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Abstract

Information representation is a critical issue in machine vision. The representa-

tion strategy at the primitive stages of a vision system has enormous implications

for the processing capabilities in the subsequent stages. Existing feature extraction

paradigms, like edge detection, provide sparse and unreliable representations of the

image information. In this thesis, we propose a novel feature extraction paradigm.

The paradigm is based on the dual interpretation of the Laplacian of Gaussian (LoG)

as a matched �lter and an edge locator. The zero-crossings of the LoG tend to outline

subjective features in the image, such as isobrightness regions. The typical size of the

outlined regions depends on the spatial width of the LoG �lter. Hence, a naive ap-

proach would be to take the regions bounded by the zero-crossings of the LoG �lter as

the features. In practice, such regions consist of multiple subjective regions that have

merged together due to the smoothing process. To address this issue, we introduce

a stable, robust decomposition of regions into their salient parts. The resulting sub-

regions, called simple region features, serve as the feature primitives for higher level

processing. The region decomposition is computed from the medial axis skeleton of

each region bounded by zero-crossings. Each subregion corresponds to a portion of a

branch of the medial axis skeleton; each skeleton branch is divided at positions where

the distance from the skeleton to the bounding contour is minimized. To facilitate

the computation of the decomposition, a number of computational geometry prob-

lems are addressed. A novel scale-space is introduced for contours and the medial

axis skeleton. The scale-space is parametric with the complexity of the contour or

the skeleton. The complexity measure of a skeleton is the number of branches. A

related complexity measure of a contour is the number of extrema of curvature of

the contour. The simple region features are dense, stable, and robust. The primary

advantage of simple region features is that they have abstract geometric attributes

pertaining to their size and shape. To demonstrate the utility of the feature extrac-

tion paradigm, we apply it to passive navigation. We subsequently argue that the

paradigm is applicable to a variety of vision subproblems.

Thesis Supervisor: Berthold K. P. Horn
Title: Professor of Computer Science and Engineering
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Chapter 1

Introduction

1.1 Representation in Vision Systems

The purpose of a machine vision system is to extract information about the envi-

ronment from an image or sequence of images. The information obtained from the

vision system must be useful for the execution of a particular task or set of tasks.

The ultimate measure of success or failure of a vision system is the utility of the

information that it provides.

There is an enormous quantity of information present in each image. Much of that

information is pertinent for a variety of tasks. For example, biological vision systems

are often cable of inferring the size, shape, and position of objects in the environment

from the brightness image projected onto their retinae. Such information may be

subsequently used to identify known objects and to navigate obstacles.

However, a substantial portion of the information contained in each image is

irrelevant for any given task. For example, the average brightness of an image is

inconsequential to most tasks. Even in the absence of clouds, the illumination of the

sun varies dramatically throughout an afternoon. However, the ability of biological

systems to identify objects and navigate in the environment is una�ected. In fact,

biological systems are often unaware of the di�erence in illumination between midday

and late afternoon.

The key to developing a vision system is to separate the useful information from

the irrelevant data contained in the image. The goal is to transform an image con-

sisting of an cumbersome array of brightness values into a form that makes the useful

information explicit. This is a non-trivial task because it is not clear a priori what

information is useful and how to extract it from the image.

A critical issue in the design of any vision system is the representation of informa-

tion (Marr[52]). The speci�cation of the information representation at any stage in

the vision system has an enormous impact on subsequent stages of the system. The

representation determines the information that is available to subsequent processes.

11
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The choice of a representation strategy has a substantial impact on the capability of

the vision system to achieve its goals.

Consider, for example, two hypothetical systems that combine depth estimates

from motion and stereo algorithms. In each of the systems, depth estimates are

obtained from two processing modules: depth from stereo and depth from motion.

The goal of each system is to combine the depth estimates to obtain a single smooth

surface representation.

In the �rst system, each module obtains the depth estimates and reconstructs a

surface by smoothing and interpolating the estimates spatially. These two surfaces

are then combined to provide the �nal surface. In the second system, the raw depth

estimates from each module are combined prior to any smoothing and interpolation.

The combined depth estimates are smoothed and interpolated to produce the �nal

surface.

The second system has a fundamental advantage over the �rst. In the �rst system,

pertinent information is discarded prior to the combination of the depth estimates.

The �rst system is incapable of drawing a distinction between the depth values es-

timated directly from the data and the depth values inferred by interpolation. Due

to the representation, the �rst system inadvertently gives equal preference to an in-

terpolated depth estimate and a measured estimate. Ideally, the measured estimate

should be given preference. In contrast, because the second system has direct access

to the individual depth estimates, no such confusion exists. This advantage is a direct

result of the representation chosen for each system.

This example illustrates the importance of the information representation strat-

egy to the performance of the vision system. The two systems are tacitly assumed to

possess similar information processing capabilities. However, the form of the infor-

mation that is provided as an intermediate representation has an enormous impact

on the overall e�ectiveness of the system.

1.2 Feature Extraction

One general approach for extracting information from the image is to reduce the quan-

tity of data by making abstractions. The vision system designer makes assumptions

about the form of the information present in the data. He develops the processing

algorithms based on these assumptions and speci�es data representations that make

the pertinent information explicit.

One type of abstraction that is often used in machine vision is the de�nition

of a feature. The de�nition of a feature requires the assumption that a particular

occurrence in the image is signi�cant. An implicit model speci�es the relationship

between the feature in the image and some event or occurrence in the environment.

For example, the most common features used by machine vision systems are edges.

Edges are modeled as the location of brightness discontinuities. The brightness dis-

continuities are assumed to be signi�cant because they are often associated with
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physical discontinuities, such as occlusion, in the environment (for example, Marr &

Hildreth[53] or Canny[13]). The edges are implicitly modeled as the locations of the

projections of physical discontinuities in the environment onto the image.

Manipulating the edges is considered less burdensome than manipulating the

brightness values because there are fewer edges than there are brightness values.

The amount of data present in the edge map is reduced compared to the original

image. As a direct result, the information processing is more manageable because

there is less data to process.

The selection of an abstraction or set of abstractions is critical to the performance

of the overall system. The choice of an abstraction speci�es the information that is

available to the higher level stages of computation. If the abstraction is chosen sen-

sibly, a higher level process may extract the desired information in a straightforward

manner. However, if the abstraction is chosen poorly, a higher level process may not

be able to obtain the desired information at all.

The choice of an abstraction has enormous implications for subsequent processes.

For example, the edge detection process is indi�erent to gradual changes in brightness

over the image. In some contexts, this is bene�cial. For example, gradual spatial

changes in the image are often due to illumination e�ects; such e�ects are irrelevant

when identifying an object. However, in other contexts, eliminating information

regarding subtle brightness changes is undesirable. In such cases, edge detection is

an inappropriate abstraction.

Later, we shall argue that edge detection discards too much of the image informa-

tion. Furthermore, edges are unreliable and sparse. Despite their prevalence in the

�eld, edges are not particularly good candidates for features. However, we cite them

here because they are the most common information abstraction used in machine

vision.

The de�nition of an ideal feature is somewhat elusive (for example, Richards &

Jepson[64]). However, we may gain insight into the problem by considering some of

the desirable properties of a feature extraction process. Ideally, the features should

provide a rich description of the image and, subsequently, the environment. The

feature abstraction should be chosen such that it represents the useful information

explicitly and e�ciently.

It is desired that each feature extracted from an image is associated with some

particular object, part of an object, or some other identi�able occurrence in the

environment. The set of features need not constitute a subjective description of the

environment. However, each particular feature should correspond to some physical

event in the environment.

The feature extraction process should provide a dense description of the image.

There are occasions when portions of the image contain little or no information. Some

portions of the image may consist of a nearly constant brightness value (e.g. the sky

on a cloudless day). However, when meaningful brightness variations do occur in the
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image, it is desirable that the feature extraction process capture the information as

much as possible.

It is also desirable that the feature extraction process be robust against small

perturbations in the input data. From a practical point of view, the feature extraction

process should be stable against small changes in illumination, viewing direction, and

deformations of the objects in the environment. Otherwise, if small changes in any

of these quantities lead to large changes in the features, the interpretation of such

features would be di�cult.

Features are desired to be stable across sequences of images when the camera

moves relative to the environment. This property is actually a consequence of the

properties stated above, but it is worth mentioning because of its importance. Fea-

tures that persist over time facilitate the analysis of the apparent motion of the

features in the image. From such analysis, we may infer, for example, the motion of

the camera and the structure of the environment. The stability of the features has a

direct impact on the ability of subsequent algorithms perform this analysis.

Finally, in the context of machine vision systems, it is desirable that the features

be applicable to a variety of vision subproblems. If the features are used by multiple

modules of the vision system, the computational burden is reduced relative to com-

puting distinct features for each module. Furthermore, a consistent representation is

bene�cial for integrating information among the various processing modules.

In the next section, we argue, based on these ideas, that edge detection is not a

particularly good feature extraction paradigm. Edges often correspond to the location

of physical discontinuities in the environment. However, edges do not constitute a

rich description of the image. Typically, edges are sparse in the image and they are

sensitive to small perturbations in the image data. Furthermore, edges are typically

not stable across most sequences of images. Overall, they do not provide a reliable

foundation for higher level processing.

Due to the importance of the information extraction and representation at the

earliest stages of the vision system, we �nd that it is necessary to consider alternative

feature extraction paradigms. Speci�cally, in the following chapters, we introduce a

novel feature extraction paradigm. We demonstrate that it is useful for extracting

relevant information from the image by applying it to the passive navigation problem.

We subsequently argue that the novel feature extraction paradigm has signi�cant

advantages over edge detection.

1.3 Critique of Edge Detection

Edge detection is the most common method for feature extraction in machine vision.

The number of edge detection algorithms is enormous (for example, Roberts[67], Marr

& Hildreth[53], Canny[13], and many others). There are many review articles in the

literature (for example, Davis[22], Ballard & Brown[5], Rosenfeld & Kak[68], Torre

& Poggio[72], and Hildreth[31],[32]). In this section, we do not provide a complete
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review of the subject. Rather, we consider the problem in su�cient detail to critique

the general approach.

The purpose of edge detection is to convert the large array of brightness values

that comprise an image into a compact, symbolic code. The goal of an edge detection

algorithm is to determine the location of brightness discontinuities in the image. The

brightness discontinuities are assumed to correspond to physical discontinuities in the

environment like occluding contours, shadows, and changes in surface orientation.

Edge detection algorithms consist of three stages. A di�erentiation operation

is used to locate the brightness discontinuities. A smoothing operation makes the

di�erentiation more well conditioned and speci�es the scale of the overall process. A

thresholding operation chooses the candidate edges that are signi�cant. The result is

set of points that typically correspond to the brightness discontinuities in the image.

In Figure 1-1, an image and its associated Canny edges[13] are depicted.

Edge detection is often viewed as a problem of numerical di�erentiation (for exam-

ple, Bertero, Poggio, & Torre[6] and Torre & Poggio[72]). Brightness discontinuities

are characterized by the maxima of some �rst order derivative operation, for example,

the maxima of the gradient. Similarly, brightness discontinuitiesmay be characterized

by the zero-crossings of a second order derivative operation. Two prevalent second

order spatial derivatives are the Laplacian[53] and the second directional derivative

in the direction of the gradient[29].

Because di�erentiation is sensitive to noise, it is necessary to smooth the im-

age data. A variety of optimal approaches for smoothing the image data have

been proposed (for example, Shanmugam, Dickey, & Green[69], Marr & Hildreth[53],

Lunscher[51], and Canny[13]). Each approach, in its own way, speci�es a �lter whose

shape optimizes the tradeo� between the localization of the edge and the stability

against noise.

Another function of the smoothing operation is to specify the resolution or scale of

the edge detection process[80]. If the smoothing operation has a broad spatial support,

the details in the image are removed. In this case, only the edges corresponding to

the coarse structure in the image are obtained. Conversely, if a narrow support �lter

is used, edges pertaining to the �ne detail in the image emerge.

Upon applying the smoothness and di�erentiation operations to the image data,

the edge detection algorithm must determine which of the candidate edge locations

are signi�cant. In the case of a �rst order derivative operation, some of the max-

ima are not related to brightness discontinuities. Particularly in areas of the image

that have roughly uniform brightness, maxima in the �rst order spatial derivative

often correspond to insigni�cant brightness changes in the image. Consequently, edge

detection algorithms apply a threshold to eliminate the insigni�cant edges.

The edges, like any features, are not intrinsically useful. It is the responsibility

of subsequent processes to infer information pertaining to the environment from the

edge map. The ultimate test for determining the utility of edge detection is the ability

of subsequent processes to make such inferences. Given that making such judgements
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Figure 1-1: Canny Edges. An image and its Canny edges are depicted.
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is di�cult or impossible, we consider edge detection based on the discussion of the

previous section.

Edges often correspond to the projection of physical discontinuities in the environ-

ment onto the image. Furthermore, edge detection algorithms do succeed in providing

a compact, symbolic description of the image. However, we argue that the symbolic

code does not provide a rich description of the image.

In practice, edge detection provides a sparse representation of the image. The

edge maps rarely characterize all of the physical discontinuities in the image. In

most cases, edge detection algorithms identify only a fraction of the subjective edge

locations. Gaps often exist in the edge map along the contours associated with

physical discontinuities and many of the discontinuities are not represented at all. For

example, in Figure 1-1, many of the boundaries between the books are not marked in

the edge map, there is no information pertaining to the woman's nose, and the cup

is only partially outlined.

Furthermore, edges are often reported at locations in the image where no signi�-

cant physical discontinuities are present. Edges are often reported that are related to

textural characteristics, rather than discontinuities. For example, many of the edges

in the region associated with the 
oor in the Figure 1-1 are due to the texture in the


oor pattern rather than signi�cant discontinuities.

In addition, the edge detection process is sensitive to small perturbations in the

image data. The thresholding mechanism that is present in all edge detection al-

gorithms is responsible for this sensitivity. The problem arises whenever the edge

discriminant (the quantity compared to the threshold) is near the threshold value.

When this is the case, a small change in the brightness pattern near the candidate

edge may cause a change in the decision made by the threshold mechanism.

As a result, the edges are often spurious when considered over a sequence of

images. Candidate edges whose discriminant values are near the threshold often tend

to appear and disappear as the sequence evolves. This type of temporal instability

in the representation is undesirable. For example, such instability makes it di�cult

to track the edges over a sequence of images.

In summary, edge maps do not constitute a rich description of the image. Edges

do not demark the image projections of physical discontinuities reliably. The edge

representation is sparse and sensitive to small perturbations in the image data. These

weaknesses are fundamental to edge detection because of its reliance on a threshold

mechanism.

Given the shortcomings of edge detection, it is desirable to consider alternative

approaches for feature extraction. A more reliable and robust method of extracting

and representing information in the image is needed. An improved feature extraction

paradigm would enhance the performance of higher level processes.
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1.4 Thesis Overview

In this thesis, we introduce a novel feature extraction paradigm. We demonstrate

the utility of the paradigm by applying it to the passive navigation problem. We

argue that the paradigm is applicable to a variety of vision subproblems in addition

to passive navigation. We subsequently argue that there are substantial advantages

to the novel paradigm over existing paradigms, such as edge detection.

The features consist of the salient parts of regions bounded by zero-crossings of the

Laplacian of Gaussian �lter. The features are obtained at multiple resolutions that

are determined by the spatial width of the Laplacian of Gaussian �lter. We call the

features simple region features because they consist of subregions of the zero-crossing

regions that have simple shapes.

In Part I of the thesis, we develop a number of capabilities in the realm of compu-

tational geometry. The capabilities are necessary for the computation of the simple

region features. Previous algorithms are not su�cient to compute the smooth con-

tours and the corresponding medial axis skeletons that are required by the simple

region feature extraction process.

We treat the results pertaining to computational geometry independently because

the results have implications beyond the simple region feature extraction paradigm.

The capabilities we introduce are useful for representing, interpreting and ultimately

recognizing contours and regions bounded by contours. We consider these possibilities

brie
y in Part I before moving on to the de�nition of the simple region features.

In Chapter 2, we de�ne an analytical contour representation. The representation

has the advantage that a contour is represented as a mathematical curve rather than

a list of points. The curve is continuous, and a number of properties, such as the

position, orientation, and curvature are represented explicitly.

In Chapter 3, we consider the computation of the medial axis skeleton from the

contour representation. The skeleton is also represented analytically. In contrast to

most existing algorithms, the skeleton computation is robust against small perturba-

tions in the data points of the bounding contour.

The analytical contour and skeleton representations facilitate the computation of

a novel scale-space for contours and the medial axis skeleton. The scale-space achieves

an explicit tradeo� between the complexity and the accuracy of the representation.

The complexity is alternately measured as the number of extrema of curvature present

in the contour, or the number of branches of the skeleton. The accuracy is measured

by the square-error between the bounding contour and the data points.

In Part II we de�ne a novel feature extraction paradigm. We demonstrate the

viability of the paradigm by applying it to the passive navigation problem. The

approach achieves reasonable results for determining motion and structure from mo-

tion. We subsequently argue that the paradigm has broader implications than passive

navigation; simple regions are the foundation of a novel early vision paradigm.
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In Chapter 5, we de�ne the simple region feature extraction paradigm. Simple

region features consist of the salient parts of regions bounded by zero-crossings of the

Laplacian of Gaussian �lter. The zero-crossings are smoothed using the techniques

described in Chapter 2. The medial axis skeleton is computed as described in Chap-

ter 3. A decomposition is de�ned that breaks the regions bounded by zero-crossings

into salient parts. These subregions serve as the features.

In Chapter 6, we develop an algorithm for tracking the features across multiple

frames of an image sequence. We consider a recursive algorithm for estimating the

optical 
ow or two-dimensional image velocity of each feature. In addition to the

optical 
ow, the estimator provides a measure of the reliability of each estimate.

In Chapter 7, we use the optical 
ow to determine the direction of translation of

the camera and estimate the relative depth of each feature. We use the reliability

measure to weight the 
ow estimates when determining the direction of translation

of the camera. The reliability measure also provides a measure of the reliability of

the depth estimates.

In Chapter 8, we discuss the merits of the simple region feature extraction par-

adigm and consider future directions of the research. The primary advantage of the

simple region feature extraction paradigm over existing paradigms is that simple re-

gions have spatial extent; that is, they have shape and size attributes. Throughout the

development and demonstration of the approach we exploit these attributes whenever

possible.

We argue that the simple region feature extraction paradigm has broader applica-

tion than passive navigation. We brie
y consider two additional problems, stereopsis

and object recognition, that may be addressed using simple region features. We ar-

gue that by using the same feature abstraction for a variety of problems, integration

of information from the individual modules becomes more straightforward. In this

context, simple region features are the foundation of a novel early vision paradigm.

Finally, in Chapter 9, we draw some conclusions.
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Chapter 2

Analytical Contour

Representation

2.1 Introduction

The interpretation and recognition of noisy contours, such as silhouettes, have proven

to be di�cult. One obstacle to the solution of these problems has been the lack of a

robust representation for contours. Improvements in the representation of contours

and the ability to manipulate the representation will lead to improvement of inter-

pretation and recognition procedures. Furthermore, because manipulating contours

is useful as a primitive operation in other contexts, a more robust representation for

curves is likely to lead to improved performance in a variety of higher level functions.

Curvature has long been recognized as an important property of contours. In

1954, Attneave[4] published an important paper in which he observed that extrema

of curvature along contours provided much of the information necessary to recog-

nize objects from line drawings. Attneave manually picked points that corresponded

to extrema of curvature and connected the points with straight lines. Remarkably,

recognition based on such �gures was found to be simple for human observers. Thus,

curvature is likely to play an important role in the development of computer vision

recognition systems.

Consequently, many procedures for interpretation and recognition of contours re-

quire estimates of curvature (see Section 2.2). Unfortunately, curvature is a second

order derivative property of the coordinates of the curve. Because contours extracted

from real data are almost always noisy, curvature estimates are typically unreliable.

Therefore, it is critical that a robust, reliable method for smoothing contours be avail-

able. Furthermore, it is essential that the representation provide a robust estimate

for curvature.

One barrier to the development of a robust contour representation paradigm is that

geometric relationships are very awkward to represent computationally. In particular,

the discrete nature of computers and the unavoidable roundo� error make inference

23
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of simple geometric properties extremely di�cult[78]. Consider a trivial example.

Two points in the continuous domain, (x1; y1) and (x2; y2) determine a line and the

midpoint, (x1+x2
2

;
y1+y2

2
), is guaranteed to be on the line. However, in the discrete case

any computation of the distance between the midpoint and the line almost always

yields a non-zero result. This leads to the paradoxical conclusion that a point on the

line has a non-zero distance from the line.

In this chapter, we present a novel approach to representing contours. The curve

is represented by a list of pairwise tangent circular arcs. To account for roundo�

error, the representation paradigm uses a de�nition of tangency that is di�erent from

the pure mathematical de�nition. A variety of mathematical properties, including

curvature and orientation are represented explicitly. A variety of global properties of

the curve are computed easily from the representation.

We also introduce a novel approach to contour smoothing. We optimize a tradeo�

between the complexity of the curve and the proximity of the curve to the data

points. The complexity of the contour is measured by the number of extrema of

curvature of the curve. Once a particular complexity has been speci�ed, the curve

that minimizes the square-error between the data points and the curve is chosen. A

multiple scale description of the curve is obtained by computing curves with a variety

of complexities.

In Section 2.2, we consider previous attempts to represent and smooth contours.

In Section 2.3, we consider the de�nition of the contour representation and the me-

chanics of deforming the contour. In Section 2.4, we introduce the novel smoothing

criteria and complexity scale-space. In Section 2.5, we consider the computation of

a number of useful mathematical properties from the representation. In Section 2.6,

we summarize.

2.2 Background

A variety of methods of representing and smoothing contours have been proposed. Of

course, the representation of the contour has a tremendous impact on the ability to

interpret or recognize an object bounded by the contour. In this section we consider

a sample of existing contour representation paradigms. In particular, we focus on the

implications of the representation on the ability to recognize and interpret contours.

Perhaps the simplest representation for a contour is a list of the coordinates

of points along the curve (for example, Ho�man & Richards[36], Mokhtarian &

Mackworth[57] and Lowe[49]). A curve represented in this fashion may be smoothed

by applying a Gaussian �lter to the x and y coordinates, independently. Estimates of

the orientation and curvature of the contour may be obtained from �nite di�erence

approximations of the derivatives of the local coordinates.

Unfortunately, Gaussian �ltering applied to coordinates of points su�ers from a

well-known shrinkage problem[42]. As the standard deviation of the Gaussian �lter

increases, the perimeter of the smoothed curve is guaranteed to decrease. In fact,
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as the standard deviation tends to in�nity, the coordinates of the smoothed curve

converge to a single point. Therefore, the smoothed curve is guaranteed to stray from

the original data points; there is a bias toward the interior of the contour.

Lowe[49] proposes a smoothing procedure that compensates for the shrinkage

problem explicitly. This procedure reduces, but does not completely eliminate, the

shrinkage problem. Lowe points out that locally, the shrinkage problem manifests

itself as a tendency of the smoothed points to migrate toward the center of curvature.

Based upon the amount of smoothing and an estimate of the curvature, it is possible

to predict the amount of shrinkage that would occur with straightforward �ltering.

Lowe's algorithm explicitly compensates for the shrinkage based on this estimate.

Horn and Weldon[42] propose a solution to the shrinkage problem. They represent

the curve by its extended circular image[40]. The extended circular image is obtained

by mapping the curvature of a particular point on the curve to the location of the

circle that has the same orientation of the point of interest. Thus, the extended

circular image is the curvature of the curve as a function of the orientation of the

curve. (See Section 2.5.5.) Horn and Weldon show that applying a �lter with unit

DC gain to the extended circular image leaves the perimeter of the underlying curve

unchanged. Therefore, their method does not su�er from the shrinkage problem.

Filtering the extended circular image is simply smoothing the curve in a di�erent

domain. Unfortunately, the procedure is only applicable to convex curves. Attempts

to extend the procedure to general curves have proven unsuccessful.

An alternate method is to represent the contour by a set of line segments. The

line segments are chosen using a split and merge algorithm (see Horn[38], Horowitz

& Pavlidis[62], [43], Chen & Pavlidis[18], and Grimson[27] pp. 104-105). The repre-

sentation is constructed recursively. The algorithm begins with a single line segment

that is de�ned by the two endpoints of the curve. The data point that deviates the

farthest from the line segment is found. If the distance of this point from the origi-

nal segment is greater than a speci�ed tolerance parameter, the segment is split into

two. Each new segment is de�ned by one of the original endpoints and the point of

maximum deviation. This process is repeated, recursively, until all data points are

within the speci�ed distance of the curve. Neighboring segments are combined into

a single segment if doing so would not cause the distance from any data point to the

segment to exceed the tolerance.

The line segment representation based upon the split and merge algorithm pro-

vides a simple, computationally e�cient means of representing the contour. The

amount of smoothing is controlled by the tolerance parameter. Orientation estimates

are obtained from the orientation of each line segment. Curvature estimates may be

obtained from the change in orientation of neighboring line segments and the length

of neighboring line segments. Unfortunately, the curvature estimates obtained from

this representation are only marginally useful.

It is also possible to represent a contour with circular arcs and line segments. A

popular method of acquiring this representation is to map the curve into �-s space.
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At each point along the curve, estimates of the orientation and the arclength between

the point and the previous point are obtained. An estimate of the orientation of

the curve as a function of arclength is obtained. In this space, called �-s space, a

horizontal line corresponds to a line segment on the curve. A non-horizontal line

corresponds to a circular arc; the curvature of the arc is equal to the slope of the

line. By making a piecewise linear least square-error �t to the data in �-s space,

a representation of the curve by a set of circular arcs is implicitly obtained. This

procedure is described in more detail in Grimson[27] pp. 105-108. The use of �-s

space is particularly popular for object recognition systems (for example, McKee and

Aggarwal[55], Perkins[63], Turney et al[75], Clemens[20], and Grimson[27], [28]).

Estimates of orientation and curvature may be obtained directly from the circular

arcs and line segments in the representation. The piecewise linear �t in �-s space

is an explicit method of smoothing the curve. However, strictly speaking, the ori-

entation is discontinuous because neighboring arcs and segments are not guaranteed

to be tangent. Thus, the curvature is in�nite at these points. This problem may be

alleviated by a variety of ad hoc methods; however, such methods necessarily lead to

curvature estimates that are inconsistent with the representation.

Curvature estimates play a major role in most contour interpretation and recog-

nition algorithms. In many cases, such as codon coding[36], the curvature estimates

play an explicit role. In other cases, such as the medial axis transform[8], the curva-

ture of the contour has an implicit, but important, e�ect on the calculation.

The medial axis transform is an algorithm that obtains a graph with the same

topology as the region it represents. Each point on a branch of the graph is equidistant

from two points on the bounding contour of the region. A node of the graph is

a point equidistant from three or more points on the contour. The graph is often

called the medial axis skeleton or skeleton for short. The skeleton is useful because

it decomposes the region into simpler parts. Each part is represented as a branch of

the skeleton. Furthermore the skeleton provides a convenient representation of the

topological relationships of the parts of the region.

We may consider the skeleton to include information about the distance between

each point on the graph and the bounding contour. That is, for each point on the

branch of a graph we assume the distance between that point and the two closest

points on the contour are known. In this case, there is a unique mapping from the

skeleton to the bounding contour of the region and vice versa.

Given the unique mapping between the skeleton and the bounding contour of the

region, it is not surprising that the skeleton is highly dependent on the curvature of

the contour. Each branch of the skeleton that terminates into the contour (rather than

into a node of the skeleton) does so at a positive maximumof curvature. Furthermore,

there is a simple test to determine if a positive maximum of curvature corresponds

to a terminus of a branch of the contour. If the osculating circle at the maximum

of curvature lies in the interior of the contour, the maximum is associated with a
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terminus of a branch of the skeleton. Otherwise, there is no terminus associated with

the maximum. Consequently, the local curvature of the bounding contour plays an

important role in the topology of the skeleton. In fact, the well-known sensitivity of

the skeleton to small perturbations in the contour is completely characterized by the

e�ect of the perturbation on the local curvature.

Therefore, the e�ect of the contour representation on curvature is critical to the

computation of the medial axis skeleton. Typically, the sensitivity of the skeleton

to perturbations in the contour is reduced by computing an approximation to the

medial axis skeleton. For example, Leymarie & Levine[47] compute a skeleton that

minimizes a cost function that includes the distance from the true medial axis skeleton

and a smoothness term for the resulting skeleton. Such an approach may provide a

reasonable result for the skeleton itself. However, the resulting skeleton and the

bounding contour are inconsistent. Such inconsistency is undesirable.

Codon coding, popularized by Ho�man & Richards[36], is another method for

interpreting the region bounded by a contour that makes use of curvature estimates

explicitly. A codon is a portion of the curve delimited by two minima of extrema. It is

desirable to decompose the curve in this fashion because the boundary of subjective

parts of an object often occur at negative extrema of curvature. Thus, the list of

codons provides an explicit interpretation of the contour as the set of its salient

parts.

The work of Richards et al [36], [37], [65] on codons has been widely referenced in

the literature. However, as a practical matter, the direct implementation of these ideas

has been elusive. The largest obstacle has been the inability of contour representation

and smoothing schemes provide reliable estimates for curvature.

Asada and Brady[3] construct a \primal sketch" for contours. A set of primi-

tives are delimited by positions of \signi�cant curvature changes." The primitives

are detected and localized across a variety of resolutions of Gaussian �ltering. The

primitives include corners and \smooth joins" (large discontinuities in curvature) as

well as compound primitives such as ends (two nearby corners of the same sign),

cranks (nearby corners of opposite sign), bumps and dents (two nearby cranks). Pre-

sumably, such an intermediate representation could be used by a higher level process

to make inferences about the contour.

Mokhtarian and Mackworth[57] propose an alternative method of describing the

shape of a contour. The curve is represented by a list of coordinates along the curve;

smoothing is accomplished with a Gaussian �lter. The shape is represented by the

position of the zero-crossings of curvature as a function of arclength along the curve.

A scale-space representation reminiscent of Witkin[80] is obtained by considering the

position of the zero-crossings parametric in the amount of smoothing applied to the

data points. Mokhtarian and Mackworth develop a contour recognition algorithm

that compares the scale-space representation of a contour to the elements of a library

of such contours.
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We have considered only a limited sample of existing methods for representing

contours. We have touched on some of the issues related to smoothing, interpreta-

tion, and recognition of the contours. In particular, we have noted that curvature

and orientation estimates often play critical roles in interpretation and recognition

systems. An historical review of contour representation prior to 1980 may be found

in Pavlidis[61]. For a mathematical treatment of curves and their properties, see

Koenderink[45].

2.3 Computation of the Contour Representation

Any su�ciently well-behaved curve may be approximated by a set of pairwise tangent

circular arcs. Such a representation is desirable because it provides a richer, more

meaningful description of the contour than do traditional representation schemes.

The representation provides several mathematical properties explicitly and facilitates

the analytical computation of a variety of others.

The computation of the pairwise tangent arc representation is nontrivial. For ex-

ample, simple geometric properties, such as tangency, are not conveniently computed

by digital processors having �nite accuracy. In this section, we consider the compu-

tation of the contour representation from a set of sample points along the contour.

2.3.1 De�nitions

Wemust de�ne terms necessary for describing the contour representation. While these

terms may have widely accepted geometric meanings, it is necessary to be precise

when describing their meaning in a computational context. Due to the quantized

nature of computers, it is necessary to de�ne suitable approximations to terms such

as tangency.

A simple closed curve divides the plane into two simply connected regions: the

interior and the exterior. An observer traversing the curve with the interior to his

left is said to be moving in the positive direction of the curve. If the curve turns to

the left, the curvature is said to be positive; alternatively, if the curve turns to the

right, the curvature is said to be negative.

For any point along the curve, the normal vector is de�ned as the vector per-

pendicular to the curve pointing in the direction of the exterior. The normal vector

speci�es the orientation of the curve at the point. The angle of the normal vector

is called the angle of orientation. The angle of orientation increases when traversing

a segment of positive curvature. Conversely, the angle of orientation decreases when

traversing a segment of negative curvature.

A circle is a locus of points equidistant from a particular point (xc; yc), the center

of the circle. The distance from the center to any point on the circle is the radius, R.

An arc of a circle is delimited by two end angles denoted by �1 and �2. The curvature
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of an arc is denoted by �, and

j�j = 1

R

: (2:1)

The curvature is positive if the arc is traversed in the counterclockwise direction

around the center, negative if the arc is traversed in the clockwise direction. The

coordinates of the arc parametric in arclength may be expressed as

x(s) = xc +R cos (s�+ �1) ; (2.2)

y(s) = yc +R sin (s�+ �1) ; (2.3)

where s is the distance traversed along the arc.

Two circles are said to be externally tangent i� the distance between their centers

is equal to the sum of their radii. Because it is impossible to compute distances

exactly, we must use an approximation to this de�nition for computational purposes.

Thus, two circles are considered to be externally tangent i� the di�erence of the sum

of their radii and the distance between their centers is less than some parameter, �.

Speci�cally, two circles are externally tangent i�

����R1 +R2 �
q
(xc1 � xc2)

2
+ (yc1 � yc2)

2

���� < �: (2:4)

Two circles are said to be internally tangent i� the sum of one radius and the

distance between the centers is equal to the other radius. Again, we must allow for

quantization. Without loss of generality we assume R1 < R2. Under this condition,

the circles are internally tangent i�

����R1 �R2 +
q
(xc1 � xc2)

2
+ (yc1 � yc2)

2

���� < �: (2:5)

Note that the parameter, �, is dependent on the precision of computation. As

the precision of the computation device increases, the necessary value of � decreases.

Thus, � is not an internal parameter that signi�cantly a�ects the outcome of the

computation. It is a computational necessity due to quantization error.

Two circles intersect when the distance between their centers is less than the sum

of their radii but greater than the magnitude of the di�erence of their radii. For

consistency, we must add the condition that the circles are not tangent as de�ned

above. So two circles intersect i� they are not tangent as de�ned above and

jR1 �R2j <
q
(xc1 � xc2)

2
+ (yc1 � yc2)

2
< R1 +R2: (2:6)

Two circles are said to be external when the distance between their centers is greater

than the sum of their radii. Two circles are external i� they are not tangent and

R1 +R2 <

q
(xc1 � xc2)

2
+ (yc1 � yc2)

2
: (2:7)
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Circle1 is said to be internal to circle2 when circle1 lies completely in the interior of

circle2. Circle1 is internal to circle2 i� the circles are not tangent and

R2 �R1 >

q
(xc1 � xc2)

2
+ (yc1 � yc2)

2
: (2:8)

A curve is represented by an ordered list of circular arcs. Each arc is speci�ed

by its center point and curvature. The end angles of each arc are determined by the

points of tangency with the neighboring arcs. Neighboring arcs that have the same

sign of curvature must be internally tangent; neighboring arcs that have di�ering

signs of curvature must be externally tangent.

2.3.2 Curve Initialization

In this section we consider the computation of an arbitrary curve that passes through

each data point. Once such a curve is found, it may be deformed to �nd a suit-

ably smooth curve. We consider the computation of deformations of a curve and a

particular smoothness criterion below.

At each data point, a circular arc is computed that passes through the point. Since

three points determine a circle, two other points must be speci�ed. The midpoint

between the point of interest and one of its neighbors is used as the second point. The

midpoint between the point and its other neighbor is the third. The circle determined

by these points is used as the initial arc for the point of interest.

The initial arcs from two neighboring points are guaranteed to intersect at the

midpoint between the points. A third arc must be computed that is mutually tangent

to each initial arc. The radius of the third arc is arbitrarily chosen and its position is

de�ned by tangency constraints. Figure 2-1 illustrates the computation of the initial

curve.

This initialization procedure yields an arbitrary curve that passes through each

data point. The initial curve must be deformed to obtain a more reasonable represen-

tation of the data. The computational means of the curve deformation are described

in the next section. Later, we introduce a reasonable criterion for choosing an appro-

priately smooth curve.

2.3.3 Deformation of the Curve

In this section we consider the mechanisms for deforming a curve locally. There

are three types of deformation of interest to us. First, we consider changing the

curvature of a single arc. Next, we consider the rotation of two neighboring arcs

without modifying their curvature. Finally, we consider the deformation of a single

arc into two separate arcs. These operations provide the ability to transform the

curve into a more desirable curve. In Section 2.4, we shall consider the criteria for

choosing deformations of the curve such that they lead to a more desirable curve.
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Figure 2-1: Initialization of a curve from the data points. The small squares indicate

the location of the data points. The lines protruding from the curve represent radii

of the circular arcs. Each arc in (a) passes through a data point and the midpoints

between the data point and its neighbors. Radii are drawn from the center of cur-

vature of each arc to the corresponding midpoints between the data points. In (b)

additional arcs have been added between each neighboring pair so that each arc is

tangent to its neighbor. Radii are draw from the center of curvature to the endpoints

of each arc.

Modi�cation of the Curvature of a Single Arc

Consider the deformation of a curve by modifying the curvature of a single arc. We

shall call the arc of interest the new arc and the adjacent arcs neighbor1 and neigh-

bor2, respectively. During the operation the circles associated with the neighboring

arcs are considered to be �xed.

A number of constraints must be maintained during the deformation. First, the

new arc must be tangent to each neighbor. Furthermore, the type of tangency must

be consistent with the sign of curvature. For example, if neighbor1 and the new

arc have the same sign of curvature, they must be internally tangent. Conversely,

if they have opposite signs of curvature they must be externally tangent. The same

constraints apply to the new arc and neighbor2.

Because the new arc must be tangent to each of its neighbors, the center point is

constrained to lie on a locus of points speci�ed implicitly by

����
q
(xcn � xc1)

2
+ (ycn � yc1)

2 �R1

���� =
����
q
(xcn � xc2)

2
+ (ycn � yc2)

2 �R2

���� ; (2:9)

where fxc1; yc1; R1g and fxc2; yc2; R2g denote the respective neighboring circles and

(xcn; ycn) denotes a legal center of curvature for the new arc. The value of the left side

of the equation is the distance from the new center point to the point of tangency

with neighbor1 and the right side is the same measure for neighbor2. The value of

either side of the equation is the radius of the new circle.

The curves de�ned by Equation 2.9 are ellipses and/or hyperbolae. An ellipse

is the locus of points whose distances from two �xed points (called the foci) have a
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constant sum (see, for example Thomas and Finney[71], p.411). The foci are the two

centers of the neighboring arcs. The constant sum is equal to jR1 �R2j, where the
plus or minus sign depends on the relationship of the two circles.

Similarly, a hyperbola is the locus of points whose distances from two �xed points

(called the foci) have a constant di�erence (see, for example Thomas and Finney[71],

p.418). The foci of the ellipse are the centers of the neighboring arcs. The constant

di�erence is equal to jR1 �R2j where the plus or minus sign depends on the relation

of the two neighboring circles.

Equation 2.9 may specify as many as four distinct curves on the plane. However,

two of the curves are eliminated by the constraint that the new arc have the appro-

priate tangency type with its neighbors. The two remaining curves correspond to the

cases where the new arc has positive and negative curvature, respectively.

However, computing points that satisfy equation 2.9 is non-trivial. Rather than

solving the equation, an iterative procedure is employed to compute legal center points

for the new arc. Upon computation of the center point, the radius and, therefore,

the curvature of the new arc are determined by computing the distance from the new

center to either of the neighbors (using either side of equation 2.9).

For each legal center point, there is a unique point of tangency with neighbor1 and

also with neighbor2. Conversely, each point on the circle of neighbor1 is associated

with a particular legal center point. That is, the choice of a tangent point with

neighbor1 uniquely speci�es the center point and therefore uniquely speci�es the

tangent point of the new arc and neighbor2.

Therefore, by sweeping the location of the tangent point along the circle of neigh-

bor1, the algorithm may implicitly sweep along the locus of legal center points. In

essence, there is a single degree of freedom for choosing the new arc. The point of

tangency of the new arc with the circle of neighbor1 is a computationally convenient

parameterization for the operation of deforming the curvature of an arc.

Given a point of tangency on the circle of neighbor1 it is necessary to compute a

center point and radius that specify a circle tangent to both neighbors. It is instructive

to note that when two circles are tangent, the centers and the tangent point are

collinear. Consequently, the center of the new arc must lie on the line determined by

the center of neighbor1 and the point of tangency. It is necessary to search along this

line systematically to determine the appropriate center point for the new arc. The

modi�cation of the curvature of a single arc is illustrated in Figure 2-2.

There is a particular choice of the center point that causes the arclength of one

of the neighbors to be zero. When this occurs, the zero-length neighbor is elimi-

nated from the representation. This case also acts as a delimiter since deforming the

curvature of the new arc further would lead to an illegal con�guration of the arcs.



CHAPTER 2. ANALYTICAL CONTOUR REPRESENTATION 33

Figure 2-2: Deformation of the curve by changing the curvature of a single arc. In

(a) the curves represent candidate arcs that are internally tangent to two neighboring

arcs. In (b) the curves represent candidate arcs that are externally tangent to two

circles.

Rotation of Two Neighboring Arcs

Consider the deformation of a curve by rotating two neighboring arcs. In this case,

the two arcs change position rather than curvature. We refer to the two arcs as arc1

and arc2. We refer to their neighbors as neighbor1 and neighbor2, respectively. The

circles of neighbor1 and neighbor2 are considered �xed during the operation.

First, consider circle1 with a �xed center and radius. Consider circle2 with a �xed

radius but a variable center point. Circle2 is allowed to move under the constraint that

the two circles remain tangent. Under these conditions, the center of circle2 follows

the path of a circle whose center is coincident with the center of circle1. Moving

circle2 in this manner is, therefore, equivalent to rotating circle2 about a center of

rotation coincident with the center of circle1.

Now, if the position of arc1 is modi�ed such that it remains tangent to neighbor1, it

may be described by a rotation about the center of neighbor1. After the modi�cation,

arc1 and arc2 are no longer tangent. It is necessary to compute the appropriate

position for arc2 such that it is tangent to arc1 and neighbor2. Since arc2 must remain

tangent to neighbor2, this modi�cation of position may be described as rotation about

the center of neighbor2.

The rotation of two neighboring arcs is an operation with a single degree of free-

dom. If the position of arc1 is perturbed by a small amount then the position of arc2

must be changed also to maintain tangency between arc1 and arc2. A computation-

ally convenient parameterization of this operation is the tangent point of arc1 and

neighbor1. This tangent point (along with the constraint that tangency type must
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Figure 2-3: Deformation of the curve by rotating two neighboring arcs. An initial

arrangement of two arcs and their neighbors is shown in (a). Candidate deformations

of the curve involving a change in position of arc1 and arc2 are shown in (b). The

curvatures associated with arc1 and arc2 are not a�ected by the operation.

be consistent with the curvature) uniquely speci�es the position of arc1. Given the

positions of the arc1 and neighbor2, there are typically two positions of arc2 for which

arc2 is mutually tangent to arc1 and neighbor2. It is always possible to determine

which of these two positions is appropriate for arc2 based on the original position of

arc1 and arc2. Typically, this ambiguity is of little consequence in practice.

Once an appropriate tangent point between arc1 and neighbor1 is chosen, it is

necessary to compute the new center points of arc1 and arc2. The center point of

arc1 is determined by computing the appropriate point on the line speci�ed by the

center of neighbor1 and the desired tangent point. The new center point of arc2 is

determined by searching for the tangent point between arc2 and neighbor2 that results

in the appropriate tangency between arc2 and arc1. This operation is illustrated in

Figure 2-3.

There is a particular choice of rotation for which one of arc1, arc2, neighbor1, or

neighbor2 has exactly zero arclength. When this rotation is chosen, the zero-length

arc is eliminated from the representation. This case also acts as a delimiter since

further rotation would lead to an illegal con�guration of the arcs.

Splitting an Arc into Two Arcs

Consider the deformation of a single arc into two separate arcs. This is accomplished

by choosing two arcs such that they are tangent to their respective neighbors and to

each other. This operation provides a mechanism for increasing the number of arcs

in the curve representation. We refer to the new arcs computed in this operation as

arc1 and arc2 and their neighbors as neighbor1 and neighbor2.

This operation, as de�ned in the previous paragraph, has three degrees of freedom.

Consequently, it is necessary to provide an additional constraint. This is accomplished

by constraining the tangent point between arc1 and arc2 to lie on a line that is tangent

to the original arc. The choice of the constraint line is dependent on the context of
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Figure 2-4: Deformation of the curve by splitting a single arc into two arcs. In (a)

the original con�guration of an arc and its neighbors is shown. In (b) each member

of the family of curves consists of the two original neighbors joined by two new arcs.

The point of tangency between the new arcs lies along the constraint line illustrated

in (a).

the computation. Criteria for the choice are described Section 2.4.3. The constraint

eliminates two degrees of freedom leaving only one.

Again, a convenient parameterization for this operation is the tangent point be-

tween neighbor1 and arc1. For a particular choice of the tangent point, a circle is

computed that is tangent to neighbor1 and the constraint line. The point of tangency

between arc1 and the constraint line is taken to be the point of tangency between

arc1 and arc2. Arc2 is determined by computing the circle tangent to arc1 and neigh-

bor2 with the speci�ed point of tangency between arc1 and arc2. This operation is

illustrated in Figure 2-4.

Once again, there is a particular deformation that leads to an arclength of zero for

one of the neighboring arcs. If this deformation is chosen, the arc with zero arclength

is eliminated. As above, this particular choice of parameters is a limiting case for

legal deformations of this type.

2.4 Contour Smoothing

A smoothing operation on a contour involves a tradeo� between some measure of

smoothness and the proximity of the curve to data points. Often, smoothness of a

contour is measured by some function of the magnitude of the curvature[39]. However,

in this chapter, we consider a novel approach to the tradeo�. We propose that the

complexity of the curve, rather than the magnitude of the curvature, be minimized.
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2.4.1 Smoothness Criterion

We propose a two-fold criterion for smoothness and proximity. The �rst part of the

criterion is that the contour shall have minimum complexity as measured by number

of curvature extrema, as described below. The second part of the criterion requires

that for a given complexity, the contour shall be chosen to minimize the square-error

between the contour and the data points.

A reasonable measure of the complexity of a curve is the number of extrema of

curvature of the curve,M . As described in Section 2.2 Ho�man and Richards[36] have

used extrema of curvature for interpreting and classifying contours. Their approach,

called \codon coding", is based on the observation that extrema of curvature occur at

the natural break points of the contour. That is, a human observer asked to break a

contour into salient parts would place the breaks at extrema of curvature. Thus, the

number of extrema of curvature of the contour is related to the number of subjective

\parts" of the contour. Hence, reducing the number of extrema of the contour is

tantamount to reducing the number of features that may be encoded in the contour.

Of course, there must be a reasonable criterion for deciding how many extrema

and, therefore, how many features of the contour to retain in the representation.

A fundamental tradeo� exists between the number of extrema of curvature and the

proximity of the curve to the data points. A reasonable method of quantizing this

tradeo� is to constrain the curve to pass within a speci�ed tolerance, �, of each data

point. When the tolerance is small, it is necessary that the curve have a relatively

large number of extrema to meet the constraint. When the constraint is relaxed,

fewer extrema are required.

The proximity constraint de�nes a tolerance circle about each data point. The

center of each tolerance circle is the associated data point and the radius is the

tolerance, �. The curve is constrained to pass within each tolerance circle. Thus, we

seek to �nd an instance of the curve that has the minimum complexity measure and

passes within each tolerance circle.

In general, there are in�nitely many curves that meet the proximity constraint and

minimize the complexity. From these, it is desirable to choose the one that minimizes

the square-error between the data and the curve. The result is a curve that is smooth

in the sense has the minimum complexity and close to the data in the square-error

sense.

The tolerance acts as a scale parameter. As the tolerance is increased, fewer

extrema and, therefore, fewer subjective features are present in the contour repre-

sentation. Conversely, for smaller values of the tolerance, more subjective features

are present. Hence, the representations computed for di�ering values of � lead to

descriptions of the contour with di�ering level of detail.

The two-fold criterion leads us to a two-stage algorithm. The �rst stage of the

smoothing algorithm computes a curve that has the minimum complexity,M , under

the constraint that the curve must pass within each tolerance circle. The second
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stage of the smoothing algorithm seeks the curve that has complexity measureM and

minimizes the square-error between the data and the curve.

2.4.2 Computation of the Minimum Complexity Curve

An iterative procedure is used to compute the curve of minimum complexity given a

particular tolerance, �. At each iteration the algorithm seeks to reduce the di�erence

of curvature between neighboring extrema of curvature. In doing so, the number

of extrema are decreased when the curve is deformed such that the di�erence in

curvature of a maximum and a neighboring minimum becomes zero. At each step,

the curve must remain within the tolerance circle for each data point. Deformations

that would move the curve outside any tolerance circle are disallowed.

Consider a case where a maximum of curvature exists during an intermediate

stage of the computation. The algorithm attempts to decrease the curvature of the

arc by deforming it as described in Section 2.3.3. If the algorithm �nds an arc that

has reduced curvature and passes within the tolerance of all the relevant points, the

new arc replaces the original arc; the endpoints of the neighboring arcs are updated

appropriately. Conversely, in the case of a minimum of curvature, the algorithm

attempts to increase the curvature of the extremum arc. Again, if the algorithm �nds

an arc that increases the curvature and passes within the tolerance of the relevant

data points, the arc is replaced.

Each of these operations always leads to a decrease in the arc lengths of the

neighboring arcs. Often the neighboring arcs are \engulfed" in the process. That is,

when the arclength of one of the neighbors becomes zero, the arc is removed from the

representation. During the process, the number of extrema of curvature is reduced

as multiple arcs are regrouped into single arcs.

Each extremum of curvature is updated iteratively until it is no longer possible

to �nd an improvement. At this point, each arc in the representation that is an

extremum of curvature is tangent to a \tolerance circle" around one of the data

points. We call such a data point a critical point. If an extremum arc were not

tangent to the tolerance circle of a critical point, it would be possible to modify the

curvature further. The local deformation of a curve to �nd the minimum number of

extrema of curvature is illustrated in Figure 2-5.

At this point, there is no guarantee that the curve has the minimum possible

number of extrema of curvature. Consequently, a veri�cation algorithm is applied to

the curve. The purpose of the veri�cation algorithm is to determine if each extremum

is necessary given the constraints of the tolerance circles. If each extremum is veri�ed

as necessary, an instance of the minimum complexity curve has been found and the

�rst stage is complete. However, if there exist extrema that are not veri�ed, the

veri�cation algorithm yields information that is helpful for choosing the appropriate

deformation to reduce the number of extrema of curvature. Extrema that may be

eliminated by an appropriate deformation of the curve are called nonessential extrema.
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Figure 2-5: The reduction of the complexity of the curve. The two curves in (a) di�er

in their complexity measure by two. The curve that more closely follows the data

points has three extrema of curvature. The extrema are indicated by the tolerance

circles drawn about the critical data points. Note that the curve with the smaller

complexity measure must deviate more severely from the data points. These curves

result from di�erent values of the scale (tolerance) parameter. The curves in (b)

illustrate a possible set of intermediate states of the curve as it is transformed from

higher to lower complexity. At each stage of computation, the curve is deformed such

that the curvature at each maximum is reduced and the curvature at each minimum

is increased.

The veri�cation algorithm is based on the following geometric idea: Consider three

circles (corresponding to tolerance circles) that are mutually external. It is desirable

to �nd the curve passing within each circle that has the smallest possible value of

its maximum of curvature. It is straightforward to show that such a curve is itself a

circle. Furthermore, this circle is tangent to each of the tolerance circles. Similarly,

the curve passing within each tolerance circle having the largest possible value for

the minimum of curvature is also a circle tangent to each of the tolerance circles. An

example for each type of constraint is shown in Figure 2-6.

Thus, for any set of three data points (whose tolerance circles do not overlap)

it is possible to determine an upper bound for the minimum curvature of any curve

passing through the tolerance circles. Similarly, it is also possible to determine a lower

bound for the maximum curvature of a curve passing through the tolerance circles.

By comparing the bounds of neighboring extrema, it is often possible to deduce that

an extremum must be present. In this case, the extremum is veri�ed.

More speci�cally, consider three neighboring extrema of curvature, a maximum

that is adjacent to two minima. Note that each extremum has a critical data point

associated with it, as described above. We assume for simplicity that these critical

points are mutually external. In the proximity of the maximum, it is desirable to

determine a lower bound for the maximum curvature. The lower bound circle is

computed for the three tolerance circles of the extrema as illustrated in Figure 2-

6a. Assume that the lower bound for the maximum curvature is given by �max lb.
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Figure 2-6: Determination of the upper bound of the minimum curvature and the

lower bound of the maximum curvature. Three data points and their respective

tolerance circles are depicted. Any curve passing within each of these tolerance circles

has a maximum and minimum curvature, �max and �min, respectively. The curve

having the lowest value for �max is the circle illustrated in (a). Thus, the curvature

of this circle is a lower bound for the maximum curvature of a curve passing through

each of the tolerance circles. Similarly, the curve having the largest possible value of

�min is the circle illustrated in (b). The curvature of this circle is the upper bound for

the minimum curvature of any curve passing through each of the tolerance circles.

Similarly, the upper bound for the minimum curvature for each of the minima of

curvature may also be obtained. Assume that these values are given by �min ub1 and

�min ub2, respectively. Under the condition that �max�lb > �min�ub1 and �max�lb >

�min�ub2, a maximum of curvature must exist along the curve between the two critical

points associated with the minima of curvature. A minimum of curvature may be

veri�ed similarly.

In the case where two consecutive extrema are nonessential, it is desirable to mod-

ify the curve further to eliminate these extrema. Consider two nonessential extrema

and their respective neighboring essential extrema. Of course, one of the essential

neighbors is a maximum and the other is a minimum. It is appropriate to increase

the curvature of the neighboring essential maximum. Similarly, it is appropriate to

decrease the curvature of the neighboring essential minimum. After doing this, it is

possible to continue to deform the portion of the curve between the essential extrema

to eliminate the nonessential extrema. The operation is analogous to backing out of a

local minimum and resuming the original computation. An example of this operation

is shown in Figure 2-7.

The algorithm to reduce the complexity of a contour coupled with the veri�cation

algorithm typically yields an instance of the optimal solution. However, when the
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Figure 2-7: The elimination of an extrema pair with the aid of the veri�cation tech-

nique. The curve in (a) is more complex than necessary given the scale parameter

that is illustrated by the tolerance circles. However, the initial algorithm is unable

to eliminate the unnecessary extrema pair. Upon application of the veri�cation al-

gorithm, it is determined that the maximum in the lower right is necessary while

the two extrema just above it are unnecessary. The algorithm increases the curva-

ture of the necessary maximum and proceeds. The algorithm is able to eliminate the

unnecessary extrema. The result, a less complex curve, is shown in (b).

scale parameter, �, is near a critical value, the algorithm may have di�culty �nding

the optimal solution. Consider an experiment where the value of � is changed in very

small increments. Typically, a small change in � yields no change in the optimal value

of the complexity measure,M . However, at particular values of �, the optimal value

of M decreases by a discrete amount (typical two). This occurs at a critical value of

�. When � is equal to a critical value, a portion of the curve is uniquely de�ned in the

section where the extrema were most recently eliminated. Thus, any arbitrarily small

perturbation from the curve in this section of the curve would lead to a suboptimal

result. Therefore, when � is close to a critical value, the algorithm may fail to obtain

an optimal solution.

This property of the algorithm would be troublesome if the \optimal" value of the

scale parameter were chosen by some criterion. In this case, a small change in the

\optimal" scale parameter would lead to signi�cantly di�erent results. Furthermore,

if the \optimal" scale parameter were chosen to be close to a critical value of � for

some curve, the minimum complexity solution might not be found, thereby defeating

the purpose of the \optimal" scale parameter. However, obtaining a multiple-scale

representation of the contour alleviates these problems. If the algorithm fails to

eliminate a non-essential pair of extrema at one scale, it is certain that the non-

essential extrema will be eliminated in the next more coarse scale. Furthermore,
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Figure 2-8: Minimum complexity curves for the silhouette of an airplane. Each curve

is an instance of a minimum complexity curve for a particular tolerance value. The

critical data points are indicated by the tolerance circle drawn about each such point.

The radius of each of these circles is equal to �, the scale parameter.

there is no sensitivity to the choice of the \optimal" scale near critical values of �

since no choice is made.

Example results of the computation of the minimum complexity curve for the

silhouette of an airplane are shown in Figure 2-8. Each curve shown in the �gure

represents the output with a di�erent scale parameter and, consequently, a di�erent

complexity measure. As the scale parameter increases, the details of the curve are

lost and only the gross structure of the airplane remains.
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2.4.3 Computation of the Least Square-Error Curve

An iterative procedure is used to compute the curve with least square-error under the

constraint that the curve have the complexity determined in �rst stage. The curvature

and position of each arc are modi�ed locally until the change in the square-error of

the curve from the data points tends to zero. The output of this stage is the desired

result.

The least square-error curve is computed with the aid of a mechanical analogy.

Under the analogy a frictionless spring is attached between each data point and

the curve. The force exerted by the spring is linearly proportional to the distance

between the point and the curve. The energy stored in each spring is the square of

the distance. Hence, the total energy in the system is the square-error between the

data points and the curve. We exploit this analogy to determine the appropriate

deformation of the curve that reduces the energy of the system and analogously the

square-error. The deformations are carried out under the constraint that they do

not increase the complexity of the curve. The curve is deformed until it is no longer

possible to reduce the square-error.

Rotation of Two Neighboring Arcs

Consider the deformation of the curve by rotating a pair of neighboring arcs. The

torque on each of the arcs is computed analogous to the mechanical system described

above. By combining the torques appropriately, it is possible to determine which

direction the arc pair would be inclined to rotate. Once this is determined, the

algorithm attempts to �nd new positions of the arcs that are consistent with the

rotation calculated from the analogy. The position that most improves the square-

error is chosen; the curve is updated appropriately.

As in section 2.3.3, consider two adjacent arcs, arc1 and arc2, and their respective

neighbors, neighbor1 and neighbor2. The position of arc1 is modi�ed by rotating it

about the center point of neighbor1. The position of arc2 must also be modi�ed to

maintain tangency with arc1. Arc2 is also rotated; the center point of neighbor2 acts

as the fulcrum for this rotation.

Under the mechanical analogy, each data point associated with a particular arc

exerts a force on the arc proportional to the distance from the data point to the arc.

The torque applied by a particular data point is the cross-product of the force applied

by the data point and the lever arm. Positive torque corresponds to rotation in the

clockwise direction about the fulcrum; negative torque corresponds to counterclock-

wise rotation. The sum of the torques applied by each data point yields the total

torque acting on the arc by it data points.

Now consider the pair of arcs. Each has a set of data points acting to rotate the arc.

Perhaps the forces act in such a way that the arcs rotate in a consistent direction,

perhaps not. In the case where the torques oppose each other, it is necessary to
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determine which direction of rotation prevails. That is, it must be determined which

direction of rotation would lead to a reduction in the local square-error of the curve.

To reconcile possibly di�ering directions of rotation, it is necessary to compute the

e�ective force of one arc acting on the other. Without loss of generality, we consider

the e�ective force of arc1 acting on arc2. Assume that the torque acting on arc1 by

its associated data points is T1. The force, Fe, that arc1 applies to arc2 is related to

T1 by

T1 = r1 � Fe; (2:10)

where r1 is the vector given by

r1 =

����� x12 � xcn1

y12 � ycn1

����� ; (2:11)

where the point (xcn1; ycn1) is the center point of neighbor1 and (x12; y12) is the tangent

point of arc1 and arc2. The direction of Fe is always along the line determined by

the center points of arc1 and arc2. Therefore, if �12 is the end angle of arc1 at the

tangent point with arc2, Fe2 may be written,

Fe = Fe

����� cos �12sin �12

����� : (2:12)

By combining equations 2.10 and 2.12, Fe, the scalar of the equivalent torque, may

be written

Fe =
T1

r1 �
����� cos �12sin �12

�����
: (2:13)

The total torque acting on arc2, Tt2 may be written

Tt2 = T2 + r2 � Fe; (2:14)

where the r2 is the lever arm for the e�ective force acting on arc2, r2, is given by

r2 =

����� x12 � xcn2

y12 � ycn2

����� : (2:15)

If Tt2 is positive, a small counterclockwise rotation of arc1 along with the appro-

priate rotation of arc2 leads to a decrease in the square-error. Conversely, if Tt2 is

negative, a small clockwise rotation of arc1 leads to a decrease in the square-error. Of

course, if Tt2 is zero, the arcs are in equilibrium with respect to rotation and rota-

tion in either direction would increase the square-error. The geometric aspects of the

mechanical analogy for rotation of two neighboring arcs are illustrated in Figure 2-9.

Once the appropriate direction of rotation has been determined, the algorithm

�nds the limiting case of rotation. That is, for some particular amount of rotation in
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Figure 2-9: Torque acting to rotate neighboring arcs. Under the mechanical analogy,

each data point applies a force to the curve. The resulting torque of data point

(xi; yi) is the cross product of the force and the lever arm. Because the rotation of

two neighboring arcs is coupled, it is necessary to compute the e�ective total force of

one of the arcs acting on the other. The e�ective force is related to the total torque

acting on the arc and the lever arm, r1.

the appropriate direction, the arclength of a particular arc becomes zero. This is the

greatest extent to which the rotation may be carried out; further rotation would lead

to an illegal con�guration of arcs.

If the limiting case of rotation yields a reduction in the square-error of the curve,

the rotation is chosen and the curve is updated appropriately. If the limiting rotation

does not yield a reduction in the square-error, rotations of successively smaller extent

are computed. If any rotation is found to reduce the square-error, it is chosen and the

curve is updated appropriately. If no rotations are found to reduce the square-error,

the curve is not modi�ed by this operation.

More speci�cally, the rotation of two neighboring arcs has one degree of freedom.

As described in Section 2.3.3, a convenient parameterization for the operation is the

tangent point between neighbor1 and arc1. A particular position of the tangent point

speci�es the position of arc1. Given the position of arc1, the position of arc2 is

speci�ed, since arc2 must be tangent to both arc1 and neighbor1.
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During the course of iteration, a particular tangent point between neighbor1 and

arc1 may not lead to an improvement in the square-error. When this occurs, a new

tangent point is chosen such that it is the midpoint between the previous tangent

point and the original tangent point. In this way the extent of rotation is cut in half

at each attempt. When the attempted tangent point is within a speci�ed tolerance,

�, of the original tangent point, no more rotations are attempted and the curve is not

modi�ed.

Modi�cation of the Curvature of a Single Arc

Consider the deformation of the curvature of a single arc. The derivative of the energy

in the system with respect to the curvature of the arc is the total deformation force

acting on the arc. If the derivative of energy with respect to curvature is positive,

the curvature of the arc is decreased. Conversely, if the derivative of energy with

respect to curvature is negative, the curvature is increased. The curve is updated

appropriately.

Consider an arc with a single data point, pi. The force acting to deform the

curvature of the arc is equal to the distance from the point to the arc. The force

vector Fi is given by

Fi =

�q
(xi � xc)

2
+ (yi � yc)

2 �R

� ����� cos �isin �i

����� ; (2:16)

where �i is the angle of the vector from the center of the arc to the ith data point.

The energy related to the ith point is given by

Ei =

�q
(xi � xc)

2
+ (yi � yc)

2 �R

�2
: (2:17)

The modi�cation of the curvature of the arc occurs under the constraint that the

arc must remain tangent to both of its neighbors. For small perturbations of the

curvature, the e�ect of this constraint is approximated by requiring the arc to remain

tangent to the two lines that are each tangent to the arc and one of its neighbors.

Under this approximation, the center of the arc is constrained to lie on the line de�ned

by the original center point of the arc and the intersection of the two tangent lines.

Figure 2-10 illustrates this geometric constraint.

The scalar force acting on the center of the arc, Fc, is the derivative of the energy

with respect to motion along the constraint line. Let di =
q
(xi � xc)

2
+ (yi � yc)

2
.

The force may be written,

Fc =
dE

ds

= 2 (di �R)

"
ddi

ds

� dR

ds

#
; (2:18)

where s is the scalar distance along the constraint line. The radius of the circle
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Figure 2-10: The force acting to deform the curvature of a single arc. The force acting

on the arc by each associated data point is equal to the distance from the point to the

arc. For small perturbations of the curvature, the constraint that the arc must remain

tangent to its neighbors is approximated by requiring the arc to remain tangent to

each line tangent to the arc and one of its neighbors.

may be written as R = c cos �, where � is half the angular width of the arc and c

is the distance between the center of the circle and the intersection of the tangent

lines. Conveniently, dc

ds
= 1 and dR

ds
= cos �. Similarly, ddi

ds
= cos �i, where �i is the

angle between the constraint line and the data point. Thus, Equation 2.18 may be

simpli�ed

Fc = 2 (di �R) (cos �i � cos�) = 2Fi (cos�i � cos �) : (2:19)

In the derivation of Equation 2.19, we have tacitly assumed that the angle of the

sector of the arc is less than �. If the angle is greater than �, the force acting on the

center of curvature is given by

Fc = �2Fi (cos �i � cos�) : (2:20)

When two or more data points are associated with the arc, the total force acting

on the center of the circle is the sum of the individual forces associated with the

individual points. If the total force is positive, then the center point is inclined to
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move along the constraint line toward the intersection point of the tangent lines. That

is, a small perturbation of the center toward the intersection of the tangent lines leads

to a reduction of the local square-error of the curve. If the total force is negative, the

center point is inclined to move in the opposite direction.

From the direction of preferred motion, it is possible to determine whether the

arclength of the neighbors will increase or decrease. Equivalently, it is possible to

determine the direction of motion of the tangent points of the neighbors. Because the

computation of the deformation of curvature is parameterized by the location of the

tangent point with one of the neighbors, this provides enough information to compute

candidate arcs.

There is a particular deformation of the arc that leads to an arclength of zero

for one of the neighbors. This is the limiting case of legal deformations of curvature.

If this deformation would lead to a reduction in the square-error of the curve, it is

chosen and the curve is updated appropriately. If the deformation does not lead to a

decrease in the square-error, successively less severe deformations are attempted. On

each iteration, the new deformation is chosen to be midway between the location of

the previous tangent point and the original tangent point. If any of the deformations

reduces the square-error of the curve, it is chosen. If not, the iteration is halted when

the candidate tangent point is within a distance � of the original tangent point.

Splitting an Arc into Two Arcs

Consider the deformation of an arc by splitting it into two arcs. This is necessary

when data points in one segment of the arc are acting to increase the curvature of the

arc while in another segment the data points are acting to decrease the curvature.

The ability to split an arc provides additional degrees of freedom that make it possible

to further reduce the square-error. Again, we refer to the new arcs as arc1 and arc2

and to their respective neighbors as neighbor1 and neighbor2.

It is necessary to determine the appropriate location of the break in the original

arc. This is accomplished by considering a number of candidate break points along

the arc and choosing the best location in the sense described below. The candidate

split locations are chosen such that they lie at the midpoint of each pair of neighboring

projections of data points onto the arc.

At each candidate split point a constraint line is constructed such that it is tangent

to the original arc. Conceptually, the arc is broken into two sub-arcs that have the

same curvature. For each sub arc, the curvature deformation force is computed as

described in Section 2.4.3. That is, the tendency of each sub-arc to increase or

decrease curvature is determined. If the sub-arcs have consistent tendencies then it

is not appropriate to split the arc at that point. However, if one of the sub-arcs has a

total force acting to increase its curvature while the other sub-arc has a force acting

to decrease its curvature, splitting the arc would lead to a decrease in the square-error

of the curve. This condition is illustrated in Figure 2-11.
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Figure 2-11: Setup of the operation to split an arc into two. By splitting an arc into

two, it is possible to increase the curvature of one of the new arcs while decreasing

the curvature of the other. For the choice of the constraint line shown, the forces are

acting to decrease the curvature of arc1 and increase the curvature of arc2.

There may be multiple candidate break points that would lead to a decrease in

the square-error of the curve. The candidate break point is chosen that minimizes

the derivative of square-error with respect to the position of the tangent point be-

tween arc1 and arc2 along the constraint line. This measure is chosen because the

deformation is ultimately parameterized by this location.

We de�ne S, the tendency of an arc to split, as the derivative of the energy with

respect to the position of tangency along the constraint line. That is,

S =
dE

ds

; (2:21)

where s is a parameter that speci�es the position of the tangent point of arc1 and

arc2 along the constraint line. S may be written

S = Fc1 sin�1 + Fc2 sin �2; (2:22)

where Fc1 and Fc2 are the respective forces acting on the centers of each sub-arc
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and �1 and �2 are the respective half-angles of the sub-arcs. The expression on the

right side of Equation 2.22 is a result of the chain rule applied to Equation 2.21. As

described in Section 2.4.3, Fc is the derivative of energy with respect to position of

the center point. Here, sin � is the derivative of the position of the center point with

respect to the location of the position along the tangency constraint line.

Once the break point has been chosen, the arc is deformed as described in Sec-

tion 2.3.3. The limiting case of the deformation is computed explicitly. That is, there

is a particular deformation that leads to a zero arclength for one of the neighbors. If

the limiting case results in a reduction of the square-error, the deformation is chosen

and the curve is updated appropriately. Otherwise, successively smaller deformations

are chosen until one is found that improves the square-error. As above, the iteration

is terminated when the candidate tangent point is within � of the original tangent

point.

The results of this stage applied to the silhouette of an airplane are shown in

Figure 2-12. Notice that as the complexity of the curve decreases, the �ne details of

the silhouette are lost. However, the global structure of the airplane remains intact.

Discussion

The least square-error curve is computed by iterating over the arcs of the curve. The

operations described above are applied to each arc. For each operation, the square-

error is guaranteed to decrease or remain the same. The algorithm stops when the

curve is not modi�ed on a particular cycle or when the decrease in square-error is

negligible.

For each operation, the constraints acting on each arc are highly non-linear. Thus,

it is not possible to ensure that the optimal solution is always found. In practice,

however, it is likely that the algorithm will provide a solution that is close to optimal.

The energy function, de�ned above, may be viewed as a Liapunov function when

the computation is su�ciently close to the optimal solution (see, for example, Luen-

berger[50]). If the energy is not allowed to increase, the state of computation remains

within a �nite neighborhood of the optimal solution. Furthermore, decreasing the

energy always yields a smaller neighborhood about the optimal.

Therefore, if the initial state of the computation is close enough to the optimal

solution, the optimal solution will be found. The output of the �rst stage of the

computation is a natural starting curve. The curve is constrained to be close (within �)

to each data point. Hence, it is likely that the algorithm typically produces reasonable

results.

There is room for improvement in the algorithm, however. It is possible to deform

any arbitrary curve into any other arbitrary curve using the deformations described

above. However, it is not guaranteed that there is a path from an initial state to

the optimal state such that each step along the path yields a non-increasing energy

function. There are alternative deformations that would provide additional options
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Figure 2-12: Minimum complexity/least-square-error curves for the silhouette of an

airplane. In each case the least-square error curve that has the complexity determined

from the �rst stage of the computation is shown. The scale parameter for each case

is (a) � = 2:0, (b) � = 4:0, (c) � = 8:0, and (d) � = 16:0.

at each step of the computation. The implementation of such options is likely to

reduce the frequency that the algorithm �nds local minima rather than the optimal

solution.
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2.5 Mathematical Properties of the Contour

In this section we describe the computation of a number of mathematical properties

associated with contours.

2.5.1 Point Properties of the Contour

The curve is represented as a list of N circular arcs. The ith arc is speci�ed by its

center (xci; yci), the radius, Ri, the curvature, �i, and two end angles, �1i and �2i. The

i
th arc is always tangent to the i+ 1th arc.

The coordinates of points on the curve may be described parametric in arclength,

s, as

x(s) =

8>>>><
>>>>:

xc1 + R1 cos (s�1 + �11) 0 < s < s1;

xc2 + R2 cos ((s� s1)�2 + �12) s1 < s < s2;

...

xcN + RN cos ((s� sN�1)�N + �1N) sN�1 < s < sN :

(2:23)

Similarly,

y(s) = yci +Ri sin ((s� si�1) �i + �1i) si�1 < s < si: (2:24)

The orientation of the curve at a particular point is speci�ed by the normal vector

at that point. The normal vector is perpendicular to the tangent to the curve and

points away from the interior of the curve. The normal vector points in the same

direction as the radius of the circular arc when the curvature is positive. The normal

vector points in the opposite direction of the radius when the curvature is negative.

The unit normal vector for any point on the ith arc is given by

n̂i (s) = sgn (�i)

����� cos ((s� si�1)�i + �1i)

sin ((s� si�1)�i + �1i)

����� si�1 < s < si: (2:25)

2.5.2 Points Interior and Exterior to the Contour

The determination of whether a point is in the interior or the exterior of a curve is

a global operation. That is, the entire curve must be considered. Given the curve

representation described here, it is straightforward to determine the relations of the

point to the curve.

It is desirable to �nd the closest arc of the curve to the point. The point of

interest is guaranteed to be within the sector of the closest arc. This follows from the

de�nition of the distance from an arc to a point and the constraint that the arcs are

mutually tangent. Two cases must be considered for the computation of the distance

from a point to an arc. If the point is within the sector of the arc, the distance to
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the arc is simply the distance to the circle. If the point is not within the sector, the

distance to the arc is the minimum of the distances to each of the endpoints.

If the closest arc has positive curvature and the point is in the interior of the

circle associated with the arc, the point is in the interior of the curve. If the closest

arc has positive curvature and the point is in the exterior of the circle, the point is

in the exterior of the curve. Conversely, if the closest arc has negative curvature,

the relations are reversed (interior of the circle implies exterior of the curve and vice

versa).

2.5.3 Perimeter and Area

The perimeter of the region bounded by the curve may be computed. The perimeter

is equal to the sum of the arclengths of the individual arcs. The perimeter, P , may

be expressed

P =
NX
i=1

Ri j�i � �i�1j : (2:26)

The area of the interior of the curve may be computed by applying Green's

Theorem[71]. With appropriate application of Green's Theorem, the area, A, may be

computed

A =

ZZ
R

dx dy =
1

2

I
C

(x dy � y dx) : (2:27)

This integral may be expressed

A =
NX
i=1

Ai =
NX
i=1

1

2

Z
s=si

s=si�1

 
x(s)

@y

@s

ds� y(s)
@x

@s

ds

!
; (2:28)

where each term of the sum is an integral over a single circular arc. The ith term

of this sum is simply an integral over a single circular arc. By suitable change of

variable, the integral may be written,

Ai =
1

2

Z
�2i

�1i

 
x(�)

@y

@�

d� � y(�)
@x

@�

d�

!
; (2:29)

where � is the angular displacement of the arc. Making appropriate substitutions,

each term may be written

Ai =
1

2

Z
�2i

�1i

((xc +R cos �) (R cos �)� (yc +R sin �) (�R sin �)) d�; (2.30)

=
1

2

(
Rxc

Z
�2i

�1i

cos � d� +R
2

Z
�2i

�1i

�
sin2 � + cos2 �

�
d� + Ryc

Z
�2i

�1i

sin � d�

)
;(2.31)

=
1

2

n
Rxc [sin �]

�2i

�1i
�Ryc [cos �]

�2i

�1i
+R

2 [�2i � �1i]
o
: (2.32)
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The sum over all of these terms yields a closed form expression for the area of the

interior of the curve.

2.5.4 Centroid

Following the derivation for the area computation, we may compute the centroid of a

region directly from the contour representation. The centroid of a region is given by

x =
1

A

ZZ
R

x dx dy; (2.33)

y =
1

A

ZZ
R

y dx dy: (2.34)

Again, applying Green's Theorem, we �nd

x =
1

A

I
C

(�xy) dx; (2.35)

y =
1

A

I
C

(xy) dy: (2.36)

For convenience, we �rst consider the computation of the x coordinate of the centroid.

The integral on the right side of Equation 2.35 may be expressed

I
C

(�xy) dx =
NX
i=1

Bi =
NX
i=1

Z
s=si

s=si�1

[�x(s)y(s)] @x
@s

ds; (2:37)

where each term of the sum is an integral over a single circular arc. The ith term of

this sum is the integral over a single circular arc. By suitable change of variable, the

integral may be written,

Bi =

Z
�2i

�1i

[�x (�) y (�)] @x
@�

d�; (2:38)

where � is again the angular displacement of the arc. Making appropriate substitu-

tions, each term may be written

Bi =

Z
�2i

�1i

[� (xc +R cos �) (yc +R sin �) (�R sin �)] d�; (2.39)

= R

Z
�2i

�1i

�
xcyc + xcR sin � + ycR cos � +R

2 sin � cos �
�
sin � d�; (2.40)

= Rxcyc

Z
�2i

�1i

sin �d� +R
2
xc

Z
�2i

�1i

sin2 �d� +

R
2
yc

Z
�2i

�1i

sin � cos �d� +R
3

Z
�2i

�1i

sin2 � cos �d�; (2.41)
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= �Rxcyc [cos �]�2i�1i
+R

2
xc

"
�

2
� sin 2�

4

#
�2i

�1i

�

R
2
yc

"
cos 2�

4

#
�2i

�1i

+R
3

"
sin3 �

3

#
�2i

�1i

: (2.42)

Using this expression the x coordinate of the centroid may be written

x =
1

A

NX
i=1

Bi: (2:43)

Following a parallel argument, the y coordinate of the centroid may be written

y =
1

A

NX
i=1

Ci; (2:44)

where

Ci = Rxcyc [sin �]
�2i

�1i
�R

2
xc

"
cos 2�

4

#
�2i

�1i

+

R
2
yc

"
�

2
+
sin 2�

4

#
�2i

�1i

�R
3

"
cos3 �

3

#
�2i

�1i

: (2.45)

Thus, we have obtained a closed form expression for the centroid of a region.

2.5.5 Extended Circular Image

The extended circular image has been proposed as a useful description of the shape

of a curve[42]. The value of a particular point of the extended circular image, C( ),

for a convex curve is

C( a) =
1

�(sa)
; (2:46)

where  a refers to a particular orientation angle and �(sa) is the curvature of the curve

at the location where the unit normal vector makes an angle  a with the x-axis. If

the curve is not convex, more than one point of the curve maps onto a particular

point of the extended circular arc. In that case, the value of the extended circular

image is the sum of the curvatures of all points on the curve with the appropriate

orientation.

The value of a single point on the extended circular image is easily determined from

the curve representation. All points on the contour with the appropriate orientation

must be found. The value of the extended circular arc is the sum of the reciprocal of

the curvature associated with each of these points.
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The extended circular image may be computed as a function as well. A single arc

of the curve contributes a constant value (the value of the reciprocal of its curvature)

over a particular range of orientations. That range of orientations is, of course, the

range of orientations of the arc. Consequently, the extended circular image for any

curve represented by piecewise circular arcs is piecewise constant. The break points

of the piecewise constant function are the orientations at the curve points where

neighboring arcs are tangent.

2.6 Summary

In this chapter, we consider an analytical representation of contours. A contour is

represented as a list of pairwise tangent circular arcs. The representation leads to im-

proved computation of mathematical properties of the contour such as the curvature,

orientation, bounded area, and centroid. We present a novel approach to contour

smoothing. The complexity, rather than the magnitude of curvature, is employed in

the smoothness criteria. We propose a scale-space based on the complexity measure.

This space is truly a scale-space rather than a resolution-space. As we shall see,

the improved representation and smoothing capability for contours facilitates more

robust and reliable capabilities for higher level processing.
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Chapter 3

The Medial Axis Skeleton

3.1 Introduction

The medial axis skeleton is a thin line graph that preserves the topological rela-

tionships of salient parts of a region. The skeleton has often been cited as a useful

representation for shape description, region interpretation, and object recognition.

The skeleton provides a decomposition of the region into salient subparts. It also

provides a description of the connectivity of the subparts.

Unfortunately, the computation of the skeleton is extremely sensitive to variations

in the bounding contour of a region. Tiny perturbations in the contour often lead to

spurious branches of the skeleton. It is non-trivial to determine which of the branches

are spurious and which correspond to signi�cant subregions.

There have been numerous attempts to �nd a robust algorithm for computing the

medial axis skeleton (see, for example, [5], [8], [19], [23], [35], [47], [54], [81]). Most

algorithms use some deviation of morphological thinning. Often, spurious branches

are eliminated based upon some approximate property of the bounding contour, or

based upon some property of the branch itself.

One common problem with previous approaches is that the resulting skeleton is

inconsistent with the bounding contour or the region from which it was computed.

Inconsistencies between the representations of the skeleton and the contour may lead

to inconsistent inferences in higher level processes. If such inconsistencies could be

eliminated, the performance of higher level processes would be improved.

Another problem with previous approaches is that the results are typically medi-

ocre. Most algorithms are only capable of handling simple objects like pseudopods,

for example[47]. These algorithms fail because they are incapable of distinguishing

between \noise" in the data and subtle features that may exist on the contour. As

a result, most algorithms tend to produce skeletons with spurious branches, or they

tend to provide skeletons that are unduly simpli�ed.

Because computation of the skeleton is so sensitive, it is desirable to represent

the skeleton across a variety of scales. The multiple scale description eliminates the

57
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need to determine the \optimal" scale by some arti�cial means. Attempts to �nd

an optimal scale parameter in this and other contexts typically yield only marginal

results.

Ideally, a scale-space for the medial axis skeleton would provide representations

of the skeleton with varying levels of detail. At �ner scales, the skeleton would have

a larger number of branches; a greater number of features would be represented.

At more coarse scales, the skeleton would have fewer branches; the skeleton would

represent only the gross structure of the region.

The key to obtaining a multiple scale representation for the skeleton is to deter-

mine which branches should be eliminated as the algorithm moves from �ne to coarse

scales. Furthermore, it is necessary to determine the appropriate position of the skele-

ton branches so that they accurately depict the structure of the region. Finally, it is

desirable to modify the bounding contour of the region, simultaneously, so that each

skeleton in the scale-space corresponds to a consistent bounding contour.

In this paper, we consider a robust method for computing the medial axis skeleton

across a variety of scales. The scale-space is parametric with the complexity of the

skeleton. The complexitymeasure is de�ned as the number of branches of the skeleton.

The complexity of the skeleton is related to the complexity of the bounding con-

tour. The complexity of the contour is measured by the number of extrema of cur-

vature contained in the contour[15]. As we shall see, there is a formal relationship

between the complexity measure of the contour and that of the skeleton. Thus, mini-

mizing the contour complexity is tantamount to minimizing the skeleton complexity.

A set of curves is computed to represent the bounding contour across a variety

of complexity measures. The curves possessing larger complexity measures represent

greater detail than curves with smaller measures. A medial axis skeleton is computed

directly from each contour. The result is a set of skeletons that represent only the

gross structure of the region at coarse scales (low complexity), but they represent

more of the detail at �ne scales (high complexity).

In Section 3.2, we discuss the concept of complexity in greater detail. In Sec-

tion 3.3, we consider the computation of the medial axis skeleton directly from the

bounding contour. In Section 3.4, we de�ne a scale-space for the medial axis skeleton

that is based on the complexity measure.

3.2 Complexity

The complexity of an object may be viewed as the number of primitive components

of the object. Similarly, the complexity of a representation of an object may be

measured by the number of subparts contained within the representation. In this

section we seek to formalize this notion of complexity for contours and the medial

axis skeleton.

Ho�man and Richards[36] have proposed the use of codons to decompose a contour

into salient parts. They observe that minima of curvature of a contour serve as natural
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break points of the curve. Therefore, the curve is broken into sections that are

bounded by extrema of curvature. These sections are called codons. Pairs of codons

typically correspond to subjective parts of the region bounded by the contour.

Given this insight, the number of codons contained in the contour is a reasonable

measure of the number of subjective features of the region bounded by a contour.

Therefore, the number of codons contained in the contour is a suitable measure of

the complexity of the curve. Conveniently, the number of codons contained in the

contour is equal to the number of extrema of curvature of a closed contour.

Similarly, the complexity measure of the medial axis skeleton is the number of

branches of the skeleton. Each branch of the skeleton corresponds to a subregion of

the region bounded by the contour. A region possessing a larger number of subregions

is more complex than a region possessing a smaller number of subregions.

The complexity measure for contours is related to the complexity measure of the

medial axis skeleton. Each branch of the skeleton that terminates into the contour,

rather than into a node of the skeleton, does so at a positive maximum of curvature.

Therefore, an upper bound for the number of branches in the skeleton may be obtained

from the number of extrema of curvature of the bounding contour. If the number

of extrema of a particular curve is M , then there are at most M=2 positive maxima

of curvature. Therefore, there are no more than M=2 branches that terminate into

the contour. Each of these terminal branches intersects another branch at a node

and a third branch emanates from the node. This branch may or may not be a

terminal branch. In the worst case, the number of non-terminal branches isM=2� 2.

Therefore, the complexity of the skeleton, B, is no larger than M � 2.

A similar argument may be made for a region with holes. First, consider the skele-

ton associated with the bounding contour without holes. From above, the skeleton

associated with the bounding contour has complexityM � 2. Now add the holes one

by one and consider the resulting skeleton. Each time a hole is added, the number of

branches increases by no more than three. Thus, the maximum number of skeleton

branches for a region with holes is M + 3H -2, where H is the number of holes.

More importantly, if the bounding contour is deformed continuously in such a way

that the complexity measure decreases, the complexity measure of the corresponding

skeleton almost always decreases. Equivalently, reducing the number of extrema of

curvature of the bounding contour almost always causes the number of branches of

the skeleton to decrease.

There is a tradeo� between the descriptive power of a representation and the

complexity of the representation. If the complexity is allowed to be arbitrarily large,

any set of data may be represented. On the other hand, limiting the complexity

restricts the class of shapes and objects that may be represented. In Section 3.4,

we exploit this tradeo� to de�ne a scale-space for the medial axis skeleton that is

similar to a complexity scale-space for contours. In the next sections, we consider the

computation of the medial axis skeleton directly from the representation.
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3.3 Computation of the Medial Axis Skeleton

The medial axis skeleton may be computed directly from the analytical contour rep-

resentation. In this section, we consider the mechanics of the computation. First,

we consider a number of useful general properties of the skeleton and its bounding

contour. Next, we consider properties of the skeleton when the contour is made up of

pairwise tangent circular arcs. Finally, we consider the computation of the skeleton

from the analytical contour representation.

The medial axis skeleton is usually de�ned as the locus of points where wave-

fronts propagating inward from the bounding contour meet (see, for example, [47]).

The skeleton points are locations where two or more wavefronts have propagated

the same distance from their respective starting locations. This de�nition suggests

morphological operators that approximate the propagation of the wavefront.

The medial axis skeleton may also be de�ned by the following properties: Each

point on the skeleton is equidistant from two or more points on the bounding contour.

There are no points on the boundary closer to the skeleton point than these equidis-

tant points. And, each skeleton point lies in the interior of the bounding contour.

This alternate de�nition is mathematically equivalent to the wavefront de�nition.

The distance from each skeleton point to the closest points on the contour is the dis-

tance traveled by the associated wavefronts. As we shall see, the alternate de�nition

is constructive; it leads to a novel method of computing the skeleton.

Each point that is on a branch of a skeleton, but not a node, is equidistant from

exactly two points on the contour. Each node point is equidistant from three or more

points on the bounding contour. Typically, a node is equidistant from exactly three

boundary points. The case where the node is equidistant from more than three points

is a zero measure condition.

For each point on the branch of the skeleton there is a circle that is tangent to

the contour in two places. The center of the circle is coincident with the point on the

branch. The radius of the circle is the distance from the center to the two nearest

points on the contour. Aside from the two tangent points, the circle does not contact

the contour. We call such a circle the interior circle of the point of interest. We call

the two points of tangency between the interior circle and the contour the tangent

points of the interior circle.

Similarly, for each node point, there is a circle that is tangent to three (or more)

points on the contour. The center of the circle is coincident with the node point and

the radius is the distance from the node to the three nearest points on the contour.

Aside from these tangent points, the circle does not contact the contour. Such a circle

is called the interior circle of the node.

As a branch of the skeleton is traversed, the radius of the interior circle varies

continuously. Stated another way, the distance from a skeleton branch to the contour

varies continuously along the branch. Furthermore, as the branch is traversed, each

tangent point of the interior circle moves continuously along the contour. In the
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Figure 3-1: Test for the existence of branch terminating into a maximumof curvature.

Each illustration depicts a portion of a contour and its medial axis skeleton; the

osculating circle for the maximum of curvature at the top of the curve is also shown.

In (a), no branch terminates into maximum of curvature because the osculating circle

extends to the exterior of the curve. In (b), a branch does terminate into the maximum

of curvature because the osculating circle remains in the interior of the contour.

case where the branch terminates into the contour, rather than into a node, the two

tangent points converge with the branch at a point of maximum curvature on the

contour.

Each branch of the skeleton that terminates into the contour does so at a positive

maximum of curvature. It is not the case, however, that each positive maximum of

curvature is associated with a branch termination. There is a simple test to determine

if a positive maximum is associated with the termination of a branch. If the osculat-

ing circle associated with the curvature maximum lies completely in the interior of

the contour or on the contour, there is a branch that terminates at the maximum.

Otherwise, there is no terminus. The terminus test is illustrated in Figure 3-1.

Now, consider a contour that consists of pairwise tangent circular arcs, as de-

scribed in Chapter 2. At any point on the skeleton, the tangent points lie on two

particular arcs of the contour representation. Locally, the points on the skeleton

branch are equidistant from these two arcs. A locus of points that is equidistant from

two circles is a conic section. Therefore, the medial axis skeleton consists of segments

of curves that are conic sections. We call such a curve segment a conic segment of the

skeleton branch. The analytical contour representation leads directly to an analytic

representation for the medial axis skeleton.

Because the conic segments of the skeleton are well characterized, it is convenient

to compute the skeleton in a piecewise fashion. The key to computing this represen-

tation is �nding the end points of the branch segments. At an end point of a branch



CHAPTER 3. THE MEDIAL AXIS SKELETON 62

segment, one of the tangent points of the interior circle is guaranteed to be coincident

with the point of tangency of two neighboring contour arcs. Therefore, the segment

end point must lie on the line determined by the radius of the circle corresponding to

the end angle of the arc.

Assume that in some intermediate stage of the computation, a branch segment

end point has been found. The arcs associated with the next branch segment are

called arc1 and arc2, arbitrarily. The line determined by the center of arc1 and the

end point of arc1 is called line1. The line determined by the center of arc2 and the

end point of arc2 is called line2. Assume, without loss of generality, that the branch

segment is hyperbolic. There are two possibilities for the location of the next segment

end point. The end point may coincide with the intersection of the hyperbola and

line1 (candidate point1). Or, the end point may coincide with the intersection of the

hyperbola and line2 (candidate point2). The appropriate choice of the two candidate

points is the one closest along the hyperbola to the known end point. Note that the

same reasoning would also apply to a branch segment that is an ellipse or a parabola.

This geometric situation is illustrated in Figure 3-2.

The choice is made between candidate point1 and candidate point2 by determining

which point is closer to the previous branch segment end point along the conic curve.

Conveniently, there is a simple computational test to determine the appropriate point.

If candidate point1 is within the sector of arc2, point1 is the appropriate choice.

Similarly, if candidate point2 is within the sector of arc1, point2 is the appropriate

choice. The case that both of these conditions are true is zero-measure. Furthermore,

in that case candidate point1 and candidate point2 are coincident.

Once the end points of the segments have been determined, it is possible to char-

acterize the segment between the end points. The branch segment is known to be

a conic section. It is possible to determine the type of the conic section (hyperbola,

ellipse, or parabola) by considering the relationship of the associated contour arcs

and their respective curvatures. The foci of the conic section are coincident with the

centers of the contour arcs. Because the end points of the branch segment lie on

the conic section, they provide the remaining information necessary to construct the

segment analytically.

Each branch of the skeleton is computed in a piecewise fashion as described above.

Each segment of the branch corresponds to two arcs on the curve; the tangent points

associated with each point in the branch segment lie on these two arcs. Two neighbor-

ing segments always share one arc; the other arcs associated with the two neighboring

segments are neighbors on the contour. In the example shown in Figure 3-2, the seg-

ment of interest is associated with arc1 and arc2. The neighbor of this segment is

associated with arc1 and the neighbor of arc2.

In e�ect, as the branch is traversed during computation, the tangent points on

the contour are implicitly traversed as well. The tangent points associated with each

point on a branch segment are easily computed. One of the tangent points is simply
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Figure 3-2: Computation of a branch segment. The branch segment is the hyperbolic

curve connecting point p0 to point p2. The hyperbola is de�ned by the property that

each point is equidistant from arc1 and arc2 (two arcs in the contour representation).

The candidate end point, p1, is the intersection of the end radius of arc1 and the

hyperbola. Similarly, the candidate end point, p2, is the intersection of the end

radius of arc1 and the hyperbola. The point, p2, is chosen because it is within the

sector of arc1 - the point, p1, is not in the sector of arc2. The next segment that

would be computed extends beyond point, p2, and is determined by arc1 and the

neighbor of arc2.
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the projection of the branch point onto one of the arcs associated with the segment.

The other tangent point is the projection of the branch point onto the other arc.

Each point on the contour is associated with exactly one point on the skeleton. It

is not possible for two distinct skeleton points to have the same tangent point. This

property of the skeleton is useful for determining the location of node points on the

skeleton, as we shall see.

The skeleton computation begins by determining starting points for candidate

skeleton branches. Because it is known that branches terminate into the bounding

contour at positive maxima of curvature, these locations are chosen for the starting

points. As these candidate branches are extended, the locations of intersections of

the branches are found. At the intersections of two branches, a candidate node is

formed and an additional candidate branch is created that emanates from the node.

During the computation, some of the candidate branches are eliminated when it is

determined that no branch exists at its location.

At each positive maximum of curvature on the bounding contour, a candidate

skeleton branch is created. By convention, the initial branch segment is the bisecting

radius of the arc associated with the maximum of curvature. Strictly speaking, such

a segment is not part of the medial axis skeleton as de�ned mathematically. However,

these segments are included by convention because doing so yields more intuitively

pleasing results.

Each segment is extended in a piecewise fashion as described above. As the

computation proceeds, the algorithmmust determine the locations where the branches

intersect to form nodes. Each time a branch is extended, the algorithm determines if

the branch is overextended relative to another branch. In addition, the algorithmmust

determine if the other branches are overextended relative to the branch of interest.

Ultimately, the algorithm must determine the locations of intersections of branches,

that is, the nodes of the skeleton. The following set of conventions achieve these goals.

After a branch has been extended by a single segment, the algorithm determines

what interaction, if any, occurs between the branch and the other branches. Con-

ceptually, the algorithm determines if the tangent points of the branch have crossed

any of the tangent points associated with any other branch. In practice, the algo-

rithm considers only those branches that have arcs of the contour in common with

the branch of interest. More speci�cally, the algorithm only considers branches whose

tail segments (i.e. end segments) have an arc in common with the tail segment of the

branch of interest.

If the tail segments of two branches have a contour arc in common, the systematic

application of a simple test determines the interaction between the branches. The

test determines if either or both of the branches have been extended beyond the

intersection between branches. Furthermore, these tests are used to �nd the node

point which is located at the intersection of two segments. This test, described below,

is illustrated in Figure 3-3.
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(a) (b)

(c)

Figure 3-3: Test for determining the location of node points. In each �gure, three

segments that intersect at a node are depicted. The contour arcs associated with these

segments are also depicted. Segment1 is equidistant from the common arc and arc1;

segment2 is equidistant from the common arc and arc2; and segment3 is equidistant

from arc1 and arc2. Conceptually, segment1 and segment2 intersect to form a node;

segment3 emanates from this node. In (a) point p2 is beyond the intersection of

segment1 and segment2: the interior circle is tangent to the common arc and the

interior circle intersects arc2. In (b), point p1 on segment1: the interior circle is

tangent to the common arc and arc1, and the interior circle does not intersect arc2.

In (c), point p3 is the intersection between segment1 and segment2: the interior circle

is tangent to all three contour arcs.
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By convention, the arc associated with both of the tail segments is called the

common arc. We arbitrarily refer to one of the branches as branch1 and the other as

branch2. Similarly, segment1 and segment2 are the current tail segments of the re-

spective branches. Arc1 and arc2 are the arcs associated with segment1 and segment2

that are not the common arc.

The intersection test determines if an arbitrary point on candidate segment1 is

beyond the intersection of segment1 and segment2. The interior circle associated

with the point is constructed. By de�nition the interior circle is tangent to arc1 and

the common arc; the center is located at the point of interest on segment1. If the

distance from the point to arc2 is greater than the radius of the interior circle, the

point of interest is beyond the intersection point. Conversely, if the distance from the

point of interest to arc2 is less than the radius of the interior circle, the point is not

beyond the intersection of segment1 and segment2. Of course, if the distance from

the point of interest to arc2 is equal to the radius of the interior circle, the point is

the intersection point.

The intersection test is illustrated in Figure 3-3. In Figure 3-3a, point p2 is beyond

the intersection because the interior circle intersects arc2. In Figure 3-3b, point p1
is not beyond the intersection because the interior circle does not contact arc2. In

Figure 3-3c, point p3 is the intersection of the two segments; the interior circle is

tangent to all three contour arcs.

This test may be used to determine if two tail segments with a common arc

intersect. The test is applied to both endpoints for each segment. The segments

intersect if and only if the intersection test provides opposite answers for each endpoint

of both segments. That is, one endpoint of segment1 is beyond the intersection and the

other endpoint is not. Similarly, one endpoint of segment2 is beyond the intersection

and the other is not.

When two segments intersect, the node point may be found using the intersection

test recursively. Initially, the intersection is known to be between the two original

endpoints of segment1. We arbitrarily call these points the upper and lower bound

points of the node. The intersection test is applied to a point midway between the

bound points. If the midpoint is beyond the intersection, the midpoint becomes the

new upper bound. Conversely, if the midpoint is not beyond the intersection, the

midpoint becomes the new lower bound. This process is repeated until bound points

converge to the node.

It is also possible during the computation that the entire tail segment of a par-

ticular branch has been extended beyond the intersection of the branch (branch1)

with another branch (branch2). Again, the intersection test is used to distinguish

this situation. The test is applied to both endpoints of the tail segment of branch1.

If the test determines that both endpoints are beyond the intersection, the entire tail

segment is beyond the intersection. In that case, the tail segment is removed from

the branch representation.
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Note that extending a particular branch is a local operation. It is not necessary

to consider the entire bounding contour to perform the computation. In fact, only

two arcs of the contour are required for each step. This suggests that the branches

could be computed independently, in parallel. Of course, if a branch is extended such

that its tail segment has an arc in common with another tail segment, the branches

must interact in the manner described above. That is, they must determine if either

of the branches is overextended and if the branches intersect at a node.

In our discussion, we have tacitly assumed that the region is bounded by a single

simply connected curve. That is, we have assumed that there are no holes in the

region. It is straightforward to generalize the algorithm to handle regions with holes.

To do so it is necessary to �nd initial branches such that each segment has one contour

arc on an interior curve. (An interior curve is the bounding curve of a hole.) The

algorithm extends these initial branches to �nd nodes similar to the extension of

branches described above.

The initial branches associated with the interior curves are found in the following

manner: The point on the interior curve that is closest to the bounding curve is

determined. Simultaneously, the point on the bounding contour that is closest to the

interior curve is found. The midpoint of these points lies on the initial candidate

segment for the initial branch. An interior circle is constructed such that the center

is the midpoint and the radius is the distance between the midpoint and either of the

contour points. The midpoint lies on the skeleton if and only if this interior circle

does not intersect another of the interior curves.

In the case that the interior circle does intersect another interior curve, an alternate

starting point must be found. The alternate starting point is determined in the same

manner described above, except that the closest points between the two interior curves

are found. The midpoint between these two points is the new candidate skeleton

point. The new candidate point lies on the skeleton if and only if no other interior

curve intersects the interior circle. In the event that the interior circle does intersect

another interior curve, the process is repeated until an appropriate skeleton point is

found. This procedure is guaranteed to provide a skeleton point that is associated

with each of the holes.

Once a skeleton point has been found for each hole, a branch segment is con-

structed that extends in both directions from each of the initial skeleton points. This

segment serves as the starting segment for an initial branch. Each of these branches

is extended in both directions to �nd the appropriate nodes with other branches.

Figure 3-4 illustrates the initialization of a skeleton corresponding to a region with

holes.

Given the piecewise conic description of the skeleton, it is possible to reconstruct

the bounding contour exactly. For each segment, it is possible to reconstruct the two

contour arcs associated with the segment. If the segment is hyperbolic or elliptic,

the centers of the arcs are determined by computing the locations of the foci of the
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(a) (b)

(c)

Figure 3-4: Skeleton for a region with holes. The computation of a skeleton for a

region with two holes is shown. In (a), the initial skeleton points associated with

the interior curves are depicted along with their respective interior circles. In (b),

the initial segments are extended from the initial points. These segments serve to

initialize the skeleton branches for the computation. In (c), the skeleton associated

with the region is shown.
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hyperbola or ellipse. If the segment is parabolic, the focus of the parabola is the center

point of one arc; the other arc is a straight line segment. The radii of the two contour

arcs may be determined by considering the radii of any two interior circles along the

conic segment. The endpoints of the contour arcs are determined by projecting the

endpoints of the segment onto each arc.

The medial axis skeleton may be computed directly from the analytical contour

representation. The contour representation leads naturally to the analytic represen-

tation of the skeleton. Each branch of the skeleton is piecewise elliptic, hyperbolic,

or parabolic. The bounding contour may be reconstructed exactly from the skeleton.

3.4 The Medial Axis Skeleton Complexity Scale-

Space

In Chapter 2, we consider a complexity scale-space for contours. In this section, we

extend the concept to de�ne a complexity scale-space for the medial axis skeleton.

We consider the computation of the skeleton scale-space from the contour scale-space.

A scale-space is a set of descriptions that di�er in their level of detail. At coarse

scales the descriptions are relatively simple and, presumably, contain only the most

important aspects of the description. At �ne scales, the descriptions are relatively

complicated and contain the details.

A scale-space representation is desirable because it provides alternative descrip-

tions for subsequent processing. If a higher level process requires accuracy and dense

information, a �ne scale is appropriate. However, if accuracy is not as critical and

sparse information is su�cient, a coarse scale is appropriate. In the latter case, the

computational burden is often signi�cantly reduced because the algorithm is required

to process a smaller quantity of data.

The construction of a scale-space requires a tradeo� between the accuracy and

the level of detail in the description. At �ne scales, the tradeo� is skewed toward

the accuracy of the description. At coarse scales the tradeo� is skewed toward the

simplicity of the description.

The measure of this tradeo� is typically a smoothing parameter such as the spatial

width of a Gaussian �lter applied to the data (see, for example, [80]). In such a case,

an increased spatial width of the �lter reduces some of the existing detail. The

description is simpli�ed, but the ability to localize the remaining components of the

description (the accuracy) is reduced.

In this paper, we propose an novel method of quantifying the accuracy versus

simplicity tradeo�. The tradeo� yields a set of descriptions with varying complexity

measures, as de�ned in Section 3.2. Each description is chosen such that it is as close

as possible (in the square-error sense) to the data under the constraint that it has a

particular complexity measure.
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In the case of a contour, we assume that a set of data points along the contour has

been provided. A set of contours is constructed such that each contour has a di�erent

complexity. That is, each contour has a di�erent number of extrema of curvature.

Each of the contours is chosen such that it minimizes the square-error between data

points and the contour under the constraint that the complexity measure is equal to

a particular value.

In the case of the medial axis skeleton, we also assume that a set of data points

along the bounding contour has been provided. Again, a set of skeletons is constructed

such that the skeletons have di�erent complexity measures. The bounding contour

is chosen such that the square-error between the data and the contour is minimized

under the constraint that the associated skeleton possesses the appropriate complexity

measure. As we shall see, the contour scale-space is very similar to the skeleton scale-

space.

Now, consider the computation of the contour scale-space. If the contour is con-

strained to pass through each data point exactly, there is a particular minimum

complexity measure, M0. It is not possible to construct a curve that passes through

every data point and has a complexity measure smaller than M0. If the constraint

is relaxed such that the curve must pass within some tolerance, �1, of each data

point, another minimum complexity measure,M1, is obtained. Of course, M1 �M0.

Therefore, as the tolerance, �, increases, the associated minimumcomplexitymeasure,

M , decreases. Thus, the tolerance, �, acts as a scale parameter for the complexity

scale-space.

For any tolerance, �i, there are in�nitely many contours that meet the tolerance

requirement and possess the minimum complexity measure, Mi. It is desirable to

choose the curve that minimizes the square-error between the data and the contour

from the class of minimum complexity curves. This suggests a two-stage algorithm

for determining the desired minimum complexity/least square-error curve.

In the �rst stage, an instance of the minimum complexity contour is computed

under the constraint that the curve passes within �i of each data point. The curve

found in the �rst stage is used as the starting point for the second computational

stage. The output of the �rst computational stage is illustrated in Figure 3-5 with

the silhouette of an airplane as test case.

In the second computational stage, the minimum complexity contour is modi�ed

such that square-error between curve and the data points is minimized. The modi�ca-

tion is performed under the constraint that the complexity measure does not change.

The result is the minimum complexity/least square-error curve. The �nal results for

the airplane silhouette are depicted in Figure 3-6. The computation of the minimum

complexity/least square-error curve is described in Chapter 2 and more fully in an

earlier paper[15].

As the tolerance parameter increases from scale to scale, contours with smaller

complexity measures are found. Some of the details in the contour are eliminated in

the process; the more coarse representation is simpler. The features that are present
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Figure 3-5: Minimum complexity curves for the silhouette of an airplane. Each curve

is an instance of a minimum complexity curve for a particular tolerance value. The

circles that are tangent to the curve are centered about a particular critical data

point. The radius of each of these circles is equal to �, the scale parameter. The scale

parameter for each case is (a) � = 2:0, (b) � = 4:0, (c) � = 8:0, and (d) � = 16:0.
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Figure 3-6: Minimum complexity/least-square-error curves for the silhouette of an

airplane. In each case the least-square error curve that has the complexity determined

from the �rst stage of the computation is shown. The scale parameter for each case

is (a) � = 2:0, (b) � = 4:0, (c) � = 8:0, and (d) � = 16:0.
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in the representation are depicted as accurately as possible. However, the square-

error is guaranteed to increase because the contour is unable to account for all of the

detail in the data. Thus, as the contour becomes less complex, the accuracy of the

representation decreases.

In the case of the airplane silhouette, the position of the tip of each wing is

accurately depicted across the entire scale-space. In contrast, at coarse scales, the

protrusions on the back of the wings disappear because they are smaller than the

scale-parameter. The representation is simpler, because only the gross structure of the

wing is depicted. However, the error between the data and the contour is signi�cantly

greater in the proximity of the protrusions. This is an example of the tradeo� between

simplicity and accuracy.

It would be reasonable to base the skeleton scale-space directly on the contour

scale-space. One option is to compute the contour at multiple complexities. For each

contour, the corresponding skeleton is computed. As the complexity of the contour

decreases, the complexity of the skeleton is guaranteed to decrease. This yields a

reasonable scale-space for the medial axis skeleton.

However, there is at least one case where the above de�nition of the skeleton

scale-space leads to a counterintuitive result. This de�nition does not penalize the

magnitude of the curvature; only the number of extrema of curvature is considered.

Thus, the algorithm prefers a curve with relatively large curvature if such a choice

reduces the square-error, even if the reduction is small. In some cases, this results

in an additional skeleton branch that terminates into the curvature maximum. This

phenomenon is illustrated in Figure 3-7.

Fortunately, a minor change in the contour smoothing criteria eliminates this

e�ect. The �rst stage of the contour smoothing algorithm is identical; the curve

is modi�ed to minimize the number of curvature extrema. In the second stage, an

additional constraint is placed on the computation. No deformations of the curve are

allowed that would introduce an additional branch terminus. The complexity of the

skeleton is preserved in the second stage, as well as the complexity of the contour.

The change in the smoothing criteria has only a small e�ect on the 
ow of com-

putation. In fact, the computation need only be altered for arcs corresponding to

positive maxima of curvature. The computation for all other arcs is identical to that

for the original criteria.

At each maximum of curvature that is not associated with a branch termination,

it is necessary to ensure that the osculating circle extends to the exterior of the

contour. Recall that whenever the osculating circle does not extend to the exterior of

the contour, a branch terminus is guaranteed to occur at the maximum. Furthermore,

whenever the osculating circle extends to the exterior of the contour, no branch

terminus occurs at the maximum.

The most obvious method to avoid the introduction of additional skeleton branches

is to disallow deformations of the curve that would create a spurious branch. However,

this method places an unnecessary burden on the computation. It would be necessary
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Figure 3-7: Sensitivity of the skeleton at maxima of curvature. Two curves are shown

with their respective medial axis skeletons. The two curves are identical except near

the maximum of curvature on the top of each curve. The complexity measures of

the curves are equal. The top curve has an additional skeleton branch because the

magnitude of curvature at the maximum is much greater than that of the bottom

curve. The complexity measure of the skeleton is very sensitive to subtle changes in

the bounding contour, particularly near positive maxima of curvature.

to test every candidate deformation at each iteration of the smoothing process against

this condition.

A more e�cient method is to compute the least square-error curve as before, then

modify that curve to eliminate any spurious branches that have been introduced. This

method requires that the locations of the branch termini are determined after the �rst

stage of the smoothing algorithm. After the second stage of the contour smoothing

algorithm, each maximum of curvature is tested to determine if there is a branch

present. If a branch has been introduced during the second stage of computation, the

curve must be deformed locally to eliminate the spurious branch.

To eliminate a spurious branch, it is necessary to decrease the curvature of the

maximum curvature arc. The arc is deformed under the constraint that the neighbors

remain �xed, as described in Section 2. The arc is modi�ed until its osculating circle
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Figure 3-8: The complexity scale-space for the medial axis skeleton. The medial axis

skeleton and the corresponding bounding contour are shown at four scales. The scale

parameter, �, is doubled between each scale. Note that the number of branches, as well

as the number of features on the contour, decreases as the scale parameter increases.

The features that are present in each representation are depicted as accurately as

possible in the square-error sense. The small squares near each contour represent the

initial data points of the contour.
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contacts another portion of the curve; the branch is eliminated. We call the additional

point of contact of the osculating circle with the contour the alternate contact point.

Once the branch is eliminated, it is desirable to modify the curve locally to reduce

the square-error. Such modi�cations are carried out under the constraint that the

osculating circle does not lose contact with the contour at the alternate contact point.

This computation may be accomplished locally in the sense that operations need

information only about arcs that are near the maximum and the arc associated with

the alternate contact point. No other arcs of the contour need be considered.

The result of these computations is a scale-space representation for the medial

axis skeleton. At a relatively coarse scale, a skeleton that represents only the gross

structure of the interior of the bounding contour is provided. At a relatively �ne

scale, a skeleton that represents more of the details is provided. The scale-space is

illustrated in Figure 3-8 for the silhouette of an airplane.

In the case of the airplane silhouette, the gross structure of the airplane is depicted

across the entire scale-space. At the coarse scales, the protrusions of the wings are

not present in the skeleton. However, the gross structure of the wings is accurately

represented. At the �nest scale, the protrusions are present and accurately depicted.

Often, the contours obtained from the contour scale-space are identical with the

bounding contours from the skeleton scale-space. However, there are cases where a

contour may be modi�ed such that an additional branch appears (or disappears) in

the skeleton without changing the number of extrema of curvature in the curve. In

these cases, the bounding contour of the skeleton scale-space di�ers slightly from that

of the contour scale-space.

For each type of scale-space, a set of descriptions with varying levels of detail is

obtained. The tradeo� between complexity and proximity to the data is quanti�ed

in terms of a tolerance about each data point. Each representation is as accurate as

possible in the square-error sense under the constraint of minimum complexity. The

contour scale-space and the skeleton scale-space are similar; the di�erence lies in a

slight inconsistency of the complexity measures.

3.5 Summary

We have considered a novel approach to computing the medial axis skeleton across a

variety of scales. Complexity, as de�ned by the number of branches of the skeleton,

is a natural measure of the level of detail of the skeleton description. The multiple

complexity paradigm leads to a true scale-space; the ability to localize a feature is not

diminished from one scale to another unless the feature is completely eliminated. The

representation for the skeleton is consistent with the corresponding representation of

the bounding contour; the mapping between the skeleton and the bounding contour

is unique and invertible.
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Discussion

4.1 Comparison of Existing Methods

A variety of approaches have been proposed for interpreting and recognizing contours.

Many of these approaches depend on the estimation of properties such as the orienta-

tion or curvature of the contour. In the past, a hurdle to such approaches has been the

inability of the contour representation paradigms to capture the geometric properties;

the estimates are typically extremely noisy. However, the representation presented

here provides reasonable estimates for these properties. The improvement in the abil-

ity to measure mathematical properties of contours will lead to improvement in the

ability to interpret and recognize them.

The results of several existing interpretation paradigms would be improved by

use of the analytical representation. For example, the use of codons for classifying

contours may be greatly improved by exploiting the advantages of the representation

described here. The approach of Ho�man and Richards[36] is to partition the curve at

locations of extrema of curvature; the segments of the curve between the extrema are

codons. Under the paradigm proposed here, the curvature is represented explicitly

in the analytical representation. Furthermore, the complexity scale-space introduced

here is natural for their approach. In essence, one may view a reduction of the

complexity of the curve to be a reduction in the number of codons allowed to describe

the curve.

Another example is the curvature primal sketch of Asada and Brady[3]. The

curvature primal sketch is a description of the curve based on primitives delimited

by signi�cant curvature changes. If such a set of primitives were desired, they would

be extracted more easily from the analytical representation than from the method

proposed by Asada and Brady. Furthermore, the complexity scale-space proposed

here yields a more well-de�ned concept of feature or primitive than does the curvature

primal sketch.

Similarly, the analytical representation may be used to improve the results ob-

tained by Mokhtarian and Mackworth[57]. In their approach, the shape of the contour

77
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is characterized by the positions of in
ection points (zero-crossings of curvature) along

the contour. Again, if such a representation were desired, the analytical representa-

tion would provide a more robust estimate of the zero-crossing position. Furthermore,

the analytical representation provides a richer description of curves than does their

approach; there is a broad class of curves having no curvature zero-crossings what-

soever (convex curves without straight segments) that are indistinguishable in the

Mokhtarian-Mackworth representation.

More recently, Ueda and Suzuki[76] have extended the work of Mokhtarian and

Mackworth. They propose a multiple scale contour structure matching algorithm that

learns shape prototypes from examplars. The algorithm recognizes unknown contours

by comparing the location of the in
ection points of the contour to the in
ection points

of the prototype across the scale-space. In their approach, a multiple scale contour

representation is computed by applying Gaussian smoothing to a closed contour with

distinct values of sigma.

A critical step in the Ueda-Suzuki process is the computation of the correspon-

dence of in
ection points across the scale-space representation of a single contour.

That is, as a particular contour is smoothed, neighboring pairs of in
ections blend

together. From scale to scale, it is necessary to determine which of the in
ections

have been eliminated, which have been preserved, and the mapping from the in
ec-

tions in the coarse scale to those of the �ne scale. To address this issue, Ueda and

Suzuki choose the correspondence that minimizes the sum of the Euclidean distance

between corresponding in
ections.

Use of the complexity scale-space for contours would simplify the computation

of the in
ection point correspondence across scales. As the contour smoothing takes

place, pairs of in
ection points are eliminated by a particular discrete operation on

the contour. The in
ection points may be labeled prior to smoothing. During the

smoothing process, some of the labels are eliminated as in
ection pairs are consol-

idated; the rest maintain their original labels and thereby specify the appropriate

correspondence with the �ner scale.

In addition, the complexity scale-space could, potentially, facilitate an extension

of the Ueda-Suzuki method. The complexity-scale space provides a richer, more useful

description of the curvature extrema of the contour than does Gaussian smoothing.

Thus, the Ueda-Suzuki matching algorithm could be extended to exploit contour

extrema in addition to the in
ection points.

The minimum complexity smoothing paradigm has a variety of advantages over

existing smoothing methods. For example, the minimum complexity paradigm does

not su�er from the shrinkage problem as does Gaussian �ltering applied to the data

points. The least square-error criterion ensures that there is no bias in the solution.

One disadvantage of the minimum complexity smoothing paradigm is that it is

substantially more expensive computationally than other methods. In addition, the

minimum complexity paradigm is more complicated to implement than its competi-

tors. However, as the paradigm continues to be developed, it is likely that more
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e�cient and simpler implementations will be found. In the mean time, it remains an

open question whether the improved capabilities of the approach outweigh the added

computational expense and complexity of implementation.

Recently, Oliensis[59], has proposed a criterion for designing contour-smoothing

�lters that greatly reduces the shrinkage e�ect. The Oliensis approach provides an

e�cient means of computing smooth contours from a set of noisy data points. For

many applications, this approach may be su�cient. However, the approach does not

provide a complexity scale-space advocated here, nor does it facilitate the computa-

tion of the medial axis skeleton.

The analytic contour representation provides the ability to compute the medial

axis transform of the region bounded by the contour. It is well-known that the

computation of the medial axis transform is extremely sensitive to noise in the contour

(see Ballard and Brown[5], for example). Given the ability to reduce the e�ects of

noise on the contour, it is possible to compute the skeleton more reliably.

The contour representation paradigm leads directly to an analytical representation

of the skeleton. The skeleton representation consists of piecewise conic sections. The

contour and skeleton representations are consist with each other. In fact, it is possible

to recover the original contour from the skeleton, if the distance from the skeleton to

the contour is given for a �nite number of points.

Another advantage of the complexity scale-space is that the medial axis skeleton

is consistent with the contour representation. The mapping between the contour and

the skeleton is unique and invertible. In contrast, most methods of computing the

medial axis skeleton yield a result that is inconsistent with the bounding contour;

construction of a curve from the skeleton would lead to a curve that di�ers from the

original bounding contour.

Consistency among representations is desirable because higher level processes may

make inferences based upon properties of the contour or the skeleton. If the represen-

tations are consistent, such a higher level process is less likely to make incompatible

inferences about the data. Such incompatible inferences would lead to degradation

of the overall system performance.

4.2 Scale-Space vs. Resolution Space

In Chapters 2 and 3, we introduce two novel scale-spaces based on the complexity

measures of contours and the medial skeleton. The tradeo� between accuracy of the

representation vs. the simplicity of the description is made explicit. As a result, we

draw a distinction between this work and its predecessors.

Most \scale-space" representations would be more accurately described by the

term resolution-space. Typically, such resolution-spaces are parameterized by the

spatial width of some �lter, (usually a Gaussian �lter, for example [80]). Subjective

features are eliminated from the representation as the data is blurred. For example,

at a �ne scale a particular feature may be represented accurately. At a coarse scale,
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the feature may be eliminated, as desired. However, at an intermediate scale, the

feature may exist with degraded accuracy. There is no advantage to representing

particular atomic features with varying degrees of accuracy.

A true scale-space provides descriptions of the data with varying levels of detail.

At each scale, all features are represented as accurately as possible. Given that

a feature is present at two scales, there is no advantage in reducing the accuracy of

localization of the feature from one scale to the next. It is more desirable to retain the

accuracy of the representation from one scale to the next, until a feature is eliminated

altogether.

The complexity measure yields a true scale-space for contours and medial axis

skeleton. At �ner scales, greater detail is represented. At coarse scales, only the

gross structure of the skeleton is represented. The complexity criterion explicitly

guarantees that the representation becomes simpler at coarse scales.

The medial axis skeleton complexity scale-space o�ers a novel approach to the

trade-o� of accuracy and simplicity. The tradeo� occurs between the number of

subjective features and the square-error between the data and the representation.

Whenever a feature is present in the representation, it is depicted as accurately as

possible. For example, the location of the tip either wing of the airplane depicted in

Figure 3-6 is represented accurately across the entire scale-space. Of course, there is

still a reduction in the overall accuracy of the representation at coarse scales because,

for example, the protrusions on the back side of each wing are not depicted at the

coarse scales.

In general, it is more di�cult to obtain a true scale-space representation than a

resolution-space. It is non-trivial to obtain a formal tradeo� between the simplicity

of a description and the accuracy. Whenever possible, it is desirable obtain a true

scale-space representation. Of course, resolution-spaces are useful to the extent that

they approximate the desired behavior of a scale-space.

4.3 Minimum Description Length Coding

The complexity scale-space is similar to the minimum description length (MDL) ap-

proach at an intuitive level. The idea of providing the simplest possible representation

is present in both approaches. However, the formal de�nition of complexity is di�er-

ent in the two approaches. As a result, there are signi�cant conceptual di�erences

between the complexity scale-space and the MDL paradigm.

The MDL criterion requires that the number of parameters employed by a model

to account for the data should be minimized[66]. More precisely, the number of bits

required to encode the data is minimized. Thus, an important component of the

MDL approach is the choice of an e�cient model for the representation. Formally,

the MDL approach requires that the representation correspond to an optimal code

in the information theoretic sense. A theory for choosing the representation from a

priori probability distributions is well known (see Leclerc[46], for example).
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Unfortunately, the determination of such an optimal code for a general application

is di�cult in practice. Typically, minimum description length approaches assume

a particular form of the representation. The number of parameters employed by

the representation is minimized. Interestingly, the MDL theory provides a simple

objective measure of the performance of a particular representation. The performance

measure is, of course, the average length of the code.

For example, Leclerc[46] applies the MDL technique to the image partitioning

problem. Each subregion requires a set of parameters to distinguish the boundary

and to specify the behavior of image brightness within the subregion. The additional

parameters required for each subregion causes the algorithm to favor a small number

of partitions. However, when there are relatively few partitions, it is more di�cult

to account for the variations from the model within each subregion; a larger number

of bits per subregion is required. Conversely, this e�ect favors a larger number of

partitions. There is a particular choice of the partitioning that optimizes these two

opposing e�ects.

In contrast, the complexity scale-space seeks to minimize the number of subjective

features in the description. The optimization is indi�erent to the number parameters

used by the representation. In the case of a contour, the contour may be described by

arbitrarily many circular arcs; the complexity depends only on the number of extrema

of curvature. Similarly, each branch of a medial axis skeleton may be represented

by arbitrarily many branch segments; the complexity is speci�ed by the number of

branches. An MDL approach would essentially require minimizing the number of arcs

in a contour or the number of segments in a skeleton.

Furthermore, the complexity scale-space does not attempt to provide an e�cient

code for the representation. Rather, the scale-space seeks to make the most relevant

information explicit for higher level processes. In fact, there is a loss of information

at the coarse scales. We have argued, above, that this loss of information is desirable

for computational purposes.

Another important distinction is that MDL approaches typically do not provide

scale-space representations. MDL approaches provide a single representation for each

data set. In e�ect, an optimal scale is chosen implicitly by the MDL criterion. The

scale chosen by the MDL criterion is the one requires the fewest number of bits to

represent the data.

The paradigm described in Part I of this thesis leads to true scale-spaces for

contours and the medial axis skeleton. At �rst glance, the complexity scale-spaces are

very similar to minimumdescription length approaches; the notion of simplicity of the

representation is exploited in each case. However, there are signi�cant philosophical

and practical di�erences between the complexity scale-spaces and MDL approaches.
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4.4 Summary of Part I

In Part I of this thesis we consider a framework for attacking a variety of compu-

tational geometry problems. We begin by establishing a paradigm for representing

contours. The paradigm allows us to represent geometric properties, such as posi-

tion, orientation, and curvature, explicitly and exactly. The ability to represent these

properties leads us to improved computational capabilities.

The representation facilitates smoothing the contour using a novel criterion. The

complexity of the contour is minimized under the constraint that the curve passes

within a speci�ed tolerance of the data points. Given that complexity, the least-square

error curve is obtained. The tolerance acts a smoothing parameter. The smoothing

operation leads to a novel scale-space that exploits a trade-o� of the complexity of

contour versus the accuracy of the description.

From the contour representation, it is possible to compute an analytical represen-

tation of the medial axis skeleton. Unlike other approaches to computation of the

skeleton, the resulting skeleton is consistent with the bounding contour. In fact, the

contour may be reconstructed exactly from the skeleton representation, if the distance

between the skeleton and the contour is provided at a �nite number of points.

The complexity scale-space for contours is extended to the medial axis skeleton.

The contour is chosen such that the complexity of its associated skeleton is minimized.

Again, the tolerance acts as a scale-parameter.

In Part II of this thesis, we consider the application of the computational paradigm

to feature extraction, feature tracking, and the estimation of egomotion. The abilities

we develop in Part I facilitate the computation of a robust set of features. The

improvement in the ability to compute and represent geometric properties of the

features makes the feature tracking problem more manageable. As a direct result,

we are able to improve our estimates of egomotion and depth as the image sequence

evolves in time. Thus, improvement of abilities at the most primitive level leads to

improved capabilities in the higher level processing.
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Chapter 5

Simple Region Features

5.1 Introduction

In Part II of this thesis, we extend the geometric abstractions developed in Part I.

We apply the smoothing paradigm of Chapter 2 and the skeleton computation of

Chapter 3 to the Laplacian of Gaussian zero-crossings at multiple resolutions. As a

direct result of the improved processing capabilities, we are able to compute a novel

set of features from the zero-crossings. The features, called simple regions or simple

region features, are the basis for an early vision paradigm introduced in subsequent

chapters. We de�ne the paradigm and demonstrate its viability by applying it to the

passive navigation problem.

Since the work of Marr and Hildreth[53], zero-crossings of the Laplacian of Gaus-

sian �lter have often been interpreted as the locations of brightness discontinuities or

edges in the image. The Laplacian is a second order di�erential operator whose zero-

crossings approximate the location of the maxima of the brightness gradient[7]. The

Gaussian �lter is combined with the Laplacian to make the derivative operation more

well-conditioned[31], [72]. The resolution of the edge detection operator is controlled

by the spatial width of the Gaussian �lter.

In addition, the Laplacian of Gaussian operator may be interpreted as a matched

�lter that is tuned to objects of a particular width. The size of objects for which

the �lter is tuned is controlled by the spatial width of the Gaussian, �. The �lter

responds maximally at the center of an object whose width is approximately 2�. (The

width of the main lobe of the �lter is 2�.)

Taken together, these interpretations suggest the (naive) idea that the Laplacian

of Gaussian �lter may be used to extract features of a particular size from the image.

The �lter responds maximally in the center of objects with width near some optimal

value. The zero-crossings mark the location the edges (i.e. the boundary) of the

object.

85



CHAPTER 5. SIMPLE REGION FEATURES 86

(a)

(b) (c)

Figure 5-1: Zero-Crossings of Model Image. In (a), an image of a model town is

depicted. In (b), a portion of the image is extracted. The sub-image corresponds to

the front of the building in the lower left of the full image. In (c), zero-crossings for

the subimage are shown.
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Of course, the regions associated with nearby objects tend to merge or blend

together. This results from the blurring introduced by the Gaussian �lter. Rather

than segmenting the image as desired, the zero-crossing regions tend to meander over

the image. A particular region typically covers multiple objects in the image rather

than extracting a single object or a single subjective feature.

However, the salient parts of the zero-crossing regions often correspond to sub-

jective features in the image. Consider, for example the image and its zero-crossings

depicted in Figure 5-1. Overall, the zero-crossing regions meander over much of the

image. However, much of the structure present in the image also appears in the

regions. For example, the pillars in the front of the building are identi�able in the

zero-crossings.

If it were possible to decompose the zero-crossing regions into their salient parts,

the subregions would be candidates for use as atomic tokens or features in subsequent

processing. It would be possible, for example, to recognize objects based on the

con�guration of the groups of the subregions that make up the object. It would also

be possible to track the subregions across sequences of images and thereby estimate

the egomotion of the camera and the structure of the environment.

In this chapter, we de�ne a particular decomposition of a region into salient parts.

The decomposition is robust against small perturbations in the bounding contour. As

we shall see, continuous deformation of the bounding contour leads to continuous de-

formation of the subregions except at critical occurrences. At the critical occurrences,

the subregions split or merge in a predictable manner.

The decomposition is applied to regions bounded by the zero-crossings of a Lapla-

cian of Gaussian �ltered image. There are two complementary sets of regions. The

positive regions correspond to regions of the image where the output of the �lter is

positive. Likewise, the negative regions correspond to regions of negative output of

the �lter.

Features are obtained at multiple resolutions by applying the decomposition to

the outputs of a number of Laplacian of Gaussian �lters. The �lters di�er by their

spatial width or bandwidth. At a relatively narrow spatial width (wide bandwidth)

of the �lter, the subregions typically correspond to elements of detail in the image.

Conversely, at a relatively wide spatial width, the subregions typically correspond to

the gross structural elements in the image.

The primary advantage of this approach is that the features correspond to salient

regions in the image rather than points. As a result, the features possess a more

abstract set of attributes. Each region has a centroid (position), area, and orientation.

The shape of each region may also be described. And, as we shall see, the topological

relationships among groups of features is speci�ed explicitly.

The availability of abstract information pertaining to the features yields tremen-

dous advantages. In particular, we shall exploit the availability of the area, shape,

and the topological information in Chapter 6 when we consider the correspondence
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(a) (b)

Figure 5-2: Simple Region Features of Model Image. In (a), the subimage of Figure 5-

1b is depicted. In (b), the positive simple region features for the image are shown.

problem over a sequence of images. In addition, we argue in Chapter 8 that the

additional attributes of the features are advantageous in a wide variety of contexts.

In contrast, point features, such as Canny edges[13], have only a position attribute

(and a rough estimate of the orientation). One might argue that more abstract

features could be obtained by using point features as primitives. Pairs of such points

may be coupled to form line segments; this yields an orientation attribute, as well as

position. Groups of neighboring line segments may be joined to form curves, thereby

adding a curvature attribute. However, such groups are often unstable and sparse.

Before de�ning the feature extraction process in more detail, it is instructive to

consider an example of features that we will ultimately extract. In Figure 5-2, an

image and its corresponding positive simple regions at the �nest resolution are shown.

Note that much of the structure present in the image is represented explicitly by the

simple regions. For example, the pillars of the lower level of the building correspond

to vertical simple regions. Of course, in areas of the image where the contrast is low,

the features are not as distinctive. For example, the pillars of the upper level of the

building are not as well-de�ned. However, as we shall see, even in such areas, the

decomposition remains relatively stable as the image sequence evolves in time.

In this chapter, we de�ne simple region features more precisely. We start by

considering the appropriate decomposition of regions into their salient parts. Once

we have settled on the decomposition, we specify the computation of the features,
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including relevant geometric properties. Finally, we discuss the overall feature ex-

traction process and general properties of the features.

5.2 Region Decomposition

The crucial step for computing simple region features is the decomposition of a re-

gion bounded by zero-crossings into its salient parts. This computation allows us to

consider small pieces of the zero-crossing regions independently. The decomposition

is based on the medial axis skeleton computation described in Chapter 3 and the

analytical contour representation de�ned in Chapter 2.

Consider the shapes depicted in Figures 5-3a and 5-3b. For each shape, the medial

axis skeleton is superimposed in the �gure. The shape on the left consists of three

subjective parts: the three bars extending from the center. Similarly, the shape on

the right consists of three subjective parts: the three round bulges that have merged

together

The goal of the region decomposition is to break the region into these percep-

tually obvious subparts automatically. The medial axis skeleton is the basis for the

decomposition. The skeleton is a natural choice because it represents the structure of

region. Each branch of the skeleton corresponds to a salient part of the region. How-

ever, the medial axis skeleton does not achieve the desired decomposition by itself.

It is necessary to extend the de�nition to break branches of the skeleton at locations

where the distance from the skeleton to the contour is a local minimum.

The desired decomposition is achieved for the three bar shape by the medial axis

skeleton. The skeleton consists of three branches, one for each bar. In Figure 5-3c,

the subregion corresponding to each the three branches are depicted. The desired

decomposition is achieved.

The three bulge shape is not successfully decomposed by the medial axis skele-

ton, alone. The respective skeleton consists of only a single branch. To achieve the

desired decomposition, the branch must be broken at the locations of minima in the

distance between the branch and the contour. The locations of these minima are

depicted in Figure 5-3d. Segmenting the region at these location achieves the desired

decomposition.

The region decomposition suggested by Figure 5-3 may be de�ned functionally in

two stages. First, the region is segmented into initial subregions that correspond to

the branches of the medial axis skeleton. Each initial subregion is further segmented

at the locations of minima in the distance between the skeleton branch and the

boundary. An algorithm that computes the decomposition is speci�ed in the next

section.



CHAPTER 5. SIMPLE REGION FEATURES 90

5.3 Computation of the Decomposition

Computing the region decomposition de�ned above is straightforward given an ana-

lytical representation of the bounding contour and the medial axis skeleton described

in Chapters 2 and 3. The �rst step of the process is achieved implicitly with the

computation of the skeleton. The second step is achieved by exploiting geometric

properties of the contour representation.

Each branch of the skeleton corresponds to an initial subregion of the original

region. The initial subregion is de�ned by the portion of the bounding contour that

is associated with the branch and line segments that demark the boundary between

neighboring subregions. The line segments separating the initial subregions are de-

�ned by the common skeleton node point and the radial projection of the node point

onto the bounding contour. In the case of the three bar region depicted in Figure 5-3a,

there is a single skeleton node at the center of the region. The line segments de�ned

by the projection of the node point onto the bounding contour act as the boundary

between adjacent subregions.

Recall from Section 3.3 that a skeleton node point is equidistant from three points

on the bounding contour. As a result, there is a circle of interest whose center is

coincident with the node point. The circle of interest is tangent to the bounding

contour in three places. The projections of the node point onto the bounding contour

are coincident with these tangent points. Therefore, the line segments that act as the

boundary between neighboring subregions are radii of the circle centered at the node.

These geometric relationships are illustrated in Figure 5-3e.

Each initial subregion of the decomposition is represented by the bounding con-

tour associated with the branch and the line segments demarking the boundary with

neighboring subregions. The portion of the bounding contour associated with a par-

ticular branch is represented explicitly in the skeleton representation. Recall that

each segment of a branch corresponds to two particular circular arcs in the contour

representation. The line segments are computed by determining the radial projection

from the skeleton node point onto the appropriate contour arcs.

Once the initial decomposition has been computed, it is necessary to divide the

initial subregions at locations of minima in the distance between the branch and the

contour. When such a minimum occurs, the skeleton point is collinear with its two

tangent points on the bounding contour. (Recall from Section 3.3 that the tangent

points are the two points on the contour closest to the skeleton point.) The line

segment that extends between the tangent points and includes the skeleton point is

a diameter of the interior circle of the skeleton point. (Recall also that the center

of interior circle is the skeleton point; the interior circle is tangent to the bounding

contour at the tangent points; and the interior circle does not contact the bounding

contour, except at the tangent points.) Because the interior circle is tangent to each

of the two contour arcs, the centers of the contour arcs are also collinear with the
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(a) (b)

(c) (d)

(e) (f)

Figure 5-3: Decomposition of Example Regions. In (a) and (b), the bounding contours

of two contrived shapes are shown along with their respective medial axis skeletons.

In (c), the shape from (a) is segmented into the three regions associated with each

of the skeleton branches. In (d), the shape is segmented at the locations of minima

in the distance between the contour and the skeleton. In (e), the interior circle

associated with the skeleton node point is depicted. The line segments that bound

each subregion are radii of this circle. In (f), the interior circles associated with the

skeleton points at the boundary are shown. The line segment associated with each

boundary is a diameter of the respective interior circle.
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(a) (b)

Figure 5-4: Geometric Relationships at Distance Minima. In each �gure, a skeleton

branch segment and its associated two contour arcs are shown. The branch segment

is the dashed line. A minimum in the distance between the contour the branch occurs

within the segment. The centers of contour arcs, the skeleton point at the minimum

(C), and the tangent points associated with the skeleton point (A and B) are all

collinear, as indicated. The line segment AB is a diameter of the interior circle of

point C. In (a), both contour arcs have negative curvature. A minimum is known to

occur because each arc center is within the sector of the other arc. In (b), arc1 has

positive curvature and arc2 has negative curvature. Point A is the radial projection

of the center of arc2 onto arc1. Point B is the radial projection of point A onto arc2.

A minimum in the distance is known to occur because A is within the sector of arc1

and B is within the sector of arc2.
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tangent points and the skeleton point. These geometric relationships are illustrated

in Figure 5-3f and Figure 5-4a.

We exploit the collinearity of the skeleton point, its tangent points, and the centers

of the contour arcs to compute the locations of the minima in the distance function

along the skeleton branch. For each branch segment, a simple test determines if a

minimum in the distance function occurs. At least one of the contour arcs must have

negative curvature. If both contour arcs have positive curvature, no minimum exists

in the branch segment. If both contour arcs have negative curvature, a minimum

occurs if and only if the center of each arc is within the sector of the other. The

test is a direct result of the collinearity of the �ve points of interest. The geometric

relationships involved in this test are illustrated in Figure 5-4a.

If one of the contour arcs has positive curvature and the other negative, a slightly

more complicated algorithm is needed to determine if a minimum is present. Two

conditions must be met for a minimum to occur. First, the center of the negative

curvature arc must lie in the sector of the positive curvature arc. Equivalently, the

radial projection of the center of the negative arc onto the positive arc is within the

positive arc sector. We call this projection point A. Second, the radial projection of

point A onto the negative curvature arc must lie within the sector of the negative

curvature arc. We call this projection point B. The two projection points, A and B,

are the tangent points of the interior circle. By construction, the projection points

are collinear with the centers of the contour arcs. In addition, the skeleton branch

point is the midpoint of A and B (point C). Point C is also guaranteed to be collinear

with center points. These relationships are illustrated in Figure 5-4b.

Once the decomposition is computed, a graph representing the adjacency of simple

regions is constructed. At each end of a simple region, there may be zero, one, or two

neighbors. There are zero neighbors when the skeleton terminates into the contour.

There is one neighbor when the boundary is the result of a decomposition at a distance

minimum along the skeleton. There are two neighbors when the boundary occurs at a

skeleton node. The purpose of the connectivity graph is to allow subsequent processes

to determine the neighbors of any simple region e�ciently.

5.4 Extraction of Simple Region Features

Now that we have considered the relevant region decomposition, it is desirable to

consider the entire process. We begin with a set of Laplacian of Gaussian �lters with

varying resolutions. At each resolution, we extract and smooth the zero-crossings.

The regions bounded by the zero-crossings are decomposed into salient subparts.

These subparts are the desired features.

The �rst step of the feature extraction process is to pass the image through a set

of Laplacian of Gaussian �lters. Technically, the �lters are approximations to the

Laplacian of Gaussian. However, for our purposes, the approximation is valid.
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The Gaussian �ltering is approximated by a sampled Gaussian �lter, since the

data is acquired in the discrete domain. At the �nest resolution, the image data is

smoothed with a �lter with a standard deviation � = 1 in units of the picture cell

spacing. The next resolution is obtained by applying a sampled Gaussian �lter with

standard deviation � =
p
3. This value is chosen because two cascaded Gaussian

�lters are equivalent to a single Gaussian �lter whose variance is the sum of the

variances of the individual �lters. (Of course, the variance is the standard deviation

squared.) The e�ective total smoothing after the application of the second �lter is

� = 2 (�2 = 4).

The output of the �lter is subsampled by a factor of 2 � 2. The bandwidth of

the �lter applied prior to subsampling is well within the Nyquist criterion to avoid

aliasing. After the subsampling, the data has been e�ectively smoothed by a Gaussian

with � = 1 when measured in the subsampled coordinates. Subsequent resolutions

are obtained by applying the �ltering and subsampling process recursively. That is,

the data at one resolution is �ltered by a Gaussian with a standard deviation � =
p
3

and subsampled by 2� 2 to obtain the smoothed data for the next coarse resolution.

The result is a set of smoothed and subsampled versions of the image data. Such

a construct is often called the Gaussian pyramid[12]. The standard deviation at the

�nest resolution is 1 when measured in units of picture cell spacing. In absolute terms,

the e�ective smoothing varies by a factor of two from resolution to resolution. This

choice is consistent with previous work using the Laplacian of Gaussian resolution

space (see, for example, Grimson[26]).

The Laplacian component is approximated by applying a 3 � 3 symmetric �lter

mask to the data at each resolution. The center value of the mask is 20p
468

, the side

values are �4p
468

, and the corner values are �1p
468

. The constant 1p
468

is chosen because

it normalizes the energy contained in the operator to unity. The 3 � 3 mask is a

second order di�erence approximation to the Laplacian operator. The result is a

Laplacian pyramid structure that is similar in spirit (though di�erent in detail) to

the one proposed by Burt and Adelson [12].

The Laplacian approximation is applied to the data after the subsampling at each

resolution. This di�ers from some approaches in which the Laplacian approximation

is applied once to the data at the �nest resolution. In the other approaches, smooth-

ing and subsampling is typically applied recursively to the output of the Laplacian

approximation. A block diagram of each of the alternative processing scenarios is

depicted in Figure 5-5.

We choose to apply the Laplacian operator after subsampling, as shown in Fig-

ure 5-5a, because doing so results in a Laplacian pyramid that is self-scaling. The

e�ective �lters that are applied to the resolutions of the pyramid have the same

frequency characteristics, when considered in subsampled units. As a result, any dif-

ference in the spectral properties of the data from resolution to resolution is strictly

due the spectral content of the original image data. This statement is not true for



CHAPTER 5. SIMPLE REGION FEATURES 95

SELF-SCALING LAPLACIAN PYRAMID

Image Gaussian
� = 1

Gaussian

� =
p
3

Subsample
Gaussian

� =
p
3

Subsample

Laplacian Laplacian Laplacian

- - - - - -

? ? ?

...

? ? ?

Level 1 Level 2 Level 3

(a)

NON-SCALING LAPLACIAN PYRAMID

Image
Laplacian

Gaussian
� = 1

Gaussian

� =
p
3

Subsample
Gaussian

� =
p
3

Subsample- -

? ? ?

Level 1 Level 2 Level 3

(b)

Figure 5-5: Laplacian Pyramid Alternatives. In (a), the self-scaling Laplacian of

Gaussian �lter bank is shown. The Laplacian approximation is applied to the signal

after subsampling at each resolution. This results in identical frequency response

of the e�ective �lters applied to each resolution. In (b), the conventional Laplacian

of Gaussian �lter bank is shown. The Laplacian approximation is applied to the

original image data. The signal is recursively �ltered and subsampled to obtain each

resolution. The frequency responses of the e�ective �lters di�er from resolution to

resolution in this case.
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(a) (b)

Figure 5-6: Frequency Response of E�ective Filters of Laplacian Pyramid. In (a), the

frequency response of the e�ective �lters applied to each resolution of the self-scaling

Laplacian pyramid. A cross-section of the normalized frequency response is plotted

against frequency in radians along the x axis. The frequency response applies to every

resolution in the pyramid. In (b), the normalized frequency response is shown for the

�nest resolution and the adjacent resolution of the non-scaling Laplacian pyramid.

In addition to the di�erences in the spectral shape of the response, the magnitude at

the peak di�ers by a factor of approximately 3.5 from resolution to resolution. Each

curve is normalized to the peak in the �gure to emphasize the di�erence in spectral

shape.

the alternate approach in which the Laplacian approximation is applied only once,

as shown in Figure 5-5b. In that case, the e�ective �lter di�ers from resolution to

resolution. There is a slight discrepancy in the spectral shapes of the �lters from

resolution to resolution. In addition, the peak magnitude of the e�ective �lter varies

by a factor of 3:5 to 4:0 from one resolution to the next, depending on which pair of

resolutions is being considered. A comparison of the normalized frequency responses

of the e�ective �lters is given in Figure 5-6.

The advantage of a self-scaling pyramid is that subsequent algorithms applied to

the data at each resolution are identical when measured in units of the subsampled

data. For example, the parameters we use below for smoothing the zero-crossings at

di�erent resolutions are the same when measured in units of the subsampled data.

Equivalently, the smoothing parameters vary by a factor of two, in absolute terms,

from resolution to resolution. This is appropriate because each resolution has been
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processed with the same e�ective �lter in the subsampled units. In contrast, the

alternate approach would require a di�erent smoothing parameter for each resolution,

because the e�ective �lter di�ers from resolution to resolution. This argument extends

to other types of processing in addition to contour smoothing.

At each level of the pyramid, the zero-crossings are obtained from the Laplacian of

Gaussian signal. The algorithm traces along the border between positive and negative

regions. The location of each zero-crossing data point is determined using a bilinear

interpolation among a 2� 2 neighborhood of the data signal.

The zero-crossings are smoothed using the algorithm described in Chapter 2. The

tolerance parameter is chosen empirically to be �i

8
, where �i is the e�ective standard

deviation of the Gaussian �lter for the current resolution. The tolerance parameter

is proportional to the spatial width of the �lter because the ability to localize the

zero-crossings degrades with the amount of smoothing applied to the image[53].

Zero-crossing contours are grouped according to the region they bound. Each

region is designated as a positive region or a negative region depending the sign of

the values of the signal within the region. For each region there is a single zero-crossing

contour that is the exterior boundary and any number of contours that correspond

to holes of the region.

For each region, the medial axis skeleton is computed as described Chapter 3.

The region decomposition is computed as described in Section 5.3. The result is the

set of simple region features for each resolution. The positive simple regions at three

resolutions for an image of the word \CODING" is depicted in Figure 5-7.

5.5 Geometric Properties of the Features

Once a region has been decomposed, it is desirable to compute properties of the

subregions. In Chapter 6, we shall require the centroid and area of each subregion.

We consider these computations here.

As described in Section 2.5.3, it is possible to compute the area of a region directly

from the analytical contour representation. In that section, we assume the bounding

contour consists entirely of circular arcs. However, the subregions of the decompo-

sition are bounded by line segments as well as circular arcs. Therefore, we must

consider the contribution of the line segments to the area and centroid computation.

Recall that we exploit Green's Theorem to convert the area computation from an

integral over a region to an integral over the bounding contour. We break the integral

into intervals that correspond to circular arcs in the representation. The result is a

summation over the circular arcs in the representation. Each term in the summation

corresponds to the contribution of the circular arc to the area computation.
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From Equations 2.28 and 2.32, we �nd that when the contour consists entirely of

circular arcs

A =
NX
i=1

Ai =
NX
i=1

1

2

Z
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s=si�1
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We must �nd a similar expression for Ai when the ith interval corresponds to a line

segment, rather than an arc.

The position of a line segment may be expressed as a function of the length along

the segment as

x(s) = x1 + s

x2 � x1

l

; (5.3)

y(s) = y1 + s

y2 � y1

l

; (5.4)

where the points (x1; y1) and (x2; y2) are the endpoints of the segment, l is the length

of the segment, and s is the distance from a point on the segment to (x1; y1). Note

also that
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Substitution of these expressions into 5.1 yields
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After evaluating the integral, this expression may be simpli�ed to

Ai =
1

2
fy2x1 � x2y1g : (5:8)

Similarly, in Section 2.5.4 we �nd that it is possible to compute the centroid of a

region directly from the analytical contour representation. Following the same logic,

we use Green's Theorem to reduce a pair of integrals (one for each component of the

centroid) over a region to a pair of integrals over a contour. We break each integral

into intervals that correspond to the circular arcs in the representation. The result is

a summation over the circular arcs in the representation. Each term in the summation

is the contribution of a particular arc to the integral.
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Again, we must determine the contribution of a line segment to the appropriate

contour integral. Recall from Section 2.5.4 that x, the x component of the centroid,

may be written

x =
1
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i=1

Bi =
1

A
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Z
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where A is the area of the region and Bi is the contribution of the ith arc to the

integral. For a circular arc,

Bi = �Rxcyc [cos �]�2i�1i
+R

2
xc

"
�

2
� sin 2�

4

#
�2i

�1i

�

R
2
yc

"
cos 2�

4

#
�2i

�1i

+R
3

"
sin3 �

3

#
�2i

�1i

: (5.10)

To determine the contribution of a line segment to the integral we substitute

Equations 5.3, 5.4 and 5.5 into Equation 5.9. This yields
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After evaluating the integral, this expression may be simpli�ed to

Bi =
x1 � x2

6
(x1y2 + y1x2 + 2x2y2 + 2x1y1) : (5:12)

Similarly, the y component of the centroid, y, may be computed
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where Ci is the contribution to the integral of the ith interval of the integration. In

the case where the interval corresponds to a line segment, rather than a circular arc,

the contribution may be written

Ci =
y2 � y1

6
(x1y2 + y1x2 + 2x2y2 + 2x1y1) : (5:14)

The area and centroid of the subregions may be computed analytically from the

representation. The computations mirror those for the entire region. However, the

portions of the subregions that correspond to line segments rather than circular arcs

must be treated separately.
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5.6 Discussion

The procedures described in this chapter yield a set of features at multiple resolutions.

The features consist of regions with simple shapes. These regions typically correspond

to subjective features in the image. More importantly, as we shall see in Chapters 6

and 7, the regions are stable as a sequence of images evolves in time.

In Figure 5-7 an image of the word \CODING" is depicted along with its positive

simple regions at three resolutions. At the most coarse resolution (Figure 5-7b),

\CODING" corresponds to a single zero-crossing region. At the middle resolution

(Figure 5-7c), more of the structure of each individual letter is present, although the

letters are still not distinct. At the �nest resolution (5-7d), each letter is clearly

evident in the zero-crossing pattern.

However, even at the �nest resolution, some of the letters have merged together.

The \C" and the \O" consist of a single region bounded by a single zero-crossing.

The same is true for the \I" and the \N". The function of the region decomposition

is to break the regions into manageable parts. It is the task of subsequent processes

to manipulate the simple regions. For example, an optical character recognition

algorithm would be required to determine that particular groups of the simple regions

correspond to particular letters.

It is desirable to extract features at multiple resolutions. As we discussed in Part I,

there is a tradeo� between the complexity of the representation and the accuracy.

For some applications, it is necessary that as much detail as possible be present. For

other applications, the reduction in computational complexity achieved by using a

more coarse resolution may be worth the reduction in accuracy of the representation.

For example, an optical character recognition system would require the feature

representation at the �nest resolution depicted in Figure 5-7d. However, the motion

estimation algorithm presented in Chapters 6 and 7 uses a more coarse resolution. As

we shall see, the motion estimation algorithm achieves reasonable results at the more

coarse resolution. Because of the reduction in resolution, the amount of processing

required to obtain correspondence of the simple regions from frame to frame is greatly

reduced.

One of the primary advantages of simple region features over other feature ex-

traction paradigms is the spatial support of each feature. Each simple region feature

possesses more abstract attributes than other types of features. Simple regions have

location (centroid), area, orientation, and shape attributes. In addition, the con-

nectivity with their neighbors is speci�ed. These properties may be exploited by

subsequent processes in a variety of ways. For example, in Chapter 6, we exploit the

area, shape, and connectivity of the simple regions when we obtain correspondence

from frame to frame for motion estimation.

In contrast, edges are speci�ed by their location. Some edge detection algorithms

also supply an orientation attribute, but they are typically inaccurate. Less informa-

tion is contained in each edge than in each simple region.
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(a) (b)

(c) (d)

Figure 5-7: Simple Region Features. The image of the word \CODING" is depicted

along with the simple regions features at three resolutions.
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The simple region feature extraction process is also quite stable. A small perturba-

tion in a zero-crossing contour typically leads to a correspondingly small perturbation

of the associated simple region. There are two exceptions to this statement. At a

critical point in the contour deformation, a minimum in the distance between the

contour and the skeleton may be introduced. When this occurs a single simple re-

gion splits into two at the location of the minimum. Conversely, if a minimum is

eliminated, two neighboring simple regions merge.

The other exception occurs when an additional skeleton branch is introduced into

the representation. The critical point in the deformation occurs when the osculating

circle of a positive maximum of curvature is tangent to the bounding contour at

another point on the contour. (See Section 3.3 for a discussion of the presence of a

skeleton branch.) When a new branch is introduced, the a�ected region splits into

three smaller regions.

There is an addition attribute of the decomposition that makes it stable against

perturbations in the zero-crossing contours. When a region breaks into two regions

from one frame to the next, the break is likely to occur at a minimum in the distance

from the contour to the skeleton. E�ectively, under continuous deformation of the

contour, a split in the region occurs when this distance becomes zero. As a result,

when a break occurs from one frame to the next, it is likely that there existed a seg-

mentation of the region in the corresponding location of the previous frame. Despite

the fact that a region has broken into two, the set of simple regions changes only

slightly.

The number of discrete changes possible in the decomposition is small. As a

result, it is not di�cult to account for the changes explicitly. For example, when

computing the correspondence from frame to frame, it is natural to consider the

correspondence of single simple region in one frame with a pair of neighboring simple

regions, separated at a distance minimum, in the next frame. Similarly, it is natural

to consider the correspondence between a single simple region and a triple of simple

regions that are associated with the same skeleton node.

5.7 Summary

In this chapter, we introduce a novel approach for feature extraction. The primary

advantage to this approach is that the features consist of regions rather than points,

line segments, or curves. As a result, the features possess more abstract attributes

than in previous approaches. In addition, the feature extraction process is stable

against perturbations in the input data. In subsequent chapters, we demonstrate the

utility of this approach for the problem of egomotion and depth estimation.



Chapter 6

Tracking Across Multiple Frames

6.1 Introduction

In this chapter, we consider an algorithm for tracking simple region features across

multiple frames of an image sequence. The development of the tracking algorithm

facilitates the estimation of the camera motion and the depth of each feature in

Chapter 7. Ultimately, however, the ability to track features across multiple frames

has additional bene�ts. The stable tracking of features across multiple frames is likely

to be the cornerstone of extending existing algorithms in the temporal dimension.

For example, almost all object recognition paradigms identify objects from a single

image. A stable tracking mechanism would be crucial for determining the identity

of an object from a sequence of images. The tracking algorithm would facilitate

the update of a hypothetical pose from frame to frame. In addition, a tracking

algorithm would be necessary to maintain the appropriate mapping from the features

in the image sequence to the template in the data base. Without a stable tracking

mechanism, it is necessary to recognize objects from scratch each time a new image

is obtained.

We are presently interested in obtaining the correspondence of features for the

purpose of estimating the camera motion and the depth of each feature. Tracking

the features from frame to frame facilitates the computation of the displacement, or

equivalently, the velocity of each feature in the image. The velocity measurements

are often called the optical 
ow or the two-dimensional motion �eld. The optical 
ow

measurements are subsequently used to estimate the egomotion and the depth.

Obtaining the correspondence mapping of features in a sequence of images is an

essential step for all motion algorithms that utilize features. The correspondence

problem has been studied extensively (for example, Ullman[77], Tsai[74], Faugeras

& Maybank[24], Weng, Ahuja, & Huang[79]). Consequently, many authors assume

that it is solved in their analysis (for example, Broida & Chellappa[9], Young &

Chellappa[82], Burger & Bhanu[11], Shariat & Price[70]). However, the correspon-

dence problem remains unsolved, in general. Before proceeding with the recovery of

103
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motion and depth estimates, we must develop a tracking mechanism that is applicable

to simple region features.

It is desirable to obtain the correspondence of features over multiple frames be-

cause doing so makes the motion and depth estimation more accurate and robust.

It is well-known that increasing the distance that the camera moves between frames

(i.e. the baseline) in a two-frame motion estimation algorithm improves the accu-

racy of the motion and depth estimates (for example, Shariat & Price[70], Heel[30],

Michael[56], or Okutomi & Kanade[58]). However, increasing the baseline also has

the e�ect of increasing the distortion of the image from one frame to the next frame.

Therefore, determining correspondence mapping becomes more di�cult.

Obtaining a correspondence across multiple frames is bene�cial for both of these

considerations. First, extending the track in time increases the total displacement of

the camera, thereby increasing the e�ective baseline. The subsequent computations

of the depth estimates are then more robust. Second, by propagating the track from

frame to frame the correspondence is obtained over relatively small increments. Be-

tween each frame, the distortion of the image is small compared to the distortion that

would occur over the e�ective baseline. Therefore, propagating the correspondence

mapping from frame to frame is more reliable than obtaining the correspondence from

the two end frames exclusively.

While it is advantageous to obtain the correspondence over multiple frames, it is

not desirable to retain all of the displacement measurements. Doing so would require

substantial memory that may not be available. Instead, it is preferable to combine the

estimates recursively and to maintain only the current state of the recursive estimator

in memory, rather than all of the measurements.

In this chapter, we consider a method for tracking simple region features across

multiple frames. The �rst step is to determine the correspondence mapping of features

in adjacent frames of an image sequence. Propagating the correspondence mappings

over the entire sequence yields the desired tracking capability.

In addition, we develop a recursive estimator that combines the optical 
ow mea-

surements over time. Therefore, it is not necessary to retain the entire process history

of every feature in memory. The recursive estimator provides the capability to improve

the 
ow estimates over time without the necessity of retaining all of the measurements

in memory.

The recursive estimator also provides a measure of the accuracy of the optical


ow estimate. The measure is based on the stability and persistence of the associated

feature. We subsequently exploit this measure when we estimate the camera motion

and the depth. In particular, we give greater weight to the 
ow measurements that

are deemed to be more reliable. Furthermore, the accuracy measure for the optical


ow also provides an accuracy measure for each depth estimate.

Many of the desirable properties of the multiple frame tracking algorithm are a

direct result of the attributes of the simple region feature extraction paradigm. The

algorithm for obtaining the correspondence mapping between two frames exploits the
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shape, size, and connectivity of the features. The measurement of the displacement

between corresponding features is robust due to the fact that the features are regions

rather than points. The recursive estimator further exploits the shape and connec-

tivity attributes of the features to determine the reliability of a particular feature

correspondence.

6.2 Correspondence Between Two Frames

The correspondence algorithm considers simple regions obtained from two adjacent

frames in the image sequence at a particular resolution. To di�erentiate these frames,

we call one the previous frame and the other the next frame. The objective is to �nd

a mapping from the features in the previous frame to the corresponding features in

the next frame.

The general approach to �nding the correspondence of simple regions in adjacent

frames is to de�ne a function that measures the desirability of the mapping. This

optimization function includes a local measure that depends on the similarity of

corresponding features. In addition, the optimization function includes a measure

that depends on the smoothness of the optical 
ow between neighboring features.

There are many possible choices for the local similarity measure. The measure

could be a function of the geometric properties of the features such as the area,

orientation, and elongation of corresponding features. Alternatively, the similarity

measure could be a based on a shape metric or even a symbolic description of the

bounding contour of the feature. The key is to devise a measure that is near zero

when corresponding features are similar and large when the features are not.

For simplicity, we choose the di�erence of the area between simple regions as the

local measure of the similarity of the features. That is,

Li = jAi �Ajj ; (6:1)

where Li is the similarity measure of a feature and its corresponding feature, Ai is

the area of the feature of interest, and Aj is the area of the corresponding feature. Of

course, this measure ignores several important characteristics of the shapes of regions.

However, even this simple measure provides an enormous bene�t for determining the

correspondence.

The smoothness of the optical 
ow is equivalent to the overall deformation of

features from one frame to the next. As a sequence evolves, the image typically does

not change drastically from frame to frame. As a result, the change in the relative

positions of features within the image is typically small. This assertion is equivalent

to stating that the optical 
ow is typically smooth.

We choose a smoothness measure that depends on the correspondence mapping of

a feature and the mappings of its neighbors. The smoothness measure for a particular

feature is the sum of the squared magnitude of the di�erence between the 
ow of
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the features and that of its neighbors. More speci�cally, the smoothness measure

associated with a particular feature is given by

Si =
X
k

(ui � uk)
2
+ (vi � vk)

2
; (6:2)

where Si is the smoothness measure pertaining to a particular feature, (ui; vi)
T is

the optical 
ow of the feature, and
n
(uk; vk)

T
o
are the optical 
ow vectors of the

neighbors.

The smoothness measure prefers that the di�erence in the optical 
ow of neighbor-

ing features be zero or at least small. Note that the measure does not act to smooth

the optical 
ow after the correspondence has been found. Rather, the measure causes

the correspondence algorithm to prefer mappings that result in a smooth 
ow �eld.

The individual optimization measure for a particular feature is the sum of the

similarity measure and the smoothness measure. The total optimization measure for

the image pair is the sum of the individual optimization functions over all features.

The total optimization measure prefers smooth correspondence mappings where the

individual features correspond to features that are similar in size. This optimiza-

tion measure is the basis for determining the correspondence mapping between two

successive frames in the sequence.

Given the optimization measure, it is necessary to determine the mapping that

optimizes the function. Unfortunately, there is a combinatorical explosion related

to the possible number of pairings from one frame to the next. To circumvent this

problem, we shall devise a strategy in which only a small fraction of the space of

possible correspondences is considered. Of course, we desire a strategy that is likely

to consider the optimal correspondence mapping.

The strategy for enumerating the possible correspondences may be viewed as a

heuristic search of the correspondence space. Under this strategy, the correspondence

is initialized locally under a constraint imposed by the shape of the features. As the

correspondence algorithm progresses, the spatial extent considered by the algorithm

is increased and the shape constraint is relaxed. In the process, the correspondence

mapping obtained in the initial stages of the algorithm propagates throughout the

regions bounded by zero-crossings.

The heuristic search strategy has three main processing stages. In the �rst stage,

the correspondence mapping is initialized using only the local optimization measure,

Li. A shape constraint that is described below is imposed during the �rst processing

stage. In the second processing stage, the algorithm considers groups of features and

uses the total optimization function. The groups of interest are the simple region

features that correspond to a single branch and the triples of features that share a

common skeleton node. In the second stage, the same shape constraint is imposed on

the individual features. In the third processing stage, the algorithm considers groups

of features again using the total optimization function. However, the shape constraint

is not imposed.
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The shape constraint employed in the initial processing stages is based on a clas-

si�cation of each simple region into one of nine shape classes. Each simple region has

two ends. At each end, the simple region may have zero, one, or two neighbors. Since

there are three possibilities for each end, there are nine classes of shapes as de�ned

in this manner. The nine shape classes are illustrated in Figure 6-1.

It is worth noting that groups of features may also fall into one of the shape classes.

For example, consider a small perturbation of the bounding contour of a simple region

feature. Suppose that the perturbation causes the simple region to split into three

because an additional branch is introduced into the skeleton representation. The

three smaller simple regions, when taken as a group, fall into the same shape class as

the original simple region. Similarly, a deformation of a simple region that introduces

a distance minimum causes the simple region to split into two. The resulting pair

of simple regions belongs to the same shape class as the original. These e�ects are

illustrated in Figure 6-2.

In the �rst and second processing stages, the correspondence algorithm only con-

siders mappings that preserve the shape class of a feature or combination of features.

The shape constraint greatly reduces the computational burden of the algorithm. The

constraint eliminates a large fraction of the potential correspondence mappings from

consideration.

The �rst processing stage consists of three parts. In the �rst part, initial mappings

from each feature in the previous frame are made to features in the next frame. In

the second part, initial mappings from each feature in the next frame are made to

features in the previous frame. The �rst and second processing parts are identical

except that the roles of the two frames are interchanged. In the third part, mappings

from the �rst two parts that disagree are recti�ed.

The mappings of parts one and two are determined in the following manner: A

small, arbitrary area around the centroid of a particular feature is considered. The

features from the other frame that fall within the area of interest are taken as the

initial candidates for correspondence. Candidate mappings that do not preserve the

shape class of the feature of interest are not considered. The candidate mapping that

minimizes the local optimization function is chosen for the initial correspondence of

the feature of interest.

As illustrated in Figure 6-2, a single simple region feature in one frame may corre-

spond to more than one simple region in the other frame. It is necessary to consider

this possibility when choosing the correspondence mapping. Therefore, combinations

of features must be considered as candidates for correspondence with the feature of

interest.

Consider the correspondence of a single feature in one of the frames. Assume

that there are N candidate features in the search area of the other frame. Order 2N

combinations of the candidate features exist. However, all of these combinations need

not be considered. Due to the shape constraint, only combinations that consist of
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Figure 6-1: Shape Classes. This �gure depicts exemplars of the nine shape classes

that are used by the shape constraint. In the top row, each simple region feature has

zero neighbors on one end (the bottom end). In the second row, each feature has one

neighbor on the bottom end. In the third row, each feature has two neighbors on the

bottom end. Similarly, the left column contains features with zero neighbors on the

top end, the center column has one neighbor on the top end, and the right column

has two neighbors on the top end.
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(a) (b)

Figure 6-2: Feature Split. At critical occurrences, a simple region feature split into

two or three smaller features. In (a), two simple region features are depicted. In (b),

a small perturbation in the bounding contour has caused each feature to break into

smaller features. The left feature breaks into three because an additional branch has

been added to the skeleton representation. The right feature splits into two because a

minimum in the distance between the contour and the skeleton branch is introduced.

In each case, the resulting combination of features retain the same shape class as the

original feature.
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contiguous groups of features need to be considered. Furthermore, these contiguous

groups must fall into the same shape class as the feature of interest.

We seek to exploit the reduced computational burden provided by the shape con-

straint. The key is to devise an algorithm that enumerates only those combinations

that result in a legal shape. One method for achieving this goal is to build combi-

nations of features end to end. That is, we start with a feature that serves as one

end of the combination. We add neighbors recursively to the combination until a

termination condition is found. During this process, combinations that result in the

desired shape are considered for the correspondence mapping.

The algorithm for building combinations end to end is order N2. Each candidate

feature is considered as the end for potential combinations; there are N such features.

For each feature, combinations are constructed by adding neighbors end to end; this

is a linear operation. An order N2 algorithm is substantially less burdensome than

an order 2N algorithm. The shape constraint provides an enormous increase in the

e�ciency of the algorithm.

There is no guarantee that the mappings obtained from the previous frame to the

next frame will be identical to the mappings obtained from the next frame to the

previous frame. In the third part of the �rst processing stage, disagreements from the

�rst two parts are recti�ed. Mappings that agree are retained. Those that disagree

are compared based on the local optimization measure. The preferable mapping is

retained, the other discarded. The �rst stage of the correspondence algorithm is

illustrated in Figure 6-3.

In the second stage of the correspondence algorithm, groups of features are con-

sidered rather than individual features. Some of the groups consist of simple regions

from the same skeleton branch. Other groups consist of triples of simple regions that

have a skeleton node in common.

For each group of features considered, the algorithm determines if there are any

inconsistencies in the mapping of a feature and its neighbors. That is, if feature A

maps to feature B, the neighbor of feature A should map to the appropriate neighbor

of feature B. If this is not the case, the mapping of feature A is said to be inconsistent

with its neighbor. Similarly, the mapping of feature B is inconsistent with its neighbor.

Whenever an inconsistency between neighbors is found, the algorithm propagates

the alternative mappings among the feature group of interest. That is, each mapping

suggests mappings for its neighbors. These impliedmappings are extended recursively

until the entire group of features has a correspondence or until the mapping cannot

be propagated further. During the propagation of the mappings, the shape constraint

is enforced. No correspondence mappings are permitted between features of di�erent

shape classes.

Correspondence mappings are propagated recursively about an initial match by

considering the neighbors of corresponding features. Suppose that feature A maps to

feature B. This mapping implies that the neighbor of feature A (call it feature A1)

maps to the appropriate neighbor of feature B (call it feature B1). If this mapping
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is acceptable, it is included in the candidate group mapping. In the context of stage

two of the correspondence algorithm, A1 and B1 are required to belong to the same

shape. If the mapping of A1 to B1 is acceptable, the mapping of their neighbors is

considered recursively.

The algorithm extends the alternative group mappings about each inconsistent

neighbor. The algorithm chooses from the alternative group mappings by considering

the total optimization function for each mapping. The alternative group mapping that

minimizes the total optimization function is chosen. The second processing stage of

the correspondence algorithm is illustrated in Figure 6-4.

In the third and �nal stage of the correspondence algorithm, groups of features are

again considered. The third processing stage is identical to the second stage, except

that the shape constraint is not imposed. The third processing stage is illustrated in

Figure 6-5.
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(a) (b)

(c)
Figure 6-3: Correspondence Stage I. In stage I of the correspondence algorithm,

individual features from one frame are compared to combinations of features in the

other frame. For each feature, the combination that belongs to the same shape

class and minimizes the local optimization measure is chosen. Stage I consists of

three parts. In (a), the �rst part is illustrated; individual features on the right side

are compared to combinations from the left side. The resulting correspondences

are illustrated with the vectors. In (b), the second part is illustrated; individual

features from the left side are compared to combinations from the right. Again,

the resulting correspondences are illustrated. In (c), the third part is illustrated;

the correspondence mappings that disagree from parts one and two are recti�ed.

Coincidentally, the mapping of part three is the same as that of part one.
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(a) (b)

(c) (d)

Figure 6-4: Correspondence Stage II. In stage II of the correspondence algorithm,

groups of features are considered. Whenever inconsistent mappings occur between

neighbors, the alternative mappings are propagated throughout the group. The map-

ping that minimizes the total optimization function over the entire group is chosen.

In (a), the (incorrect) mapping obtained in stage I is depicted. The top two features

on the right side have inconsistent mappings. In (b), the mapping from the top fea-

ture is propagated throughout the group. In (c), the mapping from the neighboring

feature is propagated throughout the group. In (d), the mapping propagated from

the top feature is chosen based on the total optimization function.
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(a) (b)

Figure 6-5: Correspondence Stage III. In stage III of the correspondence algorithm,

the shape constraint is relaxed. The correspondence mapping is propagated to neigh-

bors that do not have a mapping. In (a), the correspondence mapping obtained in

stage II is shown. Several of the features have no match because the appropriate map-

pings violate the shape constraint. In (b), the additional mappings obtained during

stage III are shown. The mappings have propagated from their respective neighboring

features.
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6.3 Recursive Optical Flow Estimates

Once the correspondence of the features is obtained from one frame to the next, it is

possible to measure the displacement of each feature. The displacement is equivalently

a measure of the two-dimensional velocity or optical 
ow of the feature. Because

any measurement is imperfect, it is desirable to improve each optical 
ow estimate

by considering multiple measurements over time. However, it is preferable to do

so without retaining all of the displacement measurements in memory. A recursive

optical 
ow estimator is described in this section that provides an e�cient method

to accomplish these objectives.

The optical 
ow measurement of a feature is the vector di�erence between the

centroid of the feature (or combination of features) and the corresponding feature (or

combination) in the previous frame. The di�erence of centroids is a robust measure

of the optical 
ow. The centroid is stable against small perturbations in the bounding

contour. Therefore, even if the shape of the feature changes somewhat from frame to

frame, the di�erence of centroids is very likely to give a reasonable estimate of the


ow.

Of course, any measurement contains error. Therefore, the 
ow measurement is

modeled as the true optical 
ow plus some random vector. Mathematically, we model

the 
ow measurement for each feature as

umi[n] = ui[n] + rui[n]; (6.3)

vmi[n] = vi[n] + rvi[n]; (6.4)

where (umi[n]; vmi[n])
T is the measurement of the optical 
ow of the ith feature in

the nth frame and (rui[n]; rvi[n])
T is a random vector. In addition, we model the

optical 
ow of each feature as being roughly constant over time. The change of the

optical 
ow of a feature from one frame to the next is given by the random vector

(sui[n]; svi[n])
T. That is,

ui[n+ 1] = ui[n] + sui[n]; (6.5)

vi[n+ 1] = vi[n] + svi[n]: (6.6)

Following well-known results from recursive estimation theory (see, for example,

Van Trees[73], Anderson &Moore[2], or Papoulis[60]), we choose a recursive estimator

of the form

ûi[n] = ûi[n� 1] +Ki[n] (umi[n]� ûi[n� 1]) ; (6.7)

v̂i[n] = v̂i[n� 1] +Ki[n] (vmi[n]� v̂i[n� 1]) ; (6.8)

where ûi[n] and v̂i[n] are the estimates of the optical 
ow at time n and Ki[n] is a

yet unspeci�ed gain. This is the well-known Kalman �lter. The �lter speci�ed by



CHAPTER 6. TRACKING ACROSS MULTIPLE FRAMES 116

Equations 6.7 and 6.8 is simpli�ed relative to the general form based on our assump-

tions pertaining to the system model and the measurement.

The estimate of the optical 
ow at time n depends on the estimate from the

previous frame, the current measurement, and a gain term. If the gain, Ki[n], is

zero, the new estimate is equal to the previous estimate. If the gain is unity, the new

estimate is equal to the current measurement. When the gain lies between zero and

unity, the new estimate is a weighted sum of the previous estimate and the current

measurement.

In order to specify the appropriate gain term, we must make some additional

assumptions regarding the random variables in the model. We assume that rui[n]

and rvi[n] are independent random variables, each with variance, �2
ri
[n]. Similarly,

sui[n] and svi[n] are independent, each with variance �
2
si
[n]. Assume also that at time

n� 1, estimates have been obtained for the 
ow, (ûi[n� 1]; v̂i[n� 1])T, and the error

variance of each of these estimates is known to be �2
i
[n� 1jn� 1].

Under these assumptions, the error variance associated with using the previous

time optical 
ow estimate at the current time is given by

�̂
2

i
[njn� 1] = �̂

2

i
[n� 1jn� 1] + �

2

si
[n]: (6:9)

We call �̂2
i
[njn � 1] the prediction variance because it is the error associated with

predicting the optical 
ow from previous measurements. The notation [njn�1] refers

to the estimate for the optical 
ow at time n given the measurements up to time

n� 1.

The optimal gain for the recursive estimator is given by

Ki[n] =
�̂
2
i
[njn� 1]

�̂
2
i
[njn� 1] + �

2
ri
[n]
: (6:10)

The optimal gain may have any value between zero and unity. The gain is near

unity when the prediction variance is large compared to the measurement variance.

Conversely, the gain is near zero when the prediction variance is small compared to

the measurement variance. When the optimal gain is used by the recursive estimator,

the variance of the resulting estimate is given by

�̂
2

i
[njn] = �̂

2

i
[njn� 1]� �̂

2
i
[njn� 1]

�̂
2
i
[njn� 1] + �

2
ri
[n]
: (6:11)

To complete the de�nition of the recursive estimator, we must specify the initial-

ization of the estimator. The �rst estimate of the optical 
ow of a feature is given

by the �rst measurement. The variance of the estimate is simply the measurement

variance.

Equations 6.7 through 6.11 specify a recursive method for estimating the optical


ow and the variance of the 
ow from a series of measurements. Under the assump-
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tions outlined in this section, the estimator provides the linear least square-error

estimate of the optical 
ow of each feature from a sequence of measurements. In

addition, the recursive estimator provides the variance of each 
ow estimate.

Unfortunately, the prediction variance and the measurement variance are not

known quantities. As a result, it is not possible to obtain truly optimal estimates

of the optical 
ow. Despite this fact, the recursive estimator does provide a useful

method for combining a sequence of 
ow measurements.

In order to make use of the recursive estimator, we must specify the values of

the prediction and measurement variances. To make a reasonable choice, we must

consider desirable properties of the estimator. It is desirable that the variance measure

provided by the recursive estimator re
ect the con�dence in the optical 
ow estimate.

Therefore, if there is some reason to believe that a particular measurement is better

than another, the choice of measurement variances should re
ect this hypothesis. In

addition, if there is some reason to believe that the prediction of the optical 
ow from

the previous estimate is incorrect or relatively inaccurate, this hypothesis should be

re
ected in the choice of the prediction variance.

With this in mind, the features are divided into two categories based on their

correspondence mapping. For lack of better terminology, we call these categories

the preferred features and the common features. As suggested by the name, we give

the variances associated with the preferred features lower values than the variances

associated with the common features.

A preferred feature is one that has a mapping from the previous frame that sat-

is�es three criteria. First, the feature must map to a single feature with the same

shape. Second, the mapping of the feature must be consistent with the mapping of its

neighbors. Third, each neighbor must map to a single feature with the same shape.

If a feature does not meet the criteria to be preferred, it is common.

A preferred feature is likely to have a more accurate optical 
ow measurement

than a common feature. The classi�cation test for features is essentially a test of the

stability of the feature and its neighbors from one frame to the next. The measurement

error associated with a stable feature is likely to be signi�cantly less than the error

associated with an unstable feature. In addition, a preferred feature is less likely to

have an incorrect correspondence mapping than a common feature. The decreased

possibility of an incorrect correspondence mapping for a preferred feature should be

re
ected in a decreased prediction error.

In the present implementation, the measurement and prediction variances of a pre-

ferred feature are given the values 1:0 and 0:1, respectively. If a feature is common,

the measurement and prediction variances are given the values 10: and 1:0, respec-

tively. The units of the variance measures are length squared with a unit length being

equal to the spacing of the picture cells.

The distinction between the preferred and common features is somewhat arbitrary.

The choice of the speci�c values of the variance parameters for each category is also

arbitrary. The speci�cation of the variance parameters requires additional study.
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However, the speci�cation of the variance parameters de�ned above provides us

with the necessary means to consider the utility of the recursive estimator. As we

shall see in Chapter 7, the recursion provides substantial improvement to the optical


ow estimates despite the sub-optimal speci�cation of the variance parameters. There

is also a strong correlation between the variance provided by the estimator and the

quality of the estimate. These observations demonstrate that recursion is a powerful

tool in this context.

6.4 Discussion

In this chapter, we have considered a method for determining the correspondence

mapping between simple region features in adjacent frames. Based on the correspon-

dence, we obtain a displacement measurement that is the vector di�erence of the

centroids of corresponding features. A recursive estimator combines the displacement

measurements over a sequence of images. At each frame, an estimate of the optical


ow and a measure of the accuracy of the 
ow are provided for each feature.

The algorithms presented in this chapter are formulated to demonstrate the utility

of the feature extraction process described in Chapter 5. They are not intended to be

the �nal, optimal methods for determining correspondence and for propagating the

displacement measurements in time. Rather, they are intended to demonstrate some

of the advantages inherent in the simple region feature extraction paradigm.

For example, the local optimization measure from Section 6.2 is far from the best

method of comparing two simple shapes. (Recall that the measure of similarity is

simply the di�erence of the area.) However, using this measure demonstrates that

the geometric properties of the features yield a substantial bene�t for the processing.

Development of more sophisticated similarity measures that include the orientation

and elongation of the feature, for example, will improve the stability and e�ciency

of the correspondence algorithm.

In contrast, consider the correspondence of Canny edges from one frame to the

next. A local measure of similarity is almost meaningless in this context. Taken as

individual features, Canny edges possess only a crude orientation attribute, in addi-

tion to their position. Therefore, any measure of the desirability of correspondence

must be based on some global (smoothness) measure.

Furthermore, any correspondence technique that may be applied to edges may

also be applied to simple region features. Indeed, the simple regions are constructed

from zero-crossings of the Laplacian of Gaussian �lter. The zero-crossings correspond

to edge locations. In this sense, the simple region features subsume edges.

The shape constraint imposed in the early stages of the correspondence algorithm

provides another example of an advantage of simple region features. The shape con-

straint reduces the computational complexity of the correspondence initialization.

The reduction in complexity is a direct result of the geometrically abstract nature of

the features. That is, the features have shape and size attributes to exploit.
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The displacement measurements of the features are robust because the centroids

of the regions are used, rather than the edge locations. Consider a simple region

that deforms slightly from one frame to the next. The displacement measurement

that is obtained may be considered to be the sum of two components: the true

displacement and the change in the centroid due to the shape distortion. The position

of the centroid typically changes much less than the perturbation in the position of

the contour. Therefore, displacement measurements based on the positions of the

contours or edges are less reliable than those based on the centroid.

The aperture problem is also greatly reduced by using simple region features rather

than edges. The aperture problem is the ambiguity in the optical 
ow measurement

in the direction perpendicular to the brightness gradient (see, for example, Horn[41],

p. 283). The aperture problem derives its name from the observation that it is im-

possible to determine the component of motion parallel to an edge when the edge

is observed over a small area (a small aperture). The aperture problem is reduced

for simple region features because each feature spans a non-zero area of the image.

The \aperture" for each feature is essentially the size of the feature. In addition,

the shape of each feature provides greater context within which to disambiguate the

optical 
ow estimate.

The geometric information available for simple regions provides an ability to esti-

mate the accuracy of the optical 
ow measurement. In Section 6.3, we use an ad hoc

approach to separate the features into two classes: a preferred class and a common

class. The classi�cation is based on the stability of the correspondence mapping. To

be classi�ed as preferred, the shape of the feature and its neighbors must be preserved

by the correspondence mapping.

As we shall see in Chapter 7, even this ad hoc classi�cation has substantial bene-

�ts. The classi�cation is the basis for specifying the reliability of the optical 
ow

measurements. Consequently, in Chapter 7, we give greater weight to the more

reliable measurements in our estimation of egomotion. In addition, the reliability

measure associated with each 
ow measurement also provides a reliability measure of

each depth estimate.

Of course, given the bene�ts from the ad hoc reliability classi�cation, it is desirable

to consider a more principled approach to specify the stability of features and to deter-

mine the reliability of their optical 
ow estimates. The variance parameters provided

to the recursive estimator should be based on a more sophisticated similarity measure

of corresponding features. The development of such an approach warrants additional

study. A better understanding of this issue will lead to improved performance of the

recursive estimator and the subsequent processes that depend on it.

The variance provided by the recursive estimator may also be viewed as a measure

of the persistence and stability of the associated feature. Consider the process history

of a particular feature. Suppose that for some number of frames, the correspondence

mappings associated with the feature results in a preferred classi�cation. Following

the corresponding features from frame to frame, one �nds that the variance measure
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speci�ed by the recursive estimator decreases monotonically. The variance measure

decreases from the initial measurement variance and asymptotically approaches a

known steady-state value. Therefore, the variance is a measure of the length of

time that the feature has persisted in the sequence. If the feature does not have a

preferred mapping throughout its entire process history, the variance is a measure of

the stability as well as the persistence of the feature.

6.5 Summary

In this chapter, we consider an algorithm for determining the correspondence of sim-

ple region features from two frames. The displacement of corresponding features is

measured by the vector di�erence of the centroids. We consider a recursive approach

for improving the optical 
ow estimates from the sequences of displacement measure-

ments. An ad hoc classi�cation scheme facilitates the computation of a reliability

measure of the 
ow estimates.

At each step in the computation of the 
ow estimates, we exploit the geometric

properties of the simple region features. We exploit the area, shape, and connectivity

of the features when we determine the correspondence between adjacent frames. We

further exploit the shape and the connectivity of the features when we estimate the

reliability of the displacement measurement.

The displacement measurements, by themselves, do not provide information that

is directly useful for interacting with the environment. In the next chapter, we shall

determine the motion of the camera relative to the environment and estimate the

depth of objects in the environment from the displacement measurements. Such

information is essential for a variety of navigational tasks. The ultimate test of the

success of the tracking algorithm and displacement measurements is the ability to

determine the motion and depth estimates accurately.



Chapter 7

Passive Navigation

7.1 Introduction

Navigation requires the ability to determine the motion of a vehicle and the position

of obstacles in the environment relative to the vehicle. It is desirable to perform this

task without the use of an active sensor. More speci�cally, it is preferable to avoid

emitting energy from a sonar, radar, laser, or some other sensor into the environment.

Therefore, we seek to develop the ability to navigate using a passive sensor: an optical

camera.

The general problem of passive navigation has been the focus of a 
urry activ-

ity in recent years. A number of paradigms have been proposed for attacking the

problem. Many reviews on the subject exist, including those contained in Aggarwal

& Nandhakumar[1], Hildreth & Ullman[34], Shariat & Price[70], and Heel[30]. Its

solution may be seen as an end in itself. However, we consider passive navigation

as a means of demonstrating the viability of the simple region feature extraction

paradigm.

In particular, we consider the special case of pure translation. The position of

the camera changes from frame to frame. However, the direction of the aim of the

camera remains constant. In addition, we impose the static environment constraint.

It is assumed that objects in the environment do not move with respect to one another.

In this chapter, we consider a method for determining the egomotion of the camera

that is speci�cally designed to use the optical 
ow estimates obtained in Chapter 6.

We employ a weighted least square-error approach to estimate the direction of trans-

lation of the camera and the relative depth of the features. The variance provided

by the recursive optical 
ow estimator is the basis of the weighting scheme. Features

with lower variance measures are given greater weight in the motion estimation al-

gorithm. The variance of each optical 
ow estimate also provides a measure of the

reliability of the subsequent depth estimate for the feature.

121
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7.2 Technical Prerequisites

We shall use a viewer-centered coordinate system, following Horn[41]. The coordinate

system is �xed with respect to the camera. The origin is coincident with the center

of projection of the camera. The X-Y plane is parallel to the image plane. And, the

Z axis is parallel to the optical axis of the camera.

Consider the motion of the camera with respect to a static environment. The

motion of the camera is speci�ed by the velocity of the center of projection of the

camera and the rotation of the camera about the center of projection. For simplicity,

we shall assume that the rotational component of the motion is zero.

The translational velocity of the camera is speci�ed by the vector T = (U; V;W )T,

where U; V , and W are the X;Y; and Z coordinates of the velocity, respectively. The

velocity of a point P with respect to the viewer-centered coordinate system is given

by V = �T. More explicitly

_
X = �U; (7.1)

_
Y = �V; (7.2)

_
Z = �W: (7.3)

Assuming perspective projection, the projection of a point in space, (X;Y;Z)T,

onto the image plane is given by

x = f

X

Z

; (7.4)

y = f

Y

Z

; (7.5)

where f is the focal length and (x; y) is the image point. Given the motion of the

camera and a point in space, it is desirable to determine the motion of the associated

image point. Di�erentiating Equations 7.4 and 7.5, we �nd

u = _x =
_
X

Z

� X
_
Z

Z
2
; (7.6)

v = _y =
_
Y

Z

� Y
_
Z

Z
2
; (7.7)

where u and v are the x and y components of velocity of the image point. Making

substitutions from Equations 7.1, 7.2, 7.3, 7.4, and 7.5, we �nd

u =
�U + xW

Z

; (7.8)

v =
�V + yW

Z

: (7.9)
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Equations 7.8 and 7.9 specify the two-dimensional motion �eld of the image. The 2D

motion �eld is the projection of the relative motion of the environment with respect

to the camera onto the image plane.

The optical 
ow �eld speci�es the instantaneous velocity of the brightness patterns

in the image. Strictly speaking, the 2D motion �eld di�ers from the optical 
ow �eld.

However, under reasonable assumptions, the optical 
ow �eld closely approximates

the two-dimensional motion �eld. Therefore, we shall assume that they are identical.

7.3 Weighted Least-Square Error Egomotion

In this section, we consider a weighted least-square error approach to recover egomo-

tion in the pure translation case. We follow the formulation of Bruss and Horn[10].

However, we customize the approach to be consistent with the estimates provided by

the recursive optical 
ow estimator. In addition, we introduce an arbitrary weighting

factor to exploit the reliability measure provided for each feature.

As we found in the previous section, the expected 
ow �eld is speci�ed by

u =
�U + xW

Z

; (7.10)

v =
�V + yW

Z

; (7.11)

where u and v are the x and y components of the motion �eld at the image point

(x; y) in the image and Z is the depth at the point of interest. Therefore, we seek

the motion and set of depths that minimize the square-error between the measured

optical 
ow and the expected optical 
ow from the model. We minimize

E =
X
i

wiAi

(�
ui � �U + xiW

Zi

�2
+

�
vi � �V + yiW

Zi

�2)
; (7:12)

where wi is an arbitrary weight, Ai is the area of the feature, (U; V;W )
T

is the unit

vector in the direction of the translation of the camera, Zi, is the depth of the ith

simple region feature, (xi; yi), is the centroid of the ith feature, and (ui; vi) is the

estimated 
ow of the ith feature.

Each term of the summation is weighted by the area of the associated feature.

By weighting the summation in this manner, the estimation is robust when a feature

splits into smaller features, as described in Section 6.2. For example, suppose that

a simple region in one frame breaks into two simple regions in the next frame. The

resulting pair of simple regions should be given roughly the same weight as the original

feature in the summation. Multiplying each term by the area of the simple region

feature accomplishes this because the area of the simple region pair is approximately

equal to the area of the original simple region feature.
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Note that if the translation vector and all the depth values are scaled by a constant

factor, the value of E is unchanged. Physically, this implies that scaling the length

dimension of all objects in the environment while simultaneous scaling the speed of

the viewer by the same amount leads to an identical 
ow �eld. As a result, it is only

possible to determine the direction of translation and the relative depth of objects

in the environment. Therefore, when computing the translation from optical 
ow

measurements, we specify the translation as a unit vector and the depth measurements

as relative to some unknown scale factor. We call this e�ect the scale ambiguity (see,

for example, Bruss and Horn[10] or Horn[41]).

A particular manifestation of the scale ambiguity is called the antipodal ambiguity.

If a solution, (U; V;W ) with fZig is scaled by �1, the resulting error function is

unchanged. Physically, the alternative solution corresponds to motion in the opposite

direction and a surface that is re
ected through the center of projection. Once the

optimal solution is found, it is necessary to distinguish between the two antipodal

solutions.

Now, we consider the solution of the weighted square-error minimization problem.

First, we seek the values of the depth of each feature that minimize each term of the

error summation. Next, we substitute these depth values back into the summation.

The substitution yields a minimization problem in only three variables, U; V; and W .

Unfortunately, there is no known analytical solution to this minimization problem.

Therefore, we must �nd the minimum numerically.

It is convenient to de�ne

�i = �U + xiW; (7.13)

�i = �V + yiW: (7.14)

Given a particular translation vector, T , the expected 
ow at the image point (xi; yi)
T

is in the direction of (�i; �i)
T . If the depth is known at that point, the expected 
ow

is given by

ui =
�i

Zi

; (7.15)

vi =
�i

Zi

: (7.16)

We seek the value of Zi that minimizes the ith term of the summation in Equa-

tion 7.12. We di�erentiate the summation with respect to Zi and set the result to

zero. This operation yields

�
ui � �i

Zi

�
�i

Z
2
i

+

 
vi � �i

Zi

!
�i

Z
2
i

= 0; (7:17)
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for each feature. Solving this equation, we �nd that

Zi =
�
2
i
+ �

2
i

ui�i + vi�i

: (7:18)

It is convenient to note that by using Equation 7.18, we may write

ui � �i

Zi

= +�i
ui�i � vi�i

�
2
i
+ �

2
i

; (7.19)

vi � �i

Zi

= ��iui�i � vi�i

�
2
i
+ �

2
i

: (7.20)

Substitution of Equations 7.19 and 7.20 into Equation 7.12 yields

X
i

wiAi

(ui�i � vi�i)
2

�
2
i
+ �

2
i

: (7:21)

Given a set of measurements fui; vi; xi; yi; Aig and weights fwig, Equation 7.21 is

a function of the translation vector, (U; V;W )
T
. The minimization problem involving

many unknowns (the translation vector and the set of depth values), is reduced to a

minimization involving three unknowns. Furthermore, because the translation vector

is constrained to have unit length, there are only two degrees of freedom in the

minimization.

The weighted least-square error approach to the determination of egomotion fa-

cilitates considerable 
exibility in design. A variety of types of information may be

incorporated into the motion estimation algorithm by an appropriate choice of the

weights. Here, we explore one of the possibilities.

The variance measure that is provided by the recursive tracking algorithm provides

a natural basis for weighting each error term. We choose the inverse of the variance

of each 
ow estimate as the weighting term. That is,

wi =
1

�
2
i

: (7:22)

This choice of weights is suggested by a number of results from stochastic theory.

For example, the maximum likelihood estimator of a set of measurements corrupted

by Gaussian noise is the weighted average of the measurements with each weight

proportional to the inverse variance of the respective measurement. Furthermore, the

inverse variance may be interpreted as a measure of the information content of the

estimate.

The minimum of the weighted square-error function is found numerically. A nu-

merical gradient descent algorithm with an adaptive step size is used. At each itera-

tion, the weighted square-error function is computed for eight points surrounding the

current estimate. The points are the radial projection of a square lattice onto the
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unit sphere. The center of the lattice is the current estimate. The spacing between

points in the lattice varies during the course of the computation.

The point that has the lowest weighted square-error function value is chosen as

the new current estimate. If no point has a lower value than the current estimate,

the current estimate is retained. If no improvement is found, the spacing of points

in the lattice is cut in half and the process is repeated. If an improvement is found,

the spacing is doubled. In practice, a maximum spacing is established such that the

estimate of the translation vector never changes by more than about �ve degrees

during a single iteration. The iteration terminates when the spacing of the lattice

points drops below an arbitrary threshold. The threshold corresponds to an angular

di�erence between the points in the lattice of a small fraction of a degree.

For the �rst frame pair, the initial translation vector is set arbitrarily. In subse-

quent frames, the translation vector estimate from the previous frame is used as the

initial value. For the results presented in the next section, an initial vector is chosen

that is �

2
radians from the correct answer. Because of the antipodal ambiguity, this

is the worst possible initial error. Empirical tests indicate that the adaptive gradient

descent is not sensitive to the initial value of the translation vector.

Once the gradient descent algorithm has found a minimum, it is necessary to re-

solve the antipodal ambiguity. As described above, (U; V;W )T with fZig is equivalent
to the solution (�U;�V;�W )T with f�Zig. However, objects in the environment

must be in front of the camera. Points in front of the camera correspond to positive

depth. Therefore, the solution that yields the larger number of features with positive

depth is chosen between the two equivalent alternatives. The choice between the

antipodal solutions is straightforward. Typically, there are only a few outliers with

negative depth occurring in the correct solution.

7.4 Experimental Results

In this section, we consider experimental results of the weighted least square-error

algorithm. For each sequence, we compare the known translation vector to the trans-

lation vector estimates as the sequence evolves. We also consider the depth estimates

at the �nal frame of each sequence.

In Figure 7-1, the �rst frame of a sequence obtained at the CMU Calibrated

Imaging Laboratory is depicted. The sequence consists of ten frames. The motion

of the camera between each frame is T = (2; 0; 6)Tmm. When normalized to a unit

vector, the components of the translation vector become (0:316; 0; 0:949)T .

In Figure 7-2a, the components of the estimated translation vector, normalized to a

unit vector, are plotted versus the number of frames elapsed. The correct components

are superimposed on the plot. In Figure 7-2b, the angular error between the correct

translation vector and the estimated translation vector is plotted versus the number

of frames elapsed. Notice that the error in the direction of the translation vector
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decreases rapidly from its initial value and then settles within a steady-state error

bound. The error bound in this case is roughly one and a half to two degrees.

In Figure 7-3, the depth estimates are depicted for a portion of the last frame of

the CMU sequence. The region of interest is highlighted in Figure 7-3a. This portion

of the image is chosen because the depth is nearly constant within this area. In the

other quadrants of the �gure, depth estimates associated with the region of interest

in the image are plotted against the lateral position in the image. The plot is roughly

equivalent to an overhead view of the model town.

In each of these �gures the absolute depth of each feature is plotted, in meters.

Of course, due to the scale ambiguity, only the relative depth is obtained by the

estimation algorithm. However, because the length of the baseline is known a priori,

the relative depth is converted into absolute depth for display purposes.

Each of the three quadrants representing depth estimates in Figure 7-3 corresponds

to a di�erent condition on the variance estimates of the features. In Figure 7-3b, the

depth estimates are depicted for the features that are within the region of interest

and have smallest possible variance measure. In Figure 7-3c, the depth estimates are

depicted for the features within the area of interest and in the top half as ranked by

their variance measure are depicted. Finally, in Figure 7-3d, the depth estimates of

all the tokens within the region of interest are depicted.

As stated, the features associated with the depth estimates in Figure 7-3b have

the smallest possible variance. At each stage of the process history of the feature,

the feature has a preferred correspondence. That is, for each image pair, the shape

of the corresponding feature is preserved exactly. In addition, for each image pair,

the neighbors of the corresponding feature have a consistent correspondence. In the

CMU sequence, roughly 19% of the features in the last frame possess the smallest

variance.

The features associated with the depth estimates in Figure 7-3c constitute the top

half of the features within the region of interest, as speci�ed by the variance measure.

The fraction of one half is chosen arbitrarily. These features have persisted for several

frames, but not necessarily the entire sequence.

Finally, the depth estimates of all of the features within the region of interest are

depicted in Figure 7-3d. In the CMU sequence, roughly 90% of the features in the

last frame have a valid correspondence. The others have no correspondence or a 
ow

estimate that yields a negative depth.

Figures 7-4, 7-5, 7-6, and 7-7 follow the same template as described above. Part (a)

of each �gure highlights a region of interest in the image. Part (b) depicts the depth

estimates for features within the region of interest that have the smallest possible

variance measure. Part (c) depicts feature within the region that are ranked in the

top half by variance. Part (d) depicts the depth estimates of all the features within

the region of interest.

In each of these features, the depth estimates corresponding to the most stable,

persistent features (sub�gure (b)) are very accurate compared to the other depth esti-
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mates. The overall accuracy of the depth estimates is slightly degraded as additional

estimates associated with less stable, less persistent features are added (sub�gures (c)

and (d)).

Occasionally, outliers appear in the least reliable depth maps (sub�gure (d)). Each

depth estimate outlier is the result of an error in the correspondence mapping. When

outliers do occur, it is likely that they have a large variance measure because an

erroneous correspondence mapping is unlikely to be stable. As a result, a feature

that has an incorrect correspondence mapping is unlikely to be classi�ed as preferred.

Figure 7-8 shows the �rst frame of a di�erent image sequence. The sequence

depicts a cup placed in front of a poster and a row of books. The motion of the

camera between each frame is T = (�2; 0; 4)Tmm. When normalized to a unit vector,

the components of the translation vector become (�:447; 0:; :894)T. The depth of the
cup is known to be 584mm. The depth of the books is approximately 635mm at the

far left side of the image. The row of books angle backward toward the center of the

image. The depth of the background poster is 914mm (see Heel[30]).

The results of the cup sequence are presented in a similar fashion as the results

of the CMU sequence. In Figure 7-9a, the normalized components of the translation

vector are plotted versus the number of frames elapsed. In Figure 7-9b, the angular

error between the true translation vector and the estimated translation vector is

shown. Similar to the CMU sequence, the error in the direction of the translation

vector decreases from its initial value and remains within a steady-state error bound.

Again, the error bound is within two degrees.

Figures 7-10 and 7-11 illustrate the depth estimates at the last frame of the se-

quence. In Figure 7-10, the depth estimates of the face of the cup are shown. In

Figure 7-11, the depth estimates of the cup and the background are shown. As with

the �gures pertaining to the CMU sequence, the depths are segregated depending on

their associated variance measure.
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Figure 7-1: First Frame of the CMU Sequence.
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(a) (b)

Figure 7-2: Translation Vector Estimates. In (a), the normalized components of

the estimated translation vector are plotted versus the frame number of the CMU

sequence. The correct values, (0:316; 0; 0:949)T, are superimposed on the plot. In (b),

the angular error between the estimated translation vector and the correct translation

vector is plotted versus the frame number of the sequence.
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(a) (b)

(c) (d)

Figure 7-3: Depth Estimates for CMU Sequence. In (a), a region of interest from

the last frame of the CMU sequence is outlined. In (b), depth estimates of the

most stable and persistent features within the region of interest are plotted versus

horizontal position in the image. In (c), depth estimates from the region of interest

that rank in the top half based on the variance measure are plotted. In (d), depth

estimates for all the features within the region of interest are plotted.
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(a) (b)

(c) (d)

Figure 7-4: Depth Estimates for CMU Sequence.
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(a) (b)

(c) (d)

Figure 7-5: Depth Estimates for CMU Sequence.
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(a) (b)

(c) (d)

Figure 7-6: Depth Estimates for CMU Sequence.
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(a) (b)

(c) (d)

Figure 7-7: Depth Estimates for CMU Sequence.
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Figure 7-8: First Frame of the Cup Sequence.
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(a) (b)

Figure 7-9: Translation Vector Estimates. In (a), the normalized components of the

estimated translation vector are plotted versus the frame number of the cup sequence.

The correct values, (�:447; 0:; :894)T, are superimposed on the plot. (The value of U is

negated for convenience.) In (b), the angular error between the estimated translation

vector and the correct translation vector is plotted versus the frame number of the

sequence.
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(a) (b)

(c) (d)

Figure 7-10: Depth Estimates for Cup Sequence.
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(a) (b)

(c) (d)

Figure 7-11: Depth Estimates for Cup Sequence. The depth estimates for features

located above the line in the image are depicted.
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7.5 Discussion

The weighted least square-error algorithm provides estimates of the direction of the

translation vector and the relative depth of each feature. The weighting scheme allows

the algorithm to exploit a priori information pertaining to the accuracy of the 
ow

measurement. Measurements believed to be more accurate are given greater weight

than those believed to be less accurate.

The variance measure provided by the recursive 
ow estimator is a natural basis

for these arbitrary weights. The variance is a direct measure of the reliability of the


ow estimate. As the 
ow estimate of a particular feature improves over time, it is

given increasing weight in the translation vector estimate.

More speci�cally, the weight given to each 
ow estimate is the reciprocal of the

variance reported by the recursive estimator. This choice of weights is suggested

by a number of results in stochastic theory. Consider, for example, a sequence of

independent random variables that have a constant, unknown mean and non-constant

variances. The linear least square-error estimate of the mean is given by a weighted

sum of the random variables. In order to obtain the optimal solution, each weight is

chosen such that it is proportional to the reciprocal of the variance of the respective

random variable.

Of course, there are alternate choices of the weights for the translation vector es-

timator. Other types of information may be incorporated into the estimation process

via the weights. For example, a function of the values of the Laplacian of Gaussian

signal within each simple region may be used. In this case, features corresponding to

regions with higher contrast would have greater in
uence than features corresponding

to lower contrast. This type of weighting would play the same role as the thresholding

stage in edge detection. The e�ects of weak features, in this sense, would be reduced.

However, in contrast to edge detection, the weaker features would not be eliminated

entirely.

For the results presented in Section 7.4, the recursive estimator plays a signi�cant

role in the performance of the system. As illustrated in Figures 7-2 and 7-9, the

translation vector estimate improves rapidly over time then remains within a steady-

state error bound. The temporal improvement in the estimate is facilitated by two

e�ects. First, the 
ow estimates are improved over time by the recursive estimator.

The improved quality of the input data for translation vector estimator leads directly

to an improvement in the output. The second factor for the temporal improvement

is the heavier weighting of the more reliable features. As we discussed in Section 6.4,

the variance measure is equivalently a measure of the persistence and stability of the

feature. The weighting function reduces the in
uence of spurious features.

The variance also provides a measure of the accuracy of the depth estimate. Since

the depth estimate of a particular feature is a function of the 
ow estimate of the

feature, the accuracy of the depth estimate is related to the accuracy of the 
ow
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estimate. A more reliable 
ow estimate yields a more reliable depth estimate. There-

fore, the variance of the 
ow is an indirect measure of the reliability of the depth

estimate.

As a result, the algorithm is able to distinguish the reliable depth estimates from

those that are less reliable. The algorithm provides a relatively sparse depth map

that is extremely reliable. The algorithm also provides additional depth estimates

with diminishing reliability and accuracy. There is an explicit tradeo� between the

density of the depth map and the average accuracy of the depth map. The algorithm

quanti�es the tradeo� with the variance measure.

This tradeo� is illustrated in the results of Section 7.4. In each of the �gures

depicting depth estimates, the accuracy of the depth is strongly correlated with the

variance measure. The best depth map in each �gure corresponds to the one with

the lowest variance values (sub�gure (b)). The depth estimates corresponding to the

highest variance values are the least reliable (sub�gure (d)).

7.6 Summary

In this chapter, we consider a weighted least-square error approach for estimating

the translation vector and the relative depth from the 
ow estimates of simple region

features. The weighting scheme exploits the variance measure of the optical 
ow

estimate for each token. In addition, the variance provides a measure of the reliability

of each depth estimate.
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Chapter 8

Discussion

The simple region feature extraction paradigm is a novel approach for abstracting

information from an image or sequence of images. Simple region features have sig-

ni�cant advantages over existing feature extraction paradigms. In this chapter, we

explore the merit of the paradigm and consider implications for future research.

8.1 Discussion

Because edge detection is the most popular feature extraction paradigm, we compare

simple region features to edges. The simple region feature extraction paradigm has a

number of fundamental advantages over edge detection. Most of the advantages re-

sult from the more abstract nature of simple region features compared to edges. Each

simple region contains more information than a single edge. Another source of advan-

tage is that simple regions are \extracted" from the image rather than \detected", as

we discuss next.

One important di�erence between simple region features and edges is that there

is no inherent threshold present in the simple region feature extraction process. The

term \detection" implies that a decision is made with regard to the presence or

absence of an edge at each point in the image. The decision is made by applying a

threshold to the output of a �lter in the neighborhood of the edge. If the edge does

not meet the threshold, it is discarded. As a consequence, edges are sensitive to small

changes in the brightness, particularly when the output of the �lter is close to the

value of the threshold. When considering edges from a sequence of images, the edges

tend to disappear and reappear as the sequence evolves.

In contrast, simple region features are not sensitive to any particular threshold

because no threshold exists. All of the features that are obtained from the extraction

process are retained in the representation. Rather than eliminating the features based

on an arbitrary threshold, subsequent processes may give the features di�erent weights

based on a criterion that is appropriate to the task.

143
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For example, in Chapter 7, we use a weighting scheme that is based on the variance

measure provided by the recursive 
ow estimator of Chapter 6. The variable weight-

ing scheme is preferable to a thresholding mechanism because of two considerations.

First, it allows the information associated with all the features to be considered. In

contrast, employing a threshold implies that only a subset of the features are consid-

ered. Second, greater consideration is given to the information that is deemed more

reliable.

Alternative weighting schemes are possible for the simple region features. For

example, the value of the Laplacian of Gaussian �lter in the area occupied by a

particular feature could also serve as the basis for a weighting scheme. In this context,

the weights would incorporate the same information that is used by an edge detection

threshold without eliminating any of the features from consideration. As a result, the

simple region features are capable of providing a more dense representation than

edges.

Another di�erence is that simple regions possess more abstract attributes than do

edges. An edge consists of a location and possibly a crude estimate of the orienta-

tion. In contrast, the simple region features possess, for example, location, area, and

orientation. In short, simple regions have shape and size; edges do not.

Throughout the development and demonstration of the feature extraction para-

digm, we exploit the abstract properties of simple regions. In Chapter 6, for example,

the geometric properties and the shape of the simple regions are used to determine

the correspondence of features between frames. A similarity measure based on the

di�erence of the area of corresponding features enhances the ability to track the

features in a sequence of images. The shape of the features is exploited to reduce the

computational complexity of the correspondence algorithm signi�cantly.

In addition, the abstract properties facilitate the computation of a persistence

measure of the features. The persistence measure is based on the stability of the shape

of corresponding features and their respective neighbors. The persistence measure

enables subsequent algorithms to give greater weight to the more reliable features. For

example, in Chapter 7 we exploit the persistence measure to improve the egomotion

estimates and to di�erentiate the quality of the depth estimates.

In contrast, edges do not have shape and size attributes. There is little information

to use as the basis for a similarity measure between two edges. One might base such a

measure on the orientation of the edge and the brightness in the neighborhood of the

edge. However, such a measure is likely to be unreliable. Similarly, determining the

persistence and stability of an edge over a sequence of images would also be di�cult.

There is little or no basis to measure the stability of the track over time.

The results presented in Chapter 7 demonstrate that the simple region feature

extraction paradigm is a viable approach. For the test sequences considered, the

motion estimation algorithm provides the translation direction accurate to within

one or two degrees. Such accuracy has been reported by a variety of authors to be

su�cient for most navigational tasks (for a review, see Hildreth[33]).
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Furthermore, the algorithm provides reasonable depth estimates for a large per-

centage of the features. A small number of outliers are present in the output due to

errors in the correspondence algorithm. However, as the correspondence algorithm

is re�ned, the number of outliers is likely to be reduced. In addition, the current

implementation does not include a surface model or spatial smoothing of the depth

estimates. The incorporation of a surface reconstruction technique into the algorithm

is likely to eliminate many of the outliers and to improve the overall accuracy of the

depth estimates.

We have considered the utility of simple region features almost exclusively in

the context of the passive navigation problem. However, the simple region feature

extraction paradigm is more than a method for estimating egomotion and depth. The

paradigm is applicable to a variety of machine vision problems. In the next section,

we consider simple region features in a broader context as the foundation for a novel

early vision paradigm.

8.2 Future Directions

Simple regions are applicable to a variety of machine vision problems. Potentially,

simple regions will provide improvements to each of the problems independently.

However, the real advantage of using the paradigm for a spectrum of problems is

that the resulting algorithms will be built on the same foundation. As a result,

the combination of information from individual components of a vision system will

become more straightforward.

In addition to the passive navigation problem, the simple region feature paradigm

is directly applicable to stereopsis and object recognition. Many of the solutions that

have been proposed for these problems are based on manipulation of features. We

brie
y consider each of these problems in the context of simple region features.

Stereopsis is the determination of the depth and shape of objects by using two (or

more) distinct views of the same environment. Many stereo algorithms are based on

the determination of the correspondence mapping of features from two images. From

the correspondence mapping, the algorithms determine the disparity: the displace-

ment between corresponding features in the respective images. Once the disparity is

known, the depth is recovered from a well-known geometric technique called triangu-

lation. For a more detailed discussion of stereo vision, see, for example, Grimson[25],

[26], Horn[41], or Ballard & Brown[5].

Passive navigation and stereopsis are dual problems. Both involve combining

information from two or more images of the same environment. As a result, the

issues related to stereopsis are very similar to those of motion. For example, both

require the determination of correspondence of features from two similar images. The

geometric relationships involved in computing the depth are also similar in each case.

This suggests that simple region features are applicable to stereo as well as passive

navigation.
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In practice, one di�erence between motion and stereo is that the baseline, the

displacement of the camera(s), is typically greater in the case of stereo. In addition,

the baseline is usually known, at least approximately, for stereo systems. As a result,

there is an enormous constraint placed on the relative positions of corresponding

features. The corresponding points from a stereo pair must both lie on the same

epipolar line. Each epipolar line is the intersection of a plane that contains the centers

of projection of both cameras and the image plane. For a more detailed discussion,

see[25], [41], or [5].

Due to the subtle di�erences in the two problems, the demands placed on the

correspondence algorithm di�er between stereo and motion systems. Because of the

larger baseline for stereo systems, the disparity or displacement between features

is typically larger. However, due to the epipolar constraint, the displacement of

corresponding features is in a known direction.

These observations suggest that by modifying the correspondence algorithm, sim-

ple region features may be used as the basis for a stereo algorithm. Such a stereo

correspondence algorithm would prefer correspondences that are consistent with the

epipolar constraint. It would also be important to exploit multiple resolution process-

ing due to the increased displacement of the features. Once a suitable correspondence

algorithm is speci�ed, the depth may be determined using well-known geometric prin-

ciples.

Object recognition is another problem that may be addressed using simple region

features. Currently, most object recognition paradigms are based on the idea of

matching features extracted from an image to features from a model that represents

an object. By choosing the appropriate model from a data base, the object is identi�ed

(see, for example, Grimson[27]). Often, the object recognition algorithm uses Canny

edges as the feature that is matched. However, there is no fundamental reason that

precludes the development of an algorithm that uses simple region features instead.

The same general issues that confront current object recognition systems would

pertain to a system based on simple region features. The system would be required

to generate the hypothetical pose of a candidate object based on the con�guration

of a subset of features in the image. The system would then verify or reject the

hypothesis by considering additional features. The use of techniques to reduce the

computational burden, such as grouping and indexing, would also be necessary (for

example, Jacobs[44], Clemens & Jacobs[21], or Lowe[48]).

Of course, each of these issues must be reconsidered in the context of simple region

features. Most notably, the models of objects in the data base would be much di�erent

than the models in systems that use Canny edges. The models should be constructed

such that they e�ciently represent the information necessary for matching the data

to the model. Due to the di�erent nature of simple region features versus Canny

edges, it would be desirable to customize the model representation to simple region

features. Similarly, the algorithm to match the features to the model would also need

to be customized.
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In the cases of passive navigation, stereopsis, and object recognition, systems

based on simple region features are likely to obtain performance that is comparable

(if not improved) with respect to existing methods. The primary advantage of ap-

plying simple regions to all of these problems is that combining information from the

individual modules will become more straightforward. By using the same internal

representation in each module, communication among the modules is enhanced. We

call this idea module integration via shared representation.

Consider two modules that use di�erent internal representations. One module is

a stereo algorithm that uses zero-crossings of the Laplacian of Gaussian �lter as the

basis for correspondence; the Grimson[27] approach, for example. The other module is

an object recognition algorithm that uses Canny edges. Suppose that for a particular

hypothetical pose of an object, the model predicts a substantial di�erence in depth

between two of the Canny edges. Comparing the predicted depth di�erence with

the depth estimated from the stereo would provide signi�cant information about the

validity of the hypothesis. However, it would be non-trivial to �nd zero-crossings from

the stereo representation that correspond to the Canny edges in question. Exploiting

information from the stereo algorithm in this case would be awkward at best.

In contrast, consider a stereo module and an object recognition module that both

use simple region features. In this case, there is no problem obtaining a correspon-

dence between the internal representations of the modules because the representations

are identical. If the object recognition system requires depth information pertaining

to a particular feature, the stereo algorithm provides the depth information for that

speci�c feature.

Consider also the advantage of a passive navigation module and an object recog-

nition module that use the same internal representation. Suppose that an object has

been identi�ed in a particular frame of an image sequence. When the next frame

is processed it is desirable to exploit the correspondence mapping obtained by the

motion module. Doing so would facilitate an e�cient update of the position of the

object of interest in subsequent images.

More speci�cally, the correspondence mapping of the motion module and the

mapping from the model to the features in the previous frame together imply a

mapping between the model and features in the next frame. Of course, it would

be necessary to verify the new mapping and correct possible errors. However, this

is substantially more e�cient than determining the model to feature mapping in

the next frame independent of the previous frame mapping. This process would

be considerably more manageable if the passive navigation module and the object

recognition module use the same internal representation.

Ultimately, a primary advantage of the simple region feature extraction paradigm

is that it is useful for a variety of problems. While the paradigmmay or may not be the

best approach for a particular problem, the advantage of using the same features for

each of the modules is enormous. Communication of information among the modules
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becomes much more tractable in this case. In this sense, the simple region features

serve as the foundation of a novel early vision paradigm.



Chapter 9

Conclusion

Throughout this thesis, we stress the importance information representation. In

Part I, an analytical representation for contours facilitates the computation of a novel

scale-space for contours and the medial axis skeleton. In Part II, a novel feature ab-

straction provides a rich description of the image.

The analytical contour representation yields a number of bene�ts. The represen-

tation provides geometric properties, such as the position, orientation, and curvature,

explicitly. The representation facilitates a novel approach to smoothing the contour;

the approach depends heavily on the explicit representation of the curvature.

The contour representation implies a complementary analytical representation for

the medial axis skeleton. As a result of the representation strategy, the skeleton is

determined uniquely from the contour. Furthermore, the skeleton computation is

robust against perturbations in the bounding contour and the input data.

The combination of the bene�cial properties of the contour and skeleton represen-

tations facilitates the computation of the complexity scale-space. For example, the

explicit representation of the contour curvature is essential to the scale-space compu-

tation. Similarly, the unique mapping of the contour to the skeleton and the stability

of the skeleton with respect to contour are crucial to the reliable computation of the

scale-space.

Similarly, the advantages of simple regions over other features stem directly from

the representational strategy. The most important distinction between simple regions

and other features is the abstract nature of the simple regions. The geometric at-

tributes of the simple regions provide substantial advantages in a variety of contexts.

The motion estimation algorithm exploits the geometric attributes of simple re-

gions in several ways. The correspondence algorithm uses a simple measure of the

similarity of the features. Once the correspondence mapping is determined, a measure

of the reliability of the optical 
ow estimate is determined based on the shapes of the

corresponding features. The algorithm to determine the direction of translation of

the camera exploits the measure by giving greater weight to the more reliable 
ow
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estimates. Furthermore, the reliability measure also applies to the relevant depth

estimates.

Each of these capabilities is made possible by the geometric attributes of the

simple region features. Overall, these properties are an example of the bene�t of

an appropriate representation strategy. Information captured in the representation

of the most primitive stage of the system leads to enhanced cabilities in the subse-

quent stages of the system. More speci�cally, the geometric attributes of the features

ultimately lead to the ability to discern the reliability of depth estimates.

In the thesis, we also argue that existing information representation strategies

are insu�cient for the ultimate goal of a general vision system. Edges, which are

currently the most popular features, constitute a sparse and unreliable description of

the image. Much of the pertinent information in the image is discarded in the edge

detection process.

The simple region feature extraction paradigm has a number of advantages over

edge detection. The simple region features are more reliable and provide a more

dense representation of the image information. Simple regions possess more abstract

properties than edges. The additional information encoded in each feature facilitates

enhanced capabilities in the subsequent processing stages.

The ultimate test of the paradigm will be its applicability and e�ectiveness for a

variety of vision subproblems. We have demonstrated that simple region features are

useful in the context of passive navigation. Furthermore, we argue that simple regions

are applicable to other vision modules. If future e�orts to apply simple region features

to a variety of modules are successful, the synthesis of a consistent representational

framework for these modalities will be made possible. Combining information among

the modules will become more straightforward. And, as as result, the overall system

will provide more complete and reliable information about the environment.

The representation of information is a critical issue in the design of machine vision

systems. The representation strategy at the most primitive stages has enormous

impact on the overall capabilities of the system. Given the shortcomings of current

approaches, it is essential to consider novel methods. It is necessary to improve the

representational capabilities at all levels within the system. To achieve this goal, we

must continually reevaluate the fundamental assumptions underlying the design and

development of vision systems.
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