Maygen: A Symbolic Debugger Generati on System
by
Christine L. Tsen

S.B. Computer Sienceard Ergireerirgy Massachwetts [stitite d Tedrdggy
(199)

Shitted to the Departrat d Hedricd Hgreeritg and (Gpter Siene
inprtid fdfilliat d tle requrerats far the dgree &

Miter Sieein Hedricd Bgreerirg ad Gpter Siee

& the

MSHUSFIBINSITEOF THO. @Y
My 198

© Giistire L Fen, MW QL

Fe athr terdy graits to MI'perrissian to reprodee and
to dstrihte apes d ths thesis darat inwhle a in prt.

Maygen: A Symbolic Debugger Generati on System

by
(ristire L 'Hen

Submitted to the Departmant of Electrical Hgineering and Conmuter Science
on May 7, 1993, inpartial fulfillvert of the
requirenants for the degree of
Mster of Science in Hectrical Egineering and (bnmter Science

Abstract

With the devel opmart of highlevel languages for new conmter architectures comes the
need for appropri ate debugging tools as vell. One mathod for meeting this need voul d be
to devel op, fromscratch, a synholic debugger vith the introduction of each newl anguage
implerantation for any given architectuwre. This, hovever, seem to require umecessary
diplication of effort anong devel opers. (dmpilation technol ogy has alleviated som dir
plication of effrt in the devel opent of compilers. G simhlar ideas aid in the efficient
devel opart of syrholic debuggers as vell?

Mygen expl ores the possihility of naking debugger devel opnent eflii ent by i nfluenci ng
the language and architecture devel oprant processes. Mygenis a “debugger gereration
system” built upon the i dea that syrholic debuggers canbe divi dedintothree conponents:
a set of source 1anguage interface routines, a set of machine architecture interface routines,
and a 1 anguage- i ndependent and ar chi tecture-independent debugger skel eton. Mygen then
exploits this modularity: First, Mygen precisely defines as vell as howses the 1anguage-
independent and archi tecture-independernt debugger skeleton Second, Mygen defines the
protocol for interface interaction anong source 1anguage devel opers, machine architecture
devel opers, and the general - purpose debugger skeleton. Hmnally, Mygen provides a frame-
vork in vhi ch the resident debugger skeletonis autonatically devel oped into a stand al one
synholi c debugger; the resul ting debugger is tail aredto the specific provi sians of aparticuar
language group and a particular architecture group.

Thesis Supervisor: Thomas E Knight, Jr., Ph.D
Ttle: Principal Research Scientist, ¥partrent of Hectrical Hgineering and (nmter

Sci ence

Thesis Supervisor: AlanL. Dwis, Ph D
Ttle: (ompany Supervisar, Hewtett Packard Iaboratories

To my parents

Acknowl edgnent s

Hrst, I vouldlike to thank A Diwis for being a great 1eader and advi sor, for understandi ng
that vith high morale and interesting verk naturally follows true motivation and quality
performance. (I.e., occasional goof-off days, such as group outings to see Brmimator 2 or
vatch the Giants, keeps people happy and diligent through subsequent crunch tines.) I
vould also like to thank himfor his careful reading of ny thesis draft. I vish himall the
best vith Myfly as vell as his future endeavars.

I wuld like to thank Dmlkiight for agreeing to be my MT supervisar, for being
posi ti ve and supporti ve of ny vork even though the scope or focus seerad to change nearl y
every tim I flewto NITfor a meting, and for being interestedin everything, this naking
hima great resource for a diverse set of questians.

I wouldlike to thank Nlke Ienon for his unvavering support and friendship since ny
first P sumar in 1989. Mre recently, I amindebted to himfor letting me clutter half
of his disk space vith ny backups, for his el oquent exposition of abstract machines during
ore of 1y periods of confusion, and for subsequentl y letting ma borrowheavily fromthat
description for ny introdictory paragraphs of Section 4. 2.

I vouldlike to thank Fohin Ibdgson for hel ping to flesh out the prelimmnary debugger
gererationidea, for hel ping m to understand the Myfly, and for having done alot of vork
on Mydebug, the guts of which vert into nach of ny Myfly test case. 1 also vant to
thank the Myfly group overall for provi ding a very enjoyabl e vork envi romant .

Next, thanks go to John @rery for expl aining the (P systemand for having dore a
lot of (P Mwerk, the guts of vhich vent into noch of ny (PLand (MEest cases.

I wouldlike to thank Bill Dily for being supportive of ny madical interests and espe-
cially for signing ny registration even vhen he thought I was taking too nany classes.

I vouldlike tothank all of the MiDGnarhers for being myfoster group at MTvhile
I vas fini shi ng Mygen vork and for 1istening tony thesis talk; the talk format contributed
greatly to ny subsequent decision on howto structure ny witten thesis presentation

Q course I also vant to thank all of ny friends—not only those at NIT vho gave ne
mch needed and rel axing hreaks fromvork, but also those vho have left NIT but still
remin close tom inspirit andin email.

Special thanks go to Jamme: inall of my busiest timas, he al one vas still able to convince
18 to take three to five mimi - breaks a day. (It vas either that, or spend tvice as mchtine
cleani ng up doggy acci dents!)

I feel corpelled to thank the Asociation of Avwerican Mdical (dlleges for scheduling
the MIAE to be three veeks befare the thesis deadline; had the MAE been at a di ferent
tine, I might not have had as good an excuse for not studying as noch as one shoul d.

A& alvays, I amvery thankful to ny parents and ny sister for their contimal support,
gui dance, patience, interest, and entlisiasmin all of ny endeavors.

I vhol eheartedly thank (bd for hel ping ma vith all that I do, as vell as for allowng
1y hi ggest probl emto be having too nany choi ces (al ong vith aflir for indecisiveness).

Iast, bt definitely not least, I would like to thank Bad Spiers foar all of his love,
friendship, 1aughter, support, and encouragenant. I thank hinfor not 1ifting an eyebrowat
ny cutting coupons and readi ng grocery store ads inthe mdst of MAlstudies and thesis
vork. 1 thank hindfar correcting riy al nost- clichés and colloquialism; if it veren’t for him
I’d be fhishing out ideas and saying, “Cose, but no banana. ” Hnally, I vant to thank him
for letting me sign himup for (Oluhia Huse Video Qub merhership (and this getting

those ten great newnovies for a lowprice!) just vhen ve most needed to vork. :]

This paper describes research conducted at Bevlett Packard Laboratories, as part of
the NIT V- A Internship Bogram and at the Atificial Intelligence Laboratory of the
Mssachisetts Institute of Bchnology. Support for this research vas providedin part by a
MNitional Science Fundation Gadate Research Bllowhip. Support for the laboratory’s
artificial intelligence researchis providedinpart by the Advanced Research Brojects Agency
of the Rpartnent of Rfense under (lie of Naval Research contract N)0014- 91- J- 4038.

About the Aut hor

Cristine Tien vias born on the 28th of Noverber, 1969, in Nhneapolis, Nlimesota. She
vas educated in public schools, graduating valedi ctorian fromMunds Mew Hgh School
in Aden Hlls, Nlmesota, in 1987. Wththe financial aid of a Ntional Mrit Schol arship,
she vas able to attend the Mssachisetts Imstitute of Bchnol ogy, where she mjared in
conmier science, concentrated in Rissian language, and mai ntai ned an interest in biol ogy
and mdicine. % a sophomore, she vas invited to participate in the M- Aprogramvith
RBwtett Packard Laboratories in Palo Ato, Glifornia. She was elected to andis a narher
of BuBta R, Hakppa Ny, and Signa Xi, and she served as W ce Rresident and Social
Quir for Ha kappa N1 diring the 1990- 91 acaderic year. She has been a rarber of

the Society of When Bigineers for six years, diring which she served on the Fecutive
(mittee and the Hnancial (orminttee for ane year each and as Feasurer for tw years.
She is also a ravher of the Asociation for (onmuiting Mchinery and the B omadical
Fhgineering Society. She earned her Bachelor of Science degree fromthe Drpartrent of
Hectrical Fgineering and (nmter Science in June, 1991. The amthor vas accepted
into the doctaral programat the Mssachisetts Institute of Bchnol ogy, where she recently
fini shed her Mster of Science degree vith the financial support of a MNational Science
Fnmdation Gaduate Fll ovship.

Diring her years at the Mssachisetts Irstitute of Bchnol ogy, the author al so partic-
ipated in Apha Fhi Gwga Ntional Service Raternity, Hguwe Skating (ub, Keshran
Asociate Alvising, "Bch Square Bg Sisters, (Ginese Students’ Qub, and Roject (ntact.
She vas a laboratory teaching assistant in the Bology Dpartnart, engaged in research
at the Iaboratary for (nmter Science and at the Artificial Intelligence Iaboratary, and
vorked variows jobs in Wt Gums Huses, ARATdod Servi ce, and Fhayden library. She
also volunteered at Munt Adburn, Bston Gty, and Mssachisetts (éneral Hspitals. In
her spare tima, she enjoys rollerbl ading, vindsurfing, watching good rovies, and playing
vith her Averican Ekino dog, Jarme.

Ber present research interests lie at the intersection of conmter science, hiology, and
mdicine. Hr longer termgoals are to explore interdisciplinary approaches to solving
problem in the madical field after attaining her Ibctor of Mdicine degree.

Content s

1 Introduction 12
L1 Poject Oerview. i e e e e e e e e e 13
1.2 Thesis Qganization v v it e e e e e e e 15

2 Related Wark 18

21 Mitilingml Rbugging o o e 18

2.2 language-independent Idbugging. L oo 19
2.3 Advartages and Dsadvartages o oo o 19

3 Camorical Gererated Debugger 21

3.21 Dbugging Unoptinized GhmpiledCode 24
3.2.2 PBoviding Bilored, Faditional Rmctionality 25
3.2.3 Supporting Btersion ormandso oL oL oL L 26

CONTENTS

4.4 QrerationRamavork oL oL Lo Lo o o 36
5 Prototype Iplerartation 38
Bl ORIVIEW o i i e e e e e e e e e e e e e e e e e e 38
5.2 MygenI3hugger Batures oo oo, 39
5.3 Imterface Rotocols L 39
5.4 Dhbugger Skeleton L e 41
5.5 GuerationRarevork oL L L L o 42
6 Resuts 43
6.1 Orrview L. L e e e e e e e e e e e e e 43
6.2 Bst (ises L e e e e e e e 4
6.21 (PLand M. e e e e 4
6.22 CandMyfly e 47
7 Gnelwios 53
T1 Smmary e e e e e e e e e e e e e 53
72 Rewe Wk L 5
7.2.1 Mygen Bototype Bhancerants L. 55
7.2.2 Rlated Aeas toBplareo oo o oo, 55
A SLI Imnt File Terplate 58
B MA Imnt Hle Biplate 65
C Saiple OMVirtuwal Mchire M Input Hle 73

HHliography 79

List of Fi gures

1-1 AN ALL -PURPOSE DEBUGGER GENERATION SYSTEM . . v v v v v v v ... 14

1-2 THE COMPONENTS OFA GENERATED DEBUGGER . .+ v v v v v v v v v . 14
13 INTERRELATI ONSHI P AMONG MAYGEN USERS . . v v v v v v v v v v v 16
41 THE MAYGEN DEBUGGER GENERATI ON SYSTEM .+ v v v v v v v v v .. 29
42 THE COMPONENTS OF A MAYGEN GENERATED DEBUGGER 30

List of Tables

3.1
3.2

4.1
4.2
4.3

5.1
5.2

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

CANONI CAL MAYGEN DEBUGGER FUNCTIONALITY . . v v v v v v v 2

ADDI T1I ONAL MAYGEN DEBUGGER FUNCTI ONALI TY FOR MULTI PROCES S

SOURCE LANGUAGE INTERFACE ROUTINES . . . i i v v v i vt i i ii e 33
MACHI NE ARCHI TECTURE INTERFACE ROUTINES 33

DEBUGGER SKELETON ROUTI NES AVAI LABLE TO DEVELOPERS

DEBUGGER FUNCTI ONALITY IMPLEMENTED IN PROTOTYPE

DEBUGGER FuNCTI ONALITY NoT IMPLEMENTED I N PROTOTYPE

SLI RouTi NEs SupPpPORTED By OPAL 44

SLI RouTti NEs NoT SupPOoRTED By OPAL 45
MAI RouTIi NES SUPPORTED By OM 46

MAI RouTi NEs NoT SupPORTED By OM 46

MAI ExTENSI ON CoMMANDS ProOVIDED BY OM 47
FuNcTI ONALITY OF THE GENERATED OPAL DEBUGGER 48
SLI RouTi NES SUPPORTED By C 49

SLI RouTi NEs NoT SuPPORTED By C 49

MAI ROUTI NES SUPPORTED BY MAYFLY . .. o v v v i i i i i ii e e 50

6.10 MAI RoUTI NE NOT SUPPORTED BY MAYFLY ... v v v uuen.. 50

6.11 MAI EXTENSI oON CoMMANDS PROVIDED By MAYFLY 51

6.12 FUNCTI ONALI TY OF THE GENERATED CDEBUGGER . .« . v v v v ... 52

10

LIST OF TABLES

71 FuTURE MAYGEN WORK

11

7.2 DEBUGGER GENERATION SYSTEMS: AREAS TO EXPLORE

Chapter 1

Int roduction

Recent years have seen a surge of newconmiter archi tectures as i ndistry and acaderma vork
to devel op faster processing pover. Wth the predomnance of hi gh-1evel programming over
machine-level programmimg as vell, the need for debugging tools that wse source 1anguage
nanes and notations has increased. 1 Mich effort has been gi ven to antanating the phases
of comiler witing in order to sinplify highlevel 1anguage inplemantation for these new
architectures. Simmlar effrts at antomation have not, unfortunately, been given to the
prodiction of debuggers.

i s lackof antomati onindebugger production can prove expensi ve interm of engi neer-
ing howrs, and this ronetary costs, required for devel oppent. Farly oninthe devel oprent
of anexperimantal commter system alowlevel debugger is needed to eval uate vhether the
systemis vorking carrectly. AXter the newcommter systemis ruming, each newhi ghlevel
language wittenfar the systemrequires a carresponding hi gh-1evel debugger becase wsers
vart to debug in term of the symhols and constructs of the source 1anguage. (e rathod
far meeting these debugging needs vould be to devel op fromscratch a new debugger for
each new architecture and for each newlanguage inplemanted for a g ven architecture.
Wfortunatel y, witing debuggers is not only tedious bt also tine consunng,

” G, 2

'The terms “high-level debugging,” “source-level debugging ” and “synbolic debugging” are used inter-

changeabl y to nean debuggi ng of prograns in terns of their source-level nanes and constructs.

12

CHAPTER 1. I NTRODUCTI ON 13

Asimil ar probl emcorfronted compil er devel opers about fifteen years ago. (orpilation
technol ogy has since then focused on redicing diplication of effrt for variows phases of
corpil er inpl enentati on vi th corsi derabl e success. Mst notably, parser generators[Joh7b,

M9, ASU86, FJ88|, such as yacc[Joh7h|, and scammer gererators, such as lex] ASUR6,

EJ88], have essentially elimmated the namwnl creationof parsers and scarmers, respectively.

Tess known but al so inportant have been eflorts at antonating the devel oprent of code
gererators| G¥8 INFT9, Br82, LJ®2] and even entire conpilers| K +82, Fis82, BfN,
Sto77, Schi8|. Mygen explores the possihility of applying sinilar ideas of antomation to
debugger devel oprart.

1.1 Project Overview

Tis thesis explores a novel approach to provi ding source-level debugging support through
the devel oprent of a “debugger gereration system” In general, an all-purpose debugger
gereration systemmght be a tool that takes as inpt a source 1anguage description and a
machine architecture description, 2 and prodices as output a fully functional, stand al one,
l anguage- dependent debugger for the specified architecture. Hgure 1-1 depicts such a sys-
tem

Adebugger produced by such a gereration systemcorsists of a core debugger skel etan
(SKEL) provi ded by the gererator, a source language interface (SII) created by the gener-
ator fromthe source language imput, and a machine architecture interface (MY) created
by the generator fromthe nachine architecture input. Hgure 1-2 depicts the conponents
of such a generated debugger.

The debugger generation systemdesigned in this project is called Mygen 3 Mygen
difers fromthe described all-purpose generation systemin terma of vhat informationis
conveyed fromeach of the source language and machine architecture devel opers to the

ZDetails about the terns “source 1anguage” and “machine architecture” can be found in Section 4. 2.

3The nane “Maygen” ori gi nated fromaninitial project goal of generating various symbolic debuggers for
one specific target architecture, the Myfly[[av92]. The project later evol ved to enconpass various target
archi tectures as well, though the nane Mygen renai ned.

CHAPTER 1. I NTRODUCTI ON 14

Sour ce
Language —B
Descri ption Al | - Pur pose
Gener at ed
Debugger — Synbol i c
Debugger
Machi ne CGener at or
Architecture —
Description

FHgrel-1: AN ALL- PURPOSE DEBUGGER GENERATI ON SYSTEM

Sour ce Language
Interface (SLI)

Cener at ed
. — Debugger
nbol i c =
S Skel et on (SKEL)
Debugger

Machi ne Architecture
I nterface (l\/Al)

FEgrel-2 THE COMPONENTS OF A GENERATED DEBUGGER

CHAPTER 1. I NTRODUCTI ON 15

gereration system In the all-purpose system input consists of source language and target
archi tecture descriptions that are then wsed by the generator to aitomatically create the
needed interface routines. In the Mygen system the naximl set of routines comprising
each interface is fully specified by Mygen to the wers of the generation system the input
fromthe wers contains information that conveys to Mygen vhich of the defined interface
routines are available. Qe the available interface routines are known, the Mygen system
determimes vhat addi tional conponents (parts of the SKEL) are necessary to provi de overall
debugger functionality as vell as to promte the snooth interaction of the two interfaces
described above. The Mygen systenframwrknai ntai ns the debugger skel eton, interprets

the inputs, and performa the necessary information processing to create a stand al one,
language- dependent and ar chi tecture- dependent. debugger.

Egure 1-3 depicts the interrel ationship ammng wers of the Mygen system Mygen
wers can be classified into one of two groups. “Phase I” wers work vith the Mygen
systemat debugger generation time, vhile “Fhase I1” wers work vi th generated debuggers
at debugger runtima.

Aprototype of the Mygen systermhas been devel oped and tvo test sets have been run
to denrstrate the viahility of such a system The test sets include a declarative Brol og-
like source 1 anguage ruming on a target virtual machi ne eml ator and an i nperati ve source
language rumi ng on a target parallel, massage- passing distributed nanory archi tecture.

1.2 Thesis Organization

The reminder of this thesis describes the advartages and di sadvantages of related vork,
expl ains vhy the Mygen generated debugger is a nore feasibl e approach, and presents the
design, inplemrtation, eval uation, and achieverants of the Mygen system

(hapter 2 begins by briefly exanini ng previ ous research efforts at provi ding debugging
suppart for ol tiple 1 anguages.

(Qapter 3 preserts the features of the canomical Mygen debugger in conparison and
in contrast to existing debuggers.

CHAPTER 1. I NTRODUCTI ON

Phase |

Language devel oper
provi des SLI routines |—& Maygen
and i nput
Gener at ed
Generation — Synbol i ¢
Debugger
Architecture devel oper:
provi des MAl routines B Fr amewor k
and i nput
Phase |1
Gener at ed
Debugger user
uses gener at ed Symbol i ¢
debugger
Debugger
Legend
g Sof t war e

Fgrel-3 INTERRELATI ONSHI P AMONG MAYGEN UsSERS

CHAPTER 1. I NTRODUCTI ON 17

(hapter 4 then describes the Mygen systemdesign, including the source 1anguage and
machine architecture interface protocols, the coare debugger skeleton, and the gereration
framvork wsed to create debuggers.

(hapter 5 el abarates upon the prototype of the Mygen systemthat vas devel oped, as
vell as provides som of the more interesting inpl enartati on issues invol ved.

(hapter 6 then discusses the test cases wsed to evaluate both the capahilities and the
efectiveness of the generation systermprototype.

Hnally, Qapter 7 surmarizes the Mygen project, presents the anthor’s conclwsiars,
and specul ates upon possible directions for further researchin the area of debugger gerer-

ation

Chapter 2

Rel ated Work

The idea of debugger gereration, althoughno such systemis knom to exist or to ever have
been desi gned, vas proposed by Jolnson| Joh78] in1978. Wile Johrson’s ovnfocus vas on
providing a mol tilingual tool for debugging, he commented that a debugger generation sys-
temcoul d possibly be an al ternati ve approach to provi ding source-level debuggi ng support
for mal tiple languages.

Dspite the lack of previows verk on debugger generation, tvorelated areas of research
have provided some irsight for the Mygen project. Specifically, the areas of rmltilingual
debuggi ng and 1 anguage- i ndependent debugging al so try to provide debugging support for
ml tipl e 1 anguages.

2.1 Miltilingual Debugging

Miltilingual debuggingis a debugging style that permits the debugging of softvare in vhi ch
comporents have been witten in rore than one source language[Job82]. Miltilingual
debugging is wseful to corsider becase of sone issues that are simnlar to those of debugger
gereration. Specifically, the need to di stingui sh betveen]anguage- dependent and | anguage-
independent comporents of debuggers pertains to both.

Bo examples of mltilingual debuggers are VAXTFHGB:a83] and SVAT Gir83).

18

CHAPTER 2. RELATED WORK 19

VAXTHHGi s the VX 11 ebugger devel oped at Dgital Ky prant Grporation. Kr a
perticul ar set of supported source | anguages, \BXTFH Gunderstands: howsynhol nanas

are composed in the] anguage, howl anguage expressi ans are interpreted, howand vhen type
conversions are done in the language, howvalues in the language are displayed, and how
the language scope rules vork. Athough WXTFHGunderstands this informationfor a
defined set of 1anguages, it operates accarding to the rules of only one language at a time.
X TFH G supports the folloving languages: assently, Wrtran, Biss, Bsic, (bbol,
Pascal, and PI/I.

SWTis a source-level debugger developed by Ita (dneral (orporation. SVET
supports five high-level 1anguages, each of which corforms to an agreed upon “(ormon
(rpi ler (brponent Mthodol ogy.” This mathodol ogy defines a common intermadi ate
language, procedire- calling sequence, and 1anguage runtine envi rannant that mst be fol -
loved by each of the supported languages. The languages understood by S\l are: G
(bal, Brtran 77, Pascal, and PI/I.

2.2 Language-i ndependent Debuggi ng

Sinil ar tothe i dea of nol tilingual debuggingis 1anguage-independent debugging. Tanguage-
independent debugging refers to debugging techniques that are independent of any one
particular source language|Joh82]. A debugging systemthat has dealt specifically vith
the issue of 1anguage-independence is the RATE systemJoh77]. Johrson explains that
a separate dbuggry lampuae might be desirable. The debugging language created for
the RATE system called Dspel[Job81], is designed to aid commomication betveen an
interactive wer and a runtine, synholic debugging system

2.3 Advantages and I sadvant ages

Indeed, these previows systern present approaches to debugging that appear to accormo-
date ml tiple languages. Such accormadationleads to inproved econony of inpl emarta-

CHAPTER 2. RELATED WORK

tion as vell as increased ease in product maintenance. In addition, these system ofer a
certain anmut of functional corsistency to the debugger wser.

Ufortunatel y, these system have several shortcomngs. Hrst, they are unable to handle
the peculiarities of any specific language; there is no extersion machani smwith vhich to
cater to the needs of a given particular language. Second, the 1anguages supported by each
of the mltilingual debuggers are specified beforehand; to handle another 1anguage voul d
maan having to rewrite the debugger itself. These systern are limted to debugging not just
a pre- defined set of 1anguages, but noreover, only a pre- defined set of serantically simnlar
l anguages.

Afurther fault lies in the 1 anguage-independent debugging systemas vell. Auser mmst
first learn a conpl etel y separate 1 anguage, the debugging 1anguage, befare even being able
to start debugging a program Qice debugging can actually proceed, the user then needs
to vorry about the possibility of faulty ddbuging paggams in addition to faulty source
progrars.

AMnittedy, mltilingual and 1anguage-independent debugging techni ques offr som
gairs over single-language debuggers. DNevertheless, the deficiencies in these debugging

techni ques are considerahle.

Chapter 3

Canoni cal Generated Debugger

"The Mygen debugger tries to mintainthe desirable features of miltilingual and language-
independent debuggers vhile al so trying toinmprove upon their shortcomngs. This chapter
begi s by describing the features of the canoni cal Mygen generated debugger, proceeds to
expl ain the noti vation behind the chosen design, and then denonstrates howthis designis
able to offr nore than miltilingual and | anguage-independent debuggers.

3.1 Overview

The canoni cal Mygen debugger gererally resenhles a typical single-language source-1evel
debugger for a compil ed] anguage in that it ofers the “traditional ” functionality wth vhich
wers are accustonad to debugging program. The Mygen debugger debugs corpil ed code

that has not been optinmized It is also expected that the wer starts up the Mygen de-
bugger and then rurs a progranumder debugger control. The maxinal set of fundanental
debugging facilities that are supported ' by a Mygen debugger include: starting, stopping,
single-stepping, and contiming an execution; loading a file; resetting the machine; setting,
clearing, and listing machine-level as vell as source-level breakpoints; activating and sus-

'Each of the supported facilities is only availabl e upon satisfaction of specific conditions. See Chapter 4
for details.

21

CHAPTER 3. CANONI CAL GENERATED DEBUGGER 2

Bhe3.1: CANONI cAL MAYGEN DEBUGGER FUNCTI ONALI TY

Start execution

Stop execution

(mti e executi on

Single-step execution (folloving calls)
Single-step execution (not folloving calls)
Ioad afile

Reset the machine

Set, clear, list machine-level hreakpoints
Set, clear, list source-level hreakpoints
Activate hreakpoints

Suspend breakpoi nt's

Dsplay and set variahl e val ves

Display register val ues

FPace and untrace variabl es

Tace and untrace procedires

Tist traced variables

List traced procedures

Tist wer programlabels and symhol s
Showcurrent source line

Rint information about debugger status
Dsplay list of debugger commands

Repeat previows cormand

Quit 2bugger

Qmert (ignored)

pending breakpoints; displaying and setting variabl e val ues and register val ves; tracing and
untracing vari abl es and procedires; listing traced variabl es and procedires; indi cating the
current source line; displaying alist of debugger commands vith hel p infornation; repeat-
ing the previows comand quitting the debugging session; and adding a coment. The
Mygen debugger functionalityis sumarizedin Bhle 3.1

Each command’ s avail ahility depends uponits semantic carrectness inthe context of the
perticular source 1anguage or machine architecture invol ved, as vell as upon the support
provi ded by both the source 1 anguage and the machi ne ar chi tecture devel opers. Rr exarpl e,

CHAPTER 3. CANONI CAL GENERATED DEBUGGER

a debugger wser shoul dnot be able to set 1ogic variables in Brolog; this, the comand to set
the val ve of a variableis not nade avail abl e in a generated Bral og debugger. Inthis narmer,
each gererated debugger is tailared specifically to the particul ar 1 anguage and archi tecture
in question.

In addition to the fundanental debugging facilities, the Mygen debugger also has a
machani stafor incorporating extension comands that are then fully available to the de-
bugger wer. Kr example, the option to choose whether an execution will proceed in a
breadth first mammer or a depthfirst nammer is not provided by the canonical Mygen de-
bugger; hovever, this mght be a desirable command to have in a Brol og debugger. ARdl og
systemdevel oper, then, can specify this option as an extersion command to the Mygen
system vhich wll then add it to the set of commands available in the generated Rolog
debugger.

Ftension commands can be specified and provi ded by the source 1anguage devel oper,
the machine architecture developer, ar both. Fxtemsion commands are of two general flar
vors. “Independent” extension commands are sel f- containedin that their functionality does
1ot depend upon any routines that mght not be available, e.g., fromeither the source lan
guage interface routine set or the machine architecture interface routine set. “D¥pendent”
extersion commands, on the other hand, are not self-contained in that their functionality,
and this their availahility to the debugger wer, depends upon at least one of the routines
fromeither the source language interface routine set or the machine architecture interface
routine set. 2

Hnally, the canoni cal Mygen debugger understands that not all nachi nes are wni proces-
sors; the Mygen debugger understands that a machi ne may have nore than one processing
mode. Insuchcases, the Mygen debugger operates onasingle node at atim. The debugger
wser has the ahility to determne the total mmher of processing nodes present, deterrmne

2K ther type of extension comand—independent or dependent—ean use routines explicitly provided by
the debugger skeletonif desired. (See Chapter 4 for details.) Since the availability of an extension command
does not hinge upon the availability of routines provided by the debugger skeleton (because the latter are
al ways available), debugger skeleton routines do not play arole in the classification of extension cormands
into one of the tvo categories.

CHAPTER 3. CANONI CAL GENERATED DEBUGGER %

Bhe 3.2 ADDI TI ONAL MAYGEN DEBUGGER FUNCTI ONALI TY FOR MULTI PROCES

Dspl ay mmber of nodes present and availahl e
Showcurrent node

Svitch to a difErent node

(hange muher of nodes available

the muher of nodes available, determine vhich node is being debugged, swtch fromthe
current node being debugged to a di ferent node, and change the muher of nodes availahl e.
Myger’'s defarlt mde of execution for moltiprocessars is that which is provided by the
machi ne archi tecture devel oper. "Bhle 3. 2 surmari zes the addi tional debugger functionality
provi ded by Mygen for mml ti processar archi tectures.

3.2 Design

3.2.1 Debugging Unoptim zed Conpil ed Code

The canonical Mygen debugger vas devel oped to vork on unoptinized, conpiled code
rather than on optimzedor interpreted code. Athoughwsing aninterpreter as the base of a
debugger nght be benefici al becawse of howvell it supports interactive debuggi ng] Mk91],
the approach is nore complicated In addition to a debugger skeleton, the generation
systemvoul d need to mintain an interpreter skeleton as well. This interpreter skele-
ton either vould need to interpret a hroad class of source languages, which is currently
infeasible[Joh77], or vould need to be devel oped by the generation systeminto a | anguage-
dependent, archi tecture- dependent interpreter. The gereration of such aninterpreter mght
itself be aninteresting research problem bt is tangential to the issue of debugger gerera-
tion

Rrtherrore, Foisi[To82 points out that interpreted code may run diffrently than
compil ed code; this, a debugger based upon aninterpreter nay not illumnate the probl em

CHAPTER 3. CANONI CAL GENERATED DEBUGGER

area of the source code. In addition, a debugger based upon an interpreter mght sufler
fromsi gni ficant] y decreased execution speed Elwib| .

Tikevise, the issue of debugging optimized code is al sotangential tothe prinary concern
of howto autonati cally create a syrhali ¢ debugger. 3 Ths, the canoni cal Mygen debugger
expects that the code a user 1oads and therefore varts to debug is unoptimzed. Qxe such

code has been determined to be correct, then the wer can explare performnce issues.

3.2.2 Providing Tailored, Tradi ti onal Functionality

The canoni cal Mygen debugger ofrs a variety of traditional debugging comands to the
wer. Such a design vas chosennot onl y because users are nore accustonad to this mathod
of debugging and this can have less startup tine learni ng howto wse a Mygen debugger,
but al so becase wsers voul dbe provi ded ith the essential s of aruntine debugging system
vhich are the ahility to set breakpoints and exarmine values within the programbeing
debugged Bo79, Joh8l].

Sone traditional debugging comands, such as starting an execution, nake sense for
essentially all languages. The relevance of sone other cormands, hovever, are not nec-
essarily irmadi atel y apparent. Fr exarple, setting a hreakpoint nakes perfect serse in
a language such as Cor Pascal; but, vhat does it mean to set a hreakpoint in Prolog?

It mght, for example, man the ahility to temporarily stop execution at any of the four
ports of the moltiported box mdel for Rolog execution] SW0]. Awther exarple is the
tracing of variables. This mght nake good sense in an inperative language, but vhat does

it man in a declarative one? A exarple of howthe tracing of variables could be wed
in a declarati ve language is to followclawses that match (are true) for a particular search
In cases such as the tw described, it is left up to the 1anguage devel oper ar architecture
devel oper to deci de in vhat nanner each supported traditional debuggi ng comand can be

best exploited for debugging of the gi ven language on the gi ven archi tecture.

3Gee Section 7.2.2 for more details.

CHAPTER 3. CANONI CAL GENERATED DEBUGGER

3.2.3 Supporting Extension Conmands

Anittedy, not all of the traditional debugging commands are necessarily applicable for all
source 1 anguages or all machine architectures. For this reason, the Mygen debugger mght
only provi de a subset of the traditional comands, depending on the specific 1 anguage and
architectwre inquestion. That is, the Mygendebugger is specificall y designed to be capahle
of having a cormand set tailored to the target language and architecture.

Tis tailoring of the Mygen debugger’s comand set goes beyond simply del eting ir-
rel evant or inapplicable traditional debuggi ng comands. Such a systenwoul d be not onl y
too limting for the extrenel y unconventianal target 1anguage and/or architecture, but also
not good enough for a nore conventional but slightly diferent target 1anguage and/or ar-
chitecture. Acordingly, the Mygen debugger is designed to support extension cormands.
The extersion cormands enabl e 1 anguage and archi tecture devel opers to extend the basic
command set of a Mygen debugger to include any additionally desired functionality that
is potentially highl y-specific for that particular 1anguage or architecture.

3.2.4 Supporting Mil tiprocessors

Athough the target architecture for Mygen mght be a parallel one, the focus of this
project is on devel oping a nethod for gererdting débuggers rather than on deternimi ng the

best vay to iremrt a prdld dbuger. Tus, Mygen debuggers have been desi gned to

deal only vithsinpl e noti ans of parallelism such as knoving about the exi stence of mltiple
processing nodes. A Mygen debugger operates on one processing node at a tine and can

swi tch fromone node to another upon the wser’s request. These capabilities all owfor rore
maani ngful debuggi ng on a ml tiprocessor than possibl e frona debugger vith absol utel y no
knovt edge of mmltiple nodes. Mygen generated debuggers do not, hovever, address rore
compl ex parallelismissues, such as the nonitoring of interprocess commmication. Such
issues, although potentially bereficial, wuld tend to detract fromthe prinary concern of

the project.

CHAPTER 3. CANONI CAL GENERATED DEBUGGER A

3.3 Advantages

The rore obviows advartages of wsing Mygen debuggers over traditional, single-1anguage
debuggers are simnlar to the advantages attributed to the use of mltilingual or language-
independent debugging techni ques. Hrst, Mygen debuggers still present a certain degree
of functional corsistency to the debugger user, resulting inless learning overhead Second,
Mygen debuggers are cheap to uild since they require little vork on the part of 1anguage
devel opers and archi tecture devel opers compared to the effort needed to create debuggers
fromscratch. Hnally, maintenance is sinplified becaise the driving engine of the debugger
is simlar fromone Mygen debugger to the next.

Wi 1 e Mygen debuggers share the advant ages of mml tilingual and1anguage- i ndependert
debugging systema over traditional, single-language debuggers, Mygen debuggers addi-
tionally compensate for the deficiencies inherent inmiltilingual and 1 anguage-independent
system. Mygen debuggers are fexible; they can be tailared to the specific needs and
peculiarities of diferent 1anguages and architectures. This flexibility cones in part fram
the selective availahility of the supported debugging routines. Mre inportantly, though,
this flexibility comes fromthe systems allovance of and support for extensi on conmands.
These features taken together result in a systemcapable of handling serantically difler-
ent languages. Hrthermore, Mygen debuggers can be gererated for mre than jwst a
pre-defined, limited set of 1anguages.

Hwis it that the Mygen debugger can be so flexible? The ansver lies in the fact that
it is a gaetaldebugger, that it is generated accarding to the specifics of each particular
language and each particular architectwre. "his is made possible through the Mygen

gereration system

Chapter 4

Generation System Design

4.1 Overview

The Mygen systemconsists of three mjor components: a set of interface protocdls, a
debugger skeleton, and a gereration framverk. The protocols specify the exact nature of

the interface routines that promte smooth commmi cation bet veen the debugger skel eton

and the rest of the progranming envi ronnant. 1 The routines that are aveilable for a given
debugger to be gererated are conveyed by vay of input files to the generati on franeverk.

The gereration framawrk, howing the debugger skeleton, processes the inpt data and
prodices a stand al ore, 1anguage- dependent and archi tecture- dependent debugger.

Hgure 4- 1 portrays the components of the Mygen systerand howthey are interrel ated,
vhile Hgure 4-2 shovs the pieces of a Mygen gererated debugger.

The Mygen systemvas designed in this namer in order to have the capahility of
prodicing a debugger that is flexible, in term of handling very diferent inputs, yet prac-
tical, in term of providing large savings to language and architecture developers. Since
interpreter-based debuggers have sone intrinsic problem, the debugging of compiled code
vas chosen as the basis for Mygen. The decision to have a generation systemat all evol ved

!The “rest of the programming envi ronment” refers to the “source 1 anguage” and “nachi ne archi tecture.”
‘These are explained in detail in Section 4. 2.

CHAPTER 4. GENERATI ON SYSTEM DESI GN

SLI routines MAI routines

Interface Protocols

SLI
| nput . Ceneration
File
Fr amewor k
Cener at ed
Debugger
MAI
I nput —e
_ Debugger
File Skel et on

FHgre41: THE MAYGEN DEBUGGER GENERATI ON SYSTEM

CHAPTER 4. GENERATI ON SYSTEMDESI GN 30

from MAI

CGener at ed Debugger Skel et on

Synbol i ¢ Debugger (SKEL)

from SLI

Fgre42 THE COMPONENTS OF A MAYGEN GENERATED DEBUGGER

fromthe knowt edge that non generated debuggers, suchas mml tilingual debuggers, lack the
flexi hility needed to support an arhbitrary mmber of 1anguage system as vell as to handle
seranti cal ly diflerent 1anguage systera. (hthe one hand, the generation aspect, tailoring
ahility, and extension machani stof the Mygen systemmake canoni cal Mygen debuggers
flexible. (rthe other hand, the core debugger skel etonal ong viththe automtic processing
of it into a generated debugger nake canoni cal Mygen debuggers practical.

A al ternati ve mathod that vas cansidered for achievingthe dual goals of flexihility and
practicality vas to add debugging carstructs to a source flle in a preprocessing-type step.
Rreprocessars have the advantage that the compiler of the source 1anguage to be debugged
need not be modi fied Biwib|. This mathod, hovever, seened to be extreraly linmiting in
term of vhat debugging capahilities a debugger wer would have, as vell as in term of
vhat 1 anguages and system coul d actually be handl ed effectivel y.

CHAPTER 4. GENERATI ON SYSTEMDESI GN

4.2 Interface Protocols

A inportart aspect of devel oping the Mygen systemis deci ding upon the interaction of

the Mygen debugger vith the rest of the world Some programming 1 anguages erpl oy the

motion of an abstract machine, or virtual machine, with vhich to serve conceptual 2 and/or
irplerantational 2 purposes. VEenthis is the case, the highlevel aspects of the abstraction
could be exploited for the purposes of debugging. An exanple is the mdification of the

ports of the Brolog box mdel to support debuggi ng[SWU].

Gnvertional 1anguages such as Cand Frtran do mot really have abstract nachines
with vhich to visualize their exection For exarple, in a Tix systerhM83], an object
file produced by the Ccompiler executes as just amother process ruming under the Wix
operating system (omceptually, one might vi sualize that process having a certai nanmmt of
manory allocated toit and have anotion of data and irstructi ans residing in that manary,
as vell as a“locationcounter” that indi cates the current instructi onbeing executed Cearly,
such a mantal mdel of programexecution is dovn near the level of the operating system
and rachi ne archi tecture on whi ch the process is rumi ng,

The Mygen systemadopts an interradi ate position tovard debuggers that atterpts
to take advantage of higher levels of abstraction vhen awilable, bt that can be wsed for
lover-level convertianal programs as vell. The Mygensystenseparates the soure praggam
fromthe evdwtion enirovat.

Acordingly, the tvwo interfaces to the Mygen debugger are the source programand
the eval vation envirommart. The interface to the source language is fittingly referred to as
the Source Ianguage Interface (SII). The interface to the evaluation envirommant is less
appropri atel y referred to as the Mchine Architecture Interface (MY); this interface nght

2As a conceptual technique, the abstract machine allows a highlevel way to thi nk about the execution of
a program This capabilityis especially useful when the programmng | anguage contains non-trivial control
nechani sng such as Prol og’s uni fication or Snobol ’s pattern matcher.

3% aninpl enentation techni que, the abstract machine can serve as a speci fication that describes details
of a particul ar al gori thm such as a un fier or pattern mtcher, used toinplenent the 1 anguage. In addition,
the abstract machine can serve as an inpl enentation prototype, as in the Lisp functions Fval and Apply,
vhi ch define the conpl ete Iisp eval uator in just a fewlines of Iisp code.

31

CHAPTER 4. GENERATI ON SYSTEMDESI GN

encompass not only the machine architecture, but also a runtima system an operating
system an abstract machine, or a corbinatian

The interface protocals specify the exact mature of the routines that are used by the
core debugger to interact wth the source programand the architecture. 4 TFach interface
protocol can be thought of as the set of routines that conprise the interaction betveen the
core debugger and source program or betveen the core debugger and nachi ne archi tecture.

The Source Language Interface routines are provided by a language developer, vhile the
Mchine Achitecture Interface routines are provi ded by a systemdevel oper.

Exchinterface carsists of approxi matel yfifteenroutines; these tramslate tothe supported
functionality of a generated debugger. There exists a minimal subset of routines that are
required of the Source language Irnterface and of the Mchine Achitecture Interface in
order for a vorking debugger to be generated Wth the provision of this mmimal subset,
Mygen can automatically create a lowlevel debugger. Wth the provision of increasingly
mre Source language Interface and Mchine Achitecture Interface routines, Mygen can
create syrholic debuggers with increasingl y larger anmmts of functionality These sets of
interface routines are experinentally derived.

Bhle 4.1 lists the routines constituting the Source Ianguage Interface as specified by
the current Mygen design. Simmlarly, Bhle 4.21ists the routines containedin the Mchine
Achitecture Interface as specified by the current Mygen desi gn.

The interface protocols not only specify the routines that should be provided, but also
the format in vhi ch such informationis conveyed to the generation framawerk. The input
to the gererationframavork consists of tvo text fles, one for informationabout the Source
Tanguage Interface and the other for informationabout the Mchine Architecture Interface.

"The Sour ce Tanguage Interface input fle contains: alistingof the Source Language Interface
routines with specification of vhether or nmot each is awilable, the nare of the source
language, the location and name of a litrary containing the Source Language Interface

*Henceforth, the “nachine architecture” and the “architecture” refer to the eval uation enviromment,
except when speci fied otherw se.

32

CHAPTER 4. GENERATI ON SYSTEMDESI GN

Bhe4.1l: SOURCE LANGUAGE INTERFACE ROUTI NES

Initialize SII

Mp procedire to object line

Mp procedire begimming to object line
Mp procedire ending to object line
Face procedire

Mp source line to obhject line

Read in synhal s

Rint 1abels

List procedures

Bint synhols

Dsplay text of current source line
Uitrace procedire

Brocess initial debugger argunarts
Rint S information

Bhe4.2 MACHI NE ARCHI TECTURE INTERFACE ROUTI NES

Initialize MU

Is programl caded?

Imstall nachine breakpoi nt

(ontime program

Winstall machine hreakpoi nt

Set machi ne hreakpoint on a procedire
(Cear machi ne breakpoint on a procedire
Rad in program

Bint register cantents

R program

Step, folloving procedire calls

Step, not folloving procedire calls
Reset machine

Brocess initial debugger argunants
Rint Ml information

(hange current processing node
(hange muher of availahl e nodes

CHAPTER 4. GENERATI ON SYSTEMDESI GN

routines, andinformati onabout each extensi on cormand desired by the 1 anguage devel oper.
Tis extension cormand information includes the total mmher of extersion commands
supparted by the language devel oper as vell as details about each extension cormand
These details include: the nare of the conmand, the declaration wsed to indicate it is an
externally defined procedire, the invocation of the comand ithits argumants, and a list
of Source Ianguage Interface and Mchine Architecture Interface routines upon which the
proper functioning of the extension command depends. 5

Simnl arly, the Mchine Achitecture Interface input file contains: alistingof the Mchine
Achitecture Interface routines wth specification of vhether or not each is availahle, the
name of the architecture or abstract nachine, the 1ocation and nare of alibrary containing
the Mchine Architecture Interface routines, and information about each extension com
nand desired by the machine devel oper. The informationfor these extension commands is
exactly anal ogous to that of the extemsion commands for the Source language Interface.
The Mchine Architecture Interface input file additionally contains information about how
many processing nodes are present as vell as hownany processing nodes are available in
the target architecture.

& exarple of a Source language Interface input file tenplate, which can be filled in
by a l anguage devel oper, can be fondin Appendix A Appendi x Beontains an exarpl e of
a Mchine Achitecture Interface input fle tenplate.

4.3 Debugger Skeleton

The debugger skeleton consists of the components of a syvholic debugger that have been
determined to be 1anguage-independent and archi tecture-independent. These conponerts
have been grouped together to fornthe aredf a debugger, hence debugger skdeton vhi ch
the Mygen systemises as the backbone vith vhich to create Mygen debuggers.

The debugger skel eton can be thought of as provi ding the glue necessary for coherently

®For independent extension commands, this list wll be enpty.

CHAPTER 4. GENERATI ON SYSTEMDESI GN

sticking together the interface routines. Mre accurately, the debugger skeletonis several
fles of code, som of which contribute directly (uxchanged) to the code of a generated
debugger, and soma of vhich are either supersets of or inconplete fragrants of code that
will be nadified by the generation framaverkinto code that wll then be part of a gererated
debugger. The final output files incl ude a nakefil e vith vhi ch the wser can make the newt y-
gererated debugger fromits source code.

Mre descriptively, the debugger skeleton comsists of debugger components such as the
debugger wser interface, comand loop driver, and grungy initialization and nai ntenance
rotines, e.g , for keeping track of tracing. The debugger wer interface can range froma
sirple textual interface to a mch rare el abarate graphi cal wser interface. This interface
reed only be witten once and then can be wed for each subsequent Mygen debugger.

M exarple of a grungy mintenance job is the breakpointing facility: coordinating the
setting (and checking for duplicates), clearing (and checking for validity), keeping track,
listing, irstalling, wnirstalling, activating, and suspending of machine-level and source-1evel
hreakpoi nt:s.

Fach debugger command supported by the debugger skeletonis affi ated vith certain
Sour ce Language Interface and Mchi ne Archi tecture Interface routines upon vhi chits func-
tionality depends. Agiven, supported debugger comandis only available if the routines
upon vhichit depends are made available by the language and/or architecture devel opers.

Br exarple, the cormand that allovs a debugger wer to set a hreakpoint on a source
lire depends upon one Mchine Architecture Interface routine (install nachine hreakpoint)
and one Source Language Interface routine (map source line to object lire). If either of
these routines is not supported, then the source-level breakpoint setting comand is un
available in the subsequently gererated debugger. The debugger commands supported by

the debugger skel eton are identical to those previously described in Bhle 3. 1.

& martioned previowsly, a few debugger skeleton routines are explicitly provided to
aid Mygen systemusers. language or architecture devel opers can freely call these row
tines fromvithin either extension comands or Interface routines. The debugger skeleton

CHAPTER 4. GENERATI ON SYSTEMDESI GN 36

BHe4.3: DEBUGGER SKELETON ROUTI NES AVAILABLE TO DEVELOPERS

Imstall hreakpoints

Winstall breakpoints

(heck vhether hreakpoi nt address al ready exists

Add procedire tolist of procedure hreakpoints

Rerove procedire fromlist of procedire hreakpoi nts
Add machine address tolist of nachine hreakpoints
Rerove nachi ne address framlist of machine breakpoints

routines supported in this marmer are listedin "Bble 4.3.

4.4 Generation Franmework

Tis section describes the overall framavork wsed by the Mygen systemto create a func-
tional debugger. s frarmaverk serves as the driving engine for accepting input inforna-
tion about the Source language and Mchine Architecture Interfaces, for translating the
inpt into vhich debugger comands will be available, and for appropriately nodifying
and appending the debugger skeleton to make it a stand al one debugger.

The generation framavwrk understands the format of the input files and this can read
and interpret the informtionin the input. The gererati on framavork al so howses, or nore
accaurately, keeps track of, all the pieces of the debugger skeleton. The framvork knove
vhi ch pieces are to be left intact to becoma part of a gererated debugger as vell as vhich
need to be either augrented ar chopped and spli ced.

The generation framevork decides, based upon vhich Source Ianguage Interface and
Mchine Achitecture Interface routines are known to be available, vhat conponents wll
go into the debugger to be generated and howthese components shoul d be put together to
make a vorking unit. The frareverk processes the input information to deterrmne vhich
debugger comands w1l conprise the comand set of the debugger to be generated. These
command nanes are thenincorporatedintothe “hel plist” availabl e to debugger wsers, vhile

CHAPTER 4. GENERATI ON SYSTEMDESI GN 37

the code that inplenarts these cormands are incorporated into the source code files that
comile into the functional debugger. Hnally, the generation framavork outputs all the
necessary code files and a mkefl e for the newMygen debugger.

The franevork is desigred to performat gerertiontimall of the interpretati on and
processing necessary for agi vendebugger to be generated. By performingall input interpret-
ing and processing diring debugger generation, Mygen debuggers can avoi d umecessary
runtire inefli ency.

Chapter 5

Prototype Inpl enent ation

"The Mygen systemdesi gn enconpasses nore than does the prototype that has beeninple-
nmantedthis far. This chapter describes the envirannmant in whi chthe systenwas devel oped
and the scope of the prototype, as vell as presents som of the more interesting inpl enan
tational details.

5.1 Overview

The experimarnt vas carried out wing the equipnent and facilities of Hewtett Packard
Iaboratories. A single-processor vorkstation H9000/840 ruming FR X 7.0, Bewlett
Packard’ s versionof INX vas uwsed far the devel oprant of the debugger generati onsystem
The prototype Mygen systemis wittenin the Clanguage.

The prototype generationsysterconsists of the Source language Interface and Mchine
Achitecture Interface protocols with routines defined and input fle formts specified, an
inpl eranted subset of the designed debugger skeleton, and a functional generation frane-
vork that handles the exi sting debugger skel eton and inputs.

CHAPTER 5. PROTOTYPE I MPLEMENTATI ON 39

5.2 Mygen Debugger Features

The canoni cal Mygen debugger of the prototype generation systemsupports most of the
functionality supported by that of the desigped system These commands are surmarized

in Bble 5.1. The commands that are not supported in this inplemartation are listed in
Bhle 5.2. A additional mote is that the support for tracing and untracing of procedures
is currently inplenented as the setting and clearing of hreakpoints on procedire nanes.
Pacing of procedures coul d be made nore el aborate by not onl y breaki ng vhen a procedire

is reached, but al so autoratically displaying the values of the procedire’s argunents upon
invocation and di spl ayi ng any return val ue upon exit.

% in the design, each debugging comand’s availahility depends upon its semartic
correctness in the context of the particular source 1anguage or machine architecture in
vol ved, as vell as upon the support provi ded by both the source 1anguage and the nachine
architecture devel opers.

The prototype canonical Mygen debugger is able to support one of the tw flavors
of extersion commands described in Section 3.1. Independent extension commands are
current]l y incorparated in the prototype, vhereas dependent extersion commands are not.

Hnally, the prototype Mygen debugger operates onasingle node at atine, but under-
stands that there might be nore than one processar in the target architecture. Thus, vhen
the target architecture has mmltiple nodes, the gererated Mygen debugger allove the wser
to: determine the total mumher of nodes present, deternine hownany nodes are available,
find out which node is being debugged, svitch betveen nodes, and change the mmher of
modes available. This functionality is identical to that designed, vhichis summarized in
Bhle 3.2.

5.3 Interface Protocols

Te Source language Interface and Mchine Architecture Interface are inplenerted as
described in Section 4.2, having the goal of separating the source progranfronthe eval ua-

CHAPTER 5. PROTOTYPE I MPLEMENTATI ON 40

Bhe51: DEBUGGER FUNCTI ONALITY IMPLEMENTED IN PROTOTYPE

Start execution

Stop execution

(mti e executi on

Single-step execution (folloving calls)
Single-step execution (not folloving calls)
Ioad afile

Reset the machine

Set, clear, list machine-level hreakpoints
Set, clear, list source-level hreakpoints
Activate hreakpoints

Suspend breakpoi nt's

Display register val ues

Tace and untrace procedires

Tist wer programlabels and symhol s
Showcurrent source line

Rint information about debugger status
Dsplay list of debugger commands

Repeat previows cormand

Qi t I¥bugger

Qmert (ignored)

Bhe52 DEBUGGER FUNCTI ONALI TY NoT IMPLEMENTED I N PROTOTYPE

Dsplay and set variahl e val ves
Tace and untrace variahl es
List traced variables

List traced procedires

CHAPTER 5. PROTOTYPE I MPLEMENTATI ON 41

tion enviroment. The specified routines conprising the Source Language Interface are the
sara as those listed in Bhle 4.1; likevise, the specified routines conprising the Mchine
Achitecture Interface are the sama as those emmeratedin Bhle 4.2,

The inpt file formats, which the Mygen prototype wes, are identical to those pre-
scribed by the interface protocol design of Section 4.2. The sanple Source Language In-
terface input file terpl ate located in Appendix Ais the actual input file tenpl ate wsed for
the prototype’s language test cases. Simlarly, the sarple Mchine Architecture Interface
input fle tenpl ate located in Appendix Bis the actual input file tenpl ate wed for the

prototype’s architecture test cases.

5.4 Debugger Skeleton

The prototype debugger skeleton corsists of components of a syrholic debugger that are
l anguage-independent and archi tecture-independent, as designed. Hwewer, the prototype
debugger skeleton does not enconmpass as mmch basi ¢ supported functionality as does the
designed debugger skeletan. Aso, the debugger wser interface is a purel y textual one.

The cormand 1 oop driver is based upon a Clanguage switch statemart that svitches
on the interactive wer’s typed coomand. This inplemartation vas chosen for relative
efitiency in carrying out the desired command and for ease in tailoring the appropriate
code fles to the inputs.

The debugger skeleton carsists of five flles that contribute unchanged to a gererated
debugger’s source code and six flles that are mdified into files that are then directly part
of a gererated debugger’s source code. The files that contribute unchanged contain source
code files that inpl enant breakpoints, essential debugger initializations and driver routines,
and input /output routines. These files also include header files that list Source Ianguage
Interface, Mchine Achitecture Interface, and debugger skel eton routines.

The files that need to be nodified befare becomng part of a generated debugger are
the mkefle, “cases” file, “filler” file, extersion command file, “mscell aneous” file, and
“debugger help list” file. The “cases” file is a superset of the code needed to decide vhat

CHAPTER 5. PROTOTYPE I MPLEMENTATI ON

to perfarmfor each conmand Ween the prerequisite routines are available for a given
debugger comand, that command will be associated vith code that perform the actual
command; vhen the prerequisite routines are not aveilable, hovever, that command wll

be associated vith code that relays to the wser the unavailahility of the invoked cormand.
In addition, each coomandis accordingly added or not added to the debugger helplist in
the “debugger help list” file. T, vhen a wer calls up a helplist of debugger commands,
those commands that are not availahle, due to lack of suffiient support fromeither the
language or archi tecture devel oper, wll not be includedinthe list. The “filler” fleis created
by Mygen to accout for all of the Source Language Interface and Mchine Architecture
Interface routines that are not provided as inputs. Mygen creates “fill er” routines to satisfy
the compiler’s checks, knoving that these durmy routines will not actually be called. The
extension cormand file is created by Mygen to handle the calling of appropriate extension
commands upon a wser’s invocation of such commands. Enally, the “mscellaneows” file is
created by Mygen to hold tw architecture- dependent definitions as vell as routines for
printing infornation upon debugger startup and exit.

5.5 Generation Franework

The prototype gererationframavorkis as describedin Section4.4. This generation frane-
vork understands the input fle formats, reads and interprets the input files, accordingly
perform the actual nodifying of the debugger skeletonfiles described in the previous sec-
tion, and ot puts all necessary source code to create a newdebugger.

Chapter 6

Resul ts

This chapter discusses the test cases wsed to eval uate the prototype generation system and
hence the Mygen systemdesign itself.

6.1 Overview

The goal for choosing the test cases was to select domains that are quite diffrent in order
to showthe flexibility that Mygen has in conparison to existing system for providing
debuggi ng support to mil tiple programming envi roments. Fach test set 1is canprised of
a source language that conforms to the Source Ianguage Interface protocol (in term of
interface routines and Mygeninput file), and a machine archi tecture that conform to the
Mchine Architecture Interface protocol (interm of interface routines and Mygen input
fle).

Bosuch test sets have been run through the Mygensystem The tvo source 1 anguages
and their evaluation enviromerts are: a declarative language, (P, ruming on the (M
virtual nachine, and aninperative l anguage, G ruming onthe Myfly parallel architecture.
By gererating a syrholic debugger for both a declarative language and an inperative
language, Mygen denorstrates its ahility to handle senantically- di férent 1 anguages.

1 A“test set” consists of both a source 1 anguage “test case” and a machine architecture “test case.”

43

CHAPTER 6. RESULTS

BhHe6.1: SLT RouTiI NES SUPPORTED By OPAL

Initialize SII

Mp procedire to object line

Mp procedire begimming to object line
Read in synhal s

Rint 1abels

Bint synhols

Rint S information

Brocess initial debugger argunarts

6.2 MTest Cases

6.2.1 OPAL and OM

(A, the Qegon Prallel Iogic language, is a Prologlike language developed at the
Wi versity of Qegon n90, n91, Gn92]. (B is based on the ANY(R Brocess
Mdel [Kac90], whichis an abstract mdel for parallel logic program. The AY(RRo-
cess Mdel has an operational semantics defined by asynchronous objects that conmmmi cate
entirel y by nassages.

(PALprograms are conpiledinto the instructionset of the (PALMchine, ar OM. The
(M s avirtual achine sinil ar to the Aren abstract machi ne[W 83| for standard Brol og
inplerantations. The difrence is that the Mvirtual machine is designed for program
that execute according to the ANY(RRocess Mdel on norshared rerory mal tiproces-
sors. 'The version of the (Mvirtual machine wed for this test set runs on a uniprocessor
WN Xvorkstation it does mot exploit ANDar (Rparallelismin this inpl erantation.

The (P 1anguage test case supports eight out of the fourteen Source language In
terface routines specified by the Mygen prototype and provi des no extension cormands.
The routines supported by (PAL are sumarized in Bhle 6.1, vhile those that are not
supparted are listed in "Bhble 6.2.

The Mirtual nachine test case supports fifteen out of the seventeen Mchine Archi-

CHAPTER 6. RESULTS

BHe6.2 SLI RouTi NES NoT SuUPPORTED By OPAL

Mp procedire ending to object line
Face procedire

Mp source line to obhject line

List procedures

Dsplay text of current source line
Uitrace procedire

tecture Interface routines specified by the Mygen prototype. Additiomally, the (Mtest
case provi des tvel ve i ndependent extension cormands.

The Mvirtual machine supports all of the Mchine Achitecture Interface routines
except the two routines specific to miltiprocessars since the (Minpl erantationis for a
uni processar. 'Bhbles 6.3 and 6.4 summarize those routines supported and not supported,
respectively, by the QVvirtual nachine.

The extension commands provi ded by the QMvirtual machine provide the debugger
wer wth the capahilities to choose betveen: searching for all solutions or far just one
solwtion, perfarmng a breadthfirst or a depth-first search, executing in quiet mde or not,
tracing processes ar not diring execution, tracingimstructions or mot diring execution, and
displ aying registers synholically or not. The extension commands also emable the wer to
print sections of object code, sectians of the heap being wed by the Mvirtual nachine,
massage or process infornation, queve corterts, and a process tree for the execution These
additional features are sumarized in Bble 6.5. A sarple (MMchine Achitecture
Interface input fle can be found in Appendix C

The Mygen gereration framawrk accepted the input files of the described test set
and produced a symholic debugger for (PAL ruming on the (Mvirtual machine. The
debugger commands supported by the generated (PAL debugger are listedin Bhle 6.6

Te (PL Source Language Interface input fle and the (MMchine Avchitecture
Interface inpt file vere tested to have varying mmhers of interface routines available to

CHAPTER 6. RESULTS

BhHe6.3: MAI RouTiI NES SUPPORTED By OM

Initialize MU

Is programl caded?

Imstall nachine breakpoi nt

(ontime program

Winstall machine hreakpoi nt

Set machi ne hreakpoint on a procedire
(Cear machi ne breakpoint on a procedire
Rad in program

Bint register cantents

R program

Step, folloving procedire calls

Step, not folloving procedire calls
Reset machine

Rint Ml information

Brocess initial debugger argunants

Bhle 6.4 MAI RouTi NES NoT SUPPORTED By OM

(hange current processing node
(hange muher of availahl e nodes

CHAPTER 6. RESULTS

Bhe6.5 MAI ExXTENSI oN CoMMANDS PrRoOVI DED By OM

Dggle all-sol uti ors
DBggl e breadth first search
Degle quiet mde

Dggl e process trace
DBggl e instruction trace

Dggle synhalic register display
Rint code

Bint heap

Rint nessage infornation

Bint process information

Bint queve contents

Brint process tree

Mygen. e supported functionality of eachresul ting (P debugger variant vas checked
to ascertain that the debuggers changed accordingly. These gererated (PAL debugger

variants vere then tested an a suite of (PAL program to verify their carrectness.

6.2.2 Cand Myfly

The 1anguage of the second test set is G the famliar, inperative 1anguage devel oped by
Rtchie K83, KW1]. Cis arelativelylowlevel, general-purpose programmimg 1 anguage.
Wile Cyrovides data types and fundanental control-flowconstructions such as looping
and decision making for single-threaded contral flow it does not provide built-in hi gher-
level nechani sm such as input /output facilities or operations on corposite objects suchas
lists and arrays.

Gmpiled Cprogram are processed by the Myfly architecture] Bw92]. The Myfly,
devel oped at Hevtett Packard Iaboratories, serves as a back end processor for a Hvlett
Puckard Series 800 vorkstation. The Myfly is a scalable, gereral-purpose parallel pro-
cessing architecture; it is a distributed nenory machi ne vi th commmi cation supported by

massage passing.

47

CHAPTER 6. RESULTS 48

Bhe6.6: FUNCTI ONALI TY OF THE GENERATED OPAL DEBUGGER

Brint hel p informtion

Repeat previows cormand

Activate hreakpoints

Set breakpoint on object line

Set procedire hreakpoint (trace procedire)
Gmtime frombreakpoint or step
Dl ete hreakpoint on object line
Dlete procedire hreakpoint (untrace procedire)
Read in compil ed wser program
Dsplay gereral registers

Rint information about debugger status
List hreakpoints

Tist wer programlabel s

Tist wer programsynhol s

Qi t debugger

R program

Single step (followcalls)

Single step (do mot followcalls)
Suspend breakpoi nt's

Reset machine to startup state
CQment (ignored)

Fecute an extensi on cormand:

- bggle all-solwtias

- bggle lreadth-first search

- bggle quiet node

- 'bggle process trace

- bggle irstructi on trace

- bggle syrhalic register display
- Rint code

- Print heap

- Rint nessage infornation

- Print process infarmation

- Bint queve conterts

- Bint process tree

CHAPTER 6. RESULTS 49

BHe 6.7 SLI RouTI NES SUPPORTED By C

Initialize SII

Mp source line to obhject line

Mp procedire to object line

Mp procedire begimming to object line
Mp procedire ending to object line
List procedures

Read in synhal s

Brocess initial debugger argunarts
Rint S information

BHe 6.8 SLI RouTi NES NoT SuUPPORTED By C

Face procedire

Uitrace procedire

Rint 1abels

Bint synhols

Dsplay text of current source line

The Clanguage test case supports nine out of the fourteen Source Language Interface
rotines specified by the Mygen prototype and provides no extension cormands. The
routines supported by Care surmarized in Bhle 6.7, vhile those that are not supported
are listedin "Bble 6.8.

The Myfly archi tecture test case supports sixteen out of the seventeen Mchine Archi-
tecture Interface routines specified by the Mygenprototype. The Myfly test case supports
all of the Mchine Achitecture Interface routines except execution stepping that does not
falowprocedire calls. "Bbles 6.9 and 6.10 sumarize those routines supported and not

supported, respectively, by the Myfly test case.
Additionally, the Myfly test case provi des three independent extensi on commands that

CHAPTER 6. RESULTS

BHe 6.9 MAI RouTI NES SUPPORTED By MAYFLY

Initialize MU

Is programl caded?

Imstall nachine breakpoi nt

(ontime program

Step, folloving procedire calls
Winstall machine hreakpoi nt

Set machi ne hreakpoint on a procedire
(Cear machi ne breakpoint on a procedire
Rad in program

Bint register cantents

R program

Reset machine

Brocess initial debugger argunants
Rint Ml information

(hange current processing node
(hange muher of availahl e nodes

Bhle 6.10: MAI RouTIiI NE NoT SUPPORTED By MAYFLY

Step, mot foll oving procedire calls

give users the capahilityto select vhi ch (PUof the currernt processing node to debug. Each
Myfly processing mode has tvo (PU8: the Mssage Rrocessor (M) and the Becution Rro-
cessar (EP). The Myfly extersi on commands provi de the debugger user with the following
capahilities: to select the NP of the current node for debugging, to select the FP of the
current node for debugging, and to deternine vhich (PUis the current (being debugged)
(PUof a gi ven Myfly processing node. These additional features are sumarizedin Bhle
6. 11.

The Mygen gereration framawrk accepted the input files of the described test set

CHAPTER 6. RESULTS 51

Bhe6.11: MAI EXTENSI ON CoMMANDS PROVIDED By MAYFLY

Select MPof current node
Select FPof current node
Dtermne vhi ch Uis current (PU

and prodiced a Cdebugger for the Myfly The debugger comands supported by the
generated Cdebugger are listedin Bhle 6.12

The CSource Language Interface input file and the Myfly Mchine Achitecture In-
terface input file vere tested to have varying mmbers of interface routines available to
Mygen. T resulting C debugger variants vere inspected to emsure that their set of
supported functi onality changed accordingly. & observed for the (RA/(Mtest set, the
supported functionality of each resul ting generated Cdebugger also correctly reflected the
changed Mygen inputs.

De tologistical difiiulties, 2 the generated Cdebugger vari arts vere “tested” by closel y
vatching the commands atterpted to be witten to the Myfly nonitor, the softvare that
comects the Myfly archi tecture ithits front-end vorkstation. Interfacingto this nomitor
is the Myfly’s debugger library. Nrmally, any debugger for the Myfly calls basic routines
fromthis debugger lilrary. The debugger library routines, vhich normally cormmi cate
directl y vith the Myfly vi a the noni tar program vere repl aced diri ng testing wth verbose
stubs. Aterpted command vrites to the noni tor fromgenerated Cdebugger variants vere
then corpared vi th the attempted cormand wri tes of simil ar debuggi ng commands i nvoked
froman exi sting, tested debugger for the Myfly.

2The Myfly archi tecture can onl y be used 1 ocall y because its softvare currentl y does not support remote
access. Mygen vork, hovever, vas conpl eted 3000 mles fromthe residence of the Myfly.

CHAPTER 6. RESULTS

52

BhHe6.12 FUNCTI ONALI TY OF THE GENERATED CDEBUGGER

Brint hel p informtion

Repeat previows cormand

Activate hreakpoints

Set breakpoint on source line

Set breakpoint on object line

Set hreakpoint at procedire beginning
Set breakpoint at procedire exit

Set procedire hreakpoint (trace procedire)
Gmtime frombreakpoint or step

Dl ete hreakpoint on object line

Dl ete hreakpoint on source line
Dlete procedire hreakpoint (untrace procedire)
Read in compil ed wser program
Dsplay gereral registers

Rint information about debugger status
List hreakpoints

List procedures

List traced procedures

Qi t debugger

R program

Single step (followcalls)

Suspend breakpoi nt's

Reset machine to startup state

CQment (ignored)

Fecute an extensi on cormand:

- Select MPof current node

- Select FPof current node

- Dtermne vhi ch (PUis current (PU
Fecute a mltinode comand:

- (hange processing nodes

- DRtermne current mwher of nodes

- Dtermne current node

Chapter 7

Concl usi ons

Tis chapter sumarizes the Mygen project, presents som conclwsions about debugger
gereration in general and the Mygen approach in specific, and suggests areas for further

research.

7.1 Sunmmary

"The ahilitytoprovi de debuggi ng support for mmltiplelanguages is aninportant one becaise
of today’s derand for high-level debuggers to accompany hi gh-1evel 1anguages.

o previ ous approaches that vere consi dered for provi di ng debuggi ng support for mml -
tiple languages are mmltilingual debugging and | anguage-independent debugging. These
approaches might be feasible vhen the set of languages that the system support are se-
mantically very simlar. Such similarity, hovever, may be rore rare in the future and is
presently non-exi stent for parallel 1anguages. Hence there has been a strong need to pur-
sue other debugging rathods that are capable of supporting a semantically diverse set of
l anguages.

Mygen, the debugger generation systemdescribed in this thesis, is precisely swh a
debugging mathod In light of the greater semantic diversity anongst prograrming 1an-
guages, this systemis nore feasible than previows approaches to provi ding debuggi ng sup-

CHAPTER 7. CONCLUSI ONS

port becaise of its ahility to take into account diferent programming mdels. Additionally,
gererated debuggers extihit a large degree of functional comsistency, this nini rizing the
wer’s overhead in learni ng a newdebugging systenfar each newl anguage.

The Mygen systemprovi des far “qui ck and easy” creation of 1anguage- dependent de-
buggers for the respecti ve target architectures. Such afeat is nade possible by the systems
imposition of interface protocals to be folloved by 1anguage devel opers and architecture
devel opers, provision of the glue necessary to not only smoothly cormect the tw interfaces
but also serve as the care debugging engine, and provision of the framawrk that perform
the actual gluing of the separate pieces.

Mygen has been shown to handle both a decl arati ve 1 anguage and an inperative lan
guage wth reasanable results. 'The generated debuggers provided at least the rininal
functional ity needed for uwseful debuggi ng vi thout nuch addi tional effrt on the part of lan
guage and architecture devel opers. Mreover, the generated debuggers vere able to cater
to the particular needs of eachlanguage and each architecture. Specifically, the gererated
(PAL debugger included several commands to provide for debugging features specific to
Bologlike 1 anguages, vhile the generated Cdebugger included cormands to provide for
debuggi ng features specific to mltiprocessar archi tectures.

Tus, the Mygen debugger gereration systemis a viable approach to providing de-
bugging support for miltiple 1anguages, an increasingly inportart corsideration as very
diferent 1 anguages, such as parallel 1anguages, are created

7.2 Fature Work

Becase Mygen presents afeasible solutionfor provi ding debugging support, it is interest-
ing to specul ate upon what directions further research in the area of debugger generation
mght take.

CHAPTER 7. CONCLUSI ONS

Bhe71: FUTURE MAYGEN WORK

Aldi tional test sets
Inproved test cases
Eihanced skel eton and addi tional interface routines

7.2.1 Mygen Prototype Enhancenents

Several areas call for irmadi ate inprovenart inthe Mygen prototype. Mst notablyis the

need to further explore the sarple space of programmimg | anguages and their eval vation
envi ronmants by creating addi tional test sets. Agoodthirdtest set mght be the Ti sp[W4,
Bo86] language along with the lisp runtima system In addition, the existing test cases
shoul d be expanded vhere possible inarder to produce debuggers i thincreased anmmts of
functionality Hmally, the exi sting debugger skel etan coul d be enhanced to provi de a greater
maximal anount of supported generated debugger functionality. This enhancenant voul d

most likel y al so require the specification of additional interface routines to be provi ded by
the language and/or architecture developers. The suggested immadiate modifications to

the Mygen prototype are sumarizedin Bhle 7. 1.

7.2.2 Related Areas to Expl ore

Tis section presents research areas suggested by Mygen vork bt of a rmch broader na-
ture than that presented in the previows section. 'These areas can be grouped into four
primary topics: creation of a Rmtine SystemInterface (RSI); chaudterizationof a lan
guage, architecture, or runtime systemand the subsequent antoratic gereration of the
respective Interface routines frameach characterization; debugging of optimized code; and
true debugging of parallel system.

The division of the “world’ that Mygen debuggers viewis a rather wnique one. A-
though the separation of a source programfromthat on whichit rums, its evaluati on envi-

CHAPTER 7. CONCLUSI ONS

ramart, is a viable approach for the Mygen debugger, an alternative division mght be
to separate the source programfromits runtine systemas vell as fromits architecture.
i s approach maght provi de for a “cl eaner” and nore traditional division; but, at the sam
tine, this approachmght be umecessarily conpl ex due to the desire to exploit higher-level
abstractions vhen available, as described in Section 4. 2.

Arore thought- provoking area to explore is that of characterizing a source 1anguage
in a vay that a generation systemcould then automtically create the Source Language
Interface routines defined in the Mygen system Amal ogowsly, the characterizations of
a machine architecture and of a runtima system as well as the subsequent generation
of Mchine Achitecture Interface and Rmtina Systemlnterface routines pose interesting
questions. Akeyideatokeepinmind, though, is that al thoughanethodof characterization
far these areas coul d prove theoreticall y interesting, it might not be practical inthe context
of efliient debugger generation. For exampl e, 1anguage devel opers might findit mcheasier
to conformto a set protocol for interface interaction (i.e., provide defined routines) rather
than to conformto a “characteri zation rathod” for descrihing their language (i.e., provide
a characterization of their 1anguage).

Athirdideais that perhaps a debugger generation systemcould be devel oped that can
better handle the debugging of optimhzed code. Astart inthat directionis that gererated
debuggers mght be able to support senanti cal 1 y- unchangi ng opti niizati ons—epti nhzati ons
that are trarsparent to the wser, such as dealing vith register we versus mnory wse or
caching. Awther exanple of such an optinnzation vould be one that noves a value to a
storage pl ace earlier than expected according to the source program bt that does not mat-
ter since that particul ar nenory locationis not needed any more. Hermessy exanines the
tradeoff bet veen the optinzation of code and the ahility to syrholically debug it[Ben79],
vhile Zell veger both studies the problemof debugging optinized program and atterpts
to canfront one aspect of this problenZel 84).

Afinal area of research suggested by Mygen vork is the gereration of true parallel

l«Architecture” inthis case refers to the eval uation envi romment mnus the runtine system

CHAPTER 7. CONCLUSI ONS 57

Bhe72 DEBUGGER GENERATI ON SYSTEMS: AREAS TO EXPLORE

Separation of runtina systeminterface
(aracterization of source languages
(ereration of SII routines
(haracteri zati on of nachine archi tectures
(éneration of MU routines

(haracteri zation of runtime system
(ereration of RS routines

Hndling of Qtinzed (bde

Adition of Fue Prallelism

debuggers. A though Mygen’s approach of havi ng knowt edge of mal tiple processing nodes
but debugging only ore node at a tima is sufliient for this initial project in debugger
gereration, future vork will probably need to better address parallel debugging issues.

The suggested areas to explore in further research of debugger generation system are
summarized in Bhle 7. 2.

Wthout question, Mygen not only has presented an interesting and viable approach
to providing debugging support for mltiple language system, it has also suggested a
veal th of interesting research topics to pursue.

Appendix A

SLI Input File Tenpl ate

%% INPUTHLE FORMUIFRSORE LANGUAE

SOIRCE TANGUACE NAME:
(e.g., AY
THEHH#T

your _source_| anguage _nane

DFBUGFIR ITBRARY PATH

(e.g., /users/tsi en/mygen/opal /)
s

your _debugger librarypath _nane

TFBUGEHR LTBRARY HLE NWVE WI'THUT TEAING"1ib" (RTRALING" .a™:
(e.g., for "libmf_debug.a", only use "mf_debug")
Tt

your libraryfi e nane

Yl
oProcedures: %o
Yl

20

10

APPENDI X A. SLI INPUTFILE TEMPLATE

1. THHFHIY

int initsli(voi d)
=
YoRequires: ———
PoMdi fies: ———

D% HTects: Thbes any necessary initializations f o r SII
% Petwrns: 11 £ everything initialized ok; 0 otherw se.

Pohote: (If procedure mssing, assuned that there is
Yoz no initializationnecessary f o r SII)
[y iy

07

2. YHHH#Y[Yor N
i nt mproc_toobject(char *proc, ¢ har *label)

oy 74
07

D% Requites: proc is nane user uses to refer to gi ven procedure

Yoz label is nane that conpiler mght use to refer to proc
PoMdi fies: ———

PoHTects:

% Fetuwrns: —11i £ syntaxerror in proc spec

Yoz 0i f procedure not found

9 n > 0, vhere n =object line corresponding to

Yoz the source code of proc

[y iy

07

3. YHHH#Y[Yor N
i nt mprocbegin_toobject(c har *proc, c har *label)

oy 74
07

D% Requites: proc is nane user uses to refer to gi ven procedure

Yoz label is nane that conpiler mght use to refer to proc
PoMdi fies: ———

PoHTects:

% Fetuwrns: —11i £ syntaxerror in proc spec

Yoz 0i f procedure not found

9 n >0, vhere n =object line corresponding to

Yo the begi nni ng source line of proc

APPENDI X A. SLI INPUTFILE TEMPLATE

4. YHEHH#Y Yor N
i nt mpocend toobject(c har *proc, c har *label)

oy 74
07

D% Requites: proc is nane user uses to refer to gi ven procedure

Yoz label is nane that conpiler mght use to refer to proc
PoMdi fies: ———

PoHTects:

% Fetuwrns: —11i £ syntaxerror in proc spec

Yoz 0i f procedure not found

Yoz n, vhere n =object line correspondi ng to

Yoz the end source line of proc

Vi 70

5. YEHHY%[Yor N
voi d trprecedure(c har *proc, c har *label)

oy 74
07

D% Requites: proc is nane user uses to refer to gi ven procedure

Yoz label is nane that conpiler uses to refer to proc
PoMdi fies: ———

P¥Hects: Tbes whatever is necessary to trace proc

% Peturns: ———

Vi 0

6. YEHHY[Yor N
i nt mgource_toobject(i nt srcline)

oy 74
07

YPequites: srcline is an integer

PoMdi fies: ———

PoHTects:

%% Peturns: —11i £ there is not source code at line srcline, or
Yoz i f a breakpoint cannot be set at that 1ine.

Yoz n, vhere n =object line correspondi ng to

o line srcline.

90

60

APPENDI X A. SLI INPUTFILE TEMPLATE

1. VHEHANY
int regbols(c har *fienam)

oy 74
07

PRequites: fil enane is the nane of file wth symbols to be read in

Y%oMdi fies: ———

Y%Hiects: Loads user programsynbol s and/or 1abel s;

Yoz sets global i m t progranstart]loc to be address of 100
Yo vhere programstarts, i £ known. Sets global

V) c har useprogrant] to be fil enane.

%% Peturns: 11 f symbols read successfully; 0 otherwise.

o

07

8. YHEHH%[Yor N
voi d plabels(c har *argl)

oy 74
07

P¥Requites: arglis not required, but could be used

Y%oMdi fies: ——— 110
P¥Hkects: Prints out labels of user programcurrently I oaded.

%o Returns: ———

oy 74
07

9. YHH#HH#Y[Yor N
voi d _pretedures(c har *argl)

oy 74
07

P¥Requites: arglis not required, but could be used

PoMdi fies: ———

PHkects: Prints out procedures of user programcurrently I oaded. 120
% Peturns: ———

oy 74
07

10. Y#EH#HY% Yor N
void piytbols(c har *argl)

oy 74
07

61

APPENDI X A. SLI INPUTFILE TEMPLATE

P¥Requites: arglis not required, but could be used

oM fies:
YHects:
9% Returns:

oy 74

Prints out synbols of user programcurrently 1 oaded.

07

11. Y#E#H% Yor N

void ds

oy 74

phagrce linetext(c ha r *srne)

07

P Requites: src _lineis aline of user programor is enpty

oM di fies: ———

P¥Hkects: Prints out source code corresponding toline stc line
Yoz of user program or, i f srcdineis enpty, then

Yo shows current location in programand the source

Yo code corresponding to current location.

% Peturns: ———

(1.4 4

07

12. Y#EH#HY% Yor N

void ut

oy 74

rgrocedure(c har *proc, ¢ har *label)

07

D% Requites: proc is nane user uses to refer to gi ven procedure

Yoz label is nane that conpiler uses to refer to proc
PoMdi fies: ———

PHects: Tbes vhatever is necessary to untrace proc

% Peturns: ———

[y iy

07

13. Y#EH#HY% Yor N
void pmhtinfo(veoi d)

oy 74

07

YRequi res:

oM fies:
YHects:
9% Returns:

print source 1 anguage infornation rel evant to debuggi ng

130

140

150

160

62

APPENDI X A. SLI INPUTFILE TEMPLATE

14. YH#EH#HY% Yor N

i nt PocessSIIAgs(i nt arge, c har *argv[], c har *prognane)

oy 74
07

Y% Pequites: prognane is nane of debugger program

Y%oMdi fies: ———

Y%oHlects: Processes arguments, i f any, of a generated debugger.

V) Prints a "Usage error:" line to output i f returning 0. 170
%% Peturns: 11 £ everything ok; 0 otherwise.

oy 74
07

EXTENSION COMVAN S

NMER (F EXTENSI ON COMVANCS

(0 <=nunber <=20)

Y% 180
<mmber >

For each extension command, specify:
(1) helpline, including both name of command user will type
and hel pstring f o r hel p renu
(e.g., "ta Toggle all-solutions.")
(2) invocation of nane of routine to be called, using argunents
argl, arg2, arg3 (mx 3 args)
(e.g., "toggle_all_solutions();")
(3) ext e r n reference line 190

(e.g., "extern void toggle_all_solutions();")

Ixtension (brmand 1
s

APPENDI X A. SLI INPUTFILE TEMPLATE

ta <> Toggl e all —sol utions. n =nax mmber of sol ns

o

toggl e all sol utions(argl);

Y% 200

extern voi_sdlsoggteons();

Appendi x B

MAI Input File Tenpl ate

%% INPUT'FI LE FCRVMAT FCR TARGET ARCH TECTURE

TARCET ARCH 'TECTURE NAMES
(e.g., QM)
THEHH#T

your _archi tecture nane

TFBUGCER 1T BRARY PATH

(e.g., /users/tsien/mygen/ony)
THEHHT
your _debugger librarypath _nane

TFBUGER LTBRARY FHELE NVE WIHUT LFAITNG"1ib" (RTRATING" . a":
(e.g., f or "libmf_debug.a", only use "mf_debug")
Tt

your libraryfi e nane

ACTUAL NOMBER (F PROCESSIINGINTES TN TARCGET ARCH ' THCTURE

(1" f or a uniprocessor)

Tt
your _nunber

10

20

APPENDI X B. MAI I NPUTFILE TEMPLATE

TESTRED NMBFR (F PROCESSI NGNIES TN TARET ARCH 'THCILRE
(IESIRRDNMER <=ACIULNMER, "1 f o r a uni processor)

Tt
your _nunber

Yl
oProcedures: %o
Yl

1. TEHEHRIY
int imt(void)

oy 74
07

YoRequires: ———
PoMdi fies: ———
P¥Hects: Tbes any necessary initializations f o r M

%% Petwrns: 11 f initializationsuccessful; 0 othervise.

oy 74
07

2. YHHHFHLY
int progrdmaded(voi d)
[y iy

%

YoRequires: ———
PoMdi fies: ———
PoHTects:

%0 Returns: 11 f programis 1oaded

Yo 0i f programis not 1oaded

oy 74
07

3. YHHH#Y[Yor N
i nt Install MchineBeakpoint(i mt addr)

[y iy

0%
PRequites: addr is a valid code address of the current
Yoz programwhere a breakpoi nt can be set

%%Mdi fies: (object code)

30

40

50

APPENDI X B. MAI I NPUTFILE TEMPLATE

PoHTects: Installs a breakpoint at addr such that when
Yoz programexecution reaches addr, it hal ts
%6 Peturns: Qiginal instruction (I n t) being replaced by breakpoint,

Yoz to be passed to Unnstall Mchi neBreakpoint. Returns
o aninteger <0i f didnot install correctly.
VAL

4. VHEHHRY

void contipmegranfvoi d)
VAL
YoRequires: ———
PoMdi fies: ———
Y%Hiects: If programis rumming, continues rumming it.
Yo Qherwse prints a nessage to user that program
V) shoul d be started first.
% Peturns: ———
o

07

5. YHH#HH#Y[Yor N
i nt Thinstall MchineBreakpoint(i nt addr, i nitstarigion)
[y iy

07

PRequites: addr is a valid code address of the current

Yoz programwhere a breakpoi nt can be removed,
Yoz orig _instructionis identical to that returned by
Yoz Instal | Mchi neBeakpoi nt

%%Mdi fies: (object code)
PoHTects: Unnstalls a breakpoint at addr such that when

Yoz programexecution reaches addr, it no longer hal ts
Yo due to this breakpoint. Qiginal instructionis
Yo reinstated.

%% Returns: 1 nt n n=Hi £ worked correctly; n<0i £ didnot work

oy 74
07

6. YHFHH#Y[Yor N
i nt SetMchineProcBeakpoint(c har *proc, i nt n, i)t trace

APPENDI X B. MAI I NPUTFILE TEMPLATE

oy 74

07

¥ Requites: proc is nane user uses to refer to a procedure on which

(in SKH,) and adds correspondi ng machi ne address 100

Yoz a breakpoint is to be added

Yoz nis the code address where this procedure starts
%%Mdi fies: (object code)

PHects: Adds proc tolist of procedure breakpoints by calling
Yoz i nt addoproc_breakpt list(c har *proc, i mt addr,
Yoz int tracen). (11 f good; 0i £ bad)

V)

Yoz breakpoint (s) fromlist by calling (in SKEL:)

Yoz i nt addomchine breakpt list(i mt addr).

Yo (1i £ good; 01 f bad)

% Peturns: 11 f set successfully; 0 othervise

Vi

T. YHEH#HH#Y[Yor N
i nt JearMchineProcReakpoint(c har *proc, i nt n)

Vi
¥ Requites: proc is nane user uses to refer to a procedure on which 110
Yoz there is a breakpoint to be renoved.
Yoz nis the code address where the procedure starts
%%Mdi fies: (object code)
YHkects: Renoves proc fromlist of procedure breakpoints by calling
Yoz i nt removefrom proc_breakpt list(c har *proc, i nt addr)
Yo (1i £ good; 0i f bad returned)
Yo (in SKHL) and removes correspondi ng machi ne address
Yoz breakpoi nts fromlist by calling (in SKEL:)
Yoz i nt removefrom mchine breakpt list(i mt addr)
Yo (1i £ good; 0i f bad returned) 120
% Peturns: 11 f successful; 0 othervise
Vi
8. YHEHH#NY

i nt rembgranfc har *fienam)

oy 74

07

APPENDI X B. MAI I NPUTFILE TEMPLATE

PRequites: fil enane is the nane of file to be read in

%%Mdi fies: (nachi ne state)

PHkects: Toads user program loads the code into the code

Yoz menory. Set flags such that program loaded() wll
Yoz retur n true. FReinitialize nenory, etc.

%% Peturns: 11 £ programread successfully, 0 othervise

o7

07

9. YHH#HH#Y[Yor N

voi d pregistercontents(c har *argl, c har *arg?)

oy 74

07

P¥Requites: argl is possibly an envi ronnent

YoM fies:
YoHiects:
%

%% Returns

oy 74

Prints the contents of the nachine registers;

If envis given, only prints that envi ronnent

07

10. YEH#H#RY
voi d pmgranic har *al)

oy 74

07

P¥Requites: arglis enpty or is a line nunber at which to begin

Yo execution

PoMdi fies: ———

YHfects: FReports that user programis al ready runni ng (and
Yo suspended) or e Ise begins to run the program

% Peturns: ———

o7

07

11. Y#E#H% Yor N
voi dsdep(c har *argl, c har *arg?)

oy 74

07

P#Requites: arglis enpty or the nunber of steps user wants to step.

Yoz
oM fies:

arg2 is enpty or the location fromwh ch to begin stepping

69

130

140

150

160

APPENDI X B. MAI I NPUTFILE TEMPLATE 70

Y%Hects: Fxecutes argl steps of user program begi nmi ng at
Yo location arg2.
%o Returns: ———

oy 74
07

12. Y#EH#HY% Yor N
voli dhigstep(c har *argl)

oy 74
07

P¥Requites: arglis enpty or the location fromwhich to begin stepping 170
PoMdi fies: ———

Y%Hiects: Fxecutes a process/procedure of user program begi nni ng at

Yo location argl.

% Peturns: ———

oy 74
07

13. EH#H#RY
void ramthine(void)

oy 74
07

PoRequites: ——— 180
%7oMdi fies: nachine state
YHlects: Resets the machine state, sets running to false (0)

oy 74
07

14. YH#EH#HY% Yor N
void pmit info(veoi d)

oy 74
07

YoRequires: ———

PoMdi fies: ———

Y%Hiects: Prints out information about user program debugger 190
Yoz status, etc.

% Peturns: ———

oy 74
07

15. Y#EH#HY% Yor N
int PocessMiAgs(i nt arge, c har *argy[], c har *progname)

APPENDI X B. MAI I NPUTFILE TEMPLATE

oy 74
07

Y% Pequites: prognane is nane of debugger program

Y%oMdi fies: ———
Y%oHlects: Processes arguments, i f any, of a generated debugger. 200
V) Prints a "Usage error:" line to output i f returning 0.

%% Peturns: 11 £ everything ok; 0 otherwise.

oy 74
07

16. Y#EH#HY% Yor N
i nt changede(i nt argl)

oy 74
07

YPequites: argl is aninteger specifying the newnode to be

o debugged. Is already checked f o r <=nax available

% and >0 210
%7oMdi fies: nachine state

Y%Hiects: Tbes the necessary internal state changes to debug

Yo node nunber argl
%% Peturns: 11 £ everything ok; 0 otherwise.
(1.4 4

07

17. Y#EH#HY% Yor N
i nt resnmeber nodes(i nt argl)

Vi

YPequites: argl is aninteger specifying the newdesired nunber 220
9 of processing nodes. Is already checkedf o r <=mx

Yo and >0

%7oMdi fies: nachine state

Y%Hiects: Thes the necessary internal state changes to al ter
Yo desired nunber of nodes available to argl

%% Peturns: 11 £ everything ok; 0 otherwise.

oy 74
07

EXTENST ON COMVN S 230

APPENDI X B. MAI I NPUTFILE TEMPLATE

NMER (F EXTENSI ON COMVANCS
(0 <=nunber <=20)
A

<mmber >

For each extension command, specify:
(1) helpline, including both name of command user will type
and hel pstring f o r hel p renu
(e.g., "ta Toggle all-solutions.")
(2) invocation of nane of routine to be called, using argunents
argl, arg2, arg3 (mx 3 args)
(e.g., "toggle_all_solutions();")
(3) ext er n reference line

(e.g., "extern void toggle_all_solutions();")

Ixtension (brmand 1
s

ta <> Toggl e all —sol utions. n =nax mmber of sol ns

B A
toggl e all sol utions(argl);
B A

extern voi_sdlsoggteons();

240

Appendi x C

Sanpl e OMVirtual Michi ne VAL
Input File

%% MU TNPUTFITE FCR TARGET ARCH TECTURE MV RIUAL MCH NE

TARCET ARCH ' THCTURE NAME:

Ve
M

LFBUGER [T FRARY PATH
AT

/users/tsien/mygen/onf
10

TFBUGR T BRARY FI LE NAME WIHXT LEATNG"1ib" (R'TBALING" .a":

THEHAET
ng _nai

ACTUAL NOMBER (F PROCESSIINGINTES TN TARCGET ARCH ' THCTURE

THEHHT
1

3

APPENDI X C. SAMPLE OMVI RTUAL MACHI NE MAI I NPUT FILE T4

TESIRED NMBER (F PROCESSTNGNIES TN TARCET ARCH 'TECIURE

THEHHT 20
1

Yl
oProcedures: %o
Yl

1. TEHEHRIY
int imt(void)

[\

- TREHHTY
nt progrdmaded(voi d) 30

e

3. YHHHLY
i nt Install MchineBeakpoint(i mt addr)

4. THHH#ANY
void contipmegranfvoi d)

ot

- VEEHHIERY
i nt Thinstall MchineBreakpoint(i nt addr, i nitstarigion)

40

(=]

- VEEHHIERY
i nt SetMchineProcBeakpoint(c har *proc, i nt n, i)t trace

-

- VEHIERY
i nt JearMchineProcReakpoint(c har *proc, i nt n)

®

- TREHHTY
nt reubgranfc h a r *filename)

e

9. YHEHHDY 50

voi d pregistercontents(c har *argl, c har *arg?)

10. GEHHTY

APPENDI X C. SAMPLE OMVI RTUAL MACHI NE MAI I NPUT FILE

voi d pmgranic har *al)

11. YHEHHERY
voi dsdep(c har *argl, c har *arg?)

12. WEH#H#ARY
voli dhigstep(c har *argl)

13. EH#H#RY
void ramthine(void)

14. YHEHHERY
void pmit info(veoi d)

15. YEHH#HRY
int PocessMiAgs(i nt arge, c har *argy[], c har *progname)

16. YHE#HH# TN
i nt changede(i nt argl)

17. YHEHHTN
i nt resnmeber nodes(i nt argl)

EXTENST ON COMVN S

NMER (F EXTENST ON COMVAN S

Ve
12

Ixtension (brmand 1

THEHHT
ta oggl e all —sol utions.

B A
toggl e all sol utions();

80

70

60

(6]

APPENDI X C. SAMPLE OMVI RTUAL MACHI NE MAI

THEHHT

extern voi_sdlsoggteons();

Ixtension (brmand 2

THEHHT
tb Toggl e breadth—first search.

Tt
toggle breadth first();

Tt HH# %
extern voli_kkeadghldirst();

Ixtension (brmand 3

THEHHT
tq Toggl e qui et node.

TEHHT
toggl e_qui et_node();

Tt HH# %
extern voi_ditoggde();

Ixtension (brmand 4

THEHHT
tp Toggl e process trace.

Tt
toggl e process_trace();

T
extern voi_goteggltrace();

Ixtension (brmand 5
THEHAET

t1 Toggl e instruction trace.

THEHHT

INPUT FILE 76

90

100

120

APPENDI X C. SAMPLE OMVI RTUAL MACHI NE MAI I NPUT FILE

toggl e instructiontrace();

THEHHT

extern voi istoggteontrace();

Fxtension (brmand 6

Y% 130
td Toggl e synbolic reg displ ay.

o

toggle symbolic _display();

o

extern voi_dmbopptedsplay();

Ixtension (ormand 7

Tt
pc Bint code from<p>to <> 140

A%
print_code(argl, arg?2);
A%

extern voicdepnt

Ixtension (brmand 8

Tt
ph Print heap from<h>to <q>

Y% 150
print_heap(argl, arg?);

Tt
ext er n v o ihehpp}jnt

Ixtension (brmand 9

THEHH#T
pm Print nessage (detailed contents of Mreg).

7

APPENDI X C. SAMPLE OMVI RTUAL MACHI NE MAI

Tt

print_nessage _info(argl, arg2);
Tt

extern v o indspgentnfol);

Ixtension (brmand 10

THEHH#T

PP Print process (detailed contents of Preg).
B A

print_process_info(argl, arg2);

B A

exter n v o iphegssutnfo();

Ixtension (brmand 11
THEHAET

Pa Print nessage queue.

THEHHT

print_queue _contents();

Tt
ext er n v o igduprimntents();

Ixtension (brmand 12
s

pt Print process tree.

THEHHT

print_process_tree();

o
ext er n v o iphegssutree();

INPUT FILE

160

180

78

Bi bl i ography

[A1B6] AfredV. Ao, Ravi Sethi, and Jefftey D Ulman Coplers. Princiges, Tedr

riques, ad Bls Addi son- VW&l ey Rubl i shi ng (bnpanty, 1986.

[BK 182 Jamas Bdvin, Iarette Badey, ¥hji Knda, Dare Title, and Ue Heban
Fperience vith an Frperimantal (bmpiler (dnerator Bised on Rnotational
Serartics. In Rowadngs o the AQBIGH AV Syposiumon Grler Gr
strution, pllished in AMIHAV Mices, pages 216-223. Uhiversity of
Nlchi gan, June 1982. volum 17, muher 6.

Brt Bander. \AXTFH{E An Interactive, Syrholic, Mitilingual I2bugger.
AMSglan Mices, 18(8): 173-179, August 1983. PRroceedings of the AOM
Si gsoft /Si gpl an Sof t vere Fagi neering Synposi umon Hgh Tevel I¥bugging.

[Br82] Rter L Brd AnInplenantationof a (bde (dnerator Specification Ianguage

for 'Bhle Biven (bde Grerators. In Pawdng o the AMI@EANS R
psiunon (Gpler Grstrudtion, pllishal in AMIEHAVM ces, pages
44-55. Wi versity of Mlchi gan, June 1982. volure 17, mmher 6.

[BoT9 P J. Bowm Writing Iterative Giplers and Iterpreters. Wley Series in

Gnputing. John Wey & Sors, Gnputing Taboratory, Uhiversity of Fent at
CGaterbury, 1979.

[Bro86)] Hnk Borhey. Bsp Ive: AGide D Rograminy the Bisp Mihire. Huver

Aadernc Ruiblishers, 1986.

(k)

BI BLI OGRAPHY

[Gar83]

Jares R Girdell. Miltilingual T2bugging vith the SWTH gh-1evel I¥bugger.
AMSglan Mices, 18(8):180-189, August 1983. Roceedings of the AOM

Si gsoft /Si gpl an Sof t vere Fagi neering Synposi umon Hgh Tevel I¥bugging.

John S. Gmery. Parallel Iogic Rogram on the P Myfly. "Bchnical Report
S TR90-22, Ui versity of Qegon, [2cenher 7 1990.

John S. Gmery. (. User’s Gide Ui versity of Qegon, Rbruary 6 1991.

Jon S. Gmery. Purallel Iogic Program on the Myfly. ELsp ad Spbdic
@midior A Itermatiod Jourd, 5(1/2):49-72, My 1992.

A Dwis. Myfly: A (@neral- Rrpose, Scalable, Pirallel Brocessing Achitec-
ture. Lisp and Yyldic Gpidior A Itermatiod Jownd, 5(1/2): 747,
My 1992.

Michael K Dmegan, Robert E MNonan, and Stefan Eyock. A (bde (dner-
atar (ererator language. In Rowdng o the AMIHAN Sposium
o Gipler Grstrution, pblished in AMNHAV Mices, pages 58-64.
(llege of W1iamand Mry, Awgust 1979. volum 14, mmher 8.

Elvin Satterthvai te Jr. Swree laguge Debwggirg Fls PhDthesis, Stanford
Wi versity, My 1975. Qtstanding Dssertations in the (onputer Sciences.
Grland Riblishing, Inc. 1979.

(harles N Hscher and Rchard J. IeBanc Jr., editars. Giftinga Gpler. The
Berj anin/Guoings bl i shing Gupany, Inc., 2727 Sand HI1l Road, Mulo
Pk, (A94025, 1988.

R S. GawilleandS. L Gaham ANwMthodfor (bmpil er (bde (énerati on.
In 5th AMSrpsiumon Rirncides f Rograming laguages, 1978.

John L Bermessy. Syrholic IBhugging of ptinized (bde. "Bchnical Report
175, Stanford Wi versity, (bnmter System laboratory, July 1979.

BI BLI OGRAPHY 81

[JohT5) S. C Jomson. YAL ¥t Awther (oopiler-Gupiler. @nputing Science
"Bchni cal Report 32, Rl Iaboratories, Mrray HI11, N, 1975.

[JohT7] Mrk Scott Johmson. The I2sign of a Hgh-Ievel, Ianguage-Independent Sym
bolic I¥buggi ng System In Foxadngs o the And (@Gferene f the AM
pages 315-322, 2075 Wkrook Ml1, Vincouver, Bitish (&l unhia V6T 1V¥,
1977. Uhiversity of Bitish (ol unhia

[JohTg] Mrk Scott Johmson. e Bsign and Fematation f o Ruy Tra Ady
sis ad Iteractive 1dbwgrg Envrorart. PhDthesis, Wiversity of Bitish
Oluhia, Agust 1978. "Behnical Report 78-6. 148pp.

[Joh81] Mrk Scott Johmson. Dspel: A Rmrtire DRbugging language. Gmier
Torguges, 6(2): 79-94, 1981.

[Joh82)] Mrk Scott Jolmson. A Softvare RRbugging Gossary. AMSgdan Mices,
17:53-70, Rhruary 1982.

[Fac90] Rter acsuk Beion MHs f Bdq for Rrdld @miers. Research
Mnographs in Prallel and Dstributed (onmting, The NIT Bress, 1990.

[KBS Bian W Fernighan and Idrmis M Rtchie. e CPRygumy ligug,
Sod Hition Reentice Hill Softvare Series. Brentice Fall, 1988.

[KW1] Stephen G ¥ochan and Patrick H Wod Hics in CPgramiy Jon
Wey &Sors, Inc, 1991.

[LJ®2] Rudolf Iandvehr, Fhrs- Stephan Jansoln, and Gerhard Geos. Fiperience vith
an Atonatic (bde (ererator (ererator. In Posadngs o the ABHEHAN
Srpsiunon Gler Gstrution, phlishal in AMIEHAV Mices,
pages 56-66. Ui versitat krl srube, Institut fur Infornatik11, June 1982. volum
17, muher 6.

[Mk91] PRomald Mk Witirny Gpilers & Iterpreters. John Wley &Sors, Inc, 1991

BI BLI OGRAPHY

[NRR79)

[Rs8?)

[Fos?]

DR Milton, L WKrchhoff and B R Potand Ao AT(1) Gurmpiler Gner-
ator. In FPaeadng o the AMIHMNpsiunon @Gpler Grstru-
tion, pblishadin ANMAHANML i ces, pages 152-157, Nperville, 1L 60540,
Agist 1979. Rl Iaboratories. volum 14, mwher 8.

Rory MGlton and Rachel Mrgan. Iitralcing the INX Sstem MGaw
H1l Softvere Series Fr (nmter Brofessionals. MGawHI11 Bok (onpany,
1983.

MrtinR Buskovsky Dnotational Serantics as a Specification of (bde (dner-
atars. In Fawdng o the AMHHANSposiumon Gl er Grstru-
tion pllishal in AMIHAV Mices, pages 230-244. Bsex Ui versity,
Jure 1982. volura 17, mmher 6.

Dwid A Schoadt, editor. Bratdiod S$mtics. AMhodd ayfor laguxe
Idgrat. Wa C Bowm Ribishers, Dibuque, Tova, 1988.

Joseph E Stoy, editor. Brdaiod Smtics: Be Sdt-Srohey Apraxh

to Payaming e Beory The NITRress Series in (onputer Science.
The NITRess, Guhridge, Mssachisetts, 1977. Krevord by Bina S. Scott.

A Schleiermacher and J. E H Wikler. The Impl erentation of BoBst: A
Bolog I3bugger for a Rfined Bx Mdel. Sftware— Factice and Byerienx,
20(10): 985-1006, Gxtober 1990.

Mds Bfte. @pler Grerdas. Wi Bey Gn 1o, W Bey Xt I,

ad Wit Tey W! Fdbly Nver I3 volura 19 of FALS Mhgrahs on

Peretial Gpter Siene. Springer- ¥rlag, 1990. Elitors: W Baver and
G Bozenberg and A Sal oma.

Jares Berry Roisi. A Iterpreter and Spbdic Bhwyger for C BiDthesis,
Mssachisetts Institute of EBchnol ogy, August 1982.

82

BI BLI OGRAPHY

[WE83] D H D VWren A Astract BrologInstruction Set. Bchnical Note 309, SK
International, QGtober 1983.

[WB4] Patrick Wiston and Berthol d Haus Pl Horn. Lisp Soond Eition Addi son
V&l ey Ribli shi ng (bnpany, 1984.

[Zel 84] Rlle Tescott Zellveger. Iteradive Suce-led gy of Ginval Fo-

gan BDthesis, Wiversity of (lifarnia, Brkeley, My 1984. Xerox PARC
(5L 84- 5.

