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Garbage collector performance in LISP systems on custom hardware has
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Introduction

The pointer-oriented semantics of LISP, and the nature of heap allocation,

often result in poor virtual memory performance on general-purpose com-

puters. Garbage collection, in particular, has traditionally required exami-

nation of at least all live data created by user programs (in copying garbage

collectors) and sometimes of storage recovered as well (in mark-sweep gar-

bage collectors).

Lieberman and Hewitt introduced in 1981 a garbage collection algorithm

based on the lifetimes of objects [9]. By grouping objects according to

their ages, the proposed garbage collector avoided examination of relatively

old objects when garbage collecting relatively young objects. LISP imple-

mentations on machines with special-purpose hardware or instruction sets

microcoded to support this algorithm have realized signi�cant performance

improvements, as noted by Moon [10].

Moon's contention was that the overhead of bookkeeping required to keep

track of references to newly-created objects in lifetime-based garbage collec-

tors on general-purpose computers would result in prohibitive performance

degradation. Shaw [12] has recently described a scheme in which the vir-

tual memory hardware present on modern general-purpose computers can

be used to keep track of newly-stored pointers, provided one has access to

the data structures used by the virtual memory system.

I describe here the portable lifetime-based garbage collector used in Lucid

Common LISP on the Apollo and Sun workstations. As Lucid Common

LISP is portable, this garbage collector does not have the cooperation of the

virtual memory systems on the computers it runs on. Nor does it make use

of special-purpose hardware; still, the techniques of lifetime-based garbage

collection are su�ciently powerful that overall system performance is often

enhanced, and delays for garbage collection are unnoticeable, resulting in

better interactive behavior.
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A Note on Terminology

The popularity of lifetime-based garbage collectors since the publication of

Lieberman and Hewitt's paper has led to a number of implementations,

many of whose designers have invented their own terms to describe their

work. In what follows, I usually use Moon's terminology where it is appli-

cable, as this work was in
uenced most directly by his. In discussing the

techniques of copying garbage collectors, I use the terminology of Fenichel

and Yochelson [6]: memory in a copying garbage collector is divided into

semispaces, only one of which is in use at any time (the current semispace),

except during garbage collection, when both are used.

The names of LISP data types are used in discussions where they pertain;

in particular, list cells are referred to as cons cells.

An understanding of traditional garbage collection techniques is assumed; in

particular, the reader is assumed to understand the behavior of mark-sweep

garbage collectors, and of Cheney's copying, compacting garbage collection

algorithm [5]. This last will be referred to as copying garbage collection,

or sometimes as stop-and-copy garbage collection. The term root set will

be used to refer to the set of objects explicitly speci�ed to the garbage

collector for preservation; all objects preserved through a garbage collection

are either in the root set or are encountered in some directed walk beginning

at an object in the root set.

During a copying garbage collection, the space copied from is called from-

space; the space copied to is called tospace, or copyspace. Scavenging is the

operation that copies objects referenced by a set of roots from fromspace to

tospace, and updates in the root set the references to the copied objects. It

may be used as a transitive verb; thus `scavenging the stack' would mean

�nding the objects in fromspace pointed to by pointers in the stack, copying

them and their descendants to tospace, and updating the pointers in the

stack to point to the newly relocated objects.

Fromspace and tospace together are called dynamic space, as the objects

in them are moved dynamically. In systems with lifetime-based garbage

collectors, if there is a space where long-lived objects are maintained and are

garbage-collected with a copying garbage collector that is not the lifetime-

based garbage collector, this space is also called dynamic space, and the
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garbage collector is referred to as the dynamic garbage collector.

This paper assumes some knowledge of the behavior of virtual memory sys-

tems; in particular, an understanding of terms like page, main memory, and

backing store. The term dirty bit is sometimes used; this refers to the infor-

mation maintained on a per-page basis by virtual memory systems, stating

whether the page in question has been modi�ed (made \dirty") while it has

been in main memory. The sections of main memory that hold individual

virtual memory pages are called page frames.

In discussions where it is advantageous to consider particular architectures,

I use as an example the Motorola MC68020, using the assembler syntax in

[11]. My terminology di�ers from theirs only in that, when I refer to a word,

I mean a 32-bit quantity; Motorola refer to these as longwords.

Where speci�c LISP tagging schemes are considered, I use that employed

by Lucid Common LISP on the MC68020.
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1

Part I

Motivation and Prior Work

1 Garbage Collection in Modern LISP Systems

1.1 Copying Garbage Collection

Fenichel and Yochelson [6] have described how performance will degrade

over time in LISP systems utilizing virtual memory. Their solution, copying

garbage collection, as further modi�ed by Cheney [5], was widely adopted in

modern LISP systems; but its performance was limited by the need to scan

a potentially large root set, and to move from one area to the other, on each

garbage collection, all the structures maintained through a computation. In

a large LISP system running on a machine with virtual memory, garbage

collections could result in quite lengthy pauses; enough so that White pre-

scribes a scheme in which garbage collection is avoided altogether in virtual

memory systems [14].

Certainly re�nements are possible. One popular re�nement used in many

LISP systems [3] is to create in a \static" space those objects one knows will

be relatively permanent, and to scan these along with the root set; then,

while pointers in static objects to objects in dynamic space are still updated

during a garbage collection, static objects (as their name implies) are not

relocated, and the work of copying them is saved.

Another re�nement uses an \unscanned" space,1 in which permanent im-

mutable objects that contain only pointers to the static or unscanned spaces

are stored; because static objects are not copied by the garbage collector,

the pointers to them need not change, and so unscanned space need not be

scanned by the garbage collector; and, of course, the objects contained in it

will not be relocated, so that, again, the work of copying them is saved.

1Brooks et al. [3] refer to this as a \read-only" space; however, to avoid confusion with,

for example, pure shared pages, and concentrate exclusively on the garbage collection issue,
I refer to it as unscanned.
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There is something unsatisfactory about this sort of re�nement, however.

The garbage collector does not needlessly transport objects placed in static

or unscanned spaces, or even examine those in unscanned space. But the

storage they occupy can never be recovered, either, as these spaces are not,

by their nature, garbage-collected. Thus, in order to decide whether to

place an object in a static space, that is, a space whose contents are never

relocated, the programmer must think about its lifetime; and this begins to

smack of the sort of storage management details from which LISP purports

to free programmers. Similarly, when deciding whether to place an object

in a unscanned space, whose contents will not be scanned by the garbage

collector, the programmer must decide whether it contains pointers to dy-

namic objects, and this, again, is the sort of task from which we would like

to free the programmer.

Although we are unsatis�ed with the additional tasks these re�nements force

on the programmer, we can see that they are motivated by a desire to

perform two valuable optimizations: reduction of the size of the root set,

and reduction of the number of times that relatively permanent objects

are copied. We may understand lifetime-based garbage collection as an

automation of these optimizations.

1.2 Lifetime-Based Garbage Collection

1.2.1 Lieberman and Hewitt's Garbage Collector

Baker [1] introduced in 1978 a copying garbage collection algorithm that

operated in an incremental fashion: the work of transporting objects from

one semispace to the other was interleaved with the normal object creation

and manipulation functions of the LISP system.2

In practice, as implemented on the Symbolics 3600, Baker's garbage collector

2Incremental garbage collection has the advantage that there are no long pauses for

garbage collection; however, I choose not to discuss it in any detail here, as its practical
implementation requires the use of an architectural feature called the invisible pointer [8],

which is not usually present on general-purpose machines. As will be obvious, however,

Lieberman and Hewitt's methods have immediate application to stop-and-copy garbage
collection, despite the fact that, as originally presented, they make yet another use of

invisible pointers. This use, however, may be circumvented on general-purpose computers.



1 GARBAGE COLLECTION IN MODERN LISP SYSTEMS 3

su�ered from poor virtual memory performance (see note A.1). Lieberman

and Hewitt [9] described a modi�cation to Baker's algorithm, in which,

rather than being divided into semispaces, memory was divided into many

small sections called regions.

At any time there is a current creation region, in which new objects are

allocated. When the current creation region is �lled, a new, empty region

is allocated to be the current creation region, and objects are created there,

rather than in the old region.

Each region has a number, called a generation number. Generation num-

bers increase monotonically with time. Occasionally the garbage collector

will be run on the contents of a region. When this happens, a new region is

allocated; the live contents of the old region are copied into it, and the old

region's storage is recycled. The old region's generation number is retained

for the new region. Thus this scheme distinguishes between the number of

garbage collections that an object may survive, and the object's chronolog-

ical age; this is motivated because the garbage collector is run on regions

individually, and thus there is not necessarily a relation between the two

numbers.

In a traditional copying garbage collection scheme, the garbage collection

of any of these regions would require scanning all others, both to discover

which objects in the region were being referenced by objects outside the

region, and thus needed to be preserved, and also to update the pointers

from other regions to objects within the garbage-collected region, as these

objects will be relocated during the garbage collection.

To avoid the necessity of scanning all other regions, Lieberman and Hewitt's

garbage collector maintains for each region an entry table. The entry table

is a table of pointers to objects in the region. Pointers from outside the

region to objects inside it are made to point to entries in the entry table.

Along with the stack and registers, the table is used as the root set when

the region is garbage-collected; thus other regions need not be scanned.

As proposed for implementation on the MIT LISP Machine [8], the entry ta-

ble was implemented using invisible pointers, an architectural feature which

causes references to a location in memory to be transparently forwarded to

another location. Thus no software overhead was incurred to check whether
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a pointer to an object actually pointed to an entry in an entry table. In prac-

tice, however, the lifetime-based garbage collectors discussed in the present

text do not maintain entry tables; rather, they use structures that instead

somehow record the locations of pointers outside a region to objects inside

the region.

Lieberman and Hewitt's scheme called for making entry table entries only

for objects pointed to from regions older than the region being garbage-

collected; these were referred to as \pointers forwards in time." Objects

pointed to only from regions younger than the region being garbage-collected,

called \pointers backwards in time," were not entered in the entry table;

and such regions were to be scanned as part of the root set during garbage

collection. This optimization was motivated by the consideration that the

majority of pointers would be pointers backwards in time, and that the re-

gions most often garbage-collected would be the youngest; and thus there

would be few regions younger than them to be scanned.

But what is it that makes this garbage collector lifetime-based? Lieberman

and Hewitt observed that the mortality rate of older objects is much lower

than that of younger objects. Thus garbage collections spaced at set intervals

will likely reclaim less space from regions containing older objects than from

regions containing younger objects, so that more storage will be reclaimed

per unit of garbage collector work by garbage-collecting younger regions

more often than older regions.

It should be noted, then, that lifetime-based garbage collection a�ords two

separate optimizations. By dividing memory into regions with recording

structures specifying the objects that point to them, they limit the size of

the root set. By allowing objects to be segregated according to age, and

garbage-collecting areas those containing relatively permanent objects less

often, they limit the amount of copying that must be done in a garbage

collection.

1.2.2 Address Space Utilization and Physical Memory Utiliza-

tion in Lifetime-based Garbage Collection

Lieberman and Hewitt's scheme allows for utilization during user compu-

tations of a higher percentage of the available address space than does
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simple stop-and-copy garbage collection. This is because not all regions

are garbage-collected simultaneously, and only as much storage as will be

needed to hold the data in the region or regions actually currently being

garbage-collected must be maintained free. In simple stop-and-copy gar-

bage collection (or in Baker's incremental garbage collection), however, a

semispace's worth of free storage must be maintained at all times; otherwise

a 
ip may fail.

The traditional wisdom about copying garbage collectors, as �rst advanced

by Fenichel and Yochelson in [6], is that address space utilization is of

no great importance; garbage collections are performed to improve local-

ity of reference, and address space recycling is only a secondary concern. In

lifetime-based garbage collectors, however, the frequency of garbage collec-

tions of younger levels is such that both the space being copied from and

the space being copied to must be considered part of the working set. We

expect, then, that the best results will be attained by memory layouts that

make the most e�cient possible use of the address space occupied by the

most frequently garbage-collected levels.

Lieberman and Hewitt's garbage collector does allow for utilization of a

greater portion of the address space during user computations than would a

scheme that statically maintained semispaces for each generation, because

the space occupied by a region just copied from may be re-utilized in the

copying of another region. However, because the space occupied by the

youngest objects changes with each garbage collection of the youngest gen-

eration, the virtual memory performance of this system will not be all we

might hope for.
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2 Previous Implementations

Lieberman and Hewitt's work has provided a basis for several lifetime-based

garbage collectors. I discuss here three garbage collectors examined during

the design of Lucid's lifetime-based garbage collector; these are: Ungar's

generation-scavenging garbage collector [13], the Tektronix Large Object

Space Smalltalk garbage collector [4], and Moon's ephemeral garbage col-

lector for the Symbolics 3600 [10]. The points considered in each case are:

division of memory, determination of the root set, and advancement policy.

2.1 Ungar's Generation-Scavenging Garbage Collector

2.1.1 Description

Ungar's Berkeley Smalltalk system divides objects into two classes: new and

old. The space that old objects live in is called OldSpace. These old objects

are garbage-collected o�ine; which is to say, not at all during a Smalltalk

session. There are three spaces for new objects: NewSpace, where new

objects are created, PastSurvivorSpace, where new objects are also stored,

but are never created, and FutureSurvivorSpace, which is the space into

which PastSurvivorSpace and NewSpace are copied.

New objects are always created in NewSpace. Every time a pointer is set,

if it is a pointer from Oldspace to NewSpace or PastSurvivorSpace, the lo-

cation in which the pointer was set, that is, the referring object, is recorded

in a table, called the remembered set. When NewSpace is full, a copy-

ing garbage collection is performed from NewSpace and PastSurvivorSpace

to FutureSurvivorSpace, using as the root set the references to NewSpace

and PastSurvivorSpace from the objects in the remembered set. FutureSur-

vivorSpace and PastSurvivorSpace are then exchanged.

Each object has associated with it a generation count; when an object has

survived a certain number of garbage collections, it is copied into OldSpace,

rather than PastSurvivorSpace.
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2.1.2 Address Space Utilization

Ungar's generation-scavenging garbage collector, like that of Ballard and

Shirron [2], on which it is based, is capable of utilizing more than half of

its address space at any time, as only FutureSurvivorSpace remains unused

during a computation. Because the two survivor spaces are much smaller

than either NewSpace or OldSpace, a large percentage of the address space

is in use during user computations.

2.1.3 Suitability

There is an obvious problem with the use of an approach that requires the

storage of generation counts. LISP systems on general-purpose computers

usually have highly-optimized storage formats; thus a cons, for example, will

consist of exactly two pointers, with no space for a generation count. This

is not nearly such a problem in Smalltalk systems, where dynamic objects

are usually vector-structured, with object references to the object's class,

instance variables, etc.; but in high-performance LISP systems we would

probably have to store object generation counts externally.

Suppose we were to store four bits of age information for each object. In

order to memory-map these, we would need to allocate four bits of storage

for every sixty-four bits stored in the ephemeral spaces, as this is the greatest

common denominator of LISP object sizes on thirty-two bit machines. This

gives some 6:25% additional storage required, in addition to that required

for structures used to record the remembered set. We should like to avoid

this overhead if at all possible.

2.2 The Tektronix Large Object Space Smalltalk Garbage

Collector

2.2.1 Description

The Tektronix Large Object Space Smalltalk implementation [4] includes a

generation-scavenging garbage collector that di�ers from Ungar's mainly in

the organization of memory. Memory is divided into seven regions, each of
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which consists of two semispaces. Objects still include generation counts;

during a garbage collection, they are copied from one semispace to the other,

and their generation counts are incremented. When an object's generation

count reaches some preset value, it is advanced to the next region.

Garbage collection is stop-and-copy, motivated by the �lling of a region.

Stores to the stack are not recorded; rather, the stack is scanned on each

garbage collection. Remembered set tables, as used in Ungar's Berkeley

Smalltalk garbage collector, are maintained for each region, in order to limit

the size of the root set. These tables contain only pointers forwards in time;

that is, pointers from older objects to newer objects. As in Lieberman and

Hewitt's garbage collector, the entirety of each younger region is used as

part of the root set whenever an older region is garbage-collected.

2.2.2 Address Space Utilization

As in Cheney or Baker's garbage collectors, during user computations the

Tektronix garbage collector uses half of its address space for empty semi-

spaces.

2.2.3 Suitability

We anticipate problems with using in LISP systems a garbage collection

scheme like that used in Tektronix's Large Object Space Smalltalk. One

problem is that of recording generation counts; we discussed this in con-

sidering Ungar's generation-scavenging garbage collector, in Section 2.1.3,

above. Furthermore, as discussed in Section 1.2.2 above, the organization of

memory into semispaces should result in poorer virtual memory performance

than we might hope for.
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2.3 The Symbolics Ephemeral Garbage Collector

2.3.1 Description

The Symbolics ephemeral garbage collector uses an allocation scheme dif-

ferent from that of either the Berkeley Smalltalk or the Tektronix Smalltalk

garbage collectors. Memory is divided into areas. The user may specify for

each area the number of ephemeral levels, the capacity of the youngest level,

and the ratio of the capacity of each succeeding level to that of the youngest

level.

Ephemeral levels are not divided into semispaces; rather, when a level is

garbage-collected, live objects within it are copied into the next older level.

As in Lieberman and Hewitt's garbage collection algorithm [9], ephemeral

garbage collection is incremental, and proceeds in parallel with user compu-

tation. Ephemeral levels are garbage-collected independently of each other;

pointers `backwards in time' (see Section 1.2.1) are recorded by the same

means as are other pointers.

The capacity of an ephemeral level is the number of words that may be

allocated in it before a garbage collection is initiated. A garbage collection

is motivated when the youngest level's capacity is exceeded; this causes its

contents to be garbage-collected into the next oldest level. If that level's

capacity is exceeded, its contents are copied into the following level; objects

that survive through all the levels are advanced to dynamic space. Storage in

dynamic space is recovered with a separate Baker-style incremental garbage

collector.

The scheme used for recording the root set is di�erent from those of either

of the Smalltalk implementations; instead of maintaining remembered sets

(or entry tables in the sense of Liebermann and Hewitt's original paper,

which the 3600 could implement because of its invisible pointer hardware),

the Symbolics scheme instead maintains one mark bit per page for each

ephemeral level. It detects when a pointer into an ephemeral level is being

stored, and marks the page in which the reference occurred. When an

ephemeral level is scavenged, marked pages are scanned for references to

that level, and such references, if found, are used as roots.

Note that the mark bits resemble the dirty bits maintained by virtual mem-
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ory systems; but, unlike dirty bits, they are only set when the word stored is

actually a pointer to an ephemeral level. No great harm is done if the word

stored was not a pointer to an ephemeral level, though, and sometimes at

scavenging time the mark bit will be set for a page that contains no refer-

ences to ephemeral objects, as a word that is not a pointer to an ephemeral

object may overwrite all pointers to ephemeral objects on a page without

causing the mark bit to be reset. Shaw [12] has exploited this similarity to

a table of dirty bits in his lifetime-based garbage collector.

Scanning the entirety of each marked page may sound wasteful, but the 3600

has hardware to assist in the detection of references to ephemeral levels, and

so a 256-word page with no such references is scanned in 85 microseconds

[10, page 242].

The scheme used in the Symbolics ephemeral garbage collector for recording

pointers into ephemeral spaces is in fact more complex than is implied by

the short description above. Two tables are actually maintained; one, called

the Garbage Collector Page Tags (GCPT), holds a bit for each of the pages

present in physical memory. Only one bit is stored, and thus no informa-

tion about which ephemeral level the pointers in the page may point to is

recorded; the bit says only that a pointer to an ephemeral level may still be

present on the page.

Another table, called the Ephemeral Space Reference Table (ESRT), is

stored sparsely, and contains for each swapped-out page a bit for each ephe-

meral level; the bit is set to indicate that the page contains a reference to

the level in question. The table is maintained entirely in physical memory,

and allows the garbage collector to determine as it garbage-collects a level

whether to scan a page; because scanning a page requires fetching it from

backing store, the maintenance of per-level information saves page faults.

Clearly, the ESRT must be updated whenever a page is ejected from physi-

cal memory.

Given that the intention is to avoid any needless scanning of pages residing

on backing store, how must the ESRT be updated when pages are ejected

from physical memory? If the page has not been written at all, its ESRT

entry (if extant) need not be updated. If the page has been written, and

already has an ESRT entry, then the ESRT entry must be updated regardless

of the setting of the page's GCPT bit, because it is possible that data written
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into it overwrote all the page's pointers to ephemeral objects. If the page

has no ESRT entry, then it need only be scanned if its GCPT entry is set;

only then might one have to create an ESRT entry for it.

2.3.2 Implementing the Symbolics Ephemeral Garbage Collector

Without Special-Purpose Hardware

Suppose one wished to implement a garbage collector similar to the Symbol-

ics Ephmeral Garbage Collector on a general-purpose computer in which one

had the cooperation of the virtual memory system. It will be immediately

apparent that the technique of scanning pages makes use of the 3600's fully

tagged architecture. Because each word has a tag that tells whether it is a

pointer, one may begin scanning memory in the midst of an object, without

risk of interpreting non-pointer data (such as, say, collections of characters

in a string) as pointers.

On a general-purpose machine, one would need to use some other method

of determining whether words examined were pointers. One possibility is

to divide all data into two types: those containing pointers and those not

containing pointers. This is certainly possible using the data formats in

(for example) Lucid Common LISP, but there is a price to be paid. Storage

management is complicated by the addition of a parallel set of storage spaces.

Locality of reference is degraded.

Another possibility is to maintain in a table an entry for each page giving the

o�set from the base of the page to its �rst tagged word. A slight amount of

overhead at object creation time su�ces to maintain the table entries. In the

data formats used by Lucid Common LISP, and a number of other modern

LISP implementations for general-purpose computers, untagged words never

follow tagged words without object headers appearing in between, because

otherwise the linear scan of a space used as the root set in copying garbage

collection would be impossible. The overhead for maintaining a memory-

mapped table of such o�sets on a 32-bit computer with 256-word pages is 8

bits per 256 words, or about 0:1%; this is certainly not a deleterious amount

of storage.

We have surmounted, then, the problems for garbage collection associated

with maintaining untagged words in the system; what about maintaining
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the GCPT? As the discussion above suggests, rather than maintaining a

GCPT, we may simply use the table of dirty bits in the virtual memory

system. When it is time to perform a garbage collection, we scan all the

pages whose dirty bits are set; because these pages are necessarily all in

physical memory, this operation should not take long compared to the time

required to fetch pages from backing store. Exactly how long might it take

to scan a page? Figure 1, on page 13, gives the MC68020 code and timing

to scan a 256-word page.

The common path through the loop, in the cache case, is some 51 cycles;

on an MC68020 clocked at 16 megahertz, this corresponds to some 816 mi-

croseconds for a 256-word page. The immediate tagged case is not included;

it would involve checking the high �ve bits of the low byte to determine the

object type. The immediate tagged case will often (in the case of vectors of

untagged data, for example) lead to the skipping of some number of words

of untagged data. This, and the fact that it is reasonable to expect that the

loop will reside entirely in the MC68020's 256-byte on-chip instruction cache,

give us some con�dence that 816 microseconds is a conservative estimate.

Here is where special-purpose hardware comes into its own, then; the MC68020

takes nearly ten times as long to perform a page scan as does the 3600. How

signi�cant is this page-scanning time? The di�erence between the two is

some 731 microseconds, but this does not tell nearly the whole story, as the

3600's GCPT bits are unlike dirty bits in that they are only set when the

word stored is actually a pointer to an ephemeral level. A general-purpose

computer does not perform tag or boundary checks, so many pages in the

LISP process's address space will have their dirty bits set without point-

ers to ephemeral levels actually having been stored in them. These pages

will be scanned needlessly at every garbage collection (see note A.2 for a

comparison with the scheme described by Shaw [12]).

Metering would allow us to determine how many pages would actually be

found needlessly dirty in typical LISP applications; however, even without

such measurements, we can envision a worst case. Let us consider the per-

formance of the Symbolics ephemeral garbage collector on a 3600 with 1

megaword of physical memory [10, table 2, page 244]. When running the

BOYER benchmark, an average of 11.5 seconds were taken for each 
ip;

when running the compiler benchmark, the �gure was 1.6 seconds.
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;;; First tagged word is in a0; segment table in a1, word

;;; after last on page in a2. Parenthesized numbers after

;;; instructions give best case, cache case, and worst case

;;; timings, as per MC68020 User's Manual.

scanlp: cmp.l a0, a2 ;done yet? (1 4 4)

;; branch when done scanning. ge because untagged

;; structure may cross page boundary.

bge scandn ;(1 4 5) (branch not taken)

move.l (a0)+, d0 ;d0 holds pointer (4 6 7)

;; fetch tag bits; bashes low byte

andi.b #$07, d0 ;(0 2 3) + (0 2 3)

;; see if this might be a header

cmpi.b #dtp-other-immediate, d0

;(0 2 3) + (0 2 3)

;; handle if so; this is also the case for tagged

;; characters and small floats (i.e., not in strings

;; or vectors)

beq check-header ;(1 4 5) (branch not taken)

;; now want only low two bits of tag

andi.b #$03, d0 ;(0 2 3) + (0 2 3)

;; low bits are 0 if fixnum

beq scanlp ;(1 4 5) (branch not taken)

;; if we got this far, this is a pointer. Fetch

;; segment index. Note high part still valid.

swap d0 ;(1 4 4)

;; does the pointer point into an ephemeral segment?

cmpi.b #ephemeral-segment, (d0, a1)

;(0 2 3) + (3 5 6)

;; no, continue

bne scanlp ;(3 6 9) (branch taken)

Best Case Cache Case Worst Case

Totals: 15 51 66

Figure 1: Page-scanning on the MC68020.
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On our general-purpose computer, if every one of 1024 pages were found

dirty at garbage collection time, but contained no ephemeral references,

then there might be some 2.9 seconds of overhead per garbage collection.

This is 25:2% of the BOYER benchmark time, and 153% of the compiler

benchmark time. I stress that this is the worst possible case, with every

page in physical memory found dirty at garbage collection time. We expect

that in real applications a much smaller proportion of the pages would be

found dirty (many of them, for example, might contain pure code), and, of

those found dirty, many would not need to be scanned (for example, those

in the youngest ephemeral level, or in the unscanned spaces).

Consider now the time required to update the ESRT. On our general-purpose

computer, we use the virtual memory system's table of dirty bits for the

GCPT, so that, if we wish to ensure that ESRT entries are always correct

for pages on backing store, we must scan the page and potentially update or

create an ESRT entry whenever the ejected page's dirty bit is set. The case

where the 3600's special-purpose hardware will help it is that where a word

was written into a page, but the word was not a pointer to an object in an

ephemeral space. But here we assume that the virtual memory system on

our machine has given the garbage collector a trap after initiating a seek on

the disk; the scan time is easily entirely subsumed in the average seek time

of any modern disk drive, just as on the 3600.

Thus the 3600's special-purpose hardware does indeed help it, but not nearly

so much as one might think. Given our belief that the average overhead

for page-scanning on stock hardware will not account for most of the time

spent in garbage collection, we believe that with a slightly faster processor,

such as an MC68020 clocked at 25 megahertz, the 3600's speed advantage

will disappear. Note that the time estimates given are for time spent in

the garbage collector; the overhead required at user program run time to

keep track of ephemeral objects, estimated by Moon as `at least 10% and

possibly a factor of two or more,' [10, page 243] is actually limited to the

nearly insigni�cant time added to object creation in order to update the

table of o�sets to the �rst tagged object in each page { provided one has

the collusion of the virtual memory system.
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2.3.3 Address Space Utilization

Both the Symbolics Ephemeral Garbage Collector and the stock-hardware

derivative we propose here copy objects from one ephemeral level to the next;

thus the pages used for the creation of new objects are the same before and

after a garbage collection. We expect good virtual memory performance

from this scheme.

2.3.4 Suitability

Moon's ephemeral garbage collector does not lend itself to easy criticism.

While his paper does not anticipate the implementation of his scheme on

general-purpose computers, and, indeed, discounts the idea, the author

feels that, given the cooperation of the virtual memory system, Moon's

garbage collection scheme would perform quite well on a general-purpose

computer. General-purpose computers are at a disadvantage in the task of

page-scanning, but even ine�cient scanning of pages is a small price to pay

to escape the need to explicitly record using additional software the storage

of pointers into ephemeral levels.
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Part II

A Lifetime-based Garbage

Collector for LISP Systems on

General-Purpose Computers

In what follows, I use Moon's terminology. I call objects that have not

yet been moved to spaces intended to hold relatively permanent objects

ephemeral objects. Moving an object from a space that holds newer objects

to a space that holds older objects is called advancement. The several spaces

that hold ephemeral objects, organized so that the ages of the objects within

them vary monotonically, are referred to as ephemeral levels. The ephemeral

level holding the youngest objects is called either the youngest ephemeral

level or the �rst ephemeral level; that holding the oldest objects is called

either the oldest ephemeral level or the last ephemeral level.

3 Desiderata

A number of constraints are forced by the use of general-purpose computers,

and by the desire to write a portable garbage collector; that is, one that does

not require the cooperation of the virtual memory system. A summary of

the design goals follows:

� Performance. We wanted each garbage collection to be fast; that is, we

wanted to minimize the amount of computation required for a garbage

collection, so that the ephemeral garbage collector would be suitable

for use in interactive systems.

We also hoped not to unduly slow down user code. Because we do not

have the cooperation of the virtual memory system, pointer-settings

must be recorded explicitly, so that some slowdown is inevitable in

execution time of code that does not allocate storage, and thus does

not cause garbage collections. We wished to minimize this slowdown.



3 DESIDERATA 17

In code that creates and discards many objects, like the BOYER

benchmark [7], we wished to realize overall performance improvements.

� Portability. The design was not to require cooperation from the virtual

memory system, nor was it to be tied to a particular architecture. It

also had to be easy to retro�t into existing LISP implementations for

various machines.

� Predictability. Many users of LISP carefully code their programs to

avoid any object creation, so that no unexpected delays will occur; for

example, a robot control program cannot a�ord even a 20-millisecond

delay. Programs that do not create objects should not cause garbage

collections, or be subjected to unexpected delays, as for reorganization

of internal tables.

� Flexibility. We wanted the ephemeral garbage collector to be tunable;

the number of levels and their sizes were to be easily modi�able, be-

cause the parameter settings for best performance were likely to vary

between applications.

� Robustness. The scheme we selected was not to be prone to fail-

ure during garbage collection. We wished to avoid schemes that could

conceivably run out of memory when advancing objects from one ephe-

meral level to the next.
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4 Early Decisions

With the goals discussed in the previous section in mind, it was possible

to make many design decisions before committing to a speci�c scheme for

recording pointers. These decisions are discussed below.

4.1 Optimizing the Task of Keeping Track of Ephemeral Ob-

jects

Without special support from the virtual memory system, the greatest

source of ine�ciency in lifetime-based garbage collection systems on general-

purpose computers is the recording of pointers into ephemeral spaces. This

recording must be performed in software, replacing what was formerly one

instruction; this increases the size of the compiled code image, even if an

out-of-line call is performed, and has a varying, but always negative, e�ect

upon performance, dependent upon the dynamic frequency of pointer stores.

This e�ect is manifested most strongly in high-performance systems with

native code compilation; it is not nearly so much a problem in, for example,

Ungar's Berkeley Smalltalk system (discussed in Section 2.1, above), because

this system utilizes a byte-code interpreter that executes only some 9,000

instructions per second. In [10, page 246], Moon makes the point that the

performance of Ungar's generation-scavenging looked good because Berkeley

Smalltalk takes about 50 machine instructions to do a store; the overhead of

adding an object to the remembered set is not overwhelming by comparison.

One somewhat ameliorating factor is the possibility of performing certain

compile-time optimizations; as noted below, the Lucid Common LISP com-

piler does in fact perform these optimizations for the bene�t of the lifetime-

based garbage collection scheme we implemented. The compiler optimizes

out pointer-recording when the pointer being stored is a constant immediate

quantity, such as a character or small integer, or points to a constant static

entity, such as a symbol.

One more signi�cant optimization is performed; when the current object

creation area is the youngest ephemeral level, the object-creation subroutines

used do not record storage of initial values in newly-created objects, as these
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will have been created in the youngest ephemeral level, and any pointers from

them will be pointers `backwards in time,' to use Lieberman and Hewitt's

terminology.

4.2 Set-Associative Pointer-Recording

One possible pointer-recording scheme would use a set-associative table of

locations holding pointers to ephemeral spaces.

Suppose we maintained a set-associative table of 256 lines, with 16 one-word

entries per line, for each ephemeral level; this gives some 16 kilobytes of table

per ephemeral level. Assume further that we worried only about updating

the table for pointer settings; that we did not worry about removing entries

in the table for pointers that were written over. When any line in the table

was completely full, we could use one of several (expensive) strategies to

reduce the problem; possibly we could begin allocating in the ephemeral

level in question a list of pointers into it, or perform a scavenge of the level

in question into the next older level, in which case we would need to add to

that level's table only the references that were not in that level, and we would

likely have enough space for them; etc. But leaving aside the question of

dealing with entirely full lines, we depict in Figure 2 an MC68020 instruction

sequence that performs a pointer-setting when using a set-associative table

for recording pointers into ephemeral levels.3

The common case (set a pointer from the current ephemeral level to the

current ephemeral level) requires nine instructions, not counting the pointer

setting. Making the table entry requires ten instructions in the case where

the �rst entry examined is empty, and �ve more instructions per time around

the loop. This sequence of instructions is so large as to mandate an out-of-

line subroutine call; this would entail further overhead at runtime. Note also

that we are making free use of two address registers beyond those holding

the pointer and the destination, and three data registers; thus the compiler

will have fewer registers at its disposal, with the attendant negative impact

on e�ciency of surrounding code.

3We do not move using the MC68020 memory indirect post-indexed addressing mode

(although it would save one instruction), as it is slower than the combinations of instruc-
tions we do use.
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;; on entry, a0 holds the destination, and a1 the

;; pointer. Fetch byte table of ephemeral levels

;; from systemic quantities vector (SQ), which is

;; held in an address register.

move.l (elevel, SQ), a2

;; prepare to fetch segment index of destination

move.l a0, d0

swap d0 ;get segment index in low 16

;; store in d1 ephemeral level of destination

move.b (0, a2, d0.w), d1

move.l a1, d0

swap d0

;; d2 gets ephemeral level of pointer

move.b (0, a2, d0.w), d2

;; now we compare ephemeral levels to see if we need

;; to make a recording table entry.

cmp.b d1, d2

bne hktabl ;different levels, make entry

;; same, just set pointer (most common case)

(set pointer and exit)

...

;; fetch table of tables from SQ

hktabl: move.l (extbls, SQ), a2

;; index by ephemeral level of pointer

move.l (0, a2, d2.w), a2

move.l a0, d0 ;get dest in data register again

;; lines are at 64-byte intervals; want bits 14-0

;; with low 6 cleared for index of our line. Get

;; line index in d0.

ori.l #$00003FC0, d0

add.l d0, a2 ;line address in a2

;; 16 entries per line, but testing at bottom

move.l #15, d1

;; find entry that's empty or same

loop: move.l (a2)+, a3

beq found ;0 is empty entry

cmp.l a0, a3 ;if same, done, go to setit

beq setit

dbra d1, loop

;; no empty entry in this line

(deal with the problem, possibly by creating an

extension to the line)

...

found: move.l a0, -(a2) ;make entry

bra setit ;go set pointer

Figure 2: MC68020 code to record ephemeral reference locations in a set-

associative table.
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This scheme does have the advantage of compactness of representation of

the recorded information, but has two major disadvantages. The �rst is that

the number of instructions executed to set, for example, a special variable,

is at least nineteen, and likely more. The second disadvantage is that it

is not clear how to proceed when a line is �lled; the delays necessary for

compaction or garbage collection might be too large. Two design goals,

performance and predictability, are violated; the scheme was not considered

further.

4.3 Avoiding the Overhead of Determining Spaces When

Storing Pointers

We noted that set-associative pointer-recording had two distinct disadvan-

tages; the second had to do exclusively with the structures used for recording

the storage of pointers into ephemeral levels, but the �rst disadvantage lay

partly in the expense of that recording, and partly in the expense of deter-

mining the spaces for a pointer being stored and the location it is stored

in.

On the 3600, when a word is stored into memory, it is examined (in parallel

with the memory access) to see if it is a reference to an ephemeral area being

stored into either another ephemeral area, or into a non-ephemeral area; if

it is, the fact is recorded by setting a bit in the GCPT. Moon states that the

reason custom hardware is required to implement a lifetime-based garbage

collector is that this examination would have to be performed in software

on a general-purpose machine, and would take between 2.5 and 25 microsec-

onds. As we saw in Figure 2, which showed MC68020 code for maintaining

set-associative tables of pointers into ephemeral spaces (the determination

of spaces would be the same), it would also require the use of several reg-

isters, thus slowing down execution of the surrounding code. Finally, the

nine instructions required simply to determine the ephemeral levels of the

pointer and the location in which it is stored, before ever recording its stor-

age, would have a serious impact upon performance of code that did not

garbage collect.

What we wish to do is move some of the overhead of this operation from

pointer-setting time to garbage collection time. The critical portions of the

garbage collector can be coded in assembly language, and can use as many
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registers as necessary; there will be only one copy of this code, so the number

of instructions used will not be critical to the image size, as it would be if

the operation were being coded in-line at every pointer storage. Two other

important points are:

� Many of the pointers stored during the execution of a program will

be stored in locations in the youngest ephemeral level. The garbage

collector will never have to determine the ephemeral level to which

these pointers point, because all pointers stored in the youngest level

are pointers backwards in time, in the terminology of Lieberman and

Hewitt.

� In many programs, a single set of locations is repeatedly written. If

there are several pointer stores to a single location between garbage

collections, the ephemeral level of only the last pointer stored matters;

thus the work done to determine ephemeral levels in the other pointer

stores is wasted.

These considerations suggest that, rather than determining the spaces of the

pointer and the location it is stored in at pointer-storage time, we should

adopt some sort of scheme whereby we record only that a location has been

modi�ed, and postpone until garbage-collection time the determination of

the space the pointer was stored in and the space it pointed into. We do

not even attempt to determine at runtime whether the pointer is actually

an immediate constant, such as a character or �xnum.4

In using this scheme, we will often have to examine at garbage-collection time

locations that do not contain ephemeral references at all. This examination

will cost very little if the page containing the location in question is in main

memory; if it is on backing store, the cost will be much greater. Our hope is

that the technique of lifetime-based garbage collection so improves locality of

reference as to decrease substantially the number of cases where the working

set exceeds the available physical memory.5

4Although, as mentioned in Section 4.1 above, compile-time optimizations may be

exploited.
5Measurements of the number of pointer stores recorded, but not containing epheme-

ral references, during the execution of various symbolic processing tasks would be useful

in evaluating this scheme, as would a measurement of the number of pages containing
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4.4 The Organization of Ephemeral Spaces in Memory

We concluded that the maintenance of generation counts was undesirable in

LISP systems.6 Without generation counts, we have two alternatives when

performing lifetime-based garbage collection:

� We can organize each ephemeral level into semispaces, and copy ob-

jects from one semispace to another until a certain number of garbage

collections have been completed. This gives address space utilization

much like that of Tektronix's Large Object Space Smalltalk garbage

collector.

� We can garbage-collect each ephemeral level into the next older level,

as in the Symbolics ephemeral garbage collector.

We concluded that the �rst alternative is more likely to result in poor virtual

memory performance than the second;7 thus we chose to use a division of

memory into successive ephemeral levels, each of which is garbage-collected

into the next older level.

4.4.1 Pointers Backwards in Time

Lieberman and Hewitt's garbage collector (discussed in Section 1.2.1) recorded

only `pointers forwards in time,' that is, those from either non-ephemeral

spaces to ephemeral spaces or from older ephemeral levels to younger ephe-

meral levels. Thus the garbage collection of a level required scanning all

younger levels as members of the root set; otherwise pointers `backwards in

time,' from younger levels to older levels, would not be updated to point to

the newly copied referents, and might possibly lose their referents altogether.

Moon's ephemeral garbage collector is also incremental, and can scavenge

several levels at once while running user code. His solution is to record

recorded locations ejected to backing store between ephemeral garbage collections on sys-
tems with varying amounts of memory. These and other recommendations for future

analysis are described in Section 8.
6See Section 2.1.3.
7See Sections 1.2.2 and 2.2.2.
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pointers backwards in time by the same means as pointers forwards in time;

because his representation of recording information is very compact, this is

inexpensive.

In a stop-and-copy scheme, user code may not run until a garbage collection

has completed. When we have �nished copying from a younger level to an

older level, the younger level will be empty. If the older level is now full, we

may scavenge it without scanning younger levels, as these will be empty.

4.4.2 Implications for Memory Organization

This ordering of events allows us to organize our ephemeral spaces in a

convenient fashion. Many operating systems on general-purpose computers

require contiguous memory allocation; thus, if garbage-collecting an ephe-

meral level would require �lling the next level beyond its capacity, space

must be set aside for the over
ow. Suppose we order our ephemeral spaces

as depicted in Figure layout.8 The size of the odd-level over
ow segment

pool (OSP) is the sum of the sizes of all the even levels except for the last

ephemeral level, if it is an even level; similarly, the size of the even level OSP

is the sum of the sizes of all the odd levels except for the last ephemeral level,

if it is an odd level. Thus the total space occupied by over
ow segments is

less than the space occupied by ephemeral data.

Suppose we perform a copying garbage collection from level 0 to level 1, and

level 1 is full, and all data in level 0 are retained; we may allow data to

over
ow from level 1 into the odd-level over
ow segment pool. Because the

size of the odd-level OSP is at least that of the level 0, we are guaranteed that

there will be room to copy the data from level 0 into level 1 and the odd-level

OSP, so our copying garbage collector may simply continue copying past the

end of level 1 into the OSP. When we garbage-collect level 1 into level 2,

level 1 may contain as much data as level 1 and level 0 put together. If level

2 were also entirely �lled, we are guaranteed room to complete the garbage

collection, because level 1's size was included in the size of the even-level

OSP, and level 0 is now empty, so we simply continue copying past the end

of level 1 into level 0.

8I am indebted to James Boyce, of Lucid, Inc., for this suggestion.
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+-------------+-------+-------+-----------------------+

| other even- | | | even-level overflow |

| numbered | level | level | segment pool |

| ephemeral | 2 | 0 | Size = sum of sizes |

| levels | | | of all odd levels |

| | | | except last, if odd. |

+-------------+-------+-------+-----------------------+

low addresses high addresses

+-------------+-------+-------+-----------------------+

| other odd- | | | odd-level overflow |

| numbered | level | level | segment pool |

| ephemeral | 3 | 1 | Size = sum of sizes |

| levels | | | of all even levels |

| | | | except last, if even. |

+-------------+-------+-------+-----------------------+

low addresses high addresses

Figure 3: Layout of ephemeral spaces and over
ow segment pools in Lucid

Common LISP.
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Note that this strategy has good implications for virtual memory usage. The

pages over
owed into are pages that recently held other ephemeral data; thus

we have a good chance that they will still be present in physical memory.

The garbage collection strategy described above, in which no ephemeral

level is garbage-collected until all younger levels have been emptied, has a

number of implications. First, note that, occasionally, a garbage collection

will require garbage-collecting all the ephemeral levels. The defaults on the

3600 are to use semispaces that decrease in size by a factor of two; this may

or may not re
ect something like the \average" persistence of objects, but

with this progression of sizes, the maximum amount of work required to

garbage collect m levels would be no more than 2m times the amount of

work to garbage-collect level 0 (for m = 4 levels the factor is actually about

6).9

For �ve levels, we approach an order of magnitude; one risk in emptying

younger levels before garbage-collecting older levels, then, is that the pauses

for garbage collection may become noticeable. In practice, this has not been

a problem. A more serious risk lies in the way that a garbage collection

that causes the objects in ephemeral space to be advanced all the way to

dynamic space (as some garbage collections inevitably do) cannot help but

advance, at the same time, all the live objects that were in the youngest

ephemeral level at the time of the garbage collection. These objects may in

fact become garbage very soon after their advancement; they have had less

than one garbage-collection period in which to mature before being advanced

to dynamic space. However, garbage collections that proceed all the way to

dynamic space are much more rare than those that do not; we do not expect

this \premature tenuring" (to use Ungar's term) to be a problem.

4.5 Allocation of Very Large Objects

Most very large objects have long lifetimes. These objects may be, for

example, bitmaps being processed by image understanding programs, or

arrays of cellular automata, or data collection bu�ers for input devices.

Sometimes these objects are so large that they exceed the capacity of the

youngest ephemeral level, which is typically a small fraction of the space

9See note A.3 for a precise formulation.
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allocated to the process; then they cannot be created in ephemeral space

at all. Some other very large objects will �t in the youngest ephemeral

level, but, because they are permanent, will simply be copied on succeeding

garbage collections through all the ephemeral levels until they are �nally

advanced to dynamic space.

This sort of successive copying is ine�cient; we would like to provide the

user with a means of causing objects larger than a given size to be created in

dynamic space. This is easily accomplished with a user-modi�able parameter

that is checked by the object creation routines.

Allocating objects in dynamic space when the normal allocation space is

ephemeral space will eventually result in the �lling of dynamic space, and

the attendant dynamic garbage collection; and there will be objects in ephe-

meral space at this point. In fact, this situation is not unique to the allo-

cation of very large objects; whenever we are about to scavenge the oldest

ephemeral level into dynamic space, we must insure that there is enough

room in dynamic space to hold its contents. The allocation of this space

may result in a dynamic garbage collection, and there will be live data in

ephemeral space during the dynamic garbage collection.

4.6 Dynamic Garbage Collection in the Presence of Ephe-

meral Objects

When garbage-collecting dynamic space, if ephemeral space holds live ob-

jects, we must somehow arrange for these objects to have their references to

objects in dynamic space updated; possibly this could be done by garbage-

collecting the ephemeral spaces as well. Clearly we can not proceed as usual,

and simply not move ephemeral data when we encountered it while walking

the tree from the roots; the Cheney algorithm uses copying and reordering

in order to record pending branches, in the same way that other algorithms

use a stack, or pointer reversal. We also do not want to use these other

algorithms; the use of a stack has the well-known problem of deep nesting

causing over
ow, and Deutsch-Schorr-Waite pointer reversal requires visit-

ing twice each node encountered.

One way of approaching the problem is to subdivide it into two cases: one

may either leave the ephemeral data in ephemeral space, or move them all
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into dynamic space.

1. The obvious way to proceed if we wish to leave the data in ephemeral

space is to treat ephemeral space as roots for the dynamic garbage

collection. This has the disadvantage of quite possibly causing preser-

vation of structures that are only pointed to by garbage in ephemeral

space, but we expect that these will be rare.

The algorithm is slightly complicated by the necessity of updating

pointer storage recording structures. We do this by �rst clearing

the structures recording pointers for the locations in dynamic from-

space. As scavenging is performed, when a pointer is stored in dynamic

tospace, if it points into ephemeral space, it is recorded in the proper

structure.

2. The other possibility, that of moving all the data into dynamic space,

causes premature tenuring, to use Ungar's term, but has the advantage

of being simpler. We simply treat data in ephemeral space in the same

way we treat data in oldspace; we copy them all into newspace. At

the end of the garbage collection, ephemeral space is empty, and all

recording structures are cleared.

The problem with scheme 2 is that, although it is indeed simpler than scheme

1, there is no obvious way to proceed if one exceeds the capacity of tospace

during the garbage collection and virtual memory is exhausted. Exceeding

the capacity of tospace is indeed possible, as the entire live contents of

ephemeral space are being added at once to dynamic space.

If we instead treat the ephemeral spaces as roots, we may perform the dy-

namic garbage collection without advancing ephemeral data. If we were in

the midst of performing an ephemeral garbage collection, and the dynamic

garbage collection freed enough space to allow the advancement of ephe-

meral objects into dynamic space, we would simply continue. If we found

that an amount of space insu�cient to allow advancement of ephemeral data

was freed, we might disable dynamic garbage collection, copy the ephemeral

data into the unused semispace, and signal an error to the user, who could

respond by, for example, suspending the LISP process until more virtual

memory is available.
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The ability to continue in this fashion requires that the sum of the sizes of

the ephemeral levels be no larger than a dynamic semispace.

We cannot use the same sequence of operations with scheme 2, because we

cannot perform the dynamic garbage collection without also beginning to

copy in the ephemeral data, and, at that point, we no longer have the option

of using the other semispace if we should run out of space; we are already

using both semispaces.

Thus we chose to use scheme 1 in our garbage collector.10

10For simplicity, the pointer storage recording algorithms given in sections 5 and 6 do not
show the cases in which copying into dynamic space requires dynamic garbage collection,

and thus do not depict the necessity of examining recording structures that the dynamic

garbage collector may have updated during during garbage collection. These extensions
are, however, straightforward.
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5 Card-Marking

Two schemes for recording pointer stores were explored at length; only one

of these was implemented. The scheme that was discarded was called card-

marking. It was similar to the Moon's ephemeral garbage collector, as one

might implement it without virtual memory system cooperation; the signif-

icant di�erences had mostly to do with a desire to keep the pointer-setting

time low.

5.1 Division of Memory; Determination of the Root Set

The root set is recorded through a scheme much like Moon's. Memory is

divided at a �ne level into pieces called cards; these correspond to the 3600's

pages, but we do not call them pages in order to avoid confusion with virtual

memory pages on the machine in question.

There are two tables used in determining the root set; these are called the

primary card mark table and the secondary card mark table. The primary

card mark table is a table of bits directly mapped to all the cards in the

address space. There is one bit per card; the bit is set whenever a pointer is

stored in the card. Thus the bit is a sort of dirty bit for the card; it indicates

that the card has been modi�ed and must be scanned to determine whether

it contains a reference to some ephemeral level.

The secondary card mark table is implemented sparsely as a collection of

tables; every segment that can contain pointers has associated with it a

portion of the secondary card mark table. The secondary card mark table

contains one byte per card; each of these card entries contains one bit for each

ephemeral level (thus we have a maximum of eight ephemeral levels). An

ephemeral level's bit is set to indicate that the card contains a reference to

that particular ephemeral level. The secondary card mark table is updated

at garbage collection scan time.

The size of cards is a compromise between a desire to keep the card mark

tables small (which argues for a large card size) and a desire to minimize

the amount of time spent in scanning a card already in main memory for

a possibly nonexistent reference to an ephemeral object (which argues for a
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small card size). 256 words is probably a good card size on machines with,

say, 28 bits of address space, like the Sun-3; this would give a primary card

mark table size of 32 kilobytes, and the per-segment secondary card mark

table portions would be 64 bytes each. Machines with 32 bits of address

space may motivate larger card sizes, but in no case should the card size

be larger than a virtual memory page frame, because of the much increased

likelihood of unnecessary page faults at scan time.

As in the proposed stock hardware implementation of Moon's ephemeral

garbage collector (Section 2.3.2), card-marking requires that the object cre-

ation routines be modi�ed to record in a table the location of the �rst tagged

word on each card; this allows scanning of cards containing untagged data.

Card-marking allows a compact representation of recorded pointer stores.

What are the dynamic characteristics of this technique; i.e., what does it

save us at pointer storage time? Assuming we have 256-word cards and a 28-

bit address space, a card's byte in the primary card mark table is determined

by the high 15 bits (13-27) of the 28-bit address; the bit in question is given

by bits 10-12 of the address. If we place the primary card mark table in

a register, or at some constant o�set from a register, we can mark a card

in six instructions on the MC68020, with two temporary data registers; the

MC68020 code for this is shown in Figure 4.

Here is the advantage of card-marking, then: with only six instructions

required to make an entry in the primary card mark table, pointer storage

can probably continue to be coded in-line, so that the expense of an out-

of-line subroutine call is saved; performance on pointer-storage-intensive

benchmarks that do not discard much storage is likely to be quite good.

5.2 Performing a Garbage Collection

Garbage collection in a card-marking scheme is similar to, although simpler

than, Moon's ephemeral garbage collection; �rst in being stop-and-copy, as

opposed to incremental, and second in not being directly concerned with

the virtual memory system. A Pidgin ALGOL description of card-marking

garbage collection is given in Figures 5 and 6.

Following is a description of how a card-marking garbage collection proceeds.



5 CARD-MARKING 32

;; Assume that the location to be stored in is in

;; a0, and that the primary card mark table is at a

;; constant offset crdtbl from the systemic

;; quantities vector (SQ), held in an address

;; register.

;; Store the reference location in temporary that

;; will get byte pointer.

move.l a0, d0

;; 68K can only immediate shift 8 places; we need 10

lsr.l #8, d0

move.l d0, d1 ;other temporary for bit field

lsr.l #5, d0 ;now we have the byte index in d0

lsr.l #2, d1 ;and the bit index in d1

;; note bset will mask all but the low three bits of

;; the bit index

bset.b d1, (crdtbl, sq, d0.w) ;set the bit

Figure 4: Marking a card on the MC68020.

When we garbage-collect an ephemeral level, we �rst scavenge the stack and

mark registers, just as with a dynamic GC. Then we consult the secondary

card mark table, and scan all cards whose secondary marks state that they

contain pointers to this level, except those within the level itself; these need

not be scanned, because they cannot contain roots for this level.

The scan proceeds as follows: each word in the card is fetched. If the word

is a pointer to the ephemeral level being garbage-collected, it is treated

as a root, and a scavenge is performed on the object it points to; but, in

any case, if after the potential scavenge the word contains a pointer to any

ephemeral level at all, a 
ag for that level is set (note that the placement

of this operation after the scavenge guarantees that the appropriate level's


ag is set { the datum has changed levels in the scavenge). When the scan

of the card is �nished, the secondary card mark table entries for this card

are reset from these 
ags, and the primary mark for this card is cleared, so

that we can avoid scanning the card twice.11

11Note A.4 gives a comparison with the Symbolics approach.
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procedure card_marking_gc ();

begin

push marked registers on stack;

from_level := 0;

done := false;

while (not(done))

begin

to_level := from_level + 1, or dynamic space, if

from_level is the last ephemeral level;

scavenge_stack(from_level, to_level);

for each card number c

if card_ephemeral_level[c] = from_level

then begin

for each level

secondary_card_mark_table[c, level] :=

false;

primary_card_mark[c] := false

end

else

if secondary_card_mark_table[c, from_level] =

true

then begin

scan_and_scavenge_card(c, from_level,

to_level);

primary_card_mark[c] := false

end

if from_level = 0

then for each card number c

if primary_card_mark[c] = true

then begin

scan_and_scavenge_card(c, from_level,

to_level);

primary_card_mark[c] := false

end

if to_level is not full, or is dynamic space

then done := true

else from_level := from_level + 1

end

end

Figure 5: The card-marking garbage collection algorithm.
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procedure scan_and_scavenge_card

(card_number, from_level, to_level);

boolean vector level_flags[number_of_ephemeral_levels];

begin

for i from 0 until number_of_ephemeral_levels

do level_flags[i] := false;

for each word in the card, beginning at the first tagged

word

begin

if the word is an immediate constant

then continue at the next word;

if the word is the header of a vector of untagged

data

then continue at the first word after the vector;

if the word points into from_level

then scavenge_word(word, from_level, to_level);

if word points to an ephemeral level

then begin

l := the level pointed to;

level_flags[i] := true

end

end

for i from 0 until number_of_ephemeral_levels

do secondary_card_mark_table[card_number, i] :=

level_flags[i]

end

Figure 6: Scanning and scavenging a card.
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When we have �nished scanning all the cards whose secondary marks state

that they contain references to the ephemeral level being garbage-collected,

we scan all the cards whose primary marks are still set, except those within

the ephemeral level being garbage-collected.12 The scan is exactly like that

performed for cards found through the secondary card mark table; note that

this means that secondary card marks are updated and primary card marks

are cleared.

When we have �nished scanning all the cards whose primary marks were

set, we have scavenged all the data in the ephemeral level that was being

garbage-collected, and we can clear its primary and secondary card mark

tables. Note that this means that the entire primary card mark table is now

clear.

5.3 The Problem with Card-Marking

The inner loop of the piece of code that scans a card on the MC68020 was

presented in Figure 1, on page 13. The time required to scan a 256-word card

on the MC68020 was estimated at 816 microseconds. The gain in pointer-

storage speed a�orded by card-marking is substantial, but it was estimated

at less than the loss due to card-scanning.13

Furthermore, the gain in pointer-storage speed was likely to be lost on ma-

chines with thirty-two bit address spaces, especially those in which the LISP

address space was to be organized sparsely. Here a contiguous primary card

mark table would be prohibitively large, and so a two-level map would be

necessary; but this would be nearly as expensive at pointer-storage time

as the scheme we actually implemented, which we shall call, for want of a

better name, word-marking.

12Note A.4 discusses the virtual memory behavior that will result from this scanning
order.

13This was only an estimate, however, and we have come to wonder whether it was cor-

rect. A prototype card-marking implementation would certainly answer these questions;
see Section 8, however, for other possibilities.
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6 Word-Marking

6.1 Recording the Root Set

The scheme used to record the root set in the Lucid Common LISP Ephe-

meral Garbage Collector is called word-marking. Word-marking uses two

di�erent data structures to record the root set. The �rst is a table of modi-

�cation bits; the second is a set of explicitly-managed lists.

6.1.1 Modi�cation Bit Tables

We divide the address space into large pieces called segments; on the MC68020,

these are 64 kilobytes in length. Their exact size is not critical; making them

64 kilobytes in length allows a simple instruction sequence to extract a seg-

ment number from a pointer.

There is for each allocated segment a table of bits, called a modi�cation bit

table (MBT). The MBT contains one bit for each longword in the segment;

thus, on the MC68020, MBTs will be 2 kilobytes in length. Every segment

has associated with it an MBT, but the MBTs are sparsely allocated, in that

there will be a single MBT shared by all the segments for which we do not

need to record pointers into ephemeral space; these include the segments

in the youngest ephemeral level, the unscanned segments, and segments

holding non-pointer data. This MBT is called the non-recording MBT, and

is specially recognized by the garbage collector.

The MBTs reside in static space, and are explicitly managed by the memory

manager. They are allocated in groups, and stored contiguously, for slightly

better locality on systems with page frames larger than 2 kilobytes.

The MBT stores the same sort of information that the primary card mark

table was to hold in the card-marking scheme, but the information is stored

on a per-word basis. That is: in card-marking, when one modi�es a location,

the bit for the card in which the location resides is set. In word-marking,

when one modi�es a location, the MBT for the segment in which the location

resides is fetched, and the bit within it corresponding to the location is set.
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So that the garbage collector need not examine the MBT for each segment

that might have been modi�ed, there is a table, called the segment mod-

i�cation cache, which contains one byte for each segment; the byte for a

segment is set nonzero whenever an entry is made in its modi�cation table.

A byte is used for each segment because the table must be modi�ed quickly

when a pointer is stored.

The segment modi�cation cache must also be read quickly at garbage collec-

tion time. On a machine with a 28-bit address space, the segment modi�ca-

tion cache is 4 kilobytes in length.14 With a longword test, the entries for 4

segments can be checked at once. A table of bits would have allowed quicker

examination, but would make pointer-setting slower by several instructions.

Note that the segment modi�cation cache cannot practically be spread

among the modi�cation bit tables, through some technique where a des-

ignated location in the MBT held a value indicating whether the MBT had

been modi�ed since the last garbage collection. This would allow us to save

an instruction at pointer storage time, but would degrade virtual memory

performance at garbage collection time, as every allocated MBT would have

to be examined. The MBTs may occupy some 3% of allocated storage;

examining each one could signi�cantly increase virtual memory tra�c.

Updating both the modi�cation bit and the segment modi�cation cache re-

quires some ten instructions,15 a temporary address register, and two tem-

porary data registers on the MC68020; the code is shown in Figure 7.

The length of this instruction sequence is su�ciently great that it must be

coded as an out-of-line call, or signi�cantly increase the amount of code in

the LISP image.

14Of course, in most applications, only a fraction of the address space of the processor

is allocated; the table is only searched as far as the last allocated segment.
15By using the MC68020's memory indirect post-indexed addressing mode, we can

shorten this to nine instructions, and this would be faster on the MC68030; however,

it will be considerably slower in most cases on the MC68020.



6 WORD-MARKING 38

;; SQ is an address register holding the base

;; address of a vector of systemic quantities.

;; SMCACHE is the constant offset from the base of

;; the SQ vector to the base of the segment

;; modification cache. MBTTBLS is the constant

;; offset from the base of the SQ vector to the slot

;; holding a pointer to the base of the

;; segment-number indexed table of MBTs.

move.l a0, d0 ;location being modified is in a0

move.l a0, d1 ;d0 and d1 are temporaries

swap d1 ;low 16 bits of d1 now hold segment

;; the segment modification cache lies directly

;; after the SQ vector. Set location to indicate

;; segment modified.

move.b #-1, (smcach, SQ, d1.w)

;; For compactness, the next two instructions

;; may be replaced by the single instruction

;; move.l ([mbttbls, SQ], d1.w*4, 0), a1,

;; but this would be slower on the 68020.

;; Get address of table of modification tables in a1

move.l (mbttbls, SQ), a1

;; get address of this segment's MBT in a1

move.l (0, a1, d1.w*4), a1

;; get bit field in d0 (low 3 are bit to set)

lsr.w #2, d0

move.l d0, d1 ;d1 will be byte in table

;; make 11 bits in low half be byte in table

lsr.w #3, d1

bset.b d0, 0(a1,d2.w) ;set the bit

Figure 7: MC68020 code to update an MBT and the segment modi�cation

cache in a word-marking scheme.
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6.1.2 Entry Backpointer Lists

The modi�cation bit tables hold very little information; we must examine

the locations that were modi�ed to determine whether they contain pointers

to an ephemeral level. We do this at garbage collection time. The garbage

collector examines modi�ed locations and adds the addresses of locations

that point into an ephemeral level to that ephemeral level's entry back-

pointer list, or EBPL. The EBPLs are explicitly-managed lists maintained

in a block of static space by the garbage collector.

The EBPLs are managed in such a fashion that their entries are unique;

there is no duplication of entries. They are lists, rather than queues, because

those for di�erent levels grow and shrink dynamically. They are grown only

when the youngest ephemeral level is garbage-collected and modi�cation

bit tables are examined. They will also shrink at this time; a modi�cation

may mean that a pointer to an ephemeral level was replaced by a pointer to

some other ephemeral level, or to a location outside of ephemeral space. The

management of the EBPLs is explicit: when an entry is removed, its cons

cell is returned to a freelist. When the oldest ephemeral level is garbage-

collected into dynamic space, its entire EBPL is linked into the freelist.

Because the EBPLs are updated at garbage collection time, if a program

does not create objects, it will not pause. Also because the EBPLs are

updated at garbage collection time, it is possible in a linear pass through

them to maintain unique entries; such a linear pass would not be possible

at pointer-setting time.

Note that the use of EBPLs for level-speci�c information means that word-

marking imposes no limitation on the number of ephemeral levels allowed.

6.2 Performing a Garbage Collection

A Pidgin ALGOL routine that performs a word-marking garbage collection

is shown in Figures 8 and 9. An explanation of its working follows.

Initially, we scan the stack and mark registers, just as with a dynamic GC.

Then we make a pass over the EBPLs. Any EBPL entry corresponding

to a location whose MBT entry is set is elided; the scavenge from MBTs
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procedure word_marking_gc ();

begin

push marked registers on stack;

from_level := 0;

done := false;

mbts_not_empty := true;

failed_to_clear_mbt := false;

while (not(done)) begin

to_level := from_level + 1, or dynamic space, if

from_level is the last ephemeral level;

scavenge_stack(from_level, to_level);

for each location in each EBPL

if mbt_entry_set(location)

then remove the location from the EBPL;

for each location in the EBPL for from_level begin

if location is in from_level or to_level

then remove the location from the EBPL;

if location is not in from_level

then scavenge_word(location, from_level,

to_level)

end

if mbts_not_empty then begin

for each segment whose segment modification

cache entry is set

if segment_mbt(segment) = non_recording_mbt

then clear_segment_mod_cache_entry(segment)

else if scavenge_segment_from_mbt

(segment, from_level, to_level);

then clear_segment_mod_cache_entry(segment)

else failed_to_clear_mbt := true;

mbts_not_empty := failed_to_clear_mbt

end

if to_level is dynamic space

then link from_level's EBPL to the EBPL freelist

else link from_level's EBPL to to_level's EBPL;

set from_level's EBPL to nil;

if to_level is not full, or is dynamic space

then done := true

else from_level := from_level + 1

end

end

Figure 8: The word-marking garbage collection algorithm.
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procedure scavenge_segment_from_mbt(segment, from_level,

to_level);

begin

mbt := segment_mbt(segment);

entries_not_cleared := false;

for each location corresponding to a set entry in mbt

if the location contains immediate constant data, or

does not point into an ephemeral level

then clear_mbt_entry(location)

else begin

level := the ephemeral level into which location

points;

if level = from_level

then scavenge_word(location, from_level,

to_level);

if location itself is in to_level

then clear_entry := true

comment add_to_ebpl returns true if successful

else clear_entry := add_to_ebpl(level, location);

if clear_entry

then clear_mbt_entry(location)

else entries_not_cleared := true;

end

return(not(entries_not_cleared));

end

Figure 9: Scavenging the words in a segment that point into ephemeral space

by examining its modi�cation bit table.
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performed later will examine the contents of the location and determine

which EBPL it should now be placed on, if any. This operation guarantees

uniqueness of entries on EBPLs, and also guarantees that for the rest of the

garbage collection, the locations listed in EBPLs will be known to contain

pointers into the corresponding ephemeral level.

Then we fetch the EBPL for this level.16 For each location listed in the

EBPL, we determine whether the location is in the space being garbage-

collected or the space being garbage-collected into; in either case we reclaim

the EBPL cons. We can do so because pointers stored within an ephemeral

level are not considered part of the root set for that ephemeral level; thus

they should not be on the level's EBPL.

If the location is not in fromspace,17 we scavenge it.

Now we scan the segment modi�cation cache entries for the segments that

may contain pointers to this ephemeral level. When we �nd a segment that

has been modi�ed, we fetch and examine its MBT. If the MBT is the unique

non-recording MBT, we need not examine it further, as it is associated only

with segments that cannot contain ephemeral references. Otherwise, the

MBT is examined a word at a time for nonzero entries; because this is

simply a check for nonzero entries, it is a two-instruction dbne loop on

the MC68020, performed for 512 words. The scan could be optimized by

recording the least and greatest locations modi�ed in the segment, but this

would make pointer storage still slower.

When a modi�ed location is found, its contents are examined; if these do

not point into an ephemeral level or are constant immediate data, the MBT

entry for the location is cleared, and the search continues at the next word.

If the location contains a pointer to an ephemeral object, then, if the object

is in the level being garbage-collected, that is, fromspace, the location is

16Note that, if this is a garbage collection of the youngest ephemeral level, the EBPL

will be empty, because the modi�cation table is scanned only when a garbage collection
happens (but see note A.5).

17This check is redundant if the algorithm is implemented exactly as shown, as we re-

claim EBPL entries for locations in tospace before linking fromspace's EBPL into tospace's
EBPL, to reduce the chance of running out of EBPL conses. If the obvious simpli�cation

is made, however, this step would be necessary to allow the reclamation of EBPL conses

and ephemeral objects pointed to only by dead ephemeral objects at later levels; for ex-
ample, the ephemeral garbage collector could not otherwise reclaim circular structures

spread across more than one ephemeral level.
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scavenged. If the location itself was in tospace, we simply clear its MBT

entry; this guarantees that MBTs for empty levels are cleared. Otherwise

we attempt to add it to the appropriate EBPL. If we were not out of EBPL

conses and thus succeeded in adding the location to the appropriate EBPL,

we may clear the location's MBT entry, but otherwise we must leave it set,

so that we examine the location at the next garbage-collection, as it is known

to contain an ephemeral reference. This state, in which the EBPL freelist is

empty, will not persist, because eventually a garbage collection of the oldest

ephemeral level will happen; when it completes, all EBPLs will again be

null.

When we have �nished scavenging ephemeral references recorded in the mod-

i�cation tables, we have copied all the live data out of the ephemeral level

being garbage-collected. If we succeeded in clearing all MBTs, we note the

fact, so that we need not examine the segment modi�cation cache on the

next garbage collection. Note that we have necessarily cleared the segment

modi�cation cache entries and MBTs for the segments in fromspace; we have

also elided from the EBPL for fromspace all entries whose locations were in

tospace. We must now update the EBPL for tospace to include entries for

locations that point to the data just copied into it; this we do by linking to

its end the EBPL for fromspace, and setting the EBPL for fromspace to nil.
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7 Performance Measurements and Analysis

We describe two sets of performance measurements. The �rst was collected

in January of 1988, on a preliminary release of the ephemeral garbage col-

lector running on various Sun workstations, and measures performance on

several of the Gabriel benchmarks [7]. The second set of measurements mea-

sures performance of a prototype version of the system, running the Lucid

Common LISP production compiler on Apollo workstations; these measure-

ments were collected in the summer of 1987.

7.1 Performance on the Gabriel Benchmarks

The Sun benchmarks are summarized in Tables 1, 2, and 3. Timings were

measured on single-user machines with network paging over a 10-megabaud

Ethernet to a Sun-3/180 �le server; the paging devices on the �le server

were fast disks operating through SMD interfaces. There was essentially no

network contention when the timings data were collected.

All three machines used in benchmark timings used MC68020 processors

clocked at 16 megahertz. The Sun-3/75 was con�gured with 4 megabytes

of physical memory; the Sun-3/110, with 8 megabytes of physical memory,

and the Sun-3/180 with 16 megabytes of physical memory.

The benchmarks were run with the operating system in single-user mode to

avoid any anomalies from running daemons. They were compiled with the

Lucid Common LISP/Sun 3.0 production compiler, with speed and safety

settings of 3 and 0, respectively. The version of LISP used was a beta-test

version of Lucid Common LISP/Sun Release 3.0. It was con�gured with

82-segment dynamic semispaces (5.4 megabytes each), and three ephemeral

levels; level 0 was 8 segments (512 kilobytes) in length, and levels 1 and

2 were each 10 segments (640 kilobytes) in length. In each case the best

timing from several runs is given. These benchmarks are described in detail

in [7].

In most cases, ephemeral garbage collection reduced the elapsed real time

for execution of these benchmarks; this is especially so in cases where several

dynamic garbage collections had to be performed. The di�erence is most
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(dotimes (i 10) (boyer-setup) (boyer-test))

Processor Parameter Garbage Collector

Measured Dynamic only Ephemeral

Sun-3/75 Elapsed Real Time 235.5 206.7

16mhz MC68020 CPU Time 162.7 190.46

4mb main memory Dynamic Bytes 18,139,280 1,665,216

Consed

Dynamic Garbage 3 0

Collections

Sun-3/110 Elapsed Real Time 244.2 176.5

16mhz MC68020 CPU Time 166.4 174.4

8mb main memory Dynamic Bytes 18,139,280 1,665,216

Consed

Dynamic Garbage 3 0

Collections

Sun-3/180 Elapsed Real Time 148.6 171.9

16mhz MC68020 CPU Time 144.0 171.9

16mb main memory Dynamic Bytes 18,139,576 1,533,040

Consed

Dynamic Garbage 4 0

Collections

Table 1: BOYER benchmark timings. Times are in seconds.
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(dotimes (i 20) (deriv-run))

Processor Parameter Garbage Collector

Measured Dynamic only Ephemeral

Sun-3/75 Elapsed Real Time 389.0 98.4

16mhz MC68020 CPU Time 172.9 89.0

4mb main memory Dynamic Bytes 39,205,320 0

Consed

Dynamic Garbage 7 0

Collections

Sun-3/110 Elapsed Real Time 387.8 89.8

16mhz MC68020 CPU Time 177.0 89.2

8mb main memory Dynamic Bytes 39,205,320 0

Consed

Dynamic Garbage 7 0

Collections

Sun-3/180 Elapsed Real Time 103.8 89.3

16mhz MC68020 CPU Time 101.2 89.3

16mb main memory Dynamic Bytes 39,205,320 0

Consed

Dynamic Garbage 7 0

Collections

Table 2: DERIV benchmark timings. Times are in seconds.
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(dotimes (i 100) (destructive 600 50))

Processor Parameter Garbage Collector

Measured Dynamic only Ephemeral

Sun-3/75 Elapsed Real Time 415.8 196.3

16mhz MC68020 CPU Time 249.0 178.1

4mb main memory Dynamic Bytes 34,489,080 0

Consed

Dynamic Garbage 6 0

Collections

Sun-3/110 Elapsed Real Time 437.2 176.9

16mhz MC68020 CPU Time 259.6 176.9

8mb main memory Dynamic Bytes 34,489,080 0

Consed

Dynamic Garbage 6 0

Collections

Sun-3/180 Elapsed Real Time 194.5 177.5

16mhz MC68020 CPU Time 191.5 177.5

16mb main memory Dynamic Bytes 34,489,080 0

Consed

Dynamic Garbage 6 0

Collections

Table 3: DESTRUCTIVE benchmark timings. Times are in seconds.
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dramatic on the machines con�gured with less memory; this is because ephe-

meral garbage collection drastically reduces the size of the working set. Note

that the di�erences between central processing unit time and real time on

these machines is large under dynamic garbage collection, and much smaller

under ephemeral garbage collection; as the machines were running in single-

user mode, the discrepancy between real and central processing unit times

will be due almost totally to virtual memory system overhead.

It is interesting to note that, in some cases, ephemeral garbage collection

reduced the amount of central processing unit time required for the execution

of a benchmark. We expect that the reduced size of the root set accounts for

much of the performance improvement, as, among these benchmarks, only

BOYER retains for long the large structures created. Thus it seems unlikely

that much transporting occurred in dynamic garbage collection.

The DESTRUCTIVE benchmark timings (Table 3) show particularly good

performance under ephemeral garbage collection. Reference to the source

code reveals one reason: only two of the six destructive operations used will

result in invocation of the out-of-line subroutine that records pointer stores.

The others are stores either of declared �xnums or constant symbols; as

noted in Section 4.1, the compiler can optimize out pointer-recording in

these cases.

In the BOYER timings (Table 1), we see a pattern characteristic of the

Lucid ephemeral garbage collector: enhanced virtual memory performance

is gained at the expense of increased central processing unit load. The

size of the working set has been decreased; the improved virtual memory

performance has resulted in reduced elapsed times to perform a task, but

at a cost of more work for the central processing unit. On machines with

better virtual memory performance, use of the ephemeral garbage collector

is less attractive.

7.2 Performance of the Compiler Under Ephemeral Garbage

Collection

The Apollo performance measurements are summarized in Table 4. These

measurements were taken on single-user machines with local paging and �le

disks; network tra�c was virtually nil. The Apollo DN4000 processor is an
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Processor Parameter Garbage Collector

Measured Dynamic only Ephemeral

DN570-T Elapsed Real Time 32,171.5 28,554.7

20mhz MC68020 CPU Time 16,429.0 20,275.1

8mb main memory Process Disk I/O 499,881 285,034

154mb disk, ST506 Dynamic Bytes 722,183,608 87,741,088

Consed

DN3000 Elapsed Real Time 30,269.8 31,535.6

12mhz MC68020 CPU Time 19,768.3 26,316.8

8mb main memory Process Disk I/O 485,096 256,155

348mb disk, ESDI Dynamic Bytes 722,163,960 90,460,272

Consed

DN4000 Elapsed Real Time 12,358.1 15,693.7

25mhz MC68020 CPU Time 11,680.3 15,012.1

32mb main memory Process Disk I/O 8,226 6,484

348mb disk, ESDI Dynamic Bytes 722,121,048 92,014,816

Consed

Table 4: Global recompilation performance measurements on Apollo work-

stations. Times are in seconds.

MC68020 clocked at 25 megahertz; the DN4000 in question was con�gured

with 32 megabytes of physical memory and a fast 348 megabyte disk drive

operating through an ESDI interface. The DN3000 processor is an MC68020

clocked at 12 megahertz; the DN3000 used was con�gured with 8 megabytes

of physical memory and a fast 348 megabyte disk drive with the same ESDI

interface as on the DN4000. Finally, the DN570-T processor is an MC68020

clocked at 20 megahertz; the DN570-T used for performance measurements

was con�gured with 8 megabytes of physical memory and a relatively slow

154 megabyte disk drive operating through an ST506 interface.

The task executed was a recompilation of all the �les in the LISP system;

it also served as a testbed for debugging the ephemeral garbage collector

prototype.18

18In its default con�guration, the Apollo version of the Lucid Common LISP compiler

makes use of a facility that allows block allocation and deallocation of temporary storage.
In the results shown here, this facility has been disabled, as such block allocation and

deallocation is not available to user programs, and our intention is to provide an analysis

of the behavior under ephemeral garbage collection of large programs utilizing the usual

storage allocation facilities.
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Use of the ephemeral garbage collector degraded performance in the global

recompilation task on both the DN4000 and the DN3000. On the DN4000,

the task took 27%more elapsed real time under ephemeral garbage collection

than under dynamic garbage collection; on the DN3000, the �gure was about

4:2%. On the DN570-T, however, the elapsed real time under ephemeral

garbage collection is 11:2% less than under dynamic garbage collection.

These results con�rm the conclusion we reached in examining our timings

on Sun workstations: the Lucid Ephemeral Garbage Collector improves vir-

tual memory performance at the expense of central processing unit time.

Examination of the \Disk I/O" �gures show a reduction in virtual memory

tra�c on all three systems; on the DN3000 and DN570-T this reduction

was in excess of 42% of that observed under dynamic garbage collection; on

the DN4000, con�gured with 4 times the amount of physical memory, the

reduction in disk I/O was only 21%. The DN3000 and DN570-T disk I/O

�gures are very close, as would be expected from machines with identical

amounts of physical memory; however, the DN570-T's faster processor gives

it a lower elapsed time under ephemeral garbage collection. Under dynamic

garbage collection, this advantage is reversed by the DN3000's faster paging

device.

On the whole, however, these measurements show much worse performance

under ephemeral garbage collection while performing a global recompilation

on Apollo workstations than while running benchmarks on Sun worksta-

tions. Leaving aside momentarily the fact that the tasks being performed

are di�erent, we would still expect some discrepancy in performance, due to

the di�erent virtual memory characteristics of the systems being compared.

The Sun-3 has 8-kilobyte page frames, as compared to the Apollo's 1-kilobyte

page frames; the coarser page size hurts performance in a pointer-oriented

language with heap allocation, like LISP. Furthermore, the Apollos whose

performance we measured had more memory and faster paging devices than

did the Suns. But we also see wide discrepancies in factors besides virtual

memory behavior; in particular, the central processing unit time expense

of ephemeral garbage collection is far greater in the Apollo performance

measurements.

Of course, we are comparing apples and oranges; the tasks being performed

were di�erent. What is interesting is how they are di�erent. The compiler
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makes heavy use of hash tables, especially when reading input �les, and

hash tables are invalidated by copying garbage collection, as the hash values

of objects stored in them are computed from their addresses, which are

assumed to have changed. Thus references to hash tables between garbage

collections require recomputing hash values for all objects in the tables.

Because ephemeral garbage collections occur so much more often than do

dynamic garbage collections, this task will have to be performed many times

more often under ephemeral garbage collection; we believe that this accounts

for a lot of the central processing unit time.

Other measurements have led us to believe that the default con�guration

of ephemeral spaces is less than ideal for use of the compiler. The compiler

creates large data structures while compiling a �le, and retains some of

them through the entire compilation of the �le; thus there is the possibility

that these large structures will be moved several times by ephemeral garbage

collection, and �nally advanced into dynamic space, where they are released.

We have in fact observed this behavior by metering compilation.

This is not a problem peculiar to the compiler; we expect that many pro-

grams that build large temporary data structures will exhibit similar be-

havior. Note that, because these structures are built out of small parts,

the automatic allocation of very large objects in dynamic space (see Sec-

tion 4.5) is of no help here. This is called the pig-in-the-snake problem.19

In general, it can be solved only by tuning the number and the sizes of

ephemeral levels for optimal behavior on the problem at hand. In the case

of the compilation benchmark, we can see that a greater delay between

garbage collection times, as occurs in dynamic garbage collection (because

semispaces are larger), would result in moving these structures less often or

possibly not at all; they might perish �rst. We expect that a larger �rst

ephemeral level would have much the same e�ect.

Finally, the compiler performance measurements were made on an earlier

version of the system; some of the continued development in the interim may

have led to better performance in the later benchmarks. Further testing is

planned to analyze compiler performance with the current system.

19I am indebted to Jon L. White for this terminology.
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8 Conclusions and Future Work

8.1 Conclusions

The performance analysis presented in Section 7 may be summarized broadly

and in brief:

� At tasks in which large amounts of data are allocated and then dis-

carded, the Lucid Ephemeral Garbage Collector reduces both the elapsed

real time and the central processing unit time required.

� At tasks in which large amounts of data are allocated and retained,

the ephemeral garbage collector will enhance performance by reducing

the size of the working set, gaining virtual memory performance (and

thus elapsed real time) at the expense of central processing unit time.

� On processors with very good virtual memory performance (those

con�gured with large amounts of physical memory and fast paging

devices) the ephemeral garbage collector may degrade performance

signi�cantly. We believe that this is mostly due to the overhead of

recording pointer storage.

� Ephemeral space con�guration should be tuned to individual problems

to avoid extra transporting work.

Additionally, ephemeral garbage collections do not cause noticeable pauses.

This, and the performance characteristics described above, promise much for

the manufacturer of interactive systems built in LISP and delivered on work-

stations. Ephemeral garbage collection allows smaller workstations without

local disks to be used as symbolic processing delivery vehicles without pro-

hibitive e�ects on performance.

8.2 Future Work

We did not establish conclusively that our means for recording the root set

was superior to card-marking. More performance measurements should be

made to support or controvert this argument.
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We do not know for certain that overall performance is actually enhanced by

our strategy of delaying until garbage collection time the determination of

the spaces in which a pointer is stored and to which it points. Instrumenta-

tion of the pointer storage routine and careful metering of paging behavior

will yield an answer to this question.

A scheme by which repeated scanning of the stack on scavenges of successive

levels could be avoided would be useful; the stack often grows to consider-

able size during the execution of LISP programs, as recursion is encouraged.

The obvious means by which to avoid scans after the initial one would be to

use the EBPLs to hold backpointers to ephemeral references on the stack;

however, this would mean less e�cient use of EBPL conses, as many EBPL

entries for the stack would become invalid between invocations of the gar-

bage collector. As we would need to scan the stack at the inception of

each invocation of the garbage collector, we could modify the initial scan

of EBPLs (which elides entries for locations whose MBT entries are set) to

remove entries for locations on the stack.

However, because most ephemeral garbage collections are only of the �rst

ephemeral level, the additional bookkeeping overhead of this scheme might

not pay o�. Possibly we could invoke it only when the succeeding level

was �lled nearly to capacity, as this would signify increased likelihood of a

scavenge of that level.

It would be useful to have a means of determining the best con�guration

of ephemeral space for a given problem. The con�guration of ephemeral

spaces is a compromise between several con
icting constraints. Increas-

ing the number of ephemeral levels causes fewer objects to be advanced to

dynamic space, decreasing the number of dynamic garbage collections; how-

ever, it increases the number of times a relatively permanent object must

be copied before it is advanced to dynamic space. Increasing the size of the

�rst level will give ephemeral objects more time to perish before we ever

transport them; but it also reduces locality of reference. A good model of

these constraints would allow us to build a tool that could analyze the dy-

namic behavior of a program and make con�guration recommendations, or

possibly even vary dynamically the con�guration of ephemeral space.

Some means of performing approximately depth-�rst copying (either that

used by Moon [10, page 238], or some other scheme) would improve locality
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of reference.

Of course, the availability of support from virtual memory systems would

make a scheme like the one described in Section 2.3.2 more attractive than

the one we implemented.
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Part III

Appendices

A Notes

A.1 Performance of incremental garbage collection

Baker [1, page 26] noted that his incremental garbage collector would re-

quire a larger working set size than would a simple stop-and-copy garbage

collector, as the user computation running would require a certain amount of

working storage, made larger by the necessity of following forwarding point-

ers through evacuated objects in fromspace, and the scavenger would also

constantly be cycling through memory in tospace and fromspace unrelated

to that currently in use by the user computation.

Empirical evidence bears out Baker's concern. Moon [10, page 236] reports

that the poor virtual memory performance of the Baker-style garbage col-

lector on the Symbolics 3600 resulted in users' avoidance of its use whenever

possible.

A.2 Shaw's suggested extension to virtual memory systems

Shaw [12] suggests a scheme in which the virtual memory system allows the

LISP process to clear the dirty bits actually maintained by the hardware;

prior to actually clearing the bits, the virtual memory system saves their

state away, so that two tables are consulted by the virtual memory system

when a page is ejected from physical memory.

Such a facility would allow the LISP process to remember and clear mark bits

just before a garbage collection. During the garbage collection, it would scan

the pages remembered to have been marked; it would write them if they had

ephemeral references, as these references would need to be updated. Thus

only the pages with ephemeral references would be marked dirty immediately

after a garbage collection; this would eliminate some useless page-scanning.
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Note, however, that the facility Shaw suggests, while potentially valuable,

is not essential to the success of Moon's garbage collection scheme on a

general-purpose computer. Dirty bits alone, maintained in the usual sense,

will work, because the wasted page scans are of in-core pages; the expense of

this operation, even on general-purpose machines, is dwarfed by any backing

store operations that garbage collection may require.

It is interesting to note that Shaw's scheme does not provide any means

to verify whether ejected dirty pages contain pointers to ephemeral levels

before they are written to backing store; thus unnecessary backing store

operations will occur at garbage collection time when a dirty page ejected

from physical memory does not contain any references to ephemeral spaces.

A.3 Time required to garbage-collect all levels

Call the oldest level level 1, and the youngest level levelm. If each succeeding

level is half the size of the next younger level, and level m is of size x, the nth

level is of size 2n�mx. The data in the mth level might have to be copied m

times. Say that the work required to copy x words is x; then, if every level

is entirely full of live data, the work required for m levels is
P
m

n=1
2n�mmx,

or mx

P
m

n=1
2n�m. In the limit, this is 2mx, where x was the work required

to copy the youngest level.

A.4 Scanning order and virtual memory performance

On the 3600, an ephemeral garbage collection �rst scavenges the pages with

GCPT bits set, and then pages whose ESRT entries are set. This probably

results in many pages being scanned twice, but, as Moon comments, it is

very cheap to scan a page with no ephemeral references on it, and the second

scan will encounter no references in fromspace.

In our card-marking scheme, we scan the cards with set secondary marks

�rst, and then the cards whose primary marks are set, but whose secondary

marks were not set; thus we avoid re-scanning some cards. We perform

the scanning in this order to optimize the overall paging behavior of the

algorithm. If we wished, we could �rst scan the cards whose primary marks
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were set; when we were �nished scanning them, the data would have changed

levels and the secondary card mark table would re
ect that, so we would

also not scan any cards twice with this approach.

Scanning the cards with set secondary marks �rst optimizes the paging

behavior in this way: the cards whose primary card marks were set are those

that were recently written, and thus we assume that they may be written

again soon and should be in physical memory after a garbage collection; if

we were to scan them �rst, the cards whose secondary marks were set would

be left in physical memory after a garbage collection; this would mean that

the user program would �rst have to page them out.

One reason why Symbolics might perform the scan in the opposite order

is that, because their garbage collector is incremental, the user program

continues to execute very early in the garbage collection process, and thus

they would like to delay disturbing the pages in physical memory as long as

possible.

A.5 Updating EBPLs between garbage collections

It would be possible to update the EBPLs from the modi�cation tables (and

clear the modi�cation tables) between garbage collections; for example, we

could cause the object creation routines to scan modi�cation tables whenever

we began allocating objects in a new segment. This would not violate the

design goal of predictability, which states that programs that do not create

objects should not cause garbage collections, because the scanning would be

motivated only by object creation. This might lead to better virtual memory

performance, as the garbage collector would not then have to examine such

chronologically distant locations. One result of making this modi�cation to

the system would be the possibility that level 0's EBPL would have entries

at the inception of garbage collection.
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