
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARTIFICIAL INTELLIGENCE LABORATORY

A.I. Technical Report No. 1427 October, 1993

Translucent Procedures,
Abstraction without Opacity

Guillermo J. Rozas

Copyright c
 Massachusetts Institute of Technology, 1993

This report describes research done at the Arti�cial Intelligence Laboratory of the Massachusetts

Institute of Technology. Support for the laboratory's arti�cial intelligence research is provided in

part by the Advanced Research Projects Agency of the Department of Defense under O�ce of

Naval Research contract N00014-92-J-4097, and by the National Science Foundation under grant

number MIP-9001651.

i

Translucent Procedures,

Abstraction without Opacity

by

Guillermo J. Rozas

Submitted to the Department of Electrical Engineering and Computer Science

on May 11, 1993, in partial ful�llment of the

requirements for the degree of

Doctor of Philosophy

Abstract

This report introduces translucent procedures as a new mechanism for implementing

behavioral abstractions. Like an ordinary procedure, a translucent procedure can

be invoked, and thus provides an obvious way to capture a behavior. Translucent

procedures, like ordinary procedures, can be manipulated as �rst-class objects and

combined using functional composition. But unlike ordinary procedures, translucent

procedures have structure that can be examined in well-speci�ed non-destructive

ways, without invoking the procedure.

I have developed an experimental implementation of a normal-order lambda-

calculus evaluator augmented with novel re
ection mechanisms for controlled viola-

tion of the opacity of procedures. I demonstrate the utility of translucent procedures

by using this evaluator to develop large application examples from the domains of

graphics, computer algebra, compiler design, and numerical analysis.

Thesis Supervisor: Harold Abelson

Title: Professor of Computer Science and Engineering

Thesis Supervisor: Gerald J. Sussman

Title: Matsushita Professor of Electrical Engineering

ii

A Guillermo Rozas Mazo (1931{1990),

cuyo deseo de dar a sus hijos la educaci�on que �el no pudo recibir,

con este trabajo realizo.

Lo prometido es deuda.

iii

Acknowledgments

There are many people to whom I owe my sanity and to whom I am indebted. In no

particular order, I would like to acknowledge:

My mother, Juana Rodr��guez Art�es, and my sister, Ma Librada Rozas Rodr��guez,

who have put up with me longer than anyone else, and, somehow, they are not tired

of me yet.

Barb and Jim Miller, for encouraging me, for mothering me, for trying out and

making Spanish food, and for showing me that there is life beyond MIT and Tech.

Sq.

Gerry Sussman and Hal Abelson, for being friends, for being tolerant, for �nan-

cially supporting me, and for creating an environment where people can have fun

together even if they work on completely unrelated subjects.

The lunch crowd: Arthur Gleckler, Brian LaMacchia, and Mark Friedman. Swit-

zerland revolves around you.

Rocky Cardalisco, who periodically pulls me away from MIT to prove to me that

the outside world still exists.

Kleanthes Koniaris, for debugging my writing.

Franklyn Turbak, for debugging my thinking.

Chris Hanson, for MIT Scheme and for Edwin.

Henry Wu, for porting MIT Scheme to MS-DOS, enlightening me about PCs, and

encouraging me to buy one, without which I would still be getting nasty letters from

the EECS Area II committee.

Andy Berlin, for pushing me along by threatening to graduate before me.

Michael Blair, k.p.a. Ziggy, and Stephen Adams, for liking beer, and for reminding

me that I do too.

Rajeev Surati, for sharing his o�ce with a maniac �ghting with LaTEX.

Natalya Cohen, Jason Wilson, and the other Switzerland undergraduates. Not

only do you boost graduate students' egos by being easily impressed, but you remind

iv

us how much fun it was to learn when everything was new.

The rest of Switzerland.

The MIT Lecture Series Committee, LSC, for being an immensely fun activity,

for giving me something to do unrelated to my work, and for teaching me what it's

like to have one thousand people ready to call you all sorts of names when you make

a tiny mistake.

Last but not least, my relatives, especially my grandfather, Juan Rodr��guez Gar-

c��a, who has continually asked me when I was going to grow up and graduate.

Contents

1 Abstraction and Procedural Opacity 1

1.1 Henderson's Picture Language : 3

1.2 Limitations of Procedural Representations : : : : : : : : : : : : : : : 7

1.3 Overcoming Opacity : 10

1.4 The Picture Language with Translucent Procedures : : : : : : : : : : 12

1.5 Summary : 15

2 Translucent Procedures and the Procedural Pattern Matcher 21

2.1 tlambda and TScheme : 21

2.1.1 Fundamental Di�erences : 23

2.1.2 Accidental Di�erences : 26

2.2 The Procedural Pattern Matcher : 31

3 Solvers for Systems of Equations 41

3.1 Solving Systems by Substitution : 41

3.2 Substitution as an Operation on Functions : : : : : : : : : : : : : : : 43

3.3 Additional Concerns to the Application of the Method : : : : : : : : 46

3.4 The Solver : 49

3.5 The Limitations of Opaque Procedures : : : : : : : : : : : : : : : : : 55

3.6 Overcoming Opacity : 58

3.7 Loose Ends : 59

v

vi CONTENTS

3.8 Summary : 63

4 Metacircular Interpreters and Compilers 65

4.1 Why Use Interpreters? : 65

4.2 Automatically Generated Threaded Interpreters : : : : : : : : : : : : 68

4.3 Limitations of the Procedural Representation : : : : : : : : : : : : : 74

4.4 Overcoming Opacity : 76

4.5 Summary : 80

5 Constructive Non-elementary Functions 81

5.1 Constructing functions from their De�ning Properties : : : : : : : : : 81

5.2 Construction by Abstraction and Composition : : : : : : : : : : : : : 83

5.3 Closures are not Good Enough : 85

5.4 Having Our Cake and Eating It Too : : : : : : : : : : : : : : : : : : : 87

5.5 Summary : 88

6 Semantic Concerns 91

6.1 A Trivial Semantics for Translucent Procedures : : : : : : : : : : : : 91

6.2 Transparency Reveals Too Much : 93

6.3 Translucency Reveals What We Can Use : : : : : : : : : : : : : : : : 94

6.4 Preliminary Concepts : 95

6.5 Computable Canonicalization Functions : : : : : : : : : : : : : : : : 98

6.6 Summary : 101

7 E�ciency concerns 103

8 Related and Further Work 109

8.1 Related Work : 109

8.1.1 Re
ection and Rei�cation : 109

8.1.2 Other Related Work : 111

CONTENTS vii

8.2 Further Work : 112

9 Conclusions 115

A Implementation details 119

A.1 Implementation of TScheme : 119

A.2 Implementation of the Procedural Pattern Matcher : : : : : : : : : : 121

A.2.1 Data Structures Manipulated by the Matcher : : : : : : : : : 122

A.2.2 Comparison Walk in the Matcher : : : : : : : : : : : : : : : : 123

A.2.3 Simple Match of Pattern Variables : : : : : : : : : : : : : : : 126

A.2.4 Matching Combination Patterns : : : : : : : : : : : : : : : : : 127

A.2.5 Under-constrained Values and Consistent Bindings : : : : : : 136

B Denotational Semantics 141

B.1 Semantics in Scheme notation : 141

B.2 Semantics in Traditional notation : 156

B.2.1 Abstract Syntax : 156

B.2.2 Domain Equations : 156

B.2.3 Semantic Functions : 156

viii CONTENTS

Chapter 1

Abstraction and Procedural

Opacity

This report introduces translucent procedures as a new mechanism for implementing

behavioral abstractions. Like an ordinary procedure, a translucent procedure can

be invoked, and thus provides an obvious way to capture a behavior. Translucent

procedures, like ordinary procedures, can be manipulated as �rst-class objects [58] and

combined using functional composition. But unlike ordinary procedures, translucent

procedures have structure that can be examined in well-speci�ed non-destructive

ways, without invoking the procedure.

I have developed an experimental implementation of a normal-order lambda-

calculus evaluator augmented with novel re
ection mechanisms for controlled viola-

tion of the opacity of procedures. I demonstrate the utility of translucent procedures

by using this evaluator to develop large application examples from the domains of

graphics, computer algebra, compiler design, and numerical analysis.

Abstraction is central to software design. In constructing complex software sys-

tems, we begin with some given building blocks, aggregate these using some available

means of combination, and abstract the aggregates, i.e. characterize them in some

economical way, so that we can think about them simply and incorporate them as

1

2 CHAPTER 1. ABSTRACTION AND PROCEDURAL OPACITY

building blocks in larger aggregates. One especially e�ective approach to abstrac-

tion is behavioral abstraction. This abstracts each building block as something that

has a speci�ed behavior. In using the building block, only the behavior should mat-

ter, not other aspects of its implementation. The methodology of abstract data

types [40, 12] is one popular approach to behavioral abstraction. Object-oriented

programming [12, 1] is another.

For languages that support procedures as �rst-class objects, representing build-

ing blocks as procedures is a particularly e�ective approach to behavioral abstrac-

tion [51, 1, 6]. A building block represented as a procedure has an obvious abstraction,

namely, the procedure's input-output behavior. In addition, the system designer has

a means of combination already at hand, namely, ordinary functional composition.

Consequently, there are many examples of systems whose elegance and power derives

from the use of procedural representations. This report will describe some of them.

On the other hand, implementing behavioral abstractions as ordinary procedures

has limitations, or to put it more correctly, procedures do their job too well. Proce-

dures are completely opaque structures. If an element is represented as a procedure,

then the only way to interact with it is to invoke it. We cannot examine it, or inspect

its internal structure in any way.

Working with objects represented as ordinary procedures is like packaging all items

in identical opaque boxes. If we are handed a box that has a wick sticking out of it,

we don't know whether the box contains a birthday cake or a bomb; and the only

way to �nd out is to light the wick. A translucent procedure is a box that can be

x-rayed. We can't actually open the box and disturb the contents, but we can get a

look at what's inside.

In this chapter, we will motivate the use of translucent procedures with a simple

example|an implementation in Scheme of the functional picture language developed

by Peter Henderson [33]. Henderson's language illustrates both the elegance and the

limitations of procedural representations. By introducing translucent procedures, we

1.1. HENDERSON'S PICTURE LANGUAGE 3

can retain the overall structure of the language, while overcoming the limitations.

1.1 Henderson's Picture Language

Henderson's language was motivated by designs with elements that are combined and

replicated at di�erent scales, such as M.C. Escher's woodcut Square Limit. (Fig. 1-2)

The language consists of primitive, atomic pictures (or alternatively, of primitives

for constructing atomic pictures from line segments and other geometric �gures), and

means of combination that superimpose, juxtapose, and rotate pictures. For instance,

given pictures, george, martha, and triangle, a typical compound picture might

be constructed as

(rotate90

(beside (superpose george triangle)

martha

.6))

The resulting picture shows george superposed with triangle, side by side with

martha, george and triangle taking up 60% of the �gure, and the ensemble rotated

90 degrees counter-clockwise. (Fig. 1-3)

Pictures in Henderson's language do not have a �xed size, or even a �xed aspect

ratio. Instead, a picture is always drawn relative to some speci�ed rectangle, and the

picture is drawn with its width and height scaled to match the rectangle. Thus, the

di�erent drawings shown in Fig. 1-4 are all the same picture, only drawn with respect

to di�erent rectangles.

This self-scaling property makes it convenient to create designs such as Square

Limit. It also suggests a natural representation for a picture as a procedure that

expects a rectangle as its argument and executes the relevant drawing operations.

For example, a primitive picture that consists of a diagonal line drawn from the

bottom left to the top right of the designated rectangle would be implemented as

(define diagonal-picture

4 CHAPTER 1. ABSTRACTION AND PROCEDURAL OPACITY

(lambda (rectangle)

(let* ((bot-left (origin rectangle))

(top-right (+vect (horiz rectangle)

(+vect (vert rectangle)

bot-left))))

(draw-line (vect/x bot-left) (vect/y bot-left)

(vect/x top-right) (vect/y top-right)))))

We assume here that a rectangle is a structure with an origin and two vectors,

where the vectors represent the bottom and left edges of said rectangle. The draw-line

procedure draws a line segment taking as arguments the horizontal (x) and vertical

(y) coordinates of the beginning and end points of the segment.

The elegance of this procedural representation becomes apparent when we begin to

implement the means of combination for pictures. The superpose combinator, which

creates the superposition of two pictures, drawn in the same rectangle, is simply

(define (superpose pict1 pict2)

(LAMBDA (rectangle)

(begin

(pict1 rectangle)

(pict2 rectangle))))

To place one picture beside another in a rectangle, we split the rectangle into two

subrectangles according to the speci�ed ratio, then draw the �rst picture in the left

subrectangle, and the second picture in the right subrectangle:

(define (beside left right ratio)

(LAMBDA (rectangle)

(let ((origin (origin rectangle))

(horiz (horiz rectangle))

(vert (vert rectangle)))

(let ((delta (scale-vect horiz ratio)))

(begin

(left (make-rect origin

delta

vert))

(right (make-rect (+vect origin delta)

(-vect horiz delta)

vert)))))))

(define (scale-vect vect factor)

1.1. HENDERSON'S PICTURE LANGUAGE 5

(make-vect (* factor (vect/x vect))

(* factor (vect/y vect))))

(define (+vect vect1 vect2)

(make-vect (+ (vect/x vect1) (vect/x vect2))

(+ (vect/y vect1) (vect/y vect2))))

(define (-vect vect1 vect2)

(make-vect (- (vect/x vect1) (vect/x vect2))

(- (vect/y vect1) (vect/y vect2))))

Rotating a picture by 90 degrees amounts to drawing the picture in a rectangle

that is rotated from the original rectangle by 90 degrees.

(define (rotate90 pict)

(LAMBDA (rectangle)

(let ((origin (origin rectangle))

(horiz (horiz rectangle))

(vert (vert rectangle)))

(pict (+vect origin vert)

(scale-vect vert -1)

horiz))))

Other means of combination, such as above, which places one picture above an-

other, can be de�ned similarly.

This procedural representation illustrates the power of behavioral abstraction. A

compound picture need not know how its components were constructed, or even what

these components are. It only needs to know how the components should be arranged

relative to the rectangle given to the compound picture.

To better appreciate this point, consider how these operations would be written

had we chosen a less abstract representation of pictures. The code in �g. 1-1 im-

plements the same set of operations on pictures when the representation is a list of

segments in the unit square.

In this list-of-segments representation, every means of combination must contain

code to operate on every primitive picture element. The compound operations must

manipulate the representation of the component pictures in order to scale and trans-

late them appropriately.

6 CHAPTER 1. ABSTRACTION AND PROCEDURAL OPACITY

(define (superpose pict1 pict2)

(append pict1 pict2))

(define (beside left right ratio)

(append

(map (lambda (seg)

(scale-x seg ratio))

left)

(map (let ((ratio* (- 1 ratio)))

(lambda (seg)

(shift-x (scale-x seg ratio*) ratio)))

right)))

(define (rotate90 pict)

(map (lambda (seg)

(let ((rotate-point

(lambda (point)

(point (point/y point)

(- 1 (point/x point))))))

(segment

(rotate-point (seg/start seg))

(rotate-point (seg/end seg)))))

pict))

(define (scale-x seg factor)

(let ((start (seg/start seg))

(end (seg/end seg)))

(segment

(point (* factor (point/x start))

(point/y start))

(point (* factor (point/x end))

(point/y end)))))

(define (shift-x seg delta)

(let ((start (seg/start seg))

(end (seg/end seg)))

(segment

(point (+ (point/x start) delta)

(point/y start))

(point (+ (point/x end) delta)

(point/y end)))))

Figure 1-1: List-of-segments representation of Henderson's pictures

1.2. LIMITATIONS OF PROCEDURAL REPRESENTATIONS 7

The advantage of Henderson's more abstract procedural representation is signif-

icant. The means of combination in Henderson's language constitute a language for

composition, for arranging pictures, not for detailed drawing. The procedural repre-

sentation allows us to implement it as such, ignoring all details about how the actual

primitive pictures will be drawn. All knowledge of the low-level details of drawing is

hidden inside the component procedures, and the compound picture need do nothing

but invoke the components on suitable fragments of its drawing area. At no level in

the decomposition does a picture need to know how its components will be drawn or

what they consist of, just how they will be arranged in the rectangle.

Consider what would happen if we were to add circular arcs to our repertoire of

atomic picture elements. Virtually every procedure in the list-of-segments represen-

tation from �g. 1-1 be a�ected, while none of the code in the original version would

need to be modi�ed.

We note in passing another advantage of the procedural representation: Having

chosen to implement pictures as procedures, we can build the geometric combinations

with no other mechanism than functional composition. In contrast, even the simple

list-of-segments representation requires list operations such as append. Using fancier

data structures for pictures would require us to implement additional data-structure

operations.

1.2 Limitations of Procedural Representations

Although the procedural representation in Henderson's language has clear advan-

tages over alternate representations, it has one fundamental drawback. Procedures

in Scheme are opaque. The only operation de�ned on a procedure is invocation on

suitable arguments. Once we have represented a picture as a procedure, the only

thing we can do to it is to draw it! Of course, we can choose where and how to draw

it, and that is how the means of combination in Henderson's language work, but there

8 CHAPTER 1. ABSTRACTION AND PROCEDURAL OPACITY

are other operations on pictures that we cannot implement, precisely because we have

hidden all of the details of a picture inside the procedure that draws it, and we cannot

examine this procedure.

For example, we might want a predicate that tests whether a picture is the beside

of two other pictures, or an operation to decompose the result of beside into its

constituent pictures. Alternatively, we may want to know whether a picture would

render anything in its upper right quadrant or whether a picture is blank. As we

will see, we cannot construct such operations if pictures are implemented as opaque

procedures.

With traditional representations, such as the picture as a collection of segments,

we might have some di�culty answering such questions, but ultimately they are

answerable. We can write arbitrarily complex recognizers to examine the detailed

contents of a picture. Yet with the procedural representation, which is ideally suited

to combination, we are stuck. Our representation allows us to ignore all details about

the component pictures when writing the combinators, because the active procedural

components take care of themselves. But our pictures have inherited another property

of procedures, namely their opacity, which is not a desirable property for our pictures.

To overcome this problem, we could resort to a variety of unsavory tricks. Con-

ceivably we could draw into a bit-map and then examine the resulting bits, but this is

clearly unappealing, and imprecise, since the act of drawing into a bitmap loses infor-

mation. Alternatively we could switch the graphics device driver with a fake device

that collects the operations, but we would still be losing the hierarchical information

that our procedure representation keeps internally|the decomposition of a picture

used in building it has been thrown away in the process of drawing, and it would have

to be rediscovered from scratch.

Alternatively, we might change the interface to our procedures that represent

pictures. We could, for example, create an object-oriented message-passing-like im-

plementation, in which a picture procedure receives a message that indicates the

1.2. LIMITATIONS OF PROCEDURAL REPRESENTATIONS 9

operation it should perform. It would then either draw, or return information about

how it can be decomposed. Our primitive pictures and our means of combination

might then be something like the following:

(define diagonal-picture

(lambda (message)

(case message

((DRAW)

(lambda (rectangle)

(let* ((bot-left (origin rectangle))

(top-rite (+vect (horiz rectangle)

(+vect (vert rectangle)

bot-left))))

(draw-line (vect/x bot-left) (vect/y bot-left)

(vect/x top-rite) (vect/y top-rite)))))

((DECOMPOSE)

(list 'SEGMENT '(0 0) '(1 1)))

(else

(error "Unknown message" message)))))

(define (superpose pict1 pict2)

(lambda (message)

(case message

((DRAW)

(lambda (rectangle)

(begin

((pict1 'DRAW) rectangle)

((pict2 'DRAW) rectangle))))

((DECOMPOSE)

;; or

;; (list 'SUPERPOSE

;; (pict1 'DECOMPOSE)

;; (pict2 'DECOMPOSE))

(list 'SUPERPOSE pict1 pict2))

(else

(error "Unknown message" message)))))

This approach is unsatisfactory for several reasons:

First, we have introduced another representation, that is composed simultaneously

with our procedures, along with a way to translate between procedures and this

alternate representation. Essentially, we have written two versions of superpose,

although they are collected in a single object, and will have to do this for every means

10 CHAPTER 1. ABSTRACTION AND PROCEDURAL OPACITY

of combination. Although the additional code is neither di�cult nor particularly

unnatural in this example, simultaneously maintaining multiple representations can

become both di�cult and cumbersome. We have been driven to this only because

our original representation does not permit inspection.

Second, we have obscured the basic representation of a picture to overcome a

drawback in our language. We don't want to think of pictures as procedures that take

messages and return either procedures to draw on rectangles or lists of identi�ers. We

want to think of them as procedures that draw on rectangles and that somehow, we

can decompose.

1.3 Overcoming Opacity

Rather than give in to undesirable tricks, or maintain multiple representations, we

can require instead that our language provide us with a way to inspect the structure

of procedures. Once we do this, we will be able to represent our pictures, and more

importantly, our picture operations, as originally intended, without surrendering the

ability to examine the result. We call such an inspectable procedure a translucent pro-

cedure. In our proposed extension to Scheme, translucent procedures are constructed

using exactly the same syntax as ordinary procedures, except using the keyword

tlambda in place of lambda.

The following chapter will give a careful exposition of translucent procedures and

tlambda. For now, think of a translucent procedure informally as a list structure,

the body of the procedure, with substitutions implied by the environment bindings

and �-reduction [7]. With the procedures available as lists, we can compare and

destructure procedures, for example, to inspect the structure of pictures represented

as procedures in the Henderson language.

Destructuring procedures element by element is cumbersome. Thus, we also im-

plement a procedural pattern matcher that simpli�es the task of examining tlambda

1.3. OVERCOMING OPACITY 11

structures. The following chapter will describe the procedural pattern matcher in de-

tail, but for now, su�ce it to say that its operation is primarily structural. Thus, the

pattern matcher avoids having to solve arbitrary procedural (functional) equations,

which is undecidable in general.

To use the pattern matcher, one invokes the procedure match? with two argu-

ments. The �rst argument, the pattern, may be a procedure, a pattern variable, or

the result of composing procedures and pattern variables.1 The second argument, the

instance, is the procedure to compare or destructure.

The matcher attempts to �nd values for the pattern variables such that when the

values are substituted for the pattern variables, the pattern and instance are equal.

match? returns false if it cannot make the pattern and instance equal. Otherwise

it returns a dictionary pairing the pattern variables with the values (procedures or

constants) that make the substituted pattern equal to the instance. The dictionary

will be empty if the pattern contains no pattern variables. Note that the match

may be ambiguous, that is, multiple sets of pattern variable bindings will satisfy the

equation, but the pattern matcher returns only one set of bindings. The procedure

match/lookup �nds the binding for a pattern variable in a dictionary returned by

match?.

Examples of patterns and the use of the matcher are:

(match? (tlambda (x) (+ (#?F x) #?G))

(tlambda (a) (+ (* a (+ a 5)) 56)))

which succeeds with bindings

#?F *) (tlambda (x) (* x (+ x 5)))

#?G *) 56

(match? (compose (tlambda (x) (#?F (* x x)))

(tlambda (y) (* y (#?G (+ y 3)))))

(tlambda (a)

(let ((b (* a

1Pattern variables look like identi�ers preceded by \#?". For example, #?FOO is a pattern variable.

12 CHAPTER 1. ABSTRACTION AND PROCEDURAL OPACITY

(let ((c (+ a 3)))

(* c c)))))

(+ (* b b) 8))))

which succeeds with bindings

#?F *) (tlambda (v) (+ v 8))

#?G *) (tlambda (v) (* v v))

1.4 The Picture Language with Translucent Pro-

cedures

Given translucent procedures and the procedural pattern matcher, it is straightfor-

ward to extend the picture language to examine the structure of pictures.

First we re-implement the picture language to use translucent procedures instead

of ordinary procedures. This is simply a matter of using exactly the same code as in

[section 1.1] above, writing tlambda in place of lambda. For instance, the primitive

diagonal picture becomes

(define diagonal-picture

(TLAMBDA (rectangle)

(let* ((bot-left (origin rectangle))

(top-right (+vect (horiz rectangle)

(+vect (vert rectangle)

bot-left))))

(draw-line (vect/x bot-left) (vect/y bot-left)

(vect/x top-right) (vect/y top-right)))))

and the beside combinator becomes

(define (beside left right ratio)

(TLAMBDA (rectangle)

(let ((origin (origin rectangle))

(horiz (horiz rectangle))

(vert (vert rectangle)))

(let ((delta (scale-vect horiz ratio)))

(begin

(left (make-rect origin

delta

1.4. THE PICTURE LANGUAGE WITH TRANSLUCENT PROCEDURES 13

vert))

(right (make-rect (+vect origin delta)

(-vect horiz delta)

vert)))))))

and so on for rotate90, above, and other combinators.

We can use the matcher to recognize whether, for example, a picture was generated

by the beside combinator:

(define (beside? pict)

(match? (beside #?LEFT #?RIGHT #?RATIO)

pict))

More usefully, we can decompose a beside combination into components:

(define (decompose-beside pict)

(let ((result (match? (beside #?LEFT #?RIGHT #?RATIO)

pict)))

(and result

(list (match/lookup result #?LEFT)

(match/lookup result #?RIGHT)

(match/lookup result #?RATIO)))))

We can write decompose-above in the same style, and we can write progressively

more complex recognizers. For instance, if square and triangle are pictures, we

could recognize a house as a triangle above a square:

(define (house? pict)

(cond ((decompose-above pict)

=> (lambda (result)

(and (match? triangle (car result))

(match? square (cadr result)))))

(else

false)))

We can transform pictures by extracting their components, and then reassemble

them in other ways. The following re-squish operation decomposes an above picture

and reassembles it using a new ratio:

(define (re-squish pict new-ratio)

(let ((result (decompose-above pict)))

(if (not result)

pict

(above (car result) (cadr result) new-ratio))))

14 CHAPTER 1. ABSTRACTION AND PROCEDURAL OPACITY

We can even walk a picture all the way down to its primitive components and

rebuild it with transformed components. For example, assume that primitive pictures

are colored segments constructed by segment->picture, de�ned as follows:

(define (segment->picture color x0 y0 x1 y1)

(TLAMBDA (rectangle)

(let ((origin (rect/origin rectangle))

(horiz (rect/horiz rectangle))

(vert (rect/vert rectangle)))

(let ((map-segment

(lambda (x y)

(+vect origin

(scale-vect horiz x)

(scale-vect vert y)))))

(let ((start (map-segment x0 y0))

(end (map-segment x1 y1)))

(draw-colored-line color

(vect/x start) (vect/y start)

(vect/x end) (vect/y end)))))))

Given a segment, we can recover the color and coordinates by using the matcher:

(define (decompose-segment pict)

(cond ((match? (segment->picture #?color #?x0 #?y0 #?x1 #?y1)

pict)

=> (lambda (dict)

(list (match/lookup dict #?color)

(match/lookup dict #?x0)

(match/lookup dict #?y0)

(match/lookup dict #?x1)

(match/lookup dict #?y1))))

(else

false)))

Now we can de�ne an operation that recolors a picture given a color map.

(define (recolor pict color-map)

(cond ((decompose-above pict)

=> (lambda (match)

(above (recolor (car match) color-map)

(recolor (cadr match) color-map)

(caddr match))))

1.5. SUMMARY 15

((decompose-beside pict)

=> (lambda (match)

(beside (recolor (car match) color-map)

(recolor (cadr match) color-map)

(caddr pict))))

...

((decompose-segment pict)

=> (lambda (match)

(apply segment->picture

(cons (color-map (car match))

(cdr match)))))

(else

(error "recolor: Unrecognized picture"

pict))))

(recolor house

(lambda (color)

(if (color=? color pink)

blue

color)))

1.5 Summary

The picture language is a simple toy example, yet it illustrates both the power and

the limitations of procedural representations. With translucent procedures, we can

have our cake, and eat it, too. We can continue to use procedures as the primitive

data type for constructing pictures. Yet, we can also decompose pictures and examine

them in situations where drawing is not the only interesting operation.

In the next chapter, we give a careful description of translucent procedures and

the matcher. We consider some more signi�cant uses of translucent procedures|

building equation solvers, constructing interpreters and compilers, and generating

mathematical libraries from mix-and-match components. Like the picture language,

each of these applications could make elegant use of procedural representations, were

it not for the limitations of opacity. In each case, we show how translucent procedures

permit us to maintain the bene�ts of procedural representations, while overcoming

the limitations of opacity. After discussing these examples, we return to some gen-

16 CHAPTER 1. ABSTRACTION AND PROCEDURAL OPACITY

eral considerations about the semantics of translucent procedures, e�ciency of the

implementation, and comparisons with other work.

1.5. SUMMARY 17

Figure 1-2: M.C.Escher's Square Limit

18 CHAPTER 1. ABSTRACTION AND PROCEDURAL OPACITY

pppppp
ppppppppp

pppppppp
pppppppp

ppppppppp
pppppppp

pppppppp
ppppppppp

pppppppp
ppppppppp

pppppppp
pppppppp

ppppppppp
pppppppp

pppppppp
ppppppppp

pppppppp
pppppppp

ppppppppp
pp

ppppppppp
pppppppp

ppppppppp
ppppp

ppppppppp
pppppppp

ppppp
ppppppppp

ppppp
ppppppppp

pppppppp
pppppp

pppppppp
pppppp

pppppppp
pppppppp

ppppppppp
pppppppp

pppppppp
ppppppppp

ppppp

pppp
pppp

ppppp
pppp

pppp
ppppp

pppp
ppppp

pppp
ppppp

pppp
ppppp

pppp
ppppp

pppp
ppppp

pppp
ppppp

pppp
ppppp

pppp
ppppp

pppp
pppp

ppppp
pppp

ppppp
pppp

ppppp
pppp

ppppp
pppp

ppp
ppppp

pppp
ppppp

pppp
ppppp

pp

pp

pppppp
pppp

pppppp
ppppppp

pppppp
pppppp

pppppp
ppppppp

pppppp
pppppp

ppppp
pppppp

pppp
pppppp

pppp
ppppp

pppppp
pppp

pppppp
ppppppp

pppp
pppppp

pppp
ppppppp

pppp
pppp

pppppp
ppppppp

pppppp
pppppp

pppppp
ppppppp

pppppp
pppppp

ppppppp
pppppp

pppp
pppppp

ppppppp
pppppp

pppp
pppppp

ppppppp
pppppp

pppppp
ppppppp

pppp
pppppp

pppp
ppppppp

pppppp
pppppp

pppppp
ppppp

pppppp
pppppp

pppppp
ppppppp

pppppp
pppp

pppp
ppppppp

pppppp
pppppp

pppp
ppppp

pppppp
pppppp

ppppppp
pppp

pppp
pppppp

pppppp
ppppppp

pppppp
pppppp

ppppppp
pppppp

pppp
pppp

ppppppp
pppppp

pppppp
pppppp

ppppppp
pppppp

pppppp
ppppppp

pppppp
pppppp

pppppp
ppppppp

pppppp
pppppp

ppppppp
pppppp

pppppp
pppppp

ppppppp
pppppp

pppppp
ppppppp

pppppp
pppppp

pppppp
ppppppp

pppppp
pppppp

ppppppp
pppppp

pppppp
pppppp

ppppppp
pppppp

pppppp
ppppppp

pppppp
pppppp

pppppp
ppppppp

pppppp
pppppp

ppppppp
pppppp

pppppp
pppppp

ppppppp
pppppp

pppppp
ppppppp

pppppp
pppppp

pppppp
ppppppp

pppppp
pppppp

ppppppp
pppppp

pppppp
pppppp

ppppppp
pppppp

pppppp
ppppppp

pppppp
pppppp

pppppp
ppppppp

pppppp
ppppppp
ppppppp

pppppp
pppppp

pppppp
ppppppp

pppppp
pppppp

ppppppp
pppppp

pppppp
pppppp

ppppppp
pppppp

pppppp
ppppppp

pppppp
pppppp

pppppp
ppppppp

pppppp
pppppp

ppppppp
pppppp

pppppp
pppppp

ppppppp
pppppp

pppppp
ppppppp

pppppp
pppppp

ppppppp
pppppp

pppppp
pppppp

ppppppp
pppppp

pppppp
ppppppp

pppppp
pppppp

pppppp
ppppppp

pppppp
pppppp

ppppppp
pppppp

pppppp
pppppp

ppppppp
pppppp

pppppp
ppppppp

pppppp
pppppp

pppppp
ppppppp

pppppp
pppppp

ppppppp
pppppp

pppppp
pppppp

ppppppp
pppppp

pppppp
ppppppp

pppppp
pppppp

pppppp
ppppppp

pppppp
pppppp

ppppppp
pppppp

pppppp
pppppp

ppppppp
pppppp

pppppp
ppppppp

pppppp
pppppp

pppppp
ppppppp

pppppp
pppppp

ppppppp
pppppp

pppppp
pppppp

ppppppp
pppppp

pppppp
ppppppp

pppppp
pppppp

pppppp
ppppppp

pppppp
pppppp

ppppppp
pppppp

pppppp
pppppp

ppppppp
pppppp

pppppp
ppppppp

pppppp
pppppp

pppppp
ppppppp

pppppp
pppppp

ppppppp
pppppp

pppppp
pppppp

ppppppp
pppppp

pppppp
ppppppp

pppppp
pppppp

pppppp
ppppppp

pppppp
pppppp

ppppppp
pppppp

pppppp
pppppp

ppppppp
pppppp

pppppp
ppppppp

pppppp
pppppp

pppppp
ppppppp

pp

ppppp
pppppp

pppppp
ppppp

pppppp
pppppp

pppppp
ppppp

pppppp
pppppp

pppppp
ppppp

pppppp
pppppp

pppppp
ppppp

pppppp
pppppp

pppppp
ppppp

pppppp
pppppp

pppppp
ppppp

pppppp
pppppp

pppppp
ppppp

pppppp
pppppp

pppppp
ppppp

pppppp
pppppp

pppppp
ppppp

pppppp
pppppp

pppppp
ppppp

pppppp
pppppp

pppppp
ppppp

pppppp
pppppp

pppppp
ppppp

pppppp
pppppp

pppppp
ppppp

pppppp
pppppp

pppppp
ppppp

ppppppp
pppppp

pppppp
ppppp
pppppp

pppppp
pppppp

ppppp
pppppp

pppppp
pppppp

ppppp
pppppp

pppppp
pppppp

ppppp
pppppp

pppppp
pppppp

ppppp
pppppp

pppppp
pppppp

ppppp
pppppp

pppppp
pppppp

ppppp
pppppp

pppppp
pppppp

ppppp
pppppp

pppppp
pppppp

ppppp
pppppp

pppppp
pppppp

ppppp
pppppp

pppppp
pppppp

ppppp
pppppp

pppppp
pppppp

ppppp
pppppp

pppppp
pppppp

ppppp
pppppp

pppppp
pppppp

ppppp
pppppp

pppp

Figure 1-3: george, triangle, and martha

1.5. SUMMARY 19

pp
pp
pp
pp
pp
pp
pp
p
pp
pp
pp
pp
pp
pp
pp
p
pp
pp
pp
p
p
pp
pp
pp
pp
pp
pp
pp
p
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp

p
pppppp
pp
pppppp
pp
pppppp
p
pppppp
pp
pppppp
p
pppppp
pp
pppppp

ppppp
ppppp

ppppp
ppppp
ppppp

ppppp
ppp
ppppp

pppp
ppppp

ppp
ppp
ppppp

pppp
ppppp

ppppp
ppp
ppppp

ppp
ppp

pp
pp
pp
pp
pp
pp
p
pp
pp
pp
pp
ppp
pp
pp
pp
pp
ppp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
p
ppp
pp
pp
pp
pp
ppp
pp
pp
pp
pp
pp
ppp
pp
pp
pp
pp
ppp
pp
pp
pp
pp
ppp
pp
pp
pp
pp
pp
ppp
pp
pp
pp
pp
ppp
pp
pp
pp
pp
pp
pppppppppppppppppppppppppppppppppp

pp
ppppppp
pp
pppppp
ppp
pppppp
pp
ppppppppp
pppp
ppppp
ppppppppp

ppppppppppppppppp
pp
pp
ppppppppppppppppppppppppppppp

pp
pppp

Figure 1-4: george in three di�erent rectangles

20 CHAPTER 1. ABSTRACTION AND PROCEDURAL OPACITY

Chapter 2

Translucent Procedures and the

Procedural Pattern Matcher

The preceding chapter glosses over two signi�cant issues:

� How tlambda di�ers from lambda;

� What the procedural pattern matcher does, exactly.

This chapter addresses these issues.

2.1 tlambda and TScheme

To experiment with non-opaque procedures, and with tools that manipulate proce-

dures by operating on their expressions and environments, we will use a Scheme-like

language called TScheme. Using a new language allows us to change the semantics,

and in particular, to experiment with procedure representations, at will. We can-

not use Scheme directly because it only has opaque procedures.1 However, to avoid

pointlessly duplicating existing utilities, we can embed TScheme in Scheme, instead

of implementing it from scratch.

1MIT Scheme procedures are not opaque, but their rei�ed representation is cumbersome at best.

21

22 CHAPTER 2. TRANSLUCENT PROCEDURES

TScheme has special forms with the same names as those present in ordinary

Scheme. In particular, it has a lambda special form used to create procedures. Since

Scheme and TScheme special forms overlap, we need a way to declare that part of a

program is written in TScheme instead of Scheme. tlambda is the escape mechanism

from Scheme to TScheme. It is a simple Scheme macro that constructs a TScheme

procedure whose body will be evaluated using the TScheme interpreter. For example,

the expression

(let ((z (sqrt 2)))

(tlambda (x y)

(let ((w (+ z z)))

(+ (* x w) y))))

is essentially rewritten as

(let ((z (sqrt 2)))

(tproc/make �(lambda (x y)

(let ((w (+ z z)))

(+ (* x w) y)))

�((+ ,+) (z ,z) (* ,*))))

where tproc/make, described below, constructs a procedure whose body is evaluated

using TScheme semantics.

The programs in this report are written in an amalgam of Scheme and TScheme,

with tlambda expressions marking the transition points. Code surrounding tlambda

expressions is written in Scheme, while the code inside these expressions is written

in TScheme. For example, in the expressions above, the outer let expressions are

Scheme let expressions, while the inner ones are TScheme let expressions.

The examples are written in this amalgam for convenience, and also to point out

exactly which procedures need to be translucent, but there is no a-priori reason why

the whole code could not be written in TScheme.

TScheme di�ers from Scheme in both fundamental and accidental ways.

2.1. TLAMBDA AND TSCHEME 23

2.1.1 Fundamental Di�erences

Re
ective and Reifying Operations

The most fundamental di�erence, obviously, is that TScheme procedures are not

opaque. Three re
ective and reifying operations [24], available in both Scheme and

TScheme, provide the primitive manipulation ability of TScheme procedures, abbre-

viated tprocs. These operations su�ce to build the higher-level pattern matcher.

� (tproc? object) ! boolean

tproc? returns true if object is a TScheme procedure (created by tlambda or a

TScheme lambda), false otherwise. As a result of the embedding, all TScheme

procedures also answer true to procedure?.

� (tproc/make expr env) ! tproc

tproc/make returns the TScheme procedure that results from evaluating T-

Scheme lambda expression expr (an S-expression) in a TScheme environment

whose bindings correspond to the pairs in the list env. env is a list of pairs of

variable names (symbols) and arbitrary values. env must contain bindings for

all the free variables of expr.

� (tproc/decompose tproc) ! expr * env

tproc/decompose is an inverse of tproc/make. It returns two values, a TScheme

lambda expression (as an S-expression), and an association list (alist) represent-

ing the environment of tproc.

tproc/make and tproc/decompose are not exact inverses. Invoking tproc/make

on the result of tproc/decompose produces a TScheme procedure distinguishable

from the original only by eq? and eqv?. On the other hand, invoking tproc/decom-

pose on the result of tproc/makemay produce a di�erent expression and environment

from those given to tproc/make. The expression may have some of its variables

renamed, and various substitutions may have been performed, e.g. let expressions

24 CHAPTER 2. TRANSLUCENT PROCEDURES

may have been transformed into equivalent combinations with lambda expressions as

the operators. The environment may have its bindings in a di�erent order, it may

have some of the variables renamed to agree with renamings in the expression, it will

have unreferenced variables removed, and may have additional variables needed by

some of the substituted expressions. For example,

(tproc/decompose

(tproc/make '(lambda (x)

(+ x z))

�((+ ,+) (z ,7) (* ,*) (w ,4))))

may return

(lambda (y)

(+ y 7))

and

((+ <primitive +>))

tproc? is used by programs to discriminate between TScheme procedures and

ordinary Scheme procedures. tproc/decompose is used only in the implementation of

the matcher. tproc/make is used directly in the expansion of tlambda, and indirectly

through the use of tproc/make*, de�ned as follows.

(define (tproc/make* lam-expr)

;; Empty environment.

;; LAM-EXPR should have no free variables.

(tproc/make lam-expr '()))

Multiple Values

An additional important di�erence between TScheme and Scheme is that the number

of arguments and return values of TScheme procedures are �xed, and a syntactic

property of the lambda expression that produced the procedure. TScheme lambda

2.1. TLAMBDA AND TSCHEME 25

expressions specify a �xed number of arguments, i.e., no optionals, dot notation, or

&rest [11, 57]. Consequently, the number of arguments of a TScheme procedure can

be obtained using the tproc/arity procedure. The number of values returned by a

TScheme procedure can be obtained using the tproc/nvalues procedure.2

Multiple return values are declared, at the lowest level, by using the tuple special

form. When evaluated, it returns as many values as it has operands. Multiple values

are bound to variables by using the tlet special form. tlet is similar to let, but

binds several variables to the values returned from a single expression. For example,

the following two procedures compute the same values:

(tlambda (a b)

(tlet ((x y) (tuple (+ a b) (- a b)))

(* x y)))

(tlambda (a b)

(let ((x (+ a b))

(y (- a b)))

(* x y)))

In addition to tuple and tlet, the following two assumptions are necessary to be

able to compute the number of values returned by a TScheme expression:

� Both branches of a conditional must return the same number of values.

� Unknown procedures (e.g. parameters or free variables) return exactly one value

unless they are directly called in such a position that the values returned by

them would be bound to the variables in a tlet expression. In this case, the

number of returned values must be the number of variables bound by the tlet

expression.

As an example of the use of several of these peculiar operators on TScheme pro-

cedures, consider the following de�nition of compose:

2tproc/nvalues and tproc/arity are provided primitively even though they can be written

using tproc/decompose.

26 CHAPTER 2. TRANSLUCENT PROCEDURES

(define (compose f g)

;; h = (compose f g)

;; => (h . args) = (f . (g . args))

(let ((ftakes (tproc/arity f))

(freturns (tproc/nvalues f))

(gtakes (tproc/arity g))

(greturns (tproc/nvalues g)))

(if (not (= ftakes greturns))

(error "compose: Incompatible" f g)

(let ((names (make-list-of-names

(+ gtakes greturns freturns)

'(f g))))

(let ((formals (list-head names gtakes))

(rest (list-tail names gtakes)))

(let ((middle (list-head rest greturns))

(results (list-tail rest greturns)))

((tproc/make*

�(lambda (f g)

(lambda ,formals

(tlet (,middle (g ,@formals))

(tlet (,results (f ,@middle))

(tuple ,@results))))))

f g)))))))

make-list-of-names takes an integer n, and a list of symbols l, and returns a

list of symbols of length n with no duplicates and whose intersection (as a set) with

l is empty. list-head and list-tail take a list l, and an integer n, and return the

initial (or �nal, respectively) sublists of l when split before the n-th element.

2.1.2 Accidental Di�erences

In addition to the essential di�erences described earlier, there are some inessential

di�erences as well. These di�erences were introduced in order to make some simpli-

fying assumptions when constructing TScheme and the procedural pattern matcher.

Although these di�erences can be eliminated, their consequences are notable. These

accidental di�erences are:

2.1. TLAMBDA AND TSCHEME 27

1. Scheme is a call-by-value language. TScheme is a call-by-need language [25]. In

Scheme, arguments to a procedure are evaluated fully before the procedure is

entered. In TScheme, the evaluation of arguments is delayed until the called

procedure needs their values. Arguments are evaluated fully only when needed

by the called procedure, and their values memoized to prevent potentially costly

re-evaluation.

The reason for this di�erence is that it allows programs to substitute argument

expressions for formal parameters in procedure calls without worrying about

termination or errors.

To illustrate this point, consider the following expressions.

(lambda (x)

(let ((y (foo x)))

(if (bar? x)

y

3)))

(lambda (y)

(if (bar? x)

(foo x)

3))

When viewed as Scheme programs, they are not identical in behavior. The

�rst may not terminate or may signal a runtime error in cases when the second

terminates normally. By contrast, when considered as TScheme programs, the

above two expressions produce procedures that behave identically, since the

call to foo will only be executed if (bar? x) is true, in either case. Thus the

substitution of y by (foo x) in the code yields equivalent programs in TScheme

but not in Scheme.

If we are to change TScheme to be a call-by-value language, we either have to

depend on some approximate strictness analysis before performing the substitu-

tion, or, alternatively, unilaterally declare that termination and error properties

are not properly preserved by our tools. The latter choice may appear extreme,

28 CHAPTER 2. TRANSLUCENT PROCEDURES

but is sometimes used when writing compilers [3, Alternative Code Motion

Stragegies, Dead-Code elimination].

One minor consequence of the call-by-need semantics of TScheme is the peculiar

behavior of the begin special form; It evaluates all of its operands fully in left-

to-right order and returns the value of the rightmost. In Scheme the following

two programs are equivalent:

(begin

(draw-line 0 0 1 1)

(draw-line 1 1 1 0))

(let ((first (draw-line 0 0 1 1))

(rest (lambda () (draw-line 1 1 1 0))))

(rest))

However, these two programs are not equivalent in TScheme. The �rst draws

two lines. The second draws only one, because the variable first is bound to

a delayed evaluation that is never needed by the body of the let expression.

However, the following program would have the same e�ect as the �rst in both

Scheme and TScheme:

(let ((first (draw-line 0 0 1 1))

(rest (lambda () (draw-line 1 1 1 0))))

(begin

first

(rest)))

2. TScheme does not have a set! special form; Variables are immutable in T-

Scheme. There are two reasons for this:

� Mutation and call-by-need languages do not mix very well. Because muta-

tion causes the values of expressions to depend on time, and call-by-need

languages make the time of evaluation of expressions hard to predict, it is

di�cult to construct programs in the presence of both.

2.1. TLAMBDA AND TSCHEME 29

� Variable assignment complicates environments. In a language without as-

signment, an environment is simply a function mapping variables to values.

Such functions, being constant, can be projected, and the value returned

by them is independent of how and when other expressions are evaluated.

In a language with assignment, the values of variables may not be constant

over time, and the recognition of whether a variable is a�ected is not local.

For example, in Scheme, the decision to substitute the value of x into the

lambda expression

(lambda (y)

(+ x y))

depends on what other code shares the same binding of x. We can substi-

tute it if the complete code is the �rst of the following, but not if it is the

second:

(lambda (x)

(lambda (y)

(+ x y)))

(lambda (recv)

(let ((x 0))

(recv (lambda (x*) (set! x x*))

(lambda (y)

(+ x y)))))

In the absence of variable assignment, environments can be merged and

manipulated more easily.

Assignment can be added to TScheme if we add appropriate declarations, or if

only complete programs are manipulated.

3. There are no forward references in TScheme. All free variables of a TScheme

lambda (or a Scheme tlambda) expression must be bound, and their values

available, when the lambda (or tlambda) expression is evaluated.

Consider the following program:

30 CHAPTER 2. TRANSLUCENT PROCEDURES

(lambda (x)

(+ (foo x)

(sqrt x)))

It is a legal Scheme program in the absence of a previous de�nition of foo.

Calls to the resulting procedure, however, must be postponed until foo has been

de�ned. By contrast, it is a legal TScheme program only if foo has previously

been de�ned.

The lack of forward references simpli�es the code for the TScheme evaluator,

since there are no unbound variables in TScheme. No variable substitutions

need to be delayed because the value is not yet available, and no mechanism for

delaying the reference until the value is available needs to be implemented.

It is not hard, merely cumbersome, to allow TScheme programs to resolve some

variable references later.

Of course, the lack of forward references does not preclude recursion, since the

�xed-point combinator Y [58, 7] is expressible in the language.

4. There is no call-with-current-continuation procedure in TScheme. Like

variable assignment, call-with-current-continuation and call-by-need lan-

guages do not mix particularly well. The continuation in e�ect when an expres-

sion is evaluated is di�cult to predict when the time, and, more importantly,

the context, of that evaluation are hard to predict.

If TScheme is changed to be call-by-value, or escape procedures are added any-

way, it is not be hard to decompose continuations as well. For example, consider

the following fragment, assuming call-by-value evaluation:

(let ((expr

(call-with-current-continuation

(lambda (cont)

hbody1i))))
hbody2i)

The value of cont might decompose into the following expression

2.2. THE PROCEDURAL PATTERN MATCHER 31

(lambda (%val)

(with-continuation K

(lambda ()

(let ((expr %val))

hbody2i))))

and an environment that contains bindings for the free variables of hbody2i

(except for expr), and k which is the rest of the continuation, another escape

procedure. This code uses with-continuation, a procedure that takes two

arguments, an escape procedure, and a thunk, i.e. a procedure of no arguments.

It invokes the thunk with an implicit continuation corresponding to the escape

procedure. 3

2.2 The Procedural Pattern Matcher

tproc/decompose is very cumbersome to use, although su�ciently powerful. The

procedural matcher is often adequate, and makes the code that examines and de-

structures procedures considerably simpler. The remaining chapters use the matcher

exclusively, and before we proceed, we should describe it further.

As mentioned in the previous chapter, the pattern matcher match? takes two

procedures as arguments. The �rst, the pattern, is a TScheme procedure that can

use pattern variables. The second, called the instance because it is presumably an

instantiation of the pattern, is an ordinary TScheme procedure. Pattern variables

are recognizable uninterpreted constants. The values of the following expressions are

valid arguments to match?:

(tlambda (x y) (+ (* x x) (* x y)))

(tlambda (x y) (+ (#?FOO x) (#?BAR y)))

(tlambda (x) (* x #?BAZ))

3Continuations are modelled syntactically in [22], which also models assignment. However, the

operations used to model assignment are global, and unsuitable here. Fortunately, locations are a

satisfactory representation if we are to handle assignment as well.

32 CHAPTER 2. TRANSLUCENT PROCEDURES

(let ((op #?FOO))

(tlambda (z w)

(+ (op z)

(op w))))

As can be seen from the above examples, the �rst argument to match?, always a

procedure, will often signal an error if invoked, since pattern variables are otherwise

uninterpreted. The previous example also shows that the pattern variables need not

appear directly in a TScheme expression, but may be introduced instead through its

free variables. The matcher is not simply an expression pattern matcher, since the

values of free variables are examined.

The procedural matcher can be used to compare procedures, and to solve simple

procedural substitutional equations. The values that it computes for pattern variables

are such that when substituted for the corresponding pattern variables, they make the

pattern equivalent to the instance. Consequently, to understand what the matcher

does, we need to understand its notion procedure equality.

When dealing with procedures, the most desirable notion of equality is behavioral

equality, but this property is undecidable. Any useful notion of equality, however,

should be a conservative approximation of this undecidable property. By conservative

we mean that our notion of equality should consider procedures to be equal only if

they are behaviorally equal, i.e., there should be no false positives.

One of the simplest non-trivial conservative notions of equality that we can use

is equality of appearance. Under this de�nition, we consider two procedures equal

if tproc/decompose produces two equal lambda expressions, and two environments

binding the same names to identical values. This is, unfortunately, a patently unsat-

isfactory notion. Trivial variable renamings such as

(tlambda (x) (* x x)) , (tlambda (y) (* y y))

make otherwise identical procedures distinct.

More importantly, the lambda expression and environment provided by tproc/de-

compose are mostly a consequence of the history of the construction of a procedure,

2.2. THE PROCEDURAL PATTERN MATCHER 33

and not a property of the result per se. In the following example, foo and bar are

considered di�erent when using this notion of equality.

(define (*fcn f g)

(tlambda (x)

(* (f x) (g x))))

(define foo

(tlambda (x) (* x x)))

(define bar

(*fcn (tlambda (x) x)

(tlambda (x) x)))

We can easily see that foo and bar are equal under a su�cient number of unfold-

ments (�-reductions), and we might consider our notion of equality to be equality of

appearance, after an arbitrary number of unfoldments, but this notion is problematic:

� It is quite conservative. The following procedures that compute Fibonacci num-

bers cannot be made to appear equal under arbitrary unfoldment. They are

not behaviorally equal either since they produce di�erent values for negative

and non-integer numbers, and one might run out of storage when the other

would not. However, we can wrap them with code that to make the ensem-

bles behaviorally equal, yet the ensembles will not appear equal under arbitrary

unfoldment.4

(define (rfib n)

(if (< n 2)

n

(+ (rfib (- n 1)) (rfib (- n 2)))))

(define (ifib n)

(define (inner i fi fi+1)

(if (>= i n)

fi

(inner (1+ i) fi+1 (+ fi fi+1))))

(inner 0 0 1))

4Except, perhaps, trivial ones that do not use them.

34 CHAPTER 2. TRANSLUCENT PROCEDURES

� It is not decidable. The equality of higher-order function schemas with uninter-

preted constants under in�nite unfoldment is undecidable. Even if we restrict

ourselves to a �rst-order subset, we will not be safe, since the �rst-order version

of this problem, with uninterpreted constants, is not known to be decidable [26].

The �rst problem is not terribly disappointing. After all, it arises mostly due to

additional axioms introduced by our primitives (e.g. arithmetic), and to fully account

for it, we need a theorem prover powerful enough to solve all questions in the theory

introduced by our primitives. For example,

(tlambda (n-2 x y z)

(let ((n (+ n-2 2)))

(= (expt z n)

(+ (expt x n) (expt y n)))))

and

(tlambda (n-2 x y z)

false)

are behaviorally identical for non-negative integers if and only if Fermat's Last Theo-

rem is true, but this problem has been open for over three hundred years. Of course,

even if Fermat's Last Theorem is ever proved or disproved, no complete �nite axiom-

atization of arithmetic exists (G�odel's incompleteness result [17]), so it is not unrea-

sonable to either give up additional equality theorems provided by our primitives, or

to approximate those conservatively as well.

The second problem above is somewhat more distressing, but open to simple and

useful approximations. For example, in the Henderson picture language example, and

in the examples that we will explore later, a �nite number of unfoldments su�ces to

unfold the procedures completely. We never need to unfold a procedure again while in

the process of unfolding it|our procedures have no cycles, they are shaped as directed

acyclic graphs (DAGs). This condition is easily checked, and our conservative equality

tester can fail, i.e. return false, when it �nds a cycle.

We can now state a useful very conservative equality condition:

2.2. THE PROCEDURAL PATTERN MATCHER 35

A procedure is fully unfolded if no combination (procedure call) has a lambda

expression in its operator position. Typically, operators will be primitives, lambda-

bound variables, or other such combinations.

A procedure X can be �nitely fully unfolded if there is no procedure Y that we

need to unfold to unfold X such that Y needs to be unfolded to unfold Y fully. In

other words, X can be �nitely fully unfolded if, while unfolding it, we do not run

across a recursive procedure.

For example, the following cannot be �nitely unfolded fully because we need to

unfold lambda3 while unfolding it.

(lambda1 (f)

((lambda2 (x)

(f (x x)))

(lambda3 (x)

(f (x x)))))

Two procedures are considered equal if they are identical in the sense of eq?

or if they both can be �nitely fully unfolded, and after fully unfolding, the result-

ing expressions are equal except for arbitrary renamings of bound variables, i.e.,

�-conversion [10, 7].

Of course, we can make our equality notion somewhat sharper by allowing identical

(i.e. eq?) recursive procedures to be met at the same place in the unfolding of both

procedures, but this is not necessary for the examples in this report.

This notion of equality is consistent with both strict (applicative order) and non-

strict (normal order) languages. Consider the following program fragments:

(let ((x ?))
;; X is intentionally not referenced

(if (fermat? 3 y z w)

w

0))

(if (fermat? 3 y z w)

w

36 CHAPTER 2. TRANSLUCENT PROCEDURES

0)

They are equivalent in non-strict languages, but not in strict languages. In non-

strict languages, the unfoldment of the expression for the value of x can wait until

x is referenced. In strict languages this expression has to be �nitely unfolded before

proceeding with the body. Thus, in a non-strict language, ? is never unfolded, and

the expressions will match. In a strict language, ? is unfolded when the let is

processed, and our equality predicate will fail.

Given this notion of equality, we can now describe the behavior of the matcher.

When the pattern argument does not involve pattern variables, it is an equality tester

for the conservative equality condition that we have described.

However, if the pattern procedure contains pattern variables, the procedural mat-

cher attempts to compute substitutions for the pattern variables such that after per-

forming those substitutions on the pattern, the substituted pattern and the instance

procedure are equal according to our de�nition of equality. The matcher computes

the substitutions by examining the subtree of the unfolded instance corresponding to

the unfolded expression in the pattern where the pattern variable appears.

The pattern matcher returns false or a dictionary. It returns false when it cannot

make the pattern and instance equal, otherwise it returns a dictionary. The dictionary

binds the pattern variables present in the pattern to objects, procedures or constants,

that satisfy the equality equation. If there are no pattern variables in the pattern,

but the match succeeds, the returned dictionary is empty.

The operation and implementation of the matcher is described in detail in ap-

pendix A, but for now, we will become acquainted with its behavior primarily through

examples.

Pattern variables can represent procedures or constants in the code. Pattern

variables in non-operator position will match either constants or procedures at the

corresponding place in the instance. Pattern variables in operator position will only

match procedures limited by the structure of the pattern. For example,

2.2. THE PROCEDURAL PATTERN MATCHER 37

(match? (tlambda (y) (+ y #?C))

(tlambda (x) (+ x 3)))

will match with bindings

#?C *) 3

while

(match? (tlambda (y) (+ y #?C))

(tlambda (x) (+ x (* x 42))))

does not match because there is no constant or procedure binding for #?C that will

make the pattern and instance equal. However,

(match? (tlambda (y) (+ y (#?P y)))

(tlambda (x) (+ x (* x 42))))

will match with bindings

#?P *) (tlambda (y) (* y 42))

When a pattern variable is used as the operator of a simple combination, the

corresponding value is limited to procedures that take as many arguments as provided

to the pattern variable. In addition, the pattern matcher will not create lambda

expressions not present in the instance or implied by the combination containing

pattern variables in operator position. For example,

(match? (tlambda (x y z) (#?F x (#?B y z)))

(tlambda (x y z) (+ (- (* y y) z) x)))

will succeed with bindings

#?F *) (tlambda (x b) (+ b x))

#?B *) (tlambda (y z) (- (* y y) z))

while

(match? (tlambda (x y z) (#?F x (#?B y z)))

(tlambda (x y z) (+ (- (* y y) x) z)))

will fail. Ignoring arithmetic rearrangement (the constant functions +, -, and * are

uninterpreted), it needs bindings such as

38 CHAPTER 2. TRANSLUCENT PROCEDURES

#?F *) (tlambda (x b) (b x))

#?B *) (tlambda (y z)

(lambda (x)

(+ (- (* y y) x) z)))

where the inner lambda expression in the binding for #?B neither appears in the

instance, nor is implied by the pattern, in which the nesting of the pattern variable

#?B implies only one lambda expression.

The number of arguments, and the nesting of the binding of a pattern variable

that appears in operator position is restricted by the structure of the pattern. For

example, the pattern

(tlambda (x y z)

((#?F x z) y))

restricts the binding for #?F to have the following shape:

(tlambda (a b)

(lambda (c) hbodyi))

where hbodyi can only be a lambda expression that corresponds to a lambda expression

explicitly appearing in the unfolded instance.

This constraint on the values of the pattern variables used as operators of combi-

nations depends on the context of the combination. For example, both the previous

example and the following patterns

(tlambda (x z)

(#?F x z))

(tlambda (x y z w t)

(((#?F x z) y) w t))

contain the same application, whose operator is the pattern variable #?F, but the

latter two patterns impose di�erent restrictions on the binding for #?F, namely,

(tlambda (a b) hbody1i))

(tlambda (a b) (lambda (c) (lambda (d e) hbody2i)))

2.2. THE PROCEDURAL PATTERN MATCHER 39

respectively. Again, hbody1i and hbody2i can only be lambda expressions if they

correspond to lambda expressions that appear in the instance.

This context dependence of patterns may seem arbitrary, but is a natural conse-

quence of the process of comparing by unfolding. In order to unfold a combination,

we need to unfold the operator �rst, until it yields a primitive or a lambda expres-

sion. Any combination whose operator is a combination cannot be unfolded until its

operator is unfolded, thus we need to �nd the innermost operator �rst. If we �nd a

pattern variable as the innermost operator, we cannot unfold any of the surrounding

combinations, and we must attempt to bind the pattern variable, considering the

operands accumulated at all levels as the curried arguments to the binding of the

pattern variable. Thus, two patterns that di�er only in the signature of the pat-

tern variable will match the same procedures, but with bindings that di�er only in

their signature. In other words, the signature for the value of a pattern variable is

syntactically determined by the way the pattern variable is used.

For example, if a pattern contains the combination (#?F x y z) as the only refer-

ence to pattern variable #?F, and matches some instance with the following binding:

#?F *) (tlambda (x y z) (* y (+ x z)))

mergepar Then the same pattern, with ((#?F x y) z) replacing (#?F x y z),

will also match that instance, but with the following binding instead:

#?F *) (tlambda (x y)

(tlambda (z) (* y (+ x z))))

Of course, if both (#?F x y z) and ((#?F x y) z) appear in the same overall

pattern, the matcher will fail, since the constraints imposed on the signature for the

binding of #?F are inconsistent.

One must keep in mind that although we will use the pattern matcher exclusively

in the rest of this report, it is just an example of the tools that can be built once

the opacity of procedures is abandoned. The matcher is su�cient for the problems at

hand, but perhaps not for others. More powerful tools, such as uni�ers, can be built

40 CHAPTER 2. TRANSLUCENT PROCEDURES

as well. Of course, when doing so, one must keep in mind that many intuitively clear

processes on expressions are undecidable, such as higher-order uni�cation.

Now that we understand our language and tools better, we can proceed to apply

them to other scenarios.

Chapter 3

Solvers for Systems of Equations

With our new set of tools, we can explore additional scenarios where using procedures

as primitive data elements, and functional composition as glue, leads to elegant solu-

tions. In all of these scenarios opaque procedures ultimately prevent us from using a

procedural representation, while translucent procedures and the procedural matcher

permit elegant solutions.

In this chapter we will see how functional abstraction and composition can be

used to write an equation solver without the need for expression substitution and

variable renaming. Opaque procedures are an unsuitable representation for equations

because they do not permit inspection, necessary to choose the solution method to

use. Translucent procedures enable this choice and preserve the elegant structure of

the solver.

3.1 Solving Systems by Substitution

Consider a system of linear equations:

2x� y + z = 5 (3.1)

x+ y + z = 6 (3.2)

x� y + z = 2 (3.3)

41

42 CHAPTER 3. SOLVERS FOR SYSTEMS OF EQUATIONS

The simplest method for solving systems of linear equations, although not the

most e�cient, is to use substitution.1 Using one of the equations, we solve for one of

the unknowns in terms of the rest, and then substitute the resulting expression for the

solved unknown in the remaining equations, reducing the number of equations and

the number of unknowns. We then proceed to solve the residual system of rewritten

equations, and once the values of the rest of the unknowns are known, we can compute

the value of the eliminated unknown by using the same substitution expression.

In our example, we might use equation 3.1 to solve for x in terms of y and z,

x = ((5� (�y + z))=2) = ((y + 5 � z)=2) (3.4)

and substitute this expression into equations 3.2 and 3.3 to produce the following

reduced system after simpli�cation:

3y + z = 7 (3.5)

�y + z = �1 (3.6)

We repeat the process with this system, solving for z by using equation 3.6:

z = ((�1� (�y))=1) = y � 1 (3.7)

and substituting into equation 3.5 to obtain, after simpli�cation

4y = 8 (3.8)

which we can solve using the same linear elimination process:

y = 8=4 = 2

Now we can �nd the values for z and x by plugging in, that is, by using the

previously computed substitutions.

z = (2 � 1) = 1 from eqn. 3.7

x = ((5 + 2� 1)=2) = 3 from eqn. 3.4

The substitution method consists of four steps:

1Substitution as described here and when restricted to linear systems is related to Gaussian

Elimination [49].

3.2. SUBSTITUTION AS AN OPERATION ON FUNCTIONS 43

1. Use one of the equations to express one of the unknowns as a function of the

rest. This can be done for linear equations by using zero-crossings, thus only

unknowns with non-zero coe�cients can be eliminated from a linear equation.

2. Eliminate the chosen unknown from the rest of the equations by replacing it

with the expression obtained in the �rst step.

3. Recursively solve the system of rewritten equations until the substitution ex-

pression has no unknowns (i.e. it is a constant value). This expression gives us

the value of the last unknown.

4. Once the residual system is solved, compute the value of the eliminated un-

known by using the expression determined in the �rst step and the values of

the unknowns found in the recursive step.

3.2 Substitution as an Operation on Functions

To write an equation solver based on this method, we could use a symbolic represen-

tation and implement symbolic substitution, renaming, simpli�cation, etc.

Alternatively, we can observe that the elimination, substitution, and rewriting de-

scribed above are easily expressed in terms of functional abstraction and composition:

If we somehow represent our equations as functions of the unknowns, to substitute

one of the unknowns by a function of the others, we compose the original equation

with the function expressing the unknown. For example, using Scheme notation, if an

equation is represented by some function of three arguments, in some not-yet-speci�ed

way,

Eqn = (lambda (x y z)

... x ... y ... z ...)

and our substitution is

Sbx = (lambda (y z)

(/ (- (+ y 5) z) 2))

44 CHAPTER 3. SOLVERS FOR SYSTEMS OF EQUATIONS

the elimination step consists of replacing the original equation with the new equation

Eqn' = (lambda (y z)

... (/ (- (+ y 5) z) 2) ... y ... z ...)

but this is just (in general) the function

Eqn' = (lambda (y z)

(Eqn (Sbx y z) y z))

To change to a function-based view, we can model each equation as a function

of the unknowns whose zeros we want to �nd. A zero of a function is a vector of

argument values that the function maps to zero. A system of equations is then just

a set of functions that we want to zero simultaneously. That is, to solve a system of

equations represented as a set of functions is to �nd a common vector of arguments

that result in zero when supplied to each of the functions. In our example, the

functions might be

F1 = (lambda (x y z) (- (+ (* 2 x) (- y) z) 5))

F2 = (lambda (x y z) (- (+ x y z) 6))

F3 = (lambda (x y z) (- (+ x (- y) z) 2))

To illustrate the substitution method in the function-based model, we can solve

for x in terms of y and z by constructing the following functions, and then use Sx on

the solution of the system formed by F2' and F3' to �nd the value of x.

Nx = (lambda (y z) (F1 0 y z))

Dx = (lambda (y z) (- (F1 1 y z) (Nx y z)))

Sx = (lambda (y z) (/ (- (Nx y z)) (Dx y z)))

F2'= (lambda (y z) (F2 (Sx y z) y z))

F3'= (lambda (y z) (F3 (Sx y z) y z))

These functions may seem to have been pulled out of thin air, but they are not

hard to understand if we consider the case of a simple line

F = (lambda (x) (+ (* D x) N))

3.2. SUBSTITUTION AS AN OPERATION ON FUNCTIONS 45

corresponding to the equation

Dx +N = 0

Clearly, the solution to this equation is S = �N=D, but in the function model we

do not have direct access to N and D, although they can be computed easily:

N = (F 0)

D = (- (F 1) N)

Compare N and D with Nx and Dx above, and note that for �xed values of y and z,

F1 is a simple line with the single variable x. Sx is then the function that computes

the value of x that zeros the �rst equation given arbitrary values for the remaining

unknowns. This is precisely the substitution function that we need to reduce the

system, and the expressions for F2' and F3' should now be clear.

To make the method even more concrete, we can expand out and simplify the

functions Nx, Dx, Sx, F2', and F3':

Nx = (lambda (y z) (F1 0 y z))

= (lambda (y z) (- (+ (- y) z) 5))

= (lambda (y z) (- z (+ y 5)))

Dx = (lambda (y z) (- (F1 1 y z) (Nx y z)))

= (lambda (y z) (- (- (+ 2 (- y) z) 5) (- z (+ y 5))))

= (lambda (y z) (- (+ 2 (- z (+ y 5))) (- z (+ y 5))))

= (lambda (y z) 2)

Sx = (lambda (y z) (/ (- (Nx y z)) (Dx y z)))

= (lambda (y z) (/ (- (- z (+ y 5))) 2))

= (lambda (y z) (/ (- (+ y 5) z) 2))

F2'= (lambda (y z) (F2 (Sx y z) y z))

= (lambda (y z) (- (+ (/ (- (+ y 5) z) 2) y z) 6))

= (lambda (y z) (/ (- (+ (- (+ y 5) z) (* 2 y) (* 2 z)) 12) 2))

= (lambda (y z) (/ (- (+ (* 3 y) z) 7) 2))

F3'= (lambda (y z) (F3 (Sx y z) y z))

= (lambda (y z) (- (+ (/ (- (+ y 5) z) 2) (- y) z) 2))

= (lambda (y z) (/ (- (+ (- (+ y 5) z) (* -2 y) (* 2 z)) 4) 2))

= (lambda (y z) (/ (- (+ (- y) z) -1) 2))

46 CHAPTER 3. SOLVERS FOR SYSTEMS OF EQUATIONS

where the expansion and simpli�cation are carried out only to illustrate that F2' and

F3' correspond to equations 3.5 and 3.6 directly.

By representing equations as functions, and in turn, functions as procedures, we

have found a way to compute substitutions without manipulating expressions, but

instead by appropriately abstracting and composing the functions (procedures) that

represent the equations.

In essence, we have outlined the basic structure of an elegant linear equation

solver, and we can envision writing it, without making any reference to algebraic sim-

pli�cation, variable renaming, or substitutions within expressions.2 These operations

may be desirable to obtain simple answers, and to ensure that cancellation does not

produce spurious divisions by zero, or incorrect results due to round-o� error, over-

ow, or under
ow, but they are not inherently required to solve the equations. These

symbolic operations are necessary only as a consequence of choosing expressions as

the representation of our equations, just like scaling of points, segments, and arcs

is not inherent in the picture language, but only a consequence of choosing lists of

segments to represent our pictures. Functions (procedures) capture the behavior of

our equations, and we can eliminate and substitute variables naturally by composing

and abstracting.

3.3 Additional Concerns to the Application of

the Method

The method as outlined so far is, substantively, a numerical method, and will work for

systems containing arbitrary functions as long as we can �nd functions linear (actually

a�ne) on some of the unknowns. Because our method eliminates each unknown using

only one function at a time, it only depends on the function being a�ne with respect

2The idea of using procedures in this way, and the overall structure of the solver, are due to

Harold Abelson and Gerald J. Sussman.

3.3. ADDITIONAL CONCERNS TO THE APPLICATION OF THE METHOD47

to the single parameter being eliminated. The method can consequently reduce some

more general non-linear systems.

For example, if in the system of equations 3.1- 3.3 we perform the following sub-

stitutions,

x = uv (3.9)

y = vw (3.10)

z = wu (3.11)

we arrive at the system

2uv � vw+ wu = 5

uv + vw+ wu = 6

uv � vw+ wu = 2

in which no equation is linear, but each equation is a�ne in each parameter individ-

ually. The method outlined above reduces this system to an easily factorable quintic

equation.3

Furthermore, not all of the functions need to be algebraic. The system will elimi-

nate unknowns by �nding functions a�ne in some unknowns, and express the solution

in terms of the solution of the reduced system, which can then be solved by iterative

methods.

Before we examine a solver written using this method, we need to consider the

possibility that our system of equations may be over- or under-constrained. A system

of equations is over-constrained when it has no solutions, and under-constrained when

there are an in�nite number of solutions. Over-constrained systems can be handled

easily by returning some pre-established object that is otherwise an invalid solution.

Under-constrained systems are a little more complicated, but it is not di�cult to ar-

rive at a useful convention by examining linear systems. A system of linear equations

is underconstrained only if it has fewer equations than unknowns, after removing alge-

braically dependent equations. If we follow our substitution and elimination method

3Quintics are not always factorable [5, 35], but this one has no constant coe�cient, and the

quartic factor is bi-quadratic.

48 CHAPTER 3. SOLVERS FOR SYSTEMS OF EQUATIONS

on such a system, we will reach a point when we have expressed some of the unknowns

in terms of the rest, but there are no equations left that can be used �nd the values of

the remaining unknowns. At this point, any set of values for the remaining unknowns

leads to a solution of the initial system. The solutions of the initial system form a

subspace whose dimensionality is the number of unknowns remaining when we reach

this point.

To handle this situation, we can view a solution to a system of equations on

n unknowns, not as a single n-dimensional point, but as a function mapping some

number m of parameters to n values of the unknowns that zero the system. m is

the dimensionality of the solution subspace. If the system has a unique solution, m

will be zero and the solution function will be a constant function, while for a system

whose solutions all lie on a plane, m will be two, and the solution function will map

arbitrary points in R2 (or C2) to points in the plane of solutions.4

For example, a solution function for the original example system would be

(lambda ()

(tuple 3 2 1))

while a solution function for the under-constrained system of equations

3x+ 2y = 1

3y + 2z = 1

9x� 4z = 1

might be

(lambda (z)

(tuple (/ (+ 1 (* 4 z)) 9)

(/ (- 1 (* 2 z)) 3)

z))

where all solutions lie on a line.

4This method of returning a function of some continuous parameter space can be extended to

return a function and a domain to encompass multiple roots. Some of the components of the domain

would be continuous, while others would be discrete. The function would use continuous arguments

as described here, and the discrete arguments to choose roots of unity.

3.4. THE SOLVER 49

3.4 The Solver

Let us now examine a solver written using these ideas. Our solver takes a list of

procedures representing the equations, and returns two values, a residual system

represented as a list of procedures, and a solution procedure to invoke on solutions of

the residual system to produce solutions of the original system. If the residual system

is empty, the original system is completely solved, and the number of parameters of

the solution procedure is the dimensionality of the solution space. If it is not empty,

the solver could not solve the system fully, and some other method will have to be

used on the residual system.

Our top-level procedure performs some consistency checking and prepares the null

solution, i.e., the composition identity of N parameters. The real work is done by

solve-aux and try-methods.

(define (solve S)

(if (null? S)

(error "solve: No equations")

(let ((arity (proc/arity (car S))))

(if (there-exists? (cdr S)

(lambda (eqn)

(not (= (proc/arity eqn) arity))))

(error "solve: Inconsistent number of unknowns" S)

(solve-aux S (composition-identity arity))))))

(define (solve-aux S F)

(if (null? S)

(values S F)

(try-methods *solution-methods*

(map simplify-eqn S)

F)))

(define (try-methods methods S F)

(if (null? methods)

(values S F)

(with-values (lambda () ((car methods) S))

(lambda (S1 f1)

(if (and (= (length S1) (length S))

(= (proc/arity (car S))

(proc/arity (car S1))))

50 CHAPTER 3. SOLVERS FOR SYSTEMS OF EQUATIONS

;; Method failed

(try-methods (cdr methods) S F)

;; Method eliminated a variable or an equation

(solve-aux S1 (compose F f1)))))))

solve-aux takes two arguments: the residual system that we still need to solve,

and a partial solution, i.e., a function that maps solutions of the residual system into

solutions of the original system. If there are no equations left to solve, we are done,

and the partial solution is the total solution. Otherwise solve-aux uses try-methods

to try all the known solution methods.

A solution method is a procedure that takes a system of equations and returns a

residual system and a partial solution. As before, a partial solution maps solutions

to the residual system into solutions of the system given to the solution method. So-

lution methods typically remove some equations or some unknowns from the original

system. When unknowns are eliminated, the partial solution computes the eliminated

unknowns in terms of the remaining unknowns. When the method eliminates equa-

tions without eliminating unknowns, perhaps because the equations have become

tautologies (identically zero) after substitution, the partial solution is the identity

function on the vector of unknowns.

try-methods tests whether the �rst method in the list reduces the system, and if

not, it tries the remaining methods. When a method succeedes, try-methods calls

solve-aux on the residual system, and the corresponding overall partial solution that

is just the composition of the previous overall partial solution and the local partial

solution that the method returned.

simplify-eqn, used in solve-aux, can be used to remove denominators from

rational functions and to perform other similar tasks. For our solver we can de�ne it

as follows:

(define (simplify-eqn f)

(if (ratfun? f)

(ratfun/numerator f)

f))

3.4. THE SOLVER 51

Our list of methods can contain any procedures that can reduce the system. We

can use the following list:

(define *solution-methods*

(list (lambda (S)

(affine-eliminate S))

(lambda (S)

(quadratic-eliminate S))

(lambda (S)

(constant-eliminate S))

(lambda (S)

(iterative-solve S))))

affine-eliminate embodies the method outlined earlier and is examined below.

quadratic-eliminate is similar, but solves quadratic equations.5 constant-eli-

minate removes tautologies, i.e. functions that are identically zero. These equations

can appear after reducing a system with algebraically dependent equations. itera-

tive-solve is a trivial root �nder that can be used to solve uni-dimensional equations

not amenable to other methods.

affine-eliminate is de�ned as follows.

(define affine-eliminate

(equation-seeker (lambda (f i)

(and (affine? f i)

(not (independent? f i))))

(lambda (f i ignore)

(affine-invert f i))))

equation-seeker constructs a solution method that the solver can use. It takes

a predicate procedure and an inversion procedure. The predicate procedure tests

whether an unknown can be eliminated by using an equation. It is given the equation

and the index of the unknown as arguments. The inversion procedure eliminates

the corresponding unknown by expressing it in terms of the remaining unknowns.

equation-seeker tries all the equations and all the argument indices:

5Quadratic equations typically have two solutions. Without extending our solutions to encompass

discrete parameters, quadratic-eliminate can produce both by backtracking. The backtracking

mechanism is not germane to the discussion.

52 CHAPTER 3. SOLVERS FOR SYSTEMS OF EQUATIONS

(define (equation-seeker predicate inverter)

(lambda (S)

(let ((n-unknowns (proc/arity (car S))))

(define (find-eqn unk-index)

(let find-eqn ((S S) (eqns '()))

(cond ((null? S)

;; No more equations?

;; -> Try the next unknown

(try (1+ unk-index)))

((predicate (car S) unk-index)

;; Can this equation be inverted to eliminate

;; the M-th unknown?

=> (lambda (pred-result)

(let ((inversion

(inverter (car S) unk-index pred-result))

(n* (-1+ n-unknowns)))

;; Reduce the system by eliminating the

;; equation and the unknown,

;; and produce a partial solution function

;; that computes the value of the eliminated

;; unknown by using the rest, and inserts it

;; at the right position in the argument

;; vector.

(values

(map (lambda (f)

(introduce f inversion unk-index))

(append (reverse eqns) (cdr S)))

(aggregate* (*segment n* 0 unk-index)

inversion

(*segment n* unk-index n*))))))

(else

(find-eqn (cdr S) (cons (car S) eqns))))))

(define (try unk-index)

(if (< unk-index n-unknowns)

(find-eqn unk-index)

;; No unknowns left, return the original system

;; and a dummy partial solution

(values S (composition-identity n))))

;; Try the first unknown

(try 0))))

equation-seeker does not choose good unknowns to eliminate. It chooses the

�rst unknown that satis�es the predicate, and this is rarely the best choice. If a

3.4. THE SOLVER 53

system of linear equations is triangular, it may not choose the unknown that appears

by itself in an equation. Alternatively, if the system is dense, the best choice is often

the unknown with the largest coe�cient, but this is unlikely to be the �rst one found.

At any rate, better choices can be implemented { this version is illustrative, not

exemplary.

The code for equation-seeker is elaborate, but mostly straightforward. It con-

sists of two nested loops. The outer iterates over all the indices of the unknowns.

The inner iterates over all of the equations for each index. equation-seeker uses

the predicate on pairs of equations and indices, until the predicate succeeds, and then

it uses the inversion function to compute the substitution, and then, the residual sys-

tem and the partial solution.

The only complication is the construction of the residual system and the partial

solution when the method succeeds. The inversion function computes the value of

the eliminated unknown in terms of the rest, but the partial solution must take

the values of the remaining unknowns and produce a solution vector with them and

the eliminated unknown in the correct positions. To construct the partial solution,

equation-seeker uses aggregate* and *segment, the argument-list analogs of the

list operations append and subseq [57].

The other equations are rewritten by substituting the eliminated unknown for its

value in terms of the remaining unknowns. This task is performed by the procedure

introduce, which takes two procedures, f and g, and one argument index, n. G must

take one less argument than f. introduce returns a procedure, h, that when invoked,

passes its arguments to g, collects its result, inserts it at the n-th position in the

arguments passed to h, and passes the resulting vector of arguments to f, returning

its result. E.g.,

(introduce (lambda (x y z) (+ (* x y) z))

(lambda (x z) (- x z))

1)

� (lambda (x z)

54 CHAPTER 3. SOLVERS FOR SYSTEMS OF EQUATIONS

(+ (* x (- x z)) z))

affine-invert, used in the de�nition of affine-eliminate, embodies the subs-

titution method that we outlined earlier.

(define (affine-invert f i)

;; f(xi) = D * xi + N => N = f(0)

;; D = (f(1) - N)

;; For a zero, xi = ((f(xi) - N) / D) = ((-N) / D)

(let* ((N (fix-argument/drop-parameter f i 0))

(D (combine -

(fix-argument/drop-parameter f i 1)

N)))

(combine /

(compose negate N)

D)))

fix-argument/drop-parameter takes a procedure, an argument index i, and a

constant value, and returns the procedure that takes one less argument and cor-

responds to the original with the i-th argument substituted by the constant. For

example,

(fix-argument/drop-parameter (lambda (x y)

(- (* x y) (+ x 7)))

1

29)

� (lambda (x)

(- (* x 29) (+ x 7)))

combine produces a procedure p, that, when invoked, calls all but the �rst argu-

ment to combine on the arguments to p, collects all of the results, and invokes the

�rst argument to combine on all the collected results, returning what this procedure

returns. For example,

(combine -

(lambda (a b c) (* a (+ b c)))

(lambda (x y z) (+ (* z x) (* z y))))

� (lambda (e f g)

(- (* e (+ f g))

(+ (* g e) (* g f))))

3.5. THE LIMITATIONS OF OPAQUE PROCEDURES 55

3.5 The Limitations of Opaque Procedures

Besides procedural utilities such as combine, fix-argument/drop-parameter, in-

troduce, etc., we have yet to write affine?, ratfun?, and ratfun/numerator to

�nish implementing our solver.

A function is a�ne in some parameter, if, for any �xed given values of the remain-

ing parameters, the function is a line. In other words, function F is a�ne in its �rst

argument (similarly for other arguments) if we can write it as

F(x1; x2; : : : ; xm) = F1(x2; : : : ; xm) � x1 + F0(x2; : : : ; xm)

A su�cient condition, when F is partially di�erentiable twice with respect to its

�rst argument, is that this partial derivative is identically zero. That is, F is a�ne

in its �rst argument (similarly for other arguments) if the following holds:

@
2
F

@x
2

1

= 0

If our procedures are opaque, we cannot easily di�erentiate exactly, just numeri-

cally.6 We can try another approach. If F is a�ne in its �rst argument, then

H(x1; x2; : : : ; xm) = F(x1; x2; : : : ; xm)�F(0; x2; : : : ; xm)

= F1(x2; : : : ; xm) � x1

must be linear in its �rst argument. This immediately leads to the following de�nition

of affine?

(define (affine? f n)

(linear? (combine - f (fix-argument/keep-parameter f n 0))

n))

where fix-argument/keep-parameter is similar to fix-argument/drop-parameter

(used earlier), but produces a result of the same arity as its �rst argument.

6As observed by Gerald J. Sussman and Dan Zuras, exact di�erentiation can be carried out by

using non-standard analysis [34]. This presumes that our arithmetic primitives are extended to

accomodate in�nitesimals.

56 CHAPTER 3. SOLVERS FOR SYSTEMS OF EQUATIONS

How do we test for linearity? Rejecting di�erentiation again, we can make direct

use of the de�nition of linearity. A function H is linear in its �rst argument (similarly

for other arguments) if the following identities hold for all values of the xi, k, and y.

H(k � x1; x2; : : : ; xm) = k � H(x1; x2; : : : ; xm)

H(x1 + y; x2; : : : ; xm) = H(x1; x2; : : : ; xm) +H(y; x2; : : : ; xm)

This is equivalent to requiring that the functions P and S (for product and sum,

respectively), de�ned as follows, be identically zero.

P(x1; x2; : : : ; xm; k) = H(k � x1; x2; : : : ; xm)� k � H(x1; x2; : : : ; xm)

S(x1; x2; : : : ; xm; y) = H(x1 + y; x2; : : : ; xm)� (H(x1; x2; : : : ; xm) +H(y; x2; : : : ; xm))

We can program this test as follows:

(define (linear? f n)

(let* ((m (proc/arity f))

(m* (1+ m)))

(let* ((f-of-nth

(lambda (substitution)

(combine f

(segment m* 0 n)

substitution

(segment m* (1+ n) m))))

(f-of-nth-and-mth

(lambda (combiner)

(f-of-nth (combine combiner

(project m* n)

(project m* m))))))

(let ((scale-test

(combine -

(f-of-nth-and-mth *)

(combine *

(project m* m)

(compose f (segment m* 0 m)))))

(sum-test

(combine -

(f-of-nth-and-mth +)

(combine +

(compose f (segment m* 0 m))

(f-of-nth (project m* m))))))

(and (identically-zero? scale-test)

(identically-zero? sum-test))))))

3.5. THE LIMITATIONS OF OPAQUE PROCEDURES 57

We now need to implement identically-zero?, and of course, we cannot. iden-

tically-zero? is undecidable in general, but that is not the fundamental issue here,

since suitable restrictions are decidable, and we can let the solver use other methods

when identically-zero? fails because it is conservative.

The problem is that if procedures are opaque, we can only invoke them, not look

inside. The best we can do is to invoke the procedure on a �nite number of n-

dimensional points [42]. If the result at any of them is not zero, identically-zero?

can truthfully return false, however, even if the function returns zero at every point

tested, there is no guarantee that the result is identically zero. Although choosing

random points makes for a very reliable and fast test, ultimately we can use procedure

invocation only to reject, never to accept, except heuristically.

Of course, ratfun?, etc. also lead us to the same problem. When procedures

are completely opaque, they cannot be used to represent functions that we want to

compare to other functions, unless their domains are �nite, and well known, even if

the comparison is only approximate to avoid undecidability.

As in the Henderson language scenario, we can resort to unsavory tricks such as

switching the meaning of the arithmetic operators to handle symbolic quantities, and

then invoke our functions on symbolic arguments and examine the result, but there

is no guarantee that all the functions are written in terms of the operators that we

have switched.

Similarly, we can change the interface to our functions, and change combine,

etc., accordingly, but this will obscure our basic representation decision, force us

to maintain dual representations, and demand that users of the solver write their

functions using this interface if they want to pass them to the solver as equations.

58 CHAPTER 3. SOLVERS FOR SYSTEMS OF EQUATIONS

3.6 Overcoming Opacity

As in the Henderson language example, we can require that our language allow us

to inspect the structure of procedures. Even before this point, we have already

assumed a limited form of inspection, since proc/arity, used in solve, try-methods,

equation-seeker, and linear?, cannot be implemented if procedures are completely

opaque.

In our extended Scheme, we can use tlambda when writing our equations, and

write our procedure utilities appropriately, so that all the generated procedures are

translucent when the inputs are.

We can now write a conservative identically-zero? as follows:

(define (identically-zero? f)

(and (ratfun? f)

(match? (constant (proc/arity f) 0)

(ratfun/simplify f))))

ratfun? can be written as follows:

(define (ratfun? proc)

(and (tproc? proc)

(%ratfun? proc)))

(define (%ratfun? proc)

(let* ((m (tproc/arity proc))

(mc (constant m #?CONST))

(proj (let make ((i 0))

(if (>= i m)

'()

(cons (project m i)

(make (+ i 1))))))

(ops (map (let ((mp1 (restrict #?P1 m))

(mp2 (restrict #?P2 m)))

(lambda (op)

(combine op mp1 mp2)))

(list + - * /))))

(let test ((proc proc))

(let find-operator ((ops ops))

(cond ((null? ops)

3.7. LOOSE ENDS 59

(cond ((match? mc proc)

=> (lambda (match)

(number? (match/lookup match #?CONST))))

(else

(let find-projection ((proj proj))

(and (not (null? proj))

(or (match? (car proj) proc)

(find-projection (cdr proj))))))))

((match? (car ops) proc)

=> (lambda (match)

(and (test (match/lookup match #?P1))

(test (match/lookup match #?P2)))))

(else

(find-operator (cdr ops))))))))

%ratfun? uses the matcher to check whether its argument is: a sum, product,

etc.; a constant function; or a projection function. If the argument is a sum, product,

etc., it tests the operands recursively.

ratfun/simplify and ratfun/numerator can be written directly, like ratfun?,

or, alternatively, can be written by translating their argument to an alternate repre-

sentation, simplifying the result, and translating back. The alternate representation

may be any ordinary representation for rational functions, such as a pair of polyno-

mials with sparse coe�cients.

ratfun->rf, shown in �g. 3-1, translates a translucent procedure that implements

a rational function into an alternate representation, manipulated abstractly by the

operations constant->rf, projection-rf, rf+, rf-, rf*, and rf/.

3.7 Loose Ends

The solver described above is mostly complete, but a few pieces are still missing. For

example, affine-eliminatedepends not only on affine?but also on independent?,

which can be coded as follows,

(define (independent? f param)

(identically-zero?

(combine -

60 CHAPTER 3. SOLVERS FOR SYSTEMS OF EQUATIONS

(define (ratfun->rf proc)

(let ((m (procedure/arity proc)))

(let ((mc (constant m #?CONST))

(mp1 (restrict #?P1 m))

(mp2 (restrict #?P2 m))

(proj (let make ((i 0))

(if (>= i m)

'()

(cons (project m i)

(make (+ i 1))))))

(bases (let make ((i 0))

(if (>= i m)

'()

(cons (projection-rf m i)

(make (+ i 1))))))

(number-ops (list + - * /))

(rf-ops (list rf+ rf- rf* rf/)))

(let test ((proc proc))

(cond ((match? mc proc)

;; Is it a constant function?

=> (lambda (match)

(constant->rf m (match/lookup match #?CONST))))

(else

(or

;; Is it a projection function?

(let find-projection ((proj proj) (bas bas))

(and (not (null? proj))

(if (match? (car proj) proc)

(car bas)

(find-projection (cdr proj)

(cdr bas)))))

;; Is it a sum, product, etc?

(let find-op ((ops number-ops)

(rf-ops rf-ops))

(and (not (null? ops))

(let ((match

(match? (combine (car ops) mp1 mp2)

proc)))

(if match

((car rfops) (match/lookup match #?P1)

(match/lookup match #?P2))

(find-op (cdr ops) (cdr rf-ops))))))

(error "ratfun->rf: Not a ratfun"

proc))))))))

Figure 3-1: Conversion from Procedures to Other Representations

3.7. LOOSE ENDS 61

f

(fix-argument/keep-parameter f param 0))))

which tests whether F is independent from x1 (or any other parameter) by testing

whether F 0, de�ned as follows, is identically zero.

F
0(x1; x2; : : : ; xn) = F(x1; x2; : : : ; xn)�F(0; x2; : : : ; xn)

The missing procedures are straightforward, or similar to those already described,

but some care must be exercised when writing utilities such as combine and fix-ar-

gument/drop-parameter.

Our solver depends in several places on the ability to determine the arity of the

procedures that represent equations. It uses this ability to �nd the number of un-

knowns remaining, and to decide when a solution method has eliminated some of

them.

Procedures such as combine, etc., might appear to be easily expressible in ordinary

Scheme with de�nitions such as

(define (combine combiner . elements)

(lambda args

(apply combiner

(map (lambda (element)

(apply element args))

elements))))

but even assuming that the result was a translucent procedure, it would have lost

all arity information, and the solver would no longer be able to �nd the number of

unknowns remaining. Writing our utilities in this way would force us to maintain and

pass around the arity, rather than extract it from the procedures.

The de�nitions of these utilities can preserve this information if they are written

in a manner analogous to the version of compose in chapter 2. For example, we can

write combine as follows:

(define (combine collect . fs)

(compose collect (apply aggregate* fs)))

Then, we can de�ne aggregate and aggregate* as follows:

62 CHAPTER 3. SOLVERS FOR SYSTEMS OF EQUATIONS

(define (aggregate* f1 . fs)

(let loop ((f1 f1) (fs fs))

(if (null? fs)

f1

(loop (aggregate f1 (car fs))

(cdr fs)))))

(define (aggregate f g)

;; h = (aggregate f g)

;; => (h . args) = (concat (f . args) (g . args))

(let ((ftakes (proc/arity f))

(freturns (proc/nvalues f))

(gtakes (proc/arity g))

(greturns (proc/nvalues g)))

(if (not (= ftakes gtakes))

(error "aggregate: Incompatible" f g)

(let ((names (make-list-of-names (+ ftakes freturns greturns)

'(f g))))

(let ((formals (list-head names ftakes))

(rest (list-tail names ftakes)))

(let ((fvals (list-head rest freturns))

(gvals (list-tail rest freturns)))

((tproc/make*

�(lambda (f g)

(lambda ,formals

(tlet (,fvals (f ,@formals))

(tlet (,gvals (g ,@formals))

(tuple ,@fvals ,@gvals))))))

f g)))))))

aggregate* was used in equation-seeker in conjunction with *segment, with

the latter de�ned as follows:

(define (*segment takes low high)

(if (not (<= 0 low high takes))

(segment takes 0 0)

(segment takes low high)))

(define (segment takes low high)

(if (not (<= 0 low high takes))

(error "segment: Invalid range" takes low high)

(let* ((formals (make-list-of-names takes '()))

(keep (sublist formals low high)))

(tproc/make* �(lambda ,formals

(tuple ,@keep))))))

3.8. SUMMARY 63

fix-argument/drop-parameter can be written in terms of these procedures as

follows:

(define (fix-argument/drop-parameter f n konst)

;; Fix argument n of f to constant konst.

;; The resulting procedure takes one less argument.

#|

;; Equivalent to

(introduce f

(constant (-1+ (tproc/arity f))

konst)

n)

|#

(let ((m* (-1+ (tproc/arity f))))

(combine f

(*segment m* 0 n)

(constant m* konst)

(*segment m* n m*))))

The remaining utilities (constant, fix-argument/keep-parameter, introduce,

etc.) can easily be written in a similar style.

3.8 Summary

We examine the construction of an equation solver where equations are represented

as procedures. The power of this choice is that it allows us to compute and express

substitutions and solutions without reference to expressions, variables, or renaming.

This independence from an expression representation allows us, among other things,

to mix algebraic with iterative methods within the same framework.

Ordinary procedures are unsuitable because they cannot easily support recognition

and discrimination, abilities necessary to examine our equations in order to choose an

appropriate solution method. Translucent procedures, which can be composed and

abstracted as easily as ordinary procedures, also permit limited inspection, enabling us

not only to construct a solution by composition, but also to choose solution methods

by examining the equations.

64 CHAPTER 3. SOLVERS FOR SYSTEMS OF EQUATIONS

Chapter 4

Metacircular Interpreters and

Compilers

Interpreter construction is a scenario where a procedural representation is natural,

elegant, and e�cient. As in the previously examined scenarios, however, opaque

procedures cannot be used as the basic representation because they preclude the

implementation of certain operations on our abstract representation. We will see

that translucent procedures overcome this problem nicely.

An expression to be evaluated can be abstracted as a behavior modulated by an

environment. In this chapter we will see how this observation leads naturally to a

procedural representation for expressions in our interpreter. However, this represen-

tation requires translucent procedures in order to make interpreter states invertible,

hence debuggable.

4.1 Why Use Interpreters?

Interpreter construction is an important topic in the implementation of interactive

languages (e.g. APL [27], Basic, Forth, Lisp [57], Scheme [11, 1], Smalltalk [14],

csh [4]).

65

66 CHAPTER 4. METACIRCULAR INTERPRETERS AND COMPILERS

Interpreters are used in these languages because a high priority in the implemen-

tation of such languages is to keep the time of the edit-run cycle as low as possible.

The edit-run cycle is usually more time consuming when a native-code compiler, even

a non-optimizing compiler, is inserted in the cycle. In addition, interpreters are often

preferred for debugging for a variety of reasons:

� The reduced time of the edit-run cycle allows the programmer to explore more

possibilities in the same amount of time. The programmer can more easily write

and run test code, or add debugging output to the code.

� Interpreters often have a more direct execution model, not subject to optimiza-

tions that may rearrange or eliminate code or variables.

� Debuggers can more easily invert and display the state of the computation

because interpreters have a known �nite number of states.

There is a natural tension in the design and implementation of an interpreter be-

tween its speed and its simplicity. As always, simplicity leads to increased maintain-

ability. Simple interpreters are easy to write, but often perform poorly. Complicated

interpreters perform well, but are harder to debug and maintain, and sometimes make

debugging the interpreted code more di�cult.

The most common design technique for interactive languages is to use a hybrid of

compilation and interpretation. The source language is compiled to a simple binary

code, often a linear byte code for a stack architecture, whose interpretation can be

carried out easily and e�ciently by a straightforward program. The byte code is

designed for fast execution and for straightforward translation, so the compilation

step, unlike compilation to native code, is quick.

The e�ciency of byte-coded interpreters is often adequate, but the compilation

step usually makes debugging interpreted code harder. There are two common solu-

tions to this problem: we can make the output of the byte code compiler invertible,

4.1. WHY USE INTERPRETERS? 67

or, alternatively, we can use techniques similar to those used by full-
edged native-

code compilers, i.e. the compiler can output of additional data structures mapping

code addresses to debugging information. The �rst solution impacts negatively on

performance|it reduces the range of possible optimizations; the second implies too

large an implementation e�ort for \lean-and-mean" interpreters.

A second common technique used in interpreter design, particularly for the Forth

language, is to use threaded interpreters [41]. A threaded interpreter is another hy-

brid technique. The source language is translated locally into pre-packaged template

machine code sequences with slots for the translated subexpressions. The code oper-

ates by executing the templates, which decide when and how to invoke the templates

contained in the slots corresponding to the subexpressions and to combine their re-

sults.

Threaded interpreters are often very fast, but must be ported individually to every

new architecture and have the same debugging problems as byte-coded interpreters.

Threaded interpreters are typically faster than byte-coded interpreters because

they eliminate one level of decoding. Byte-coded interpreters translate the source

language into a small linear instruction set that must be decoded by software at run-

time. The compiler to threaded code produces a graph of native code segments that is

executed directly by the hardware, with no further software decoding. Although the

code in threaded interpreters is often hard on processor pre-fetch units, because of all

the jumping around, byte-coded interpreters often use large dispatch tables to decode

the op-codes, and short code sequences in each entry, imposing a similar burden on

the pre-fetch unit.

Threaded interpreters, besides being hard to port, are also harder to write. The

interpreter implementormust write and tune the code sequences in assembly language.

However he must also be very careful about maintaining the correct state, and think

carefully about how the standard code sequences combine at runtime in terms of

registers and stacks, and other low-level structures.

68 CHAPTER 4. METACIRCULAR INTERPRETERS AND COMPILERS

4.2 Automatically Generated Threaded Interpre-

ters

The typical implementation of some languages (Lisp, Scheme) contains both an in-

terpreter and a native-code compiler. The interpreter is used for interaction, and

to reduce the time of the edit-run cycle; the compiler is used on previously-tested

modules that should run quickly, at some expense in debugging ability.

Even though the compiler is available to accelerate code, the speed of the inter-

preter should not be neglected. If it is very slow, programmers will only use the

compiler. It must also be no more di�cult to debug interpreted code than compiled

code, since that is an important reason for its existence.

Fortunately, there is a simple technique that can be used to implement threaded

interpreters for such systems. The technique makes use of the e�ort in porting the

native-code compiler, and allows the interpreter to be written entirely in the source

language, using the native-code compiler to gain its e�ciency.

This technique, introduced by Feeley and Lapalme [21] primarily for code gener-

ation (rather than direct execution) consists of translating expressions into closures

(procedures). An expression is translated into a procedure that accepts a single

argument, namely a representation of the runtime environment where the expres-

sion is to be evaluated. The procedure invokes the procedures corresponding to the

subexpressions on suitable environments, and combines the results, or chooses among

alternatives according to these results.

The beauty of this technique is that it abstracts the meaning of an expression into

a behavior, implemented concretely by the procedure that represents the expression.

For execution, the only important aspect of an expression is what actions and values it

manipulates when evaluated in an environment; these actions and value manipulations

modularized by the runtime environment, are what the procedure representing the

expression captures exactly.

4.2. AUTOMATICALLY GENERATED THREADED INTERPRETERS 69

To illustrate the technique, we can explore the implementation of a Scheme in-

terpreter, using Scheme as the implementation language as well. Such an interpreter

is metacircular, but given that in reality it compiles the source language into data

structures (albeit executable), it should more properly be called a metacircular com-

piler.

For expository reasons, the code that appears below is written in a concrete style,

with little data abstraction, and with no consistency checks. A production version

would be more abstract, but this abstraction would not only lengthen the code that

appears below, but would also obscure its workings. Note also that a full metacircular

compiler is too long to include here, but the following code segments should suggest

how the rest of the code works.

The top-level of the compiler is a simple syntactic dispatch:

(define (execute expr rtenv)

((compile expr) rtenv))

(define (compile expr)

(compile-expr expr (ct/initial)))

(define (compile-expr expr ctenv)

(cond ((pair? expr)

(case (car expr)

((LAMBDA)

(compile-lambda expr ctenv))

((IF)

(compile-if expr ctenv))

...

(else

(compile-combination expr ctenv))))

((symbol? expr)

(compile-variable expr ctenv))

(else

(compile-constant expr ctenv))))

ctenv is a compile-time model of the runtime environment. Except for the top-

level (or global) runtime environment, runtime environments grow by adding frames

created when interpreted procedures are invoked. A new frame binds the procedure's

70 CHAPTER 4. METACIRCULAR INTERPRETERS AND COMPILERS

formal parameters to the actual arguments passed to the procedure. Runtime envi-

ronments are captured into runtime closures resulting from the execution of lambda

expressions. The compile-time environment models the layout of the runtime envi-

ronment that will be manipulated by the translated code.

Some examples of the code generators:

(define (compile-constant const ctenv)

ctenv ; ignored

(LAMBDA (rtenv)

;; rtenv ; ignored

const))

The value of a constant does not depend on the runtime environment. The code

generated for a constant ignores the environment and returns the value of the cons-

tant.

(define (compile-variable var ctenv)

(ct/lookup ctenv var

(lambda (depth offset)

(if (not depth)

(compile-global-variable var ctenv)

(compile-lexical-lookup depth offset)))))

(define (compile-lexical-lookup depth offset)

(LAMBDA (rtenv)

(vector-ref (list-ref rtenv depth) offset)))

To compile a variable, we examine the compile-time environment. If the variable

is present|i.e. it was introduced by a lambda expression in the current compilation

unit|the path in the compile-time environment determines the path in the runtime

environment; we generate code that extracts the value from the runtime environment

by following that path. The representation of runtime environments (as lists of ve-

tors) is �xed by the compiler, which generates procedures that directly access their

components.

If the variable is not found in the compile-time environment, it is assumed to cor-

respond to a variable bound in the top-level or global environment. The manipulation

of the top-level environment is omitted since it is neither elucidating nor di�cult.

4.2. AUTOMATICALLY GENERATED THREADED INTERPRETERS 71

(define (compile-IF expr ctenv)

(let ((pred (compile-expr (cadr expr) ctenv))

(conseq (compile-expr (caddr expr) ctenv)))

(if (> (length expr) 3)

(let ((alt (compile-expr (cadddr expr) ctenv)))

(LAMBDA (rtenv)

(if (pred rtenv)

(conseq rtenv)

(alt rtenv))))

(LAMBDA (rtenv)

(if (pred rtenv)

(conseq rtenv))))))

To compile a conditional (if) expression, we compile the subexpressions and col-

lect them into a procedure. This procedure, at run time, will execute the predicate and

choose, according to its result, between the consequent and alternative (if present).

The metacircular compiler inherits from the underlying system the behavior of an

alternative-less if expression in which the predicate evaluates to false.

(define (compile-LAMBDA lam ctenv)

(let* ((params (cadr lam))

(body (compile-expr*

(cddr lam)

(ct/bind ctenv

(if (symbol? params)

(list params)

params)))))

(let ((nparams (length params)))

(case nparams

((0)

(LAMBDA (rtenv)

(lambda ()

(body (cons (vector) rtenv)))))

((1)

(LAMBDA (rtenv)

(lambda (arg)

(body (cons (vector arg) rtenv)))))

(else

(LAMBDA (rtenv)

(lambda args

(if (not (= (length args) nparams))

(runtime-error "wrong number of arguments" nparams)

(body (cons (list->vector args)

rtenv))))))))))

72 CHAPTER 4. METACIRCULAR INTERPRETERS AND COMPILERS

This code generator for lambda expressions handles only lambda expressions with a

�xed number of bound variables. More complex parameter lists can be handled easily

with simple modi�cations. The procedure generated for a lambda expression captures

the environment of execution (the closing environment), and returns a procedure

that, when invoked, tacks a new environment frame containing the arguments to the

captured environment, and then executes the translation of the body of the lambda

expression in this new runtime environment.1

(define (compile-combination expr ctenv)

(let ((oprtr (compile-expr (car expr) ctenv)))

(case (length expr)

((1)

(LAMBDA (rtenv)

((oprtr rtenv))))

((2)

(let ((oprnd1 (compile-expr (cadr expr) ctenv)))

(LAMBDA (rtenv)

((oprtr rtenv)

(oprnd1 rtenv)))))

(else

(let ((oprnds (map (lambda (op)

(compile-expr op ctenv))

(cdr expr))))

(LAMBDA (rtenv)

(apply (oprtr env)

(map (lambda (op)

(op rtenv))

oprnds))))))))

A combination consists of an operator and operands which must be executed,

and then the result of the operator is invoked on the results of the operands. The

code generator for combinations compiles the operator and operands, and returns

a procedure, that, when invoked, invokes all of these compiled subexpressions, and

applies the result of the operator to the rest. Since the invocation of the value of the

operator is left to the underlying system, and the values of interpreted procedures are

1The optimized handlers need not check the number of arguments passed because they generate

procedures of the correct arity, and the underlying Scheme system presumably takes care of checking

the number of arguments.

4.2. AUTOMATICALLY GENERATED THREADED INTERPRETERS 73

valid procedures from the underlying system, there is no need to discriminate between

primitive, interpreted, and compiled procedures. They are all trivially inter-callable.

Although the code for the compiler is easy to follow, it already includes some

optimizations. It has special-case code for combinations with fewer than two operands,

and lambda expressions with fewer than two formal parameters|it is trivial to extend

these to larger numbers, so that the common cases are covered. It would be easy to

add improvements such as special-case code for predicates which are combinations

of the not operator, combinations whose operators are lambda expressions (e.g. the

expansions of let forms), faster access to variables at known lexical addresses, early

binding of global procedures, etc.

The correctness of such a compiler should be particularly simple to deduce. Deno-

tational semantics for languages typically involve a similar translation. The meaning

function is curried and takes, successively , an expression, an environment, a con-

tinuation, and a store.2 Our compiler is similarly curried, taking an expression, and

producing procedures that take concrete environment representations, corresponding

to the abstract environments manipulated by the semantics. In essence, our interpre-

ter consists of a denotational semantics interpreter with implicit continuations and

stores that it inherits from the implementation language, and whose environments

have been made concrete [11, 29, 58].

What may not be obvious is how this code results in a threaded interpreter. Let's

revisit the code generated for if expressions:

(define (compile-IF expr ctenv)

(let ((pred (compile-expr (cadr expr) ctenv))

(conseq (compile-expr (caddr expr) ctenv)))

(if (> (length expr) 3)

(let ((alt (compile-expr (cadddr expr) ctenv)))

(LAMBDA (rtenv)

(if (pred rtenv)

(conseq rtenv)

2The continuation and store may not be necessary if the language being described does not have

control-transfer operations, or mutation, respectively.

74 CHAPTER 4. METACIRCULAR INTERPRETERS AND COMPILERS

(alt rtenv))))

(LAMBDA (rtenv)

(if (pred rtenv)

(conseq rtenv))))))

The result of the compilation of an if expression is a closure, a data structure with

an entry point and three data �elds, containing three other closures (corresponding

to pred, conseq, and alt).

This entry point is shared by all such if expressions, and is the template code

sequence for if. It executes the if by �rst invoking (jumping to) the closure for the

predicate, and depending on the value computed by that closure, it will invoke either

of the other closures corresponding to the consequent or alternative subexpressions.

The machine code corresponding to the template is generated by the native-code

compiler when processing the bodies of the lambda expressions with an upper-case

LAMBDA while compiling compile-if.

4.3 Limitations of the Procedural Representation

As we have seen, we can obtain a threaded interpreter simply by writing a metacircular

compiler. Unlike a native threaded interpreter, extending or modifying the language

with this interpreter is considerably simpler and less error prone.

Nevertheless, an important reason for having an interpreter in a system that

already has a native-code compiler is to increase debugging ability. In addition to the

shortened edit-run cycle, one of the reasons that interpreted code can be debugged

well is that it is usually not di�cult to map the state of a suspended computation

into the source forms that produced the state or are pending execution. Yet, if our

interpreter is written in the manner described above, this mapping from suspended

states to source code is not particularly simple: We need to map the state into the

source code of the interpreter by using whatever means our native-code compiler

provides, and then invert the metacircular compilation to regenerate the interpreted

code's source.

4.3. LIMITATIONS OF THE PROCEDURAL REPRESENTATION 75

If the compiled procedures used to implement the template code sequences are

opaque, we cannot do this conveniently, and we may not be able to debug our inter-

preted code easily, or at all.

The procedures that we are generating perfectly abstract the behavior of the orig-

inal expressions under evaluation, but if the procedures are opaque, they abstract it

too well. There is no other operation that we can reliably perform on our translated

expressions, except to evaluate them by invoking them on a suitable environment.

However, we want our expressions not only to be executable, but also to be in-

spectable, in order to facilitate debugging. Opaque procedures eliminate our ability

to do this.

As in previous scenarios, there are distasteful and fragile tricks that we might use

to solve this problem. For example, we can change the interface to our procedures

to maintain a dual representation, so that when given a recognizable argument, they

will return the source expression instead of executing it.

We can therefore, change our code uniformly, as suggested by the following exam-

ple:

(define (compile-IF expr ctenv)

(let ((pred (compile-expr (cadr expr) ctenv))

(conseq (compile-expr (caddr expr) ctenv)))

(if (> (length expr) 3)

(let ((alt (compile-expr (cadddr expr) ctenv)))

(LAMBDA (rtenv)

(if (eq? rtenv 'DISASSEMBLE)

�(if ,(pred rtenv)

,(conseq rtenv)

,(alt rtenv))

(if (pred rtenv)

(conseq rtenv)

(alt rtenv)))))

(LAMBDA (rtenv)

(if (eq? rtenv 'DISASSEMBLE)

�(if ,(pred rtenv)

,(conseq rtenv))

(if (pred rtenv)

(conseq rtenv)))))))

76 CHAPTER 4. METACIRCULAR INTERPRETERS AND COMPILERS

Unfortunately this obscures our code, and slows it down because of the tests at

every step.

Alternatively, we can keep a table of associations between these procedures and

the original expressions, which we can query as necessary. This is adequate in certain

circumstances, but new entries will have to be added to this table every time that a

procedure is created, which occurs when lambda expressions are executed. The cost

of evaluating lambda expressions grows noticeably in our attempt to keep the table

up to date, and, of course, the compiler must be peppered with extraneous code used

to maintain the table.

Some of these tricks are workable, but even if they impose no e�ciency loss,

they are undesirable. A very important property of this technique for construct-

ing interpreters is that the code is so simple and directly matches the semantics.

Additional code, to enable us to invert our translation, would only clutter our inter-

preter/compiler, and should not be necessary.

4.4 Overcoming Opacity

As before, we can overcome the invertibility problem by using translucent proce-

dures. If the procedures used to represent and implement our interpreted code can

be decomposed, we can invert the translation and reconstruct the source.

To carry this out, in the code for the compiler, we can replace lambda with

tlambda in the lambda expressions that yield the procedures that our interpreter

manipulates.345

For example, compile-if becomes

(define (compile-IF expr ctenv)

(let ((pred (compile-expr (cadr expr) ctenv))

3Precisely the upper-case lambdas.
4TScheme is not applicative-order, but this could be changed.
5TScheme does not have variable-arity procedures, so the last clause of compile-lambda would

have to be rewritten in terms of tproc/make.

4.4. OVERCOMING OPACITY 77

(conseq (compile-expr (caddr expr) ctenv)))

(if (> (length expr) 3)

(let ((alt (compile-expr (cadddr expr) ctenv)))

(tlambda (rtenv)

(if (pred rtenv)

(conseq rtenv)

(alt rtenv))))

(tlambda (rtenv)

(if (pred rtenv)

(conseq rtenv))))))

Once this is done, besides using tproc/decompose directly, we can use our pro-

cedural pattern matcher to destructure the output of the compiler. For example, we

can easily determine whether a procedure corresponds to an if expression by using

the following predicate:

(define (compiled-IF-expression? expr)

(or (match? (tlambda (rtenv)

(if (#?PRED rtenv)

(#?CONSEQ rtenv)

(#?ALT rtenv)))

expr)

(match? (tlambda (rtenv)

(if (#?PRED rtenv)

(#?CONSEQ rtenv)))

expr)))

Similarly, we can reconstruct the source by using

(define (invert-compiled-IF expr ucenv)

(let ((decode

(lambda (result unk)

(invert (match/lookup result unk) ucenv))))

(cond ((match? (tlambda (rtenv)

(if (#?PRED rtenv)

(#?CONSEQ rtenv)

(#?ALT rtenv)))

expr)

=> (lambda (result)

�(IF ,(decode result #?PRED)

,(decode result #?CONSEQ)

,(decode result #?ALT))))

((match? (tlambda (rtenv)

78 CHAPTER 4. METACIRCULAR INTERPRETERS AND COMPILERS

(if (#?PRED rtenv)

(#?CONSEQ rtenv)))

expr)

=> (lambda (result)

�(IF ,(decode result #?PRED)

,(decode result #?CONSEQ))))

(else

(error "invert-compiled-IF: Not an IF expression"

expr)))))

Note the correspondence between the code generated by compile-if, and the

patterns in invert-compiled-if. If a new template is introduced for IF expressions

in compile-if, invert-compiled-if may have to be extended in a similar manner

to allow the reconstruction of the source code for the newly generated templates.

As in the case of byte-coded interpreters, the ability to reconstruct expressions into

the original source depends on how the expressions are compiled. For example, we

can compile or forms using the native-code compiler's or keyword, or we can macro-

expand them into expressions using let, if, and lambda, and compile the result.

The second choice makes the translations of or expressions and the corresponding

expansions indistinguishable, so our inverter will be unable to invert them properly.

(define (compile-OR expr ctenv)

(if (null? (cddr expr))

(compile-expr (cadr expr) ctenv)

(let ((pred (compile-expr (cadr expr) ctenv))

(rest (compile-OR �(OR ,@(cddr expr)) ctenv)))

(tlambda (rtenv)

(or (pred rtenv)

(rest rtenv))))))

(define (compile-OR expr ctenv)

(define (macro-expand-OR expr)

(if (null? (cdr expr))

(car expr)

�(let ((pred ,(car expr))

(rest (lambda ()

,(macro-expand-OR (cdr expr)))))

(if pred

pred

(rest)))))

4.4. OVERCOMING OPACITY 79

(compile-expr (macro-expand-OR (cdr expr))

ctenv))

An additional problem with respect to invertibility is the following: The generated

code does not need the names of lambda-bound variables in the code being translated.

The variable names have been translated into code sequences that directly implement

the lexical address lookup for the variables, and names are only necessary (if at all)

for variables not visible in the compile time environment.6 Hence our inverter will not

be able to recover the names and may have to generate them. A production version

of the metacircular compiler should try to keep these names in order to better invert

code.

Invertibility is not only useful for debugging, but also to simplify implementations.

The interpreter/compiler that we show is somewhat incestuous, since it interprets and

is written in Scheme; the whole approach is predicated on the prior existence of a

native-code compiler to bootstrap and accelerate the code.

Consider instead the possibility of implementing a di�erent language using the

same techniques. We may want to provide both an interpreter and compiler for the

new language. In order to use the pre-existing Scheme native code compiler, we can

consider source-to-source translation as the basis of our implementation. We can

implement a source-level translator from our new language to Scheme, and then use

either the Scheme interpreter, or the Scheme compiler to execute the code. Although

this produces a working implementation, we are better o� using a compiler that

directly produces procedures such as those presented above. The resulting interpreted

code is faster, since it directly manipulates the runtime data structures of our new

language, instead of Scheme environments emulating the manipulation of these data

structures. The ability to extract Scheme code from our resulting procedures (by

using tproc/decompose) allows us to use the Scheme native code compiler to gain

6Translating variable references to lexical addresses is analogous to using variable-free de Bruijn

notation for the �-calculus [7, 10].

80 CHAPTER 4. METACIRCULAR INTERPRETERS AND COMPILERS

performance, while concentrating all the knowledge about the semantics of our new

language in the translator to procedures.

4.5 Summary

Using closures (procedures) to implement interpreters leads to clearly written and

e�cient interpreters, where the meaning of an expression or statement has been cap-

tured precisely by the procedure that implements it. However, an important property

of interpreters is that the code executed can be easily mapped to the source code.

Ordinary procedures make this task di�cult because of their opacity. Translucent

procedures allow the inspection necessary to perform this mapping, while keeping the

elegant code for the interpreter unchanged.

Chapter 5

Constructive Non-elementary

Functions

The �nal scenario that we will explore is the construction of non-elementary mathe-

matical functions, which can be represented naturally and easily with procedures.

Non-elementary (e.g. transcendental) functions can be constructed from de�ni-

tional properties by using procedural composition. In this chapter we will see how

this can be done and why opaque procedures preclude the e�cient execution func-

tions constructed in this way. Translucent procedures allow us to invert the resulting

combination into expressions that can be optimized and compiled.

5.1 Constructing functions from their De�ning

Properties

Gerald Roylance shows [52] how many standard mathematical functions can be con-

structed from their de�ning properties, instead of speci�ed as a sequence of obscure

arithmetic computations. Constructing mathematical subroutines|rather than just

providing them|is very powerful: di�erent applications may need di�erent basis

functions for expansion, higher precision, or use a di�erent numeric representation.

81

82 CHAPTER 5. CONSTRUCTIVE NON-ELEMENTARY FUNCTIONS

Furthermore, constructed routines are not subject to coe�cient transcription errors,

and are portable to systems with di�erent
oating-point characteristics.

The essence of Roylance's method is to use the mathematical properties of a

function to produce an implicit exact representation of it. The representation is

then truncated, and the values involved are perturbed (using standard numerical

analysis techniques) yielding an e�cient implementation for the desired numerical

representation and accuracy. All of these steps are described by programs, rather

than carried out by hand.

For example, analytic functions can be described in terms of their Taylor series,

which can be exactly represented, although implicitly, by a function that generates

successive coe�cients. The series can be truncated at a point where the error is

acceptable for the desired level of accuracy, and Chebyshev economization [13] can

be employed on the resulting �nite polynomial to obtain a new one that can be used to

compute more e�ciently. This operation has traditionally been carried out by hand,

producing a table of coe�cients that are then explicitly coded into the subroutines

that implement
oating-point transcendental functions. Because of the possibility

of error in this computation, these coe�cients are often collected in mathematical

handbooks, but transcription errors are not unknown.

Once given a list of coe�cients, in order of ascending degree, it is simple to

construct a procedure that will compute the desired approximation by using Horner's

rule [39, 1] for evaluating polynomials:

(define (coeffs->fcn coeffs)

(let ((descending (reverse coeffs)))

(lambda (x)

(coeffs-eval descending x))))

(define (coeffs-eval coeffs x)

(let loop ((val 0) (coeffs coeffs))

(if (null? coeffs)

val

(loop (+ (car coeffs)

(* x val))

5.2. CONSTRUCTION BY ABSTRACTION AND COMPOSITION 83

(cdr coeffs)))))

A sine routine that operates on the interval [0; �
2
] might be constructed as follows:

(define sine-half

(coeffs->fcn

(let ((eps 1.e-16))

(chebyshev-economization-scaled

(/ pi 2)

(truncated-series-eps sine-term

sine-mono

eps

(/ pi 2))

eps

(* eps 10)))))

5.2 Construction by Abstraction and Composi-

tion

There are several ine�ciencies in the code presented above that makes this method

compare unfavorably with traditional techniques:

� There is overhead in traversing the list holding the coe�cients. A large part

of the run time of coeffs-eval is due to traversing the coe�cient list, even

though any given function generated by coeffs->fcn has a constant list.

� The
oating-point register and pipeline are likely to be under-utilized because

of the rolled loop in coeffs-eval. For any given function generated by coeffs-

->fcn, there is an optimal unrolling of the loop in coeffs-eval that exposes

all of the temporaries and operations to a register allocator and instruction

scheduler, but coeffs-eval is only unrolled a particular number of times, if at

all.

� As seen below, coe�cients may end up being zero or one, yet coeffs-eval will

blindly add zero and multiply by one.

84 CHAPTER 5. CONSTRUCTIVE NON-ELEMENTARY FUNCTIONS

� There is no redundant subexpression elimination in the resulting code. When

the computation is fully unrolled, and the coe�cients examined, there might

be redundant common subexpressions that would save
oating-point operations

and registers if they were properly removed.

For example, sine-half constructed above might correspond to the same arith-

metic operations as

(lambda (x)

(+ 0

(* x

(+ .9999999999999992

(* x

(+ 0

(* x

(+ -.16666666666664778

(* x

(+ 0

(* x

(+ 8.333333333226133e-3

(* x ...)))))))))))))

but the additions of zero will be carried out, and the common subexpression (* x

x)|due to the function being odd|will be evaluated many times, rather than just

once. Overall, half of the
oating-point operations and all the list destructuring are

avoided by a traditional de�nition.

We can eliminate some of these sources of ine�ciency by using a more procedural

approach, reminiscent of the metacircular compiler. We can rewrite coeffs->fcn in

the following way:

(define (coeffs->fcn coeffs)

(if (null? coeffs)

(const->fcn 0)

(+fcn (const->fcn (car coeffs))

(*fcn identity

(coeffs->fcn (cdr coeffs))))))

(define (const->fcn c)

(LAMBDA (x)

5.3. CLOSURES ARE NOT GOOD ENOUGH 85

c))

(define identity

(LAMBDA (x)

x))

(define (+fcn f g)

(LAMBDA (x)

(+ (f x)

(g x))))

(define (*fcn f g)

(LAMBDA (x)

(* (f x)

(g x))))

This eliminates the runtime conditionals that determine the structure of the list,

and we can easily implement some optimizations to avoid multiplying by one, or

adding zero. For example, we can use the following code instead:

(define (coeffs->fcn coeffs)

(if (null? coeffs)

(const->fcn 0)

(term (car coeffs)

(coeffs->fcn (cdr coeffs)))))

(define (term val rest)

(if (zero? val)

(LAMBDA (x)

(* x (rest x)))

(LAMBDA (x)

(+ val

(* x (rest x))))))

5.3 Closures are not Good Enough

Unfortunately, neither of the prior versions that compose procedures provides a real

improvement in e�ciency with respect to the original version that traversed the list

of coe�cients every time that the resulting function was invoked. We have replaced

traversing the list of coe�cients in a tight loop with traversing a computed call graph

86 CHAPTER 5. CONSTRUCTIVE NON-ELEMENTARY FUNCTIONS

at run time. Furthermore, even though we can eliminate some of the more glaring

ine�ciencies, we cannot use the power and convenience of a full-
edged algebraic

simpli�er that is likely to do a much better job, since it need not restrict itself to

local optimization.

Alternatively, we can proceed by generating not procedures, but lambda expres-

sions to be handed to a compiler or eval. We could even invoke an algebraic simpli�er

on the resulting expression before handing it to our compiler or evaluator. However,

shifting to the domain of expressions complicates the problem because of additional

extraneous details including the names of the bound variables and operations, and

the generation of syntactically correct code. In addition, unless we use a native-code

compiler, the result may well be slower than the version provided above. Finally,

invoking a native-code compiler for functions generated and discarded quickly is not

attractive|The cost of the compilation may not be amortized over the number of

calls to the result.

A partial evaluator [19] can alleviate some of our problems|we can specialize

our polynomial evaluator for each of the common non-elementary functions (sine,

exponential, bessel, etc.). Yet, although partial evaluation reduces the overhead of

traversing lists or closures, it does not, by itself, give us a way to insert an algebraic

simpli�er or a redundant subexpression eliminator into the picture. One further dis-

advantage of partial evaluators is that they are not well suited for dynamic generation

of functions. Not only must the code for the partial evaluator be present in our run-

ning system, but they also require an evaluator or compiler to process the result,

which must be resident as well.

Ultimately, the procedural representation has advantages. The generation is quick

even if the result is not very fast. If the result is going to be used only a few times,

or infrequently, the code above is probably adequate. However, it is not acceptable

for common routines, such as sin, exp, or sqrt.

One might be tempted to have two versions of the code. One for dynamic gen-

5.4. HAVING OUR CAKE AND EATING IT TOO 87

eration of functions that will be used infrequently, the other for those that will be

used more frequently, perhaps by using macros or other source transformation. This

duplication is obviously undesirable.

Although we can improve the procedural representation by using tricks such as

the one used earlier, this becomes progressively more di�cult. Our optimizer should

not be interleaved with our constructor because it makes both tasks more error prone.

Our constructor should always generate correct|even if slow|procedures, and we

should have the ability to optimize them when and if it is convenient. However, this

is di�cult if our language only provides opaque procedures, unless we resort to tricks

similar to those considered when discussing the equation solver.

5.4 Having Our Cake and Eating It Too

As in the case of the equation solver, translucent procedures allow us to construct our

functions by using composition, but also to take the result apart, not only to discrim-

inate between alternatives, but to optimize the result. If we write our combinators

using tlambda instead of lambda, then we can inspect the result. For example, *fcn

would be written as follows.

(define (*fcn f g)

(tlambda (x)

(* (f x)

(g x))))

Using the procedural matcher, we can write an optimizer, but this is not the best

solution. Expressions are easier to manipulate, and can then be given to a native

code compiler. Translucent procedures allow us to convert between procedures and

expressions by using procedures similar to fcn->expression:

(define (fcn->expression fcn var)

(define (inner fcn)

(cond ((match? (tlambda (x) (+ #?CONST (* x (#?NEXT x))))

fcn)

=> (lambda (result)

88 CHAPTER 5. CONSTRUCTIVE NON-ELEMENTARY FUNCTIONS

�(+ ,(match/lookup result #?CONST)

(* ,var

,(inner (match/lookup result #?NEXT))))))

((match? (tlambda (x) (* x (#?NEXT x)))

fcn)

=> (lambda (result)

�(* ,var ,(inner (match/lookup result #?NEXT)))))

((match? (tlambda (x) #?CONST)

fcn)

=> (lambda (result)

(match/lookup result #?CONST)))

(else

(error "fcn->expression: Unknown pattern" fcn))))

(inner fcn))

Now

(fcn->expression (coeffs->fcn '(1 0 1 0 1)) 'y)

returns the list

(+ 1 (* y (+ 0 (* y (+ 1 (* y (+ 0 (* y (+ 1 0)))))))))

which can be processed by an algebraic simpli�er, or a common subexpression elimi-

nator, and then given to a native code compiler:

(define (optimize-function p)

(compile-lambda

�(lambda (y)

,(simplify (fcn->expression p 'y)))))

5.5 Summary

Mathematical functions can be constructed easily from de�nitional properties by pro-

cedure composition and abstraction. However, the result is not as e�cient as a hand-

coded version. In order to obtain the same e�ciency from our generated versions as

from those obtained by traditional methods, we need to be able to convert the results

into alternate representations, better suited for simpli�cation and compilation.

Di�erent operations are often performed best by using di�erent data represen-

tations. Large programs frequently convert their data from one representation to

5.5. SUMMARY 89

another, in order to better operate on it. Such programs cannot use opaque proce-

dures to represent data, because there is no way to then transform them into alternate

representations, better suited to other tasks.

Translucent procedures overcome this problem. Procedures are a good represen-

tation for those parts of a computation in which data captures a behavior, and where

it is the execution and composition of this behavior that matters. Unlike opaque

procedures, translucent procedures additionally allow the translation to di�erent rep-

resentations when di�erent properties of the data become important.

90 CHAPTER 5. CONSTRUCTIVE NON-ELEMENTARY FUNCTIONS

Chapter 6

Semantic Concerns

In preceding chapters, we have used a language in which procedures can not only

be invoked, but also operated upon by unusual new primitives. We must consider

implications translucent procedures have for the semantics of programs.

6.1 A Trivial Semantics for Translucent Proce-

dures

It is an easy task to write a denotational semantics [58, 29] for a Lisp-like language

with operations such as tproc/make and tproc/decompose.

Procedures in Lisp-like languages are represented by functions in their semantics.1

The meaning of a procedure call, or invocation of a procedure to arguments, is the

value of the function denoted by the operator at the denotations of the arguments,

with an appropriate continuation and store.

In the absence of variable assignment, tproc/make implies no additional com-

plexity. Its two arguments are the explicit representation of a lambda expression,

and the explicit representation of an environment, say as an association list pairing

1In the formal semantics for Scheme, procedures are represented as a pair of a location and a

function in order to support eq? and eqv? on procedures.

91

92 CHAPTER 6. SEMANTIC CONCERNS

symbols with objects. The meaning of a call to tproc/make, if the arguments are

of appropriate types, is simply the same as the meaning of the evaluation of the

internal representation of its �rst argument in the environment represented by the

second argument. Besides introducing conversion functions to map between external

representation of expressions and environments and the internal ones no other change

is required in the semantics.

Adding tproc/decompose is somewhat more complicated, but hardly di�cult.

The simplest way to add this operation to our formal semantics is to change the rep-

resentation of compound procedures (not primitives). Compound Procedures can now

be represented as triples containing an expression, an environment, and the function

we would have used otherwise. The expression is the lambda expression whose evalu-

ation resulted in the procedure. This evaluation may have been implicit, or explicitly

requested through the use of tproc/make. The environment is the environment func-

tion where the lambda expression was evaluated. Procedure invocation ignores the

expression and environment components of the triple, and uses the function in the

same way as in the unextended semantics.

We only need to describe tproc/decompose itself. tproc/decompose returns an

expression and an environment, as a pair, or as two separate values. In the simplest

implementation, it merely extracts the expression and environment components from

the representation of its argument, maps them to their external representation, and

returns them.

The expression component is transformed into ordinary data structures by a simple

recursive walk.

Mapping the environment function into a data structure is a little more compli-

cated. The environment function maps each identi�er, typically from a countable

in�nite set, to a value, and we cannot directly represent such an in�nite data struc-

ture. However, most of the identi�ers map to Undefined, an unde�ned value, and

the only identi�ers that matter are those that are referenced freely by the expression.

6.2. TRANSPARENCY REVEALS TOO MUCH 93

It is straightforward to compute the free variables of a �nite expression, map them to

values using the environment function, and collect only those in the data structure.

6.2 Transparency Reveals Too Much

A semantics modi�ed as outlined above, and fully speci�ed in appendix B ful�lls our

contract, but is unsatisfactory because it is too concrete.

The purpose of a formal semantics is not only to de�ne a language without refer-

ence to a particular implementation, but also to provide a formal framework for proofs

about the e�ects and equivalence of programs. This issue is not only of theoretical

signi�cance; A large part of the work of a compiler, particularly for higher-order lan-

guages, is to rephrase programs, or pieces of programs, into equivalent, more e�cient

versions.

Unfortunately, the very simple modi�cation that we have introduced has pro-

found consequences. Programs that formerly had the same meaning|perhaps even

provably so|may cease to be equivalent because the actual expressions captured in

the procedures di�er. This a�ects not only programs that use the new features, but

all programs|the change in procedure representation is pervasive! Of course, we

can have two di�erent proof systems (and semantics), one for programs that use the

newly introduced features and one for those that do not, but this is undesirable. Pro-

gram fragments, examined in isolation, would almost invariably have to be examined

through the lens of the richer (and tighter) semantics.

Happily, the situation is not as bad as it might appear at �rst. Even if the ex-

pressions (and environments) captured by procedures make two procedures distinct,

if we can prove that their meaning under invocation is identical, that is, that their

function components are equal|we can still substitute one for the other when in-

voked, or decide that the values returned from such invocations are the same. This

is a common occurrence, since �rst-order code can be analyzed with the unmodi�ed

94 CHAPTER 6. SEMANTIC CONCERNS

semantics.

However, we can ameliorate the problem in the semantics. The problem is that

the original expression and environment that resulted in a procedure are too speci�c,

although they clearly satisfy the speci�cation. The ability to obtain the original

expression not only complicates analysis, and prevents our compiler from optimizing

some code, but it is not quite what we want or need. If the main purpose of this ability

is to be able to compare the representations of procedures for equivalence of meaning,

or to deduce what various components must be in order to make the meaning the

same, then this ability is getting in our way, since the expressions that our semantics

makes available have now become part of the meaning of our programs.

6.3 Translucency Reveals What We Can Use

We want to obscure some of the detail of the representation (and history) of our

procedures, without giving up fully, making them opaque, or preventing the creation

of tools such as the pattern matcher.2

Our real requirement is that tproc/decompose must return an expression and

environment that, when given to tproc/make, will construct a procedure that will

behave as the original. In other words, if we refer to the composition of tproc/make

and tproc/decompose by the name tproc/id we want the following identity to hold

E[[E]]� = E[[(tproc=id E)]]�

whenever IsProcedure?(E[[E]]�) is true.

Our initial implementation satis�es this trivially, by, making tproc/make and

tproc/decompose simple inverse representation changes. However, the trivial solu-

tion is neither interesting, nor, as we have discussed, desirable.

How do we solve this problem? If we do not want our new features to interfere

with our ability to decide when two programs are the same, we can de�ne our new

2It is this partial opacity that makes these procedures translucent, rather than transparent.

6.4. PRELIMINARY CONCEPTS 95

operations taking our equivalence predicate into account. We can partly obscure the

expression and environment that form part of our procedures so that our semantics

no longer distinguishes among the programs that we desire to be equivalent.

Rather than simply collecting the expression and environment into a procedure

when evaluating a lambda expression, or invoking tproc/make on their external rep-

resentations, we apply a canonicalization function to the representation of the expres-

sion and environment. This canonicalization function must be invariant under our

equality predicate, and the resulting procedure contains the canonicalized representa-

tions, which tproc/decompose can extract. Since the meaning of these alternatives is

the same once more, any theorems that we might prove using our equality predicate in

the unextended semantics, are still valid. Similarly we may perform any substitutions

that we can derive from our equality predicate, since the canonicalization function

prevents us from distinguishing among the alternatives in the extended semantics.

This agenda presumes the existence of a (computable) canonicalization function

for program representations, a question that we must address. The remainder of this

chapter is an informal proof that such functions always exist.

6.4 Preliminary Concepts

Fix a �nite set of distinguishable simple primitive procedures such as cons, +, etc.

By simple we mean that they do not manipulate procedures or environments, nor do

they create in�nite3 or cyclic values.

In the following discussion, we need the following concepts:

� The support of an environment is the set of identi�ers that are not mapped to

Undefined. Consequently, an environment has �nite support if it maps all but

a �nite number of identi�ers to Undefined.

3\In�nite" is used informally here, not as de�ned below.

96 CHAPTER 6. SEMANTIC CONCERNS

� An environment is a base environment if it has �nite support and maps iden-

ti�ers only to Undefined or to opaque, distinguishable primitive procedures.

A base environment models the initial environment where whole programs are

evaluated and contains a �nite number of bindings for primitives procedures

such as +, cons, and tproc/make. The empty environment, mapping all iden-

ti�ers to Undefined, is a base environment.

� An expressible value is a �nite value if it is not ? and is the meaning of some

�nite expression in some base environment. A �nite value is the result of some

�nite computation.

� An environment is a �nite environment if it has �nite support and only binds

identi�ers to Undefined or �nite values.

Lemma 6.1 The value of a �nite expression in a �nite environment is ? or a �nite

value.

Proof: A �nite environment � binds a �nite number of identi�ers to a �nite number

of �nite values. Each such value, by de�nition, can be represented as a pair of a �nite

expression and a base environment.

Therefore there exist a positive integer n, n identi�ers (Id1 � Idn), n �nite ex-

pressions (E1 � En), and n base environments (�1 � �n), with E[[Ei]]�i 6=?, such that

� = � I: (I = Id1) ! E[[E1]]�1;

(I = Id2) ! E[[E2]]�2;

: : :

(I = Idn) ! E[[En]]�n;

Undefined

Without loss of generality the �i bind distinct identi�ers. Let �0 be the union of

all these environments, i.e. the function whose support is the union of the supports

of the �i, and that maps each identi�er in its support to the unique non-Undefined

6.4. PRELIMINARY CONCEPTS 97

value that some �i maps it to. Clearly �
0 is a base environment, since its support is

the �nite union of �nite sets.

Now, for any �nite expression E, let v be de�ned as follows.

v = E[[E]]� = E[[((lambda (Id1 Id2 : : :Idn) E) E1 E2 : : :En)]]�
0

But v is either? , or, clearly, the value of a �nite expression in a base environment,

i.e. a �nite value.

Lemma 6.2 Lemma 6.2: Finite values and �nite environments are �nitely repre-

sentable.

Proof: Consider the �nite alphabet from which expressions are constructed. Ex-

tend it by adding a new symbol for each primitive in our �nite �xed set (e.g. #+ for

+, #CAR for car, etc.), as well as a few punctuation symbols (e.g. <,>,=).

� Base environments are �nitely representable as the punctuated concatenation of

the �nite number of identi�ers in their support followed by the unique symbols

corresponding to the primitives.

E.g. � 7! <FOO=#CAR,BAR=#+>

� Finite values are �nitely representable as the punctuated concatenation of the

�nite expression and the base environment.

E.g. 3 7! <(lambda (x) (+ x 3)),<+=#+>>.

� Finite environments are �nitely representable as the punctuated concatenation

of the �nite number of identi�ers in their support followed by �nite representa-

tions of the values.

E.g. � 7! <FOO=<(lambda (x) (+ x 3)),<+=#+>>,BAR=<(lambda (y) (- y 7)),<-=#->>>.

This representation is clearly not unique; Not only can the bindings in an envi-

ronment be reordered, but the pair of expression and environment for �nite values is

not unique either.

98 CHAPTER 6. SEMANTIC CONCERNS

Lemma 6.2 only shows that �nite representations exist. A semantics can compute

such �nite representations by extending all expressible values to carry their repre-

sentations, using the rewrite that appears in the proof of lemma 6.1 in its operation.

However, this particular representation is expensive to compute, and not terribly use-

ful. In addition, on languages with locations, the locations provide simpler ways to

represent �nite values.

6.5 Computable Canonicalization Functions

We can now tackle equality of program representations. A program representation

consists of the representation of an expression and the representation of an envi-

ronment. An equality predicate on program representations is simply any re
exive,

symmetric, and transitive relation on such pairs. However, it is more convenient to

view such relations as their characteristic functions; that is, as boolean functions (true

if related, false if not) of four arguments. We can say that an equality predicate is

compatible with a semantics if the predicate considers two programs equivalent only

when their meanings are identical.

In other words, an equality predicate Eqv is compatible with a semantic function

E if the following holds for representations E1, E2, Rho1, and Rho2.

Eqv(E1; Rho1; E2; Rho2)) E[[e1]]�1 = E[[e2]]�2

where e1, �1, e2, and �2 are the expressions and environments being represented by

E1, E2, Rho1, and Rho2 respectively.

Of course, this is equivalent to

E[[e1]]�1 6= E[[e2]]�2) :Eqv(E1; Rho1; E2; Rho2)

To claim that our extended semantics, with semantic function Ee, is not a serious

perturbabion of our unextended semantics, with semantic function Eu, we would like

the following to hold:

6.5. COMPUTABLE CANONICALIZATION FUNCTIONS 99

Eu[[e1]]�1 = Eu[[e2]]�2) Ee[[e1]]�
0

1
= Ee[[e2]]�

0

2
(6.1)

Where �0
1
and �

0

2
are the environments corresponding to �1 and �2 but de�ned on

the domains of our extended semantic function Ee.

Thus we want to use an equality predicate that is compatible with our unextended

semantic function Eu. Ideally, we would like to use the following equality predicate:

Eqv � (E1; Rho1; E2; Rho2)
def
= (Eu[[e1]]�1 = Eu[[e2]]�2) (6.2)

But this predicate is, of course, undecidable, and no compiler or mechanical de-

duction system will be able to implement it.

Thus we cannot really satisfy condition 6.1, but we can come close. Since our ideal

goal, Eqv�, de�ned in equation 6.2, is undecidable, mechanical program analysis and

manipulation tools cannot use it and must approximate it.

It is reasonable, therefore, to restrict ourselves to the set of decidable, equality

predicates compatible with our unextended semantics, and also to �nite expressions

and �nite environments, which, by lemma 6.2, are �nitely representable. The set of

decidable equality predicates compatible with our semantics on �nite expressions and

environments is clearly not empty. The trivial equality predicate Eqv0,

Eqv0(E1; Rho1; E2; Rho2)
def
= ((E1

:

= E2)
^
(Rho1

:

= Rho2))

where
:

=means identity of the representations (e.g. string equality), is both decidable,

and clearly compatible with our unextended semantics.

Other examples of acceptable equality predicates are equality modulo �-conversion

(arbitrary, consistent renaming of bound variables), and equality after �nite unfold-

ment.4

Of course, sharper decidable equality predicates for our unextended semantics will

lead to better approximations of condition 6.1.

4To make the predicate re
exive, we still need to check for identity.

100 CHAPTER 6. SEMANTIC CONCERNS

Given any equality predicate, we can consider the set of its canonicalization func-

tions. A function from programs (pairs of representations of expressions and envi-

ronments) to programs is a canonicalization function if it maps every member of an

equivalence class in our predicate to a unique program in the class. An equality pred-

icate partitions the set of programs into equivalence classes, and a canonicalization

function chooses a representative from the class. In other words, Can is a canon-

icalization function for Eqv if and only if it is de�ned on every program, and the

following two implications hold:

Can(E1; Rho1) = (E2; Rho2)) Eqv(E1; Rho1; E2; Rho2)

Eqv(E1; Rho1; E2; Rho2)) Can(E1; Rho1)
:

= Can(E2; Rho2)

for all E1, E2 representations of expressions, and Rho1, Rho2 representations of envi-

ronments, and where
:

= is identity of the representations (e.g. string equality).

Lemma 6.3 For every decidable equality predicate compatible with our semantics,

there exists at least one computable canonicalization function.

The proof is straightforward: Given a program, �nitely represented as a string in

some �xed alphabet, we can generate all strings of the same or smaller length, remove

those that are syntactically invalid, sort them from shorter to longer, and within the

same length lexicographically, and compare each one to our original program using

our equality predicate. The �rst in the sequence found to be equivalent is our answer.

Since the predicate is re
exive, and the program itself is in the sequence, there is

always at least one program equivalent to the input in the set considered. The

algorithm terminates because our predicate is decidable and we only have a �nite

number of strings to test. The algorithm is a canonicalization program because given

any two equivalent programs, the sequence of strings examined for one of them is an

initial pre�x (perhaps identical) of the sequence of strings examined for the other,

and the transitivity of the equality predicate guarantees that both will �nd the same

�rst equivalent string.

6.6. SUMMARY 101

6.6 Summary

We show that decidable equality predicates compatible with our unextended seman-

tics always exist, and that each decidable equality predicate has at least one com-

putable canonicalization function.

We can use such a predicate and function in our extended semantics to partly

obscure the representation and history of procedures. In the extended semantics,

the expression and environment components of a procedure are canonicalized, and

tproc/decompose produces the external representation of these obscured values.

Compilers and other mechanical program analyzers can now equate procedures

whose denotations are the same, and this predicate is, by restriction, decidable and

compatible with the original semantics. As desired, compilers and other tools can

optimize (rephrase) programs as long as the result is compatible with the equality

predicate.

While the language de�nition can �x (for all time) such an equality predicate and

canonicalization function, this is unnecessary, and prevents improvements in program

proof technology from being included in compilers and other such tools. Alternatively,

the predicate and canonical function can remain unspeci�ed, but restricted as outlined

above. The compiler writer then has a free hand, but it is desirable, under these

circumstances, that tools such as the pattern matcher use an equality predicate that

subsumes what the compiler uses.

Clearly, in a real system, expressions and environments need not be canonicalized

when assembled into procedure objects, but can be canonicalized when extracted by

tproc/decompose. Furthermore, the canonicalization function can be implemented

within the language, since it is computable, and tproc/decompose can merely use it

on the result of a sub-primitive that returns the original expression and environment

just like our original version of tproc/decompose.

In fact, the canonicalization need never be performed at all. It is more useful

to provide the equality predicate as a primitive. The canonicalization function is

102 CHAPTER 6. SEMANTIC CONCERNS

really just a trick to make our semantics determinate, restoring the freedom to our

mechanical analysis tools that the rei�cation of procedures apparently withdrew.

Chapter 7

E�ciency concerns

When considering a feature for inclusion in a programming language one must exam-

ine it under di�erent perspectives. The most common criteria are:

� Expressive power

� Semantic cleanliness

� E�ciency

When translucent procedures are added to a language, certain programs can be

constructed in a manner that is clear, elegant, and e�ective. If these same programs

are written without the bene�t of the aforementioned extensions to the base language,

the resulting construction process is more di�cult and obfuscated. In the immediately

preceding chapter we argue that the addition of translucent procedures does not

unduly complicate the semantics of a language; in particular, our ability to write

program analysis programs, such as compilers, is not diminished, because we can

restrict ourselves to decidable algorithms, which are the best our mechanical tools

will ever be able to use. Thus, the only concern remaining is the question of e�ciency.

The e�ciency question can be divided into three di�erent components:

1. The cost to programs that use the new feature.

103

104 CHAPTER 7. EFFICIENCY CONCERNS

2. The e�ect of the existence of the new feature on the e�ciency of programs that

do not use it.

3. The e�ect of the existence of the new feature on the complexity of implemen-

tations of the language.

All of these aspects are important. If a feature is very expensive on its own, pro-

grammers will avoid it, and adding it to the language will not be very pro�table. If the

mere existence of a feature signi�cantly penalizes most other programs, its addition

should be questioned. Although programming languages should be viewed fundamen-

tally as formal languages for the communication of how to information (rather than

what is, as mathematics), machine execution should not be dismissed. Machines can

be used not only to accomplish a task, but to test programs on a well-chosen �nite

number of inputs to con�rm correctness, or, more exactly, to reject incorrectness. A

severe e�ciency penalty makes either of these possibilities less practical, and pro-

grammers often opt for a more e�cient, even if less expressive, language. Finally, if

the addition of a feature complicates the task of implementing the language to the

point where it becomes e�ectively unimplementable, or very di�cult to implement,

implementations will be rare, and due to the complexity, probably both error-prone

and ine�cient, thus preventing the actual use of the language.

Let us address question three �rst. The cost of translucent procedures in terms

of implementation complexity depends on implementation technique. For simple in-

terpreters, the cost is very low. tproc/decompose (or the sub-primitive on which it

is based) merely needs to return a representation of the lambda expression that re-

sulted in a procedure, and a representation of the environment. Interpreters usually

maintain environments in very regular ways, and it should be easy to perform the

translation. Furthermore, it does not matter whether the interpreter directly executes

the original expression, or it executes the expression translated to a di�erent language

(e.g. byte code). Byte codes can be made invertible, and the function mapping source

programs to byte code programs need not be a bijection. After all, the expression

105

and environment returned by tproc/decompose need not be the original, merely ones

that provably have the same behavior.

As the implementation introduces more and more optimizations|or alternatively,

translates the code into native machine language|the executed instructions become

di�cult to invert into source expressions; we reach a point when it is advantageous

to keep the original expression (perhaps at some stage of its translation), and as-

sociate it with the object code, so that it can be recovered by tproc/decompose.

This is a limited subset of the features necessary to write a source-level debug-

ger. tproc/decompose only requires that any procedure that may be passed to

tproc/decompose must have such information associated with it. We do not need

to match arbitrary program states with the original source, a much harder task that

source-level debuggers attempt. In addition, only those environments already cap-

tured in procedures need to be translated into external data structures, not arbitrary

environments. Thus, the task of �nding the relevant variables is simpler than in the

general case of source-level debugging. In order to implement tproc/decompose, the

compiler only needs to preserve the information describing the format of environments

captured in closures.

We can conclude that the additional complexity required for the implementation

of the feature is inexistent for simple implementations, and much smaller than what is

required to provide source-level debugging for arbitrary optimizing implementations.

The cost in e�ciency to programs that do not use these features is negligible if

not zero. The ability to extract expressions and environments from procedures can

be implemented with the same mechanisms used to support source-level debugging.

The compiler produces object code and debugging information mapping object code

locations to source expressions, and suspended states to formal environments. Since

we only require this ability of procedures that may be passed to tproc/decompose,

whose environments must be suspended and collected into the procedure object at

run time|and not arbitrary suspended states|the di�culties inherent in inverting

106 CHAPTER 7. EFFICIENCY CONCERNS

arbitrary program states do not appear. In other words, inverting the code is not hard,

it just means that the compiler must associate each procedure code location with an

expression. Inverting the environment is not di�cult either, since the implementation

must already collect the environment into a single object (the procedure object) at

run time.

As is generally the case, the debugging information need not be in core during

execution. It can remain in the �les containing object code, and be loaded only on

demand. Programs that do not use these features will not be a�ected.1

Finally we can discuss the direct cost of using our operations on translucent pro-

cedures. tproc/make is a restricted evaluator. It is given a representation of a

lambda expression, and a representation of an environment, and returns a proce-

dure corresponding to evaluation of the lambda expression in the environment. This

evaluator can be as uncomplicated as a simple interpreter, or as complicated as a

highly-optimizing compiler. Thus the cost of tproc/make can vary, with implemen-

tations being able to choose between making tproc/make itself fast, or making the

resulting procedure fast. Of course, ideally, the user/programmer should be able to

make the trade-o�, rather than the implementor. This can be accomplished by mak-

ing the native code compiler(s) available to the user/programmer as a transformation

between translucent procedures:

(compile-procedure (tproc/make hexpri henvi)) 7! htproci

tproc/decompose is not inherently slow. Even if the debugging information is

maintained out of core, it can be cached after its �rst use, and collecting the relevant

parts of the environment should be a linear process on the size of the environment.

Of course, our canonicalization function and equality predicate may be arbitrarily

expensive, even though computable. This does not argue for their elimination, merely

1If the implementation does code-generation and constant-folding at run time, the debugging

information will have to be generated on the
y as well, increasing the cost of these operations.

However, such debugging information can simply consist of the original expression and the values

substituted.

107

for making their use explicit so that programmers can choose whether to use cheaper,

more-speci�c, alternatives, or the general method.

108 CHAPTER 7. EFFICIENCY CONCERNS

Chapter 8

Related and Further Work

8.1 Related Work

8.1.1 Re
ection and Rei�cation

The work presented in this report is most closely related to earlier work on re-

ection and rei�cation in programming languages and systems [54, 53, 8, 24, 62].

tproc/decompose and tproc/make are reifying and re
ection primitives, respectively,

in the terminology used in [24]. However, the focus of this work di�ers signi�cantly

from that of prior work on re
ection.

In most of the re
ection literature, the goal is to provide a mechanism for met-

alinguistic abstraction, that is, the ability to extend a programming language within

the language itself. This is accomplished by exposing (reifying) components of the

internal state of the execution engine. In the present work, arbitrary program states

cannot be manipulated; We only manipulate the structure of procedures, and in

limited ways. The goal is not metalinguistic abstraction|the extensions are pre-

chosen|but to explore the consequences of violating the opacity of procedures for

practical programs. In short, this work, considers a very limited form of re
ection,

used to extend the range of situations where procedures are a natural and desirable

109

110 CHAPTER 8. RELATED AND FURTHER WORK

representation for objects; it is an instance of putting limited re
ection to practical

use.

In spite of the di�erence in focus, there are similarities between earlier work on re-

ection, and the present work. Like most Lisp-based work on re
ection ([8] excepted),

the proposed rei�cation operations provide access to expressions and environments.

However, in our case, access is not possible at arbitrary points in the execution of a

program, but only from closures, objects that presumably have the expression and

environment suspended in non-rei�ed form. Limiting rei�cation to structures that the

system must already explicitly represent has important consequences for e�ciency,

as discussed in Chapter 7.

Finally, re
ection work takes two opposite approaches to the rei�cation of pro-

cedures. In [53], procedures are completely concrete, exposing all details of their

operation, without making any attempt at abstraction. Of course, as we discuss in

Chapter 6 this changes the semantics of procedures in fundamental ways. In [24], pro-

cedures are completely abstract, with only invocation de�ned on them; this leaves the

semantics of procedures essentially unchanged, but also makes them far less useful,

as most of this report argues.

My work pursues a middle ground. Translucent procedures are su�ciently con-

crete that expressions and environments can be obtained from them, and manipulated

by user programs such as the pattern matcher.1 However, they are su�ciently ab-

stract that the semantics are not compromised in a serious way. Succinctly phrased,

translucent procedures compromise the semantics only beyond what our computable

(or decidable) mechanical analysis tools can determine.

In part, translucent procedures address an important question common to [53]

and [8]. The concrete representation of translucent procedures captures as much of

their intension as we can determine from a decidable equality predicate. Depending

1The representation in [8] is di�erent; a procedure decomposes into a sequence of primitive

actions, or tuples representing state transformation operations.

8.1. RELATED WORK 111

on the sharpness of our equality predicate, we can be closer to 3-Lisp [53] or to

Brown [24, 62] in the treatment of procedures, with the �rst falling fully within our

framework, and the latter being always beyond reach, but approachable.

The treatment of environments also falls between complete concreteness and com-

plete abstraction, as in [37], but in our case the representation follows directly from

our decomposition of procedures.

8.1.2 Other Related Work

Pattern matching, and its generalization, uni�cation, have been extensively studied

both from a practical and a theoretical standpoint. Kevin Knight, in his extensive

survey [38], reviews uni�cation, most of the computability results, and its application

to logic programming and arti�cial intelligence. In general, higher-order uni�cation

is undecidable [36, 28], although there are interesting cases where it is decidable [44].

By contrast, the decidability of higher-order matching is an open problem [36, 56]

although the decidability of certain cases is known [46, 15, 16]. The matcher used

here avoids decidability problems by its asymmetry|only the pattern can contain

pattern variables, by using �nite unfoldment, and by syntactically restricting the

values of pattern variables.

The procedural pattern matcher that we use throughout this report, although

somewhat ad hoc, shows how higher-order pattern matching can be used to decompose

procedures conveniently. Higher-order pattern matchers have previously been used

for algebraic speci�cation [32], to abstractly process syntax [43], and in term rewriting

systems [23, 45]. Limited higher-order uni�cation is used to make logic programming

languages more expressive [48].

There is a great deal of previous work on mechanical equation solvers, and there

are even some commercial products [30, 50, 63, 18]. The equation solver presented

here is not particularly powerful by the standards of this earlier work. Its salient

features are its organization, the choice of procedures as the basic representation,

112 CHAPTER 8. RELATED AND FURTHER WORK

and its ability to encompass both algebraic and numerical methods within the same

framework. Methods for �nding the roots of equations and for solving linear systems

have been studied for centuries. Books on linear algebra [59] and numerical pro-

gramming [49] describe several such methods and shortcuts that can be used under

favorable conditions.

8.2 Further Work

The most important item in an agenda for further work is the development of sharper

decidable equality predicates. The equality predicate used in this report, which un-

derlies the matcher, is quite limited in that it cannot deal with recursion. The sharper

the equality predicate that we use, the more that procedures|even if rei�able|will

become like the functions that we want them to denote.

Another important task is to apply the ideas presented here to a more tradi-

tional language. Languages without higher-order procedures are not a good test

base, because procedures are signi�cantly impaired. However, even languages with

higher-order procedures such as Scheme and ML [47], have side e�ects and mutation,

and good translucent representations need to be developed for the visible part of the

store.

The procedural matcher can be greatly improved, even if the equality predicate

remains �xed. In particular, its e�ciency leaves great room for improvement. The

matcher, as described in Appendix A, uses two di�erent algorithms. One of them is

e�cient, but usable only in limited, but common, circumstances. The other, although

more general, is very expensive, and makes heavy use of backtracking. Possibilities

for the improvement of the matcher are:

� Better treatment of special forms. For example, the current matcher distin-

guishes between (begin (begin x y) z) and (begin x (begin y z)), and

similarly for various combinations of conditionals (if expressions). Handling

8.2. FURTHER WORK 113

such equivalences will require, among other things, extending it to perform

segment matches [45].

� Better treatment of primitives. The current matcher does not interpret prim-

itives at all: thus, it distinguishes between (+ x 1) and (- x -1). A conser-

vative theory of primitive equality would allow more reasoning about function,

rather than simply structure. In addition, under certain circumstances, we

might want to treat certain compound procedures as primitives, preventing

their expansion by the matcher.

� The special-case algorithm, although applicable to common cases, is insu�cient,

while the general algorithm is very expensive. Perhaps a more e�cient general

algorithm can be found, but even if not, there are probably other large classes of

problems where special-purpose matching algorithms can be used to advantage.

� The general algorithm can be improved by using dependency-directed back-

tracking [55] rather than simple chronological backtracking [20]. Currently, the

matcher will attempt the same binding over and over when an inconsistency

arises from an earlier binding. Dependency-directed backtracking, although

more di�cult to code, would probably signi�cantly prune the tree of possibili-

ties.

Finally, the equation solver shown in Chapter 3 is interesting because it elegantly

combines algebraic and numeric methods in the same framework. However, there

are algebraic techniques that it cannot conveniently use. For example, the system

of equations 3.12{3.12 can be solved by using the substitutions 3.9{3.11 in reverse,

leading to a linear system (equations 3.1{3.3) that can be solved easily. The system

formed by equations 3.9{3.11 can then be solved easily, involving only a quadratic

equation. More powerful methods, such as using Gr�obner bases [9], are also di�cult

to integrate in the current framework. These issues should be explored to decide

114 CHAPTER 8. RELATED AND FURTHER WORK

whether solvers using structure similar to the one presented here can be feasible and

practical.

Chapter 9

Conclusions

In this report, we explore the consequences of violating the traditional opacity of

procedures in controlled ways. We show how the ability to inspect procedures makes

possible the description of elegant systems in the domains of functional geometry

(Chapter 1), equation solvers (Chapter 3), metacircular interpreters and compilers

(Chapter 4), and the construction of e�cient mathematical subroutines from de�ni-

tional properties (Chapter 5).

Although the examples presented here are little more than toys, they empha-

size the problem with the traditional opaqueness of procedures: Opaque procedures

are fully abstract objects. The only operation available on opaque procedures is

activation, and thus they constitute a perfect representation only for data whose

distinguishing property is a behavior.

However, there are virtually no objects whose only property is a behavior, and

opaque procedures hide all other aspects. Pictures can not only be drawn and com-

posed, but also transformed and recognized. Equations can be substituted and used

to eliminate variables, but also examined to determine the method of attack. Code

can be executed, but also pretty-printed, etc.

Even mathematical functions are not well represented by opaque procedures. For

example, mathematical functions do not have a cost associated with them, but pro-

115

116 CHAPTER 9. CONCLUSIONS

cedures do, yet we can empirically distinguish between a recursive and iterative pro-

cedures that compute the same mathematical function by examining resource con-

sumption.

Opaque procedures are too restrictive and abstract to represent objects whose

fundamental property is a behavior, but that have other properties as well. In ad-

dition, they are not abstract enough to represent objects that are de�ned purely as

maps.

Translucent procedures, introduced in this report as an alternative to traditional

procedures, capture both a behavior and a speci�cation. They can be used like

ordinary procedures to structure code, and to represent objects with behavior, yet

they can be inspected without being invoked. Inspection can be used to discriminate

between them and to translate them to alternate representations, when necessary.

For example, we can translate translucent procedures representing rational functions

into a quotient of polynomials represented as coe�cient lists that can be better used

to compute polynomial greatest common divisors needed for simpli�cation.

When fundamentally altering the meaning of a long-standing abstraction, one

must always carefully consider whether there are unintended e�ects. Opaque proce-

dures are, together with numbers and arrays, the oldest abstractions in programming

languages, and changing their properties can detrimentally a�ect the semantics and

e�ciency of a programming language. A naive exposition of the structure of proce-

dures has such drastic consequences.

If we can decompose procedures into the actual expression and environment that

give rise to them, they are no longer abstract at all. Their history becomes a more

fundamental property than their behavior. Consequently, we have chosen intention-

ally blurry inspection facilities. A translucent procedure can be decomposed into

some expression and environment that are equivalent to the actual expression and

environment used to create the procedure, but need not be identical to them.

The blurry rei�cation operations hide su�cient information that behavior becomes

117

the primary property again, yet they reveal enough to enable examination and dis-

crimination. We show in Chapter 6that this partly obscured decomposition does not

seriously interfere with our expected semantics. We can de�ne our semantics and con-

struct our system to obscure the revealed structure su�ciently that our mechanical

program-analysis tools are not a�ected.

As shown in Chapter 7, the cost of these procedures and their inspection facilities

is smaller than, and subsumed by, the cost of implementing source-level debugging

facilities in a production implementation.

In summary, translucent procedures, as described in this report, solve the per-

ceived problems of traditional opaque procedures. They are abstract enough that

they can be used to represent a behavior, while, simultaneously, they can be examined

to discriminate between alternatives, and destructured into their components. The

additional abilities added to procedures neither seriously a�ect the performance of

implementations, nor signi�cantly perturb the semantics of the language. Therefore,

translucent procedures should be seriously considered when designing or extending

programming languages.

118 CHAPTER 9. CONCLUSIONS

Appendix A

Implementation details

A.1 Implementation of TScheme

TScheme is currently implemented as a simple interpreter written in MIT Scheme [31].

Writing an interpreter for a call-by-need dialect of Scheme is a simple exercise [25],

left to the reader. The only missing detail is how to make Scheme and TScheme

inter-callable.

TScheme procedures are directly invocable from Scheme code, as ordinary proce-

dures, yet they are also data structures that the TScheme interpreter can manipulate

directly. Since Scheme only has opaque procedures, if we represented our data as

procedures, then it would be di�cult to decompose them, while representing them as

ordinary data structures (e.g. records or lists) would not make them invocable.1

Entities, a hybrid data type present in some Scheme implementations, solve the

problem cleanly. The precise semantics of entities vary from dialect to dialect, but

the fundamental properties are:

� Entities are invocable. They can be invoked and composed as ordinary proce-

dures.

1MIT Scheme does not have opaque procedures, but the interface provided is intended for the

debugger and is based on the internal data structures of the system, making it cumbersome to use.

119

120 APPENDIX A. IMPLEMENTATION DETAILS

� Entities are recognizable. That is, they are distinguished from ordinary proce-

dures by a characteristic predicate.

� Entities have structure. They have two recognized �elds that can be extracted.

One of their �elds, the handler, must contain a procedure that serves as the active

component. Invoking the entity is equivalent to invoking the handler with suitable

arguments. The other �eld, the data, can contain an arbitrary object.

The version of entities present in MIT Scheme can be described algebraically by

the following identities.2

(entity� data (make� entity h d)) � d

((make� entity h d) a1 : : :an) � (h (make� entity h d) a1 : : :an)

The following code is a simpli�cation of the code used to construct TScheme

procedures:

(define (tproc/%make lam env)

(make-entity (lambda (tproc . args)

(tproc/%apply (entity-data tproc)

args))

(cons lam env)))

Entities can be approximated in the following way in dialects that do not have

them:

(define (make-entity h d)

(letrec ((p

(lambda args

(if (or (null? args)

(not (null? (cdr args)))

(not (eq? (car args) '*GET-DATA*)))

(apply h (cons p args))

d))))

p))

(define (entity-data p)

(p '*GET-DATA*))

2entity-data is called entity-extra in MIT Scheme

A.2. IMPLEMENTATION OF THE PROCEDURAL PATTERN MATCHER 121

Of course, implementing a type-speci�c predicate, and making entity-data safe, is

painful and can only be done by maintaining and searching a data structure containing

all the entities ever constructed.

Other facilities can be used to implement entities or translucent procedures. Ob-

viously, the implementation on fully re
ective languages such as 3-Lisp [54, 53] should

be straightforward. Languages and implementations with a meta-object protocol that

can be used to modify the behavior of the execution engine [61] also have the means

to implement them easily. In addition, other languages, such as C++ [60] have the

ability to de�ne invocable objects with structure.

A.2 Implementation of the Procedural Pattern

Matcher

The description of the procedural pattern matcher in chapter 2 is su�cient to follow

the examples in the remaining chapters, but inadequate to understand or envision

its operation. Although the matcher is only an example of the tools that can be

built once procedures become translucent, its frequent and exclusive use in this thesis

requires a more detailed description, to avoid leaving the reader with doubts about

its feasibility.

The matcher operates by performing a lock-step tree walk on two expressions.

The expressions are those returned by tproc/decompose when invoked on TScheme

procedures. Rather than unfold (�-substitute) and then compare, the matcher keeps

environments binding identi�ers in the current expressions to delayed substitutions

and other values, in a manner similar to a normal-order evaluator. Substitutions

are never performed, but the expressions held in delayed substitutions are compared

when needed. This lazy substitution saves the cost of the full substitution when the

match can be rejected early, a common occurrence, and avoids having to rename

formal parameters to avoid unintended capture.

122 APPENDIX A. IMPLEMENTATION DETAILS

Since substitution is done implicitly as the matcher walks expressions, circularities

(recursion) are also detected during its ordinary operation.

A.2.1 Data Structures Manipulated by the Matcher

During its operation, the matcher manipulates the following data structures:

1. A dictionary binding pattern variables to values. When a new binding for a pat-

tern variable is attempted, the matcher checks the dictionary for compatibility

with a previous binding. If there are none, the new binding is added to the

dictionary. If there is a previous binding for the pattern variable, the new and

previous values are compared for compatibility, and if they are incompatible,

the matcher fails. Two bindings are compatible if they are equal (in our sense).

If the bindings are compatible, the matcher succeeds and keeps the binding.

2. TScheme expressions. These are the expressions being compared subject to the

bindings implied by the environments.

3. Environments mapping free variables in the expressions to:

� Values.

� Delayed substitutions, each consisting of an expression, an environment,

and a stack.

� Special constant tokens used to equate un-substituted formal parameters.

The initial environments are those returned by tproc/decompose on the pro-

cedures passed to the matcher as arguments. They map free variables of the

lambda expression to values. The environments are subsequently extended by

binding formal parameters to delayed substitutions when unfolding a combi-

nation, and to special tokens when comparing lambda expressions of the same

arity. The environment corresponding to an expression manipulated by the

matcher contains bindings for all of its free variables.

A.2. IMPLEMENTATION OF THE PROCEDURAL PATTERN MATCHER 123

4. Stacks recording all the lambda expressions unfolded to reach this point. Every

time that a combination is unfolded, the matcher checks to make sure that the

lambda expression used to unfold the combination does not appear (memq) in

the corresponding stack. If it does, the matcher has detected a circularity, and

returns false. Otherwise, it performs the unfoldment by binding the formal pa-

rameters to the appropriate delayed substitutions, and records the unfoldment

in the stack.

A.2.2 Comparison Walk in the Matcher

The top-level procedure of the matcher uses tproc/decompose3 on the pattern and

instance procedures to provide the initial expressions and environments for the tree

walk, and creates an empty dictionary and two empty stacks, one for each expression.

It then invokes the main match routine, a procedure that takes seven arguments,

namely, a dictionary, two expressions, two environments, and two stacks. When this

procedure returns the top-level procedure extracts the relevant parts of the dictionary

and returns them if the match is successful.

The main match routine operates by reducing, in turn, the pattern expression,

and the instance expression, and then comparing the results. The reduction, which

proceeds by replacing variables with their values from the environment, combinations

with the bodies of their operators, etc., proceeds until a circularity is detected, or

the expression can no longer be reduced. The reduction is similar to normal order

reduction until the resulting expression is in head normal form [7], with the di�erence

that substitutions are implied, not carried out, and that a variable is never in head

normal form, since it always has a binding in the environment.

Ignoring some special forms (e.g. if, tlet) which add complexity to the code, but

no di�culty, the result of a successful reduction, i.e. a reduction that did not detect

3It actually uses %tproc/decompose, a sub-primitive that does not force the delayed bindings in

the environment.

124 APPENDIX A. IMPLEMENTATION DETAILS

circularity, consists of a new environment, a new stack, and one of the following kinds

of expression:

� A constant.

� A lambda expression.

� A combination whose reduced operator is not a lambda expression.

After reducing the pattern expression, the matcher examines the result, and pro-

ceeds accordingly:

� If the reduced pattern is a pattern variable (a recognizable constant), it attempts

a simple match, described later.

� If the reduced pattern is a combination pattern, it attempts a combination

match, described later. A combination pattern is a sequence composed of a

pattern variable and a set of combinations, in which each element of the se-

quence is the reduced operator of the following element in the sequence, and

the last element of the sequence is the pattern expression under consideration.

The following are combination patterns.

(((#?FOO x y) (+ z w)) (- x (* y z)))

(#?BAR x y)

The following are not

(+ (#?FOO x) (#?BAR y))

((cdr (assq #?FOO x)) (#?BAR y))

� Otherwise the matcher reduces the instance expression, and compares the re-

duced pattern and instance as follows:

A.2. IMPLEMENTATION OF THE PROCEDURAL PATTERN MATCHER 125

1. If the two expressions are of di�erent types (if vs. combination, lambda

vs. begin, etc.), the matcher returns false.

2. If the two expressions are constants, they must be eqv? constants.

3. If the two expressions are not lambda expressions, the matcher proceeds

to recursively compare and match the corresponding components. If any

fails the comparison, the matcher fails.

4. If the two expressions are lambda expressions, they must have the same

number of formal parameters and return the same number of values, other-

wise the matcher returns false. If the corresponding numbers are the same,

the matcher creates as many special constant tokens as bound variables

in either lambda expression. The matcher then extends the environments

by binding the corresponding variables to the special tokens, and proceeds

to compare and match the bodies of the lambda expressions in the new

environment.

The special tokens introduced in this step are distinguishable from each other and

from everything else|each matches only itself. The special tokens will be compared

when the variables they are bound to are reduced. These tokens are, conceptually,

the new shared bound variable names between the pattern and instance, and they are

compared for name equality. As everything else, this lock-step �-renaming is done

lazily by binding variables in the environment.

For example, if the matcher compares

(tlambda (x y)

(+ x y))

with

(tlambda (a b)

(+ a b))

it will choose two new tokens, say [ONE] and [TWO], and bind x to [ONE] and y to

[TWO] in the environment used for (+ x y), and it will bind a to [ONE] and b to

126 APPENDIX A. IMPLEMENTATION DETAILS

[TWO] in the environment used for (+ a b). Later, x and a will both independently

reduce to the constant [ONE], and y and b will both independently reduce to the

constant [TWO], guaranteeing that the matcher will view them as equal.

If we ignore pattern variables, the matcher is just an equality tester for the con-

dition described in chapter 2. We will see below that the matcher always terminates

when it attempts simple or combination bindings, but the reason for termination in

other circumstances may not be clear. Termination is guaranteed by the use of the

stack. The stack grows monotonically, with lambda expressions being inserted as

unfoldments (implied �-reductions) are performed. Since the program never creates

new lambda expressions, and there are only a �nite number of lambda expressions

in the original program (expression and environment), the stack can only grow to

accommodate all these lambda expressions, at which point it will detect circularity

and fail.

A.2.3 Simple Match of Pattern Variables

Simple matches occur when the pattern expression has been reduced to a pattern

variable. When this occurs, the matcher substitutes the expression fully, returning

false if it detects circularity, and checks that no special constant tokens appear in

the output. The result of the match must be an ordinary value. If the fully substi-

tuted instance expression contains special tokens introduced when matching lambda

expressions, then the instance expression has free variables and cannot yield a valid

value, procedure or otherwise; The matcher fails.

For example, assuming that proc is some constant irreducible primitive procedure,

the matcher fails when matching

(tlambda (x)

(proc #?FOO))

(tlambda (a)

(proc (tlambda (b)

(+ a b))))

A.2. IMPLEMENTATION OF THE PROCEDURAL PATTERN MATCHER 127

because the substituted expression corresponding to the instance expression

(tlambda (b)

(+ a b))

would contain the special token used to equate x and a. Of course, pattern variable

#?FOO could not be bound to a procedure in this case, since this lambda expression

would have no way to acquire a value for its free variable.

After verifying that the instance does not contain free variables, the matcher binds

the pattern variable to the fully substituted instance, unless a previous binding for

the pattern variable was not compatible.

A.2.4 Matching Combination Patterns

A combination match is attempted when the reduced pattern expression is a combi-

nation pattern, that is, the curried invocation of a pattern variable. Once the matcher

detects this condition, it substitutes the pattern and the instance expressions fully.

If during this process, it detects a circularity by checking the corresponding stack,

it fails. Since both the expression and the pattern have been substituted fully, and

there are no cycles, the results can be represented as trees.

The matcher veri�es that all the free variables of the instance expression, repre-

sented after substitution by special tokens, appear in the pattern expression as well. If

there are free variables in the instance that do not appear in the pattern, the matcher

fails.

For example,

(tlambda (x y) (#?F (* x x)))

does not match

(tlambda (a b) (+ (* a a) (/ b 3)))

because the substituted pattern and instance expressions would be, respectively

(#?F (* [ONE] [ONE]))

(+ (* [ONE] [ONE]) (/ [TWO] 3))

128 APPENDIX A. IMPLEMENTATION DETAILS

where the instance contains free variables not found in the pattern.

Except for the �nal construction of the pattern variable's value, any combination

pattern is handled as if it were not curried, and the nesting level of the pattern will

be taken into account only when constructing values to be bound.

For example, the treatment of all of

(((#?FOO x) y) z)

((#?FOO x) y z)

((#?FOO x y) z)

is the same as if they were

(#?FOO x y z)

except when constructing the lambda expression to which #?FOO is bound.

Matching combination patterns is often ambiguous [43, 32]. For example,

(#?FOO x x)

matches

(+ x x)

with any of the following bindings:

#?FOO *) (tlambda (a b) (+ a b))

#?FOO *) (tlambda (a b) (+ a a))

#?FOO *) (tlambda (b b) (+ b b))

The matcher generates only one of the possible matches, but uses backtracking

in order to �nd a satisfactory match if the local choice is rejected elsewhere. A local

binding may be rejected when a pattern variable appears more than once. The details

of the backtracking mechanism are mundane and not described in the following. The

ability to choose and later backtrack to examine an alternate choices is assumed. The

backtracking mechanism is chronological [20].

A.2. IMPLEMENTATION OF THE PROCEDURAL PATTERN MATCHER 129

Although, in general, the matcher will use backtracking to �nd a binding even

when pattern variables are not duplicated, there is a common set of cases where am-

biguity is limited, and the matching process can be carried out more deterministically

and e�ciently. The matcher uses two di�erent algorithms for combination matches

according to whether the combination pattern is simple or complex.

A simple combination pattern satis�es the following conditions:

1. It has no repeated pattern variables.

2. All pattern variables are operators of combination patterns.

3. Every combination pattern that is not the operator of a combination pattern di-

rectly appears at top level of another combination pattern, i.e. it is an argument

of another pattern variable when all combination patterns are uncurried.

4. No expression that is an argument (when uncurried) of a pattern variable is a

subexpression of an argument to a pattern variable except itself.

Any other combination pattern is considered complex.

The following are examples of simple combination patterns:

(#?FOO (+ x y) z)

((#?FOO x) (#?BAR y))

(((#?FOO (+ x y)) ((#?BAR (- y x)) (+ y x))) (* x y))

The following are examples of complex combination patterns.

(#?FOO (#?BAR x) (#?BAR y)) ; violates condition 1

(#?FOO (+ x #?BAZ)) ; violates condition 2

(#?FOO x (+ y (#?BAG z))) ; violates condition 3

; because (#?BAG z) is not

; directly an argument of

; #?FOO, even after every

; combination pattern is

; uncurried.

130 APPENDIX A. IMPLEMENTATION DETAILS

(#?FOO x (#?BAR (+ x x))) ; violates condition 4

; because X is a subexpression

; of (+ X X)

(#?FOO (+ x y) (#?BAR (+ x y))) ; violates condition 4

; because the leftmost (+ X Y)

; is a subexpression of the

; rightmost

If there are duplicate pattern variables|the pattern is not simple|each occur-

rence is considered on its own, and the consistent binding mechanism in the dictionary

is used to guarantee that all occurrences are bound to equal values.4 In the following,

we will assume that there are no duplicate pattern variables in either case.

The tree structure of the pattern imposes a tree structure (precedence) on the

pattern variables. A pattern variable is considered an ancestor of another if the

latter appears in an argument to the former within the pattern. For example, in

the pattern (#?FOO x (#?BAR (+ y (#?BAZ z)))), #?FOO is the ancestor of #?BAR,

which in turn is the ancestor of #?BAZ.

Both algorithms proceed from the innermost (leaf) pattern variables to the root, by

binding the inner pattern variables to some pieces of the instance, replacing the pieces

of the instance and the corresponding portions of the pattern with new recognizable

nodes, and repeating the process until the whole instance and the whole pattern

are replaced by new nodes. It is how these nodes are found and replaced that di�ers

between both algorithms. If at any stage no appropriate node is found, or the binding

is inconsistent with a previous binding in the dictionary, the matcher fails, possibly

backtracking to redo an arbitrary choice.

Simple Combination Pattern Matching

In order to describe the simple combination pattern matching algorithm, we will

examine the algorithm in the context of matching pattern

4The equality test is that performed by the matcher in the absence of pattern variables.

A.2. IMPLEMENTATION OF THE PROCEDURAL PATTERN MATCHER 131

(tlambda (x y)

(#?F (#?G (* y y) (* x x))

(+ x x)))

to instance

(tlambda (a b)

(let ((p (+ a a))

(q (* a a))

(w (* b b)))

(+ (+ (+ q w)

(* p 7))

(* p

(sqrt (+ q w))))))

where +, *, and sqrt are uninterpreted constant functions.

Initially, the environments contain bindings for +, *, and sqrt. The tlambda

expressions cannot be reduced further, and they have the same arity and return the

same number of values, so the matcher creates special tokens [ONE] and [TWO] for

the arguments and compares the bodies of the tlambda expressions in the original

environments extended by binding the formal parameters to these tokens.

The pattern

(#?F (#?G (* y y) (* x x))

(+ x x))

is reduced in the following environment,

X 7! [ONE]

Y 7! [TWO]

+ 7! h primitive +i
* 7! h primitive �i

but the result is identical to the input|the pattern is already reduced. The pattern

matcher decides that the pattern is a combination pattern, and substitutes the pattern

and instance fully, yielding, respectively,5

5The variables bound to primitives would be replaced by the primitives, but this only makes the

expressions larger and no ambiguity arises, so in the following, the names are used instead.

132 APPENDIX A. IMPLEMENTATION DETAILS

(#?F (#?G (* [TWO] [TWO]) (* [ONE] [ONE]))

(+ [ONE] [ONE]))

(+ (+ (+ (* [ONE] [ONE]) (* [TWO] [TWO]))

(* (+ [ONE] [ONE]) 7))

(* (+ [ONE] [ONE])

(sqrt (+ (* [ONE] [ONE]) (* [TWO] [TWO])))))

At this point the matcher decides that the combination pattern is a simple combi-

nation pattern, and veri�es that the instance contains no free variables not contained

in the pattern.

Up to this point, the process has not been speci�c to simple patterns. The speci�c

algorithm starts here.

A simple combination can be decomposed into a set of pattern variables and a set

of top-level expressions that contain no pattern variables.

For example,

((#?FOO (+ x y)) (#?BAR (+ y x)))

consists of the pattern variables #?FOO and #?BAR, and the top-level expressions

(+ x y) and (+ y x).

Once the matcher decides that it should use the simple combination pattern algo-

rithm, it constructs a directed acyclic graph (DAG) from the instance expression and

the top-level expressions of the combination pattern, merging common subexpressions

into single nodes.

The top-level expressions of the pattern are

(* [ONE] [ONE])

(* [TWO] [TWO])

(+ [ONE] [ONE])

and the DAG constructed appears in �g. A-1.

The matcher then picks variable names for each top-level expression in the pattern

(m, n, and o), and replaces the corresponding nodes in the DAG with nodes corre-

sponding to these variables (Nm, Nn, and No). It also rewrites the pattern to re
ect

the substitution of the top-level expressions.

A.2. IMPLEMENTATION OF THE PROCEDURAL PATTERN MATCHER 133

The rewritten pattern is

(#?F (#?G m n) o)

and the edited graph appears in �g. A-2, corresponding to the following expression.

(let (($ (+ n m)))

(+ (+ $ (* o 7))

(* o (sqrt $))))

After rewriting the pattern, the dominators for all nodes in the DAG are computed.

A node a dominates a node b if all paths from the root to b pass through a. Dominators

can be computed using the standard algorithm [2].6

After computing the dominators, the matcher proceeds to bind pattern variables

by processing combination patterns from the innermost to the outermost. If there

are multiple combination patterns at the same innermost nesting level, they can

be processed in any order, since the subgraphs will not overlap because of de�ning

property 4 of simple combination patterns|we may as well choose the leftmost.

In our example, the innermost combination pattern is

(#?G m n)

The common dominators of Nm and Nn are found. If there are none, the matcher

fails.7 In the graph in �g. A-2, the common dominators are the node labeled N$ and

the root node. Of these common dominators, those that are ancestors of variable

nodes not present in the combination pattern are eliminated. In our example, the

root node is eliminated because it is also an ancestor of No, which does not appear

in the pattern under consideration. This leaves N$ as the only remaining node. In

general this may leave multiple candidates, and the matcher arbitrarily chooses the

one closest to the root, examining the other choices only when the matcher backtracks.

6The standard algorithmhandles graphs with cycles, but our graph has no cycles, and dominators

can be computed more easily: the dominators of a node consist of the node and the intersection of

the dominators of the direct ancestors. The root is only dominated by itself, and a DAG can be

walked in an order where all ancestors of a node are processed before the node itself is.
7Only those nodes actually appearing in the instance are considered. The rest are ignored.

134 APPENDIX A. IMPLEMENTATION DETAILS

The matcher then constructs a value for pattern variable #?G by converting the

chosen node (N$) to an expression, and binding the names of the nodes appearing in

the pattern, currying them appropriately. The candidate binding in our case is

#?G *) (tlambda (m n) (+ n m))

Assuming that the binding can be inserted in the dictionary, the matcher picks

a new variable name (l) and a variable node (Nl) to replace the chosen node (N$),

edits the graph appropriately, and rewrites the pattern as

(#?F l o)

The edited graph is shown in �g. A-3, corresponding to the following expression.

(+ (+ l (* o 7))

(* o (sqrt l)))

The process is repeated with the new innermost-leftmost combination pattern,

which happens to be the top-level combination pattern. The single common domina-

tor of Nl and No is the root node, and it is not the ancestor of any variable node not

present in the pattern under consideration. The binding for #?F is constructed and

inserted in the dictionary. The binding is:

#?F *) (tlambda (l o)

(+ (+ l (* o 7))

(* o (sqrt l))))

A new variable, w, is generated, and a corresponding node, Nw created. The chosen

node is replaced in the DAG with Nw, and the combination pattern is rewritten as

w

There are no combination patterns left, the matcher veri�es that the pattern

corresponds to the single node remaining in the DAG, and returns.

A.2. IMPLEMENTATION OF THE PROCEDURAL PATTERN MATCHER 135

Complex Combination Pattern Matching

The complex combination pattern matching is modeled after the algorithm for simple

combination patterns, but uses backtracking heavily. Instead of using a DAG, which

was valid because the subexpressions of the pattern could be uniquely identi�ed in the

tree, the complex combination pattern matcher uses trees, and backtracks to explore

sets of equivalent nodes that would have been merged into a single node in the DAG.

The instance expression is transformed into a tree, and for each node, we compute

the set of ancestor nodes and set of free variable descendants, i.e. the set of nodes

corresponding to special tokens that can be reached from the node in question.

The pattern is examined from the innermost to the outermost pattern variable.

If the innermost pattern variable is the operator of a combination pattern, its

value must be a constant or a lambda expression with no free variables. All such

possibilities are explored by backtracking.

If the innermost pattern variable is not the operator of a combination pattern,

the operands of the combination pattern do not contain pattern variables (otherwise

they would not be the innermost). First we �nd each operand in the instance by

computing the set of free variables of the operand and comparing it with the nodes

in the instance tree that have the same set of free variables. There may be multiple

nodes in the tree that match the operand. When there are multiple nodes, we explore

all possibilities by backtracking, and we also consider the case where no node is found

for an operand.

After obtaining a set of nodes matching the operands of the combination pattern,

we ignore those operands for which we have found no matching nodes, and com-

pute the common set of ancestors of the rest.8 From the common set of ancestors,

which always includes the root of the tree, we eliminate those nodes that contain free

variables not found in any of the operands under consideration.

From the remaining nodes, we arbitrarily choose a node, using backtracking to

8The set may be empty|the binding is under-constrained.

136 APPENDIX A. IMPLEMENTATION DETAILS

explore other choices, �nd other nodes equivalent to it in the set, and from this subset

arbitrarily choose a subset of nodes to replace in the instance. Alternate subsets and

choices for the node are explored by backtracking.

Once we have chosen a set of equivalent nodes to replace, we construct the binding

for the pattern variable as in the simple combination pattern matching algorithm, bind

it in the dictionary, generate a new free variable (special token) and a corresponding

node, replace the chosen nodes with the new node, and the combination pattern in

the overall pattern with the new free variable. We then recompute the ancestor and

free variable sets for each a�ected node in the instance, i.e. the ancestors of the nodes

chosen. If the updated instance contains free variables no longer found in the pattern,

the matcher fails.

If the matcher succeeds, we repeat the process with the next innermost pattern

variable.

At the end of the process, we verify that a single variable has replaced the pattern,

and that the corresponding node has replaced the whole instance. Otherwise the

matcher fails.

A.2.5 Under-constrained Values and Consistent Bindings

Consider the following pattern and instance,

(tlambda (x) (#?FOO (+ x x) (#?BAR (* x x))))

(tlambda (x) (* (+ x x) 3))

which match with the following bindings:

#?FOO *) (lambda (y z) (* y 3))

#?BAR *) (lambda (q) hanythingi)

The binding for #?BAR is considered under-constrained and inserted as such in

the dictionary. When a pattern variable is bound in the dictionary, old values are

compared for consistency. If neither value is under-constrained, they must be equal.

A.2. IMPLEMENTATION OF THE PROCEDURAL PATTERN MATCHER 137

Otherwise their signatures must match, and the more speci�c, if either, is kept in the

dictionary.

Under-constrained values can arise from simple combination patterns such as the

above, but typically arise from choosing empty sets of nodes to replace in the complex

combination matcher. Most such choices are soon rejected because some free variable

will have been removed from the pattern but not from the instance.

138 APPENDIX A. IMPLEMENTATION DETAILS

..

.

..

.

..

.

..

.

..

..

.

..

.

..

..

.

..

..
..
..
.
..
..
..
.
..
..
..
..
.
..
.
..
.
..
..
..
..
..
..
..
.
..
..
..
..
..
...
..
..
...
..
...
...
....
....
....
.......

......................................

..

.

..

..

..
..
...........

...
..
.
..
.
..
....
...........

..
.
..
..
..

..

.

..

.

..

.

..

.

..

.

..

..

.

..

.

..

..

..
.
..
..
..
..
..
..
...
...
...
...
....
...

......
....
....
...
...
....
.
..
.
..
.
..
.
..
.
..
.
..
..
.
..
.
..
..
..
..
..
..
..
..
..
..
.
..
..
.
..
..
..
..
.
..
..
..
..
..
..
..
..
...
..
...
...
...
....
.....

........
...

..

.

..

.

..

.

..

..

.

..

.

..

..

.

..

..

..

..
..
.
...
..
..
..
...
..
...
...
...
....
......
..

.......
...

.

..

.

..

.

..

..

.

..

.

..

.

..

..

.

..

..

..

..

.

..

..
..
...
..
..
...
...
...
...
.....
......
..

.......
.

.

.

..

..

..
..
..............

..

..

.

..

..

..

.............
..
.
..
.
.
..

..

.

..

..
..
..
...........

...
..
.
..
.
..
...
............

..
..
.
..
..

.

.

..

..

..
..
..............

..

..

.

..

..

..
.............

..

.

..

.

.

..

.

.

..

..

..
..
..............

..

..

.

..

.

...
............

..

..
.
..
..
.

.

..

..
..
..
...
...........

...

.

..

.

..

..

.............
..
..
.
..
..
.

.

.

..

..

..
..
..............

..

..

.

..

.

...
............

..
..
.
..
..
.

.

.

..

..

..
..
..............

..

..

.

..

.

...
............

..
..
.
..
..
.

.

.

..

..

..
..
..............

..

..

.

..

.

...
............

..
..
.
..
..
.

..

...

..

..
.....
......
.....
......
.....
......
.....
......
.....
......
.....
......
.....
......
.....
......
......
.....
......
.....
......
.....
......
.....
......
.....
......
.....
......
.....
......
.....
......
.....
......
.....
......
......
.....
......
.....
......
.....
......
.....
......
.....
......
.....
......
.....
......
.....
......
.....
......
.....
......
..

..

..

..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
.

... ..

..

...

..

...

.

..

.

..
..
..
..
..
....
..
...
..
...
..
..
.

................................

..

..

..

..

..

..

..

....
..
..
.
..
..
.
..
..
.

...................
.....
......
.....
.

..
........

.........
..

..

..

..
..
..
..
.
..
..
.

.

.

..

..

.

..

.

..

..

.

..

.

..

..

.

...
..
..
..
..
..
..
..
..
..
..
..
..
..

......
.....
.....
....

.

...
....
...
...
...
...
..
.
..
..
..
..
..
.
..
..
.

.....
.....
.....
.....

..
.....
.....
.....
.....
....
....
....
....
....
....
.

....
......
.....
.....
...

..
.....
.....
.....
.....
.

.

..

..

..

..

..

.

..

..

..

.

..

.

..

..

.

..

..

.

..

..

.

..
..
..
..
..
..
..
..
..
..
..
.
..
.
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
...
...
...
...
....
....
.....
......

.................................

..
..
..
..
..
..
...
..
..

N4 = [TWO]

..
..
...
..
..
..
..
...
.

..
..
.
..
..
.
..
..
.
..
..
.
..
..
.

.

..
..
.
..
..
..
..
.
..
..
..
..
.
..
.

..

.....
.....
.....
.....
................................

..

...
..
...
..
...
..

..

..

..

..

...
..
..
..
...
..
..
..
.

..

..

...
..
..
..
...
..
..
..
...
..

.

..
.
..
..
..
.
..
.
..
.
..
..

.

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

.........
........
........
.......

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
.
..
..

..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..

..
..
...
..
..
...
..
..
..
...
..
..

.........................
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.

..
..
..
.
..
..
..
..
..
..
..

.................
................

................
.................

................
................

.................
................

.................
................

................
.................

................
................

.................
................

.................
................

................
.

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

.

..

.

..

.

.

....
...
....
....
.

..

..

..
..
.
..
..
..
..
..
..
.
.

..

.

..

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

...

.

.

.

.

.

...

.

.

.

..

.

.

..

..

.

.

..

.

...

.

..

.

..

..

.

.

..

.

.

..

..

.

.

..

..

.

..

.

..

..

.

.

.

.

.

...

.

.

.

.

...

.

.

..

..

..

.

.

...

.

.

.

.

..

.

.

.

...

.

.

.

...

.

.

..

..

.

..

...

.

..

.

...

.

.

..

.

.

.

...

..

.

..

..

...

.

..

.

..

...

.

..

..
...
...
..
..
....
...
..
.....
....
...
......
....
........

.....................
...

..........
........

.......
......

....
......

......
....
.....
....
.....
....
.....
...
....
.....
...
.....
...
....
....
...
....
....
....
....
....
...
....
....
...
.....
...
.....
....
.....
...
....
.....
......
...
......

....
.....
......

.....
.......

..........
..

.

..
..
...
...
.
..
.
...
..
..
..
...
..
..
...
..
..
..
...
.
..
...
.
..
..
...
..
..
...
..
..
..
..
.
...
.
..
...
.
..
...
..
.
...
...
...
.
..
..
..
...
.
..
.
..
.
...
..
..
..
..
..
.
..
.
...
..
..
.
...
.
..
.
..
..
.
..
...
.
..
...
.
.
.
.
..
..
.
.
..
..
.
..
.
.
..
..
.
.
.
...
.
.
..
.
.
.
..
.
..
.
...
.
.
...
.
..
.
..
.
..
.
..
..
.
.
..
.
..
.
..
.
.
..
..
.
.
.
.
..
..
.
.
..
.
.
..
..
.
.
.
.
..
..
.
.
..
.
.
..
..
.
.
..
..
.
.
.
...
.
.
..
..
.
..
.
..
..
.
...
.
..
.
..
..
.
..
.
.
.
..
.
..
.
.
.
...
.
..
..
.
...
.
.
.
..
..
.
...
.
.
.
...
.
..
..
..
..
.
..
...
.
..
.
...
.
..
...
.
..
..
..
..
..
...
...
..
....
.....
..

....
....
...
..
...
..
..
...
..
.
..
...
..
..
.
...
..
..
..
...
..
..
..
..
..
..
..
.
...
..
..
.
...
.
..
..
...
..
..
..
...
..
.
..
..
..
..
.
...
..
..
...
..
...
...
...
.....
...
......

....
........

............
..

.......
...
....
...
..
....
...
...
....
..
...
..
.

..
.............

.....
.....
.....
.....
....
...
..
...
..
..
..
..
.
...
..
..
...
..
..
.
...
..
.
...
.
..
.
.
...
.
.
..
..
..
..
.
...
..
.
..
...
.
..
.
..
...
.
..
.
...
.
.
..
.
...
.
..
.
.
...
.
..
.
.
...
.
..
.
.
...
.
.
..
.
.
...
.
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
...
.
..
.
...
.
..
.
..
..
.
.
.
..
..
.
.
.
..
..
.
.
..
.
..
..
.
.
...
.
..
.
...
.
.
.
.
...
.
.
.
...
.
.
...
.
.
.
..
.
.
..
..
.
.
.
.
...
.
.
..
..
.
..
.
.
..
.
..
.
.
..
..
.
..
.
..
..
.
.
..
..
.
..
.
.
.
...
.
.
.
.
.
...
.
.
.
.
.
...
.
.
..
.
...
.
.
..
.
..
..
.
..
.
.
..
..
.
..
.
.
..
..
.
..
.
.
..
..
.
.
..
.
.
...
.
.
.
..
.
.
...
.
.
..
.
.
...
.
.
..
.
.
...
.
.
..
.
.
...
.
..
.
.
...
.
..
.
..
.
..
.
..
.
.
.
..
.
.
..
.
.
..
.
..
.
.
.
...
.
..
.
.
...
.
..
.
.
...
.
.
.
.
..
..
.
.
...
.
.
..
.
..
..
.
.
..
.
..
.
..
.
.
.
..
..
.
...
.
.
.
...
.
.
.
.
...
..
..
..
..
.
..
..
..
.
..
..
..
.
.
...
.
.
..
.
..
..
.
.
.
...
..
..
...
..
.
..
...
..
.
..
...
..
..
.
...
..
..
.
...
..
..
.
...
..
..
..
..
..
..
..
...
..
..
...
..
..
..
...
..
..
...
...
..
...
...
...
...
.
..
...
..
..
...
..
..
....
..
....
...
....
....
...
...
......
....
..

.......
.....
....
...
....
....
...
....
..
....
...
....
..
....
...
..
....
..
....
...
..
...

..
........

............
.....
....
....
...
...
...
...
..
.
...
..
..
...
..
..
...
.
..
..
..
..
.
.
...
.
..
.
.
..
..
.
.
.
...
..
.
..
...
.
..
..
..
..
.
..
.
...
.
.
..
.
...
.
..
.
...
.
.
..
.
.
...
.
..
.
.
...
.
.
..
.
..
..
.
.
..
..
.
..
.
..
..
.
..
.
.
...
.
..
.
..
..
.
..
.
..
..
..
.
..
.
...
.
.
.
.
..
.
..
.
.
..
.
..
.
.
...
.
.
..
..
..
.
.
...
.
.
.
.
..
..
.
.
..
..
.
.
..
.
.
.
...
.
.
...
.
.
.
...
.
.
.
.
..
.
..
.
.
...
.
.
.
.
...
.
.
.
.
..
..
.
..
.
...
.
.
..
.
..
.
..
.
.
...
.
.
.
.
.
...
.
.
.
.
.
...
.
..
.
..
.
...
.
.
..
.
...
.
..
.
.
..
..
..
.
.
..
.
..
..
.
..
.
.
...
.
..
.
.
...
.
..
.
.
..
..
.
..
.
..
.
..
..
.
..
.
...
.
..
.
..
.
..
..
.
.
.
.
..
.
..
.
.
.
..
..
.
.
.
...
.
.
..
.
.
...
.
..
.
.
...
.
.
.
.
..
.
.
..
.
..
..
.
.
...
.
..
.
...
.
.
.
.
...
.
.
...
.
.
.
.
..
.
..
.
.
...
.
.
.
.
..
..
.
..
.
...
.
.
..
.
..
.
.
..
.
.
...
.
..
.
..
..
.
..
.
..
.
..
..
.
.
..
.
..
.
..
.
.
.
...
.
..
..
.
..
..
..
.
..
..
.
..
..
.
..
.
.
.
..
..
.
..
.
.
.
..
.
.
...
.
.
.
..
.
.
.
..
..
.
..
.
.
.
..
.
.
...
.
.
.
..
.
.
...
.
..
.
..
.
...
.
..
.
..
.
...
..
.
..
.
..
...
.
..
..
.
...
.
..
.
.
..
..
..
.
.
..
.
...
.
..
..
.
...
.
..
..
.
...
..
..
..
...
.
..
.
...
.
..
..
...
..
..
..
...
.
..
...
..
..
...
....
....
...
.....
......
.......
..

..
..............

.........
......
......
.....
...
..
..
...
...
..
..
...
..
..
...
..
...
..
.
...
..
..
...
..
..
..
..
...
..
..
..
..
..
..
..
..
.
..
.
...
..
.
..
...
..
..
..
..
...
..
.
...
.
.
..
..
..
.
..
...
.
.
..
..
.
.
..
.
..
.
..
.
.
...
.
.
.
.
..
..
.
.
..
.
.
...
.
.
.
..
.
.
.
..
.
.
.
...
.
.
...
.
..
.
..
.
..
.
..
.
.
.
...
.
.
.
.
..
.
..
.
...
.
.
..
.
..
..
.
.
.
..
..
.
.
.
.

..
...
....
....
....
...
.....
...
...
...
....
...
....
...
...
...
...
...
...
....
...
...
....
...
..
....
..
...
....
...
...
....
..
..
...
...
..
....
...
....
...
...
...
..
..
....
..
...
...
....
..
...
...
..
...
..
..
...
..
..
...
...
..
..
.
..
...
...
..
..
....
.
..
..
...
..
..
..
...
.
..
..
.
...
.
.
..
..
..
..
.
...
..
.
..
.
..
..
.
..
.
..
..
..
..
.
...
.
..
.
..
..
..
.
..
.
...
.
..
..
..
...
.
..
.
..
..
..
..
.
..
..
.
..
.
..
..
.
.
.
..
.
.
.
...
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
...
..
.
...
.
..
...
.
..
..
.
.
.
...
.
..
..
..
..
..
..
.
...
..
.
...
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
..
..
.
.
.
..
.
.
.
...
.
..
.
..
.
...
..
.
..
.
...
.
..
.
.
.
...
.
.
..
.
..
..
.
..
.
..
.
....
..
..
...
..
..
....
..
..
....
..
...
....
...
....
...
.....
...
.....
.....
......
........
..........
...

.........
......
....
....
...
....
..
....
..
..
...
..
..
...
..
..
...
.
..
...
..
.
..
...
..
..
.
...
..
..
...
..
.
..
.
...
.
..
.
...
.
..
..
.
...
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
...
..
.
..
...
.
..
.
..
..
..
..
...
..
..
...
..
.
..
...
.
..
...
..
..
.
..
..
..
...
..
..
..
..
...
..
..
....
..
....
....
.....
....
.......
.........
..........

..

Root of instance

N1

N2

sqrt

N3

7N2

N1

N4

N2

N3N2

N1

N1

N1 = +

N2 = *

Top-level expressions of pattern

N3 = [ONE]

Figure A-1: Initial DAG

A.2. IMPLEMENTATION OF THE PROCEDURAL PATTERN MATCHER 139

..

.

..

..
..
..
..
...............

...

.

..

..

.

..

.

...

................
..
..
.
..
..
..
.
. ..

.

..

..
..
..
..
...............

...
.
..
..
.
..
.
...
...............

...
..
.
..
..
..
.
.

.

..

.

..

..

.
..
...
...............

..
..
..
.
..
.
..
...
..............

..
..
..
.
..
..
..
.

.

..

.

..

..

.

..
...
...............

..

..

..

.

..

.

..

...
..............

..
..
..
.
..
..
..
.

..

.

..

..
..
..
..
...............

...

.

..

..

.

..

.

...

................
..
..
.
..
..
..
.
.

...

....
......
.....
........
....
.....
....
..

..

.
.....
.....
.....
.......
....
....
....
...

.

..

.

..

.

..

.

..

.

..

.

..

..

..

.

..

.

..

.

..

.

..

.

..

.

..

.....................
.
..
..
.
..
..
.
..
..
.
.

...

..........................
.........
...

.

..

.

..

.

..

.

..

.

..

.

..

..

..

.

..

.

..

.

..

.

..

.

..

.

..

....
...........

.........
.....
......
...

.

..

.

..

.

..

.

..

.

..

.

..

..

..

.

..

.

..

.

..

.

..

.

..

.

...

........
.................
.......
......

...

......................................

..

.....................
..
..
..
..
..
..
..
..
.

.

.

..

.

..

.

..

.

..

.

..

.

....

.

..

.

..

.

..

.

..

.

..

.

.

.

..

..

..
..
..
..
....
............

..

..

.

..

.

..

..

..
...............

...
..
..
.
..
.
..
...

.

....
...
....
....
.......
...
...
....
...
..

7

...
.....................

..
..
..
..
..
..
..
..
.

...

.....................
..
..
..
.
..
..
..
..
..

.

..

.

..

.

..

.

..

.

..

.

..

..

..

.

..

.

..

.

..

.

..

.

..

.

..
.....................

...
..
..
..
..
...
..
.

.

..
.
..
.
...
.
..
.
...
..
.
..
...
.
..
..
...
.
..
.
.
...
.
..
.
...
..
.
...
..
..
.
...
.
.
.
...
.
.
...
.
..
.
...
..
.
..
.
.
...
.
.
.
..
..
.
.
.
..
..
..
.
..
.
...
.
.
..
.
.
...
..
.
..
..
.
..
.
.
...
.
..
.
...
.
.
.
..
.
..
.
..
..
.
...
.
.
..
.
.
...
.
.
.
..
.
.
...
.
.
.
..
.
..
.
...
.
..
..
..
.
...
.
..
.
..
..
.
.
..
..
.
.
...
.
.
.
...
.
.
.
...
.
.
.
...
.
.
.
...
.
.
.
...
.
.
.
...
.
.
...
.
.
..
..
.
..
.
..
..
.
...
.
.
..
..
..
..
..
..
..
...
.
..
...
..
...
..
..
.
..
...
..
...
..
...
...
..
....
..
.
..
..
...
..
..
..
...
..
...
..
..
...
..
...
..
..
...
...
.....
...
....
...
...
...
....
...
....
...
....
...
...
...
....
....
....
...
.....
...
.....
.....
......
.....
...........

.............
...........

...
..................

...........
..........

........
.......

.....
.....

.....
.....
.....
.....
.....
...
....
...
.....
....
...
....
....
..
....
...
....
...
...
...
....
..
....
....
..
....
...
...
...
....
..
....
..
...
..
....
..
...
...
...
..
..
....
..
..
...
..
..
..
...
..
..
..
..
...
.
..
..
..
..
...
.
..
...
.
..
.
...
.
..
..
...
..
.
...
.
..
..
..
..
..
...
..
.
..
...
..
..
..
..
..
...
..
..
...
.
..
..
...
..
..
...
.
..
...
.
..
..
..
..
.
..
...
..
..
..
..
..
..
..
..
...
.
..
..
..
..
.
...
..
..
..
..
...
..
..
..
..
....
..
...
..
.....
......

.......
..............

...
..............

.....
.....
....
....
...
...
.
..
.
...
.
.
.
...
.
..
..
.
.
.
.
..
..
.
..
.
...
.
..
.
.
...
.
.
.
..
.
.
.
.

N$

Root of instance

N1

N1

N1

Nn

Nm

sqrt

NoN2

N2 No

Figure A-2: DAG after replacing expressions with new nodes

140 APPENDIX A. IMPLEMENTATION DETAILS

..

.

..

..
..
..
............

..
..
.
..
.
..
..............

...
..
.
..
.
. ..

.

..

..
..
..
.............

..

.

..

.

..

..
..............

..
..
..
..
..

.

.

..

..

..
..
..............

..

..

.

..

.

...
............

..
..
.
..
..
.

..

..

..
..
..
....
.......

....
.
..
..
.
..
...
............

..
.
..
.
.
..

..

...
.....
.....
.....
....
....
....
....
....

..

.....
......
.....
.......
....
....
.....
..

.

..

.

..

.

..

.

..

.

..

.

..

..

..

.

..

.

..

.

..

.

..

.

..

.

..

.....................
..
..
..
..
..
.
..
..
.
.

..

..........................
........
....

.

.

..

.

..

.

..

.

..

.

..

.

....

.

..

.

..

.

..

.

..

.

..

.

.

...

......................................

...

.

....
...
....
....
.......
...
....
...
....
.

..
.....................

...
..
..
..
..
..
..
..

...

....................
..
..
..
..
..
.
..
..
..
.

.

.

..

..

..
..
..............

..

..

.

..

.

...

............
..
..
.
..
..
.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

N1

..
.....................

...
..
..
..
..
..
...
.

.

.

..

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

.

.

.

..

.

.

..

.

..

.

..

.

.

..

.

..

.

..

..

.

..

.

..

..

.

..

.

.

....
....
....
.....
....
....
....
....
....
.....
....
....
....
....
.....
....
....
....
....
....
.....
....
....
....
....
.....
....
....
..

....................
..
..
..
..
..
..
..
..
..

..
.....
....
....
.....
....
....
....
.....
....
....
.....
....
....
.....
....
....
.....
....
....
.....
....
....
.....
....
....
....
.....
....
....
.....

.

..

..

..

..

..

..

..

..

.....
..
..
..
..
..
..
..
..

Root of instance

N1

sqrt

NoN2

N2 No 7Nl

Nl

Figure A-3: DAG after binding #?G

Appendix B

Denotational Semantics

The following is a denotational semantics for a call-by-value dialect of Scheme with

translucent procedures. Making it call-by-need, like TScheme, would be cumbersome

but not elucidating.

Two versions of the semantics are provided. One is written in Scheme. The other

in the traditional syntax.

This semantics does not model tproc?, tproc/arity, tproc/nvalues, tuple, or

tlet. Describing their meaning is not di�cult (only cumbersome), but detracts from

the legibility of the essential parts. In addition, like TScheme, the language below

only has a lambda operator. All user-de�ned procedures are translucent. Finally, no

syntactic abstraction facilities (i.e. macros) are provided.

B.1 Semantics in Scheme notation

#| % -*- Scheme -*-

(I) Ide identifiers

(E) Exp -> K | I | (E0 E*) expressions

| (lambda (I*) E0)

| (if E0 E1 E2)

141

142 APPENDIX B. DENOTATIONAL SEMANTICS

Bin = Ide x V reified bindings

REnv = Bin* reified environments

Clo = Exp x REnv closures (reified procedures)

F = V* -> K functions

P = Ide x F primitive procedures

T = Clo x F compound (translucent) procedures

(v) V = expressible values

N natural numbers

+ B booleans

+ Ide

+ Exp

+ Bin

+ REnv

+ Clo

+ P

+ T

(r) U = Ide -> V environments

(q) K = V -> V expression continuations

K* = V* -> V

EEval: Exp -> U -> K

EEval*: Exp* -> U -> K*

|#

;; EEval is called Meaning in the text.

(define (EEval E)

(cond ((IsConst? E)

(let ((K E))

;; (EEval K)

(lambda (r)

(return (Const->Value K)))))

((IsIde? E)

(let ((I E))

B.1. SEMANTICS IN SCHEME NOTATION 143

;; (EEval I)

(lambda (r)

(let ((v (Lookup r I)))

(if (Undefined? v)

(abort "Undefined variable")

(return v))))))

((IsCall? E)

(let ((E0 (Call/Operator E))

(E* (Call/Operands E)))

;; (EEval (E0 E*))

(lambda (r)

(lambda (q)

(((EEval* (concat E0 E*))

r)

(lambda (v*)

(((EApply (hd v*))

(tl v*))

q)))))))

((IsLambda? E)

(let ((I* (Lambda/Formals E))

(E0 (Lambda/Body E)))

;; (EEval (lambda (I*) E0))

(lambda (r)

(Enclose E r I* E0))))

((IsIf? E)

(let ((E0 (If/Predicate E))

(E1 (If/Consequent E))

(E2 (If/Alternative E)))

;; (EEval (if E0 E1 E2))

(lambda (r)

(lambda (q)

(((EEval E0) r)

(lambda (p)

(if (True? p)

(((EEval E1) r) q)

(((EEval E2) r) q))))))))

(else

(s-error E))))

(define (EEval* E*)

(lambda (r)

(if (IsNull? E*)

(return* empty)

(lambda (q)

(((EEval (hd E*))

144 APPENDIX B. DENOTATIONAL SEMANTICS

r)

(lambda (v)

(((EEval* (tl E*))

r)

(lambda (v*)

((return* (concat v v*))

q)))))))))

(define (Enclose E r I* E0)

(return

(Make-Procedure

(Canonicalize-Closure (Make-Closure E r))

(lambda (v*)

(if (not (= (num I*) (num v*)))

(abort "Wrong number of arguments")

(lambda (q+)

(((EEval E0)

(Extend r I* v*))

q+)))))))

(define (Eapply p)

(cond ((IsProcedure? p)

(Procedure->Function p))

((IsPrimitive? p)

(Primitive->Function p))

(else

(abort "Bad procedure"))))

(define tproc?

(lambda (v*)

(cond ((not (= (num v*) 1))

(abort "Wrong number of arguments"))

(else

(return (IsProcedure? (hd v*)))))))

(define tproc/make

(lambda (v*)

(cond ((not (= (num v*) 2))

(abort "Wrong number of arguments"))

((not (IsLambda? (hd v*)))

(abort "Bad expression"))

((not (IsRenv? (hd (tl v*))))

(abort "Bad environment"))

(else

(let ((E (hd v*))

B.1. SEMANTICS IN SCHEME NOTATION 145

(r (REnv->Environment (hd (tl v*)))))

(Enclose E

r

(Lambda/Formals E)

(Lambda/Body E)))))))

(define tproc/decompose

(lambda (v*)

(cond ((not (= (num v*) 1))

(abort "Wrong number of arguments"))

((not (IsProcedure? (hd v*)))

(abort "Wrong type argument"))

(else

(return (Procedure->Closure (hd v*)))))))

(define ->expr

(lambda (v*)

(cond ((not (= (num v*) 1))

(abort "Wrong number of arguments"))

((not (IsClosure? (hd v*)))

(abort "Wrong type argument"))

(else

(return (Closure->Expression (hd v*)))))))

(define ->env

(lambda (v*)

(cond ((not (= (num v*) 1))

(abort "Wrong number of arguments"))

((not (IsClosure? (hd v*)))

(abort "Wrong type argument"))

(else

(return (Closure->REnv (hd v*)))))))

;; Continuations

(define (return v)

(lambda (k)

(k v)))

(define (return* v*)

(lambda (k)

(k v*)))

;; Environments

146 APPENDIX B. DENOTATIONAL SEMANTICS

(define (Make-Empty-Environment)

(lambda (I)

undefined))

(define (Lookup r I)

(r I))

(define (Extend r I* v*)

(if (IsNull? I*)

r

(Extend (Extend-1 r (hd I*) (hd v*))

(tl I*)

(tl v*))))

(define (Extend-1 r I v)

(lambda (I+)

(if (Ide=? I I+)

v

(r I+))))

;; Translucent procedures

(define *procedure-tag*

(string->symbol "#Procedure"))

(define (Make-Procedure c f)

(cons *procedure-tag*

(list c f)))

(define (IsProcedure? v)

(and (pair? v)

(eq? (car v) *procedure-tag*)))

(define (Procedure->Function p)

(cadr (cdr p)))

(define (Procedure->Closure p)

(car (cdr p)))

;; Concrete procedure representation

(define *closure-tag*

(string->symbol "#Closure"))

(define (Make-Closure E r)

B.1. SEMANTICS IN SCHEME NOTATION 147

(cons *closure-tag*

(list E (Environment->REnv r (FreeVars E)))))

(define (IsClosure? v)

(and (pair? v)

(eq? (car v) *closure-tag*)))

(define (Closure->Expression v)

(car (cdr v)))

(define (Closure->REnv v)

(cadr (cdr v)))

(define (Canonicalize-Closure Clo)

;; *** Here is the magic ***

Clo)

(define (Environment->REnv r I*)

(if (IsNull? I*)

empty

(concat (Make-Binding (hd I*)

(Lookup r (hd I*)))

(Environment->REnv

r

(tl I*)))))

(define *binding-tag*

(string->symbol "#Binding"))

(define (Make-Binding I v)

(cons *binding-tag*

(cons I v)))

(define (IsBinding? v)

(and (pair? v)

(eq? *binding-tag*

(car v))))

(define (Binding/Identifier b)

(car (cdr b)))

(define (Binding/Value b)

(cdr (cdr b)))

(define (IsRenv? v)

148 APPENDIX B. DENOTATIONAL SEMANTICS

(or (IsNull? v)

(and (IsBinding? (hd v))

(IsRenv? (tl v)))))

(define (REnv->Environment v)

(if (IsNull? v)

(Make-Empty-Environment)

(Extend-1 (REnv->Environment (tl v))

(Binding/Identifier (hd v))

(Binding/Value (hd v)))))

(define (IsExpression? E)

(or (IsConst? E)

(IsIde? E)

(IsCall? E)

(IsLambda? E)

(IsIf? E)))

(define (FreeVars E)

(cond ((IsConst? E)

(let ((K E))

;; (FreeVars K)

empty))

((IsIde? E)

(let ((I E))

;; (FreeVars I)

(concat I empty)))

((IsCall? E)

(let ((E0 (Call/Operator E))

(E* (Call/Operands E)))

;; (FreeVars (E0 E*))

(Ide-union (FreeVars E0)

(FreeVars* E*))))

((IsLambda? E)

(let ((I* (Lambda/Formals E))

(E0 (Lambda/Body E)))

;; (FreeVars (lambda (I*) E0))

(Ide-difference (FreeVars E0)

I*)))

((IsIf? E)

(let ((E0 (If/Predicate E))

(E1 (If/Consequent E))

(E2 (If/Alternative E)))

B.1. SEMANTICS IN SCHEME NOTATION 149

;; (Freevars (if E0 E1 E2))

(Ide-union (FreeVars E0)

(Ide-union (FreeVars E1)

(FreeVars E2)))))

(else

(s-error E))))

(define (FreeVars* E*)

(if (IsNull? E*)

empty

(Ide-union (FreeVars (hd E*))

(FreeVars* (tl E*)))))

(define (Ide-union I1* I2*)

(cond ((IsNull? I1*)

I2*)

((Ide-member? (hd I1*) I2*)

(Ide-union (tl I1*) I2*))

(else

(concat (hd I1*)

(Ide-union (tl I1*) I2*)))))

(define (Ide-difference I1* I2*)

(cond ((IsNull? I1*)

empty)

((Ide-member? (hd I1*) I2*)

(Ide-difference (tl I1*) I2*))

(else

(concat (hd I1*)

(Ide-difference (tl I1*) I2*)))))

(define (Ide-member? I I*)

(cond ((IsNull? I*)

false)

((Ide=? I (hd I*))

true)

(else

(Ide-member? I (tl I*)))))

;; Values

(define (True? v)

(not (eq? v #f)))

(define *undefined*

150 APPENDIX B. DENOTATIONAL SEMANTICS

(string->symbol "#undefined"))

(define (Undefined? v)

(eq? v *undefined*))

(define *primitive-tag*

(string->symbol "#Primitive"))

(define (Make-Primitive name p)

(cons *primitive-tag* (list p name)))

(define (IsPrimitive? v)

(and (pair? v)

(eq? (car v) *primitive-tag*)))

(define (Primitive->Function v)

(car (cdr v)))

(define (Primitive->Name v)

(cadr (cdr v)))

(define (Make-Binary-Numeric-Primitive name p)

(Make-Primitive

name

(lambda (v*)

(if (not (= (num v*) 2))

(abort "Wrong number of arguments")

(if (or (not (number? (hd v*)))

(not (number? (hd (tl v*)))))

(abort "Wrong type of arguments")

(return (p (hd v*) (hd (tl v*)))))))))

(define (Make-Unary-Primitive name p)

(Make-Primitive

name

(lambda (v*)

(if (not (= (num v*) 1))

(abort "Wrong number of arguments")

(return (p (hd v*)))))))

(define (Make-Binary-Primitive name p)

(Make-Primitive

name

(lambda (v*)

(if (not (= (num v*) 2))

B.1. SEMANTICS IN SCHEME NOTATION 151

(abort "Wrong number of arguments")

(return (p (hd v*) (hd (tl v*))))))))

(define (Make-Special-Primitive name p)

(Make-Primitive

name

p))

;; Syntax

(define (IsConst? E)

(or (number? E)

(eq? E #f)

(eq? E #t)))

(define (Const->Value K)

K)

(define (IsIde? E)

(symbol? E))

(define (Ide=? I1 I2)

(eq? I1 I2))

(define (IsCall? E)

(and (pair? E)

(not (memq (car E) '(lambda if)))))

(define (Call/Operator E)

(car E))

(define (Call/Operands E)

(cdr E))

(define (IsLambda? E)

(and (pair? E)

(eq? (car E) 'lambda)))

(define (Lambda/Formals E)

(cadr E))

(define (Lambda/Body E)

(caddr E))

(define (IsIf? E)

152 APPENDIX B. DENOTATIONAL SEMANTICS

(and (pair? E)

(eq? (car E) 'if)))

(define (If/Predicate E)

(cadr E))

(define (If/Consequent E)

(caddr E))

(define (If/Alternative E)

(cadddr E))

;; Random

(define (IsNull? x*)

(null? x*))

(define (hd x*)

(car x*))

(define (tl x*)

(cdr x*))

(define (num x*)

(length x*))

(define (concat x x*)

(cons x x*))

(define empty

'())

;; Top-Level

(define (Make-Empty-Environment)

(lambda (I)

undefined))

(define (Make-Initial-Environment)

(let ((names-a '(+ - * / =))

(values-a (list + - * / =))

(names1 '(

Primitive?

Procedure?

Closure?

B.1. SEMANTICS IN SCHEME NOTATION 153

Environment?

Binding?

Binding/Identifier

Binding/Value

hd

tl

Const?

Ide?

Lambda?

Call?

#|

Expression?

Lambda/Formals

Lambda/Body

Make-Lambda

<More such here>

|#

))

(values1 (list IsPrimitive?

IsProcedure?

IsClosure?

IsRenv?

IsBinding?

Binding/Identifier

Binding/Value

hd

tl

IsConst?

IsIde?

IsLambda?

IsCall?

#|

IsExpression?

Lambda/Formals

Lambda/Body

Make-Lambda

<More such here>

154 APPENDIX B. DENOTATIONAL SEMANTICS

|#

))

(names2 '(Ide=?))

(values2 (list Ide=?))

(names-x '(

tproc?

tproc/make

tproc/decompose

->expr

->env))

(values-x (list tproc?

tproc/make

tproc/decompose

->expr

->env)))

(Extend

(Extend

(Extend

(Extend (Make-Empty-Environment)

names-a

(map Make-Binary-Numeric-Primitive

names-a

values-a))

names1

(map Make-Unary-Primitive

names1

values1))

names2

(map Make-Binary-Primitive

names2

values2))

names-x

(map Make-Special-Primitive

names-x

values-x))))

(define (Make-Initial-Continuation)

(lambda (v)

v))

(define (Go Exp)

(((EEval Exp)

(Make-Initial-Environment))

B.1. SEMANTICS IN SCHEME NOTATION 155

(Make-Initial-Continuation)))

(define (abort string)

(lambda (q) ; continuation

(error string)))

(define (s-error E)

(error "Illegal expression" E))

156 APPENDIX B. DENOTATIONAL SEMANTICS

B.2 Semantics in Traditional notation

B.2.1 Abstract Syntax

K 2 Con constants

I 2 Ide identi�ers

E 2 Exp expressions

B.2.2 Domain Equations

� 2 Bin = Ide�V rei�ed bindings

REnv = Bin� rei�ed environments

Clo = Exp� REnv closures (rei�ed procedures)

F = V�
! K! V functions

P = Ide� F primitive procedures

T = Clo� F compound (translucent) procedures

� 2 V = expressible values

N natural numbers

+ B booleans

+ Ide

+ Exp

+ Bin

+ REnv

+ Clo

+ P

+ T

+ fUndefinedg unde�ned value

� 2 U = Ide! V environments

� 2 K = V! V continuations

K� = V�
! V

B.2.3 Semantic Functions

K : Con! V

E : Exp! U! K! V

E
� : Exp� ! U! K! V

E� : Exp! U! K! V

F : Exp! Ide�

F
� : Exp! Ide�

B.2. SEMANTICS IN TRADITIONAL NOTATION 157

E[[K]] = ��: return (K[[K]])

E[[I]] = ��: (�I = Undefined)! wrong,

return (�I)

E[[(E0 E�)]] = ���: E
�(hE0i x E

�)

�

(���: apply (�� # 1)(��y1)�)

E[[(lambda (I�) E0)]] = ��: enclose � I� E0

E[[(if E0 E1 E2)]] = ���: E[[E0]]

�

��: (truish �)! E[[E1]]��;

E[[E2]]��

E
�[[]] = ���: �h i

E
�[[E0 E�]] = ���: E[[E0]]

�

(��0: E
�[[E�]]

�

(���: � (h�0i x �
�)))

enclose : U! Ide� ! Exp! K! V

enclose = ��I�E:

return h(canon (makeclo (lambda (I�) E) �))

j(����0: (#I� 6= #�
�)! wrong;

E[[E]](extend � I� ��)�0)i

in V

canon : Clo! Clo [Unspeci�ed]

apply : V! V�
! K! V

apply = ���
�
�: (� 2 T)! (�jP # 2)���;

(� 2 P)! (�jM # 2)���;

wrong

158 APPENDIX B. DENOTATIONAL SEMANTICS

extend : U! Ide� ! V�
! U

extend = ��I���: (#I� = 0) ! �;

extend (�[(�� # 1)=(I� # 1)])

(I�y1)

(��y1)

Auxiliary Functions

truish : V! B

truish = ��: (� =2 B)! true;

(�jB = false)! false;

true

return : V! K! V

return = ���: ��

makeclo : Exp! U! Clo

makeclo = �E�: hEj(reifyenv � F [[E]])i in Clo

reifyenv : U! Ide� ! REnv

reifyenv = ��I�: (#I� = 0)! h i,

(makebin � (I� # 1)) x (reifyenv � (I�y1))

makebin : U! Ide! Bin

makebin = ��I: hIj(� I)i in Bin

F [[K]] = h i

F [[I]] = hIi

F [[(E0 E�)]] = F
�[[hE0i x E

�]]

F [[(lambda (I�) E0)]] = seqdif (F [[E0]]) I
�

B.2. SEMANTICS IN TRADITIONAL NOTATION 159

F [[(if E0 E1 E2)]] = F
�[[hE0i x hE1i x hE2i]]

F
�[[]] = h i

F
�[[E0 E�]] = sequnion (F [[E0]])(F

�[[E�]])

sequnion : Ide� ! Ide� ! Ide�

sequnion = �I�
1
I�
2
: sequndif I�

1
I�
2
I�
2

sequnion : Ide� ! Ide� ! Ide�

seqdif = �I�
1
I�
2
: sequndif I�

1
I�
2
h i

sequnion : Ide� ! Ide� ! Ide� ! Ide�

sequndif = �I�
1
I�
2
I�
3
: (#I�

1
= 0)! I�

3
;

(inseq I�
2
(I�

1
1))! sequndif (I�

1
y1)I�

2
I�
3
;

hI�
1
1i x (sequndif (I�

1
y1)I�

2
I�
3
)

inseq : Ide� ! Ide! B

inseq = �I�I: (#I� = 0)! false;

((I� # 1) = I)! true;

inseq (I�y1) I

Primitive Procedures

All primitive procedures are in domain F.

tproc? = onearg (��: (� 2 T)! return (true in V);

return (false in V))

tproc=decompose = onearg (��: (� =2 T)! wrong;

return (�jT in V))

tproc=make = twoarg (��1�2: (�1 =2 Exp)! wrong;

(�2 =2 REnv)! wrong;

E�[[�1]](reflectenv (�2jREnv)))

160 APPENDIX B. DENOTATIONAL SEMANTICS

selectexpr = onearg (��: (� =2 Clo)! wrong;

return ((�jClo) # 1) in V)

selectenv = onearg (��: (� =2 Clo)! wrong;

return ((�jClo) # 2) in V)

primitive? = onearg (��: (� 2 P)! return (true in V);

return (false in V))

primitive=name= onearg (��: (� =2 P)! wrong;

return (((�jP) # 1) in V))

symeq = twoarg (��1�2: (�1 =2 Ide)! wrong;

(�2 =2 Ide)! wrong;

(�1 = �2)! return (true in V);

return (false in V))

Primitive Utilities

onearg : (V ! K! V)! F

onearg = ���
�
�: (#�

�
6= 1)! wrong;

�(�� # 1)�

twoarg : (V! V! K! V)! F

twoarg = ���
�
�: (#�

�
6= 2)! wrong;

�(�� # 1)(�� # 2)�

binary : (N! N! N)! F

binary = ��: twoarg (��1�2�: (�1 =2 N)! wrong;

(�2 =2 N)! wrong;

� (� (�1jN) (�2jN) in V))

binpred : (N! N! B)! F

binpred = ��: twoarg (��1�2�: (�1 =2 N)! wrong;

(�2 =2 N)! wrong;

� (� (�1jN) (�2jN) in V))

B.2. SEMANTICS IN TRADITIONAL NOTATION 161

reflectenv : Bin� ! U

reflectenv = ��
�
: (#�

� = 0)! (�I: Undefined);

extend (reflectenv(��y1))

h((�� # 1) # 1)i

h((�� # 1) # 2)i

E�[[K]] = wrong

E�[[I]] = wrong

E�[[(E0 E�)]] = wrong

E�[[(lambda (I�) E0)]] = ��: enclose � I� E0

E�[[(if E0 E1 E2)]] = wrong

Initial environment

�0 = �I: (I = tproc?)! htproc?jtproc?i in V;

(I = tproc=make)! htproc=makejtproc=makei in V;

(I = tproc=decompose)! htproc=decomposejtproc=decomposei in V;

(I = ->expr)! h->exprjselectexpri in V;

(I = ->env)! h->envjselectenvi in V;

(I = primitive?)! hprimitive?jprimitive?i in V;

(I = primitive=name)! hprimitive=namejprimitive=namei in V;

(I = Ide=?)! hIde=?jsymeqi in V;

(I = call?) : : : ;

(I = make-call) : : : ;

(I = call=operator) : : : ;

(I = call=operands) : : : ;

(I = lambda?) : : : ;

(I = make-lambda) : : : ;

(I = lambda=bvl) : : : ;

(I = lambda=body) : : : ;

: : : ;

(I = +)! h+j(binary +)i in V;

(I = -)! h-j(binary �)i in V;

(I = *)! h*j(binary �)i in V;

(I = =)! h=j(binpred =N)i in V;

: : :

162 APPENDIX B. DENOTATIONAL SEMANTICS

Bibliography

[1] Harold Abelson, Gerald Jay Sussman, and Julie Sussman. Structure and Inter-

pretation of Computer Programs. MIT Press, Cambridge, Massachusetts, 1985.

[2] Alfred V. Aho, John E. Hopcroft, and Je�rey D. Ullman. The Design and

Analysis of Computer Algorithms. Addison-Wesley series in Computer Science

and Information Processing. Addison-Wesley, Reading, Massachusetts, 1974.

[3] Alfred V. Aho, Ravi Sethi, and Je�rey D. Ullman. Compilers: Principles, Tech-

niques, and Tools. Addison Wesley, 1986.

[4] Gail Anderson and Paul Anderson. The Unix C Shell Field Guide. Prentice-Hall,

Englewood Cli�s, NJ, 1986.

[5] Emil Artin. Galois Theory. University of Notre Dame Press, 1942.

[6] Malcolm P. Atkinson and Ronald Morrison. Procedures as persistent data ob-

jects. Transactions on Programming Languages and Systems, 7(4):539{559, Oc-

tober 1985.

[7] H.P. Barendregt. The Lambda Calculus, its Syntax and Semantics. North-

Holland Publishing Company, 1984.

[8] Alan Bawden. Rei�cation without evaluation. In Conf. on Lisp and Functional

Programming, pages 342{351, Snowbird, Utah, July 1988. ACM.

163

164 BIBLIOGRAPHY

[9] B. Buchberger. Gr�obner bases: An algorithmic method in polynomial ideal

theory. In N.K. Bose, editor, Multidimensional Systems Theory, pages 184{232.

D. Reidel Publishing Company, 1985.

[10] Alonzo Church. The calculi of lambda-conversion. Princeton University Press,

1941.

[11] William Clinger and Jonathan (editors) Rees. Revised4 report on the algorithmic

language scheme. Technical Report AI Memo 848b, Mass. Inst. of Technology,

Arti�cial Intelligence Laboratory, 1991.

[12] William Cook. Object-oriented programming versus abstract data types. In

Proc. of the REX School/Workshop on the Foundations of Object-Oriented Lan-

guages, Lecture Notes in Computer Science, pages 151{178, New York, NY, 1990.

Springer-Verlag.

[13] Germumd Dahlquist and Bj�orck Ake. Numerical Methods. Automatic Compu-

tation. Prentice-Hall, Englewood Cli�s, NJ, 1974.

[14] L. Peter Deutsch and Allan Schi�man. E�cient implementation of the smalltalk-

80 system. In Proc. 11th Principles of Programming Languages, pages 297{302.

ACM, 1983.

[15] G. Dowek. Third-order matching is decidable. Technical report, INRIA-

Rocquencourt, 1991.

[16] G. Dowek. The undecidability of pattern matching in calculi where primitive

recursive functions are representable. Technical report, INRIA-Rocquencourt,

1991.

[17] Herbert B. Enderton. A Mathematical Introduction to Logic. Academic Press,

1972.

BIBLIOGRAPHY 165

[18] Bruce W. Char et al. Maple V Language Reference Manual. Springer-Verlag,

New York, NY, 1991.

[19] D. Weise et al. Automatic online partial evaluation. In Conference on Functional

Programming Languages and Architectures. Springer Verlag, 1991.

[20] E. Charniak et al. Arti�cial Intelligence Programming, 2nd ed. Lawrence Erl-

baum Assoc., Hillsdale, NJ, 1987.

[21] Marc Feeley and Guy Lapalme. Using closures for code generation. Comput.

Lang., 12(1):47{66, 1987.

[22] Matthias Felleisen and Hieb Robert. The revised report on the syntactic theories

of sequential control and state. Technical Report TR-345, Indiana University

Comp. Sci. Dept., February 1992.

[23] Amy Felty. A logic programming approach to implementing higher-order term

rewriting. In Second Intl. Workshop on Extensions of Logic Programming, New

York, NY, January 1991. Springer-Verlag.

[24] Daniel P. Friedman and Mitchell Wand. Rei�cation: Re
ection without meta-

physics. In Symp. on Lisp and Functional Programming, pages 348{355, Austin,

Tex., August 1984. ACM.

[25] Daniel P. Friedman, Mitchell Wand, and Christopher T. Haynes. Essentials of

Programming Languages. MIT Press, Cambridge, Massachusetts, 1992.

[26] Jean H. Gallier. Dpda's in \atomic normal form" and applications to equivalence

problems. Theoretical Computer Science, (14):155{186, 1981.

[27] Leonard Gilman and Allen J. Rose. APL, An Interactive Approach, 3rd ed. John

Wiley & Sons, New York, NY, 1984.

166 BIBLIOGRAPHY

[28] W. D. Goldfarb. The undecidability of the second order uni�cation problem.

Theoretical Computer Science, (13):225{230, 1981.

[29] Michael J.C. Gordon. The Denotational Description of Programming Languages,

an Introduction. Springer-Verlag, New York, NY, 1979.

[30] Mathlab Group. Macsyma Reference Manual. Mass. Inst. of Technology, Labo-

ratory for Computer Science, Cambridge, MA, 1977.

[31] Chris Hanson. MIT Scheme reference manual. Technical Report TR-1281, Mass.

Inst. of Technology, Arti�cial Intelligence Laboratory, November 1991.

[32] J. Heering. Implementing higher-order algebraic speci�cations. Technical Report

CS-R9150, Centrum voor Wiskunde en Informatica, Amsterdam, The Nether-

lands, December 1991.

[33] Peter Henderson. Functional geometry. In Symp. on Lisp and Functional Pro-

gramming, pages 1{9, Pittsburgh, PA, August 1982. ACM.

[34] James M. Henle and Eugene M. Kleinberg. In�nitesimal Calculus. MIT Press,

Cambridge, Massachusetts, 1979.

[35] I. N. Herstein. Topics in Algebra, 2nd ed. John Wiley & Sons, New York, NY,

1975.

[36] G. Huet. R�esolution d' �Equations dans les Langages d'Ordre 1,2,: : :,!. PhD

thesis, Universit�e de Paris 7, 1976.

[37] Suresh Jagannathan. Re
ective building blocks for modular systems. In Intl.

Workshop on Re
ection and Meta-Level Architecture, pages 61{68, November

1992.

[38] Kevin Knight. Uni�cation: A multidisciplinary survey. ACM Computing Surveys,

21:93{124, March 1989.

BIBLIOGRAPHY 167

[39] Donald E. Knuth. The Art of Computer Programming, vol. 2: Seminumerical

Algorithms, 2nd ed. Addison-Wesley, Reading, Massachusetts, 1981.

[40] Barbara Liskov and Stephen Zilles. Programming with abstract data types.

SIGPLAN Notices, 9(4):50{59, April 1974. Proc. Symposium on Very High

Level Languages.

[41] R. G. Loeliger. Threaded Interpretive Languages. Byte Books, 1981.

[42] WilliamA. Martin. Determining the equivalence of algebraic expressions by hash

coding. Journal of the ACM, 18(4):549{558, October 1971.

[43] Dale Miller. Abstract syntax and logic programming. Technical Report MS-

CIS-91-72, Univ. of Pennsylvania, Dept. of Computer and Information Science,

October 1991.

[44] Dale Miller. Uni�cation of simply typed lambda-terms as logic programming.

Technical Report MS-CIS-91-24, Univ. of Pennsylvania, Dept. of Computer and

Information Science, 1991.

[45] Dale A. Miller and Gopalan Nadathur. A computational logic approach to syntax

and semantics. Acta Informatica, 11(1):31{55, 1978.

[46] Dale A. Miller and Gopalan Nadathur. A computational logic approach to syntax

and semantics. Technical Report MS-CIS-85-17, Univ. of Pennsylvania, Dept. of

Computer and Information Science, 1985.

[47] Robin Milner, Mads Tofte, and Robert Harper. The De�nition of Standard ML.

MIT Press, Cambridge, Massachusetts, 1990.

[48] Gopalan Nadathur and Dale Miller. An overview of �prolog. In Fifth

Intl. Conf. and Symposium on Logic Programming, pages 810{827.

168 BIBLIOGRAPHY

[49] William H Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetter-

ling. Numerical Recipes. Cambridge Univ. Press, Cambridge, UK, 1986.

[50] G. Rayna. REDUCE|Software for Algebraic Computation. Springer-Verlag,

New York, NY, 1987.

[51] John C. Reynolds. User-de�ned types and procedural data structures as com-

plementary approaches to data abstraction. In Stephen A. Schuman, editor,

New Directions in Algorithmic Languages, pages 157{168. Institut de Recherche

d'Informatique et d'Automatique, Le Chesnay, France, 1975.

[52] Gerald Roylance. Expressing mathematical subroutines constructively. In Conf.

on Lisp and Functional Programming, pages 8{13, Snowbird, Utah, July 1988.

ACM.

[53] Brian Cantwell Smith. Re
ection and Semantics in a Procedural Language. PhD

thesis, Mass. Inst. of Technology, 1982. Available as TR-272 from the MIT

Laboratory for Computer Science.

[54] Brian Cantwell Smith. Re
ection and semantics in lisp. Technical Report CSLI-

84-8, Stanford University Center for the Study of Language and Information,

December 1984.

[55] Richard M. Stallman and Gerald J. Sussman. Forward reasoning and

dependency-directed backtracking in a system for computer-aided circuit analy-

sis. Technical Report Memo 380, Mass. Inst. of Technology, Arti�cial Intelligence

Laboratory, September 1976.

[56] Richard Statman and Gilles Dowek. On statman's �nite completeness theorem.

Technical Report CMU-CS-92-152, Carnegie Mellon University, June 1992.

[57] Guy Lewis Steele Jr. Common LISP The Language, 2nd Edition. Digital Press,

1990.

BIBLIOGRAPHY 169

[58] Joseph E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Pro-

gramming Language Theory. MIT Press, Cambridge, Massachusetts, 1977.

[59] Gilbert Strang. Linear Algebra and Its Applications, 3rd ed. Harcourt Brace

Jovanovich, San Diego, 1988.

[60] Bjarne Stroustrup. The C++ Programming Language, 2nd ed. Addison-Wesley,

Reading, Massachusetts, 1991.

[61] Amin Vahdat. The design of a metaobject protocol controlling behavior of a

scheme interpreter. Technical report, Xerox PARC, 1993.

[62] Mitchell Wand and Daniel P. Friedman. The mystery of the tower revealed: A

nonre
ective description of the re
ective tower. Lisp and Symbolic Computation,

1(1):11{37, 1988.

[63] S. Wolfram. Mathematica: A System for Doing Mathematics by Computer.

Addison-Wesley, Reading, Massachusetts, 1988.

