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Abstract

This thesis presents methods for implementing robust hexapod locomo-

tion and fault tolerance capabilities on an autonomous robot with many sen-

sors and actuators. The controller is based on the Subsumption Architecture

and is fully distributed over approximately 1500 simple, concurrent processes.

The robot, Hannibal, weighs approximately 6 pounds and is equipped with

over 100 physical sensors, 19 degres of freedom, and 8 on board computers.

We investigate the following topics in depth: control of a complex robot,

insect-like locomotion control for gait generation and rough terrain mobil-

ity, and tolerance of sensor and actuator failures. The complexity of the

robot and the controller is managed using a local control with cooperation
paradigm. In this approach, the control problem is distributed evenly among

the legs. Because the legs are physically coupled through the robot and

through the terrain, the legs communicate with each other to work as a

team. Robust, 
exible locomotion is implemented using ideas from insect

locomotion and strategies used by insects to traverse natural terrain. As

a result, Hannibal's locomotion exhibits many insect-like properties. Fault

tolerance is implemented via a network of processes responsible for detecting

failures and minimizing the impact of failures on the robot's performance.

By exploiting concurrency and distributedness, the systemmonitors, detects,

and compensates for component failures simultaneously.

The controller was implemented, debugged, and tested on Hannibal. Through

a series of experiments, we examined Hannibal's gait generation, rough ter-

rain locomotion, and fault tolerance performance. These results demonstrate

that Hannibal exhibits robust, 
exible, real-time locomotion over a variety

of terrain and tolerates a multitude of hardware failures.

Thesis supervisor: Prof. Rodney A. Brooks
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Chapter 1

Introduction

1.1 The Challenge

Our lab has argued the case in favor for using multiple autonomous micro-

rovers on the order of 1 to 2 Kg to explore planets on the grounds of mission

cost e�ectiveness, robustness, and 
exibility ((Angle & Brooks 1990), (Brooks

& Flynn 1989)). Autonomous robots execute their task independent of hu-

man assistance by performing their own sensing and control. As a result,

autonomous rovers do not require sizable (and therefore expensive) ground

crew support. Also, the principal cost of a planetary mission is payload mass.

Since smaller rovers have less mass, it is feasible to send more of them cost

e�ectively. Multiple rovers enhance mission robustness since if a few rovers

fail, there are still others to perform the mission. Furthermore, missions can

be more 
exible since groups of rovers can perform di�erent tasks at various

locations.

Planetary exploration using autonomous robots is an interesting control

problem. The surface of Mars or the Moon is quite rugged. Undoubtedly, as

rovers explore the planet, they will encounter dangerous situations. Rovers

must operate in real-time so they can quickly respond to these hazardous

circumstances. Also, as rovers wander over the terrain, they will encounter

cli�s, rocks, slopes, and crevices. This requires rovers to sense rugged terrain

features and adapt their behavior appropriately. Rovers must also be tolerant

of hardware failures since they cannot not be repaired once components fail.

Hannibal (shown in �gure 1.1) was designed and built by our lab as an

9



Figure 1.1: Hannibal.
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experimental platform to explore planetary micro-rover control issues (Angle

1991). When designing the robot, careful consideration was given to mobility,

sensing, and robustness issues. Much has been said concerning the advan-

tages of legged vehicles over wheeled vehicles in regard to their mobility over

rough terrain ((Song & Waldron 1989), (Hirose 1984)). Since rough terrain

locomotion is fundamental for a micro-rover, Hannibal was engineered with

six 3 degree of freedom legs and a 1 degree of freedom body. Rovers must

have su�cient terrain sensing capabilities to locomote safely and e�ectively

over rugged terrain. To meet this requirement, Hannibal's legs are encrusted

with a multitude of sensors. For robustness and reliability considerations,

many of these sensors provide complementary information. Not surprisingly,

Hannibal is quite complex for its size. It is approximately the size of a bread

box and is equipped with 19 degrees of freedom, over 100 physical sensors,

and 8 computers.

1.2 The Response

This work presents the behavior control system implemented on Hannibal.

No simulations were used in its development{all code was directly imple-

mented and tested on Hannibal. The controller enables Hannibal to loco-

mote over rough terrain in real-time and tolerate hardware failures. These

capabilities are implemented from the bottom-up using a subsumption-based

approach where distributed networks of simple and concurrently acting be-

haviors form the robot's levels of competence. The lowest level of the control

system consists of hardware related processes such as fault tolerance, terrain

sensing, and driving the actuators. The middle layer consists of 
at terrain

locomotion behaviors that address mobility, stability, speed, and leg failure

issues. The top layer is comprised of rough terrain behaviors that enable

Hannibal to negotiate obstacles of varying sizes, terrain depressions of var-

ious depths and widths, and slopes of varying steepness. In the course of

designing these layers, we explored the following topics in detail:

� Real-time control of a complex robot. Hannibal is an intricate robot

which operates in a complex environment. The controller must pro-

cess information from over 100 physical sensors to operate 19 degrees

of freedom concurrently. The controller becomes complicated as more

11



processes are written to improve and expand Hannibal's capabilities.

The issues of scalability and modularity in controller design are am-

pli�ed. Despite this formidable task, we want the robot to operate in

real-time using relativelyminimal computing power. The complexity of

this project forces us to explore these issues beyond other autonomous

robot controllers in the �eld ((Brooks 1989), (Donner 1987)).

� Robust hexapod locomotion. To e�ectively traverse rough terrain, Han-

nibal's locomotion control must be 
exible, robust, and adaptive. Rugged

terrain exhibits numerous kinds of terrain features. The controller must

be able to detect these terrain features and evoke the robot to perform

the appropriate evasive maneuvers. Insects display impressive hexa-

pod locomotion capabilities using a distributed controller, so we have

looked to insect locomotion research for inspiration ((Cruse 1990b),
(Dean 1991a), (Pearson 1976), (Wilson 1966)).

� Tolerance to hardware failures. Having many sensors and actuators is

a double edged sword. More components increase the hardware ca-

pabilities of the robot; however there is also more that can fail and

subsequently degrade performance. Sensor drift, transient erroneous

sensor values, sensor failures, and actuator failures degrade the robot's

performance. The controller must purposefully recognize when these

failures occur, so it can speci�cally tailor its use of sensors and actuators

to minimize the impact of failures on the robot's performance. When

on Mars, rovers do not have the luxury of repair when components

fail. Thus, we want the robot's performance to degrade as gracefully

as possible when components fail. Surprisingly little work has been

done to advance the state of fault tolerant autonomous robots given

the importance of this problem.

Hannibal's controller successfully integrates several topics into a single

system using a common framework. Previous work exploring fully distributed,

insect-like locomotion controllers has only been addressed for 
at terrain

(Beer, Chiel, Quinn & Espenschied 1992), (Quinn & Espenschied 1993),

(Donner 1987)). Few rough terrain walkers are completely autonomous. For

those that are, they either require signi�cant computing power (Krotkov,

Simmons & Thorpe 1990) or implement only a subset of Hannibal's rough

terrain capabilities (Brooks 1989). We are not aware of any autonomous

12



robot, walking or otherwise, that is fault tolerant to sensor or actuator failure.

Hannibal's controller implements all these capabilities in a fully distributed,

subsumption-based approach.

1.3 Organization of Thesis

The body of this thesis is divided into 5 chapters:

Chapter 2: Hannibal. This chapter presents a detailed description of robot
used in this research. It covers the physical design, sensing, and computing

capabilities of Hannibal.

Chapter 3: Controller Organization. This chapter discusses issues of Han-
nibal's controller design (such as scalability, modularity, 
exibility, adaptiv-

ity, and robustness), and how we address them. It also presents the basic

organization of the controller and provides a brief description of the control

layers.

Chapter 4: Basic Locomotion. This chapter presents the behaviors re-

sponsible for 
at terrain locomotion. The design of these behaviors is strongly

inspired by insect locomotion control strategies. It de�nes the task, describes

the implementation in detail, presents our results, and evaluates the perfor-

mance of the system. It concludes by comparing this part of the controller

to other statically stable walking robots.

Chapter 5: Rough Terrain Locomotion. This chapter presents the behav-

iors responsible for rough terrain locomotion. The design of these behaviors

is inspired by insect rough terrain locomotion control strategies. It de�nes

the task, describes the implementation in detail, presents our results, and

evaluates the performance of the system. It concludes by comparing this

part of the controller to other statically stable walking robots.

Chapter 6: Fault Tolerance. This chapter presents Hannibal's fault tol-

erance capabilities. It de�nes the task and presents the issues involved in

designing fault tolerant systems. It describes the implementation in detail,

presents our results, and evaluates the performance of the system. It con-

cludes by comparing this part of the controller to related work.

Chapter 7: Conclusion. This chapter reviews the major results of the

thesis, and suggests areas of future work.
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Chapter 2

Hannibal

This chapter presents the physical, sensing, and computing aspects of Hanni-

bal. Hannibal, and a duplicate robot named Attila, were designed and built

under the supervision of Prof. Rodney Brooks in the Mobile Robotics Lab

at MIT (Angle 1991). Hannibal is a small autonomous robot which performs

its own sensing and computing on board1. This robot is perhaps the most

sophisticated and complex robot for its size. A photograph of Hannibal is

shown in �gure 1.1.

2.1 The Physical Robot

2.1.1 Legs

Hannibal was designed with legs instead of wheels for greater mobility over

rugged terrain. Each of Hannibal's six legs has 3 degrees of freedom (DOF)

to allow arbitrary foot placement on a surface (see �gure 2.1). The lift axis

is horizontal. A rotational actuator raises and lowers the foot by rotating

the leg about this axis. The swing axis is vertical which is important for the

e�ciency of the robot (Song & Waldron 1989). When the leg makes a step,

most of the motion of the leg is rotation about the swing axis and therefore

parallel to gravitational forces. As a result, relatively little work is done

against gravity as the leg swings through the environment. A rotational

actuator advances the leg along the direction of travel by rotating the leg

1Hannibal receives its power from an external power supply.
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Figure 2.1: Each leg has three degrees of freedom.

about the swing axis. The extension axis is orthogonal to the lift and swing

axes. A linear actuator extends and contracts the leg along this axis.

2.1.2 Body

A global degree of freedom mounted on Hannibal's body links the rotation

of all six legs about their axles together (see �gure 2.2). A spine actuator

is responsible for rotating the legs about this global degree of freedom. The

purpose of this DOF is to ensure the legs are always vertical2. Angle &

Brooks (1990) argues that the load on each of the leg motors is independent

of robot inclination if the legs are always vertical. As the robot's inclination

increases during a climb, the global rotation of the legs brings the center of

mass of the robot closer to the surface being climbed, and keeps it within

the polygon of support for any inclination.

2This is only true if the robot is facing up or down hill.
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Figure 2.2: The body has one degree of freedom.

2.1.3 Size

Hannibal enjoys several bene�ts from its small size as argued in (Angle 1991).

Hannibal measures 14 inches long, stands eight inches high, and weight 6

pounds. Because Hannibal is small, it has relatively low mass which gives

rise to several advantages, including reduced dynamic e�ects, which simpli�es

control. Another advantage is lower power consumption{a smaller robot can

be driven with smaller, lower power motors. The greatest advantage is a

favorable strength-to-weight ratio of the robot's structure. The strength of

a structure scales by its cross sectional area, while the weight of a structure

scales by its volume. As a structure is proportionally scaled up, its weight

increases at a faster rate than its strength. Hence, it is relatively easy to

make a small structure quite strong with little mass.

2.2 Sensors

Hannibal has many sensors that provide complementary information. This

serves several purposes. First, multiple sensors provide the robot with more
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information about its environment, which helps the robot behave more intelli-

gently. Second, multiple complementary sensors increase sensing robustness{

if one sensor fails, its complementary sensors can provide the robot with simi-

lar information. Third, they enhance sensing reliability since the information

from each sensor can be used to con�rm the results of the other complemen-

tary sensors. This increases the con�dence in the net sensor output.

Hannibal receives a tremendous amount of sensor information. The robot

has over 100 physical sensors of 5 di�erent types to provide the robot with

over 60 sensory signals. The following types of sensors are mounted on Han-

nibal:

� Leg mounted force sensors: these are foil strain gauges that can be used

to measure loads on the leg and to detect leg collisions. There is a set

of strain gauges for each DOF of the legs. They are manufactured by

Micro Measurements.

� Joint angle sensors: These are potentiometers that measure the joint

angle for each DOF of the leg.

� Joint velocity sensors: The joint angle sensors are di�erentiated in

analog for each DOF of the leg.

� Foot contact sensor: This is a linear potentiometer mounted on the

ankle that measures the de
ection of the foot as it presses against the

ground.

� Inclinometer: This sensing unit is made up of a +/- 45 degree roll

sensor and a 360 degree pitch sensor. This sensor is manufactured by

Spectron.

Hannibal's sensors are used to sense the immediate terrain, provide the

robot with knowledge of its physical con�guration, and servo the motors

which control its DOFs to speci�ed positions. Most of Hannibal's sensors

are mounted on its legs. These sensors provide the robot with terrain infor-

mation as the legs sweep through the environment. Figure 2.3 shows where

these sensors are mounted on the legs and how they are labeled in this the-

sis. The strain gauges mounted on the legs measure the force the external

world is exerting on them. Hannibal uses them to sense vertical loading of

the legs and to detect collisions the legs su�er as they move through the
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Figure 2.3: Leg mounted sensors with labels.
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Figure 2.4: Hannibal's smart subsystems are linked by a serial network.

environment. The ankle potentiometer is used to sense foot loading. The

robot uses this information to �nd secure footholds as it walks through the

environment. The potentiometers are used to measure joint angles of all the

robot's degrees of freedom. This information is used to servo control the

motors to speci�ed positions and to inform the robot of its physical con�g-

uration. The joint velocity sensors are used to control the motors. Velocity

information in conjunction with target position information can be used to

roughly sense leg collisions. For example, if a leg prematurely stops before it

reaches its target position, the leg may have experienced a collision along the

way. The inclinometer is used to sense the robot's pitch and roll. The spine

potentiometer and the inclinometer, both mounted on Hannibal's body, are

used to control Hannibal's spine actuator to keep all the legs vertical.

2.3 Computing
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Hannibal is a complex robot. It receives over 60 sensor signals and orches-

trates 19 DOFs3 to locomote over rough terrain. To make the design and

control of this robot manageable, Hannibal was divided into smart subsys-

tems and then linked together with a medium speed serial network (I2C

bus). Each leg and the body are individual subsystems that posses a set of

sensors and actuators. As shown in �gure 2.4, Hannibal is organized with

a single central processor to which 7 subsystem4 control processors are at-

tached. This allows high bandwidth communication and motor servoing to be

handled locally, with only high level communication mon the serial network.

2.3.1 Master processor

The master processor is a 15 MHz Signetics 68070. The computational ar-

chitecture is very similar to a Motorola 68010, but the 68070 has hardware

support for the I2C serial bus. This processor serves as the computational

engine of the robot and runs the behavior control code. It receives sensor

information from the robot's subsystems over the serial bus and uses this in-

formation to intelligently control the robot's behavior. It dictates the actions

the robot takes by sending position, velocity, and force control commands to

the actuators of the subsystems.

2.3.2 Satellite control processors

Each local satellite processor is a Signetics 87c751. The processor has two

responsibilities. The �rst is to acquire the sensor information of its subsystem

and send it to the master processor. The second is to receive commands from

the master processor to servo the actuators of its subsystem. Servo control

code running on this processor at 100 Hz servos the subsystem's actuators

to the commanded position with velocity and/or force considerations. The

processor uses the command information from the master processor and the

sensor information of its subsystem to generate the pulse width modulation

wave forms which drive the actuators.

3The robot has two additional actuators for its pan-tilt head but they were not used

in this project.
4There are ten subsystems in the complete design.
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2.3.3 Serial I2C bus

The I2C serial bus is a 100 Kbaud communication system which is used to

connect the various subsystems on Hannibal. Bus transactions occur 30 % of

the time which allows the satellite processors to exchange information with

the master processor at 10 Hz. The bus is idle for 70 % of the time to allow

the satellite processors to execute their servo control code. The I2C bus is

not fast enough to do real-time motor servoing, and this limitation forces

modularity on the robot.
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Chapter 3

Controller Overview

3.1 Issues of Controller Design

Hannibal is a complex robot which operates in a complex environment. Han-

nibal's controller must process over 60 sensor signals and command 19 actua-

tors such that Hannibal e�ectively locomotes over rough terrain in real-time.

To satisfy this formidable task, Hannibal's controller must satisfy several

requirements:

� The controller must scale well to e�ciently and e�ectively utilize nu-

merous sensors, actuators, and processes. Adding more sensors, actua-

tors, or processes to the system increases the load on the controller. We

do not want this additional load to result in computational bottlenecks.

If the controller scaled poorly, attempting to enhance the robot's capa-

bilities by adding more sensors, actuators, or processes could degrade

the robot's performance rather than enhance it.

� The controller must be modular so that additional sensors, actuators,

or processes can be integrated readily. Speci�cally, we want to be

able to quickly add or change the processes which interpret new sensor

information, utilize new actuators, or add new processing capabilities

to the system.

� The controller must be 
exible. It must characterize numerous terrain

features and control the robot to perform a variety of maneuvers to

successfully traverse rough terrain. In addition, the controller must

22



control the robot's legs and body simultaneously to e�ectively locomote

over natural terrain.

� The controller must be robust and adaptive. The robot's behavior

should be resilient to both environmental changes and internal changes.

Environmental changes are attributed to irregular terrain. The robot

must be able to detect these terrain variations and adapt to them ac-

cordingly. Internal changes are attributed to various hardware failures,

erroneous sensor readings, or sensor drift. The robot must recognize

these faults and minimize their e�ect on the robot's performance.

3.2 Robot Behavior Control Philosophy

Brooks (1986) proposed the idea of subsumption as an alternative approach to
the robot behavior control problem. This approach decomposes the control

problem into task achieving layers. Each slice in the vertical division is level

of competence. The main idea is that we can build layers of a control system

corresponding to each level of competence and simply add a new layer to an

existing set to move to the next higher level of overall competence. The lower

layers run continually and are unaware of higher layers. However, when the

higher layers wish to take control they can subsume the roles of lower levels.

The subsumption approach creates tight couplings between sensors and

actuators on the robot, separated by only very limited amounts of reasoning

in the form of simple rules. The approach is embodied in the Subsumption Ar-
chitecture which uses �nite state machines augmented with timing elements

(AFSMs) to construct simple rules. The AFSMs communicate through mes-

sage passing, mutual suppression (one AFSM stops all inputs to another for

a �xed time period), and inhibition (one AFSM stops all outputs of another

for a �xed time period).

Combinations of AFSMs (also called processes) form behaviors (also re-

ferred to as agents), the building blocks of the Behavior Language (Brooks

1990). The Behavior Language is a high level language for writing sub-

sumption programs. Behaviors run concurrently and asynchronously, per-

form their own perception, monitor their input wires, perform computation,

control actuators, or send messages out their output wires. It is important

to design the controller such that con
icting behaviors are not active at the
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Figure 3.1: Levels of competence of Hannibal's controller.

same time. To deal with this situation, behaviors have the ability to inhibit

outputs or suppress inputs of other behaviors. Inhibition of outputs is used

when the inhibiting behavior does not want the inhibited behavior's outputs

in
uencing the system. Behaviors can prevent other behaviors from becoming

active by suppressing inputs used for activating other behaviors. Individual

behaviors are connected to form task-achieving modules (the robot's observ-

able behaviors), and these task-achieving modules can be grouped together

to form layers. Each layer is a level of competence which corresponds to the

robot's abilities.

The subsumption approach is a set of philosophical concepts about robot

behavior design which stresses the issues of reactivity, concurrency, and real-

time control (Mataric 1992). This approach is robust since failure of any layer

does not a�ect the layers below. Additionally, this organization allows for

modular addition and removal of behaviors, and thus for incremental design

and debugging. Most importantly, it allows for a tight loop between sensing

and action which can be performed quickly and with much less computation.

3.3 Overview of the Controller

Numerous papers argue in favor of behavior based control for modularity,


exibility, robustness, and adaptability considerations ((Brooks 1986), (Maes

1990), (Rosenblatt & Payton 1989)). In addition, the subsumption approach

has been successfully demonstrated on several robots in our lab such as Toto

(Mataric 1990), Herbert (Connell 1989), Squirt (Flynn, Brooks, Wells &
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Barrett 1989), and Genghis (Brooks 1989). Given these previous successes,

we implemented a subsumption-based controller on Hannibal written in the

Behavior Language. Hannibal's controller is perhaps the most complex be-

havior based controller currently in existence. This gives us the opportunity

to test the scalability of this approach.

Hannibal's controller consists of three levels of competence as shown in

�gure 3.1. The lowest level performs basic functions such as processing sen-

sory information and commanding actuators. The middle layer implements


at terrain locomotion capabilities. The highest layer implements rugged

terrain locomotion capabilities. A brief overview of the composition of these

levels is presented below. Later chapters will describe structure and function

of these levels in detail.

3.3.1 Sensor-Actuator Level

This level processes sensory information and sends commands to the actua-

tors. This level consists of several types of agents:

Virtual Sensor Agents

Task driven sensing is performed by the virtual sensor agents. The virtual

sensors use information frommultiple sensors of di�erent and complementary

types to produce qualitative assessments of the robot's interaction with the

world. There is a separate virtual sensor for each condition the robot must

detect, such as ground contact or collisions. The computations performed by

the virtual sensors are fast and simple{typically using thresholds. Using mul-

tiple sensors has several advantages: First, each sensor output contains noise

and measurement errors; however multiple sensors can be used to determine

the same property with the consensus of other complementary sensors. In

this way, sensor uncertainty can be reduced. Second, the output of a single

sensor may be ambiguous and misleading; however other complementary sen-

sors can be used to resolve this ambiguity. Third, multiple sensor data can

be integrated to provide information which might otherwise be unavailable

or di�cult to obtain form any single type of sensor. Finally, if some sensors

fail, it is important the robot have other sensors it can rely on for similar

information. Here is a list of Hannibal's main virtual sensors:

� ground-contact virtual sensor
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� step-in-hole virtual sensor

� over-rock virtual sensor

� inclination virtual sensor

� lift-velocity virtual sensor

� swing-velocity virtual sensor

� extend-velocity virtual sensor

Actuator agents

The actuator agents are the only agents that send commands to the actuators{

each agent commands one actuator. All requests for that actuator are sent

to the corresponding agent, but only one request is satis�ed. Currently the

priority for which request is serviced is hardwired. We use actuator agents to

keep track of potential behavior con
icts over the use of the same actuator.

The following actutator agents are implemented:

� lift agent

� swing agent

� support agent

� step agent

� spine agent

� extend agent

Fault Tolerance processes

The fault tolerance processes and agents are responsible for recognition,

masking, and recovery from component failures. Other processes a respon-

sible for reintegrating the use of repaired components into the system. To-

gether, these processes and agents make the robot tolerant of sensor and

actuator failures. They are described in detail in chapter 6. Below is an

abbreviated list of Hannibal's fault tolerance processes and agents:
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� sensor-state processes

� sensor-monitor processes

� monitor-concensus processes

� injury agents

� failure-masking processes

� transient-failure-recovery processes

� dynamic-calibration agents

� permanent-failure-recovery processes

� repaired-component-integration processes

Static Calibration processes

The static calibration processes are responsible for calibrating Hannibal's

sensors at start up. Here is a short summary of the types of static calibration

agents:

� loaded-calibration agents

� unloaded-calibration agents

3.3.2 Basic Locomotion Level

This level encompases the behaviors needed to locomote e�ectively over 
at

terrain given stability, speed, mobility, and leg failure considerations. This

level is described in detail in chapter 4. The behaviors of this layer are

strongly inspired by models of insect locomotion control. Below is an abbre-

viated list of the basic locomotion agents.

� oscillator agent

� speed (or gait) agent

� oscillator-phase agents
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� turn agents

� direction-of-travel agents

� lesion-compensation agents

3.3.3 Rough Terrain Level

This level encompasses the behaviors needed to locomote e�ectively over

rough terrain. This level is presented in detail in chapter 5. These behaviors

enable Hannibal to locomote over terrain with obstacles of various sizes,

depressions of various widths and depths, and undulations. Here is a list of

Hannibal's primary rough terrain behaviors:

� load-walk behavior

� traverse-low-obstacle behavior

� �nd-foothold behavior

� step-over-gap behavior

� avoid-cli� behavior

� slope-adaption behaivor

� caution behavior

� lift-body behavior

� step-high behavior

� impatient behavior

3.4 Managing Complexity

3.4.1 Layering

Hannibal's controller is made up of several levels of competence, and these

levels contain many processes, agents, and behaviors. In general, the lower
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Figure 3.2: Hannibal's control task is distributed among several

subsumption-based controllers.

levels are more fundamental to the function of the robot and can operate

without the presence of higher levels. When present, the higher levels domi-

nate the lower levels. Furthermore, there is strati�cation within the levels of

competence where higher agents dominate lower agents. Lower level agents

pass information messages to higher level agents, and higher level agents send

command messages to the lower level agents. Thus, Hannibal's controller is

layered on two di�erent scales.

3.4.2 Distributedness

As presented in chapter 2, Hannibal consists of several subsystems. Each

subsystem has its own sensors, actuators, and servo control. All subsystems

run concurrently for Hannibal to locomote e�ectively. To simplify the control

of a robot of this complexity, we decomposed the global control problem into

several local control problems. We did this by implementing a subsumption-

based controller for each susbsytem which is responsible for govering the

behavior of that subsystem. Therefore, instead of controlling a robot with

over 60 sensory signals and 19 degrees of freedom with a single subsumption-
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based controller, the task is distributed among several subsumption-based

controllers{each responsible for a subset of the overall control problem. This

is illustrated in �gure 3.2. Thus, Hannibal's control structure is distributed

on two levels: the subsumption-based controller is distributed among behav-

iors, and several subsumption-based controllers are distributed among the

subsystems.

With this approach, Hannibal can be modeled as a robot which is com-

posed of several sub-robots. Each of Hannibal's subsystems (legs and body)

is an autonomous sub-robot posessing its own set of sensors, actuators, servo

control, and behavior control1. However, these sub-robots cannot function

independently from one another because they are physically coupled to each

other through the robot and through the terrain. Consequently, these sub-

robots must cooperate with one another so that the overall system can achieve

its goals. To achieve cooperation between the sub-robots, the sub-robots

communicate with each other. This is done either directly between the sub-

robots, or indirectly through special global agents which communictate a

uni�ed message to all relevant subsystems. The theme of local control with
cooperation runs throughout this thesis and is elaborated upon in later chap-

ters.

3.5 Summary

Designing and implementing Hannibal's controller is an exercise in manag-

ing complexity. I found the subsumption approach was e�ective for designing

an intricate controller, and for controlling a robot of Hannibal's complexity.

Currently, the controller consists of approximately 1500 processes. In build-

ing a controller of this complexity from the bottom-up, we have demonstrated

the modularity of the design. This modulartity appears on every scale of the

controller: AFSMs form agents, agents form task-achieving behaviors, task-

achieveing behaviors form levels of competence, levels of competence form

a subsumption-based controller, subsumption-based controllers run within

intelligent subsubsystems, and these subsystems cooperate to control the

behavior of the overall robot. The controller scales well since Hannibal oper-

1The behavior control code is distributed among the subsystems in software. Physically

all behavior control code runs on one processor.
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ates in real-time despite the large number of concurrently running processes2.

Furthermore, the controller is quite 
exible. Each subsystem processes its

sensory information and reacts to the speci�c circumstances confronting it

simultaneously with the other subsystems. Finally, the behavior control is

robust and adaptive to changing circumstances. The robot readily adapts to

irregular terrain and is tolerant of hardware component failures.

2Because all of Hannibal's behavior control runs on a single processor, these processes

are simulated to run concurrently.
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Chapter 4

Basic Locomotion

This chapter presents the development and implementation of Hannibal's

locomotion network. We present various insect locomotion models which

in
uenced the design of our locomotion controller. We also present a variety

of insect-model-based controllers we implemented on Hannibal to generate

a variety of stable insect-like gaits. Of these controllers, we chose the best

implementation as the foundation of our locomotion controller. We expand

the capabilities of the controller to implement turning, changing direction,

and lesion compensation. Once the description of the controller is �nished, we

present our results and discuss the performance of the system. We conclude

by relating Hannibal's locomotion scheme to other statically stable walking

robots.

4.1 The Hexapod Locomotion Challenge

Hannibal must have basic locomotion capabilities before it can e�ectively tra-

verse natural terrain. Basic locomotion encompasses the capabilities needed

to locomote e�ectively over 
at terrain. These capabilities extend beyond

stable locomotion. The abilities to turn and change direction are important

for mobility considerations. The ability to change gait is important for speed,

energy, and stability considerations. Lesion compensation is important in the

event of leg failure{if Hannibal's loses the use of a leg, Hannibal's gait must

change to maintain stability while walking with fewer legs.

To address this challenge, we added a layer to Hannibal's control architec-
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ture to give Hannibal basic locomotion capabilities. The Basic Locomotion

Layer is built on top of the Sensor-actuator Layer. Insect locomotion research

has provided valuable insight as to how to implement basic locomotion ca-

pabilities on Hannibal.

To mimic insect locomotion, the locomotion controller is fully distributed

and adheres to a local control with cooperation paradigm. As argued in

chapter 3, this paradigm is also an e�ective means for managing Hannibal's

numerous sensors and actuators. Locomotion control is distributed evenly

among the six legs. Each local leg controller is responsible for generating the

cyclic motion of its leg. The local leg controllers run simultaneously; however,

they are not independent of one another. The six legs must work together

as a team for the robot to locomote e�ectively. To achieve inter-leg cooper-

ation, the local leg controllers communicate with each other to synchronize

and coordinate leg behavior. Using this approach, we have implemented the

following basic locomotion capabilities on Hannibal:

� Locomote in a statically stable manner.

� Change speed by switching among a variety of insect-like gaits (wave

gaits).

� Change direction of travel.

� Turn with varying sharpness.

� Lesion compensation for any single leg or the two middle legs.

4.2 De�nition of terms

Below are several terms we use through out this chapter. Please also refer to

the accompanying �gure, (�gure 4.1).

1. Protraction: The leg moves towards the front of the body.

2. Retraction: The leg moves towards the rear of the body.

3. Anterior: Situated toward the front of the body.

4. Posterior: Situated toward the rear of the body.
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Figure 4.1: During the recovery phase, the leg lifts and swings to the start

position of the next power stroke. In forward locomotion, the leg moves

towards the AEP during the recovery phase. During the support phase, the

leg supports and propels the body along the direction of motion. In forward

walking, the leg moves toward the PEP during the support phase. Adapted

from (Cruse 1990).
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5. Contralateral: Situated on directly opposite sides of the body.

6. Ipsilateral: Situated on the same side of the body.

7. Rostral: Directed toward the front part of the body.

8. Caudal: Directed toward the hind part of the body.

9. Power stroke: The leg is on the ground where it supports and propels

the body. In forward walking, the leg retracts during this phase. Also

called the stance phase or the support phase.

10. Return stroke: The leg lifts and swings to the starting position of the

next power stroke. In forward walking, the legs protracts during this

phase. Also called the swing phase or the recovery phase.

11. Anterior extreme position (AEP): In forward walking, this is the target

position of the swing degree of freedom during the return stroke.

12. Posterior extreme position (PEP): In forward walking, this is the target
position of the swing degree of freedom during the power stroke.

4.3 Insect locomotion

Insect locomotion is exceptionally robust, adaptive, and versatile. We would

like Hannibal to walk with the same qualities. Toward this goal, we have used

various models of insect locomotion control to develop Hannibal's locomotion

control.

4.3.1 Wilson

Wilson (1966) presents a descriptive model for characterizing all of the com-

monly observed gaits of insects, including those resulting from amputation.

Some of these gaits are shown in �gure 4.2. These rules are adequate for

describing the qualitative features of leg coordination in most insects when

they walk on smooth horizontal surfaces (note they do not account for all

the empirical data).
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Figure 4.2: Some commonly observed gaits of insects. All are members of

the family of wave gaits. Adapted from (Wilson 1966).
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� A wave of protractions runs from posterior to anterior. No leg protracts

until the one behind is placed in a supporting position.

� Contralateral legs of the same segment alternate in phase.

� Protraction time is constant.

� Frequency varies (retraction time decreases as frequency increases).

� The intervals between steps of the hind leg and middle leg and between

middle leg and foreleg are constant, while the interval between the

foreleg and hind leg steps varies inversely with frequency.

4.3.2 Pearson

Keir Pearson and his collaborators investigated the neural systems that con-

trol walking in the cockroach ((Wilson 1966), (Pearson 1976)). They devel-

oped neurological models to explain the control of an individual leg and the

coordination between legs. The resulting gaits are consistent with Wilson's

descriptive model.

The complex unit of action that controls the stepping pattern of a single

leg combines three elementary units of action{the oscillator, the servomech-

anism, and the re
ex (see �gure 4.3). The oscillator generates the stepping

pattern of the leg by controlling the activation of the 
exor motor neurons

and the extensor motor neurons. The 
exor motor neurons protract the leg

when activated, and the extensor motor neurons retract the leg when acti-

vated. At the peak of its cycle, the oscillator generates the leg's swing phase

by activating the 
exor motor neurons and inhibiting the extensor motor

neurons. The duration of this protraction command is independent of the

oscillator's period, which accounts for Wilson's third rule: \Protraction time

is constant". Throughout the remainder of the oscillator's cycle, the oscilla-

tor generates support phase by activating the extensor motor neuron. The

retraction rate varies with the frequency of the oscillator, which accounts

for Wilson's fourth rule: \Retraction time varies". The rhythmic pattern

established by the oscillator is modi�ed by a servomechanism circuit and

a re
ex circuit. The servomechanism circuit uses sensory signals fed back

to the central nervous system from joint receptors and/or stretch receptors.

The sensory feedback adjusts the strength of the supporting and pushing
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Figure 4.3: Pearson's neural circuit for controlling the stepping motion of a

single leg. An oscillator provides the stepping rhythm. It triggers a swing

command near the peak of its cycle. The swing command excites the motor-

neuron circuit that swings the leg forward, and inhibits the push circuit.

The push circuit presses the foot to the ground and draws it back. A steady

excitatory input keeps the push circuit active whenever it is not inhibited by

the swing command. Adapted from (Wilson 1966).
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Phase difference = (lag / period) x 360  

Slow Wave Gait
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Ripple Gait

Phase difference = 180

Tripod Gait

Phase difference = 60

Figure 4.4: Various gaits emerge from changing the frequency of the local

leg oscillators.

contractions to match variations in load. The re
ex circuits delay or prevent

the command that swings the leg forward. The input to these re
exes comes

from receptors that detect whether another leg has taken up some of the load.

For example, if a middle leg is amputated, it fails to take up the load at the

normal time. This failure delays the protraction of the front leg. When the

rear leg hits the ground it takes up some of the load, and this releases the

delayed protraction of the front leg. As a result the front and hind legs step

180 degrees out of phase instead of in phase (transitions from a tripod gait

to a slower wave gait).

The unit that controls walking is comprised of six leg-stepping units (one

for each leg) and a command neuron(s) . These leg-stepping units are coor-

dinated by coupling signals that pass back and forth between the oscillators.

The oscillators that control the legs directly across form one another maintain

a constant 180 degrees phase relationship This accounts for Wilson's second

rule: \Contralateral legs of the same segment alternate in phase". In con-

trast, the three oscillators along either side of the body maintain a temporal

lag. The �xed lags between ipsilateral oscillators account for the �rst part

of Wilson's �fth rule \the intervals between steps of the hind leg and middle

leg and between middle leg and the front leg are constant." The fact that

the front oscillator lags the middle, which in turn lags the rear oscillator, ac-
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Figure 4.5: Cruse's circuit for controlling the motion of an individual leg.

The left side of the circuit determines whether the system adopts the power

stroke or the return stroke. The left relay characteristic produces the two

alternative target positions, AEP or PEP, when its input value is positive

or negative, respectively. The value of the target position is compared with

the actual leg position. The output of the left side of the circuit is sent as a

reference input to the right side of the circuit. The right side of the circuit

is a velocity-controlling feedback system. Adapted from (Cruse 90).

counts for Wilson's �rst rule: \A wave of protractions runs from posterior to

anterior". The �nal component of the walking circuit is the command neuron

or neurons, which sets the pace of walking by changing the period of the os-

cillators. With a strong command signal the oscillators cycle rapidly (makes

the period shorter). Oscillators with a �xed-lag coupling must change their

phase relationship when their period changes. Consequently, the changes in

gait are simply changes in the phase relationship between the three oscillators

on either side. See �gure 4.4.

4.3.3 Cruse

Holk Cruse ((Cruse 1976a), (Cruse 1976b), (Cruse 1979), (Cruse 1980a),

(Cruse 1990b)) has studied locomotion of several animals. Among other

models, he developed two models for the locomotion of walking stick insects

Carausius morosus. The �rst is a model for the control of individual legs;

the second is a model for the coordination between legs. The resulting gaits

are consistent with Wilson's descriptive model.

Cruse's model for the control of individual legs of the walking stick insect

is presented in (Cruse 1980b) and shown in �gure 4.5. Each leg has a step
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3: Caudal positions excite start of return stroke.

Figure 4.6: Cruse's circuit for leg coordination. This �gure summarizes

the coordinating mechanisms operating between the legs of a stick insect.

Adapted from (Cruse 1990).

pattern generator that is responsible for the transition between the power

stroke and the return stroke. The step pattern generator transitions from

the return stroke to the power stroke when the leg reaches the AEP, and it

transitions from the power stroke to the return stroke when the leg reaches

the PEP, the load on the leg is small, and the adjacent legs are in their

supporting phase. These conditions insure the leg doesn't lift until the body

is supported by other legs. The value of the target position (AEP or PEP)

is sent as a reference position to a velocity controlling feedback system.

In (Cruse 1980a), the author presents 6 mechanisms responsible for the

coordination between legs observed in walking stick insects. These mech-

anisms are redundant in re-establishing coordination in the case of minor

disturbances. This thesis presents the three primary mechanisms. These

mechanisms e�ect the threshold for beginning the return stroke by adjusting

the PEP of the receiving leg. The PEP adjustment is based on the sum of

the interleg in
uences a�ecting that leg. The threshold for beginning the

power stroke (AEP) is �xed. The in
uences are sent between legs as shown

in �gure 4.6. Figure 4.7 shows what these in
uences look like as a function

of leg position.

� Mechanism1: Rostrally directed in
uence inhibits the start of the re-

turn stroke in the anterior leg by shifting PEP to a more posterior

position. This is active during the return stroke of the posterior leg.
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Figure 4.7: Relation of the coordinating mechanisms to leg position.

� Mechanism2: Rostrally directed in
uence excites the start of the re-

turn stroke in the anterior leg by shifting the PEP to a more anterior

position. This is active during the start of the power stroke of the

anterior leg.

� Mechanism3: Caudally directed in
uence excites start of a return

stroke in the posterior leg. The start of the return stroke is more

strongly excited (occurs earlier), the farther the anterior leg is moved

rearward during the power stroke. This causes the posterior leg to per-

form the return stroke before the anterior leg begins its return stroke.

This is active during the power stroke of the anterior leg.

How do these three mechanisms stimulate stability and back to front

metachronal waves? As an example, let's discuss their in
uence on the

right front leg, R1. For this discussion we use the leg labeling convention

of �gure 4.6, and we say mechanism1 exerts influence1, mechanism2 exerts

influence2, and mechanism3 exerts influence3. R1 receives four in
uences:

influence2 and influence3 from L1 and influence1 and influence2 from

R2. Influence2 from R2 and L1 inhibits R1 from beginning its swing phase
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while R2 and L1 are in support phase. This encourages stability by discour-

aging R1 from lifting before all of its adjacent legs are supporting the body.

Influence3 from L1 stimulates R1 to start its swing phase while L1 is in sup-

port phase. This in
uence strengthens as L1 approaches its PEP so that R1

will perform its return stroke before L1 �nishes its power stroke. Influence1
from R2 provokes R1 to begin its return stroke after R2 performs its return

stroke. This establishes back to front metachronal waves. R1 sends three

in
uences: influence2 and influence3 to L1 and influence3 to R2. Sending

influence3 to L1 and R2 contributes to stability by exciting L1 and R2 to

swing while R1 supports the body. Sending influence2 to L1 encourages 180

degree phasing between contralateral legs of the same segment.

Cruse's model for leg coordination has been tested in simulation ((Dean

1990), (Dean 1991a), (Dean 1991b), (Dean 1992a), (Dean 1992b)) and on a

robot (Beer et al. 1992). Dean successfully tested four of the six mechanisms

presented in Cruse (1990a). He used kinematic leg models in his simulation,

so the e�ects of friction and inertia were not addressed. The four mechanisms

include the three mechanisms described above and a targeting mechanism

that adjusts the AEP of the posterior legs (this mechanism is responsible for

the follow-the-leader gait observed in walking stick insects). Beer et al. (1992)

successfully tested the three mechanisms described above on a hexapod robot

with 2 DOF legs. Whereas Dean's goal was to reproduce experimentally

observed aspects of walking stick insect gaits, Beer and his colleagues goal

was to produce e�ective robot locomotion. By removing various mechanisms

Beer and his colleagues determined that mechanism2 promotes normal back

to front metachronal waves, and mechanism3 promotes 180 degree phasing

between cross-body leg pairs. Dean found that the mechanisms rapidly re-

coordinate the gait in response to leg perturbations. Beer et al. (1992) and

Dean (1991b) found mechanism3 is the most e�ective single coordinating

mechanism and mechanism2 was the least e�ective. Both papers report

Cruse's mechanisms produce stable metachronal coordination over a wide

range of step periods provided all the legs retract at the same velocity.

4.4 Cruse Control

Hannibal's �rst locomotion network implements mechanism1, mechanism2

and mechanism3 presented in Cruse (1990a) and in the preceding section.
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Figure 4.8: The cyclic stepping pattern of each leg was implemented using

this circuit. The step pattern generator agent produced the step cycle by

exciting the return stroke agent and the power stroke agent in turn. The

arrows with numbers represent the direction the coordination mechanisms

were sent between the legs. The numbers represent Cruse's coordination

in
uences as labeled in this section.

We hoped these mechanisms would enable Hannibal to walk with stable

metachronal gaits over a wide range of step periods and would make these

gaits robust to leg disturbances. Each leg had a network of three agents as

shown in �gure 4.8: a step pattern generator agent, a return stroke agent,

and a power stroke agent.

� The step pattern generator agent is responsible for transitioning be-

tween the return stroke and the power stroke. The transition from the

return stroke to the power stroke occurs when the leg position is greater

than or equal to the AEP. In this implementation, the AEP is �xed.

The transition from the power stroke to the return stroke occurs when

the leg position is less than or equal to the PEP. It computes the PEP

from influence1,influcence2 and influence3 from peripheral legs.

� The return stroke agent is responsible for lifting and swinging the leg

to the starting position of the power stroke. It is activated by the step

pattern generator. While this agent is active, it exerts mechanism1. It

receives the AEP from the step pattern generator agent.
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Figure 4.9: This circuit implemented Cruse Control on Hannibal. A step

cycle circuit was implemented on each leg to produce the step pattern for

that leg. The coordination mechanisms (represented as numbers with arrows)

applied the appropriate constraints on the sequencing of the legs to produce

insect-like gaits.

� The power stroke agent is responsible for supporting and propelling

the body by steadily moving the leg to the PEP. While this agent was

active it exerts mechanism2 and mechanism3. It is activated by the

step pattern generator agent. It receives the updated PEP from the

step pattern generator agent.

Figure 4.9 shows the gait coordination circuit. The form of the in-

hibitory/excitatory in
uences are shown in �gure 4.7. The return stroke

agent implementsmechanism1 by sending a negative constant in the rostral

direction during its activation and 60ms after its deactivation. The power

stroke agent implements mechanism2 by sending a positive constant in the

rostral direction starting 60ms after its activation and ending 60ms later. The
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Figure 4.10: After implementing Cruse Control on Hannibal, we found that

insu�cient velocity control of the legs caused the gaits to shift in and out of

phase.

power stroke agent implementsmechanism3 by sending a positive monoton-

ically increasing ramp function in the caudal direction during its activation.

The new PEP of a leg is computed from the in
uences it receives by the

formula

PEP = PEPdefault + �Influence1+ �Influence2 + �Influence3 (4:1)

where the standard stride length is given by

Stridestandard = AEP � PEPdefault (4:2)

This approach was somewhat successful on Hannibal. When Hannibal's

legs were unloaded it was able to transition between gaits as a function of

step period frequency. However, this approach failed to work once Hannibal

was put on the ground. The models proposed by Cruse require that all

the legs retract with the same velocity. Unfortunately Hannibal's velocity
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Figure 4.11: The Modi�ed Cruse Control gait coordination circuit.

control is insu�cient, so once Hannibal's legs were loaded they did not retract

with the same velocity. This caused Hannibal to change gaits randomly and

occasionally become unstable (as shown in �gure 4.10).

4.5 Modi�ed Cruse Control

Given Hannibal's velocity control is inadequate for Cruse control, we modi�ed

the three mechanisms to make them compatible with this shortcoming. The

modi�ed mechanisms are shown in �gure 4.12. Figure 4.11 shows how the

modi�ed mechanisms are routed between the legs.

� Modi�ed mechanism1: During the recover stroke send a wait message

to all adjacent legs. This enforces stability by not allowing adjacent

legs to lift at the same time.
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Figure 4.12: The in
uences used in the Modi�ed Cruse Control gait coordi-

nation mechanism.

� Modi�ed mechanism2: During the start of the stroke phase send a go

message in the rostral direction. This enforces back to front metachronal

waves along each side of the body.

� Modi�ed mechanism3: During the stroke phase send a go message

in the contralateral direction of the same segment. This enforces 180

degree phasing between adjacent contralateral legs.

The step pattern generator agent, the return stroke agent, and the power

stroke agent of each leg were also changed.

� The step pattern generator agent is responsible for transitioning be-

tween the power stroke and the return stroke. It sets a recover 
ag

true when it receives a go message, and it clears the recover 
ag

when it initiates a recover stroke. It no longer transitions from the

power stroke to the return stroke when the leg position is less than or

equal to the PEP (except for the special case of the hind legs). In-

stead, it makes the transition when its recover 
ag is true and it

stops receiving wait messages from the peripheral legs. However, it

still transitions from the recover stroke to the power stroke when the

leg position is greater than or equal to the AEP.
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� The return stroke agent is responsible for lifting and swinging the leg

to the starting position of the power stroke. It is activated by the step

pattern generator agent. While this agent was active, it exerts modi�ed

mechanism1. The AEP is �xed.

� The power stroke agent is responsible for supporting and propelling

the body by steadily moving the leg to the PEP. It is activated by

the step pattern generator agent. While this agent is active it exerts

mechanism2 and mechanism3. The PEP is �xed.

Modi�ed Cruse control is similar in concept to Cruse control. Mechanism1

of both methods e�ects stability, mechanism2 of both methods e�ects back

to front metachronal waves, and mechanism3 of both methods e�ects 180

degree phasing of adjacent contralateral legs. In Cruse control, these e�ects

emerge from adjusting the PEP of the legs because swing phase coordination

of the legs depends on the time at which the legs reach their PEPs. This

is why all legs must retract at the same velocity for Cruse control to work.

In contrast, modi�ed Cruse control forces the start of the recover stroke as

soon as the adjacent legs are supporting the body and the adjacent posterior

leg �nishes its recover stroke. In the special case of the hind legs, the return

stroke starts when the leg reaches the PEP, all adjacent legs are in the sup-

porting position, and the adjacent contralateral leg has completed its return

stroke. Consequently, this approach is less sensitive to retraction velocity and

is better suited to Hannibal. The Modi�ed Cruse control approach produces

a range of stable gaits as shown in 4.13.

Lesion compensation is implemented by treating the step pattern gener-

ator of the lesioned leg as a switchboard for the messages of the peripheral

legs (see �gure 4.14). An example of this is shown in �gure where L2 is the

lesioned leg. With L2 gone, L1 and L3 are ipsilaterally adjacent legs. For

extra support, L3 is considered contralaterally adjacent to R2 and R3. L1's

and L3's wait messages are routed through L2 to each other, L3's and R2's

wait messages are routed through L2 to each other, and L3's go message

is routed through L2 to L1. E�ectively, the in
uences of the lesioned leg

are removed from the network and replaced by the in
uences of its adjacent

legs. Figure 4.15 shows how re-routing the coordination in
uences through

the lesioned leg a�ects the gait.

The results of the modi�ed Cruse control are mixed. On the positive side,

Hannibal's gait coordination is robust to inconsistent retraction velocities,
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Figure 4.13: Various gaits produced using Modi�ed Cruse Control.
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Figure 4.14: By re-routing the leg coordination in
uences through the le-

sioned leg, gait coordination was maintained despite the loss of the leg.

it's able to transition between stable metachronal gaits from a slow wave

gait through a tripod gait, the gaits are robust to leg perturbations, and the

lesion mechanism successfully re-routes messages. On the negative side, mid-

range gaits were di�cult to reproduce, and poor retraction velocity control

presents a di�erent problem. Because Hannibal cannot consistently control

the duration of the power stroke, some legs reach the PEP too soon and wait

there until it's ok to start the return stroke. For the time period between

reaching the PEP and starting the return stroke the leg does not propel the

body. Consequently, the leg e�ectively becomes \dead-weight" that the other

supporting legs have to drag along1.

4.6 Pacemaker Control

To conquer Hannibal's velocity control problem, we included pacemaker (os-

cillator) agents in the control network. The motivation for the pacemakers

is to synchronize the step cycle stages of the legs. The step cycle stages

include lift/swing, step/swing, and a sequence of support stages. During the

1Hannibal's leg design causes the stroke trajectory to move in a fairly tight arch. The

AEP and PEP are chosen to make the stride as long as possible before arching becomes

unacceptable. Ergo if the leg continued to retract after reaching the PEP, the leg would

be worse than \dead weight" because its contribution signi�cantly propels the body per-

pendicular to the direction of motion. This causes unacceptable torquing on the body.
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Figure 4.15: Run-time data of the robot's gait before and after the right

middle leg (R2) is lesioned. The retraction velocity was set such that the

robot performed a slow wave gait. Notice that after leg R2 was removed, leg

R1 began its recovery phase immediately after leg R3 �nished its recovery

phase.
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Figure 4.16: Individual leg control circuit for the pacemaker scheme.
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Figure 4.17: Gait coordination circuit for the pacemaker scheme. This circuit

is strongly inspired by the work of Pearson.
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Figure 4.18: Implementation of leg oscillators on Hannibal. Each oscillator is

modeled as a clock which cycles through its values at regular time intervals.

The peak of the oscillator phase corresponds to osc-clock = 1. The period

of the clock corresponds to the period of the oscillator.

lift and step stages, the leg moves to the AEP. During each support stage

the leg moves an incremental distance towards the PEP. This increment is

determined so that the leg reaches the PEP during the last of the series of

support stages. Ergo all supporting legs propel the body in synchrony, and

the duration of the power stroke is equal for all the legs. The step cycle fre-

quency is adjusted by a command neuron agent. The inclusion of oscillator

agents and a command neuron agent were inspired by Pearson's work.

As described by Pearson, the oscillator agent is responsible for generating

the cyclic motion of the leg. The oscillator agent excites a lift agent, a swing

agent, and a step agent to produce the return stroke, and it excites the

support agent to produce the power stroke. Figure 4.16 shows the individual

leg control circuit, and �gure 4.19 shows the in
uences sent between these

agents to produce the step cycle pattern. The lift, swing, and step agents

serve a similar function as the Flexor neurons, and the support agent serves

a similar function as the Extensor neurons.

� The oscillator agent: Through studying the neural system of the walk-

ing cockroach, Pearson and his collaborators experimentally determined
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Figure 4.19: The in
uences used in the pacemaker gait coordination mecha-

nism. The leg lifts and swings for the �rst clock cycle, steps and swings for

the second clock cycle, and supports and propels the body for the remainder

of the clock period.

the existence of a pacemaker in each leg. On Hannibal, the oscillator

agent is similar to a pacemaker. The oscillator agent is modeled as a

clock that cycles through its values at regular time steps (see �gure

4.18). In the current implementation, the clock value changes every 0.6

seconds. It generates the cyclic movement of the leg by activating the

lift, swing, step, or stroke agents as a function of its clock value.

� The lift agent: While active, this agent commands the up-down actu-

ator to continually lift the leg.

� The step agent: While active, this agent commands the up-down actu-

ator to lower the leg until the leg supports the body.

� The swing agent: While active, this agent commands the protract-

retract actuator to move to the AEP.

� The support agent: While active, this agent commands the protract-

retract actuator to move an incremental amount towards the PEP each

clock cycle. The increment is equal to S �N where S = abs(PEP - AEP)

and N = number of support stages. Consequently the transition from

the stroke phase to the swing phase occurs on the clock pulse after the

leg reaches the PEP.

55



The gait coordination network is shown in �gure 4.17. The emergent gaits

of this network posses similar characteristics to Cruse's, Pearson's, and Wil-

son's model for insect gaits. These gaits are shown in �gure 4.20. Regarding

individual leg control:

� The oscillator agent keeps protraction time constant and decreases re-

traction time as step cycle frequency increases.

� The leg position reaches the AEP when transitioning from the return

stroke to the power stroke.

� The leg position reaches the PEP when transitioning from the power

stroke to the return stroke.

Concerning the coordination between legs, the oscillator agents are synchro-

nized and initialized such that:

� A wave of protraction runs from posterior to anterior.

� No leg protracts until the leg behind is placed in a supporting position.

� The supporting legs propel the body such that no leg is \dead weight".

� The duration of the power stroke is the same for all legs.

� Contralateral legs of the same segment alternate in phase.

� The intervals between steps of the hind leg and middle leg and the

intervals between middle leg and foreleg are constant.

� The interval between the foreleg and hind leg steps varies inversely with

frequency.

4.6.1 Gait Behavior

Hannibal changes gait as a function of oscillator frequency. The network

responsible for gait transitions is shown in �gure 4.21. Changing the number

of clocks per step cycle (clocks/cycle) of the oscillator changes the phase

between the metachronal waves along each side of the body. This causes

di�erent wave gaits to emerge. The transition between gaits is smooth and
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Figure 4.21: The network governing speed transitions. A new speed request

corresponds to changing the period of the local oscillators and re-establishing

the correct phasing between them. The top �gure shows the left rear leg, L3,

in the lift phase (osc-clock = 1) when the new speed is requested. As a

result, the reset clocks agent of L3 is activated. The bottom �gure shows the

reset clocks agent of L3 re-initializing the oscillator clocks of the other legs

given L3's current step cycle phase and the new oscillator period.
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immediate. Currently, Hannibal uses three gaits: a slow wave gait, a ripple

gait, and a tripod gait. Figure 4.22 shows the robot transitioning between

various gaits. Wilson (1966) reports the slow wave gait is the slowest gait

and the tripod gait is the fastest gait observed in insects. These gaits are

implemented by a global speed agent and local reset clocks agents. The global

speed agent is similar to the command neuron(s) of Pearson's model. The

reset clocks agents are similar to the coupling signals sent between oscillators

in Pearson's model.

� The speed agent: Whenever Hannibal wants to change speed, this

global agent sends a new clocks/cycle value to all the oscillators. Higher

level agents command speed through this agent.

� The activate-reset-clocks agent: If a new clocks/cycle value is sent to

the oscillators, this agent �nds the furthest posterior leg in the lift stage

and activates the local reset-clocks agent of that leg.

� The reset-clocks agent: Pearson found the local pacemakers of the legs

send coupling signals between each other to coordinate the step pattern

generators. Hannibal implements a similar mechanism when changing

speed. Because a di�erent clocks/cycle value is sent to the oscillators

whenever the robot changes speed, the values of the oscillators must be

re-coordinated to maintain a proper gait. When active, the reset-clocks

agent re-initializes the oscillators of the other legs with respect to its

osc-clock = 1.

4.6.2 Turning Behavior

Hannibal turns by adjusting two parameters: turn-direction and turn-sharpness.

The turn-direction parameter determines whether Hannibal turns to the

right, to the left, or makes no turn. The turn-sharpness parameter deter-

mines the radius of the turn. Figure 4.23 illustrates the network that gives

the robot turning capabilities.

� Global turn agent: keeps all the legs in agreement as to what kind

of turn to make by telling the leg turn agents the turn-direction and

the turn-sharpness. Higher level agents command turn-direction and

turn-sharpness through this agent.
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Figure 4.23: The network governing turning. Turning is achieved by adjust-

ing the stride length of the legs along one side of the body. The local turn

agents receive rotation and sharpness values from the global turn agent. Ac-

cording to these parameters, the local turn agents compute new AEP and

PEP values for their leg. To execute the turn, the local turn agents send

these new target values to their leg's swing agent and the support agent.

61



� Local turn agents: implement the turn by changing the PEP and AEP

according to the turn-direction and turn-sharpness parameters. They

receive the return stroke target and power stroke target values from

the local direction agents and modify them as necessary to perform the

turn. If the turn-direction is straight the AEP and PEP are left alone.

If turn-direction is right the turn agents on the right side of the body

modify their AEP and PEP values by the turn-sharpness parameter,

and the turn agents on the left side of the body leave the AEP and

PEP values alone. If turn-direction is left the turn agents of the legs

on the left side of the body modify their AEP and PEP by the turn-

sharpness parameter, and the turn agents on the right side of the body

leave the AEP and PEP values alone. To modify the AEP and PEP,

the local turn agents add the sharpness value to the PEP and subtract

the sharpness value from the AEP. The turn-sharpness value can vary

the radius of curvature from a gentle arch to turning in place. The turn

agent of each leg sends the resulting return stroke target value to the

swing agent and the resulting power stroke target value to the support

agent.

4.6.3 Direction of Travel Behavior

Hannibal changes direction by swapping the swing phase and support phase

target positions between the PEP and AEP. To walk forwards, the return

stroke targets the AEP and the power stroke targets the PEP. To walk back-

wards, the return stroke targets the PEP and the power stroke targets the

AEP. Figure 4.24 illustrates the network that gives the robot the ability to

change its direction of travel.

� The global direction agent: keeps all the legs in agreement of the direc-

tion of travel by sending the local direction agents a direction parame-

ter (forward or backwards). Higher level agents command direction of

travel through this agent.

� The local direction agents: implement the commanded direction of

travel by setting the target positions of the power stroke and return

stroke according to the direction parameter. For each leg, its direction

agent sends the swing phase target position to its swing agent and the
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Figure 4.24: The network governing the direction of travel. Changing the

direction of travel entails exchanging the target values of the swing agent and

support agent. The local direction agents receive the commanded direction
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agents send the swing target position and stroke target position to the local

turn agents. If the robot does not want to turn, the local turn agents pass

these values to the swing agent and support agent. Otherwise, the local turn

agents modify these values so that the robot may change direction and turn

simultaneously.
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Figure 4.25: This network enables the robot to walk in a stable fashion

despite leg damage. When the lesion agent of a leg is active, the lesion agent

sends a message to the global speed behavior to make the robot adopt the

slow wave gait. This gait is stable even with fewer than six legs are working.

In addition, the lesion agent places the motors of its leg in brake-mode and

removes the in
uences of its from the rest of the network.

support phase target position to its support agent (through the local

turn agent).

4.6.4 Lesion Compensation Behavior

If a leg becomes in-operable, Hannibal changes gait so that it can walk in a

stable fashion with fewer legs. The network responsible for this is shown in

�gure 4.25. Experimental �ndings regarding the e�ect of lesions on cockroach

gaits is presented in (Wilson 1966). He reports when the two middle legs of a

cockroach are removed, the animal resorts to a slower gait where a su�cient

number of legs are supporting the body at any given time. If the middle two
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legs of a cockroach are removed the slow wave gait is still stable, but the

tripod gait and ripple gait are unstable. Consequently, the cockroach adopts

a slow wave gait. The slow wave gait remains stable in the event of losing

any single leg or losing both middle legs.

� The lesion agent: Each leg has a lesion agent that becomes active if

a leg is in-operable (chapter 6 discusses how the robot decides when a

leg is useless). The lesion agent sends a message to the speed agent to

evoke the slowest wave gait. The slow wave gait is stable with the loss

of any single leg or the loss of the two middle legs. It also disables the

leg by putting all its motors in brake mode.

4.7 Performance

4.7.1 De�nition of Terms and Stability Formulas

The following de�nitions and theorems are presented in (Song & Waldron

1989). Most of this work was established by McGhee and his co-workers.

De�nitions

For the following de�nitions, the leg number of a 2n-legged animal is assigned

as 1,3,5,...,2n-1 on the left side and 2,4,6,...,2n on the right side from the front

to the rear.

1. The cycle time, T, is the time for a complete cycle of leg locomotion of

a periodic gait.

2. The duty factor �i, is the time fraction of a cycle time in which leg i is

in the support phase. �i =
ti
ci
where ti is the time of support phase of

leg i and ci is the cycle time of leg i.

3. The leg stroke, R, is the distance through which the foot is translated

relative to the body during the support phase.

4. The stroke pitch, P , is the distance between the centers of strokes of

the adjacent legs on one side.

5. A regular gait is a gait with the same duty factor for all legs.
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6. A gait is symmetric if the motion of the legs of any right-left pair is

exactly half a cycle out of phase.

7. A wave gait is a regular and symmetric gait where the placing of each

foot runs from the rear leg to the front leg along either side of the body

as a wave, and each pair of legs is 180 degrees out of phase.

8. A support pattern (or support polygon) of an animal or a walking ma-

chine is a two dimensional point set in a horizontal plane consisting of

the convex hull of the vertical projection of all foot points in support

phase. The contact between foot and ground is idealized to a point

contact without slip. In a real, distributed foot contact, the contact

point can be interpreted as the center of pressure.

9. The stability margin, Sm, is the shortest distance of the vertical pro-

jection of center of gravity to the boundaries of the support pattern in

the horizontal plane. See �gure 4.26.
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10. The front stability margin and the rear stability margin are the distances

from the vertical projection of the center of gravity to the front and

rear boundaries of the support pattern, respectively, as measured in

the direction of motion. The longitudinal stability margin, Sl, is the

shorter of these two. See �gure 4.26.

11. The longitudinal gait stability margin, S, or the gait stability margin
in brief, for a periodic gait, G, is the minimum of Sl over an entire

cycle of locomotion. A gait is statically stable if S � 0. Otherwise it is

statically unstable.

Stability Formulas

� For a 2n-legged wave gait with a duty factor in the range 1=2 � � <

1, the longitudinal gait stability margin can be determined from the

following equation where P is the pitch, R is the stroke and

Rb = (�=(3� � 2))� P (4:3)

If 1=2 � �, or if � > 2=3 and R � Rb,

S1 = (n=2 � 1) � P + (1� 3=(4�)) �R (4:4)

If � > 2=3 and R > Rb,

S2 = (n=2 � 1=2) � P + (1=(4�)� 1=2) �R (4:5)

� For an 2n-legged backward wave gait, the gait stability margin is

S = (n=2 � 1)� P �R=(4�) (4:6)

for 1=2 � � < 1.

4.7.2 Stability Performance

To measure Hannibal's stability we computed its gait stability margin for a

variety of gaits. The gait stability margin is described in de�nition 11. We

used equation 4.4 to compute the gait stability margin of the slow, ripple, and
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tripod wave gaits. A positive gait stability margin corresponds to a stable

gait (where a larger magnitude indicates greater stability). A negative gait

stability margin corresponds to an unstable gait (where a larger magnitude

indicates less stability).

Figure 4.27 presents Hannibal's gait stability margin for the three types

of wave gaits. Not surprisingly, all gaits are stable. In fact, it has been

determined that the family of wave gaits provides the optimum stability for

hexapods (Song & Waldron 1989). The �gure shows a trend where slower

gaits (gaits with a larger duty factor) have a greater gait stability margin

than faster gaits (gaits with a smaller duty factor).

4.7.3 Speed Performance

To quantify Hannibal's speed, we measured the time required for Hannibal

to walk 3 feet. We conducted this speed test for the slow wave gait, the

ripple gait, and the tripod gait. The speed test for each gait consisted of ten

trials. During the trials we adjusted the spine DOF to see if there was any

e�ect on the robot's speed. By adjusting the spine DOF we can make the
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robot lean forward or backward.

The results of the speed tests are shown in �gure 4.28. The robot's feet

slip as it walks, so not surprisingly, the measured speed is slower than the

theoretical speed. Adjusting the spine DOF to the lean-forward position

increased the robot's speed. In this con�guration, gravity assists the swing

actuator advance the leg forward which e�ectively lengthens the stride. The

lean-forward speed is fairly close to the theoretical speed. Adjusting the

spine DOF to the lean-back position caused the robot to walk slower. In this

con�guration, gravity acts against the actuator as the actuator swings the

leg forward.

4.7.4 Turning Performance

To quantify the relation between the turn sharpness parameter value to the

actual turn sharpness, we measured how far the rear of the robot moves until

the robot turns ninety degrees. The rear of the robot traces a quarter of a

circle (approximately) when it completes its path; hence we are measuring

the length of this arc. We conducted this test for a variety of turn sharpness
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parameter values. Turn sharpness = 2A corresponds to turning in place

and turn sharpness = 0 corresponds to walking straight. The test was

performed for clockwise and counter-clockwise turning directions.

The results of the turn sharpness tests are shown in �gure 4.29. As

expected, the actual sharpness of the turn became greater as the turn sharp-

ness parameter value increased. The turn sharpness for a clockwise rotation

is comparable to the turn sharpness for a counter-clockwise rotation.

4.7.5 Directional Performance

We computed Hannibal's gait stability margin when it walks backward for

the three di�erent gaits using equation 4.6. The results are presented in �gure

4.27. Again there is a trend that as the duty factor increases the gait stability

margin increases. It is interesting to note that Hannibal actually performs

a di�erent gait when it walks backward - it uses a backward wave gait. For

the backward gait the metachronal waves progress against the direction of

travel, whereas for the wave gait the metachronal waves progress along the

direction of travel. The backward wave gaits are less stable than the wave
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gaits (with the exception of the tripod gait). The reason for this is as follows:

the minimum stability margin (for both the wave gait and for the backward

wave gait) occurs when a rear foot is lifted. Hence the stability margin is

determined by the position of the supporting middle leg directly ahead of

the lifted rear leg (we call it the \key" leg). For a wave gait, the key leg

is at its most backward position where it provides the maximum stability

margin. On the contrary, for the backward wave gait, the key leg is at its

most forward position where it provides the minimum stability margin.

We measured the relationship between the turn sharpness parameter

value to actual turn sharpness as the robot walks backwards. We performed

the same set of tests as for the forward case. The results are shown in �gure

4.29. Again, the turn sharpness for a clockwise rotation is comparable to

the turn sharpness for a counter-clockwise rotation. It is interesting that the

robot turns much more sharply when walking backwards than when walking

forwards. We hypothesize the decrease in stability of the backward wave gait

counteracts the robot's momentum along its direction of travel. As a result,

the robot covers a shorter distance along the direction of travel per step.
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Consequently, the distance it travels to complete a 90 degree turn is less.

We measured the time for the robot to walk backwards for three feet.

The results are shown in �gure 4.30. The robot walks slower backwards than

it does forwards. We hypothesize the decrease in stability of the backward

wave gait counteracts the robot's momentum along its direction of travel.

This could cause the robot to walk slower when using the backward wave

gait.

4.7.6 Lesion Compensation Performance

We computed the gait the stability margins for the following cases: the

robot has an outer leg removed, a middle leg removed, or both middle legs

removed. The gait stability margins were computed using geometry given

the robot uses a slow wave gait when a leg is lesioned. Insects can locomote

with stability when a leg is cut o� provided it walks with the slow wave gait.

Hannibal uses the same strategy to maintain stability given the loss of a leg.

The robot is on the boarder line of stability if the lesioned leg is completely

removed. The reason is that the remaining legs are not long enough to provide
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more compensatory support for the lesioned leg. To increase the stability of

the robot if a leg is removed would require changing physical dimensions

of either the robot's body, the legs, or both. To get around this problem,

Hannibal places the motors of the lesioned leg in brake-mode and allows the

foot of the lesioned leg to rest on the ground. By doing so, the lesioned leg

provides a minimal amount of support{enough to keep the robot stable.

We determined the speed of the robot as it walks with any single leg

disabled or with both middle legs disabled. The test involved measuring the

time required for the robot to walk three feet. The results are shown in �gure

4.31. Not surprisingly, the robot was signi�cantly slower than when it used

the slow wave gait with all legs intact.

4.8 Legged Locomotion

Research in legged locomotion is divided into several categories. Signi�cant

progress has been made in the areas of dynamic legged locomotion for robots

(Raibert & Hodgins 1993) as well as for insects (Full 1993). Hannibal falls

under the category of statically stable locomotion. This section compares

and contrasts Hannibal's 
at terrain locomotion with that of other computer

controlled, statically stable walkers. Many of the presented approaches are

inspired by biology. We address rough terrain locomotion in chapter 5.

4.8.1 Phoney Pony

Frank and McGhee's group at USC built the Phoney Pony in the mid '60s(McGhee

1976). The Phoney pony was a quadruped with 2 degree of freedom (DOF)

legs. Both the hip joint and knee joint were driven through a worm-gear, and

each joint could be in one of 3 states: forward rotation, rearward rotation,

and locked. The phoney pony was the �rst fully autonomous walker, and the

�rst walker to use a digital computer to control electronic linkages.

Joint coordination of the Phoney Pony was implemented using �nite state
control which is a biologically motivated control scheme proposed by McGhee

and Tomovic in 1966. In �nite state control, each leg has an identical �nite-

state control circuit that generates the cyclic movement of the leg. Each con-

trol state of the leg cycle has corresponding hip rotation and knee rotation

values. As shown in �gure 4.32, transitions between states depend on var-
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ious conditions. Contralateral synchronization is implemented by the state

transitions 2 ! 20 when the pause signal, P , is set to one, and 20 ! 2 when

the synchronization signal, G, is set to 1. The P and G signals establish the

correct hip rotation di�erence between contralateral legs during the support

phase. The transition 3! 4 when the interlock signal, I, is set to 1 maintains

stability by keeping three legs in the support phase at any time. Joint angle

sensors or limit switches initiate state transitions 1! 2; 2! 3; 4! 5; 5! 6,

and 6! 1. With this approach, the Phoney Pony was programmed to per-

form a crawl gait. With a slightly modi�ed controller, a trot gait was also

implemented.

The control scheme implemented on the Phoney Pony is similar to the

control scheme of Hannibal in several respects. Both controllers are bio-

logically motivated. Both approaches implement control with �nite state

machines (although the augmented �nite state machines on Hannibal are

more sophisticated). In both cases, the legs operate as monostable oscilla-

tors. For the Phoney Pony the cyclic motions were generated by a �nite state

circuit on each leg. For Hannibal, the oscillator agent on each leg generates

the cyclic motion. In both schemes the legs send synchronization signals to

each other to maintain proper leg sequencing. For the Phoney Pony, the

synchronization signal was based on the di�erence between hip rotation of

contralateral legs. For Hannibal, agents local to the legs maintain the proper

phasing between leg oscillators.

4.8.2 OSU Hexapod

In the mid '70s, McGhee and colleagues built the OSU Hexapod at Ohio

State (McGhee & Iswandi 1979). The walker was roughly the size of a pony

and had six three DOF legs. The OSU Hexapod was a experimentalmeans of

follow up on McGhee's earlier theoretical �ndings on the combinatorics and

selection of gait (McGhee 1976). The Hexapod was eventually programmed

to negotiate simple obstacles, but we will only discuss basic locomotion ca-

pabilities here.

Basic locomotion of the OSU Hexapod was implemented in a hierarchi-

cal structure. Motion planning was the responsibility of the higher level,

and joint angle coordination was the responsibility of the lower level. The

motion planner chose leg placements such that the gait stability margin is

maximized. This requires that the center of mass of the walker remain in the
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polygon of support while the legs sequence through the gait (Song &Waldron

1989). For periodic support state sequences, the family of wave gaits (the

same gaits observed in insects) optimizes the longitudinal stability margin.

Joint angle coordination was implemented with model reference control (also
known as algorithmic control). With this approach, the OSU Hexapod was

programmed to walk with a number of gaits, turn, and walk sideways. In this

control scheme, the computer's primary task was to solve the inverse kine-

matic equations for the leg positions chosen by the planner; this approach

was computationally extensive. The solutions to these equations were joint

angle commands for the 18 electric motors driving the legs. Servo control

is a signi�cant capability the OSU Hexapod had, but the Phoney Pony did

not.

Locomotion control of the OSU Hexapod and Hannibal are dramatically

di�erent, but the goal of stable locomotion is the same. The OSU Hexa-

pod's controller was designed in a top-down approach, whereas Hannibal's

controller was designed from the bottom up. The control scheme of the

OSU Hexpod is hierarchical and functionally decomposed, whereas the con-

trol scheme of Hannibal is distributed and decomposed into task achieving

agents. For example, regarding the OSU Hexapod controller, the higher level

�rst derives a set of wave gait foot placements based on maximizing the lon-

gitudinal stability margin; then the lower level converts these planned foot

placements into joint angle commands. In contrast, Hannibal's distributed

control network is designed so that di�erent wave gaits emerge from the in-

teraction of the speed agent, reset clocks agents, and oscillator agents. Joint

angle coordination is implemented di�erently as well. The OSU Hexapod

performs inverse kinematics on foot placements to produce leg joint angles.

In contrast, Hannibal's lift, swing, step, and support agents determine the

command joint angles using either the default values of these agents or the

incoming values from other agents (such as Hannibal's turn and direction

agents). Overall, the OSU Hexapod's control is computationally expensive

compared to Hannibal's control.

4.8.3 SSA Hexapod

In the early 80s, Marc Donner implemented distributed locomotion control

on the SSA Hexapod (Donner 1987). The SSA hexapod was built at CMU

by Dr. Ivan Sutherland of Sutherland, Sproull, and Associates. Its three
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Figure 4.33: Locomotion controller for the SSA Hexapod. Adapted from

(Donner 1987).

DOF legs were hydraulically actuated and had position and force sensing for

each DOF (among other sensors). Donner's walking algorithm demonstrated

locality of control with no global information and little computation. He

implemented the walking algorithm in OWL, a specially designed language

he wrote for real-time performance and concurrency control.

Donner's walking algorithm was inspired by insect locomotion. Individual

leg control was implemented by a separate and mostly autonomous process

responsible for generating cyclic stepping movements. Leg coordination was

implemented by an excitation mechanismand an inhibition mechanism. Each

leg process sends/receives these in
uences to/from neighboring leg processes

as shown in �gure 4.33. The excitation and inhibition in
uences e�ect when

a leg makes the transition from the support phase to the swing phase. The

transition occurs when the leg has made more than half a stride and the

vertical force, fz, satis�es the relation fz � fo� inhibition+ excitation. The

excitation in
uences sent ipsilaterally encourage back to front metachronal

waves. A leg sends an excitation number to its frontward neighbor when it

�nishes its swing phase, and removes this excitation number when it begins
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its swing phase. Consequently, the excitation encourages an adjacent anterior

leg to begin its swing phase when the adjacent posterior leg is in the support

phase. The excitation sent contralaterally between the rear legs encourages

180 degree phasing between pairs legs on opposite sides of the body. This

is accomplished by having each rear leg excite its crosswise neighbor when

it reaches the halfway point in its drive stroke. The inhibition mechanism

encourages stability. Each leg that is in its swing phase sends an inhibition

signal to its neighbors thereby discouraging them from entering their swing

phase. The leg removes this inhibition when it enters its support phase.

The SSA hexapod walked as well as the physical constraints of the machine

allowed using this approach. The approach also permitted the machine to

locomote when a middle leg was removed.

Hannibal's and the SSA's controller are similar in several respects. Re-

garding global comparisons, both controllers were implemented in a language

specially designed to run concurrent processes in real-time. Both controllers

demonstrate locality of control with no global information and little compu-

tation. The locomotion processes of each machine are executed concurrently

and are implemented as �nite state machine circuits. Concerning speci�c

comparisons, it is interesting that Donner's controller is almost identical to

Hannibal's Modi�ed Cruse controller given they were derived independently

from di�erent models of insect locomotion. However, the mechanisms im-

plemented by the Modi�ed Cruse controller enforce certain relationships be-

tween the legs, whereas the mechanisms implemented by Donner's controller

encourage these relationships.

4.8.4 Genghis

Genghis is a small hexapod (35cm long, 25cm across) built in the mid '80s

by the Mobile Robotics Group at MIT (Brooks 1989). Genghis is the pre-

decessor to Hannibal; it has six legs, each with 2 DOF (lift and shoulder).

Brooks programmed Genghis to traverse rough terrain and follow people, and

later Maes programmed Genghis to learn a tripod gait. This section covers

the implementation of 
at terrain locomotion on Genghis (its rough terrain

abilities is addressed in the next chapter 5).

Basic walking on 
at terrain is implemented by 32 AFSM's (see �gure

4.34). Two of these AFSM's are for global coordination:
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Figure 4.34: Basic locomotion network for Genghis. Adapted from (Brooks
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� Walk machine sequences the lifting of the individual legs.

� Alpha Balance machine drives the sum of leg swing angles to zero.

Forwards is positive angle, straight out is 0 angle, and backwards is

negative angle. When a leg advances, this machine causes all the sup-

porting legs to push backwards a little bit.

Each leg has 5 AFSM's which account for the remaining thirty AFSMs:

� Beta Pos commands the lift motor

� Alpha Pos commands the advance motor

� Up Leg Trigger is activated by the Walk machine. When it receives an

input from theWalk machine, it causes its leg to lift for a predetermined

time period. This is accomplished by blocking the output of the leg

down machine to the Beta Pos machine.

� Leg Down continually tells the Beta Pos machine to put the leg down.

This message gets through to the Beta Pos machine except when the

Up Leg Trigger machine blocks it.

� Alpha Advance tells the Alpha Pos machine to swing the leg forward.

It is active when the leg is commanded to lift and blocks the Alpha

Balance message from reaching Alpha Pos. So, whenever the leg is

lifted, it is re
exively swung forward as well.

It is not surprising that the control scheme of Hannibal and Genghis are

similar given they were developed in the same lab and are programmed in

the Subsumption Architecture. We shall focus on the di�erences instead.

Genghis' locomotion network is less distributed. Genghis' locomotion con-

troller is only partially distributed; the leg re
exes are local, but a centralized

gait sequencer (the Walk machine) is used to generate stable gaits. In con-

trast, Hannibal's locomotion controller is completely distributed. Genghis'

locomotion controller is less 
exible. Implementing new gaits on Genghis

requires changing the Walk machine in the control network. So far, a Tri-

pod Walk machine and a Ripple Walk machine have been implemented on

Genghis. In contrast, Hannibal's gaits emerge from the same network simply

by changing the duration of the support phase. Genghis' controller is less
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Figure 4.35: Neural controller for the Case Western Hexapod. Adapted from

(Beer and Chiel 1993).

modular. On genghis, turning and directional behaviors are buried in other

agents which makes them more di�cult to interface with. Hannibal's turn

behaviors and direction behaviors are distinct processes so they are more

accessible.

4.8.5 Case Western Hexapod

Beer and colleagues implemented a neural network control architecture on a

small hexapod robot with 2 DOF legs ((Beer & Chiel 1993), (Chiel, Quinn,

Espenschied, & Beer 1992), (Quinn & Espenschied 1993)). The neural con-

troller was developed by Beer and was inspired by Pearson's 
exor burst-
generator model of cockroach locomotion. The goal was to generate robust
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hexapod locomotion using a neural network controller.

The neural network controller designed by Beer is shown in �gure 4.35.

In this model, the same neural network is implemented on each leg. At the

center of each leg controller is a pacemaker neuron whose output rhythmically

oscillates. A pacemaker burst initiates a swing by inhibiting the foot and

backward swing motor neurons and exciting the forward motor neurons. This

causes the foot to lift o� the ground and the leg to swing forward. Between

pacemaker bursts, the foot is down and tonic excitation from the command

neuron moves the leg backward. The output of the central pattern generator

is tuned by feedback from 2 sensors that signal when the leg is reaching the

AEP or the PEP. Approaching the AEP encourages a pacemaker to terminate

a burst by inhibiting it. Approaching the PEP encourages a pacemaker to

initiate a burst by exciting it. Inserting mutually inhibitory connections

between the pacemaker neurons of adjacent legs generates statically stable

gaits, and phase-locking the pattern generators on each side of the body

enforces metachronal waves. Using this network, the Case Western Hexapod

is capable of producing a continuous range of wave gaits by varying the tonic

level of activity of the command neuron. The system was also robust to

lesion studies performed by removing certain sensors or connections.

Beer's neural network is much truer in spirit to Pearson's model of insect

locomotion control than Hannibal's agent network. However, both control

schemes have similar organization and function. Organizationally, both sys-

tems have an oscillator on each leg that generates step patterns, a command

neuron that determines the frequency of the oscillators, and a network cir-

cuit repeated on each leg. Granted the implementation of these components

di�ers between the robots (Beer's is closer to Pearson's model), but the over-

all agents are similar. Both control schemes generate a range of wave gaits

by varying the oscillator frequency. Both control schemes are robust to leg

perturbations. Beer's approach has the nice property that adjacent legs put

constraints on each other, so even if the control circuit in a leg is perturbed

(removing sensor nodes or connections) the other legs coerce the perturbed

leg into functioning properly. Similarly, Hannibal's oscillators are synchro-

nized and coordinated such that if a leg is damaged, the oscillators remain

coordinated with each other.
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4.9 Contributions

The work described in this chapter makes three contributions toward the

advancement of autonomous hexapod control. First, we implemented and

tested several fully distributed, biologically motivated locomotion controllers

on Hannibal. By doing so, we have demonstrated how various locomotion

schemes used by insects can be applied to legged robots. In addition, we have

further con�rmed that a distributed control scheme using simple, concur-

rently running processes is a viable approach to controlling hexapod robots in

real-time with relatively little computational power ((Brooks 1989), (Quinn

& Espenschied 1993), (Donner 1987)). Second, we implemented a wide as-

sortment of basic locomotion capabilities on Hannibal using the local control
with cooperation paradigm. By doing so, we have explored the e�ectiveness

of this approach in controlling a complex system (the robot) which consists

of many concurrently running subsystems (the legs). Third, we implemented

a fully distributed, biologically motivated locomotion controller on Hannibal

that exhibits more basic locomotion capabilities than other hexapods using

similar control schemes ((Beer et al. 1992), (Donner 1987)). By doing so, we

have advanced the state of the art of fully distributed, biologically motivated

locomotion controllers.
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Chapter 5

Rough Terrain Locomotion

This chapter presents Hannibal's rough terrain capabilities. We present sev-

eral strategies used by insects to traverse rough terrain. Several of these

tactics inspired the design of Hannibal's rough terrain skills. We discuss how

Hannibal uses inter-leg communication to traverse rough terrain. This is a

signi�cant aspect of Hannibal's control scheme, so we give it extra attention.

Afterwards, we present the implementation of Hannibal's rough terrain net-

work. Following this, we describe the tests we used to evaluate Hannibal's

rough terrain performance and present the results. We conclude by compar-

ing Hannibal's rough terrain control with that of insects and other legged

robots.

5.1 The Rough Terrain Challenge

Hannibal's task is to locomote over natural terrain. Naturally occurring ter-

rain has holes, cli�s, obstacles of various sizes, and undulations. To locomote

over varying terrain, the robot needs ample sensory information to recognize

changes in the terrain. The robot must orchestrate sequences of actions to

negotiate obstacles and avoid hazards. Clearly, the control problem is sig-

ni�cantly more complicated than for basic locomotion. E�ectively managing

Hannibal's numerous sensors and actuators and controlling the robot in real-

time are important for the robot's success and safety.

We added another layer to the control architecture to give Hannibal rough

terrain capabilities. The Rough Terrain Level is built on top of the Basic lo-
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The robot can walk over small obstacles The robot can walk to the side of medium obstacles, 
but it cannot walk over them

The robot must walk around large obstacles

Figure 5.1: Hannibal encounters obstacles of various sizes as it locomotes

over natural terrain. \Small" obstacles are objects low enough for the robot

to walk directly over. \Medium" obstacles are objects low enough for the

robot to step on top of but too big to walk directly over. Consequently,

Hannibal must walk to the side of medium sized objects. \Large" obstacles

are too big for the robot to step over. As a result, the robot must walk

around large obstacles.
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comotion Level and is currently the top layer of the control architecture. The

processes within this layer are responsible for adapting to terrain variations,

negotiating obstacles, and avoiding hazards. Several of the rough terrain

tactics implemented on Hannibal were inspired by rough terrain tactics used

by insects. To activate the appropriate rough terrain behaviors, the system

must recognize when it is confronted by challenging terrain and what chal-

lenge consists of. The system obtains this information from its sensors (via

the output of the virtual sensors), indirectly through the state of agents, and

indirectly by observing the behavior of the system over time.

Rough terrain control is fully distributed and exploits local control of the

legs with inter-leg cooperation. Local leg control is responsible for handling

challenges that confront individual legs such as stepping over an obstacle or

�nding a foothold. E�ective inter-leg cooperation is vital because the legs are

physically constrained to each other through Hannibal's body and through

the terrain. Legs communicate with each other not only to coordinate and

synchronize their behavior, but also to alert each other of hazards and to

recruit the help of the other legs when necessary. Using this approach, we

have implemented the following capabilities on Hannibal:

� Walk over small and medium sized obstacles

� Avoid large obstacles blocking the robot's path

� Search for footholds

� Walk over holes

� Avoid cli�s

� Adapt gait to terrain roughness

� Adapt to slopes

5.2 Insect Locomotion Over Rough Terrain

Pearson & Franklin (1984) presents results of cinematographic analysis of lo-

custs walking on a variety of terrains. They wanted to determine the tactics
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gap width

cliff depth

Figure 5.2: Natural terrain has depressions of various sizes. We de�ne a

\cli�" to be a terrain depression of which the robot can neither touch the

bottom nor step across. We de�ne a \gap" to be a terrain depression of

which the robot cannot touch the bottom but can step across.

used by single legs to �nd a site for support, and the patterns of leg coor-

dination when walking on rough terrain1. They report three distinct tactics

used by single legs to �nd support sites on rough terrain:

� Searching movements: These are rapid, rhythmic, up-and-down move-

ments initiated when the leg fails to �nd any support at the end of a

swing phase. The searching movements caused the animal to pause in

walking, and caused the insect to stop walking when searching is ex-

tensive. They also witnessed this re
ex when the insect made postural

adjustments.

� Elevator re
ex: This consists of a rapid elevation and extension of the

leg to lift above an object when it contacts the object during the swing

phase. When the leg steps down, the foot usually is placed on the

object. It occurs in all three pairs of legs, but is seen the most clearly

in the middle and front legs.

1They also present results for the method the insects used for stepping over ditches

and over elevated objects, but these results are not presented here. These rough terrain

tactics used by the locusts are far beyond Hannibal's rough terrain capabilities to justify

comparison.
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� Local searching movements: These are small, rhythmic shifts of the foot

on a potential supporting surface. Its function is to �nd a local region

for a suitable support site. Pearson & Franklin (1984) propose that if

the load on the leg does not quickly increase after the tarsus touches

the surface, the foot is quickly lifted and replaced on the surface at

another point. This process continues until the critical load is borne

by the leg.

In regards to gait coordination, they found the insect did not adopt a rigid

gait when walking on rough terrains. The wide range of stepping patterns was

due mainly to variation in the timing of stepping in opposite legs of the same

segment. Their �ndings suggest that when the locusts walk on rough terrain

they do not adopt a strategy for coordination that di�ers in principle from

the one used on 
at surfaces. Rather, each leg appears to act independently

in �nding a support site, and the basic modes of coordination of opposite

legs, and the posterior-to-anterior sequence of stepping in ipsilateral legs

are preserved. However, they did witness that the middle legs of the insect

stepped either exactly in phase or 180� out of phase, which was not observed

on 
at terrain.

5.3 Inter-leg Communication

Inter-leg communication is essential for Hannibal to successfully traverse

rough terrain. Each leg is programmed to operate as a individual subsystem.

However the legs are physically constrained to each other through Hannibal's

body and through the terrain. Consequently the task of traversing rough ter-

rain can be viewed as a team e�ort where the legs must work together for

the global system (Hannibal) to accomplish the task. Inter-leg cooperation

is achieved through inter-leg communication.

Hannibal's rough terrain network implements several types of inter-leg

communication. For example, if a leg is stepping in a hole or over an obstacle,

it tells the other legs to pause while it deals with the complication. It does

this by having its step agent send a message that inhibits the oscillators of

the other legs until the leg achieves ground contact (see �gure 5.4). This

type of communication insures the robot's stability by preventing the robot

from advancing to the next step cycle before all recovered legs support the

body. A leg can also recruit the help of other legs. For instance, when a
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Figure 5.3: Inter-leg behavior con
icts are handled by a pre-programmed

priority scheme. Behaviors that achieve goals with a higher priority inhibit

behaviors that achieve goals with a lower priority. For example, stability

has a higher priority than obstacle avoidance. As a result, the �nd-foothold

behavior inhibits the backup behavior. Once the leg �nds a foothold, the

robot is allowed to backup.
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leg is trying to step over an obstacle, it asks the supporting legs to raise

the body to help it clear the obstacle. It does this by sending a message to

activate the lift-body behaviors in the supporting legs (see �gure 5.6). A leg

can also alert the other legs of a dangerous situation. For example, if a leg

is stepping over a cli�, it tells the other legs to back the robot up. It does

this by sending a message to the global direction and global turn behaviors

which coordinate the direction and turn behaviors of all the legs.

Communication between locally controlled legs is essential for the legs

to maintain a cohesive e�ort. This is especially the case if di�erent legs

want the robot to do di�erent things. As shown in �gure 5.3, one leg may

hit a large obstacle and want the robot to back up, whereas another leg

may be searching for a foothold and want the robot to hold still until it

�nds one. This is essentially behavior con
ict, but on a larger scale than is

typically encountered by other robots. Instead of having con
icting behaviors

in competition over an actuator, con
icting behaviors on di�erent legs are

in competition over the action of all the legs. An inter-leg priority scheme,

implemented using inhibition and suppression mechanisms (Brooks 1990) is

used in cases like these to determine which leg has dominance. In general

the stability of the robot has the highest priority, so in this example the legs

wait until the searching leg �nds a foothold before they perform the backup

maneuver.

The rough terrain network handles slopes, gaps in the terrain, cli�s, low

obstacles, and obstacles too large to step over. The system must recognize

when it is confronted by a hazard and what the hazard is. The system obtains

this information directly through sensor values, indirectly through the state

of agents, and indirectly by observing the behavior of the system over time.

Each of these cases is addressed below.

5.3.1 Virtual Sensor Activated Behaviors

The virtual sensor activated behaviors react re
exively to rough terrain. As

presented in chapter 3, virtual sensor agents combine actual sensor data to

detect a speci�c type of walker-terrain interaction. In the case of rough

terrain, virtual sensors detect hazards such as slopes, obstacles, or holes in

the robot's path. For each type of hazard, there is a virtual sensor designed

to detect it and a rough terrain behavior designed to handle it. When a

virtual sensor detects a hazard, it activates the corresponding rough terrain
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Figure 5.4: To enforce stable locomotion, the step agents of the recovering

legs prevent the robot from advancing to the next step cycle unless the recov-

ering legs support the body. Here, the right rear leg is in the recover phase.

The step agent of this leg inhibits the oscillators of the supporting legs until

the output of ground-contact virtual sensor of this leg is true. When this is

the case, the step agent releases the oscillators of the other legs.
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behavior.

5.4 Rough Terrain Network

5.4.1 Loading considerations

When walking, the robot should not transition to the next step cycle until all

recovering legs have contacted the ground. This way, the robot does not begin

the next step cycle until its legs are supporting the body. The ground-contact

virtual sensor is responsible for detecting when a recovering leg is loaded. Its

output is true when the leg is su�ciently loaded, otherwise its output is

false. The step agent of each recovering leg inhibits the oscillators of the

supporting legs until the recovering leg achieves ground contact (see �gure

5.4). Once the recovering leg is su�ciently loaded, the output of the ground-

contact virtual sensor is true, and its step agent releases the oscillators of

the supporting legs. When all recovering legs are loaded, the oscillators are

free to begin the next step cycle.

Holes in the terrain

When a leg steps into a hole it tries to �nd a foothold (see �gure 5.2). The

step-in-hole virtual sensor is responsible for detecting holes in the terrain.

Its output is true when the foot reaches its lowest position but fails to make

ground contact, otherwise its output is false. When it determines the leg is

stepping in a hole, it activates the �nd-foothold behavior. The �nd-foothold

behavior activates the recover phase of the leg and sets the AEP equal to

one foot diameter beyond the current foot position. If the foot does not �nd

a foothold looking in the current direction, it reverses the search direction

once it reaches the search limit point. The behavior searches between the

anterior and posterior search limit points until the search is successful or

until it is deactivated by another behavior. While performing the search,

the step agent of the leg inhibits the motion of the other legs by pausing

their oscillators. When the foot makes contact with the terrain the search

is successful, the �nd-foothold behavior releases the oscillators, and walking

resumes. See �gure 5.5.

92



step-in-hole
virtual sensor

p1, v1

f1

ankle

target
swing

lift

step

ground-contact
virtual sensor

find-foothold
agent

osc

leg

inhibit other osc. if no 
ground  contact

Figure 5.5: For each leg, the �nd-foothold agent is activated once the output

of the step-in-hole virtual sensor is true. While active, it generates the

searching pattern by making the leg's oscillator agent repeat the recover

phase with new target values. Meanwhile, the leg's step agent makes the

robot pause by inhibiting the oscillators of the supporting legs. The �nd-

foothold agent is de-activated when the output of the ground-contact virtual

sensor is true.

Traversable obstacles

When a leg hits an obstacle during the swing phase, it tries to step over the

obstacle. The swing-collision virtual sensor detects obstacles in the robot's

path. Its output is true when the leg collides with an obstacle during the

recover phase, otherwise the output is false. When its output is true, it

activates the step-high behavior of the same leg. Because the elbow DOF is

signi�cantly slower than the other DOF's, the step-high behavior inhibits the

motion of other legs until the leg completes the step-high maneuver. This is

accomplished by pausing the oscillators of the other legs. While the other

legs are waiting, the step high behavior lifts the leg as high as it can by

fully extending the elbow. Once the leg is fully raised, it moves to the AEP

and clears the obstacle if the obstacle is small enough. After the leg reaches

the AEP, the behavior prepares for the step phase by contracting the elbow

until the ankle is vertical. Once the ankle is vertical, the step-high maneuver

is complete, the step-high behavior releases the oscillators, and walking is

resumed. See �gure 5.6.

When a leg hits an obstacle, it tells the supporting legs to lift the body
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Figure 5.6: For each leg, the step-high agent is activated when the output of

the swing-collision virtual sensor is true. When active, the step-high agent

causes the foot to rise o� the ground by activating the extend-elbow agent.

Once the elbow is fully extended, the leg swings to its target value. The

swing agent de-activates the step-high agent when the leg reaches the target

value. Once this occurs, the elbow is contracted and the leg steps down.

average body height elevated body height

Figure 5.7: The robot's body can be elevated by activating the lift-body

agents of the supporting legs. For example, when the output of a leg's swing-

collision virtual sensor is true, the swing-collision virtual sensor activates the

lift-body agents of the supporting legs. This helps the collided leg clear the

obstacle.
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Figure 5.8: When the robot's foot is stepping on a medium sized obstacle, the

foot needs to be lifted higher during the recover phase. Otherwise, the foot

will drag along the top of the obstacle as the robot swings the leg forward.

higher. If the output of the swing-collision virtual sensor is true, it activates

the lift-body agents of the supporting legs. Each lift-body agent extends

the shoulder DOF of the supporting legs. When the lift-body agents of the

supporting legs are active simultaneously, the robot's body height is increased

(see �gure 5.7). This helps the collided leg clear the obstacle while it tries to

step over the obstacle.

Walking over an obstacle

When a leg is stepping on a fairly high obstacle, the robot lifts its leg higher

during the recover phase, so its foot doesn't drag along the surface of the

obstacle (see �gure 5.8). The step-over-rock virtual sensor detects when the

foot is stepping on an obstacle. It's output is true when the leg is loaded as a

result of contracting the elbow instead of lowering the shoulder, otherwise its

output is false. When the leg is stepping on an obstacle, the step-over-rock

virtual sensor tells the step-high agent of the same leg to clear the obstacle

during the recover phase of the next step.

slopes

When the robot walks on sloping terrain, it keeps its center of mass withing

its polygon of support. The inclination virtual sensor senses the inclination

of the robot. Its output is true when the inclination-error is su�ciently
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gravity

incline decline

Figure 5.9: Hannibal servos its spine motor to keep its legs vertical when

walking over undulating terrain. This maintains the robot's stability by

keeping its center of mass withing the polygon of support.

inclinometerinclination
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spine
agent spine potentiometer

body

activate

Figure 5.10: The inclination virtual sensor sends the pitch-error value to the

spine agent. When this error is too large, the spine agent is activated and

reduces the pitch-error by servoing the spine actuator. When the inclinome-

ter's pitch value equals the reference pitch value (pitch-error = 0), the robot's

legs are vertical.
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are too large to step over. The backup agent is activated when a leg collides

with and obstacle after its foot is lifted as high as possible o� of the ground.

The global backup agent sets the number of steps the robot walks backwards

and the turn sharpness based on the avoid-obstaclemessage. The direction

of rotation is set such that the robot turns away from the obstacle.

large, otherwise it is false2. When the inclination virtual sensor output is

true, it activates the spine agent. The network is shown in �gure 5.10. The

spine agent servos the spine potentiometer until the inclination sensor error

is su�ciently small. This e�ectively servos the supporting legs until they are

vertical as shown in �gure 5.9. When the supporting legs are vertical, the

center of mass of the robot is within the polygon of support.

5.4.2 State activated behaviors

The state activated behaviors respond to terrain information obtained through

observing the state of other behaviors.

Large obstacles

2The spine actuator moves too slowly to make the quick, small adjustments necessary to

continuously servo the inclination error to zero. To get around this problem, the inclination

virtual sensor places a small "dead-zone" around the vertical inclination position.
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The robot avoids obstacles too large to step over based on the state of the

step-high agents of the front legs (or the rear legs if the robot is walking

backwards). When either front leg collides with an obstacle during the re-

cover phase, the step-high agent of that leg sets its stepped-high 
ag. If

the leg collides with an obstacle when the stepped-high 
ag is set, the leg

assumes the obstacle is too high to walk over and tells all the legs to avoid

the obstacle by sending an avoid obstacle message to the backup behav-

ior. The backup behavior is a global behavior that coordinates the direction,

turn direction, and turn radius of the legs. When active, it causes the robot

to walk backwards, angle away from the obstacle, and then resume walking

forward. The network is shown in �gure 5.11.

Cli�s

The robot retreats from cli�s based on the state of the �nd-foothold behavior.

When the �nd-foothold behavior is active and either front leg �nds ground

contact searching rearwards, the leg assumes it is stepping over a cli� and

tells all the legs to retreat by sending an avoid cliffmessage to the backup

behavior. The backup behavior causes the robot to backup from the cli�,

about face, and resume walking away from the cli�.

Resume forward direction of travel

Given the robot is walking backwards, it resumes walking forward based on

the state of the direction agent, and either the state of the �nd-foothold

behavior, or the state of the step-high agent. First consider the case where

the �nd-foothold behavior is active when the robot is walking backwards and

the leg �nds ground contact searching in the forward direction. Under these

circumstances the leg assumes it has backed up to a cli� and tells all the

legs to change direction. Next consider the case where the robot is walking

backwards and a rear leg collides with an obstacle while its stepped-high


ag is set. Under these circumstances the robot assumes the obstacle is too

high to step over and tells all the legs to change direction. The leg tells the

robot to resume walking forward by sending a walk-forwardmessage to the

global direction agent.
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Figure 5.12: When the rough terrain agents of any leg become active, they

increase the caution level of the robot. As the caution level rises, the robot

adopts a slower gait. Hence, as the terrain becomes more challenging, the

robot switches to gaits with larger gait stability margins.

5.4.3 Hormone activated behaviors

The hormone activated behaviors respond to terrain information obtained

through observing the behavior of the system over time.

Cautious behavior

The robot's caution level in
uences the robot to change gait as a function of

terrain roughness. Each time the robot encounters a hazard such as stepping

into a hole or hitting an obstacle, the activated rough terrain agent increases

the robot's caution level (see �gure 5.12). If no hazards are encountered,

the caution level decays. At the lowest caution level, the robot assumes the

terrain is relatively 
at and uses the tripod gait. This gait is the fastest of

the wave gaits and simultaneously lifts the maximum number of feet. At the

mid range caution levels the robot assumes the terrain is fairly rough and

uses the ripple gait. The ripple gait is the robot's medium speed gait and

simultaneously lifts fewer feet in the air than the tripod gait. At the highest
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caution level, the robot assumes it is in extremely rough terrain and uses the

slow wave gait. This gait is the robot's slowest gait and keeps the maximum

number of feet on the ground. The robot also uses the slow wave gait when

it is in immediate danger. For example, if the robot thinks it is stepping over

a cli�, it increases the caution level to the slow wave gait range. This causes

the robot to use the slow wave gait when backing up from the cli�.

Impatient behavior

The robot's impatience level excites the robot to resume walking if the robot

has been stationary for a su�ciently long time. It accomplishes this by

temporarily lesioning the leg responsible for the hold up. When a leg is

lesioned, the other legs ignore its inhibition of their oscillators. If a front leg

is lesioned while walking forwards, or a back leg is lesioned while walking

backwards, the robot assumes the terrain is too di�cult for it to proceed in

that direction and resumes walking in the opposite direction. For all other

cases, the robot assumes the terrain is traversable in the direction of travel.

For example, if a middle leg steps in a hole, it stops the other legs and searches

for a foothold. For each cycle of the oscillator that the robot stands still, the

impatience level rises. When the impatience level rises above its threshold,

the robot is \frustrated" enough to ignore the inhibitory in
uences of the leg

trying to �nd a foothold, lesions that leg, and resumes walking without it.

While the robot is walking, the impatience level decays. When the impatience

level is su�ciently low, the robot resumes using the lesioned leg.

5.5 Performance

5.5.1 Tests

Individual obstacle tests

These tests challenged Hannibal's ability to handle a single type of obstacle

in its path. They were designed to test the performance of speci�c virtual

sensors as well as speci�c rough terrain behaviors. They were used to de-

termine if Hannibal could correctly characterize the type of obstacle in its

path and respond to it. To test the robot's performance with respect to a

particular hazard, the test terrain was 
at with the exception of the terrain
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feature. Only one leg encountered the challenge at a time. The following

terrain features were tested:

� Obstructive objects of varying heights and shapes

� Cli�s

� Holes or gaps in the terrain

� Inclines

� Declines

Multiple obstacle tests

These tests challenged Hannibal's ability to handle multiple terrain features

in its path. The hazards could be of the same type or of di�erent types. The

robot could encounter the hazards sequentially or concurrently. The tests

were designed to test the 
exibility of the controller. They were used to

ascertain Hannibal's ability to adapt its behavior to changing circumstances,

test the legs ability to handle local terrain features concurrently, and test the

legs ability to behave in a uni�ed manner{particularly when behaviors on

di�erent legs may be in con
ict. We did not bother to test all permutations

of terrain features as there are too many to test. Instead, we chose a few

sample terrains to test various capabilities. The following terrains were used

(other terrains were used as well but served redundant purposes):

� Small plateau This terrain causes the robot to frequently encounter cli�s

while walking forwards, backwards, or turning. The terrain tests the

ability of the robot's legs to maintain a cohesive e�ort since behaviors

on di�erent legs want the robot to move in di�erent directions.

� Multiple small obstacles This terrain causes the robot's legs to traverse

obstacles concurrently. It tests the robot's ability to handle local terrain

features simultaneously.

� Crevice This terrain causes the robot's legs to sequentially step over

the gap. It tests the ability of the legs to address a hazard in rapid

succession.
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Figure 5.13:

� Small object on plateau This terrain causes the robot to handle di�erent

types of challenges. It tests the robot's ability to coordinate obstacle

avoidance which the legs perform this individually, with hazard avoid-

ance which the legs perform this as a team.

Naturally occurring terrain

We tested Hannibal's ability to traverse naturally occurring terrain in two

environments. The �rst environment is a simulated lunar surface (also known

as the \sandbox"). Our lab built the sandbox to test Hannibal and our other

robots in a more realistic setting. The sandbox consists mostly of gravel, with

some sand, and rocks of various sizes. The second environment is Mars Hill

in Death Valley, CA. This location has an uncanny resemblance to terrain

images taken of Mars. It is characterized by a fairly �rm, undulating, sandy

surface with scattered rocks.

5.5.2 Results

Figure 5.13 quanti�es Hannibal's performance at traversing various aspects of

rough terrain. These results were gathered from the individual obstacle tests.

The values are primarily determined by the physical capabilities of the robot.

Hannibal successfully traversed the sample terrains of the multiple obstacle

tests provided the terrain features remained within the values of �gure 5.13.
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Similarly, Hannibal successfully traversed natural terrain provided the terrain

features remained within the values of �gure 5.13.

5.5.3 Evaluation

Hannibal successfully handles a wide assortment of terrain features. The

rough terrain controller pushes the envelope of Hannibal's physical capabil-

ities. Obviously if the robot had greater physical capabilities such as larger

work spaces for the legs, better leg kinematics, greater strength to weight

ratio, etc. the robot could traverse more challenging terrain. These issues

are beyond the scope of this work, and we will not address them further.

It would be interesting to implement a similar control network on future

generation legged robots for comparison.

Local leg control with inter-leg communication has proven to be an ef-

fective means for Hannibal to traverse rough terrain. Each leg is responsible

for handling the rough terrain challenge it faces concurrently with the other

legs. Consequently, the legs can simultaneously handle obstacles local to

themselves. This ability was demonstrated in the multiple small obstacles

test. Inter-leg communication has demonstrated its importance in several re-

spects. First, each leg behaves as a scout for the other legs and alerts them of

common dangers. In this manner, the local terrain view of each leg is shared

with the other legs. This ability was demonstrated in the tests using cli�s

and large obstacles. Second, inter-leg communication enables the legs to act

as a team. By working together, each leg accomplishes more than could if it

had to fend for itself. For example, by asking the supporting legs to elevate

the body, a leg can clear an obstacle it would not be able to clear otherwise.

This was demonstrated in the individual obstacle tests using obstructive ob-

ject of varying heights and shapes. Third, inter-leg communication enables

the legs to maintain a uni�ed e�ort, and the inter-leg priority scheme main-

tained the uni�ed e�ort even when behaviors of di�erent legs were in con
ict.

This ability was demonstrated by the small plateau test.
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5.6 Comparison with insect rough terrain

locomotion

Several of the same rough terrain tactics observed in locusts are implemented

in Hannibal's rough terrain network. The �nd-foothold agent in conjunction

with the step-in-hole virtual sensor implement the searching movements and

local searching movements observed in locusts. The step-in-hole virtual sen-

sor activates the �nd-foothold agent when the load on the foot is not su�cient

and the foot is fully extended. Consequently, the �nd-foothold agent is ac-

tivated either when Hannibal steps in a hole, or when there is insu�cient

loading on the foot after it completes the recovery phase. While the �nd-

foothold agent is active it causes Hannibal to pause or stop (by inhibiting the

motion of the other legs) until the search for a foothold is is successful. This

behavior is also observed in locusts. The step-high agent in conjunction with

the swing-collision virtual sensor implements the elevator re
ex observed in

locusts. Hannibal uses similar tactics as the locusts for gait coordination.

Each leg of Hannibal is responsible for handling the holes and obstacles it

encounters, but the strategy for gait coordination remains the same. Con-

sequently, the basic modes of coordination are preserved, but the timing of

stepping between the legs varies as the legs compensate for the terrain.

5.7 Comparison with legged robot locomo-

tion over rough terrain

A common goal of legged locomotion research to develop walkers capable

of traversing terrain too rough for wheeled vehicles. Several dynamically

stable legged machines have been designed to study rough terrain locomotion

(Raibert & Hodgins 1993). However, this section compares and contrasts

Hannibal only to statically stable rough terrain walkers.

Rough terrain locomotion has been tackled using two di�erent approaches:

closed loop and open loop. In the closed loop approach, sensory information

about the state of the machine and its interaction with the environment

is used to compute the machine's actions during run time. Consequently,

closed loop systems are able to adapt to the unexpected provided they have

adequate sensing capabilities. In contrast, the open loop approach requires
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all important knowledge about the machine and the environment be given a

priori. This knowledge is used to compute the machine's interaction with its

environment before run time. Consequently, open loop systems rely on accu-

rate information about the world and require good models of the interaction

between the system and the world if accurate planning is to be achieved.

5.7.1 OSU Hexapod

The OSU Hexapod, introduced in chapter 4, was the testbed for the control

algorithm proposed in McGhee & Iswandi (1979). This paper formalizes

the rough terrain problem for legged vehicles (the free gait problem) and

demonstrates the feasibility of generating a solution to the problem in real-

time with a computer using a simulation. Its control strategy is centralized

and open loop.

To solve the free gait problem, the control algorithmmakes three assump-

tions. First, the algorithm assumes it is given a terrain map that provides

global knowledge of the terrain. Second, it assumes it is given a motion trace

(a path de�ning the body trajectory provided by a navigation system) that

does not contain any obstacles too large to step over. This is a signi�cant

assumption for real-time control because computing the motion trace is quite

expensive{it requires detailed knowledge about the kinematics of the machine

and considers a combinatorially large set of possible leg motion sequences.

Third, it assumes the task of placing a foot on a chosen foothold is easy

for a statically stable system. With these assumptions, the solution of the

free gait problem is reduced to the heuristic selection of reachable and suit-

able footholds along the motion trace; suitable footholds are terrain locations

that provide adequate support, maintain stability of the system, and moves

the system toward the goal. Raibert & Hodgins (1993) term this approach

the body motion-then-footholds paradigm. The heuristic used for the OSU

Hexapod is to lift the legs with the least kinematic travel available in the

direction of travel, while putting legs into support with the largest available

travel. This heuristic extended each support state to increase the probabil-

ity that it would overlap with the next support state. The OSU Hexapod

demonstrated its ability to negotiate small obstacles and climb down a step

while operated under joystick control.

The solution to the free gait problem assumes a functional decomposi-

tion of the rough terrain problem into perception, modeling, planning, and
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control modules. Each module requires the output of the preceding module,

so control proceeds sequentially. The solution to the free gait problem pre-

sented in McGhee & Iswandi (1979) is part of the planning phase (navigation

is the other part). It assumes the perception, modeling, and navigation tasks

are complete and give their results (the terrain map and the motion trace)

to the free gait planner. It also assumes the results of the free gait planner

(the sequence of footholds) can be easily executed by the control module.

These are weighty assumptions as the perception, modeling, navigation and

control tasks are di�cult and computationally extensive tasks in their own

right. Consequently, although McGhee & Iswandi (1979) argue the free gait

planner can perform in real-time, the whole system may not.

Hannibal's approach to solving the rough terrain problem is radically dif-

ferent from the approach of the free gait planner. Hannibal's control system

does not assume the existence of a terrain map or a motion trace, and it does

not try to solve the free gait problem. Hannibal's control scheme decomposes

the rough terrain problem into task achieving modules that execute concur-

rently and in real-time (Brooks 1986). The system is built from the bottom

up where higher layers add more capabilities to the system. Given Hannibal

only has tactile sensing ability, its highest control layer enables Hannibal to

to wander over rough terrain in real-time. It chooses foot placements and leg

adjustments based on its real-time interaction with the terrain. Eventually

higher layers of control and more sophisticated sensors (compass, vision, etc.)

could be added to give Hannibal the ability to navigate purposefully.

5.7.2 Preambulating Vehicle II

The Preambulating Vehicle II (PVII) is a quadruped developed at the Tokyo

Institute of Technology (Hirose 1984). The PVII is fairly small, weighing 10

kg and measuring 870 mm in length. Each of its legs is a 3 DOF pantograph

that translates the motion of each actuator into a pure Cartesian translation

of the foot (each actuator translates the foot along one axis). This special

linkage removed the burden of computing kinematic solutions to foot trajec-

tories thereby signi�cantly simplifying control. Each foot had two contact

sensors at the bottom and around each foot.

The PVII uses closed loop control, and traverses rough terrain by imple-

menting re
ex-like control. The sensors on each foot sense when the foot

is pressing against anything and how hard. This enables the robot to use
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its feet as sensing probes to initiate three re
ex-like algorithms. If a foot

switch signals contact as the foot advances forward, a re
ex-like algorithm

causes the foot to be pulled back, lifted, then advance forward again. An-

other re
ex-like algorithm causes support legs to push downward if a load

cell in the foot indicates it is not bearing an adequate vertical load. The

third re
ex-algorithm causes the leg to lift higher if the foot makes contact

with an object during the swing phase. An oil-damped pendulum measuring

body inclination triggers a fourth re
ex which causes the relative altitude of

the feet to be adjusted so the body remains level3.

The control scheme of the PVII and Hannibal are similar in two respects.

The �rst similarity is re
exive control. The PVII's re
ex-algorithms enable

the quadruped to climb up and down steps of arbitrary height and step length

without a model of the terrain and without human intervention. Similarly,

several of Hannibal's rough terrain agents such as the �nd-foothold agent or

step-high agent give the legs re
exive behaviors. The second similarity is

simpli�cation of leg control. The legs of the PVII were speci�cally designed

to simplify the joint angle coordination problem. In essence, the linkage

design computes the inverse kinematic solutions to move the foot along a

desired trajectory instead of the computer. Hannibal simpli�es the joint

coordination problem by continuously sensing the legs' interaction with the

terrain. For example, instead of computing the angles for a speci�c trajectory

which causes the leg to step over a ditch, Hannibal uses its leg sensors to tell

it when it is stepping on a good foothold. If it is not stepping on a good

foothold, it uses its sensors to help �nd a good foothold.

5.7.3 Adaptive Suspension Vehicle

The Adaptive Suspension Vehicle (ASV) was built in the mid '80s at Ohio

State (Song & Waldron 1989). The ASV is a large hexapod vehicle designed

for self contained locomotion on natural terrain. It stands 10ft tall, 15ft long,

and weighs 3 tons. The 3 DOF legs are pantographs that used displacement

hydraulic pumps to drive the joints.

The ASV traveled on rough terrain without global information. An oper-

ator rides in ASV to provide steering and speed commands while computers

3In later work (Hirose 84), the free gait problem was investigated in simulation using

a hierarchical controller. The solution to the free gait problem and how it relates to

Hannibal's control scheme has already been discussed.
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control the stepping motions of the legs. It used force sensors in the leg

actuators and a force distribution control algorithm to accommodate varia-

tions in the terrain{without foothold selection or planning. In the absence of

a visual sensor or human foothold selection, the ASV has demonstrated its

ability to travel on gentle slopes, walk through a muddy corn�eld, and walk

over railroad ties.

Hannibal and the ASV share the task of rough terrain traversal; how-

ever, the purpose of the two systems is quite di�erent. Consequently, the

two systems were designed to address di�erent aspects of the rough terrain

locomotion problem. The intent of the ASV was to build a legged \truck"

that an operator could drive in rugged terrain. The constraint of carrying an

operator has two important implications for the control of the ASV. First,

stability is an extremely important issue if a person is on board the vehicle.

Second, the vehicle should o�er a fairly smooth ride so the operator doesn't

get jostled about. Hence the control of the ASV concentrated on force distri-

bution to address these considerations. In contrast, Hannibal was designed

to be completely autonomous. Stability is an important issue, but falling

for Hannibal is not as devastating as it would be for the ASV. In fact, one

advantage of Hannibal's small size is the superior strength to weight ratio

over larger systems. The superior strength to weight ratio helps the robot to

survive a fall.

5.7.4 Ambler

The Ambler is an autonomous hexapod built at CMU in the early '90s

((Krotkov & Simmons 1992), (Krotkov et al. 1990), (Nagy, Whittaker &

Desa 1992)). The Ambler is huge, standing approximately 18 feet tall and

weighing about 2500 kg. Its 6 legs are arranged in two stacks on central

shafts. Each leg has 3 DOF: a revolute shoulder, a revolute elbow, and a

prismatic vertical axis. A six axis force sensor is mounted on each foot and

a 3-D scanning range �nder is mounted on top of the robot.

The Ambler locomotes over rough terrain using a traditional central-

ized control scheme. Locomotion is functionally decomposed into perception,

modeling, planning, and control. The perception module uses the 3-D scan-

ning range �nder to gather terrain data. The modeling module uses this data

to construct and maintain a local terrain map that can be used for locomo-

tion guidance and short range navigation. The planning module is divided
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into two parts: the gait planner and the leg recover planner. The gait plan-

ner chooses footholds and body advances based on the local terrain map. It

computes cost maps to indicate the \goodness" of each potential foothold on

a 10 cm grid. Di�erent cost maps are made of the terrain based on di�erent

considerations such as stability and reachability. The gait planner combines

cost maps using weighted sum and selects footholds on the grid with the low-

est cost in the composite cost map. The leg recovery planner determines the

trajectory that gets the foot to the desired foothold without hitting obstacles.

It creates a con�guration space for the elbow and shoulder joints by growing

terrain obstacles and other legs by the radius of the foot plus an uncertainty

factor, and then searches the space using the A* algorithm for the minimum

cost path to the goal. These trajectories are sent to the control module where

they serve as the intended set of walker motions that comprise the next gait

cycle. The control module evaluates the e�ect of these planned motions on

the walker-terrain interaction. This is done by predicting and assessing the

foot forces resulting from the planned motion. If the predicted foot forces

are acceptable, the walking cycle proceeds: �rst the body attitude is leveled

into acceptable range, second the body altitude is brought to desired height,

third the vertical actuators are locked out, fourth the body is propelled hor-

izontally, and �fth the leg executes the recovery phase. Once the leg steps

and makes ground contact, the new foothold is evaluated for stability for

subsequent walker motions. If foothold is acceptable, the next planned gait

cycle proceeds. Otherwise the gait planner chooses a new foothold location

and determines the corresponding leg motions to realize the new foothold.

There is also a reactive element of the control module whose function is to

bring the body close to level in case of dynamic support failure. Using this

control scheme, the Ambler is able to walk across obstacle �elds with rolling

sandy terrain, ditches, 30� ramps, and boulders that �t under the Ambler's

legs and body.

The control concerns of Hannibal are diametrically opposed to the control

concerns of the Ambler. Many of these di�erences result from the drastically

di�erent scale of the two physical systems. The Ambler stands 18 ft tall.

Stability is of critical importance to the Ambler because of its enormous

size. To insure stability, the Ambler plans every step and body movement

with great care. It builds terrain maps so the Ambler can carefully select its

footholds. Foot placements are chosen so the center of mass of the system al-

ways remains in the conservative polygon of support. Foot placement forces
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are analyzed in detail before and after the step is taken to insure the terrain

supports the robot, and the foot will not slip. Leg trajectories are planned so

no leg collisions occur during the return stroke, and only one leg performs a

return stroke at a time. Body altitude and attitude are carefully monitored so

the system does not become unstable. To perform the required computation

in reasonable time, the perception, modeling, planning, and control are im-

plemented in a task control architecture using several dedicated processors.

In extreme contrast, Hannibal stands 8 inches tall and assumes stability. Its

low, broad stance is extremely stable, and falling is not a concern because

the spine motor is designed to rotate the legs to a standing position if the

robot �nds itself on its back. 4 The emergent wave gaits generated by the

locomotion network keep the center of mass within the polygon of support.

Since it's survivability does not require the robot to carefully plan its gaits,

planning and modeling are not necessary for the robot to wander over rough

terrain. Instead it uses many sensors to continuously monitor its interaction

with the terrain, and uses this information to govern its actions.

5.7.5 Ghengis

The locomotion network presented in chapter 4 is extended to enable Ghengis

to traverse rough terrain as shown in �gure 5.14. The rough terrain capabili-

ties presented in Brooks (1989) include force compliance, pitch stabilization,

and walking over low obstacles.

� The beta force machine and beta balance machine written for each leg

implement active compliance with the terrain. The force machine mon-

itors the forces on the beta motor during the step phase. The beta

balance machine sends out a lift-up messages when this force is too

high. It has a small dead-band where it sends out zero move messages

that pass through the defaulting switch on the up-leg trigger machine

and eventually suppresses the leg down machine.

� The alpha collide machine is responsible for lifting the leg higher on

the next step if the leg su�ers a swing collision. It monitors the alpha

forces during the swing phase and writes a higher value to the height

4It is feasible that the robot would survive a moderate fall given it's strength to mass

ratio. The strength to mass ratio improves as the system decreases in size.
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Figure 5.14: Genghis rough terrain network.

register of the up-leg trigger machine if the alpha force is large. The

up-leg trigger machine resets this value on the next step.

� The feeler machine written for each whisker is responsible for lifting a

front leg higher for the next step if the whisker on the same side su�ers

a collision.

� The forward pitch machine and backward pitch machine are responsible
for minimizing the pitch of the robot. These machines monitor the

high-pitch conditions on the pitch inclinometer and inhibit the local

beta balance machine output in the appropriate circumstances.

Inter-leg communication is the most signi�cant di�erence between Ghengis'

and Hannibal's rough terrain networks. As described earlier in this chapter,

inter-leg communication enhances the cooperation between the legs. Ghengis

does not have this capability, and its legs function less as a team because of

it. For example, when Ghengis approaches a tall obstacle the local behavior

of the leg causes it to lift higher. However, if the leg does not succeed in
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clearing the obstacle, the other legs do not know that the front leg is having

problems. Consequently, they continue to walk forward thereby repeatedly

shoving the front leg into the obstacle.

In general, Genghis implements fewer rough terrain capabilities than Han-

nibal. Genghis has no means for sensing terrain depressions, so it falls into

holes and walks over ledges. Genghis is also more limited in the steepness of

slopes it can handle. Genghis does not have a spine DOF like Hannibal, so

Genghis' center of mass falls outside its polygon of support once the terrain

becomes too steep. Genghis also does not have any time-varying behaviors

such as adapting its gait to suit terrain di�culty. As a result, Genghis is

more limited than Hannibal in the types of terrain it can handle.

5.8 Contributions

The work described in this chapter makes several contributions toward the

advancement of autonomous hexapod control. First, we have implemented

various rough terrain tactics used by insects on Hannibal. By doing so, we

have demonstrated how fully distributed, biologically inspired rough terrain

capabilities can be applied to legged robots. Second, by testing Hannibal on

various test terrains, we have demonstrated that local control with cooperation
is an e�ective means of controlling a complex system (systems consisting of

several concurrently running subsystems) in a complex environment. Third,

we have implemented rough terrain capabilities on Hannibal comparable to

those of sophisticated walkers, but on a dramatically smaller scale and requir-

ing signi�cantly less computing power. In doing so, this work advances the

state-of-the-art of fully distributed, biologically inspired legged locomotion

control for rugged terrain.
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Chapter 6

Fault Tolerance

This chapter presents Hannibal's fault tolerance capabilities. In the following

sections, We de�ne the task and present the issues involved in designing

our fault tolerant system. Following this, we motivate our approach and

present our implementation in detail. Then, we describe the tests we used to

evaluate the performance of our system and discuss our results. We conclude

by comparing our system to similar work in the �eld.

6.1 The Fault Tolerance Challenge

For Hannibal, having many sensors and actuators is a double edged sword.

Multiple sensors provide more reliable sensing and a richer view of the world.

More actuators provides more degrees of freedom. However, more compo-

nents also means there's more that can fail and subsequently degrade per-

formance. Physical failures can be attributed to either mechanical failure,

electronic failure, or sensor failure. Subtle changes in the state of the robot

such as sensor signal drift also degrades performance. Hannibal's task is to

locomote in rough and hazardous environments. As it scrambles along, it

can subjected to repeated bumps, snags, and stresses. This places signi�cant

wear and tear on Hannibal's hardware. Not surprisingly, components fail or

uncalibrate over time.

Hannibal experiences various types of sensor and actuator failures. Other

types of failures can occur, such as computing system failures or software fail-

ures, but these failures occur far less frequently. Sensor failures are the most
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common failure on this robot. Hannibal experiences a sensor failure approx-

imately once every two weeks. These failures have a variety of causes. For

instance, sensor wires break because of the stress the moving joints subject

them to. Sensor mounting problems such as insu�ciently clamped joint angle

potentiometers cause signal drift. The reference value of the strain gauges

drift over time as well. The metal case of the joint angle potentiometers are

not electrically isolated well from rest of system which can cause erroneous

sensor readings. The second most frequent type of failure are actuator fail-

ures. Actuator failures occur about once every three months. The shaft of

the shoulder motor has a tendency to break o� over time. Sometimes motor

clampings loosen so the motor rotates within its mount. As the motor rotates

in its mount, the motor's drive signal wires twist and eventually break from

stress.

Fault tolerance is implemented on Hannibal using a distributed network

of concurrently running processes. To tolerate hardware failures, a set of fault

tolerance processes are written for each component. These processes are re-

sponsible for detecting faults of their respective component, and minimizing

the impact of the failure on the robot's performance. By exploiting concur-

rency and distributedness, the system monitors, detects, and compensates

for component failures simultaneously.

The fault tolerant network addresses the following objectives:

� Fast response time to failures: Hannibal operates in a hazardous en-

vironment. Consequently, Hannibal must detect and remedy failures

quickly or else its safety may be jeopardized. This means failures must

be detected and compensated for before system performance degrades

to an unacceptable level.

� Graceful degradation of performance: Hannibal's performance must

degrade gracefully as failures accumulate. This requires Hannibal to

maintain the highest level of performance possible given the functional

state of the hardware.

� Access to all reliable resources: More sensors and actuators enhance

system performance provided they are functional. Hence, Hannibal

should reincorporate the use of repaired components.

� Fault coverage: The robot can su�er from a variety of failures. Failures

can be permanent or transient. Some failures have a local e�ect while
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Figure 6.1: Sensor and actuator failures e�ect these levels of Hannibal's

system hierarchy.

others have a global e�ect on performance. Sensors may uncalibrate.

Furthermore, the robot should be able to recover from di�erent combi-

nations of failures. Failures can occur individually, concurrently with

other failures, or accumulate over time.

6.2 Con�nement of Errors

Sensor and actuator faults a�ect various levels of Hannibal's system hierarchy

as shown in �gure 6.1. The sensor-actuator hardware level is the lowest level,

low level control is the intermediate level, and behavior control is the highest

level. The low level control is equivalent to the Sensor-actuator Level of the

control architecture, and the high level control is equivalent to the Basic

Locomotion and Rough Terrain layers of the control architecture. Clearly

sensor or actuator failures a�ect the hardware level of the system. Sensor

failures a�ect the low level control because the virtual sensor agents use

information from real sensors to compute their results. Consequently, sensor

failures may cause the virtual sensor results to be incorrect. If this is indeed

the case, then the high level control is also a�ected by sensor failures. The

virtual sensor agents are responsible for activating the correct behavior at the

appropriate time. However, if the results of the virtual agents are incorrect,
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make the system tolerant of hardware failures.

then the wrong behaviors will be activated.

It is important to detect and con�ne errors to the lowest possible level

in which they occur. If an error is not con�ned to the level in which it

originated, then higher levels must detect and compensate for the fault. As

an error propagates up the levels of the system hierarchy, it a�ects increasing

amounts of system state. Longer response times to error correction means the

error manifestations become more diverse. Hence, detecting and con�ning

errors to the lowest possible level of the system hierarchy maximizes the

e�ectiveness of the recovery procedures and minimizes the impact of the

error on system performance.

6.3 Levels of Fault Tolerance

Given that hardware failures a�ect various levels of the system, fault toler-

ance techniques can be implemented at each level. Below, we present possible

fault tolerance strategies for each level, and describe the merits and short-

comings of each method.

6.3.1 Replication of Hardware
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Given we are concerned with sensor and actuator failures, reliable sensing and

actuating hardware is desirable. Replication of hardware is commonly used

to enhance hardware reliability. Several systems, such as those presented in

(Gray 1990) and (Siewiorek & Johnson 1981), use this approach to achieve

robustness. In Hannibal's case, this would correspond to replicating sensors

and actuators. For a sensing example, multiple potentiometers could be used

to sense a particular joint angle as shown in �gure 6.2. An arbiter gathers

the joint angle values of each potentiometer and sets the accepted joint angle

value to be the most common value. The application software uses this value

as the joint angle. Failure of a joint angle sensor is detected if its value

does not agree with the other sensors' values. However, the failure is masked

because the most common value is accepted as the actual value. Assuming

the majority of the potentiometers work properly, recovery from the failure

is immediate because the software is given the correct joint angle value.

Consequently, hardware failures are detected and con�ned to the hardware

level of the system hierarchy.

Ideally we could detect, con�ne, and correct hardware errors at the hard-

ware level. By doing so, the application software need not be alerted to these

failures. However, this approach has some drawbacks. First, replication of

sensors and actuators is expensive. Second, it assumes that a majority of

replicated components are working. Ideally, Hannibal should perform reli-

ably with a minority of functional sensors. Third, Hannibal's size and weight

constraints restrict how may sensors and actuators can be mounted on the

robot. Therefore it is impractical to enhance sensing or actuating capabilities

on Hannibal by using this approach. However, Hannibal was designed with

multiple sensors and actuators that provide complementary capabilities. For

example, Hannibal can use several di�erent sensors to detect ground contact,

and it can lose the mechanical function of a leg and still walk. Hannibal's

control system must be clever in the way it uses its existing sensors and

actuators to compensate for sensor or actuator failures.

6.3.2 Redundant Control Behaviors

Fault tolerance techniques using redundant sets of control strategies have

been investigated in Payton, Keirsey, Kimple, Krozel & Rosenblatt (1992).

The redundant strategy approach implements fault tolerance in high level

control and addresses high level failures. For example, a high level failure oc-
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curs when the robot encounters a situation it was not explicitly programmed

to handle. In the redundant strategy approach, the controller is designed

with redundant strategies to perform a task. A performance model exists for

each strategy, and a failure is detected if the behavior's actual performance

is worse than the behavior's expected performance. If the �rst strategy tried

does not su�ce, the controller eventually tries another strategy. The con-

troller goes through its repertoire of strategies until it �nds a strategy with

acceptable performance instead of unsuccessfully trying the same thing over

and over. Payton et al. (1992) gives an example of an autonomous submarine

trying to avoid the ocean 
oor (�gure 6.3). There are several strategies the

submarine can use to avoid the bottom: pitch up using �ns, pitch up using

the forward ballast, increase buoyancy, and use prop to back away from the

bottom. The preferred strategy is to pitch the vehicle up using the �ns. If

the �n actuator is broken the submarine will not adequately avoid the bot-

tom using this approach. After the controller determines the submarine is

not avoiding the bottom well enough, it recovers by switching to the pitch

up with forward ballast strategy. If the performance is still unsatisfactory,

the controller continues to try other strategies until the performance is ac-

ceptable.

The redundant strategy approach is not well suited for hardware failures.

First, it does not speci�cally address the cause of the problem, it only ad-
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dresses the symptoms. It may take several tries before the controller �nds a

strategy that works. For example, let us say Hannibal has redundant walk-

ing behaviors - each behavior implements a di�erent gait. If a leg fails, some

of these gaits are unstable. The redundant strategy approach requires that

Hannibal undergo unstable locomotion until the controller �nds a gait that

is stable with the loss of that leg. It is more desirable if Hannibal could

recognize which leg failed and adapt its gait to speci�cally address the fail-

ure. Second, the redundant strategy approach inherently requires that the

hardware errors manifest themselves in the robot's behavior before the con-

trol system can detect something is wrong. Ergo, the performance of the

infected behaviors must degenerate to an unacceptable level before the con-

troller takes corrective action. This could be detrimental to a robot that must

function in a hazardous environment. Take for example, the case where a

sensor used by the step-in-hole virtual sensor is broken. The performance of

the step-in-hole virtual sensor would have to su�ciently degrade before the

control system would take notice of the failure. It would be unfortunate if

Hannibal's control system had to wait until Hannibal walked o� a cli� be-

fore it could determine the step-in-hole virtual sensor wasn't working well.

Hannibal's survival could depend on detecting, masking, and recovering from

errors in the low level of the control system { before the errors infect high

level behaviors.

6.3.3 Robust Virtual Sensors

Hannibal's controller uses robust virtual sensors to con�ne hardware failures

to low level control. Robust virtual sensors are virtual sensors which remain

reliable despite sensor failures (�gure 6.4). Recall that the virtual sensors are

responsible for characterizing the robot's interaction with its environment

using sensor information, and for activating the robot's behaviors. If the

virtual sensors give the correct output despite sensor failures, then the robot

will continue to do the right thing at the right time despite these failures.

For example, if the ground-contact virtual sensor can correctly determine

ground contact despite failure of the force sensor, the behaviors that use

ground contact information will not be a�ected by this failure.

Robust virtual sensors are appealing because they con�ne the e�ect of

faults to low level control and prevent errors from infecting high level control.

This approach e�ectively compensates for local failures. Local failures (also
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called non-catastrophic failures) are failures whose e�ect is con�ned to the

leg on which it occurs. For example, the failure of a leg's ankle sensor is a

local failure because it a�ects that leg's ability to sense ground contact, but

it does not a�ect the ability of the other legs to sense ground contact.

Unfortunately, it is not possible to con�ne the e�ects of all sensor-actuator

faults to low level control. Some failures a�ect the behavior of the overall

system - we call these failures global failures. Global failures (also called

catastrophic failures) must be compensated for within high level control. For

example, if a leg's shoulder actuator fails then the leg cannot support the

body. Consequently, this failure a�ects the global stability of the robot. The

high level control must compensate for this failure by changing the robot's

gait so the robot can walk in a stable manner with one less leg.

6.4 Adaptivity vs Redundancy

For the reasons presented above, we have chosen to compensate for local

failures within low level control and to compensate for global failures in high

level control. How should we implement the robust virtual sensors to address

local failures? How should we implement the high level behaviors to address

global failures? A common approach is to exploit redundancy to achieve ro-

bustness. To handle local failures, we could create redundant virtual sensors

for each leg-terrain interaction of interest to the controller. For example, we

could design three redundant ground contact virtual sensors that use di�er-
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ent sensors to sense ground contact. Each redundant ground-contact virtual

sensor would vote for either ground-contact = true or ground-contact =

false, and the verdict would be determined by majority vote. To handle

global failures, we could write redundant walking agents where each agent

implements a di�erent gait. The controller could activate a given gait agent

depending on which legs have failed. However, we found that implementing

our fault tolerance capabilities using redundant agents was inappropriate for

our application (for reasons we present below). Instead, Hannibal's fault

tolerance capabilities are implemented using adaptive agents. The use of

adaptive agents distinguishes Hannibal's implementation of robustness from

other implementations.

We initially tried using redundancy to achieve robust virtual sensors on

Hannibal, but abandoned it for the following reasons. First, there is no way

the controller can obtain a reliable verdict once the majority of the sensors

fail. Second, code size grows signi�cantly with this approach because multi-

ple virtual sensor agents are written for each leg-terrain interaction we want

to determine. Given Hannibal's small program memory this is an important

consideration. Third, once a sensor fails, all virtual sensors that use informa-

tion from that sensor become less reliable. Hence, a minority of sensor failures

could adversely a�ect the majority of redundant virtual sensors. Payton et

al. (1992) presents an example where all the virtual sensors that activate

avoid bottom behaviors use an altitude sensor. If the altitude sensor fails,

then the reliability of all these virtual sensors degenerates. Consequently,

the avoid bottom performance of the submarine degrades with the failure

of one sensor. Finally, the inherent reliability of redundant virtual sensors

is not uniform. Virtual sensors that use more sensory information generally

produce a more reliable result than virtual sensors that use less sensor in-

formation. For example, say we designed three redundant ground-contact

virtual sensors: GCPFA which uses position, force, and ankle information,

GCA which uses ankle information, and GCF which uses force information.

Hence, GCPFA is more reliable than both GCA and GCF . We may want to

re
ect the relative believability of virtual sensors by weighting their votes

so that two less reliable virtual sensors cannot override the vote of a signi�-

cantly more reliable virtual sensor. However, if the position sensor fails then

GCPFA becomes less reliable than GCA and GCF . Suddenly we what GCA

and GCF to override GCPFA. In essence, the di�erences between the inher-

ent reliability of redundant virtual sensors, and the e�ect of failed sensors on
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their reliability signi�cantly complicate the arbitration process.

The approach Hannibal uses to implement robust virtual sensors is sub-

stantially di�erent from the approach described above because it exploits

adaptivity instead of redundancy. One adaptive virtual sensor (instead of

several redundant virtual sensors) exists per leg for each leg-terrain interac-

tion of interest to the controller. As sensors fail, the adaptive virtual sensors

maintain reliable performance by changing how they use their sensor informa-

tion. For example, when a failure is detected, the appropriate virtual sensors

are alerted of the failure and respond by recon�guring the way they uses

their sensory information. This entails ignoring the input from the broken

sensor and changing the way they use information from the reliable sensors.

In this manner, the virtual sensors use their most reliable sensors to produce

the most reliable result. If the failed sensor starts working again, the virtual

sensor reintegrates the previously failed component.

The approach Hannibal uses to tolerate catastrophic failures also exploits

adaptivity instead of redundancy. When a leg su�ers a catastrophic failure it

is not usable. High level control must change the gait so locomotion remains

stable with one less leg. A redundant approach might involve implement-

ing redundant walking behaviors where each behavior exhibits a di�erent

gait. This is undesirable because of the extra code space required to im-

plement each gait behavior plus the gait switching mechanism. In contrast,

the adaptive approach implements one walking behavior which can alter its

gait by changing a parameter. Low level control is responsible for detect-

ing catastrophic failures and alerting high level control. High level control

is responsible for adapting the robots behavior so that locomotion remains

stable.

6.5 Fault Tolerance Network

The following sections describe the distributed network that implements fault

tolerance on Hannibal. As with the rest of Hannibal's control system, fault

tolerance is implemented with concurrently running processes. Fault toler-

ance consists of four phases: error detection, masking, recovery, and rein-

tegration. Non-catastrophic faults a�ect local control. They are detected

within the low level network and compensated for within the virtual sen-

sors. In this way, these faults do not a�ect the high level performance of the
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system. Catastrophic faults unavoidably a�ect global system performance.

They are detected within the low level control and compensated for within

the high level control.

In the following sections we illustrate Hannibal's fault tolerance processes

through an example. The example we use to illustrate tolerance to local

failures is a robust ground-contact virtual sensor. Keep in mind that this

example is of only one virtual sensor on one leg which uses only a few of the

sensors on that leg. Similar processes run concurrently on the same leg to

make its other virtual sensors robust as well. The example we use to illustrate

tolerance to global failures is a broken shoulder actuator. Similar processes

run concurrently on the same leg to tolerate other global failures as well. All

these processes are implemented on each leg and run simultaneously.

6.5.1 Detection

The detection processes are responsible for recognizing sensor and actuator

failures. Detection is the hard part of the fault tolerance problem because

the robot doesn't know a priori the correct behavior of the sensor. For

example, if the robot had an accurate terrain map, then it could compare

its leg's sensor readings with the terrain map. The robot could essentially

go through a process like \I know the ground is 
at ahead, so when I step

down my sensors should eventually tell me I have ground contact", or \I

know there's a hole ahead, so when I step down my sensors should tell me

I'm stepping in a hole". If a sensor does not behave as expected, then the

robot can conclude that sensor is broken.

However, Hannibal does not know what its sensory outputs should look

like for any given step cycle. This is because Hannibal does not know what

the terrain looks like before hand. Furthermore, Hannibal cannot predict

what the terrain looks like because the terrain can change dramatically. For

example, Hannibal's leg sensors could tell it that the leg is stepping on the

ground one step cycle and stepping in a hole the next. In this case the sensor

outputs for both step cycles look di�erent from each other, yet both are

correct. But there's also the case where the robot's leg sensors say the leg

is stepping on the ground when in reality the leg is stepping in a hole. The

robot does not know whether its sensors are re
ecting reality or not!

When should the robot believe its sensors? Hannibal determines the

reliability of its leg sensors by evaluating the output of its leg sensors in the
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context provided by both the time history of the leg motion and the output

of complementary leg sensors. To illustrate this idea more clearly, imagine

the following: you wake up in the morning and you want to know what the

temperature is outside. You look at the thermometer outside your window

and it reads 90 degrees Fahrenheit. However, you feel the window and �nd it's

ice cold. The temperature sensors in your hand complement the thermometer

reading. From evaluating the reliability of the thermometer in the context

provided by the temperature time history and complementary temperature

sensors in your hand, you conclude the thermometer is broken and ignore

it. Hannibal essentially goes through the same process to determine the

reliability of its sensors.

Sensor failure recognition is performed using two methods. The �rst

method exploits the context provided by the time history of the leg motion.

Remember, the robot does not know what the correct sensor behavior is for a

given step cycle. However, the robot does know the plausible leg motions be-

cause the plausible leg motions are the behaviors that have been programmed

for the leg. We call the set of plausible leg motions the model. If the leg sen-
sors re
ect a plausible leg motion, i.e. they agree with the model, then the

robot has some con�dence that the sensor is working. However, we could

still have the case where the robot's sensors do not re
ect reality although

they re
ect a plausible reality. For instance, a sensors could say the robot is

stepping on the ground when it is really stepping in a hole. To overcome this

problem, the second method exploits the context provided by complementary

sensors. If reliable complementary sensors agree with the sensor in question,

i.e. they con�rm the robot is stepping on the ground, then the system has

more con�dence that sensor. The con�dence level in a sensor is re
ected by

a pain parameter a�liated with that sensor. The pain level is the inverse

function of the con�dence level.

Sensor Model

It is possible to model sensor behavior if the behavior of the leg is known.

Rotational potentiometers measure leg joint angle, strain gauges measure leg

loading and linear potentiometers measure foot loading. Hence the motion of

the leg and the leg's interaction with the environment directly a�ect sensor

output. To model plausible sensor behavior, we �rst classify the leg behavior

in terms of states. Each phase of the step cycle is divided into four possible leg
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Figure 6.5: The relationship of sensor output to step cycle phase and leg

state for the sensors used by the ground-contact virtual sensor.

states: Sstart, Smiddle, Send, and Sexception. The Sstart, Smiddle, and Send states

account for the typical behavior of the leg. The Sexception state accounts for

leg-terrain interactions that may occur during that phase but typically don't.

For example, during the step phase Send corresponds to ground contact and

Sexception corresponds to stepping in a hole. We assume the leg behaves as

programmed (unless a catastrophic failure occurs), so the constraints on the

transitions between leg states for each phase of the step cycle are known.

A set of sensor values corresponds to each leg state. From this sensor-state

relationship, we derive a model for plausible sensor behavior. The sensor

model consists of the expected transitions between sets of sensor values given

the plausible transitions between leg states. The transformation from leg

states to sensor values were derived experimentally by observing sensor values

as the robot walked through its environment. Figure 6.5 shows how sensor

output varies with step cycle phase and leg state for various sensors.

A process is written for each sensor that classi�es the sensor's values into

leg states. These processes are called sensor-state processes. There can be a

several to one mapping between sensor values and leg states, so there can be

ambiguity as to which state the leg is in given a sensor value. During the step
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phase, for example, the same ankle displacement value could indicate Sstart,

Smiddle or Sexception since the ankle is not compressed for all these states.

However, the constraints on the transitions between leg states reduces this

ambiguity. A properly functioning sensor's output indicates a sequential and

timely transition between leg states such that Sstart ! Smiddle ! Send. The

constraint on when Sexception occurs depends on the phase. For example,

Sexception of the step phase indicates the leg has stepped in a hole, so it

occurs after Sstart and Smiddle. If a sensor's output deviates from these leg

state transitions, the sensor is likely to be broken.

This approach to modeling the sensor behavior makes several assump-

tions. As mentioned earlier, it assumes the leg moves as programmed. This

is a reasonable assumption since the controller treats a leg as broken if it fails

to move as programmed. Consequently, further monitoring of the sensors is

not necessary. It assumes the sensor models are tuned to the robot's envi-

ronment (i.e. if Hannibal were to walk in mud the sensor behavior may not

look plausible although the sensors are ok). This is a reasonable assumption

since robots are typically designed to perform in a given environment. It also

assumes that failed sensor behavior and reliable sensor behavior do not look

alike (failed sensors aren't trying to fool you). It also assumes the reference

values used to compute the ranges are correct. Therefore the sensor reference

values used by the models must be updated to compensate for uncalibration.

Monitoring Individual Sensors

Each sensor has a process that monitors the sensor performance. These

processes are called sensor monitor processes and they exploit the context

provided by the time history of the leg motion. Figure 6.6 illustrates these

processes. Each sensor's monitoring process uses the corresponding model of

acceptable sensor-state transitions to detect sensor failures. Essentially, if a

sensor's behavior does not re
ect plausible behavior, then the con�dence in

that sensor decreases. Each process monitors the transitions between states

by recording when each state occurs. A clock variable is incremented every

0.1 second during each step cycle phase, and it is initialized to zero every

transition between step cycle phases. Each sensor monitoring process records

this clock value in the following manner: when the sensor value indicates

Sstart the clock value is written in Tstart, when the sensor value indicates

Smiddle the clock value is written in Tmiddle, and when the sensor indicates
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Figure 6.6: The sensor monitor processes for the ground-contact virtual sen-

sor and step-in-hole virtual sensor.

Send the clock value is written in Tend. If the sensor value indicates Sexception,

the appropriate time variable is updated according to when the exception is

expected to occur. For example, during the step phase the process updates

Tend when Sexception occurs because the possibility of stepping in a hole occurs

at the end of the step phase. Whenever a time variable is incremented, the

monitor process examines the contents of the time variables and checks that

a timely and sequential transition of leg states is upheld. If the sequential

and time constraints of state transitions are upheld, the process inhibits that

sensor's pain parameter, otherwise it excites it. Figure 6.7 presents run-time

data for the sensor monitor processes of the vertical force sensor.

Monitoring the Consensus of Sensors

Each step cycle phase has a consensus monitor process that monitors agree-

ment between complementary sensors. Figure 6.8 illustrates the consensus

monitor processes. The sensor-state processes categorize sensor values into

leg states; this provides a common measure for comparing sensor behavior.

The consensus monitor processes use discrepancies between sensor-state val-

ues of complementary sensors to detect sensor failures. As each leg moves

though its step cycle, each sensor casts one vote for each leg state that corre-
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Figure 6.7: Response of the sensor monitor processes to vertical force sensor

failure. Once the sensor fails, the actual sensor behavior frequently disagrees

with the modeled sensor behavior. Consequently, the sensor's pain level

increases.
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Figure 6.8: The monitor consensus processes for the ground-contact virtual

sensor and the step-in-hole virtual sensor.

sponds to its value. For example, ankle sensor = 0 corresponds to Sstart,

Smiddle, or Sexception, so the ankle sensor votes for each of these states. Every

0.1 second, the consensus monitor processes tally the votes for each state

and �lter out votes for implausible states. Constraints on the motion of the

leg determines the plausible states of the leg. For example, given the last

state was Sstart, the current state could either be Sstart (provided the leg has

not been in this state too long), or it could be in Smiddle. Hence Sstart and

Smiddle are plausible states whereas Send is an implausible state. The actual

state is taken to be the plausible state with the largest number of votes. If

there is a tie between plausible states, the actual leg state is taken to be

the sequentially higher state. Each time a leg state is elected, each sensor's

votes are compared with the newly elected leg state. If a sensor voted for

the elected state the consensus monitor process inhibits that sensor's pain

parameter, otherwise it excites it. Figure 6.9 presents run-time data for the

consensus monitor processes for the ground-contact virtual sensor.

Injury Agents

An injury agent for each sensor determines whether the sensor is working

or broken by monitoring the sensor's pain level (�gure 6.10). As described

above, each sensor's sensor-monitor process and consensus monitor process

excite its pain parameter when a discrepancy occurs, and inhibit the pain

parameter when no discrepancy occurs. The level of the pain parameter
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mentary sensors. Consequently, the sensor's pain level increases .
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Figure 6.12: Illustration of a robust ground-contact virtual sensor.

increases upon excitation and decreases upon inhibition. The injury agent

compares the sensor's pain level with a threshold value. If the pain level

exceeds the threshold, the injury agent declares the sensor is broken, and

when the pain level is below threshold, the injury agent declares the sensor

is working. See �gure 6.11.

6.5.2 Masking

The masking processes are responsible for removing the e�ects of local faults

so that these faults do not a�ect high level behaviors. Masking is performed

by the virtual sensors. A minor form of masking is also performed by the con-

sensus monitoring processes. The injury agents continually inform the virtual

sensors and consensus monitor processes about which sensors are functional

or broken. Once informed of a broken sensor, the masking processes within

the virtual sensors and consensus monitor processes remove the e�ects of the

broken sensor.

To uphold the integrity of the elected leg state, the consensus monitoring

processes disregard information from broken sensors. Provided the elected
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to \true" and ground-contact = 0 corresponds to \false").

leg state is correct, the consensus monitor processes can detect valid disagree-

ments between a sensor's leg state vote and the actual leg state. However,

the wrong leg state could be elected if votes from broken sensors are hon-

ored. Therefore, if a sensor is faulty, the sensor consensus process removes

the broken sensor's votes in the leg state election process. In this way, the

leg state is determined only by functional sensors, and the result remains

reliable despite failures.

The virtual sensors mask sensor failures by disregarding information from

failed sensors. To show how this is implemented, we use the ground-contact

virtual sensor as an example (see �gure 6.12). The ground-contact virtual

sensor uses information from the shoulder potentiometer, the ankle displace-

ment potentiometer, and the vertical load strain gauge. Each sensor value

is passed through a �lter. The �lter outputs true if the value satis�es its

condition for ground contact, otherwise it outputs false. The �ltered re-

sults are sent to a decision process that combines these results to determine

whether the leg is contacting the ground or not. This process also receives

inputs from the injury agent of each sensor. If an injury agent declares its

sensor is broken, the decision process ignores the broken sensor in computing

the output. Consequently the �nal ground-contact decision is made only by
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Figure 6.14: The e�ect of transient errors are �ltered out by the pain mech-

anism.

functional sensors. Figure 6.13 presents run-time data of the masking process

performed by a ground contact virtual sensor.

6.5.3 Recovery

The purpose of recovery is to return the system to an operational state once

components fail. The new operational state should have as many of the

original resources available as possible, and the transition to this new state

should have minimal impact on normal system operation. We want the sys-

tem to recover from transient errors as well as permanent errors. Transient

errors result from occasional erroneous sensor values or sensor drift. Per-

manent errors result from sensor failure. Recovery takes three forms: retry

addresses transient errors, dynamic recalibration addresses sensor drift, and

recon�guration addresses permanent failures.

Retry

Erroneous sensor values are �ltered out by the pain mechanism. In essence,

the pain mechanism provides a means for \retrying" a sensor if it produces a

bad value. Instead of calling a sensor broken after it produces an erroneous

sensor reading, the pain mechanism continually adjusts the pain level of

the sensor. The pain threshold of each sensor is set such that a series of

errors must occur before the pain level rises above threshold. However, since

the error is transient, the sensor displays normal behavior during subsequent

cycles, and the pain level diminishes. In e�ect, occasional errors are averaged
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out and carry little weight for determining whether a sensor is functional or

broken. Figure 6.14 illustrates the pain level's response to spurious sensor

values.

Dynamic Recalibration

Dynamic recalibration processes are written for each sensor. These processes

update the reference values used by the sensor model processes. Examples

of reference values are p1-max, p1-min, f1-max, f1-sNh, ankle-rest, etc..

These values are used to compute the state transition values for the sen-

sors. It is important to deal with sensor uncalibration because the sensor

models become less accurate as the reference values become less accurate.

The dynamic recalibration behaviors assume sensor gain remains constant;

hence any uncalibration is attributed to DC o�set only. This is a reasonable

assumption given Hannibal's leg sensors.

To illustrate how the dynamic recalibration agents update the reference

values, let's look at the p1-recalibrate agent as an example. The reference

values for the shoulder potentiometer are p1-max, p1-min, p1-support, and

p1-command. P1-max corresponds to the largest potentiometer value when

the leg is lifted, p1-min corresponds to the smallest potentiometer value when

the leg has stepped down (i.e. stepping into a hole), p1-support is the ini-

tial position the leg moves toward to �nd ground contact, and p1-command

is the commanded lift position. Updating p1-max involves monitoring the

potentiometer during the recover phase and �nding the value at its high-

est point. The dynamic recalibration process sets this value to the updated

p1-max value. Updating p1-min is somewhat problematic since the robot

doesn't step into holes frequently. Consequently, the p1-min value could sig-
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Figure 6.17: Performance of the ground-contact virtual sensor as a function

of sensors used. The reliability is maintained at the expense of response

time as fewer sensors are used. The slower response time is re
ected by the

`pause' column. The robot does not proceed to the next step cycle unless

all stepping legs attain ground contact. Thus, if the ground contact decision

takes longer, the robot waits an additional time interval between steps. This

reduces the walking speed of the robot.

ni�cantly drift before the p1-recalibrate agent has the opportunity to update

the p1-min value. To overcome this di�culty, the p1-recalibrate agent com-

putes the updated p1-min value from the updated p1-max value and sample

p1-max and p1-min values stored in memory (these sample values are deter-

mined experimentally). Once updated, the p1-recalibrate agent sends these

values to the shoulder potentiometer model process (�gure 6.15). Figure 6.16

presents dynamic recalibration data for the shoulder potentiometer.

Recon�guration

As sensors fail we want system performance to degrade gracefully. In fact, we

want to maintain the highest level of performance given the functional state
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of the robot. To accomplish this, the virtual sensors speci�cally tailor their

use of sensor information to minimize the impact of sensor failures on virtual

sensor performance. Virtual sensor performance consists of reliability and

response time. We have found, by experimental means, that virtual sensors

perform better as more sensors are used.

The virtual sensors can achieve faster response times without compro-

mising reliability, provided su�cient quantity and type of sensors are used.

To illustrate this, we look at the ground contact virtual sensor as an exam-

ple. The ground-contact virtual sensor uses information from three types of

sensors to ascertain leg loading: shoulder position, ankle displacement, and

vertical force. Velocity and position are the only types of information the

position sensor o�ers to determine loading. Loading can be inferred from the

position sensor when the leg is pre maturely stopped above its lowest possi-

ble position. The force and ankle sensors directly measure loading and do it

faster than the position sensor - the leg does not have to stop moving before

they signal loading. Thus, if only the position sensor is working, the leg

must come to a complete stop in the vertical axis to satisfy the condition for

ground contact. However, if a force or ankle sensor is working, the condition

for the position sensor can be relaxed so that it is satis�ed sooner. In this

case, the position sensor satis�es the condition for ground contact if either

the downward velocity is su�ciently small or zero. Similarly, if all sensors

are working, the conditions for the force and ankle sensors can be relaxed

as well. Hence, the response time of the ground-contact virtual sensor can

be sped up if more sensors are used without compromising reliability. Fig-

ure 6.17 presents our results for how performance relates to the number of

sensors used for a ground-contact virtual sensor.

6.5.4 Reintegration

The robot's performance is enhanced if more sensors are used. The purpose

of reintegration is to reincorporate repaired sensors so the robot uses the

maximumnumber of reliable sensors. Repaired sensors are sensors that were

previously faulty but behave well again. Reintegration is useful if a sensor is

broken and then �xed, or if the sensor was incorrectly classi�ed as broken.

In either case, we call a sensor \broken" if it's pain level is above threshold,

and we call it \repaired" if the sensor's pain level rises above threshold and

then lowers below threshold.
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Figure 6.18: Both the sensor monitor processes and the consensus monitor

processes assist in reintegrating repaired sensors.

Both the sensor monitor processes and sensor consensus processes induce

reintegration of repaired sensors (�gure 6.18). They accomplish this by in-

hibiting the pain parameter. If a failed sensor exhibits normal behavior, the

sensor's behavior agrees with the modeled behavior again. Consequently,

the sensor monitor process inhibits the pain parameter. Similarly, if a failed

sensor exhibits normal behavior, the sensor behaves in consensus with other

functional sensors again. Consequently, the sensor consensus process also in-

hibits the pain parameter. Eventually, the sensor monitor process and sensor

consensus process lower the sensor's pain level below threshold. Once this

occurs, the sensor's injury process tells the virtual sensors that the sensor is

working. The virtual sensors respond by reincorporating the repaired sensor

in computing their output. Hence, the in
uence of the repaired sensor is

reintegrated into the control system. Figure 6.19 presents run-time results

for reintegration of the ankle sensor.
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Figure 6.20: When the shoulder actuator fails, the shoulder position sensor,

the ankle sensor, and the vertical force sensor look as if they have failed.

6.5.5 Catastrophic Failures

Global failures are detected in low level control, but must be compensated

for in the high level control. Hip actuator failures, hip potentiometer failures,

shoulder actuator failures, and shoulder potentiometer failures are global fail-

ures. These failures e�ectively prevent the leg from behaving as programmed.

This is obviously the case if an actuator fails. If a joint angle potentiometer

fails, the servo processors have no way of knowing the positional error, so

they cannot servo the actuator. In the event of a global failure, the leg is

rendered not usable, so the robot must modify its behavior to function with

fewer legs.

Detection

Global failures are detected by the same processes used for detecting local

failures. Potentiometer failures are found using their respective sensor mon-

itor process and consensus monitor process. Actuator failures are inferred

through concurrent failure of sensors whose behavior depends on that ac-
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masks its output from the high level control.

tuator working. Once an actuator fails, all dependent sensor models are

invalid. Consequently, the corresponding sensors look as if they have failed

even though this may not be the case. If the shoulder actuator fails, for ex-

ample, the ankle sensor, vertical loading sensor, and shoulder position sensor

all appear broken to the monitoring processes (�gure 6.20). Once a global

failure occurs, it is irrelevant whether the local sensors appear broken because

the leg is not usable anyway. The detection of global failures can be reduced

to detecting potentiometer failures only. This is the case since the monitoring

processes detect joint angle potentiometer failure when either type of global

failure occurs.

Masking

Once a leg fails, the output of its ground-contact virtual sensor is not valid.

The ground-contact virtual sensors of the stepping legs in
uence when the

next step cycle occurs. Each recovering leg inhibits the supporting legs from

proceeding to the next step cycle until it attains ground contact. Thus,
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it is important to mask the e�ect of non-valid ground-contact virtual sen-

sors or else they may adversely a�ect the robot's gait. To prevent this

from happening, the output of the ground-contact virtual sensor defaults

to ground-contact = true for all broken legs (�gure 6.21). By doing so,

the e�ect of renegade ground-contact virtual sensors on the robot's gait is

removed.

Recovery

Given a global failure, high level control agents compensate by lesioning

the broken leg. Each leg has a lesion mechanism which is responsible for

lesioning the leg once it su�ers a global failure. Within high level control,

each critical potentiometer has a leg-pain parameter and a leg-injury agent

associated with it (�gure 6.22). Each leg-injury agent receives messages from

its corresponding low level potentiometer injury agent every 0.1 second. If a

message indicates the potentiometer is broken, the corresponding leg-injury

agent excites the appropriate leg-pain level. The leg-pain level automatically

decays every three seconds. If a leg-pain energy level rises above the lesion

threshold, the corresponding leg-injury agent activates the lesion behavior.

The lesion behavior disables the leg and adopts a gait that is stable without

the use of the damaged leg (�gure 6.23). The lesion behavior is described in

chapter 4.
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Figure 6.24: The system occasionally retries to use the leg. If it works again,

the system reincorporates the use of that leg.

Reintegration

If the broken leg is repaired or the leg was wrongly determined to be broken,

high level agents reintegrate the leg. This is accomplished by occasionally

testing the leg to see if it is functional again. Leg reintegration is performed

by the lesion mechanism. After the leg-pain level rises above the lesion

threshold, the leg-injury agent is prevented from exciting the leg-pain level.

Consequently, the leg-pain level decays slowly back towards zero. When the

leg-pain level lowers to the retry threshold value, the system tries to use the

leg and the leg-injury agent is allowed to increase the leg-pain level (�gure

6.24). If the leg is still broken the leg-pain level raises above threshold, and

the process repeats. If the leg works the next time it is tested, the leg-pain

level decays to zero. Once this happens, the system acknowledges the leg is

functional again, de-activates the lesion behavior, and resumes using the leg.

6.6 Performance

6.6.1 Tests

Several tests were conducted to determine the system's response to various

types and combinations of failures. The tests involved in
icting the desired
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fault and observing its e�ect on the robot's behavior while the robot walked

through its environment. We tested sensors with a local e�ect and sensors

with a global e�ect. Permanent sensor failures were in
icted by disconnecting

the power, ground, or output wires to the sensors. Broken wires are the most

common cause of permanent sensor failure on Hannibal. Sensor uncalibration

was induced by adjusting the reference voltage o�set of the sensor signals;

uncalibration also occurred naturally over time. Transient errors are di�cult

to force but arose during the course of the tests. Di�erent combinations

of permanent errors were tested as well. We disabled sensors individually,

concurrently, and sequentially over time. We repeated the concurrent and

sequential tests by disabling the sensors in various permutations. Actuator

failures were evoked by disconnecting the wires to the motor. On one occasion

the shoulder actuator shaft sheared o�, so we had the opportunity to test for

motor shaft breakage as well.

6.6.2 Results

The results of the tests described above are presented in �gure 6.25. As

shown, the system is quite 
exible and responds to a wide variety of types

and combinations of failures. We conducted the tests by evoking various

types and combinations of sensor faults on the left front leg (the same pro-

cesses run on the rest of the legs). The tests were performed while Hanni-

bal walked over 
at terrain with holes and cli�s. Within this environment,
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the interesting virtual sensors are the ground-contact virtual sensor and the

step-in-hole virtual sensor. Consequently, we focused our tests on the sensors

used by these virtual sensors and the actuators that a�ect the behavior of

these sensors. Hence, the sensors and actuators involved in the tests are the

shoulder potentiometer, ankle displacement sensor, vertical force sensor, and

shoulder actuator. It is interesting to note that the system responds to the

failure of a local leg processor as well. Once a local leg processor fails it

cannot send the leg sensor signals to the main processor. Consequently all

sensors look as if they have failed, and the system responds by lesioning the

leg.

Figure 6.26 presents the response time of the system to recover from

failures and to reintegrate repaired components. The system recovers from

failures quickly enough such that the robot's behavior does not have to de-

grade to an unacceptable level before the failure is compensated for. It also

reintegrates repaired components quickly so the system readily has access

to its reliable resources. It is possible to tune the recovery-reintegration

response time of the system by adjusting various parameters. The recovery-

reintegration response time to local failures is tuned by adjusting the pain

level threshold, the pain excitation gain, and the pain inhibition gain. For

example, the response time is sped up by either lowering the pain threshold

or increasing the excitation gain. Increasing the inhibition gain slows the

response time and encourages the system to reintegrate components earlier.

The recovery-reintegration response time to global failures is tuned by ad-

justing the lesion threshold of the leg-pain level, the retry threshold of the

leg-pain level, the leg-pain excitation gain, and the leg-pain decay rate. For

example, the recovery response time is sped up by increasing the leg-pain

147



excitation gain or lowering the lesion threshold. The reintegration response

time is increased by increasing the leg pain decay rate or increasing the retry

threshold. Clearly a balance must be achieved between tuning the system for

a fast response time while taking care not to make the system too sensitive

to transient faults.

6.6.3 Evaluation

To evaluate the fault tolerant aspects of Hannibal's system, we discuss them

in relation to the following topics:

Completeness of fault detection

The system successfully detects a wide assortment of common failures. It dis-

tinguishes between non-catastrophic failures and catastrophic failures. Re-

garding local failures, it recognizes which type of sensor has failed. Regarding

catastrophic failures, the system recognizes potentiometer failures. Actuator

failures appear as the massive failure of all sensors whose behavior depends

on that actuator. Local processor failures appear as the massive failure of all

sensors whose values are communicated to the main processor by that pro-

cessor. When these types of catastrophic failures occur, the corresponding

potentiometer(s) appear broken. Furthermore, all catastrophic failures evoke

the same recovery procedure. Hence, the system only looks for potentiometer

failures to detect catastrophic failures.

Fault coverage

The robot successfully recovers from a wide assortment of failures. The

system recovers from sensor failures, actuator failures, and local processor

failures. It addresses failures with a local e�ect as well as failures with a

global e�ect. It handles transient errors, sensor uncalibration, and permanent

failures. It compensates for various combinations of failures: failures that

occur individually, concurrently with other failures, or accumulate over time.

It tolerates these combinations of failures in various permutations.
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Con�nement of errors

The system e�ectively prevents sensor and actuator failures from adversely

in
uencing robot behavior. To accomplish this, the detection processes moni-

tor the sensor outputs and alert the system of failures as they arise. This nips

the failure problem in the bud because the system can e�ectively compen-

sate for failures once it knows when and what type of failures have occurred.

For example, robust virtual sensors �lter out the e�ects of non-catastrophic

failures so the failures do not in
uence the robot's behavior. Potentiometer

injury processes evoke the lesion behaviors when catastrophic failures occur,

so the loss of the leg does not cause the robot to become unstable.

Response time to failures

The system successfully detects and recovers from failures before the robot's

performance degrades to an unacceptable level. A fast response time is im-

portant for successfully implementing error con�nement. After all, it does

not do the system much good to implement the dection and recovery pro-

cedures in the low level control if it takes them a long time to respond to

failures.

Extent of graceful degradation of performance

The recovery processes maintain the robot's performance at the highest level

given the functional state of the hardware. Because the system purposefully

recognizes failures, the recovery processes can speci�cally tailor the robot's

use of sensors and actuators to minimize the e�ects of failures on the robot's

behavior. At the virtual sensor level, the recovery processes tradeo� speed for

reliability as the number of functional sensors decreases. At the locomotion

level, the recovery processes trade o� speed for stability as the number of

usable legs decreases.

Availability of reliable resources

The reintegration processes reincorporate repaired components so the robot

has access to all its reliable resources. This is important because the more

sensors and actuators the system can use, the better its performance will be.
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The reintegration response time is relatively fast so the system does not have

to wait long before it can reuse repaired components.

Division of fault tolerance responsibilities among hardware and

software

Our system implements all fault tolerance capabilities within software. We

chose not to implement fault tolerance capabilities at the hardware level for

weight and expense considerations. Consequently the code size was signif-

icantly increased. We estimate the fault tolerance processes to require the

same amount of code space as the locomotion code and rough terrain code

combined. In other systems it may make sense to make a more even tradeo�

between code size and hardware weight and expense.

Survivability of the system

The survivability of the robot depends on many variables; hence, it is di�cult

to determine for our system without running extensive tests. Survivability is

determined by how many and what kinds of failures the robot su�ers. It also

depends on the type of terrain the robot is walking over. However, the causes

of these failures are diverse, and the rate at which these failures occur is not

well understood at this time. Assuming the robot walks on 
at terrain, the

robot can locomote using only its shoulder and hip potentiometers. Hence,

the minimum number of failures the robot can withstand before it can no

longer walk in a stable fashion is two catastrophic failures on di�erent legs

provided the failures do not occur on the middle legs. This lower bound is

determined by the physical constraints governing the stability of the robot.

The maximum number of failures the robot can withstand before it can no

longer walk in a stable fashion is 54 (48 non-catastrophic failures, 3 catas-

trophic failures on the left side middle leg, and three catastrophic failures on

the right middle leg). Hence, it is possible for the robot to locomote with a

small minority of its sensors working.

6.7 Comparison with other systems

Fault tolerance is relatively unexplored area of autonomous robot research.

In this section, we compare our approach to related work in the �eld.
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6.7.1 Robustness

The issue of robustness is commonly discussed in autonomous robot control

architectures. Behavior based control architectures such as Brooks (1986)

are robust because the loss of functionality of part of the controller (such

as a layer of competence) does not result in a complete break-down of the

controller. Chiel et al. (1992) argues the neural network locomotion controller

implemented on the Case Western Hexapod is robust because the the loss

of certain parts of the controller (such as sensor nodes) does not prevent

the robot from walking. As another example, Chiel et al. (1992) argues

that the controller is robust to the loss of a leg because the slowest gait

the controller generates maintains stability with the loss of a leg. These

arguments for robustness imply that robustness means that a system can

still behave reasonably despite some loss of functionality of the controller.

Fault tolerance, in contrast, speci�cally deals with the detection and com-

pensation of failures. Hannibal's controller purposefully recognizes failures

and speci�cally compensates for them. In this way, the system maintains

its best possible performance given the functional state of the system. For

example, the controller presented in Chiel et al. (1992) does not tolerant

of physical sensor failure. If a potentiometer physically failed, there would

be no positional error, and leg could no longer be servo controlled. Their

controller assumes the leg can still be servo controlled when a sensor node

in their network fails. Similarly, their controller is not tolerant of leg fail-

ure because it does not detect when a leg has failed or automatically adapt

the robot's gait to maintain stability. In contrast, Hannibal's controller is

tolerant of these failures.

6.7.2 Replication of Hardware

Replication of hardware is commonly used to enhance hardware reliability.

(Kabuka, Harjadi & Younis 1990) and (Lin & Lee 1991) present multiple pro-

cessor architectures for robotic systems which can tolerate processor failures.

Both papers parallelize the problem they want to solve (vision or inverse kine-

matics) and distribute the problem over the parallel network. If a processor

fails the network recon�gures itself and redistributes the work load on the

remaining processors. Fault tolerant computing systems presented in (Gray

1990) and (Siewiorek & Johnson 1981) exploit replication of VLSI hardware
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to achieve fault tolerance. The low cost of VLSI replication makes this ap-

proach feasible for this application. In contrast, complex systems such as

the Boeing 757 and the Space Shuttle use replication of hardware to achieve

fault tolerance at a signi�cant expense.

Fault tolerance by replication is fairly straight forward. The system is

made tolerant of a particular type of component failure by replicating it

and ignoring the components that exhibit a minority behavior. Duplica-

tion of hardware/software increases the fault tolerance of the system, but

it doesn't necessarily provide enhanced capabilities or performance over the

non-replicated system. In contrast, the approach presented in this chapter

has the advantage of using components with complementary yet di�erent

capabilities to achieve fault tolerance. Since the components have di�erent

capabilities, they can be used for di�erent purposes. Hence the additional

components not only enhance the fault tolerance of the system, but they

also provide additional capabilities and performance beyond what the sys-

tem would have were it to use fewer components.

6.7.3 Redundant Control Behaviors

Fault tolerance techniques using redundant sets of control strategies has been

investigated in (Payton et al. 1992). We have previously discussed this ap-

proach in section 6.3.2, but we brie
y repeat our discussion here for the

reader's convenience. In this approach, the controller is designed with re-

dundant strategies to perform a task. A performance model exists for each

strategy, and a failure is detected if the behavior's actual performance is

worse than the behavior's expected performance. If the �rst strategy tried

doesn't su�ce, the controller eventually tries another strategy. The con-

troller goes through its repertoire of strategies until it �nds a strategy with

acceptable performance instead of unsuccessfully trying the same thing over

and over.

This high level approach is not well suited for hardware failures. First, it

does not speci�cally address the cause of the problem, it only addresses the

symptoms. It may take several tries before the controller �nds a strategy that

works. In contrast, our approach purposefully recognizes the type of failure

and compensates for the failure by speci�cally tailoring its use of reliable

components to minimize the e�ect of the failure on the robot's performance.

Second, the high level approach inherently requires that the hardware er-
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rors manifest themselves in the robot's behavior before the control system

can detect something is wrong. Ergo, the performance of the infected be-

haviors must degenerate to an unacceptable level before the controller takes

corrective action. In contrast, our approach detects and masks the e�ect of

failures within the low level control. This prevents the hardware failures from

manifesting themselves in high level control where they degrade the robot's

performance to an unacceptable level.

6.8 Contributions

There are several contributions this work makes towards achieving fault tol-

erant autonomous robot systems. First, this work presents an autonomous

robot which can purposefully recognize sensor failures quickly and reliably.

Second, the robot speci�cally and dynamically tailors its use of sensors and

actuators to minimize the impact of failures on its performance. Third, the

robot dynamically reintegrates repaired components to enhance its perfor-

mance. I have tested the capabilities of this system by physically disabling

and enabling the robot's sensors and actuators. I have found the system rec-

ognizes and compensates for sensor and actuator failures with a fast response

time. It tolerates a variety of sensor failures such as uncalibration, erroneous

readings, and permanent failures. It also tolerates various combinations of

failures such as individual failures, concurrent failures, and accumulative

failures. It handles minor failures such as a broken ankle sensor as well as

catastrophic failures such as a broken leg. This is the only autonomous robot

we know of with this level of fault tolerant capabilities.
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Chapter 7

Conclusion

7.1 Review of Signi�cant Results

7.1.1 Control of Complex Robot

Expanding the capabilities of robots tends to make them more complicated.

Equipping robots with more sensors increases the quantity and reliability of

information the robot can extract from its environment. The robot can use

this information to help it behave more intelligently. Providing robots with

more actuators increases the physical capabilities of the robot (arms, hands,

improved locomotion, active vision, etc.). Programming the robot with more

behavioral capabilities makes it more 
exible and versatile in the tasks it can

perform. As the �eld of autonomous robot control advances, we will want to

design robots with greater capabilities to perform more challenging and com-

prehensive tasks. Understanding how to manage complexity of autonomous

robot control is a relevant issue which will be present in the future.

We demonstrated the subsumption approach (Brooks 1986) is e�ective

for designing an intricate controller, and for controlling a robot of Hannibal's

complexity. The current implementation consists of approximately 1500 con-

currently running processes performing diverse tasks such as terrain sensing,

rough terrain locomotion, and fault tolerance. In building a controller of

this complexity from the bottom-up, we have demonstrated the modularity

of the design. The controller scales well since Hannibal operates in real-time

despite the large number of concurrently running processes.

We demonstrated the local control with cooperation paradigm is an e�ec-
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tive means of controlling a robot of Hannibal's complexity. We tested this

approach by running Hannibal on various test terrains. The control was

quite 
exible as the legs were able to handle obstacles local to themselves

simultaneously with the other legs. Furthermore, through communication

each leg behaves as a scout for the other legs and alerts them of common

dangers. In this manner, a high level terrain view local to each leg is shared

with the other legs. Communication between legs also enabled them to act

as a team. By working together each leg accomplishes more than it could if

it had to fend for itself. Finally, inter-leg communication enables the legs to

maintain a uni�ed e�ort, and the inter-leg priority scheme maintained the

uni�ed e�ort even when behaviors of di�erent legs were in con
ict.

Since all of Hannibal's control code runs on a single processor, the con-

troller code can only be scaled until its requirements exceed what the master

processor can provide. A logical step would be to implement behavior con-

trol on multiple processors. The scalability of this architecture is limited by

communication bandwidth of the behavior code processors. This may not be

a stumbling block for this implementation since the subsystems perform local

functions the majority of the time and communicate with the other systems

on a relatively limited basis.

7.1.2 Fault Tolerance

Fault tolerant behavior is important for autonomous mobile robots whether

their task is grand or mundane. Building autonomous mobile robots capable

of performing tasks in environments that are either too dangerous or unsuit-

able for humans has been a long term goal of the �eld. Planetary exploration

with autonomous micro-rovers is one such example. These tasks require that

the robot perform its task for long periods of time without the luxury of

repair when components fail. It is vital to the success of the mission that the

robot continue to function e�ectively despite component failures. For day to

day goals, anyone who works with real autonomous robots is familiar with

how frequently their hardware fails. Sensor and actuator failures are not

surprising given how often the robots bump into things, rattle components,

snag wires, and stress connectors as they move through their environment. It

would be nice if we did not have to stop our research to repair the robot every

time something fails. Given that a primary advantage of autonomous robots

is their ability to perform tasks without human assistance or intervention,
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it is surprising the issue fault tolerance remains relatively unexplored. As it

becomes more important for our autonomous robots to perform for extended

periods of time without repair, fault tolerance must be investigated in depth.

We demonstrated that an autonomous robot which e�ectively tolerates

component failures using a distributed network of concurrently running pro-

cesses. A set of fault tolerance processes were created for each component.

These processes are responsible for detecting the faults of their respective

component, and for minimizing the impact of the failure of the robot's per-

formance. By exploiting concurrency and distributedness, the robot moni-

tors, detects, and compensates for component failures simultaneously. We

tested the robot's fault tolerance capabilities by evoking a variety of failures

in di�erent combinations. We found the robot compensates for them before

the robot's performance degrades to an unacceptable level.

We demonstrated that an autonomous robot can reliably and purpose-

fully detect sensor failures by comparing the sensor's actual behavior with

its expected behavior and with the behavior of complementary sensors. This

has two important implications. First, if the system can recognize when com-

ponents have failed, then it can purposefully tailor its use of its remaining

sensors and actuators to minimize the impact of the failure on the robot's

performance. Second, if the sensor can recognize when components are work-

ing, then it can purposefully integrate the use of all working components to

enhance the performance of the system. This is useful for reintegrating re-

paired components. We demonstrated both these capabilities on Hannibal.

Fault tolerance for autonomous robots is a new area of research full of

possibilities for future work. We have demonstrated initial fault tolerant

capabilities on Hannibal, and there is plenty of room for improvement. The

sensor behavior signatures (the models referred to in chapter 6) used by the

sensor-state processes are hardwired. As a result, Hannibal can only reliably

detect sensor failures in environments for which it has sensor signatures.

For example, Hannibal's sensors may look di�erent than what it expects if

it were to walk in mud. It is a logical step to have Hannibal learn new

sensor signatures over time so that it may recognize sensor failures in new

environments. Furthermore, more work needs to be done in understanding

how fault tolerance capabilities can be implemented on robots with di�erent

kinds of sensors and di�erent numbers of sensors.

156



7.1.3 Robust Hexapod Locomotion

Legged biological systems are very e�ective in traversing terrain too rough

for wheeled vehicles. Understanding how to build legged robots with loco-

motive capabilities comparable to those of biological systems has been a long

standing goal in the �eld (Raibert & Hodgins 1993). Implementing models

of insect locomotion on hexapod robots helps us to design robust locomotion

controllers as well as gain insight into insect locomotion control (Quinn &

Espenschied 1993).

We demonstrated how various insect locomotion tactics can be applied to

hexapod robots. On Hannibal, we implemented several insect-based locomo-

tion controllers as well as several rough terrain strategies used by insects. We

tested the controllers by walking the robot on both 
at and rugged terrain.

The resulting locomotion was 
exible and robust.

We have further con�rmed that a distributed control scheme using simple,

concurrently running processes is a viable approach to real-time locomotion

control of hexapod robots with relatively little computational power ((Brooks

1989), (Donner 1987)). We have demonstrated this through implementing

and testing a rough terrain locomotion controller with signi�cantly more

capabilities and on a much larger scale than past systems using a similar

approach.

Future work for robust hexapod locomotion could take two di�erent

paths. On the biological path, it would be interesting to implement a rough

terrain controller which is truer in spirit to real insect rough terrain locomo-

tion. Other locomotion controllers are more strongly motivated by biology

than ours, but they only address 
at terrain locomotion. On the engineering

path, it would be interesting to implement a similar controller on a di�erent

hexapod for comparison. We feel our controller pushed the physical capa-

bilities of our hardware too soon. Furthermore, it would be interesting to

implement rigorous climbing capabilities with a more capable robot.

7.1.4 Micro-Rover Missions

In regards to controller design for a planetary micro-rover, this thesis tackles

relatively low level control issues. We have addressed several topics involved

in wandering over challenging terrain for extended periods of time. How-

ever, higher levels of competence (such as navigation or mission scenario
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behaviors) are required for Hannibal to perform a complete mission. These

additional layers could be added to the current controller. Our experience

thus far indicates that the controller is modular and scales well, so adding

these additional layers of competence is feasible and an area of future work.

7.2 Real Robots for Real Problems

In conclusion, we �nd this work of particular interest because the controller

was implemented and tested on a physical robot of signi�cant complexity. We

argue it is important to study the behavior control systems on a real robots.

As robots become more complex, the di�cult issues in control are magni�ed

to the point where they cannot be ignored or only partially addressed. It is

important that all aspects of the control system be implemented and tested

on real robots of su�cient complexity to make sure the integrated system

works in the real world. By developing our controller on a physical system,

we were forced to make sure all the pieces �t together at every stage. This

also helped us maintain a common framework when implementing diverse

capabilities. Finally, testing our controller on a physical system served as

a strong reality check for our rough terrain locomotion and fault tolerance

implementations.
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