
x

6 ; q
w

6 , the �rst

four and the sixth of the above equations give us �ve independent linear equations

with �ve unknowns. Therefore, we can �nd values of ki to produce any set of values
for these �ve image coordinates. The value of these image coordinates will in turn

determine the value of qy6.
The �fth and sixth image points each give rise to two projective invariants, the

values:
q
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, and
q
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. We have shown that any model can produce an image that

has any values for three of these invariants, and that the model's structure, along with

the values of three of these invariants will determine the value of the fourth.
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